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Abstract	
	
	
	
	
	

This	thesis	presents	a	new	numerical	algorithm	for	the	simulation	of	two‐dimensional	multiphase	viscoelastic	
flows.	The	simulation	of	viscoelastic	flows	has	both	a	scientific	importance	and	practical	implications	in	polymer	
processing.	This	work	has	put	the	emphasis	on	the	extrusion	of	polymeric	materials,	where	viscoelastic	effects	
cause	 dynamical	 instabilities,	 despite	 the	 very	 simple	 geometry.	 This	 thesis	 reviews	 the	 popular	 differential	
constitutive	 models	 derived	 from	 molecular	 theories	 of	 dilute	 polymer	 solutions,	 polymer	 networks,	 and	
entangled	 polymer	 melts,	 as	 well	 as	 the	 inelastic	 phenomenological	 models	 describing	 shear–thinning	 and	
viscoplastic	 (yield	 stress)	 fluids,	 based	 on	 the	 generalized	 Newtonian	 fluid	model.	 In	 addition,	 the	 numerical	
issues	 related	 to	 the	 high	 Weissenberg	 number	 problem,	 and	 its	 remedy	 with	 the	 log–conformation	
representation,	are	discussed.	

The	 proposed	 algorithm	 utilizes	 a	 new	 streamfunction/log–conformation	 scheme.	 The	 drawbacks	 of	 the	
classical	velocity–pressure	decoupled	method,	which	is	by	far	the	most	popular	approach,	are	remedied	with	the	
pure	streamfunction	formulation,	which	is	derived	from	the	pressureless	vorticity‐based	methods.	The	implicit	
pure	 streamfunction	 formulation	 is	 formally	 more	 accurate	 than	 the	 velocity–pressure	 decoupled	 method,	
because	 it	 is	 immune	of	decoupling	 errors.	Moreover,	 the	 absence	of	decoupling	 enhances	 the	 stability	 of	 the	
calculation.	The	governing	equations	(conservation	laws	and	constitutive	models)	are	discretized	with	the	finite–
volume	method,	on	a	Cartesian	grid.	Discrete	curl	operators	are	applied	to	the	discretized	momentum	equations	
in	 order	 to	 obtain	 the	 matrix	 system	 of	 the	 discrete	 streamfunction	 variables.	 The	 coupling	 of	 the	
streamfunction/log–conformation	 scheme	 with	 adaptive	 under‐relaxation	 and	 adaptive	 time‐stepping	 yield	 a	
robust	 and	 efficient	 viscoelastic	 flow	 solver	 algorithm.	 The	 potential	 extension	 of	 the	 method	 to	 three‐
dimensional	simulations	is	also	discussed	in	this	thesis.	

Bi‐phasic/free‐surface	 flows	 are	 modelled	 with	 the	 Volume–of–Fluid	 (VOF)	 method,	 and	 the	 standard	
piecewise–linear–interface–construction	 technique.	 In	 addition,	 a	 new	 Cellwise	 Conservative	 Unsplit	 (CCU)	
advection	 scheme	 is	 presented.	 The	 CCU	 scheme	 updates	 the	 liquid	 volume	 fractions	 based	 on	 cellwise	
backward‐tracking	 of	 the	 liquid	 volumes.	 The	 algorithm	 calculates	 non‐overlapping	 and	 conforming	 adjacent	
donating	regions,	which	ensures	the	boundedness	and	conservativeness	of	the	liquid	volume.	As	a	result,	the	CCU	
advection	 scheme	 is	 overall	more	 accurate	 in	 classical	 benchmark	 tests,	 than	 the	 other	 state‐of‐the‐art	multi‐
dimensional	 VOF–advection	 schemes.	 In	 complex	 flows,	 the	 convergence	 rate	 of	 the	 CCU	 scheme	 with	 mesh	
refinements	is	between	2	and	3.	Moreover,	the	remaining	geometrical	errors	are	mostly	due	to	the	inability	of	
the	standard	piecewise	 linear	 interface	 to	 represent	subgrid	material	 topologies	 (i.e.	high	curvatures	and	 thin	
material	filaments),	rather	than	the	proposed	CCU	advection	scheme.	

This	thesis	reports	examples	of	numerical	simulations	of	the	Oldroyd–B	liquid,	calculated	with	the	proposed	
streamfunction/log–conformation/VOF–CCU	methodology,	 implemented	in	Matlab.	A	thorough	investigation	of	
the	viscoelastic	flow	in	the	lid‐driven	cavity	is	conducted.	The	streamfunction/log–conformation	shows	second‐
order	accuracy	and	numerical	stability	at	very	large	time‐step	increments,	which	demonstrates	the	robustness	of	
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the	scheme.	The	numerical	results	at	moderate	Weissenberg	numbers	are	in	good	agreement	with	the	literature.	
Moreover,	the	enhancement	of	numerical	stability,	with	the	streamfunction/log–conformation	scheme,	makes	it	
possible	to	simulate	elastic	instabilities	at	high	Weissenberg	numbers.	Quasi‐periodic	elastic	instabilities	at	the	
upstream	 corner	 appear	 to	 be	 a	 mechanism	 that	 dissipates	 the	 stored	 elastic	 energy.	 The	 simulations	 of	
viscoelastic	 flows	 in	 the	planar	4:1	contraction	are	also	 in	good	agreement	with	data	 in	 the	 literature.	Finally,	
preliminary	simulations	of	extrudate	swelling	show	that	the	 fracture	melt	extrusion	defect	could	be	caused	by	
instabilities	in	the	stress	layer	at	the	surface	of	the	die,	triggered	at	moderate	Weissenberg	numbers.	
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Resumé	
	
	
	
	
	

Denne	afhandling	præsenterer	en	ny	numerisk	algoritme	der	kan	anvendes	til	a	simulere	hvordan	multifase	
viskoelastiske	materialer	flyder	i	to	dimensioner.	Simuleringer	af	viskolelastiske	materialers	flydeevne	har	både	
en	 videnskabelig	 relevans	 og	 en	 praktisk	 betydning	 for	 processer	 der	 involvere	 polymere.	 Den	 viskoelastiske	
opførelse	giver	anledning	til	dynamisk	ustabilitet	specielt	i	ekstrudering.	De	populære	konstitutive	modeller	for	
fluider	 bestående	 af	 polymere	 er	 opsummeret.	 De	 numeriske	 problemstillinger	 der	 relaterer	 sig	 til	 det	 høje	
Weissenberg	nummer	problem	er	diskuteret	og	løsningen	er	fundet	ved	hjælp	af	 log‐tilpasningsformuleringen.	
Den	 foreslåede	 numeriske	 algoritme	 anvender	 også	 den	 trykløse	 strømfunktion	 formulering	 til	 at	 finde	
strømningsprofilerne.	Denne	formulering	er	mere	stabil	og	præcis	end	de	klassiske	metoder	der	adskiller	tryk‐	
og	 hastighedsberegningen.	 Den	 nye	 strømfunktion/log‐tilpasningsalgoritme	 giver	 sammen	 med	 en	
selvjusterende	 dæmpningsfaktor	 og	 tidskridt	 en	 robust	 og	 effektiv	 viskoelastisk	 løser.	 To	 faser/den	 frie	
overflade	er	modelleret	med	Volumen‐Af‐Fluid	metoden	og	en	ny	cellevis	konservativ	 ikke	splittet	advektions	
rutine,	 der	 bevarer	 væskens	 volumen	 andel	 og	 er	mere	 præcis	 end	 andre	 nye	 procedurer.	 Simuleringerne	 af	
viskoelastiske	sammenligningstests	er	i	god	overensstemmelse	med	tidligere	udgivet	resultater.	Forbedringen	af	
den	 numeriske	 stabilitet	 vha.	 strømfunktionen/log‐tilpasningsalgoritmen	 gør	 det	 muligt	 at	 simulere	 elastisk	
ustabilitet.	Dette	er	den	fysiske	mekanisme	der	opløser	den	lagrede	elastiske	energi.	
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Chapter 1 

 

Introduction 

 
 
 
 
 

This chapter presents an introduction to the thesis: Numerical simulation of viscoelastic free-surface flows 
using a streamfunction/log-conformation formulation and the volume-of-fluid method. The simulations of 
multiphase viscoelastic flows have a wide range of applications in natural science and engineering. This work has 
put the emphasis on the simulation of polymeric liquids, and their applications in Polymer Processing. An 
introduction to the importance of Rheology in Polymer Processing is given in section 1.1. The state of the art in 
Computational Rheology is reviewed in section 1.2. Afterwards, section 1.3 provides the author’s opinion on the 
current and future challenges that faces the simulations of viscoelastic flows. Finally, section 1.4 presents the 
specific objectives of this work, and gives an overview of the structure of the thesis. 
 
 
1.1. Rheology and polymer processing 
 

Rheology is the science of the deformation and flow of matter. It is at the interface between Mechanics and 
Material Science, since it deals with the study of the constitutive behaviors of complex materials, and the 
influences of their microstructures. It can be approached both as an experimental and a theoretical discipline, 
which aims at developing realistic models describing complex materials. Computational Rheology concerns with 
the development of accurate and efficient calculation algorithms, using advanced mathematical and 
computational techniques, for the prediction of complex constitutive behaviors. Viscoelastic fluid dynamics, in 
particular, which exhibits different flow features than for Newtonian fluids, is an important subset of 
Computational Rheology (Crochet & Walters 1993). 

Typical examples of viscoelastic liquids are polymer solutions, molten plastics, multigrade oils, contact 
adhesives, synthetic resins, printing inks, body fluids, etc. Amorphous materials in their glass–liquid phase 
transition (within the interval or the glass temperature and the melting temperature) also exhibit viscoelastic 
behaviors, since they are neither completely solids nor completely liquids. Potential fields of applications for the 
simulations of viscoelastic flows include polymer processing, bio-fluidic, micro-fluidic, chemical engineering, 
food industry, and much more. 

Phenomenologically, viscoelastic materials have stress responses that do not only depend on their current 
deformations, but also on their deformation history. Thus, time is a key parameter; and viscoelastic materials 
have different stress responses depending on the time-scales of the deformation. They typically exhibit stress 
relaxation, creep deformation and shape memory. In contrast to Newtonian fluids, elastic liquids build-up normal 
stress differences when deformed (in both shear and shearfree flows). The normal stresses produce various 
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effects, such as rod climbing (also known as the Weissenberg effect), extrudate swell, elastic recoil, tubeless 
siphon, etc. (Bird, Armstrong & Hassager 1987). The elastic forces also generate secondary flows and elastic 
instabilities (Larson 1992; Shaqfeh 1996; Denn 2004) in various geometries. At large Reynolds numbers, 
viscoelastic flow are subject to turbulence drag reduction (Graham 2004). Moreover, the possibility of a turbulent 
flow regime due to elastic forces at low Reynolds number, the elastic turbulence, has recently been discovered 
(Groisman & Steinberg 2000; Morozov & van Saarloos 2007). Furthermore, the effects of viscoelasticity are 
magnified in the micro-fluidics (Li et al. 2012). Thus, the development of accurate calculation algorithms is 
important from both fundamental and practical points of view. 

The rheological properties of polymeric materials are crucial parameters for their processability (i.e. the 
flowability). Moreover, the viscoelastic properties are responsible for complex flow features such as flow 
instabilities. The extensional rheological properties are fundamental in the manufacturing processes involving 
stretching of the materials, as for instance fiber spinning, film casting, blow molding, etc. (Jung & Hyun 2006). The 
draw resonance and the three-dimensional helicoidal instabilities are cause by viscoelasticity (Demay & 
Agassant 2014). Moreover, the shear rheological behavior plays a key role in injection molding and calendaring 
manufacturing processes. In injection molding for instance, the rheological characterization of the polymer melt 
(which is temperature-dependent) is essential in order to design the molding process. The mold-filling pattern 
can be simulated with the Computer-Aided Engineering softwares that include appropriated rheological models, 
in order to detect potential molding defects due to improper filling and freezing. Moreover, the coupling of the 
flow solver with a thermal solver and a stress solver can give predictions of fiber orientation, residual stress, 
shrinkage and warpage of the molded part, birefringence properties of the final product, etc. Hence, 
Computational Rheology is a useful tool for the optimization of the mold design and the processing parameters, 
to improve productivity and to reduce energy composition of the machine. Inelastic flow solvers—assuming 
purely viscous fluids—are widely available. However, taking viscoelastic effects into account is still non-
conventional, although it gives more accurate predictions. 

The extrusion through capillary dies is an interesting process which has been of special focus in this work, 
because it gives insight into the complex flow phenomena of polymeric fluids, in a simple geometry. The next 
subsections review various flow instabilities occurring in extrusion, due to the rheology (i.e. shear-thinning, 
viscoelastic, etc.), which limit the processing rate. In addition, multi-layered co-extrusion provides an 
understanding of interfacial instabilities in stratified parallel flows. 
 
 

1.1.1. Capillary extrusion 
 

The productivity of many continuous manufacturing processes for plastic material is limited by flow 
instabilities, which happen at a high processing speed, i.e. for a large apparent shear rate at the wall of the die. 
Among all the plastic manufacturing processes, extrusion is one of the processes which have been the most 
investigated. Two distinct instability phenomena (or extrusion defects) with different mechanisms (which can 
also be combined) are documented in the literature. The first phenomenon, the sharkskin instability, is a surface 
defect occurring at moderate extrusion speeds. It results in an irregular surface of the extrudate, with scratches 
and superficial cracks; see Figure 1.1. There is a consensus that the sharkskin occurs at the die exit, where the 
material near the wall is pulled out. Thus, the sharkskin depends on the extensional rheological properties. The 
second phenomenon, the fracture melt instability, occurs at larger extrusion speeds than the sharkskin. At the 
onset of instability, the shape of the extrudate starts to undulate with a regular wave length that is twice the 
capillary diameter (Bertola et al. 2003), see Figure 1.2. The amplitude of the oscillations increases with the 
extrusion speed and at some point the fluid is extruded in the shape of a regular helix, which gradually evolves 
into a chaotic regime, at larger flow rates. Piau, El Kissi and Tremblay (1990) have observed a correlation 
between the undulations of the extrudate and upstream flow instabilities inside the reservoir, which they 
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measured by particle image velocimetry (PIV). Their measurements show that the fracture melt is caused by 
asymmetry flows in the reservoir, where regular oscillations produce a helix extrudate, and a chaotic flow 
regime lead to an irregular extrusion. Identical conclusions were reached from the PIV measurements of the 
reservoir flow instabilities by Nigen et al. (2003). These flow instabilities in the reservoir are similar to the 
elastic instabilities in the 4:1 contraction flow, simulated by Afonso et al. (2011). In addition, the weakly 
nonlinear stability analysis of Meulenbroek et al. (2003) shows that a bulk instability similar to the fracture melt 
could be produced by an intrinsic subcritical instability of the viscoelastic Poiseuille flows (independently of the 
reservoir), see also the essay of Morozov and van Saarloos (2007) about elastic turbulence in parallel flows. 
 
 

 
Figure 1.1: Sharkskin surface defect during extrusion of an LLDPE resin flowing from left to right: (left) view of 

the surface, (right) view of the longitudinal cut (Wang, Drda & Inn 1996). 
 
 

 
Figure 1.2: Fracture melt instability during extrusion of HDPE at 185°C through an axisymmetric capillary with 
1mm in diameter and 5mm in length, for different apparent shear rates at the wall (Piau, Nigen & El Kissi 2000). 
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Wall slip is another phenomenon playing an important role in the flow stability, since it determines the 
boundary conditions of the flows; see the review of Denn (2001) about the wall slip effects in extrusion. The 
more recent review of Hatzikiriakos (2012) about the wall slip of molten polymers draws a complex picture of 
the polymer slip. Two mechanisms of slip are identified: the weak slip occurs because of flow-induced desorption 
(chain detachment) at the wall, and the strong slip is due to the disentanglement in the polymer chains in the 
bulk from a monolayer of absorbed chains, see Figure 1.3. However, it is difficult to measure experimentally the 
slip velocity and to isolate the two mechanisms. Indirect measurements reveal more complex constructive 
relations than the idealized Navier slip law, with an exponential dependency of the slip velocity on the wall shear 
stress. Moreover, experimental data shows that the transition from a dominant mechanism to another can 
produce stick–slip instabilities (Hatzikiriakos & Dealy 1992). Additionally, the numerical analysis of Georgiou 
have demonstrated that non-monotonous slip laws can lead to self-sustained oscillations, causing unstable flow 
regimes in the extrusion of compressible inelastic fluids (Georgiou & Crochet 1994; Georgiou 2003; Taliadorou, 
Georgiou & Alexandrou 2007) and incompressible viscoelastic fluids (Georgiou 1996; Brasseur et al. 1998). 
Moreover, such non-monotonous slip laws have been derived from a molecular model by Yarin and Graham 
(1998). A complete numerical model of the capillary flow, including nonlinear slip, viscoelasticity and the 
compressibility effect in the reservoir, has been presented by Shore at al. (1997). Their model predicts an 
oscillating regime due to the stick-slip behavior, as well as a regime of bulk flow instabilities because of 
viscoelasticity/compressibility interactions. 
 
 

1.1.2. Co-extrusion 
 

Co-extrusion is a common manufacturing process to produce parts with multilayer architectures and 
different functional materials. During co-extrusion, the different materials are injected simultaneously inside the 
same extrusion die; see for instance the microfabrication of Hoy et al. (1998) with ceramics compounds. The 
stability of the multilayer flow depends on the rheological properties of the extruded fluids. 

Differences in the viscosity or the elastic properties of the fluids can produce secondary flow in the cross-
section of the extrusion (Dooley & Rudolph 2003). A viscosity stratification in the non-axisymmetric profile is 
responsible for the viscous encapsulation phenomenon, where the less viscous material (i.e. with higher fluidity) 
wraps around the more viscous one (Han 1973; Southern & Ballman 1975), see Figure 1.4. The apparent 
viscosities of the fluids at the interface depend on the shear-rate, since most polymeric liquids exhibit a power-
law shear thinning behavior (i.e. their apparent shear viscosities decrease with an increasing shear rate). 
Moreover, the different materials generally have different power indices, thus, the apparent viscosity ratio of the 
two material dependents on the flow rate and the thickness of each layer. Therefore, stable co-extrusion requires 
a fine tailoring of the material compounds and tuning of the extrusion rates (Ismael et al. 2009). 

The stratification of the elastic properties (e.g. elastic moduli, relaxation times) of the co-extruded fluids can 
also produce deformations of the interface, called elastic rearrangement, due to an elastic stress in the cross-
section of the extrudate (Anderson, Dooley & Meijer 2006; Yue et al. 2008), see Figure 1.5. 
 
 

 
Figure 1.3: (a) Entangled polymer chain with no slip, (b) Weak slip due to chain desorption, (c) Strong slip due 

to the disentanglement of the bulk from absorbed chains at the wall. 
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Figure 1.4: Viscous encapsulation in bilayer co-extrusion of PE resins: (a) cross-section at the die entry; (b) 

cross-section at the middle of the die; (c) cross-section at the die exit (Dooley & Rudolph 2003). 
 
 

 
Figure 1.5: Elastic rearrangement in bilayer co-extrusion of PE resins: (a) theoretical secondary flow produced 

by elastic forces; (b) cross-section at the die entry; (c) cross-section at the die exit (Dooley & Rudolph 2003). 
 
 

In addition to cross-sectional deformations, the co-extruded profile can also be subject to interfacial 
instabilities in the longitudinal direction. The stability of the Couette and Poiseuille co-planar flows of different 
fluids to short-wave and long-wave perturbations has been studied analytically with linear and non-linear 
stability theories (Yih 1967; Joseph, Renardy & Renardy 1984; Yiantsios & Higgins 1988; Chen 1991; Hinch, 
Harris & Rallison 1992; Chen & Zhang 1993; Pinarbasi & Liakopoulos 1995). Several factors affect the co-flow 
stability: the viscosity ratio, the flow rates, the shear-thinning properties, the viscoelastic properties, the yield 
stresses, etc. The stability analysis provides stability diagrams that show the stable and unstable regions of the 
flow, for different sets of parameters. 

Extensive experimental investigations on the interfacial stability of multi-layer polymer co-extrusion have 
been conducted by Wilson and Khomami (1992; 1993; Khomami & Wilson 1995). Their experiment consisted in 
monitoring the evolutions of controlled sinusoidal disturbances introduced in the flow rates of the layers. Their 
experimental results verified the founding of the linear stability theories, and showed that the non-linear 
supercritical instabilities evolve with shapes that resemble the Kelvin–Helmholtz instabilities, see Figure 1.6. 

 

(a) (b) (c) 

(a) (b) (c) 
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Figure 1.6: Developement of the longitudinal supercritical interfacial instability caused by small simusoidal 

disturbances of PP/HDPE bilayer flows from left to right (Khomami & Ranjbaran 1997). 
 
 
1.2. State of the art in computational rheology 
 

Computational Rheology deals with the constitutive modeling of all the materials with complex behaviors, 
ranging from purely elastic solids to purely Newtonian fluids. Consequently, different approaches have been 
used in computational rheology. Most of them belong either to the family of the Lagrangian methods or the 
family of the Eulerian methods. The Lagrangian methods are generally used in Computational Solid Mechanics 
(CSM), while the Eulerian methods are the preferred approach in Computational Fluid Dynamics (CFD). 

Finally, an alternative to the Lagrangian and Eulerian methods is the use of discrete particle methods, where 
the motion of the material is not tracked by the use of a mesh, but with discrete particles. The discrete particle 
methods have the ability to model easily multiphase flows. However, the meshless approach remains non-
conventional in Computational Rheology. The following subsections briefly review the use of these three 
approaches to the modelling of viscoelastic flows with interfaces or free surfaces. 
 
 

1.2.1 Lagrangian methods 
 

In the Lagrangian methods, the mesh follows the deformations of the material (similarly as in computational 
solid mechanics). With these techniques, the edges of the mesh coincide with the free-surfaces or the interfaces 
between different materials, for instance see Figure 1.7. Therefore, the Lagrangian methods naturally track free-
surfaces and interfaces, without any additional calculation. The Lagrangian methods are typically combined with 
the finite–element method; however, it is also possible to solve the flow with finite–volume solvers. There are 
several methods to update the mesh, e.g. the conformal mapping technique, the arbitrary-Lagrangian-Eulerian 
method and the adaptive remeshing techniques. 

The Lagrangian conformal mapping technique displaces the vertices of the mesh according to the local 
displacement of the material. This numerical technique was successfully used by Crochet and Keunings (1980; 
1982) to simulate the extrudate swelling of viscoelastic materials; see for instance Figure 1.8. However, in the 
case of large deformations, the conformal mapping technique may produce highly distorded meshes. In general, 
distorded elements with large aspect ratio, warpage or skewness produce large numerical errors. In addition, the 
finite–element solver might be prone to spurious deformations, due to element locking or hourglass modes, if not 
handled properly. 
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Figure 1.7: Simulation of the motion of a viscoelastic drop with a Lagrangian method using the conformal 

mapping technique (You, Borhan & Haj-Hariri 2008). 
 

 

 
Figure 1.8: Three-dimensional simulation of the extrudate swell of a viscoelastic material exiting a rectangular 

die (Normandin et al. 1999). 
 
 
In the arbitrary-Lagrangian-Eulerian method, only the mesh vertices at the interface or at the free boundaries 

follow the local displacement of the material, while the mesh displacement inside the bulk material is 
independent on the material motion (Étienne, Hinch & Li 2006). An optimum mesh displacement is calculated in 
order to reduce the mesh distortion. The arbitrary-Lagrangian-Eulerian method extends the possibility of 
application of Lagrangian methods, as compared to conformal mapping techniques. However, the optimization of 
the mesh displacement requires the solving of an additional system of equations, which increases the 
computational effort. 
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Figure 1.9: Elongation of a viscoelastic material in a Sentmanat extensional rheometer (Hassager et al. 2010). 

 
 

When deformations are too large, the Lagrangian methods require a remeshing of the deformed geometry. 
Automatic adaptive remeshing techniques further extend the possibilities of the Lagrangian methods. As an 
example, a three-dimensional Lagrangian solver with adaptive remeshing has been developed by Rasmussen 
(1999) to compute the deformation of viscoelastic materials which are described with integral constitutive 
models. This algorithm has been used to simulate the extensional behavior of polymeric materials in a filament 
stretching rheometer (Rasmussen & Hassager 1999), and a Sentmanat extensional rheometer (Hassager et al. 
2010), see Figure 1.9. However, the remeshing of the geometry increases in this case the computational cost as 
compared to the ALE method. In addition, the interpolation of the solution from the old mesh to the new mesh 
introduces additional numerical approximations. 

Finally, a common drawback of all the Lagrangian methods is their difficulties to handle the change of 
topology in the geometry, produced for instance by interface splitting or interface merging. Thus, in spite of their 
flexibility, the Lagrangian methods may lack adaptability to simulate complex free-surface/interface dynamics 
problems. 
 
 

1.2.2. Eulerian methods 
 

The Eulerian methods are based on the opposite approach, where the material flows through a stationary 
computational mesh. Thus, the Eulerian methods require the evaluation of the mass and momentum fluxes 
between the elements (or control volumes) of the mesh. For this reason, Eulerian methods are typically coupled 
with a finite–volume discretization, which is directly based on the flux balances, but a finite–element method 
based on the variational formulation (or weak form) of the conservation laws can also be used. The Eulerian 
methods can be used with both structured meshes and unstructured meshes, which give more flexibility for the 
representation of complex geometries. In the context of free-surface flows, or multiphase flows of immiscible 
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materials, sharp interfaces are either represented explicitly with additional geometrical objects (i.e. markers or 
polygons), or implicitly through an additional field (i.e. the color function or the level-set function). A common 
advantage of the Eulerian methods with implicit interface representations is their ability to treat interface 
splitting and interface merging naturally, without the need of complex geometrical operations. 

Historically, the first simulation of free surface flows used the Marker-And-Cell (MAC) method, where the 
position of the interface is represented by markers that are advected with the flow, similarly as Lagrangian 
particles. A complete review of the MAC method, with an emphasis on free-surface flows in computational 
rheology, has been presented by McKee et al. (2008). In particular, an improved MAC method, named GENSMAC, 
has been developed by Tomé et al. (Tome & McKee 1994; Tomé et al. 2001) to simulate three-dimensional flows 
of generalized Newtonian fluids (Tomé, Duffy & McKee 1996; Tomé et al. 2004), and viscoelastic materials on a 
Cartesian grid, see Figure 1.10. The GENSMAC method has been very efficient to simulate extrudate swelling 
(Mompean et al. 2011), jet buckling and container filling (Figueiredo et al. 2013) of polymeric materials, among 
others. 

 
 

 
Figure 1.10: (Upper left) Schematics of the GENSMAC approach of Tomé (McKee et al. 2004); (lower left) 

simulation of extrudate swelling for a viscoelastic fluid (Mompean et al. 2011); (right) simulation of jet buckling 
and container filling for a branched polymer (Figueiredo et al. 2013). 
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Alternative Eulerian methods have been developed to avoid the explicit advection of virtual particles; the 
most popular being the Volume-Of-Fluid (VOF) method, and the Level-Set (LS) method. In both methods, the 
multiphase flow is tracked by an additional scalar variable, the color function. In the VOF method, the discrete 
values (the averages over the control volume) of the color function correspond to the volume fraction of the 
material inside the control volumes. Sharp interface are reconstructed from the color function, using interface 
reconstruction algorithms. Finally the volume fractions are advected with a geometrical advection scheme. The 
advantage of the VOF method is that it is directly based on the conservation of the volume (similar to the 
conservation of the mass in the case of incompressible fluids). 

The color function used in the LS method corresponds to the distance to the interface. Thus, the level-set 
function has smooth variations, which make it possible to solve its advection with classical algebraic schemes 
(i.e. finite–differences, finite–volumes, finite–elements, etc.). The LS method avoids the calculation of the 
interface reconstruction, and directly provides the interface curvature (useful to compute surface tension). 
However, the main disadvantages of the LS method are that: the volume conservation is not enforced, and sharp 
interfaces tend to be smeared, resulting in a loss of accuracy. Hybrid particle–LS methods (Enright et al. 2002) 
and the coupled LS–VOF methods (Ménard, Tanguy & Berlemont 2007) have been developed to improve the 
conservation of the LS methods. 

Examples of Eulerian simulations taken from the literature are shown in Figures 1.11–1.13. A common 
drawback for the Eulerian method is their inability to resolve sub-grid fluid structure, such as thin filaments, 
fluid droplets or bubbles. However, this limit can be coped with by the use of dynamical mesh refinement with 
hierarchical grids. Moreover, Cartesian grid can represent complex geometries with the immersed boundary 
method, see Figure 1.14. Finally, the combination of both dynamical mesh refinement with hierarchical Cartesian 
grids and the immersed boundary method could give a powerful method with enough adaptability to simulate 
complex free-surface/interface problems, while keeping relative simplicity; see for instance the simulation of jet 
atomization of Fuster et al. (2009) in Figure 1.15. 

 
 

 
Figure 1.11: Simulation with the LS method of viscoelastic jet, application to ink jet printer (Yu, Sakai & Sethian 

2007). 
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Figure 1.12: Simulation with the VOF method of a viscoelastic droplet passing through a microfluidic channel, 

application to the design of drug delivery system (Harvie, Cooper-White & Davidson 2008). 
 
 
 

 
Figure 1.13: Simulation with an Eulerian method of encapsulation during the co-extrusion of viscoelastic fluids 

(Borzacchiello et al. 2013). 
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Figure 1.14: Enrichment of the Eulerian methods using Cartesian grids with (left) dynamical mesh refinement 
using hierarchical Cartesian grids (Griffith et al. 2007), and (right) the immersed boundary method (Mittal et al. 

2008). 
 
 

 
Figure 1.15: Simulation of the jet atomization of a Newtonian fluid, using the VOF method and a dynamical mesh 

refinement using hierarchical Cartesian grids (Fuster et al. 2009). 
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1.2.3. Discrete particle methods 
 

The discrete particle method is a family of meshless numerical techniques, where the flow is represented 
through the movement of discrete particles rather than with a mesh. In contrast to Lagrangian and Eulerian 
methods, the discrete particle methods do not solve directly the conservation of physical quantities (i.e. mass, 
momentum and energy) in a continuum media, but rather solve the kinetics (i.e. the collisions) of discrete 
particles. 

The Smoothed-Particle-Hydrodynamics (SPH) method is a discrete particle method, which was initially 
developed to the modeling of hydrodynamics flows. Moreover, it has also been used to simulate the deformation 
of solid object (Bonet 2004). Variants of the SPH method have been adapted to simulate free-surface flows of 
viscoelastic fluids (Fang et al. 2006; Rafiee, Manzari & Hosseini 2007; Xu & Ouyang 2013). However, stable SPH 
calculations of viscoelastic flows require artificial stress terms in order to avoid numerical instabilities (Fang et 
al. 2006). An advantage of the SPH method is its ability to represent naturally free surface flows, without the 
additional calculations due to the remeshing (in Lagrangian methods) or front tracking (in Eulerian methods). 
The SPH method is also adapted to simulate the mixing of miscible fluid, even though there is a limitation on the 
density ratio of the two phases. Nevertheless, accurate calculations require a large amount of discrete particles. 
 
 
1.3. Current and future challenges 
 

In spite of the variety of numerical solvers that have been developed, the simulation of viscoelastic flows is 
still a difficult task. Some flow problems can be addressed with several methods, see for instance the comparison 
work of Sujatha et al. (2006); however, Computational Rheology still lacks a unified approach that could deal 
with the entire range of problems, from pure solid mechanics to pure Newtonian fluid dynamics. The ideal 
method should have high adaptability, while keeping simplicity. However, these two qualities are usually in 
opposition. Consequently, it is often more efficient to use (or to develop) dedicated codes dealing only with a 
specific class of problems. 

Many solvers suffer numerical stability issues, especially when the elastic component of the viscoelastic 
constitutive model has a dominant effect. A selected citation of Brown et al. (1993) from a paper published in 
Theoretical and Computational Fluid Dynamics, about the computation of viscoelastic flows with mixed finite-
element methods, give an example of the encountered problems: 

Algorithms like the EEME/SUPG and EVSS/SUPG […] are limited by numerical instabilities for time-dependent 
calculations. The instabilities are linked to the very difficult problem associated with accurate calculation of the 
eigenvalue spectrum for simple shear flow. The most dangerous eigenvalue has a real part that approaches –
1/2De and an imaginary part that scales as k, where k is the streamwise wave number, for De ≫ 1; moreover, the 
eigenfunction develops boundary layer structure in the cross-stream direction. It is hard to imagine a more 
difficult problem to resolve. (Brown et al. 1993, p. 103) 

A more recent citation of Morozov and van Saarloos (2007), from a paper published in Physics Reports, also 
summarizes the situation: 

If Newtonian fluid dynamics remains a challenge even today, then visco-elastic flows seem to pose 
unsurmountable problems. (Morozov & van Saarloos 2007, p. 115) 

Indeed, one of the longstanding problems of Computational Rheology is the so-called high Weissenberg number 
problem (HWNP), which has been described in several review articles (Keunings 2000; Walters & Webster 
2003). The HWNP manifests itself by a loss of reliability of the simulations, leading to a blowup of the numerical 
values. Hulsen, Fattal and Kupferman (2005) have shown evidences that the HWNP have a numerical origin. 
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Generally, numerical stability does not necessarily always go hand in hand with numerical accuracy. Very 
promising remedies of the HWNP, relying on changes of variables in the constitutive equations, have recently 
been proposed (Lozinski & Owens 2003; Fattal & Kupferman 2004; Fattal & Kupferman 2005; Balci et al. 2011). 
Moreover, the improvement of the current algorithms towards more robust, reliable and efficient numerical 
methods is still an ongoing research work. 

In additional, to numerical instabilities, many of the popular constitutive models exhibit unphysical features 
(Rallison & Hinch 1988), referred to as constitutive instabilities. Kwon and Leonov (1995) classified the 
constitutive instabilities into two types: the Hadamard instabilities and the dissipative instabilities. The first is 
related to elastic material responses under sudden or high frequency wave disturbances. The latter is related to 
unbounded free energy (or rate of energy dissipation) with increasing deformations. Moreover, the distinction 
between purely numerical instabilities and purely constitutive instabilities is not always clear (Lee et al. 2004). 

The development of realistic constitutive models is also a very active field of research. Knowledge about 
constitutive modelling can be gained from two complementary approaches: experimental rheology and 
theoretical physics. On the one hand, experimental rheology consists of testing the responses of complex fluids in 
simple rheometric flows, i.e. shear flows, extensional flows, etc. The extension of constitutive behaviors obtained 
by curve fitting, in order to describe more complex flows, should however be approached cautiously, because of 
the complex nature of the fluid. On the other hand, theoretical physics has proposed new constructive equations, 
based on idealizations of the molecular structure of the fluids (topology of the polymer chains, kinetics relations, 
etc.). In addition to idealizations, the derivation of constitutive equations often requires approximations (i.e. 
statistical averages, closure approximations, algebraic relations, etc.). Therefore, the constitutive models derived 
from molecular theories may not always give predictions in accordance with reality. Moreover, to date there are 
no theoretical models for complex fluids such as poly-dispersed fiber suspensions, colloids, emulsion, etc. Thus, 
the two approaches are complementary, and one must be aware of their limitations when choosing an 
appropriate constitutive model. 

Finally, the applications dealing with complex fluids generally involve other physical phenomena, for instance 
heat transfers (e.g. in plastic processing), chemical reactions (e.g. curing of thermoplastic), electromagnetism 
(electro-active polymers), electro-osmotic reaction, etc. Therefore, Computational Rheology should also address 
the issues of multiphysics numerical simulations. 
 
 
1.4. Aim and structure of the thesis 
 

Among the different challenges listed in the previous section, this thesis aims at developing an efficient and 
reliable algorithm for two-dimensional simulations of multi-phase non-Newtonian fluids, in general, and bi-
phasic/free-surface viscoelastic flows, in particular. The emphasis was put on potential applications in polymer 
processing. In particular, the extrusion and co-extrusion processes are very interesting applications, since they 
can exhibit viscoelastic dynamical instabilities, in spite of simple geometries. 

