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Abstract

Vision is the primary sense through which people perceive the world, and the im-
portance of visual information during our interactions with people is well known.
Vision can also play a key role in our interaction with machines, and a machine
that can see people is more able to interact with us in an informed manner, This
thesis describes work towards a computer vision system to enable a computer to
see people’s faces, and hence provide a basis for more meaningful and natural

interaction between humans and computers.

‘The human face possesses a number of visual qualities suitable for detecting faces
in images. Radial symmetry is particularly useful for detecting facial features.

We present new transform, the Fast Radial Symmetry Transform (FRS'T), that
allows efficient computation of local radial symmetry in realtime. Both as a facial
feature detector and as a generic region of interest detector the FRST is seen to
offer equal or superior performance to existing techniques at a comparatively low

computational cost,

However, no single cue can perform reliably in all situations. The key to an effi-
cient and robust vision system for tracking faces or other targets is to intelligently
combine information from a number of different cues, whilst effectively manag-
ing the available computational resources. We develop a system that adaptively
allocates computational resources over multiple cues to robustly track a target
in 3D,

After locating and tracking a face in an image sequence, we look at the problem
of detecting facial features and verifying the presence of a face. We present an
automatic face registration system designed to automatically initialise features for
a head tracker. We also explore the problem of tracking the facial features. This
involves tracking both rigid and deformable features to determine the 3D head
pose, and describe the locations of facial features relative to the head. The 3D

head pose is tracked using predominantly rigid facial features, and deformable



Vil Abstract

f[eatures are then tracked relative to the head. A new form of templates was
introduced to facilitate tracking deformable features. These are used in two case
studies. The first is a monocular lip tracker, and the second is a stereo lip tracking

system that tracks the mouth shape in 3D.

The face localisation, feature detection and tracking solutions presented in this
thesis could potentially be integrated to form an all-inclusive vision system al-

lowing a computer or robot to really see a person’s face,
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Chapter 1

Introduction

Interpersonal communication is a central part of people’s lives. The purposes
of communicating with other people are many and varied. We commonly com-
municate who we are, what we are doing, or how we are feeling, and instruct
others how to do things, or what we would like them to do. People communicate
effortlessly using language, tone of voice, gestures, posture and facial expressions.
A significant proportion of this communication is non-verbal. Figure 1.1 shows
people communicating in different circumstances — just by observing the people
in these pictures we can tell quite a lot about their situations, and begin to guess
what it is they are communicating.

There is some debate amongst experts as to exactly how much interpersonal
communication is non-verbal. Birdwhistell (1970) estimates 65 percent of the in-
formation transferred in a normal two person conversation is non-verbal, whereas
Mehrabian (1972) postulates it to be as high as 93 percent. The precise value is
of little consequence, the point is that non-verbal — as well as verbal — commu-
nication plays a crucial role in the interaction between people.

Compared to the way people interact with each other our interaction with com-
puters (and robots) is much more restricted. Traditionally people have interacted
with computers using a keyboard and mouse or other pointing device, and whilst
these are well suited for most standard computer tasks it limits computers to these
“standard” tasks. By standard tasks we mean tasks that computers are tradition-
ally considered as being good at, such as word processing, database management,
programming, browsing the internet, analyzing data, and performing numerical
computations.
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Figure 1.1: Humans communicating,

Enhancing the interaction between humans and computers offers many new pos-
sibilities. Ideally we would like to be able to interact with a computer in the
same way we do with another person. This would open the door to many new

and useful applications. Potential tasks could include:

e cntertainment, interfaces for games, facial animation,
e improved teleconferencing,
e monitoring human performance,
¢ classroom teaching,
L] ('.'H"HIL.’\ for 1}|t' t'|fh‘i']_\'. or the disabled.
e smart cars, smmart devices,
e smart security surveillance. and
& Ill:lliill,!', manal or :||1iunml(-c| tasks easier.
Computer vision allows computers to “see”. Having a computer that can see a

person is a significant step closer to a machine that we can interact with. The

research in this thesis has focused on helping a computer to see a person, in

)

particular the face.
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1.1 Principal Objectives

The goal of this research is to work towards a computer vision system that enables
a computer to see people’s faces, and hence provide a basis for more meaningful
and natural interaction between humans and computers. What do we mean when
we say we want a computer to be able to “see” faces? We want the computer
to be able to locate and track humans in image sequences, preferably in real-
time, and with robustness to different people’s appearances and the operational

environment.

There are a number of aspects to this problem. Firstly it is necessary to know
where a person is in a scene, in particular the location of their head. Once the
approximate location of the head is known the facial features can be detected,
and once these features have been found they can be used to track the pose of
the head and the relative motion of deformable features such as the mouth and
eyebrows. This thesis aims to present solutions to these human tracking issues
that could potentially form an all-inclusive vision system to allow a computer or

robot to see a person’s face,

Figure 1.2 shows how the problem of enabling a computer to see faces can be
broken down into face localisation, face registration, and face tracking. It also
shows how these different stages of the process relate directly to human com-
puter interaction applications such as human motion capture, face recognition,

lip reading and expression recognition.

The first, and perhaps the most challenging problem to be dealt with, is face
localisation. Consider the situation where a person is moving around a room,
the lighting conditions are variable, sometimes there are objects occluding the
person’s face, there may even be more than one subject to be tracked, and the
camera is not assumed to be stationary. The face localisation module must ro-
bustly locate the approximate location of the face and track it. It would be
feasible to extend this module to locate other parts of the body in addition to
the face, and move onto full or partial human motion capture, or even gesture
recognition. However, for the purpose of this work we are primarily interested in

locating the face.

Face registration is the next stage of the process. This involves verifying that
the target detected is indeed a face, and registering the locations of the facial

features. We have not considered actual recognition in this thesis. However, if it
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ocalisation: Example applications
1 track a person

(23
E
e
Cr
e
=
o
b

* Human motion capture

ce Registration:
ct facial features

w

Face recognition

Face Tracking:

Track head pose
Track facial features

Giaze point estimation
Lip reading,
expression recognition

Figure 1.2: Overview of enabling a computer to “see” a face, and some typical
applications associated with the different stages.

is desired to automatically recognise the face from a set of known faces, then the
facial feature locations from the face registration module can be used to normalise
the appearance of the face in preparation for the application of a face recognition

algorithm,

Once facial features have been detected it is possible to track the pose of the head
and track the relative locations of deformable facial features. This essentially
captures all the information the face has to offer without determining a dense 3D
model of the subject. From here it is feasible to perform lip tracking, automate

a facial avatar, or attempt expression recognition.

Lhis thesis will focus exclusively on capturing visual information describing the
tace, thus enabling a computer to “see” a face, Face localisation, registration, and
tracking are each considered in turn and examples of implementations of each of
these are presented. Fast and efficient visual cues are also considered in detail,

and these cues are applied to the various detection and tracking tasks required.

Computer vision must be realtime to facilitate useful interaction with humans.
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Consequently, the methods developed in this thesis have a strong emphasis on
speed and efficiency. All algorithms were initially implemented in Matlab, how-
ever, some realtime implementations have been made using C++. Furthermore,
while the Matlab implementations typically run quite slowly, the algorithms are

efficient enough to run in realtime in C/C++.

1.2 Key Contributions

e Fast detection of radial symmetry — a valuable cue for detecting eyes and

other radially symmetric features in images.

e A system to adaptively allocate computational resources and fuse cues for

robust person tracking.
e Face detection algorithm for initialisation of a head tracking system.

e A monocular and a stereo 3D lip tracking system, both operating in conjunec-
tion with 3D head trackers to allow the subject’s head freedom of movement

whilst tracking.

1.3 Outline of Thesis

Chapter 2 discusses the application of computer vision for locating and track-
ing people, in particular the face, and reviews previous rescarch in this area. In
Chapter 3 a novel image based transform is presented that allows efficient com-
putation of radial symmetry in realtime; this transform is a powerful visual cue
for face detection and is used in the systems described in the Chapters 4 and 5.
Chapter 4 presents a vision system that adaptively allocates computational re-
sources over multiple cues to robustly track targets in 3D. In Chapter 5 a system
is described that performs automatic detection of facial features for the process of
face and gaze tracking. Chapter G explores the problem of tracking the face and
deformable facial features such as the lips. Finally, Chapter 7 closes the thesis

with a summary of the key findings and suggestions for further research,

An outline of each chapter is presented below.
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1.3.1 Related Work

Chapter 2 reviews related work in the field. We discuss the physical qualities
governing facial appearance, and consider visual cues suitable for detecting faces
in images. We then move on to look at previous research relevant to locating a face
(or other specified target) in a cluttered and dynamically changing environment,
placing particular emphasis on the need to fuse multiple visual cues in order to
obtain a robust estimate. Next we review previous work on face registration,
that is, verification that a face is present and determining the location of facial
features. Then we look at face tracking, both tracking of the head pose and
tracking deformable facial features such as the mouth. Finally the chapter closes

with a summary of the key points.

1.3.2 A Fast Radial Symmetry Transform

Chapter 3 presents a new image transform that utilizes local radial symmetry
to highlight points of interest within a scene. Its low computational complexity
and fast run-times make this method well suited for realtime vision applications.
The performance of the transform is demonstrated on a variety of images and
compared with leading techniques from the literature. Both as a facial feature
detector and as a generic region of interest detector the new transform is seen to
offer equal or superior performance to contemporary techniques at a relatively low
computational cost. A realtime implementation of the transform is also presented
demonstrating the effectiveness of the transform for highlighting peoples eyes in

realtime.

1.3.3 Face Localisation

Chapter 4 considers the problem of face localisation in a complex, dynamic en-
vironment. A vision system is presented that adaptively allocates computational
resources over multiple cues to robustly track a target in 3D. The system uses a
particle filter to maintain multiple hypotheses of the target location. Bayesian
probability theory provides the framework for sensor fusion, and resource schedul-
ing is used to intelligently allocate the limited computational resources available
across the suite of cues. The system is shown to track a person in 3D space mov-

ing in a cluttered environment. An additional example is shown demonstrating
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how the system can be extended to track multiple targets, using multiple particle
filters, and inhibition of returns to prevent different filters from locking onto the

same target.

1.3.4 Face Registration

Chapter 5 examines the problem of face registration, that is, automatically de-
tecting facial features and confirming the presence of a face in an image. A face
registration system is presented that is designed to perform automatic detection
of facial features for the purpose of face and gaze tracking, and hence provide
the capability of face tracking without the requirement of a user specification or
calibration stage. Motion information is used to detect blinks, indicating possi-
ble eye locations and an associated face candidate. Facial features (eyes, mouth
corners, nostrils and eyebrows) are located and the face candidate is verified by

examining the topology of these features,

1.3.5 Face Tracking

Chapter 6 explores the problem of tracking the face and deformable facial features
such as the lips. In order to effectively track deformable facial features relative to
an unconstrained head it is also necessary to track the head pose. In this chapter
two case studies are presented, the first is a monocular lip tracker, and the second

is a stereo lip tracking system that tracks the mouth shape in 3D.

Tracking the lips has a broad scope of applications across the field of human-
computer interaction, including animation, expression recognition, and audiovi-
sual speech processing. As people talk, their heads naturally move about as they
gesture and follow conversation cues. It is necessary for a lip tracking system
to be robust with respect to this behaviour; to be able to detect, monitor and

account for movement of a speaker’s head.

The mouth is a 3D feature which deforms in all spatial dimensions. In order
to fully describe the mouth shape it is necessary to track it in 3D. Providing
such a description of the mouth shape is essential for accurate 3D character ani-
mation, and also provides significantly more information for audio-visual speech

processing and other human-computer interaction applications.
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1.3.6 Conclusion

Chapter 7 closes the thesis with a summary of the key findings and achievements,

and suggestions for further research.

1.4 Chapter Summary

This chapter has introduced and motivated the research reported in this thesis.
We have discussed the importance of visual information in both interpersonal
interaction between people and human-computer interaction, and stressed the
point that a computer that can see people is significantly closer to a computer
that we can interact with like we do with other human beings. The reader was
then introduced to the problem of enabling a computer to see a person, and given
a breakdown of a number of key elements of this problem. Finally we presented
an overview of the research in this thesis, showing how it contributes towards

solving the problem of enabling a computer to really “see” a person,



Chapter 2

Related Work

In the first chapter we discussed how the problem of enabling a computer to
"see” a face can been broken down into face localisation, face registration and
face tracking. This chapter reviews previous research in each of these three areas.
The anatomy of the human face is also discussed along with visual cues suitable

for detecting faces in images.

The first section of this chapter opens with a discussion of the physical qualities
governing the appearance of a face, and reviews visual cues suitable for detecting
faces in images. The following section reviews previous research relevant to lo-
cating a face (or other specified target) in a cluttered and dynamically changing
environment; particular emphasis is placed on the need to fuse multiple visual
cues in order to obtain a robust estimate. The third section reviews previous work
on face registration, that is, verification that a face is present and determining
the location of facial features. In the fourth section a brief background of face
tracking is presented, this involves both tracking of the head pose and tracking
deformable facial features such as the mouth. The chapter closes with a summary
of the key points.

2.1 Cues for Person Tracking

2.1.1 The Human Face

Our faces are central to our identities as human beings. We recognise others

and ourselves primarily from facial appearance. Four of the five senses — sight,
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hearing, taste and smell are perceived by organs within the facial region.
and from another person’s face we can sense how thev are feeling, where their
attention is focussed, and even make an educated guess as to whether they are
lving or withholding information. With 7,000 discrete facial expressions (Bates
and Cleese, 2001) at our disposal the face is rich with information. so it is not
surprising that the face is our primary focus when we interact with others. Indeed.

such interactions are often referred to as face-to-face encounters.

What qualities does the face have that makes it look like a face. and which of
these qualities can be used by computer vision to allow us to automat ically locate
faces in images? Figure 2.1 shows a frontal view of a face with a number of visual
attributes indicated that are suitable for detection by a computer vision system.
The topology of the facial features is the face's most distinctive quality, that is,
the arrangement of the eves. nose and mouth. s‘l].lt'l the bilateral symmetry between
the left and right sides of the face. The majority of the face is skin-coloured and of
a smooth texture. Facial features such as the eves, nostrils and mouth generally
appear darker than the surrounding skin. and the irises and pupils of the eves
exhibit local radial svmmetrv. The size and dimensions of a face are also quite
constrained, Pheasant (1986) presents a table of face dimensions of the general

population of British adults aged 19-65 vears, circa 1986, which is repeated in
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Table 2.1.

Table 2.1: Face Dimensions of British Adults

Dimension Men Women
Mean (mm) | SD (mm) | Mean (mm) | SD (mm)

Head length 195 8 180 7
Head breadth 155 6 145 6
Maximum diameter of chin 255 8 235 7
Chin to top of head 225 11 220 11
Ear to top of head 125 6 125 8
Ear to back of head 100 T 100 9
Bitragion breadth 135 6 130 5
Eye to top of head 115 7 115 8]
Eye to back of head 170 8 160 10
Interpupillary breadth 60 1 60 4
Nose to top of head 150 10 145 12
Nose to back of head 220 9 205 10
Mouth to top of head 180 9 170 11
Lip length 50 5 45 1

We desire our system to be able to detect anyone, regardless of race, sex, age
or stature. With this in mind we look at head sizes from different populations,
In an attempt to determine a range of head sizes within which every person will
lie. Examining anthropometric data from Pheasant (1986) for males and females
from North American, British, French, Swiss, German, Swedish, Polish, Japanese,
Hong Kong Chinese and Indian populations we find the American male has the
largest adult head size, and the smallest is that of Indian women. Thus we have
a range within which we expect adult head sizes to fall. Including children in
the search space will lead to a broader range of acceptable head sizes. however,
if we restrict ourselves to only searching for children above five vears old this
only slightly extends the acceptable range of head sizes. Table 2.2 presents the
head dimension of these bounding populations. Note that only British data was
considered for children.

Table 2.2: Head Dimensions Bounding Populations

Population Head length | Head breadth
Mean | SD | Mean | SD
Newborn infants (British) 120 1 95 3
5 year old girls (British) 165 5 130 5
Smallest adult (Indian female) | 170 7 135 5
Largest adult (American male) | 195 8 155 §

[t is possible to calculate an average face by overlaying numerous face images with
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Figure 2.2: Average face.

the facial features aligned. Average faces have been used previously in computer
vision to search for faces in images (Cai and Goshtasby, 1999), and in studies
of human facial beauty (Grammer and Thornhill, 1994). However, these average
faces have typically been constructed from a modest number of faces (Cai and
Goshtasby used 16, and Grammer and Thornhill (1994) constructed male and
female average faces using 44 and 52 subjects respectively). We have constructed
an average face from 224 images of faces of men and women of different races
obtained from the internet. Each image was rotated so the eyes were horizontal,
and warped so the interpupillary distance and the distance from the mouth to
the eves were the same across all images. The ratio of the interpupillary distance
to mouth to eve distance was determined hy averaging the male and female pop-
ulations in Table 2.1 (giving a ratio of 1:1). The resulting average face is shown
in Figure 2.2 The average face provides a useful reference for designing cues to

detect faces and facial features in images.

There are a number of different problems to consider when looking for a face.
Knowing the range of acceptable head sizes allows us to search for head-sized
blobs using stereo depth information, and identify regions of motion that could
potentially be heads. Face-sized regions of skin colour can also be identified.
as can peaks in radial svmmetrv and dark blobs that could be facial features.

Searching for regions with bilateral symmetry and features clustered in face-
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like arrangements is difficult to do efficiently and robustly, however, these facial
qualities are useful to check when it comes to verifying whether or not a detected

target is a face,

The remainder of this section reviews previous research in this area, covering
skin detection, depth map estimation, motion detection, and radial symmetry

detection.

2.1.2 Skin Detection

Detecting skin regions is a first step in the majority of recent face detection
methods. The key quality that differentiates skin from non-skin regions in im-
ages is colour. Colour has been successfully used to identify regions of human
skin in images in numerous applications. Interestingly, human skin colour varies
little between different races. The primary variation is in its intensity, that is

proportional to the amount of melanin in the skin.

Swain and Ballard (1991) demonstrated that the intersection of colour histograms
in colour space could be used to reliably identify coloured objects. However, this
technique was sensitive to colour intensity and thus the ambient light source.
Several years later Hunke (1994), Hunke and Waibel (1994) and Schiele and
Waibel (1995) developed a skin colour detector which was invariant with respect
to intensity. They modelled colour in a two dimensional chrominance space’
obtained by normalising the RGEB colour space with respect to intensity (see
equations 2.1 and 2.2). Since this time a plethora of different skin colour detection

schemes have been reported in the literature.

The general approach of skin colour segmentation schemes is summarised as fol-

lows.

[nitially a skin eolour model is built off-line, this involves:

e Sample colour images containing only skin colour are passed to the system

(these are typically in RGB format), Figure 2.3(a).

e The colour value of every pixel is mapped to a two dimensional chrominance

space (some schemes map to a colour space with three dimensions, but these

1 i‘ . i y i T ' ' r
A chrominance space is a two dimensional space generated by removing the intensity com-
ponent from a three dimensional colour space such as RGB or HSV,
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are in the minority) to form a skin colour histogram. Figure 2.3(b).

e A model is selected deseribing the distribution of skin colour pixels in

chrominance space. Figure 2.3(c).

Testing images for skin colour is done on a pixel-by-pixel basis as shown in Fig-

ure 2.4:

e The colour information is converted to the appropriate chrominance space.

e The skin-likeness of each pixel is determined by the value of the skin colour
distribution function corresponding to the pixel’s location in chrominance

space.

A threshold is generally applied to the output to produce a binary image of skin-
coloured regions, however, pixels can be left as grey-levels giving a continuous

measure of how “skin-like” they appear.

The main differences between different skin colour detection schemes are the
chrominance space chosen, and the distribution used to model the skin in chromi-

narnce space,

The eflectiveness of a skin detection algorithm depends on the appropriateness
of the chrominance space in which the skin chroma is modelled. It is desirable
to use a space in which the skin chroma distribution can be accurately modelled
and segmented from non-skin chroma. Just about every colour space (or corre-
sponding chrominance space) has been used for skin colour detection, examples
include RGB (Satoh et al., 1997), normalised rg (Hunke, 1994; Kumar and Pog-
gio, 2000), HSV (Sobottka and Pitas, 1996a), CIE (Commission Internationale
de L'Eclairage) XYZ (Wu et al., 1999), CIE LUV (Yang and Ahuja, 1998), and
CIE Lab (Cai and Goshtashy, 1999).

Two recent studies have compared the performance of different colour spaces
for human skin detection (Terrillon and Akamatsu, 1999; Zarit et al., 1999),
whilst these studies fail to agree on an optimal colour space, results from both
studies support the HS chrominance space as exhibiting the smallest overlap
between skin and non-skin distribution. Terrillon and Akamatsu (1999) examine
the comparative performance of nine different colour spaces applied to detecting

Asian and Caucasian faces in complex images using a single multivariate Gaussian
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Figure 2.3: Constructing a skin colour model.
samples. (b) Plot of chrominance values in ab chrominance space, from Cai
i ; l e ' sy g |= ' ~ : .

and Goshtasby (1999). (¢) Example skin chrominance model in ab space, from

Cai and Goshtasby (1999).
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Figure 2.4: Detecting skin. (a) Input image, convert to appropriate chromi

nance space. (b) Determine skin-likeness of each pixel from skin model. (c)

Result showing skin-likeness of each pixel in input image.
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skin colour distribution model. They test normalised rg, ClE-xy, TS, CIE-DSH,
HSV, YIQ, YES, CIE LUV and CIE LAB and conclude that their own 'T'S chroma
space (Terrillon et al., 1998) designed especially for this purpose shows the best
results, followed by the normalised rg space. Zarit et al. (1999) compare the
performance of CIE LAB, Fleck HS, HSV, normalised rg and YC,C, with two
different skin colour modeling schemes and conclude that HSV and Fleck HS

provide superior performance.

From these studies on classification performance, normalised rg, HS and TS
chrominance spaces appear are the most effective for skin segmentation. However,
classification performance is not the only factor that needs to be taken into con-
sideration. The computational load of converting to different chrominance spaces
is also an important factor when choosing a chrominance space for realtime skin

detection.

Video cameras generally deliver raw colour image information to a computer in
YUV format, where Y is a full resolution luminance channel and U and V are
chrominance channels, with one value for every two pixels. These are converted
to standard RGB format for storing in memory and displaying on the screen, and
as a result the majority of colour conversions consider RGB as the base colour
type. The normalised rg chroma, for instance, are calculated from the RGB

colour values using,

R
""" R+G+B a3
g ; (2.2)

" R+G+B

The TSL space which leads to the TS chroma is defined as (Terrillon and Aka-
matsu, 1999)

[ =tan™'(r'/g) + % if ¢ >0

d' = < ﬁ tan=1(r'/g') + —;’ if ¢/ =0

0 o =0
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L=0.299R + 0.587G' + 0.114B

where ' = r— li and ¢ = g— ,]—1, and r and ¢ are defined by Equations 2.1 and 2.2.

However, there is no reason why the raw UV chrominance information cannot
be used for skin segmentation. The YUV colour format provides us with a pre-
calculated chrominance image that requires no additional computation to gener-

ate,

The second key element in a skin-colour extractor is the model used to represent
the skin colour distribution in chrominance space. Such models range from prim-
itive rectangular regions achieved by thresholding of chrominance values (Sobot-
tka and Pitas, 1996b) to empirical histogram look-up tables (Hunke and Waibel,
1994) and sophisticated probabilistic and statistical models (Yang et al., 2000;
Wu et al., 1999).

Some researchers (Yang and Waibel, 1996; Yang and Ahuja, 1998) have hypoth-
esised that all skin colour — regardless of race — can be satisfactorily modelled by
a single multivariate Gaussian distribution. It is true that skin values in chromi-
nance space deviate little due to race, however, some subjects do exhibit slightly
different skin chrominance distributions independently of race (Omara, 2000).
This observation has led to a number of more complex skin models, examples in-
clude multiple Gaussian distributions (Omara, 2000), fuzzy modelling techniques

(Wu et al., 1999) and neural network based designs (Chen and Chiang, 1997).

Cai and Goshtasby (1999) proposed a simple numerical technique for building
a skin colour look-up table in chrominance space. The result is effectively a
numerical approximation of a complex multi-Gaussian model, and is obtained
by convolving the chroma histogram with a Gaussian to make a “skin cloud” in
chroma space. This approach is very attractive as it offers a diverse and accurate
model with the speed of an empirical lookup table. The drawback is that it
is difficult to adapt the skin model to <r11n.np,'i.u;;' lighting conditions, since it is
not represented as a formal statistical distribution function. This sensitivity to
lighting conditions is the main shortcoming of skin colour detection schemes, and
while the use of intensity invariant chroma spaces has reduced this sensitivity, it

is still a problem,

Some researchers have considered adapting skin colour models to varying lighting

conditions. Yang and Waibel (1996) and Yang et al. (1998b) showed how to
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modify the parameters of their Gaussian model to adapt to changes in lighting
during operation. Raha et al. (1998) used Gaussian mixture models to detect skin
colour, hair, and clothing and presented a technique for dynamically updating
these models to account for changing lighting conditions. Sigal and Sclaroff (2000)
use a Hidden Markov Model to evolve a skin colour distribution model in HSV
colour space, and claim their system reliably extracts skin under widely varying

lighting conditions - including multiple sources of coloured light.

An alternative approach is to simply build the original chrominance histogram
using samples from all lighting conditions under which the system is intended
to operate. These conditions cannot be too diverse or the histogram could po-
tentially contain all possible colours, however, for a constrained set of lighting

conditions this is a feasible approach.

We base our approach to skin detection on that of Cai and Goshtasby (1999)
which offers a fast, efficient and simple method that delivers a high level of per-
formance. However, we augment the method by building a three-dimensional
skin colour histogram to better discriminate across varying lighting conditions.
Also, rather than using CIE Lab colour space we use YUV since these chan-
nels are available directly from our cameras and saves performing the additional

non-linear conversion to CIE Lab space.

2.1.3 Depth Maps

Stereo images have long been used for calculating depth in computer vision ap-
plications (Jarvis, 1983). There are other means of estimating depth that do not
require stereo, such as using a single camera and varying the focus, estimating
structure from motion, or even shape from shading. However, stereo is by far the
most popular and robust method of estimating depth in the near field; indeed
stereo is a strong cue for human depth perception for distances up to 10 meters.
Figure 2.5 shows an example of a pair of stereo images and a depth map generated

from these images. The generation of such depth maps is discussed below.

Stereo imaging is best illustrated using the pinhole camera model to represent
the cameras involved. This model is shown in Figure 2.6 (a) and demonstrates
how each pixel in the image corresponds to a ray in 3D space — so an object
visible at a particular image point could lie anywhere on the ray through that

point (beyond the image plane). Now consider the case shown in Figure 2.6 (b),
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Figure 2.5: A stereo image pair and associated depth map, courtesy of Luke
Fletcher. (a) Left image. (b) Right image. (¢) Depth map with lighter values
indicating shallower depths,

where two cameras are looking at same point. An object observed by camera
A lies on a ray that appears as a line in camera B. This is called an epipolar
line, and is dependent entirely on the epipolar geometry of the cameras, that
s, the location and orientation of the cameras with respect to each other, and
the internal parameters of the cameras. The epipolar geometry is independent
of the objects in front of the camera, so regardless what images are observed, a
particular image location will always ('()I't'(‘.H])()IIl(I to the same epipolar line in the
other camera view. All epipolar lines radiate out from a fixed image point called
the epipole, which is the image of the centre of the other camera, as shown in the

figure.

When we are computing depth maps we are essentially just computing a series of
point correspondences between the two images. So given a point in image A we

need only attempt to locate this point along the corresponding epipolar line in
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Figure 2.6: Pinhole camera model and stereo camera configurations. (a) Single
Caltera. (h) Vﬂrging stereo cameras, (c) Alignﬂ d stereo camerss.
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image B. A straightforward expression for determining the epipolar lines can be
determined by calculating the epipolar geometry and determining the fundamen-
tal matriz (Hartley and Zisserman, 2000). However, this is not necessary if we
set up the cameras in an aligned configuration as shown in Figure 2.6 (¢). This
requires both cameras to share the same X-axis (or alternatively Y-axis), have
parallel optical axes, and coplanar image planes. calculating a stereo depth map.
In this configuration an image point at height y in one image will correspond
to a horizontal epipolar line at height ¥ in the other image. Since the cameras
are directly side-by-side the epipoles are located at infinity, hence the parallel

epipolar lines.

The depth of an ohject observed in two stereo images from calibrated aligned
cameras can be determined from the disparity? between the object’s location in
the two images. The problem of determining the 3D depth map, such as the one
shown in Figure 2.5(c), (or equivalently the disparity values) from a pair of stereo
images comes down to finding the corresponding locations of points in the both

images, this is referred to as stereo matching.

When constructing dense depth maps area-based matching techniques are used to
solve the stereo matching problem. A number of different area-based techniques
are available (Aschwanden and Guggenbuhl, 1993). Denoting the template win-
dow as I, the candidate window as I, the mean pixel values of these windows as

I; and I, respectively, and summation over the window as 3, ,yew. these are:
e Sum of Absolute Differences,

o T TR

(u,v)e W

e Zero mean Sum of Absolute Differences,

> |Li(wv)=T1,) - (Io(z + u,y + v) = L)|

(vw)eW

e Sum of Squared Differences.

Z (I; (. v) — La(z 4+ u,y + ?,))2

(up)elW

 Disparity vefers to the shift of a 3D object’s position in an image when the camera is moved
perpendicular to the optical axis.
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e Zero mean Sum of Squared Differences,

z (I1(u,v) = Ii) = (Is(z + u,y +0) = I))?

