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Abstract 

Vision is the primary sense through which people perceive the world, and the im

portance of visual information during our interactions with people is well known. 

Vision can also play a key role in our interaction with machines, and a machine 

that can see people is more able to interact with us in an informed manner. This 

thesis describes work towards a computer vision system to enable a computer to 

see people's faces, and hence provide a basis for more meaningful and natural 

interaction between humans and computers. 

The human face possesses a number of visual qualities suitable for detecting faces 

in images. Radial symmetry is particularly useful for detecting facial features. 

We present new transform, the Fast Radial Symmetry Transform (FRST), that 

allows efficient computation of local radial symmetry in realtime. Both as a facial 

feature detector and as a generic region of interest detector the FRST is seen to 

offer equal or superior performance to existing techniques at a comparatively low 

computational cost. 

However , no single cue can perform reliably in all situations. The key to an effi

cient and robust vision system for tracking faces or other targets is to intelligently 

combine information frorn a number of different cues, whilst effectively manag

ing the available computational resources. We develop a system that adaptively 

allocates computational resources over multiple cues to robustly track a target 

in 3D. 

After locating and tracking a face in an image sequence, we look at the problem 

of detecting facial features and verifying the presence of a face. We present an 

automatic face registration system designed to automatically initialise features for 

a head tracker. We also explore the problem of tracking the facial features. This 

involves tracking both rigid and deformable features to determine the 3D head 

pose, and describe the locations of facial features relative to the head. The 3D 

head pose is tracked using predominantly rigid facial features, and deformable 



Vlll Abstract 

features are then tracked relative to the head. A new fonn of te111plates was 

introduced to facilitate tracking deformable features. These are used in two case 

studies. The first is a monocular lip tracker , and the second is a stereo lip tracking 

system that tracks the mouth shape in 3D. 

The face localisation, feature detection and tracking solutions presented in this 

thesis could potentially be integrated to form an all-inclusive vision syste111 al

lowing a computer or robot to really see a person's face. 
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Chapter 1 

Introduction 

Interpersonal communication is a central part of people 's lives. The purposes 
of communicating with other people are many and varied . We commonly com
municate who we are, what we are doing, or how we are feeling, and instruct 
others how to do things, or what we would like them to do . People communicate 
effortlessly using language, tone of voice, gestures , posture and facial expressions. 
A significant proportion of this communication is non-verbal. Figure 1.1 shows 
people communicating in different circumstances - just by observing t he people 
in these pictures we can tell quite a lot about their situations, and begin to guess 
what it is they are communicating. 

There is some debate amongst experts as to exact ly how much interpersonal 
communication is non-verbal. Birdwhistell (1970) estimates 65 percent of the in
formation transferr ed in a normal two person conversation is non-verbal, whereas 

1ehrabian (1972) postulates it o be as high as 93 percent . The precise value is 
of lit le consequence , t he point is t hat non-verbal - as well as verbal - commu
nication pla s a crucial role in t he interaction between people. 

Compared to the way people interac with each other our interaction with com
puter ( and robot ) is much more restricted . Traditionally people have interacted 
with computer using a keyboard and mouse or other pointing device, and whilst 
the e are -ell uited for mo t standard computer tasks it limit computers to these 
( tandard'' ta ks. B:; tandard ta ks we mean ta ks that computer are tradition

ally considered a being good a , uch a word proces ing, databa e management , 
progran1ming, brow ing the internet , anal zing data , and performing numerical 
computa ions . 



2 Introduction 

Figure 1.1: Humans communicating. 

Enhancing the interaction between humans and computers offers many new pos
sibilities. Ideally we would like to be able to interact with a computer in the 
same way we do with another person. This would open the door to many new 
and useful applications. Potential tasks could include: 

• entertainment, interfaces for games, facial animation, 

• in1proved teleconferencing, 

• monitoring human performance, 

• classroom teaching, 

• caring for the elderly, or the disabled, 

• smart cars , sn1art devices, 

• smart security surveillance, and 

• n1aking n1anual or automated tasks easier . 

Computer vision allows computers to "see'' . Having a computer that can see a 
person is a significant step closer to a machine that we can interact with. The 
research in this thesis has focused on helping a computer to see a person, 1n 
particular the face. 
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1.1 Principal Objectives 

The goal of this research is to work towards a computer vision system that enables 

a computer to see people's faces, and hence provide a basis for more meaningful 

and natural interaction between humans and computers. What do we mean when 

we say we want a computer to be able to "see" faces? We want the computer 

to be able to locate and track humans in image sequences , preferably in real

time, and with robustness to different people's appearances and the operational 

environment. 

There are a number of aspects to this problem. Firstly it is necessary to know 

where a person is in a scene, in particular the location of their head. Once the 

approximate location of the head is known the facial features can be detected, 

and once these features have been found they can be used to track the pose of 

the head and the relative motion of deformable features such as the mouth and 

eyebrows. This thesis aims to present solutions to these human tracking issues 

that could potentially form an all-inclusive vision system to allow a computer or 

robot to see a person 's face. 

Figure 1.2 shows how the problem of enabling a computer to see faces can be 

broken down into face localisation, face registration, and face tracking. It also 

shows how these different stages of the process relate directly to human com

puter interaction applications such as human motion capture, face recognition, 

lip reading and expression recognition. 

The first , and perhaps the most challenging problem to be dealt with, is face 

localisation. Consider the situation where a person is moving around a room, 

the lighting conditions are variable, sometimes there are objects occluding the 

person 's face , there may even be more than one subject to be tracked, and the 

camera is not assumed to be stationary. The face localisation module must ro

bustly locate the approximate location of the face and track it. It would be 

feasible to extend this module to locate other parts of the body in addition to 

the face , and move onto full or partial human motion capture, or even gesture 

recognition. However, for the purpose of this work we are primarily interested in 
locating the face. 

Face registration is the next stage of the process. This involves verifying that 

the target detected is indeed a face , and registering the locations of the facial 

features. We have not considered actual recognition in this thesis. However, if it 
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Face Localisation: 
detect and track a person 
in a complex scene 

Face Registration: 

Introduction 

Example applications 

Human motion capture 

detect facial features ------ Face recognition 

Face Tracking: 
Track head pose ---------- Gaze point estimation 
Track facial features Lip reading, 

expression recognition 

Figure 1.2: Overview of enabling a computer to "see" a face, and some typical 
applications associated with the different stages. 

is desired to automatically recognise t he face from a set of known faces , then the 
facial feature locations fron1 the face registration module can be lised to normalise 
t he appearance of the face in preparation for the application of a face recognition 
algorithm. 

Once facial features have been detected it is possible to track the pose of the head 
and track t he relative locations of deformable facial features. This essentially 
captures all the inforn1ation the face has to offer without determining a dense 3D 
n1odel of t he subject . From here it is feasible to perform lip tracking; automate 
a facial avatar, or attempt expression recognition . 

This thesis will focus exclusively on capturing visual information describing the 
face , thus enabling a computer to "see;; a face. Face localisation , registration, and 
tracking are each considered in t urn and examples of implementations of each of 
these are presented. Fast and efficient visual cues are also considered in detail ; 
and these cues are applied to the variou detection and t racking tasks required. 

Computer vision n1ust be realtin1e to facilitate useful interaction with humans. 
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Consequently, the methods developed in this thesis have a strong emphasis on 

speed and efficiency. All algorithms were initially implemented in Matlab, how

ever, some realtime implementations have been ma~e using C++. Furthermore, 

while the Matlab implementations typically run quite slowly, the algorithms are 

efficient enough to run in realtime in C/C++. 

1.2 Key Contributions 

• Fast detection of radial sym1netry - a valuable cue for detecting eyes and 

other radially symmetric features in images. 

• A system to adaptively allocate computational resources and fuse cues for 

robust person tracking. 

• Face detection algorithm for initialisation of a head tracking system. 

• A monocular and a stereo 3D lip tracking system, both operating in conjunc

tion with 3D head trackers to allow the subject's head freedom of movement 

whilst tracking. 

1.3 Outline of Thesis 

Chapter 2 discusses the application of computer vision for locating and track

ing people, in particular the face , and reviews previous research in this area. In 

Chapter 3 a novel i1nage based transform is presented that allows efficient com

putation of radial symmetry in realtime; this transform is a powerful visual cue 

for face detection and is used in the systems described in the Chapters 4 and 5. 

Chapter 4 presents a vision system that adaptively allocates computational re

sources over n1ultiple cues to robustly track targets in 3D. In Chapter 5 a system 

is described that performs automatic detection of facial features for the process of 

face and gaze tracking. Chapter 6 explores the problem of tracking the face and 

deformable facial features such as the lips. Finally, Chapter 7 closes the thesis 

with a summary of the key findings and suggestions for further research. 

An outline of each chapter is presented below. 



6 Introduction 

1.3.1 Related Work 

Chapter 2 reviews related work in the field. We discuss the physical qualities 

governing facial appearance, and consider visual cues suitable for detecting faces 

in images. We then move on to look at previous research relevant to locating a face 

( or other specified target) in a cluttered and dynamically changing environment, 

placing particular emphasis on the need to fuse multiple visual cues in order to 

obtain a robust esti1nate. Next we review previous work on face registration, 

that is , verification that a face is present and detennining the location of facial 

features. Then we look at face tracking, both tracking of the head pose and 

tracking defonnable facial features such as the mouth. Finally the chapter closes 

with a su1nn1ary of the key points. 

1.3.2 A Fast Radial Symmetry Transform 

Chapter 3 presents a new i1nage transform that utilizes local radial sy1nmetry 

to highlight points of interest within a scene. Its low computational complexity 

and fast run-ti1nes make this method well suited for realtime vision applications . 

The perforn1ance of the transform is demonstrated on a variety of images and 

con1pared with leading techniques fro1n t he literature. Both as a facial feature 

detector and as a generic region of interest detector t he nevi transform is seen to 

offer equal or superior performance to contemporary techniques at a relatively low 

computational cost . A real time implementation of the t ransform is also presented 

den1onstrating the effectiveness of the transfonn for highlighting peoples eyes in 

real time. 

1.3.3 Face Localisation 

Chapter 4 considers the problen1 of face localisation in a co1nplex, d) namic en

vironn1ent. A vision syste1n is presented that adaptively allocates computational 

resources over multiple cues to robustly track a target in 3D. The system uses a 

particle filter to maintain n1ultiple hypotheses of the target location. Bayesian 

probability theory provides the framework for sensor fusion , and resource schedul

ing is used to intelligentl allocate the limited computational resources available 

across the suite of cues. The sy te1n is shov\ n to track a person in 3D space mov

ing in a cluttered en\ ironn1ent . An additional example is shown demonstrating 
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how the system can be extended to track multiple targets , using multiple particle 

filters, and inhibition of returns to prevent different filters from locking onto the 

same target. 

1.3.4 Face Registration 

Chapter 5 examines the problem of face registration, that is, automatically de

tecting facial features and confirming the presence of a face in an image. A face 

registration system is presented that is designed to perform automatic detection 

of facial features for the purpose of face and gaze tracking, and hence provide 

the capability of face tracking without the requirement of a user specification or 

calibration stage. Motion information is used to detect blinks, indicating possi

ble eye locations and an associated face candidate. Facial features ( eyes, mouth 

corners, nostrils and eyebrows) are located and the face candidate is verified by 

examining the topology of these features. 

1.3.5 Face Tracking 

Chapter 6 explores the problem of tracking the face and deformable facial features 

such as the lips. In order to effectively track deformable facial features relative to 

an unconstrained head it is also necessary to track the head pose. In this chapter 

two case studies are presented, the first is a monocular lip tracker, and the second 

is a stereo lip tracking system that tracks the mouth shape in 3D. 

Tracking the lips has a broad scope of applications across the field of human

con1puter interaction, including animation, expression recognition , and audiovi

sual speech processing. As people talk, their heads naturally move about as they 

gesture and follow conversation cues. It is necessary for a lip tracking system 

to be robust with respect to this behaviour ; to be able to detect , monitor and 

account for rnovement of a speaker's head. 

The mouth is a 3D feature which deforms 1n all spatial dimensions. In order 

to fully describe the mouth shape it is necessary to track it in 3D. Providing 

such a description of the mouth shape is essential for accurate 3D character ani

mation, and also provides significantly more information for audio-visual speech 

processing and other human-computer interaction applications. 
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1.3.6 Conclusion 

Chapter 7 closes the thesis with a summary of the key findings and achieven1ents , 

and suggestions for further research. 

1.4 Chapter Summary 

This chapter has introduced and motivated the research reported in this thesis. 

We have discussed the importance of visual information in both interpersonal 

interaction between people and hun1an-computer interaction, and stressed the 

point that a computer that can see people is significantly closer to a co1nputer 

that we can interact with like we do with other human beings. The reader was 

then introduced to the problem of enabling a computer to see a person, and given 

a breakdown of a number of key elements of this problem. Finally we presented 

an overview of the research in this thesis, showing how it contributes towards 

solving the proble1n of enabling a computer to really "see" a person. 



Chapter 2 

Related Work 

In the first chapter we discussed how the problem of enabling a computer to 

"see" a face can been broken down into face localisation, face registration and 

face tracking. This chapter reviews previous research in each of these three areas. 

The anatomy of the human face is also discussed along with visual cues suitable 

for detecting faces in images. 

The first section of this chapter opens with a discussion of the physical qualities 

governing the appearance of a face , and reviews visual cues suitable for detecting 

faces in images. The following section reviews previous research relevant to lo

cating a face ( or other specified target) in a cluttered and dynamically changing 

environment ; particular emphasis is placed on the need to fuse multiple visual 

cues in order to obtain a robust estimate. The third section reviews previous work 

on face registration, that is , verification that a face is present and determining 

the location of facial features. In the fourth section a brief background of face 

tracking is presented, this involves both tracking of the head pose and tracking 

deformable facial features such as the mouth. The chapter closes with a summary 

of the key points. 

2.1 Cues for Person Tracking 

2.1.1 The Human Face 

Our faces are central to our identities as human beings. We recognise others 

and ourselves primarily from facial appearance. Four of the five senses - sight , 
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Constrainedsetof -----. 
face dimensions 

Related Work 

Facial features: 
specific arrangement, ':r4'--~-
typically darker than 
surrounding skin 

Figure 2.1: Facial qualities suitable for detection by a computer. 

hearing, taste and smell - are perceived by organs within the facial region 
and fron1 another person's face we can sense hov.r they are feeling , ·where their 
attention is focussed: and even make an educated guess as to v. hether t hey are 
lying or Tuithholding infonnation. With 7,000 discrete facial expressions (Bates 
and Cleese. 2001) at our disposal t he face is rich with information, so it is not 
urpri ing that the face is our prin1ary fo cus when we interact with others. Indeed 
uch interactions are often referred to as face -to-face encounter . 

\\ l1at qualitie does the face ha, e that n1ake it look like a face , and -;-, hich of 
the equalities can be used by con1puter vision to allow us to automatically locate 
face in in1age ? Figure 2.1 ho"\"\-s a frontal view of a face \Vi th a number of vi ual 
attribute indicated that are suitable for detection by a computer \1i ion ystem. 
The topology of the facial feature i the face· mo t di tinctive qualit} . that i : 
the arrangen1ent of the eye . nose and n1outh. and the bilateral \TI1metr , bet"\"\-een 
the left and right ide of the face. The n1ajority of the face i kin-coloured and of 
a n1ooth te~ture. f acial feature uch a the eye . no tril and mouth generally 
appear darker than the urrounding kin . and the iri e and pupil of the eve 
exhibit local radial ~-nm1etry. The ize and dirnen ion of a face are al o quite 
con trained. Phea ant (19 6) pre ent a table of face dimen ion of the general 
popula ion of Briti h adult aged 19-65 \-ear . circa 19 6: "\"\-hich i repeated in 
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Table 2.1. 

Table 2 1 · Face Dimensions of Brit ish Adults .. 
Dimension Men Women 

Mean (mm) SD (mm) Mean (mm) SD (mm) 
Head length 195 8 180 7 

Head breadth 155 6 145 6 
Maximum diameter of chin 255 8 235 7 

Chin to top of head 225 11 220 11 
Ear to top of head 125 6 125 8 

Ear to back of head 100 7 100 9 
Bitragion breadth 135 6 130 5 
Eye to top of head 115 7 115 9 

Eye to back of head 170 8 160 10 
Interpupillary breadth 60 4 60 4 

ose to top of head 150 10 145 12 
Nose to back of head 220 9 205 10 
Mouth to top of head 180 9 170 11 

Lip length 50 5 45 4 

We desire our system to be able to detect anyone, regardless of race, sex, age 
or stature. With this in mind we look at head sizes from different populations, 
in an attempt to determine a range of head sizes within which every person will 
lie. Examining anthropometric data from Pheasant (1986) for males and females 
from orth American, British, French, Swiss, German, Swedish, Polish, Japanese, 
Hong Kong Chinese and Indian populations we find the American male has the 
largest adult head size, and the smallest is that of Indian women. Thus we have 
a range within which we expect adult head sizes to fall. Including children in 
the search space will lead to a broader range of acceptable head sizes , however , 
if we restrict ourselves to only searching for children above five years old this 
only slightly extends the acceptable range of head sizes. Table 2.2 presents the 
head dimension of these bounding populations. Note that only British data was 
considered for children. 

Table 2.2: Head Dimensions Bounding Populations 
Population Head length Head bread th 

Mean SD Mean SD 
Newborn infants (British) 120 4 95 3 
5 year old girls (British) 165 8 130 5 

Smallest adult (Indian female) 170 7 135 5 
Largest adult (American male) 195 8 155 6 

It is possible to calculate an average face by overlaying numerous face images with 
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Figure 2.2: Average face. 

t he facial features aligned. Average faces have been used previously in computer 
vision to search for faces in images ( Cai and Goshtasby; 1999) i and in studies 

of human facial beauty (Grammer and Thornhill ; 1994) . However; t hese average 
faces have typically been constructed from a n1odest number of faces ( Cai and 
Goshtasby used 16; and Grammer and Thornhill (1994) constructed male and 
female average faces using 44 and 52 subjects respectively). \i\ e· have constructed 
an a-.-erage face from 224 images of faces of men and women of different races 
obtained from the internet. Each image was rotated so t he eyes were horizontal ; 
and warped so the interpupillary distance and the distance from the mouth to 
the eyes \\-ere the same acros all images. The ratio of the interpupillary distance 
to n1outh to eye di tance \\-a determined by averaging the male and female pop
ulation in Table 2 .1 (gi\-ing a ratio of 1: 1) . The resulting average face is shown 
in Figure 2. 2. The a\-erage face provide a useful reference for designing cue to 
detect face and facial feature in image . 

There are a number of different problems to con ider when looking for a face . 
Kno\\ing the range of acceptable head ize allo-w u to earch for head- ized 
blob u ing tereo depth information. and identify region of motion that could 
potentially be head . Face- ized region of kin colour can al o be identified: 
a can peaks in radial ymmetry and dark blob that could be facial feature . 

earching for region \\ith bilateral ymmetry and feature clustered in face-
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like arrangements is difficult to do efficiently and robustly, however , these facial 

qualities are useful to check when it comes to verifying whether or not a detected 

target is a face. 

The remainder of this section reviews previous research 1n this area, covering 

skin detection, depth map estimation, motion detection, and radial symmetry 

detection. 

2.1.2 Skin Detection 

Detecting skin regions 1s a first step in the majority of recent face detection 

methods. The key quality that differentiates skin from non-skin regions in im

ages is colour. Colour has been successfully used to identify regions of human 

skin in i1nages in numerous applications. Interestingly, human skin colour varies 

little between different races. The primary variation is in its intensity, that is 

proportional to the amount of melanin in the skin. 

Swain and Ballard (1991) demonstrated that the intersection of colour histograms 

in colour space could be used to reliably identify coloured objects. However , this 

technique was sensitive to colour intensity and thus the ambient light source. 

Several years later Hunke (1994), Hunke and Waibel (1994) and Schiele and 

Waibel (1995) developed a skin colour detector which was invariant with respect 

to intensity. They modelled colour in a two dimensional chrominance space1 

obtained by normalising the RGB colour space with respect to intensity (see 

equations 2.1 and 2.2). Since this time a plethora of different skin colour detection 

schernes have been reported in the literature. 

The general approach of skin colour segmentation schemes is summarised as fol

lows. 

Initially a skin colour model is built off-line, this involves: 

• Sample colour images containing only skin colour are passed to the system 

(these are typically in RGB format), Figure 2.3(a). 

• The colour value of every pixel is mapped to a two dimensional chrominance 

space (some schemes map to a colour space with three dimensions , but these 

1 A chrominance space is a two dimensional space generated by removing the intensity com
ponent from a three dimensional colour space such as RG B or HSV. 
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are in the minority) to form a skin colour histogran1. Figure 2.3(b). 

• A model is selected describing the distribution of skin colour pixels 111 

chrominance space. Figure 2.3(c). 

Testing images for skin colour is done on a pixel-by-pixel basis as shown in Fig

ure 2.4: 

• The colour infonnation is converted to the appropriate chrominance space. 

• The skin-likeness of each pixel is determined by the value of the skin colour 

distribution function corresponding to the pixel 's location in chron1inance 

space. 

A threshold is generally applied to the output to produce a binary image of skin

coloured regions, however , pixels can be left as grey-levels giving a continuous 

measure of how "skin-like" they appear. 

The main differences between different skin colour detection schemes are the 

chro1ninance space chosen , and the distribution used to model the skin in chro1ni

nance space. 

The effectiveness of a skin detection algorithm depends on tpe appropriateness 

of the chrominance space in which the skin chroma is modelled. It is desirable 

to use a space in which the skin chroma distribution can be accurately modelled 

and segmented from non-skin chroma. Just about every colour space ( or corre

sponding chro1ninance space) has been used for skin colour detection , examples 

include RGB (Satoh et al., 1997) , nonnalised rg (Hunke, 1994; Ku1nar and Pog

gio, 2000) , HSY (Sobottka and Pitas , 1996a) , CIE (Co1nmission Internationale 
/ 

de L'Eclairage) XYZ (Wu et al., 1999), CIE LUY (Yang and Ahuja, 1998) , and 

CIE Lab (Cai and Goshtasby, 1999). 

Two recent studies have compared the performance of different colour spaces 

for hu1nan skin detection (Terrillon and Akamatsu, 1999; Zarit et al., 1999) , 

whilst these studies fail to agree on an optimal colour space , results from both 

studies support the HS chro1ninance space as exhibiting the smallest overlap 

between skin and non-skin distribution. Terrillon and Akamatsu (1999) exa1nine 

the comparative performance of nine different colour spaces applied to detecting 

Asian and Caucasian faces in complex images using a single multivariate Gaussian 
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Figure 2.3: Constructing a skin colour model. (a) Image of multiple skin 
samples. (b) Plot of chrominance values in ab chrominance space, from Cai 
and Goshtasby (1999). (c) Example skin chrominance model in ab space, from 
Cai and Goshtasby (1999). 
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Figure 2.4: Detecting skin. (a) Input image, convert to appropriate chromi
nance space. (b) Detennine skin-likeness of each pixel from skin model. ( c) 
Result showing skin-likeness of each pixel in input image. 



2 .1 Cues for Person Tracking 17 

skin colour distribution model. They test normalised rg, CIE-xy, TS, CIE-DSH, 

HSV, YIQ, YES, CIE LUV and CIE LAB and conclude that their own TS chroma 

space (Terrillon et al., 1998) designed especially for _this purpose shows the best 

results, followed by the normalised rg space. Zarit et al. (1999) compare the 

performance of CIE LAB, Fleck HS, HSV, normalised rg and YCrCb with two 

different skin colour modeling schemes and conclude that HSV and Fleck HS 

provide superior performance. 

From these studies on classification performance, normalised rg, HS and TS 

chrominance spaces appear are the most effective for skin segmentation. However, 

classification performance is not the only factor that needs to be taken into con

sideration. The computational load of converting to different chrominance spaces 

is also an important factor when choosing a chrominance space for realtime skin 

detection. 

Video cameras generally deliver raw colour image information to a computer in 

YUV format, where Y is a full resolution luminance channel and U and V are 

chrominance channels, with one value for every two pixels. These are converted 

to standard RG B format for storing in memory and displaying on the screen, and 

as a result the majority of colour conversions consider RGB as the base colour 

type. The normalised rg chroma, for instance, are calculated from the RGB 

colour values using, 

R 
T=-----

R+G+B 
(2.1) 

G 
g= R+G+B (2.2) 

The TSL space which leads · to the TS chroma is defined as (Terrillon and Aka

matsu, 1999) 

S=3!f-

T= 

0 if g' = 0 
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L = 0.299R + 0.587G + 0.114B 

where r' = r - ½ and g' = g- ½, and r and g are defined by Equations 2.1 and 2.2. 

However, there is no reason why the raw UV chrominance information cannot 

be used for skin segmentation. The YUV colour format provides us with a pre

calculated chrominance image that requires no additional con1putation to gener

ate. 

The second key element in a skin-colour extractor is the model used to represent 

the skin colour distribution in chrominance space. Such models range from prin1-

itive rectangular regions achieved by thresholding of chrominance values (Sobot

tka and Pitas, 1996b) to e1npirical histogram look-up tables (Hunke and Waibel, 

1994) and sophisticated probabilistic and statistical models (Yang et al., 2000; 

Wu et al., 1999). 

Some researchers (Yang and Waibel , 1996; Yang and Ahuja, 1998) have hypoth

esised that all skin colour - regardless of race - can be satisfactorily modelled by 

a single multivariate Gaussian distribution. It is true that skin values in chro1ni

nance space deviate little due to race, however, so1ne subjects do exhibit slightly 

different skin chrominance distributions independently of race (Omara, 2000). 

This observation has led to a number of more complex skin models, exa1nples in

clude multiple Gaussian distributions ( Omara, 2000), fuzzy modelling techniques 

(Wu et al., 1999) and neural network based designs (Chen and Chiang, 1997). 

Cai and Goshtasby (1999) proposed a simple numerical technique for building 

a skin colour look-up table in chron1inance space. The result is effectively a 

numerical approximation of a complex multi-Gaussian model , and is obtained 

by convolving the chroma histogra1n with a Gaussian to make a "skin cloud" in 

chro1na space. This approach is very attractive as it offers a diverse and accurate 

1nodel with the speed of an empirical lookup table. The drawback is that it 
-

is difficult to adapt the skin 1nodel to changing lighting conditions, since it is 

not represented as a fonnal statistical distribution function. This sensitivity to 

lighting conditions is the 1nain shortcon1ing of skin colour detection sche1nes, and 

while the use of intensity invariant chroma spaces has reduced this sensitivity, it 

is still a problem. 

So1ne researchers have considered adapting skin colour models to varying lighting 

conditions. Yang and Waibel (1996) and Yang et al. (1998b) showed how to 
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1nodify the parameters of their Gaussian n1odel to adapt to changes in lighting 

during operation. Raha et al. (1998) used Gaussian mixture 1nodels to detect skin 

colour, hair, and clothing and presented a techniqu: for dynamically updating 

these models to account for changing lighting conditions. Sigal and Sclaroff (2000) 

use a Hidden Markov Model to evolve a skin colour distribution model in HSV 

colour space, and claim their system reliably extracts skin under widely varying 

lighting conditions - including multiple sources of coloured light. 

An alternative approach is to simply build the original chrominance histogram 

using samples from all lighting conditions under which the syste1n is intended 

to operate. These conditions cannot be too diverse or the histogram could po

tentially contain all possible colours, however , for a constrained set of lighting 

conditions this is a feasible approach. 

Vve base our approach to skin detection on that of Cai and Goshtasby (1999) 

·which offers a fast , efficient and sin1ple method that delivers a high level of per

formance. Hov\rever , vve augment the method by building a three-dimensional 

skin colour histogram to better discriminate across varying lighting conditions. 

Also , rather than using CIE Lab colour space we use YUV since these chan

nels are available directly from our cameras and saves performing the additional 

non-linear conversion to CIE Lab space. 

2.1.3 Depth Maps 

Stereo in1ages have long been used for calculating depth in computer vision ap

plications (Jarvis , 1983). There are other means of esti1nating depth that do not 

require stereo , such as using a single camera and varying the focus , estimating 

structure fro1n motion, or even shape from shading. However , stereo is by far the 

most popular and robust method of estimating depth in the near field ; indeed 

stereo is a strong cue for human depth perception for distances up to 10 meters. 

Figure 2.5 shov\rs an example of a pair of stereo images and a depth map generated 

fron1 these images. The generation of such depth maps is discussed belovv. 

Stereo imaging is best illustrated using the pinhole camera model to represent 

t he cameras in\ olved. This model is shovvn in Figure 2.6 ( a) and demonstrates 

how each pixel in the i1nage corresponds to a ray in 3D space - so an object 

visible at a particular image point could lie anywhere on the ray through that 

point (beyond the i1nage plane). Now consider the case shown in Figure 2. 6 (b), 
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(a) (b) 

(c) 

Figure 2.5: A stereo image pair and associated depth map, courtesy of Luke 
Fletcher. ( a) Left image. (b) Right image. ( c) Depth map with lighter values 
indicating shallower depths. 

where two cameras are looking at same point. An object observed by camera 

A lies on a ray that appears as a line in camera B. This is called an epipolar 

line , and is dependent entirely on the epipolar geornetry of the cameras, that 

is , the location and orientation of the carneras with respect to each other , and 

the internal parameters of the ca1neras. The epipolar geo1netry is independent 

of the objects in front of the camera, so regardless what images are observed, a 
-

particular image location will always correspond to the same epipolar line in the 

other ca1nera view. All epipolar lines radiate out from a fixed image point called 

the epipole , which is the image of the centre of the other camera, as shown in the 

figure. 

When vve are computing depth maps we are essentially just computing a series of 

point correspondences between the two images. So given a point in image A we 

need only attempt to locate this point along the corresponding epipolar line in 
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Figure 2.6: Pinhole camera model and stereo ca1nera configurations . (a) Single 
camera. (b) Verging stereo cameras . ( c) Aligned stereo cameras. 
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image B. A straightforward expression for determining the epipolar lines can be 

determined by calculating the epipolar geometry and determining the fundam en

tal matrix (Hartley and Zisserman, 2000). However, this is not necessary if we 

set up the cameras in an aligned configuration as shown in Figure 2. 6 ( c). This 

requires both cameras to share the same X-axis ( or alternatively Y-axis) , have 

parallel optical axes , and coplanar image planes. calculating a stereo depth map. 

In this configuration an image point at height y in one image will correspond 

to a horizontal epipolar line at height y in the other image. Since the cameras 

are directly side-by-side the epipoles are located at infinity, hence the parallel 

epipolar lines. 

The depth of an object observed in two stereo images fron1 calibrated aligned 

cameras can be determined from the disparity 2 between the object 's location in 

the two images. The problem of determining the 3D depth map, such as the one 

shown in Figure 2.5(c), (or equivalently the disparity values) from a pair of stereo 

images comes down to finding the corresponding locations of points in the both 

images , this is referred to as stereo matching. 

When constructing dense depth maps area-based matching techniques are used to 

solve the stereo matching problem. A number of different area-based techniques 

are available (Aschwanden and Guggenbuhl , 1993). Denoting the template win

dow as Ii , the candidate window as 12 , the mean pixel values of these windows as 

I1 and I2 respectively, and summation over the window as L (u ,,v)E W , these are: 

• Sum of Absolute Differences , 

L II1(u, v) - I2(x + u, y + v)I 
(u ,v)E W 

• Zero mean Sum of Absolute Differences , 

L l(I1(u, v) - 11) - (I2_(x + u, y + v) - I2)I 
(u ,v) El¥ 

• Sum of Squared Differences, 

L (I1(u, v) - I2(x + u, y + v)) 2 
(u ,v) EW 

2 Disparity refers to t he shift of a 3D object's posit ion in an image when t he camera is moved 
perpendicular to the opt ical axis. 
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• Zero mean Sum of Squared Differences, 

L ((I1(u, v) - 1\) - (I2(x + u, y + v) - 12 ))
2 

(u ,v) EW 

• Normalised Cross Correlation, 

I: (u ,v) EW I1(u, v) · I2(x + u, y + v) 

• Zero mean Normalised Cross Correlation, 

Regardless of ·which 1nethod is used , generating a dense depth map across an entire 

in1age is a computationally expensive procedure , as each in1age location n1ust 

be matched ·v.rith every other location on the corresponding epipolar line in the 

second image. In t he late 1990 's Konolige (1997) and Kanade et al. (1996) both 

den1onstrated systems able to generate dense depth n1aps in real t ime, however, 

these systems relied on specialised hardware. In 2000 Kagan1i et al. presented a 

method for efficiently generating dense depth n1aps in realtin1e v\rithout requiring 

specialised hard·ware. This was achieved by using four key techniques: recursive 

nonnalised cross correlation, cache optimisation, online consistency checking, and 

use of the Intel 1vIMX/ SSE(R) instruction set. 