Based on a critical review of the existing numerical methods, this thesis proposes a new framework within 
the family of the Eulerian methods. The developed methodology is based on the combination of three features: 
(i) a pressureless flow solver using a pure-streamfunction formulation, (ii) a viscoelastic stress solver for 
differential models reformulated with the log–conformation representation, and (iii) an interface tracking 
procedure using the volume-of-fluid method with a new cellwise conservative unsplit advection scheme. 
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Figure 1.16: Schematic summary of the developed in-house Matlab code.   This numerical approach has been implemented in Matlab. A schematic summary of the developed in-house code is represented in Figure 1.16. The current algorithm is limited to two-dimensional geometries, but potential extensions to three-dimensional problems are discussed throughout the thesis.  Chapter 2 presents the non-Newtonian constitutive models of the polymeric materials. It includes empirical constitutive equations for inelastic (purely viscous) fluids and differential viscoelastic models derived from molecular theories of polymers. The numerical difficulties related to the HWNP together with its remedy, the log–conformation representation, are also summarized. Chapter 3 reviews the various formulations of the equations of motion, and in particular the pure streamfunction formulation. Chapter 4 describes the two-dimensional discretization of the streamfunction/log–conformation governing equations with the finite–volume method, and the solution algorithm of the viscoelastic flow solver. Chapter 5 deals with the modeling of immiscible multiphase flows with the VOF method. Piecewise linear interface reconstruction algorithms are reviewed, and two geometrical advection schemes are presented: the classical directional-split advection scheme and a new Cellwise Conservative Unsplit (CCU) scheme, which has been developed in the scope of this thesis. An alternative rule of mixtures, using the quadratic mean of the arithmetic and harmonic averages of the bulk material properties is also derived. Some examples of numerical simulations, in particular the lid-driven cavity, the planar 4:1 contraction, and the planar die exit geometries, are shown in chapter 6. Finally, the conclusions of the thesis and the perspectives for future works are summarized in chapter 7. Four scientific papers written in the scope of this thesis are included in Appendices. Two of the appended papers have been published in the Journal of Computational Physics and the Journal of Non-Newtonian Fluid 

Mechanics, while the two others papers have been presented at international conferences.      
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Chapter 2 
 

Constitutive modeling      The constitutive modeling provides the relations between the deformations and the stress response of the material. As mentioned in the introduction, non-Newtonian constitutive models are necessary to capture the complexity of the actual physics that produces flow instabilities in many polymer processes. The non-Newtonian constitutive modeling is the specificity of Computational Rheology that makes it a singular subject in the field of 
Computational Fluid Dynamics. Two classes of non-Newtonian constitutive models are presented hereinafter: the generalized Newtonian fluid models, and the differential viscoelastic fluid models. The generalized Newtonian fluid model provides a general framework to the description of inelastic fluids, where the stress response only depends on the instantaneous rate-of-deformations. These fluid models approximate the dynamics of polymeric liquids, without solving additional partial-differential or integral equations. In particular, they are able to represent power-law and/or viscoplastic fluids. The differential viscoelastic fluid models describe the material behaviors where the stress response does not only depend on the instantaneous deformation, but also on the history of the deformations. Thus, the viscoelastic fluid models are able to take into account transient effects, where the deformation of the fluid depends on the specific time-scale of the flow (or the time-scale of observation). In this chapter as well as in the numerical experiments presented later in this thesis, we consider the partial-differential viscoelastic models, where deformations are expressed in terms of a strain rate tensor (i.e. spatial velocity gradients). The integral models, where deformations are formulated in terms of a strain tensor, are omitted. The numerical difficulties associated with the solving of differential viscoelastic models (i.e. the HWNP), and their possible remedies with changes of variables, such as the log–conformation representation, are discussed at end of this chapter.   
2.1. Generalized Newtonian fluid models  The generalized Newtonian fluid models describe the behavior of purely viscous (inelastic) fluids, where the stress response τ only depends on the instantaneous rate of deformations. Generalized Newtonian fluids are governed by the generic constitutive model (Bird, Armstrong & Hassager 1987):  eff2η=τ D , (2.1) where  ( )T1

2
= ∇ + ∇D u u  (2.2) 
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Figure 2.1: (left) Examples of viscosity functions for the generalized Newtonian fluid model, and (right) corresponding stress–strain-rate characteristic relations in simple shear flows. (The viscoplastic models are regularized.)   is the rate of deformation (or strain-rate) tensor, and effη is the effective (or apparent) viscosity, which can also depend on the magnitude of the rate of deformation:  { } 22 : 2 ij

i j
Dγ = =  D D . (2.3) 

Examples of effective viscosity functions ( )effη γ of generalized Newtonian fluid models, as well as the corresponding shear stress–shear rate characteristic relations in simple shear flows, are plotted in Figure 2.1.   
2.1.1. Power-law fluids  The generalized Newtonian fluid model is able to describe power-law behavior of the fluid. In the power-law model, the shear stress xyτ is given by  n

xy Kτ γ=  , (2.4) where K is a consistency index, and n is the power-law index. The power-law model describes shear-thinning (pseudo-plastic) behaviors when n < 1, and shear-thickening (dilatant) behaviors when n > 1. The power-law behaviors come from microstructural changes of the material, due to the deformation. For instance, the shear-thinning behavior of polymeric solutions arises from the alignment of the polymer chains in the direction of the shear deformation at moderate to large shear rates, which result in less resistance to the flow than the initial situation with randomly orientated polymer chains. However, the power-law model leads to computational difficulties, at low shear-rates, since it produces very large apparent viscosities 1
eff

n
xy Kη τ γ γ −≡ =  that eventually become indefinite when the material is at rest. Moreover, the material is not expected to experience microstructural changes when it is deformed at low shear-rates. For these two reasons, a plateau viscosity is desirable at low shear-rates. Therefore, in the general context of numerical simulations, where flows can be found within a wide range of deformation rates (including at a zero deformation rate), power-law fluids are rather governed by the Cross model or Carreau model, with the following apparent viscosity functions:  
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• Cross model:  ( )

( )
0

eff 1*
01

n

ηη γ
η γ τ

−=
+




 . (2.5) 
 

• Carreau model:  ( ) ( ) ( )( )
1

2 2
eff 0 1

n

η γ η η η λγ
−

∞ ∞= + − +   . (2.6)  These models circumvent the issues mentioned above and predict a plateau viscosity 0η at low shear-rates. The transition between the plateau and the power-law regions is controlled by a characteristic shear-stress *τ (in the Cross model) or a characteristic shear-rate 1 λ (in the Carreau model). In addition, the apparent viscosity of the Carreau model is limited by a lower bound η∞ (which can be set to zero), for very large shear rates.   
2.1.2. Viscoplastic fluids  Viscoplastic materials are able to flow only if they are submitted to stresses above the yield stress Yτ that characterize them. Below the yield stress threshold, the viscoplastic materials behave like solids. The viscoplastic behavior is typically due to suspensions that creates weak solid-solid interactions. The popular models to describe the constitutive behavior of a viscoplastic fluid subject to shear deformations are (Mitsoulis 2007):  

• Bingham model: 
 YY

Y

for ,

0 for .

xyxy

xy

τ ττ τ μγ
γ τ τ

>= +


= ≤




 (2.7) 
 

• Herschel-Bulkley model: 
 YY

Y

for ,

0 for .

n
xyxy

xy

K τ ττ τ γ
γ τ τ

> = +


= ≤




 (2.8) 
 

• Casson model: 
 YY

Y

for ,

for .0

xyxy

xy

τ ττ τ μγ
τ τγ

> = +


≤=




 (2.9) 

 In the Bingham model, the yielded viscoplastic fluid exhibits a constant plastic viscosity at large shear rates. In contrast, the Herschel-Bulkley model predicts a power-law behavior, which can either represent a shear-thinning or a shear-thickening behavior. The Casson model, which is popular in bio-mechanics, predicts a shear-thinning behavior that is different from the power-law behavior. In the context of numerical simulation, we seek constitutive relations linking the stress tensor τ to the rate of deformation tensor D , without discontinuity in the apparent viscosity. The Papanastasiou regularization (Papanastasiou 1987) provides an efficient mean to approximate viscoplastic materials as generalized 
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Newtonian fluids. It consists in smoothing the transition from the unyielded (solid) region to the yielded (liquid) region using an inverse exponential function. The regularized Papanastasiou viscoplastic models have the following apparent viscosities functions:  
• Regularized Papanastasiou Bingham model:  ( ) ( )Y

eff 1 exp mτη γ γ μ
γ
 = − − +  


. (2.10)  

• Regularized Papanastasiou Herschel-Bulkley model:  ( ) ( ) 1Y
eff 1 exp nm Kτη γ γ γ

γ
− = − − +   


. (2.11)  

• Regularized Papanastasiou Casson model: 
 ( ) ( )

2

Y
eff 1 exp mτη γ γ μ

γ
 

 = − − +   
 

 


. (2.12) 
 The limit between the unyielded and yielded region corresponds to the iso-surface where the magnitude of the stress tensor is equal to the yield stress:  Yτ=τ , (2.13) where the magnitude τ of the stress tensor is given by:  { } 21 1:

2 2 ij
i j

τ= = τ τ τ . (2.14) The regularization parameter m controls the smoothness of the transition from the unyielded to the yielded regions. The drawback of the regularized viscoplastic models is that they lose precision in the prediction of the yielded/unyielded limit. Lower values of the regularization parameter m increase the fidelity of the regularized model to the original viscoplastic models. However, numerical simulations can suffer convergence issues when the value of m is too small. Additional discussions concerning the accuracy of the regularized viscoplastic models, and usage recommendations are given by Frigaard and Nouar (2005).   
2.2. Viscoelastic fluid models  The specificity of viscoelastic materials is that they have stress responses that do not only depend on their current deformations but also on their deformation history. Thus, time is a key parameter; and viscoelastic materials have different stress responses depending on the time-scale of the deformation. Viscoelastic materials typically exhibit stress relaxation, creep deformation and shape memory. The relative effect of viscoelasticity is usually quantified by the dimensionless Weissenberg number Wi, which is given by the product of a characteristic relaxation time λ of the material and a characteristic deformation rate ε of the flow:  Wi λε=  . (2.15) Another dimensionless quantity, the Deborah number, is sometimes used for flows with non-constant stretch history (i.e. deformation rate). It is defined as the ratio between the characteristic relaxation time and the time-scale of observation ct :  cDe tλ= . (2.16) 
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In the next subsection, we specifically focus on the differential constitutive models derived from molecular models for polymers, where the viscoelasticity comes from the kinetics of the polymer chains. At the molecular scale, the relaxation of diluted short-chain polymers is captured by the Rouse model, while the kinetics of entangled long-chain and branched polymers are described in the tube theories, which include a reptation mechanism, see the reviews of Watanabe (1999) and McLeish (2002). However, the purpose of the constitutive models is the description of viscoelasticity at the scale of continuum mechanics.   
2.2.1. Differential viscoelastic models 

 The derivation of continuum constitutive equations from the kinetics theories requires closure approximations. Nevertheless, in most numerical simulations of practical applications, the constitutive model and the material properties are rather determined from rheological measurements. It should be kept in mind that the extension of constitutive models estimated by curve-fitting of rheometric flows (e.g. in simple shear or uniaxial extensional), to the description of more complex flows, should be approached cautiously. Indeed, many of the popular constitutive models can predict unphysical features, referred to as constitutive instabilities, which can be classified into two types: the Hadamard instability and the dissipative instability (Kwon & Leonov 1995). The first is related to the elastic response under sudden or high frequency wave disturbances. The latter is related to unbounded free energy or rate of energy dissipation with increasing deformations. Thus, appropriate constitutive models should be chosen carefully. A generic viscoelastic model, which encompasses most of the constitutive equations derived from molecular theories, is presented here. First, the stress response τ to the deformations of the viscoelastic fluid is decomposed with the solvent–polymer stress splitting technique into a purely viscous contribution Sτ , which corresponds to the instantaneous response of the solvent, and the polymer contribution Pτ , accounting for the memory:  S P= +τ τ τ , (2.17) with  S S2η=τ D , (2.18)  ( )P 0 SG f=τ c , (2.19) where S 0η βη=  is the solvent viscosity, ( )0 01G β η λ= −  is the plateau elastic moduli, and ( )Sf c is a strain function, which depends on the constitutive model. The steady-state viscosity 0η , the relaxation time λ , and the solvent viscosity ratio (or retardation ratio) [ ]0,1β ∈  are the material parameters of linear viscoelasticity. In constitutive models derived from molecular theories, the strain function ( )Sf c is expressed in terms of the conformation tensor c , an internal tensorial variable which represents the macromolecular configuration of the polymer chains. The conformation tensor is defined as the statistical average of the dyadic product of the end-to-end connector vector Q of the polymer chain building-up the elastic stress:  ( )T T ,t dψ= ≡ 
     

c QQ QQ Q Q , (2.20) where ( ), tψ

Q is a probability distribution function following the Fokker–Planck equation. The end-to-end connector vector is defined in the molecular theory; it has different interpretations depending on the state of the polymer chain, i.e. a diluted polymer solution, a polymeric network, an entangled polymer melt, see Figure 2.2.  
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Figure	2.2:	Molecular	topology:	(a)	Dumbbell	molecule	in	the	FENE	model,	(b)	Polymer	network	in	the	PTT	
model,	(c)	Entangled	linear	polymer	in	the	Rolie–Poly	model,	(d)	Pom–Pom	molecule	in	the	XPP	model.	

	
	

According	 to	 equation	 (2.20),	 the	 conformation	 tensor	 is	 by	 definition	 symmetric	 positive	 definite,	
independently	 of	 the	 kinetic	 theory.	Moreover,	 the	 conformation	 tensor	 is	 scaled	 such	 that	 it	 is	 equal	 to	 the	
identity	matrix	 I when	the	polymer	chain	is	at	the	equilibrium.	

Secondly,	the	basic	mechanism	of	stress	build‐up	and	stress	relaxation	is	governed	by	a	differential	equation	
in	terms	of	the	conformation	tensor,	with	the	generic	form:	

	  R

1
f





 c c ,	 (2.21)	

where	


c is	the	upper‐convected	time	derivative	of	the	conformation	tensor,	  is	the	relaxation	time	of	the	main	
relaxation	mechanism	(i.e.	Brownian	motion,	reptation,	retraction,	etc.),	and	  Rf c 	is	a	relaxation	function	that	

depends	on	the	constitutive	model.	The	upper‐convected	time	derivative	is	defined:	

	  T

t

 
      

c

c u c c u u c ,	 (2.22)	

where	the	contravariant	terms	(those	which	are	inside	the	parenthesis)	are	necessary	in	order	for	the	model	to	
respect	 the	 principle	 of	material	 frame‐invariance,	 also	 referred	 to	 as	material	 objectivity.	 In	 the	 constitutive	

models	derived	from	molecular	theories,	the	strain	and	relaxation	functions,	  Sf c 	and	  Rf c ,	are	polynomials	

of	the	conformation	tensor,	whose	coefficients	can	depend	on	the	invariants	of	 c :	
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 ( ) ( ), , k
k

k
f g I II III= c c cc c , (2.23) 

where ( )trI =c c , ( ) ( )( )2 2tr tr 2II = −c c c  and ( )detIII =c c  are the first, second and third invariants of c , respectively. The strain function is generally a first-order polynomial, while the relaxation function is at most a second-order polynomial. Table 2.1 gives an overview of the strain and relaxation functions corresponding to the most popular constitutive models derived from molecular theories. These models are described below. Moreover, the viscoelastic response of the material can be modelled with multiple modes:  ( )S i S,i
1

m

i
i
G f

=

= +τ τ c , (2.24) 
 ( )R,

1
i i i

i

f
λ

∇
= −c c . (2.25) 

where iG , iλ , ic , ( )S,i if c , ( )R,i if c are relative to the ith mode, and m is the total number of modes. Each mode describes the response of the material within a particular timescale, such that the entire range of the deformation rates is covered by the spectrum of the relation times iλ . Multi-modal viscoelastic responses are due to the fact that real polymeric materials are generally composed of different polymers with various molecular weights. From a computational point of view, the calculation of the multi-modal viscoelastic response is parallelizable, since each viscoelastic mode is independent of the others.  Constitutive models Strain function 
( )Sf c  Relaxation function 

( )Rf c  
Oldroyd–B −c I  −c I  

FENE–P ( ) 21 tr L
−

−
c I
c

 
( ) 21 tr L

−
−

c I
c

 
FENE–CR ( ) 21 tr L

−
−
c I
c

 
( ) 21 tr L
−

−
c I
c

 
Giesekus −c I  ( ) ( )2 1 2 1α α α+ − − −c c I  

Simplified PTT linear −c I  ( )( )( )1 trε+ − −c I c I  
Simplified PTT exponential −c I  ( )( )( )exp trε − −c I c I  

Rolie–Poly −c I  ( ) ( )( )( ) ( ) ( )( )ccr ccr1 1 3 tr 1 tr 3 1 1 3 tr tr 3δ δϖ β ϖ β+ − + − + −c c c c c I

XPP −c I  ( ) ( ) ( ) ( )2 12 2 2
2

1 11 1 tr 1
3

qeα α ϖ αΛ−  + − + + Λ − Λ − −  Λ   
c c c I  

where ( )tr 3Λ = c  
Table 2.1: Summary of the strain and relaxation functions for popular constitutive models derived from molecular theories. 
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• Oldroyd–B model:  The Oldroyd–B model (or contravariant convected Jeffreys model), originally proposed by Oldroyd (1950), was the first material frame-invariant (respecting the principle of material objectivity) phenomenological model describing viscoelastic fluids. The Oldroyd–B model assumes linear viscoelasticity, with identical strain and relaxation functions:  ( ) ( )S Rf f= = −c c c I . (2.26) The Oldroyd–B model can be derived from the kinetic theory (Kramers 1946), assuming that polymer molecules behaving like a suspension of Hookean springs in a Newtonian solvent. The Oldroyd–B model includes the basic feature of viscoelasticity: stress relation, creep deformations and a first normal stress difference. However, it only predicts a constant shear viscosity (like Boger fluids), and a zero second normal stress difference. In addition, the predictions in purely extensional flows are unrealistic, because of the absence of a mechanism that limits the extensibility of the linear springs. Under steady extensional deformations with a finite extensional rate ε , the Oldroyd–B model gives rise to an infinite stress growth (and an infinite free energy), if the extensional rate is equal or larger than half of the reciprocal of the relaxation time: 
1 2ε λ −≥ . In spite of these drawbacks, the Oldroyd–B model remains a useful model to assess the reliability of numerical solvers, since it is the basis of most of the non-linear viscoelastic models further developed. In addition, the Oldroyd–B model generally gives rise to more numerical difficulties than the non-linear viscoelastic models, which have more realistic extensional behaviors. For these reasons, we have used the Oldroyd–B model in the numerical experiments presented later in this thesis.   

• FENE model:  The family of the FENE (Finitely Extensible Nonlinear Elastic) models is adapted to describe the viscoelastic behavior of dilute polymeric solutions. The FENE models are based on the kinetic theory of polymer chains behaving like non-linear elastic springs. Warner (1972) calculated the constitutive response of a dilute monomer, approximated by the microstructural bead-string model with non-linear elastic connectors whose tension forces are given by:  ( )
( )

0
21

H QF Q
Q L

=
−

, (2.27) where Q is the length of the string connector, H0 is the spring constant, and L is the ultimate length of the connector. Bird, Dotson and Johnson (1980) derived the FENE–P constitutive model from the dumbbell FENE model, using the statistical average proposed by Peterlin (1966) as a closure approximation. The FENE–P model possesses a finite extensibility and predicts a shear-thinning behavior. The closure approximation was further modified by Chilcott and Rallison (1988) in order to eliminate the shear-rate dependency of the steady-state viscosity. Thus, the resulting constitutive model, referred to as the FENE–CR model, describes Boger fluids. The strain and relaxation functions are identical to each other, both in the FENE–P and FENE–CR. For the FENE–P model:  ( ) ( ) ( )S R 21 tr
f f

L
= = −

−
cc c I
c

. (2.28) For the FENE–CR model:  ( ) ( ) ( )S R 21 tr
f f

L
−= =

−
c Ic c
c

. (2.29)   
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• Giesekus model:  Giesekus (1982) derived a constitutive model for concentrated polymer solutions with an inclusion of quadratic terms of the stress, which can be interpreted as the effect of anisotropic hydrodynamic drag induced by the polymer–polymer interactions (Bird & Wiest 1985). The corresponding strain and relaxation functions are:  ( )
( ) ( )

S

2
R

,

.

f

f α

 = −


= − + −

c c I

c c I c I
 (2.30) 

The dimensionless parameter 0 ≤ α ≤ 0.5 is the mobility factor, which quantifies the effect of the anisotropic stretching.  
• PTT model:  The PTT model has been derived by Phan-Thien and Tanner (1977; 1978) from the kinetic theory of an elastic network representing a polymeric melt. The model assumes that the rates of creation and destruction of junctions between the polymer strands depend on the average extension of the network. In the first version of the PTT model (Phan-Thien and Tanner, 1977), the relaxation function is assumed to have a linear dependence on the trace of the conformation tensor:  ( )

( ) ( )( )( )
S

R

,

1 tr .

f

f ε

 = −


= + − −

c c I

c c I c I
 (2.31) 

Later, Phan-Thien and Tanner (1978) derived a more accurate relaxation function:  ( )
( ) ( )( )( )

S

R

,

exp tr .

f

f ε

 = −


= − −

c c I

c c I c I
 (2.32) 

The original PTT model includes the Gordon–Schowalter convected time derivative of the conformation tensor, which is a linear combination of the lower and upper convected time-derivative:  ( ) ( )T T1 1
2 2
a a+ −   ≡ − ⋅∇ + ∇ ⋅ + ⋅∇ + ∇ ⋅   

   


c c u u c c u u c , (2.33) where a  is a scalar parameter in the interval [–1; 1]. The upper and lower convected time derivative are recovered when 1a =  and 1a = − , respectively. The Gordon–Schowalter derivative simulates non-affine displacements of the junctions with an effective slip, and 1 aξ = −  was introduced as the slip parameter of the network. With two non-linear material parameters, ε  and ξ , the PTT model had the ability to fit both the shear and extensional behavior of polymer melts. However, the PTT model is prone to the Hadamard instability when 

0ξ ≠  (Kwon & Leonov 1995), which make it unsuitable for numerical simulations. The Hadamard instability is a mathematical artifact built-in the constitutive model, producing spurious oscillations when the model is subjected to sudden or high frequency wave disturbances, which should neither be confused with numerical instabilities (due to numerical approximations of the solver), nor the actual (physical) hydrodynamic instabilities. For this reason, we only present here the simplified PTT model with 0ξ = , where the Gordon–Schowalter convected time derivative corresponds to the upper convected time-derivative.  
• Rolie–Poly model: 

 The Rolie–Poly model, standing for ROuse LInear Entangled POLYmers, (Likhtman & Graham 2003) is a differential constitutive equation derived for entangled linear (unbranched) polymers. The Rolie–Poly model is 
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based on the tube theory, and takes into account three phenomena: reptation, chain retraction, and convective constraint release. The lateral movement of the polymer chain is confined inside a tube, which represents the excluded volume of the neighboring entangled chains. The stochastic evolution of the tube orientations results in the following equation in term of the conformation tensor:  ( ) ( ) ( ) ( )( )ccr

R R
Reptation Retraction Convective constraint release

2 tr 31 2 1 3 tr 1 3 tr
δβ

λ λ λ
∇

= − − − − − − −
  

c
c c I c c c c I , (2.34) 

where λ is the reptation time, Rλ is the retraction time, ccrβ is the convective constraint release parameter, and 
δ is the tube deformation parameter. Hence, the Rolie–Poly model is covered by the generic differential equation (2.21), where the strain and relaxation functions are: 
 ( )

( ) ( ) ( )( )( ) ( ) ( )( )
S
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,

1 1 3 tr 1 tr 3 1 1 3 tr tr 3 ,

f

f δ δϖ β ϖ β

 = −



= + − + − + −

c c I

c c c c c c I
 (2.35) 

and R2ϖ λ λ= is a material parameter characterizing the ratio of the reptation to the retraction time-scales.  
• XPP model:  The XPP (eXtended Pom–Pom) model was introduced by Verbeeten, Peters and Baaijens (2001) as an improvement of the Pom–Pom model (McLeish & Larson 1998), for long-chain branched polymers. Both the Pom–Pom and the XPP models assume a molecular topology made of a backbone connecting two junction points of arm stars. The displacement of the backbone is constrained inside a tube, because of the excluded volume of the neighbouring entangled chains, while the dangling arms move freely outside the tube. The XPP model includes the following mechanisms: anisotropic relaxation of the backbone orientation (reptation), relaxation of the backbone stretch (retraction), and local branch-point withdrawal. The model considers that only the length of the polymer which is inside the tube participates to the stretching. Once the backbone length become shorter than the tube length, the arms segments are drawn into the tube, and also participate to the stretching, with a different relaxation time. The viscoelastic stress of the XPP model is given by:  ( )2

0 3G= Λ −eσ S I , (2.36) where 0G is the linear elastic modulus, Λ is the backbone stretch (scalar value), and S is the orientation tensor of the backbone. The evolution of the backbone orientation is governed by the following equation:  { } ( )( )4 2 4 2
2

0b

1 12 : 3 1 3 tr
3
αα α α

λ
∇ − = − − Λ + − − Λ − Λ  
S D S S S S S I , (2.37) where 0bλ is the relaxation time of the backbone orientation (due to reptation), and α is the mobility factor characterizing the amount of anisotropic effect, similarly as in the Giesekus model. The backbone stress is given by:   ( )

0

tr
1

3G
Λ = + eσ . (2.38) However, an evolution equation for Λ has been derived within the XPP model:  { } ( )

s

D 1: 1
Dt λ

Λ = Λ − Λ −D S , (2.39) where D Dt  is the material derivative,  ( )( )s 0s exp 2 1 qλ λ= − Λ − , (2.40) 
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0sλ is the stretch relaxation time, and q is the number of arms of the branched polymers. We now derive a single evolution equation for the XPP model, in term of the conformation tensor defined as:  23= Λc S . (2.41) Note that our definition of the conformation tensor differs with a factor 3 from the definition of McLeish and Larson (1998), in order to be consistent with equation (2.21). The change of variable yields the following expression for the upper convective derivative of the conformation tensor: 
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Incorporating equation (2.37) into equation (2.42) gives:  { } ( )( )2 4 2 4 2
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Moreover, the first two terms at the right hand side can be substituted by ( ) s6 1 λ− Λ Λ − S , in virtue of equation (2.39), which further yields:  ( ) ( ) ( )( ) ( )4 2 4 2
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c cc c c I . (2.45) The rearranging of equation (2.45), and the use of equation (2.40) finally gives:  ( ) ( ) ( ) ( )2 12 2 2
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where the ratio 0b 0s2ϖ λ λ= is also a material parameter characterizing the ratio of the reptation to the retraction time-scales. Finally, the change of variable (2.41) yield the following expression for the backbone stretch (2.38):  ( )tr 3Λ = c . (2.47) Note that ( )2 2tr 2I II= −c cc  is also an invariant of the conformation tensor. Therefore, the strain and relaxation function of the XPP model are: 
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2.2.2. The high Weissenberg number problem  The numerical simulations of viscoelastic flows are particularly prone to numerical instabilities due to the stiff hyperbolic nature of the constitutive equations. The high Weissenberg number problem (HWNP) has been one of the main challenges of computational rheology for more than two decades (Keunings 1986; Keunings 2000; Walters & Webster 2003). The HWNP manifests itself by a loss of reliability of the simulations, leading to a blowup of the numerical values. It is triggered when the Weissenberg number (or the Deborah number) reaches a critical value, which depends on the flow problem, the spatial discretization, and the numerical algorithm. Common stabilization strategies have consisted in enhancing the elliptic operator related to the viscous stresses, as for instance with the both-side-diffusion. However, this stabilization approach degrades the accuracy of transient solutions scheme (Xue, Tanner & Phan-Thien 2004), and values of magnitude ~1 are still considered as high values of the Weissenberg numbers. Kupferman (2005) has subsequently showed that the smoothness of the numerical solution can be destroyed by divergence-free stress perturbations, which do not couple back to the velocity field. Therefore, it was rather suggested to add stress diffusion terms into the constitutive models, in order to change the equation type from hyperbolic to parabolic (El-Kareh & Leal 1989), and ultimately to improve the numerical stability. Moreover, a small amount of isotropic stress diffusion has a physical justification, because of the Brownian motion of the polymer molecules. Although excessive artificial stress diffusion negatively affects the accuracy of numerical simulations (Min, Yoo & Choi 2001), small values do not alter the flow dynamics while enhancing numerical stability by maintaining a smooth and bounded stress solution (Sureshkumar & Beris 1995; Thomases 2011). Lately, the origin of the HWNP was identified. First, it was found (Lee et al. 2004; Fattal & Kupferman 2004) that the loss of positive-definiteness of the conformation tensor—which should be symmetric positive-definite by definition—is a precursor of the HWNP. Secondly, it was shown that numerical instabilities arise from the under-resolution of spatial stress profiles (Fattal & Kupferman 2005; Hulsen, Fattal & Kupferman 2005), which is problematic, since the solutions of viscoelastic flows tend to have stress boundary layers with large variations in the stress gradients and exponential stress profiles near geometrical singularities (Renardy 2000). Failure to represent the stress gradients accurately (for instance due to polynomial interpolations of exponential profiles) results in underestimations of the convective stress fluxes, which are compensated by a multiplication of the stress growth rate, eventually leading to a numerical blowup. Based on these observations, several techniques have been developed in order to enforce the positive-definiteness of the conformation tensor by construction. Today, the most popular method is the log–conformation representation of Fattal and Kupferman (2004; 2005), which consists in a change of variable using the matrix-logarithm of the conformation tensor. In addition to preserving the positive-definiteness, the log–conformation representation improves the representation of large stress gradients, since it linearizes the exponential stress profiles. The log–conformation representation has been implemented in various finite–volume and finite–element codes. Alternatively, Vaithianathan and Collins (2003) have presented two other schemes that guaranty the positive-definiteness of the conformation tensor, based on matrix decompositions. The first scheme uses the eigendecomposition, and evolves the eigenvalues and eigenvectors of the conformation tensor; the second scheme uses the Cholesky decomposition. Lozinski and Owens (2003) and Balci et al. (2011) have both proposed the square-root conformation representation, based on the matrix decomposition of the conformation tensor with its principal square-root (i.e. its unique positive-definite square-root). Other transformations preserving the positive-definiteness of the conformation have been discussed in Afonso, Pinho and Alves (2012). However, among all these different techniques, the log–conformation representation is the only one that linearizes the exponential stress profile, while for instance the square-root conformation representation only reduces the exponential growth (Chen et al. 2013). Thus, we chose to use the log–conformation representation because it has superiority in representing stress profiles with exponential variations. 
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2.2.3. The log–conformation representation 

 In the present work, the HWNP is remedied with the log–conformation representation of Fattal and Kupferman (2004; 2005). Note that our generic viscoelastic model (2.19),(2.21)–(2.23) is more general than the constitutive equations originally considered by Fattal and Kupferman (2004), but it is still compatible with the log–conformation representation. The benefit of our generic constitutive model is that it includes more viscoelastic models than the framework of Fattal and Kupferman (2004), notably the FENE–P, the Rolie–Poly and the XPP models, which are also very popular constitutive models derived from molecular theories. The log–conformation representation for the two-dimensional case is summarized below. It consists in a change of variable in the constitutive model, in term of the matrix-logarithm of the conformation tensor:  log=Ψ c . (2.49) Fattal and Kupferman (2004) have proven that the velocity gradient ∇u can be decomposed as  1−∇ = + +u Ω E Nc , (2.50) where Ω and N are pure rotation (anti-symmetric) matrices, and E is a pure extension (symmetric traceless) matrix. When inserting the relations (2.49) and (2.50) into equation (2.22), the term 1−Nc vanishes, and, the constitutive equation (2.21) finally yields the following evolution equation for the log–conformation tensor:  ( ) ( ) ( ) ( )R
12 exp expf

t λ
∂ + ⋅∇ − − − = − −   ∂
Ψ u Ψ ΩΨ ΨΩ E Ψ Ψ . (2.51) In practice, the matrices E and Ω are obtained from the projection of the velocity gradient into the principal base of the stress tensor. Let the eigendecomposition of the conformation tensor in a two-dimensional flow be  1 T
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c R R , (2.52) where 1λ  and 2λ  are the eigenvalues and R the orthogonal matrix containing the eigenvectors. Then the change of base of the velocity gradient is  ( ) 11 12T
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R u R . (2.53) Finally, the pure extension and rotation matrices in the reference base are obtained as:  11 T
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. (2.56) In the special case where the reference base is the principal base of the stress tensor, i.e. c is already diagonal, then =E D  and =Ω 0 . In summary, the viscoelastic stress solver finds the solution of equation (2.51) and recovers the conformation tensor with the matrix-exponential of Ψ :  ( )exp=c Ψ . (2.57) 
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The formula (2.57) enforces by construction the symmetric positive-definiteness of the conformation tensor. Note that the matrix-logarithm and the matrix-exponential are tensor operations, where the logarithm and the exponent are applied to the eigenvalues of a tensor, for instance:  ( ) 1

2

log 0
log

0 log
Tλ

λ
 

≡  
 

c R R . (2.58)   
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Chapter 3 
 

Conservation laws      Alongside the calculation of the viscoelastic extra-stress from the constitutive model, the conservation laws (i.e. the equations of motion) are solved in order to update the kinematics of the flow.  This chapter briefly presents the conservation laws and reviews the various approaches that are used in computational fluid dynamics to solve the conservation of mass and momentum. Advantages and drawbacks of the different methods are discussed in the context of a viscoelastic creeping flow. Also presented in this chapter is the pressureless pure streamfunction formulation that has been used to generate the numerical results presented in chapter 6.   
3.1. Velocity–pressure formulation  The conservation laws include the mass conservation—i.e. the continuity equation for incompressible fluids—and the conservation of the linear momentum:  0∇ ⋅ =u  (3.1)  p

t
ρ ∂ + ⋅∇ = −∇ + ∇ ⋅ + ∂ 

u u u τ f  (3.2) where ρ  is the density of the fluid, p∇  is the pressure gradient, ∇⋅τ  is the divergence of the internal stresses build-up in the non–Newtonian fluid (calculated from the constitutive model), and f  is a vector of the external forces (for instance the gravity). In these equations, the conservation laws are formulated in terms of velocity and pressure as the primitive variables. The energy is also a conserved physical quantity during thermo-dynamical and thermo-mechanical processes. The energy conservation is typically solved in order to compute the variations in the temperature of the physical system. In such models, the pressure variable can be linked to the temperature via an equation of state. Nevertheless, only the isothermal case has been considered in this work; thus the energy equation is not solved. Consequently, the pressure variable is not a thermodynamical variable. The pressure gradient can rather be seen as a Lagrange multiplier of the incompressibility constraint in the momentum equation (Perot 1993). The momentum equation (3.2) and the constitutive equation expressed in terms of the logarithmic–conformation tensor (see chapter 2) can easily be solved sequentially, for instance with successive substitution iterations, as they both have time-derivative terms. Concerning the coupling of the velocity with the pressure, the situation is different because there is no time-derivative in the equation for the pressure, which is either the 
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continuity equation (3.1) or the pressure Poisson equation obtained by taking the divergence of (3.2) and invoking the incompressibility:  ( )2 p ρ∇ = ∇ ⋅ ∇ ⋅ + − ⋅∇τ f u u . (3.3) Therefore, the decoupling of the velocity and pressure is more difficult than the decoupling of the velocity and the logarithmic–conformation tensor. The discretization of the system of equations (3.1)–(3.2) yields the following matrix system:  1n+    
=    

    

uA G Su
D 0 0p

, (3.4) 
where 1n+u and p are the new solution vectors of the discretized velocity and pressure variables. The superscript 
n+1 refers to the solution at the end of the time step. No superscript is placed on the pressure variables because it is a Lagrange multiplier. Thus, it corresponds to the average of the pressure over the entire time interval. However, if uS  contains explicit pressure gradient terms from the previous time step, then p  is interpreted as a pressure increment 1n nδ += −p p p and the discretization is said to be incremental. The matrix A  is the Jacobi matrix of the velocities in the momentum equations, G  is the matrix accounting for the gradients in the momentum equations, and D  is the matrix accounting for the divergence of the velocity in the continuity equations. The vector uS  contains the sources terms of the momentum equations (for instance the divergence of the viscoelastic stress), the explicit contributions of the velocity, and the boundary conditions. The term 0  is the null matrix or the null vector. The three matrices A , G  and D  depend on the spatial discretization. The matrix 
A  and the vector uS  additionally depend on the time discretization. The inversion of the monolithic matrix 
 
 
 

A G
D 0

all at once would lead to the discrete solution 1n+ 
 
 

u
p

of the conservation laws. However, the monolithic matrix is severely ill-conditioned because of the zero–block–diagonal matrix that comes from the absence of the pressure terms in the continuity equations.   
3.1.1. Pseudo–compressibility methods  The pseudo–compressibility methods remedy the ill-conditioned of the monolithic matrix system by the introduction of the missing pressure terms in the continuity equation. Thus, as their name suggests, the pseudo–compressible methods relax the incompressibility constraint. Various classes of pseudo–compressibility methods exist, depending on the additional pressure term that is used. In the penalty method (Hughes, Liu & Brooks 1979; Shen 1995), the additional term is simply proportional to the pressure field:  0pε∇ ⋅ + =u , (3.5) where ε  is the pseudo-compressibility parameter. In the artificial compressibility method (Chorin 1967; Qian, Zhang & Li 2010), the continuity equation contains a time-derivative term of the pressure:  0p

t
ε ∂∇ ⋅ + =

∂
u . (3.6) The pressure–stabilization method (Brezzi & Douglas Jr 1988; Shen 1992) uses the Laplacian of the pressure field:  0pε∇ ⋅ − Δ =u . (3.7) More recently, a new pseudo–compressibility method (Shen 1996; Shen 1997) was introduced, using the time derivative of the Laplacian of the pressure: 



41  

 ( ) 0p
t

ε ∂∇ ⋅ − Δ =
∂

u . (3.8) The pseudo–compressibility methods results in a regularized modified matrix system:  1n+    
=    

    

uA G Su
D Q 0p

, (3.9) where Q  is the matrix operator accounting for the additional pressure term in the continuity equation. The regularized coupled matrix system (3.9) can be solved all-at-once (without segregation steps). However, the solution of the regularized matrix system (3.9) is only an approximate solution of the incompressible flow governed by equations (3.1)–(3.2). The conditioning number of the matrix system (3.9) depends on the pseudo-compressibility parameter ε . On the one hand, large values of ε  improve the conditioning, but it relaxes the incompressible constraint. On the other hand, small values of the parameter ε  increase the fidelity to the incompressible fluid, however it results in a severely ill-conditioned matrix system when 0ε → . Thus, the choice of the perturbation parameter ε is crucial for the accuracy of the method, and there is a trade-off between numerical precision and physical accuracy. Moreover, the optimum value for ε depends on the flow problem and its discretization. In the case of a viscoelastic fluid, it is preferable to avoid pseudo–compressibility methods because it is suspected that the combination of compressibility and elasticity could produce self-sustained spurious oscillations, since both have the ability to store energy. Potential numerical artefacts could include compressive waves, elastic waves and other artificial instabilities, interfering with the true solution of the incompressible viscoelastic flow, which may also contain physical instabilities.   
3.1.2. Velocity–pressure segregation methods  The velocity–pressure segregation methods address the issue of the ill-conditioning problem of the matrix system (3.4) by dividing the coupled velocity–pressure formulation into two sub-problems, in order to solve sequentially the velocity and pressure. Hence, these methods are very attractive; however the decoupling introduces splitting errors. In all these methods, tentative velocities and pressures are computed from the momentum equation and a Poisson-like pressure equation, respectively. Additional velocity and/or pressure corrections are calculated from the tentative solution. The various velocity–pressure segregation methods can be classified into different families, although efforts have been made to unify the different approaches into a general framework (Ni & Abdou 2007). On the one hand, the semi-implicit iterative methods (also referred to as the 

pressure–correction methods), such as SIMPLER, SIMPLEC or PISO (Patankar 1980; Issa 1986; Versteeg & Malalasekera 2007), solve the conservation laws (3.1)–(3.2) with a semi-implicit scheme, and successive iterations between the pressure and velocity corrections. However, these methods solve the conservation of mass and momentum to a certain tolerance and an accurate solution can require a lot of iterations. On the other hand, the decoupling in the non-interactive methods (also referred to as projection methods or fractional step 
methods), initially presented as a projection of the tentative velocity onto the sub-space of divergence-free vector fields (Chorin 1968; Kim & Moin 1985; Bell, Colella & Glaz 1989), can also be seen as an algebraic splitting or an approximate factorization of the monolithic matrix  

 
 