(up)eW
e Normalised Cross Correlation,

E('H.,'H)ET.*U Il ('u*; 'U) . Ig(ﬂ? -+ U,y J- q_;)
\/z('h.,'u)EM-*’ Il (’{L, 1,)2 ' E(u.u)EW IE(E -+ U,y + ’t))z

e Zero mean Normalised Cross Correlation,

Z(*LL,TJ)EW’(II (?-{r, U) = Tj) ' (Ig(i? = Uy 'U) — T:.:)
Voumew T, v) =112 S umewla(@ + u, y +v) — I)?

Regardless of which method is used, generating a dense depth map across an entire
image 18 a computationally expensive procedure, as each image location must
be matched with every other location on the corresponding epipolar line in the
second image. In the late 1990's Konolige (1997) and Kanade et al. (1996) both
demonstrated systems able to generate dense depth maps in realtime, however.
these systems relied on specialised hardware. In 2000 Kagami et al. presented a
method for efficiently generating dense depth maps in realtime without requiring
specialised hardware. This was achieved by using four key techniques: recursive
normalised cross correlation, cache optimisation, online consistency checking, and
use of the Intel MMX/SSE(R) instruction set.

Preprocessing of images before performing stereo matching can increase the ef-
fectiveness of the matching process. Preprocessing typically involves filtering
mages to increase local contrast, and is particularly advantageous for matching
areas with low texture, Standard linear filtering approaches used are Laplacian of
Gaussian (LoG), or Difference of Gaussian. both of which increases local contrast
in the image. The LoG is the sum of the Gaussian’s second derivatives. Fig-
ure 2.7 shows a Gaussian, the first derivatives in the 2 and y directions and the
LoG, V3G. Applying a LoG across an image involves convolving the LoG kernel
V*G across the image. Unfortunately this kernel is non-separable, therefore the
convolution cannot be split into two one-dimensional convolutions, and is of order
O(KN?) for an N x N kernel across an image with K pixels.

However, a LoG kernel can be closely approximated by the more efficient Differ-
ence of Gaussian (DoG) filter. As its name implies, a DoG kernel is constructed as
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Figure 2.7: Laplacian of Gaussian. From top to bottom: Two-dimensional
Gaussian kernel, derivatives of Gaussian in x and y directions, and Laplacian
of Gaussian,

Figure 2.8: Difference of Gaussian kernel is generated as the difference of two
(raussians.

the difference of two Gaussian kernels as shown in Figure 2.8. Applyving the DoG
filter is more efficient than the LoG since each Gaussian can be applied separably
as two one-dimensional convolutions, and the results subtracted to determine the

DoG response,

Zabih and Woodfill (1994) present two non-parametric local transforms especially
formulated for enhancing the computation of visual correspondences, these are
called the rank and census transforms. The effectiveness of these transforms for
generating dense depth maps in realtime was demonstrated by Banks et al. (1997)
who applied the rank and census transforms when generating depth maps for an

underground mining application,

The rank transform is calculated for a pixel p by counting the number of pixels
in a local region centred on p whose intensities are darker than the intensity at

p. For example, Figure 2.9 shows a 3 x 3 local region centred at a point p, with



2.1 Cues for Person Tracking 25

Figure 2.10: Result of Zabih and Woodfill's rank transform with radius 1. (a)
Original image. (b) Rank transform,

the intensities of the pixels indicated. The value of the rank transform at point
p is 4, since there are 4 pixels darker than p in the local region. Applying this
transform to an image, as shown in Figure 2.10, results in an increase in local
texture, and since this texture will be consistent across both images of a stereo
pair it can be used for stereo matching. It is particularly beneficial for matching

in featureless areas of the image.

The census transform is an extension to the rank transform. Again the value at
pixel p is determined by examining the pixels in a local region centred on p and
determining which ones have intensities that are darker than the intensity at p.
However, rather than simply counting how many of these there are, the census
transtorm uses a binary code to record the locations of the pixels that were darker
than p. Each location in the neighbourhood of p is assigned a position in a binary
string, and if the pixel at this location is darker than p then the associated element
in the binary string is set to 1, otherwise it is set to 0. For instance, determining
the census transform over a 3 x 3 neighbourhood would require an 8-bit binary
number to indicate which of the 8-elements surrounding the centre pixel were
darker than the centre value and which were not.
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While the census transform can provide useful structural information that can
enhance stereo matching it is questionable that these enhancements are suffi-
cient to warrant the significant additional computation required to compute the
transform. On the other hand, preprocessing images with the rank transform or a
Difference of Gaussian filter prior to matching is relatively cheap computationally
and the quality of the depth maps generated benefit from the improved matching
results. Of these two operators the Difference of Gaussian can be more efficiently
implemented in software, whereas the rank transform is best suited to hardware

implementation.

We use depth maps generated in realtime by the method of Kagami et al.. For
maximum efliciency pre-filtering is be done in software with a Difference of Gaus-

sian filter, and stereo matching will be done using Sum of Absolute Differences.

2.1.4 Motion

There are several different methods for identifying regions of motion and segment-
ing moving objects in image sequences: image differencing, adaptive background

subtraction, and optical flow. Figure 2.11 shows an example of each of these.

The simplest approach is #mage differencing (Figure 2.11(c)). Here correspond-
ing pixel locations in two images are compared and locations where a significant
change is observed are marked as regions of motion. This approach provides an
efficient and straightforward means of locating potential regions of motion, how-
ever, since it is simply identifying pixels whose values have changed between the
two 1mages it is easily fooled by changes in lighting, camera position, or camera
parameters (such as zoom). It also tends to detect shadows as areas of mo-
tion. Despite its shortcomings, the efficiency and effectiveness of this approach
have found it used in many applications, particularly surveillance systems where
the background is often stationary. Crowley and Berard (1997) used image dif-
ferencing for estimating head location and localising blink positions in order to
determine eye locations, and Bala et al. (1997) also detected blinks in this way.
Image differencing is well suited for blink detection. Humans typically blink very
rapidly — Hakkanen et al. (1999) reported a mean blink duration of 51.9 ms

so the transition from open to closed eyes can occur in the time between consec-
utive frames, making it impractical to explicitly track the closing and opening

movement of the evelids,
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Figure 2.11: Two consecutive images in a 30Hz motion sequence and exam-
[)]‘-‘H of different motion cues caleulated from these and previous frames, (':1)
Previous frame, (b) Current frame. (¢) Difference image. (d) Adaptive back-

ground. (e) Difference from adaptive background. (f) Optical flow, courtesy

of Luke Fletcher.

1
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Background subtraction is an extension of image differencing. Rather than dif-
ferencing frames separated by a certain time delay, an image of the background
is subtracted from the current image to highlight objects that were not present
in the original background image. This method is very effective if a suitable
background image is available, however, unfortunately this is often not the case.
Fven if it is feasible to capture an image of the background without the subject
present, background subtraction will only be effective if the background remains
static, and the lighting, camera and camera parameters all remain the same. For
most applications it is unreasonable to expect the background to remain static
throughout an image sequence, and so to overcome this problem adaptive back-
ground models have been developed. These allow a model of the background to
be constructed and updated to accommodate changes in lighting and variations

in the background,

Adaptwe background subtraction provides a better measurement of motion than
simple background subtraction. Whereas the latter simply differentiates between
objects and the background, adaptive background subtraction highlights pixels
that have changed recently in the image sequence (see for example Figure 2.11(e)).
The adaptive background image (Figure 2.11(d)) is initialised as the current frame
and updated each frame to be a weighted sum of itself and the current frame.
Let A, be the adaptive background image at time ¢, and I, be the input image,

then a motion image M, is defined as

and cach frame A, is updated as
Ar e Al; -t (1 — !li.')Ap_] (2"'])

where & € (0,1). Like regular background subtraction this method is best suited
to fixed cameras where the majority of the image remains constant, so motion of

objects in the scene can be easily detected.

Collins ef al. (2000) used this adaptive background approach in conjunction with
image differencing to segment moving objects from a predominantly station-
ary background in an outdoor surveillance scenario. The adaptive background
method is fast and efficient to compute, and the time it takes for stationary ob-
jects to be absorbed into the background can be modulated simply by varying

the constant £ in Equation 2.4,
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A more sophisticated method for quantifving motion in images is optical flow,
illustrated in Figure 2.11(f), which aims to directly measure the movement of
pixels in an image sequence. An optical flow field is a vector field describing
the direction of local motion at each point in the image. There are several ap-
proaches available for calculating optical flow, and Baron et al. (1994) provide a
detailed review of different methods. Broadly, the techniques can be divided into

correlation and constraint-based methods.

Correlation-based methods identify local motion by locating groups of pixels from
the previous image in the current image. This involves searching over small
2D regions centred about where the pixels occurred in the previous image. It
is computationally intensive, but conceptually simple, and can be implemented
recursively to increase the efficiency. In 1999 Kagami et al. demonstrated realtime
flow generation using a recursive method to calculate correlations, along with

cache optimisation, and the Intel MMX instruction set (Kagami et al., 1999).

“onstraint-based optical flow methods (Horn and Schunk, 1981; Lucas and Kanade,

1981) rely on the aptical flow constraint equation,

YL L . (2.5)

ot 0T oy
where u = ‘;% and v = ‘r—ﬁi, the derivation of which is included in Appendix B. Each
element of this equation can be determined directly from the image sequence, %
and % are the regular image derivatives describing how intensity changes across
the image in the = and y directions, and % indicates how fast the intensity is

changing with time. By itself this one constraint equation is insufficient to solve
for the two unknowns u and v. Horn and Schunk (1981) applied an additional
global smoothness constraint, and Nagel (1983) offered a variation on this de-
signed to better handle occlusion by not imposing the smoothness across strong
intensity gradients. Lucas and Kanade (1981) presented an alternative approach
that determined a weighted least squares solution to Equation 2.5 over a small

spatial neighbourhood in the image.

Compared to image differencing and adaptive background subtraction. optical
flow can potentially provide more useful information for identifying objects in
dynamic scenes. For instance, it allows moving objects to be segmented from
moving backgrounds. The main drawbacks are the coarseness and inaccuracies of

the flow field that is typically produced, and the high computational requirement.
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However, recent fast flow generation results (Kagami ef al, 1999) mean that

optical flow is now a viable option for realtime tracking systems.

We use image differencing to detect blinks and locate eye positions as it is unques-
tionably the simplest and fastest method available. Adaptive background sub-
traction shall be used to help detect targets moving in cluttered scenes. Whilst
this method essentially relies on the target moving and the rest of the scene re-
maining more-or-less static, it is extremely effective in this situation, and when
combined in a multi-cue system will be able to provide complementary infor-
mation when the target is undergoing motion. Optical flow is computationally
expensive, and despite the recent work of Kagami et al. (2000) typically provides
too sparse a flow field to warrant it’s inclusion in a multi-cue face localisation

system.

2.1.5 Radial Symmetry Operators

A number of context-free attentional operators have been proposed for automat-
ically detecting points of interest in images. These operators have tended to
use local radial symmetry as a measure of interest, This correlates well with
psychophysical findings on fixation points of the human visual system. [t has
been observed that visual fixations tend to concentrate along lines of symmetry,
(Locher and Nodine, 1987). Sela and Levine (1997) noted that the psychophysical
findings of Kaufman and Richards (1969) corroborated this, placing the mean eye
fixation points at the intersection of lines of symmetry on a number of simple 2D
geometric figures. Figure 2.12(a) shows the results of Kaufman and Richards’s
study of mean spontaneous fixation positions for various small shapes, and Fig-
ure 2.12(b) shows the same shapes with their lines of symmetry annotated. [t
has also been observed that visual fixations are attracted to centers of mass of
objects (Richards and Kaufman, 1969) and that these centers of mass are more
readily determined for objects with multiple symmetry axes (Proffit and Cutting,
1080).

One of the best known point of interest operators is the generalized symmetry
transform (Reisfeld et al., 1995). Figure 2.13 shows an example of the so-called
dark and radial outputs of this transform. The transform highlights regions of
high contrast and local radial symmetry and has been applied to detecting facial
features (Reisfeld et al., 1995; Intrator et al., 1995; Reisfeld and Yeshurun, 1998),
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Figure 2.12: Modelling fixation tendencies, from Sela and Levine (1997). (a)
Results of a study by Kaufman and Richards (1969) examining adult gaze
fixation, The dotted circles indicate the location of mean spontaneous fixation.
[fach shape subtends two degrees of visual angle, (b) The same shapes with
their lines of symmetry and their intersections displayed.

Figure 2.13: Examples from Reisfeld et al. (1995) showing (from left to right),
a test image, and the dark symmetry and radial symmetry outputs of the
Generalised Symmetry Transform.

[t involves analyzing the gradient in a neighbourhood about each point. Within
this neighbourhood the gradients at pairs of points symmetrically arranged about
the central pixel are compared for evidence of radial symmetry, and a contribution
to the symmetry measure of the central point is computed. The computational
cost 1s high, being of order O(K N*), where K is the number of pixels in the image
and N is the width of the neighbourhood. Whilst a realtime implementation has
been attempted (Yamamoto et al., 1994) it required a massive parallel computer
architecture and was only able to achieve processing times of the order of seconds

per frame,
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Figure 2.14: Gradient orientation masks used in Lin and Lin (1996) for de-
tecting light blobs, (a) 3 x 3 mask, (b) 5 x 5 dual mask set.

Lin and Lin (1996) present a symmetry measure specifically for identifying fa-
cial features in images. They proposed a masking technique to evaluate radial
symmetry based on gradient direction. Gradient directions are quantized into
eight bins. The masks show which bin the local gradients should fall into for per-
fect radial symmetry about the center of the neighbourhood (for either a dark or
light blob). Figure 2.14(a) shows the 3 x 3 gradient orientation mask for detecting
light blobs (gradient pointing from dark to light). Dual-masks are used to accom-
modate for pixels where the acceptably radially-symmetric gradient orientations
span two orientation bins, Figure 2.14(b) shows the dual mask set for a 5 x 5
neighbourhood.  The radial symmetry at each pixel is determined by examin-
ing the discrepancy between the gradient orientations in the local neighbourhood
and the orientation masks that represent perfect radial symmetry. The output
of radially symmetric points from this comparison tends to be quite dense. In
order to obtain points of radial symmetry useful for facial feature extraction two
additional inhibitory processes are required: an edge map is used to eliminate
all interest points which do not occur on edges, and regions of uniform gradient

distribution are filtered out.

The computational cost of Lin and Lin’s algorithm is stated as "O(9K)" for an
image of K pixels. However, within the definition of the algorithm the size of
the local neighbourhood within which symmetry is determined is explicitly set to
either 3 x 3 or 5 x 5. Whilst the results for these values of N = 3 and N = 5
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are good, no evidence is presented that this same level of performance will hold
for larger neighbourhoods. In any case, extending this algorithm to measure
symmetry in an N x N local neighbourhood results in a high computational cost
of order O(KN?).

Sun et al. (1998) modify the symmetry transforms of Reisfeld et al. (1995) and
Lin and Lin (1996) to obtain a symmetry measure which is combined with colour
information to detect faces in images. An orientation mask is used similar to Lin
and Lin (1996), together with a distance-weighting operator similar to Reisfeld
et al. (1995), and the magnitude of the gradient is also taken into considera-
tion. By using skin colour to initially identify potential face regions the scale of
the symmetry operators can be chosen to suit the size of the skin region under

consideration,

Sela and Levine (1997) present an attention operator based on psychophysical
experiments of human gaze fixation. Interest points are defined as the intersection
of lines of symmetry within an image. These are detected using a symmetry
measure which determines the loci of centers of co-circular edges® and requires the
initial generation of an edge map. Edge orientations are quantized into a number
of angular bins, and nverted annular templates are introduced to calculate the
symmetry measure in a computationally efficient manner. Figure 2.15 shows one
such template placed over edge point p. Note that the direction of the gradient
g(p) lies within the angular range of the template, and 7., and 7., specify
the radial range of the template, Separate templates are required for different
circle radii and gradient orientations. Convolving one such template, of radius
n and a particular angular range, with an image of edges, whose normals lie
within with this same angular range, generates an image showing the centers of
circles of radius n tangential to these edges. This is repeated for each angular
bin and each radius to form images of circle center locations. Co-circular points
are then determined by examining common center points for circles of the same
radius. The calculation of the final interest measure combines these points with
orientation information of the corresponding co-circular tangents. This method
can also be readily applied to log-polar images. The technique was shown to run
in realtime on a network of parallel processors. The computational cost is of order

O(K BN) where B is the number of angular bins used (B is typically at least 8).

The approach of Sela and Levine bears some similarity to the circular Hough

:.! o i 1 . » 1 ' 3
Two edges are said to be co-circular if there exists a circle to which both edges are tangent.
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Figure 2.15: Inverted annular template as used by Sela and Levine (1997).

transform that is also used to find blobs in images. Duda and Hart (1972) showed
how the Hough transform could be adapted to detect circles with an appropriate
choice of parameter space. They required a three dimensional parameter space
to represent the parameters a, b and ¢ in the circle equation (z —a)?+ (y — b)? =
c¢*. Kimme et al. (1975) noted that on a circle boundary the edge orientation
points towards or away from the center of the circle, and used this to refine
Duda and Hart’s technique and reduce the density of points mapped into the
parameter space. Minor and Sklansky (1981) further extended the use of edge
orientation, introducing a spoke filter that plotted a line of points perpendicular
to the edge direction (to the nearest 45 degrees) as shown in Figure 2.16. This
allowed simultaneous detection of circles over a range of sizes (from 7,.in t0 Tinas
in Figure 2.16). An 8-bit code is generated for each point in the image, one
bit for each of the eight 45 degree wide orientation bins. FEach bit indicates
whether a spoke filter of the appropriate orientation has plotted a point in a
3 % 3 neighbourhood about the point in question. Four discrete output levels
are determined from the bit codes: all 8 bits positive, 7 bits positive, 6 adjacent
bits positive, and all other cases. This technique was successfully used to detect
blobs in infrared images. The computation required for an image of A pixels is of
order O(K BN ) where B is the number of angular bins used (Minor and Sklansky

(1981) used 8), and N is the number of radial bins.

Di Gesit and Valenti (1995a) present another method for measuring image sym-
metry called the diserete symmetry transform. This transform is based on the
calculation of local axial moments, and has been applied to eye detection (Di Gesn
and Valenti, 1995a), processing astronomical images (Di Gesii and Valenti, 1995b)
and as an early vision process in a co-operative object recognition network (Chella
et al., 1999). The computational load of the transform is of the order O(K BN)

where K is the number of pixels in the image, N is the size of the local neigh-
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Figure 2.17: An example of the Discrete Symmetry Transform operating on a
face image, from Di Gestu and Valenti (1995a).

bourhoods considered and B is the number of directions in which the moments
are calculated. This load can be reduced by using a fast recursive method for
calculating the moments (Alexeychuk et al., 1997), giving a reduced computa-
tional order of O(K' B). Figure 2.17 shows an example of the transform being
applied to detect the eyes in an image. Despite the strong highlighting of the
eyes in this image, the transform tends to highlight regions of high texture in
addition to radially symmetric points, note for instance the strong highlighting

of the earrings in this example.

lovesi (1997) presented a technique for determining local symmetry and asym-
metry across an image from phase information. He notes that axes of symmetry
occur at points where all frequency components are at either the maximum or
minimum points in their cycles, and axes of asymmetry occur at the points where
all the frequency components are at zero-crossings. Local frequency information
s determined via convolution with quadrature log Gabor filters. These convolu-

tions are performed for a full range of filter orientations and a number of scales,
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Figure 2.18: An example of symmetry from phase operating on a natural
image, from Kovesi (1997).

with each scale determining the response for a particular frequency bin, This
technique is invariant to uniform changes in image intensity and as such is a
truer measure of pure symmetry than other approaches which tend to measure a
combination of symmetry and contrast. The computational cost of this method
s high. Although the convolutions are efficiently performed in the frequency
domain the computation required to transform the image between spatial and
frequency domains is costly. This method is not intended as a point of inter-
est operator. However, the resulting continuous symmetry measures it produces
strongly corroborate the theory that points of interest lie on lines of symmetry.
An example of the algorithm determining the symmetry across a natural image is
shown in Figure 2.18, For a detailed discussion on image phase and its application

see Kovesi (1999a).

Lhis section has demonstrated the suitability of radial symmetry-based feature
detection for detecting facial features. There is no question that radial symme-
try is a valuable cue. However, the best results for facial feature detection come
from the generalize symmetry transform (Reisfeld and Yeshurun, 1998), and this
transform is slow, computationally expensive to compute, and not well-suited to
realtime applications. While some other methods provide more efficient alterna-
tive means of computing radial symmetry, the results obtained are not as useful
for locating facial features. In Chapter 3 we present a new, computationally eff
cient method for determining radial symmetry that is able to produce results that

rival those from the generalized symmetry transform whilst being fast enough to



f

2.2 Face Localisation 37

operate in realtime.

2.2 Face Localisation

In Chapter 1 we identified three key steps to enabling a computer to see a face
(see Figure 1.2), the first step is face localisation. Face localisation involves
determining and tracking the location of a person’s head in a complex dynamic
scene. This is a challenging problem, especially if the system has to deal with

changing lighting conditions, occlusions, and cluttered dynamic backgrounds.

Isard and Blake’s famous condensation approach to contour tracking (Isard and
Blake, 1996, 1998) tracks target’s outlines using particle filtering and active con-
tours. The outline of the target is parameterized using B-splines, and described
as a point in state (parameter) space. Impressive results have been shown that
illustrate how particle filter-based contour tracking methods can effectively deal
with multiple hypotheses, occlusions and varying lighting conditions.

The particle filter approach to target localisation, also known as the condensation
algorithm (Isard and Blake, 1996, 1998) and Monte Carlo localisation (Thrun,
2000), uses a large number of particles to “explore” the state space. Each particle
represents a hypothesised target location in state space. Initially the particles are
uniformly randomly distributed across the state space, and each subsequent frame

the algorithm cycles through the steps illustrated in Figure 2.19:

1. Measure: The Probability Density Function (PDF) is measured at (and
only at) each particle location. Thus a probability measure is assigned to
each particle indicating the likelihood that that particle is the target.

2. Resample particles: The particles are re-sampled with replacement, such
that the probability of choosing a particular particle is equal to the proba-
bility assigned to that particle.

3. Deterministic drift: Particles are moved according to a deterministic motion
model,

4. Diffuse particles: Particles are moved a small distance in state space under
Brownian motion.



38 Related Worlk

Particles 5 (1) distributed across state space

1. Measure

2 . Re-sample

3. Drift

i

$ \"‘m \ 4. Diffusion

New set of particle locations s (r+1)

Figure 2.19: Evolution of particles over a single time-step. The unknown PDF
is measured only at the particle locations, particles are then re-sampled with
replacement, and drift and diffusion are applied to evolve the particles to their
new locations,

Note that any dynamics can be used in place of steps 3 and 4, but the standard

approach is to apply drift and diffusion.

This cyclic process results in particles congregating in regions of high proba-
bility and dispersing from other regions, thus the particle density indicates the
most likely target states. Furthermore the high density of particles in these
“target-like” regions means that these regions are effectively searched at a higher

resolution than other more sparsely populated regions of state space.

The hypothesis-verification approach used by particle filters is a powerful method
for locating targets in state space. It is especially attractive as it does not require
the probability density function to be calculated across the entire state space, but
only at the particle locations, Using this approach to locate a target in an image
does not require searching across the entire image in the usual manner — as is
done with template matching across a region, for instance instead we need
only verify targets at hypothesised locations. The challenge is then to ensure

that the hypotheses end up finding the target.

There are several things that can be done to maximise the likelihood of the
hypotheses converging on the target. Firstly, there is the design of the particle

filter: using a sufficient number of particles, appropriate diffusion parameters, and
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a valid motion model to approximate the target’s motion and facilitate calculation
of the deterministic drift. Secondly there is the choice of cues used to measure the
PDF at each hypothesis location. The process benefits greatly from cues whose
responses increases steadily in the vicinity of the target location, rather than cues
(such as normalised cross correlation) that give a high response only at the target
location and noise elsewhere. By using cues that give a high responses when close
to (as well at) the target location the particle filter is able to propagate hypotheses
that are close to likely target locations, and thus increase the resolution of the
search at these locations, without relying on a hypothesis being located precisely

at the target location in order to generate a high response.

MacCormick and Blake (1998) describe a generic object localisation technique
designed to initialise a contour tracker such as the one proposed by Isard and
Blake (1996, 1998). Their system is able to locate a target in a cluttered en-
vironment, requires no knowledge of the background, and is robust to lighting
changes. Rather than searching the entire image, a large number of hypothesis
target locations are considered (MacCormick and Blake use 1,000). Each one of
these is evaluated using Bayesian probability theory to quantify whether it is more
“target-like” or “clutter-like”. Hypotheses are chosen based on a prior statistical
density describing the likelihood of a target occurring at a given position in state
space. This density is determined from a training sequence of the target exhibit-
ing typical behaviour, in which the target is tracked using a manually initialised
contour tacker. The frequency of different state space configurations observed in
this training sequence is used to build the density describing the likelihood of a

given hypothesis configuration occurring,.

Using multiple visual cues is known to improve the robustness and overall per-
formance of target localisation systems. A number of researchers have utilised
multiple cues to detect and track people in scenes, however, there have been few
attempts to develop a system that considers the allocation of finite computational
resources amongst the available cues, the notable exception being Crowley and
Berard (1997).

Crowley and Berard (1997) used multiple visual processes: blink detection, colour
histogram matching, and correlation tracking, together with sound localisation, to
detect and track faces in video for video compression and transmission purposes.
Fach cue is converted to a state vector containing four elements: the x and y co-

ordinates of the centre of the face, and the face height and width. A confidence
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measure and covariance matrix are estimated by examining the state vectors of
all the cues, and used to combine the state vectors to give the final result. The
advantage of this approach is the extremely compact form in which the state
vectors represent information. The disadvantage is that it only allows one face
target to be reported by each cue. Apart from the inability of such a system to
deal with multiple faces, it only allows each cue to report a single target and thus
throws away any additional information the cue may provide. For instance, if
there are two regions of skin-like colour we would prefer a system to report the
presence of both regions and allow the additional cues to determine which is a
face, rather than returning a single result, namely the centre of gravity of the two

regions.

Kim and Kim (2000) combine skin colour, motion and depth information for
face detection. Initially depth information is used to segment objects from the
background, then the AND operator is used to combine the information from
the colour and motion cues. This is the simplest way of combining information,
and it will reduce the number of false positives. However, it is only suitable
for cues in binary form, and although any set of continuous cues can easily be
converted to binary, doing so throws away a great deal information which is useful
for determining the confidence and reliability of the cue’s performance. As such,
combining cues with the AND operator is only suitable when the performance
level of each cue is known, and is undesirable for a system which must be robust

to varying operating conditions.

Darrell et al. (2000) integrate stereo, colour, and face detection to track a person
in a crowded scene in realtime. A stereo depth map is used to isolate silhouettes
of the subjects, and a skin colour cue identifies and tracks likely body parts
within these silhonettes. Face pattern detection is applied to discriminate the
face from other detected skin-coloured regions. The system tracks users over
various time scales and is able to recognise a user who returns minutes — or even
days later. Statistics gathered from all three modalities are used to recognise
users who reappear after becoming occluded or leaving the scene. This system
demonstrates the advantage of fusing multiple cues for robustness and speed:
using the simple but efficient depth and colour cues to localise targets in real-
time before following through with the slower, yet more precise, face detection
module. The disadvantage to applying cues in a serial manner such as this is the
implicit requirement that the initial cues must not miss the target. This problem

can be minimized, however, by accepting an increased number of false positives
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Figure 2.20: Cues operating in Triesh and von der Malsburg's system, from
Triesh and von der Malsburg (2000).

from the initial cues.

Triesh and von der Malsburg (2000) present a system suitable for combining an

unlimited number of cues. The system is demonstrated using contrast, colour,

shape, and two motion cues (intensity change and a predictive motion model),
y ] W [ i i

to track a person’s head. The results of these cues together with an input image

-

and target shape model are shown in Figure 2.20.

For each (i*") cue and (k') image frame the following quantities are determined:

e an image of probabilities A;[k| describing the probability a given pixel is

s

part of a face (as shown for each cue in Figure 2.20),

e a quality measure rg,\!.'} describing how accurate the sensor was in determin-

ing the final result in the previous image frame, and

e a reliability measure r;[k|, which is effectively a running average of the
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Figure 2.21: Triesh and von der Malsburg’s system tracking a person's head in
£ 5 8 8] E a ]

an image sequence, from Triesh and von der Malsburg (2000). These frames
are taken across a 5 second period and show robustness to changing lighting
conditions.

quality measure g;[k].

The final result is given by the weighted sum 33, ri k| A;[k]. The A;[k] image is
generated by comparing the i*" sensor's information with a prototype P;|k| which
describes the target (a face) with respect to that sensor. These prototypes are
updated dynamically as a running average of the sensor’s output at the target

locations in previous frames.

The results of this system (see for example Figure 2.21) are impressive and demon-
strate how combining multiple cues increases the robustness of a tracking system.
This system was an inspiration for our work, which, however differs in several as-
pects.  Firstly, Triesh and von der Malsburg’s system is primarily a tracking
system rather than a localisation system. The principal requirement of a locali-
sation system is to ensure that the object found fits the generic requirements of
the target (in this case a face), whereas a tracking system is primarily concerned
with locating the same object repeatedly over a series of frames. The use of run-
ning averages to adapt the sensor fusion suite to the target identified in previous
frames is well suited for tracking applications, but is less appropriate for a tar-
get localisation system, as it is undesirable to dynamically change a localisation
system’s perception of what the target should look like. lest the system be dis-
tracted from the true target. Secondly, we require systems to localise a t arget in
3D, whereas this system operates in 2D, and with fixed sized prototypes it cannot
deal with close-up or far-away targets. Finally, when determining the usage of
different cues we wish to take into account not only the tracking performance.

but also the computational requirement of each cue.