Preprocessing of i1nages before perforn1ing stereo matching can increase the ef

fectiveness of the 1natching process. Preprocessing typically involves filtering 

in1ages to increase local contrast , and is particularly advantageous for 1natching 

areas with lov\r texture. Standard linear filtering approaches used are Laplacian of 

Gaussian (LoG), or Difference of Gaussian, both of which increases local contrast 

in the image. The LoG is the sum of the Gaussian 's second derivatives. Fig

ure 2.7 shows a Gaussian, the first derivatives in the x and y directions and the 

LoG , V 2G. Applying a LoG across an in1age involves convolving the LoG kernel 

V 2 G across the in1age. Unfortunately this kernel is non-separable , herefore the 

convolution cannot be split into two one-dimensional convolutions , and is of order 

O(K l\ 2 ) for an l\ x l\ kernel across an in1age y\rit h K pixels. 

However , a LoG kernel can be closely approxin1ated by the more efficient Differ

ence of Gaussian (DoG) filter. As its nan1e implies , a DoG kernel is cons ructed as 
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Figure 2.7: Laplacian of Gaussian. From top to bottom: Two-dimensional 
Gaussian kernel , derivatives of Gaussian in x and y directions , and Laplacian 
of Gaussian. 

Figure 2.8: Difference of Gaussian kernel is generated as the difference of two 
Gaussians. 

the difference of two Gaussian kernels as shown in Figure 2.8. Applying the DoG 
filter is more efficient than the LoG since each Gaussian can _be applied separably 
as two one-dimensional convolutions , and the results subtracted to determine the 
DoG response. 

Zabih and Woodfill (1994) present two non-parametric local transforms especially 
formulated for enhancing the computation of visual correspondences, t hese are 
called the rank and census t ransforms. The effectiveness of these transforms for 
generating dense depth maps in realtime was demonstrated by Banks et al. (1997) 

who applied the rank and census transforms when generating depth maps for an 
underground mining application. 

The rank transform is calculated for a pixel p by count ing the number of pixels 
in a local region centred on p whose intensities are darker than the intensity at 
p. For exan1ple, Figure 2. 9 shows a 3 x 3 local region centred at a point p, with 
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Figure 2.9: Example of a 3 x 3 neighbourhood centred on a point p. 

( a) (b) 

Figure 2.10: Result of Zabih and \Noodfill 's rank transform with radius 1. ( a) 
Original i1nage. (b) Rank transfonn. 
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the intensities of the pixels indicated. The value of the rank transform at point 

p is 4, since there are 4 pixels darker than p in the local region. Applying t his 

transform to an in1age, as shov.rn in Figure 2.10 , results in an increase in local 

texture, and since t his texture will be consistent across both images of a stereo 

pair it can be used for stereo 1natching. It is part icularly beneficial for matching 

in featureless areas of t he image. 

The census t ransfonn is an extension to the rank transform. Again the value at 

pixel p is determined by examining the pixels in a local region centred on p and 

detennining v.rhich ones have intensities t hat are darker t han the intensity at p. 

However , rather t han simply counting hov.r many of these there are, t he census 

transfonn uses a binary code to record the locations of the pixels t hat ·were darker 

than p. Each location in the neighbourhood of pis assigned a position in a binary 

string, and if t he pixel at this location is darker than p t hen the associated elen1ent 

in the binary string is set to 1, otherwise it is set to 0. For instance, detennining 

the census transfonn over a 3 x 3 neighbour hood would require an 8-bi t binary 

number to indicate ,vhich of the 8-elements surrounding the centre pixel ,;vere 

darker than t he centre value and which were not. 
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While the census transform can provide useful structural information that can 

enhance stereo n1atching it is questionable that these enhancements are suffi

cient to warrant the significant additional computation required to con1pute the 

transform. On the other hand, preprocessing images with the rank transform or a 

Difference of Gaussian filter prior to matching is relatively cheap computationally 

and the quality of the depth maps generated benefit from the improved matching 

results. Of these two operators the Difference of Gaussian can be more efficiently 

implemented in software, whereas the rank transform is best suited to hardware 

implementation. 

We use depth maps generated in real time by the method of Kagami et al.. For 

1naximum efficiency pre-filtering is be done in software with a Difference of Gaus

sian filter , and stereo matching will be done using Sum of Absolute Differences . 

2.1.4 Motion 

There are several different methods for identifying regions of motion and segment

ing 1noving objects in image sequences: image differencing, adaptive background 

subtraction, and optical flow. Figure 2.11 shows an example of each of these. 

The simplest approach is image differencing (Figure 2.11 ( c)) . Here correspond

ing pixel locations in two images are compared and locations where a significant 

change is observed are marked as regions of motion. This approach provides an 

efficient and straightforward means of locating potential regions of motion, how

ever, since it is si1nply identifying pixels whose values have ·changed between the 

two images it is easily fooled by changes in lighting, camera position , or camera 

parameters ( such as zoom). It also tends to detect shadows as areas of mo

tion. Despite its shortcomings, the efficiency and effectiveness of this approach 

have found it used in many applications, particularly surveillance systems where 

the background is often stationary. Crowley and Berard (1997) used image dif

ferencing for estimating head location and localising blink positions in order to 

determine eye locations, and Bala et al. (1997) also detected blinks in this way. 

Image differencing is well suited for blink detection. Humans typically blink very 

rapidly - Hakkanen et al. (1999) reported a 1nean blink duration of 51.9 ms -

so the transition from open to closed eyes can occur in the time between consec

utive frames , making it impractical to explicitly track the closi1i.g and opening 

movement of the eyelids. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 2.11: Two consecutive images in a 30Hz n1otion sequence and exam
ples of different motion cues calculated from these and previous frames . (a) 
Previous fran1e. (b) Current fra1ne. (c) Difference i1nage. (d) Adaptive back
ground. ( e) Difference fron1 adaptive background. ( f ) Optical flow ) courtesy 
of Luke Fletcher. 

27 



28 Related Work 

Background subtraction is an extension of i1nage differencing. Rather than dif

ferencing fran1es separated by a certain time delay, an image of the background 

is subtracted from the current image to highlight objects that were not present 

in the original background image. This method is very effective if a suitable 

background image is available, however, unfortunately this is often not the case. 

Even if it is feasible to capture an image of the background without the subject 

present, background subtraction will only be effective if the background remains 

static, and the lighting, camera and camera parameters all remain the same. For 

most applications it is unreasonable to expect the background to remain static 

throughout an image sequence, and so to overcome this problem adaptive back

ground models have been developed. These allow a model of the background to 

be constructed and updated to accommodate changes in lighting and variations 

in the background. 

Adaptive background subtraction provides a better measurement of motion than 

simple background subtraction. Whereas the latter simply differentiates between 

objects and the background, adaptive background subtraction highlights pixels 

that have changed recently in the image sequence ( see for example Figure 2.11 ( e)). 

The adaptive background image (Figure 2.ll(d)) is initialised as the current frame 

and updated each frame to be a weighted sum of itself and the current frame. 

Let A t be the adaptive background image at time t , and It be the input image, 

then a motion image Mt is defined as 

(2.3) 

and each fra1ne A t is updated as 

A t = klt + (1 -- k )At-1 (2.4) 

where k E (0, 1) . Like regular background subtraction this 1nethod is best suited 

to fixed ca1neras where the majority of the image remains constant, so motion of 

objects in t he scene can be easily detected. 

Collins et al. (2000) used this adaptive background approach in conjunction with 

image differencing to segment moving objects from a predominantly station

ary background in an outdoor surveillance scenario. The adaptive background 

method is fast and efficient to co1npute, and the time it takes for stationary ob

jects to be absorbed into the background can be modulated simply by varying 

the constant k in Equation 2.4. 
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A more sophisticated method for quant ifying motion in images is optical flow , 

illustrated in Figure 2.ll(f), which aims to directly measure t he movement of 

pixels in an image sequence. An optical flow field is a vector field describing 

the direction of local motion at each point in the image. There are several ap

proaches available for calculating optical flow , and Baron et al. (1994) provide a 

detailed revievv of different methods. Broadly, the techniques can be divided into 

correlation and constraint-based methods. 

Correlation-based methods identify local motion by locating groups of pixels from 

t he previous image in the current image. This involves searching over small 

2D regions centred about where the pixels occurred in the previous image. It 

is computationally intensive , but conceptually simple, and can be implemented 

recursively t o increase the efficiency. In 1999 Kagami et al. demonstrated realtime 

fl o-\v generation using a recursive method to calculate correlations , along with 

cache optin1isation, and the Intel MMX instruction set (Kagami et al., 1999). 

Constraint-based opt ical flovv methods (Horn and Schunk, 1981 ; Lucas and Kanade, 

1981) rely on t he optical flow constraint equation, 

51 51 51 
- - = u - +v -

5t 5x 5y 
(2 .5) 

'Where u = ~~ and v = ~~, the derivation of v,rhich is included in Appendix B. Each 

elen1ent of this equation can be determined directly from the image sequence, i; 
and ~i are the regular image derivatives describing ho-w intensity changes across 

the in1age in t he x and y directions , and ~; indicates hovv fast t he intensity is 

changing vvit h t ime. By itself t his one constraint equation is insufficient to solve 

for the two unknovvns u and v . Horn and Schunk (1981) applied an additional 

global sn1oothness constraint, and Nagel ( 1983) offered a variation on this de

signed to better handle occlusion by not imposing t he sn1oothness across strong 

intensity gradients . Lucas and Kanade (1981) presented an alternative approach 

that detern1ined a ·weighted least squares solution to Equation 2.5 over a small 

spatial neighbourhood in the image. 

Compared to image differencing and adaptive background subtraction , optical 

flov, can potentially provide more useful inforn1ation for identifying objects in 

dynamic scenes. For instance, it allows moving objects to be seg1nented from 

moving backgrounds. The main drawbacks are the coarseness and inaccuracies of 

the flow field that is typically produced, and the high computational requirement. 
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However, recent fast flow generation results (Kagami et al., 1999) 1nean that 
optical flow is now a viable option for realtime tracking systems . 

We use image differencing to· detect blinks and locate eye positions as it is unques
tionably the simplest and fastest method available. Adaptive background sub
traction shall be used to help detect targets moving in cluttered scenes. Whilst 
this method essentially relies on the target moving and the rest of the scene re
maining 1nore-or-less static, it is extremely effective in this situation, and when 
combined in a multi-cue system will be able to provide complementary infor
mation when the target is undergoing motion. Optical flow is computationally 
expensive, and despite the recent work of Kagami et al. (2000) typically provides 
too sparse a flow field to warrant it 's inclusion in a multi-cue face localisation 
system. 

2.1.5 Radial Symmetry Operators 

A number of context-free attentional operators have been proposed for automat
ically detecting points of interest in images. These operators have tended to 
use local radial sy1nmetry as a 1neasure of interest. This correlates well with 
psychophysical findings on fixation points of the human visual system. It has 
been observed that visual fixations tend to concentrate along ~ines of symmetry, 
(Locher and Nodine, 1987). Sela and Levine (1997) noted that the psychophysical 
findings of Kaufman and Richards (1969) corroborated this, placing the mean eye 
fixation points at the intersection of lines of symmetry on a number of simple 2D 
geon1etric figures. Figure 2.12(a) shows the results of Kaufman and Richards 's 
study of mean spontaneous fixation positions for various small shapes, and Fig
ure 2.12(b) shows the same shapes with their lines of symmetry annotated. It 
has also been observed that visual fixations are attracted to centers of mass of 
objects (Richards and Kaufman, 1969) and that these centers of mass are more 

-readily determined for objects -with multiple sym1netry axes (Proffit and Cutting, 
1980). 

One of the best known point of interest operators is the generalized symmetry 
transform (Reisfeld et al., 1995). Figure 2.13 shows an example of the so-called 
dark and radial outputs of this transfonn. The transfonn highlights regions of 
high contrast and local radial symmetry and has been applied to detecting facial 
features (Reisfeld et al., 1995; Intrator et al:, 1995 ; Reisfeld and Yeshurun, 1998). 
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Figure 2.12: 1v1odelling fixation tendencies, from Sela and Levine (1997). (a) 
Results of a study by Kaufman and Richards (1969) examining adult gaze 
fixation. The dotted circles indicate the location of mean spontaneous fixation. 
Each shape subtends two degrees of visual angle. (b) The same shapes with 
their lines of symmetry and their intersections displayed . 

Figure 2.13: Examples from Reisfeld et al. (1995) showing (from left to right), 
a test image, and the dark symmetry and radial symmetry outputs of the 
Generalised Symmetry Transform. 
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It involves analyzing the gradient in a neighbourhood about each point. Within 

this neighbourhood the gradients at pairs of points symmetrically arranged about 

the central pixel are compared for evidence of radial symmetry, and a contribution 

to the symn1etry measure of the central point is computed. The computational 

cost is high , being of order O(K l../2
), where K is the number of pixels in the image 

and JV is the width of the neighbourhood. Whilst a realtime implementation has 

been attempted (Yamamoto et al. , 1994) it required a massive parallel computer 

architecture and v1as only able to achieve processing times of the order of seconds 

per frame. 



32 Related Work 

( a) 

'\.. '\.. I / / '\.. I I I / 

'\.. '\.. I / / - '\.. I / -
- - • - - -- - • - --
/ / t ' ' - / t ' -
/ / t ' ' / l t t ' I 

(b) 

Figure 2.14: Gradient orientation masks used in Lin and Lin (1996) for de
tecting light blobs, ( a) 3 x 3 mask, (b) 5 x 5 dual 1nask set. 

Lin and Lin (1996) present a symmetry measure specifically for identifying fa
cial features in images. They proposed a masking technique to evaluate radial 
symmetry based on gradient direction. Gradient directions are quantized into 
eight bins. The masks show which bin the local gradients should fall into for per
fect radial symmetry about the center of the neighbourhood (for either a dark or 
light blob). Figure 2.14( a) shows the 3 x 3 gradient orientation 1:1ask for detecting 
light blobs (gradient pointing from dark to light). Dual-masks are used to accom
modate for pixels where the acceptably radially-symmetric gradient orientations 
span two orientation bins , Figure 2.14(b) shows the dual 1nask set for a 5 x 5 
neighbourhood. The radial sy1nmetry at each pixel is determined by examin
ing the discrepancy between the gradient orientations in the local neighbourhood 
and the orientation n1asks that represent perfect radial symmetry. The output 
of radially sy1nmetric points from this comparison tends to be quite dense. In 
order to obtain points of radial symmetry useful for facial feature extraction two 

-
additional inhibitory processes are required: an edge 1nap is used to eliminate 
all interest points which do not occur on edges , and regions of uniform gradient 
distribution are filtered out. 

The computational cost of Lin and Lin 's algorithm is stated as "0(9K)" for an 
irnage of K pixels. However , within the definition of the algorithm the size of 
the local neighbourhood within which symmetry is detern1ined is explicitly set to 
eit her 3 x 3 or 5 x 5. Whilst the results for these values of N = 3 and N = 5 
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are good, no evidence is presented that this same level of performance will hold 

for larger neighbourhoods. In any case, extending this algorithm to measure 

symmetry in an N x N local neighbourhood results i~ a high computational cost 

of order O (K N 2
). 

Sun et al. (1998) modify the symmetry transforms of Reisfeld et al. (1995) and 

Lin and Lin (1996) to obtain a symmetry measure which is combined with colour 

infonnation to detect faces in images. An orientation mask is used similar to Lin 

and Lin (1996) , together with a distance-weighting operator similar to Reisfeld 

et al. ( 1995) , and the magnitude of the gradient is also taken into considera

tion. By using skin colour to initially identify potential face regions the scale of 

the symmetry operators can be chosen to suit the size of the skin region under 

consideration. 

Sela and Levine (1997) present an attention operator based on psychophysical 

experi1nents of human gaze fixation. Interest points are defined as the intersection 

of lines of symmetry within an image. These are detected using a symmetry 

1neasure which determines the loci of centers of co-circular edges3 and requires the 

initial generation of an edge map. Edge orientations are quantized into a number 

of angular bins, and inverted annular templates are introduced to calculate the 

sy1nmetry n1easure in a computationally efficient manner. Figure 2.15 shows one 

such template placed over edge point p. Note that the direction of the gradient 

g(p) lies within the angular range of the te1nplate, and r min and r max specify 

the radial range of the template. Separate te1nplates are required for different 

circle radii and gradient orientations. Convolving one such template, of radius 

n and a particular angular range, with an image of edges, whose normals lie 

within v1ith this sa1ne angular range, generates an image showing the centers of 

circles of radius n tangential to these edges. This is repeated for each angular 

bin and each radius to form in1ages of circle center locations . Co-circular points 

are then determined by exan1ining con1mon center points for circles of the same 

radius. The calculation of the final interest measure combines these points with 

orientation information of the corresponding co-circular tangents . This method 

can also be readily applied to log-polar images. The technique 1/\ras shown to run 

in realti1ne on a network of parallel processors. The computational cost is of order 

O(K EN ) where Bis the number of angular bins used (Bis typically at least 8). 

The approach of Sela and Levine bears some similarity to the circular Hough 

3Two edges are said to be co-circular if there exists a circle to which both edges are tangent. 
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Figure 2.15: Inverted annular template as used by Sela and Levine (1997) . 

transform that is also used to find blobs in i1nages. Duda and Hart (1972) showed 
how the Hough transform could be adapted to detect circles with an appropriate 
choice of parameter space. They required a three di1nensional para1neter space 
to represent the parameters a, b and c in the circle equation ( x - a) 2 + (y - b) 2 = 
c2

. Ki1nme et al. ( 1975) noted that on a circle boundary the edge orientation 
points towards or away from the center of the circle, and used this to refine 
Duda and Hart 's technique and reduce the density of points mapped into the 
parameter space . Minor and Sklansky (1981) further extended the use of edge 
orientation , introducing a spoke filt er that plotted a line of points perpendicular 
to the edge direction ( to the nearest 45 degrees) as shown in Figure 2 .16. This 
allowed si1nultaneous detection of circles over a range of sizes (from r min to r max 

in Figure 2.16). An 8-bit code is generated for each point i_n the in1age, one 
bit for each of the eight 45 degree wide orientation bins. Each bit indicates 
whether a spoke filter of the appropriate orientation has plotted a point in a 
3 x 3 neighbourhood about the point in question. Four discrete output levels 
are detern1ined fron1 the bit codes : all 8 bits positive, 7 bits positive, 6 adjacent 
bits positive, and all other cases . This technique v1as successfully used to detect 
blobs in infrared images. The computation required for an image of K pixels is of 
order O(K EN) ·where Bis the number of angular bins used (Minor and Sklansky 
(1981) used 8), and JV is the number of radial bins. 

Di Gesu and Valenti (1995a) present another method for measuring image sy1n
metry called the discrete symmetry trans! orm. This transform is based on the 
calculation of local axial moments, and has been applied to eye detection (Di Gesu 
and Valenti , 1995a) , processing astronomical images (Di Gesu and Valenti , 1995b) 
and as an early vision process in a co-operative object recognition network (Chella 
et al. , 1999). The computational load of the transform is of the order O(K B ) 

where K is the number of pixels in the image N is the size of the local neigh-
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Figure 2.16: The spoke filter template proposed by Minor and Sklansky (1981). 

Figure 2.17: An example of the Discrete Symmetry Transform operating on a 
face i1nage, from Di Gesu and Valenti (1995a). 
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bourhoods considered and B is the number of directions in which the moments 

are calculated . This load can be reduced by using a fast recursive n1ethod for 

calculating the n1oments (Alexeychuk et al., 1997), giving a reduced computa

tional order of O(K B). Figure 2.17 shows an example of the transform being 

applied to detect the eyes in an image. Despite t he strong highlighting of the 

eyes in this image, the transforn1 tends to highlight regions of high texture in 

addition to radially symmetric points, note for instance the strong highlighting 

of the earrings in this example. 

Kovesi (1997) presented a technique for determining local symmetry and asym-

1netry across an image from phase information. He notes that axes of sym1netry 

occur at points ·where all frequency co1nponents are at either the maxi1num or 

mini1nu1n points in their cycles, and axes of asymmetry occur at the points where 

all the frequency components are at zero-crossings. Local frequency information 

is detennined via convolution with quadrature log Gabor filters. These convolu

tions are performed for a full range of filter orientations and a number of scales , 
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Figure 2.18: An example of symmetry from phase operating on a natural 
image, from Kovesi ( 1997). 

with each scale determining the response for a particular frequency bin. This 
technique is invariant to uniform changes in image intensity and as such is a 
truer measure of pure symmetry than other approaches which tend to measure a 
combination of symmetry and contrast. The computational cost of this method 
is high. Although the convolutions are efficiently performed in the frequency 
domain the computation required to transform the image between spatial and 
frequency dornains is costly. This method is not intended a~ a point of inter
est operator. However, the resulting continuous sym1netry n1easures it produces 
strongly corroborate the theory that points of interest lie on lines of symmetry. 
An example of the algorithm determining the symmetry across a natural image is 
shown in Figure 2.18. For a detailed discussion on image phase and its application 
see Kovesi (1999a). 

This section has demonstrated the suitability of radial symmetry-based feature 
detection for detecting facial features. There is no question that radial sym1ne
try is a valuable cue. However , the best results for facial feature detection come 
fro1n the generalize symmetry transfonn (Reisfeld and Yeshurun , 1998) , and this 
transforn1 is slow, computationally expensive to compute, and not well-suited to 
realtime applications. \iVhile some other methods provide 1nore efficient alterna
tive 1neans of co1nputing radial symmetry, the results obtained are not as useful 
for locating facial features. In Chapter 3 we present a new, computationally effi
cient method for detennining radial symmetry that is able to produce results that 
rival those from the generalized symmetry transform whilst being fast enough to 
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operate in realtime. 

2.2 Face Localisation 

In Chapter 1 we identified three key steps to enabling a computer to see a face 

(see Figure 1.2) , the first step is face localisation. Face localisation involves 

determining and tracking the location of a person's head in a complex dynamic 

scene. This is a challenging problem, especially if the system has to deal with 

changing lighting conditions, occlusions, and cluttered dynamic backgrounds. 

Isard and Blake 's famous condensation approach to contour tracking (Isard and 

Blake, 1996, 1998) tracks target 's outlines using particle filtering and active con

tours. The outline of the target is parameterized using B-splines , and described 

as a point in state (parameter) space. Impressive results have been shown that 

illustrate how particle filter-based contour tracking methods can effectively deal 

with multiple hypotheses , occlusions and varying lighting conditions. 

The particle filter approach to target localisation, also known as the condensation 

algorithm (Isard and Blake, 1996, 1998) and Monte Carlo localisation (Thrun, 

2000) , uses a large number of particles to "explore" the state space. Each particle 

represents a hypothesised target location in state space. Initially the particles are 

uniformly randomly distributed across the state space, and each subsequent frame 

the algorithm cycles through the steps illustrated in Figure 2.19: 

1. Measure: The Probability Density Function (PDF) is measured at ( and 

only at) each particle location. Thus a probability measure is assigned to 

each particle indicating the likelihood that that particle is the target. 

2. Resample particles: The particles are re-sampled with replacement , such 

that the probability of choosing a particular particle is equal to the proba

bility assigned to that particle. 

3. Deterministic drift: Particles are moved according to a deterministic motion 
model. 

4. Diffuse particles: Particles are moved a small distance in state space under 
Brownian motion. 
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Figure 2.19: Evolution of particles over a single t ime-step . The unknown PDF 
is measured only at the particle locations, particles are then re-sampled with 
replacement , and drift and diffusion are applied to evolve the particles to their 
new locations. 

Note that any dynamics can be used in place of steps 3 and 4, but the standard 
approach is to apply drift and diffusion. 

This cyclic process results in particles congregating 1n regions of high proba
bility and dispersing fron1 other regions , thus the particle density indicates the 
n1ost likely target states. Furthermore the high density of particles in these 
"target-like" regions means that these regions are effectively searched at a higher 
resolution than other more sparsely populated regions of sta_te space. 

The hypothesis-verification approach used by particle filt ers is a powerful method 
for locating targets in state space. It is especially attractive as it does not require 
the probability density function to be calculated across the entire state space , but 
only at the particle locations. Using this approach to locate a target in an image 
does not require searching across the entire image in the usual manner - as is 
done with template matching across a region , for instance - instead we need 
only verify targets at hypothesised locations. The challenge is then to ensure 
that the hypotheses end up finding the target. 

There are several things that can be done to max1n11se the likelihood of the 
hypotheses converging on the target. Firstly, there is the design of the particle 
filter: using a ufficient number of particles , appropriate diffusion para1neters, and 
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a valid motion model to approximate the target's motion and facilitate calculation 

of the deterministic drift. Secondly there is the choice of cues used to measure the 

PDF at each hypothesis location. The process ben_efits greatly from cues whose 

responses increases steadily in the vicinity of the target location, rather than cues 

( such as nonnalised cross correlation) that give a high response only at the target 

location and noise elsewhere. By using cues that give a high responses when close 

to ( as well at) the target location the particle filter is able to propagate hypotheses 

that are close to likely target locations , and thus increase the resolution of the 

search at these locations, without relying on a hypothesis being located precisely 

at the target location in order to generate a high response. 

MacCormick and Blake (1998) describe a generic object localisation technique 

designed to initialise a contour tracker such as the one proposed by Isard and 

Blake (1996, 1998). Their system is able to locate a target in a cluttered en

vironment, requires no knowledge of the background, and is robust to lighting 

changes. Rather than searching the entire image, a large number of hypothesis 

target locations are considered (MacCormick and Blake use 1,000). Each one of 

these is evaluated using Bayesian probability theory to quantify whether it is more 

"target-like" or "clutter-like". Hypotheses are chosen based on a prior statistical 

density describing the likelihood of a target occurring at a given position in state 

space. This density is determined from a training sequence of the target exhibit

ing typical behaviour, in which the target is tracked using a manually initialised 

contour tacker. The frequency of different state space configurations observed in 

this training sequence is used to build the density describing the likelihood of a 

given hypothesis configuration occurring. 

Using multiple visual cues is known to improve the robustness and overall per

formance of target localisation systems. A number of researchers have utilised 

multiple cues to detect and track people in scenes, however, there have been few 

atte1npts to develop a system that considers the allocation of finite computational 

resources amongst the available cues, the notable exception being Crowley and 

Berard (1997). 

Crowley and Berard (1997) used multiple visual processes: blink detection, colour 

histogra1n matching , and correlation tracking, together with sound localisation, to 

detect and track faces in video for video compression and transmission purposes. 

Each cue is converted to a state vector containing four elements: the x and y co

ordinates of the centre of the face , and the face height and width. A confidence 
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1neasure and covariance matrix are estin1ated by exan1ining the state vectors of 
all the cues, and used to combine the state vectors to give the final result. The 
advantage of this approach is the extren1ely co1npact form in which the state 
vectors represent information. The disadvantage is that it only allows one face 
target to be reported by each cue. Apart from the inability of such a syste1n to 
deal with multiple faces, it only allows each cue to report a single target and thus 
throws away any additional information the cue may provide. For instance , if 
there are two regions of skin-like colour we would prefer a system to report the 
presence of both regions and allow the additional cues to determine which is a 
face, rather than returning a single result, namely the centre of gravity of the two 
regions. 

Kim and Kim (2000) combine skin colour, motion and depth infonnation for 
face detection. Initially depth information is used to segment objects from the 
background, then the AND operator is used to co1nbine the infonnation fro1n 
the colour and motion cues. This is the simplest way of combining information, 
and it will reduce the number of false positives. However, it is only suitable 
for cues in binary form, and although any set of continuous cues can easily be 
converted to binary, doing so throws away a great deal information which is useful 
for determining the confidence and reliability of the cue's perfonnance. As such, 
combining cues with the AND operator is only suitable when the perfonnance 
level of each cue is known, and is undesirable for a system which must be robust 
to varying operating conditions. 

Darrell et al. (2000) integrate stereo, colour , and face detection to track a person 
in a crowded scene in realtime. A stereo depth 1nap is used to isolate silhouettes 
of t he subj ects , and a skin colour cue identifies and tracks likely body parts 
within t hese silhouettes . Face pattern detection is applied to discrin1inate the 
face from other detected skin-coloured regions. The system tracks users over 
various t i1ne scales and is able to recognise a user who returns minutes - or even 
days - later . Statistics gathered fro1n all three Jnodalities are used to recognise 
users who reappear after becoming occluded or leaving the scene. This system 
de1nonstrates t he advantage of fusing multiple cues for robustness and speed: 
using t he simple but efficient depth and colour cues to localise targets in real
ti1ne before following through with t he slower , yet n1ore precise , face detection 
1nod ule. T he disadvantage to applying cues in a serial manner such as t his is the 
implicit requiren1ent t hat t he init ial cues must not miss the t arget . This problem 
can be minimized , however , by accept ing an increased nu1nber of false positives 
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Figure 2.20: Cues operating in Triesh and von der Malsburg's system, from 
Triesh and von der Mals burg ( 2000). 

from the initial cues. 
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Triesh and von der Malsburg (2000) present a system suitable for combining an 

unlimited number of cues. The system is demonstrated using contrast , colour , 

shape, and two motion cues (intensity change and a predictive motion model) , 

to track a person 's head. The results of these cues together with an input image 

and target shape model are shown in Figure 2.20. 

For each ( ith
) cue and ( kth

) image frame the following quantities are determined: 

• an image of probabilities Ai[k] describing the probability a given pixel is 

part of a face ( as shown for each cue in Figure 2. 20) , 

• a quality measure qi[k] describing how accurate the sensor was in determin

ing the final result in the previous image frame , and 

• a reliability measure r i[k], which is effectively a running average of the 
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Figure 2.21: Triesh and von der 1v1alsburg's system tracking a person 's head in 
an image sequence, from Triesh and von der Malsburg (2000). These frames 
are taken across a 5 second period and show robustness to changing lighting 
conditions. 

quality measure qi( k] . 

The final result is given by the weighted sum L i ri[k] Adk] . The Adk] image is 
generated by comparing the i th sensor's information with a prototype Pi[k] which 
describes the target (a face) with respect to that sensor . These prototypes are 
updated dynamically as a running average of the sensor's output at the target 
locations in previous frames. 

The results of this system (see for exa1nple Figure 2.21) are impressive and demon
strate how con1bining multiple cues increases the robustness of a tracking system. 
This system ·was an inspiration for our work, which, however differs in several as
pects. Firstly, Triesh and von der 1v1alsburg's system is primarily a tracking 
system rather than a localisation system. The principal requirement of a locali
sation system is to ensure that the object found fits the generic 'requirements of 
the target (in this case a face), whereas a tracking system is primarily concerned 
·with locating the same object repeatedly over a series of frames. The use of run
ning averages to adapt the sensor fusion suite to the target identified in previous 
fran1es is ·well suited for tracking applications, but is less appropriate for a tar
get localisation system, as it is undesirable to dynamically change a localisation 
sy ten1' perception of what the target should look like , lest the system be dis
t racted from the t rue target . Secondly, we require systems to localise a target in 
3D: "-·hereas this system operates in 2D , and with·fixed sized prototypes it cannot 
deal \vith close-up or far-away targets . Finally, when determining the usage of 
different cues we wish to take into account not only the tracking perforn1ance, 
but also the co1nputational requirement of each cue. 

Recent work by Soto and Kho la (2001) presents a system based on intelligent 
agent that adaptiYeh· combine n1ulti-dimen ional information sources (agents) 
to e tin1ate the tate of a target. A part icle fil ter is used to t rack the target s 
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state, and metrics are used to quantify the performance of the agents. Initial 

results for person tracking in 2D show a good deal of promise for a particle filter 

based approach. 

This section has discussed a number of systems that have been developed to 

address the problem of robustly localising a face ( or other target) in a complex 

environment. The particle filtering approach popularised by Isard and Blake 

(1996, 1998) offers a solid framework for locating and tracking targets, and as 

Soto and Khosla (2001) demonstrated it is well suited for use in a multi-cue 

system. There is no question that multiple cues allow for more robust estimates, 

however, calculating more cues requires more CPU time and can quickly reach 

the limits imposed by a realtime system. Few researchers have considered the 

problem of controlling the allocation of computational resources between cues, in 

order to allow more effective and efficient cues to operate at the expense of those 

that are slower or not performing as well. 