A G
D 0

 (Dukowicz & Dvinsky 1992; Perot 1993). The exact LU block matrix decomposition gives:  1
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−

−
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A G A 0 I A G
D 0 D DA G 0 I

 (3.10) 
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where I  is the identity matrix and 1−A is the inverse of the A . Thus, the matrix system  1 1

1

n− +

−

      
=      −      

uA 0 SI A G u
D DA G 00 I p

 (3.11) can be split as:  1

*
*−

     
=     −     

uA 0 u S
D DA G p 0

, (3.12) 
 1 1 *

*

n− +     
=     
    

uI A G u
p0 I p

, (3.13) which yields the following exact fractional steps: 
 1

1 1

*

*
*n

−

+ −

=
 =
 = −

uAu S
DA Gp Du
u u A Gp

 (3.14) 
where *u is an intermediate velocity. At this stage, the algebraic splitting (3.10) provides the exact solution of the matrix system (3.4). However, the inverse 1−A of the Jacobi matrix is an unknown which is very expensive to compute directly. Hence, the fractional step methods utilize approximate inverses 1−≈B A . The different fractional-step methods vary in their approximations of B . Therefore, the fractional-step methods produce errors in the velocity and the pressure solution. The incompressibility constraint is enforced if the fractional-step methods use the same approximate inverses B  in the second and last stages in (3.14). However, since the continuity equation is solved indirectly, the mass conservation is usually not fulfilled to the machine precision, but its accuracy depends on the conditioning number of the matrix product BC . In the typical discretization of the momentum equation (3.2), the viscous stresses are treated implicitly (for a stability reason) and the inertial terms are linearized, resulting in the following expression for the matrix A :  1 t

t Re
β  = + Δ −  Δ   

A I N L , (3.15) where L  is the Laplace operator for of velocity (representing the viscous stress, or momentum diffusion), N is the linearized operator of the inertial terms, tΔ  is the time-increment of the discretization, Re is the Reynolds number (a dimensionless quantity expressing the ratio of inertial forces to viscous forces), and [ ]0,1β ∈  is the solvent viscosity ratio ( 1β =  for inelastic fluid; see chapter 2). Note that N  is absent in (3.15) if the inertial terms are treated explicitly; however, in the case of flows at low Re , the treatments of the inertial terms is unimportant since they are negligible. Following the analysis of Perot (1993), approximate inverses of A can be constructed with the following series expansion:  1

0

k

k
t t

Re
β∞

−

=

  = Δ −Δ −    
A N L , (3.16) which converges when (Henriksen & Holmen 2002): 

 1

2

t
Re
β −

Δ < −N L . (3.17) Thus, approximate inverses of arbitrary order of accuracy N with respect to tΔ  can be constructed as:  ( )1

0

kN
N

k
t t O t

Re
β +

=

  = Δ −Δ − + Δ    
B N L . (3.18) 
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The decoupling numerical error introduced by a fractional-step method is:  e = −AB I . (3.19) This error adds up to the other sources of numerical errors (discretization, iterative solver, round-off, etc.) and it translates into non-conservation of the momentum. The decoupling errors are generally considered acceptable if the approximate inverse B  has an order of accuracy N equal or higher than the order of accuracy of the discretization. However, a dimensional analysis of the decoupling errors shows that:  1
N

e t
Re
β∝ Δ − . (3.20) Consequently, the decoupling errors become large at low Re  numbers (and especially when 2Re β< ), unless 

tΔ  gets very small. This can also be explained intuitively: at low Re , the flow is driven by the pressure gradients (since the inertia effects are negligible); therefore the coupling between viscous stress and the pressure gradient is strong. Furthermore, the relation in (3.20) shows that beyond a critical case where 2Re β< , the decoupling errors become very large, and get worse with higher order N of the decoupling method. In this case, limiting the decoupling errors by low time-step sizes would become immensely onerous. Therefore, the decoupled velocity–pressure approach used in this fraction-step method becomes inefficient and inaccurate at a low Re number. Other variants of fractional-step methods with different choices of the approximate inverse B  are reviewed by Quarteroni, Saleri and Veneziani (2000), and Guermond, Minev and Shen (2006). A recent study of Sousa, Oishi and Buscaglia (2015), on the performance of the projection methods for low Re  simulations, reaches the same conclusion. In particular it is shown that non-incremental methods require very small time steps (of the same order of magnitude as for the explicit method), and that incremental methods develop spurious transients, unless small time steps are used.   
3.1.3. Drawbacks of the velocity–pressure formulation in viscoelastic flows  In the velocity–pressure flow formulation, the isostatic pressure field does not have an evolution equation, but it is determined through the coupling of equations (3.1) and (3.2). The isostatic pressure is defined as the isotropic stress component of the material:  ( )1 tr

3
p ≡ − σ  , (3.21) where  p≡ − +σ I s  (3.22) is the Cauchy stress, I is the identity matrix, and s is the deviatoric stress component. Since the entire Cauchy stress must contribute to the conservation of momentum, equations (3.2), (3.21) and (3.22) imply that  =s τ . (3.23) For inelastic (purely viscous) materials, 2η=τ D  is by definition traceless, hence the consistency between equations (3.21)–(3.23). However, in the case of viscoelastic materials, the material response decomposes into a purely viscous part Sτ (the solvent contribution), and a visco-elastic part Pτ (the polymer contribution), which also contributes to the isotropic stress. Thus, the Cauchy stress becomes:  P2p η= − + +σ I D τ , (3.24) which is inconsistent with the pressure definition (3.21), since the viscoelastic stress component is not traceless in general, i.e. ( )Ptr 0≠τ . Fortunately, the pressure field in an incompressible flow is not a thermodynamic state variable (as opposed to the case of compressible flows); therefore this inconsistency does not affect the 
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dynamics of the flow (Bollada & Phillips 2012). This could explain why this inconsistency has received relatively little attention in the computational rheology literature. Oliveira (2000) has proposed a traceless viscoelastic stress formulation for the Oldroyd-B model, where an augmented pressure p  is defined as the true isotropic stress component  ( )P
1 tr
3

p p≡ − τ , (3.25) and a new constitutive equation is derived for the deviatoric part of the viscoelastic stress  ( )P P P
1 tr
3

≡ −τ τ τ I . (3.26) Although both formulations are equivalent from a dynamical point of view, the results of Oliveira shows that the traceless viscoelastic stress formulation improves the convergence of the numerical algorithm, i.e. it is numerically more stable. Oliveira tested the traceless viscoelastic stress formulation in two geometries, with and without a geometrical singularity, for Weissenberg numbers ranging from 0.3 to 1.5. In these numerical experiments, the traceless viscoelastic stress formulation saved between 24% and 84% of the total number of iterations, as compared to the standard pressure formulation. Moreover, the higher the Weissenberg number, the larger the gain in computational efficiency. This result suggests that the polymer contribution to the Cauchy stress degrades the iterative convergence of the velocity–pressure–extra-stress segregated solver algorithms. In general, an iterative segregated algorithm that is used to solve more than two coupled variables can be prone to convergence difficulties, if two of the variables have competing effects on the third. This is the case of the standard velocity–pressure–extra-stress decoupled approach, where both the pressure p  and the isotropic part of the elastic stress ( )Ptr 3τ  interact with the velocity field as Lagrange multipliers of the continuity constraint. It can be seen in the simulations of Kwon (2012) that fluctuations in the viscoelastic stress cause fluctuations in the pressure field. Therefore, it is reasonable to assume that numerical errors propagate to the different variables because of the segregated algorithm. Moreover, the absence of direct coupling in the equations between the pressure and viscoelastic stress, which could have stabilized the algorithm, negatively impacts the convergence of the decoupled velocity–pressure–extra-stress methods. Xue, Tanner and Phan-Thien (2004) have investigated the efficiency of several algorithms belonging to the SIMPLE family, in the context of viscoelastic flows. In their numerical experiments, they considered the 1D start-up and decay of plane Poiseuille flow with an Oldroyd-B fluid, at 0.05Re = . They showed that above a threshold value of the Courant number, the transient solution of the viscoelastic flow is prone to unphysical oscillations, although all the governing equations are temporarily discretized with unconditionally stable schemes. These numerical instabilities come from the semi-implicit velocity–pressure decoupling. They have determined that the SIMPLEST and PISO schemes, which are the most accurate algorithms of the SIMPLE family, are also the most stable (i.e. they have higher threshold Courant number), in both the Newtonian and the viscoelastic cases. The threshold Courant number for stable calculations also depends on the temporal discretization scheme. For instance, the threshold values for the SIMPLEST algorithm were 2C =  for the Crank-Nicolson scheme, and 
3.3C =  for the two-level backward differentiation formula. However, the test case that they considered is relatively simple: the 1D nature of the problem disables the coupling between some of the velocity and stress components, which are zero in this case. Moreover, the constant and uniform solution for the pressure gradient along the channel, which is entirely determined by the pressure difference imposed at the boundaries, produces a particularly mild coupling between the velocity and pressure. Therefore, lower threshold Courant numbers are to be expected in less favorable cases of complex flows. In summary, the velocity–pressure segregation methods present several limitations in the solving of highly viscous and/or viscoelastic flow: - the competing effects of the pressure and the extra-stress terms degrade the iterative convergence of segregated solvers, 
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- the decoupled velocity–pressure approach produces additional numerical errors that can trigger unphysical oscillations, - the splitting technique requires restrictions of the time-step size, which become very severe at low Re , - the discrete continuity is not fulfilled exactly, potentially producing artificial compressibility effects. For all these reasons, the use of a pressureless flow formulation (i.e. based on the vorticity equation ensuing from the conservation of angular momentum) is justified, in order to improve the accuracy and the stability of the viscoelastic flow solvers.   
3.2. Vorticity formulation  The inherent numerical difficulties due to decoupling of the velocity–pressure flow formulation can be avoided with a pressureless formulation based on the vorticity equation. In this section, the conservation laws are reformulated in term of the vorticity conservation (i.e. the conservation of the angular momentum); thus removing all the previously mentioned drawbacks of the decoupled velocity–pressure methods. By means of the vector calculus identity ( ) 0p∇× ∇ =  for any scalar field p , the pressure unknown vanishes from the conservation laws by taking the curl of the momentum equation (3.2), yielding the following equation:  ( )( )

t ρ
 ∂ ∇ ⋅+ ∇× ⋅∇ = ∇× ∂  

ω τu u , (3.27) where  = ∇×ω u  (3.28) is the vorticity of the flow. The curl of the inertia term (the second term of the left hand side) is further treated using the following vectorial identities:  ( ) ( ) ( )1
2

⋅∇ = ∇ ⋅ − × ∇ ×u u u u u u  (3.29) and  ( ) ( ) ( ) ( ) ( )∇× × = ∇ ⋅ − ∇⋅ + ⋅∇ − ⋅∇u ω u ω ω u ω u u ω , (3.30) where 0∇ ⋅ =ω  by definition, and 0∇ ⋅ =u  because of the incompressibility. In addition, the curl of the purely viscous stress becomes:  2S 02η βη
ρ ρ

∇ ⋅ ∇× = ∇ 
 

D ω . (3.31) Finally combining equations (3.27)–(3.31) yields the vorticity equation:  ( ) ( ) ( )( )20
S

1 f
t

η ββ
ρ λ

∂ − + ⋅∇ − ⋅∇ = ∇ + ∇ × ∇ ⋅ ∂  

ω u ω ω u ω c . (3.32) The vorticity equation (3.32) is used to compute the new vorticity. The new velocity can be updated from the velocity Poisson equation, derived from the continuity:  2∇ = −∇ ×u ω . (3.33) The equations (3.32) and (3.33) are the bases of the velocity–vorticity formulation of the Navier–Stokes equations (Guj & Stella 1993; Meitz & Fasel 2000; Lo, Murugesan & Young 2005). One difficulty with the vorticity-based formulation is the correct determination of the vorticity generated at boundaries (Weinan & Liu 1996a), since there is no natural boundary condition for the vorticity. Moreover, the vorticity generated at the wall boundary is the central physical quantity for the flow dynamics, in many applications. 
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The vorticity–streamfunction flow formulation is another popular flow formulation based on the vorticity transport equation, where the velocity is linked to a streamfunction potential (Weinan & Liu 1996b; Weinan & Liu 1997; Shukla, Tatineni & Zhong 2007); more details are given in the following section.  
3.3. Two-dimensional pure streamfunction formulation  The pure streamfunction formulation has been proposed by Kupferman (2001) as an alternative to the vorticity formulation. The incompressibility constraint is enforced using the Helmholtz decomposition, which states that any vector field that is twice continuously differentiable at all the points in its domain can be decomposed into the sum of an irrotational (curl-free) vector field and a solenoidal (divergence-free) vector field. Hence, there exits scalar and vector potentials, ϕ  and Φ , respectively associated with the irrotational and solenoidal velocity components, such that:  ϕ= ∇ + ∇ ×u Φ . (3.34) These potentials are not unique, but defined up to an arbitrary constant. For an incompressible flow, the velocity field is by definition solenoidal; hence its irrotational component ϕ∇  must be zero, yielding the following equation:  = ∇×u Φ . (3.35) Combining relations (3.33) and (3.35) also yields the following constraint:  2= −∇ω Φ  (3.36) Thus, a unique dynamical equation can be derived by replacing all the velocity and vorticity unknowns in the vorticity transport equation (3.32) by the streamfunction unknown, using equations (3.35) and (3.36). In the two-dimensional case, the velocity vector has two in-plane components, while the vorticity and the streamfunction fields only have their out-of-plane component which is non-zero:  ( ) ( ) ( )T T T, ,0 ,  0,0, ,  0,0,u v ω φ= = =u ω Φ . (3.37) Thus, the two-dimensional flow is governed by a single equation accounting for both the momentum conservation and the incompressibility constraint:  ( )( )

2 2 2
40

S
1 f

t y x x y
ηφ φ φ φ φ ββ φ
ρ λ

∂∇ ∂ ∂∇ ∂ ∂∇ − + − = ∇ − ∇ × ∇ ⋅ ∂ ∂ ∂ ∂ ∂  
c , (3.38) 

where the term 4φ∇  is the biharmonic operator of the streamfunction. Then, the two components of the velocity vector are recovered as:  ,
,

u y
v x

φ
φ

= ∂ ∂
= −∂ ∂

 (3.39) which automatically fulfills the continuity constraint to the tolerance of the machine precision. Hence, the pure streamfunction flow formulation yields a fully implicit scheme, without splitting or fractional steps. The solution of the streamfunction equation (3.38) requires boundary conditions for the streamfunction, as well as its derivatives, which are obtained from the boundary conditions of the velocity. The pressure and traction boundary conditions are not implementable as such, although tangential pressure gradients to the boundary, representing for instance a hydrostatic pressure, can be included as source terms in the streamfunction equation. Consequently, the boundary conditions for the flows which are driven by pressure differences must be specified in terms of the corresponding inflow velocity profiles and fully developed outflows. The discretization of the pure streamfunction formulation and the implementation of the boundary conditions are discussed in the next chapter 4. 
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Finally, the pressure field can be post-processed by solving the Poisson equation, obtained by taking the divergence of the momentum equations. By virtue of the continuity, the divergence of the velocity time-derivatives and the purely viscous stresses vanishes; hence yielding:  ( ) ( )2
Pp ρ∇ = ∇ ⋅ ∇ ⋅ + − ∇ ⋅ ⋅∇τ f u u . (3.40) The Neumann pressure boundary conditions are obtained from the projection of the moment equation along the normal vector of the boundaries. In opposition to the velocity–pressure methods, here the pressure field is only calculated at the specific discrete times of interest; and it does not affect the computation of the flow dynamics.   
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Chapter 4 
 

Discretization methods      This chapter presents the discretization methods used to solve the constitutive equations and the conservation laws presented in the previous chapters. The streamfunction evolution equation is discretized with the discrete streamfunction method of Chang, Giraldo and Perot (2002). Directly discretizing the streamfunction equation is a tedious task because of the fourth-order derivatives. Instead, we apply discrete curl operators to discretize the momentum equations, in order to obtain a discretized system of equations for the streamfunction. The momentum and constitutive equations are discretized with the finite–volume method on a staggered Cartesian grid. This chapter also presents an iterative solution algorithm and an adaptive time–stepping procedure that improve the efficiency of the algorithm. This solution algorithm that solves the discretized governing equations has been implemented in Matlab and it was used to obtain the numerical results presented in chapter 6. Finally, the potential extension of the method to three-dimensions is discussed.   
4.1. Discrete curl operators  Let the linear matrix system for the discretized momentum equations be:  Au = b , (4.1) where u is the solution vector of the discrete velocity variables, A is the Jacobi matrix of the discrete velocity variables in the discretized momentum equations, and b is the source term vector. The pressure gradients do not need to be included in the system of equations (4.1) since they vanish with the curl transformation. A linear system of equations for the vorticity equation is first obtained by applying the discrete curl operator R , which relates the solution vector of the discrete velocities to the solution vector ω of discrete vorticity variables, to the discretized momentum equations:  =RAu Rb , (4.2) with  =ω Ru . (4.3) The curl operator R results in the integration of the momentum equations along closed lines around the discrete streamfunction variables. Secondly, the linear matrix system for the vorticity equation is expressed in terms of discrete streamfunction variables, by the following change of variable:  =u CΦ , (4.4) 
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where C  is the discretized curl operator relating to the discrete velocity variables to the vector of the discrete streamfunction variables Φ . Note that R  and C  are two different curl operators. Finally these transformations yield a linear matrix system expressing the vorticity equation in terms of discrete streamfunction variables:  =RAC RbΦ , (4.5) where the matrix products RAC and Rb are the Jacobi matrix and the source term vector, respectively. The discrete curl operators R  and C  are discretized using finite-differences, taking advantage of a staggered variable arrangement on a Cartesian grid, see Figure 4.1. Discrete streamfunction values are located at the grid intersections. The normal velocity components lying on the cell’s edges, evaluated from equation (4.4), correspond to the face-average values. Figure 4.1 shows how the discrete curl operators R  and C  are constructed for a Cartesian grid, but the procedure is essentially the same for an unstructured grid, see the paper of Chang, Giraldo and Perot (2002) for more details. It is important to notice that the discrete curl operators are discretized in a way such that the null vector calculus identities ( ) 0,  a a∇× ∇ = ∀ ∈  and 
( ) 30,  ∇ ⋅ ∇ × = ∀ ∈A A   are fulfilled on the discrete level:  =RG 0 , (4.6)  =DC 0 , (4.7) where G and D are the discrete gradient and divergence operators of the discretized momentum and continuity equations. These relations ensure the elimination of the pressure unknowns in the conservation equations, and the automatic enforcement of the continuity constraint on the discrete level to the machine precision1.  

 
Figure 4.1: Staggered variable arrangement, numbering of the unknowns, and finite-difference construction of the discrete curl operators R  and C , in a 2D geometry.  

                                                            1 In practice, there is no need to discretize the gradient and divergence operators to solve the streamfunction matrix system (4.5); therefore the discrete null vector calculus identities (4.6) and (4.7) are actually mental constructions. 
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Note that the line-integrations around the discrete streamfunction variables laying on the boundary are incomplete; hence these streamfunctions are rather determined by boundary conditions. The essential streamfunction boundary conditions are obtained from the integration of the normal velocities over the boundary. Using the definition of the streamfunction (as the vector potential of the velocity) and the Kelvin–Stokes theorem of vector calculus yields a contour integral:  ( )ˆ ˆd dS S d
∂Ω ∂Ω Σ

⋅ = ∇ × ⋅ = ⋅  u n Φ n Φ r  (4.8) where Σ  is the contour of the boundary surface ∂Ω . In the two-dimensional case, the surface integral of the normal velocity becomes a line integral along the boundary, and the contour integral of the streamfunction turns into an oriented difference, see Figure 4.2. Hence, the streamfunction boundary condition along the boundary segment between two points p1  and p2 is given by: 
 ( )

( )

p2

p1 p2 p1

p1

p2 p1 p2

d ,   ,

d ,   .

v x x

u y y

φ φ

φ φ

− =

− =





along a horizontal boundaryalong a vertical boundary  (4.9) 
This yields constant values of the streamfunction along the walls and the symmetry lines. At the inlet boundaries, the line integral of the normal velocity is calculated either analytically or numerically. At the outlets, where the normal velocity is an unknown, the streamfunction boundary condition is derived from the fully-developed Neumann boundary condition n n 0u x

∂Ω
∂ ∂ = , which gives:  n 0xφ

∂Ω
∂ ∂ = . (4.10) In addition, since the streamfunction is a potential field, a reference value needs to be specified at a reference point on the boundary, in order to set the streamfunction level:  ( )ref ref ref,  where  φ φ= ∈∂Ωx x , (4.11) for instance, with a null value on a symmetry line or wall boundary. Finally, the boundary conditions (4.9)–(4.11) replace the incomplete equations for the boundary streamfunction variables (see Figure 4.3) in the matrix system (4.5). Natural boundary conditions for the tangential velocity to the boundaries are imposed through the source terms in the matrix system (4.1), with the same procedure as the one described by Perot (1993).   

 
Figure 4.2: Kelvin–Stokes theorem applied on the surface integral of the boundary, in two-dimensions.  
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ẑ

∂Ω

A

B

n̂

AΦ

BΦ

t̂

ẑ
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Figure 4.3: Streamfunction variables laying on the boundary, governed by the surface integrals (or line integral in 2D) of the normal velocities to the boundary, rather than the vorticity conservation discretized with the discrete curl operators.   

4.2. Finite-volume discretization  In this subsection, we describe the finite-volume discretization of a generic convection–diffusion equation with the form:  2

k
k k k

u S
t x x xχ χ
χ χ χΓ∂ ∂ ∂+ = +

∂ ∂ ∂ ∂
, (4.12) which can either be a projection of the momentum equation or the log–conformation equation, depending on the interpretation of χ , χΓ and Sχ ; see Table 4.1. Equation (4.12) is integrated over a control volume V and the divergence theorem is applied to the convective and diffusive terms:  ˆd d d

ˆV V V

V S S V
t χ χ
χ χχ Γ

∂

∂ ∂ + − ⋅ = ∂ ∂    u n
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, (4.13) yielding a flux balance between the faces f of the control volume:  f f ,
f f

1V
V

n

u S
t V xχ χ

χ χχ Γ
 ∂ ∂+ − =  ∂ ∂ 

 , (4.14) 
where Vχ  and ,VSχ  are the volume-average of the transported quantity and the source term, inside the control volume. The evaluation of the fluxes requires an interpolation of the quantities fχ at the faces of the control volumes, as well as their gradients ( )

fnxχ∂ ∂ in the normal directions. The latter gradients, which are related to the diffusive fluxes, are evaluated with the second-order central–differences of the volume-average quantities in the neighboring cells.    

φ nu
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Equations χ  χΓ  Sχ  

ith–component of the momentum iuρ  0βη ρ  ( ) ( )0
S

1
ij

f
β η
λ

−
  c  

ijth–component of the log–conformation ijΨ  0 ( ) ( ) ( ){ }R
12 exp expijij ij

E f
λ

− + − −   ΩΨ ΨΩ Ψ Ψ  
Table 4.1: Interpretation of the terms χ , χΓ and Sχ in the generic convection–diffusion equation (4.12), for the momentum and log–conformation equations.   It has been shown by Alves, Pinho and Oliveira (2000) as well as Min, Yoo and Choi (2001) that the spatial discretization scheme of the viscoelastic stress fluxes has a significant impact on the numerical solution. In this work, the face-averaged values fχ are obtained with the CUBISTA interpolation scheme, introduced by Alves, Oliveira and Pinho (2003), which consists of a quadratic upwind scheme, with total-variation-diminishing flux limiters promoting the numerical stability. The CUBISTA scheme was specially developed to enhance the iterative convergence of viscoelastic flow solvers. For convenience, the interpolation scheme is expressed in terms of the normalized variable and space formulation, where  f UU U UU

f U
D UU D UU

,  χ χ χ χχ χ
χ χ χ χ

− −= =
− −

   (4.15) are the normalized averaged-values of the transported quantities at the CV’s face, and inside the upwind cell, respectively, and  f UU U UU
f U

D UU D UU

,  ξ ξ ξ ξξ ξ
ξ ξ ξ ξ

− −= =
− −

   (4.16) are the normalized space variables, with subscripts “D”, “U” and “UU” referring to volume-average values in the downstream, first upstream and second upstream control volumes, respectively, see Figure 4.4. The interpolation ( )f U U f, ,χ χ ξ ξ
   with the CUBISTA scheme reads:  
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 (4.17) 

The time derivative V tχ∂ ∂ is discretized implicitly with the two-level backward differentiation formula (BDF2):  ( ) ( )
2

1 2 21 2 1 1
1 1

n
n n nV
V V Vn O t

t t
χ ϖ ϖχ ϖ χ χ

ϖ ϖ
− − ∂ += − + + + Δ ∂ Δ + + 

, (4.18) 
where the subscript n refers the value at the current time nt , the superscripts n–1 and n–2 refer to the values at the two previous discrete times 1nt − and 2nt − , 1n n nt t t −Δ = − is the time-step increment, and 1n nt tϖ −= Δ Δ is the  
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Figure 4.4: Definition of the local variables and local coordinates in the upwind and downwind cells, related to interpolation ( )f U U f, ,χ χ ξ ξ

   at a faces of the control volumes.   time-step increment ratio. The BDF2 scheme is A-stable and second-order accurate, which makes it suitable to solve stiff hyperbolic equations, with a good compromise between numerical stability and accuracy. The quadratic non-linear terms for the inertia, in the momentum equation, are linearized using a second-order Taylor expansion: 
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 (4.19) 
This approximation is suitable for approximating inertia terms for flows at low and moderate Reynolds numbers. As an example, Kim, Baek and Sung (2002) were able to solve accurately turbulent Newtonian flows at 

4200Re = , with the same implicit linearization. The divergence of the viscoelastic stress-tensor, in the source term of the momentum equations, is also approximated with finite-differences. Note that all the normal and shear components of the extra-stress are located at the center of the control volumes, similarly as the components of the log–conformation tensor. The classical finite-difference schemes take advantage of the staggered variable arrangement, by assuming linear variations of the viscoelastic extra-stresses inside the control volumes, as in the work of Fattal and Kupferman (2005):  
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, (4.21) where the different subscripts refer to the different neighboring extra-stresses of the velocity’s control volume, see Figure 4.5. This classical scheme is hereinafter referred to as the LIN scheme. Here, we suggest a higher-order scheme assuming linear variations of the gradient of the viscoelastic extra-stress; hence quadratic variations of the viscoelastic extra-stress. This scheme is referred to as the QUAD scheme and the volume-averages of the stress-divergences are obtained with the following arithmetic averages: 
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, (4.29) are the finite-difference approximations of the viscoelastic extra-stress gradient, using the same staggered variable arrangement as in Figure 4.5. The nonlinearities in the constitutive equations, due to the material-derivative and the matrix-exponential of the log–conformation tensor, are treated explicitly. As a result, each evolution equation for a variable n
Vχ  is discretized into the algebraic form  0 nb nb

nb

n n
Va a bχ χ χχ χ= + , (4.30) where nb

nχ  are unknown values in the neighboring control volumes, 0a
χ , nba

χ  and bχ  are coefficients containing explicit expressions of the solutions of the previous time-step. The contributions of the source terms are included in bχ .  

 
Figure 4.5: Staggered variable arrangement used for the finite-difference approximation of the divergence of the viscoelastic extra-stress inside the hatched control volume. 
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The explicit representation of the covariant term −ΩΨ ΨΩ  decouples the three components of the log–conformation tensor. Therefore, the two-dimensional streamfunction/log–conformation scheme yields four matrix systems: one for the streamfunction field, and one for each of the three components of the log–conformation tensor that are solved in parallel. Finally, the streamfunction and the log–conformation tensor are solved sequentially, with successive substitution iterations until the convergence of the nonlinearities.   
4.3. Solution algorithm  This subsection describes the procedure that solves the coupled discretized system of equations for the constitutive models (reformulated with the log–conformation representation) and the conservation laws (expressed in terms of the streamfunction). We assume that discrete temporal solutions are known until the  (n–1)th time-step. The following solution algorithm calculates the next discrete temporal solution, at the nth time-step. Provisional guessed solution vectors 0

nΦ  and 0
nΨ , respectively for the streamfunctions and the components of the log–conformation tensor, are evaluated by linear extrapolation from the results of the previous time-steps. The provisional guessed solution for the velocity vector is 0 0

n n=u CΦ . Then, the solution algorithm computes iteratively the components of the new log–conformation tensor and the new streamfunctions. Since the governing equations are discretized with the implicit BDF2 scheme, there is no formal restriction on the time-step size. However, the successive substitution iterations can have convergence issues when the Courant number exceeds unity. The convergence of the solution algorithm is enhanced with the under-relaxation of the solution iterates. The log–conformation tensor contributes linearly to the streamfunction equations, thus the convergence of the log–conformation tensor results in the convergence of the streamfunction. In contrast, the velocity has a non-linear effect on the evolution of the log–conformation tensor. Therefore, the under-relaxation is only applied to the log–conformation iterates. We use an adaptive under-relaxation, the Aitken's delta-squared process, which improves the convergence rate of a series of solution vectors. At each kth iteration, the Aitken’s relaxation factor kα  is evaluated as: 
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, (4.31) 

with  1
n n

k k k−Δ = −Ψ Ψ Ψ  , (4.32) where n
kΨ  is the latest non-under-relaxed iterate vector of the log–conformation solution, and 1

n
k−Ψ  is the Log–conformation vector of the previous under-relaxed solution iterate. In general, adaptive under-relaxation is more efficient than under-relaxation with a fixed relaxation factor. Since the Aitken's adaptive under-relaxation requires two previous solution iterates, the under-relaxation is activated from the third iteration. In summary, the solution algorithm at the kth iteration proceeds as follows: 1. Compute the new solution vector n

kΨ  of the discretized system of equations for each component of the log–conformation tensor: 
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where 1
n
k−u is the velocity vector of the previous solution iterate. 2. Under-relax the solution vector of the log–conformation tensor with the relaxation factor kα  evaluated from (4.31):  ( ) 11n n n

k k k k kα α −= + −Ψ Ψ Ψ . (4.34) 3. Recover the conformation vector n
kc  via the matrix-exponent of n

kΨ :   ( )expn n
k k=c Ψ . (4.35) 4. Build-up the linear matrix system of the momentum equations discretized as: 
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5. Apply the discrete curl transformation to the momentum matrix system and compute the new iterate of the streamfunction vector n
kΦ  from the linear matrix system (4.5). 6. Recover the discrete velocity vector as:  n n

k k=u CΦ . (4.37) 7. Evaluate the scaled norm of the residual vector of the log–conformation systems of equations, using the new solution vectors n
kΨ  and n

ku : 
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, (4.38) 

where ΨLHS  and ΨRHS  respectively are the new left-hand-side matrix and the right-hand-side vector for the log–conformation matrix system (4.33) that will be solved at the next iteration. The 2-norm of the matrix ΨLHS  is approximated as its largest component in absolute value 
( )2 ,

max iji j
≅Ψ ΨLHS LHS . The iteration procedure is converged when the following termination criterion is fulfilled:  tolkr ε≤ , (4.39) where tolε  is a user-specified residual tolerance. The bulk of the computation resides in solving the linear matrix systems of the steps 1 and 5. The other steps of the solution algorithm consist in simple evaluations of explicit expressions.   

4.4. Adaptive time-stepping  An adaptive time-stepping technique has been used in our simulation, in order to enhance computational efficiency. On the one hand, unnecessary small time-increments result in an extension of the calculation time. On the other hand, excessively large time-increments degrade the convergence of the iterations, and can cause convergence difficulties. Numerical experiments have shown that large time-increments (requiring more iterations but fewer time-steps) are preferable to short time increments, provided that convergence is reachable. Convergence difficulties occur when the series of the residuals does not decrease anymore, but oscillates around 



60  

a critical value above the prescribe residual tolerance tolε . An empirical adaptive time-stepping procedure based on the convergence rate of the residuals has been developed, according to the following principles: (i) The time increment must increase whenever possible to speed up the computation. (ii) The time increment must preventively decrease whenever necessary in order to avoid convergence difficulties. (iii) In case of convergence difficulties, the calculation for the current time-step must restart with a smaller time increment. The convergence rate of the residual between two successive iterations is defined as the ratio 1k k kR r r+= . The geometric mean of the convergence rates for all the iterations within a time-step is:  ( )1 1

1

N

NrR
r

−
 
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 

, (4.40) 
where N is the total number of iterations to reach convergence. An objective convergence rate objR  is specified, together with the tolerance objδR . When the value of R falls outside the interval obj obj obj objδ , δR R R R − +  , the time increment for the next time-step is adjusted according to the formula:  obj1

q
n nR
t t

R
+  

Δ = Δ 
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. (4.41) 
The tolerance objδR avoids small oscillations of the time-step size at every iteration. The reactivity of the adaptive time-stepping is tuned with the exponent q . For instance, exponents larger than unity produce faster increases than decreases of the time increment. In addition, the variations of the time-step size are limited by specified maximum and minimum variation factors minf  and maxf . In summary the adaptive time-stepping proceeds as follows: 

• if obj obj obj objδ δR R R R R+ ≤ ≤ + , the time-step size is kept constant for the next time-step, 
• if 1

obj max
qR R f −≤ , the time-step size is increased as 1

max
n nt f t+Δ = Δ , 

• if 1
obj min

qR f R− ≤ , the time-step size is decreased as 1
min

n nt f t+Δ = Δ , 
• Otherwise, the time-step size is adapted using the formula (4.41). Furthermore, a convergence difficulty is detected when the number of iterations within the current time-step either exceeds a specified maximum number maxN , or maxf times the number of iterations of the previous time-step. In that case, the series of iterations is stopped and the calculations of the current time-step are restarted from the first iteration, with a smaller time-step size reduced by the factor minf . If on the contrary the iteration series converges with less iterations than a specified minimum number minN , then the time-step size for the next time-step is automatically increased by the factor maxf . Finally, the time-step size itself is bounded by a maximum and a minimum value maxtΔ and mintΔ . Table 4.2 provides recommended parameters of the adaptive time-stepping, which are used in our simulation.       
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Symbols Nomenclature Recommended values 
tolε  Residual tolerance 10-6 
objR  Objective convergence rate 0.5 
objδR  Tolerance of the convergence rate 0.05 
q  Exponent 2 
maxf  Maximum increasing factor 2 
minf  Minimum decreasing factor 0.5 
maxN  Maximum number of iterations 40 
minN  Minimum number of iterations 5 
maxtΔ  Maximum time-step size 0.1 
mintΔ  Minimum time-step size 10-4 

Table 4.2: Recommended parameters for the adaptive time-stepping procedure.   
4.5. Potential extension to three-dimensions  In the two-dimensional case, there is approximately the same number of streamfunction unknowns as the pressure unknown. However, the RACmatrix product has a better conditioning number than the Laplace operator L of the pressure (Chang, Giraldo & Perot 2002). Thus, if an iterative solver (for instance GMRES or BiCGSTAB) is used, the pure streamfunction system of equations will require less iteration than the pressure equation. The numerical experiments of Chang, Giraldo and Perot (2002) have shown that the solving of the pure streamfunction system of equations requires 4 to 5 time less iterations, with a Jacobi-preconditioned Conjugated–Gradient solver, than the system of pressure equations from the classical fractional-step method. In three-dimensional case, the streamfunction vector potential has three non-zero components:  ( ),  ,  xy yz zxΦ Φ Φ=Φ . (4.42) The components of the velocity vector is now defined as: 
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 (4.43) 
In a Cartesian grid, the system of pressure equations has now three times fewer unknowns than the streamfunction system. The main challenge of the three-dimensional calculations lies in the solving of very large matrix systems. In the current implementation, the matrix systems are solved with the built-in direct solver of Matlab, which operates the UMFPACK (Unsymmetric MultiFrontal) algorithm for sparse matrices. However, it will be preferable to solve the large matrix systems of three-dimensional problems with the iterative solvers in the Krylov subspace family, as for instance the Conjugated–Gradient method, BiCGSTAB, GMRES, etc. It is an open question whether or not the previous results of Chang, Giraldo and Perot (2002), about the efficiency of iterative 
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solvers in the two-dimensional case, still hold for the three-dimensional case. If so, then the pure streamfunction method could still be more efficient than the pressure-based methods, since the computational cost of Krylov-subspace iterative solver scales linearly with the number of unknown. (There are three times more unknowns, but the iterations converge 4 to 5 times faster). Chang, Giraldo and Perot (2002) also have noted that the streamfunction method is more efficient on unstructured tetrahedral meshes, where the full streamfunction vector is defined at each vertex (see Figure 4.6), than structured hexahedral meshes, where the streamfunction components are staggered. In both cases, each control volume has 12 streamfunction unknowns, but in the tetrahedral case, each unknown is shared by around 12 control volume, while in the structured hexahedral case, each streamfunction unknown is only shared by 4 control volumes. Therefore the number of streamfunction unknowns per cell is lower for unstructured tetrahedral meshes. Table 4.3 summarized the number of streamfunction unknowns per control volume (an unknown shared by N cells counts as 1/N in each cell) for the different types of meshes. For comparison purpose, pressure-based methods have 1 pressure unknown per cell, irrespective of the mesh type in 2D and 3D. Nevertheless, structured meshes results in band matrix system, which are well conditioned and generally easier to solve. In conclusion, we cannot formally conclude whether the streamfunction method is more efficient than pressure-based fraction step methods in the three-dimensional case, but there are good chances that it is. Moreover, in the case that the discrete streamfunction method turns out not to be more efficient than the pressure-based methods, the gain in accuracy and stability due to absence of decoupling errors grants an advantage to the streamfunction formulation. To the knowledge of the author, only one implementation of the three-dimensional pure streamfunction method has been reported in the literature (Wang & Zhang 2011; Wang, He & Zhang 2013). The three-dimensional implementation has only been done with structured Cartesian grids and the immersed boundary method, to model complex geometries.   