Recent work by Soto and Khosla (2001) presents a system based on intelligent
agents that adaptively combines multi-dimensional information sources (agents)

to estimate the state of a target. A particle filter is used to track the target’s
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state, and metrics are used to quantify the performance of the agents. Initial
results for person tracking in 2D show a good deal of promise for a particle filter

based approach.

This section has discussed a number of systems that have been developed to
address the problem of robustly localising a face (or other target) in a complex
environment. The particle filtering approach popularised by Isard and Blake
(1996, 1998) offers a solid framework for locating and tracking targets, and as
Soto and Khosla (2001) demonstrated it is well suited for use in a multi-cue
system. There is no question that multiple cues allow for more robust estimates,
however, calculating more cues requires more CPU time and can quickly reach
the limits imposed by a realtime system. Few researchers have considered the
problem of controlling the allocation of computational resources between cues, in
order to allow more effective and efficient cues to operate at the expense of those

that are slower or not performing as well.

The face localisation system that we present in Chapter 4 aims to meld the
strongest elements of the systems discussed in this section. A particle filter is
used to maintain multiple hypotheses of the target’s location, and multiple visual
cues will be applied to test hypotheses. Finite computational resources will be al-
located across the cues, taking into account the cue’s expected utility and resource
requirement. Our system accommodates for cues running at different frequencies,
allowing cues performing less well to be run slowly in the background for added

robustness with minimal additional computation,

2.3 Face Registration

After face localisation the second step towards enabling a computer to see a face
is face registration (see Figure 1.2). We use the term face registration to refer to
the process of registering the locations of facial features and verifying that the
image region in question does indeed contain a face, see for example Figure 2.22,
This is a specialisation of the general problem of face detection that typically
involves determining the locations of faces in an image, and may or may not be
extended to locating facial features, Over the last decade the problem of face
detection in images has received a growing amount of attention from researchers
i commercial and academic institutions alike. It is widely recognised that face

detection is the first step towards face recognition and a myriad of other human
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Figure 2.22: Face registration. (a) An image containing a face. (b) Presence
of face verified and facial features detected. This example is from our system
described in Chapter 5

computer interaction tasks. Recent survey papers by Yang et al. (2002) and
Hjelmas and Low (2001) provide an excellent overview of the field and reveal the
quantity and diversity of research that has gone into detecting faces and facial

features.

In 1973 Kanade pioneered the use of integral projection to locate the boundaries
of a face. Since then integral projection and variations thereof have been used to
detect facial features in a number of applications(Kotropoulos and Pitas, 1997:
Katahara and Aoki, 1999; Chuang et al., 2000). Integral projection involves
projecting the values of image pixels onto an axis. The integral projections of an

image I onto the r (horizontal) and y (vertical) axes are respectively given by

P.(z) = > I(z,y)
i

ancl

B () = 2_: 1. u).

Taking the integral projection of an image onto the horizontal (r) axis amounts
to summing the pixel values down each column, and results in a vector that is
literally the projection of the integral of each column onto the horizontal axis.
Likewise, integral pre jection onto the vertical axis is a vector containing the sum
of pixel values in each row of the image. It is feasible to perform integral projection
onto any axis, but in practice vertical and horizontal integral projection are most

commonly used.

The integral projection method is simple and fast. It is useful for detecting

teatures whose intensities stand out from the backeround, especially those with
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Figure 2.23: The kernel used by Yow and Cipolla (1997) it is a second deriva-
tive of a Gaussian in one direction, Gaussian in the orthogonal direction, and
elongated with an aspect ration of 3:1 (Figure from Yow and Cipolla (1995)).

a strong horizontal or vertical aspect. As such it is well suited to detecting facial
features. The intensities of facial features generally stand out strongly against
the skin of the face, and vertical integral projection is especially well-suited for

upright faces owing to the dominant horizontal aspect of most facial features.

The main problems when applying this method to detect facial features are:
segmenting the facial region from the image to avoid background interference,
ensuring that the desired features stand out to the exclusion of everything else,
and requiring the face to be in an upright position. If these problems are addressed

then integral projection provides an excellent way of locating facial features.

Spatial filtering can be used to enhance and identify facial feature candidates
(Graf et al., 1995; Yow and Cipolla, 1997). In this process the intensity image 1s
typically smoothed, then convolved with specially chosen kernels to extract the
facial features, for example, long thin kernels are used to detect eyes. Yow and
Cipolla (1997) use the elongated Gaussian-based kernel shown in Figure 2.23,
while Graf et al. (1995) use rectangular kernels and subtract the result from the
original image. The latter claimed this approach was adequate for separating the
eyes, mouth, and tip of the nose from the cheeks, forehead, and chin, and went
on to use a morphological approach to enhance the image at points identified by
the filtering. Spatial filtering is orientation and scale dependent, however, a small

deviation of the target from the intended orientation and scale can be tolerated.

Edge information is useful for detecting and verifying features. After identifying
possible facial features using spatial filtering, Yow and Cipolla (1997) discard
any feature which does not have parallel edges bounding it from above and be-

low, If the face is assumed to be upright this simply involves looking for pairs of
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can be used to search for facial features in images, and provides a compact way
of comparing a test image with a large population of similar images. However,
it becomes very computationally expensive when used to perform an exhaustive

correlation-style search for a target.

Colour information can be used for detecting facial features. Oliver et al. (1997)
uses colour to locate the mouth. Varchmin et al. (1997) noted that nostrils often
appear as bright spots in the red colour channel. Colour gradient can also provide
useful information, potentially allowing a system to discriminate between white
features (such as the eye whites and teeth), points of reflection off shiny surfaces
(such as the eyeball or bright metal jewelry) and reflection off less shiny surfaces

such as skin.

In summary, integral projection is a simple yet powerful technique for detecting
isolated features whose intensities stand out clearly from the background. It is
necessary to preprocess face images to prepare them for integral projection, the
face must be aligned so it appears upright in the image, it is also beneficial to
enhance the features so that they distinctly stand out within the face region.
Spatial filtering methods have been shown to enhance and detect facial features
using smoothing and specially designed kernels aligned with the features. The
usefulness of radial symmetry for detecting facial features has been demonstrated,
however, the methods that return the best results are computationally intensive; a
faster, more efficient method is needed to make this a viable option. Finally blink
detection can provide a simple, efficient and reliable method for identification of

eye locations, the drawback is that it is necessary to wait for the subject to blink.

In Chapter 5 we present a face detection system that uses blink detection to
initially localise the eye and face location, and apply filtering and radial symmetry
detection to enhance facial features. Finally, feature locations are pin-pointed

using integral projection,

2.4 Face Tracking

The final step (as depicted in Figure 1.2) to enable a computer to see a face is face
tracking. Face tracking involves both tracking the pose of the head in 3D space,
and the location of facial features. Some facial features, such as the eves and nose

are rigidly attached to the head and their motion can be directly linked to the
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head pose. Other features, such as the mouth and eyebrows, are deformable, and
their location is a function of both the head pose and their own deformation. We
will consider tracking both rigid and deformable facial features, and accordingly
this section is divided into two parts. The first considers tracking rigid facial
features in order to determine the head pose, and the second looks at tracking
deformable facial features. Particular emphasis is placed on tracking the lips and
mouth contour owing to the relevance of mouth-shape information for Human

Computer Interaction.

2.4.1 Tracking Rigid Facial Features

Our primary interest in tracking rigid facial features is to determine the head
pose, that is, the location and orientation of the head in 3D space. The head
can be modelled as a rigid body with a number of features rigidly attached, these
features include the eye sockets, eyes, nose and hairline. By tracking the locations
of features rigidly attached to the head it is feasible to track the pose of the head.
A reference frame is attached to the head, and the pose of the head is defined by a
six parameter vector (z,y, z,0,,60,,0,) specifying the Cartesian co-ordinates and
rotation of the head reference frame with respect to a predefined world coordinate
system. Figure 2.24 shows a schematic of a head with reference frame attached

showing the pose of the head reference frame in the world coordinate system,

Estimating the 3D pose of a rigid object requires determining the six parameter
state vector: (z,y, z,60,,0,,6.) specifying the Cartesian co-ordinates and rotation

with respect to a predefined reference frame.

Lowe’s object tracking algorithm (Lowe, 1991) presents a model-based approach
to determining the pose of a known 3D object. Model-based vision uses prior
knowledge of the structure being observed to infer additional information than is
otherwise evident from an image. When a 3D object is viewed in an image the
locations of its features are a non-linear function of the pose of the object relative
to the camera. Given an initial guess of the pose, a least squares solution can be
achieved iteratively by applying Newton’s method to locally linearize the problem.
Lowe augments this minimization in order to obtain stable approximate solutions
in the presence of noise. This is achieved by incorporating a model of the range of
uncertainty in each parameter, together with estimates of the standard deviation

of the image measurements, into the minimization procedure. On top of this Lowe
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Figure 2.24: 3D pose of a head. Head reference frame shown in orange, and the
pose (x,y, z,0,,0,,0.) with respect to the world coordinate frame O indicated.

applies the Levenberg-Marquardt method to ensure the solution converges to a
local minima. Lowe demonstrated that this method could efficiently track the
pose of known 3D objects with complex structures and provide reliable results.
T'his algorithm provides an attractive means of tracking the pose of a known 3D

object in a monocular image sequence.

Azarbayejani ef al. (1993) implemented a Kalman filter to track the head pose
using an approach similar to that adopted by Clark and Kokuer (1992) and Rein-
ders et al. (1992) for calculating the orientations of objects. Azarbayejani et al.
extract feature templates in an initial image, and use normalised cross correlation
to locate these features in subsequent image frames. The head pose is iteratively
determined using an extended Kalman filter with an 18-dimensional state vec-
tor containing a concatenation of the six 3D pose parameters and their first and
second derivatives. Measurement variances are determined from the correlation
values obtained from the feature templates. Despite the non-linear relationship
between the observed 2D feature locations and the pose parameters, the local lin-
earization employed by the extended Kalman filter was shown to provide suitable
tracking results. Azarbayejani and Pentland (1995) later extended this method
to recover not only the 3D pose of the head (or other 3D object) but also the 3D

structure of the object itself, along with the focal length of the camera.
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Gee and Cipolla (1994) used four facial features, namely the pupils and mouth
corners, to track the head pose. These features were assumed to lie in a plane, and
two vectors are determined: one joining the eyes, and one joining the mid-point
of the eyes with the mid-point of the mouth corners. From these vectors a third
vector is calculated normal to the face that described the head pose. Maurer
and von der Malshurg (1996) also tracked facial features and assumed they lay
in an plane, however, they used more features than Gee and Cipolla. The head
pose was determined by solving the resulting over-constrained system using least
squares. Shakunaga et al. (1998) used a similar approach but did not assume the
features lay in a plane. They solved for the pose under orthographic projection

and could cope with an arbitrary number of features.

Xu and Akatsuka (1998) track the head pose by reconstructing the 3D locations
of facial features using stereo. The pupils and mouth corners are tracked using
stereo and their 3D locations determined. The pose is determined as the normal

to the plane defined by the pupils and a mouth corner,

Matsumoto and Zelinsky (2000) also made use of stereo for their Karman filter-
based solution to the head tracking problem. This system used calibrated stereo
cameras and was able to run in realtime and determine the head pose with higher
accuracy than the method proposed by Azarbayejani et al.. Recently this sys-
tem has been evolved into the commercial FaceLab system by Seeing Machines?,
It requires no markers or special make-up to be worn and runs on a standard
PC. The software consists of three key parts, 3D Facial Model Acquisitimh Face

Acquisition, and 3D Face Tracking,.

The Face Model Acquisition module builds a model of the subject’s face off-line.
The face model consists of up to 32 features (T, 2 =0,1,2,...) corresponding to
a set of 3D model points (m;,7 = 0, 1,2, ...) in the head reference frame. The

head frame is placed between the eyes and oriented as shown in Figure 2.24.

The system starts operation in Face Acquisition mode where it attempts to find
an initial lock on the face in the image stream; During this phase a template
constructed from the edge map of the entire central region of the face is searched
for. This template is automatically extracted during the model acquisition phase
where the position of the face in the image is known. Normalised correlation
matching is used both here and during tracking to make this process robust to

changes in lighting conditions.

Ahtt p://www.seeingmachines.com
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Figure 2.25: 3D reconstruction from stereo images.

When a match is found with a correlation above a preset value, the approxi-
mate positions of the features T, are identified based on their known offsets from
the centre of the face (again calculated during model acquisition). Tracking is
performed using the templates T; obtained during model acquisition. These are
correlated with the current stereo view in the input stream and their 3D positions
are calculated using linear triangulation. This technique is described below (for
more detail the reader is referred to Trucco and Verri (1998)).

Ideally the 3D rays projected from the camera centres through the observed
feature points on the image plane will intersect, defining the 3D location of the
feature point. However, in general, owing to small errors in feature locations
or camera parameters, the rays will not meet. This situation is illustrated in
Figure 2.25. Linear triangulation proceeds to determine the loecation for the 3D
point x that minimizes the distances ey and e;. More specifically for n cameras

linear triangulation minimizes £ in

T
E=) ¢ (2.6)

Returning our attention to the Figure 2.25, the distances, e5 and e, can be ex-
pressed in terms of x by observing that they are side lengths of right angle trian-
gles (indicated in yellow). Considering each of these triangles separately, the side
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Figure 2.26: A right angle triangle from the i'* camera in Figure 2.25 with all
side lengths shown.

lengths can be expressed as shown in Figure 2.26. and thus ¢ can be written as
ef = [[((x = ¢;) - di)dy|* = [|x — ¢

where d; is a unit vector along the optical axis of the i** camera. For the case of

two cameras Equation 2.6 can be expanded to

B = (% = o) do)dol|” = [lx = coll* + [((x = €1) - dn)e [* = [lx = 1| (27)

Setting the partial derivatives of this equation with respect to the elements of x

to zero gives a system of linear equations of the form

Ax=Db
where A and b are
(flé‘;_,ﬂ T l) | (d“f;'ﬂ = ]-) dU.’I'de F dl;r:dly ”’U;rdﬂn’: J dl:rrdl;
A f'z';;;,;(rz.nu F {Z].,-H.'W (dét; L ].) - f(.ﬁay = 1) ‘(.'/:[_]-Ud{}; = le.yd];
dn.-;-(fn.-. + le.-f-('fl; ff-uydt); 1 ﬂ’-uﬂ‘fl: ((ﬁﬁ; - 1) + (”-"Iiez = l)

ffn.ﬁu ; d” — Oy i t'-zl.'i"(-:l ’ d.l = Clx
b= dl}'_ucl,) ! dU = Coy v i dlyci ; d] = (:];!j
do=Cp - do — cos + diz¢y - dy — Clz

and diz . and ¢, , . are the elements of d; and ¢, respectively. These equations
can be solved for x.

= A"lp

giving the 3D location of the point.
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A more sophisticated alternative to linear triangulation is Hartley and Sturm’s
optimal triangulation method that minimizes the error observed in the images
subject to the epipolar constraint (Hartley and Sturm, 1995; Hartley and Zis-
serman, 2000). However, the linear triangular method detailed above provides

suitable performance for the 3D head tracking system.

Once the 3D position of the features are determined an estimate of the pose of
the head is computed. The translation vector t, and the rotation, encapsulated
in the rotation matrix R, that together describe the head pose are estimated via

least squares minimization as follows. Minimize the error

B = Eu.x,:“x.,g — Rm; - t||? (2.8)

im]

where x; is the measured 3D feature location, m; is the 3D model point, and w;
is the weighting factor for the " feature. The value of the weighting factor is
set to the correlation value obtained for the associated feature in the template
tracking step. This applies a more dominant weighting to features that returned

higher correlation values making the system more robust to mismatched features.

The translation t is determined by differentiating Equation 2.8 and setting the

result to zero, yielding,

t =% — R (2.9)
where
Tl
DS 11T
=S5
}ﬂ;'_l w;
and

noo,

I;:L—.l w;
are weighted averages of the measured features locations and the model points

respectively.

Substituting t from Equation 2.9 into Equation 2.8 and ignoring all terms that

are not dependent on R gives us

E =2 Z wi(%; — X)"R(H — m,)

1=1
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Using the quaternion representation for a rotation matrix R can be written as

at+ b =2 = d? 2(be — ad) 2(bd + ac)
R= 2(be + ad) a — b? + ¢ = d? 2(cd — ab) (2.10)
2(bd = ac) 2(cd + ab) a® — b? = ¢ 4 d?

where a, b, ¢ and d are real numbers and a® + % + 2 + 2 = 1.
The method of Lagrange multipliers can then be used to minimize F’' as follows.

Define

"
E" =23 w(% —X)TR(M - m;) + A(a® + b2 + ¢ + 42 — 1)

i=1

Determine the partial derivatives of E” with respect to a, b, ¢ and d, and set

these to zero. This gives the following four linear equations,

n ) a =—d ¢
Yw(xi—%)"| d a =b|(m- m;) — Aa =0
i=1 —c b 7
T b e d
Y wilki=%)T [ ¢ =b —a |(@-—m;)=r=0
i=1 d a =b
T el b i
w;i(x%; —X)' b ¢ d |(M-m)—=Xe=0
i=1 —-a d —c
n —d —a b
2_‘ wi(x; —%)7 a —=d ¢ |(M—-—m)—=A=0
1=1 b c

These can be combined in a single matrix equation

(A-AM)a' =0

This equation is solved by choosing a to be any eigenvector of A. The solution

that minimizes E” is the eigenvector corresponding to the maximum eigenvalue
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of A (Horn, 1986). These quaternion values define the rotation matrix R (Equa-
tion 2.10).

Thus both the translation and rotation have been determined giving the optimal

pose that best maps the model to the measured 3D feature positions.

The number of templates tracked can be less than the total number. This allows
the system to continue tracking when some templates suffer severe perspective
distortion or are occluded altogether. The best templates to track can be deter-
mined from the estimated head pose as those that are visible and will appear most
fronto-parallel to the image plane. Figure 2.27 shows the system in operation.,

For our research we are interested in using existing head tracking technology to
track the pose of the head, and then overlay the functionality to track deformable
facial features. In Chapter 6 we use two of the head tracking systems described
here. A monocular system based on Lowe’s object tracking algorithm is used
as the basis for a monocular lip-tracking system. Lowe’s approach was chosen
for this initial implementation owing to its simple and efficient implementation,
robustness to noise in feature locations, and suitability for a monocular system.
We then extend the work to a stereo system, and the stereo head tracker developed
in our lab (Matsumoto and Zelinsky, 2000) and detailed above, is used as the basis

for a stereo lip tracking system,

2.4.2 Tracking Deformable Facial Features

Tracking deformable facial features is a challenging problem, not only do the
features move relative to the head, but they deform and change shape and ap-
pearance. The eyelids are an example of a deformable feature. We have already
discussed detecting eyelid movement (blinks) in Section 2.1.4, however, as men-
tioned previously the movement of an eyelid is often too fast to be properly
tracked by a 30Hz vision system. The mouth and eyebrows on the other hand
are well suited for tracking by a 30Hz vision system. Tracking the mouth is
the most challenging, as it displays a much wider range of deformation than the
eyebrows, and exhibits drastic changes in appearance from open, closed. teeth

visible, tongue visible, ete. states, as shown in Figure 2.28.

Mouth shape information is highly relevant to Human Computer Interaction.

in particular verbal communication systems, and approaches applied to mouth
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Figure 2.27: Example of Matsumoto and Zelinsky's system tracking the 3D
pose of the head.

tracking are often transferable to tracking other deformable facial features. such
as the evebrows and evelids. With these points in mind we have chosen to focus

our study of deformable facial feature tracking on the problem of mouth tracking.

Verbal communication with computers offers a natural and intuitive alternative
to keyboard and mouse interfaces, While these traditional interfaces offer precise
and efficient means of inputting information. there are many circumstances where

verbal interaction is preferable. Verbal interaction is hands-free. leaving the user’s
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Figure 2.28: The appearance of a subject’s mouth can vary greatly. Figure
from Goecke (2002).

hands available for other tasks like driving a car or operating machinery. Verbal
interaction can even remove the requirement for a keyboard altogether. Key-
boards are bulky items, undesirable on small portable devices like pocket PCs or
mobile phones. Disabled people unable to operate keyboards have found verbal
communication invaluable for interacting with computers, and verbal communi-
cation has found use as a complement to keyboard and mouse interfaces, both for
the ease that a user can input information, and the reduced risk of typing-related

injuries such as RSI.

Whilst modern voice recognition systems have shown impressive recognition rates,
and have led to successful commercial products, such as Dragon Naturally Speak-
ing”, these systems require significant training, are user dependent, and do not
perform well in the presence of noise. By using visual information to comple-
ment auditory input it is feasible to increase the robustness of automatic speech
recognition systems.

Visual cues are important in speech. It is known that human perception of
speech is enhanced when the face and mouth of the speaker are visible, and
that the teeth, tongue and lips provide useful information regarding placement of
articulation (Dodd and Campbell, 1987). To a certain extent even normal-hearing
people lip-read as they listen to a speaker (McGurk and MacDonald, 1976) —
although they may be unaware of the fact — and the shape of the mouth removes
some of the ambiguity of the spoken words. Realtime computer lip-reading can

provide this same visual information for automatic speech recognition systems.

Combining auditory and visual cues for speech processing. known as audiovisual

“http://www.dragonsys.com/naturallyspeaking/
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speech processing, has been a fertile field of research over the last decade, and
numerous systems have been developed; see Chen (2001) for a general overview

of research in this area.

The first audiovisual speech reading system was put forward by Petajan (1985).
This system used a single monochrome camera and custom video processing hard-
ware. A manually tuned threshold value was used to binarize the image so the
nostrils and mouth could be identified, and parameters such as mouth area, height
and width were determined. The system was tested on isolated utterances and it
was demonstrated that visual information obtained was beneficial for recognition.
Since then many more approaches have been adopted for tracking lips, these range
from simple image-based methods like integral projection Yang et al. ( 1998a), to
active contours Kaucic et al. (1996) and complex 3D lip models Revéret and
Benott (1998). Some methods have required the subject to wear special coloured
lipstick (Kaucic et al., 1996; Adjoudani and Benoit, 1996: Benoit et al,, 1996),
whilst others are able to track the unadorned lip contour (Revéret and Benoit,
1998).

In 1996 Kaucic et al. presented an automatic lip-reading system that enhanced
the performance of speech recognition on a forty word vocabulary beyond that
achieved using a purely audio-based approach. Whilst the addition of visual
information was only marginally beneficial in the noise free case, in the presence of
noise (with a signal to noise ratio of -3dB) the error rate was reduced significantly.
This system ran in realtime. It tracked the mouth from a frontal view, but
required the user to wear lipstick to enhance the contrast between the lips and

the surrounding skin.

Kaucic ef al. also considered an alternative lip tracker that tracked the silhouette
of the lips from a profile view of the subject, and was capable of realtime tracking
without cosmetic aids. This profile tracker benefited from the strong contrast
the lip silhouette made with the white background placed behind the subject,
however, the teeth and tongue were not visible in the profile view, nor was it
possible to determine the mouth width, and owing to the importance of these
features in visual lip reading the profile approach was dropped in favour of the

frontal-view tracker.

Both Kaucic et al’s front-on and profile trackers used active contours to track
the lip contour. Quadratic B-splines were used to model the contour, and the

dynamics of the models were learned using a Maximum Likelihood Estimation
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algorithm. A Kalman filter was used to blend the predicted and observed lip
locations. Experiments where performed separately with the profile tracker and
the frontal view tracker (with lipstick) to investigate the extent to which lip
contour information improved speech recognition. However, no experiments were
reported using both profile and frontal view information together, so all visual

information is based on lip contour locations in a single 2D plane,

The LAFTER (Lips and Face Real Time Tracker) from MIT Media Lab (Oliver
et al.,, 1997) uses an entirely different approach to lip tracking. Here blobs rather
than contours are used to represent features. Blob segmentation offers an alter-
native to using edge features where the regions themselves, not the edges, form
the features. A blob is defined as a compact set of pixels that share a visual
property, such as colour, texture, motion, or a combination thereof, which differ-
entiates them from the surrounding image. These blobs are represented by their
low order statistics, that is, the mean and covariance of the pixels in the blob, and
mixture of Gaussian distributions are used to model the blob features in colour

space,

The initial mixture parameters for each blob feature are determined using an
off-line training process on large training sets of faces, lips and mouth cavities.
At start up the face and mouth features are located using these general mixture
models. These models are later adapted on-line during tracking., A Gaussian
mixture model is also constructed for the background, and this is learnt entirely

on-line,

The face and mouth are found using colour and shape information. The nor-
malised rg colour components of pixels (see Section 2.1.2) are examined to de-
termine those that could potentially belong to each feature, and blob models are
chosen that best deseribe the shape of the dominant pixel clusters. The system
uses an active camera to ensure the user always appears at the desired size in
the centre of the image. Both the face and mouth are modelled using Gaussian
mixture models describing the chromatic colour and spatial distribution of their
constituent pixels. Thus the mouth is characterised by its area, spatial eigenval-
ues and bounding box. The resulting mouth characteristics are made invariant to
rotation about the optical axis by determining the orientation of the face in the
image plane, however, the result is not robust to rotation of the subject’s head
out of the image plane.

Revéret and Benoit (1998) present a method for modeling lip shape as a 3D
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Figure 2.29:  Revéret and Benoit’s lip model showing the 3 polynomial con-
tours each defined by 10 control points (Revéret and Benoit, 1998).

polynomial surface. This method is applied to lip tracking, modelling lip motion
in speech production, and for visual speech animation of lip motion during speech.
The model is shown in Figure 2.29 and consists of 3 polynomial contours each
defined by 10 control points. The system is trained for each subject, using a
graphical user interface to fit the lip model onto calibrated front and profile
images of the mouth, as the subject forms ten key lip shapes (chosen based
on phonetic observations of spoken French). The 90 (7,9, z) locations of the lip
model control points observed for each of the key lip shapes are treated as feature
vectors, principal component analysis is applied across the ten key lip shapes,
and three principal lip shape feature vectors are extracted. It is shown that
linear combinations of these three principal components account for 94% of the
lip shape variability exhibited across the ten key lip shapes used for training, so by
restricting the model to only forming lip shapes that are such linear combinations,

the model may be described by just three parameters,

This three-parameter model is used in conjunction with colour segmentation to
identify the 3D lip shape in a monocular image sequence. Colour segmentation is
done using a lip colour model that is built from the training data, and normalised
rg chrominance is used to afford some robustness to lighting variations. The
system was tested on a single phonetically balanced sentence and the results
show good recovery of internal and external lip contours. The main drawback
of this system was the significant training required for each new subject. Also.
while the modelling approach allows the 3D shape of the lip to be estimated from
the monocular front-on images used for tracking, the lip shape was restricted by

the range of motion displayed in the training data, and during tracking the 3D
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shape is being modelled rather than measured.

The numerous systems available offer varying solutions to the challenging prob-
lem of lip-tracking, However, little interest has been shown by researchers in
recovering raw 3D information about the mouth shape. While it is debateable
how beneficial such information is for speech processing, it is certainly important
for character animation and tracking the true 3D shape of the mouth. Another
important factor for a practical lip-tracking system is the ability to deal with
head motion, in particular the apparent deformation of the mouth caused by the
subject turning his or her head while speaking. While the LAFTER system can
accommodate some head movement neither LAFTER nor Kaucic et al.’s system
corrects for distortion of mouth shape due to the head rotating out of the image

plane.

In Chapter 6 we present two lip tracking systems, one monocular and one stereo,
both operating on grey-scale images, and running in conjunction with a head
tracker to enable the system to perform robustly through a range of head poses.
The monocular system measures lip height and width, while the stereo system
recovers the raw 3D locations of points on the lip contour. The stereo lip tracker
is the first system to use stereo to directly measure the 3D locations of tracking
points on the mouth and track the raw 3D mouth shape.

2.5 Summary

The human face has a distinctive and unique appearance. There are a number
of qualities governing the appearance of a face that distinguish it from other
objects, and several of these can be automatically detected by computer vision
systems. Face regions can be identified by their size, shape and colour together
with the occurrence of facial features that appear as dark blobs or peaks of
radial symmetry at particular locations. Motion detection, depth estimation,
colour segmentation and radial symmetry detection all provide visual cues for
detecting different facial qualities. Radial symmetry is a particularly attractive
cue, however the best results from existing transforms are slow and inefficient
to compute. In Chapter 3 we present a new, computationally efficient method
for determining radial symmetry whose results rival or surpass those of existing
methods whilst being fast enough to operate in realtime.



62 Related Work

Enabling a computer to see a face can be considered as a three step process, face
localisation to detect approximately where the face is in a scene, face registration
to register the facial features, and face tracking to track the pose of the head and

the movement of deformable facial features,

Particle filtering and the use of multiple cues have been shown to be very effec-
tive for robust face localisation. Particle filtering enables the tracking of multiple

hypotheses and provides an efficient means of searching a multi-dimensional state

target, increasing robustness to changes in tracking conditions and allowing the
system scope to adapt to such changes. In a realtime system it is important
to consider the allocation of computational resources across different cues. In
Chapter 4 we present a realtime face localisation system that uses particle filter-
ing, multiple cues, and efficiently allocates computational resources across cues

according to the quality of information being produced by each cue.

Integral projection provides an efficient way of detecting facial features for face
registration in a sufficiently constrained situation, while other methods such as
blink detection, and filtering techniques for enhancing features are equipped to
deal with a wider range of inputs scenarios. Chapter 5 presents a face registration
system capable of verifying the presence of a face and detecting facial features.
The system uses blink detection to initially localise the eve and face location. then
filtering and radial symmetry detection to enhance facial features, and finally

teature locations will be pin-pointed using integral projection.