The face localisation system that we present 1n Chapter 4 aims to meld the 

strongest elements of the systems discussed in this section. A particle filter is 

used to maintain multiple hypotheses of the target's location, and multiple visual 

cues will be applied to test hypotheses. Finite computational resources will be al

located across the cues, taking into account the cue's expected utility and resource 

requirement. Our system accommodates for cues running at different frequencies , 

allowing cues performing less well to be run slowly in the background for added 

robustness with minimal additional computation. 

2.3 Face Registration 

After face localisation the second step towards enabling a computer to see a face 

is face registration (see Figure 1.2). We use the term face registration to refer to 

the process of registering the locations of facial features and verifying that the 

image region in question does indeed contain a face , see for example Figure 2.22. 

This is a specialisation of the general problem of face detection that typically 

involves determining the locations of faces in an image, and may or may not be 

extended to locating facial features. Over the last decade the problem of face 

detection in images has received a growing amount of attention from researchers 

in commercial and academic institutions alike. It is widely recognised that face 

detection is the first step towards face recognition and a myriad of other human 
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Figure 2.22: Face registration. (a) An image containing a face. (b) Presence 
of face verified and facial features detected. This example is from our system 
described in Chapter 5 

computer interaction tasks. Recent survey papers by Yang et al. (2002) and 
Hj elmas and Lo-\v (2001 ) provide an excellent overview of the field and reveal t he 
quant ity and diversity of research that has gone int o detecting faces and facial 
features . 

In 1973 I(anade pioneered t he use of integral projection to locate t he boundaries 
of a face . Since t hen integral proj ection and variations thereof have been used to 
detect facial features in a number of applications(Kot ropoulos and Pitas, 1997; 
Katahara and Aoki , 1999; Chuang et al., 2000) . Integral projection involves 
projecting t he values of image pixels onto an axis. The integral projections of an 
image I onto t he x (horizontal) and y (vert ical) axes are respectively given by 

Px(x) = Ll(x,y) 
y 

and 

X 

Taking the integral projection of an image onto the horizontal (x) axis amounts 
to un1n1ing the pixel \-alue do\\-n each column: and re ults in a vector that is 
literally the projection of the integral of each e0lumn onto the horizontal axis. 
Like\\i e. integral projection onto the vertical a,-xis is a vector containing the sum 
of pixel Yalues in each ro\\- of the image. It i feasible to perform integral projection 
onto any a__"'(i . but in practice Yertical and horizontal integral projection are n1ost 
con1n1onh- u ed. 

The integral projection n1ethod i imple and fa t . It i useful for detecting 
feature \\-ho e inten itie tand out from the background: e pecially those with 
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Figure 2.23: The kernel used by Yow and Cipolla (1997) it is a second deriva
tive of a Gaussian in one direction, Gaussian in the orthogonal direction, and 
elongated with an aspect ration of 3: 1 (Figure from Yow and Cipolla ( 1995)). 
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a strong horizontal or vertical aspect. As such it is well suited to detecting facial 

features. The intensities of facial features generally stand out strongly against 

the skin of the face, and vertical integral projection is especially well-suited for 

upright faces owing to the dominant horizontal aspect of most facial features. 

The main proble1ns when applying this method to detect facial features are: 

segmenting the facial region from the image to avoid background interference, 

ensuring that the desired features stand out to the exclusion of everything else, 

and requiring the face to be in an upright position. If these problems are addressed 

then integral projection provides an excellent way of locating facial features. 

Spatial filtering can be used to enhance and identify facial feature candidates 

(Graf et al., 1995; Yow and Cipolla, 1997). In this process the intensity image is 

typically smoothed, then convolved with specially chosen kernels to extract the 

facial features , for example , long thin kernels are used to detect eyes. Yow and 

Cipolla (1997) use the elongated Gaussian-based kernel shown in Figure 2.23 , 

while Graf et al. (1995) use rectangular kernels and subtract the result from the 

original image. The latter claimed this approach was adequate for separating the 

eyes, mouth , and tip of the nose from the cheeks , forehead, and chin , and went 

on to use a 1norphological approach to enhance the image at points identified by 

the filtering. Spatial filtering is orientation and scale dependent , however, a small 

deviation of the target from the intended orientation and scale can be tolerated. 

Edge information is useful for detecting and verifying features. After identifying 

possible facial features using spatial filtering, Yow and Cipolla (1997) discard 

any feature which does not have parallel edges bounding it from above and be

low. If the face is assumed to be upright this simply involves looking for pairs of 



46 Related Work 

horizontal lines , if the face orientation is unknown it is a slightly more compli
cated operation. Lin and Lin (1996) note that artistic sketches of human faces 
can faithfully represent subjects by using simple sketching lines corresponding 
to edges of the features. They initially employ a region of interest detector to 
identify potential facial feature candidates (see Section 2.1.5 ) and then disregard 
all such features which are not coincident with edges in the image. 

Radial symmetry can be used to detect facial features and is especially well suited 
to detecting eyes . A number of radial symmetry-based feature detectors are 
discussed in Section 2.1.5. The best results are from Reisfeld et al. 's generalised 
symmetry, hovvever , this method is very computationally intensive. While some 
of the alternative methods offer more efficient con1putation their performance as 
facial feature detectors is not as promising. 

Blink detection has been shown to be effective for locating eyes (Crowley and 
Coutaz , 1995) . Blinking is a distinctive motion, especially as both eyes blink at 
once, so the movement occurs at two distinct locations simultaneously, and can 
be easily distinguished from most other movement in an image sequence. In 1995 

Crowley and Coutaz presented a face localisation algorithm relying solely on blink 
detection. Later this system was augmented to utilise other sensing modalities 
for face detection (Crowley and Berard, 1997) (see Section 2.2). Blink detec_tion 
is simple, computationally cheap, and reliable , but it does require waiting for the 
subject to blink. 

Turk and Pentland (1991 ) used the method of principal co1nponent analysis to 
form a reduced basis of eigenvectors, dubbed "eigenfaces'' from a large training 
set of aligned and equisized face images . Principal component analysis enables a 
small number of eigenfaces to be extracted that form a basis that spans almost 
the entire training set . Furthermore , the projection of any image onto this basis 
of eigenfaces will be a linear combination of t he eigenfaces , so is restricted to have 
some sort of face-like appearance. The process of quantifying how face-like a test 
image is simply involves comparing the test image with its projection onto the 
ba is of eigenfaces. The projection can be efficiently determined and is simply 
the linear combination of eigenfaces with the coefficient of each eigenface given 
by its calar vector product with the test image. Turk and Pentland extended the 
concept be -ond eigenfaces to eigenfeatures applying principal component analysis 
on individual facial features and found that recognising faces using eigenfeatures 
,-.-a more robu t than simpl u ing eigenfaces alone. The eigenfeature approach 
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can be used to search for facial features in images, and provides a co1npact way 

of comparing a test image with a large population of similar images. However, 

it becomes very computationally expensive when used to perform an exhaustive 

correlation-style search for a target. 

Colour information can be used for detecting facial features. Oliver et al. (1997) 

uses colour to locate the mouth. Varchmin et al. (1997) noted that nostrils often 

appear as bright spots in the red colour channel. Colour gradient can also provide 

useful infonnation, potentially allowing a system to discriminate between white 

features (such as the eye whites and teeth), points of reflection off shiny surfaces 

( such as the eyeball or bright metal jewelry) and reflection off less shiny surfaces 

such as skin. 

In su1nmary, integral projection is a simple yet powerful technique for detecting 

isolated features whose intensities stand out clearly from the background. It is 

necessary to preprocess face images to prepare them for integral projection, the 

face must be aligned so it appears upright in the image, it is also beneficial to 

enhance the features so that they distinctly stand out within the face region. 

Spatial filtering methods have been shown to enhance and detect facial features 

using smoothing and specially designed kernels aligned with the features. The 

usefulness of radial symmetry for detecting facial features has been demonstrated , 

however, the methods that return the best results are computationally intensive; a 

faster, more efficient method is needed to make this a viable option. Finally blink 

detection can provide a simple, efficient and reliable method for identification of 

eye locations, the drawback is that it is necessary to wait for the subject to blink. 

In Chapter 5 we present a face detection systen1 that uses blink detection to 

initially localise the eye and face location, and apply filtering and radial symmetry 

detection to enhance facial features. Finally, feature locations are pin-pointed 

using integral projection. 

2.4 Face Tracking 

The final step (as depicted in Figure 1.2) to enable a computer to see a face is face 

tracking. Face tracking involves both tracking the pose of the head in 3D space , 

and the location of facial features. Some facial features, such as the eyes and nose 

are rigidly attached to the head and their motion can be directly linked to the 
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head pose. Other features , such as the mouth and eyebrows, are deformable , and 
their location is a function of both the head pose and their own deformation. We 
will consider tracking both rigid and deformable facial features , and accordingly 
this section is divided into two parts. The first considers tracking rigid facial 
features in order to determine the head pose , and the second looks at tracking 
deformable facial features. Particular emphasis is placed on tracking the lips and 
mouth contour owing to the relevance of mouth-shape information for Human 
Computer Interaction. 

2.4 .1 Tracking Rigid Facial Features 

Our primary interest in tracking rigid facial features is to determine the head 
pose , that is , the location and orientation of the head in 3D space. The head 
can be modelled as a rigid body with a number of features rigidly attached , these 
features include the eye sockets , eyes , nose and hairline . By tracking the locations 
of features rigidly attached to the head it is feasible to track the pose of the head. 
A reference frame is attached to the head , and the pose of the head is defined by a 
six parameter vector (x, y, z, Bx, By, Bz) specifying the Cartesian co-ordinates and 
rotation of the head reference frame ·with respect to a predefined world coordinate 
system. Figure 2.24 shows a schematic of a head with reference frame attached 
showing the pose of the head reference frame in the world coordinate system. 

Estimating the 3D pose of a rigid object requires determining the six parameter 
state vector: (x, y, z, ex, 0y, ez) specifying the Cartesian co-ordinates and rotation 
with respect to a predefined reference frame. 

Lo,,-e's object t racking algorithm (Lowe, 1991) presents a model-based approach 
to determining t he pose of a known 3D object. Model-based vision uses prior 
knowledge of the structure being observed to infer additional information than is 
otherwise evident from an image . When a 3D object is viewed in an image the 
locations of its features are a non-linear function of the pose of the object relative 
to the camera. Given an init ial guess of the pose, a least squares solution can be 
achieved iterati, ely by applying ewton s method to locally linearize the problem. 
Lo,Ye augments this minimization in order to obtain stable approximate solutions 
in the presence of noise. This is achieved by incorporating a model of the range of 
uncertainty in each parameter , together with estimates of the standard deviation 
of the image measurements into the minimization procedure. On top of this Lowe 



2.4 Face Tracking 

Ya 

I 

I 

I 

I 

I 

O~----'------

(x, y, z) 

xo 

Figure 2.24: 3D pose of a head. Head reference frame shown in orange, and the 
pose (x , y , z, Bx, By , Bz) with respect to the world coordinate frame O indicated. 
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applies the Levenberg-Marquardt method to ensure the solution converges to a 

local minima. Lowe demonstrated that this method could efficiently track the 

pose of known 3D objects with complex structures and provide reliable results. 

This algorithm provides an attractive means of tracking the pose of a known 3D 

object in a monocular image sequence. 

Azarbayejani et al. (1993) implemented a Kalman filter to track the head pose 

using an approach similar to that adopted by Clark and Kokuer (1992) and Rein

ders et al. (1992) for calculating the orientations of objects. Azarbayejani et al. 

extract feature templates in an initial image, and use normalised cross correlation 

to locate these features in subsequent image frames. The head pose is iteratively 

determined using an extended Kalman filter with an 18-dimensional state vec

tor containing a concatenation of the six 3D pose parameters and their first and 

second derivatives. Nieasurement variances are determined from the correlation 

values obtained from the feature templates. Despite the non-linear relationship 

between the observed 2D feature locations and the pose parameters , the local lin

earization employed by the extended Kalman filter was shown to provide suitable 

tracking results. Azarbayejani and Pentland (1995) later extended this method 

to recover not only the 3D pose of the head (or other 3D object) but also the 3D 

structure of the object itself, along with the focal length of the camera. 
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Gee and Cipolla (1994) used four facial features , namely the pupils and mouth 
corners, to track the head pose. These features were assumed to lie in a plane, and 
two vectors are determined: one joining the eyes, and one joining the mid-point 
of the eyes with the mid-point of the mouth corners. From these vectors a third 
vector is calculated normal to the face that described the head pose. Maurer 
and von der Malsburg (1996) also tracked facial features and assumed they lay 
in an plane, however , they used more features than Gee and Cipolla. The head 
pose was determined by solving the resulting over-constrained system using least 
squares . Shakunaga et al. (1998) used a similar approach but did not assume the 
features lay in a plane. They solved for the pose under orthographic projection 
and could cope with an arbitrary number of features. 

Xu and Akatsuka (1998) track the head pose by reconstructing the 3D locations 
of facial features using stereo. The pupils and mouth corners are tracked using 
stereo and their 3D locations determined. The pose is determined as the normal 
to the plane defined by the pupils and a mouth corner. 

Matsumoto and Zelinsky (2000) also made use of stereo for their Karman filter
based solution to the head tracking problem. This system used calibrated stereo 
cameras and was able to run in realtime and determine the head pose with higher 
accuracy than the method proposed by Azar bayej ani et al.. Recently this sys
tem has been evolved into the commercial FaceLab system by Seeing Machines4

. 

It requires no markers or special make-up to be worn and runs on a standard 
PC. The software consists of three key parts , 3D Facial Model Acquisition, Face 
Acquisition, and 3D Face Tracking. 

The Face Model Acquisition module builds a model of the subject 's face off-line. 
The face model consists of up to 32 features (T i, i = 0, 1, 2, ... ) corresponding to 
a set of 3D model points (mi, i = 0, 1, 2, ... ) in the head reference frame . The 
head frame is placed between the eyes and oriented as shown in Figure 2.24. 

The system starts operation in Face Acquisition mode where it attempts to find 
an initial lock on the face in t he image stream~ During this phase a template 
constructed from the edge map of t he entire central region of the face is searched 
for. This templa e is automatically extracted during the model acquisition phase 
where the position of t he face in the image is known. ormalised correlation 
matching is u ed both here and during tracking to make this process robust to 
change in lighting conditions. 

4 http: //·www.seeingmachines.com 
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Figure 2.25: 3D reconstruction from stereo images. 

When a match is found with a correlation above a preset value, the approxi

mate positions of the features Ti are identified based on their known offsets from 

the centre of the face (again calculated during model acquisition). Tracking is 

performed using the templates Ti obtained during model acquisition. These are 

correlated with the current stereo view in the input stream and their 3D positions 

are calculated using linear triangulation. This technique is described below (for 

more detail the reader is referred to Trucco and Verri (1998)). 

Ideally the 3D rays projected from the camera centres through the observed 

feature points on the image plane will intersect, defining the 3D location of the 

feature point. However , in general, owing to small errors in feature locations 

or camera parameters , the rays will not meet. This situation is illustrated in 

Figure 2.25. Linear triangulation proceeds to determine the location for the 3D 

point x that minimizes the distances e0 and e1 . More specifically for n cameras 

linear triangulation minimizes E in 

(2.6) 

Returning our attention to the Figure 2.25 , the distances , e0 and e1 can be ex

pressed in terms of x by observing that they are side lengths of right angle trian

gles (indicated in yellow). Considering each of these triangles separately, the side 
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Figure 2.26: A right angle triangle from the ith camera in Figure 2.25 with all 
side lengths shown. 

lengths can be expressed as shown in Figure 2.26 , and thus e; can be written as 

where di is a unit vector along the optical axis of the ith camera. For the case of 
two cameras Equation 2.6 can be expanded to 

Setting the partial derivatives of this equation with respect to the elements of x 
to zero gives a system of linear equations of the form 

where A and b are 

A=( 
(d6x - 1) + (dfx - 1) 

doxdoy + d1 xd1y 
doxdoz + d1xd1z 

Ax=b 

doxdoy + d1xd1y 
( d5Y - l) + ( dfy - l) 

doydoz + d1yd1 z 

and dix ,y.z and cix .y.z are the elements of di and ci respectively. These equations 
can be solved for x. 

I 

giving the 3D location of the point. 
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A 111ore sophisticated alternative to linear triangulation is Hartley and Sturn1 's 

optimal t riangulation method that mini111izes the error observed in the images 

subj ect to the epipolar constraint (Hartley and Sturm, 1995; Hartley and Zis

sern1an, 2000). However , the linear triangular method detailed above provides 

suitable performance for the 3D head tracking syste111. 

Once the 3D position of the features are determined an estimate of the pose of 

the head is computed. The translation vector t , and the rotation , encapsulated 

in the rotation matrix R , that together describe the head pose are estimated via 

least squares 111ini111ization as follows. Minimize the error 

n 

E = Lwillxi - Rmi - t11 2 (2.8) 
i =l 

where x i is the measured 3D feature location , m i is the 3D model point , and wi 

is the weighting factor for the i th feature. The value of the weighting factor is 

set to the correlation value obtained for the associated feature in the template 

tracking step. This applies a 111ore dominant weighting to features that returned 

higher correlation values 111aking the system more robust to mismatched features. 

The translation t is determined by differentiating Equation 2.8 and setting the 

result to zero, yielding, 

t=x-Rm (2 .9) 

where 

and 
- I:~ 1 w i m i m=----

L~- 1 W i 

are weighted averages of t he n1easured features locations and the model points 

respectively. 

Substituting t fron1 Equation 2. 9 into Equation 2.8 and ignoring all tenns that 

are not dependent on R gives us 

n 

E' = 2Lwi(xi - x )T R (m - mi) 
i=l 
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Using the quaternion representation for a rotation 1natrix R can be written as 

( 

a 2 + b2 - c2 - d2 
R = 2(bc + ad) 

2(bd - ac) 

2(bc - ad) 
a2 - b2 + c2 - d2 

2(cd + ab) 

2(bd + ac) ) 
2(cd - ab) 

a 2 - b2 - c2 + d2 
(2.10) 

where a, b, c and dare real numbers and a2 + b2 + c2 + d2 = 1. 

The method of Lagrange multipliers can then be used to mini1nize E' as follows. 
Define 

n 

E" = 2 L wi(xi - x) TR(m - mi)+ A(a2 + b2 + c2 + d2 
- 1) 

i=l 

Determine the partial derivatives of E" with respect to a, b, c and d, and set 
these to zero. This gives the following four linear equations, 

-d 
a 
b 

C 

-b 
a 

- c b 
C 

- a 
: ) ( m - mi) - AC = 0 

d -c 

These can be co1nbined in a single matrix equation 

This equation is solved by choosing a to be any eigenvector of A . The solution 
that 1ninimizes E" is the eigenvector corresponding to the maximu1n eigenvalue 
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of A (Horn, 1986). These quaternion values define the rotation matrix R (Equa

tion 2.10). 

Thus both the translation and rotation have been determined giving the optimal 

pose t hat best maps the model to the measured 3D feature positions. 

The number of templates tracked can be less than the total number. This allows 

the system to continue tracking when some templates suffer severe perspective 

distortion or are occluded altogether. The best templates to track can be deter

mined from the estimated head pose as those that are visible and will appear most 

fronto-parallel to the image plane. Figure 2.27 shows the system in operation. 

For our research we are interested in using existing head tracking technology to 

track the pose of the head, and then overlay the functionality to track deformable 

facial features. In Chapter 6 we use two of the head tracking systems describ ed 

here. A monocular system based on Lowe 's object tracking algorithm is used 

as t he basis for a monocular lip-tracking system. Lowe 's approach was chosen 

for t his initial implementation owing to its simple and efficient implementation , 

robustness to noise in feature locations , and suitability for a monocular system. 

We then extend the work to a stereo system, and the stereo head tracker developed 

in our lab (Matsumoto and Zelinsky, 2000) and detailed above, is used as the basis 

for a stereo lip tracking system. 

2.4.2 Tracking Deformable Facial Features 

Tracking deformable facial features is a challenging problem, not only do the 

features 1nove relative to t he head , but t hey deform and change shape and ap

pearance. The eyelids are an example of a deformable feature. We have already 

discussed detecting eyelid 1novement (blinks) in Section ·2.1.4, however , as men

tioned previously t he n1ovement of an eyelid is often too fast to be properly 

tracked by a 30Hz vision system. The mouth and eyebrovvs on the other hand 

are well suited for tracking by a 30Hz vision system. Tracking the n1outh is 

the most challenging, as it displays a much wider range of deformation than the 

eyebrovvs, and exhibits drastic changes in appearance from open, closed , teeth 

visible, tongue visible, etc . states , as shown in Figure 2.28. 

Niouth shape information is highly relevant to Human Computer Interaction, 

in particular verbal communication systems, and approaches applied to mouth 
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Figure 2.27: Example of Matsumoto and Zelinsky's system tracking the 3D 
pose of the head. 

tracking are often transferable to tracking other _deformable facial features , such 
as the eyebrows and eyelids. With these points in mind we have chosen to focus 
our study of deformable facial feature tracking on the problem of mouth tracking. 

Verbal comn1unication with computers offers a natural and intuitive alternative 
to keyboard and mouse interfaces. While these traditional interfaces offer precise 
and efficient means of inputting information, there are many circumstances where 
verbal interaction is preferable. Verbal interaction is hands-free , leaving the user 's 
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Figure 2.28: The appearance of a subject's rnouth can vary greatly. Figure 
from Goecke (2002) . 
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hands available for other tasks like driving a car or operating machinery. Verbal 

interaction can even ren1ove the requirement for a keyboard altogether. Key

boards are bulky ite1ns , undesirable on small portable devices like pocket PCs or 

n1obile phones. Disabled people unable to operate keyboards have found verbal 

con11nunication invaluable for interacting with computers, and verbal communi

cation has found use as a complen1ent to keyboard and mouse interfaces, both for 

the ease that a user can input infonnation , and the reduced risk of typing-related 

injuries such as RSI. 

\i\lhilst modern voice recognition systen1s have shown impressive recognition rates , 

and have led to successful con1mercial products , such as Dragon Naturally Speak

ing5, these syste1ns require significant t raining , are user dependent, and do not 

perforn1 v.rell in t he presence of noise. By using visual inforn1ation to comple-

1nent auditory input it is feasible to increase t he robustness of automatic speech 

recognition systen1s . 

Visual cues are in1portant 111 speech. It is knovvn t hat hun1an perception of 

speech is enhanced ,;vhen the face and n1outh of t he speaker are visible , and 

that the teeth, tongue and lips provide useful information regarding placement of 

articulation (Dodd and Can1pbell , 1987) . To a certain extent even normal-hearing 

people lip-read as they listen to a speaker (I'v1cGurk and MacDonald, 1976) -

although they may be unaware of t he fact - and t he shape of the mouth removes 

some of the a1nbiguity of the spoken words . Realtime computer lip-reading can 

provide this san1e visual information for automatic speech recognition systems. 

Con1bining auditory and visual cues for speech processing, known as audiovisual 

5htt p: //www.dragonsys .com/ naturallyspeaking/ 
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speech processing, has been a fertile field of research over the last decade , and 
numerous systems have been developed; see Chen (2001) for a general overview 
of research in this area. 

The first audiovisual speech reading system was put forward by Petaj an ( 1985). 
This system used a single monochrome camera and custom video processing hard
ware. A manually tuned threshold value was used to binarize the image so the 
nostrils and mouth could be identified, and parameters such as mouth area, height 
and width were determined. The syste111 was tested on isolated utterances and it 
was demonstrated that visual information obtained was beneficial for recognition. 
Since then many more approaches have been adopted for tracking lips, these range 
from simple image-based methods like integral projection Yang et al. (1998a), to 
active contours Kaucic et al. (1996) and complex 3D lip models Reveret and 
Benoit (1998). Some methods have required the subject to wear special coloured 
lipstick (Kaucic et al., 1996; Adjoudani and Benoit, 1996; Benoit et al., 1996) , 
whilst others are able to track the unadorned lip contour (Reveret and Benoit , 
1998). 

In 1996 Kaucic et al. presented an automatic lip-reading syste111 that enhanced 
the performance of speech recognition on a forty word vocabulary beyond that 
achieved using a purely audio-based approach. Whilst the addition of visual 
information was only marginally beneficial in the noise free case, in the presence of 
noise ( with a signal to noise ratio of -3dB) the error rate was reduced significantly. 
This system ran in realtime. It tracked the mouth from a frontal view, but 
required the user to wear lipstick to enhance the contrast between the lips and 
the surrounding skin. 

Kaucic et al. also considered an alternative lip tracker that tracked the silhouette 
of the lips from a profile view of the subject, and was capable of real time tracking 
without cosmetic aids. This profile tracker benefited from the strong contrast 
the lip silhouette made with the white background placed behind the subject, 
however , the teeth and tongue were not visible-·in the profile view, nor was it 
possible to detennine the 111outh width, and owing to the importance of these 
features in visual lip reading the profile approach was dropped in favour of the 
frontal-view tracker . 

Both I{aucic et al. 's front-on and profile trackers used active contours to track 
the lip contour. Quadratic B-splines were used to 111odel the contour, and the 
dynamics of the 111odels were learned using a Maximu111 Likelihood Estimation 
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algorithm. A Kalman filter was used to blend the predicted and observed lip 

locations. Experiments where performed separately with the profile tracker and 

the frontal view tracker (with lipstick) to investigate the extent to which lip 

contour information improved speech recognition. However, no experiments were 

reported using both profile and frontal view information together, so all visual 

information is based on lip contour locations in a single 2D plane. 

The LAFTER (Lips and Face Real Time Tracker) from MIT Media Lab ( Oliver 

et al., 1997) uses an entirely different approach to lip tracking. Here blobs rather 

than contours are used to represent features. Blob segmentation offers an alter

native to using edge features where the regions themselves, not the edges, form 

the features. A blob is defined as a compact set of pixels that share a visual 

property, such as colour, texture, motion, or a combination thereof, ·which differ

entiates them from the surrounding image. These blobs are represented by their 

low order statistics, that is, the mean and covariance of the pixels in the blob, and 

mixture of Gaussian distributions are used to model the blob features in colour 

space. 

The initial mixture parameters for each blob feature are determined using an 

off-line training process on large training sets of faces, lips and mouth cavities. 

At start up the face and n1outh features are located using these general mixture 

models. These models are later adapted on-line during tracking. A Gaussian 

mixture 1nodel is also constructed for the background, and this is learnt entirely 

on-line. 

The face and mouth are found using colour and shape information. The nor

malised rg colour components of pixels ( see Section 2 .1. 2) are examined to de

termine those that could potentially belong to each feature, and blob models are 

chosen that best describe the shape of the dominant pixel clusters. The system 

uses an active camera to ensure the user always appears at the desired size in 

the centre of the image. Both the face and mouth are modelled using Gaussian 

mixture models describing the chromatic colour and spatial distribution of their 

constituent pixels. Thus the mouth is characterised by its area, spatial eigenval

ues and bounding box. The resulting mouth characteristics are made invariant to 

rotation about the optical axis by determining the orientation of the face in the 

image plane, however, the result is not robust to rotation of the subject 's head 

out of the image plane. 

Reveret and Benoit ( 1998) present a method for modeling lip shape as a 3D 



60 

y~ 

z 

Camer 

Inner 

Median 

Intermediate 

Outer ' 

Contours 

Related Work 

Cupidonarc - ,. --~ - ..... . . 

I 

' I '· Bottom 

Figure 2.29: Reveret and Benoit 's lip model showing the 3 polynomial con
tours each defined by 10 control points (Reveret and Benoit , 1998). 

polynomial surface. This method is applied to lip tracking, modelling lip motion 
in speech production, and for visual speech animation of lip 1notion during speech. 
The model is shown in Figure 2.29 and consists of 3 polynomial contours each 
defined by 10 control points. The system is trained for each subject, using a 
graphical user interface to fit the lip model onto calibrated front and profile 
images of the mouth , as the subject forms ten key lip shapes ( chosen based 
on phonetic observations of spoken French). The 90 (x, y, z) locations of the lip 
model control points observed for each of the key lip shapes are treated as feature 
vectors, principal component analysis is applied across the te~ key lip shapes, 
and three principal lip shape feature vectors are extracted. It is shown that 
linear combinations of these three principal components account for 94 % of the 
lip shape variability exhibited across the ten key lip shapes used for training , so by 
restricting t he model to only fonning lip shapes that are such linear co1nbinations , 
the model 1nay be described by just three parameters. 

This three-parameter model is used in conjunction with colour segmentation to 
identify the 3D lip shape in a monocular image sequence. Colour segmentation is 
done using a lip colour model that is built from the training data, and normalised 
rg chrominance is used to afford some robustness to lighting variations. The 
system was tested on a single phonetically balanced sentence and the results 
show good recovery of internal and external lip contours. The main drawback 
of t his system was the significant training required for each new subject. Also , 
while the modelling approach allows the 3D shape of the lip to be estimated from 
the monocular front-on images used for tracking, the lip shape was restricted by 
the range of motion displayed in the training data, and during tracking the 3D 
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shape is being modelled rather than measured. 

The numerous systems available offer varying solutions to the challenging prob

lem of lip-tracking. Hovvever , little interest has be-en shown by researchers in 

recovering raw 3D information about the mouth shape. While it is debateable 

how beneficial such information is for speech processing, it is certainly important 

for character animation and tracking t he true 3D shape of the mouth. Another 

important factor for a practical lip-tracking system is the ability to deal with 

head n1otion, in particular t he apparent deformation of the mouth caused by t he 

subj ect t urning his or her head vvhile speaking. While the LAFTER system can 

accon1n1odate some head movement neither LAFTER nor Kaucic et al. 's system 

corrects for distortion of mouth shape due to the head rotating out of the image 

plane. 

In Chapter 6 we present tvvo lip tracking systems, one monocular and one stereo, 

both operating on grey-scale images, and running in conjunction with a head 

tracker to enable the system to perform robustly through a range of head poses. 

The 1nonocular system 1neasures lip height and width, vvhile the stereo system 

recovers the raw 3D locations of points on the lip contour. The stereo lip tracker 

is t he first system to use stereo to directly measure the 3D locations of tracking 

points on t he n1outh and t rack the raw 3D mouth shape . 

2.5 Summary 

The hun1an face has a distinctive and unique appearance. There are a number 

of qualities governing t he appearance of a face that distinguish it from other 

objects , and several of these can be automatically detected by computer vision 

systen1s. Face regions can be identified by their size, shape and colour together 

with the occurrence of facial features that appear as dark blobs or peaks of 

radial sy1nn1etry at particular locations. fotion detection , depth estimation 

colour segmentation and radial symmetry detection all provide visual cues for 

detecting different facial qualities. Radial syn1metry is a particularly attractive 

cue however the best results from existing transforms are slow and inefficient 

to compute. In Chapter 3 we present a new computationally efficient method 

for determining radial symmetr) v. hose resul s rival or surpass those of existing 

1nethods v\ hilst being fast enough to operate in realtime. 
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Enabling a co111puter to see a face can be considered as a three step process, face 
localisation to detect approxi111ately where the face is in a scene, face registration 
to register the facial features , and face tracking to track the pose of the head and 
t he move111ent of deformable facial features. 

Particle filtering and the use of multiple cues have been shown to be very effec
tive for robust face localisation. Particle filtering enables the tracking of 111ultiple 
hypotheses and provides an efficient means of searching a multi-di111ensional state 
space. Multiple cues enable a system several modalities with which to detect a 
target, increasing robustness to changes in tracking conditions and allowing the 
system scope to adapt to such changes. In a realtime system it is i111portant 
to consider the allocation of computational resources across different cues. In 
Chapter 4 we present a realti111e face localisation syste111 that uses particle filter
ing, multiple cues, and efficiently allocates computational resources across cues 
according to the quality of information being produced by each cue. 

Integral projection provides an efficient way of detecting facial features for face 
registration in a sufficiently constrained situation, while other methods such as 
blink detection, and filtering techniques for enhancing features are equipped to 
deal with a wider range of inputs scenarios. Chapter 5 presents a face registration 
system capable of verifying the presence of a face and detecting facial features . 
The systen1 uses blink detection to initially localise the eye and face location, then 
filtering and radial symmetry detection to enhance facial features, and finally 
feature locations will be pin-pointed using integral projection. 