 
Figure 4.6: Arrangements of the streamfunction unknowns on three-dimensional Cartesian and tetrahedral meshes.     
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 Number of streamfunction unknowns per cell  Structured hexahedral mesh Unstructured tetrahedral mesh 2D case 1 0.5 3D case 3 1 
Table 4.3: Number of streamfunction unknown per cell, for different types of meshes.   
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Chapter 5 
 

Multiphase modeling      In this chapter, we first shortly present the different Eulerian surface-tracking techniques that can be used to model immiscible two-phase flows, with a special focus on the volume-of-fluid (VOF) method, which we have adopted. Afterwards, a short review on the different reconstruction algorithms is provided as well as a description of the classical directional split advection scheme and a new cellwise conservative unsplit (CCU) advection scheme. It is also showed that the proposed CCU scheme performs better than both the directional-split method and other multi-dimensional advection schemes, on classical benchmark tests. Finally, this chapter presents a new rule of mixture to average the apparent material properties of the control volume containing a mixture of the two phases. Both the new CCU scheme and rule of mixture are utilized in the simulations of viscoelastic free-surface flows in the next chapter.   
5.1. Eulerian surface-tracking techniques  Common Eulerian techniques for multiphase flow simulations include the front-tracking methods (Tryggvason et al. 2001), the VOF method, and the level-set method (Osher & Fedkiw 2001; Sethian & Smereka 2003). While the front tracking methods represent explicitly the interface with geometrical objects (for instance markers, segment lines and planes), the VOF and level-set methods treat implicitly the interface, through an additional field variable, the color function. The main advantage of the implicit interface representations is that they can handle arbitrary changes of topology (Scardovelli & Zaleski 1999), while explicit interface representations require complex operations for the merge and breakup of interfaces (Zhang et al. 2001). In the level-set method, the color function is the signed distance to the interface, governed by an advection-like equation. The advection equation is solved in a Eulerian framework using standard methods for partial differential equations, such as finite-differences, finite-volumes or finite-elements. The drawback of the level-set method is that it does not conserve the volume of each phase exactly. We chose to use to simulate the immiscible bi-phasic flow with the VOF method, which was introduced by Hirt and Nichols (1981). In the VOF method, the presence of a certain phase at the position x  and the time t  is indicated by the color function ( )tχ x, , defined as:  ( ) { if  fluid no.1 is present at

if  fluid no.1 is not present at
1    ( ),     
0    ( ).

tt tχ = xx x
,, ,  (5.1) 



66  

Sharp interfaces are defined at the jump discontinuities of the color function. The evolution of the color function is governed by a transport equation:  0i
i

u
t x
χ χ∂ ∂+ =

∂ ∂
. (5.2) On the discrete level, the average of the continuous color function over a control volume C gives the liquid 

volume fraction ( )f tC , i.e. the relative amount of fluid phase no. 1 inside C:  ( ) ( )1 , df t t
V

χ=  x xC
C C

, (5.3) where VC  is the total volume of C . The cells where 0 1f< < contain an interface and they are hereafter referred to as the interfacial cells. Algebraic numerical methods for the resolution of hyperbolic conservation equations are not suited to solve equation (5.2), because of their inherent numerical diffusion that smoothens the jump discontinuities. The original VOF method rather uses a geometrical scheme to determine the fluxes of the liquid volume fraction through the edge of the control volume. The geometrical advection schemes require (i) an explicit geometrical reconstruction of the interface position in each interfacial cell, and (ii) an explicit evaluation of the donating region (DR) relative to each flux. The DR corresponds to the compact set of points that contains Lagrangian particles contributing to the flux, within a certain time interval (Zhang 2013). The intersection of the donating region with the reconstructed interface determines the amount of liquid volume that is advected through the edge of the control volume.   
5.2. Geometrical interface reconstruction  The standard technique to represent the interface is the piecewise linear interface construction (PLIC), in which the interface inside each interfacial cell is approximated by a segment, parameterized as  ˆ 0d⋅ + =n x , (5.4) where n̂  is the normal vector of the interface pointing outward to the fluid phase no. 1, and where d is the signed distance of the interface to an origin. The geometrical interface reconstruction algorithms convert the liquid volume fractions into a set of lines representing the PLIC approximation of the interface inside all the interfacial cells, as in Figure 5.1 for instance. There are different methods to estimate the interface normal from the distribution of the liquid volume fraction, see Figure 5.2. The simplest approximation of the interface normal is obtained by the normed gradient of the volume fraction (Youngs 1982):  ˆ f

f
∇= −
∇

n , (5.5) evaluated by finite-differences using the values in the four neighboring cells; see Figure 5.2(a). This gradient method is first-order accurate and does not reconstruct all line interfaces exactly. Another method, the least-square VOF interface reconstruction algorithm (LVIRA), proposed by Puckett et al. (1997), is based on the minimization of the difference between the volume below the prolonged interface into the nearest neighboring cells, and the actual volume fraction in those cells, see Figure 5.2(b). The minimization of the hatched area is a non-linear problem; therefore the LVIRA method requires an iterative optimization algorithm. The LVIRA algorithm is second-order accurate and reconstructs all line interfaces exactly.  
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Figure	5.1:	Piecewise	linear	interface	calculation	of	a	disk,	from	the	liquid	volume	fractions	on	a	coarse	grid.	
	
	

	
Figure	5.2:	Various	techniques	for	the	piecewise	linear	interface	calculation:	(a)	gradient	method,	(b)	least‐

square	minimization	error,	(c)	moment‐of‐fluid	method,	(d)	spline	interpolation	correction.	
	
	

An	 alternative	 method,	 the	 moment‐of‐fluid	 interface	 reconstruction	 algorithm	 (Dyadechko	 &	 Shashkov	
2006),	evaluates	the	interface	normal	without	information	of	the	liquid	volume	fraction	in	the	neighboring	cells.	
Instead,	 it	uses	the	position	of	the	center	of	mass	of	 the	 liquid	phase	 in	the	cell	as	additional	 information.	The	
center	of	mass	of	the	liquid	phase	in	each	cell	is	also	advected	with	the	flow,	similarly	as	Lagrangian	markers.		
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Figure 5.3: The 12 different slope candidates calculated with various finite difference schemes from the column and row sums of the liquid volume in the 3×3 stencil of the nearest neighbors.   The interface reconstruction algorithm consists in minimizing the distance δ  between the reconstructed center of mass and the advected center of mass; see Figure 5.2(c). The moment-of-fluid algorithm produces notable improvement in the reconstructions of sharp corners. Finally, smoothening the variations in the curvature can enhance the accuracy of the interface reconstruction; see Figure 5.2(d). The orientation of the PLIC is corrected based on spline interpolations of the slope along the interface (Ginzburg & Wittum 2001; López et al. 2004). This method also provides a better estimation of the surface curvature, for the modeling of surface tension.  
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Figure 5.4: ELVIRA interface reconstruction on a non-homogeneous grid. Best fitting interface in red;    In the following, we use an efficient variant of the original least-square method, the ELVIRA method (Pilliod Jr & Puckett 2004), where the algorithm chose the best candidate that minimized the least square error from 12 different interface normals. The different interface normal candidates are calculated with various backward, central and forward finite differences of the row and column sums of the liquid volume fraction in the 3×3 stencil of the nearest neighbors, see Figure 5.3. The ELVIRA is also second-order accurate and it reconstructs all line interfaces exactly. Moreover, it produces very similar results to the LVIRA method.   

5.3. Advection schemes   
5.3.1. Directional-split advection scheme  Once the piecewise linear interfaces are reconstructed, the new liquid volume fractions are updated using a geometric advection algorithm, which evaluates the fluxed liquid volume from the geometric determination of the DR. The first generations of VOF algorithms were based on directional-split advection schemes, where the liquid volume is transported along one direction at a time. There are two approaches to propagate the liquid volume: the backward Eulerian implicit method, and the forward Lagrangian explicit method (Zhang 2013). Many variants of the directional-split advection scheme have been presented in the literature. In the directional-split scheme, the unidimensional donating regions of the fluxes are calculated as rectangles, see Figure 5.5. The liquid volume is only advected in one direction at a time. Hence, the liquid volume VOF algorithm advects the liquid in one direction, then the interface is reconstructed, and finally the fluid is advected in the other direction. The directional-split advection schemes typically use a backward Eulerian method for the time-integration. At each time-step, the first and second directions of advections are switched in order to remove any directional preference of the algorithm. It must be note that since the flow is two-dimensional, the volume is not conserved during the sub-steps of the directional-split advection, since the projection of the two-dimensional  
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Figure 5.5: Rectangular donating region in the directional-split advection scheme.   

 
Figure 5.6: Non-conservation of the volume in the sub-steps of the directional-split scheme.   incompressible velocity field in one direction can be compressive or dilating, see Figure 5.6. Thus, the intermediate liquid volume fractions must be calculated with respect to the intermediate volume inside the cell (represented in orange in the Figure 5.6), which differs from the cell’s volume. The non-conservation of the volume in the first sub-step of the direction-split advection is compensated by the second sub-step; however, the liquid volume is not rigorously conserved. Only two directional-split methods conserve the liquid volume exactly: the combined Eulerian Implicit–Lagrangian Explicit (EI-LE) method (Scardovelli & Zaleski 2003; Aulisa et al. 2003; Aulisa et al. 2007), and the Eulerian implicit method of Weymouth and Yue (Weymouth & Yue 2010), which properly integrates the 1D dilatation terms (i.e. the stretching of the velocity field). Nonetheless, all the directional-split advection schemes suffer from numerical diffusion. The lack of accuracy generally produces geometrical errors that distort the interface (Pilliod Jr & Puckett 2004), particularly in non-uniform flows such as in simple shear. In addition, non-conservative schemes also produce unphysical liquid volume fractions (outside the interval [0, 1]), requiring the use of local volume redistribution algorithms to remove the overshoots (f > 1) and undershoots (f < 0). Moreover, the directional-split methods require intermediate interface reconstructions between each 1D advection, and the Courant number is often limited to maximum 0.5. In contrast, unsplit (or multidimensional) schemes advect the liquid volume in all the directions at once, and do not require intermediate interface reconstructions.  
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5.3.2. Cellwise conservative unsplit advection scheme  Unsplit advection schemes have been developed to improve accuracy and overcome numerical artifacts of the directional-split schemes. In addition, unsplit schemes are easily generalizable to unstructured mesh. The classical edgewise solution of the VOF advection—based on the flux balance—reads (Zhang 2013):  ( ) ( ) ( ) ( )1

edge

1n n n nf t f t t t
V

+ − += + −  C C e e
C

D M D M , (5.6) 
where VC  is the total volume of the cell C , ( )ntM is the volume occupied by the liquid phase at the time nt , 

−
eD  and −

eD are the received and donated volumes, respectively, through the edge e during the time increment 
1n nt t t+Δ = − . Since the flow map is a homeomorphism, the edgewise solution (5.6) is equivalent to the following cellwise solution: 

 ( ) ( ) ( )1 1n n
tf t t

V
+

Δ=


C
C

P C M , (5.7) 
where ( )tΔ


P C  is the pre-image of C , traced backward within the time increment tΔ . The cellwise conservative unsplit (CCU) advection scheme computes the new liquid volume fraction ( )1nf t +

Cfrom the formula (5.7). The volume ( )ntM occupied by the liquid phase is calculated with the interface reconstruction algorithm. The main task of the CCU scheme is the determination of the pre-image ( )tΔ


P C of the cell. It is performed in two steps: i. First, the positions of the cell’s vertices are traced backward in time with a 4th-order accurate Runge-Kutta integration. The intermediate velocities are evaluated with bicubic spline interpolations in space, and quadratic spline interpolations in time. The pre-images of the four cell vertices form a polygon, which is a first approximation of the cell’s pre-image, yet non-conservative. ii. Four additional vertices are added to the definition of the pre-image polygon, in order to adjust its volume without changing the position of four vertices obtained via backward tracing. The geometric volume flux correction uses explicit formulas—rather than iterations—based on the DR calculation. Finally, the new liquid volume fraction is obtained from the intersection of the pre-image polygon ( )tΔ


P C with the reconstructed PLIC. Each of these steps is described hereinafter.  

5.3.2.1. Backward-tracing  The accuracy of the CCU scheme lies in the backward tracing of the cell’s pre-image. We consider a rectangular grid cell C defined by its vertices 1,2,3,4. Vertices A,B,C,D are obtained from the backward tracing of 1,2,3,4, respectively. The polygon ABCD is the first approximation of the cell’s pre-image, as shown in Figure 5.7(a). The backward tracing of a vertex is obtained with the reversed time-integration of the instantaneous velocity along the pathline of a Lagrangian particle p , initially located at the vertex’s position. The instantaneous velocity of the particle p  whose position ( )p tx  varies in time is 
 ( ), pdp t

dt
=
x

v . (5.8)  
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Figure 5.7: Calculation of the pre-image polygon: (a) non-conservative 4-vertex approximation via backward tracing of the cell’s vertex, (b) conservative 8-vertex polygon after the geometric volume flux correction 
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 (5.10) 
where 1v , 2v , 3v , 4v are intermediate velocities of the particle, and ( ),tu x is the Eulerian velocity field. The VOF method is typically coupled with an implicit (or semi-implicit) Navier-Stokes solver, which resolves ( ),tu x on a discrete set of locations, at discrete points in time. The values of the intermediate velocities are obtained from the temporal and spatial interpolations of the known discrete velocities. In order to avoid velocity overshoots and to promote numerical stability, it is preferable to first solve the new velocity field implicitly, prior to solving the new liquid volume fraction explicitly. The velocities at the intermediate times 1 3nt + and 2 3nt + are determined by quadratic spline interpolation within the time interval 
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 ( ) ( ) ( ) ( ) ( )
2

1d d
d dn n

n
n n n n

t t

t tt t t t t t t
t t t

+  −= + − + − − Δ    Δ  

u uu u u u , (5.11) 
where the acceleration d

d ntt
u is known from the previous time-step. The acceleration at the end of the current time-step is evaluated and saved for use at the next time-step:  ( ) ( )

1

1
d d d2
d d dn n n

n n

t t t

t t
t t t t+

+ −
 = + −

Δ  

u uu u u . (5.12) 
The temporal quadratic approximation for the evolution of the velocity provides a balance between accuracy and efficiency. In our scheme, the accuracy of the backward tracing is enhanced by the use of bicubic spatial interpolations for the intermediate velocities:  ( )

3 3

0 0

, i j
ij

i j
aξ η ξ η

= =

=u , (5.13) where ξ  and η  are the normalized local coordinates inside the cell, and ija are the 16 coefficients of the different terms. The bicubic spline interpolation g  of a scalar field s (either one of the velocity components u , v , or the streamfunction φ ) is a polynomial function with 16 terms: 
 ( )

3 3
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ξ ξ η ξ η ξ η ξ ξ η ξ η ξ η
= =

= = + + + + + + + +

+ + + + + + +

  (5.14) 
where ( ) [ ]2, 0,1ξ η ∈ are the normalized local coordinates inside the rectangular grid cell, see Figure 5.8. The value of the field s is known at the cell’s vertices (0,0), (1,0), (1,0), (1,1). The first and cross derivatives xs , ys and 
xys are further evaluated at these vertices by finite-differences. Fitting these 4 values at the 4 corners provides 16 equations for the coefficients ija :   

 
Figure 5.8: Bicubic spline interpolation inside a rectangular grid cell, using normalized local coordinate system.  
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The system of linear relations (5.15)–(5.18) can be expressed in the matrix form  xα =A , (5.19) where  [ ]T
00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33a a a a a a a a a a a a a a a aα = ,  
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Finally, the solution for the coefficients ija is 1xα −= A , with 
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. (5.20) 

As a result, the interpolated velocity field is C1-continuous and varies smoothly in both time and space. In addition, the quadratic temporal and bicubic spatial interpolations allow the velocity field to have local extrema in between the known discrete values. Finally the positions of the vertices A,B,C,D are determined using formulas (5.10)–(5.13). The resulting polygon ABCD is an overall good approximation of the cell’s pre-image, yet it does not fulfill the volume conservation (its volume is not strictly equal to the volume of C).  
5.3.2.2. Geometric volume flux correction  The volume conservation of the cell is enforced by adjusting the area of its pre-image polygon. The positions of the vertices A,B,C,D, computed with overall fourth-order accuracy, are kept unchanged in order to have conforming adjacent DRs. Instead, four additional vertices I,J,K,L are introduced to the definition of the pre-image polygon, see Figure 5.7(b). They are initially positioned at the midpoints i,j,k,l of the pre-image’s edges [AB], [BC], [CD] and [DA], respectively. The area of the pre-image polygon AIBJCKDL is modified by adjusting the position of the vertices I,J,K,L along the median line of the pre-image’s edges. Therefore, the volume corrections are added or removed to the pre-image’s edges as isosceles triangles. The suitable positions of the vertices I,J,K,L are calculated via the geometric volume flux correction procedure. The volume conservation is a consequence of the incompressibility constraint, which is the kinematic condition of solenoidal velocity fields. Integrating the divergence of a solenoidal velocity field over the control volume C and applying the divergence theorem yields: 

 ( )ˆ d 0s
∂

⋅ = u n
C

. (5.21) It translates into the continuity equation:  0A u = e e
e

, (5.22) where e is the index of the edges, Ae are the lengths of the edges, and ue the face-averaged velocities. The quantity  A uΦ =e e e  (5.23) is the volume flux through the edge e. By virtue of the equivalence between the cellwise and edgewise approaches, an easy and robust way to enforce the volume conservation on the pre-image is to make the net volume fluxes of the DRs equal to the divergence-free volume fluxes Φe . The calculation of the DR requires the evaluation of the timelines of the cell’s faces, and the streaklines of the cell’s vertices, see Figure 5.9. Note that in transient flows, the streaklines are different from the pathlines 
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calculated in the backward tracing, yet they have the same extremities. A streakline is the trace of particles continuously injected at a certain location, while a pathline is the trajectory of an individual particle. In our scheme, two discrete points 1’ and 1’’ of the streaklines are calculated via backward tracing of particles injected in the flow at the cell’s vertices, at the intermediate times 1 3nt + and 2 3nt + . In order to avoid further interpolations of the velocity field, the position of the point 1’ is obtained by the two-level Heun’s method: 
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 (5.24) 
and the position of the point 1’’ is obtained by the Kutta’s three-level method: 
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 (5.25) 
Note that the variable tΔ  in the formulas (5.24) and (5.25) is the time increment of the whole time-step, not the time interval of the Heun or the Kutta’s methods. Once the points 1’ and 1’’ are determined, the DR is represented by the polygon 11’1’’AiB2’’2’2. The error in the calculation of the DR has two contributions. The first contribution comes from the integration errors in the backward tracing using the formulas (5.10), (5.24) and (5.25), i.e the calculated positions of points 1’,1’’,A are different from their theoretical positions 1′෩ ,1′′෪,Ã. The second error contribution is due to the reconstructed representation of the streaklines and timelines. For higher precision, the streaklines are represented in our scheme with polygonal chains 1–1’–1’’–A. The use of three sub-segments provides a balance between accuracy and efficiency.  

 
Figure 5.9: Calculation of the DR of the edge 12. The polygonal chains 1–1’–1’’–A and 2–2’–2’’–B, and the segments A–i–B are the approximate representations of the streaklines and timeline, whose exact positions are represented by the black dashed curves. The hatched areas represent geometrical errors of the DR construction.   
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The net volume flux Fe  through a cell’s edge e
 
is calculated via the area of its DR polygon. For a regular—non-self-intersecting—DR polygon eP , depicted in Figure 5.10(a), the net volume flux is simply its area, computed with the following formula: 
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= = −e eP , (5.26) 

where n is the number of vertices defining the polygon eP , and ( ),i ix y are their coordinates. The formula (5.26) is valid for both convex and concave polygons. Furthermore, particular attention must be paid to the case of irregular—self-intersecting—polygons. We distinguish between two cases of self-intersections in the DR polygons, based on whether they involve the cell’s edges or not. The CCU scheme only allows self-intersections involving the cell’s edges. The ability of an advection scheme to properly deal with this event is crucial for its accuracy. Directional-split are not able to take into account both entering and exiting volumes that may cross an edge within the same time increment. The CCU scheme differentiates the entering and exiting volumes of an edge 
e, by splitting the admissible irregular DR polygon eP  into two entities +

eD and −
eD , whose contributions to the net volume flux have opposite signs, such that  ,
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The areas of +
eD and −

eD are the donated and received volumes of the cell C through the edge e, respectively, see Figure 5.10(b). Then, the net volume flux of an admissible irregular DR through the edge e is given by:  F − += −e e eD D . (5.28) Finally, the amount of volume flux correction that the DR requires is given by the difference 
 Fφ Φ −Δ =e e e . (5.29)    

 
Figure 5.10: Calculation of the volume flux through the edge 12, (a) in the case of a regular DR polygon, (b) in the case of an admissible self-intersecting DR polygon.   
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The needed volume flux correction is added or removed to the area of the DR by moving the position of the vertex I from the midpoint i of the segment [AB], by the distance he  along the bisector line of [AB], enforcing systematic conservativeness, see Figure 5.7(b). The volume flux corrections are the isosceles triangles colored in purple, thus  2 ABh φ= Δe e . (5.30) The algorithm is valid for all the topologies of admissible DRs: convex, concave and self-intersecting, the three of them being represented in Figure 5.7(b). After application of the volume flux correction to all the DRs, the resulting 8-vertex polygon AIBJCKDL is a conservative representation of the cell’s pre-image ( )tΔ


P C .  

5.3.2.3. Cellwise VOF update  The last step of the cellwise advection consists in computing the intersection of the pre-image polygon 
( )tΔ


P C  with the area ( )ntM  occupied by the liquid material. ( )tΔ


P C is determined by the CCU scheme while 

( )ntM  is obtained from the PLIC interface reconstruction. The intersection of polygons is a Boolean operation that requires algorithms of combinatorial computational geometry. The intersection ( ) ( )nt tΔ


P C M  is computed using a simple line/line intersection algorithm. A search algorithm is first used to find all the underlying grid cells with potential intersection with ( )tΔ


P C . These underlying cells have at least one of their vertices within the interval ( )( ) ( )( ) ( )( ) ( )( )min ,max min ,maxx x y y   ×      

   
P C P C P C P C

, bounded by the minimum and maximum values of the coordinates of the pre-image polygon’s vertices. Then, the pre-image polygon 
( )tΔ


P C  is split into its intersections with each of the underlying grid cells, see Figure 5.11. The different cuts of 

( )tΔ


P C  are obtained using the TRUNCATEPOLYGONBYLINE algorithm, described below. The liquid volume inside each cut of the pre-image polygon is obtained by further truncation with the PLIC line. Finally, the cellwise update of the liquid volume fraction is recovered by summing up the liquid volume contributions from all the truncations of the pre-image polygon, corresponding to the area colored in purple in Figure 5.11.   

5.3.3. Numerical tests  
5.3.3.1. Pre-image calculation test  In this subsection, the accuracy of the CCU pre-image calculation is tested in benchmark flow fields, in order to differentiate between pure advection errors and interface reconstruction errors. The pre-images construction error E1 is defined as the area of the difference (exclusive OR) between the computed 8-vertex pre-image polygon ( )

CCU

tΔ


P C and the exact pre-image ( )

exact

tΔ


P C , summed for all the grid cells C:  ( ) ( )

CCU exact

1 t tE Δ Δ≡ ⊕
 

C

P C P C . (5.31) In the numerical tests, the “exact” pre-image of each cell is a very fine polygonal representation with 80 vertices, whose positions are obtained by numerical integration with a predictor-corrector scheme over 20 sub-divisions of the time-step. 
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Figure 5.11: Truncation of the pre-image polygon AIBJCKDL with the underlying grid cells and their reconstructed PLIC lines. The liquid material occupies the colored area. The dark area represents the final intersection of the pre-image with the liquid material.   

Algorithm TRUNCATEPOLYGONBYLINE: Compute the truncation of a polygon by an oriented line. 1: function TRUNCATEPOLYGONBYLINE(Q, n̂ , d) 2:      input Q List of the polygon’s vertices {Q1, Q2…}3:      input n̂  Normal vector of the oriented line4:      input d Distance to origin of the oriented line5:      if 1ˆ 0d⋅ + >n Q then in1 ← false The first polygon’s vertex is outside the cut6:      else in1 ← true end if The first polygon’s vertex belongs to the cut7:      if in1 then P ← {Q1} Save the first polygon’s vertex in the output list8:      else P ← {Ø} end if Create an empty output list9:      for k = 2 → NUMBEROFELEMENTS(Q) do Loop over the polygon’s edges10:           if ˆ 0k d⋅ + >n Q then in2 ← false The kth polygon’s vertex is outside the cut11:           else in2 ← true end if The kth polygon’s vertex belongs to the cut12:           if in1 XOR in2 then Evaluate if the edge crosses the oriented line13:               ( )2 1 1ˆ k k k k
⊥

− −← − −n Q Q Q Q  Calculate the normal vector of the edge14:                d2 ← Qk· 2n̂  Calculate the distance to origin of the edge15:                s ← COMPUTELINESINTERSECTION( n̂ , d, 2n̂ , d2) Compute the intersection of the two lines16:                if s ∈ [QkQk-1] AND (s ≠ Qk AND s ≠ Qk-1) then17:                     P ← {P, s} end if Add the intersection point to the output list18:           end if 19:           if in2 then P ← {P, Qk} end if Add the kth polygon’s vertex to the output list20:           in1 ← in2 21:      end for 22:      return P Return the vertex list of the truncated polygon23: end function  
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The pre-image calculation error 1E  is very relevant to assess the accuracy of cellwise advection schemes, as the liquid volume fraction is obtained from the intersection of the interface with the area of whole the cell’s pre-image. In fact, 1E  is an upper bound of the total advection error, independent of the interface position and the interface reconstruction, i.e. if all the cells were affected by the update of the liquid volume fraction and if the interface was represented exactly. Moreover, 1E  is a norm since it is zero when the pre-images are exactly constructed. The pre-image calculation error produced by the CCU scheme is measured for various incompressible flows within the rectangular calculation domain [0,1]×[0,1] . In the tests, the velocities at the cell’s vertices are derived from analytical expressions of the streamfunction φ , with d du yφ=  and 
d dv xφ= − . The face-averaged velocities are obtained by the difference in the streamfunction level between extremities of the edges. The following flows are considered: - the simple translation field: ( )x y x yφ = +, , - the simple rotation field: ( ) ( ) ( )2 20.5 0.5x y x yφ = − + −, , - the single vortex in-a-box field: ( ) ( ) ( )2 21 sin π sin π

π
x y x yφ = −, , 

- the 4-vortex deformation field: ( ) ( )( ) ( )( )1 sin 4π 0.5 cos 4π 0.5
4π

x y x yφ = + +, . These velocity fields have symmetries and periodicities. Figure 5.12 shows the computed versus “exact” pre-images, as well as the streaklines of the grid vertices. Note that Figure 5.12 only displays representative unit cells of the flows, for relatively coarse grids. The reconstructed DRs and pre-images do not overlap and are conforming to the edge of their neighbors (consistency of the streaklines). The pre-image calculation errors reported in Table 5.1 are computed for the entire domain, during one time-step, using the maximum Courant number max 1C = . In simple translation, the grid’s pre-image is constructed exactly (to the machine precision), for all grid sizes. The increase in the value of 1E  with the mesh refinement is due to the accumulation of round-off errors. In the simple rotation, very small errors are generated. Careful examination of the calculated pre-image reveals that the pre-images of the grid vertices—traced backward—are determined exactly, because the rotational velocity field is linear in terms of space. The small errors come from the approximation of the streaklines as polygonal chains, while the exact streaklines are circle arcs. Errors in the area of the DR results in positioning errors of the mid-edge correcting vertex of the volume flux correction. The error 1E  is reduced with mesh refinements, with a convergence rate between 4 and 5, and it reaches the precision of accumulated round-off errors for the mesh 128×128. In the single vortex in-a-box and the 4-vortex deformation fields, additional errors come from the backward tracing since the bicubic spatial interpolation of the velocity does not represent sine and cosine functions exactly. However, considering the coarseness of the mesh, these errors are considered relatively small. Bicubic splines have accuracy of order ( )4O xΔ , but the number of cells increase as ( )21O xΔ with the mesh refinement, hence a formal second-order accuracy. However, the apparent convergence rate of the error is between 2 and 3. In principle, the error in the simple rotation—only due to approximations of the streaklines with polygonal chains—would vanish if one uses a spline representation of the streaklines, as proposed by Zhang (2013a; 2013b). However, the advection errors in the simple rotation tests, solely due to the streakline representation, are five orders of magnitude smaller than in the single vortex in-a-box tests, where backward tracing also contributes to the errors. The simple rotation tests also have higher convergence rates than the single vortex in-a-box tests. Therefore, the overall accuracy of advection is limited by the accuracy of the backward tracing, i.e. the Runge-Kutta method and the bicubic spatial interpolation, rather than the polygonal chain approximation. 
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Grid size 8×8 16×16 32×32 64×64 128×128Simple translation 2.16 e-15 3.22 e-15 1.72 e-14 6.26 e-14  2.58 e-13 Simple rotation 8.68 e-9  3.34 e-10(4.70) 1.39 e-11(4.59) 7.92 e-13 (4.13) 1.54 e-13 Single vortex in-a-box 7.00 e-4  9.70 e-5(2.85) 1.39 e-5(2.81) 2.10 e-6 (2.73) 3.10 e-7(2.75) 4-vortex deformation field - 1.19 e-3 2.72 e-4(2.13) 5.18 e-5 (2.39) 8.18 e-6(2.67) 
Table 5.1: Pre-image calculation errors E1 computed for the entire grid, with max 1C = . The convergence rates are in parentheses.   

5.3.3.2. Single vortex deformation test  In this subsection, the accuracy of the advection schemes is tested in conjunction with the PLIC–ELVIRA interface reconstruction algorithm. The time-reversed single vortex deformation test is a classical benchmark test. The calculation domain is a rectangle [0,1]×[0,1] . The liquid phase is initially a disk of radius 0.15 and centered at the position (0.5, 0.75) . The interface of the material deforms during the time interval [ ]0,t T= , by the single vortex in-a-box velocity field:  ( ) ( ) ( )2 21, , sin sin cos tx y t x y
T
πφ π π

π
 = −  
 

. (5.32) The corresponding velocity field (u yφ= ∂ ∂  and v xφ= −∂ ∂ ) is represented in Figure 5.13. The magnitude of the vortex is reversed at the time 2t T= ; thus the deformed material theoretically recovers its initial shape at the final time T . The test is performed for the vortex period 8T = , with different grid spacing of the Cartesian mesh. For the directional-split advection scheme, the error in the volume conservation is measured as:  ( ) 0
n n

T
c i j i j i j i j

i j i j
E n A f A f= − , , , ,

, ,
 (5.33) For the CCU advection scheme, the volume is rigorously conserves to the machine precision, because of the volume flux correction. Geometrical errors (in the position of the liquid volume) are measured as the 1-norm of the difference between the initial and final liquid volume fraction inside all the cells:  ( ) 0

n
T

g i j i j i j
i j

E n A f f= − , , ,
,

, (5.34) where i jA , is the area of the i,jth grid cell, and n is the number of grids along each dimension. The convergence rate of the error with mesh refinement is given by:  ( ) ( )( )
( )

ln 2 ( )
ln 1 2
g gE n E n

O n = . (5.35)  
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Figure 5.12: The grid’s pre-image and vertex’s streaklines on representative unit-cells of the velocity field: (a) in simple translation, (b) in simple rotation, (c) in the single vortex in-a-box field, (d) in the 4-vortex deformation field. The solid red lines are the exact curves, while the dashed blue lines are calculated lines. Square markers are the vertices of polygonal chains representing the streaklines.   Grid size Courant number Number of time step Relative volume change 100 × 100  0.5 1072 5.10 % 0.1 5113 1.25 % 150 × 150  0.5 1646 3.41 % 0.1 8162 0.80 % 

Table 5.2: Relative volume conservation error for the directional-split advection scheme. 
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Figure	5.13:	Non‐uniform	distribution	of	the	velocity	field,	u 	component	(left)	and	 v component	(right).	The	

distribution	is	constant,	but	its	amplitude	varies	in	time.	
	
	

The	time‐reversed	single	vortex	flow	is	first	tested	for	the	direction‐split	advection	scheme,	on	two	uniform	
grids	with	the	grid	spacings	1/100	and	1/150,	for	the	Courant	numbers	0.5	and	0.1.	The	Figures	5.14–5.17	show	
snapshots	of	the	material	positions	at	different	times.	The	red	circles	in	the	last	pictures	represent	the	theoretical	
final	shape	of	the	material,	i.e.	the	initial	disk.	Finally,	the	Table	5.2	gives	the	accumulated	volume	conservation	
errors	between	the	initial	and	final	steps	of	the	simulation.	The	volume	is	not	conserved,	and	large	geometrical	
errors	are	visible.	At	 the	end	of	 the	simulation,	the	center	of	mass	of	 the	deformed	disk	has	moved	to	the	 left.	
This	error	is	due	to	the	explicit	Euler	scheme	for	the	time	integration.	Thus,	the	geometric	errors	decreased	with	
time‐step	refinement.	

For	the	CCU	scheme,	the	time‐reversed	single	vortex	test	 is	performed	on	four	uniform	grids,	with	the	grid	
spacings	1/32,	1/64,	1/128	and	1/256,	see	Figures	5.18	and	5.19	for	snapshots	of	the	simulations.	Geometrical	
errors	and	 convergence	 rates	 are	 compared	 to	other	unsplit	 advection	 schemes	 in	Table	5.3.	The	geometrical	
error	decreases	with	mesh	refinements	at	a	rate	between	2	and	3.	Overall,	the	CCU	algorithm	compares	favorably	
to	the	other	2D	unsplit	advection	schemes	using	the	PLIC	interface	representation.	In	most	of	the	cases,	the	CCU	
scheme	decreases	the	geometrical	errors	by	15–30%	as	compared	to	the	best	of	the	other	schemes,	except	for	
the	coarsest	mesh	with	the	grid	spacing	1/32.	This	could	be	due	to	the	difference	in	the	interface	reconstruction	
algorithm.	 The	 benchmark	 tests	 of	 the	 other	 advection	 schemes	 use	 the	 LVIRA	 interface	 reconstruction	
algorithm,	which	is	more	accurate	than	the	ELVIRA	algorithm	that	we	use,	although	both	methods	return	similar	
results	 in	 most	 cases.	 In	 Figures	 5.18	 and	 5.19,	 the	 theoretical	 position	 of	 the	 interface	 at	 the	 end	 of	 the	
simulation	 is	 represented	by	 the	 red	dashed	 line.	We	 can	 see	 that	 the	 center	of	mass	of	 the	deformed	disk	 is	
centered	at	the	correct	position	at	the	end	of	the	simulation,	because	of	the	Runge–Kutta	time	integration	with	
quadratic	interpolation	in	time.	The	Figures	5.18	and	5.19	show	that	the	geometrical	errors	arise	at	the	head	and	
the	tail	of	the	deformed	material.	These	regions	of	high	geometrical	errors	are	located	where	the	interface	has	a	
high	 curvature,	 or	 forms	 thin	 filament	 below	 the	 thickness	 of	 2	 grid	 cells.	 In	 these	 regions,	 the	 interface	
reconstruction	 algorithm	 fails	 in	 capturing	 the	 interface	 accurately.	 The	 observed	 filament	 break‐up	 is	 a	
numerical	artifact,	which	should	not	be	confused	with	actual	 fluid	thread	break‐up	due	to	minimization	of	 the	
surface	 tension	 energy.	 This	 is	 not	 only	 a	 drawback	 of	 the	 LVIRA	 and	 the	 ELVIRA	 algorithm,	 but	 the	 PLIC	
representation	in	general.	Therefore,	the	simulation	results	 in	the	cases	 8T  ,	 for	the	coarse	grids	32×32	and	

64×64,	are	not	very	relevant	to	assess	the	accuracy	of	the	CCU	scheme	versus	other	advection	schemes,	as	the	
large	geometrical	errors	come	from	the	PLIC	representation	rather	than	the	advection.	
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Figure	5.14:	Simulation	results	for	the	directional‐split	advection	scheme	on	the	coarse	grid	(100x100),	with	the	

maximum	Courant	number	0.5.	The	red	line	shows	the	exact	interface	position	at	final	time.	
	
	

Small	 geometrical	 errors	 persist	 mainly	 because	 of	 errors	 in	 the	 interface	 representation.	 Poor	 interface	
representations	(seen	by	substantial	discontinuities	of	the	interface)	can	generate	advection	errors.	Figure	5.20	
shows	 an	 example	where	 advection	 errors	 are	 produced	 because	 of	 static	 interface	 reconstruction	 errors,	 in	
spite	of	an	exact	pre‐images	calculation.	The	use	of	more	advanced	interface	representation	techniques	would	be	
necessary	 in	 order	 to	 overcome	 this	 type	 of	 error.	 Quadratic	 interface	 reconstruction	 has	 been	 proposed	 by	
several	 authors	 (Scardovelli	 &	 Zaleski	 2003;	 Renardy	 &	 Renardy	 2002;	 Diwakar,	 Das	 &	 Sundararajan	 2009;	
Vignesh	&	Bakshi	2013)	to	improve	the	representation	of	regions	with	high	curvature.	However,	intersections	of	
quadratic	surfaces	are	more	difficult	to	compute.	
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Figure	5.15:	Simulation	results	for	the	directional‐split	advection	scheme	on	the	fine	grid	(150x150),	with	the	

maximum	Courant	number	0.5.	The	red	line	shows	the	exact	interface	position	at	final	time.	
	
	

Another	technique,	the	improved	PLIC‐VOF	method	of	López	et	al.	(2005),	successfully	achieves	the	accurate	
representation	 of	 thin	 filaments	with	 two	 non‐secant	 line	 segments	whose	 positions	 are	 tracked	 by	markers.	
Both	techniques	are	improvements	of	the	interface	representation	and	produce	better	results	than	the	PLIC	in	
the	 single	 vortex	 benchmark	 test.	 Other	 remaining	 issues	 of	 the	 PLIC‐VOF	 method	 are	 (i)	 the	 improper	
representation	of	sharp	corners,	(ii)	the	interface	reconstruction	of	multi‐materials	in	cells	containing	tri‐points,	
and	(iii)	the	accurate	tracking	of	sub‐grid	particles	of	fluid,	such	as	small	droplets	or	air	bubbles.	Some	of	these	
issues	 are	 handled	 better	 with	 other	 types	 of	 interface	 tracking	 methods,	 notably	 the	 hybrid	 markers‐VOF	
method	 of	 Aulisa,	 Manservisi	 and	 Scardovelli	 (2003;	 2004)	 and	 the	 PAM	 method	 of	 Zhang	 and	 Liu	 (2008).	
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Figure	5.16:	Simulation	results	for	the	directional‐split	advection	scheme	on	the	coarse	grid	(100x100),	with	the	

maximum	Courant	number	0.1.	The	red	line	shows	the	exact	interface	position	at	final	time.	
	