Face tracking involves tracking both rigid and deformable facial features, in order
to describe both the 3D pose of the head and the shape and location of facial
features. Both monocular and stereo systems are available for tracking the pose of
the head, and tracking the mouth (the dominant deformable feature) has received
considerable attention over the last decade. However, virtually all systems track
using a single camera, and while some infer the 3D shape of the mouth from
learnt models they do not track the mouth in 3D as is possible with a stereo
system, In Chapter 6 we present both monocular and stereo lip tracking systems,
both running in conjunction with head trackers to facilitate robust performance
during head motion. Our stereo system directly measures the mouth shape in 3D

during tracking, enabling unconstrained 3D tracking of this deformable feature.



Chapter 3

Fast Radial Symmetry Detection

N the previous chapter we explained how useful radial symmetry can be for

detecting facial features in images (Section 2.1.5), and we reviewed an exten-
sive list of existing methods for calculating radial symmetry in images. The best
results for facial feature detection came from the generalized symmetry transform
(Reisfeld and Yeshurun, 1998), Figure 2.13. However, this transform is slow, com-
putationally expensive to compute, and not well-suited to realtime applications.
Other methods provide more efficient alternative techniques for computing radial
symmetry, but the results obtained are not as useful for locating facial features.
In this chapter we will develop a new, computationally efficient method for de-
termining radial symmetry that is able to produce results that rival those from
the generalized symmetry transform, and other existing methods, whilst being

fast enough to operate in realtime,

We present a novel gradient-based interest operator, the Fast Radial Symmetry
Transform (FRST), that efficiently detects points of high radial symmetry. Our
initial approach was inspired by the results of the generalized symmetry transform
(Reisfeld et al., 1995; Intrator et al., 1995; Reisfeld and Yeshurun, 1998), although
the final method bears more similarity to the work of Sela and Levine (1997) and
the circular Hough transform (Kimme et al., 1975; Minor and Sklansky, 1981).
The FRST determines the contribution each pixel makes to the symmetry of
pixels around it, rather than considering the contribution of a local neighbour-
hood to a central pixel. Unlike previous techniques that have used this approach
(Kimme et al., 1975; Minor and Sklansky, 1981; Sela and Levine, 1997) it does
not require the gradient to be quantized into angular bins, the contribution of

every orientation is computed in a single pass over the image. The FRST works



64 Fast Radial Symmetry Detection

well with a general fixed parameter set, however, it can also be tuned to exclu-
sively detect particular kinds of features. Computationally the algorithm is very
efficient, being of order O(K N) when considering local radial symmetry in N x N

neighbourhoods across an image of K pixels.

[n Section 3.1 of this chapter we define the FRST. Section 3.2 discusses the selec-
tion of parameters, and Section 3.3 describes how the transform can be adapted
to different tasks. Section 3.4 presents several general sets of parameters suit-
able for different applications of the FRST. Section 3.5 shows the performance
of the FRST on a variety of images, and compares it to existing technicues, and

Section 3.6 presents the conelusions,
I

3.1 Definition of the Transform

The FRST is calculated at one or more radii n € N, where N is the set of radii
of the radially symmetric features to be detected. The value of the transform at
radius n indicates the contribution to radial symmetry of the gradients a distance
n away from each point. Whilst the transform can be calculated for a continuous
set of radii this is generally unnecessary as a subset of radii is normally sufficient,

to yield a representative result.

The algorithm can be summarised as follows, and is discussed in detail hereafter:

L. Determine gradient g.
2. For each radius under consideration:

(a) Consider each gradient element in turn, for each gradient element:
. Determine affected pixels.

. Calculate orientation and magnitude projection images O, and

M,,.

(b) Combine O, and M, to form the unfiltered symmetry contribution
ll‘-‘H

(c) Calculate the symmetry image at radius n, S, by blurring F,, via

convolution with A,

3. Sum S,, over all radii n € N to determine the final symmetry image S,
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An overview of the algorithm is shown in Figure 3.1 showing the key steps to
generating the output radial symmetry image S from the grey-scale input image
I. The figure also shows some example images illustrating the output of different
stages of the process. The remainder of this section will work through the different

stages of the algorithm.

Repeat this foreachnin NV
A

d N
A
Calculate i
H —-1 GH &..

I | Determine | g Determine Caleulate | Fr Z S
Ll ~—» affected g —
gradient . = K, g "

= pixels % Calculate M n
H
M
]

S;

Figure 3.1: Steps involved in computing the FRST. Example images are also
shown throughout the process, positive values are shown as light pixels, nega-
tives as dark and zero as mid-grey, gradient is assumed to point from dark to
light.

[nitially the gradient of the image I is determined, for our experiments we used

a 3 x 3 Sobel operator

1 0 =1
K=|20 -2
1 0 =1

to determine the gradient in the r and y directions as I+K and I+K T respectively.

For each radius n that is being considered we determine the affected pirels by
examining the gradient. Each non-zero gradient element generates a positively

affected pizel and a negatively affected pizel. The positively-affected pizel is de-
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Figure 3.2: The locations of pixels p.! p) and p_..(p) affected by the gra-
dient element g(p) for a range of n = 2. The circle shows all the pixels which
can be affected by the gradient at p for a radius n.

fined as the pixel that the gradient vector g(p) is pointing to, a distance n away
from p, and the negatively-affected pizel is the pixel a distance n away that the

gradient is pointing directly away from.

Figure 3.2 shows a gradient element g(p) and it’s associated positive and nega-

tively affected pixels labelled p,.,. and P—ye respectively,

Formally the coordinates of the positively-affected pixel are given by

- z(p)
P -m.-(F—‘) = p + round (— p—
. le®)]
while those of the negatively-affected pixel are
g(p)
P-we(pP) = p — round e )
lg(p)]|

where “round” rounds each vector element to the nearest integer,

Next we use these affected pixels to form an orientation projection image Q,,
and a magnitude projection tmage M,,. Initially the orientation and magnitude
projection images are zero. For each pair of affected pixels the corresponding point
Pve in the orientation projection image O,, and magnitude projection image M,
s incremented by 1 and ||g(p)|| respectively, while the point corresponding to

P 18 decremented by these same quantities in each image. That is

Ol Dl = 0, (p. ve(P)) + 1

O,(P-ve(P)) = 0n(pP_ve(p)) = 1
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M'rf.(p+':frf(p)) = M'u(p-l-'m:(p)) i Hg(p)H

M, (P-ve(P)) = Mn(p-we(p)) — [|&(P)|

Once O,, and M, have been calculated the radial symmetry contribution at radius

n can be determined from the convolution

SH. = F'H. * A"H. (3'1)

where F,, is the unfiltered symmetry contribution defined by

Mn én g P
F, (p) = Mol (I k(p)) 5.
and
i Oulp) 1f Oulp) <k
O,(p) = (3.3)

K otherwise

A, is a two-dimensional Gaussian, e is the radial strictness parameter, and &, is a
scaling factor that normalizes M, and O,, across different radii. These parameters

are discussed in more detail in Section 3.2.

The full transform is defined as the average of the radial symmetry contributions

over all the radii considered,

1
S=— Sn. (3*-1)

If the gradient is calculated to point from dark to light then the output image S
will have positive values corresponding to bright radially symmetric regions and
negative values indicating dark symmetric regions as can be seen in Figure 3.1.

It can be more useful to consider the gradient orientation exclusively, removing
the effect of contrast on the level of interest attributed to points in the image.
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This leads to an alternate orientation-based radial symmetry that is defined by
replacing F,, in Equation 3.1 by
— Lin 4
- D'H. (p) 1

Fu(p) = sgn (O, (p)) (”*—

This provides a result that is more robust to lighting changes. However, when
applying this orientation-based formulation it is generally necessary to ignore
small gradients that tend to add noise to the result, this is discussed in detail in
Section 3.3.1.

3.2 Choosing the Parameters

The definition of the transform contains a number of parameters which need to

be appropriately defined, these are:

e aset of radii NV = {ny,na, ...} at which to calculate 2
¢ the Gaussian kernels A,,,
 the radial strictness parameter o, and

e the normalizing factor k,,.

T'his section discusses each of these in turn and deseribes their effect on the output

of the transform. A general set of parameters is presented in Section 3.4.

3.2.1 Set of Radii

The traditional approach to local symmetry detection (Di Gestt and Valenti.
1995a; Reisfeld et al., 1995: Sela and Levine, 1997) is to calculate the symimetry
apparent in a local neighbourhood about each Il.min(.. This can be achieved by
calculating S, for a continuous set of radii N — 11,2, ..., gz} and combining
using Equation 3.4. However, since the symmetry contribution is calculated inde-
pendently for each radius n it is simple to determine the effects at a single radius,
or an arbitrary selection of radii that need not be continuous. Furthermore. the
results obtained by only examining alternate radii give a good approximation to

the output obtained by examining all the radii, while saving on computation.
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The effect of choosing sparse sets of radii was quantified experimentally by com-
paring the output of the transform calculated across all radii from 1 to 5 to that
calculated across several sparse sets of radii. Labelling the output image calcu-
lated across radii 1 to 5 as S; 5 and the sparse outputs calculated across radii N

as Sy the error is defined as

Ex(p) = Snx(p) = 51..5(P)

The experiment was run over a database of 295 diverse face images, and the
average power of the error Ex was determined for each set of radii. The results
are shown in Table 3.1 with the power of the error expressed as a percentage of

the power of the transform calculated across all five radii (S, 5).

Table 3.1: Parameter Settings used for Experimentation
Radii 12848 | 128 1.5 3
Error Power 0% 7.9% | 37% | 780%

Table 3.1 shows that taking alternative radii (1,3,5) gives a close approxima-
tion to using all the radii with an error of only 7.9% between the two outputs.
Unsurprisingly, as less radii are included the error increases quite rapidly.

An example of this experiment is shown in Figure 3.3. The small error between
the transform calculated at alternative radii S35 and S, 5 is evident with Ey 35
being close to zero., Exactly how close an approximation is achieved by using only
alternate radii depends on the edges of the features being detected. Sharp-edged
features are more likely to be attenuated if the transform is not calculated at
their exact radius.

If the scale of a radially symmetric feature is known apriori then the feature can
be efficiently detected by only determining the transform at the appropriate radii.
For example, the irises in the eyes in the input image in Figure 3.3 have a radius
of approximately 5 pixels, so will be well detected using a radius of 5, or radii 1
and 5 as can be seen in Figure 3.3,

3.2.2 Gaussian Kernels A,

The purpose of the Gaussian kernel A,, is to spread the influence of the positively-

and negatively-affected pixels as a function of the radius n. A rotation invariant
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Sl,::l,.'.i
Figure 3.3: Effect of varying the set of radii N at which the FRST is computed.
Sy is the output of the transform and Ex is the error, positive values are
shown as light pixels, negative as dark, and zero as mid-grey.

Figure 3.4: The contribution of a single gradient element, with A,, chosen to
be a 2D Gaussian of size n x n and standard deviation a = 0.25n, and n = 10.

two-dimensional Gaussian is chosen since it has a consistent effect over all gradient
orientations, and it is separable so its convolution can be efficiently determined.
Figure 3.4 shows the contribution for a single gradient element g(p). By scaling
the standard deviation linearly with the radius n, an arc of influence is defined
that applies to all affected pixels. The width of the arc is defined by scaling the
standard deviation of A,, with respect to n.
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All A,, are defined as two dimensional Gaussians whose elements sum to n. Con-
volving with A, has the result of spreading the effect of each gradient element by
an amount proportionate to the standard deviation of the Gaussian, and ampli-
fying its magnitude by n. Amplifying the magnitude is necessary to prevent the
effect of gradient elements becoming negligible at large radii as a result of being

spread too thinly across the image.

Even though the convolution with the Gaussian kernel is separable, depending

on the size of the kernel used, this is often still the most time consuming part of
the algorithm. This step can be sped up by replacing the Gaussian kernels with

! whose convolution can be caleulated recursively. Surpris-

uniformly flat kernels
ingly this still vields reasonable results in most circumstances, however, uniform
(square) kernels are not invariant to rotation so Gaussian kernels are preferred.
All results, with the exception of the realtime results in Figure 3.13, in this thesis

are obtained using Gaussian kernels,

3.2.3 Radial-strictness Parameter o

The parameter « determines how strictly radial the radial symmetry must be for
the transform to return a high interest value. Figure 3.5(a) illustrates the effect
of o on O, at the pixel level, Note how a higher « strongly attenuates the line
relative to the dot.

Figure 3.5(b) shows the effect of choosing o to be 1, 2 and 3 on 5, for an image
exhibiting strong radial values around the eyes. Once again a higher o eliminates

non-radially symmetric features such as lines.

A choice of & = 2 is suitable for most applications. Choosing a higher o starts
attenuating points of interest, whilst a lower o gives too much emphasis to non-
radially symmetric features, however, choosing &« = 1 minimizes the computation
when determining F,, in Equation 3.2.

3.2.4 Normalizing Factor £,

In order to compare or combine the symmetry images calculated for different radii

they must be represented on a similar scale. As the radius increases so does the

LA wniformly flat kernel refers to a convolution kernel (matrix) whose elements are all the
same value.
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Input image

Figure 3.5: Effect of varying o (a) At the pixel level (i) Sample arrangement
of light pixels on a dark background, (i) Gradient from adjacent pixels, (iii)
Number of gradient elements pointing at each pixel Oy, (iv) Square of the
number of gradient elements pointing at each pixel 0. (b) Effect of varying
a at the image level. Original image from the USC-SIPI Image Database.

number of gradient elements that could potentially effect each pixel, that is, the

number of pixels on the perimeter of the circle in Figure 3.2,

One way of normalizing across scales is to divide O,, and M,, through by their
maximum values. However, this scales the result at each radius relative to itself,
and does not provide an absolute measure that can he used to compare between

different radii or different images.

It is preferable to scale O, and M,, by the expected maximum value of Q,,, and

saturate Oy, at this value, as is done in Equation 3.3, restated here,
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3.2 Choosing the Parameters

Figure 3.6: Some example images from the test set,

: O,(p) if O,(p) < ky
(—)H(p) =

i otherwise

M,, cannot be saturated in the same way, (although it could be averaged using
division by O,) however, large values of M,, do not cause problems, since the
elements of O,, are raised to an exponential power and so become much more

significant than M,, at locations where O, saturates.

Determining the expected maximum value of O, is best done experimentally,
since it depends on gradient directions of neighbouring pixels and these gradient
elements are not probabilistically independent. An experiment was conducted to
determine the mean maximum value of O,, for a set of 295 real images for n = 1 to
30. The set of test images comprised of photographs of people at a range of scales,
and with widely varying backgrounds and lighting conditions. All images were in
JPEG format and were obtained off the internet, image size varied from 108 x 130
to 405 x 244 pixels. The 295 images used for this experiment are contained on the

CD-ROM enclosed with this thesis, and some examples are shown in Figure 3.6.

T'he orientation projection images O, were determined for each image (as de-
scribed in Section 3.1) at all radii n € {1,...,30}. The maximum value of each

0O,, was then determined giving a set of 30 maximum values m,,. This was re-
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Figure 3.7: The mean and standard deviation of the maximum value of the
orientation projection images O,, for n = 1 to 30, calculated over 295 images,

peated for every image in the test set and the resulting sets of maximum values
combined to determine the mean (expected) maximum value of O,, for a given
n € {1, ..., 30}.

The result is shown in Figure 3.7. A part from the value of 8 for n = 1 (there are
only 8 pixels a distance 1 away from any pixel) the expected values for all radii
n € (2,30] lay within 9.9 + 3%.

Using

, 8 ifn=1
¥ 0.9 otherwise

suitably normalizes M,, and Q,, in Equation 3.2.

3.3 Refining the Transform

The transform can be refined to further increase computational speed and detect
particular kinds of features. Refinements include:
e ignoring small gradients when calculating O,, and M,,.

e calculating dark (bright) symmetry hy ignoring negatively- (positively-) af-
fected pixels when determining O, and M,,.

e Choosing a constant A,,.
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3.3.1 Ignoring Small Gradients

Gradient elements with small magnitudes have less reliable orientations, are more
easily corrupted by noise, and tend to correspond to features that are not im-
mediately apparent to the human eye. Since the purpose of the transform is to
pick out points of interest in the image it is logical to ignore such elements in our
calculation. Reisfeld implemented the generalised symmetry transform to ignore
small gradients in his original work (Reisfeld, 1993), and Sela and Levine (1997)
also ignore small gradient elements. They also go one step further and binarize

the gradient image into an edge map.

We ignore small gradients by introducing a gradient threshold parameter 7. When
calculating images O,, and M,, all gradient elements whose magnitudes are below
A are ignored. The effect of a small 7 on M,, is negligible, however, even small
values of [ start to attenuate O,, in regions of low contrast. This results in an

emphasis on interest points with high contrast.

A small value of [ that eliminates the lowest 1 — 2% of the gradient removes the
small noisy gradients mentioned above. However, if low contrast features are not
important, larger values of 3 can be chosen to increase the speed of the algorithm
by considering fewer gradient elements. The effect of large values of 3 is shown
in Figure 3.8, where /4 is measured as a percentage of the maximum possible
gradient magnitude. In this example this is beneficial for the detection of eyes
and mouth with 7 = 20%, however, too high a value, such as 7 = 40% starts
to attenuate features of interest such as the corners of the mouth. In general a
conservative choice of # = 2% is preferable, higher values should only be used
when it is desired to ignore low contrast features,

3.3.2 Dark & Bright Symmetry

The transform can be tuned to detect dark or bright regions of symmetry. To
find dark regions exclusively only the negatively-affected pixels need be consid-
ered when determining M,, and O,,. Likewise, to detect bright symmetry only
positively-affected pixels need be considered.

Alternatively, dark and bright symmetries can be obtained applying a threshold
to the output image S to eliminate all positive or negative values. This second

approach has the advantage that inconsistent dark and light values will can-
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8 for @ = 20% S for = 40%

Figure 3.8: The effect of different values of 4 on §. Here [ 18 measured as a
percentage of the maximum possible gradient magnitude and n = 1. Original
image from Database of Faces, AT&T Laboratories Cambridge 1994

(e) (f)

Figure 3.9: Examples of dark and bright symmetries. (a) Input image. (b)
Dark symmetry. (¢) Bright symmetry. (d) Dark and bright symmetry image
S. (e) Dark and (f) bright symmetry images obtained from thresholding S.

cel each other out as they do when calculating both dark and light symmetries

together. However, experimentation has shown that although this alternative
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approach gives slightly different dark/bright symmetry outputs the result is no
better than simply counting only dark/bright affected pixels. Figure 3.9 shows
examples of dark and bright symmetry determined using each approach. Since it
is not necessary to cancel out inconsistent dark/light values, the first method is

preferred as it offers a reduction in computation.

Dark symmetry is especially useful for detecting facial features that typically
appear darker than the surrounding skin, more examples of dark symmetry are

shown in Section 3.5.

3.3.3 Choosing a Constant A,

A faster implementation of the transform can be achieved by choosing the Gaus-
sian kernel to be constant over all radii. The saving in computation is achieved
by avoiding performing convolutions with A, for each radius. Choosing A, to
he a fixed Gaussian still disperses the influence of the affected pixels, and can
produce reasonable results. In this case only one convolution need be performed,

and Equation 3.4 reduces to

§'=G,+Y F, (3.5)

where G, is a 2D Gaussian with standard deviation o.

3.4 A General Set of Parameters

As discussed in Sections 3.2 and 3.3 there are a number of different parameters
and refinements to the basic transform. In Table 3.2 three general parameter sets
suitable for different applications of the transform are presented. The Full setting
is the best choice when the transform is to be applied in an unsupervised manner,
it provides more detail at the expense of requiring more computation than the
alternative settings, The Fast setting detects both bright and dark symmetry
quickly, and the Fast Dark setting finds only regions of dark symmetry., The
performance of each of these settings is presented in Section 3.5,
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Table 3.2: Parameter Settings used for Experimentation

Parameter Setting
Full Fast Fast Dark
Set of radii N {n:n=12..6} | {n:n= 1,3,5} {-n ‘n=1,3 ,-’,_}_
Gaussian kernel
Size n T n
Standard deviation 0.5n 0.5n 0.57
Radial strictness o 2 2 2
Small gradients ignored 0 2% ignored 2% ignored
Dark symmetry Yes Yes Yes
Bright symmetry Yes Yos No

Figure 3.10: 256 x 256 lena image (USC-SIPI Image Database).

3.5 Performance Evaluation

This section demonstrates the performance of the FRST on a range of images,

and compares it with several prominent transforms from the reported literature.

3.5.1 Performance of the FRST

T'he FRST was applied to the standard 256 x 256 lena image (Figure 3.10) using
both the full and fast dark parameter settings in Table 3.2, These results are
presented as layers in Figure 3.11 with the corresponding peaks in dark radial
symmetry indicated. The eyes both stand out, as do two other points in the
image. Examining the non-eye peaks show that they both correspond to small
roughly round dark regions in the original image, so it is unsurprising that the
transform returns high values at these locations. It is interesting to note that

the result with the full parameter setting detects the whites of the eyes as points



3.5 Performance Evaluation 79

of light symmetry. The whites of the eyes are not always as distinetly visible as
they are in this image, especially in video images or instances when the eyes are
in shadow, however, in high quality images when the eye whites are visible the
co-occurrence of light and dark symmetry in close proximity is a strong cue for

eye detection,

Figure 3.12 demonstrates the performance of the transform on faces and other
images. These figures were generated using the parameter settings presented in
Table 3.2, and show how the transform can provide a useful cue for the location of
facial features — especially eyes — in face images, as well as highlighting generic
points of interest that are characterized by high contrast and radial symmetry.
Note that the orientation-based symmetry is more sensitive to low-contrast fea-
tures and texture. This sensitivity can be reduced by using a higher gradient
threshold, however, such sensitivity is desirable when considering low contrast

T

features such as the shadowed side of the face in Figure 3.16.

The intuitive notion that facial features are generic points of interest provides a
useful benchmark for evaluating point of interest operators. Whilst the applica-
tion of these operators is by no means limited to facial feature detection (Chella
et al., 1999; Di Gesu and Valenti, 1995a; Minor and Sklansky, 1981) this is cer-
tainly the most common application area (Di Gesll and Valenti, 1995a; Intrator
et al., 1995; Lin and Lin, 1996; Reisfeld et al., 1995; Reisfeld and Yeshurun, 1998;
Sela and Levine, 1997; Sun et al., 1998). Facial images provide a useful case
study, offering images of widely varying appearances with well defined sets of in-
terest points, as well as directly addressing the primary application area of point

of interest detectors.

The FRST has been implemented in a realtime vision syvstem. The realtime
code was written in C++ and made use of the Intel Image Processing Primitives
(version 2.05) to achieve a mean processing time of 13.2 ms (standard deviation
of 0.08 ms) per 240 x 320 image frame, on a 1.4 MHz Pentium III running under
Linux. The realtime system detects orientation-based symmetry online using the
fast dark settings detailed in Table 3.2, However, to increase efficiency. uniform
square kernels were used rather than Gaussians to blur the response at each
radius (Equation 3.1). Figure 3.13 shows some snap shots of the system output,
The results highlight the eves and mouth of the subjects well, and there are
virtually no noticeable artifacts caused by using uniform square kernels rather
than Gaussians.
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Figure 3.11: Results of applying the FRST to the 256 x 256 lena image, with
corresponding points of high dark radial symmetry indicated. Top: original
image. Middle: resnlt with the full parameter setting. Bottom: result with
the fast dark parameter setting.
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Original

Orientation-
based
symmetry
(fast dark)

Radial

symmetry
(fast dark)

Orientation-
bhased
symimetry

(fast)

Radial sym-
metry (fast)

Radial sym-
metry (full)

Figure 3.12: The FRST applied to face and other images. The form of the
transform and the parameter settings used for each row are indicated on the
left. The left most image is from the BiolD Face Database Research (2()(”.)
and has been sub-sampled to half its original size,
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Figure 3.13: The orientation-based fast dark implementation of the FRST be-
ing calculated online in realtime. The left column shows sample input images

and the right column shows the output, all images are 240 x 320 pixels.
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The realtime code was also tested off-line on the 256 x 256 image in Figure 3.10
and timed over 10,000 iterations to determine a mean processing time of 10.8 ms

for the calculation of the fast dark orientation-based symmetry on this image.

3.5.2 Comparison with Existing Transforms

In Chapter 2 we reviewed a number of existing methods for calculating radial
symmetry (see Section 2.1.5). We now compare the performance of the FRST

against the more prominent of these existing transforms, namely:

e Sela and Levine’s realtime attention mechanism (Sela and Levine, 1997),

e Reisfeld’s generalized symmetry transform for both dark and radial gener-
alized symmetry (Reisfeld et al., 1995),

e Kovesi’s symmetry from phase (Kovesi, 1997),

e DiGest et. al’s discrete symmetry transform (Di Gesti and Valenti, 1995a),

and

e Minor and Skalansky’s implementation of the Circular Hough transform
(Minor and Sklansky, 1981).

Kovesi’s symmetry from phase was calculated for 6 filter orientations and 4 scales
ranging from 2 to 2! pixels in diameter. All other methods were implemented
with a local neighbourhood radius of 6 pixels, allowing local symmetry to be
detected in a neighbourhood of up to 13 x 13 pixels about each point. Where

necessary the gradient orientation was quantized into 8 bins.

Fach of the transforms was implemented in Matlab 5.3 (Kovesi's symmetry from
phase was implemented using Kovesi’s own Matlab code (Kovesi, 1999b)) and
the output computed. For the majority of the transforms an estimate of the
approximate number of floating point operations involved was obtained from
Matlab, however, for Di Gesu el. al.’s discrete symmetry transform and Sela and
Levine's realtime attention mechanism this was not the case. These transforms
involve optimized low-level processes that were not practical to emulate in Matlab,
so the number of operations required is not reported here. (Unsurprisingly, the
non-optimized implementations used to generate the visual results shown required

computation well in excess of the other methods.)
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Table 3.3: Estimated Computation Required for Different Transforms

Transform Computations
(Mflop)

Figure 3.14 Figure 3.15 Figure 3.16

FRST

Radial Symmetry
Full 17.9 18.9 23.4
[Fast 8.06* 7. 20" 8.51%
Fast Dark 6.76* 5.99* 74"

Orientation Symmetry
Fast 7.44* 6.69* 7.87"
Fast Dark 6.45% 571" 7.09%

Existing Transforms
Reisfeld et al.’s Generalized Symmetry

Radial 300 250 349
Dark 207 179 239
Minor and Sklansky's Circular Hough 30 33.2 43.1
Kovesi's Symmetry from Phase 601 196 912

" Note that the Fast and Fast Dark parameter settings ignore small gradients
and are not calculated across all radii (see Table 3.2).

The results are shown in Figures 3.14 to 3.16 and the computations required are
presented in Table 3.3. These results demonstrate that the FRST can provide
comparable or superior results to existing techniques whilst requiring a relatively
low level of computation. As noted in the footnote to Table 3.3 the fast and
fast dark parameter settings ignore small gradients and are not calculated across
all radii, however, the transform is still able to provide useful results, and the
computational efficiency is increased. Other transforms may also benefit from
these technique. Indeed, Reisfeld initially considered ignoring small gradients
(Reisfeld, 1993). However, the effect of these variables on other transforms has

not been explored in this thesis,

The realtime attention mechanism of Sela and Levine (1997) provides cloud-
like approximations of interest points. The final step of this transform involves

identifying local maxima in this output as points of interest. These have been
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marked with crosses in Figures 3.14 to 3.16 with the size of the cross corresponding
to the value of the transform at the local maximum. The transform detects both
eyes in the face in Figure 3.15 and the high contrast eye in Figure 3.16, but it
also awards high interest to non-radially symmetric edges and areas of texture,

and fails to detect the circular wheels of the car in Figure 3.14.

The results from the generalized symmetry transform show good detection of
regions of interest by generalized radial symmetry, however, the generalized dark
symmetry tends to highlight edges in addition to points of interest. The high
computational load of the generalized symmetry transform (and other methods
that consider symmetry in a local neighbourhood about each pixel (Lin and Lin,
1996)), comes from the computational load scaling with the square of the radius
of the neighbourhood. The larger the neighbourhood the more pixels that must
be considered when calculating the transform at each point in the image. FKven
for modest sized neighbourhoods, such as the 13 x 13 pixel neighbourhood used
for the experimentation on the 320 x 240, 256 x 256 and 256 x 341 images in

Figures 3.14 to 3.16, the computation is considerable.

Calculating the symmetry from phase detects areas of high bilateral or radial
symmetry independently of contrast. This method is not designed to detect
points of interest in scenes, however, it provides a detailed map of the underlying
symmetries present across the image that is instructive to consider in relation
to other “symmetry operators”., Comparing the results from this transform with
those of Reisfeld’s generalized dark symmetry we see that (as noted by Kovesi
(1997)) the latter is essentially a combined measure of the underlying symmetry
and the contrast. Furthermore, comparing the lines of bilateral symmetry (from
the phase symmetry image) with the points of high radial symmetry from Reisfeld
et. al.’s generalized radial symmetry, confirms that radial, rather than bilateral

symmetry is a better detector of points of interest in Figures 3.14 to 3.16.

The discrete symmetry transform tends to highlight either side of high contrast
lines, with the result that when such a line forms a ring, such as the wheels of the
sports car in Figure 3.14, it is strongly highlighted. However, there is also a lot
of bold highlighting of non-circular edges and regions of high texture that do not
exhibit radially symmetry. While detecting these features may be desirable for
some applications, they distract from the emphasis placed on radially symmetric
points, and detract from the performance of the transform as a symmetry-based
interest detector,
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Minor and Skalansky’s implementation of the Circular Hough transform comes
closest to rivalling the computational efficiency of the FRST, yet it provides only
four levels of output. It was designed for detecting dark blobs in infrared images,
and when applied as a point of interest detector to the photographs shown here it
detects many other points in addition to the primary interest points. In particular
it returns high values along edges, such as the frame of the mirror in Figure 3.15,

and is easily confused by textured surfaces, such as the grass in Figure 3.14.