Face tracking involves tracking both rigid and defonnable facial features, in order 
to describe both the 3D pose of the head and the shape and location of facial 
features . Both monocular and stereo systems are available for tracking the pose of 
the head, and tracking the 111outh ( the do111inant deformable feature) has received 
considerable attention over the last decade. However, virt ually all systems track 
using a single camera, and while some infer the 3D shape of the 111outh from 
learnt 111odels they do not track the mouth in 3D as is possible with a stereo 
systen1. In Chapter 6 we present both monocular and stereo lip tracking systems, 
both running in conjunction with head trackers to facilitate robust perfonnance 
during head 111otion. Our stereo system directly 111easures the mouth shape in 3D 
during tracking, enabling unconstrained 3D tracking of this deformable feature. 



Chapter 3 

Fast Radial Symmetry Detection 

IN the previous chapter we explained how useful radial symmetry can be for 

detecting facial features in images (Section 2.1.5) , and we reviewed an exten

sive list of existing methods for calculating radial symmetry in images. The best 

results for facial feature detection came from the generalized symmetry transform 

(Reisfeld and Yeshurun, 1998) , Figure 2.13. However , this transform is slow, com

putationally expensive to compute, and not well-suited to realtime applications. 

Other methods provide more efficient alternative techniques for computing radial 

symmetry, but the results obtained are not as useful for locating facial features. 

In this chapter we will develop a new, computationally efficient method for de

termining radial symmetry that is able to produce results that rival those from 

the generalized symmetry transform, and other existing methods, whilst being 

fast enough to operate in realtime. 

We present a novel gradient-based interest operator , the Fast Radial Symmetry 

Transform (FRST) , that efficiently detects points of high radial symmetry. Our 

initial approach was inspired by the results of the generalized symmetry transform 

(Reisfeld et al., 1995; Intrator et al., 1995; Reisfeld and Yeshurun, 1998), although 

the final rnethod bears more similarity to the work of Sela and Levine (1997) and 

the circular Hough transform (Kimme et al. , 1975; Minor and Sklansky, 1981). 

The FRST determines the contribution each pixel makes to the symmetry of 

pixels around it, rather than considering the contribution of a local neighbour

hood to a central pixel. Unlike previous techniques that have used this approach 

(Kinune et al., 1975; Minor and Sklansky, 1981; Sela and Levine, 1997) it does 

not require the gradient to be quantized into angular bins , the contribution of 

every orientation is computed in a single pass over the image. The FRST works 
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well with a general fixed parameter set, however, it can also be tuned to exclu
sively detect particular kinds of features. Con1putationally the algorit hrn is very 
efficient , being of order O(K N) when considering local radial symn1etry in N x N 
neighbourhoods across an image of K pixels. 

In Section 3 .1 of t his chapter we define the FRST. Section 3. 2 discusses the selec
tion of parameters, and Section 3.3 describes how the transform can be adapted 
to different tasks. Section 3.4 presents several general sets of parameters suit
able for different applications of the FRST. Section 3.5 shows the perfonnance 
of the FRST on a variety of images, and compares it to existing techniques, and 
Section 3.6 presents the conclusions. 

3.1 Definition of the Transform 

The FRST is calculated at one or more radii n E N, where N is the set of radii 
of the radially symmetric features to be detected. The value of the transfonn at 
radius n indicates the contribution to radial sym1netry of the gradients a distance 
n away from each point. Whilst the transform can be calculated for a continuous 
set of radii this is generally unnecessary as a subset of radii is normally sufficient 
to yield a representative result. 

The algorith1n can be summarised as follows , and is discussed in ,detail hereafter: 

1. Determine gradient g. 

2. For each radius under consideration: 

( a) Consider each gradient element in turn, for each gradient ele1nent : 

1. Determine affected pixels. 

ii. Calculate orientation and magnitude projection images On and 
M n. 

(b) Con1bine On and M n to form the unfiltered sym1netry contribution 
Fn 

( c) Calculate the sy1nmetry image at radius n, Sn by blurring F n via 
convolution with A n. 

3. Sum Sn over all radii n E N to detennine the final sym1netry in1age S. 
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An overview of t he algorithm is shown in Figure 3 .1 showing t he key steps to 

generating the output radial symn1etry image S from the grey-scale input image 

I. The figure also shovvs some example images illustrating the output of different 

stages of the process. The remainder of t his section will work through the different 

stages of the algorit hm. 

I s 

Repeat this for each n in N 

Calculate 
An 

l Determine 
o n 

I Determine Calculate L s g 
affected gradient 

pixels 
Fn Sn n 

Calculate 
Mn 

Figure 3.1: Steps involved in comput ing t he FRST. Example images are also 
shown throughout the process , positive values are shown as light pi.xels , nega
tives as dark and zero as mid-grey, gradient is assumed to point from dark to 
light. 

Ini ially t he gradien of he image I is detern1ined , for our experiments we used 

a 3 x 3 Sobel operator 

( 

1 0 -1 ) 
K = 2 0 - 2 

1 0 -1 

o determine he gradient in he x and y directions as I *K and I *K 1 respectively. 

For each radius n that is being considered we detern1ine t he affected pixels by 

examining the gradient . Each non-zero gradient element generates a positively 

affected pixel and a negatively affected pixel. The positively-affected pixel is de-
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Figure 3.2: The locations of pixels P+ve(P) and P-ve(P) affected by the gra
dient element g(p) for a range of n = 2. The circle shows all the pixels which 
can be affected by the gradient at p for a radius n. 

fined as the pixel that the gradient vector g(p) is pointing to , a distance n away 
from p , and the negatively-affected pixel is the pixel a distance n away that the 
gradient is pointing directly away from. 

Figure 3.2 shows a gradient element g(p) and it 's associated positive and nega
tively affected pixels labelled P+ve and P -ve respectively. 

Formally the coordinates of the positively-affected pixel are given by 

( 
g(p) ) 

P +ve(P ) = p + round ll g(p) II n 

while those of the negatively-affected pixel are 

( 
g(p) ) 

P-ve(P) = p - round l! g(p) II n 

where "round" rounds each vector element to the nearest integer . 

Next we use these affected pixels to form an orientation projection image O n 
and a magnitude projection image M n . Initially t he orientation and magnitude 
projection images are zero . For each pair of affected pixels the corresponding point 
P+ve in the orientation projection image O n and magnitude projection image M n 
is incremented by 1 and ll g(p) II respectively, while the point corresponding to 
P - ve is decre111ented by these same quantities in each image. That is 
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Once On and M n have been calculated the radial symmetry contribution at radius 

n can be determined from the convolution 

(3 .1) 

where F n is the unfiltered symmetry contribution defined by 

(3 .2) 

and 

_ \ 0 n (p) if On (p) < kn 
On(P) = 

kn otherwise 
(3 .3) 

An is a two-dimensional Gaussian, a is the radial strictness parameter , and kn is a 

scaling factor that norn1alizes M n and O n across different radii. These parameters 

are discussed in n1ore detail in Section 3.2. 

The full transform is defined as the average of the radial symmetry contributions 

over all the radii considered. 
I 

1 
S=-1 I L_sn 

N nEJ 

(3 .4) 

If the gradient is calculated to point from dark o light then the output image S 
will have positive values corresponding to bright radially symmetric regions and 

negative values indicating dark syn1metric regions as can be seen in Figure 3.1. 

It can be more useful to consider the gradient orientation exclusively, removing 

the effect of contrast on the level of interest attributed to points in the image. 
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This leads to an alternate orientation-based radial symmetry that is defined by 
replacing F n in Equation 3.1 by 

This provides a result that is more robust to lighting changes. However, when 
applying this orientation-based formulation it is generally necessary to ignore 
small gradients that tend to add noise to the result , this is discussed in detail in 
Section 3.3.1. 

3.2 Choosing the Parameters 

The definition of the transform contains a number of parameters which need to 
be appropriately defined , these are : 

• a set of radii N = {n1,n2 , ... } at which to calculate Sn, 

• the Gaussian kernels A n, 

• the radial strictness parameter a, and 

• t he normalizing factor kn. 

This section discusses each of these in turn and describes their effect on the output 
of the transform. A general set of parameters is presented in Section 3.4. 

3.2.1 Set of Radii N 

The traditional approach to local symmetry detection (Di Gesu and Valenti , 
1995a; Reisfeld et al., 1995; Sela and Levine, 1997) is to calculate the symmetry 
apparent in a local neighbourhood about each point . This can be achieved by 
calculating Sn for a continuous set of radii N = {l , 2, ... , nmax} and combining 
using Equation 3.4. However, since the symmetry contribution is calculated inde
pendently for each radius n it is simple to determine t he effects at a single radius , 
or an arbitrary selection of radii that need not be continuous. Furthermore, the 
results obtained by only examining alternate radii give a good approximation to 
the output obtained by examining all the radii , while saving on computation. 
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The effect of choosing sparse sets of radii was quantified experimentally by com

paring the output of the transform calculated across all radii from 1 to 5 to t hat 

calculated across several sparse sets of radii. Labelling the output image calcu

lated across radii 1 to 5 as S1...5 and the sparse outputs calculated across radii N 

as SN the error is defined as 

The experiment was run over a database of 295 diverse face images , and the 

average power of the error E N was determined for each set of radii. The results 

are shown in Table 3.1 with the power of the error expressed as a percentage of 

t he power of the transform calculated across all five radii (S1.. .5) . 

Table 3.1: Parameter Settings used for Experimentation 
Radii 1:2,3,4,5 1,2,3 1,5 3 

Error Power 0% 7.9% 37% 780% 

Table 3.1 shovvs t hat taking alternative radii (1, 3, 5) gives a close approxin1a

tion to using all t he radii with an error of only 7.9% between the two outputs. 

Unsurprisingly, as less radii are included the error increases quite rapidly. 

An example of this experiment is shown in Figure 3.3. The small error between 

the transforn1 calculated at alternative radii S1 ,3 ,5 and S1.. .5 is evident vvith E 1 ,3 ,5 

being close to zero. Exactly how close an approximation is achieved by using only 

alternate radii depends on t he edges of the features being detected. Sharp-edged 

features are n1ore likely to be attenuated if the t ransform is not calculated at 

their exact radius. 

If the scale of a radially symmetric feature is known apriori t hen the feature can 

be efficiently detected by only detern1ining t he transform at t he appropriate radii. 

For example, the irises in the eyes in the input image in Figure 3.3 have a radius 

of approximately 5 pixels , so ~rill be ~rell detected using a radius of 5, or radii 1 

and 5 as can be seen in Figure 3. 3. 

3.2.2 Gaussian Kernels A n 

The purpose of the Gaussian kernel An is to spread the influence of the posit ively

and negatively-affected pixels as a function of the radius n. A rotation invariant 
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Input image E 1,3,5 

Figure 3.3: Effect of varying the set of radii N at which the FRST is co1nputed. 
SN is the output of the transform and EN is the error, positive values are 
shown as light pixels, negative as dark, and zero as mid-grey. 

,4> 

Figure 3.4: The contribution of a single gradient element, with An chosen to 
be a 2D Gaussian of size n x n and standard deviation CJ= 0.25n, and n = 10. 

two-din1ensional Gaussian is chosen since it has a consistent effect over all gradient 
orientations , and it is separable so its convolution can be efficiently determined. 
Figure 3.4 shows the contribution for a single gradient element g(p) . By scaling 
t he standard deviation linearly with the radius n, an arc of influence is defined 
that applie to all affected pixels. The width of the arc is defined by scaling the 
standard deviation of A n with respect to n . 
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All A n are defined as two dimensional Gaussians whose elements sum ton. Con

volving with An has the result of spreading the effect of each gradient element by 

an amount proportionate to the standard deviation of the Gaussian, and ampli

fying its magnitude by n. Amplifying the magnitude is necessary to prevent the 

effect of gradient elements becoming negligible at large radii as a result of being 

spread too thinly across the image. 

Even though the convolution with the Gaussian kernel is separable, depending 

on the size of the kernel used, this is often still the most time consuming part of 

the algorithm. This step can be sped up by replacing the Gaussian kernels with 

uniformly flat kernels1 whose convolution can be calculated recursively. Surpris

ingly this still yields reasonable results in most circumstances, however , uniform 

(square) kernels are not invariant to rotation so Gaussian kernels are preferred. 

All results, with the exception of the real time results in Figure 3.13 , in this thesis 

are obtained using Gaussian kernels. 

3.2.3 Radial-strictness Parameter a 

The parameter a determines how strictly radial the radial symmetry must be for 

the transform to return a high interest value. Figure 3.5(a) illustrates t he effect 

of a on On at the pixel level. Note how a higher a strongly attenuates the line 

relative to the dot. 

Figure 3.5(b) shows the effect of choosing a to be 1, 2 and 3 on S1 for an image 

exhibiting strong radial values around the eyes. Once again a higher a eliminates 

non-radially symmetric features such as lines. 

A choice of a = 2 is suitable for most applications. Choosing a higher a starts 

attenuating points of interest , whilst a lower a gives too n1uch emphasis to non

radially symmetric features , however , choosing a = 1 minimizes the computation 

when determining F n in Equation 3.2. 

3.2.4 Normalizing Factor kn 

In order to con1pare or combine the symmetry images calculated for different radii 

they must be represented on a similar scale. As the radius increases so does the 

1 A uniformly fiat kernel refers to a convolution kernel (matrix) whose elements are all the 
same value. 
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Figure 3.5: Effect of varying a (a) At the pixel level (i) Sample arrangement 
of light pixels on a dark background, (ii) Gradient from adjacent pixels , (iii) 
Number of gradient elements pointing at each pixel O n, (iv) Square of the 
number of gradient elements pointing at each pixel O;. (b) Effect of varying 
a at the image level. Original image from the USC-SIPI Image Database. 

nurnber of gradient elements that could potentially effect each pixel, that is , the 
number of pixels on the perimeter of the circle in Figure 3.2. 

One way of normalizing across scales is to divide On and M n through by their 
maximum values. However , this scales the result at each radius relative to itself, 
and does not provide an absolute measure that can be used to compare between 
different radii or different images. 

It is preferable to scale On and M n by the expected maximum value of On, and 
saturate On at this value, as is done in Equation 3.3 , restated here , 
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Figure 3.6: Some example images from the test set. 

_ l O n (p) if On (p) < kn 
On(P) = 

kn otherwise 
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M n cannot be saturated in the same way, ( although it could be averaged using 

division by O n) however , large values of Mn do not cause problems, since the 

elements of O n are raised to an exponential power and so become much more 

significant than M n at locations where O n saturates. 

Determining the expected maximum value of O n is best done experimentally, 

since it depends on gradient directions of neighbouring pixels and these gradient 

elements are not probabilistically independent. An experiment was conducted to 

determine the mean maximum value of O n for a set of 295 real images for n = 1 to 

30. The set of test images comprised of photographs of people at a range of scales , 

and with widely varying backgrounds and lighting conditions. All images were in 

JPEG forn1at and were obtained off the internet , image size varied from 108 x 130 

to 405 x 244 pixels. The 295 images used for this experiment are contained on the 

CD-ROM enclosed with this thesis , and some examples are shown in Figure 3.6. 

The orientation projection images O n were determined for each image ( as de

scribed in Section 3.1) at all radii n E {1 , ... , 30}. The maximum value of each 

O n was then determined giving a set of 30 maximum values mn. This was re-
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Figure 3.7: The mean and standard deviation of the maximum value of the 
orientation projection images On for n = 1 to 30, calculated over 295 images. 

peated for every image in t he test set and the resulting sets of maximum values 
combined to determine the mean ( expected) maximum value of O n for a given 
n E {1 , ... , 30}. 

The result is shown in Figure 3.7. A part from the value of 8 for n = l (there are 
only 8 pixels a distance 1 away from any pixel) the expected values for all radii 
n E [2, 30) lay within 9.9 ± 3%. 

Using 

kn= { 8 if n = l 
9. 9 otherwise 

suitably normalizes M n and On in Equation 3.2. 

3.3 Refining the Transform 

The transform can be refined to further increase computational speed and detect 
particular kinds of features . Refinements include-: 

• ignoring small gradients when calculating O n and M n. 

• calculating dark (bright) sy1nmetry by ignoring negatively- (positively-) af
fected pixels when determining On and M n. 

• Choosing a constant A n. 
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3.3.1 Ignoring Small Gradients 

Gradient elements with small magnitudes have less reliable orientations, are more 

easily corrupted by noise, and tend to correspond to features that are not im

mediately apparent to the human eye. Since the purpose of the transform is to 

pick out points of interest in the image it is logical to ignore such elements in our 

calculation. Reisfeld implemented the generalised symmetry transform to ignore 

small gradients in his original work (Reisfeld, 1993) , and Sela and Levine (1997) 

also ignore small gradient elements. They also go one step further and binarize 

the gradient image into an edge map. 

We ignore small gradients by introducing a gradient threshold parameter /3. When 

calculating images On and Mn all gradient elements whose magnitudes are below 

/3 are ignored. The effect of a small /3 on Mn is negligible, however, even small 

values of /3 start to attenuate On in regions of low contrast. This results in an 

emphasis on interest points with high contrast. 

A small value of /3 that eliminates the lowest 1 - 2% of the gradient removes the 

small noisy gradients mentioned above. However, if low contrast features are not 

important, larger values of /3 can be chosen to increase the speed of the algorithm 

by considering fewer gradient elements. The effect of large values of /3 is shown 

in Figure 3.8 , where /3 is measured as a percentage of the maximum possible 

gradient magnitude. In this example this is beneficial for the detection of eyes 

and mouth with /3 = 20%, however , too high a value, such as /3 = 40% starts 

to attenuate features of interest such as the corners of the mouth. In general a 

conservative choice of /3 = 2% is preferable, higher values should only be used 

when it is desired to ignore low contrast features. 

3.3.2 Dark & Bright Symmetry 

The transform can be tuned to detect dark or bright regions of symmetry. To 

find dark regions exclusively only the negatively-affected pixels need be consid

ered when determining M n and O n. Likewise , to detect bright symmetry only 

positively-affected pixels need be considered. 

Alternatively, dark and bright symmetries can be obtained applying a threshold 

to the output image S to eliminate all positive or negative values. This second 

approach has the advantage that inconsistent dark and light values will can-
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Input image S for /3 = 0 S for /3 = 20% S for /3 = 40% 

Figure 3.8: The effect of different values of /3 on S. Here /3 is measured as a 
percentage of the maximum possible gradient magnitude and n = 1. Original 
image from Database of Faces , AT&T Laboratories Cambridge 1994 

(a) (b) (c) 

(d) (e) (f) 

-Figure 3. 9: Examples of dark and bright syrmnetries . ( a) Input image. (b) 
Dark symmetry. (c) Bright symmetry. (d) Dark and bright symmetry image 
S. (e) Dark and (f) bright symmetry images obtained from thresholding S. 

eel each other out as they do when calculating both dark and light symmetries 
together. However , experimentation has shown that although this alternative 
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approach gives slightly different dark/bright symmetry outputs the result is no 

better than simply counting only dark/bright affected pixels. Figure 3.9 shows 

examples of dark and bright symmetry determined using each approach. Since it 

is not necessary to cancel out inconsistent dark/light values, the first method is 

preferred as it offers a reduction in computation. 

Dark symmetry is especially useful for detecting facial features that typically 

appear darker than the surrounding skin, more examples of dark symmetry are 

shown in Section 3.5. 

3.3.3 Choosing a Constant An 

A faster implementation of the transform can be achieved by choosing the Gaus

sian kernel to be constant over all radii. The saving in computation is achieved 

by avoiding performing convolutions with An for each radius. Choosing An to 

be a fixed Gaussian still disperses the influence of the affected pixels, and can 

produce reasonable results. In this case only one convolution need be performed, 

and Equation 3.4 reduces to 

S'=Ga*LFn (3.5) 
n 

where Ga is a 2D Gaussian with standard deviation e5. 

3.4 A General Set of Parameters 

As discussed in Sections 3.2 and 3.3 there are a number of different parameters 

and refinements to the basic transform. In Table 3.2 three general parameter sets 

suitable for different applications of the transform are presented. The Full setting 

is the best choice when the transform is to be applied in an unsupervised manner , 

it provides more detail at the expense of requiring more computation than the 

alternative settings. The Fast setting detects both bright and dark symmetry 

quickly, and the Fast Dark setting finds only regions of dark symmetry. The 

performance of each of these settings is presented in Section 3.5. 
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Table 3.2: Parameter Settings used for Experi1nentation 
Parameter Setting 

Full Fast Fast Dark 
Set of radii N {n: n = 1, 2, .. . , 6} { n: n = l , 3, 5} {n:n=l, 3,5} 
Gaussian kernel 

Size n n n 
Standard deviation 0.5n 0.5n 0.5n 

Radial strictness a 2 2 2 
Small gradients ignored 0 2% ignored 2% ignored 
Dark symmetry Yes Yes Yes 
Bright symmetry Yes Yes No 

Figure 3.10: 256 x 256 lena image (USC-SIPI Image Database). 

3.5 Performance Evaluation 

This section demonstrates the performance of the FRST on a range of images, 
and compares it with several prominent transforms from the reported literature. 

3.5.1 Performance of the FRST 

The FRST was applied to the standard 256 x 256 lena image (Figure 3.10) using 
both the full and fast dark parameter settings in Table 3.2. These results are 
presented as layers in Figure 3.11 with the corresponding peaks in dark radial 
syn1metry indicated. The eyes both stand out, as do two other points in the 
image. Examining the non-eye peaks show that they both correspond to small 
roughly round dark regions in the original image, so it is unsurprising that the 
transforn1 returns high values at these locations. It is interesting to note that 
the result with the full parameter setting detects the whites of the eyes as points 

--
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of light symmetry. The whites of t he eyes are not always as distinctly visible as 

they are in this image, especially in video images or instances when t he eyes are 

in shadow, however , in high quality images when the eye whites are visible the 

co-occurrence of light and dark symmetry in close proximity is a strong cue for 

eye detection. 

Figure 3.12 demonstrates the performance of the transforn1 on faces and other 

images . These figures were generated using the parameter settings presented in 

Table 3.2 , and show how the transform can provide a useful cue for the location of 

facial features - especially eyes - in face images, as well as highlighting generic 

points of interest that are characterized by high contrast and radial symmetry. 

ote that the orientation-based symmetry is more sensit ive to low-contrast fea

tures and texture. This sensit ivity can be reduced by using a higher gradient 

threshold , however , such sensitivity is desirable when considering low contrast 

features such as the shadowed side of the face in Figure 3.16. 

The intuit ive not ion t hat facial features are generic points of interest provides a 

useful benchmark for evaluating point of interest operators. Whilst the applica

tion of these operators is by no means limited to facial feature detection ( Chella 

et al., 1999; Di Ges1-1 and Valenti , 1995a; Minor and Sklansky, 1981) t his is cer

tainly t he n1ost common application area (Di Gesu and Valenti , 1995a; Intrator 

et al., 1995 · Lin and Lin 1996; Reisfeld et al., 1995; Reisfeld and Yeshurun, 1998; 

Sela and Levine , 1997; Sun et al., 1998) . Facial images provide a useful case 

study, offering in1ages of widely varying appearances with well defined sets of in

terest points , as v.rell as directly addressing the primary application area of point 

of interest detectors . 

The FRST has been implemented in a realt ime v1s1on system. The realtime 

code v.ras v.rr itten in C++ and made use of the Intel Image Processing Primit ives 

(version 2.05) o achieve a mean processing ime of 13.2 ms (s andard deviation 

of 0.08 ms) per 240 x 320 image frame , on a 1.4 MHz Pentium III running under 

Linux. The realt ime system detects orientation-based symmetry online using the 

fast dark settings detailed in Table 3.2. However to increase effi ciency, uniform 

square kernels v. ere used rather t han Gaussians to blur t he response at each 

radius (Equation 3.1) . Figure 3.13 shows ome snap sho s of the S) stem outpu . 

The results highlight he e) es and mouth of he subjec s well , and there are 

-ir uall no no iceable artifacts caused b) using uniform square kernels rather 

t han Gau ians . 
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Figure 3.11: R esults of applying the FRST to the 256 x 256 lena image, with 
corresponding points of high dark radial symmetry indicated . Top: original 
image. !diddle: result with t he full parameter setting. Bottom: result with 
the fast dark parameter setting. 
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Original 

Orientation
based 
symmetry 
(fast dark) 

Radial 
symmetry 
(fast dark) 

Orientation
based 
symmetry 
(fast) 

Radial sym
metry (fast) 

Radial sym
metry (full) 

Figure 3.12: The FRST applied to face and other images. The form of the 

transform and the parameter settings used for each row are indicated on the 

left. The left most image is from the BioID Face Database Research (2001) 

and has been sub-sampled to half its original size. 
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Figure 3.13: The orientation-based fast dark i1nplementation of the FRST be
ing calculated online in realtime. The left column shows sample input images 
and the right column shows the output, all images are 240 x 320 pixels. 
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The realtime code was also tested off-line on the 256 x 256 image in Figure 3.10 

and timed over 10,000 iterations to determine a mean processing time of 10.8 ms 

for the calculation of the fast dark orientation-based symmetry on this image. 

3.5.2 Comparison with Existing Transforms 

In Chapter 2 we reviewed a number of existing methods for calculating radial 

symmetry (see Section 2.1.5). We now compare the performance of the FRST 

against the more prominent of these existing transforms , namely: 

• Sela and Levine's realtime attention mechanism (Sela and Levine, 1997) , 

• Reisfeld 's generalized symmetry transform for both dark and radial gener

alized symmetry (Reisfeld et al. , 1995) , 

• Kovesi's symmetry from phase (Kovesi, 1997) , 

• Di Gesu et. al. 's discrete symmetry transform (Di Gesu and Valenti, 1995a), 

and 

• Minor and Skalansky's implementation of the Circular Hough transfonn 

(Minor and Sklansky, 1981). 

Kovesi's symmetry from phase was calculated for 6 filter orientations and 4 scales 

ranging from 2 to 24 pixels in diameter. All other methods were implemented 

with a local neighbourhood radius of 6 pixels , allowing local symmetry to be 

detected in a neighbourhood of up to 13 x 13 pixels about each point. Where 

necessary t he gradient orientation was quantized into 8 bins. 

Each of the transforms was implemented in Matlab 5.3 (Kovesi's symmetry from 

phase was implemented using Kovesi's own Matlab code (Kovesi, 1999b)) and 

the output computed. For the majority of the transforms an estimate of the 

approximate number of floating point operations involved was obtained from 

Matlab, however, for Di Gesu et. al. 's discrete symmetry transform and Sela and 

Levine's realtime attention mechanism this was not the case. These transforms 

involve optimized low-level processes that were not practical to emulate in Matlab, 

so the number of operations required is not reported here. (Unsurprisingly, the 

non-optimized implementations used to generate t he visual results shown required 

computation well in excess of the other methods.) 
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Table 3.3: Estimated Computation Required for Different Transfonns 

Transform 

FRST 

Radial Symmetry 

Full 

Fast 

Fast Dark 

Orientation Symmetry 

Fast 

Fast Dark 

Existing Transforms 

Reisfeld et al. 's Generalized Symmetry 
Radial 

Dark 

Iviinor and Sklansky's Circular Hough 
Kovesi's Symmetry from Phase 

Figure 3.14 

17.9 

8.06* 

6.76* 

7.44* 

6.45* 

300 

207 

30 

601 

Computations 

(Mflop) 

Figure 3.15 

18.9 

7.26* 

5.99* 

6.69* 

5.71 * 

259 

179 

33.2 

196 
* ote that the Fast and Fast Dark parameter settings ignore small gradients 

and are not calculated across all radii (see Table 3.2). 

Figure 3.16 

23.4 

8.51 * 

7.4* 

7.87* 

7.09* 

349 

239 

43.1 

912 

The results are shown in Figures 3.14 to 3.16 and the computations required are 
presented in Table 3.3. These results demonstrate that the FRST can provide 
co111parable or superior results to existing techniques whilst requiring a relatively 
low level of computation. As noted in the footnote to Table 3.3 the fast and 
fast dark parameter settings ignore small gradients and are not calculated across 
all radii, however, the transform is still able to provide useful results , and the 
computational efficiency is increased. Other transforms may also benefit from 
these technique. Indeed, Reisfeld initially considered ignoring small gradients 
(Reisfeld, 1993). However, the effect of these variables on other transforms has 
not been explored in this thesis. 

The realtime attention mechanism of Sela and Levine (1997) provides cloud
like approximations of interest points. The final step of this transform involves 
identifying local maxima in this output as points of interest. These have been 
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marked with crosses in Figures 3.14 to 3.16 with the size of the cross corresponding 

to the value of the transform at the local maximum. The transform detects both 

eyes in the face in Figure 3.15 and the high contrast eye in Figure 3.16, but it 

also awards high interest to non-radially symmetric edges and areas of texture, 

and fails to detect the circular wheels of the car in Figure 3.14. 

The results from the generalized symmetry transform show good detection of 

regions of interest by generalized radial symmetry, however, the generalized dark 

symrnetry tends to highlight edges in addition to points of interest. The high 

computational load of the generalized symmetry transform ( and other methods 

that consider symmetry in a local neighbourhood about each pixel (Lin and Lin, 

1996)), comes from the computational load scaling with the square of the radius 

of the neighbourhood. The larger the neighbourhood the more pixels that must 

be considered when calculating the transform at each point in the image. Even 

for modest sized neighbourhoods, such as the 13 x 13 pixel neighbourhood used 

for the experi1nentation on the 320 x 240, 256 x 256 and 256 x 341 images in 

Figures 3.14 to 3.16, the computation is considerable. 

Calculating the symmetry from phase detects areas of high bilateral or radial 

symmetry independently of contrast. This method is not designed to detect 

points of interest in scenes, however, it provides a detailed map of the underlying 

symmetries present across the image that is instructive to consider in relation 

to other "symmetry operators". Comparing the results from this transform with 

those of Reisfeld's generalized dark symmetry we see that ( as noted by Kovesi 

( 1997)) the latter is essentially a combined measure of the under lying symmetry 

and the contrast. Furthermore, comparing the lines of bilateral symmetry (from 

the phase symmetry image) with the points of high radial symmetry from Reisfeld 

et . al. 's generalized radial symmetry, confirms that radial, rather than bilateral 

symmetry is a better detector of points of interest in Figures 3.14 to 3.16. 

The discrete symmetry transform tends to highlight either side of high contrast 

lines , with the result that when such a line forms a ring, such as the wheels of the 

sports car in Figure 3.14, it is strongly highlighted. However, there is also a lot 

of bold highlighting of non-circular edges and regions of high texture that do not 

exhibit radially symmetry. While detecting these features may be desirable for 

so1ne applications, they distract from the emphasis placed on radially symmetric 

points , and detract from the performance of the transform as a symmetry-based 

interest detector. 
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Minor and Skalansky's implementation of the Circular Hough transform comes 
closest to rivalling the computational efficiency of the FRST, yet it provides only 
four levels of output. It was designed for detecting dark blobs in infrared images , 
and when applied as a point of interest detector to the photographs shown here it 
detects many other points in addition to the primary interest points. In particular 
it returns high values along edges, such as the frame of the mirror in Figure 3.15 , 
and is easily confused by textured surfaces, such as the grass in Figure 3.14. 

Table 3.4 lists the order of computation required to compute the transfonns on 
an image of K pixels, where local sym1netry is considered in an N x N neighbour
hood, and for those n1ethods which require gradient quantization the gradient is 
quantized into B bins. The complexity O(K N) of the FRST is lower than all 
other transfonns considered, with the exception of Di Gesu et al. 's discrete sy1n-
1netry transform that has complexity O(K N) or O(K B). When calculating the 
discrete sym1netry transfonn with co1nplexity O(K B) (Di Gesu and Palenichka, 
2001) it is essential to calculate it across four or more angular bins , whereas 
when calculating the FRST it is not necessary to co1npute it at all radii 1. .. N 
(see Section 3.2.1). Likewise the order O(KN) implementation of the discrete 
symn1etry transfonn (Palenichka et al., 2001) can be calculated at only a subset 
of the radii. However, the results from the discrete symmetry transform are quite 
different from the 1nethod presented in this thesis , with edges and areas of high 
texture, in addition to points of radial sym1netry, typically being awarded high 
responses. 