	
Both	methods	perform	better	than	the	PLIC‐VOF	when	representing	the	interface,	due	to	their	use	of	Lagrangian	
geometrical	 objects	 such	 as	 markers	 or	 polygons.	 These	 two	 methods	 also	 have	 the	 ability	 to	 represent	
geometrical	shapes	below	the	grid	resolution	(bubbles	or	droplets).	However,	these	improvements	come	at	the	
price	of	tedious	calculations.	For	instance,	the	hybrid	marker‐VOF	method	requires	dynamical	redistribution	of	
the	markers	under	the	constraint	of	volume	conservation,	in	order	to	keep	a	uniform	marker	density	along	the	
interface.	The	PAM	method	uses	readjustment	procedures,	to	shrink	and	expand	the	volume	of	polygons,	and	to	
reduce	their	number	of	vertices.	Improvements	of	these	readjustment	procedures	have	been	presented	by	Zhang	
and	Fogelson	(2014).	In	addition,	both	the	original	and	the	improved	PAM	methods	require	special	algorithms	to	
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Figure	5.17:	Simulation	results	for	the	directional‐split	advection	scheme	on	the	fine	grid	(150x150),	with	the	

maximum	Courant	number	0.1.	The	red	line	shows	the	exact	interface	position	at	final	time.	
	
	
successfully	merge	 interfaces.	 On	 the	 contrary,	 Eulerian	 surface	 capturing	 techniques	 are	 relatively	 easier	 to	
implement	and	they	handle	interface	merging	automatically.	Finally,	the	mentioned	drawbacks	of	the	PLIC‐VOF	
method	are	rather	due	to	the	PLIC	representation	of	the	interface	than	the	VOF	approach	itself.	In	the	authors’	
opinion,	the	VOF	method	could	reach	equivalent	accuracy	as	the	Lagrangian	methods,	if	more	precise	techniques	
for	 the	 interface	 representation	 were	 developed.	 In	 particular,	 we	 suggest	 the	 use	 of	 piecewise	 continuous	
bilinear	interfaces,	i.e.	two‐segment	polygonal	chains,	to	improve	the	representation	of	the	sharp	corners	and	the	
high	curvatures.	
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Figure 5.18: Reconstructed interfaces in the single vortex deformation test for the CCU advection scheme with 

8T =  and max 1C = , for the 128×128 grid. Snapshots at 4t T=  (top-left), 2t T=  (top-right), 3 4t T=  (bottom-left) and t T=  (bottom-right). The red dashed line shows the exact interface position at final time. (Mind the different scales.)  
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Figure 5.19: Reconstructed interfaces in the single vortex deformation test for the CCU advection scheme with 

8T =  and max 1C = , for the 256×256 grid. Snapshots at 4t T=  (top-left), 2t T=  (top-right), 3 4t T=  (bottom-left) and t T=  (bottom-right). The red dashed line shows the exact interface position at final time. (Mind the different scales.)       
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 ( )32gE  ( )64gE ( )32O  ( )128gE ( )64O  ( )256gE  ( )128O  Rider & Kothe (1998) 4.78 e-2 6.96 e-3 2.78 1.44 e-3 2.27 - - Harvie & Fletcher (2000) 3.72 e-2 6.79 e-3 2.45 1.18 e-3 2.52 - - López et al. (2004) 3.77 e-2 6.58 e-3 2.52 1.07 e-3 2.62 2.35 e-4 2.19 Mencinger & Zun (2011) 5.42 e-2 7.85 e-3 2.79 1.05 e-3 2.90 - - Cervones et al. (2009) - - - 1.17 e-3 - - - Owkes & Desjardins (2014) - 7.58 e-3 - 1.88 e-3 2.01 4.04 e-4 2.22 CCU (proposed scheme) 3.81 e-2 4.58 e-3 3.06 1.00 e-3 2.20 1.78 e-4 2.59 

Table 5.3: Geometrical errors and convergence rates in the single vortex deformation test cases for T = 8; comparison of the CCU scheme with other multi-dimensional advection schemes.    

 
Figure 5.20: Advection errors in simple translation of a rectangular corner. The reconstructed shape of the material is colored in purple; hatched areas represent static reconstruction errors. The grid cells marked with a red asterisk are subjected to advection errors, in spite of the exact pre-image calculation in blue. Note that only the cells near the interface have their liquid volume fraction updated.       
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5.4. Rule of mixture  The conservation of momentum inside the interfacial cells is solved for the mixture of the two fluids as a whole. Therefore, it is necessary to evaluate apparent material properties of the mixture from the bulk material properties. Up to date, the majority of authors homogenize the material properties of the interfacial cells with a rule of mixture based on the arithmetic mean:  ( )1 21f fρ ρ ρ= + − , (5.36) where 1ρ  and 2ρ  are the bulk densities of the two immiscible phases, and ρ  is the equivalent density of the mixture. This simple homogenization is correct for the density, because both mass and volume are scalar extensive physical quantities (i.e. additive). However, the viscosity is defined as the ratio of tensorial quantities (stress over strain rate). The issue of selecting a correct rule of mixture for the equivalent viscosity 
( )1 2, , fη η η η=  , where 1η  and 2η  are the bulk viscosities of the two liquid phases, has been raised by several authors. Tryggvason et al. (1998) emphasized that both the arithmetic and harmonic means could be appropriate, depending on whether the velocity gradient (i.e. the strain rate) or the viscous flux (i.e. the viscous stress) are continuous across the interface. The first choice enhances the role of the more viscous phase in the dynamics of the mixture, while the latter promote the influence of the less viscous material (Kothe 1998). A compromise consists in averaging the apparent viscosities related to the tensile viscous stresses xxτ  and yyτ with an arithmetic mean, and the apparent viscosity related to the shear stress xyτ with a harmonic mean (Rudman 1998). Coward et al. (1997) used those averages for the numerical simulation of interfacial instabilities driven by the shear-rate discontinuity, in stratified Couette flows. Their results clearly show that the choice of the viscosity average has an impact on the solution. Nevertheless, they pointed out that the averages they use are physically correct only when the interface is close to be aligned with the grid (which was the case in their simulations), and they acknowledged the need for a more general method applicable to interfaces with arbitrary orientations. The use of the correct viscosity averages is crucial for the accurate simulations of multiphase flows. A new rule of mixture has been derived based on the decompositions of the viscous stresses into parallel and perpendicular components to the interface. The basic idea is that the apparent viscosity should not only depend on the liquid volume fraction f , but also on the orientation of the interface with respect to the principal direction of the deformations. There is an analogy between the mixture of the two phases and a fiber-reinforced composite material, where the effective stiffness depends on the orientation of the fibers with the direction of loading. We first consider two special configurations of the interface, depicted in Figure 5.21. In the first case, shear deformations are applied orthogonally to the interface; therefore, the two phases experience the same shear-rate 
u y v xγ = ∂ ∂ + ∂ ∂ . There is continuity in the normal velocity gradient at the interface. Consequently, the two fluids behave in parallel, and the total stress response is the sum of the shear stress built-up in each of the phases. Therefore, the equivalent parallel viscosity Pη of the mixture is obtained with the arithmetic mean:  ( )P

1 21f fη η η= + − . (5.37)  
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Figure	5.21:	Parallel	and	serial	viscosity	of	the	mixture,	obtained	by	the	arithmetic	and	harmonic	means.	

	
	
In	the	second	configuration,	shear	deformations	are	applied	in	parallel	to	the	interface,	thus	the	two	phases	

experience	different	deformation	rates.	However,	there	is	equilibrium	in	the	shear	stresses	 xy on	both	sides	of	

the	 interface,	 due	 to	 the	 continuity	 of	 the	 viscous	 flux	 across	 the	 interface.	 Therefore,	 the	 two	 fluids	 react	 in	

series,	and	the	correct	equivalent	series	viscosity	 S is	obtained	with	the	harmonic	mean:	

	

1

S

1 2

1f f
 


 

  
 

.	 (5.38)	

In	the	general	case	with	an	arbitrary	orientation	of	the	 interface,	the	parallel	and	series	viscosities	 P 	and	
S are	the	two	extrema	(upper	and	lower	bounds,	respectively)	of	the	possible	apparent	viscosity,	varying	with	

the	principal	direction	of	deformations.	Hence,	in	our	approach,	different	apparent	viscosities	 ij 	are	evaluated	

for	each	component	of	the	viscous	stress	tensor:	

	 2ij ij ijD   .	 (5.39)	

Each	 component	 of	 the	 strain‐rate	 tensor	 ijD can	 be	 decomposed	 into	 the	 sum	 of	 its	 normal	 and	 tangential	

projections	on	the	interface,	 ijD
 and	 ijD

 	respectively,	such	that:	

	 cosij ijD D   ,	 (5.40)	

	 sinij ijD D  ,	 (5.41)	

and	

	    
1 22 2

ij ij ijD D D    
 ,	 (5.42)	

where	  	 is	the	angle	between	the	normal	vector	 n̂ 	of	the	interface	and	the	direction	of	the	component	 ijD of	

the	strain	rate	tensor,	see	Figure	5.22.	The	components	of	the	stress	tensor	are	decomposed	similarly:	

	    
1 22 2

ij ij ij      
 .	 (5.43)	
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Figure	5.22:	Orthogonal	projections	of	the	direction	of	the	rate‐of‐deformations	on	the	normal	and	tangential	

directions	to	the	reconstructed	interface.	
	
	
Because	of	linear	superposition	of	the	stresses	and	the	strain	rates,	we	have:	

	 S2ij ij ijD   ,	 (5.44)	

	 P2ij ij ijD   .	 (5.45)	

Thus,	recalling	equations	(5.39)–(5.45),	we	deduce	the	following	formula	for	the	component	 ij 	of	the	apparent	

viscosities	of	mixture:	

	    
1 22 2S Pcos sinij ij ij        

 .	 (5.46)	

Therefore,	 the	 equivalent	 viscosity	 of	 the	 mixture	 is	 the	 quadratic	mean	 of	 the	 arithmetic	 and	 harmonic	
means	of	the	two	bulk	viscosities,	weighed	by	the	ratio	of	the	parallel	to	in‐series	deformations	with	respect	to	
the	interface.	

In	the	case	of	free‐surface	simulations	(where	one	of	the	fluid	phases	represents	the	air),	the	viscosity	of	the	
air	 is	 set	 to	a	 thousandth	of	 the	viscosity	of	 the	other	phase,	 in	order	 to	 improve	 the	numerical	 stability.	The	
artificially	high	viscosity	of	the	air	affect	the	flow	of	the	air,	but	it	does	not	impact	the	flow	of	the	most	viscous	
phase.	

Finally,	 as	 the	PLIC–VOF	method	 is	not	able	 to	 resolve	 the	 flow	details	below	 the	grid	 resolution,	 the	 free‐
surface	flow	of	a	viscous	fluid	inside	a	channel	is	affected	by	a	numerical	artefact	near	the	wall.	In	the	simulation,	
the	viscous	fluid	that	rolls	on	the	wall	does	not	remove	all	the	air	inside	the	interfacial	cells	at	the	wall.	As	it	can	
be	seen	in	Figure	5.23,	a	thin	layer	of	air	gets	trapped	between	the	wall	and	the	viscous	fluid.	Consequently,	the	
quadratic	mean	(5.46)	is	ineffective	for	the	interfacial	cells	at	the	wall.	Indeed,	the	quadratic	mean	(5.46)	would	

predict	the	apparent	viscosity	as	the	harmonic	mean	 S of	the	viscosities,	which	is	very	close	to	the	viscosity	of	

the	air.	This	results	in	a	wrong	shear	rate	at	the	wall.	Hence,	the	thin	layer	of	air	that	is	artificial	trapped	would	
act	 on	 the	 wall	 as	 a	 lubricant,	 and	 the	 viscous	material	 would	 flow	 as	 a	 plug	 flow.	 In	 order	 to	 remedy	 this	
numerical	 artefact,	 the	apparent	viscosities	 in	 the	 interfacial	 cells	 at	 the	wall	 are	 taken	as	 the	viscosity	of	 the	
dominant	phase.	Thus,	the	layer	of	air	does	not	affect	the	shear‐rate	at	the	wall.	This	correction	of	the	viscosity	
averages	 at	 the	 wall	 has	 been	 used	 in	 the	 computation	 of	 the	 free	 surface	 flow	 in	 a	 rectangular	 channel,	
represented	in	Figure	5.23.	The	numerical	experiments	presented	in	the	next	chapter	utilize	the	new	quadratic	
mean	of	the	bulk	viscosities	as	the	rule	of	mixture,	together	with	the	viscosity	wall	correction.	
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Figure 5.23: Free-surface flow of a viscous fluid inside a rectangular channel (with correction of the viscosity averages at the wall). The grid lines of the interfacial cells are in black; the streaklines and the pre-images of the interfacial cells are in blue; the reconstructed interface is in red, the viscous fluid inside the cells near the interface is represented in green.   
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Chapter 6 
 

Numerical results      The numerical algorithms described in the previous chapters have been implemented in Matlab. The present chapter reports numerical results of viscoelastic flows in benchmark test cases, using the streamfunction/log–
conformation method, described through chapters 2, 3 and 4. The single-phase viscoelastic flows of an Oldroyd–B fluid are solved in the lid-driven cavity, and the 4:1 planar contraction. Multi-phase simulations are performed to compute the free-surface flows of an Oldroyd–B fluid exiting a planar slit die. The multi-phase flow simulations use the PLIC–VOF method with the ELVIRA interface reconstruction algorithm and the Cellwise Conservative 
Unsplit (CCU) advection scheme, presented in chapter 5.   
6.1. Single-phase viscoelastic flows in a lid-driven cavity  The viscoelastic flow in a lid-driven cavity has been used as a benchmark test case in the literature to evaluate the performance of viscoelastic flow solvers (Fattal & Kupferman 2004; Fattal & Kupferman 2005; Pan, Hao & Glowinski 2009; Hao & Pan 2007; Belblidia at al. 2007). The geometry consists in a square cavity with a unit length 1L = . The flow is driven by the tangential motion of the upper wall, while the other boundaries are stationary, with the no-slip condition, see Figure 6.1. The tangential velocity profile of the lid is regularized (Fattal & Kupferman 2005):  ( ) ( ) ( )( )( ) [ ]22, 16 1 0.5 tanh 8 0.5 2 ,   0,1 ,   0tu x t x x t U x t= − + − ∈ > , (6.1) in order to remove the stress singularity at the corners (Renardy 2003). In this way, the stagnation points located at the corners are not subjected to any deformation rate, preventing the appearance of infinitely increasing stress gradients, which could compromise the smoothness of the solution (Renardy 2006). The regularized velocity profile can be interpreted physically as the result of the fluid slippage on the moving lid, as shown by molecular dynamics simulations (Koplik & Banavar 1995). In addition, the hyperbolic tangent function smoothes the acceleration of the lid, and removes the sudden deformation rate at the initial time. The lid velocity has reached its nominal values when 1t > . The maximum lid velocity is set to 1U = . In this setup, the Weissenberg number is defined as Wi U Lλ= .  
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Figure 6.1: Geometry of the regularized lid-driven cavity.   In spite of the simple geometry, this problem is considered as particularly difficult to solve, especially at high Weissenberg numbers, since the flow exhibits complex features combining shear and extensional deformations. For 0.25Wi = , Figure 6.2(left) represents the flow classifier ϑ , which is defined as:  S
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ϑ −≡
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ε γ
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 (6.3) 
is the persistence-of-straining parameter (Thompson & Mendes 2005), ω  is the vorticity, u xε ≡ ∂ ∂  is the extensional strain rate, and ( ) 2u y v xγ ≡ ∂ ∂ + ∂ ∂  is the shear rate. The flow classifier has the following properties: 1ϑ = ( )S 0R = in pure extensional flow, 0ϑ = ( )S 1R = in pure shear flow, and 1ϑ = − ( )SR → ∞ in pure rigid-body rotation (ϑ and SR are indefinite when the flow is at rest or in pure translation). The magnitude of the extensional strain rate is also depicted in Figure 6.2(right), for 0.25Wi = . Figure 6.2 shows that the material successively experiences shear and extensional deformations. Moreover, the extensional rate reaches large values near the moving lid. As the cavity is a closed system (without inlets and outlets), there is a critical Weissenberg number above which the recirculating material build-up extra-stresses faster than it relaxes. Then, the flow cannot reach a steady state solution, and it exhibits elastic instabilities. In this scenario, the flow develops steep stress boundary layers that require a very fine resolution, otherwise the under-resolution produces numerical instabilities (Fattal & Kupferman 2005).  
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Figure 6.2: Flow classifier ϑ and extensional strain rate ε of the steady-state solution, for 0.25Wi = .   Moreover, in the case of an Oldroyd–B fluid, which lacks finite extensibility, an unbounded stress growth occurs under steady extensional deformations, when ( )1 2ε λ> , as a manifestation of the dissipative constitutive instability. Thus, from a numerical point of view, the simulation of the viscoelastic lid-driven cavity flow at high Weissenberg numbers is similarly challenging as its Newtonian counterpart at high Reynolds numbers. The regularized lid-driven cavity flow of the Oldroyd–B fluid is simulated for various Weissenberg numbers (up to 10Wi = ) by varying the relaxation times. A constant solvent viscosity ratio 1 2β =  is used. The Reynolds number is set to the negligible value 4

0 5 10Re ULρ η −= = ⋅ , such that the flow is virtually considered as a creeping flow.   
6.1.1. Orders of convergence  In this subsection, where the spatial and temporal order of convergences are assessed, the residual tolerance of the iterations algorithm is set to the value 12

tol 10ε −= . The spatial convergence rate is estimated from the relative errors with respect to successive mesh refinements, since there is no analytical solution to evaluate the absolute errors. The simulation is carried out on a Cartesian mesh with the grid spacings 1 40h = , 1 80 , 1 160and 1 320 , and with a fixed time step size 210t −Δ = . The relative error is locally monitored on a sample of 81 points evenly distributed inside the cavity (whose locations correspond to the intersections of the grid lines plotted in Figure 6.2). For a grid size h , the relative error ( ), ,r i je h x y of the numerical solution ( ),h i jx yχ at the point with coordinates ( ) ( ), 10, 10i jx y iL jL= is:  ( ) ( ) ( )2, , , ,r i j h i j h i je h x y x y x yχ χ= − . (6.4) A norm for the global relative error is defined as the root-mean-square of all the local relative errors: 
 ( ) ( )

1 2
9 2

, 1

1 , ,
81r r i j

i j
E h e h x y

=

 
=  
 
 . (6.5) 
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Figure 6.3: Asymptotic convergence of the spatial relative error norm, for the LIN and QUAD stress interpolation schemes.   Variables Spatial convergence rates LIN interpolation scheme QUAD interpolation scheme 

φ  1.17 2.04 
11Ψ  1.16 1.97 
22Ψ  1.15 2.03 
12Ψ  1.75 2.00 

Table 6.1: Spatial convergence rates with the LIN and QUAD stress interpolation schemes.   The numerical solution has a spatial convergence rate p  when its relative error norm asymptotically converges to the zero grid size limit as:  ( ) ( )
0

p p
r h
E h h O hκ

→
+ , (6.6) where κ is a constant. The convergence rate is determined as the slope of the best fitting line of the relative errors norm plotted on logarithmic scale, see Figure 6.3, where:  ( ) ( ) ( )log log logrE h p hκ  +   . (6.7) The spatial convergence rates for the streamfunction and the three components of the log–conformation tensor are reported in Table 6.1, for the LIN and QUAD stress interpolation schemes. As it can be seen, only the QUAD scheme exhibits true second order accuracy. The convergence rate of the LIN scheme—which is used both by Fattal and Kupferman (2005) and Hao and Pan (2007)—is between first and second orders. This confirms that linear stress interpolations, in the momentum equations, degrade the second-order accuracy of the CUBISTA and the central–differencing schemes.     
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Figure 6.4: Asymptotic convergence of the temporal relative error norm.   Variables Temporal convergence rates 

φ  2.13 
11Ψ  1.97 
22Ψ  1.96 
12Ψ  1.97 

Table 6.2: Temporal convergence rates, for 8C < .   The temporal convergence is assessed from the transient solution at the time 2t = , for 1Wi = , such that the flow has not reached its steady-state yet. The simulation is performed for different time-step sizes, but with the same grid spacing 1 160h = , using the QUAD stress interpolation scheme. The temporal convergence rates are evaluated similarly as for the spatial convergence rates, except that the convergence is calculated with respect to refinements of the time-step size (i.e. the Courant number C ), see Figure 6.4. The temporal convergence is of second order accuracy, for Courant numbers below 8. Above this value, the convergence of the log–conformation tensor is degraded to first order, because the time increments become too large to catch the details of the transient flow and the ramping of the lid velocity with the hyperbolic tangent function. The temporal convergence rates, for Courant numbers 8C < , are provided in the Table 6.2. It is interesting to note that stable solutions can be obtained with Courant numbers as large as 64C = , in contrast to the decoupled velocity–pressure methods (Xue, Tanner & Phan-Thien 2004). This result demonstrates the robustness of the fully implicit streamfunction method for solving the conservation laws. At large Courant numbers, each time-step requires more iterations in order to converge, but the simulation comprises less time-steps. As we use a direct matrix solver, the computation cost is directly proportional to the total number of iterations within the entire simulation. Figure 6.5(left) compares the recorded computational costs for the different Courant numbers. It clearly shows that the use of large time-step sizes is beneficial, as far as the computational cost is concerned. However, the precision of the calculations should also be considered when assessing the computational efficiency.    
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Figure 6.5: Computational efficiency: the relative computation costs (left) and the normalized absolute errors (right), for different Courant numbers.   The absolute errors of each variable are evaluated at all the grid points, and normalized by the largest values: 

 ( ) ( ) ( )
( )

0

0,

, ,
, ,

max ,
C i j i j

a C i j
i ji j

x y x y
e x y

x y

χ χ
χ

χ

−
=

  




, (6.8) 
where ( ), ,a C i je x yχ are the normalized absolute errors, ( ),C i jx yχ is the numerical solution obtained with the Courant number C , and 0χ is the reference solution obtained with the finest time increment ( 1 8C = ). Figure 6.5(right) provides the maximum values and the root-mean-squares of the normalized absolute errors of each variable. These data can be used to estimate the maximum allowable time-step size (i.e. the Courant number), in order to reach a given numerical precision.   

6.1.2. Simulations at moderate Weissenberg numbers  In this subsection, the transient viscoelastic lid-driven cavity flow is solved for the moderate Weissenberg numbers 1Wi = , 2  and 3 . The numerical solutions are compared with the available results in the literature (Fattal & Kupferman 2005; Hao & Pan 2007). A non-uniform Cartesian grid comprising 250×250 control volumes is used. The grid is symmetrically refined near the walls, with a constant contraction ratio 1 0.96k kx x+Δ Δ =when approaching the walls, see Figure 6.6. The maximum and minimum grid spacings are 0.02 at the center of the cavity, and 1.27×10-4 at the walls, respectively. The computational efficiency is enhanced with an adaptive time-stepping procedure described in section 4.4. The solution of the streamlines and the components of the log–conformation tensor are represented in Figures 6.7, 6.9 and 6.11, at 8t =  for 1Wi = , and 40t =  for 2Wi =  and 3 , respectively. Figures 6.8, 6.10 and 6.12 provide velocity and log–conformation profiles along the vertical line 1 2x =  and horizontal line 3 4y = , for 1Wi = , 2  and 3 , respectively. These figures also display the history of the specific kinetic energy kE , and the specific elastic energy eE  (i.e. the Helmholtz free energy), defined as:  ( )2 2
k

1 d
2

E u v V
Ω

= + , (6.9) 
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 ( )e
1 tr d
2

E V
Ω

= − c I . (6.10) For 1Wi =  and 2 , the results are in good agreements with those of Fattal and Kupferman (2005) and Hao and Pan (2007). For 3Wi = , some disparities of the results are observed in the vicinity of the upper right corner. However, the present solution is obtained with grid spacings near the walls 30 times finer than in Fattal and Kupferman (2005), and a second-order accurate scheme, which give us confidence in our results. As observed by Fattal and Kupferman (2005), the solution for 3Wi = exhibits small oscillations due to vortices repeatedly created and annihilated, in the vicinity of the upper right corner. Moreover, Fattal and Kupferman (2005) reported convergence difficulties attributed to the under-resolution of subgrid vortices. Under-resolution is generally manifested by chaotic oscillations in the history of the kinetic energy or the elastic energy. However, in the present simulation the history of the kinetic and elastic energies exhibits a quasi-periodicity, for Wi ≥ 2. This quasi-periodicity underpins that the oscillations in the flow are likely to be linked to a structural pattern of elastic instabilities rather than numerical errors. A further discussion on the elastic instabilities is given in the next subsection.   

 
Figure 6.6: Zooms on the upper right corner of the grid having a constant contraction ratio 1 0.96k kx x+Δ Δ = .   
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Figure 6.7: The streamlines and the three components of the log–conformation tensor, at time 8t = , for 1Wi = . (The extrema of the color scales do not correspond to the extrema of the solution.)    
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Figure 6.8: Results at time 8t = , for 1Wi = : velocity and stress profiles along the lines 1 2x =  and 3 4y = ; history of the kinetic energy and elastic energy.  
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Figure 6.9: The streamlines and the three components of the log–conformation tensor, at time 40t = , for 

2Wi = . (The extrema of the color scales do not correspond to the extrema of the solution.)    
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Figure 6.10: Results at time 40t = , for 2Wi = : velocity and stress profiles along the lines 1 2x =  and 3 4y = ; history of the kinetic energy and elastic energy. 
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Figure 6.11: The streamlines and the three components of the log–conformation tensor, at time 40t = , for 

3Wi = . (The extrema of the color scales do not correspond to the extrema of the solution.)    
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Figure 6.12: Results at time 40t = , for 3Wi = : velocity and stress profiles along the lines 1 2x =  and 3 4y = ; history of the kinetic energy and elastic energy. 
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6.1.3. Simulations at high Weissenberg numbers  To the knowledge of the author, numerical results of the lid-driven cavity flows of an Oldroyd–B liquid at the Weissenberg numbers higher than 3 have never been reported in the literature. This subsection presents new results for the lid-driven cavity flow, at the high Weissenberg numbers 5Wi =  and 10 . The same mesh and the same adaptive time-stepping procedure are used as in the previous simulations for lower Weissenberg numbers. The results for 5Wi =  and 10  present similar features that are described below. After the lid velocity has reached its maximum value, the flows undergo transient developments, where the kinetic energy slowly decreases, while elastic energy gets stored in the fluid. The transient developments of the flows take longer time at high Weissenberg numbers, because the fluid has larger relaxation time. During the flow development, some vortices appear at the upper right corner and move downward along the wall, until they either annihilate or merge with the vortex at the lower corner. At some point, the flows evolve into quasi-periodic unsteady states. The quasi-periodicity of the flows are clearly visible in the histories of the specific elastic and kinetic energy, represented in Figures 6.13 and 6.14 for 5Wi =  and 10 , respectively. The amplitude of the oscillations increases with the Weissenberg number, but not the quasi-periodicity, interestingly. Figures 6.13 and 6.14 also display the evolution of the center of the primary vortex, as well as the normalized intensity of vortices generated at the upper corners (scaled by the intensity of the primary vortex). The red and yellow colored areas on the graphs correspond to the time-intervals of noticeable secondary vortices at the upper left and right corners, respectively. The results show a clear correlation between the appearance of secondary vortices at the upper left corner and the flows’ quasi-periodicity. When examining the region of the upper left corner in detail, the presence of a small corner vortex can be seen in Figures 6.15 and 6.16, for 5Wi =  and 10 , respectively. However, the corner vortex has such a low intensity that it can be consisted as virtually stagnating, within the time scale of the material relaxation. Nevertheless, the fluid at the interface between the corner vortex and the primary vortex is subjected to shear deformations. Thus, an elastic stress layer is built-up at the interface between the vortices, as it can be seen in Figures 6.15 and 6.16, where the stress level is monitored by the entrywise 2-norm of the log-conformation tensor 2
2 ij

ij
Ψ= Ψ . The large elastic stress stored in this stress layer is responsible for the increases of elastic energy observed in Figures 6.13 and 6.14. When the accumulated elastic energy reaches a threshold value, another secondary vortex appears just below the corner vortex. The secondary vortex destroys the elastic stress layer while it grows and propagates downward the wall. The elastic energy stored in the stress layer is partly converted into kinetic energy and partly dissipated through viscous dissipation. The secondary vortex also affects the primary vortex of the cavity. Its center gets pushed to the right and starts to oscillate, which results in the fluctuation in the kinetic and elastic energy, see Figure 6.13 and 6.14. Finally, the secondary vortex annihilates when most of the energy elastic stored in the corner region is cleared, and the system finds itself at the beginning of another cycle, with the formation of a new corner vortex. To the knowledge of the author, this structural mechanism of the elastic instabilities in upper left corner of the lid-driven cavity has never been identified in numerical simulations before. It is interesting to note that the elastic instabilities are solely initiated at the corner, where the flow has curved streamlines, while the elastic stress layer is also built-up along the left wall and the moving lid. This feature is consistent with the general mechanism of elastic instability in curved streamlines, discussed by Pakdel and McKinley (1996). Small eddies are also generated and annihilated at the upper right corner of the cavity, see Figure 6.17. However, only few of them develop a reasonable size, and they globally have no noticeable impact on the primary flow. Moreover, they do not present any regular pattern, and their occurrence seems independent from the quasi-periodic oscillations of the rest of the flow. Aperiodic fluctuations of the viscoelastic flow at the upper right corner of the lid-driven cavity have been observed experientially by Pakdel and McKinley (1998). Whether these fluctuations originate from elastic turbulence is still an open question. 
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Figure 6.13: History of the elastic and kinetic energy, evolution of the center of the primary vortex, and intensity of secondary vortices generated at the upper corners, for 5Wi = . The red and yellow colored areas correspond to the time-intervals of noticeable secondary vortices, at the upper left and right corners, respectively.        
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Figure 6.14: History of the elastic and kinetic energy, evolution of the center of the primary vortex, and intensity of secondary vortices generated at the upper corners, for 10Wi = . The red and yellow colored areas correspond to the time-intervals of noticeable secondary vortices, at the upper left and right corners, respectively.   
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Figure 6.15: Snapshots of the streamlines and the 2-norm of the log–conformation tensor at the upper left corner, for 5Wi = .   
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Figure 6.16: Snapshots of the streamlines and the 2-norm of the log–conformation tensor at the upper left corner, for 10Wi = .    
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Figure 6.17: Specimens of secondary vortex generated at the upper right corner, for 5Wi =  and 10 .     
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6.2. Single phase viscoelastic flows through a 4:1 planar contraction  The 4:1 planar contraction is probably one of the most popular benchmark tests for viscoelastic flow solvers. The contraction flows of viscoelastic fluids have been the subject of many experimental investigations, in planar, axisymmetric and three-dimensional geometries (Boger 1987; McKinley et al. 1991; Yesilata, Öztekin & Neti 1999; Sousa  et al. 2009; Sousa  et al. 2011; Rodd et al. 2010). Moreover, as pointed out in the Report on the Vlllth International Workshop on Numerical Methods in Viscoelastic Flows (Brown & McKinley 1994), it is necessary for computational rheologists to have common benchmark tests in order to perform comparative evaluations of the various numerical techniques. A list of selected recent publications addressing the simulation of viscoelastic flows in the 4:1 planar contraction is provided hereinafter. The accuracy of various finite–element techniques and a hybrid FV/FE method has been investigated by Webster et al. (Aboubacar & Webster 2001; Aboubacar & Webster 2003; Belblidia et al. 2007; Belblidia, Matallah & Webster 2008). Kim et al. (2005) implemented a high-resolution DEVSS-G/DG finite–element algorithm with a parallel multi-frontal solver. Another second-order accurate finite–element code with adaptive mesh refinement near the corner has been developed by Cai and Westphal (2009). Finite–element simulations of the viscoelastic flows in planar contraction, using the log–conformation representation, have been done by Kwon (2004; 2012). Concerning the finite–volume method, extensive investigations on the different interpolation schemes have been done by Alves et al. (2000; 2003a; 2003b; 2004; Afonso et al. 2011). Edussuriya, Williams and Bailey (2004) used the QUICK scheme to interpolate the flux of the viscoelastic extra–stress. Phillips and Williams (1999; 2002) have implemented a stable semi–Lagrangian advection scheme for the viscoelastic extra–stress. The importance of using high-resolution schemes has been proven by Alves, Pinho and Oliveira (2000), and the CUBISTA interpolation scheme was proposed to enhance the accuracy and the numerical convergence of viscoelastic finite–volume algorithms (Alves, Oliveira & Pinho 2003a). Moreover, the use of the log–conformation representation in the framework of the finite–volume method (Afonso et al. 2009) makes it possible to investigate the dynamics of the entry flows at high-Deborah numbers (Afonso et al. 2011). The geometry of the 4:1 planar contraction used in the present simulations consist in a reservoir with length 
40L h=  and width 2 8H h= , where h  is half of the width of the outlet channel. The length of the outlet channel is 20l h= , see Figure 6.18. Details on the mesh near the reentrant corner of the abrupt contraction are shown in Figure 6.19. Note that the computational domain includes the entire geometry, since viscoelasticity is responsible for the break-up of the symmetry.   

 
Figure 6.18: Geometry of the 4:1 planar contraction.  
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Figure 6.19: Details of the computational mesh near the abrupt contraction (only the upper part is represented).   The no-slip boundary condition is applied at the walls. The parabolic velocity profile of the fully-developed Newtonian creeping flow is specified at the inlet:  ( )

2

inlet 0 1 yu y U
H

  = −  
   

, (6.11) 
where 0U is the maximum of the inlet velocity profile, at the central line. Zero viscoelastic extra-stresses are prescribed at the inlet. Hence, the flow experiences a rearrangement near the inlet, in order to acquire its fully-developed velocity and viscoelastic extra-stress profiles. However, this flow rearrangement near the inlet does not affect the flow in the abrupt contraction, because of the length of the reservoir. At the outlet boundary, the streamfunction is constrained with a zero normal gradient (i.e. the vertical velocity is zero). Consequently, the outlet boundary condition for the viscoelastic extra-stress is a constant extra-stress flux across the outlet. The Weissenberg number of the viscoelastic flow in the planar contraction is defined as outWi U hλ=  where 

out 08 3U U= is the average velocity in the outlet channel. The Reynolds number is defined as out 0Re U hρ η= . The simulations are performed at the very low Reynolds number 62.5 10Re −= × , such that the inertia terms can be neglected. The retardation ratio of the Oldroyd–B fluid is taken as 1 9β = , in accordance with the previous studies in the literature. The simulations are performed for various Weissenberg numbers ranging from 0Wi =(Newtonian fluid) to 20Wi = . The final time fT  of the simulations are taken as 10 times the relaxation time λ  of the Oldroyd–B fluids. Snapshots of the streamlines of the flows, at the end of the simulations, are displayed in Figure 6.20, for various Weissenberg numbers.   
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Figure 6.20: Streamlines of the viscoelastic flows in the 4:1 planar contraction, at the end of the simulations. 
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Figure 6.20 (Continued)   The flow patterns in Figure 6.20 are in qualitative agreements with the results reported in the literature (Alves, Oliveira & Pinho 2003a; Afonso et al. 2011). The size of the primary vortex at the corners of the reservoir varies as the Weissenberg number increases. A small lip vortex—which is absent in the case of a Newtonian fluid—appears for viscoelastic flows with Weissenberg numbers as low as 0.5Wi = . The size of the lip vortex is enhanced as the Weissenberg number increases. At 3.5Wi = , the lip vortex starts merging with the corner vortex, but the recirculation flow still keeps two distinct axes of rotations. The lip and the corner vortices are completely merged at 5Wi = . Table 6.3 reports the normalized length R RX x h=  of the primary vortex at the reservoir corner, and the normalized intensities of the corner and the lip vortices, ( ) 1R R wΨ φ φ= −  and 

( ) 1L L wΨ φ φ= − , respectively. The quantity Rx  is the length of the corner vortex in contact with the horizontal walls of the reservoir, while Rφ  and Lφ  are the streamfunction values at the center of the corner and lip vortices, and wφ  is the boundary value of the streamfunction at the walls in contact with the vortices. The normalized values of the vortex length and the vortex intensities are plotted versus the Weissenberg number and compared to other numerical results from the literature, in Figure 6.21–6.23. The intensity of the lip vortex increases with the Weissenberg number, and eventually becomes larger than the intensity of the corner vortices, at 1.5Wi = . After the transient development of the viscoelastic flows, the numerical solutions exhibit small fluctuations around a steady-state solution, for 1.5Wi ≥ . The quantitative results provided hereinafter correspond to the averaged solution, after the transient development. Investigations of these fluctuations require numerical simulations for longer times, which were not in the scope of the present work.  
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Wi  RX  310RΨ ×  310LΨ ×  0.0 1.50 1.17 0 0.5 1.46 1.03 0.20 1.0 1.39 0.85 0.72 1.5 1.32 0.67 0.75 2.0 1.24 0.53 1.1 2.5 1.17 0.43 1.5 3.0 1.12 0.39 2.0 3.5 1.11 0.44 3.0 4.0 1.12 3.7 4.5 1.16 4.7 5.0 1.26 6.5 10 2.34 24.2 

Table 6.3: Normalized length of the primary vortex; normalized intensities of the corner vortex and the lip vortex, which start merging at 3.5Wi = .    

 
Figure 6.21: Normalized length of the corner vortex.   
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Figure 6.22: Normalized intensity of the corner vortex before the merging with the lip vortex.    

