160 research outputs found

    Modeling and manipulating spacetime objects in a true 4D model

    Get PDF
    The concept of spacetime has long been used in physics to refer to models that integrate 3D space and time as a single 4D continuum. We argue in this paper that it is also advantageous to use this concept in a practical geographic context by realizing a true 4D model, where time is modeled and implemented as a dimension in the same manner as the three spatial dimensions. Within this paper we focus on 4D vector objects, which can be implemented using dimension-independent data structures such as generalized maps. A 4D vector model allows us to create and manipulate models with actual 4D objects and the topological relationships connecting them, all of which have a geometric interpretation and can be constructed, modified, and queried. In this paper we discuss where such a 4D model fits with respect to other spatiotemporal modeling approaches, and we show concretely how higher-dimensional modeling can be used to represent such 4D objects and topological relationships. In addition, we explain how the 4D objects in such a system can be created and manipulated using a small set of implementable operations, which use simple 3D space and 1D time inputs for intuitiveness and which modify the underlying 4D model indirectly

    Integration of polynomials over N-dimensional linear polyhedra

    Get PDF
    This paper is concerned with explicit integration formulae for computing integrals of n-variate polynomials over linear polyhedra in n-dimensional space ℝn. Two different approaches are discussed; the first set of formulae is obtained by mapping the polyhedron in n-dimensional space ℝn into a standard n-simplex in ℝn, while the second set of formulae is obtained by reducing the n-dimensional integral to a sum of n - 1 dimensional integrals which are n + 1 in number. These formulae are followed by an application example for which we have explained the detailed computational scheme. The symbolic integration formulae presented in this paper may lead to an easy and systematic incorporation of global properties of solid objects, such as, for example, volume, centre of mass, moments of inertia etc., required in engineering design problems. © 1997 Elsevier Science Ltd

    Methods for Real-time Visualization and Interaction with Landforms

    Get PDF
    This thesis presents methods to enrich data modeling and analysis in the geoscience domain with a particular focus on geomorphological applications. First, a short overview of the relevant characteristics of the used remote sensing data and basics of its processing and visualization are provided. Then, two new methods for the visualization of vector-based maps on digital elevation models (DEMs) are presented. The first method uses a texture-based approach that generates a texture from the input maps at runtime taking into account the current viewpoint. In contrast to that, the second method utilizes the stencil buffer to create a mask in image space that is then used to render the map on top of the DEM. A particular challenge in this context is posed by the view-dependent level-of-detail representation of the terrain geometry. After suitable visualization methods for vector-based maps have been investigated, two landform mapping tools for the interactive generation of such maps are presented. The user can carry out the mapping directly on the textured digital elevation model and thus benefit from the 3D visualization of the relief. Additionally, semi-automatic image segmentation techniques are applied in order to reduce the amount of user interaction required and thus make the mapping process more efficient and convenient. The challenge in the adaption of the methods lies in the transfer of the algorithms to the quadtree representation of the data and in the application of out-of-core and hierarchical methods to ensure interactive performance. Although high-resolution remote sensing data are often available today, their effective resolution at steep slopes is rather low due to the oblique acquisition angle. For this reason, remote sensing data are suitable to only a limited extent for visualization as well as landform mapping purposes. To provide an easy way to supply additional imagery, an algorithm for registering uncalibrated photos to a textured digital elevation model is presented. A particular challenge in registering the images is posed by large variations in the photos concerning resolution, lighting conditions, seasonal changes, etc. The registered photos can be used to increase the visual quality of the textured DEM, in particular at steep slopes. To this end, a method is presented that combines several georegistered photos to textures for the DEM. The difficulty in this compositing process is to create a consistent appearance and avoid visible seams between the photos. In addition to that, the photos also provide valuable means to improve landform mapping. To this end, an extension of the landform mapping methods is presented that allows the utilization of the registered photos during mapping. This way, a detailed and exact mapping becomes feasible even at steep slopes

    Automatic creation of boundary-representation models from single line drawings

    Get PDF
    This thesis presents methods for the automatic creation of boundary-representation models of polyhedral objects from single line drawings depicting the objects. This topic is important in that automated interpretation of freehand sketches would remove a bottleneck in current engineering design methods. The thesis does not consider conversion of freehand sketches to line drawings or methods which require manual intervention or multiple drawings. The thesis contains a number of novel contributions to the art of machine interpretation of line drawings. Line labelling has been extended by cataloguing the possible tetrahedral junctions and by development of heuristics aimed at selecting a preferred labelling from many possible. The ”bundling” method of grouping probably-parallel lines, and the use of feature detection to detect and classify hole loops, are both believed to be original. The junction-line-pair formalisation which translates the problem of depth estimation into a system of linear equations is new. Treating topological reconstruction as a tree-search is not only a new approach but tackles a problem which has not been fully investigated in previous work