Table 3.4: Con1putational Order of Different Transforms 
Transform Order 
FRST KN 
Generalized Symmetry Transform Reisfeld et al. KN 2 

Gradient-based Inhibitory Mechanism (Lin and Lin, 1996) KN 2 

Discrete Symmetry Transform KB or K N 
(Di Gesu and Palenichka, 2001 ; Palenichka et al. , 2001 ) 

realtime Attentional 1echanism (Sela and Levine , 1997) KEN 
-

Circular Hough Transform Minor and Sklansky (1981) KEN 

The key to the speed of the FRST lies in the use of affected pixels to project 
the effect of gradient elements. This allows an approximation of the effect of 
each gradient element on the radial sy1nmetry of the pixels around it , without 
specifically considering neighbourhoods about each point like Lin and Lin (1996) 
and Reisfeld et al. (1995), or requiring multiple calculations for different gradient 
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Realtime attention 
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Levine , 1997) 

Symmetry from phase 
(Kovesi, 1997) 

Radial symmetry 

(fast dark) 

Radial symmetry (fast) 

Generalized symmetry 

(radial) (Reisfeld et al. , 

1995) 

Discrete symmetry 
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Generalized symmetry 
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Figure 3.14: Comparison of performance on a 320 x 240 outdoor image. The 

top two rows show the performance of the FRST, the bottom two rows show 

the output from other available transforms. 
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Original 

Radial symmetry (full) 

Realtime attention 

mechanism (Sela and 

Levine, 1997) 

Symmetry from phase 
(Kovesi, 1997) 

Fast Radial Symmetry Detection 

Radial symmetry 

(fast dark) 

Radial symmetry (fast) 

Generalized symmetry 

(radial ) (Reisfeld et al. , 

1995) 

Discrete symmetry· 
transform (Di Gesu and 

Valenti , 1995a) 
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Generalized symmetry 
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1995) 

Circular Hough 
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Figure 3.15: Comparison of performance on the standard 256 x 256 lena image. 
The top two rows show the perfonnance of the FRST, the bottom two rows 
show the output from other available transforms. 
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Original 
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Levine, 1997) 
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Figure 3.16: Comparison of performance on a 256 x 341 image of a face in half 
shadow. The top two rows show the performance of the FRST, the botto1n 
two rows show the output from other available transforms. 
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orientations, as do 1nany other methods (Di Gesu and Valenti , 1995a; Kovesi, 
1997; Minor and Sklansky, 1981; Sela and Levine, 1997). 

Unlike other transforms the fast symmetry transform differentiates between dark 
and bright regions of radial symmetry, while allowing both to be computed si
multaneously. Alternatively just dark ( or bright) points of symmetry can be 
considered exclusively with an associated reduction in computation. 

3.6 Summary 

In this chapter we have presented a new transform, the Fast Radial Symmetry 
Transform (FRST), that utilizes local radial symn1etry to highlight points of 
interest within a scene. Its low computational complexity and fast run-ti1nes 
make this 1nethod well suited for realtime vision applications. The performance 
of the transform has been de1nonstrated on a variety of i1nages and compared 
with leading techniques from the literature. Both as a facial feature detector and 
as a generic region of interest detector the FRST is seen to offer equal or superior 
performance to contemporary techniques at a relatively low computational cost. 
A realtime i1nplementation of the transform was also presented and shown to be 
an effective cue for highlighting peoples eyes as they moved in front of the camera. 

This transform provides a 1neans of efficiently detecting the presence of radial 
sy1nmetry for realtime applications, in particular facial feature detection. In 
Chapter 4 we use this transforn1 as one of the key visual cues in our face local
isation syste1n, and in Chapter 5 we applied it to preprocessing images for face 
registration. 

--



Chapter 4 

Face Localisation 

T HE first step to enabling a computer to see a person's face is to localise and 

track the approximate location of the face in an image sequence. We refer 

to this as face localisation which is the topic of this chapter. 

Visually acquiring and tracking faces and other targets is a key problem in com

puter vision, and new and innovative techniques are constantly being developed. 

However , despite the impressive results obtained, it is clear that no single cue can 

perform reliably in all situations. The key to an efficient and robust vision sys

tem for tracking is to intelligently combine information from a number of different 

cues, whilst effectively managing the available computational resources. 

The development of such a system must address several issues: which cue(s) 

should be used and when, how should the cues be combined, and how much 

computational resource should be expended on each cue. 

This chapter presents a frarnework for a vision system that addresses these issues 

by fulfilling the following criteria: 

• efficiently allocate finite computational resources when calculating cues , ac

counting for the cue's expected utility and resource requirement , 

• facilitate cues running at different frequencies , 

• locate a target in 111.ulti-dimensional state space, eg . determining the tar

get 's 3D location and orientation, and 

• allow tracking of multiple hypotheses. 
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Firstly vve introduce some background theory in Section 4.1 which forms the basis 
for our system. The overall architecture of the system is described in Section 4.2 . 
Section 4.3 describes an implementation of the system that locates and tracks a 
person 's head in a cluttered environment . Visual cues are discussed and exper
in1ental results are presented. Section 4.4 demonstrates how the system can be 
extended to track multiple targets. Section 4.5 closes with a summary of the key 
points. 

4.1 A Bayesian Approach to Target Localisation 

The system uses Bayesian probability theory to fuse information from different 
time instances and sensing modalities. A particle filter is used to approximate 
the resulting PDF and maintain multiple hypotheses of the target location. This 
section details the Bayesian framework which leads to Markov localisation. Par
t icle filtering is also discussed , and it is shown how a particle filter can be applied 
to model t he probability density resulting from Markov localisation. 

4.1.1 l\!Iarkov Localisat ion 

Given a state space of possible target poses , the problem of tc;1,rget localisation 
can be expressed probabilistically as the estimation of the posterior probability 
densit) function over the space of possible poses , based on the available data. 
That is , at time t estimate the posterior probability P (stleo ... t) of a state St given 
all available evidence eo ... t from time O to t. 

G ing Baye ian probability t heory and appl) ing the Markov assumption 1 the de-
ired probability P (stleo ... t) can be expressed recursively in terms of the current 

e\·idence and kno\\·ledge of the pre ·ious states. This is referred to as Markov 
Locali ation: and is commonl · used in mobile robotics . It is represented mathe
n1atically by the following equation, 

1 The JI arkov a umption ta e tha the past is independent on the future gi ·en the current 
tate. 
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where T/t is a constant normaliser that ensures the probabilities sum to one, T/t = 

1/ P(etleo ... t-1). 

The derivation, as outlined by Thrun (2000), sequentially applies Bayes' rule , the 

Markov assumption, the theorem of total probability and the Markov assumption 

again, and is detailed below. 

Firstly Bayes' rule is applied, one of the probabilities is expanded and Bayes ' rule 

is applied again. 

P( eo .. t lst)P( St) 
P( eo .. t) 

P( et I eo .. t-1, St) P( eo .. t-1 I St)P( St) 
P( eo .. t) 

P( et I eo .. t-1, St)P( St I eo .. t-1 )P( eo .. t-1 )P( St) 

P( St)P( eo .. t-1 )P( et I eo .. t-1) 

T/tP( et I eo .. t-1, St)P( St I eo ... t-1) 

Applying the Markov assumption allows P(etleo .. t-l, St) to be rewritten as P(et !st) 

g1v1ng 

T/tP ( et I St)P ( St I eo ... t-1) 

Since the set of all possible states at a given time represents a collection of mutu

ally exclusive events whose probabilities sum to one, the theorem of total prob

ability enables P(stl eo ... t-i) to be written as a sum over all possible state values 

at time t - l as follows 

P ( St leo ... t) 

The Markov assumption can then be applied again to simplify P (stleo .. . t-l, St_i) 

leading to the formulation presented in Equation 4.1. This formulation provides 
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a recursive means of estimating the probability of the current state given all the 
evidence sighted since sensing began. 

4 .1.2 Markov Localisation with a Particle Filter 

A particle filter is applied to model the distribution in Equation 4.1. In Chapter 
2 we explained how a particle filter is able to locate targets in state space while 
only measuring the probabilities of target hypotheses at a discrete number of 
locations. The particle filter effectively approximates the continuous distribution 

by a set of discrete samples. Thus we are only required to deterrnine P (stleo .. t) 
for a number of discrete values of St ( and St-i) , so Equation 4.1 becon1es 

'I, 

vvhere ( i) denotes the i th discrete value (i.e ., particle) . 

There are two main parts to the right hand side of Equation 4.2 , the probability 

P (etlst) and the summation. 

Each term of the summation describes the probability of a specific particle s~~ 1 
' 

migrating to the location St in the next time step. Summing over all the particles 
in t he previous time fr ame gives the probability of a particle occurring at a 

particular location in state space St, given the locations and probabilities of all 
the particles at tin1e t - l. To see how this is modelled by the particle filter 
we need to consider the constituents of each terrn of the summation, na1nely the 

probabilities P (stls~~ 1 ) and P (s~~ 1 leo ... t- 1 ). The second of these is modelled by 
re-san1pling ,vith replacement (step 2 in Figure 4.1) , where this probability is the 

chance of re- ampling a particle . The other probability P (stls~~ 1 ) is modelled 
by Brownian motion and determinist ic drift ( steps 3 and 4 in Figure 4.1) , t hat 
detennine the location of a particle St given its previous location St-l · 

The other part of Equation 4.2 , P (etlst), is measured from sensor information . 
In our ca e thi amoun to examining the ·isual input at t he appropriate loca
tion in the image and estimating the probability that this location contains the 
target. Thi i modelled b · the update PDF phase in the particle filter (step 1 
in Figure 4.1 ). The ensing proce s is de crib ed in more detail in Sect ion 4.2.2 . 
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The system detailed in this chapter uses a particle filter to track a population of 

target hypotheses in state space. A number of cues are calculated from image and 

state inforn1ation and combined to provide evidence strengthening or attenuating 

the belief in each hypothesis. 

Figure 4.2 shows the structure of the system. It consists of two subsystems: a 

particle filter and a cue processor, each of which cycle through their loops once 

per frame. These subsystems interact as shown by the thick arrows in the figure. 

The particle filter passes the current particle locations to the cue processor. The 

cue processor determines the probabilities for the particles and passes these back 

to the particle filter. Each of t hese subsystems is discussed in further detail below. 
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4.2.1 Particle Filter 

A description of particle filtering and the mechanisms driving the process has 
been given in Chapter 2 Section 2.2. In this chapter we apply a particle filter to 
track a target's location in 3D space. To summarise this process Figure 4.3 shows 
a series of schematics of a particle filter tracking a person 's head , where the state 
variables are the 3D position of a person 's head (x, y, z), and its orientation 0 
about the optical axis . Init ially the hypotheses are distributed uniformly about 
the state space. Next , the probability that each hypothesis represents the true 
target location is determined by examining the appropriate image location, and 
thus a probability value is determined for each hypothesis. The hypotheses are 
re-sampled , and subjected to deterministic drift and diffusion. This process is 
repeated for every new image frame in the sequence and results in clustering of 
hypotheses around the most promising target locations. 

The primary appeals of the particle filter approach to localisation and tracking 
are its scalability ( con1putational requirement varies linearly with the number of 
part icles), and its ability to deal with multiple hypotheses and thus more readily 
recover from tracking errors . However, the particle filter was applied here for 
several additional reasons: 

• it pro ·ides an efficient means of searching for a target in a multi-dimensional 
state space. 

• it reduces the search problem to a verification problem, 1. e. 1s a given 
h) pothesis face-like according to the sensor information? 

• it allo-.vs fusion of cues running at different frequencies . 

The last point is especially important for a system operating multiple cues with 
limited computational resources , as it facilitates running some cues slower than 
fran1e rate (with minimal computational expense) and incorporating the result 
from the e cues when they become available. 

If a cue takes n frame to return a result by the time the cue is ready the 
particle will have moved from where they were n frames ago. To facilitate 
uch cue the sy tern keeps a record of every particle s histor over a specified 

number of frames k. The cue value determined for a particle n < k frames 
ago can then be assigned o the children of that particle in the current frame 
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Figure 4.3: Schematics of particle filter tracking a head in (x, y, z, 0) state 
space. ( a) Initial hypotheses are uniformly distributed across state space. 
(b) The probability of each hypothesis being the target is measured from the 
image. (c) These probabilities are assigned to each hypothesis. (d) Over time 
the hypotheses converge to the most "target-like" locations. 
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thus propagating forward the cue 's response to the current fra1ne. Conversely, 

probabilities associated with particles that were not propagated are discarded. 

Figure 4.4 shows a sin1plified example with four particles in a one-di1nensional 

state space , showing the evolution of this population over four tin1e steps. The 

blue and orange particles at si(t) are children of the same coloured particles from 

t - 4, thus a slow cue that takes four fra1nes to compute is calculated for the 

particles si(t- 4) and the values for the blue and orange particles assigned to the 

respective children of these particles in fran1e t , whilst values calculated for the 

green and red particles are discarded. 
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Particles s;(t-4) distributed across state space 

\ \~ 

t 

Particles s;(t), 4 time steps later 

Figure 4.4: Example of particle population evolving over time, showing the 
history. 

4.2.2 Cue Processor 

Whilst the particle filter maintains a record of target hypotheses and propagates 
these through in state space , it is the cue processor that deals with the calculation 
and fusion of cues necessary to effectively measure the probability of each of these 
hypothesis. The cue processor also detern1ines metrics measuring the performance 
of each cue , and the allocation of con1putational resources to i1~dividual cues. 

Each frame the cue processor cycles through the steps illustrated in Figure 4.2 : 

1. Update cues : accesses recently calculated cues. 

2. Fuse data: fuses the results of different cues to estin1ate the overall proba
bility for each hypothesised target state. 

3. Calculate n1etrics: deterrnine the metrics for each cue that quantify how 
well t hat cue performed on the last image- frame. 

4. Allocate resources : based on the anticipated perforrnance of the individual 
cues , allocate computational resources to maximise the quality of informa
t ion obtained. 

The calculate cues cornponent of the system accepts requests for cue measure
ments and handles the requests using only the quantity of computational resources 
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allocated to it by the allocate resources component. 

Calculating and Updating Cues 

Each particle from the particle filter presents a hypothesis target location in state 

space. Using a pinhole camera model and knowledge of the target dimensions, 

the size, location and orientation of each hypothesis is determined in the image, 

as shown in Figure 4.3 (b). 

Each cue returns a set of probabilities {P( e~i) isP)) for j = l ... N} indicating the 

ith active cue's belief in the j th hypothesis , where N is the total number of par

ticles. 

Calculating some cues may take longer than the time available between sequential 

frames. In this case the cue is not available to the update cue component in the 

following frame, and the cue will not be updated until the new value is ready. As 

discussed in Section 4.2.1, these slow cues are accommodated for by the update 

PDF component that is able to propagate their effect through to the probability 

values in the current frame. 

The visual cues applied depend on the target being detected. In the face localisa

tion implementation in Section 4.3 several simple cues are described for detecting 

a person's face in clutter. Section 4.4 describes cues for detecting faces and hands. 

Fusing Cues 

A crucial question when fusing sensor infonnation is how to co111bine the proba

bilities obtained from different sensor modalities. 

We assume the different cues are probabilistically independent. Whilst this as

sumption is not strictly true across all cues it is true in most cases, and it allows 

us to fuse the cues via simple multiplication of probabilities. However , there is 

a problem with zero probability values when fusing cues in this fashion, since 

n1ultiplication with zero will always result in zero. For this reason we re-scale 

and offset the probabilities from zero by an a111ount a E (0, 1). Subsequently, 

the probabilities fro111 the cues are fused to determine the overall belief in the j th 

hypothesis P(etls~j )) at time t as follows 

P(etlsP )) = IT (P(e~i )ls~j ))(l - a)+ a) 
'I, 
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In our syste1n a = 0.1 was used allowing cues with low responses to strongly 
attenuate the combined probability, whilst ensuring that a single cue returning 
zero will not force the combined probability to zero. 

Quantifying Cue Performance 

The performance , or utility, of each active cue is estimated every frame , and used 
to decide the distribution of computational resources across the cues. 

Fusing the results of all available cues is assu1ned to give the best estimate of 
the true PDF P(et lst) across the state space. So the performance of the j th cue 
can be quantified by measuring how closely the cue's PDF P( e~j) 1st) matches 
P(etlst) - This can be done using the relative entropy, or the Kullback-Leibler 
distance (Kull back and Leibler , 1951), an infonnation theoretic measure of how 
accurate an approximation one PDF is to another, given by 

where St are the particle states at time t. Soto and Khosla (2001) used this metric 
to rate the performance of their cues, and Triesh and von der Malsburg (2000) 
considered it , but opted for a simpler ad hoc measure. 

Our system uses this approach and we define the utility of the 'j th cue at time t 
as 

(4 .2) 

Resource Allocation 

A practical vision system has finite computational resources. To make the 1nost 
of these resources it is important to use cues that provide the best quality in
formation for the least computation. Our syst~1n is equipped with a range of 
visual cues. Different cues require varying amounts of computation and perform 
differently in different operational conditions. 

The resource allocation component of our system aims to dynamically allocate 
co1nputational resources to maximise the quality of information obtained per unit 
of computation. Quality of information is measured as the net utility of the cues 
computed, where the utility of each cue is determined from Equation 4.2. 



4.2 Syste1n Design 101 

This leads to a system that is able to adapt to changing operational conditions and 

adjust its use of cues accordingly. An additional advantage of this configuration is 

the flexibility it lends to changes in hardware and software, being able to readily 

accept new cues, sensing modalities, or changes in computational performance. 

The system aims to locate and track targets, and give timely feedback regarding 

the target's location, so it is desirable to have at least some of the cues running 

at fran1e rate. For this reason a certain proportion of the time available for cue 

processing each frame is devoted exclusively to cues running at frame rate. 

Slow cues were pennitted to run once every 2, 4, or 8 frames. However , the longer 

a cue takes to generate information , the less useful that information is in terms 

of locating the target in the current fra1ne. To account for this an exponential 

discount factor d E (0, 1) is introduced that attenuates the utility measure of a 

cue for each frame it is late. That is , the utility u is attenuated to dnu if it is n 

frames late. 

For our system a simple resource allocation process was used that functions as 

follows: 

• Allocate resources to cues running at frame rate: 

Generate all combinations of cues that can be calculated in the time 

allocated for cues running at frame rate. 

Choose the co1nbination with the best overall utility. 

• Allocate resources to cues running below frame rate: 

Calculate the amount of time remaining for computing slow cues in the 

current frame ( taking into account that some resources may already 

be allocated to slow cues that are still being computed from previous 

frames). 

Detennine all con1binations of the rema1n1ng cues over all possible 

slower frame rates such that no combination exceeds the time available 

for the slower cues . 

Calculate the net utility for each of these cue combinations using the 

discount factor to reduce the utility according to how late the cues are. 

Choose the co1nbination of slow cues offering the best overall utility. 
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This process is repeated for each new frame to continually reallocate the available 
resources throughout the system's operation. 

4.3 Localising and Tracking a Head in a Com
plex Environment 

As discussed in Chapter 1, face localisation is the first step to enabling a co1n
puter to see a face. It is also a precursor to numerous human computer interaction 
and surveillance tasks , such as tracking t he head pose, attempt ing face recogni
tion or expression recognit ion, and facial feature detection and tracking. Much 
research has focussed on detecting and tracking faces in both still images and 
image sequences (see Chapter 2 Section 2.2). However , t he search for a robust 
face localising and tracking method is far from over. In t his section we apply the 
vision system developed in this chapter to this problem. Our system is demon
strated localising and tracking a person's head in a cluttered environn1ent, whilst 
dealing with changing head pose , occlusion and changing lighting conditions. 

4. 3 .1 Implementation 

An i1nplementation of the system was developed as an object orieµtated algorithn1 
in Matlab. To simulate realtime resource requirements the co1nputational cost 
for each cue was estimated from the CP U time required . 

Two uncalibrated colour stereo video cameras as were used as sensors. The 
images from these cameras undergo some preprocessing and are then passed to 
the cues where each target location hypothesis is tested by computing all active 
cues. Figure 4.5 shows the sensing process when all cues are active. Both the 
preprocessing and hypothesis testing are discussed below. 

4 .3.2 P reprocessing 

Preprocessing is only performed once for each new set of images , whereas hypoth
esis testing requires one test for every target hypothesis generated by the particle 
filter. The preprocessing required for each frame is governed by the cues that are 
to be computed. These dependencies are illustrated by the network in Figure 4.5. 
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Figure 4.6 shows two colour 320 x 240 stereo images as received by t he system's 

cameras, and t he result ing outputs from preprocessing these images . 

Depth Map 

A dense dept h n1ap is generated from stereo intensity images using t he approach 

of Kagami et al. (2000) (Chapter 2 Section 2.1.3) . The opt imised realt ime imple-

1nentation for our system was provided by Fletcher et al. (2001) . For maximum 

efficiency pre-filtering was be done in software with a Difference of Gaussian fil

ter, and stereo 1natching was performed using Sum of Absolute Differences. The 

result ing dept h map presents t he dept hs as viewed from Camera 2. 

Skin Colour Detection 

A skin colour likelihood i1nage is generated from one channel of the stereo image 

strea1n, so that t he value of each pixel in the skin colour likelihood image is 

indicative of t he probability that t here is skin colour at that location in the 

original image. 

The skin colour likelihood of each pixel 1s determined by reference to a pre-
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Figure 4.6: Preprocessing a colour stereo image pair. (a) Image from camera 
1, (b) Image from camera 2, (c) Intensity image, (d) Radial symmetry image, 
( e) Facial symmetry image, ( f ) Depth map , (g) Skin colour likelihood image, 
(h) Radial symmetry of skin colour likelihood image searching for a radius of 
15 pixels. 
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computed skin colour histogram. The histogram was generated using an extension 

of the method used by Cai and Goshtasby (1999) discussed in Chapter 2, where 

a two-dimensional histogram of skin chrominance was constructed in the CIE ab 

chrominance space. We use a three dimensional skin colour model in the YUV 

space built as follows: we discretise the colour space into 16 x 64 x 64 bins (16 

for Y and 64 for U and V), plot each skin colour sample in the discretised colour 

space, blur these by convolution 'With three dimensional Gaussians , and finally 

normalise the result so the maximum value is unity. 173, 000 skin colour samples 

were used from 346 images of faces of people of varying race captured under 

different lighting condit ions . Note: none of t hese samples were from people later 

tracked by the system. 

Radial Symmetry 

The new radial symmetry operator described in Chapter 3 was used to highlight 

possible eye locations in the original grey-scale image, and possible head locations 

in the skin colour likelihood image. The orientation-based variant of the transform 

is used in both cases . 

vVhen applied to the skin colour likelihood image the t ransform highlights light 

regions that are approximately circular and of a similar diameter to a face , see 

for example Figure 4.6 (h). 

The operator was also applied to the intensity image to highlight sn1all dark 

regions such as the eyes (Figure 4.6 ( d)). This output is then convolved "With 

a blurred annulus to highlight the regions between potential eye pairs. This 

second output is referred to, somewhat arbitrarily, as t he facial symmetry image 

(Figure 4.6 (e)) . 

Each application of the radial symn1etry operator is performed at three different 

radii to detect targets at three ranges of depth av.ray from the camera. 

4.3.3 Hypothesis Testing 

As stated in Section 4.2.2 at t ime t each cue returns a set of probabilities 
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Figure 4. 7: Generic head target and associated search regions. ( a) Generic 
head target with dimensions in meters, (b) Elliptical face region (light) and 
face boundary region (dark), ( c) Search regions for integral projection . . 

indicating the ith active cue's belief in the j th hypothesis ( where N is the total 
number of particles). 

The cues were chosen on the grounds of simplicity and efficiency. All cues use the 
head model dimensions shown in Figure 4. 7( a). In the proceeding descriptions 
the face region and face boundary refer respectively to the light and dark grey 
regions in Figure 4. 7(b). 

Intensity-based Cues 

Eye Location Cue: This cue uses integral projection ( described in Chapter 2) to 
search the regions in Figure 4.7(c) of the intensity image for the darkest bands 
aligned with the lateral axis of the head. A high value is returned if these are 
close to the hypothesised eye locations. 

Radially Symmetric Intensity Cue: The hypothesized depth of the target indi
cates which radius of facial symmetry should be used. The cue is determined as 
the value of the appropriate facial symmetry image at the target location. 

Radially Symmetric Eye Cue: The generic face model in Figure 4. 7 is used to 
extrapolate the hypothesised eye locations for the current target hypothesis . The 
hypothesised depth indicates the appropriate scale of radial symmetry that is best 
suited to eye detection. Using the radial symmetry image at the appropriate scale, 
the value of the cue is determined as the average value of the radial symmetry 
i1nage at the two hypothesised eye locations. 
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Depth-based Cues 

We expect the head to standout as a blob in the depth map. Two cues are applied 

that together aim to detect head-sized blobs of the appropriate depth. 

Head Depth Cue: This cue checks to see if the hypothesised face region is at the 

appropriate depth. It compares the depths in this face region with the hypothe

sised depth of the target, returning a high value when these are in agreement. 

Head Boundary Depth Cue: This cue measures whether the area surrounding 

the hypothesised head region is at a different depth from that of the hypothesis . 

It compares the depths in the face boundary region to the hypothesised target 

depth giving a high value when these are different. 

Colour-based Cues 

Elliptical Skin R egion Cue: This cue indicates the likelihood that t he hypothe

sised target region contains a large proportion of skin-like colour. The value it 

returns is t he average skin likelihood of the pixels within the face region. 

Skin Detector Cue: This cue detects targets that contain an instance of highly 

skin-like colour. It returns 0.5 if any of the pixels sampled in the face region had 

skin likelihood values "\i\ ithin t he op 10% of values in the current skin likelihood 

image, and 0 otherwise. 

Non-skin B oundary Cue: In general it is expected that the facial region will 

exhibit a high proportion of pixels with skin-like colouration, whereas the area 

immediately outside he face will not. This cue aims to capitalise on this scenario 

by returning a high value if there are few skin colour pixels in the face boundary 

region. As such the cue "\i\ ill perform poorly if the target is standing in front of a 

skin-coloured background , but will provide useful information otherwise. 

Radially Symmetric Skin Cue: The target is expected to appear in the skin

likelihood image as an approximately round blob of a kno"\i\rn radius , and the 

h pothesised target depth indicates this radius . The value of the cue is given by 

the value of he skin-based radial symmetry image ( of the appropriate radius) at 

the target location. 
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Figure 4.8: Several frames in tracking sequence. 

4.3.4 Performance 

Face Localisation 

The performance of the system was demonstrated tracking a human face in two 
image sequences. Figure 4.8 shows four frames from the first sequence. The 
blue dots indicate the projected locations of the hypothesised face centres. The 
hypothesis with t he n1aximum likelihood is indicated as a . green ellipse whose 
size and orientation indicate the hypothesised scale and orientation of the target. 
Likewise, t he expected value calculated across all hypotheses is indicated by a 
red ellipse. 

Figure 4.9 shows a sample fra1ne of the second sequence along with particle distri
butions. This sequence contains a person moving around a cluttered environment 
and contains occlusions and lighting variation. Both sequences are included on 
the enclosed CD-RO :rvr in their entirety. 

Cues were dynamically scheduled to run once every 1, 2, 4 or 8 frames according to 
their calculated utility and computational cost . Figure 4.10 shows the cue utility 
and processing delay for a specific cue during a tracking sequence: Tote t hat as 
the cue's utility decreases relative to the other cues (i.e. , from frames 50 to 80) 
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Figure 4.9: Frame in t racking sequence showing ( clockwise) particles in image , 
in 3D space and particle distributions over x, y and z, 0 states with the part icle 
with maximum likelihood indicated by a yellow circle. 

its processing delay grovvs as it is allocated less resources . 
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The sin1plicity of t he cues n1eans no one cue is able to reliably t rack the head in 

3D space, hov,,rever , by fusing n1ult iple cues t he ambiguity in the target location is 

reduced . Furt hern1ore, by adapt ively rescheduling the cues t he system v,,ras able 

to enhance t he t racking perforn1ance possible under a given resource constraint . 

Scheduling resources to different cues according to their performance enables a 

systen1 to aim for the best possible return per unit of computational resource. 

vVithout resource scheduling a system is still const rained to use only the co1npu

tational resources available, yet is ignorant of how to alter computational expen

diture to improve perforn1ance. Resource scheduling ai1ns to increase the amount 

of useful information obtained per unit of computation , and - since there is only 

a finite an1ount of computation available for each image frame - increase the 

amount of useful inforn1ation obtained fron1 each frame. 
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Figure 4. 10: Top: Utility for the elliptical skin region cue (solid) and all other 
cues ( +'s) during a portion of a tracking sequence. Bottom: Cue processing 
delay for the elliptical skin region cue. 

4.4 Tracking Multiple Targets 

90 

The ability of a vision system to track multiple targets is useful in many circum
stances that arise in human computer interaction. It 1nay often be necessary for 
a system to monitor 1nultiple subjects simultaneously, or track different parts of 
the same subject, such as the face and hands . 

This section2 de1nonstrates how our system can be extended to track multiple 
targets by running several particle filters in parallel. An experiment is performed 
shov.ring this multiple particle filter approach successfully tracking a person 's face 
and hands si1nultaneously. 

2The work reported in this section was undertaken whilst visiting Professor Yasuo Kuniyoshi 
and Dr Gordon Cheng at the Humanoid Interaction Laboratory, AIST, Tsukuba, Japan . 



4.4 Tracking Multiple Targets 111 

4.4.1 Multiple Particle Filters 

Multiple particle filters can be used to track multiple targets by assigning one 

particle filter per target, and using inhibitions of returns to prevent different 

particle filters from locking onto the same target. In this case inhibition of returns 

simply amounts to inhibiting the maximum response from each particle filter so 

that subsequent filters do not give the sa111e response. 

Each frame the particle filters are all run sequentially. After each particle filter 

has run the hypothesis for which it returned the highest probability is blanked 

out of the evidence for the subsequent filters , so the target it assigned the highest 

probability beco111es invisible to the other filters. The target remains invisible 

until that filter runs again in the next frame , so it cannot be observed by any 

of the other filters in the meantime. Note that when the evidence is updated 

for the new frame the necessary region is blanked out in the evidence for t he 

new fran1e until the appropriate filter runs again. An example of t his process is 

shown in Figure 4.11 for two particle filters tracking in a one-dimensional state 

space. The first filter is shown with blue particles , the second with red. After the 

particle with t he maximum response is determined for the first filter the evidence 

in t he vicinity of this particle (indicated by the green shading) is set to zero for 

the second filt er , so any particles from the 2nd filter that fall in this region will 

return zero probability. Likewise , after the maximu111 response is determined for 

the second filter the evidence in the vicinity of this maximum is set to zero for 

the next iteration of the first filter , etcetera. 

4.4.2 Experimental Setup 

The purpose of t his experin1entation was to verify t hat multiple particle filters 

could be run in parallel and successfully track different targets . A single colour 

video camera was used to capture an in1age sequence at 30 frames per second, 

the resource allocation was held constant and t hree simple cues were employed 

each fran1e to track t he head and hands of a subj ect . These targets were located 

in 3D , however with only a monocular systen1 the z depth (in the direction of 

the optical axis) was not expected to be accurately detern1ined. Unlike the pre

vious experiment orientation was not considered ( all cues used were rotationally 

sy111metric about t he optical axis). 
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F igure 4.11 : T wo part icle filters t racking separate t arget s in a one-dimensional 
state space, using inhibition of returns to prevent both filters converging on 
the same target . The green shading indicates the inhibited regions around t he 
n1ax11num responses . 

Three particle filters were run in parallel to t rack t he t hree targets of t he face and 
the two hands. Inhibition of returns was used to prevent t he different particle 
filters from locking onto the san1e target. 

Preprocessing 

Three preprocessed in1ages are calculated in this experiment : 

• Facial syrnmetry i1nages ( co1nputed at three different radii) 

• Radial symmetric skin image ( computed at three different radii) 
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• Motion image 

The facial symmetry images and radial-symmetric ~kin images are the same as 

those used for the Face Localisation experiment detailed in Section 4.3. An 

additional motion image is introduced that highlights regions of the image that 

have been changing and are thus likely to contain motion. This is generated using 

the adaptive background method described in Chapter 2 Section 2.1.4. 

Figure 4.12 shows a sample image from a sequences together with the preprocessed 

images generated. The suitability of the motion image for highlighting regions 

of movement is clearly demonstrated by the bright regions indicating where the 

hands have n1oved as the subject draws the bottle of drink towards his mouth. 

The skin radial symmetry is also a very effective cue , and whilst there are regions 

of skin-like colour that do not correspond to hand or face regions (parts of the 

bookshelf and the keyboard for instance) these are not awarded as high a result 

since they do not occur as roundish blobs in the image. 