Table 3.4 lists the order of computation required to compute the transforms on
an image of K pixels, where local symmetry is considered in an N x N neighbour-
hood, and for those methods which require gradient quantization the gradient is
quantized into B bins. The complexity O(KN) of the FRST is lower than all
other transforms considered, with the exception of Di Gesti et al’s discrete sym-
metry transform that has complexity O(K'N) or O(KB). When calculating the
discrete symmetry transform with complexity O(K B) (Di Gesti and Palenichka,
2001) it is essential to calculate it across four or more angular bins, whereas
when calculating the FRST it is not necessary to compute it at all radii 1...N
(see Section 3.2.1). Likewise the order O(KN) implementation of the discrete
symmetry transform (Palenichka et al., 2001) can be calculated at only a subset
of the radii. However, the results from the discrete symmetry transform are quite
different from the method presented in this thesis, with edges and areas of high

texture, in addition to points of radial symmetry, typically being awarded high

responses.
Table 3.4: Computational Order of Different Transforms
Transform Order
FRST KN
Generalized Symmetry Transform Reisfeld et al. KN?
Gradient-based Inhibitory Mechanism (Lin and Lin, 1996) KN?
Discrete Symmetry Transform KB or KN
(Di Gesti and Palenichka, 2001; Palenichka et al., 2001)

realtime Attentional Mechanism (Sela and Levine, 1997) KBN

| Circular Hough Transform Minor and Sklansky (1981) KEBN

The key to the speed of the FRST lies in the use of affected pizels to project
the effect of gradient elements. This allows an approximation of the effect of
each gradient element on the radial symmetry of the pixels around it, without
specifically considering neighbourhoods about each point like Lin and Lin (1996)

and Reisfeld ef al. (1995), or requiring multiple calculations for different gradient
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Figure 3.14: Comparison of performance on a 320 = 240 outdoor image. The
top two rows show the performance of the FRS'T, the bottom two rows show
the output from other available transforms.
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Radial symmetry Orientation-based
(fast dark) (fast dark)

Radial symmetry (full) Radial symmetry (fast) Orientation-based

symmetry (fast)

Realtime attention Generalized symmetry Generalized symmetry
mechanism (Sela and (radial) (Reisfeld et al., (dark) (Reisfeld et al.,

Levine, 1997) 1995) 1995)

Symmetry from phase Discrete symmetry Circular Hough
(Kovesi, 1997) transtorm (Di Gest and transform (Minor and
Valenti, 1995a) Sklansky, 1981)

Figure 3.15: Comparison of performance on the standard 256 x 256 lena image.
The top two rows show the performance of the FRST, the bottom two rows
show the output from other available transforms,
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Figure 3.16: Comparison of performance on a 256 x 341 image of a face in half
shadow. The top two rows show the performance of the FRST, the bottom
two rows show the output from other available transforms.






Chapter 4

Face Localisation

[ I VHE first step to enabling a computer to see a person’s face is to localise and
track the approximate location of the face in an image sequence. We refer

to this as face localisation which is the topic of this chapter.

Visually acquiring and tracking faces and other targets is a key problem in com-
puter vision, and new and innovative techniques are constantly being developed.
However, despite the impressive results obtained, it is clear that no single cue can
perform reliably in all situations. The key to an eflicient and robust vision sys-
tem for tracking is to intelligently combine information from a number of different

cues, whilst effectively managing the available computational resources.

The development of such a system must address several issues: which cue(s)
should be used and when, how should the cues be combined, and how much

computational resource should be expended on each cue.

This chapter presents a framework for a vision system that addresses these issues

by fulfilling the following criteria:
e cfficiently allocate finite computational resources when calculating cues, ac-
counting for the cue's expected utility and resource requirement,
e facilitate cues running at different frequencies,

e locate a target in multi-dimensional state space, eg. determining the tar-

get’s 3D location and orientation, and

e allow tracking of multiple hypotheses.
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Firstly we introduce some background theory in Section 4.1 which forms the basis
for our system. The overall architecture of the system is described in Section 4.2.
Section 4.3 describes an implementation of the system that locates and tracks a
person’s head in a cluttered environment. Visual cues are discussed and exper-
imental results are presented. Section 4.4 demonstrates how the system can be
extended to track multiple targets. Section 4.5 closes with a summary of the key

points,

4.1 A Bayesian Approach to Target Localisation

The system uses Bayesian probability theory to fuse information from different
time instances and sensing modalities. A particle filter is used to approximate
the resulting PDF and maintain multiple hypotheses of the target location. This
section details the Bayesian framework which leads to Markov localisation. Par-
ticle filtering is also discussed, and it is shown how a particle filter can be applied

to model the probability density resulting from Markov localisation.

4.1.1 Markov Localisation

Given a state space of possible target poses, the problem of target localisation
can be expressed probabilistically as the estimation of the posterior probability
density function over the space of possible poses, based on the available data.
That is, at time ¢ estimate the posterior probability P(s:|eq ;) of a state s; given

all available evidence ¢, ; from time 0 to ¢.

Using Bayesian probability theory and applying the Markov assumption® the de-
sired probability P(s;|eg ;) can be expressed recursively in terms of the current
evidence and knowledge of the previous states. This is referred to as Markov
Localisation, and is commonly used in mobile robotics. It is represented mathe-

matically by the following equation,

P(stleo.r) = mnPless) /P(S:I-ﬁ:_l)P(&_l €o..t-1)d8—1 (4.1)

'The Markov assumption states that the past is independent on the future given the current
state.



4.1 A Bayesian Approach to Target Localisation 93

where 7, is a constant normaliser that ensures the probabilities sum to one, 7, =
I /P(t’:’f‘ (fu__r;_ -1 )

The derivation, as outlined by Thrun (2000), sequentially applies Bayes’ rule, the
Markov assumption, the theorem of total probability and the Markov assumption

again, and is detailed below.

Firstly Bayes’ rule is applied, one of the probabilities is expanded and Bayes’ rule

is applied again,

Peg.i|se)P(st)
Pleg..)
P(rf,, €0..t=1) -‘*f.)P(f'-'tJ..z.—l\-“!.)P("?f-)
P(t’n..n)
P(eleq..t-1, 8t) P(stleo.1-1) P(eo.t-1) P(8¢)
P(s)P(eq,i-1)P(etleo. t-1)
mP(eeo. -1, s¢) P(se

F(-'itlf'-‘-n...f.) =

Il

E[J...t—l)

Applying the Markov assumption allows P(e;|eq.—1, 8;) to be rewritten as P(e;|s;)

giving

P(sileo.t) = mP(e

Hg).l")(SL lGO...t—l )

Since the set of all possible states at a given time represents a collection of mutu-
ally exclusive events whose probabilities sum to one, the theorem of total prob-

ability enables P(s;

€o.+-1) to be written as a sum over all possible state values

at time t — 1 as follows
P(sileo.t) = 'f'h.P(f’f.|-""r.)/ ]'j(-""r|f"(}...r—|;-‘w‘r.--l)P(-"ﬁ'!.---1|f"(.1...r—1)d-‘?r—l

The Markov assumption can then be applied again to simplify P(s:|eq. —1.8:-1)

leading to the formulation presented in Equation 4.1. This formulation provides
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a recursive means of estimating the probability of the current state given all the

evidence sighted since sensing began.

4.1.2 Markov Localisation with a Particle Filter

A particle filter is applied to model the distribution in Equation 4.1. In Chapter
2 we explained how a particle filter is able to locate targets in state space while
only measuring the probabilities of target hypotheses at a discrete number of
locations. The particle filter effectively approximates the continuous distribution
by a set of discrete samples. Thus we are only required to determine P(s,|eq. ;)

for a number of discrete values of s; (and s,_;), so Equation 4.1 becomes

F(Sg

E0i) = TPLP(F—‘f.|Sf.)ZF(St|55£—)1)F(Sw1[ﬁﬂ---t—l)

where (i) denotes the i** discrete value (i.e., particle).

There are two main parts to the right hand side of Equation 4.2, the probability

P(e,

Sz) and the summation.

Each term of the summation describes the probability of a specific particle 5591

migrating to the location s; in the next time step. Summing over all the particles
in the previous time frame gives the probability of a particle oceurring at a
particular location in state space s, given the locations and probabilities of all
the particles at time ¢ — 1. To see how this is modelled by the particle filter
we need to consider the constituents of each term of the summation, namely the
probabilities P(s|s\”,) and P(st")]eo..1—1). The second of these is modelled by
re-sampling with replacement (step 2 in Figure 4.1), where this probability is the
chance of re-sampling a particle. The other probability ,P(s,Lsf?l) is modelled
by Brownian motion and deterministic drift (steps 3 and 4 in Figure 4.1), that

determine the location of a particle s, given its previous location s;_;.

The other part of Equation 4.2, P(e,

[n our case this amounts to examining the visual input at the appropriate loca-

s¢), is measured from sensor information.

tion in the image and estimating the probability that this location contains the
target. This is modelled by the update PDF phase in the particle filter (step 1

in Figure 4.1). The sensing process is described in more detail in Section 4.2.2.
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Figure 4.1: The four steps of the particle filter,
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Figure 4.2: System architecture,

4.2 System Design

The system detailed in this chapter uses a particle filter to track a population of
target hypotheses in state space. A number of cues are calculated from image and
state information and combined to provide evidence strengthening or attenuating

the belief in each hypothesis,

Figure 4.2 shows the structure of the system. It consists of two subsystems: a
particle filter and a cue processor, each of which cycle through their loops once
per frame. These subsystems interact as shown by the thick arrows in the figure.
The particle filter passes the current particle locations to the cue processor. The
cue processor determines the probabilities for the particles and passes these back

to the particle filter. Each of these subsystems is discussed in further detail below,
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4.2.1 Particle Filter

A description of particle filtering and the mechanisms driving the process has
been given in Chapter 2 Section 2.2. In this chapter we apply a particle filter to
track a target’s location in 3D space. To summarise this process Figure 4.3 shows
a series of schematics of a particle filter tracking a person’s head, where the state
variables are the 3D position of a person’s head (z,v, z), and its orientation @
about the optical axis. Initially the hypotheses are distributed uniformly about
the state space. Next, the probability that each hypothesis represents the true
target location is determined by examining the appropriate image location, and
thus a probability value is determined for each hypothesis. The hypotheses are
re-sampled, and subjected to deterministic drift and diffusion. This process is
repeated for every new image frame in the sequence and results in clustering of

hypotheses around the most promising target locations.

The primary appeals of the particle filter approach to localisation and tracking
are its scalability (computational requirement varies linearly with the number of
particles), and its ability to deal with multiple hypotheses and thus more readily
recover from tracking errors. However, the particle filter was applied here for

several additional reasons:

e it provides an efficient means of searching for a target in a multi-dimensional

state space.

e it reduces the search problem to a verification problem, i.e., is a given

hypothesis face-like according to the sensor information?

o it allows fusion of cues running at different frequencies.

Lhe last point is especially important for a system operating multiple cues with
limited computational resources, as it facilitates running some cues slower than
frame rate (with minimal computational expense) and incorporating the result

from these cues when they become available.

I[f a cue takes n frames to return a result. by the time the cue is ready, the
particles will have moved from where they were n frames ago. To facilitate
such cues the system keeps a record of every particle's history over a specified
number of frames k. The cue value determined for a particle n < k frames

ago can then be assigned to the children of that particle in the current frame,
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corresponding
y  image location
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Figure 4.3: Schematics of particle filter tracking a head in (z,y.z, 0) state
space. (a) Initial hypotheses are uniformly distributed across state space,
(b) The probability of each hypothesis being the target is measured from the
image. (¢) These probabilities are assigned to each hypothesis. (d) Over time
the hypotheses converge to the most “target-like” locations,

thus propagating forward the cue’s response to the current frame. Conversely,
probabilities associated with particles that were not propagated are discarded.
Figure 4.4 shows a simplified example with four particles in a one-dimensional
state space, showing the evolution of this population over four time steps. The
blue and orange particles at s;(t) are children of the same coloured particles from
t — 4, thus a slow cue that takes four frames to compute is calculated for the
particles s;(t —4) and the values for the blue and orange particles assigned to the
respective children of these particles in frame ¢, whilst values calculated for the
green and red particles are discarded.
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Figure 4.4: Example of particle population evolving over time, showing the
history.

4.2.2 Cue Processor

Whilst the particle filter maintains a record of target hypotheses and propagates
these through in state space, it is the cue processor that deals with the caleulation
and fusion of cues necessary to effectively measure the probability of each of these
hypothesis. The cue processor also determines metrics measuring the performance

of each cue, and the allocation of computational resources to individual cues.

Each frame the cue processor cycles through the steps illustrated in Figure 4.2

L. Update cues: accesses recently caleulated cues.

2. Fuse data: fuses the results of different cues to estimate the overall proba-

bility for each hypothesised target state.

3. Calculate metries: determine the metrics for each cue that quantify how

well that cue performed on the last image frame.

4. Allocate resources: based on the anticipated performance of the individual
cues, allocate computational resources to maximise the quality of informa-

tion obtained.

The calculate cues component of the system accepts requests for cue measure-

ments and handles the requests using only the quantity of computational resources
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allocated to it by the allocate resources component.

Calculating and Updating Cues

[Fach particle from the particle filter presents a hypothesis target location in state
space. Using a pinhole camera model and knowledge of the target dimensions,
the size, location and orientation of each hypothesis is determined in the image,

as shown in Figure 4.3 (b).

Each cue returns a set of probabilities {P(f-:&i)hs&j)) for j = 1...N} indicating the

it active cue’s belief in the j* hypothesis, where N is the total number of par-

ticles.

Calculating some cues may take longer than the time available between sequential
frames. In this case the cue is not available to the update cue component in the
following frame, and the cue will not be updated until the new value is ready. As
discussed in Section 4.2.1, these slow cues are accommodated for by the update
PDF component that is able to propagate their effect through to the probability

values in the current frame.

The visual cues applied depend on the target being detected. In the face localisa-
tion implementation in Section 4.3 several simple cues are described for detecting

a person’s face in clutter. Section 4.4 describes cues for detecting faces and hands.

Fusing Cues

A crucial question when fusing sensor information is how to combine the proba-

hilities obtained from different sensor modalities.

We assume the different cues are probabilistically independent. Whilst this as-
sumption is not strictly true across all cues it is true in most cases, and it allows
us to fuse the cues via simple multiplication of probabilities. However, there is
a problem with zero probability values when fusing cues in this fashion, since
multiplication with zero will always result in zero. For this reason we re-scale
and offset the probabilities from zero by an amount o € (0,1). Subsequently,
the probabilities from the cues are fused to determine the overall belief in the gt
hypothesis F’(u,\._sg'”) at time t as follows

P(r-:,,\.«sﬁ‘”) =1] (F(c‘:f”|ﬁ£'”)(l - o) + a)

T
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In our system o = 0.1 was used allowing cues with low responses to strongly
attenuate the combined probability, whilst ensuring that a single cue returning

zero will not force the combined probability to zero.

Quantifying Cue Performance
The performance, or utility, of each active cue is estimated every frame, and used
to decide the distribution of computational resources across the cues,

Fusing the results of all available cues is assumed to give the best c%imﬂt'ﬂ of

the true PDIE P(ey|s;) across the state space. So the performance of the j** cue

can be quantified by measuring how closely the cue's PDF P(e ;) matches
P(ei|s;). This can be done using the relative entropy, or the Kullback-Leibler
distance (Kullback and Leibler, 1951), an information theoretic measure of how

accurate an approximation one PDF is to another, given by

P(e; |.5‘5’:))
P(ei”|si")

d; ( e]s), "'(q:,. 5 ) zP |s, log
where s; are the particle states at time ¢. Soto and Khosla (2001) used this metric
to rate the performance of their cues, and Triesh and von der Malsburg (2000)

considered it, but opted for a simpler ad hoc measure.

Our system uses this approach and we define the utility of the 7' cue at time ¢

as

ue(j) = 6,(Perlse), P(ef” |s,)) (4.2)

Resource Allocation

A practical vision system has finite computational resources. To make the most
of these resources it is important to use cues that provide the best quality in-
formation for the least computation. Our system is equipped with a range of
visual cues. Different cues require varying amounts of computation and perform

differently in different operational conditions.

The resource allocation component of our system aims to dynamically allocate
computational resources to maximise the quality of information obtained per unit
of computation. Quality of information is measured as the net utility of the cues

computed, where the utility of each cue is determined from Equation 4.2,
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This leads to a system that is able to adapt to changing operational conditions and
adjust its use of cues accordingly. An additional advantage of this configuration is
the flexibility it lends to changes in hardware and software, being able to readily

accept new cues, sensing modalities, or changes in computational performance.

The system aims to locate and track targets, and give timely feedback regarding
the target’s location, so it is desirable to have at least some of the cues running
at frame rate. For this reason a certain proportion of the time available for cue

processing each frame is devoted exclusively to cues running at frame rate.

Slow cues were permitted to run once every 2, 4, or 8 frames. However, the longer
a cue takes to generate information, the less useful that information is in terms
of locating the target in the current frame. To account for this an exponential
discount factor d € (0,1) is introduced that attenuates the utility measure of a
cue for each frame it is late. That is, the utility u is attenuated to d"u if it is n

frames late,

For our system a simple resource allocation process was used that functions as

follows:

e Allocate resources to cues running at frame rate:

— (enerate all combinations of cues that can be calculated in the time

allocated for cues running at frame rate.

— Choose the combination with the best overall utility.
o Allocate resources to cues running below frame rate:

Calculate the amount of time remaining for computing slow cues in the
current frame (taking into account that some resources may already
be allocated to slow cues that are still being computed from previous

frames).

— Determine all combinations of the remaining cues over all possible
slower frame rates such that no combination exceeds the time available
for the slower cues.

— Calculate the net utility for each of these cue combinations using the

discount factor to reduce the utility according to how late the cues are.

— Choose the combination of slow cues offering the best overall utility.
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This process is repeated for each new frame to continually reallocate the available

resources throughout the system’s operation,

4.3 Localising and Tracking a Head in a Com-
plex Environment

As discussed in Chapter 1, face localisation is the first step to enabling a com-
puter to see a face. It is also a precursor to numerous human computer interaction
and surveillance tasks, such as tracking the head pose, attempting face recogni-
tion or expression recognition, and facial feature detection and tracking. Much
research has focussed on detecting and tracking faces in both still images and
image sequences (see Chapter 2 Section 2.2). However, the search for a robust
face localising and tracking method is far from over. In this section we apply the
vision system developed in this chapter to this problem. Our system is demon-
strated localising and tracking a person’s head in a cluttered environment, whilst

dealing with changing head pose, occlusion and changing lighting conditions.

4.3.1 Implementation

An implementation of the system was developed as an object orientated algorithm
in Matlab. To simulate realtime resource requirements the computational cost

for each cue was estimated from the CPU time required,

Two uncalibrated colour stereo video cameras as were used as sensors. The
images from these cameras undergo some preprocessing and are then passed to
the cues where each target location hypothesis is tested by computing all active
cues. Figure 4.5 shows the sensing process when all cues are active. Both the

preprocessing and hypothesis testing are discussed below.,

4.3.2 Preprocessing

Preprocessing is only performed once for each new set of images, whereas hypoth-
esis testing requires one test for every target hypothesis generated by the particle
filter. The preprocessing required for each frame is governed by the cues that are

to be computed. These dependencies are illustrated by the network in Figure 4.5.
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Figure 4.5: Sensing process

Figure 4.6 shows two colour 320 x 240 stereo images as received by the system'’s

cameras, and the resulting outputs from preprocessing these images,

Depth Map

A dense depth map is generated from stereo intensity images using the approach
of Kagami et al. (2000) (Chapter 2 Section 2.1.3). The optimised realtime imple-
mentation for our system was provided by Fletcher ef al. (2001). For maximum
efficiency pre-filtering was be done in software with a Difference of Gaussian fil-
ter, and stereo matching was performed using Sum of Absolute Differences. The

resulting depth map presents the depths as viewed from Camera 2.

Skin Colour Detection

A skin colour likelihood image is generated from one channel of the stereo image
stream, so that the value of each pixel in the skin colour likelihood image is
indicative of the probability that there is skin colour at that location in the

original image.

The skin colour likelihood of each pixel is determined by reference to a pre-
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(h)

Figure 4.6: |’I't-[;l'tu't'r-\hinjl, a colour stereo image pair. (a) Image from camera
. (b) Image from camera 2. (¢) [ntensity image, (d) Radial symmetry image,
(e) Facial symmetry image, (f) Depth map, (g) Skin colour likelihood image,
(h) Radial symmetry of skin colour likelihood image searching for a radius of

15 pixels.
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computed skin colour histogram. The histogram was generated using an extension
of the method used by Cai and Goshtasby (1999) discussed in Chapter 2, where
a two-dimensional histogram of skin chrominance was constructed in the CIE ab
chrominance space. We use a three dimensional skin colour model in the YUV
space built as follows: we discretise the colour space into 16 x 64 x 64 bins (16
for Y and 64 for U and V), plot each skin colour sample in the discretised colour
space, blur these by convolution with three dimensional Gaussians, and finally
normalise the result so the maximum value is unity. 173, 000 skin colour samples
were used from 346 images of faces of people of varying race captured under
different lighting conditions. Note: none of these samples were from people later

tracked by the system.

Radial Symmetry

The new radial symmetry operator described in Chapter 3 was used to highlight
possible eye locations in the original grey-scale image, and possible head locations
in the skin colour likelihood image. The orientation-based variant of the transform

18 used in both cases.

When applied to the skin colour likelihood image the transform highlights light
regions that are approximately circular and of a similar diameter to a face, see

for example Figure 4.6 (h).

The operator was also applied to the intensity image to highlight small dark
regions such as the eyes (Figure 4.6 (d)). This output is then convolved with
a blurred annulus to highlight the regions between potential eye pairs. This
second output is referred to, somewhat arbitrarily, as the facial symmetry image
(Figure 4.6 (e)).

Each application of the radial symmetry operator is performed at three different

radii to detect targets at three ranges of depth away from the camera.

4.3.3 Hypothesis Testing

As stated in Section 4.2.2 at time ¢ each cue returns a set of probabilities

{P(ef'i)l.sg")) for j = 1...N}
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0.21

(c)

Figure 4.7: Generic head target and associated search regions. (a) Generie
head target with dimensions in meters, (b) Elliptical face region (light) and
face boundary region (dark), (¢) Search regions for integral projection.

(a)

indicating the " active cue’s belief in the j'* hypothesis (where NV is the total

number of particles).

The cues were chosen on the grounds of simplicity and efficiency. All cues use the
head model dimensions shown in Figure 4.7(a). In the proceeding descriptions
the face region and face boundary refer respectively to the light and dark grey

regions in Figure 4.7(b).

Intensity-based Cues

Lye Location Cue: This cue uses integral projection (described in Chapter 2) to
search the regions in Figure 4.7(c) of the intensity image for the darkest bands
aligned with the lateral axis of the head. A high value is returned if these are

close to the hypothesised eye locations,

Radially Symmetric Intensity Cue: The hypothesized depth of the target indi-
cates which radius of facial symmetry should be used. The cue is determined as

the value of the appropriate facial symmetry image at the target location.

Radially Symmetric Eye Cue: The generic face model in Figure 4.7 is used to
extrapolate the hypothesised eye locations for the current target hypothesis. The
hypothesised depth indicates the appropriate scale of radial symmetry that is best
suited to eye detection. Using the radial symmetry image at the appropriate scale,
the value of the cue is determined as the average value of the radial symmetry

image at the two hypothesised eve locations.
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Depth-based Cues

We expect the head to standout as a blob in the depth map. Two cues are applied

that together aim to detect head-sized blobs of the appropriate depth.

Head Depth Cue: This cue checks to see if the hypothesised face region is at the
appropriate depth. It compares the depths in this face region with the hypothe-

sised depth of the target, returning a high value when these are in agreement.

Head Boundary Depth Cue: This cue measures whether the area surrounding
the hypothesised head region is at a different depth from that of the hypothesis.
[t compares the depths in the face boundary region to the hypothesised target

depth, giving a high value when these are different.

Colour-based Cues

Elliptical Skin Region Cue: This cue indicates the likelihood that the hypothe-
sised target region contains a large proportion of skin-like colour. The value it

returns is the average skin likelihood of the pixels within the face region.

Skin Detector Cue: This cue detects targets that contain an instance of highly
skin-like colour. It returns 0.5 if any of the pixels sampled in the face region had
skin likelihood values within the top 10% of values in the current skin likelihood

image, and 0 otherwise.

Non-skin Boundary Cue: In general it is expected that the facial region will
exhibit a high proportion of pixels with skin-like colouration, whereas the area
immediately outside the face will not. This cue aims to capitalise on this scenario
by returning a high value if there are few skin colour pixels in the face boundary
region. As such the cue will perform poorly if the target is standing in front of a

skin-coloured background, but will provide useful information otherwise.

Radially Symmetric Skin Cue: The target is expected to appear in the skin-
likelihood image as an approximately round blob of a known radius, and the
hyvpothesised target depth indicates this radius. The value of the cue is given by
the value of the skin-based radial symmetry image (of the appropriate radius) at

the target location.
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Figure 4.8: Several frames in tracking sequence.

4.3.4 Performance

The performance of the system was demonstrated tracking a human face in two
image sequences. Figure 4.8 shows four frames from the first sequence. The
blue dots indicate the projected locations of the hypothesised face centres. The
hypothesis with the maximum likelihood is indicated as a green ellipse whose
size and orientation indicate the hypothesised scale and orientation of the target,
Likewise, the expected value calculated across all hypotheses is indicated by a

red ellipse.

Figure 4.9 shows a sample frame of the second sequence along with particle distri-
butions. This sequence contains a person moving around a cluttered environment
and contains occlusions and lighting variation. Both sequences are included on
the enclosed CD-ROM in their entirety.

Cues were dynamically scheduled to run once every 1, 2, 4 or 8 frames according to
their caleulated utility and computational cost. Figure 4.10 shows the cue utility
and processing delay for a specific cue during a tracking sequence, Note that as

the cue’s utility decreases relative to the other cues (i.e., from frames 50 to 50)
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Figure 4.9: Frame in tracking sequence showing (clockwise) particles in image,
in 3D space and particle distributions over z.y and z. f states with the particle
with maximum likelihood indicated by a yellow circle.

its processing delay grows as it is allocated less resources.

The simplicity of the cues means no one cue is able to reliably track the head in
3D space, however, by fusing multiple cues the ambiguity in the target location is
reduced. Furthermore, by adaptively rescheduling the cues the system was able

to enhance the tracking performance possible under a given resource constraint.,

Scheduling resources to different cues according to their performance enables a
system to aim for the best possible return per unit of computational resource.
Without resource scheduling a system is still constrained to use only the compu-
tational resources available, vet is ignorant of how to alter computational expen-
diture to improve performance. Resource scheduling aims to increase the amount
of useful information obtained per unit of computation, and — since there is only
a finite amount of computation available for each image frame — increase the

amount of useful information obtained from each frame.
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Figure 4.10: Top: Utility for the elliptical skin region cue (solid) and all other
cues (4's) during a portion of a tracking sequence. Bottom: Cue processing
delay for the elliptical skin region cue.

4.4  Tracking Multiple Targets

The ability of a vision system to track multiple targets is useful in marny circun-
stances that arise in human computer interaction. It may often be necessary for
a system to monitor multiple subjects simultaneously, or track different parts of

the same subject, such as the face and hands.

[ = s L "'2 : iy ! " ol | : o

[his section® demonstrates how our system can be extended to track multiple
targets by running several particle filters in parallel. An experiment is performed
showing this multiple particle filter approach successfully tracking a person’s face

and hands simultaneously,

“The work reported in this section was undertaken whilst visiting Professor Yasuo Kuniyoshi
and Dr Gordon Cheng at the Humanoid Interaction Laboratory, AIST, Tsukuba, Japan,
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4.4.1 Multiple Particle Filters

Multiple particle filters can be used to track multiple targets by assigning one
particle filter per target, and using inhibitions of returns to prevent different
particle filters from locking onto the same target. In this case inhibition of returns
simply amounts to inhibiting the maximum response from each particle filter so

that subsequent filters do not give the same response.

Each frame the particle filters are all run sequentially. After each particle filter
has run the hypothesis for which it returned the highest probability is blanked
out of the evidence for the subsequent filters, so the target it assigned the highest
probability becomes invisible to the other filters. The target remains invisible
until that filter runs again in the next frame, so it cannot be observed by any
of the other filters in the meantime. Note that when the evidence is updated
for the new frame the necessary region is blanked out in the evidence for the
new frame until the appropriate filter runs again. An example of this process is
shown in Figure 4.11 for two particle filters tracking in a one-dimensional state
space, The first filter is shown with blue particles, the second with red. After the
particle with the maximum response is determined for the first filter the evidence
in the vicinity of this particle (indicated by the green shading) is set to zero for
the second filter, so any particles from the 2nd filter that fall in this region will
return zero probability. Likewise, after the maximum response is determined for
the second filter the evidence in the vicinity of this maximum is set to zero for

the next iteration of the first filter, etcetera.

4.4.2 Experimental Setup

The purpose of this experimentation was to verify that multiple particle filters
could be run in parallel and successfully track different targets. A single colour
video camera was used to capture an image sequence at 30 frames per second,
the resource allocation was held constant and three simple cues were employed
each frame to track the head and hands of a subject. These targets were located
in 3D, however with only a monocular system the z depth (in the direction of
the optical axis) was not expected to be accurately determined. Unlike the pre-
vious experiment orientation was not considered (all cues used were rotationally

symmetric about the optical axis).



) 5 x
112 Face Localisation

state space
a -

Particle
filter |
at time t

7 Measure

Re-sample,

: -

\.\

L } Drift &
Diffusion

Particle
filter 2
at time t

7 Measure

7 Re-sample,
} Drift &

Diffusion

Particle
filter |
at time t+1

~ Measure

Drift &

} Re-sample,
Z Diffusion

Figure 4.11: Two particle filters tracking separate targets in a one-dimensional
state space, using inhibition of returns to prevent both filters converging on
the same target. The green shading indicates the inhibited regions around the
MAaximuIn responses.