 
Figure 6.23 Normalized intensity of the lip vortex (before the merging) and the primary vortex (after merging).       
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The present results follow the same trend as the benchmark solutions of Alves, Oliveira and Pinho (2003b) and Afonso et al. (2011). However, there are discrepancies in the quantitative results of the different studies in the literature. First of all, the accuracy of the solution depends on the discretization techniques used in the finite–volume or the finite–element algorithms, as shown by Alves et al. (2000, 2003a). Secondly, the vortex length and the vortex intensity are not the primary variables of the calculations based on the velocity–pressure formulation. Therefore, their precisions also depend on the post-processing calculations (the determination of the streamfunction from the velocity field requires the solving of a Poisson equation). In the present study, the streamfunction is the primary variable of the calculation, in contrast with the other numerical algorithms presented in the literature. The streamfunction values at the center of the vortices, which are local extrema, are obtained by biquadratic interpolation of the discrete (pointwise) streamfunction solutions. The calculation mesh in the vicinity of the reentrant corner is much finer in the present study than in the other simulations presented in the literature. This explains why the present solution enhances the values of the lip intensity. The contours of the vortices, i.e. the isoline ( ) wφ φ=x , are determined by linear interpolation of the discrete streamfunction solutions. Then, the length Rx of the vortex in contact with the walls is obtained by extrapolation of the vortex contour to the wall. Hence, the final result for the vortex length also depends on the post-processing calculations. In the author’s opinion, the reason why the present values of the vortex length are larger than those reported in the literature is because the particular choice of extrapolation procedure favors larger values. Therefore, the qualitative agreements with the benchmark solution of Alves, Oliveira, and Pinho (2003b) and Afonso et al. (2011) are satisfying, since the present post-processing calculations did not aim at reproducing the exact same values. Finally, the mesh density near the stagnation points of the corner vortices is relatively coarse, in the present simulations. More precise solutions could be obtained with further investigations using finer grids. Numerical simulations have also been performed at the high Weissenberg numbers 10Wi = and 20Wi = . At 
10Wi = , the corner vortex grows in size and intensity as compared to the solution at 5Wi = , and the flow continues to experience small fluctuations. The transient solution also contains a vortex back-shedding regime in the outlet channel, where perturbations of the parallel flow originating from the outlet shed in the upstream direction, without back flow, until they annihilate, as shown in Figure 6.24. However, the present vortex back-shedding regime is believed to be a numerical artefact caused by the outlet boundary condition. Moreover, it does not impact the flow inside the abrupt contraction, since the outlet channel is very long. At 20Wi = , the viscoelastic flow exhibits elastic instabilities at the corner vortices, similar to the third vortex growth regime described by Afonso et al. (2011), see snapshots of the streamlines in Figure 6.25. However, only two cycles of the third vortex growth are present during the total simulation time 200fT = ; thus, we cannot draw a conclusion on the frequency (and a possible quasi-periodicity) of the third vortex growth instability. Figure 6.26 shows the 2-norm of the log–conformation tensor, before and after the elastic instability at the corner. As it can be seen, the elastic instability contributes to the dissipation of elastic energy accumulated near the contour of the corner vortices. Again, more thorough investigations would be necessary to validate the present results, but the qualitative agreements with the simulations at high Weissenberg numbers of Afonso et al. (2011) are promising.   
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Figure 6.25: Streamlines of the elastic instability of the corner vortex in the 4:1 planar contraction, for 20Wi = . 
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Figure 6.26: 2-norm of the log–conformation tensor, (left) before the elastic instability and (right) after the elastic instability, for 20Wi = . (Both pictures have the same color legend.)   

6.3. Simulation of the extrudate swelling of an Oldroyd–B liquid  This subsection presents some preliminary results of the extrudate swelling of an Oldroyd–B liquid. The numerical simulation of extrudate swelling has a scientific interest as well as a practical importance in polymer processing. The planar extrudate swell has already been simulated by Tomé et al. (2002), who also use the Eulerian methodology, where the free-surfaces are tracked with the markers–and–cells algorithm. Numerical simulations of extrudate swelling within the Lagrangian framework have been done by Crochet and Keunings (1980; 1982a; 1982b), Russo and Phillips (2011), and Choi and Hulsen (2011), to cite a few. The simulations of viscoelastic free-surface flows of Bonito, Picasso and Laso (2006) with a variant of the Volume–of–fluid method, and Xu et al. (2012) with the smoothed particle hydrodynamics method, are also worth mentioning even though they solve flows in different geometries. In the present work, the free-surface of the extrudate is tracked with the 
Volume–of–fluid method and the Cellwise Conservative Unsplit advection scheme, presented in chapter 5. The geometry of the simulations consists in a planar channel with an abrupt expansion. The parabolic fully-developed flow profile is imposed at the inlet of the channel. The external boundaries of the expansion are assigned the outlet boundary condition. The calculations take advantage of the symmetry, and only half of the geometry is simulated. The dimensions of the channel and the expansion are indicated in Figure 6.27. At the beginning of the simulation, half of the channel is already filled with the Oldroyd–B liquid. Note that the streamfunction flow solver also computes the flow of the air, which is assigned an artificial viscosity equal to a thousandth of the viscosity of the extruded material. The simulations do not include the gravity. During the extrusion of a viscoelastic material, the first normal stress difference of the viscoelastic extra-stresses 1 P, P,xx yyN τ τ= − , which is developed inside the die, produces an additional swelling of the extrudate, as compared to the extrusion of inelastic liquids. The shear rate at the wall and the retardation ratio β  are the key parameters that determine the level of the viscoelastic extra-stresses which are developed inside the channel. Thus, the Weissenberg number is here defined differently than in the previous sections. Here, the relaxation time is scaled by the wall’s shear rate of the fully-developed flow profile:  02UWi

h
λ= , (6.12)  
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Figure 6.27: Geometry of the planar extrudate swelling simulations.   where 0U is the maximum velocity of the fully-developed flow profile (i.e. the velocity at the symmetry plane), and h  is half of the width of the channel. The retardation ratio of the Oldroyd–B fluid is taken as 1 9β = . The flows are simulated at the very low Reynolds number 4

0 0 8.3 10Re U hρ η −= = × . Preliminary results show that the extrudate has a smooth surface, at low Weissenberg numbers. Figure 6.28 displays the different components of the velocity vector and the log–conformation tensor, for the value 0.6Wi = . It can be seen that the stress boundary layer and the velocity profile are relatively stable along the channel. However, the situation is quite different at higher Weissenberg numbers. Snapshots of the different components of the velocity vector and the log–conformation tensor for 6Wi =  are shown at different times in Figures 6.29–6.33. (Only half of the domain displayed in Figures 6.29–6.33 was actually computed; the other half is simply replicated by symmetry.) Large fluctuations in the stress layers and the velocity profile are noticeable. These fluctuations affect the flow at the die exit. The extrudate exhibits portions with different swelling ratios. The reader should note however that the simulated shape of the extrudate is constrained to the symmetry line. When the full geometry is simulated without the symmetry line, the fluctuations in the channel become asymmetric, and the extrudate alternately bends toward the top or the bottom of the vertical direction. This has a similarity with the fracture melt extrusion instability described in the introduction. However, the wavy and helicoidal instabilities observed in real extrusion are three-dimensional, whereas the two-dimensional bending in our simulations without a symmetry boundary is believed to be an artificial effect of the plane-strain assumption. Therefore, it was chosen to use the symmetry boundary condition. Although the symmetry clearly constraints the shape of the extrudate, we believe that it does not impact the mechanism of the instabilities that originate at the walls. These extrusion instabilities seem to have a periodicity, but additional simulations are necessary to confirm this observation. At this point, we can say that the current simulations emulate the fracture melt extrusion defects, and that the observed instabilities are due to fluctuations in the stress layer at the wall. However, it cannot be concluded whether the stress instabilities have a physical origin or are due to a numerical artefact. Nevertheless, these observations are consistent with the theory of Morozov and van Saarloos (2007), which introduces the possibility of subcritical (nonlinear) flow instability in viscoelastic parallel flows, without the need of wall slip. Finally, to the knowledge of the author, only one attempt of direct numerical simulation of the fracture melt extrusion defect has been reported in the literature to this day (Kwon 2015).   
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Figure 6.28: Stable extrusion at 0.6Wi = ; from top to bottom: horizontal velocity, vertical velocity, 11Ψ , 12Ψ  and 22Ψ component of the log–conformation tensor. 
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Figure 6.29: Snapshots of the horizontal velocity of the extrudate, at different times, for 6Wi = .   
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Figure 6.30: Snapshots of the vertical velocity of the extrudate, at different times, for 6Wi = .   
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Figure 6.31: Snapshots of the component 11Ψ of the log–conformation tensor in the extrudate, at different times, for 6Wi = .   
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Figure 6.32: Snapshots of the component 12Ψ of the log–conformation tensor in the extrudate, at different times, for 6Wi = .   
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Figure 6.33: Snapshots of the component 22Ψ of the log–conformation tensor in the extrudate, at different times, for 6Wi = .   
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Chapter 7 
 

Conclusions      
7.1. Summary  The simulation of viscoelastic flows has both a scientific importance and practical implications in polymer processing. This work has put the emphasis on the extrusion of polymeric materials, in particular. Despite the very simple geometry, the extrusion and co-extrusion processes are prone to dynamical instabilities because of the viscoelasticity of polymers. Chapter 1 has summarized the different mechanisms of the dynamical instabilities observed in extrusion and co-extrusion. The various modelling approaches that have been developed in the literature and the remaining modelling challenges have also been reviewed. The popular differential constitutive models, derived from molecular theories of dilute polymer solutions, polymer networks, and entangled polymer melts of linear and branched polymers, have been surveyed in chapter 2. Inelastic phenomenological models describing shear–thinning and visco-plastic (yields stress) fluids, based on the generalized Newtonian fluid model, have also been provided. In addition, the numerical issues related to the high Weissenberg number problem, and its remedy with the log–conformation representation, have been discussed. Chapter 3 deals with the formulations and the solution techniques of the conservation of mass and momentum. Drawbacks of the classical velocity–pressure decoupled method (which is by far the most popular approach) have been discussed. Finally, the pure–streamfunction formulation, which is derived from the vorticity–based methods, has been presented as an alternative to the pressure–based methods. The implicit pure–streamfunction formulation is formally more accurate than the velocity–pressure decoupled method, because it is immune of decoupling errors. Moreover, the absence of decoupling enhances the stability of the calculation. The discretization of the governing equations (conservation laws and constitutive models), with the finite–volume method, on a Cartesian grid, has been described in chapter 4. Discrete curl operators are applied to the discretized momentum equations in order to obtain the matrix system of the discrete streamfunction variables. The coupling of the streamfunction/log–conformation scheme with adaptive under-relaxation and adaptive time-stepping yields an efficient viscoelastic flow solver algorithm. The potential extension of the method to three-dimensional simulations has also been discussed. Chapter 5 addresses the modelling of multiphase flows with the Volume–of–Fluid (VOF) method, and the standard Piecewise–Linear–Interface–Construction (PLIC). In addition, a new Cellwise Conservative Unsplit (CCU) advection scheme has been developed. The CCU scheme updates the liquid volume fractions based on cellwise backward-tracking of the liquid volumes. The algorithm calculates non-overlapping and conforming adjacent 



140 
 

donating regions, which ensures the boundedness and conservativeness of the liquid volume. As a result, the CCU advection scheme is overall more accurate in classical benchmark tests, than the other state-of-the-art multi-dimensional VOF–advection schemes. In complex flows, the convergence rate of the CCU scheme with mesh refinements is between 2 and 3. Moreover, the remaining geometrical errors are mostly due to the inability of the standard PLIC to represent subgrid material topologies (i.e. high curvatures and thin material filaments), rather than the proposed CCU advection scheme. The numerical method presented within this thesis has been implemented in Matlab. Examples of numerical results obtained with the proposed methodology have been reported in chapter 6. The performed simulations aimed at assessing the accuracy and the stability of the numerical method, rather than solving a specific problem. Thus, the Oldroyd–B constitutive model was chosen, despite its inadequate description of the viscoelastic extensional behavior, because it is more prone to numerical issues as compared to the more realistic nonlinear differential models. The calculations in the regularized lid–driven cavity exhibit second-order spatial and temporal accuracy. Moreover, simulations at very large Courant numbers are possible (up to 64 for low Weissenberg numbers), which demonstrates the robustness of the streamfunction/log-conformation scheme. Numerical simulations of the viscoelastic flows in the 4:1 planar contraction qualitatively agree with the benchmark solutions available in the literature. The enhancement of numerical stability, with the streamfunction/log–conformation scheme, makes it possible to simulation elastic instabilities at high Weissenberg numbers. The elastic instability appears to be a mechanism that dissipates the elastic energy stored inside the stress layers, in the regions with curved streamlines. Finally, preliminary simulations of extrudate swelling show that the fracture melt extrusion defect could be caused by instabilities in the stress layer at the surface of the die, triggered at moderate Weissenberg numbers. This instability could correspond to a non-linear subcritical viscoelastic instability of the parallel viscoelastic flows, but more work is necessary in order to conclude.   
7.2. Perspectives  Further simulations of the melt fracture and the stick-spurt extrusion instabilities require the inclusion of realistic slip laws modelling weak slip and strong slip on the surface of the die. To the author’s knowledge, simulation of extrusion that both includes the elastic instabilities originating from the reservoir and the complex slip behavior on the die surface, have never been done. Future work could also focus on the effects of the die geometry on these extrusion instabilities. In addition, the implementation of a thermal solver would make it possible to investigate the effects of viscous heating and temperature-dependent material properties. Apart from physics that have been omitted, the present simulations are limited to relatively simple geometries, because of the Cartesian grid. The developed algorithm only allows rough representations of complex geometries, with stair-case contours. However, the pure–streamfunction formulation, the log–conformation representation and the VOF–PLIC–CCU methodology are not bounded themselves to Cartesian grids. Hence, the proposed approach could be extended to unstructured meshes, although it requires more involved programming. Then, the simulations of other benchmark flows, such as viscoelastic flows around a cylinder, in a corrugated channel or in a curved channel, could be addressed. Nevertheless, in the author’s opinion, the use of unstructured meshes, which fit arbitrary geometries, is not necessarily the most suitable approach, although extensive research works have been done in the past decades toward the development of efficient mesh generators. The boundary fitted methods, where it is the geometries which are embedded into arbitrary grids, for instance with the Cartesian cut–cell approach or the immersed–boundary–method, are attractive alternatives to unstructured meshes. Moreover, a very high fidelity to the original geometries is achievable with the use of hierarchical quadtree grids. In addition, quadtree can easily be combined with 
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dynamical adaptive mesh refinements, which enhance the accuracy of the calculations in regions where it is needed. The extension of the current algorithm to three–dimensional simulations is possible; however it will require the use of high–performance–computing technologies, to solve very large matrix systems. Indeed, the desirable three-dimensional solver must be able to deal with problems that have several millions of control–volumes (as modern commercial softwares do). For the purposes of comparison, the heaviest calculation performed with the developed in-house code (on a two–dimensional geometry) had about ~100,000 degrees of freedom. The computational cost for larger problems becomes too expensive for direct matrix solvers. Thus, it will be preferable to solve the large matrix systems of three-dimensional problems—which have more than ~100,000 unknowns—with the iterative solvers in the Krylov subspace family, as for instance the Conjugated–Gradient method, BiCGSTAB, GMRES, etc. Cartesian grid systems also have the significant advantage of preserving the band-structure of the matrix system, which enhances the efficiency of the iterative solvers. In addition, the improvements of the discretization schemes toward high–order methods would be beneficial, in order to achieve more accurate calculations on a given mesh, or similar accuracy on coarser mesh (i.e. with fewer degrees of freedom). Concerning the extension of the CCU VOF–advection scheme to three-dimensions, the main challenge lies in performing complex geometrical operations, for instance computing the intersections of concave or self-intersecting polyhedra, with robust and efficient algorithms. Further research on the development of more accurate interface representations beyond the classical PLIC technique are also needed, in order to improve the accuracy of the VOF method. Finally, the use of Computational Fluid Dynamics tools has become more and more popular in other domains of research beyond its traditional fields of applications. The simulation of multiphase viscoelastic flows has many other applications in different fields of Physics and Engineering, besides polymer processing, where it would be interesting to use the developed numerical framework. To cite a few examples, viscoelastic flows are very relevant to Chemical Engineering, Micro-fluidics, Bio-mechanics and Environmental Science. 
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Résumé : 
Nous présentons une méthodologie pour simuler les écoulements viscoélastiques possédant des surfaces 
libres, dans la perspective de modéliser les procédés de mise en forme des polymères, tels que l’extrusion ou 
le moulage par injection. L’utilisation de lois de comportements viscoélastiques permet de prendre en 
compte les “effets de mémoire” des polymères déformés. Cependant, leurs utilisations engendrent aussi des 
difficultés d’ordre numériques, que nous résolvons avec une reformulation des contraintes viscoélastiques 
par la “log-conformation-transformation”. Par ailleurs, la nouveauté de ces travaux réside dans 
l’utilisation de la méthode dite des “volume-of-fluid” pour simuler le déplacement des surfaces libres du 
fluide viscoélastique. Enfin, nous présentons des résultats de simulations préliminaires où nous testons 
séparément les différentes possibilités de notre modèle. 

Abstract: 
We present a new methodology to simulate viscoelastic flows with free-surfaces. These simulations are 
motivated by the modelling of polymers manufacturing techniques, such as extrusion and injection moulding. 
One of the consequences of viscoelasticity is that polymeric materials have a “memory” of their past 
deformations. This generates some numerical difficulties which are addressed with the log-conformation 
transformation. The main novelty of this work lies on the use of the volume-of-fluid method to track the free 
surfaces of the viscoelastic flows. We present some preliminary results of test case simulations where the 
different features of the model are tested independently. 

Key words: computational rheology, viscoelastic flows, free-surface flows, volume-of-fluid method 

1 Introduction 
The simulation of viscoelastic flows with free surfaces is of particular interest for the modelling of polymer 
processing technologies, such as extrusion, injection moulding, blow moulding and tape casting, of single 
polymeric materials and ceramics colloidal suspension. Polymer solutions and melts are known for their non-
Newtonian behaviours: shear-thinning (when the viscosity decreases with the deformation-rate), and 
viscoelasticity (when the deformations are affected by memory effects). Viscoelasticity is responsible for 
stress relaxation, creep deformations and elastic drawback. Those non-Newtonian behaviours fundamentally 
arise from the complex microstructure of the material, where long polymer chains are able to slide between 
each other, get stretched and change conformations during the deformations [1]. Non-Newtonian effects can 
also cause viscous and elastic interfacial instabilities in stratified flows [2]. This issue is important from both 
theoretical and practical points of views, especially for the co-processing of multi-material architectures. 

Historically, the first studies of viscoelastic flows with free-surfaces were using Lagrangian methods (based 
on deforming meshes) in the context of finite-element analysis, to investigate the extrudate swell problem [3]. 
More recently, the marker-and-cell method [4] and the level set method [5] were implemented in order to 
track the free surfaces. Mixed Eulerian-Lagrangian methods were also developed [6]. In the present work, 
we use the volume-of-fluid (VOF) method, in which the free-surfaces are represented in a purely Eulerian 
manner. The main advantage of Eulerian methods over the Lagrangian methods is that they can adapt to 
arbitrary changes of topology of the free surfaces [7]. This is a very important feature for the simulation of 
injection moulding of complex geometries, in which junctions and separations of the material front 
frequently happen. 
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In the first part of the paper, we present the governing equations of the model. Then, the specific numerical 
techniques used to solve the viscoelastic flow problem and the free surfaces are briefly described. Each of 
those techniques has been implemented and tested separately with various test-case simulations. Finally, 
concluding remarks are summarized at the end of the paper. 

2 Governing equations 
The basic equations to be solved are the continuity equation (conservation of mass): 

 ( ) 0ρ∇ ⋅ =u  (1) 

and the momentum equations (conservation of linear momentum): 

 ( ) 2p
t

ρ ρ μ∂ + ∇ ⋅ = −∇ + ∇ + ∇ ⋅
∂
u uu u σ  (2) 

where ρ is the bulk density, μ is the (Newtonian) viscosity of the material, u is the velocity vector, p is the 
isostatic pressure and σ is the viscoelastic extra-stress tensor. In order to close this system of equations, a 
constitutive model which relates the viscoelastic stress tensor to the kinetics of the flow is required. The 
specificity of viscoelastic materials is that they behave both like liquids (viscous deformation) and solids 
(elastic deformation), depending on the time scale of observation or their rates of deformation. As a 
consequence, viscoelastic constitutive models cannot be expressed with algebraic relations, like for purely 
viscous and purely elastic materials. Indeed, viscoelastic constitutive models are either written on integral 
form or as partial differential equations (PDE), with respect to time. A large variety of models exist within 
those two classes of constitutive relations. On the one hand, some models were developed from an empirical 
approach, in order to fit particular experimental data best. On the other hand, generic models with the 
capability of describing most standard flow behaviours were derived, either from molecular kinetic theories 
or pure mathematical expansions [8]. In general, the appropriate constitutive model should be chosen 
considering its simplicity, its computational efficiency, its flexibility and its capability to describe the 
expected flow features. In this work, we use the Oldroyd-B model, which is one of the most popular 
viscoelastic constitutive relations. It is a linear partial differential constitutive model: 

 
t

λ η+ =σ σ γD

D
 (3) 

where λ is the relaxation time of the material, η is the viscosity of the viscoelastic deformations, 

( )T= ∇ + ∇γ u u is the strain-rate tensor, and 

 ( ) ( )Td

t dt
= + ⋅∇ − ∇ ⋅ − ⋅ ∇σ σ u σ u σ σ uD

D
 (4) 

is the upper-convected time derivative of the stress tensor. 

3 Numerical methods 

3.1 Discretisation 
The governing equations are discretized in space with the Eulerian finite-volume method. The calculation 
domain is divided in non-overlapping control volumes (CV), forming a structured orthogonal mesh of the 
geometry.  The pressure and the viscoelastic stress component are stored at the centre of the CV, while the 
different velocity components stored at the centres of boundaries of the CV, as represented in figure 1(a). 
This staggered arrangement of the variables avoids the odd-even pressure decoupling. The equations of 
conservation (of mass and linear momentum) are integrated on each CV, and expressed in terms of a flux 
balance, via the divergence theorem. The evaluation of the fluxes at the boundary of the CV requires an 
interpolation. We use a quadratic upwind interpolation scheme with second-order accuracy in space. 
Moreover, the boundedness of interpolation is insured by the use of flux limiters, enhancing the stability of 
the scheme [9]. The resulting PDEs are further discretized in time with the two-step backward differentiation 
formula (BDF2), and the non-linear convective terms are linearized with a Taylor expansion around the 
solution at the previous time-step. It results in a stable implicit scheme with second-order accuracy in time. 
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FIG. 1 – (a) Staggered variable arrangement on the mesh and (b) geometrical reconstruction of the free 
surface with a piecewise linear function. 

The dimensionless quantity commonly used to measure the effect of viscoelasticity is the Weissenberg 
number Wi, defined as Wi λγ=  , where γ  is a characteristic deformation rate of the flow. When elastic 
effects are dominant (at high Wi), the solution of the constitutive equation is a fast exponential decay. It is a 
typical “stiff problem” prone to numerical instability. This difficulty is known as the « High Weissenberg 
Number Problem » [10]. It can be remedied by the passage to logarithmic variables in the constitutive 
equation [11,12]. It is done by taking the matrix-logarithm of the conformation tensor 

 
λ
η

= +c I σ  (5) 

because it is always symmetric-positive-definite (at the contrary to the viscoelastic stress tensor), which is a 
necessary condition for the existence of the matrix-log. The matrix-logarithm transformation also required 
the diagonalisation of the conformation tensor: 

 ( ) ( ) Tlog log=c R Λ R  (6) 

where Λ is a diagonal matrix containing the eigenvalues of the conformation tensor, and R is the orthogonal 
matrix of the eigendecomposition. This transformation yields a conservation equation for the log-
conformation tensor ( )log=Θ c , which has a linear decay as solution. Without this transformation, the 

calculation of viscoelastic flows is still possible, but it is limited to Wi numbers below a threshold value 
depending on the kinetics of the flow and the discretisation techniques [13]. The results presented in the next 
section have been obtained without the use of the log-conformation transformation, in flow configurations 
below this limit. 

3.2 Solution procedure 
The velocities and the viscoelastic stresses can be calculated separately, by solving the momentum and 
constitutive equations sequentially. However, we do not have an evolution equation for the pressure, which 
is only seen in the momentum equations. The pressure is determined through the combination of the 
momentum and continuity equations instead. Indeed, the pressure can be seen as a Lagrange multiplier of the 
continuity equation, which limits the solution of the velocity to a divergence-free vector field. Therefore, the 
momentum and continuity equations have to be solved at the same time, but it is challenging from a 
numerical point of view, because the Jacobi matrix of the discretised system of equations is ill-conditioned. 
As a consequence, the numerical solutions are inaccurate and expensive to compute since only direct solvers, 
e.g. Gaussian elimination, can be used. The approach to remedy this problem is to derive a separate equation 
for the pressure, by taking the divergence of the momentum equations (the Chorin-Temam method). The 
resulting system of equations is further decoupled using a generalised LU-block decomposition [14]. We 
solve the problem efficiently with the GMRES iterative solver, based on conjugated-gradients. 

3.3 Free surfaces tracking 
Within the VOF method, a new discrete variable is introduced: the volume fraction 0 ≤ φ ≤ 1 of the control 
volumes. At the end of each time step, the volume fraction is transported explicitly with the flow, and the 
apparent material properties of the CV are updated with the rule of mixture accordingly. The capillary forces 

u 
v 
p, σij 

(a) (b) 

0.85 0.18 1
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0.22 0 0.77
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(surface tension) are neglected, as in this case they are several orders of magnitude lower than the viscous 
and elastic stresses. The advection scheme of the VOF method conserves the mass, and consists of two steps: 

- The geometrical reconstruction: the interface inside cells where 0 < φ < 1 is represented by a 
piecewise linear function. The position of the interface is parameterized by two variables: its slope 
and its distance from the centre of the control volume; and has one constraint: the volume fraction 
inside the cell. The remaining free parameter is determined so that the prolongation of the piecewise 
linear function into the eight neighbouring cells (in 2D) fits the best their volume fractions, see 
figure 1(b). This consists in an optimization problem. We use the ELVIRA method [15], which 
evaluates only six candidates for the interface, and chose the one which minimise the least-square 
error, without iterations.  This method is of second-order accuracy. 

- The forward advection scheme: the volume fraction of the fluid is advected explicitly, using the 
reconstructed position of the interface to evaluate the conservative fluxes. The volume fractions 
which are exchanged with the neighbouring cells are the one of the volumes effectively 
donated/accepted, rather than the total one of the cells. The time-step size of the calculation is 
constrained by the Courant–Friedrichs–Lewy condition, but the numerical diffusion of the scheme is 
limited. We used a split advection, and alternate the order of the directions of advection at every 
time-step. It was shown in [15] that in this way the advection is second-order accurate in time. 

Unlike the front-tracking methods using markers or continuous chain of line segments to represent the 
interfaces, the VOF method naturally handles the junctions and separations of surfaces, without any need of 
surgical operations adding or removing boundary elements [7]. 

4 Results 
This section presents the results of preliminary simulations performed in order to validate the 
implementation of our methods. The first test-case simulation is the transient viscoelastic Poiseuille flow 
driven by a pressure gradient suddenly imposed at the initial time. This simulation is used to validate the 
temporal accuracy of the algorithm, as it is one of the few transient problems for which an analytical solution 
exists. The exact solution does not have a closed form and is expressed as an infinite series, see [16]. The 
numerical simulation is performed at Re = 0.02, Wi = 0.3 and η/μ = 0.75. Figure 2 presents the velocity 
magnitude at the central line of the channel, as well as the velocity profiles at different points of time. Unlike 
purely viscous fluids, here the velocity profile growths until it reaches a maximal amplitude, and then 
decrease slowly due to viscoelastic effects. The numerical results are in very good agreements with the 
analytical solution, and confirm the good temporal accuracy of the BDF2 scheme. 

The second test-case simulation is the steady-state viscoelastic flow in planar contraction-expansion 
geometry. The flow inlet and outlet are the west and east boundaries of the domain respectively, where fixed 
pressures are imposed. The south boundary is a symmetry line, and all the other boundaries are solid walls 
with the no-slip condition. Flows in planar contraction have already been investigated, both theoretically 
[17,18] and numerically [19,20]. It was notably used to assess the spatial accuracy of different interpolation 
schemes [9,13]. Indeed, the different components of the velocity vector and the viscoelastic stress tensor are 
strongly coupled; the flow exhibits vortices at the salient corners, and stress singularities at the reentrent 
corners. However, the use of a staggered mesh arrangement avoids the calculation of the stress singularities. 
Figure 3 displays the contour plots of the pressure level and the viscoelastic stresses for a creeping flow 
(Re = 0) at Wi = 1.04 with η/μ = 1. Unlike for purely viscous fluids, the viscoelastic creeping flow is 
unsymmetrical because of to the memory effects. 

The last test-case simulation is the extrusion of a Newtonian fluid with free surfaces at Re = 0. The position 
of the free surface at the end of the extrusion is represented in the figure 4. The swelling ratio, defined as the 
ratio of the diameter of the extrudate by the diameter die, is Rd/Re = 1.45. In this case, the swelling is due to 
dynamical effects only, as Newtonian fluids do not have memory effects. Indeed, the velocity profile, which 
has a parabolic shape at the die exit, has to rearrange itself to become a homogeneous velocity profile. We 
observe that it takes a distance of approximately 3Rd from the die exit for the material to obtain its final 
diameter. This simulation demonstrates the ability of the VOF method to track the free-surface in extrusion. 
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FIG. 2 – Transient viscoelastic Poiseille flow at Re = 0.02, Wi = 0.3 and η/μ = 0.75. Left: velocity magnitude 
at the central line of the channel. Right: velocity profiles at the times [sec]: 0.005, 0.01, 0.015 (growing 

velocity profiles), 0.03, 0.09, 0.18 (decreasing velocity profiles), and 0.6 (steady-state solution). 

 

  

FIG. 3 – Contour plot of the pressure level and the viscoelastic stresses for the viscoelastic creeping flow in 
the planar contraction-expansion geometry at Wi = 1.04 with η/μ = 1. 

 

FIG. 4 – Position of the free surface at the end of the extrusion of a Newtonian material at Re = 0. 

5 Concluding remarks 
A numerical framework for the modelling of viscoelastic flows with free surfaces has been presented. The 
different features of the model: the viscoelastic stress solver and the free surface tracking algorithm, were 
tested separately. Their coupling has not been done yet, and it will be the focus of our future work. The 
preliminary results show good temporal and spatial resolutions, thanks to the second-order accuracy of the 
BDF2 and the upwind quadratic interpolation schemes. Moreover, the VOF method is a robust technique to 
track the free surfaces of viscoelastic flows, since it can adapt to changes of topology of the free surfaces. 
This is of great interest for the simulation of polymers manufacturing processes. This method can also be 
used to predict the interface deformations, due to the flow instability and the secondary recirculation flows 
generated by viscoelastic effects, in the co-processing of multi-materials architectures. 
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Abstract. Accurate multi-phase flow solvers at low Reynolds number are of particular interest for 

the simulation of interface instabilities in the co-processing of multilayered material. We present a 

two-phase flow solver for incompressible viscous fluids which uses the streamfunction as the 

primary variable of the flow. Contrary to fractional step methods, the streamfunction formulation 

eliminates the pressure unknowns, and automatically fulfills the incompressibility constraint by 

construction. As a result, the method circumvents the loss of temporal accuracy at low Reynolds 

numbers. The interface is tracked by the Volume-of-Fluid technique and the interaction with the 

streamfunction formulation is investigated by examining the Rayleigh-Taylor instability and broken 

dam problem. The results of the solver are in good agreement with previously published theoretical 

and experimental results of the first and latter mentioned problem, respectively. 

Introduction 

The simulations of multiphase and free-surface flows are of particular interest for the modeling 

of manufacturing processes involving molten materials, such as in metal casting or polymer 

molding. Free-surface flow simulations are useful to predict manufacturing defects related to 

improper mold filling. In addition, the development of advanced co-processing manufacturing 

techniques for multilayered composite structures and functionally graded materials (e.g. co-

extrusion, co-injection molding, multilayer tape casting, etc.) requires the control of stratified flows. 

Depending on the flow conditions, the interface between immiscible fluids can be subjected to 

interfacial instabilities and deformations. In co-extrusion for instance, the mismatches of the 

rheological properties induce secondary flows which result in the deformation of the interfaces. 

Those phenomena are known as viscous encapsulation and elastic rearrangement [1]. In general, 

interfacial instabilities are generated when the two materials have different rheological properties, 

which lead to a discontinuity in the shear-rate across the interface. In this context, Computational-

Fluid-Dynamics is a powerful tool to understand the kinetics of interfaces, and to improve the 

quality of production. 

The main difficulty associated with incompressible flow is that the pressure field is not a state 

variable of the fluid. It is a dynamical parameter which does not have an evolution equation. In 

order to alleviate the difficulties with the velocity-pressure coupling, incompressible flows are 

generally solved with fractional-step methods, first introduced by Chorin [2]. It consists in splitting 

the Navier-Stokes problem into a general convection-diffusion equation for the momentum, and a 

Poisson equation for the pressure [3]. The semi-implicit methods (SIMPLER, SIMPLEC and PISO) 

can also be classified as fractional step method as they lay on the same idea of velocity-pressure 

decoupling [4]. Fractional step methods have demonstrated their efficiency to solve a wide range of 

aerodynamic and hydrodynamic problems, usually characterized by Reynolds numbers above unity. 

However, those  methods present some  disadvantages in  the context of low-Reynolds number 
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flows, typical of polymer processing and microfluidic. Some of those disadvantages are listed 

below: 

1) The decoupling between the velocity and pressure introduces splitting errors. Some methods 

can ensure a certain reduction rate of the splitting error when the time-step increment is reduced. 

However, an analysis of the splitting error with a Taylor series shows that the dominant error term is 

proportional to (1/Re)
α
, where α is a natural number [3]. As a consequence, the temporal accuracy of 

fractional step methods is severally degraded when Re < 1. Therefore, the convergence of the 

calculation might require a large number of iterations, and drastically small time-step increments. 

2) The solution from the fractional-step methods does not fulfill the mass conservation to the 

machine precision [3]. Since the continuity equation is not solved directly, the accuracy of the mass 

conservation depends on the condition number of the Jacobi matrix for the velocity equation. It is a 

rule of thumb that the numerical results lose precision on a number of digits equal to the order of 

magnitude of the conditioning number. At low Reynolds number, the momentum equation is 

dominated by diffusive terms, and it results in a Jacobi matrix with very high condition number. 

Therefore, when Re < 1, the accuracy of the numerical results (and the mass conservation) is 

degraded [5]. 

3) The pressure equation requires boundary conditions which are not known a priori. There have 

been debates about the correct boundary condition to be used [6,7]. Moreover, its value at the 

boundary does not necessarily correspond to the physical pressure at the wall. It is rather a factitious 

value calculated so that the normal pressure gradient is compatible with the shear-rates at the wall. 

The uncertainty on the correct boundary condition can have dramatic effects, since the pressure 

equation is a boundary value problem (elliptic equation). 

4) Errors in the pressure field have large impact on the motion of the interface. Indeed there is a 

coupling between the pressure field and the position of the interface. On one hand, multiphase flows 

at low Re numbers are driven by pressure gradients. (Viscous forces act as resistance forces). On the 

other hand the pressure field is directly related to the density field, which is determined by the 

interface position. 

In this paper, we use an algorithm based on a pure streamfunction formulation, in order to avoid 

the disadvantages of the fractional step methods. The pure streamfunction formulation is more 

accurate than the fractional-step methods because it does not have any splitting errors. By 

construction it fulfills the mass conservation to the machine accuracy, without solving the continuity 

equation. In addition, it reduces the number of unknowns as it avoids the calculation of the pressure 

[8]. The pure streamfunction formulations have already been used for the simulation of single-phase 

flows [8,9]. The novelty of our method lies in the use of the streamfunction formulation for the 

simulation of multiphase flows of incompressible fluids. The Volume of Fluid (VOF) technique is 

used to track the position of the interface. The rest of this paper describes the derivation of the 

streamfunction evolution equation, and the numerical techniques used to solve it. We present results 

of 2D test case simulations that have been done to validate the implementation of our algorithm. 

Governing Equations and Numerical Techniques 

Derivation of the Streamfunction Formulation. The two-phase flow is modeled as a continuum 

single media, governed by the Navier-Stokes equations 

 

0∇ ⋅ =u                                                                                                                                         (1) 

 

( )
( ) ( )p

t

ρ
ρ µ ρ

∂
+ ∇ ⋅ = −∇ + ∇ ⋅ +

∂

u
uu ε g                                                                                     (2) 

 

where u and the velocity vector, p is the isostatic pressure, ρ is the density, µ is the dynamic 

viscosity, g is the gravitational acceleration, and ε  is the deformation rate tensor defined as 
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( )
T1

2
 = ∇ + ∇
 

ε u u .                                                                                                                     (3) 

 

The density varies in time and space when the interface moves, but the velocity field in the 

continuum media is divergence-free as both phases are incompressible. The density and dynamic 

viscosity depend on the phase of the flow, identified by the volume fraction θ. The convention we 

use is θ = 1 inside the first phase and θ = 0 inside the second phase. Then the apparent material 

properties of the media are obtained by the rule of mixture 

 

( )1 21ρ θρ θ ρ= + −                                                                                                                         (4) 

 

( )1 21µ θµ θ µ= + −                                                                                                                         (5) 

 

where the subscript 1 refers to the material values of the first phase, and the subscript 2 refers to the 

material values of the second phase. The volume fraction θ is also transported with the flow, and it 

obeys an advection equation 

 

( ) 0
t

θ
θ

∂
+ ∇ ⋅ =

∂
u .                                                                                                                          (6) 

 

The pressure-less formulation with streamfunction as primary variable replaces Eq. 1 and Eq. 2. 

It is derived in two steps. First, we take the curl of the momentum equation, in order to eliminate the 

pressure unknowns as 0p∇×∇ = . This provides an evolution equation for the vorticity 

 

= ∇×uωωωω                                                                                                                                       (7) 

 

2

t
ν

∂
+ ⋅∇ − ⋅∇ = ∇

∂
u u

ωωωω
ω ω ωω ω ωω ω ωω ω ω                                                                                                         (8) 

 

where ν = µ/ρ is the kinetic viscosity. Secondly, the divergence-free velocity field is expressed in 

term of a vector potential ψ: 

 

= ∇×u ψψψψ .                                                                                                                                     (9) 

 

The existence of the vector potential is proven by the Helmholtz decomposition theorem [10]. In 

two-dimension, only the out-of-plane component of the vector potential is of interest. It corresponds 

to the streamfunction ψ of the 2D flow. Finally, the evolution for the streamfunction in a 2D flow is: 

 
2 2 2

4 
t y x x y

ψ ψ ψ ψ ψ
ν ψ

∂∇ ∂ ∂∇ ∂ ∂∇
+ − = ∇

∂ ∂ ∂ ∂ ∂
                                                                                    (10) 

 

where ∇
2
 is the Laplace operator and ∇

4
 is the biharmonic operator. There is no need to solve the 

continuity equation anymore, because the incompressible constraint is automatically fulfilled by the 

streamfunction as ( ) 0ψ∇ ⋅ ∇× = . 