Hypothesis Testing 

Three simple cues were used to verify the presence of the target: 

• Radially Symmetric Intensity Cue, 

• Radially Symmetric Skin Cue, and 

• Motion Cue 

The Radially Symmetric Intensity Cue and the Radially Symmetric Skin Cue are 

identical to those used in the Face Localisation experiment detailed in Section 4.3 . 

The motion cue simply returns t he value of t he motion in1age at the hypothesised 

target location. 

4.4.3 Results 

The results showed that the multiple particle filters effectively lock onto and track 

separate targets. The simple cues , which were init ially designed to locate faces , 

are also shown to be effective at locating hands. 



114 Face Localisation 

(a) (b) 

(c) (d) 

Figure 4.12: Preprocessing results from single camera. (a) Image captured by 
camera during a sequence, (b) facial symmetry image, ( c) skin radial symmetry 
in1age, and ( d) motion image . 

Figures 4.13 to 4.15 show a nun1ber of snapshots of the system running over a 
sequence. This sequence contains a person sitting at a desk in an office environ
ment. He moves around in his chair, reaches and grasps different iterns , has a 
drink, and examines a CD case . The complete sequence is contained on the CD
ROM enclosed with this thesis. For each frame of the sequence the input image is 
shown in the top left with the particle locations _gf the three filters superimposed 
on the in1age . The particles from the three filters are coloured blue, red and 
yellow so they can be easily differentiated. The hypotheses of each filter with the 
n1aximum likelihoods are indicated as green circles , with the radius of the circle 
indicat ing the hypothesised scale of the target, and likewise the expected value 
for each filter, calculated across all hypotheses, is indicated by a red circle . The 
graph in the top right of each fran1e shows the distribution of particles across the 
state space , again green circles are used to indicate the hypotheses with n1axi-
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mum likelihood and t he expected values indicated with red circles . The t hree 
grey-scale images included for each fr ame show t he preprocessed images for t hat 
frame . r 

In frame 1, (a) , t he particles from all t hree filters are uniformly randomly dis
tributed across t he st ate space (x , y , z). Whilst this is the first frame where t he 
part icle filters are run it is actually the second frame in the sequence so t he 
motion image is able to be calculated using t he previous fr ame as t he decaying 
average in1age . By chance one of the filt ers has correct ly locat ed the left hand of 
t he subject and another has locat ed the chin of t he face . As t he frames proceed 
t he filters rapidly lock onto the hands and face, and proceed to t rack t hese tar
gets t hrough a range of motions as the subj ect reaches around his workspace and 
manipulates several items. 

The filters were only reliably able to locate the target in two of t he three state 
spaced dimensions , with t he hypothesised z depths being very ambiguous. This 
is to be expected from a monocular syst em with only very crude scale dependance 
( in t he form of t he t hree different radii at which radial symmetry was calculated) . 
However , apart from t he ambiguity in t he z direction , t he system t racked t he 
targets very well. On t he few occasions when a target was lost , it was relocated 
just a few fra111es later. 

One part icularly encouraging result was t he syst em 's ability to deal wit h two 
targets in close proximity wit hout confusing t he two. Using inhibition of returns 
allows for targets to approach each ot her closely wit h no danger of t he two filters 
locking onto t he same target . The only disadvantage of t his is t hat if one target 
·were to be so close so as to occlude another , t hen t he occluded target could not 
be detected at all for t he duration of t he occlusion . 

4.5 Summary 

This chapter has presented a new approach to target tracking: a vision system 
t hat adapt ively allocates co111putat ional resources over mult iple cues to robustly 
track a target in 3D . 

Automatically locali ing a face and t racking its mot ion are essential first steps to
,,-ards enabling a computer to "see" t he face . We use a particle filter t o maintain 
n1ult iple hypotheses of t he target location and facilitate cues running at differ-
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ent rates, whilst Bayesian probability theory provides the framework for sensor 

fusion. The uniqueness of our system lies in its ability to schedule resources over 

the suite of available cues. Cues are run frequently or infrequently depending on 

the usefulness of the information they are providing and the amount of compu

tational resource they require. Keeping short time histories of each hypothesis in 

the particle filter enables the system to merge information from cues running at 

different rates. 

The system was shown to track a person in 3D space moving 1n a cluttered 

environment with variable lighting conditions and occlusions of the target. An 

additional example was shown demonstrating how the system can be extended 

to track multiple targets, using multiple particle filters and inhibition of returns 

to prevent different filters from locking onto the same target. 
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Chapter 5 

Face Registration 

F ACE registration involves the detection of facial features and the verification 

of the presence of a face in an image. In the previous chapter we discussed 

locating and tracking the location of a face in an image sequence. Face registration 

is the next step towards enabling a computer to see a face. Once face registration 

is complete the computer has verified whether or not an image region contains 

a face, and if a face is present, the facial features are detected and ready to be 

tracked (face tracking is discussed in Chapter 6). 

In this chapter we present a case study of an automatic face registration system 1 . 

This system is designed to automatically initialise features for a head tracker. It is 

required to operate using a single grey-scale video input. This limits the modality 

of visual cues available, but makes the syste1n suitable to varying hardware and 

operational environments . The subject is assumed to be within 0.5 and lm in 

front of the camera. However, by integrating the face localisation technique 

presented in Chapter 4 it would be feasible to relax this assumption, allowing 

the localisation algorithm to identify the approximate location of the face before 

applying the method describe in this chapter to identify the facial features. 

Section 5.1 of this chapter overviews our methodology for automating the feature 

detection process while drawing comparisons to previous research in the field. In 

Section 5.3 we give a detailed description of our algorithm for detecting facial 

features, the performance of the algorithm is demonstrated in Section 5.4, and 

Section 5.5 closes with a summary of the key points. 

1 This chapter reports the findings of commercial research undertaken in a consulting capacity 

for Seeing Machines. The research is included in this thesis with the consent of Seeing Machines 

on the condition that this chapter be embargoed for twelve months after submission of the thesis. 
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5.1 Automating the Detection of Features 

Automatic feature detection for tracking is essential for face tracking systen1s to 
be able to cope with new users without prior knowledge of the user 's appearance. 
The key problem with facial feature detection to date is robustness. A system is 
required that is robust to the wide variety of human appearances and the varying 
lighting conditions of operational environments , and that operates in realtime. 

Many recent face detection systems rely heavily on skin colour to locate the face 
(Sobottka and Pitas , 1996b; Cai and Goshtasby, 1999; Kim and Kini , 2000). They 
are subsequently highly sensitive to lighting conditions, and unable to operate at 
night using monochrome images from an infrared camera. We have developed a 
system that requires only monocular monochrome images, giving both maximum 
robustness to lighting changes and t he versatility to function with a wide range 
of image-capturing devices. 

Our system requires the user to blink to initiate the feature detection process. 
Blink detection has been shown to be a useful cue for locating the eyes in video 
sequences (Crowley and Berard, 1997; Bala et al., 1997). Consecutive frames are 
differenced to detennine regions of motion , and two blink-like 1notion regions are 
located and labelled. Previous implementations have simplified the proble1n by 
using skin colour detection to identify the face region before looking for blinks 
( stereo depth inforn1ation has also been used (Bala et al., 1997)) , however, the 
monocular grey scale input to our system restricts us from using these additional 
modalities. Previous syste1ns have not considered whether the detected eyes 
are open or closed - this is i1nportant for our system since we wish to detect 
appropriate features for tracking a subject whose eyes will be open the majority 
of the time. 

The radial symmetry detection algorithm presented in Chapter 3 provides an 
alternate n1eans to obtain estimates of eye location independently of motion. 
Hov1ever, given that n1otion information is available, blink detection gives a robust 
n1eans of utilising this additional sensing rnodality and ensuring with greater 
certainty that the eyes are correctly located. The radial sy1nmetry operator is 
subsequently used to generate a mask of the regions containing facial features. 

Once a potential face region is found , and the facial feature mask constructed, our 
systen1 uses a novel local co1nparison operator to highlight features of interest. 
This operator employs a si1nilar principle to the rank transform introduced by 
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Zabih and Woodfill (1994) for the purpose of pre-processing images before calcu

lating stereo correspondence. As discussed in Chapter 2 Section 2.1.3, Zabih and 

Woodfill's rank transform was calculated for a pixel p by counting the number of 

pixels in a local region centred on p whose intensities were darker than the inten

sity at p. The result was an increase in local texture in featureless areas of the 

i1nage. The extension of this principle presented in this chapter has quite a dif

ferent effect, and highlights facial features based on their comparative brightness 

when compared to other parts of the face. 

Integral projection plays a key role in the localisation of potential feature candi

dates in our system. Integral projection and variations thereof have been used to 

detect facial features in a number of applications(Yang et al., 1998a; Katahara 

and Aoki, 1999; Chuang et al., 2000). The main problems are seg1nenting the 

region of interest from the image to avoid background interference, and ensur

ing that the desired features stand out to the exclusion of everything else. Our 

system addresses these problems by extracting the face region based on blink loca

tions, and enhancing the features in the candidate face region, before performing 

integral projection. 

5.2 Target Specification 

We are interested in detecting faces and facial features. In Chapter 2 we consid

ered various properties of the human face with particular emphasis on character

istics that could be detected with computer vision and used to locate faces. In 

this section we develop a 1nodel describing the relative locations of facial features 

in a frontal view of the face. The 1nodel is based on the average face and facial 

dimensions presented in Chapter 2. This model will be applied later in the chap

ter, together with some of the feature detection methods discussed in Chapter 2, 

to detect facial features in a monocular grey scale image sequence. 

Figure 5.1 shows an image of the average face (refer to Chapter 2) together with 

the mean locations for facial features and their standard deviations (note these 

results were averaged over the male and female populations reported in Table 2.1). 

Using these di1nensions we can develop a set of rules describing the appropriate 

location of facial features in a front-on view of a subject. The measurements 

available are measured fro1n the top of the head. However , the deviation of feature 
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Figure 5.1: Average face and facial dimensions in millimeters, t he standard de
viation is shown beneath each measurement . The shaded regions show feat ure 
locations wit hin two standard deviat ions of t he mean. 

locations from their mean values will be correlated between different features, i. e. 
for larger and smaller headed people t he distances of facial features from the top 
of the head v.rill increase and decrease respectively. Whilst t his will by no means 
be an exact correlation it is highly unlikely t hat if t he mouth is two standard 
deviations above the mean ( at the top of the orange region in Figures 5.1 and 
5.2) that the eye v. ill be lower than t he mean eye location . Thus , if we assume 
the eyes are located on the mean eye line shown in Figure 5.1 then the distance 
fro1n the eyes to the mouth hould be at least 0.67d, ·where dis the interpupillary 
distance. Using the san1e reasoning. and the knowledge that the nose must lie 
bet,Yeen the eyes and the mouth , we in ist that the nose must appear no higher 
than one third of the ·way from the eye to the mouth . We also require that the 
no e not be \\-ithin one SL'<th of this distance from the mouth as it is not possible 
for the nose to appear this close to the mouth . T he likely width of the mouth 
can al o be e timated from the interpupillary distance as approximately 0.8d. 
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Figure 5.2: Average face showing placement of the mouth and nose. The 
shaded regions show feature locations within two standard deviations of the 
mean. 
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However, mouth width can vary significantly with different facial expressions 

so the mouth corners are only assumed to lie within ±0.3d (approxin1ately 3 

standard deviations) of these locations. These requirements are illustrated in 

Figure 5.2. 

The purpose of our systen1 is to automatically locate the face and facial features 

for a face tracking application. We can assume the subject is seated in front of 

the camera with the camera looking slightly upwards at his or her face. Since our 

algorithm is designed to work on a static n1onocular system there is no means of 

directly measuring the depth and establishing the scale of objects in the in1age. 

For this reason we provide the algorithn1 with a scaling factor indicating the 

approxi1nate radius of the subject 's iris in the images. This radius value , referred 

to as r , allows the systen1 to search for faces of the correct size in the input 

in1ages. It is a simple matter to adjust r if the set up is changed , for exarnple , by 

using different cameras , or requiring the subject to sit a different distance away 

fro1n the can1era. 

The syste1ns can be extended to use stereo ca1neras thereby eli1ninating the need 

to provide the scaling factor r. This could be achieved by using stereo depth 
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Figure 5.3: Structure of face-finding algorithm. 

infonnation to determine the distance of the subject from the camera, which in 
turn enables us to determine the size the subject's iris will appear in the i111age, 
hence providing the constant r. 

5.3 Description of the System 

This section describes our algorithm for locating the facial features in a sequence 
of video images. Figure 5.3 shows the structure of the algorithm. Pairs of points 
exhibiting blink-like motion are detected , and fron1 these points a candidate face 
region is determined and extracted fron1 the image sequence. The features within 
this region are enhanced and classified as potential facial features. The topology of 
t he resulting features is then examined to determine if a set of valid face features 
has been found. If at any point during this process it beco111es evident that 
the features do not represent a face , then the candidate face region is discarded 
and the system returns to looking for regions of blink-like moti,on in subsequent 
frames. The process is repeated until a suitable set of facial features is detected. 

The algorithm requires the scaling parameter r ( the expected iris radius in pixels) 
to define the scale at which faces are detected. It can cope with some variation in 
scale so only a rough estimate of r is required, and it is not necessary to update 
r for different subjects . Updating r is only necessary when images of a different 
resolution are used , or if subjects are to be detected at significantly different 
ranges away from the ca111era. 

5.3.1 Detecting Blink-like Motion 

The average adult blinks ten to fifteen times a minute, or once every four to 
six seconds (Stern, 2002). Blinking is a rapid and distinctive motion occurring 
at both eye locations simultaneously. When eyes blink the transition from open 
to closed eye is typically very fast , and in an image sequence captured at 30Hz 



5.3 Description of the System 127 

(NTSC video frame rate) generally occurs in the time between one frame and 

the next . Therefore , by examining the change in consecutive frames in an image 

sequence, potential blink locations can be identified by looking for eye-sized region 

pairs where the image has changed since the last frame. 

Detecting blink locations is a simple and robust method of eye detection , and is 

a suitable cue to use to initiate face detection. Apart from the natural regularity 

of blinks , it is not unreasonable to request a subject to blink to commence t he 

face detection process , or more subtly, blinks can be induced by manipulating a 

display in front of the subject. The only minor issue with requesting a subject 

to blink is that when subjects blink intentionally the transition from open to 

closed eyes tends to be slower and more deliberate than for involuntary blinks, 

thus voluntary blinks are less robustly detected by image differencing consecutive 

fran1es . For the purpose of the algorithn1 presented here the subject will be 

assumed to be blinking involuntarily and hence making the transition fron1 open 

to closed eyes in a single frame. 

The process for detecting blink-like motion is outlined in Figure 5.4. For each 

fra1ne a binary motion image M t is constructed identifying regions of significant 

n1otion. The motion image is calculated by first taking the absolute difference 

between the current and previous frames , low-pass filtering this via convolution 

with a Gaussian , and then applying a threshold. A record of this motion is 

stored in a motion history image H t, each element of which indicates how long 

ago n1otion was seen at that point of the image. 

Once we have obtained the binary motion image M t we can ident ify separate 

regions of 1notion using a sequent ial scanning algorithm (Horn , 1986 , e.g.) to 

uniquely label all 8-connected2 regions of motion. The height , width and centre 

of n1ass of each of these regions is t hen determined . 

We prefer to locate open eyes , so we try and ident ify only the initiation of a 

blink, and then look for t he eyes in t he frame 0.1 seconds before the motion was 

detected. To avoid detecting the final (re-opening) motion of a blink, we require 

there to have been no moven1ent at t he blink points between 0.1 and 0.3 seconds 

prior to the motion being detected (since blink durations are typically less then 

0.3 seconds) . 

The n1otion history in1age Ht_ 3 is used to verify this . This image is shown on 

2 A pixel is 8-connected to all 8 pixels in its immediate neighbourhood. 
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the left hand side of Figure 5.4, and the value at each pixel indicates how many 

frames have elapsed since an Mt image registered motion at that pixel location. 

We are only interested in motion between 0.1 and 0.3 seconds ago, so the range 

of values of the motion history image is 0 to 6 with 6 indicating that no motion 

has been observed for 6 frames (0.2 seconds). The motion history image in the 

figure is predominantly white, indicating that most locations have not registered 

motion for six or more frames. We check the value of this motion history image 

Ht_ 3 at locations corresponding to the centres of mass of each of the regions of 

motion in the current frame, and discard those regions that do not have a motion 

history value of 6, i.e., we discard those that have exhibited motion in the last 

0.1 to 0.3 seconds. 

We then consider the sizes of the remaining regions and check that these are not 

too large or small to correspond to blink regions. We use fairly generous criterion 

with the aim of minimizing the number of false rejections at the expense of more 

false positives. We require the width of the blink region to lie within 0.5r and 6r, 

the height to be less than 6r, and the width to be greater than the height (here 

r is the radius of the iris). 

A set of region pairs is constructed containing every pair of regions that is an 

appropriate distance apart to be an eye pair, and whose centres of gravity are 

joined by a line less than 30 degrees to the horizontal (this is more than sufficient 

to accommodate for natural inclination of the head from the upright position). 

The pair whose regions have the most similar heights, widths and areas is selected 

as exhibiting the most "blink-like" motion, and the centers of the two areas of 

blink-like motion are called blink points. 

If a valid pair of blink points is found, their locations are used to define the face 

region that is extracted ( from the image frame 0 .1 seconds before the motion was 

detected) in the next stage of the algorithm. 

5.3.2 Extraction of Face Candidate Region 

The possible eye locations estimated by the blink detection step described above 

are used to specify and extract a potential face region for further processing. This 

region is extracted from the image frame 0 .1 seconds before the blink-like motion 

was detected. The reason we look at the frame 0.1 seconds prior to the blink is 

that we wish to detect open eyes , and the eyes will be open 0 .1 seconds prior to 
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Figure 5.5 : Process for extracting potential face region fro_m image buffer . 

the initiation of a blink. 

The process of extracting the potential face region is illustrated in Figure 5.5 . 
. A four-frame buffer is n1aintained in order to e~tract the face region O .1 seconds 
( four frames ) prior to the detection of the blink. Once the blink point have 
been located in thi earlier frame . it i rotated to align the blink point with 
the horizontal (bi-linear interpolation i used to calculate the pixel intensitie of 
the rotated image). Thi normali e the orientation of the face candidate to an 
upright po ition .. A rectangular face region i then defined as ho"-1n in Figure 5.6. 
The din1en ion of thi region are cho en o it v.·ill include all the facial features ) 
and it ize i caled by the interpupillary di tance betv.·een the centre of he 
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Figure 5.6: Face region defined in terms of d, the interpupillary distance be
tween the centres of the blink points. -Note how this region encompasses all 
facial features of the average face. 
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blink points. This region is then cropped from the rotated image and beco1nes 

the face candidate region that is passed to the next phase of the algorithm for 

feature enhancement. 

5.3.3 Enhancement of Features 

It is now necessary to enhance the features so they stand out more distinctly 

from the background to make them more easily detected via integral projection. 

The process for enhancing features is outlined in Figure 5. 7. The face region 

in Figure 5.8 will be used as an example to illustrate the different steps of the 

procedure. 

Firstly a face mask is constructed that contains all the facial features and as 

little of the rest of the face as possible. This is done using local radial symmetry. 

Radial sy1nmetry peaks in the vicinity of facial features , and has been used for 

facial feature detection in several applications (Reisfeld and Yeshurun , 1998; Lin 

and Lin , 1996; Sun et al. , 1998). We estimate local radial symmetry at each point 

in the face region based on gradient orientation , using the fast radial symmetry 

transform , defined in Chapter 3. The result is shown in Figure 5.8. Orientation-
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Figure 5. 7: Process for enhancing features in face region. 

based radial symmetry is used due to its greater robustness to varying lighting 
condit ions. Whilst this transform can accurately pinpoint features in many in
stances we do not wish to rely on this one mechanism alone for locating features . 
Therefore we blur t he result with a horizontally opposed rectangular Gaussian 
mask3 in order to spread the peaks of radial symmetry over the whole of the 
(predominantly horizontal) features , and then threshold to form a binary mask. 
The blurred orientation symmetry will not have strong distinctive maxima, and 
experimentation on numerous images has shown that applying a threshold of 30% 
of t he maximum \ alue "'rill admi all regions that have exhibited sufficient radial 
symme ry to be features . The resulting mask will cover the eyes, nose and mouth 
corners but may miss the centre of the mout h due to its lack of local radial sym
metry. In order to ensure t he whole mouth is included we augment the mask 
V\1ith an additional 0.5d x d rectangle centred d below t he eyes , where d is the 
interpupillary distance between the blink points. This gives t he final face mask 
sho"\t\1n in Figure 5.8 . 

\ Ve then re-scale the intensity of he face region in order to maximise the dynamic 
range of features V\1ithin the area defined by the face mask , and attenuate the 
relatiYe t rength of extreme intensity values outside this region. Vve determine 
the n1aximum and minirnum intensity values within the area of the face region 
that pa es through the face mask: and use these as upper and lower bounds to 
re- cale all intensitie in the face region to the interval [O ) ]. Any intensit ies below 
or abo,·e the e bound are truncated to O and 1 respectively (since the bounds are 
the maximum and minimum intensities in the face mask region this attenuation 
"--ill only occur at point out ide the face 1na k region). 

Feature "-·ithin the inten ity re-scaled image are then enhanced by the applica
tion of a no,·el local comparison operator. The purpose of the local comparison 

3The Gau ian i r --L 1 high. 3r __i_ 1 "'·ide "'-ith tandard de,iation of 3r and r in the x and 
y direction re pecti,-ely. where r is the radius of the iri . 
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Enhanced 
image 

operator is to highlight points that are darker than specified neighbouring re

gions. The value of the operator is calculated at each pixel p by comparing the 

intensity of that pixel with the intensities of each member of a set of pixels S (p) 

whose locations are defined relative to p. The operator quantifies the proportion 

of these pixels whose intensities are greater than I(p) + k, where I(p) is the in

tensity at location p and k is a constant called the minimum difference threshold. 

That is , for a specified set of pixels S (p) the local comparison operator returns 

the proportion of pixels in S(p) that are darker than the intensity at p by an 

amount k or more. 

We formally define the local con1parison operator as 

L ( ) _ ll{q: (q E S(p)) n (I(q) > I(p) + k)}II 
S,k p - IIS(p)II 

Here 11---11 indicates cardinality, that is , the number of elements in a set. 

To enhance possible facial features in the face region we use the sets of points 

Si (P) illustrated in Figure 5.9. 

The rnotivation behind the choice of this set of regions is to highlight points that 

are: 

• darker than most of the pixels in the neighbouring region S4 below, 

• darker than 111ost of the pixels in a region S1 located above and slightly 

further away, and 
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Figure 5.9: Regions Si used by Li for enhancing facial features , r is the iris 
radius in pixels . 

• significantly darker than most of the pixels in a region either immediately 
to t he left S2 or righ S3 , or bot h. 

Accordingl} : for regions S1 and S4 v\ e set t he minimum differ~nce t hreshold to 
just 0.05 in order to count virtuall} all pixels t hat are darker t han p , whereas 
for regions S2 and S3 v\-e set this -alue to 0.25 so as to only count pixels that 
are significantly darker than p. v\ hen con t ructing t he enhanced image from the 
result of the operator L1...4 ·we combined them to construct an image with a 
light background and dark feature . \Ve vvi hour re ult to indicate pixels that are 
darker than the majority of pixels in t he region S1 and S4 above and belov. , and 
tho e to the side in either S2 . S3 . or both. Fir tly we generate an image L sides 
indicating pL"'\:el that are darker than tho e in one or both of the side regions 

L sides(P) = (1 - 0.5L2(p))( l - 0.5L3(p)) . 

\Ye then combine thi \\-ith the re ult of the local compari on operators for the 
region abo\-e and belo\\- to determine the enhanced image 

Ienhanced(P) = (1- 0.9L1(p ))( l - 0.9L4(p ))( l - 0.9L ides(p)), 
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Figure 5.10: Procedure for locating facial features . 
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An example of t he resulting enhanced image is shown in Figure 5.8. Note how 

t he facial features are n1ore clearly defined t han in t he re-scaled image and are 

well suited to detection via integral proj ection. 

5.3.4 Classifying Facial Features 

Integral projection (Kanade, 1973) , described in Chapter 2, fonns the basis of 

the feature detection phase. Integral projection is useful for detecting features 

whose intensit ies stand out from t he background and have a strong horizontal or 

vertical aspect . Note t hat in t he procedure described here we take the integral 

projection of the negative of t he enhanced image so t hat t he feat ures stand out as 

111axi111a. T he raw integral projections are smoothed wit h a Gaussian to remove 

high frequency noise . We define a 1 x (2r + 1) Gaussian vector g1 with standard 

deviation r / 3 which we use for this sn1oothing. 

F igure 5.10 outlines t he feat ure detection process . We take the vertical integral 

project ion of t he negative of I enhanced · T he integral projection is then smoothed 

by convolut ion wit h t he Gaussian vector g1 , and t he five highest local maxima 

are ident ified as potent ial feat ure rows . Figure 5. 11 illustrates the location of the 
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( a) Enhanced image (b) Vertical integral projection ( c) Smoothed integral projection 

Figure 5.11: Process for locating feature rows using integral project ion. The 
feature rows are indicated by the coloured lines. 

... .. .i l 

Figure 5.12: Process for locating feature columns within each feature row us
ing integral proj ection. The feature columns are indicated by the coloured 
lines . The top row shows sections of t he enhanced image on which the inte
gral projection is p erformed , t he middle row shows the result of the integral 
projection , and the bottom row shows the integral proj ection after smoothing. 

feature rows from an example enhanced i1nage . 

Each feature rov,r is then processed as shown in Figure 5.12. Horizontal sections 
5r high are taken across t he face region centre-a at each potential feature row, 
and the vertical integral projection of t he negative of these horizontal sections 
is calculated. This is smoothed with g1 j and t he four highest local maxima are 
taken as potential feature columns within that feature row. Thus we have a set 
of potential feature rows each ·with a set of potential feature columns. 

l'\ ext we attempt to locate the eyes , mouth , no trils and eyebrows sequentially. 
If the eyes or mouth are not found ; the face region is declared invalid and no face 
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is detected in this frame. 

Each feature location process follows the procedure outlined in the inset in Fig

ure 5.10. Firstly the relevant feature row is determined, local search regions are 

extracted for the left and right features, these are re-scaled to optimise the inten

sity distribution, and then a feature detection algorithm specific to the feature 

type is employed. The only variation on this is the procedure for eyebrow detec

tion where a feature row is not identified prior to locating the eyebrows. Instead 

the eye locations are used to determine where the eyebrows are expected to be 

found. 

Locating the Eyes 

We know the eyes will be located in the vicinity of the blink points, so we insist 

that the eye feature row not be more than 2r above or below the blink points, 

and that it must have potential feature columns within 2r to the left or right of 

the blink points. If no feature row satisfies the criteria than the algorithm stops 

examining this frame, not having found a face. 

Shadows, creases, makeup or low eyebrows in the region immediately above each 

eye can cause minima in the integral projections used to place feature rows and 

columns. However, the cheek area below the eyes is typically devoid of features. 

Therefore , if there is more than one feature row with appropriate feature columns 

within 2r of the blink points we chose the row closest to the bottom of the image 

as the eye feature row. 

If a satisfactory eye feature row is found then a region about this row is extracted 

within which to locate potential eye candidates. This search region is defined as 

the local horizontal section 5r high centered about the eye feature row, and the 

left and right halves of this region are examined to locate the right and left eyes 

respectively. 

Figure 5.13 shows a closeup view of an eye , showing how the pupil and the iris 

appear as a dark blob with the lighter regions of the sclera to the left and right. 

Correspondingly our algorithm looks for both a dark iris/ pupil blob with light 

sclera regions on either side. 

Figure 5.14 shows the method used to locate potential positions for each eye. In

fonnation from the local intensity re-scaled image and the local feature-enhanced 
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Figure 5.13: Closeup view of a human eye. 
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Figure 5.14: Process for locating eyes. 
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i111age are used. Only points that pass through tlie local face mask are considered 
as possible eye locations, so the local comparison operators and convolutions are 
only calculated for these points. 

The sclera is highlighted in the re-scaled local image by applying a local compar
ison operator. The operator is applied only at points that pass through the face 
mask , and u es two r x 2r regions centered O. 75r to either side of the pixel of 
interest. Figure 5. 15 shows one such region used for highlighting the right sclera. 
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2r 
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Figure 5.15: Region used by local comparison operator for highlighting right 
sclera, r is the iris radius. 
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The resulting image is convolved with a ring template to highlight points that are 

surrounded by lighter points. This ring template is designed to highlight regions 

that have sclera-like light regions on the periphery of a iris-size circle, accordingly 

the ring template chosen is a blurred ring of radius r. 

The dark blob of the iris is searched for in the feature enhanced image by convo

lution with a Gaussian kernel with s = r /2. 

The results of both the eye-white and iris-blob detectors are normalised so their 

maxirnum values are unity. The iris location is then identified as the maxin1um 

point in the sum of these two images. 

Once both eyes have been found it is verified that the interpupillary distance is 

realistic , and lies within the range determined in Section 5.2. Also , since the face 

region was rotated so that the blink points were aligned with the horizontal we 

expect the eyes to ren1ain closely aligned to the horizontal , furthermore if the 

line of the prospective eye locations deviates significantly from the horizontal it 

is indicative that the n1oven1ents detected were not in fact blinks , therefore it 

is unlikely that the eyes have been correctly found. To permit some deviation 

between eye locations and the original blink locations we allow an error of up 

to 10 degrees between the line joining the eyes and the line joining the blink 

locations. If these conditions hold the eye locations are accepted and algorithn1 

moves on to locating the mouth. 
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Figure 5.16: Process for locating mouth corner. 

Locating the Mouth 

The mouth is a dominant feature in the face. It stands out strongly in the 
enhanced facial image , and with its long, predominately horizontal, shape we 
expect its location to correspond to a high value in the vertical integral projection 
of the enhanced image . Subsequently, the mouth row is identified as the feature 
row located beneath the eyes with the highest integral proj ection. 

From the facial n1odel developed in Section 5.2 we know that the mouth row must 
be at least 0.67d below the eye row for the face to be considered valid , where d 
is the interpupillary distance. If the mouth row does not meet this criteria then 
no face is detected in the current fran1e. 

If a valid mouth row is found we then proceed to look for the mouth corners. 
Fron1 the model in Section 5.2 we know the mean mout h corner locations are 
centred about the vertical axis of the face and -s light ly closer together than the 
eyes (0 . l d closer towards the centre of the face), furthermore the lateral position 
of the mouth corners is within 0.3d of t he mean. Thus we search for mouth corners 
in 5r x 0.6d regions centered on t he mouth row, at the mean lateral mouth corner 
locat ion ( the height of this region is not critical so long as it is large enough to 
accon1n1odate some variation of the mout h corners from the mouth row). 

The process for detecting a mouth corner is shown in Figure 5. 16 . A mouth corner 
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Figure 5.17: Regions for the three local comparison operators used to enhance 
the appearance of the mouth. 
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will appear darker than the skin above, below and to the side of the mouth, and 

this can be utilised by applying a local comparison operator to highlight potential 

n1outh edges. First each region is re-scaled so its intensity is spread over [O , 1]. 

Local comparison operators are used to highlight regions that have lighter regions 

above and below them, and towards the outside of the face, giving Labove , Lbelow 

and Lside · The sets used to calculate the local comparisons are one-dimensional 

lines of points extending 0.05d in the direction of interest away fron1 the point 

under consideration as illustrated in Figure 5.17. 

The output of the local comparison operators Labove and Lbelow are combined 

Cab(P) = (1 - Labove(P))(l - Lbelow(P)) 

The result is binarized into positive and zero elen1ents , and connected-con1ponent 

analysis used to identify the largest non-zero region. This then forms a mask 

Mmouth within which the 1nouth is assun1ed to lie. 

A cue for the mouth location Cmouth is now determined by con1bining the results 

of the local comparison operators , and masking. First the results from all three 

local con1parison operators are combined to fonn Cmouth , 

C mouth(P) = (1- Labove(P))(l - Lbelow(P))(l - L side(P))) 

This is then n1asked with Mmouth and binarized by converting all positive elements 

to 1. The edge of the mouth is identified as the non-zero column furthest from 

the centre of the face. The height of the n1outh corners is detern1ined as the 

height at which Cmouth takes its maximum value in this column. 
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Figure 5.18: Sequence of integral projections used to locate potential nostril 
locations. 