['hree particle filters were run in parallel to track the three targets of the face and
the two hands. Inhibition of returns was used to prevent the different particle

filters from locking onto the same target
Preprocessing
['hree preprocessed images are caleulated in this experiment:

e Facial symmetry images (computed at three different racii)

e Radial symmetric skin image (computed at three different radii)
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e Motion image

The facial symmetry images and radial-symmetric skin images are the same as
those used for the Face Localisation experiment detailed in Section 4.3. An
additional motion image is introduced that highlights regions of the image that
have been changing and are thus likely to contain motion. This is generated using

the adaptive background method described in Chapter 2 Section 2.1.4.

Figure 4.12 shows a sample image from a sequences together with the preprocessed
images generated. The suitability of the motion image for highlighting regions
of movement is clearly demonstrated by the bright regions indicating where the
hands have moved as the subject draws the bottle of drink towards his mouth.
The skin radial symmetry is also a very effective cue, and whilst there are regions
of skin-like colour that do not correspond to hand or face regions (parts of the
bookshelf and the keyboard for instance) these are not awarded as high a result

since they do not occur as roundish blobs in the image.

Hypothesis Testing

Three simple cues were used to verify the presence of the target:

e Radially Symmetric Intensity Cue,

e Radially Symmetric Skin Cue, and

e Motion Cue
The Radially Symmetric Intensity Cue and the Radially Symmetric Skin Cue are
identical to those used in the Face Localisation experiment detailed in Section 4.3.

The motion cue simply returns the value of the motion image at the hypothesised
target location.

4.4.3 Results

The results showed that the multiple particle filters effectively lock onto and track
separate targets. The simple cues, which were initially designed to locate faces,
are also shown to be effective at locating hands,
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(d)

Figure 4.12: Preprocessing results from single camera. (a) Image captured by
camera during a sequence, (b) facial symmetry image. (¢) skin radial symmetry
image, and (d) motion image.

Figures 4.13 to 4.15 show a number of snapshots of the system running over a
sequence. Lhis sequence contains a person sitting at a desk in an office environ-
ment. He moves around in his chair, reaches and grasps different items, has a
drink, and examines a CD case. The complete sequence i1s contained on the CD.
ROM enclosed with this thesis, For each frame of the sequence the input image is
shown in the top left with the particle locations of the three filters superimposed
on the image. The particles from the three filters are coloured blue, red and
vellow so they can be easily differentiated. The hypotheses of each filter with the
maximum likelihoods are indicated as green circles. with the radius of the cirele
indicating the hypothesised scale of the target, and likewise the expected value
tor each filter, calculated across all hypotheses, is indicated by a red circle. The
graph in the top right of each frame shows the distribution of particles across the

state space, again green circles are used to indicate the hypotheses with maxi
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Figure 4.13: Some snapshots of the system running over a sequence of approx-

imately 8 seconds duration (234 frames).
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Figure 4.14: Some snapshots of the system running over a sequence of approx

imately 8 seconds duration (234 frames),
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mum likelihood and the expected values indicated with red circles. The three
grey-scale images included for each frame show the preprocessed images for that

frame.

In frame 1, (a), the particles from all three filters are uniformly randomly dis-
tributed across the state space (z,y,2z). Whilst this is the first frame where the
particle filters are run it is actually the second frame in the sequence so the
motion image is able to be calculated using the previous frame as the decaying
average image. By chance one of the filters has correctly located the left hand of
the subject and another has located the chin of the face, As the frames proceed
the filters rapidly lock onto the hands and face, and proceed to track these tar-
gets through a range of motions as the subject reaches around his workspace and

manipulates several items.

The filters were only reliably able to locate the target in two of the three state
spaced dimensions, with the hypothesised z depths being very ambiguous. This
s to be expected from a monocular system with only very erude scale dependance
(in the form of the three different radii at which radial symmetry was calculated).
However, apart from the ambiguity in the 2 direction, the system tracked the
targets very well. On the few occasions when a target was lost, it was relocated

just a few frames later.

One particularly encouraging result was the system’s ability to deal with two
targets in close proximity without confusing the two. Using inhibition of returns
allows for targets to approach each other closely with no danger of the two filters
locking onto the same target., The only disadvantage of this is that if one target
were to be so close so as to occlude another, then the occluded target could not

be detected at all for the duration of the ocelusion.

4.5 Summary

This chapter has presented a new approach to target tracking: a vision system
that adaptively allocates computational resources over multiple cues to robustly

track a target in 3D,

Automatically localising a face and tracking its motion are essential first steps to-
wards enabling a computer to “see” the face. We use a particle filter to maintain

multiple hypotheses of the target location and facilitate cues running at differ-
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ent rates, whilst Bayesian probability theory provides the framework for sensor
fusion. The uniqueness of our system lies in its ability to schedule resources over
the suite of available cues. Cues are run frequently or infrequently depending on
the usefulness of the information they are providing and the amount of compu-
tational resource they require. Keeping short time histories of each hypothesis in
the particle filter enables the system to merge information from cues running at

different rates.

The system was shown to track a person in 3D space moving in a cluttered
environment with variable lighting conditions and occlusions of the target. An
additional example was shown demonstrating how the system can be extended
to track multiple targets, using multiple particle filters and inhibition of returns

to prevent different filters from locking onto the same target.
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Chapter 5

Face Registration

ACE registration involves the detection of facial features and the verification
F of the presence of a face in an image. In the previous chapter we discussed
locating and tracking the location of a face in an image sequence. Face registration
is the next step towards enabling a computer to see a face. Once face registration
is complete the computer has verified whether or not an image region contains
a face, and if a face is present, the facial features are detected and ready to be

tracked (face tracking is discussed in Chapter 6).

In this chapter we present a case study of an automatic face registration system'.
This system is designed to automatically initialise features for a head tracker. It is
required to operate using a single grey-scale video input. This limits the modality
of visual cues available, but makes the system suitable to varying hardware and
operational environments. The subject is assumed to be within 0.5 and 1m in
front of the camera. However, by integrating the face localisation technique
presented in Chapter 4 it would be feasible to relax this assumption, allowing
the localisation algorithm to identify the approximate location of the face before

applying the method describe in this chapter to identify the facial features.

Section 5.1 of this chapter overviews our methodology for automating the feature
detection process while drawing comparisons to previous research in the field. In
Section 5.3 we give a detailed description of our algorithm for detecting facial
features, the performance of the algorithm is demonstrated in Section 5.4, and

Section 5.5 closes with a summary of the key points.

'This chapter reports the findings of commercial research undertaken in a consulting capacity
for Seeing Machines. The research is included in this thesis with the consent of Seeing Machines
on the condition that this chapter be embargoed for twelve months after submission of the thesis.
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5.1 Automating the Detection of Features

Automatic feature detection for tracking is essential for face tracking systems to
be able to cope with new users without prior knowledge of the user’s appearance,
T'he key problem with facial feature detection to date is robustness. A system is
required that is robust to the wide variety of human appearances and the varying

lighting conditions of operational environments, and that operates in realtime.

Many recent face detection systems rely heavily on skin colour to locate the face
(Sobottka and Pitas, 1996b; Cai and Goshtasby, 1999; Kim and Kim, 2000). They
are subsequently highly sensitive to lighting conditions, and unable to operate at
night using monochrome images from an infrared camera. We have developed a
system that requires only monocular monochrome 1mages, giving both maximum
robustness to lighting changes and the versatility to function with a wide range

of image-capturing devices.

Our system requires the user to blink to initiate the feature detection Process.
Blink detection has been shown to be a useful cue for locating the eyes in video
sequences (Crowley and Berard, 1997; Bala et al., 1997). Consecutive frames are
differenced to determine regions of motion, and two blink-like motion regions are
located and labelled. Previous implementations have simplified the problem by
using skin colour detection to identify the face region before looking for blinks
(stereo depth information has also been used (Bala et al., 1997)), however, the
monocular grey scale input to our system restricts us from using these additional
modalities. Previous systems have not considered whether the detected eyes
are open or closed — this is important for our system since we wish to detect
appropriate features for tracking a subject whose eyes will be open the majority

of the time.

The radial symmetry detection algorithm presented in Chapter 3 provides an
alternate means to obtain estimates of eye location independently of motion.
However, given that motion information is available, blink detection gives a robust
means of utilising this additional sensing modality and ensuring with greater
certainty that the eyes are correctly located. The radial symmetry operator is

subsequently used to generate a mask of the regions containing facial features,

Once a potential face region is found, and the facial feature mask constructed, our
system uses a novel local comparison operator to highlight features of interest.

This operator employs a similar principle to the rank transform introduced by
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Zabih and Woodfill (1994) for the purpose of pre-processing images before caleu-
lating stereo correspondence. As discussed in Chapter 2 Section 2.1.3, Zabih and
Woodfill's rank transform was calculated for a pixel p by counting the number of
pixels in a local region centred on p whose intensities were darker than the inten-
sity at p. The result was an increase in local texture in featureless areas of the
image. The extension of this principle presented in this chapter has quite a dif-
ferent effect, and highlights facial features based on their comparative brightness

when compared to other parts of the face.

[ntegral projection plays a key role in the localisation of potential feature candi-
dates in our system. Integral projection and variations thereof have been used to
detect facial features in a number of applications(Yang et al., 1998a; Katahara
and Aoki, 1999; Chuang et al., 2000). The main problems are segmenting the
region of interest from the image to avoid background interference, and ensur-
ing that the desired features stand out to the exclusion of everything else. Our
system addresses these problems by extracting the face region based on blink loca-
tions, and enhancing the features in the candidate face region, before performing

integral projection.

5.2 Target Specification

We are interested in detecting faces and facial features. In Chapter 2 we consid-
ered various properties of the human face with particular emphasis on character-
istics that could be detected with computer vision and used to locate faces. In
this section we develop a model describing the relative locations of facial features
in a frontal view of the face. The model is based on the average face and facial
dimensions presented in Chapter 2. This model will be applied later in the chap-
ter, together with some of the feature detection methods discussed in Chapter 2,

to detect facial features in a monocular grey scale image sequence.

Figure 5.1 shows an image of the average face (refer to Chapter 2) together with
the mean locations for facial features and their standard deviations (note these

results were averaged over the male and female populations reported in Table 2.1).

Using these dimensions we can develop a set of rules describing the appropriate
location of facial features in a front-on view of a subject. The measurements

available are measured from the top of the head. However, the deviation of feature
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Figure 5.1: Average face and facial dimensions in millimeters, the standard de-
viation is shown beneath each measurement. The shaded regions show feature
locations within two standard deviations of the mean.

locations from their mean values will be correlated between different features, i.e.,
for larger and smaller headed people the distances of facial features from the top
of the head will increase and decrease respectively. Whilst this will by no means
be an exact correlation it is highly unlikely that if the mouth is two standard
deviations above the mean (at the top of the orange region in Figures 5.1 and
5.2) that the eve will be lower than the mean eve location. Thus, if we assume
the eyes are located on the mean eye line shown in Figure 5.1 then the distance
from the eyes to the mouth should be at least 0.67d, where d is the interpupillary
distance. Using the same reasoning, and the knowledge that the nose must lie
between the eyes and the mouth, we insist that the nose must appear no higher
than one third of the way from the eves to the mouth. We also require that the
nose not be within one sixth of this distance from the mouth, as it is not possible
for the nose to appear this close to the mouth. The likely width of the mouth

can also be estimated from the interpupillary distance as approximately 0.8d.
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Mouth must
0.674 be at least this
distance below
eyes

Nose must be between
one third and five
sixths of the way from
the mouth to the eyes

Mouth corners in
+ 0.3d of mean
lateral location

Figure 5.2: Average face showing placement of the mouth and nose. The
shaded regions show feature locations within two standard deviations of the
IERIGHAIR

However, mouth width can vary significantly with different facial expressions
so the mouth corners are only assumed to lie within £0.3d (approximately 3
standard deviations) of these locations. These requirements are illustrated in

i

Figure 5.2.

The purpose of our system is to automatically locate the face and facial features
for a face tracking application. We can assume the subject is seated in front of
the camera with the camera looking slightly upwards at his or her face. Since our
algorithm is designed to work on a static monocular system there is no means of
directly measuring the depth and establishing the scale of objects in the image.
For this reason we provide the algorithm with a scaling factor indicating the
approximate radius of the subject’s iris in the images. This radius value, referred
to as r, allows the system to search for faces of the correct size in the input
images, It is a simple matter to adjust » if the set up is changed, for example, by
using different cameras, or requiring the subject to sit a different distance away

from the camera.

The systems can be extended to use stereo cameras thereby eliminating the need

to provide the scaling factor ». This could be achieved by using stereo depth
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Figure 5.3: Structure of face-finding algorithm.

information to determine the distance of the subject from the camera, which in
turn enables us to determine the size the subject’s iris will appear in the image,

hence providing the constant r.

9.3 Description of the System

This section describes our algorithm for locating the facial features in a sequence
of video images. Figure 5.3 shows the structure of the algorithm. Pairs of points
exhibiting blink-like motion are detected, and from these points a candidate face
reglon is determined and extracted from the image sequence. The features within
this region are enhanced and classified as potential facial features. The topology of
the resulting features is then examined to determine if a set of valid face features
has been found. If at any point during this process it becomes evident that
the features do not represent a face, then the candidate face region is discarded
and the system returns to looking for regions of blink-like motion in subsequent

frames. The process is repeated until a suitable set of facial features is detected.

The algorithm requires the scaling parameter r (the expected iris radius in pixels)
to define the scale at which faces are detected. It can cope with some variation in
scale so only a rough estimate of r is required, and it is not necessary to update
rfor different subjects. Updating r is only necessary when images of a different
resolution are used, or if subjects are to be detected at significantly different

ranges away from the camera.,

5.3.1  Detecting Blink-like Motion

The average adult blinks ten to fifteen times a minute, or once every four to
six seconds (Stern, 2002). Blinking is a rapid and distinctive motion OCCUrring
at both eye locations simultaneously. When eyes blink the transition from open

to closed eye is typically very fast, and in an image sequence captured at 30Hz
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(NTSC video frame rate) generally occurs in the time between one frame and
the next. Therefore, by examining the change in consecutive frames in an image
sequence, potential blink locations can be identified by looking for eye-sized region

pairs where the image has changed since the last frame.

Detecting blink locations is a simple and robust method of eye detection, and is
a suitable cue to use to initiate face detection. Apart from the natural regularity
of blinks, it is not unreasonable to request a subject to blink to commence the
face detection process, or more subtly, blinks can be induced by manipulating a
display in front of the subject. The only minor issue with requesting a subject
to blink is that when subjects blink intentionally the transition from open to
closed eyes tends to be slower and more deliberate than for involuntary blinks,
thus voluntary blinks are less robustly detected by image differencing consecutive
frames. For the purpose of the algorithm presented here the subject will be
assumed to be blinking involuntarily and hence making the transition from open

to closed eyes in a single frame,

The process for detecting blink-like motion is outlined in Figure 5.4. For each
frame a binary motion image M, is constructed identifying regions of significant
motion. The motion image is calculated by first taking the absolute difference
between the current and previous frames, low-pass filtering this via convolution
with a Gaussian, and then applying a threshold. A record of this motion is
stored in a motion history image H,, each element of which indicates how long

ago motion was seen at that point of the image.

Once we have obtained the binary motion image M, we can identify separate
regions of motion using a sequential scanning algorithm (Horn, 1986, e.g.) to
uniquely label all 8-connected® regions of motion. The height, width and centre

of mass of each of these regions is then determined,

We prefer to locate open eyes, so we try and identify only the initiation of a
blink, and then look for the eyes in the frame 0.1 seconds before the motion was
detected. To avoid detecting the final (re-opening) motion of a blink, we require
there to have been no movement at the blink points between 0.1 and 0.3 seconds
prior to the motion being detected (since blink durations are typically less then

0.3 seconds).

The motion history image H;_ 5 is used to verify this. This image is shown on

2A pixel is 8-connected to all 8 pixels in its immediate neighbourhood.
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Figure 5.4: Detection of blink-like motion.
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the left hand side of Figure 5.4, and the value at each pixel indicates how many
frames have elapsed since an M, image registered motion at that pixel location.
We are only interested in motion between 0.1 and 0.3 seconds ago, so the range
of values of the motion history image is 0 to 6 with 6 indicating that no motion
has been observed for 6 frames (0.2 seconds). The motion history image in the
figure is predominantly white, indicating that most locations have not registered
motion for six or more frames. We check the value of this motion history image
H, ; at locations corresponding to the centres of mass of each of the regions of
motion in the current frame, and discard those regions that do not have a motion
history value of 6, i.e., we discard those that have exhibited motion in the last

0.1 to 0.3 seconds.

We then consider the sizes of the remaining regions and check that these are not
too large or small to correspond to blink regions. We use fairly generous criterion
with the aim of minimizing the number of false rejections at the expense of more
false positives. We require the width of the blink region to lie within 0.5 and 6r,
the height to be less than 67, and the width to be greater than the height (here

r is the radius of the iris).

A set of region pairs is constructed containing every pair of regions that is an
appropriate distance apart to be an eye pair, and whose centres of gravity are
joined by a line less than 30 degrees to the horizontal (this is more than sufficient
to accommodate for natural inclination of the head from the upright position).
The pair whose regions have the most similar heights, widths and areas is selected
as exhibiting the most “blink-like” motion, and the centers of the two areas of

blink-like motion are called blink points.

If a valid pair of blink points is found, their locations are used to define the face
region that is extracted (from the image frame 0.1 seconds before the motion was

detected) in the next stage of the algorithm.

5.3.2 Extraction of Face Candidate Region

The possible eye locations estimated by the blink detection step described above
are used to specify and extract a potential face region for further processing. This
region is extracted from the image frame 0.1 seconds before the blink-like motion
was detected. The reason we look at the frame 0.1 seconds prior to the blink is

that we wish to detect open eyes, and the eyes will be open 0.1 seconds prior to
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Figure 5.5: Process for extracting potential face region from image buffer.

the initiation of a blink.

The process of extracting the potential face region is illustrated in Figure 5.5.
A four-frame buffer is maintained in order to extract the face region (.1 seconds
(four frames) prior to the detection of the blink. Once the blink points have
been located in this earlier frame. it is rotated to align the blink points with
the horizontal (bi-linear interpolation is used to calculate the pixel intensities of
the rotated image). This normalises the orientation of the face candidate to an
upright position. A rectangular face region 1s then defined as shown in Figure 5.6.
L'he dimensions of this region are chosen so it will include all the facial features.

and its size is scaled by the interpupillary distance between the centres of the
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Figure 5.6: Face region defined in terms of d, the interpupillary distance be-
tween the centres of the blink points. Note how this region encompasses all
facial features of the average face,

blink points. This region is then cropped from the rotated image and becomes
the face candidate region that is passed to the next phase of the algorithm for
feature enhancement.

5.3.3 Enhancement of Features

[t is now necessary to enhance the features so they stand out more distinetly
from the background to make them more easily detected via integral projection.
The process for enhancing features is outlined in Figure 5.7, The face region
in Figure 5.8 will be used as an example to illustrate the different steps of the
procedure.

Firstly a face mask is constructed that contains all the facial features and as
little of the rest of the face as possible. This is done using local radial symmetry.
Radial symmetry peaks in the vicinity of facial features, and has been used for
facial feature detection in several applications (Reisfeld and Yeshurun, 1998; Lin
and Lin, 1996; Sun ef al., 1998). We estimate local radial symmetry at each point
in the face region based on gradient orientation, using the fast radial symmetry
transform, defined in Chapter 3. The result is shown in Figure 5.8. Orientation-
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Figure 5.7: Process for enhancing features in face region,

based radial symmetry is used due to its greater robustness to varying lighting
conditions, Whilst this transform can accurately pinpoint features in many in-
stances we do not wish to rely on this one mechanism alone for locating features.
Therefore we blur the result with a horizontally opposed rectangular Gaussian
mask® in order to spread the peaks of radial symmetry over the whole of the
(predominantly horizontal) features, and then threshold to form a binary mask.
The blurred orientation symmetry will not have strong distinctive maxima, and
experimentation on numerous images has shown that applying a threshold of 30%
of the maximum value will admit all regions that have exhibited sufficient radial
symietry to be features. The resulting mask will cover the eyes, nose and mouth
corners but may miss the centre of the mouth due to its lack of local radial SVII-
metry. In order to ensure the whole mouth is included we augment the mask
with an additional 0.5d x d rectangle centred d below the eyes, where d is the
interpupillary distance between the blink points. This gives the final face mask

shown in Figure 5.8

We then re-scale the intensity of the face region in order to maximise the dynamie
range of features within the area defined by the face mask, and attenuate the
relative strength of extreme intensity values outside this region. We determine
the maximum and minimum intensity values within the area of the face region
that passes through the face mask, and use these as upper and lower bounds to
re-scale all intensities in the face region to the interval 0.1]. Any intensities below
or above these bounds are truncated to 0 and 1 respectively (since the bounds are
the maximum and minimum intensities in the face mask region this attenuation

will only occur at points outside the face mask region).

Features within the intensity re-scaled image are then enhanced by the applica-

tion of a novel local comparison operator. The purpose of the local comparisorn

*The Gaussian is r + 1 high, 3r + 1 wide with standard deviations of 3r and r in the z and
y directions respectively, where r is the radius of the iris,
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Figure 5.8: Images associated with the enhancement process.

operator is to highlight points that are darker than specified neighbouring re-
gions. The value of the operator is calculated at each pixel p by comparing the
intensity of that pixel with the intensities of each member of a set of pixels S(p)
whose locations are defined relative to p. The operator quantifies the proportion
of these pixels whose intensities are greater than I(p) + &, where I(p) is the in-
tensity at location p and £ is a constant called the manimum difference threshold.
That is, for a specified set of pixels S(p) the local comparison operator returns
the proportion of pixels in S(p) that are darker than the intensity at p by an

amount k& or more.

We formally define the local comparison operator as

Lou(p) < 182 (0 € S(3)) 0 (Ia) > 1p) + )}
i 1S

Here ||...|| indicates cardinality, that is, the number of elements in a set.

To enhance possible facial features in the face region we use the sets of points
S;(p) illustrated in Figure 5.9,

The motivation behind the choice of this set of regions is to highlight points that
are:
e darker than most of the pixels in the neighbouring region 5, below,

e darker than most of the pixels in a region S, located above and slightly
further away, and
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Figure 5.9: Regions S; used by L; for enhancing facial features, r is the iris
radius in pixels.

e significantly darker than most of the pixels in a region either immediately
to the left S; or right S5, or both.

Accordingly. for regions S; and S; we set the minimum difference threshold to
just 0.05 in order to count virtually all pixels that are darker than p, whereas
for regions S; and S; we set this value to 0.25 so as to only count pixels that
are significantly darker than p. When constructing the enhanced image from the
results of the operators L, 4 we combined them to construct an image with a
light background and dark features. We wish our result to indicate pixels that are
darker than the majority of pixels in the regions S, and S, above and below, and
those to the sides in either S5, S;. or both. Firstly we generate an image L,,4..

indicating pixels that are darker than those in one or both of the side regions

Lsides(p) = (1 = 0.5L2(p)) (1 = 0.5L3(p)).

We then combine this with the results of the local comparison operators for the

regions above and below to determine the enhanced image

If nhr'mr‘c‘d(PJ = (1 - (;)-F:)LI(P)J(I — (.).QL_;(]J))(I - U.QLmdﬁ_ﬂ(j})).
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Figure 5.10: Procedure for locating facial features,

An example of the resulting enhanced image is shown in Figure 5.8. Note how
the facial features are more clearly defined than in the re-scaled image and are

well suited to detection via integral projection.

5.3.4 Classifying Facial Features

Integral projection (Kanade, 1973), described in Chapter 2, forms the basis of
the feature detection phase. Integral projection is useful for detecting features
whose intensities stand out from the background and have a strong horizontal or
vertical aspect. Note that in the procedure described here we take the integral
projection of the negative of the enhanced image so that the features stand out as
maxima. The raw integral projections are smoothed with a Gaussian to remove
high frequency noise. We define a 1 x (2r 4 1) Gaussian vector g; with standard

deviation r/3 which we use for this smoothing,.

Figure 5.10 outlines the feature detection process. We take the vertical integral
projection of the negative of I, panceq. The integral projection is then smoothed
by convolution with the Gaussian vector g;, and the five highest local maxima

are identified as potential feature rows. Figure 5.11 illustrates the location of the
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Figure 5.11: Process for locating feature rows using integral projection. The
feature rows are indicated by the coloured lines.

Figure 5.12: Process for locating feature columns within each feature row us-
ing integral projection. The feature columns are indicated by the coloured
lines. The top row shows sections of the enhanced image on which the inte-
gral projection is performed, the middle row shows the result of the integral
projection, and the bottom row shows the integral projection after smoothing,.

feature rows from an example enhanced image.

Fach feature row is then processed as shown in Figure 5.12. Horizontal sections
or high are taken across the face region centred at each potential feature row,
and the vertical integral projection of the negative of these horizontal sections
5 calculated, This is smoothed with gy, and the four highest local maxima are
taken as potential feature columns within that feature row. Thus we have a sef

of potential feature rows each with a set of potential feature columns.

Next we attempt to locate the eyes, mouth, nostrils and eyebrows sequentially.

[T the eyes or mouth are not found, the face region is declared invalid and no face
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is detected in this frame.

Fach feature location process follows the procedure outlined in the inset in Fig-
ure 5.10. Firstly the relevant feature row is determined, local search regions are
extracted for the left and right features, these are re-scaled to optimise the inten-
sity distribution, and then a feature detection algorithm specific to the feature
type is employed. The only variation on this is the procedure for eyebrow detec-
tion where a feature row is not identified prior to locating the eyebrows. Instead
the eye locations are used to determine where the eyebrows are expected to be

found.

Locating the Eyes

We know the eyes will be located in the vicinity of the blink points, so we insist
that the eye feature row not be more than 2r above or below the blink points,
and that it must have potential feature columns within 2r to the left or right of
the blink points. If no feature row satisfies the criteria than the algorithm stops

examining this frame, not having found a face,

Shadows, creases, makeup or low eyebrows in the region immediately above each
eye can cause minima in the integral projections used to place feature rows and
columns. However, the cheek area helow the eyes is typically devoid of features.
Therefore, if there is more than one feature row with appropriate feature columns
within 2r of the blink points we chose the row closest to the bottom of the image

as the eye feature row.

If a satisfactory eye feature row is found then a region about this row is extracted
within which to locate potential eye candidates. This search region is defined as
the local horizontal section 57 high centered about the eye feature row, and the
left and right halves of this region are examined to locate the right and left eyes

respectively.

Figure 5.13 shows a closeup view of an eye, showing how the pupil and the iris
appear as a dark blob with the lighter regions of the sclera to the left and right.
Correspondingly our algorithm looks for both a dark iris/pupil blob with light

sclera regions on either side,

Figure 5.14 shows the method used to locate potential positions for each eye. In-

formation from the local intensity re-scaled image and the local feature-enhanced



[38 Face Registration

Irs —

sclera

pupil

I”qig?,'lll'(-‘. 5;]:;: (:IH”C’“]J Vi(}W ('}'['. a ].“.].H].H.;Il ﬂy(\_

left sclera
highlighted " Ring
4 template

Apply left
and right

local @ *"* r.‘\zuu hﬁ”ﬁ“, |
Rl sclera highlightec
[ntensity operators Sclera
re-scaled highlighted
local image right sclera
highlighted
[Local
face mask

Feature Iris highlighted Iris cue Iris located
enhanced
local image Bloh
template

Figure 5.14: Process for locating eves.

image are used. Only points that pass through the local face mask are considered
as possible eye locations, so the local comparison operators and convolutions are

only calculated for these points.

['he sclera is highlighted in the re-scaled local image by applying a local compar-
1son operator. The operator is applied only at points that pass through the face
mask, and uses two r x 2r regions centered 0.757 to either side of the pixel of

Interest. Figure 5.15 shows one such region used for highlighting the right sclera.
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Figure 5.15; Region used by local comparison operator for highlighting right
sclera, v is the iris radius.

The resulting image is convolved with a ring template to highlight points that are
surrounded by lighter points. This ring template is designed to highlight regions
that have sclera-like light regions on the periphery of a iris-size circle, accordingly

the ring template chosen is a blurred ring of radius r.

The dark blob of the iris is searched for in the feature enhanced image by convo-

lution with a Gaussian kernel with s = r/2.

The results of both the eye-white and iris-blob detectors are normalised so their
maximum values are unity. The iris location is then identified as the maximum

point in the sum of these two images.

Once both eyes have been found it is verified that the interpupillary distance is
realistic, and lies within the range determined in Section 5.2. Also, since the face
region was rotated so that the blink points were aligned with the horizontal we
expect the eyes to remain closely aligned to the horizontal, furthermore if the
line of the prospective eye locations deviates significantly from the horizontal it
15 indicative that the movements detected were not in fact blinks, therefore it
is unlikely that the eyes have been correctly found. To permit some deviation
between eye locations and the original blink locations we allow an error of up
to 10 degrees between the line joining the eyes and the line joining the blink
locations. If these conditions hold the eye locations are accepted and algorithm
moves on to locating the mouth.
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Locating the Mouth

The mouth is a dominant feature in the face. It stands out strongly in the
enhanced facial image, and with its long, predominately horizontal, shape we
expect its location to correspond to a high value in the vertical integral projection
of the enhanced image. Subsequently, the mouth row is identified as the feature

row located beneath the eyes with the highest integral projection.

From the facial model developed in Section 5.2 we know that the mouth row must
be at least 0.67d below the eye row for the face to be considered valid. where d
is the interpupillary distance. If the mouth row does not meet this criteria then

no face is detected in the current frame.