Numerical Techniques. The flow problem is address within an Eulerian framework, i.e. the 

material flows through a fixed mesh which is in general not aligned with the interface. The 

streamfunction evolution equation Eq. 10 contains fourth-order derivatives. Its discretization with 
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finite differences would require boundary conditions for the first, second and third derivatives of the 

streamfunction. In order to avoid this difficulty, we first build up a matrix system for the momentum 

equations, containing the physical boundary conditions for the velocities. Then the discretized 

momentum equations are projected into the streamfunction space. The information of the 

streamfunction derivatives is contained in the boundary conditions for the tangential velocities. The 

momentum equations are discretized using the finite volume method, on a structured mesh, with a 

staggered arrangement of the velocities unknown. We use the two-level backward differentiation 

formula for the time integration, and a quadratic upwind interpolation scheme with flux limiters 

[11] for the interpolation of the convective flux at the faces of the control volumes. For the 

projection of the equation, the Jacobi matrix of the momentum equations is multiplied by the 

discrete curl operators of the velocity and the streamfunction, in the same way as in [8]. Finally the 

matrix system for the streamfunction only requires Dirichlet boundary conditions, which are 

obtained from the boundary conditions of the normal velocities. Finally, the resulting matrix system 

is solved by a direct solver. 

The transport equation Eq. 6 is solved with the VOF method, which produces much less 

numerical diffusion than if it was solved with an ordinary finite-volume or finite element method. 

The ELVIRA technique is used to approximate the interface as piecewise linear functions inside 

each control volume, and the volume fraction is advected explicitly with a split donor-acceptor 

scheme [12]. Fixed point iterations are used between the streamfunction solver and the VOF 

algorithm in order to improve the solution at the end of the time step. The iterations are stopped 

when the Euclidean norm (2-norm) of the solution changes reaches a value less than 10
-6

. 

Unusually, the convergence criterion is reached after a small number of iterations. 

Numerical Examples 

Rayleigh-Taylor Instability. The Rayleigh-Taylor instability is an interfacial instability driven by 

the gravitational force, when a heavy fluid is located on top of a lighter one. Rayleigh-Taylor 

instabilities have been extensively studied, and were used as a test case problem to validate 

multiphase algorithm [13-15]. Here we address the Rayleigh-Taylor instability of viscous fluids. 

The simulation setup is a rectangular box of width w = 0.01 and height h = 0.04, where the interface 

between the heavy fluid (at the top) and the light fluid (at the bottom) is initially located at the 

horizontal midline. This configuration is an instable equilibrium that breakdowns when a small 

perturbation is added to the interface. The no-slip boundary condition is applied at the top and 

bottom of the box. We apply the slip boundary condition at the left and right side of the box in order 

to emulate a repetition of the perturbation. The calculation domain is discretized with 50×200 

uniform grid. 

Linear stability analyses, assuming a potential flow, predict that the amplitude of the perturbation 

growths exponentially in time, with a growth rate n given by [16]: 

 

n gkA=                                                                                                                                     (11) 

 

where g is the gravitational acceleration, k is the wavenumber of the perturbation, and 

1 2 1 2( ) ( )A ρ ρ ρ ρ= − +  is the Atwood number which quantifies the density ratio of the two fluids. 

However this theoretical growth rate is only valid in the range of small-amplitude perturbations. In 

our simulation, the initial interface is perturbed at t = 0 with a small sinusoidal wave of amplitude 

0.001 and wavelength w. The gravitational acceleration is set to g = -10. We investigate two cases, 

when ρ1 = 1, ρ2 = 0.1, and when ρ1 = 1, ρ2 = 0.6. Those two cases give Atwood numbers of 0.818 

and 0.25, respectively. The fluids have the same dynamical viscosity of µ = 5·10
-5

 in both 

simulation. Snapshots of the interface profiles at different times are represented in Fig. 1 and Fig. 2, 

for A = 0.818 and A = 0.25, respectively. 
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t = 0.00 t = 0.09 t = 0.13 t = 0.16 t = 0.18 t = 0.20

 
Figure 1. Evolution of the perturbed interface into a spike for A = 0.818. 

 

t = 0.02 t = 0.21 t = 0.29 t = 0.39 t = 0.45 t = 0.52

 
Figure 2. Evolution of the perturbed interface into a mushroom cap for A = 0.25. 

 

The amplitude of the perturbation is plotted versus time, in Fig. 3 and Fig. 4. In the regime of 

small-amplitude deformation, the exponential growth rate fits very well the theoretical prediction. 

For A = 0.25 we observe a short delay of the perturbation growth compared to the linear stability 

theory, which is due to the relative effect of viscosity acting against the interface instability. In the 

later stage of the simulation, the growth rate deviates from the linear stability theory and tends to a 

linear growth regime. At high Atwood number, the interface deform as a spike, while at low 

Atwood number we observe the formation of a mushroom cap. The vorticity field and the 

streamfunction of both structures are displayed in Fig. 5, to help the visualization of the dynamics. 

Our results agreement qualitatively well with other calculations [13,15,17,18]. 
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Figure 3. Growth of the small-amplitude perturbation for A = 0.818. 
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Figure 4. Growth of the small-amplitude perturbation for A = 0.25. 
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Figure 5.  Flow detail of the spike for A = 0.25 at t = 0.18 (left); flow detail of the mushroom 

 cap for A = 0.815 at t = 0.44 (right). The left and right sides of the pictures show the vorticity 

field and the streamfunction, respectively. The interface is represented by the blue line. 

 

Broken Dam Problem. The broken dam problem is another test case problem which has been used 

to validate free-surface codes [13,19-22]. This problem consists in the collapse of a column of water 

on a dry bed. The fluid is initially at rest in a square reservoir of dimension H, when the walls are 

rapidly removed at the beginning of the simulation. The numerical results from simulations are 

usually compared with the experimental data of Martin and Moyce [23]. In our simulations, the slip 

boundary condition is assumed on the horizontal bed. Therefore, the flow, which is constantly 

accelerated by the gravity, does not experience any resistance. As a result, a thin layer of fluid, with 

a high velocity, develops at the front of the water wave. In fact, the only obstacle of the flow is the 

presence of the air. Therefore, the viscosity of the air is a critical numerical parameter. A small 

viscosity is necessary for the simulation to converge. However, its value should be as low as 

possible in order not to affect the flow of water. The problem is non-dimensionalized with the 

normalized time * /t t g H=  and the normalized dimension * /x x H=  and * /y y H= . The 

density of water and air were set to 1 and 0.001, respectively, while the normalized gravitational 

acceleration was equal to -1. For the viscosities, we used the values 0.001 and 0.0005. The adaptive 

time-step increment was automatically adjusted in order to keep a courant number of the simulation 

at 0.1. We perform the simulation with three different uniform meshes of 20×40, 30×60, and 

60×120 control volumes. Fig. 6 shows snapshots of the evolution of the free-surface profile, 

obtained with the finest mesh resolution. Our results agree qualitatively well with other numerical 

simulations [19,21,22]. In Fig. 7, we also compared our predictions of the position of the front 

wave, and the height of the remaining column of water, with the experimental data Martin and 

Moyce [23]. Results for the height of the remaining column of water are in very good agreement 

with the experimental data, and no differences are observable between the calculations with 

different meshes. Concerning the position of the front wave, at a certain point of the simulation, the 

results become mesh-dependent. The finest mesh predicts farther displacements of the tip of the 

wave, whereas the coarsest mesh fits better the experimental data. 
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Figure 6. Snapshots of the free surface profile of the water at different times, calculated on  

the fine mesh. Time and space coordinates are expressed in nondimensionalized values. 
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Figure 7. (left) Normalized position of the water front and (right) normalized height of the  

residual water column, as a function of time. Numerical results are compared with  

the experimental data of Martin and Moyce [23]. 
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Figure 8. Close-up of the front wave predicted at t* = 1.60 for the different meshes. The solid 

 and dotted grids correspond respectively to the intermediate and fine dual meshes used 

 for the calculation of the volume fraction. 

 

This mesh-dependency can be explained by a close-up look at the wave tip. Fig. 8 depicts the 

wave tips predicted by the different meshes, where the dual control volumes used by the VOF 

algorithm are shown in the background (for the intermediate and fine meshes only). It shows that 

inside the cells closed to the wall, the interface is approximated by a vertical line, because of the slip 

condition (similar to symmetry). Consequently, the VOF method predicts a wave tip of the same 

thickness of the mesh size. In general, the VOF method cannot predict accurately the interfaces of 

the fluid films which have thicknesses thinner than the mesh resolution. However, in this simulation 

there are not any resistance forces to retain the flow of the wave tip (except the small viscosity of 

the air), as we use the slip boundary condition at the wall. As a consequence, in principle the 

simulation could predict an infinitely small thickness of the film, if the mesh was refined. In the 

real-life experiments, the thin film of water is influenced by the surface tension and the wetting 

angle (which have been neglected in the simulations). Apart from the small region of the wave tip, 

the positions of the free surface calculated with the different meshes are undistinguishable. 

Summary 

We have implemented a two-phase flow solver for 2D calculation, based on a pure 

streamfunction formulation and the volume-of-fluid method. The streamfunction formulation avoids 

the problem associated with the calculation of the pressure field at low Reynolds number. In 

addition, this scheme is more accurate than the classical fractional-step methods, because it does not 

generate splitting errors. Moreover, the mass conservation is fulfilled to the machine precision. The 

interface is tracked with the volume-of-fluid method. Two test case problems have been 

investigated, the Rayleigh-Taylor instability and the broken-dam problem. The growth rate of the 

Rayleigh-Taylor instability agrees very well with the theoretical growth rate in the range of small-

amplitude perturbations. The numerical results for the broken dam problem fits well the 

experiments. We also showed the limit of the volume-of-fluid method in the prediction of very thin 

film of liquid, without considering the surface tension and the wetting angle. However, in the 

applications of polymer co-processing, these effects are negligible. In our future works, the model 

will be extended to non-Newtonian fluids, including materials with shear-thinning and viscoelastic 

rheological behaviors. 
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We present a cellwise conservative unsplit (CCU) advection scheme for the volume of 
fluid method (VOF) in 2D. Contrary to other schemes based on explicit calculations of 
the flux balances, the CCU advection adopts a cellwise approach where the pre-images of 
the control volumes are traced backwards through the flow map. The donating regions 
of the fluxes are calculated via the streaklines of the grid intersections, represented 
as polygonal chains whose vertices are determined by backward tracing of particles 
injected in the flow at different times. High order accuracy is obtained from the 
fourth-order Runge–Kutta method, where intermediate velocities along pathlines are 
determined with quadratic temporal and bicubic spatial interpolations. The volumes of the 
donating regions are corrected in order to fulfill the discrete continuity of incompressible 
flows. Consequently, the calculation produces non-overlapping donating regions and pre-
images with conforming edges to their neighbors, resulting in the conservativeness 
and the boundedness (liquid volume fraction inside the interval [0, 1]) of the CCU 
advection scheme. Finally, the update of the liquid volume fractions is computed from 
the intersections of the pre-image polygons with the reconstructed interfaces.
The CCU scheme is tested on several benchmark tests for the VOF advection, together with 
the standard piecewise linear interface calculation (PLIC). The geometrical errors of the CCU 
compare favorably with other unsplit VOF-PLIC schemes. Finally, potential improvements of 
the VOF method with the use of more precise interface representation techniques and the 
future extension of the CCU scheme to 3D are discussed.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The simulation of free-surface/multiphase flows is an important branch of computational fluid dynamics, frequently ap-
plied to the simulation of many natural and industrial flows of various scales, ranging from microfluidics to hydrodynamics. 
The use of accurate surface-tracking techniques is crucial to simulate interfacial instabilities (e.g. Rayleigh–Taylor), and flows 
driven by surface tension, such as thread breakup, bubble raising, droplet dynamics, etc.

Common techniques for multiphase flow simulations include the front-tracking methods [1], the volume-of-fluid (VOF) 
method, and the level-set method [2,3]. While the front tracking methods represent explicitly the interface with geometri-
cal objects (for instance markers, segment lines and planes), the VOF and level-set methods treat implicitly the interface, 
through an additional field variable, the color function. The main advantage of the implicit interface representations is that 
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they can handle arbitrary changes of topology [4]. Moreover, explicit interface representations require complex operations 
for the merge and breakup of interfaces; see for instance [4,5].

In the level-set method, the color function is the signed distance to the interface, governed by an advection-like equation. 
The advection equation is solved in an Eulerian framework using standard methods for partial differential equations, such 
as finite-differences, finite-volumes or finite-elements. The drawback of the level-set method is that it does not conserve 
the volume of each phase exactly.

In the VOF method, introduced by Hirt and Nichols in 1981 [6], the color function χ(x, t) is an indicator of the material 
present at the position x and the time t:

χ(x, t) =
{

1 if fluid no. 1 is present at (x, t),
0 if fluid no. 2 is present at (x, t).

(1)

Sharp interfaces are defined at the jump discontinuities of the color function. The evolution of the color function is governed 
by a transport equation:

∂χ

∂t
+ ui

∂χ

∂xi
= 0. (2)

On the discrete level, the average of the continuous color function over a control volume C gives the liquid volume fraction
fC (t), i.e. the relative amount of fluid phase no. 1 inside C :

fC (t) = 1

V C

∫
C

χ(x, t)dx, (3)

where V C is the total volume of C . The cells where 0 < f < 1 contain an interface and they are hereafter referred to 
as the interfacial cells. Algebraic numerical methods for the resolution of hyperbolic conservation equations [7,8] are not 
suited to solve Eq. (2), because of their inherent numerical diffusion that smoothens the jump discontinuities. Consequently, 
algebraic advection schemes, such as the CICSAM [9], smear the sharp interfaces, resulting in a loss of precision and the 
non-conservation of the liquid volume fraction. The original VOF method rather uses a geometrical scheme to determine 
the fluxes of the liquid volume fraction through the edge of the control volume. The geometrical advection schemes require 
(i) an explicit geometrical reconstruction of the interface position in each interfacial cell, and (ii) an explicit evaluation of 
the donating region (DR) relative to each flux. The DR corresponds to the compact set of points that contains Lagrangian 
particles contributing to the flux, within a certain time interval, as defined in [10]. The intersection of the donating region 
with the reconstructed interface determines the amount of liquid volume that is advected through the edge of the control 
volume.

The standard technique to represent the interface is the piecewise linear interface calculation (PLIC) [11], in which the 
interface inside each interfacial cell is approximated by a segment, parameterized as

n̂ · x + d = 0, (4)

where n̂ is the normal vector of the interface pointing outward to the fluid phase no. 1, and where d is the signed distance 
of the interface to an origin. There are different methods to estimate the interface normal from the distribution of the liquid 
volume fraction, see Fig. 1. The simplest approximation is the normed gradient of the volume fraction [11] (Youngs’ method)

n̂ = − ∇ f

|∇ f | , (5)

evaluated by finite-differences using the values in the four neighboring cells; see Fig. 1(a). This gradient method is first-order 
accurate and does not reconstruct all line interfaces exactly.

Another method, the least-square VOF interface reconstruction algorithm (LVIRA), proposed by Puckett [12,13], is based 
on the minimization of the difference between the volume below the prolonged interface into the nearest neighboring cells, 
and the actual volume fraction in those cells, see Fig. 1(b). The minimization of the hatched area is a non-linear problem; 
therefore the LVIRA method requires an iterative optimization algorithm. An efficient variant of the original least-square 
method, the ELVIRA method [13], consists in evaluating only 12 candidates of the interface normal, from different backward, 
central and forward finite differences of the row and column sums of the liquid volume fractions in the 3 × 3 stencil of 
the nearest neighbors. Finally, the normal is chosen as the one of the 12 slopes that minimizes the least square error. Both 
LVIRA and ELVIRA are second-order accurate and reconstruct all line interfaces exactly.

An alternative method, the moment-of-fluid interface reconstruction algorithm [14], evaluates the interface normal with-
out information of the liquid volume fraction in the neighboring cells. Instead, it uses the position of the center of mass of 
the liquid phase in the cell as additional information. The center of mass of the liquid phase in each cell is also advected 
with the flow, similarly as Lagrangian markers. The interface reconstruction algorithm consists in minimizing the distance 
δ between the reconstructed center of mass and the advected center of mass; see Fig. 1(c). The moment-of-fluid algorithm 
produces notable improvement in the reconstructions of sharp corners.

Finally, smoothening the variations in the curvature can enhance the accuracy of the interface reconstruction; see 
Fig. 1(d). The orientation of the PLIC is corrected in [15,16] based on spline interpolations of the slope along the inter-
face. This method also provides a better estimation of the surface curvature, for the modeling of surface tension.
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Fig. 1. Various techniques for piecewise linear interface calculation: (a) gradient method, (b) least-square minimization error, (c) moment-of-fluid method, 
(d) spline interpolation correction.

Once piecewise linear interfaces are reconstructed, the new liquid volume fractions are updated using a geometric advec-
tion algorithm, which evaluates the fluxed liquid volume from the geometric determination of the DR. The first generations 
of VOF algorithms were based on directional-split advection schemes, where the liquid volume is transported along one 
direction at a time; see Fig. 2(a). There are two approaches to propagate the liquid volume: the backward Eulerian im-
plicit method, and the forward Lagrangian explicit method [5]. Many variants of the directional-split advection scheme have 
been presented in the literature. However, to the authors’ knowledge, only two directional-split methods conserve the liq-
uid volume exactly: the combined Eulerian Implicit–Lagrangian Explicit (EI–LE) method [17–19], and the Eulerian implicit 
method of Weymouth and Yue [20], which properly integrates the 1D dilatation terms (i.e. the stretching of the velocity 
field). Nonetheless, all the directional-split advection schemes suffer from numerical diffusion. The lack of accuracy gener-
ally produces geometrical errors that distort the interface [13], particularly in non-uniform flows such as in simple shear. In 
addition, non-conservative schemes also produce unphysical liquid volume fractions (outside the interval [0, 1]), requiring 
the use of local volume redistribution algorithms to remove the overshoots ( f > 1) and undershoots ( f < 0). Moreover, 
the directional-split methods require intermediate interface reconstructions between each 1D advection, and the Courant 
number is often limited to maximum 0.5. In contrast, unsplit (or multidimensional) schemes advect the liquid volume in all 
the directions at once, and do not require intermediate interface reconstructions. Unsplit advection schemes have been de-
veloped to improve accuracy and overcome numerical artifacts of the directional-split schemes. In addition, only the unsplit 
schemes can be generalized to unstructured mesh.

Early unsplit advection schemes have been designed by Puckett et al. [12,13], Rider and Kothe [21], Harvie and Fletcher 
(DDR scheme, acronym of defined donating region) [22], see Fig. 2(b)–(d). The Rider and Kothe scheme estimates the 
flux’s DR as a trapezoid, whose angles are determined by the ratio of the face-centered velocities of the cell. Thus, the 
corresponding edges of the adjacent DRs are not collinear. This creates situations where the liquid volume in overlapping 
DRs is fluxed twice, see Fig. 3(a), while the liquid volume in gaps is not advected at all, see Fig. 3(b). Consequently, the Rider 
and Kothe scheme is not conservative, and suffer from numerical diffusion. In contrast, Puckett’s and DDR schemes produce 
collinear edges of adjacent DR faces (without overlapping). Therefore, both of them conserve the volume, but only Puckett’s 
scheme allows some volume to enter and exit a cell within a single time step. This volume is called the en-route material, 
and it should not contribute to the final liquid volume inside the cell. Being able to track en-route materials increases the 
accuracy of a scheme. Despite their variations, these three schemes belong to the same family, as the determination of the 
DR is solely based on the face-centered velocities.

Harvie and Fletcher [23] have proposed another method, the stream scheme, where the DR is determined as the union of 
streamtubes around the characteristics of discrete points laying on the cell’s face, see Fig. 2(e). Although the Stream scheme 
is not conservative, it properly advects the en-route material through the cells.

More recently, López et al. proposed the edge-matched flux polygon advection (EMFPA) scheme [16], where the construc-
tion of the DR is only based on the characteristics of the face’s extremities, using the grid vertex velocities, see Fig. 2(f). 
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Fig. 2. Donating regions for various advection schemes: (a) directional-split, (b) Rider & Kothe, (c) DDR, (d) Puckett, (e) Stream, (f) EMFPA, (g) GPCA, and 
(h) CCU (proposed scheme).

Fig. 3. Sources of numerical errors for the advection: (a) non-conservation of the liquid volume due to overlapping DRs, (b) numerical diffusion due to gaps 
between adjacent DRs, (c) undershot/overshot due to an inconsistency in the timelines, produced by non-conforming adjacent DRs.

The face-centered velocities are still used to compute a trapezoidal volume correction, which is added to the DR in order to 
make the scheme conservative. The volume corrections are represented in Fig. 2 by the hatched area. Mencinger and Zun 
have proposed a variant of the volume correction in [24]. The EMFPA scheme presents noticeable improvements of all pre-
vious schemes in the accuracy of the DR estimations. Yet, all advection schemes mentioned so far produce non-conforming
adjacent DRs, in the sense that the common edges of adjacent DRs do not necessarily have the same lengths. It results in 
inconsistencies in the timelines of the grid’s vertices. As shown in [24,25], this inconsistency can lead to situations where a 
cell donates a volume that it has not received yet, generating undershoots and overshoots. Thus, the previously mentioned 
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schemes may still produce unphysical liquid volume fractions, despite the global volume conservation; see Fig. 3(c). Unphys-
ical results require the use of a local redistribution algorithm, as in [23] for instance. Such heuristic algorithms generally 
have a negative effect on the accuracy of the advection. Moreover, the occurrence of unphysical results is an indicator of 
intrinsic errors of the advection scheme.

The remapping method of Liovic and Lakehal [26] is an attempt to remedy the non-conformity of adjacent DRs, using 
an iterative—non-linear—remapping algorithm. However, as shown by its authors, this remapping method experiences con-
vergence issues for flows with Courant numbers above 0.2, because of hourglass modes in the remapping. Cervone et al. 
[25] has proposed the geometrical predictor–corrector algorithm (GPCA), which performs an additional volume correction 
on top of the EMFPA scheme, in order to produce conforming DRs, see Fig. 2(g). Furthermore, Cervone et al. use a predictor–
corrector scheme over three subdivisions of the time-step, rather than the forward Euler method as in the original EMFPA 
method.

Finally, Zhang [27] has presented a rigorous mathematical analysis of the VOF-advection through the prism of differential 
geometry and Boolean algebra. It demonstrates that the edgewise approach of the problem (based on the flux balance of 
the volume), is theoretically equivalent to a cellwise approach, where the liquid volume of the entire cell is retrieved by 
homeomorphism through the flow map. In practice, the boundaries of the cell are traced backward in time, delimiting 
the pre-image of the cell with respect to a certain time increment. By definition, the volume inside the pre-image will be 
the volume present inside the grid cell, after the considered time increment. While most of the VOF schemes adopt the 
edgewise viewpoint, the cellwise approach provides the bases for semi-Lagrangian volume-tracking methods, such as the 
polygonal area mapping (PAM) [28,29]. Zhang has also proposed an improved representation of the DR via donating region 
approximation by cubic splines (DRACS) [27,30], which has forth-order accuracy.

In this paper, we present a cellwise conservative unsplit (CCU) scheme for the VOF advection, improving the accuracy 
of current 2D unsplit schemes. The conservativeness and the boundedness of the CCU scheme are achieved through the 
construction of non-overlapping (with collinear edges) and conforming DRs. The method is composed of two stages. First, 
a non-conservative approximation of the cell’s pre-image is computed via backward tracing of the cell’s vertices with fourth-
order Runge–Kutta integration. Secondly, a geometric volume flux correction is applied to enforce the volume conservation. 
At the end, the pre-image is represented as an 8-vertex polygon, which has exactly the same volume as its original cell. 
As an alternative to DRACS, the streaklines of the cell’s vertices are represented for the DR calculation via polygonal chains 
rather than spline curves; see Fig. 2(h). Contrary to EMFPA, the CCU scheme maintains the conforming of the adjacent 
DRs. It also avoids the multi-stage predictor–corrector geometric correction procedure of the GPCA scheme, since CCU en-
forces the volume flux correction in a single step. Furthermore, the high-order accuracy in the backward tracing and DR 
representation reduces the magnitude of the volume flux correction needed, as compared to the other advection schemes.

Another originality of the CCU method is that the liquid volume fraction is updated based on the cellwise approach, 
which, in the authors’ opinion, is easier to implement than the edgewise approach. Indeed, there is no explicit calculation 
of the flux balance of the liquid volume. The DRs are only used to compute the flux of the total volume (containing both 
material phases), but not the liquid volume (intersection of the DR with the PLIC). Unlike other schemes, the liquid volume 
fraction is solely evaluated inside the entire cell’s pre-image. Consequently, the cellwise approach requires fewer calculations 
of polygonal intersections, which are more expensive than evaluating the volume of a polygon.

The paper is organized as follows: Section 2 provides a detailed description of the CCU advection scheme. Section 3
assesses the accuracy of the scheme in two classical benchmark problems, the deformed disks in the “single vortex in-a-box” 
and in the “4-vortex deformation field”. The results are compared to those of other advection schemes. A discussion on 
further improvements of the VOF method with the use of more precise interface reconstruction algorithms, and on the 
potential extension of the CCU scheme to 3D is given in Section 4. An estimation of the computational cost of the CCU 
scheme is also provided. Finally the conclusions are summarized in the last section of the paper.

2. Cellwise conservative unsplit advection

At each time-step, the cells that are likely to undergo changes in their liquid volume fractions are tagged before the 
advection. These cells are the interfacial cells, plus N number of layers of neighboring cells, depending on the maximum 
Courant number. The algorithm only updates the liquid volume fraction of these tagged cells. The liquid volume fractions 
inside the other bulk cells are unchanged.

The CCU advection requires a brief recap of the analytic solutions of the VOF advection by Zhang [27]. The classical 
edgewise solution of the VOF advection—based on the flux balance—reads:

fC
(
tn+1) = fC

(
tn) + 1

V C

∑
edge

∥∥D−
e ∩ M

(
tn)∥∥ − ∥∥D+

e ∩ M
(
tn)∥∥, (6)

where V C is the total volume of the cell C , M (tn) is the volume occupied by the liquid phase at the time tn , D−
e and D+

e
are the received and donated volumes, respectively, through the edge e during the time increment �t = tn+1 − tn . It has 
been demonstrated in [27] that, since the flow map is a homeomorphism, the edgewise solution (6) is equivalent to the 
following cellwise solution:

fC
(
tn+1) = 1

V C

∥∥←−−−−−−−
P�t(C) ∩ M

(
tn)∥∥, (7)
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where 
←−−−−−−−
P�t(C) is the pre-image of C , traced backward within the time increment �t . The CCU advection scheme computes 

the new liquid volume fraction fC (tn+1) from the formula (7). The volume M (tn) occupied by the liquid phase is calculated 
with the interface reconstruction algorithm. The main task of the CCU scheme is the determination of the pre-image 

←−−−−−−−
P�t(C)

of the cell. It is performed in two steps:

i. First, the positions of the cell’s vertices are traced backward in time with a 4th-order accurate Runge–Kutta integration. 
The intermediate velocities are evaluated with bicubic spline interpolations in space, and quadratic spline interpolations 
in time. The pre-images of the four cell vertices form a polygon, which is a first approximation of the cell’s pre-image, 
yet non-conservative.

ii. Four additional vertices are added to the definition of the pre-image polygon, in order to adjust its volume without 
changing the position of four vertices obtained via backward tracing. The geometric volume flux correction uses explicit 
formulas—rather than iterations—based on the DR calculation.

Finally, the new liquid volume fraction is obtained from the intersection of the pre-image polygon 
←−−−−−−−
P�t (C) with the recon-

structed PLIC. Each of these steps is described hereinafter.

2.1. Backward-tracing

The accuracy of the CCU scheme lies in the backward tracing of the cell’s pre-image. We consider a rectangular grid cell 
C defined by its vertices 1, 2, 3, 4. Vertices A, B, C, D are obtained from the backward tracing of 1, 2, 3, 4, respectively. The 
polygon ABCD is the first approximation of the cell’s pre-image, as shown in Fig. 4(a).

The backward tracing of a vertex is obtained with the reversed time-integration of the instantaneous velocity along the 
pathline of a Lagrangian particle p, initially located at the vertex’s position. The instantaneous velocity of the particle p
whose position xp(t) varies in time is

v(p, t) = dxp

dt
. (8)

The pre-image of the vertex is

xp
(
tn) = xp

(
tn+1) −

tn+1∫
tn

v
(

p, t∗)dt∗. (9)

In our scheme, the integral in (9) is solved numerically with the explicit 3/8 forth-order Runge–Kutta method:

xp
(
tn) = xp

(
tn+1) − �t

8
(v1 + 3v2 + 3v3 + v4) + O

�t→0

(
�t5),

v1 = u
(
tn+1, xp

(
tn+1)),

v2 = u
(
tn+2/3, xp

(
tn+1) − �t v1/3

)
,

v3 = u
(
tn+1/3, xp

(
tn+1) + �t(v1/3 − v2)

)
,

v4 = u
(
tn, xp

(
tn+1) − �t(v1 − v2 + v3)

)
, (10)

where v1, v2, v3, v4 are intermediate velocities of the particle, and u(t, x) is the Eulerian velocity field. The VOF method 
is typically coupled with an implicit (or semi-implicit) Navier–Stokes solver, which resolves u(t, x) on a discrete set of 
locations, at discrete points in time. The values of the intermediate velocities are obtained from the temporal and spatial 
interpolations of the known discrete velocities.

In order to avoid velocity overshoots and to promote numerical stability, it is preferable to first solve the new velocity 
field implicitly, prior to solving the new liquid volume fraction explicitly, as in [31] for instance. The velocities at the 
intermediate times tn+1/3 and tn+2/3 are determined by quadratic spline interpolation within the time interval t ∈ [tn, tn+1]:

u(t) = u
(
tn) + du

dt

∣∣∣∣
tn

(
t − tn) +

[
u
(
tn+1) − u

(
tn) − du

dt

∣∣∣∣
tn

�t

](
t − tn

�t

)2

, (11)

where the acceleration du
dt |tn is known from the previous time-step. The acceleration at the end of the current time-step is 

evaluated and saved for use at the next time-step:

du

dt

∣∣∣∣
tn+1

= du

dt

∣∣∣∣
tn

+ 2

[
u(tn+1) − u(tn)

�t
− du

dt

∣∣∣∣
tn

]
. (12)

The temporal quadratic approximation for the evolution of the velocity provides a balance between accuracy and efficiency. 
In fact, the spatial variations of the velocity field are more significant for the interpolation of intermediate velocities than 
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Fig. 4. Calculation of the pre-image polygon: (a) non-conservative 4-vertex approximation via backward tracing of the cell’s vertex, (b) conservative 8-vertex 
polygon after the geometric volume flux correction.

the temporal variations. Cervone et al. [25] have used a simple predictor–corrector scheme with three subdivisions of 
the time-step, in conjunction with bilinear spatial interpolations, and reported that numerical errors in the integration 
of Eq. (9) can be as high as 10% of the distance ‖xp(tn+1) − xp(tn)‖. They identified two main contributions to the total 
integration error: the interpolation error and the discretization error. The interpolation error comes from the bilinear spatial 
interpolations of the velocity field. The discretization error refers to the approximation of the cell’s vertex velocities from 
an arithmetic average of the face-centered velocities. Thus, both main contributions to the backward tracing errors in [25]
arise in reality from the linear approximation of the spatial variations of the velocity field. In our scheme, the accuracy of 
the backward tracing is enhanced by the use of bicubic spatial interpolations for the intermediate velocities:

u(ξ,η) =
3∑

i=0

3∑
j=0

aijξ
iη j, (13)

where ξ and η are the normalized local coordinates inside the cell, and aij are the 16 coefficients of the different terms, 
see Appendix A for more details. As a result, the interpolated velocity field is C1-continuous and varies smoothly in both 
time and space. In addition, the quadratic temporal and bicubic spatial interpolations allow the velocity field to have local 
extrema in between the known discrete values.

Finally the positions of the vertices A, B, C, D are determined using formulas (10)–(13). The resulting polygon ABCD is an 
overall good approximation of the cell’s pre-image, yet it does not fulfill the volume conservation (its volume is not strictly 
equal to the volume of C ).

2.2. Geometric volume flux correction

The volume conservation of the cell is enforced by adjusting the area of its pre-image polygon. The positions of the 
vertices A, B, C, D, computed with overall fourth-order accuracy, are kept unchanged in order to have conforming adjacent 
DRs. Instead, four additional vertices I, J, K, L are introduced to the definition of the pre-image polygon, see Fig. 4(b). They 
are initially positioned at the midpoints i, j, k, l of the pre-image’s edges [AB], [BC], [CD] and [DA], respectively. The area of 
the pre-image polygon AIBJCKDL is modified by adjusting the position of the vertices I, J, K, L along the median line of the 
pre-image’s edges. Therefore, the volume corrections are added or removed to the pre-image’s edges as isosceles triangles. 
The suitable positions of the vertices I, J, K, L are calculated via the geometric volume flux correction procedure.

The volume conservation is a consequence of the incompressibility constraint, which is the kinematic condition of 
solenoidal velocity fields. Integrating the divergence of a solenoidal velocity field over the control volume C and apply-
ing the divergence theorem yields:�

∂C

(u · n̂)ds = 0. (14)

It translates into the continuity equation:∑
e

Aeue = 0, (15)

where e is the index of the edges, Ae are the lengths of the edges, and ue the face-averaged velocities. The quantity

Φe = Aeue (16)
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Fig. 5. Calculation of the DR of the edge 12. The polygonal chains 1–1′–1′′–A and 2–2′–2′′–B, and the segments A–i–B are the approximate representations 
of the streaklines and timeline, whose exact positions are represented by the black dashed curves. The hatched areas represent geometrical errors of the 
DR construction.

is the volume flux through the edge e. By virtue of the equivalence between the cellwise and edgewise approaches, an easy 
and robust way to enforce the volume conservation on the pre-image is to make the net volume fluxes of the DRs equal to 
the divergence-free volume fluxes Φe .

The calculation of the DR requires the evaluation of the timelines of the cell’s faces, and the streaklines of the cell’s 
vertices [10,30], see Fig. 5. Note that in transient flows, the streaklines are different from the pathlines calculated in the 
backward tracing, yet they have the same extremities. A streakline is the trace of particles continuously injected at a certain 
location, while a pathline is the trajectory of an individual particle. In our scheme, two discrete points 1′ and 1′′ of the 
streaklines are calculated via backward tracing of particles injected in the flow at the cell’s vertices, at the intermediate 
times tn+1/3 and tn+2/3. In order to avoid further interpolations of the velocity field, the position of the point 1′ is obtained 
by the two-level Heun’s method:

xp
(
tn) = xp

(
tn+1/3) − �t

6
(v1 + v2) + O

�t→0

(
�t3),

v1 = u
(
tn+1/3, xp

(
tn+1/3)),

v2 = u
(
tn, xp

(
tn+1/3) − �t v1/3

)
, (17)

and the position of the point 1′′ is obtained by the Kutta’s three-level method:

xp
(
tn) = xp

(
tn+2/3) − �t

9
(v1 + 4v2 + v3) + O

�t→0

(
�t4),

v1 = u
(
tn+2/3, xp

(
tn+2/3)),

v2 = u
(
tn+1/3, xp

(
tn+2/3) − �t v1/3

)
,

v3 = u
(
tn, xp

(
tn+2/3) + �t(2v1 − 4v2)/3

)
. (18)

Note that the variable �t in the formulas (17) and (18) is the time increment of the whole time-step, not the time inter-
val of the Heun or the Kutta’s methods. Once the points 1′ and 1′′ are determined, the DR is represented by the polygon 
11′1′′AiB2′′2′2. As shown in [27], the error in the calculation of the DR has two contributions. The first contribution comes 
from the integration errors in the backward tracing using the formulas (10), (17), and (18), i.e. the calculated positions 
of points 1′, 1′′, A are different from their theoretical positions 1′, 1′′, A. The second error contribution is due to the recon-
structed representation of the streaklines and timelines, as for instance the approximation of curved lines with straight lines 
as in [16,24,25]. For higher precision, the streaklines are represented in our scheme with polygonal chains 1–1′–1′′–A. The 
use of three sub-segments provides a balance between accuracy and efficiency.

The net volume flux Fe through a cell’s edge e is calculated via the area of its DR polygon. For a regular—non-self-
intersecting—DR polygon Pe , depicted in Fig. 6(a), the net volume flux is simply its area, computed with the following 
formula:

Fe = ‖Pe‖ = 1

2

∣∣∣∣∣
n−1∑
i=0

xi yi+1 − xi+1 yi

∣∣∣∣∣, (19)

where n is the number of vertices defining the polygon Pe , and (xi, yi) are their coordinates. The formula (19) is valid 
for both convex and concave polygons. Furthermore, particular attention must be paid to the case of irregular—self-
intersecting—polygons. We distinguish between two cases of self-intersections in the DR polygons, based on whether they 
involve the cell’s edges or not. The CCU scheme only allows self-intersections involving the cell’s edges. As pointed out 
in [27], the ability of an advection scheme to properly deal with this event is crucial for its accuracy. Directional-split, and 
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Fig. 6. Calculation of the volume flux through the edge 12, (a) in the case of a regular DR polygon, (b) in the case of an admissible self-intersecting DR 
polygon.

Fig. 7. The three scenarios of non-admissible irregular DR polygons (not involving self-intersection with the edge 12).

early unsplit advection schemes [12,13,17–22] are not able to take into account both entering and exiting volumes that 
may cross an edge within the same time increment. The CCU scheme differentiates the entering and exiting volumes of an 
edge e, by splitting the admissible irregular DR polygon Pe into two entities D+

e and D−
e , whose contributions to the net 

volume flux have opposite signs, such that

D+
e ∪ D−

e = Pe,

D+
e ∩ D−

e ⊂ e. (20)

The areas of D+
e and D−

e are the donated and received volumes of the cell C through the edge e, respectively, see Fig. 6(b). 
Then, the net volume flux of an admissible irregular DR through the edge e is given by:

Fe = ∥∥D−
e

∥∥ − ∥∥D+
e

∥∥. (21)

The case of non-admissible irregular DR polygons is now examined. There are three scenarios of non-admissible self-
intersections: (i) one of the streakline polygonal chains intersecting the timeline, (ii) the two polygonal chains intersecting 
each other’s, or (iii) one of the polygonal chains self-intersecting, see Fig. 7. Scenario (i) violates the homeomorphism of the 
flow map. As a result, the hatched area inside the pre-image polygon erroneously contributes to the liquid volume fraction 
of the cell, while it is fluxed twice to different cells. If not patched, this situation causes the non-conservation of the liquid 
volume, and for that reason the problematical polygonal chain is replaced by the straight segment [1A]. Scenario (ii) is also 
problematic because it is very likely to produce irregular pre-image polygons that would also result in non-conservation of 
the liquid volume. However, this scenario involves a singular point in the velocity field, which is very unlikely to occur in 
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physical incompressible flows. Therefore, this scenario is not patched. The last scenario (iii) does not breakdown the con-
servativeness, but it makes the evaluation of the DR’s area more difficult since the formula (19) does not hold for irregular 
polygons. Consequently, we also choose in this case to replace the self-intersecting polygonal chain by the straight segment 
[1A]. Other choices are possible; nevertheless the situation of self-intersecting streaklines is very rare. In fact, these three 
scenarios of non-admissible self-intersecting DR are more likely to be numerical artifacts arising from numerical errors, 
than actual features of the real flow. Therefore, another way to prevent them is to keep the maximum Courant number 
Cmax to reasonable values. An idea is to adapt the maximum Courant number Cmax, using a criterion based on the volume 
conservation error of the 4-vertex polygonal approximation of the pre-image.