Locating the Nostrils 

The nose rovv is chosen as the most prominent feature row that lies between the 
eyes and the n1outh. In accordance with the face model presented in Section 5.2 , 
if the nose row is higher than two thirds of the way between the n1outh and eyes 
then the face is considered invalid , and no further effort is spent attempting to 
locate features. 
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Figure 5.19: Elimination of non-plausible nostril pairs. (Note the centre image 
has been stretched vertically for clarity.) 
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If the row height is appropriate we proceed and locate a number of possible nostril 

locations. The process is illustrated in Figure 5.18. A narrow region 2r high 

and centred about the nose row is extracted from the feature enhanced image. 

Maxin1a in the vertical integral projection ( of the negative of this narrow region) 

are used to locate the x coordinates of potential nostril locations. Then sn1all 

2r x r regions are extracted around each potential nostril location and maxima 

in the horizontal integral projection ( of the negative of these regions) is used to 

determine the y coordinate of that potential nostril location. 

This process gives a number of possible nostril locations. As illustrated in Fig

ure 5.19 consider each possible pair of locations to find plausible pairs that are: 

• on both sides of the mouth centre, 

• approximately the same height ( within r) 

• close together ( not more than O .4d apart) , and 

• not too close together ( at least 0.2d apart). 

If there is more than one plausible pair we select the pair whose horizontal loca

tions are 111ost sy1nn1etrically spaced about the 1nouth centre line. 
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The eyebrows are not considered essent ial features for face detection - indeed 
some people have very faint eyebrows or none at all - so regardless of whether 
or not eyebrows are found the face is still considered valid , and the verification 
process proceeds. However, for t he majority of subj ects it is a simple matter to 
locate the eyebrows by looking for a t ransition from light to dark above the eyes 
at the base of the forehead. 

We already know the approximate location of the eyebrows since the eye locations 
have been determined. So we proceed to search for the eyebrows in small regions 
immediately above each eye. The process for locat ing the eyebrows is shown 
in Figure 5.20. The eyebrows are searched for in the re-scaled face image in 
4r x 2r regions centred 4r above each eye. The intensity of these regions are 
re-scaled so they range within [O)], and then the vertical gradient is determined 
via convolution \,,ith 

-
k = [-1 , -1 , 0, 1, 1]1 

Vertical integral projection is used to identify the peak in the gradient which 
ignifie a transition from light to dark moving downwards from the forehead 

to\\;ards the eye . This peak is assumed to correspond to the eyebrow, thus the 
y-coordinate of the eyebrovv is found the x-coordinate is taken to be the same as 
for the eye. 
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The procedure is performed for both eyebrows and the resulting eyebrow locations 

are checked to ensure that their heights do not differ by more than r (the radius of 

the iris). If heights differ by more than this amount the eyebrows are considered 

too crooked, and they are declared invalid. 

5.3.5 Verify Face Topology 

The human face has a specific arrangement of features that is universal across all 

people. We can verify that the features found by our algorithm are arranged in 

a face-like configuration by checking that they satisfy the following rules: 

• Relative horizontal positioning: 

- Nostrils must not be centred more than 0.5d from the eye centre line. 

- The mouth must not be centred more than 0.15d from the eye centre 

line. 

• Relative vertical positioning: 

Nose must be located below one third and above five sixths of the way 

from the eyes to the mouth. 

• Orientation of pairs: 

- The lines joining left and right pairs of features ( eg. left and right 

eyes) must be within 15 degrees of the horizontal. 

If the features fail to satisfy these criteria then it is highly unlikely that the 

features represent a face , so the face is declared invalid and no face is found in 

the current frame. 

5.3.6 Checking Similarity of Feature Pairs 

The natural bilateral synnnetry of the human face means that all of the feature 

pairs located by this system should be approximately mirror images of each other. 

Figure 5.21 shows a face region with the detected features marked with crosses. 

Small 2r x 2r regions are marked around the features on the left hand side of 

the figure , for each feature this regions is flipped about the vertical axis and 
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Figure 5.21: T he similarity of symmetrically opposite features is verified. 

correlated across the 2. 5r x 2. 5r region surrounding t he ot her half of t he feature 
pair (using normalised cross correlation) to measure t he symmetric similarity of 
the feature pair . The figure illustrates t his procedure for t he mout h feature pair. 
We require the mean similarity of all feature pairs to be greater t han 0. 5 for a set 
of features to register as a valid face. 

5.4 Performance of System 

5 .4.1 Implementation 

The system was implemented and tested in M_atlab 5.3 on a standard 600MHz 
Pentiun1 III. In order to verify the suitability of the algorithm for realtime ap
plications the :viatlab flop counter was used to estimate the average number of 
floating point operations required per frame. The tests were run on sequences of 
240 x 360 grey scale images . The average computational requirement per frame 
varies depending on how far the algorithm progresses towards verifying the pres
ence of a face. Table 5.1 shows the average number of megaflops required by 
different stages of the algorithm. 
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Table 5.1: Estimated Computations per Frame 
Stage Mean computation 

( megaflops) 
Blink detection 6.0' 
Extract and enhance 6.0 
face candidate 
Classify features 1.6 

(a) frame 7 (b) frame 32 ( c) frame 89 

(d) frame 99 ( e) frame 102 (f) frame 99 

Figure 5.22: Snapshots of a sequence. Regions of motion are indicated in 
yellow and blink-like motion is indicated in orange. 

5.4.2 Detection Performance 
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Figure 5.22 shows a number of snapshots of the system in operation. The Figure 

shows spurious blink-like 1notion (a) where movement of the eyebrows is incor

rectly detected as a blink, however , a face is not detected for these false eye 

locations since the facial topology is incorrect. In this same frame movement of 

the eyes is correctly classified as non-blink-like motion since the motion region 

over the subject 's left eye is too s1nall. In frame 32 (b) the subject turns her head 

and the system does not 1nistake this gross head motion as blink-like. Likewise 

the background motion in frame 89 ( c) does not distract the system. A blink is 

detected in frame 102 ( e) and so a face is searched for in the frame 0 .1 seconds 

prior to the blink ( d). Features are detected and the facial topology is verified 
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Figure 5.23: Results of the system on a range of subjects. The first column 
shows the raw image where eye motion is detected, the second column show the 
motion regions, the third column shows the enhanced facial region extracted, 
and the forth column shows the features detected. 

giving the final feature locations (f). 

The system was tested on a 16 people with a wide range of facial appearances 
and skin tones , the in1age sequences were captured both indoors and outdoors 
and included several subjects wearing eye glasses. Correct facial feature locations 
were determined in all but one case where the system failed to find the face. 
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Figure 5.24: Exan1ples of the Seeing Machines implementation of the system 
in operation, courtesy of Seeing Machines. 
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There were no false detects. Figure 5.23 shows several examples of the system 

successfully detecting faces in video sequences. The complete sequences , together 

with several additional exan1ples , are contained on the CD-ROM enclosed in this 

thesis. 

The robustness of the system comes from its strong ability to reject false n1atches. 

Whilst this is achieved at the cost of rejecting some true matches , since the system 

is operating on a continuous and on-going image sequence, the occasional false 

rejections can be tolerated. False rejections do nothing to disturb the operation 

of the system, and searching will continue as the systern attempts to locate the 

target in subsequent frarnes. 

5.4.3 Seeing Machines System 

The system has subsequently been in1plernented in C++ by Seeing Machines to 

run in realtime. The performance of this realtin1e syste1n clearly demonstrates 

the robustness of the method , it has been tested on over 250 subjects and has 
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demonstrated a 97% success rate for detecting faces and facial features. Fig
ure 5.24 shows several snapshots of the system in operation. 

5.5 Summary 

This chapter has described a face registration system capable of verifying the pres
ence of a face and performing automatic detection of facial features. The system 
uses motion information to detect blinks, indicating possible eye locations and an 
associated face candidate. Filtering methods are used to enhance the appearance 
of potential facial features in the face candidate region and integral projection 
is used to estimate the individual feature locations. The system is able to lo
cate the eyes , mouth corners, nostrils and eyebrows of subjects in a monocular, 
monochrome image sequence. The feature locating and face verification process 
is governed by the anatomical constraints of a human face. The purpose of this 
face registration procedure is to both automatically verify the presence of a face 
and detect facial feature points for face tracking. 

The performance of the system has been demonstrated on numerous image se
quences , and the algorithm has been adopted into a commercial face detection 
system, which has seen substantial testing on hundreds of subjects. 



Chapter 6 

Face Tracking 

IN the previous two chapters we considered the problems of face localisation 

and face registration. The final step towards enabling a computer to see the 

face is face tracking. This involves tracking both rigid and deformable facial 

features in order to fully characterise both the pose (3D position and orientation) 

of the head, and describe the locations of facial features relative to the head. By 

rigid facial features we mean features that are rigidly attached to the head -

such as the eye sockets, nose and ears - as distinct from deformable features such 

as the mouth and eyebrows that change shape and move relative to the head. To 

achieve this we track the 3D pose of the head using predominantly rigid facial 

features, and then consider tracking the locations of deformable features relative 

to the head. 

The mouth is the rnost important deformable facial feature for Human Computer 

Interaction, and it is a challenging feature to track. We restrict our consideration 

of deformable feature tracking to tracking the mouth. It is, however, feasible to 

adapt the approaches described here to tracking other deformable features such 

as the eyebrows. Two case studies in lip tracking are presented. The first is a 

monocular lip tracker that tracks the height and width of the mouth , and the 

second is a stereo lip tracking system. Our stereo system is the first to use stereo 

to directly recover the full 3D shape of the mouth. Both systems track unadorned 

lips , and do not require subjects to wear lipstick or other cosmetic aids to enhance 

the appearance of the mouth. The systerns operate on grey-scale images and run 

in conjunction with a head tracker to enable robust performance through a range 

of head poses. 

Section 6.1 addresses the problen1 of tracking deformable features whose appear-



152 Face Tracking 

ances change significantly as they elastically deform during a tracking sequence. 
Section 6.2 presents the monocular lip and head tracking system, and Section 6.3 
presents the stereo lip tracker capable of reconstructing the 3D shape of the outer 
lip contour. Finally, Section 6.4 concludes the chapter with a sun1mary of our 
findings. 

6.1 Adaptable Templates 

Template tracking is a well established method for tracking features in an image 
sequence. A template containing a sample of the feature to be tracked is corre
lated across a search region, quantifying how similar the template is to different 
parts of the search region, and the target is located at the point with the highest 
correlation. Numerous different correlation measures can be used (refer to Chap
ter 2) but the most common method is Norn1alised Cross Correlation (NCC). 
Denoting the template as 11 , the search window as 12 , and summation over the 
window as L (u ,v)EW, the NCC of 11 and I2 is given by 

NCC(Ii, 12 ) = L (u,v)EvV 11 ( u, V) · I2(x + u, Y + V) 
JL(u ,v) EW I1(u, v)2 · L (u,v)EW I2(x + u, Y + v) 2 

NCC has the advantage that it is invariant to linear changes in intensity, that is 
' 

where k and l are scalar constants , which gives it so111e robustness to changes 
in lighting. Figure 6. 1 shows an example of template matching with NCC. Here 
a template is chosen at the mouth corner in (a) . When correlated across the 
original i111age the NCC peaks at the n1outh corner correctly locating the feature 
as shown in (b) . Applying a linear change in intensity to the search image in (c) 
has no effect on the resulting NCC with the unadjusted template from (a) . 

However , whilst NCC can provide robustness to variations in lighting it cannot 
accon1modate features whose shapes deform and change appearance through an 
i111age sequence. The changing appearance of defonnable features , such as the 
mouth corners , make standard fixed te111plates ineffective. For instance, Fig
ure 6.2(b) shows the result of using a 111outh corner te111plate defined in frame 1 
(Figure 6.2(a)) to try and locate the same 111outh corner 222 frames later in the 
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(a) 

(b) 

• 
(c) 

Figure 6.1: Ten1plate n1atching. (a) A feature t en1plate is defined. (b ) NCC 
is used to n1atch t he ten1plate across t he in1agei the maxin1un1 of t he NCC 
indicates t he location of t he best match t his is shown by t he orange square. ( c) 
NCC wit h t he same templat e aft er a linear change in intensity to t he image, 
t he result ing NCC is ident ical t o t hat for t he unaltered image. 
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san1e in1age sequence . The feature's appearance no longer closely resen1bles the 

ten1plate and t he NCC peaks at t he edge of t he 1nout h cavity rather than the 

n1out h corner i incorrectly locating t he feature. 

In order for ten1plates to 111aintain adequate t racking perfonnance whilst t racking 

a deformable feature it is necessary to dyna1n ically adapt t he template to keep 

it up-to-date ·wit h t he current appearance of t he target. An obvious approach is 

to update t he ten1plate each tracking cycle to equal t he nev.r feature appearance . 

There are, hov.rever , several proble1ns v.rit h t his approach. First ly, if t here is ever 
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an error in the template matching and the new template is chosen off target there 
is no way for the system to recover from t his error. The chance of this occur
ring can be minimized by only updating the template when the 1natch is good. 
However , even if there is never any incorrect matching, each frame the template 
is only located up to a finite degree of accuracy, typically to the nearest pixel, 
although greater precision can be obtained using sub-pixel placement . Therefore, 
there will be an error of up to half the template placement precision every fra1ne, 
i.e. , up to half a pixel if sub-pixel placement is not used. With 30 frames every 
second, over t ime this small error is likely to accumulate and cause the updated 
templates to drift away from the features they are supposed to be tracking. Fig
ure 6.2(c) shows an example of this template drift over 222 frames. Here the 
template was only updated when a "good" match was found (NCC> 0.75) , and 
t he final location of the template is a consequence of drift , and not a result of 
incorrect matching. 

To address this issue adaptable templates have been developed for the tracking 
of elastically deformable features. Adaptable templates make use of t he init ial 
object appearance as seen in the original te1nplates that were correctly init ialised 
to the true feature locations. 

Adaptable templates work as follows: For the kth frame , once the best match is 
found ( and provided the correlation is above a certain threshold) , the template 
Ti[k] is updated to become t he weighted average of the init ial template Ti[0] and 

, 

the image region Ri[k] in the new frame t hat best 1natches the current template, 
that is 

Ti[k + 1] = aTi[0] + (1 - a) Ri[k], (6. 1) 

where the constant a E (0 ... 1) is the grounding fa ctor which detennines the 
contribution of the initial template to the new template. a = 0 is the case of 
fully updated te1nplates and a = l gives standard templates . 

Figure 6.2( d) shows the result of tracking the mouth corner with an adaptable 
te1nplate with a = ½- The initial template is chosen as shown in Figure 6.2(a) 
and adapted each frame according to Equation 6 .1. Even though the initial 
initial te1nplate was taken with t he mouth in a neutral position , the adaptable 
template is able to correctly locate the mouth corner when the mouth is wide open 
despite the drastic change in the appearance of the feature. Furthermore, always 

--



6.1 Adaptable Templates 

(a) 

(b) 

(c) 

(d) 

Figure 6.2: Template n1atching a deformable feature using NCC. ( a) Initial 
ten1plate chosen in fran1e 1. (b) Using initial template in frame 222. (c) Using 
fully updated ten1plate in fran1e 222. ( d) Using an adaptable template in 
frame 222. 
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keeping the adaptable template "grounded" with the original feature appearance 
T i [0] prevents the updated adaptable templates from drifting off the features as 
happened for the fully updated templates. 

Adaptable templates are useful for tracking elastically deformable features that 
change appearance, but regularly return to their original appearance . This makes 
them especially well suited to tracking deformable facial features such as the 
mouth corners or eyebrow edges. However , adaptable templates are not limited 
to tracking deformable features. Consider for instance, that the eye corners are 
being tracked by a head tracker. Disregarding eye closure these features do not 
exhibit a significant amount of deformation and are traditionally tracked by fixed 
templates. However, as the subject moves and rotates his or her head the appear
ance of these features will change as they are viewed from different angles, and 
when the subject's head returns to its initial position the features will appear the 
same as t hey did initially. So, although these features are not actually deforming 
their appearance is deforming in an elastic manner , and thus the tracking of such 
features stands to benefit from adaptable templates. 

6.2 Monocular Lip Tracking 

This section describes a head and lip tracking system 1 that tracks the head and 
mouth of a speaker whilst allowing the speaker's head to mov.e in 3D within a 
30 cm3 workspace , and rotate up to 30 degrees away from the camera. During 
operation the system perfonns the following tasks: 

• Computes the pose information using a 3D face tracking system, 

• Tracks the top, bottom and corners of t he mouth in the 2D input image, 

• Estimates the 3D locations of t he top, bottom and corners of the mouth, 
and 

• Determines the mouth dimensions from the 3D mouth information. 

In Section 6.2.1 we describe t he 3D head tracker used to determine the head pose 
in each frame. Section 6.2.2 t hen explains the detection of the mouth features, 

1The system was developed by the author at the University of Western Australia as part of 
an automatic lip reading project at the Department of Computer Science under the supervision 
of Dr Eunjung Holden and Professor Robyn Owens. 

--
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Figure 6.3: 3D pose of a head. Head reference frame shown in orange, and the 
pose (x, y , z, Bx , By, Bz) with respect to the world coordinate frame O indicated. 
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the estimation of their locations in 3D, and the calculation of the corrected mouth 

dimensions. Finally, Section 6.2.3 demonstrates the usefulness of this technique 

with a practical experiment: a subject is tracked whilst he enunciates 5 phonemes 

"W", "long-E", "M", "short-A", and "long-0" , displaying the 5 1nouth shapes of 

visual speech while moving and turning his head in 3D. 

6.2.1 Monocular 3D Head Tracker 

The purpose of our head tracker is to determine the head pose , that is the location 

and orientation of the head in 3D space. The head is modelled as a rigid body 

with a reference frame attached, and the pose of the head is defined by a six 

parameter vector p = (x, y , z, Bx, 0y , 0z) specifying the Cartesian co-ordinates and 

rotation of the head reference frame with respect to a predefined world coordinate 

system. Figure 6.3 shows a schematic of a head with reference frame attached 

showing the pose of the head reference fran1e in the world coordinate system. 

Our 1nonocular 3D head tracker was based on Lowe 's object tracking algorithm 

(Lowe , 1991). As discussed in Chapter 2, Lowe 's method provides a model-based 

approach to determining the pose of a known 3D object. When a 3D object , 

such as a head, is viewed in an image the locations of its features are a non-
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Figure 6.4: The process the head tracker steps through each frame. 

linear function of the object's pose. Given an initial guess of the pose , a least 
squares solution can be achieved iteratively by applying Newton's method to 
locally linearize the problem. In order to obtain stable approximate solutions in 
the presence of noise Lowe augmented this minimization by incorporating a model 
of the range of uncertainty in each pose parameter, together with estimates of the 
standard deviation of the image measurements , into the procedure. In addition 
he used the Levenberg-Marquardt method to ensure the solution converges to a 

' local minimum. 

Before the algorithm commences it is necessary to initialise the system by iden
tifying feature points to be tracked and provide an accurate 3D model of these 
points. The 3D model contains the Cartesian coordinates of the features in the 
head reference frame, and is defined as 

where m i = (xi, Yi, zi) T contain the 3D coordinates of the ith feature point in the 
head reference fra111e. A template T i is initialised for each feature. Currently 
features are chosen manually via mouse-clicks , however, the auto-initialisation 
process described in Chapter 5 is suitable for automatically selecting these fea
tures . 

For each frame the head tracker goes through the steps illustrated in Figure 6.4. 
These are discussed in detail in the following section but can be summarised as 



6.2 Nlonocular Lip Tracking 159 

follows: 

• Estin1ate the pose of head based on the pose in_ the previous frame and the 

average translational and angular velocity over the last 5 frames. 

• Apply this pose to the 3D model to determine t he 3D location of model 

points. 

• Project these model points onto t he image to give proj ected feature loca

tions. 

• Use the proj ected feature locations to define search regions for the features . 

• Determine observed feature locations via template matching across each 

search window. 

• Check if the error between projected model feature locations and observed 

feature locations is acceptable, if so the current pose estimate is satisf ac

tory, if not proceed to iteratively refine the pose estimate by repeating the 

following unt il a satisfactory pose is found: 

Determine the Jacobian that contains the partial derivatives of t he 

feature locations with respect to t he pose. 

Use t he J acobian to calculate the pose correction factor. 

Update the pose estimate by adding the pose correction factor and 

apply the updated pose to the model. 

Detern1ine t he nevv projected feature locations. 

Check if pose is satisfactory by checking the error between the new 

projected feature locations and the observed feature locations. 

Pose Estimation 

In each nevv frame the pose is estimated from the pose in the previous frame by 

adding an offset deterrnined by the esti1nated translational and angular velocity 

betv. een the frames. These velocity tenns are determined as the average trans

lational and angular velocit} over the last five frames. That is , given the poses 

of the current and previous five fran1es p [t - i ) for i = 0 ... 5 the pose of the next 

frame is estimated as 
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5 . [ t '] 
t> [t + 1 J = p [tJ +LP - i 

i=l 5 

where the pose velocity is determined by the first order approximation 

p[t] = p[t] - p[t - l] 

In the first frame an initial estimate of the pose is provided and the pose 1s 
assumed not to have change over the previous five frames . 

Applying Pose to Model 

The pose specifies the six degrees of freedom of the head , namely the translational 
( x, y, z) location, and orientation (ex, By, 0 z) . In order to apply these to the 3D 
model M we form a translation vector t and a rotation matrix R , 

where 

t = (x,y, z)T 

R = R zR yR x 

- sin ez 
cos ez 

0 

( 

cos By O sin By ) 
R y = 0 1 0 

- sin By O cos By 

0 
cos ex 
sin ex 

--o ) - sin ex 
cos Bx 

This pose is applied to the model to determine the new 3D locations of the model 
points. These are then given by the columns of 

M new= RM + t 
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Figure 6.5 : Pinhole camera model. 

Determining Projected Feature Locations 
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Once t he 3D locations of t he model points are determined under t he current pose 

these are projected onto t he in1age plane using the pinhole camera model for 

projection. 

The pin-hole can1era n1odel, illustrated in Figure 6.5, performs a true perspective 

projection of the 3D feature points from the world coordinate frame onto the 

in1age plane. A 3D feature point b = (bx , by , bz) 1 is projected onto the image 

plane at 

v.rhere f is the focal length of the camera. 

Determine Feature Search Regions 

The projected feature locations provide us v.rith an estimate of approximately 

v. here the features are likely to appear in the in1age , based on the estimated pose 

derived for the current frame. We now define search regions centred at each of 

these projected feature locations in the belief that the true fea ure locations will lie 

v. ithin these search regions. The search windov. s were chosen to be m x m pixels. 

Figure 6.6 shov. s an example face in1age with the projected feature locations 

indicated with yellow crosses and the resulting search regions shov. n as dashed 

boxes . 
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Figure 6.6: Face image showing projected feature locations and search regions 
form= 36. 

Determine Observed Feature Locations 

The observed feature locations are determined by template matching within the 
defined search regions. Normalised Cross Correlation is used and the feature t em
plates are updated using the adaptable template technique det ailed in Section 6.1. 
This technique is designed to accon1modat e for the changing appearance of fea
t ures . Whilst t he head tracker uses non-deformable features for t racking, the 
appearance of t he features still change as they are viewed from different angles, 
so the t racking benefi ts fron1 using adaptable t emplat es . 

The con1putational load of t he template matching is significant ly reduced by 
performing t he search in two stages : an init ial sparse search to localise t he feature, 
fo llowed by a localised detailed searc;h. Figure 6.7 illustrat es t his procedure. The 
sparse search consists of correlating t he image with t he template cent red at every 
second pixel in every second row and column wit hin a large m x m search window. 
The point that returns t he highest correlation in t he sparse search becomes t he 
centre of t he detailed search. The detailed search has a radius of only 2 pixels 
and the template is correlated at every location in t his small local region , the 
point of highest correlat ion giving t he new feature location. 
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(a) (b) (c) (d) 

Figure 6. 7: Searching procedure using initial sparse search. ( a) Feature tem
plate. (b) Full search region. ( c) Initial sparse search only correlates at every 
second row and column, a region around the maximum is then identified and 
searched at full resolution. ( d) The template is correctly located to the nearest 
pixel. 

Check if error is acceptable 
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The observed feature locations provide the target state for our system. The goal 

of the tracker is to match the projected feature locations with the observed feature 

locations. We defined the error between these two sets of feature locations as the 

vector 

e= 

[qxl - Ox1[ 
[qyl - Oy1 I 
[qx2 - Ox2 [ 
[qy2 - Oy2I 

[qxn - Oxn[ 
\qyn - Oyn\ 

where ( qxi, qyi ) and ( Oxi, Oyi) are respectively the coordinates of the the projected 

and observed locations for the ith feature. We aim to find a pose that results 

in projected feature locations that minimize this error. There is a chance that 

the estimated pose will satisfactorily minimize this error. If so then no further 

refinement of the pose is necessary. However , it is unlikely that our estimated pose 

will be satisfactory, in which case it is necessary to refine the pose as described 

below. 
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Iteratively refine pose estimate 

The pose estimate is iteratively refined in the tracking loop in Figure 6.4. This 
loop consists of a five step process: 

1. determine the Jacobian , 

2. use this to calculate a pose correction factor with which to adjust the current 
pose estimate, 

3. apply the adjusted pose to the 3D model, 

4. determine the new projected feature points , 

5. check the error between the proj ected and observed feature points , and 
repeat this process again if the error is not small enough. 

Steps 3, 4 and 5 are identical to the Apply pose to model, Determine projected 
feature locations, and Check if error is acceptable phases described above for the 
ear lier part of the algorithm. However , calculating the Jacobian and determining 
the pose correction factor are specific to t he tracking loop and are discussed in 
detail here. 

The pose correction factor is the central part of the t racking process. It enables 
the pose to be effectively adjusted so that it converges to a suitable value, mini
mizing the error between the projected and observed feature points. The Jacobian 
is simply a necessary prerequisite to calculating the pose correction factor . 

The Jacobian J is t he matrix of partial derivatives of the projected feature lo
cations with respect to the pose . Concatenating the (x, y) coordinates of the 
projected feature locations in a vector 

the J acobian is then calculated as follows 

8q1 8q1 8q1 
8p1 8p2 8p5 

dq(p) 8q2 8q2 8q2 

J = 8p1 8p2 8p5 (6.2) 
dp 

8q2n 8q2n 8q2n 
8p1 8p2 8p5 



6.2 Monocular Lip Tracking 165 

vvhere Pi and qi denote the ith elements of p and q respectively, 

vvith f being the camera focal lengt h , and xi, Yi and zi, the 3D locations of the 

ith feature, given by 

( ~: ) = R (p)mi + t (p ) 

R (p) and t (p) are the rotation matrix and translation vector defined by the 

current pose p , and m i is the n1odel coordinates of t he ith feature. 

Once the J acobian has been determined we are now able to calculate the pose 

correction factor c using Lovve's algorithm (Lowe, 1991) as follovvs 

where 
1 0 - 0 

0-1 

0 1 

W= 0-2 

0 0 1 

is a diagonal matrix ·whose diagonal elements are the reciprocals of the standard 

deviation of t he change in parameter Pi from one fr ame to t he next , J is the 

J acobian matrix of q defined in Equation 6.2, e is the error vector containing 

t he difference between t he observed and projected 2D feature locations , si is the 

desired default value for paran1eter Pi, and A is a scalar weight. 

By iteratively applying this correction factor a least squares solution can be 

achie\ ed. This is an extension of Newton 's method , designed to obtain stable 

approximate solut ions in the presence of noise . The stabilisation technique uses 

the addit ion of a small cons ant to the diagonal elements of JT J in order to avoid 

the possibilit of this matrix becoming close to singular. 

In this algorithm the standard deviation of parameter changes in consecutive 

fran1es represents the limit on the acceleration of each parameter from one frame 
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to the next. For translation parameters , a li1n it of up to 10 pixels (within the 
image size of 384 x 284) is used as the standard deviation , and for rotational 
parameters 0.1 radians is used. The scalar A can be increased to strengthen the 
weight of stabilisation whenever divergence occurs. However, a constant scalar 
of 0.64 is used in this system as this was found to 1naintain stability throughout 
the iterations. 

6.2.2 Mouth Detection and Correction for Pose 

Template matching is used to track the corners, top and bottom of the 111outh. 
The 3D pose determined from the head tracker is then used to detennine the 
mouth feature locations in 3D from which the true width and height of the mouth 
can be determined. 

Mouth Template Matching 

The mouth corners are tracked using adaptable templates w.ith the te1nplate 
search areas centred at the feature locations detennined in the previous frame. 

Once the mouth corners are located , the upper mouth edge is searched for along 
the line joining the mid-point of the mouth corners to the nose template position, 
and the bottom mouth edge is searched for on the line perpendicularly bisecting 
the line joining the 1nouth corners (see Figure 6.8) . Locating the 1nouth edges 
on these lines avoids the potential proble1n of the templates drifting along the 
top and bottom mouth edges, and the co1nputational requirement for template 
matching is drastically reduced by only searching along a line rather than a 2D 
region. As the head turns to the side and tilts the mid-point of the line joining 
the mouth corners no longer corresponds to the centre of the mouth, however, 
this approxin1ation proved adequate for estimating the height of the 111outh. 

The adaptable templates are updated every frame. This updating is essential 
as the mouth corners look very different when the mouth is open as opposed to 
·when it is closed. 
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Figure 6.8: Search lines for locating the top and bottom mouth edges. 

Determining Mouth Width and Height 

Since the mouth is constantly changing shape during speech it cannot be modelled 

as a rigid 3D object. Instead the mouth is assumed to lie flat on a plane parallel to 

the front of the face. The observed 2D mouth feature locations are projected fro1n 

the in1age plane onto this face plane as illustrated in Figure 6.9, the orientation 

of the face plane is given by the head pose obtained from the 3D head tracker. 

Thus the 3D locations of the mouth features bi are determined. 

The mouth height and width are then calculated as the 3D Euclidean distances 

between the top and bottom mouth edges and the mouth corners respectively. 

6.2.3 Experimentation 

The system was implen1ented in Matlab 5.3 on a standard 600 MHz Pentium III , 

and tested on a 234 frame of video sequence recorded off-line at 25 Hz. Each 

fra1ne was 8-bit grey-scale and 384 x 284 pixels. Feature templates were chosen 

to be 12 x 12 pixels , and the search region size was set to 36 x 36. 

Three non-deformable features were used to track the head: the eye corners and 

the edge of one nostril. More features can be used , but three is sufficient to 
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Figure 6.9: Projection of mouth points from image plane to face plane. 

determine the 3D pose of the head. The mouth corners were also tracked, but 
these were not used to estimate the head pose and were instead used exclusively 
for determining the mouth shape. 

In order to verify the suitability of the algorithm for realtime applications the 
Matlab flop counter was used to estimate the average number of floating point 
operations required per fr ame. Table 6.1 shows the average number of floating 
point operations per frame for different steps of the algorithm calculated over a 
234 frame test sequence . The vast majority of computations are taken by the 
template n1atching, which involves calculating t he normalised cross correlation of 
the ten1plates at each location across t he search regions. Using the initial sparse 
search, as detailed in Section 6.2.1, has made this computation considerably less 
than the 4.9 Mflops it would otherwise be. It can be reduced further to 0.89 Mflops 
by increasing the sparsity from two to three and performing the sparse search at 
every third (rather than every second) row and column. However , increasing the 
sparsity of the search increases the likelihood of the tracker loosing the features. 
In any case , with a sparsity of two the total number of computations per frame 
is within an amount that is feasible to perform in realtime were the algorithm to 
be implemented in C/ C++. 
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Table 6.1: Estimated Computations per Frame 
Stage l\t'Iean computation per frame 

(flops) 
Pose estimation 1,270 
Template matching 1.54 X 106 

Object tracking 13 ,400 
Correcting mouth shape 705 

Figure 6.10 shows six snap shots of the system whilst tracking, the animated 

face illustrates the current pose and mouth dimensions of the subject. The full 

t racking sequence is included on the CD-RONI enclosed with this thesis. 

The quantitative output of the system over the full video sequence is presented in 

Figure 6 .11. This shows a record over the test sequence of the 3D head pose , t he 

uncorrected mouth dimensions and t he corrected mouth dimensions. As expected 

t here is a strong correlation between the amount the mouth width is corrected 

and t he head 's rotation about the vertical y-axis. 