If a valid mouth row is found we then proceed to look for the mouth corners.
From the model in Section 5.2 we know the mean mouth corner locations are
centred about the vertical axis of the face and slightly closer together than the
eyes (0.1d closer towards the centre of the face), furthermore the lateral position
of the mouth corners is within 0.3d of the mean. Thus we search for mouth COTners
In 57 % 0.6d regions centered on the mouth row. at the mean lateral mouth corner
location (the height of this region 1s not critical so long as it is large enough to

accommodate some variation of the mouth corners from the mouth row).

['he process for detecting a mouth corner is shown in Figure 5.16. A mouth corner
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Iigure 5.17: Regions for the three local comparison operators used to enhance
the appearance of the mouth.

will appear darker than the skin above, below and to the side of the mouth, and
this can be utilised by applying a local comparison operator to highlight potential
mouth edges. First each region is re-scaled so its intensity is spread over [0, 1].
Local comparison operators are used to highlight regions that have lighter regions
above and below them, and towards the outside of the face, giving Lusove, Lieiow
and Lg.. The sets used to calculate the local comparisons are one-dimensional
lines of points extending 0.05d in the direction of interest away from the point
under consideration as illustrated in Figure 5.17.

The output of the local comparison operators L po. and L., are combined

C‘ub(?’) - (1 = Lr‘abﬂt.ﬁ‘(]’-’))(l - Lbcrécmi(?—"))

The result is binarized into positive and zero elements, and connected-component
analysis used to identify the largest non-zero region. This then forms a mask

M,,.outn within which the mouth i1s assumed to lie.

A cue for the mouth location C,, 4y, is now determined by combining the results
of the local comparison operators, and masking. First the results from all three

local comparison operators are combined to form C,,,uh,

c”“’“-”?-(?)) = (] a I"-’I-f"'wﬂ'(?"))(l A ]-fbc*!.n'u'(?-)))(l = Luérfr.‘(f-))))

This is then masked with M, ,.¢n, and binarized by converting all positive elements
to 1. The edge of the mouth is identified as the non-zero column furthest from
the centre of the face. The height of the mouth corners is determined as the

height at which C,,,un takes its maximum value in this column.
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Locating the Nostrils

1he nose row is chosen as the most prominent feature row that lies between the
eyes and the mouth. In accordance with the face model presented in Section 5.2,
If the nose row is higher than two thirds of the way between the mouth and eyes
then the face is considered invalid. and no further effort is spent attempting to

locate features.
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Figure 5.19: Elimination of non-plausible nostril pairs. (Note the centre image
has been stretched vertically for clarity.)

If the row height is appropriate we proceed and locate a number of possible nostril
locations. The process is illustrated in Figure 5.18. A narrow region 2r high
and centred about the nose row is extracted from the feature enhanced image.
Maxima in the vertical integral projection (of the negative of this narrow region)
are used to locate the x coordinates of potential nostril locations. Then small
2r x r regions are extracted around each potential nostril location and maxima
in the horizontal integral projection (of the negative of these regions) is used to

determine the y coordinate of that potential nostril location,
This process gives a number of possible nostril locations. As illustrated in Fig-
ure 5.19 consider each possible pair of locations to find plausible pairs that are:
e on both sides of the mouth centre,
e approximately the same height (within r)

e close together (not more than 0.4d apart), and

not too close together (at least 0.2d apart).

If there is more than one plausible pair we select the pair whose horizontal loca-

tions are most symmetrically spaced about the mouth centre line.
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Locating the Eyebrows

1The eyebrows are not considered essential features for face detection indeed
some people have very faint eyebrows or none at all — so regardless of whether
or not eyebrows are found the face is still considered valid, and the verification
process proceeds. However, for the majority of subjects it is a simple matter to
locate the eyebrows by looking for a transition from light to dark above the eyes

at the base of the forehead.

We already know the approximate location of the eyebrows since the eye locations
have been determined. So we proceed to search for the eyebrows in small regions
immediately above each eye. The process for locating the eyebrows is shown
in Figure 5.20. The eyebrows are searched for in the re-scaled face image in
4r X 2r regions centred 4r above each eye. The intensity of these regions are
re-scaled so they range within [0,1], and then the vertical gradient is determined

via convolution with

Vertical integral projection is used to identify the peak in the gradient which
signifies a transition from light to dark moving downwards from the forehead
towards the eve. This peak is assumed to correspond to the evebrow, thus the
y-coordinate of the evebrow is found. the z-coordinate is taken to be the same as

for the eve.
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The procedure is performed for both eyebrows and the resulting eyebrow locations
are checked to ensure that their heights do not differ by more than r (the radius of
the iris). If heights differ by more than this amount the eyebrows are considered

too crooked, and they are declared invalid.

5.3.5 Verify Face Topology

The human face has a specific arrangement of features that is universal across all
people. We can verify that the features found by our algorithm are arranged in

a face-like configuration by checking that they satisfy the following rules:

e Relative horizontal positioning:

— Nostrils must not be centred more than 0.5d from the eye centre line,

~ The mouth must not be centred more than 0.15d from the eye centre

line.
e Relative vertical positioning:

— Nose must be located below one third and above five sixths of the way

from the eyes to the mouth.
e Orientation of pairs:

— The lines joining left and right pairs of features (eg. left and right

eves) must be within 15 degrees of the horizontal.

[f the features fail to satisfy these criteria then it is highly unlikely that the
features represent a face, so the face is declared invalid and no face is found in

the current frame.

5.3.6 Checking Similarity of Feature Pairs

The natural bilateral symmetry of the human face means that all of the feature
pairs located by this system should be approximately mirror images of each other.
Figure 5.21 shows a face region with the detected features marked with crosses.
small 2r x 2r regions are marked around the features on the left hand side of

the figure, for each feature this regions is flipped about the vertical axis and
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Figure 5.21: The similarity of symmetrically opposite features is verified.

correlated across the 2.5r x 2.5 region surrounding the other half of the feature
pair (using normalised cross correlation) to measure the symmetric similarity of
the feature pair. The figure illustrates this procedure for the mouth feature pair.
We require the mean similarity of all feature pairs to be greater than 0.5 for a set

of features to register as a valid face.

5.4  Performance of System

5.4.1 Implementation

The system was implemented and tested in Matlab 5.3 on a standard 600MHz
Pentium II1. In order to verify the suitability of the algorithm for realtime ap-
plications the Matlab flop counter was used to estimate the average number of
floating point operations required per frame. The tests were run on sequences of
240 = 360 grey scale images. The average computational requirement per frame
varies depending on how far the algorithm progresses towards verifving the pres-
ence of a face. Table 5.1 shows the average number of megaflops required by

different stages of the algorithm.
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Table 5.1: Estimated Computations per Frame

Stage Mean computation
(megaflops) |

Blink detection 6.0

FExtract and enhance 6.0

face candidate

Classify features 1.6 |

(d) frame 99 (e) frame 102 (f) frame 99

Figure 5.22: Snapshots of a sequence. Regions of motion are indicated in
ellow and blink-like motion is indicated in orange.
f [ § 5 S =

5.4.2 Detection Performance

Figure 5.22 shows a number of snapshots of the system in operation. The Figure
shows spurious blink-like motion (a) where movement of the eyebrows is incor-
rectly detected as a blink, however, a face is not detected for these false eye
locations since the facial topology is incorrect. In this same frame movement of
the eves is correctly classified as non-blink-like motion since the motion region
over the subject’s left eye is too small. In frame 32 (b) the subject turns her head
and the system does not mistake this gross head motion as blink-like. Likewise
the background motion in frame 89 (c¢) does not distract the system. A blink is
detected in frame 102 (e) and so a face is searched for in the frame 0.1 seconds

prior to the blink (d). Features are detected and the facial topology is verified
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Figure 5.23: Results of the system on a range of subjects. The first column
shows the raw image where eye motion is detected, the second column show the
motion regions, the third column shows the enhanced facial region extracted,
and the forth column shows the features detected.

giving the final feature locations (f)

LThe system was tested on a 16 people with a wide range of facial appearances
and skin tones, the image sequences were captured both indoors and outdoors
and included several subjects wearing eye glasses. Correct facial feature locations

were determined in all but one case where the system failed to find the face.
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Figure 5.24: Examples of the Seeing Machines implementation of the system
in operation, courtesy of Seeing Machines.

There were no false detects, Figure 5.23 shows several examples of the system
successfully detecting faces in video sequences. The complete sequences, together
with several additional examples, are contained on the CD-ROM enclosed in this

thesis,

The robustness of the system comes from its strong ability to reject false matches.
Whilst this is achieved at the cost of rejecting some true matches, since the system
Is operating on a continuous and on-going image sequence, the occasional false
rejections can be tolerated. False rejections do nothing to disturb the operation
of the system, and searching will continue as the system attempts to locate the

target in subsequent frames.

5.4.3 Seeing Machines System

The system has subsequently been implemented in C++ by Seeing Machines to
run in realtime. The performance of this realtime system clearly demonstrates

the robustness of the method, it has been tested on over 250 subjects and has
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demonstrated a 97% success rate for detecting faces and facial features. Fig-

ure 5.24 shows several snapshots of the system in operation.

5.5 Summary

This chapter has described a face registration system capable of verifying the pres-
ence of a face and performing automatic detection of facial features. The system
uses motion information to detect blinks, indicating possible eye locations and an
associated face candidate. Filtering methods are used to enhance the appearance
of potential facial features in the face candidate region and integral projection
Is used to estimate the individual feature locations. The system is able to lo-
cate the eyes, mouth corners, nostrils and eyebrows of subjects in a monocular,
monochrome image sequence. The feature locating and face verification process
18 governed by the anatomical constraints of a human face. The purpose of this
face registration procedure is to both automatically verify the presence of a face

and detect facial feature points for face tracking.

The performance of the system has been demonstrated on numerous image se-
quences, and the algorithm has been adopted into a commercial face detection

system, which has seen substantial testing on hundreds of subjects.



Chapter 6

Face Tracking

IN the previous two chapters we considered the problems of face localisation
and face registration. The final step towards enabling a computer to see the
face is face tracking. This involves tracking both rigid and deformable facial
features in order to fully characterise both the pose (3D position and orientation)
of the head, and describe the locations of facial features relative to the head. By
rigid facial features we mean features that are rigidly attached to the head —
such as the eye sockets, nose and ears — as distinct from deformable features such
as the mouth and eyebrows that change shape and move relative to the head. To
achieve this we track the 3D pose of the head using predominantly rigid facial
features, and then consider tracking the locations of deformable features relative

to the head,

The mouth is the most important deformable facial feature for Human Computer
Interaction, and it is a challenging feature to track. We restrict our consideration
of deformable feature tracking to tracking the mouth. It is, however, feasible to
adapt the approaches described here to tracking other deformable features such
as the eyebrows. Two case studies in lip tracking are presented. The first is a
monocular lip tracker that tracks the height and width of the mouth, and the
second is a stereo lip tracking system. Our stereo system is the first to use stereo
to directly recover the full 3D shape of the mouth. Both systems track unadorned
lips, and do not require subjects to wear lipstick or other cosmetic aids to enhance
the appearance of the mouth. The systems operate on grey-scale images and run
in conjunction with a head tracker to enable robust performance through a range

of head poses.

Section 6.1 addresses the problem of tracking deformable features whose appear-
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ances change significantly as they elastically deform during a tracking sequence,
Section 6.2 presents the monocular lip and head tracking system, and Section 6.3
presents the stereo lip tracker capable of reconstructing the 3D shape of the outer
lip contour. Finally, Section 6.4 concludes the chapter with a summary of our

findings.

6.1 Adaptable Templates

Template tracking is a well established method for tracking features in an image
sequence. A template containing a sample of the feature to be tracked is corre-
lated across a search region, quantifying how similar the template is to different
parts of the search region, and the target is located at the point with the hi ghest
correlation. Numerous different correlation measures can be used (refer to Chap-
ter 2) but the most common method is Normalised Cross Correlation (NCC).
Denoting the template as I;, the search window as I, and summation over the

window as 37, yew, the NCC of I; and I, is given by

2uwew Li{u,v)  Io(z + u,y + v)

v Z(u.‘u)qlﬂlf’ II ('H;} ’”)‘2 4 Z(-u..w)

NCC has the advantage that it is invariant to linear changes in intensity, that is

NCC(Iy, I,) .
cw In(z 4+ u, y + v)?

NCC(Iy, 1) = NOC(I;, kIs + I)

where & and [ are scalar constants, which gives it some robustness to changes
in lighting. Figure 6.1 shows an example of template matching with NCC. Here
a template is chosen at the mouth corner in (a). When correlated across the
original image the NCC peaks at the mouth corner correctly locating the feature
as shown in (b). Applying a linear change in intensity to the search image in (c)

has no effect on the resulting NCC with the unadjusted template from (a).

However, whilst NCC can provide robustness to variations in lighting it cannot
accommodate features whose shapes deform and change appearance through an
image sequence. The changing appearance of deformable features, such as the
mouth corners, make standard fixed templates ineffective, For instance, Fig-
ure 6.2(b) shows the result of using a mouth corner template defined in frame 1

(Figure 6.2(a)) to try and locate the same mouth corner 222 frames later in the
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(b)

(c)

Figure 6.1: Template matching. (a) A feature template is defined. (b) NCC
is used to match the template across the image, the maximum of the NCC
indicates the location of the best match this is shown by the orange square. (¢)
NCC with the same template after a linear change in intensity to the image,
the resulting NCC is identical to that for the unaltered image.

same image sequence. The feature's appearance no longer closely resembles the
template and the NCC peaks at the edge of the mouth cavity rather than the

mouth corner, incorrectly locating the feature.

In order for templates to maintain adequate tracking performance whilst tracking
a deformable feature it is necessary to dynamically adapt the template to keep
it up-to-date with the current appearance of the target. An obvious approach is
to update the template each tracking cycle to equal the new feature appearance,

There are, however, several problems with this approach. Firstly, if there is ever
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an error in the template matching and the new template is chosen off target there
1s no way for the system to recover from this error. The chance of this occur-
ring can be minimized by only updating the template when the match is good.
However, even if there is never any incorrect matching, each frame the template
is only located up to a finite degree of accuracy, typically to the nearest pixel,
although greater precision can be obtained using sub-pixel placement. Therefore,
there will be an error of up to half the template placement precision every frame,
Le., up to half a pixel if sub-pixel placement is not used., With 30 frames every
second, over time this small error is likely to accumulate and cause the updated
templates to drift away from the features they are supposed to be tracking. Fig-
ure 6.2(c) shows an example of this template drift over 222 frames. Here the
template was only updated when a “good” match was found (NCC = 0.75), and
the final location of the template is a consequence of drift, and not a result of

incorrect matching.

To address this issue adaptable templates have been developed for the tracking
of elastically deformable features. Adaptable templates make use of the initial
object appearance as seen in the original templates that were correctly initialised

to the true feature locations.

Adaptable templates work as follows: For the k' frame, once the best match is
tound (and provided the correlation is above a certain threshold), the template
T[k] is updated to become the weighted average of the initial template T;[0] and
the image region R,[k] in the new frame that best matches the current template,

that is

Ti[k + 1] = aTy[0] + (1 — a)R,[k], (6.1)

where the constant o € (0...1) is the grounding factor which determines the
contribution of the initial template to the new template. o = 0 is the case of

fully updated templates and a = 1 gives standard templates.

Figure 6.2(d) shows the result of tracking the mouth corner with an adaptable
template with o = l,. The initial template is chosen as shown in Figure 6.2(a)
and adapted each frame according to Equation 6.1. Even though the initial
initial template was taken with the mouth in a neutral position, the adaptable
template is able to correctly locate the mouth corner when the mouth is wide open

despite the drastic change in the appearance of the feature. Furthermore. always
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(d)

Figure 6.2: Template matching a deformable feature using NCC. (a) Initial
template chosen in frame 1. (b) Using initial template in frame 222, (¢) Using
fully updated template in frame 222, (d) Using an adaptable template in
frame 222.
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keeping the adaptable template “grounded” with the original feature appearance
T;[0] prevents the updated adaptable templates from drifting off the features as

happened for the fully updated templates.

Adaptable templates are useful for tracking elastically deformable features that
change appearance, but regularly return to their original appearance. This makes
them especially well suited to tracking deformable facial features such as the
mouth corners or eyebrow edges. However, adaptable templates are not limited
to tracking deformable features. Consider for instance, that the eye corners are
being tracked by a head tracker. Disregarding eye closure these features do not
exhibit a significant amount of deformation and are traditionally tracked by fixed
templates. However, as the subject moves and rotates his or her head the appear-
ance of these features will change as they are viewed from different angles, and
when the subject’s head returns to its initial position the features will appear the
same as they did initially. So, although these features are not actually deforming
their appearance is deforming in an elastic manner, and thus the tracking of such

features stands to benefit from adaptable templates,

6.2 Monocular Lip Tracking

This section describes a head and lip tracking system' that tracks the head and
mouth of a speaker whilst allowing the speaker’s head to move in 3D within a
30 em* workspace, and rotate up to 30 degrees away from the camera. During

operation the system performs the following tasks:

Computes the pose information using a 3D face tracking system.

 Tracks the top, bottom and corners of the mouth in the 2D imput image,

Estimates the 3D locations of the top, bottom and corners of the mouth,

and

e Determines the mouth dimensions from the 3D mouth information.

[n Section 6.2.1 we describe the 3D head tracker used to determine the head pose

In each frame. Section 6.2.2 then explains the detection of the mouth features,

'The system was developed by the author at the University of Western Australia as part of
an automatic lip reading project at the Department of Computer Science under the supervision
of Dr Eunjung Holden and Professor Robyn Owens.



6.2 Monocular Lip Tracking 157
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Figure 6.3: 3D pose of a head. Head reference frame shown in orange, and the
pose (x,y, z, 0., 0,,0.) with respect to the world coordinate frame O indicated.

the estimation of their locations in 3D, and the calculation of the corrected mouth
dimensions. Finally, Section 6.2.3 demonstrates the usefulness of this technique
with a practical experiment: a subject is tracked whilst he enunciates 5 phonemes
“W”, “long-E”, “M”, “short-A”, and “long-O", displaying the 5 mouth shapes of

visual speech while moving and turning his head in 3D.

6.2.1 Monocular 3D Head Tracker

The purpose of our head tracker is to determine the head pose, that is the location
and orientation of the head in 3D space. The head is modelled as a rigid body
with a reference frame attached, and the pose of the head is defined by a six
parameter vector p = (z,y, z, 0,, 0y, 8,) specitying the Cartesian co-ordinates and
rotation of the head reference frame with respect to a predefined world coordinate
system. Figure 6.3 shows a schematic of a head with reference frame attached

showing the pose of the head reference frame in the world coordinate system.

Our monocular 3D head tracker was based on Lowe’s object tracking algorithm
(Lowe, 1991). As discussed in Chapter 2, Lowe’s method provides a model-based
approach to determining the pose of a known 3D object. When a 3D object,

such as a head, is viewed in an image the locations of its features are a non-
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Figure 6.4: The process the head tracker steps through each frame.

linear function of the object’s pose. Given an initial guess of the pose, a least
squares solution can be achieved iteratively by applying Newton’s method to
locally linearize the problem. In order to obtain stable approximate solutions in
the presence of noise Lowe augmented this minimization by incorporating a model
of the range of uncertainty in each pose parameter, together with estimates of the
standard deviation of the image measurements, into the procedure. In addition
he used the Levenberg-Marquardt method to ensure the solution converges to a

local minimum.

Before the algorithm commences it is necessary to initialise the system by iden-
tifying feature points to be tracked and provide an accurate 3D model of these
points. The 3D model contains the Cartesian coordinates of the features in the

head reference frame, and is defined as
M = ( m; m, .. m, )

where m; = (z;, y;, z) " contain the 3D coordinates of the i feature point in the
head reference frame. A template T, is initialised for each feature. Currently
teatures are chosen manually via mouse-clicks. however, the auto-initialisation
process described in Chapter 5 is suitable for automatically selecting these fea-

tures.

For each frame the head tracker goes through the steps illustrated in Figure 6.4,

These are discussed in detail in the following section but can be summarised as
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follows:

e Estimate the pose of head based on the pose in the previous frame and the
average translational and angular velocity over the last 5 frames.

e Apply this pose to the 3D model to determine the 3D location of model

points.

e Project these model points onto the image to give projected feature loca-

tions,
e Use the projected feature locations to define search regions for the features.

e Determine observed feature locations via template matching across each

search window.

o Check if the error between projected model feature locations and observed
feature locations is acceptable, if so the current pose estimate is satisfac-
tory, if not proceed to iteratively refine the pose estimate by repeating the

following until a satisfactory pose is found:

— Determine the Jacobian that contains the partial derivatives of the

feature locations with respect to the pose.
— Use the Jacobian to calculate the pose correction factor.

~ Update the pose estimate by adding the pose correction factor and

apply the updated pose to the model.
—~ Determine the new projected feature locations,

- Check if pose is satisfactory by checking the error between the new

projected feature locations and the observed feature locations.

Pose Estimation

In each new frame the pose is estimated from the pose in the previous frame by
adding an offset determined by the estimated translational and angular velocity
between the frames. These velocity terms are determined as the average trans-
lational and angular velocity over the last five frames. That is, given the poses
of the current and previous five frames p(t — 7] for ¢ = 0...5 the pose of the next

frame is estimated as
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) S Bt =1
plt + 1] = plt] + > == ]
i=1
where the pose velocity is determined by the first order approximation

p(t] = plt] - p[t - 1]

In the first frame an initial estimate of the pose is provided and the pose is

assumed not to have change over the previous five frames.

Applying Pose to Model
The pose specifies the six degrees of freedom of the head, namely the translational
(,y, ) location, and orientation (6,,6,,0.). In order to apply these to the 3D

model M we form a translation vector t and a rotation matrix R,

t = (z,y,2)"

R = R,R,R,

where
cosf. —sinf, 0
R.=| sinf. cosf. 0
0 0 1

cost, 0 sind,
R, = 0 1 0

—sinf, 0 cosd,

| () )
R.=| 0 cosf, —siné,
0 sinf, cosf,

L'his pose is applied to the model to determine the new 3D locations of the model

points. These are then given by the columns of

Mnr*w = RM+t
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Figure 6.5; Pinhole camera model.
Determining Projected Feature Locations

Once the 3D locations of the model points are determined under the current pose
these are projected onto the image plane using the pinhole camera model for

projection.

The pin-hole camera model, illustrated in Figure 6.5, performs a true perspective
projection of the 3D feature points from the world coordinate frame onto the

image plane. A 3D feature point b = (b, by, b:)" is projected onto the image

x ki s i b.i‘.‘
4 ) b\ b )’

where f is the focal length of the camera.

plane at

Determine Feature Search Regions

The projected feature locations provide us with an estimate of approximately
where the features are likely to appear in the image, based on the estimated pose
derived for the current frame. We now define search regions centred at each of
these projected feature locations in the belief that the true feature locations will lie
within these search regions. The search windows were chosen to be m x m pixels.
Figure 6.6 shows an example face image with the projected feature locations
indicated with vellow crosses and the resulting search regions shown as dashed
boxes.
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Figure 6.6: Face image showing projected feature locations and search regions
for m = 36.

Determine Observed Feature Locations

The observed feature locations are determined by template matching within the
defined search regions. Normalised Cross Correlation is used and the feature tem-
plates are updated using the adaptable template technique detailed in Section 6.1,
This technique is designed to accommodate for the changing appearance of fea-
tures, Whilst the head tracker uses non-deformable features for tracking, the
appearance of the features still change as they are viewed from different angles,

50 the tracking benefits from using adaptable templates.

The computational load of the template matching is significantly reduced by
performing the search in two stages: an initial sparse search to localise the feature,
followed by a localised detailed search. Figure 6.7 illustrates this procedure. The
sparse search consists of correlating the image with the template centred at every
second pixel in every second row and column within a large m = m search window.
The point that returns the highest correlation in the sparse search becomes the
centre of the detailed search. The detailed search has a radius of only 2 pixels
and the template is correlated at every location in this small local region, the

point of highest correlation giving the new feature location.
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(a) (b) (¢) (d)

Figure 6.7: Searching procedure using initial sparse search. (a) Feature tem-
plate. (b) Full search region. (¢) Initial sparse search only correlates at every
second row and column, a region around the maximum is then identified and
searched at full resolution. (d) The template is correctly located to the nearest
pixel.

Check if error is acceptable

The observed feature locations provide the target state for our system. The goal

of the tracker is to match the projected feature locations with the observed feature

vector

( |qﬂ:1 - t')_-,_-1| \
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where (qq, qyi) and (04, 0y;) are respectively the coordinates of the the projected
and observed locations for the i feature. We aim to find a pose that results
in projected feature locations that minimize this error. There is a chance that
the estimated pose will satisfactorily minimize this error. If so then no further
refinement of the pose is necessary, However, it is unlikely that our estimated pose
will be satisfactory, in which case it is necessary to refine the pose as described
below,
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Iteratively refine pose estimate

The pose estimate is iteratively refined in the tracking loop in Figure 6.4. This

loop consists of a five step process:

1. determine the Jacobian,

2. use this to caleulate a pose correction factor with which to adjust the current

pose estimate,
3. apply the adjusted pose to the 3D model,
4. determine the new projected feature points,

5. check the error between the projected and observed feature points, and

repeat this process again if the error is not small enough.

Steps 3, 4 and 5 are identical to the Apply pose to model, Determine projected
feature locations, and Check if error is acceptable phases described above for the
earlier part of the algorithm. However, calculating the Jacobian and determining
the pose correction factor are specific to the tracking loop and are discussed in

detail here.

The pose correction factor is the central part of the tracking process. It enables
the pose to be effectively adjusted so that it converges to a suitable value, mini-
mizing the error between the projected and observed feature points. The Jacobian

is simply a necessary prerequisite to calculating the pose correction factor.

The Jacobian J is the matrix of partial derivatives of the projected feature lo-
cations with respect to the pose. Concatenating the (z,y) coordinates of the

projected feature locations in a vector

X [
A= U oy s Qg Fovllmii @)

the Jacobian is then caleulated as follows

r'jy.q dpa T g’jp,r
f 3 ,'.in" ¥ c" k]
dle = 22 292
J = “a\b) (p) = dpy  dpz Apg (6.2)
dp : ! :
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chny s i T)ju;.
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where p; and g, denote the ' elements of p and q respectively,

L —
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with f being the camera focal length, and z;, 3 and =, the 3D locations of the

it feature, given by

R(p) and t(p) are the rotation matrix and translation vector defined by the

current pose p, and my; is the model coordinates of the i** feature.

Once the Jacobian has been determined we are now able to calculate the pose

correction factor ¢ using Lowe’s algorithm (Lowe, 1991) as follows

c=JTI+IWTW) 1 (ITe + \WTWs),

where
L 0 0
T
w=| " =
: . 1
B @ O e

is a diagonal matrix whose diagonal elements are the reciprocals of the standard
deviation of the change in parameter p; from one frame to the next, J is the
Jacobian matrix of q defined in Equation 6.2, e is the error vector containing
the difference between the observed and projected 2D feature locations, s; is the

desired default value for parameter p;. and A is a scalar weight.

By iteratively applying this correction factor a least squares solution can be
achieved. This is an extension of Newton's method, designed to obtain stable
approximate solutions in the presence of noise. The stabilisation technique uses
the addition of a small constant to the diagonal elements of J'J in order to avoid
the possibility of this matrix becoming close to singular.

In this algorithm, the standard deviation of parameter changes in consecutive

frames represents the limit on the acceleration of each parameter from one frame
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to the next. For translation parameters, a limit of up to 10 pixels (within the
image size of 384 x 284) is used as the standard deviation, and for rotational
parameters 0.1 radians is used. The scalar A can be increased to strengthen the
weight of stabilisation whenever divergence occurs. However, a constant scalar
of 0.64 is used in this system as this was found to maintain stability throughout

the iterations.

6.2.2 Mouth Detection and Correction for Pose

Template matching is used to track the corners, top and bottom of the mouth.
The 3D pose determined from the head tracker is then used to determine the
mouth feature locations in 3D from which the true width and height of the mouth

can be determined,

Mouth Template Matching

The mouth corners are tracked using adaptable templates with the template

search areas centred at the feature locations determined in the previous frame.

Once the mouth corners are located, the upper mouth edge is searched for along
the line joining the mid-point of the mouth corners to the nose template position,
and the bottom mouth edge is searched for on the line perpendicularly bisecting
the line joining the mouth corners (see Figure 6.8). Locating the mouth edges
on these lines avoids the potential problem of the templates drifting along the
top and bottom mouth edges, and the computational requirement for template
matching is drastically reduced by only searching along a line rather than a 2D
region. As the head turns to the side and tilts the mid-point of the line joining
the mouth corners no longer corresponds to the centre of the mouth, however,

this approximation proved adequate for estimating the height of the mouth.

The adaptable templates are updated every frame. This updating is essential
as the mouth corners look very different when the mouth is open as opposed to

when it is closed.
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Figure 6.8: Search lines for locating the top and bottom mouth edges,

Determining Mouth Width and Height

Since the mouth is constantly changing shape during speech it cannot be modelled
as a rigid 3D object. Instead the mouth is assumed to lie flat on a plane parallel to
the front of the face. The observed 2D mouth feature locations are projected from
the image plane onto this face plane as illustrated in Figure 6.9, the orientation
of the face plane is given by the head pose obtained from the 3D head tracker.
Thus the 3D locations of the mouth features b, are determined.

The mouth height and width are then calculated as the 3D Euclidean distances
between the top and bottom mouth edges and the mouth corners respectively.

width = |[by — by|

height = ||bg — by||

6.2.3 Experimentation

The system was implemented in Matlab 5.3 on a standard 600 MHz Pentium II1,
and tested on a 234 frame of video sequence recorded off-line at 25 Hz. Each
frame was 8-bit grey-scale and 384 x 284 pixels. Feature templates were chosen
to be 12 x 12 pixels, and the search region size was set to 36 x 36.