    Parallel algorithms for computational fluid dynamics on unstructured meshes

    Get PDF
    La simulació numèrica directa (DNS) de fluxos complexes és actualment una utopia per la majoria d'aplicacions industrials ja que els requeriments computacionals son massa elevats. Donat un flux, la diferència entre els recursos computacionals necessaris i els disponibles és cobreix mitjançant la modelització/simplificació d'alguns termes de les equacions originals que regeixen el seu comportament. El creixement continuat dels recursos computacionals disponibles, principalment en forma de super-ordinadors, contribueix a reduir la part del flux que és necessari aproximar. De totes maneres, obtenir la eficiència esperada dels nous super-ordinadors no és una tasca senzilla i, per aquest motiu, part de la recerca en el camp de la Mecànica de Fluids Computacional es centra en aquest objectiu. En aquest sentit, algunes contribucions s'han presentat en el marc d'aquesta tesis. El primer objectiu va ser el desenvolupament d'un codi de CFD de propòsit general i paral·lel, basat en la metodologia de volums finits en malles no estructurades, per resoldre problemes de multi-física. Aquest codi, anomenat TermoFluids (TF), té un disseny orientat a objectes i pensat per ser usat de forma altament eficient en els super-ordinadors actuals. Amb el temps, ha esdevingut pel grup una eina fonamental en projectes tant de recerca bàsica com d'interès industrial. En el context d'aquesta tesis, el treball s'ha focalitzat en el desenvolupament de dos de les llibreries més bàsiques de TermoFluids: i) La Basics Objects Library (BOL), que es una plataforma de software sobre la qual estan programades la resta de llibreries del codi, i que conté els mètodes algebraics i geomètrics fonamentals per la implementació paral·lela dels algoritmes de discretització, ii) la Linear Solvers Library (LSL), que conté un gran nombre de mètodes per resoldre els sistemes d'equacions lineals derivats de les discretitzacions. El primer capítol d'aquesta tesi conté les principals idees subjacents al disseny i la implementació de la BOL i la LSL, juntament amb alguns exemples i algunes aplicacions industrials. En els capítols posteriors hi ha una explicació detallada de solvers específics per algunes aplicacions concretes. En el segon capítol, es presenta un solver paral·lel i directe per la resolució de l'equació de Poisson per casos en els quals una de les direccions del domini té condicions d'homogeneïtat. En la simulació de fluxos incompressibles, l'equació de Poisson es resol almenys una vegada en cada pas de temps, convertint-se en una de les parts més costoses i difícils de paral·lelitzar del codi. El mètode que proposem és una combinació d'una descomposició directa de Schur (DDS) i una diagonalització de Fourier. La darrera descompon el sistema original en un conjunt de sub-sistemes 2D independents que es resolen mitjançant l'algorisme DDS. Atès que no s'imposen restriccions a les direccions no periòdiques del domini, aquest mètode és aplicable a la resolució de problemes discretitzats mitjançat l'extrusió de malles 2D no estructurades. L'escalabilitat d'aquest mètode ha estat provada amb èxit amb un màxim de 8192 CPU per malles de fins a ~10⁹ volums de control. En el darrer capitol capítol, es presenta un mètode de resolució per l'equació de Transport de Boltzmann (BTE). La estratègia emprada es basa en el mètode d'Ordenades Discretes i pot ser aplicat en discretitzacions no estructurades. El flux per a cada ordenada angular es resol amb un mètode de substitució equivalent a la resolució d'un sistema lineal triangular. La naturalesa seqüencial d'aquest procés fa de la paral·lelització de l'algoritme el principal repte. Diversos algorismes de substitució han estat analitzats, esdevenint una de les heurístiques proposades la millor opció en totes les situacions analitzades, amb excel·lents resultats. Els testos d'eficiència paral·lela s'han realitzat usant fins a 2560 CPU.Direct Numerical Simulation (DNS) of complex flows is currently an utopia for most of industrial applications because computational requirements are too high. For a given flow, the gap between the required and the available computing resources is covered by modeling/simplifying of some terms of the original equations. On the other hand, the continuous growth of the computing power of modern supercomputers contributes to reduce this gap, reducing hence the unresolved physics that need to be attempted with approximated models. This growth, widely relies on parallel computing technologies. However, getting the expected performance from new complex computing systems is becoming more and more difficult, and therefore part of the CFD research is focused on this goal. Regarding to it, some contributions are presented in this thesis. The first objective was to contribute to the development of a general purpose multi-physics CFD code. referred to as TermoFluids (TF). TF is programmed following the object oriented paradigm and designed to run in modern parallel computing systems. It is also intensively involved in many different projects ranging from basic research to industry applications. Besides, one of the strengths of TF is its good parallel performance demonstrated in several supercomputers. In the context of this thesis, the work was focused on the development of two of the most basic libraries that compose TF: I) the Basic Objects Library (BOL), which is a parallel unstructured CFD application programming interface, on the top of which the rest of libraries that compose TF are written, ii) the Linear Solvers Library (LSL) containing many different algorithms to solve the linear systems arising from the discretization of the equations. The first chapter of this thesis contains the main ideas underlying the design and the implementation of the BOL and LSL libraries, together with some examples and some industrial applications. A detailed description of some application-specific linear solvers included in the LSL is carried out in the following chapters. In the second chapter, a parallel direct Poisson solver restricted to problems with one uniform periodic direction is presented. The Poisson equation is solved, at least, once per time-step when modeling incompressible flows, becoming one of the most time consuming and difficult to parallelize parts of the code. The solver here proposed is a combination of a direct Schur-complement based decomposition (DSD) and a Fourier diagonalization. The latter decomposes the original system into a set of mutually independent 2D sub-systems which are solved by means of the DSD algorithm. Since no restrictions are imposed in the non-periodic directions, the overall algorithm is well-suited for solving problems discretized on extruded 2D unstructured meshes. The scalability of the solver has been successfully tested using up to 8192 CPU cores for meshes with up to 10 9 grid points. In the last chapter, a solver for the Boltzmann Transport Equation (BTE) is presented. It can be used to solve radiation phenomena interacting with flows. The solver is based on the Discrete Ordinates Method and can be applied to unstructured discretizations. The flux for each angular ordinate is swept across the computational grid, within a source iteration loop that accounts for the coupling between the different ordinates. The sequential nature of the sweep process makes the parallelization of the overall algorithm the most challenging aspect. Several parallel sweep algorithms, which represent different options of interleaving communications and calculations, are analyzed. One of the heuristics proposed consistently stands out as the best option in all the situations analyzed. With this algorithm, good scalability results have been achieved regarding both weak and strong speedup tests with up to 2560 CPUs
    corecore