The result shov\7S t he 3D head tracker recovering the head pose , and t he mouth 

shapes being effectively corrected t hroughout the sequence. For example , at 

t he fr an1es 40 and 95 , t he phonemes "W" and "long-E" were spoken with t he 

speaker 's head nodding. Thus the detected mouth heights for their surrounding 

frames were corrected as shown in Figure 6 .11 ( c). In frames 95 and 1 76 (phonemes 

"long-E" and "NI" respectively) the speaker's head was turned to t he side and it 

was necessary to correct t he mout h widt h. Enunciating t hese phonemes causes 

t he n1outh to widen relative to t he neut ral mouth width. Figure 6 .11 ( d) shows 

that the uncorrected mouth widt hs for these frames were similar to t he neutral 

n1outh v\ridt h , and that t he correction is successfully made to enlarge the widths 

to represent the actual mouth shape corresponding to t hese phonemes . 

These results demonstrate the usefulness of t his method for correcting the ob

served size of the mouth as a speaker moves his head in 3D. Mouth height and 

width are the two primary visual quantities used by audiovisual speech process

ing systems. Being able to estimate these correctly v\1hilst accommodating for 

head translation and rotation is essent ial for audiovisual speech recognition in a 

real world environment where speakers naturally n1ove their heads around during 

speech. 
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neutral mouth (frame 1) 

"W" (frame 40) 

"long-E" (frame 95) 

"M" (frame 140) 

"short-A" (frame 176) 

"long-O" (frame 219) 
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c:::, 1 c:::, 
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Figure 6.10: Some snap shots of the system in operation. The phoneme being 
pronounced and the frame number are indicated. 
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Figure 6.11 : Results of the head and mout h t racking system . (a) Head t rans

lation , x , y and z t ranslations are shown dott ed , dashed and solid respectively. 

(b) Head rotation , rotations about x, y and z axis are shown dotted , dashed 

and solid respectively. ( c) and ( d) Mout h height and widt h , corrected dashed 

and uncorrected dotted. 
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6.2.4 Section Review 

A system has been developed that measures the dimensions of a speaker 's mouth 

whilst the speaker 's head is moving and exhibiting rotations of up to 30 degrees 

away from the camera. Our system tracks the pose of the speaker 's head in 3D , 

detects the unadorned mouth by tracking the corners and a point on the upper 

and lower edge of the lips , and estimates the mouth height and width during 

speech. The system is demonstrated on a person speaking whilst moving his 

head in 3D , and the mouth height and width are corrected over 9 seconds of 

25 Hz video footage. 

This section has demonstrated an application of measuring the mouth height and 

width on a moving head using typically noisy pose information from a monocular 

head tracking system. In the next case study a stereo system is presented that 

uses accurate head pose data from an established stereo tracking system and 

extends the mouth tracking to recover the full 3D shape of the outer lip contour. 

6.3 Stereo Lip Tracking 

This section describes a stereo lip tracking system that tracks a person's un

adorned lips in 3D , and outputs the 3D locations of the mouth corners and a set 

of points around the outer lip contour. This output is suitable for audio visual 

speech processing , 3D animation , or expression recognition. A stereo head tracker 

is used to track the subj ect 's head , allowing for robust performance whilst the 

subj ect 's head is moving and turning with respect to the cameras . The head pose 

is used in conjunction with the novel adaptable templates describ ed in Section 6.1 

to robustly esti1nate the locations of the corners of a deforming mouth. A 3D 

geo1netric model is used to generate search paths for key points on the outer lip 

contour , and t hese are subsequently locat ed using adaptable templat es and stereo 

n1atching. The system is demonstrat ed robustly t racking the head pose and 3D 

1nout h shape of a person speaking while moving his head. 

Figure 6.12 shows the key co1n ponents of the syst em. The main fo cus of this 

section will be on t he lip tracking co1nponent , but first Section 6.3.1 describ es 

the stereo vision system used to capture images of the subj ect , and Section 6.3.2 

briefly sum1narises t he head t racker. Section 6.3.3 then covers the lip tracking 

system in detail , Section 6.3.4 presents some results of the syst em in operation , 
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and Section 6.3.5 concludes with a review and some suggestions for future work. 

6.3.1 Stereo Vision System 

The configuration of the stereo vision system is shown in Figure 6.13. The two 

cameras are positioned equidistant from the origin and are verged ( angled towards 

t he origin in t he horizontal plane) at about 5 degrees. This is designed to offer the 

best 1neasurements of an object t he size of a human head placed approximately 

600mm in front of the ca1neras, and provides an effective working volume 20 cm 

high x 30 cn1 wide x 50 cm deep for 3D tracking. 

Both cameras are standard , colour analog NTSC video cameras whose outputs 

are 1nultiplexed into a single channel before being acquired by a Hitachi IP5005 

video card . The result is a 512 x 480 colour i1nage, captured every 33ms, where 

the top half contains the right hand image and lower half the left hand image. 

6.3.2 Head Tracking 

Our syste1n uses the stereo head t racker presented by Matsumoto and Zelinsky 

(2000) and detailed in Chapter 2. This is an early prototype of the Seeing Ma

chines FaceLab system. It was developed in our lab and is t he combined work 

of Zelinsky, Heinzmann, fv1atsumoto, New1nan and Rougeaux. The system uses 

calibrated stereo ca1neras and returns accurate estin1ates of the head pose with 

position n1easurement ·within ±1 1nm and orientation ± 2 degrees. The system 

requires no n1arkers or special make-up to be worn, and runs in realtime on a 

standard PC. 

t 
Stereo left image 

Head head Lip 3D mouth - -Vision - -
- Tracker pose Tracker shape 

System 
right image 

t 
Figure 6.1 2: Overview of the system. 
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Figure 6.13: The stereo camera arrangen1ent. 

6.3.3 Lip Tracking 

The mouth is a deformable feature , however, like the eyebrows, eyelids and other 
deformable facial features, it is firmly attached to the head and is only able to 
deform in an elastic manner. Our lip tracking system uses head pose information 
from a head tracker to localise the approximate location of the 1nouth in each 
image. Adaptable ten1plates are used to track individual mouth features and 
accommodate for the elastic deformation of these features as the mouth shape 
changes, and stereo matching these features enables us to determine the 3D shape 
of the deforming 1nouth. 

We define three prin1ary tracking points , the left and right mouth corners and 
the outer edge of the centre of the upper lip , as illustrated in Figure 6.14. These 
prin1ary features are chosen owing to the importance of their locations when 
determining the lip contour , and their distinctive appearance that allows the1n 
to be 1nore easily tracked than other points on the lip contour . The locations of 
the pri1nary features will later forn1 the foundation of our search procedure for 
tracking the lip contour . 

Before commencing tracking it is necessary to initialise the systen1. This is cur
rently performed manually and is done on a frame where the subject is facing 
close to front-on to the cameras and the mouth is in a neutral ( closed and re-

--
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0 

Figure 6.14: The lip corners and the centre of the upper lip contour provide 
the primary tracking points for our system. 
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Figure 6.15: Lip tracking system. 
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laxed) position. The mouth corners and centre of the upper outer lip contour are 

identified, and these are matched in the other stereo image to determine the 3D 

locations of these points on the neutral mouth. In addition to this, the initial lo

cations of a set of tracking points on the outer lip contour are manually identified. 

These are evenly spaced from left to right- across the upper and lower lips so they 

lie on the lip contour search lines that will be described below in Section 6.3.3. 

Figure 6.15 summarises our approach to detecting the lip contour. Firstly we 

establish the 3D locations of the primary tracking points, these define search 

lines for the contour features , and then the locations of the contour features are 

identified. 

Search Structure 

As the mouth deforms during speech and through facial expressions its appear

ance and shape can change · drastically. In order to effectively track the mouth 

contour we adopt a search structure that allows us to reliably locate specific 
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mout h features . This approach is a further development of our previous work in 
2D lip t racking presented in Section 6.2. 

The search procedure consists of the following steps , which shall be discussed in 
more detail hereafter. 

1. Locate primary features: 

(a) the head pose is used to determine the 3D locations of the primary 
features if they were in the neutral position as they were at initialisa
tion , 

(b) search areas for the primary features are defined from the projected 
positions of these 3D feature locations , 

( c) the current primary feature locations are identified , and 

( d) the 3D location of the primary feature is determined via stereo match
ing. 

2. Locate lip contour tracking points: 

(a) based on the 3D locations of the primary features , search lines are 
defined for locating the outer lip contour , 

(b) the outer lip contour is identified , and 

( c) the 3D locations of the outer lip contour tracking points are det ermined 
via st ereo matching. 

Locating Primary Tracking Points 

The corners of t he mout h are the most suitable points for tracking due t o t heir dis
t inctive ( albeit drastically changeable) appearance. Their location is constrained 
to a small region of t he face. Each 1nout h corner will always be in a region cent red 
at t he neut ral mout h corner location. Because t his region is quite small ( typically 
50 x 50mm) it is feasible to search t he whole region in every frame. The ot her 
pri1nary tracking feature, t he cent re of t he upper lip , has t he advantage t hat it 
does not move or deform as much as t he mout h corners. However , its appear
ance is less distinctive as it can look quite similar to ot her points on t he mouth 
contour , so it is typically not t racked as accurately as the mouth corners. 

--
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It is feasible to avoid tracking the centre of the upper lip and simply use the 

estin1ated location of the neutral n1outh centre to locate the central primary 

feature. However , despite the lack of gross movement typically displayed by this 

feature , it is preferable to explicitly track the feature to accommodate for any 

n1ovement that does occur. Nonetheless for the purpose of defining search lines 

for the lip contour , which will be discussed below, estimating the upper lip centre 

in the first in1age is still satisfactory. 

In the initialisation process we determined the 3D locations of the prin1ary track

ing points in the initial frame v.rhere the 1nouth was in a neutral position. We 

novl estimate the 3D locations of these points under the current head pose , then 

project the1n into the current i1nage using pinhole can1era projection, to estimate 

the approxi1nate location of the neutral 1nouth points. The search for the current 

locations of the pri1nary features can then be limited to 40 x 40 pixel regions 

around the estin1ated location of the appropriate neutral n1outh feature. 

The primary features are t racked v.rithin these search regions using t he sa1ne 

1net hod applied for t he 2D lip tracker presented in Section 6.2. That is , nor

n1alised cross correlation v.rith adaptable te1nplates, using the sparse search ap

proach described in Section 6.2.1 to reduce the co1nputation. 

Once the features have been located in the first stereo in1age , a larger template 

is taken fron1 around each tracking point in this image and used to locate the 

feature in t he second stereo in1age using normalised cross correlation. Since the 

stereo systen1 is calibrated it is only necessary to search along t he epipolar line 

in the second in1age . Once this is done the 3D location of the primary tracking 

points are detern1ined via linear t riangulation ( see Sect ion 2 .4.1) . 

Locating Lip Contour Tracking Points 

The prin1ary tracking points define t he outer edges of t he n1outh and the center 

of the upper lip. Hov.rever , to fully describe t he n1outh shape it is necessary to 

track points all along the n1outh contour . Our system uses a set of tracking points 

to characterise the outer lip contours of t he upper and lov.rer lips. The nun1ber 

of points used is at the discretion of the user , with the li1niting factor being the 

addit ional co1nputation required for n1ore points. In our experin1ents we used 18 

contour t racking points v.rhich provided a detailed esti1nate of the lip shape. 

The contour t racking points are located on search lines parallel to the vertical 
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Figure 6.16: Search lines are placed in 3D aligned with the vertical head axis 
and equidistant between the primary tracking points, shown in green. 

head axis. The search lines are initially defined in 3D, and are automatically 
located based on the locations of the mouth corners and the centre of the neutral 
n1outh. Search lines are placed on each side of the mouth , as shown in Figure 6.16 
spaced equidistant between the mouth corner and the centre of the neutral mouth, 
if an odd number of points is used to track the upper and lower lips then a search 
line is placed at the centre of the mouth as well. These 3D lines are projected 
onto one of the stereo in1ages to provide the set of 2D search lines on which to 
locate the outer contour in the image. 

For the upper lip contour the search lines start at the level of the lip corners 
and extend upwards (in the positive y direction in the head reference frame , 
see Figure 6.3). For the lower lip contour the search lines start at the level of 
the lip corners and extend downwards in the -opposite direction. The length of 
each line is proportional to how central the point is , and is chosen to generously 
accomn1odate the full range of mouth motion ( the length is defined in 3D , before 
the lines are projected onto the image plane). 

Locating the mouth edges on these lines avoids the potential problem of the 
templates drifting along the top and bottom mouth edges , and the computational 
requiren1ent for searching is drastically reduced by only examining a line of points, 
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Figure 6.17: Contour tracking templates. Feature locations and template 
boundaries are indicated in green, search lines are shown in yellow. 

rather than a 2D region of the image. 
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As the mouth opens and closes the appearance of the interior of the mouth 

changes drastically, due not only to the changing shape of the mouth , but the 

appearance of the teeth, tongue and oral cavity. On the other hand, the facial 

region outside the mouth changes much less. For this reason we chose to track the 

mouth contour with elongated offset templates stretching away from the mouth 

as shown in Figure 6.17. By including a large proportion of the external (more 

constant) region surrounding the mouth, in addition to the lip , and not including 

the inner mouth region, these templates can detect the outer lip contour whilst 

remaining robust to changes in the appearance of the inner mouth region. 

Normalised cross correlation with adaptable templates is used to locate the con

tour tracking points on the search lines in one of the stereo images. Once the 

features have been located , wider templates are taken from the current image 

around each tracking point and used to locate the feature in the second stereo 

image. The 3D search lines are also projected onto the second image , to determine 

the approximate location of the features. Since the stereo system is calibrated it 

is only necessary to search along the epipolar line in the second image, and the 

range of disparities is reduced by only searching close to the intersection of the 

epipolar line and the appropriate search line. 



180 Face Tracking 

6.3.4 Experimentation 

A significant amount of experimentation has been carried out to analyse the 
performance of the head tracker using a mannequin head mounted on a pan-tilt 
device (Newman et al., 2000). The head tracker has been shown to accurately 
recover the head pose position within 1 mm and pose angle to within 2 degrees. 
It can accommodate head velocities of up to 100 degrees per second and head 
rotation up to 45 degrees away from the cameras. 

The lip tracking system was implemented in Matlab 5.3 on a standard 600 MHz 
Pentium III , and tested off-line on a 148 frame video sequence recorded at 30 Hz. 
Each frame was 8-bit grey-scale and 240 x 320 pixels, and was accompanied with 
head pose data output from the face tracker. The primary features were initially 
located with 10 x 10 templates, then 20 x 20 templates were used to perform the 
stereo matching. The elongated offset templates used to track the lip contour 
were chosen to be 20 x 5 and wider 20 x 30 templates were used to determine the 
stereo correspondence in the second image. 

The lip tracker was shown to track the mouth throughout a sequence of footage 
of a subject moving his head and mouth in 3D. Figure 6.18 shows several snap 
shots of the systern in action. Both left and right stereo images are shown, the 
primary tracking points are indicated in blue and the contour tracking points are 
shown in red. The 3D mouth shape is also shown. The full vid~o sequence of the 
tracker in action is included on the CD-ROM enclose with this thesis. 

The results presented here have not been smoothed or filtered at all and represent 
the raw data output from the feature tracking technique described. For animation 
purposes or to make a smoother moving reconstruction the 3D locations could be 
filtered to remove high frequency motion. 

Quantitatively verifying the performance of the lip tracker required manually 
locating tracking points throughout a sequence and co111paring these with the 
auto111atically tracked points generated by the tracking system. This was done 
for the three primary tracking points ( the mouth corners and the centre of the 
upper lip) over the 148 fra111e sequence. The absolute 3D error was recorded along 
with the absolute error in the x, y and z directions2

, and the results are presented 
in Figures 6.19 to 6.22. The mean absolute errors are shown in Table 6.2. 

2These Cartesian directions refer to the axes in the world coordinate frame located between 
the two cameras as shown in Figure 6.13. 
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Figure 6.18: The system in operation. The first two columns show the left 
and right stereo images and lip tracking points , the third column shows the 
3D mouth shape in the head reference frame ( dimensions in mm). 
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Table 6.2: Mean absolute error in primary tracking points. 
Feature Mean 3D error x error y error 

(mm) (mm) (mm) 
right mouth corner 1.2 0.53 0.76 
lip centre 0.69 0.40 0.22 
right 111ou th corner 0.7 0.47 0.32 
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Figure 6.19: 3D error in primary feature locations. 

z error 
(mm) 
0.46 
0.35 
0.21 

Fron1 Table 6.2 we see the mean absolute error is negligible. However , as Fig
ure 6. 19 shov.rs there are isolated errors in the tracked feature positions of up to 
4.51nm. The largest error is observed for the lip centre feature , and by examining 
the errors in the x , y and z directions (Figures 6.20 to 6.22) we see this is caused 
by a large error in the z-depth of the feature, while errors in the x and y-directions 
are insignificant at this point. We conclude, therefore, that t his single large error 
was caused by poor stereo 111atching rather than bad tracking. However , on the 
whole the stereo matching performs well , as can be seen from Figure 6.22 that 
shov.rs that the z-error seldom rises above 1.5 mm. 

Errors in the x and y directions shown in Figures 6.20 and 6.21 are indicative 
of how well the adaptive te111plates are tracking. The results are encouraging 
v. it h t he error seldom rising above 2mm, and averaging well below 1mm for each 
feature (see Table 6.2) . 

-· 
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Figure 6.20: Absolute error in x-direction in primary feature locations. 
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Figure 6.21: Absolute error in y-direction in prin1ary feature locations. 
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To verify the suitability of the algorithm for realtime implementation estimates 

of the average number of floating point operations required per frame were de

termined using the Matlab flop counter. Table 6.3 shows the average number of 

floating point operations per fra1ne for different stages of the algorithm, these 

figures were calculated over a test sequence of 148 fran1es. 
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Figure 6.22: Absolute error in z-direction in primary feature locations. 

Table 6.3: Estimated Computations per Frame 
Stage Mean computation per fr ame 

(Mflops ) 
Estimate primary feature locations 0.000264 
Locate pri111ary features 6.47 
Define search lines 0.00772 
Locate 18 contour points 1.63 , 

Overall 8.26 

The majority of t i111e ·was spent locating the three primary feature points due 
to the heavy con1putational load of calculating the normalised cross correlation 
over the 2D search regions. The computations required to locate all 18 contour 
tracking points is much less ; although t here are six t imes as 111any points ; t his i 
because these vvere located on lines (rat her t han within 2D regions) so t he search 
for each contour point only needed to be carried out in lD. The computational 
requirement for the rest of the algorit hm is minimal. Since we do not fit a model 
to our data the bulk of our effort is expended in locating the t racking points. 
E timating the initial locations of the primar features and defining the contour 
earch line u e a trivial an1ount of computation compared to t hat required for 

the correlation u ed to locate the features. The computation results here are for 
the lip tracker alone and do not include the operation of the head t racker. 

--
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6.3.5 Section Review 

This section has presented a technique to track the 3D shape of a deforming mouth 

whilst the subject's head is moving in 3D. The mouth corners are tracked along 

with numerous points around the outer lip contour, and the 3D locations of each 

of these points determined via stereo correspondence. The lip tracking results 

presented were generated off-line, although the technique is efficient enough for 

realtime implementation. 

The lip tracker presented here is the first system to track the raw 3D mouth shape. 

Some previous methods (see Chapter 2) have inferred the 3D mouth shape from 

predefined mouth models, but none have used stereo to directly measure the 3D 

locations of tracking points. 

Our technique is quite different from the active contour approach to lip tracking 

(Kaucic et al., 1996, for example). Active contours use an underlying model 

to constrain the shape of the contour, and the visual sensing is just a single 

component of the tracking procedure. Our method is directly based on visual 

information and the shape of the mouth contour is much less constrained. The 

advantage of our approach is its simplicity and ability to track diversly shaped 

contours. The disadvantage is that it is not forced to be "mouth-like", and it 

relies entirely on the image information along its search lines to locate the contour 

correctly. This, however, is achievable with the use of adaptable templates. As 

an aside, the adaptable templates we use for tracking could be used to good effect 

to provide visual information in an active contour system. 

At present the lip tracking system relies only on gray-scale intensity information. 

The system could be extended to utilise a number of other cues that could be 

n1erged together to increase the robustness and versatility of the system. Colour 

image inforrnation is one such cue which shows great promise for lip tracking and 

analysis of the mouth region ( Goecke et al., 2000). An area-based stereo depth 

map is another. 

The template 1natching-based approach adopted in this chapter restricts the 

tracking to the outer lip contour. Whilst this is arguably the more important 

contour for anin1ation and visualisation purposes, the inner contour is much more 

useful for audio-visual speech processing, since it is the inner contour which de

fines the airflow in and out of the n1outh ( Goecke et al. , 2000). Ultimately it is 

desired for a lip tracker to track both inner and outer contours in 3D. However, 
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the inner contour is an elusive target , and is difficult to define in 3D. Unlike the 

outer contour which is a distinctive line on a surface, the inner contour is the 

boundary between the lip and the oral cavity space and has no definite 3D lo

cation. Any attempt to determine the inner contour in 3D will benefit strongly 

fron1 knowledge of the outer contour that is located by t he system presented here. 

6.4 Summary 

This chapter has addressed the problem of tracking deformable facial features 

by examining two case studies of different lip tracking systems. The first used a 

monocular camera and was able to track the head pose and measure the mouth 

height and width of a subject. The second used a prototype of the commercially 

available FaceLab system to provide robust head pose information from stereo 

cameras , and then proceeded to track the 3D shape of the mouth as it deformed 

during speech. The concept of adaptable templates were also introduced, a tech

nique designed for robust tracking of elastically deformable features, and these 

·were used in both the lip tracking systems described to track points on the lip 

contour. 

The stereo 3D lip tracker presented here is the first system to track the raw 3D 

mouth shape. As discussed in Chapter 2, some previous approaches have used 

complex models to infer the 3D mouth shape from monocular image information 

(Rev er et and Benoit , 1998), but such inferences are restricted to the limited 

range of mouth shapes spanned by the models. vVhilst these models are useful 

for speech processing, they are too constrained for character" animation and other 

applications that require t racking the true , unconstrained 3D shape of the mouth. 

Tracking deformable facial features is one of the ultimate end goals of computer 

vision systems aiming to enhance human computer interaction. After all, it is the 

actions and expressions of facial features that _yve humans use when interacting 

\\ ith someone and "reading'' their face . vVhile current systems are still very 

crude . the potential in this area is huge and over the next decade we can expect 

to see computer vision systems capable of realtime lip reading, marker-less facial 

animation , and expression recognition. 

--
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Conclusion 

Enabling machines to see people is a crucial step towards machines that we can 

interact wit h as we do with other people. This thesis has worked towards a 

computer vision system that enables a computer to see people 's faces , providing a 

basis for more natural and meaningful interaction between humans and machines. 

We define what it means for a computer to "see" people as being able to locate 

and track humans in image sequences, preferably in realtime, and with robustness 

to different people 's appearances and the operational environment. This task was 

divided into three subproblems: 

1. face localisation, locating where a person is in a scene, 

2. face registration, identifying facial features , and 

3. face tracking , tracking the head pose and movement of facial features. 

Novel solutions have been presented to each of these human tracking problems , 

that could potentially form an all-inclusive vision system allowing a computer or 

robot to see a person's face. 

7.1 Summary 

Chapter 1 opened with an introductory discussion to motivate and contextualise 

our research. The importance of visual infonnation during interpersonal inter

action and hu1nan-machine interaction was discussed, and it was concluded that 
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enabling a computer to see people is a significant step towards a computer that 

we can interact with like we do with other human beings. 

In Chapter 2 we moved on to discuss related work, and reviewed the application 

of computer vision to locating and tracking people, in particular the face. The 

physical qualities governing the appearance of a face were examined, and visual 

cues suitable for detecting faces in images discussed. In addition a review of previ

ous research was presented across the areas of face localisation, face registration, 

and face tracking. 

Radial symmetry was found to be particularly useful for detecting facial features . 

However , the existing techniques with the most promising results suffered from 

high computational complexity and slow run-times making them inappropriate 

for realtime applications. In Chapter 3 we present a new image transform - the 

Fast Radial Symmetry Transform (FRST) - that allows efficient computation of 

radial symmetry in real time. The FRST is a powerful visual cue for face detection 

and is used in several of the systems described in this thesis. 

The first step to enabling a computer to see a person 's face is to localise and track 

the approximate location of the face in an image sequence. Nev✓ and innovative 

techniques are constantly being developed to track faces in images , however, 

despite the impressive results obtained, it is clear that no single cue can perform 

reliably in all situations. The key to an efficient and robust vision system for 

tracking faces or other targets is to intelligently combine information from a 

number of different cues, whilst effectively managing the available computational 

resources. In Chapter 4 we develop a system that does just this: adaptively 

allocating computational resources over multiple cues to robustly track a target 
in 3D. 

After locating and tracking the location of a face in an image sequence, the 

next step towards enabling a computer to see a face is face registration, that is , 

detection of facial features and the verification of the presence of a face in an 

image. In Chapter 5 we present a case study of an automatic face registration 

system, designed to automatically initialise features for a head tracker. Once face 

registration is complete the con1puter has verified whether or not an image region 

contains a face and if a face is present, the facial features are detected and ready 
to be tracked. 

In Chapter 6 we explore the problem of tracking the face and deformable facial 
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features. This involves tracking both rigid and deformable facial features to fully 

characterise both the 3D head pose, and describe the locations of facial features 

relative to the head. We track the 3D pose of the h~ad using predominantly rigid 

facial features, and then track the locations of deformable features relative to the 

head. A new form of templates is introduced to facilitate tracking deformable 

features, and these are used in two case studies. The first is a monocular lip 

tracker, and the second is a stereo lip tracking system that tracks the mouth 

shape in 3D. 

7.2 Achievements 

7.2.1 Fast Detection of Radial Symmetry 

A new image transform, the Fast Radial Symmetry Transform (FRST) , was pre

sented. This transform utilizes local radial symmetry to highlight points of in

terest within a scene. With its low computational complexity and fast run-times 

it is well suited for realtime vision applications. Indeed , a realtime implementa

tion of the transform was presented demonstrating its effectiveness as a cue for 

highlighting peoples eyes as they moved in front of the can1era. The transform's 

performance was tested on a variety of images and compared with leading tech

niques from the literature. Both as a facial feature detector and as a generic 

region of interest detector, the FRST was seen to offer equal or superior perfor

mance to contemporary techniques at a relatively low computational cost, and 

provides a valuable cue for detecting eyes and other radially symmetric features 

1n images. 

7.2.2 An Adaptive Fusion Architecture for Target Track-

Face localisation was performed using a vision system that adaptively allocates 

co1nputational resources over multiple cues to robustly track a target in 3D. A 

particle filter managed 1nultiple hypotheses of the target location and Bayesian 

probability theory provided the framework for sensor fusion. Finite computa

tional resources were efficiently allocated across the cues, taking into account the 

cue's expected utility and resource requirement. The system can accommodate 

cues running at different frequencies , allowing cues perfonning less well to be run 



190 Conclusion 

slowly in the background for added robustness with minimal additional computa

tion. The systen1 was shown to track a person in 3D space 1noving in a cluttered 

environ1nent with variable lighting conditions and occlusions of the target. An 

additional example was shown demonstrating how the syste1n can be extended to 

track multiple targets, using multiple particle filters and inhibition of returns to 

prevent different filters from locking onto the sa1ne target. Whilst this system was 

demonstrated here for robust person tracking, it is equally applicable to tracking 

other targets. 

7.2.3 Facial Feature Detection 

A face registration system was developed capable of verifying the presence of a 

face and automatically detecting facial features in monocular , grey-scale image 

sequences. The system is able to locate the eyes, mouth corners, nostrils and 

eyebrows of subjects. The anatomical constraints of the human face are used 

to govern the feature locating and face verification process. This system both 

automatically verifies the presence of a face and detects facial feature points for 

face tracking. The algorithm has been adopted into a commercial face detection 

system that has seen substantial testing on hundreds of subj ects. 

7.2.4 3D Deformable Facial Feature Tracking 

The problem of tracking deformable facial features was addressed by examining 

a monocular and a stereo 3D lip tracking system, both operating in conjunction 

with 3D head trackers to facilitate the head freedon1 of 1novement whilst tracking. 

The monocular system was able to track the head pose and measure the mouth 

height and width of a subject, whilst the stereo system was capable of tracking 

the full 3D shape of the mouth as it deformed during speech. Our stereo lip 

tracking syste1n is the first system that has tracked the raw 3D mouth shape 

( some other systems have inferred the 3D structure from a monocular view). We 

do not require a physical 1nodel to constrain the shape of the mouth and thus 

the approach can be easily transferred to tracking other deforming features such 
as the eye brows. 
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7.3 Further Work 

We have presented solutions to the problems of localising a face in a scene, de

tecting facial features, and tracking the face and the motion of facial features. 

Whilst the systems presented each address particular human-tracking problems , 

further work is required to integrate these into a single all-inclusive vision system 

to allow a computer or robot to see a person's face. Such a system would be a 

valuable tool for enhancing human-machine interaction. 

The face localisation syste1n presented in Chapter 4 provides a sound frame

work for integrating 1nultiple cues with different resource requirements for target 

tracking. Further work should focus on refining the method of resource allocation 

and extending the syste1n to adapt online to track an arbitrary and potentially 

changing number of targets. 

Removing the require1nent for the subject to blink for the face registration system 

presented in Chapter 5 would make the algorithm more user friendly as well as 

allowing it to be e1nployed to detect faces in still i1nages. This improvement has 

already been i1nplemented in the commercial version of the syste1n implemented 

by Seeing Machines. 

The defonnable feature tracking method presented in Chapter 6 is not limited 

to lip tracking. Extending deformable feature tracking to track eyebrows, nostril 

shape and other deforn1able facial features, will allow a computer to really see the 

defonnation of a subject's face. In addition, using colour information has great 

potential to further increase the accuracy and robustness of the tracking. 

However, more interesting than refine1nents to the systems presented here are the 

potential applications of this work. Enhancing human-machine interaction is a 

hot topic of research throughout the world, and computer vision is playing a key 

role. A con1puter or robot that can reliably locate and track a person's face in a 

real world scenario has great potential for application across a wide range of fields. 

Examples include: i1nproved teleconferencing , monitoring human performance, 

smart security surveillance, interfaces for the disabled, more realistic interaction 

for games , and facial animation for digital characters. The possibilities are great , 

but when we consider huw central vision is to the way humans perceive the world 

it is unsurprising that a computer embodied with this ability offers such potential. 
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Appendix A 

Contents of CD-ROM 

The CD-ROM enclosed with t his thesis contains the following: 

thesis .pd£ 
f ace_in1ages / 

FRST_movie 
faceJoc_moviel 
f aceJoc_movie2 
multipleJoc_movie 
f ace_reg_rnovie 
face_track_mono_movie 
face_ tr ack_stereo _movie 

Electronic copy of t he t hesis. 
Folder containing face images used in Chapter 3 to 

detennine the mean maximum value of On. 
Movie of FRST operating over an image sequence. 

Movie showing face localisation. 
Another movie showing face localisation. 
Movie showing localisation system with multiple targets . 

Movie shov.ring face registration. 
iv'Iovie of monocular lip tracker. 
Movie of stereo lip tracker. 
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Appendix B 

Derivation of the Optical Flow 
Constraint Equation 

Consider an irnage sequence l (t) and denote the intensity at location (x , y) at 

time t by l (x, y, t). Using a Taylor series expansion , an expression can be written 

for l ( x + dx, y + dy, t + dt), that is the value of the in1age a short time dt later 

and a srnall distance ( dx, dy) away, 

dl dl dl 
l (x+dx,y+dy,t+dt)= l (x,y,t)+-d dx+-d dy+ - dt+... (B .1) 

X y dt 

ow, consider an object at a position (x, y) at a time t, that moves through a 

distance (dx, dy) after tin1e dt. If the intensity of the object in the image does 

not change, then we have 

l (x + dx, y + dy, t + dt) = l (x, y, t) 

so if f ollovvs fro1n B .1 
dI dl dl 
-dx + -dy + - dt = 0 
dx dy dt 

dividing through by dt and taking the limit as dt --+ 0 

where u = dx and v 
dt 

equation. 

51 51 51 
- - = u-+ v -

5t 5x 5y 
(B.2) 

~ . Equation B. 2 is called the optical flow constraint 
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