Three non-deformable features were used to track the head: the eye corners and
the edge of one nostril. More features can be used, but three is sufficient to
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Figure 6.9: Projection of mouth points from image plane to face plane.

determine the 3D pose of the head. The mouth corners were also tracked, but
these were not used to estimate the head pose and were instead used exclusively

for determining the mouth shape.

In order to verify the suitability of the algorithm for realtime applications the
Matlab flop counter was used to estimate the average number of floating point
operations required per frame. Table 6.1 shows the average number of floating
point operations per frame for different steps of the algorithm calculated over a
234 frame test sequence, The vast majority of computations are taken by the
template matching, which involves calculating the normalised cross correlation of
the templates at each location across the search regions. Using the initial sparse
search, as detailed in Section 6.2.1, has made this computation considerably less
than the 4.9 Mflops it would otherwise be. It can be reduced further to (.89 Mflops
by increasing the sparsity from two to three and performing the sparse search at
every third (rather than every second) row and column. However, increasing the
sparsity of the search increases the likelihood of the tracker loosing the features.
In any case, with a sparsity of two the total number of computations per frame
Is within an amount that is feasible to perform in realtime were the algorithm to
be implemented in C/C4+.
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Table 6.1: Estimated Computations per Frame

Stage Mean computation per frame
(flops)

Pose estimation 1,270

Template matching 1.54 x 10°

Object tracking 13,400

Correcting mouth shape 705

Figure 6.10 shows six snap shots of the system whilst tracking, the animated
face illustrates the current pose and mouth dimensions of the subject. The full

tracking sequence is included on the CD-ROM enclosed with this thesis.

The quantitative output of the system over the full video sequence is presented in
Figure 6.11. This shows a record over the test sequence of the 3D head pose, the
uncorrected mouth dimensions and the corrected mouth dimensions. As expected
there is a strong correlation between the amount the mouth width is corrected

and the head’s rotation about the vertical y-axis.

The result shows the 3D head tracker recovering the head pose, and the mouth
shapes being effectively corrected throughout the sequence. For example, at
the frames 40 and 95, the phonemes “W" and “long-E” were spoken with the
speaker’'s head nodding. Thus the detected mouth heights for their surrounding
frames were corrected as shown in Figure 6.11(¢). In frames 95 and 176 (phonemes
“long-E" and “M" respectively) the speaker’s head was turned to the side and it
was necessary to correct the mouth width. Enunciating these phonemes causes
the mouth to widen relative to the neutral mouth width. Figure 6.11(d) shows
that the uncorrected mouth widths for these frames were similar to the neutral
mouth width, and that the correction is successfully made to enlarge the widths

to represent the actual mouth shape corresponding to these phonemes.

These results demonstrate the usefulness of this method for correcting the ob-
served size of the mouth as a speaker moves his head in 3D. Mouth height and
width are the two primary visual quantities used by audiovisual speech process-
ing systems. Being able to estimate these correctly whilst accommodating for
head translation and rotation is essential for audiovisual speech recognition in a
real world environment where speakers naturally move their heads around during
speech.
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Figure 6.10: Some snap shots of the system in operation. The phoneme being
pronounced and the frame number are indicated,
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6.2.4 Section Review

A system has been developed that measures the dimensions of a speaker’s mouth
whilst the speaker’s head is moving and exhibiting rotations of up to 30 degrees
away from the camera. Our system tracks the pose of the speaker’'s head in 3D,
detects the unadorned mouth by tracking the corners and a point on the upper
and lower edge of the lips, and estimates the mouth height and width during
speech. The system is demonstrated on a person speaking whilst moving his
head in 3D, and the mouth height and width are corrected over 9 seconds of

25 Hz video footage.

This section has demonstrated an application of measuring the mouth height and
width on a moving head using typically noisy pose information from a monocular
head tracking system. In the next case study a stereo system is presented that
uses accurate head pose data from an established stereo tracking system and

extends the mouth tracking to recover the full 3D shape of the outer lip contour,

6.3 Stereo Lip Tracking

This section describes a stereo lip tracking system that tracks a person’s un-
adorned lips in 3D, and outputs the 3D locations of the mouth corners and a set
of points around the outer lip contour. This output is suitable for audio visnal
speech processing, 3D animation, or expression recognition. A stereo head tracker
is used to track the subject’s head, allowing for robust performance whilst the
subject’s head is moving and turning with respect to the cameras. The head pose
is used in conjunction with the novel adaptable templates described in Section 6.1
to robustly estimate the locations of the corners of a deforming mouth. A 3D
geometric model is used to generate search paths for key points on the outer lip
contour, and these are subsequently located using adaptable templates and stereo
matching. The system is demonstrated robustly tracking the head pose and 3D

mouth shape of a person speaking while moving his head.

Figure 6.12 shows the key components of the system. The main focus of this
section will be on the lip tracking component, but first Section 6.3.1 describes
the stereo vision system used to capture images of the subject, and Section 6.3.2
briefly summarises the head tracker. Section 6.3.3 then covers the lip tracking

system in detail, Section 6.3.4 presents some results of the system in operation,
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and Section 6.3.5 concludes with a review and some suggestions for future work.

6.3.1 Stereo Vision System

The configuration of the stereo vision system is shown in Figure 6.13. The two
cameras are positioned equidistant from the origin and are verged (angled towards
the origin in the horizontal plane) at about 5 degrees. This is designed to offer the
hest measurements of an object the size of a human head placed approximately
600mm in front of the cameras, and provides an effective working volume 20 cm

high = 30 cm wide = 50 c¢m deep for 3D tracking,

Both cameras are standard, colour analog NTSC video cameras whose outputs
are multiplexed into a single channel before being acquired by a Hitachi IP5005
video card. The result is a 512 = 480 colour image, captured every 33ms, where

the top half contains the right hand image and lower half the left hand image.

6.3.2 Head Tracking

Our system uses the stereo head tracker presented by Matsumoto and Zelinsky
(2000) and detailed in Chapter 2. This is an early prototype of the Seeing Ma-
chines FaceLab system. It was developed in our lab and is the combined work
of Zelinsky, Heinzmann, Matsumoto, Newman and Rougeaux. The system uses
calibrated stereo cameras and returns accurate estimates of the head pose with
position measurement within £1 mm and orientation +2 degrees. The system
requires no markers or special make-up to be worn, and runs in realtime on a

standard PC,

e left image _

Stereo g = Head head Lip 3D mouth

Vision )5 | "
pose

—=| Tracker

System Tracker shape

right image

Figure 6.12; Overview of the system.
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Figure 6.13: The stereo camera arrangement.

6.3.3 Lip Tracking

The mouth is a deformable feature, however, like the eyebrows, eyelids and other
deformable facial features, it is firmly attached to the head and is only able to
deform in an elastic manner. Our lip tracking system uses head pose information
from a head tracker to localise the approximate location of the mouth in each
image.  Adaptable templates are used to track individual mouth features and
accommodate for the elastic deformation of these features as the mouth shape
changes, and stereo matching these features enables us to determine the 3D shape

of the deforming mouth.

We define three primary tracking points, the left and right mouth corners and
the outer edge of the centre of the upper lip, as illustrated in Figure 6.14. These
primary features are chosen owing to the importance of their locations when
determining the lip contour, and their distinctive appearance that allows them
to be more easily tracked than other points on the lip contour. The locations of
the primary features will later form the foundation of our search procedure for

tracking the lip contour.

Before commencing tracking it is necessary to initialise the system. This is cur-
rently performed manually and is done on a frame where the subject is facing

close to front-on to the cameras and the mouth is in a neutral (closed and re-
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Figure 6.14: The lip corners and the centre of the upper lip contour provide
the primary tracking points for our system.

y

head pose " 3D primary 3D mouth
locate primary | feature locations . locate contour shape
o tracking points tracking points

j

: =
stereo 1im ages

Figure 6.15: Lip tracking system.

lamxmi) position. The mouth corners and centre of the upper outer lip contour are
identified, and these are matched in the other stereo image to determine the 3D
locations of these points on the neutral mouth, In addition to this, the initial lo-
cations of a set of tracking points on the outer lip contour are manually identified.
These are evenly spaced from left to right across the upper and lower lips so they

lie on the lip contour search lines that will be described below in Section 6.3.3.

Figure 6.15 summarises our approach to detecting the lip contour. Firstly we
establish the 3D locations of the primary tracking points, these define search
lines for the contour features, and then the locations of the contour features are
identified,

Search Structure

As the mouth deforms during speech and through facial expressions its appear-
ance and shape can change drastically. In order to effectively track the mouth

contour we adopt a search structure that allows us to reliably locate specific
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mouth features. This approach is a further development of our previous work in

2D lip tracking presented in Section 6.2,

T'he search procedure consists of the following steps, which shall be discussed in

more detail hereafter.

1. Locate primary features:

(a) the head pose is used to determine the 3D locations of the primary
features if they were in the neutral position as they were at initialisa-

tion,

(b) search areas for the primary features are defined from the projected

positions of these 3D feature locations,
(¢) the current primary feature locations are identified, and

(d) the 3D location of the primary feature is determined via stereo match-

ing.
2. Locate lip contour tracking points:

(a) based on the 3D locations of the primary features, search lines are

defined for locating the outer lip contour,
(b) the outer lip contour is identified, and

(¢) the 3D locations of the outer lip contour tracking points are determined

via stereo matching.

Locating Primary Tracking Points

The corners of the mouth are the most suitable points for tracking due to their dis-
tinctive (albeit drastically changeable) appearance. Their location is constrained
to a small region of the face. Each mouth corner will always be in a region centred
at the neutral mouth corner location. Because this region is quite small (typically
o0 x 50mm) it is feasible to search the whole region in every frame. The other
primary tracking feature, the centre of the upper lip, has the advantage that it
does not move or deform as much as the mouth corners. However, its appear-
ance is less distinctive as it can look quite similar to other points on the mouth

contour, so it is typically not tracked as accurately as the mouth corners.
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It is feasible to avoid tracking the centre of the upper lip and simply use the
estimated location of the neutral mouth centre to locate the central primary
feature. However, despite the lack of gross movement typically displayed by this
feature, it is preferable to explicitly track the feature to accommodate for any
movement that does occur. Nonetheless for the purpose of defining search lines
for the lip contour, which will be discussed below, estimating the upper lip centre

in the first image is still satisfactory.

In the initialisation process we determined the 3D locations of the primary track-
ing points in the initial frame where the mouth was in a neutral position. We
now estimate the 3D locations of these points under the current head pose, then
project them into the current image using pinhole camera projection, to estimate
the approximate location of the neutral mouth points. The search for the current
locations of the primary features can then be limited to 40 x 40 pixel regions

around the estimated location of the appropriate neutral mouth feature.

The primary features are tracked within these search regions using the same
method applied for the 2D lip tracker presented in Section 6.2, That is, nor-
malised cross correlation with adaptable templates, using the sparse search ap-

proach described in Section 6.2.1 to reduce the computation.

Once the features have been located in the first stereo image, a larger template
is taken from around each tracking point in this image and used to locate the
feature in the second stereo image using normalised cross correlation. Since the
stereo system is calibrated it is only necessary to search along the epipolar line
in the second image. Once this is done the 3D location of the primary tracking

points are determined via linear triangulation (see Section 2.4.1).

Locating Lip Contour Tracking Points

The primary tracking points define the outer edges of the mouth and the center
of the upper lip. However, to fully describe the mouth shape it is necessary to
track points all along the mouth contour. Our system uses a set of tracking points
to characterise the outer lip contours of the upper and lower lips. The number
of points used is at the discretion of the user, with the limiting factor being the
additional computation required for more points. In our experiments we used 18

contour tracking points which provided a detailed estimate of the lip shape.

The contour tracking points are located on search lines parallel to the vertical
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Figure 6.16: Search lines are placed in 3D aligned with the vertical head axis
and equidistant between the primary tracking points, shown in green.

head axis. The search lines are initially defined in 3D, and are automatically
located based on the locations of the mouth corners and the centre of the neutral
mouth. Search lines are placed on each side of the mouth, as shown in Figure 6.16
spaced equidistant between the mouth corner and the centre of the neutral mouth,
if an odd number of points is used to track the upper and lower lips then a search
line is placed at the centre of the mouth as well. These 3D lines are projected
onto one of the stereo images to provide the set of 2D search lines on which to

locate the outer contour in the image.

For the upper lip contour the search lines start at the level of the lip corners
and extend upwards (in the positive y direction in the head reference frame,
see Figure 6.3). For the lower lip contour the search lines start at the level of
the lip corners and extend downwards in the opposite direction. The length of
each line is proportional to how central the point is, and is chosen to generously
accommodate the full range of mouth motion (the length is defined in 3D, before

the lines are projected onto the image plane).

Locating the mouth edges on these lines avoids the potential problem of the
templates drifting along the top and bottom mouth edges, and the computational

requirement for searching is drastically reduced by only examining a line of points,
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Figure 6.17: Contour tracking templates. Feature locations and template
boundaries are indicated in green, search lines are shown in yellow,

rather than a 2D region of the image.

As the mouth opens and closes the appearance of the interior of the mouth
changes drastically, due not only to the changing shape of the mouth, but the
appearance of the teeth, tongue and oral cavity. On the other hand, the facial
region outside the mouth changes much less. For this reason we chose to track the
mouth contour with elongated offset templates stretching away from the mouth
as shown in Figure 6.17. By including a large proportion of the external (more
constant) region surrounding the mouth, in addition to the lip, and not including
the inner mouth region, these templates can detect the outer lip contour whilst

remaining robust to changes in the appearance of the inner mouth region.

Normalised cross correlation with adaptable templates is used to locate the con-
tour tracking points on the search lines in one of the stereo images. Once the
features have been located, wider templates are taken from the current image
around each tracking point and used to locate the feature in the second stereo
image. The 3D search lines are also projected onto the second image, to determine
the approximate location of the features. Since the stereo system is calibrated it
is only necessary to search along the epipolar line in the second image, and the
range of disparities is reduced by only searching close to the intersection of the

epipolar line and the appropriate search line.
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6.3.4 Experimentation

A significant amount of experimentation has been carried out to analyse the
performance of the head tracker using a mannequin head mounted on a pan-tilt
device (Newman ef al., 2000). The head tracker has been shown to accurately
recover the head pose position within 1 mm and pose angle to within 2 degrees.
It can accommodate head velocities of up to 100 degrees per second and head

rotation up to 45 degrees away from the cameras.

The lip tracking system was implemented in Matlab 5.3 on a standard 600 MHz
Pentium III, and tested off-line on a 148 frame video sequence recorded at 30 Hz.
Each frame was 8-bit grey-scale and 240 x 320 pixels, and was accompanied with
head pose data output from the face tracker. The primary features were initially
located with 10 x 10 templates, then 20 x 20 templates were used to perform the
stereo matching. The elongated offset templates used to track the lip contour
were chosen to be 20 x 5 and wider 20 x 30 templates were used to determine the

stereo correspondence in the second image.

The lip tracker was shown to track the mouth throughout a sequence of footage
of a subject moving his head and mouth in 3D. Figure 6.18 shows several snap
shots of the system in action. Both left and right stereo images are shown, the
primary tracking points are indicated in blue and the contour tracking points are
shown in red. The 3D mouth shape is also shown. The full video sequence of the

tracker in action is included on the CD-ROM enclose with this thesis.

The results presented here have not been smoothed or filtered at all and represent
the raw data output from the feature tracking technique deseribed. For animation
purposes or to make a smoother moving reconstruction the 3D locations could be

filtered to remove high frequency motion.

Quantitatively verifying the performance of the lip tracker required manually
locating tracking points throughout a sequence and comparing these with the
automatically tracked points generated by the tracking system. This was done
for the three primary tracking points (the mouth corners and the centre of the
upper lip) over the 148 frame sequence. The absolute 3D error was recorded along
with the absolute error in the z, y and z directions?, and the results are presented

in Figures 6.19 to 6.22, The mean absolute errors are shown in Table 6.2.

“These Cartesian directions refer to the axes in the world coordinate frame located hetween
the two cameras as shown in Figure 6.13,
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Figure 6.18: The system in operation. The first two columns show the left
and right stereo images and lip tracking points, the third column shows the

3D mouth shape in the head reference frame (dimensions in mm).



182

FFace Tracking

Table 6.2: Mean absolute error in primary tracking points.

Feature Mean 3D error | z error | y error | z error
(mm) (mm) | (mm) | (mm)
right mouth corner 1.2 0.53 0.76 0.46
lip centre 0.69 0.40 0.22 0.35
right mouth corner 0.7 0.47 0.32 0.21
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Figure 6.19: 3D error in primary feature locations.

From Table 6.2 we see the mean absolute error is negligible. However, as Fig-
ure 6.19 shows there are isolated errors in the tracked feature positions of up to
4.5mm. The largest error is observed for the lip centre feature, and by examining
the errors in the z, y and z directions (Figures 6.20 to 6.22) we see this is caused
by a large error in the z-depth of the feature, while errors in the z and y-directions
are insignificant at this point. We conclude, therefore, that this single large error
was caused by poor stereo matching rather than bad tracking. However, on the
whole the stereo matching performs well, as can be seen from Figure 6.22 that

shows that the z-error seldom rises above 1.5 mm.

Errors in the x and y directions shown in Figures 6.20 and 6.21 are indicative
of how well the adaptive templates are tracking. The results are encouraging
with the error seldom rising above 2mm, and averaging well below 1mm for each
feature (see Table 6.2).
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Figure 6.21: Absolute error in y-direction in primary feature locations.

To verify the suitability of the algorithm for realtime implementation estimates
of the average number of floating point operations required per frame were de-
termined using the Matlab flop counter. Table 6.3 shows the average number of
floating point operations per frame for different stages of the algorithm, these
fipures were calculated over a test sequence of 148 frames.



184

" night DA e
— lip centre
4.5k —— laft mouth cornar
‘ B | =
|i
3.5k I

absolute 7 emor (mm)
ﬁ
1

15¢

e ——
1 1

| |\
Q.8F .;.I

__r*
e
e
1

frame f‘llulﬂ'lbil'

Face Tracking

Figure 6.22: Absolute error in z-direction in primary feature locations.

Table 6.3: Estimated Computations per Frame

Stage Mean computation per frame
(Mflops)

Estimate primary feature locations 0.000264

Locate primary features 6.47

Define search lines 0.00772

Locate 18 contour points 1.63

Overall 8.26

The majority of time was spent locating the three primary feature points due

to the heavy computational load of calculating the normalised cross correlation

over the 2D search regions. The computations required to locate all 18 contour

tracking points is much less, although there are six times as many points, this is

because these were located on lines (rather than within 2D regions) so the search

for each contour point only needed to be carried out in 1D. The computational

requirement for the rest of the algorithm is minimal. Since we do not fit a model

to our data the bulk of our effort is expended in locating the tracking points.

Estimating the initial locations of the primary features and defining the contour

search lines use a trivial amount of computation compared to that required for

the correlation used to locate the features. The computation results here are for

the lip tracker alone and do not include the operation of the head tracker.
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6.3.5 Section Review

This section has presented a technique to track the 3D shape of a deforming mouth
whilst the subject’s head is moving in 3D. The mouth corners are tracked along
with numerous points around the outer lip contour, and the 3D locations of each
of these points determined via stereo correspondence. The lip tracking results
presented were generated off-line, although the technique is efficient enough for

realtime implementation,

The lip tracker presented here is the first system to track the raw 3D mouth shape,
Some previous methods (see Chapter 2) have inferred the 3D mouth shape from
predefined mouth models, but none have used stereo to directly measure the 3D

locations of tracking points,

Our technique is quite different from the active contour approach to lip tracking
(Kaucic et al., 1996, for example). Active contours use an underlying model
to constrain the shape of the contour, and the visual sensing is just a single
component of the tracking procedure. Our method is directly based on visual
information and the shape of the mouth contour is much less constrained. The
advantage of our approach is its simplicity and ability to track diversly shaped
contours. The disadvantage is that it is not forced to be “mouth-like”, and it
relies entirely on the image information along its search lines to locate the contour
correctly. This, however, is achievable with the use of adaptable templates. As
an aside, the adaptable templates we use for tracking could be used to good effect

to provide visual information in an active contour system,

At present the lip tracking system relies only on gray-scale intensity information.
The system could be extended to utilise a number of other cues that could be
merged together to increase the robustness and versatility of the system. Colour
image information is one such cue which shows great promise for lip tracking and
analysis of the mouth region (Goecke et al., 2000). An area-based stereo depth

map is another.

The template matching-based approach adopted in this chapter restricts the
tracking to the outer lip contour. Whilst this is arguably the more important
contour for animation and visualisation purposes, the inner contour is much more
useful for audio-visual speech processing, since it is the inner contour which de-
fines the airflow in and out of the mouth (Goecke et al., 2000). Ultimately it is

desired for a lip tracker to track both inner and outer contours in 3D. However,
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the inner contour is an elusive target, and is difficult to define in 3D. Unlike the
outer contour which is a distinctive line on a surface, the inner contour is the
boundary between the lip and the oral cavity space and has no definite 3D lo-
cation. Any attempt to determine the inner contour in 3D will benefit strongly

from knowledge of the outer contour that is located by the system presented here.

6.4 Summary

This chapter has addressed the problem of tracking deformable facial features
by examining two case studies of different lip tracking systems. The first used a
monocular camera and was able to track the head pose and measure the mouth
height and width of a subject. The second used a prototype of the commercially
available FaceLab system to provide robust head pose information from stereo
cameras, and then proceeded to track the 3D shape of the mouth as it deformed
during speech. The concept of adaptable templates were also introduced, a tech-
nique designed for robust tracking of elastically deformable features, and these
were used in both the lip tracking systems described to track points on the lip

contour.

The stereo 3D lip tracker presented here is the first system to track the raw 3D
mouth shape. As discussed in Chapter 2, some previous approaches have used
complex models to infer the 3D mouth shape from monocular image information
(Revéret and Benoit, 1998), but such inferences are restricted to the limited
range of mouth shapes spanned by the models. Whilst these models are useful
for speech processing, they are too constrained for character animation and other

applications that require tracking the true, unconstrained 3D shape of the mouth.

Tracking deformable facial features is one of the ultimate end goals of computer
vision systems aiming to enhance human computer interaction. After all, it is the
actions and expressions of facial features that we humans use when interacting
with someone and “reading” their face. While current systems are still very
crude, the potential in this area is huge, and over the next decade we can expect
to see computer vision systems capable of realtime lip reading, marker-less facial

animation, and expression recognition.



Chapter 7

Conclusion

Enabling machines to see people is a crucial step towards machines that we can
interact with as we do with other people. This thesis has worked towards a
computer vision system that enables a computer to see people’s faces, providing a

basis for more natural and meaningful interaction between humans and machines.

We define what it means for a computer to “see” people as being able to locate
and track humans in image sequences, preferably in realtime, and with robustness
to different people’s appearances and the operational environment. This task was

divided into three subproblems:

1. face localisation, locating where a person is in a scene,

2. face registration, identifying facial features, and

3. face tracking, tracking the head pose and movement of facial features.
Novel solutions have been presented to each of these human tracking problems,

that could potentially form an all-inclusive vision system allowing a computer or

robot to see a person's face.

7.1 Summary

Chapter 1 opened with an introductory discussion to motivate and contextualise
our research. The importance of visual information during interpersonal inter-

action and human-machine interaction was discussed, and it was concluded that
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features. This involves tracking both rigid and deformable facial features to fully
characterise both the 3D head pose, and describe the locations of facial features
relative to the head. We track the 3D pose of the head using predominantly rigid
facial features, and then track the locations of deformable features relative to the
head. A new form of templates is introduced to facilitate tracking deformable
features, and these are used in two case studies. The first i1s a monocular lip
tracker, and the second is a stereo lip tracking system that tracks the mouth

shape in 3D,

7.2 Achievements

7.2.1 Fast Detection of Radial Symmetry

A new image transform, the Fast Radial Symmetry Transform (FRST), was pre-
sented. This transform utilizes local radial symmetry to highlight points of in-
terest within a scene. With its low computational complexity and fast run-times
it is well suited for realtime vision applications. Indeed, a realtime implementa-
tion of the transform was presented demonstrating its effectiveness as a cue for
highlighting peoples eyes as they moved in front of the camera. The transform’s
performance was tested on a variety of images and compared with leading tech-
niques from the literature. Both as a facial feature detector and as a generic
region of interest detector, the FRST was seen to offer equal or superior perfor-
mance to contemporary techniques at a relatively low computational cost, and
provides a valuable cue for detecting eyes and other radially symmetric features

in images.

7.2.2 An Adaptive Fusion Architecture for Target Track-
ing

Face localisation was performed using a vision system that adaptively allocates
computational resources over multiple cues to robustly track a target in 3D. A
particle filter managed multiple hypotheses of the target location and Bayesian
probability theory provided the framework for sensor fusion. Finite computa-
tional resources were efficiently allocated across the cues, taking into account the
cue's expected utility and resource requirement. The system can accommodate

cues running at different frequencies, allowing cues performing less well to be run
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slowly in the background for added robustness with minimal additional computa-
tion. The system was shown to track a person in 3D space moving in a cluttered
environment with variable lighting conditions and occlusions of the target. An
additional example was shown demonstrating how the system can be extended to
track multiple targets, using multiple particle filters and inhibition of returns to
prevent different filters from locking onto the same target. Whilst this system was
demonstrated here for robust person tracking, it is equally applicable to tracking

other targets.

7.2.3 Facial Feature Detection

A face registration system was developed capable of verifying the presence of a
face and automatically detecting facial features in monocular, grey-scale image
sequences. The system is able to locate the eyes, mouth corners, nostrils and
eyebrows of subjects. The anatomical constraints of the human face are used
to govern the feature locating and face verification process. This system both
automatically verifies the presence of a face and detects facial feature points for
face tracking. The algorithm has been adopted into a commercial face detection

system that has seen substantial testing on hundreds of subjects.

7.2.4 3D Deformable Facial Feature Tracking

The problem of tracking deformable facial features was addressed by examining
a monocular and a stereo 3D lip tracking system, both operating in conjunction
with 3D head trackers to facilitate the head freedom of movement whilst tracking.
The monocular system was able to track the head pose and measure the mouth
height and width of a subject, whilst the stereo system was capable of tracking
the full 3D shape of the mouth as it deformed during speech. Our stereo lip
tracking system is the first system that has tracked the raw 3D mouth shape
(some other systems have inferred the 3D structure from a monocular view). We
do not require a physical model to constrain the shape of the mouth and thus
the approach can be easily transferred to tracking other deforming features such

as the eyvebrows,
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7.3 Further Work

We have presented solutions to the problems of localising a face in a scene, de-
tecting facial features, and tracking the face and the motion of facial features.
Whilst the systems presented each address particular human-tracking problems,
further work is required to integrate these into a single all-inclusive vision system
to allow a computer or robot to see a person’s face. Such a system would be a

valuable tool for enhancing human-machine interaction.

The face localisation system presented in Chapter 4 provides a sound frame-
work for integrating multiple cues with different resource requirements for target
tracking. Further work should focus on refining the method of resource allocation
and extending the system to adapt online to track an arbitrary and potentially

changing number of targets.

Removing the requirement for the subject to blink for the face registration system
presented in Chapter 5 would make the algorithm more user friendly as well as
allowing it to be employed to detect faces in still images. This improvement has
already been implemented in the commercial version of the system implemented

by Seeing Machines,

The deformable feature tracking method presented in Chapter 6 is not limited
to lip tracking. Extending deformable feature tracking to track eyebrows, nostril
shape and other deformable facial features, will allow a computer to really see the
deformation of a subject’s face. In addition, using colour information has great

potential to further increase the accuracy and robustness of the tracking.

However, more interesting than refinements to the systems presented here are the
potential applications of this work. Enhancing human-machine interaction is a
hot topic of research throughout the world, and computer vision is playing a key
role. A computer or robot that can reliably locate and track a person’s face in a
real world scenario has great potential for application across a wide range of fields.
Examples include: improved teleconferencing, monitoring human performance,
smart security surveillance, interfaces for the disabled, more realistic interaction
for games, and facial animation for digital characters. The possibilities are great,
but when we consider how central vision is to the way humans perceive the world

it is unsurprising that a computer embodied with this ability offers such potential.






Appendix A

Contents of CD-ROM

The CD-ROM enclosed with this thesis contains the following:

thesis. pdf
face images/

FRST _movie
face_loc_moviel
face_loc_moviel
multiple_loc_movie
face_reg_movie
face_track_mono_movie
face_track_stereo_movie

Electronic copy of the thesis.

Folder containing face images used in Chapter 3 to
determine the mean maximum value of Q,,.

Movie of FRST operating over an image sequence,
Movie showing face localisation.

Another movie showing face localisation,

Movie showing localisation system with multiple targets.
Movie showing face registration.

Movie of monocular lip tracker,

Movie of stereo lip tracker.






Appendix B

Derivation of the Optical Flow
Constraint Equation

Consider an image sequence I(t) and denote the intensity at location (z,y) at
time £ by I(x,y,t). Using a Taylor series expansion, an expression can be written
for I(x + dx, y + dy,t + dt), that is the value of the image a short time dt later

and a small distance (dz, dy) away,

(1 11 11
I(z +dx,y+dy,t+dt) =1(z,y,t) + (%:I-:fﬁ:!.‘- + :Efz?/ " ;,7”7- T (B.1)

Now, consider an object at a position (r,y) at a time ¢, that moves through a
distance (dx, dy) after time dt. If the intensity of the object in the image does

not change, then we have
Iz +dz,y+dyt+dt) =1(z,y,t)

so if follows from B.1
S0 1 [oLOWs 11011 dl I dl y + al 1t = |)
r/:r;(“L ff',f/( 4 ‘H'(“ -

dividing through by dt and taking the limit as df — 0

ol B ol + {(‘51

= B.2
ot ! o ( )

Sy
where u = -‘{-’!'-;' and v = %"}’ Equation B.2 is called the optical flow constraint
equation,
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