Finally, the amount of volume flux correction that the DR requires is given by the difference

�φe = Φe − Fe. (22)

The needed volume flux correction is added or removed to the area of the DR by moving the position of the vertex I from 
the midpoint i of the segment [AB], by the distance he along the bisector line of [AB], enforcing systematic conservativeness, 
see Fig. 4(b). The volume flux corrections are the isosceles triangles colored in purple, thus

he = 2�φe/‖AB‖. (23)

The algorithm is valid for all the topologies of admissible DRs: convex, concave and self-intersecting, the three of them 
being represented in Fig. 4(b). After application of the volume flux correction to all the DRs, the resulting 8-vertex polygon 
AIBJCKDL is a conservative representation of the cell’s pre-image 

←−−−−−−−
P�t(C).

2.3. Cellwise VOF update

The last step of the cellwise advection consists in computing the intersection of the pre-image polygon 
←−−−−−−−
P�t (C) with the 

area M (tn) occupied by the liquid material. 
←−−−−−−−
P�t(C) is determined by the CCU scheme while M (tn) is obtained from the 

PLIC interface reconstruction. The intersection of polygons is a Boolean operation that requires algorithms of combinatorial 
computational geometry. For an introduction on the topic, we refer to the handbook of O’Rourke [32]. Libraries of Boolean op-
erations on polygons are available in several programming languages. The MATLAB® Mapping Toolbox provides the polybool
function for Boolean operations on arbitrary polygons.

Alternatively, the intersection 
←−−−−−−−
P�t(C) ∩ M (tn) can be computed using a simple line/line intersection algorithm. A search 

algorithm is first used to find all the underlying grid cells with potential intersection with 
←−−−−−−−
P�t (C). These underlying cells 

have at least one of their vertices within the interval [min(x←−−−−−−
P (C)), max(x←−−−−−−

P (C))] × [min(y←−−−−−−
P (C)), max(y←−−−−−−

P (C))], bounded by the 
minimum and maximum values of the coordinates of the pre-image polygon’s vertices. Then, the pre-image polygon 

←−−−−−−−
P�t(C)

is split into its intersections with each of the underlying grid cells, see Fig. 8. The different cuts of 
←−−−−−−−
P�t(C) are obtained 

using the TruncatePolygonByLine algorithm, described below. The liquid volume inside each cut of the pre-image polygon 
is obtained by further truncation with the PLIC line. Finally, the cellwise update of the liquid volume fraction is recovered 
by summing up the liquid volume contributions from all the truncations of the pre-image polygon, corresponding to the 
area colored in purple in Fig. 8.

Algorithm TruncatePolygonByLine: Compute the truncation of a polygon by an oriented line.

1: function TruncatePolygonByLine( Q , n̂,d)
2: input Q List of the polygon’s vertices { Q 1, Q 2 . . .}
3: input n̂ Normal vector of the oriented line
4: input d Distance to origin of the oriented line
5: if n̂ · Q 1 + d > 0 then in1 ← false The first polygon’s vertex is outside the cut
6: else in1 ← true end if The first polygon’s vertex belongs to the cut
7: if in1 then P ← { Q 1} Save the first polygon’s vertex in the output list
8: else P ← {∅} end if Create an empty output list
9: for k = 2 → NumberOfElements( Q ) do Loop over the polygon’s edges
10: if n̂ · Q k + d > 0 then in2 ← false The kth polygon’s vertex is outside the cut
11: else in2 ← true end if The kth polygon’s vertex belongs to the cut
12: if in1 xor in2 then Evaluate if the edge crosses the oriented line
13: n̂2 ← ( Q k − Q k−1)⊥/‖ Q k − Q k−1‖ Calculate the normal vector of the edge
14: d2 ← Q k · n̂2 Calculate the distance to origin of the edge
15: s ← ComputeLinesIntersection(n̂,d, n̂2,d2) Compute the intersection of the two lines
16: if s ∈ [ Q k Q k−1] and (s �= Q k and s �= Q k−1) then
17: P ← {P , s} end if Add the intersection point to the output list
18: end if
19: if in2 then P ← {P , Q k} end if Add the kth polygon’s vertex to the output list
20: in1 ← in2

21: end for
22: return P Return the vertex list of the truncated polygon
23: end function
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Fig. 8. Truncation of the pre-image polygon AIBJCKDL with the underlying grid cells and their reconstructed PLIC lines. The liquid material occupies the 
colored area. The dark area represents the final intersection of the pre-image with the liquid material.

3. Numerical tests

In this section, the accuracy of the CCU scheme is assessed on classical benchmark tests. Firstly, we define a measure 
of the pre-image calculation error, in order to differentiate between pure advection error and interface reconstruction error. 
Secondly, the CCU scheme is tested on two benchmark problems involving non-uniform deformations: the single vortex 
in-a-box and the 4-vortex deformation field test cases. Our results are compared with those of other advection schemes 
reviewed in the introduction. For the sake of comparison with other publications, the simulations have only been performed 
on structured Cartesian grids. We use an adaptive time-stepping procedure, which assumes first-order temporal variations 
of the velocity; see Appendix B.

3.1. Pre-image calculation errors

The pre-images construction error E1 is defined as the area of the difference (exclusive OR) between the computed 
8-vertex pre-image polygon 

←−−−−−−−
P�t(C)CCU and the exact pre-image 

←−−−−−−−
P�t(C)exact, summed for all the grid cells C :

E1 ≡
∑

C

∥∥←−−−−−−−
P�t(C)CCU ⊕ ←−−−−−−−

P�t(C)exact
∥∥. (24)

In our numerical tests, the “exact” pre-image of each cell is a very fine polygonal representation with 80 vertices, whose 
positions are obtained by numerical integration with a predictor–corrector scheme over 20 sub-divisions of the time-step. 
The pre-image calculation error E1 is very relevant to assess the accuracy of cellwise advection schemes, as the liquid 
volume fraction is obtained from the intersection of the interface with the area of whole cell’s pre-image. In reality, E1 is 
an upper bound of the total advection error, independent of the interface position and the interface reconstruction, i.e. if all 
the cells were affected by the update of the liquid volume fraction and if the interface was represented exactly. Moreover, 
E1 is zero when the pre-images are exactly constructed, thus it is a norm.

The pre-image calculation error produced by the CCU scheme is measured for various incompressible flows within the 
rectangular calculation domain [0, 1] × [0, 1]. In the tests, the velocities at the cell’s vertices are derived from analytical 
expressions of the streamfunction ψ , with u = dψ/dy and v = −dψ/dx. The face-averaged velocities are obtained by the 
difference in the streamfunction level between extremities of the edges. The following flows are considered:

– the simple translation field: ψ = x + y,
– the simple rotation field: ψ = (x − 0.5)2 + (y − 0.5)2,
– the single vortex in-a-box field: ψ = − 1

π sin2(πx) sin2(π y),

– the 4-vortex deformation field: ψ = 1
4π sin(4π(x + 0.5)) cos(4π(y + 0.5)).

These velocity fields have symmetries and periodicities. Fig. 9 shows the computed versus “exact” pre-images, as well as 
the streaklines of the grid vertices. Note that Fig. 9 only displays representative unit cells of the flows, for relatively coarse 
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Fig. 9. The grid’s pre-image and vertex’s streaklines on representative unit-cells of the velocity field: (a) in simple translation, (b) in simple rotation, (c) in 
the single vortex in-a-box field, (d) in the 4-vortex deformation field. The solid red lines are the exact curves, while the dashed blue lines are calculated 
lines. Square markers are the vertices of polygonal chains representing the streaklines. (For interpretation of the references to color in this figure, the reader 
is referred to the web version of this article.)

Table 1
Pre-image calculation errors E1 computed for the entire grid, with Cmax = 1. The convergence rates are in parentheses.

Grid size 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128

Simple translation 2.16e−15 3.22e−15 1.72e−14 6.26e−14 2.58e−13

Simple rotation 8.68e−9 3.34e−10 1.39e−11 7.92e−13 1.54e−13
(4.70) (4.59) (4.13)

Single vortex in-a-box 7.00e−4 9.70e−5 1.39e−5 2.10e−6 3.10e−7
(2.85) (2.81) (2.73) (2.75)

4-vortex deformation field – 1.19e−3 2.72e−4 5.18e−5 8.18e−6
(2.13) (2.39) (2.67)

grids. The reconstructed DRs and pre-images do not overlap and are conforming to the edge of their neighbors (consistency 
of the streaklines). The pre-image calculation errors reported in Table 1 are computed for the entire domain, during one 
time-step, using the maximum Courant number Cmax = 1.

In simple translation, the grid’s pre-image is constructed exactly (to the machine precision), for all grid sizes. The in-
crease in the value of E1 with the mesh refinement is due to the accumulation of round-off errors. In the simple rotation, 
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Table 2
Geometrical errors and convergence rates in the single vortex deformation test cases.

E g (32) E g (64) O (32) E g (128) O (64) E g (256) O (128)

T = 0.5
Rider & Kothe [21] 7.29e−4 1.42e−4 2.36 3.90e−5 1.86 – –
Stream [23] 5.51e−4 1.10e−4 2.32 3.38e−5 1.71 – –
EMFPA [16] 4.45e−4 7.99e−5 2.48 2.04e−5 1.97 – –
Mencinger & Zun [24] 4.68e−4 6.91e−5 2.76 2.07e−5 1.74 – –
GPCA [25] 4.12e−4 7.32e−5 2.41 1.93e−5 1.93 – –
CCU (proposed scheme) 3.20e−4 7.68e−5 2.06 1.32e−5 2.54 2.45e−6 2.43

T = 2
Rider & Kothe [21] 2.36e−3 5.85e−4 2.01 1.31e−4 2.16 – –
Stream [23] 2.37e−3 5.65e−4 2.07 1.32e−4 2.10 – –
EMFPA [16] 2.14e−3 5.39e−4 1.99 1.29e−4 2.06 – –
Mencinger & Zun [24] 2.11e−3 5.28e−4 2.00 1.28e−4 2.05 – –
GPCA [25] 2.18e−3 5.32e−4 2.05 1.29e−4 2.03 – –
CCU (proposed scheme) 1.86e−3 4.18e−4 2.15 9.62e−5 2.12 1.97e−5 2.29

T = 8
Rider & Kothe [21] 4.78e−2 6.96e−3 2.78 1.44e−3 2.27 – –
Stream [23] 3.72e−2 6.79e−3 2.45 1.18e−3 2.52 – –
EMFPA [16] 3.77e−2 6.58e−3 2.52 1.07e−3 2.62 2.35e−4 2.19
Mencinger & Zun [24] 5.42e−2 7.85e−3 2.79 1.05e−3 2.90 – –
GPCA [25] – – – 1.17e−3 – – –
Owkes & Desjardins [46] – 7.58e−3 – 1.88e−3 2.01 4.04e−4 2.22
CCU (proposed scheme) 3.81e−2 4.58e−3 3.06 1.00e−3 2.20 1.78e−4 2.59

Fig. 10. Reconstructed interfaces in the single vortex deformation test with T = 0.5 and Cmax = 1, for the 32 × 32 grid. Snapshots at t = T /2 (left) and 
t = T (right). The red dashed line shows the exact interface position at final time. (Mind the different scales.) (For interpretation of the references to color 
in this figure, the reader is referred to the web version of this article.)

very small errors are generated. Careful examination of the calculated pre-image reveals that the pre-images of the grid 
vertices—traced backward—are determined exactly, because the rotational velocity field is linear in terms of space. The 
small errors come from the approximation of the streaklines as polygonal chains, while the exact streaklines are circle arcs. 
Errors in the area of the DR results in positioning errors of the mid-edge correcting vertex of the volume flux correction. 
The error E1 is reduced with mesh refinements, with a convergence rate between 4 and 5, and it reaches the precision of 
accumulated round-off errors for the mesh 128 × 128.

In the single vortex in-a-box and the 4-vortex deformation fields, additional errors come from the backward tracing since 
the bicubic spatial interpolation of the velocity does not represent sine and cosine functions exactly. However, considering 
the coarseness of the mesh, these errors are considered relatively small. Bicubic splines have accuracy of order O (�x4), but 
the number of cells increase as O (1/�x2) with the mesh refinement, hence a formal second-order accuracy. However, the 
apparent convergence rate of the error is between 2 and 3.

In principle, the error in the simple rotation—only due to approximations of the streaklines with polygonal chains—would 
vanish if one uses a spline representation of the streaklines, as in the DRACS scheme [27,30]. However, the advection errors 
in the simple rotation tests, solely due to the streakline representation, are five orders of magnitude smaller than in the 
single vortex in-a-box tests, where backward tracing also contributes to the errors. The simple rotation tests also have 
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Fig. 11. Reconstructed interfaces in the single vortex deformation test with T = 2 and Cmax = 1, (top) for the 32 × 32 grid, and (bottom) for the 64 × 64
grid. Snapshots at t = T /2 (left) and t = T (right). The red dashed line shows the exact interface position at final time. (Mind the different scales.) (For 
interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

higher convergence rates than the single vortex in-a-box tests. Therefore, the overall accuracy of advection is limited by 
the accuracy of the backward tracing, i.e. the Runge–Kutta method and the bicubic spatial interpolation, rather than the 
polygonal chain approximation.

3.2. Deformation in the single vortex test

In this section, the accuracy of the CCU advection scheme is tested in conjunction with the ELVIRA interface reconstruc-
tion algorithm. The deformation in a single vortex is a classical benchmark test, also used in [16,21,23–25]. The calculation 
domain is a rectangle [0, 1] ×[0, 1]. The liquid phase is initially a disk of radius 0.15 and centered at the position (0.5, 0.75). 
The interface of the material deforms during the time interval t = [0, T ], by the single vortex in-a-box velocity field:

ψ(x, y, t) = − 1

π
sin2(πx) sin2(π y) cos

(
πt

T

)
. (25)

The magnitude of the vortex is reversed at the time t = T /2; thus the deformed material theoretically recovers its initial 
shape at the final time T . The test is performed for three different vortex periods T = 0.5, 2, 8, with different grid spacing 
of the Cartesian grids h = 1/32, 1/64, 1/128 and 1/256. All the simulations are performed with Cmax = 1.

The CCU advection scheme rigorously conserves the liquid volume to the machine precision. Geometrical errors are 
measured as the 1-norm of the difference between the initial and final liquid volume fraction inside all the cells:

E g(n) =
n∑

i, j

Ai, j
∣∣ f T

i, j − f 0
i, j

∣∣, (26)
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Fig. 12. Reconstructed interfaces in the single vortex deformation test with T = 8 and Cmax = 1, for the 128 × 128 grid. Snapshots at t = T /4 (top-left), 
t = T /2 (top-right), t = 3T /4 (bottom-left) and t = T (bottom-right). The red dashed line shows the exact interface position at final time. (Mind the different 
scales.) (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

where Ai, j is the area of the i, jth grid cell, and n is the number of grids along each dimension. The convergence rate of 
the error with mesh refinement is given by:

O (n) = ln(E g(2n)/E g(n))

ln(1/2)
. (27)

The geometrical errors obtained in our simulation are shown in Table 2 and compared with results from other advection 
schemes. The geometrical error decreases with mesh refinements at a rate between 2 and 3. In most of the cases, the CCU 
scheme performs better than the best of the other schemes, with 15–30% less geometrical errors. In the particular case 
where T = 0.5, the CCU scheme is outperformed by the GPCA and the Mencinger and Zun schemes, on the 64 × 64 grid. 
However, this could be due to the difference in the interface reconstruction algorithm. Formally, the LVIRA algorithm used 
in [16,21,23–25] is more accurate than the ELVIRA algorithm we use, although both methods return similar results in most 
cases.

Figs. 10–13 show the reconstructed interfaces at various times of the simulation, for different vortex periods T and 
grid sizes. The theoretical position of the interface at the end of the simulation is represented by the red dashed line. In 
simulations with the vortex period T = 8, the deformed material is extensively stretched. In theory, the material has the 
same shape at the times t = T /4 and t = 3T /4. In Fig. 12, a visual comparison of the geometry at the times t = T /4 and 
t = 3T /4, shows that geometrical errors arise from the head and the tail of the deformed material. The same observation is 
also made when comparing the reconstructed interfaces between the different grid sizes. These regions of high geometrical 
errors are located where the interface has a high curvature, or forms thin filament below the thickness of 2 grid cells. 
In these regions, the interface reconstruction algorithm fails in capturing the interface accurately. The observed filament 



R. Comminal et al. / Journal of Computational Physics 283 (2015) 582–608 597

Fig. 13. Reconstructed interfaces in the single vortex deformation test with T = 8 and Cmax = 1, for the 256 × 256 grid. Snapshots at t = T /4 (top-left), 
t = T /2 (top-right), t = 3T /4 (bottom-left) and t = T (bottom-right). The red dashed line shows the exact interface position at final time. (Mind the different 
scales.) (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

break-up is a numerical artifact, which should not be confused with actual fluid thread break-up due to minimization of the 
surface tension energy. This is not only a drawback of the LVIRA and the ELVIRA algorithm, but the PLIC representation in 
general. Therefore, the simulation results in the cases T = 8, for the coarse grids 32 × 32 and 64 × 64, are not very relevant 
to assess the accuracy of the CCU scheme, as the large geometrical errors come from the PLIC representation rather than 
the advection.

3.3. Deformation in the 4-vortex test

The 4-vertex deformation field is another benchmark test for the surface-tracking methods. Traditionally, it is considered 
to be a very difficult test case to solve with the VOF method, because of the appearance of very thin filaments of material 
that are excessively stretched. The liquid phase initially forms a disk of radius 0.15, located at the center of the [0, 1] ×[0, 1]
domain. The velocities in the 4-vortex deformation field are derived from:

ψ(x, y, t) = 1

4π
sin

(
4π(x + 0.5)

)
cos

(
4π(y + 0.5)

)
cos

(
πt

T

)
. (28)

As in the previous benchmark test, the amplitude of the deformations is reversed at the time t = T /2, and the material 
theoretically recovers its initial shape at the end of the simulation. The test is performed on various grid sizes, for the de-
formation periods T = 1 and T = 2. Two maximum Courant numbers Cmax = 1 and Cmax = 0.1 are used in the simulations.

The reconstructed shapes of the deformed material with the ELVIRA method are depicted in Figs. 14 and 15, where T = 1
and T = 2, respectively. For T = 1, the PLIC is able to represent the formation of the filament, on the intermediate grid 
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Fig. 14. Snapshots of the reconstructed interface in the 4-vortex deformation test with T = 1 and Cmax = 1.
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Fig. 15. Snapshots of the reconstructed interface in the 4-vortex deformation test with T = 2 and Cmax = 1.
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Table 3
Geometrical errors and convergence rates in the 4-vertex deformation test cases.

E g (64) E g (128) O (64) E g (256) O (128) E g (512) O (256)

T = 1
Rider & Kothe [21] 1.69e−3 4.36e−4 1.95 – – – –
CCU Cmax = 1 1.04e−3 2.78e−4 1.90 8.02e−5 1.80 2.13e−5 1.92
CCU Cmax = 0.1 3.35e−3 4.75e−4 2.82 1.15e−4 2.04 3.12e−5 1.89

T = 2
Rider & Kothe [21] 1.12e−2 5.95e−3 0.91 – – – –
CCU Cmax = 1 1.07e−2 5.58e−3 0.94 1.47e−3 1.93 3.69e−4 1.99
CCU Cmax = 0.1 1.42e−2 7.31e−3 0.96 1.60e−3 2.19 4.42e−4 1.86

Fig. 16. Advection errors in simple translation of a rectangular corner. The reconstructed shape of the material is colored in purple; hatched areas represent 
static reconstruction errors. The grid cells marked with a red asterisk are subjected to advection errors, in spite of the exact pre-image calculation in blue. 
Note that only the cells near the interface have their liquid volume fraction updated. (For interpretation of the references to color in this figure, the reader 
is referred to the web version of this article.)

128 × 128. However, For T = 2, the material experiences very large deformations, and the PLIC has difficulties representing 
the elongated thin filaments, even on the finest 512 × 512 grid. The geometrical errors and their convergence rates are 
reported in Table 3. Our results are compared with the available data of Rider and Kothe [21] for the coarse grids. This 
benchmark test triggers the occurrence of self-intersecting DRs, as depicted in Fig. 6(b). Self-intersecting DRs are only 
handled correctly by schemes producing edge-matching fluxes (which is not the case of the Rider & Kothe’s scheme). In the 
case T = 1, the CCU scheme reduces the geometrical errors by one third, as compared to the Rider and Kothe’s scheme. 
However, in the case T = 2, the CCU scheme produce only slight improvements. Relatively large geometrical errors arise 
from the filament break-up due to under-resolution of the mesh. The limiting factor for the accuracy is the improper 
PLIC interface representation. The convergence rate of the geometrical error is around 2, which is consistent with the 
second-order accuracy of the ELVIRA algorithm [13].

Paradoxically, the geometrical error increases when the Courant number decreases, which is inconsistent with the tem-
poral accuracy of advection schemes. This is also due to errors in the interface reconstruction. Indeed, the accuracy of the 
interface reconstruction algorithm is independent on the time-step increment, but interface reconstruction errors accumu-
late as the number of time-step increases.

4. Discussions

4.1. Interface reconstruction errors

Overall, the CCU algorithm compares favorably to the other 2D unsplit advection schemes using the PLIC interface rep-
resentation. However, geometrical errors persist mainly because of errors in the interface representation. An analysis of 
interface reconstruction errors is reported in [33]. As also shown in [27], poor interface representations (seen by substantial 
discontinuities of the interface) generate advection errors. Fig. 16 shows an example where advection errors are produced 
because of static interface reconstruction errors, in spite of an exact pre-images calculation. The use of more advanced 
interface representation techniques would be necessary in order to overcome this type of error.

Quadratic interface reconstruction has been used in [17,34–36] to improve the representation of regions with high curva-
ture. However, intersections of quadratic surfaces are more difficult to compute. Another technique, the improved PLIC-VOF 
method of López et al. [37], successfully achieves the accurate representation of thin filaments with two non-secant line 
segments whose positions are tracked by markers. Both techniques are improvements of the interface representation and 
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Fig. 17. Timing data: (a) distribution of the total calculation time between the different steps of the VOF solver, (b) comparison of the computation costs, 
for the pre-image calculation, with downgraded methods from the original CCU scheme.

produce better results than the PLIC in the single vortex benchmark test. Other remaining issues of the PLIC-VOF method 
are (i) the improper representation of sharp corners, (ii) the interface reconstruction of multi-materials in cells containing 
tri-points, and (iii) the accurate tracking of sub-grid particles of fluid, such as small droplets or air bubbles.

Some of these issues are handled better with other types of interface tracking methods, notably the hybrid markers-VOF 
method of Aulisa [38,39] and the PAM method of Zhang and Liu [28,29]. Both methods perform better than the PLIC-VOF 
when representing the interface, due to their use of Lagrangian geometrical objects such as markers or polygons. These two 
methods also have the ability to represent geometrical shapes below the grid resolution (bubbles or droplets). However, 
these improvements come at the price of tedious calculations. For instance, the hybrid marker-VOF method requires dynam-
ical redistribution of the markers under the constraint of volume conservation, in order to keep a uniform marker density 
along the interface. The PAM method uses readjustment procedures, to shrink and expand the volume of polygons, and to 
reduce their number of vertices. Improvements of these readjustment procedures have been presented in [29]. In addition, 
both the original and the improved PAM methods require special algorithms to successfully merge interfaces.

On the contrary, Eulerian surface capturing techniques are relatively easier to implement and they handle interface merg-
ing automatically. Finally, the mentioned drawbacks of the PLIC-VOF method are rather due to the PLIC representation of 
the interface than the VOF approach itself. In the authors’ opinion, the VOF method could reach equivalent accuracy as the 
Lagrangian methods, if more precise techniques for the interface representation were developed. In particular, we suggest 
the use of piecewise continuous bilinear interfaces, i.e. two-segment polygonal chains, to improve the representation of the 
sharp corners and the high curvatures.

4.2. Computation cost

This section provides timing data of the CCU advection scheme. Timing data are interesting when assessing the efficiency 
of an algorithm; however, direct comparisons with other values from the literature are not relevant, since the computational 
cost depends on the hardware, the programming language, and the coding style of the implementation. In this work, the 
CCU advection scheme has been implemented in Matlab®. The code was vectorized with the use of array operations, in 
order to optimize computational efficiency. However, since Matlab® is an interpreted language, its speed of calculation is 
slower than compiled codes converted in executable machine codes. Our code ran on a workstation with a dual hexa-core 
microprocessor T7500 dual Hex X5690 @ 3.46, 96 GB DDR3 1333 MHz.

The calculation time of the CCU algorithm was recorded in the single vortex in-a-box benchmark test, with T = 2
and Cmax = 1, for the 256 × 256 grid. In this test case, the number of grid cells that undergo an update of their liquid 
volume fraction (hereinafter referred to as the active cells) varies between 924 cells at the initial time and 1814 cells in the 
most stretched configuration at the time t = T /2. On the one hand, the computational cost for the pre-image calculation 
(backward tracing and volume flux correction) is directly proportional to the number of active cells. On the other hand, 
the computational costs for the interface reconstruction and the calculation of the intersections of the pre-images with the 
PLIC are proportional to the number of interfacial cells. In order to have a coherent scaling of the calculation time, we 
have chosen a test case without formation of thin filaments, such that the ratio of interfacial cells to the total number 
of active cells stays approximately to the proportion 1/3. The solving of the test case required 336 time-steps in total. 
The calculation time was recorded for each time steps and scaled to 1000 active cells. The median calculation time, for 
the entire VOF solver, was 0.365 seconds per time-step for 1000 active cells. Fig. 17(a) shows the distribution of the total 
computational cost between the different steps of the VOF solver. The pre-image calculation, which is the originality of the 
CCU scheme, represents about one third of the whole calculation time. Remaining computational costs are shared between 
the ELVIRA interface reconstruction algorithm, and the truncation of the pre-image polygons with the grid lines and the 
PLIC.
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Fig. 18. Overlapping regions of non-conforming DR: (a) for the FMFPA scheme [43], (b) for the voFoam scheme [44].

Additional timing tests were performed with simpler version of the CCU scheme, downgraded with (i) bilinear interpo-
lations instead of bicubic splines, (ii) the Euler method—as in the EMFPA scheme—instead of the Runge–Kutta method, and 
(iii) the representation of streaklines with single segments instead of polygonal chains. These tests provide an estimation 
of the additional computational cost associated to the CCU scheme. The computational cost of the pre-image calculation is 
displayed for the different schemes in Fig. 17(b), where the original CCU scheme is scaled to 1. The data shows that the 
bilinear interpolation reduces the computational cost of the pre-image calculation by 2/3. Moreover, the use of the Euler 
method, which does not require any spatial interpolation, further decreases the computational cost by 3/5. Nevertheless, 
when these timing data of the pre-image calculation are related to the entire VOF solver, the additional computational cost 
associated to the CCU scheme does not exceed 20% or 30% of the total cost, as compared to the advection schemes with 
bilinear spatial interpolations and the Euler method, respectively. It is interesting to note that the calculation of the streak-
lines as polygonal chains does not add a significant computational cost, as compared to the calculation of single segment 
streaklines. This is due to the fact that the backward tracing of the intermediate vertices 1’ and 1′′ of the polygonal chain 
does not require calculation of additional spatial interpolation functions, since it uses the same as for the backward tracing 
of the end-point A of the streakline.

Finally, one should keep in mind that the reported calculation time of 0.365 seconds per time-step for 1000 active cells 
is an illustration of the computation cost, for one possible implementation of the CCU scheme in Matlab®. For instance, the 
total calculation time will be significantly reduced, if the scheme is programmed in a low-level compiled language, such as 
FORTRAN or C/C++. In addition, we have not taken advantage of parallel computing, despite the explicit nature of the VOF 
method and the CCU scheme, which inherently makes them easily parallelizable.

4.3. Extension to 3D

The extension of 2D unsplit VOF-advection schemes into 3D is often cited as a difficult and tedious task. To date, 3D 
directional-split schemes [19,20,40] are more popular despite being less accurate. Nevertheless, several implementations of 
3D unsplit schemes have been reported in the literature. Rider and Kothe, and Puckett’s schemes have been extended to 3D 
in [41] and [42], respectively. Two 3D variants of EMFPA have also been proposed: the FMFPA [43] and voFoam [44] schemes. 
The two schemes differ from each other in how they construct the DRs. FMFPA constructs face-matched flux polyhedra using 
edge-centered velocities. The geometrical toolbox [45] has specially been developed to facilitate its implementation. FMFPA 
produces adjacent DRs with matched coplanar faces, yet overlapping with their diagonal neighbors sharing one corner, as 
depicted in Fig. 18(a). Alternatively, voFoam uses the grid’s vertex velocities to produce truly edge-matched fluxes. Conse-
quently, each face of the DR is defined by 4 vertices that are not coplanar in the general case, see Fig. 19(a). The resulting 
non-planar surfaces need to be triangulated into planar faces. In addition, the voFoam scheme produces non-conforming 
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Fig. 19. (a) Quadrilaterally-faced hexahedron with non-planar ruled surfaces. (b) DR calculation delimited with polyhedral terrains, and pyramidal volume 
flux correction. (c) Exploded view of the volume decomposition of a hexahedron into 6 simplexes. (d) Final pre-image polyhedron with 14 vertices and 24 
faces.

DRs (similarly as EMFPA), therefore the triangulations of adjacent DR surfaces do not match, forming overlapping regions or 
gaps, as depicted in Fig. 18(b). As a result, none of FMFPA and voFoam is conservative.

Frameworks for 3D conservative and bounded unsplit schemes have only been described in very recent publications 
[46,47]. The conforming of adjacent DRs—which is a sufficient condition for conservativeness in 2D—is here a necessary con-
dition for conservativeness in 3D. In this regard, the CCU scheme, which produces edge-matched conforming DRs, is a 
good candidate for 3D conservative unsplit advection. The backward tracing of the grid’s vertices in 3D remains essentially 
identical as in the 2D case. The bicubic spatial interpolation is replaced by a tricubic interpolation [48]. The DR calcula-
tion in 3D still uses polygonal chains to approximate the streaklines of the grid’s vertices. The resulting DR polyhedron is 
bounded by polyhedral terrains and it is composed of three adjoining hexahedra, as represented in Fig. 19(b). As shown 
in [46,49], the surface triangulation of each quadrilaterally-faced hexahedron having non-planar surfaces is equivalent to 
volume decomposition into six simplexes; see Fig. 19(c). The simplex decomposition facilitates the calculation of the poly-
hedral volumes. Without loss of generality, the volume of an arbitrary simplex defined by its vertex’s positions a, b, c, d is 
given by:

V simplex = 1

6

∣∣(a − d) · [(b − d) × (c − d)
]∣∣. (29)

The simplex decomposition is used to compute the volume of the DR. Note that DR polyhedrons may have self-intersections. 
The different scenarios of self-intersection must be checked, and non-admissible self-intersections (not involving the cell 
face) must be regularized, similarly as in the 2D case. Checking all the potential intersections of the polygonal terrains 
bounding the DR might be a tedious task. However, the occurrence of the self-intersections can be detected with the use 
of the sign convention, introduced in [46], relative to the decomposition of polyhedra into simplex volumes. Thus, the reg-
ularization of non-admissible DRs, and the calculation of the signed volume of self-intersecting DRs, can be performed with 
only few computations of plane–plane intersections. The full details about the sign convention for the decomposition of 
polyhedra into simplex volumes are found in [46]. Finally, the 3D volume flux corrections are applied as pyramidal volumes, 
producing non-overlapping and conforming DRs. As a result, the final pre-image polyhedron has 14 vertices and 24 faces, 
see Fig. 19(d), which is decomposed into 20 simplexes, similarly as in [46].
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The two unsplit schemes [46] and [47], for hexahedral and tetrahedral meshes respectively, also achieve conservativeness 
and boundedness in 3D by means of similar volume flux corrections as in the CCU scheme. Nevertheless, the originalities 
that differentiate the CCU method from the two former conservative unsplit schemes are:

• the tricubic interpolations of the velocity field (instead of trilinear), for more accurate higher-order backward tracing,
• the more precise representation of the DR polyhedron, bounded by polygonal terrains whose edges are polygonal chains 

approximating the streaklines of the grid’s vertices,
• the cellwise approach of the VOF update.

The accuracy gained in both backward tracing and DR representation decreases the magnitude of volume correction needed, 
thus reducing pre-image calculation errors.

For the sake of clarity, the CCU advection scheme has here been presented assuming the case of a Cartesian grid. How-
ever, there is no restriction on the mesh morphology. Unstructured quadrilateral/hexahedral meshes can be used without 
any differences. In the case of unstructured triangular/tetrahedral meshes, minor modifications are required. The bi/tri-cubic
interpolations are replaced by bi/tri-quadratic interpolations, dropping the continuity of cross-derivative terms. Additionally, 
the pre-image of a tetrahedral element is a polyhedron with 8 vertices and 12 faces, which is efficiently decomposed into 
12 simplexes.

Finally, several planar interface reconstruction algorithms have been developed for 3D problems. The least-square fit 
method (LVIRA) has been extended to 3D Cartesian grids in [42]. The correct positioning of the planar interfaces inside 
rectangular cells is obtained from the analytical relations given in [50]. Other reconstruction techniques [51] have been 
implemented to determine smooth second-order accurate planar interface in 3D tetrahedral unstructured meshes. Useful 
analytic relations for the correct positioning of planar interfaces inside arbitrary triangular and tetrahedral cells are also 
provided in [52].

5. Conclusion

We have presented a new cellwise conservative unsplit advection scheme for the volume-of-fluid method. The CCU 
scheme is based on the backward tracing of the cells’ pre-images, using a fourth-order Runge–Kutta method with bicubic 
spatial interpolation of the velocity field. The donating regions of the fluxes are calculated as polygons, whose edges are 
polygonal chains representing the streaklines of the cell’s vertices. The volume conservation is enforced through a robust 
volume flux correction algorithm, producing non-overlapping and conforming adjacent donating regions. As a result, the 
CCU scheme is conservative and bounded. In addition, the cellwise update of the liquid volume fraction does not require 
the computation of the liquid volume inside the fluxes’ donating regions since the liquid volume is solely evaluated in the 
cells’ pre-images. Consequently, it requires fewer computations of polygonal intersections. Finally, the CCU advection is not 
subjected to restrictions on the Courant number.

Numerical simulations show that the CCU scheme overall performs better than the other PLIC-VOF methods in the classi-
cal benchmark tests. The accuracy of the CCU scheme is gained from the bicubic spatial interpolation and the representation 
of streaklines with polygonal chains. A measure of the pre-image calculation error has been proposed to provide an upper 
bound for its contribution to the global advection errors, independently of interface reconstructions. The convergence rates 
of the pre-image calculation errors with mesh refinements are between 2 and 3 in complex flows.

The contribution of the interface reconstruction to the global advection error has also been discussed since some of 
the geometrical errors measured in the benchmark tests are due to the inability of the reconstructed planar interfaces 
to properly represent high curvatures and thin material filaments. Therefore, we suggest future research efforts on the 
improvement of the VOF method to be directed toward the development of more precise interface representation techniques, 
transcending the drawbacks of the PLIC.

We have shown that the additional computational cost of the CCU scheme is mainly due to the calculation of the 
bicubic spatial interpolations, while the streakline representation with polygonal chains has a negligible impact on the total 
calculation time. Moreover, the overall computational cost is dominated, in our implementation, by the rest of the VOF 
algorithm, i.e. the interface reconstruction and the calculation of polygonal intersections.

Finally, we have discussed the potential extension of the CCU advection to 3D calculations. It appears that the CCU 
scheme is a good candidate to achieve accurate, conservative and bounded advection in 3D, thanks to the robust calculation 
of conforming and non-overlapping pre-images and donating regions. Furthermore, the CCU scheme can be adapted to 
triangular and tetrahedral unstructured meshes, with only minor modifications.
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Fig. 20. Bicubic spline interpolation inside a rectangular grid cell, using normalized local coordinate system.

Appendix A. Bicubic spline interpolation

The bicubic spline interpolation g of a scalar field s (either one of the velocity components u, v , or the streamfunction ψ ) 
is a polynomial function with 16 terms:

g(ξ,η) =
3∑

i=0

3∑
j=0

aijξ
iη j = a00 + a01η + a02η

2 + a03η
3 + a10ξ + a11ξη + a12ξη

2 + a13ξη
3 + · · ·

+ a20ξ
2 + a21ξ

2η + a22ξ
2η2 + a23ξ

2η3 + a30ξ
3 + a31ξ

3η + a32ξ
3η2 + a33ξ

3η3, (30)

where (ξ, η) ∈ [0, 1]2 are the normalized local coordinates inside the rectangular grid cell, see Fig. 20. The value of the field 
s is known at the cell’s vertices (0, 0), (1, 0), (1, 0), (1, 1). The first and cross derivatives sx , sy and sxy are further evaluated 
at these vertices by finite-differences. Fitting these 4 values at the 4 corners provides 16 equations for the coefficients aij :

sSW = g(0,0) = a00,

sSE = g(1,0) = a00 + a10 + a20 + a30,

sNW = g(0,1) = a00 + a01 + a02 + a03,

sNE = g(1,1) = a00 + a01 + a02 + a03 + a10 + a11 + a12 + a13 + · · ·
+ a20 + a21 + a22 + a23 + a30 + a31 + a32 + a33, (31)

�xsSW
x = ∂ g

∂ξ
(0,0) = a10,

�xsSE
x = ∂ g

∂ξ
(1,0) = a10 + 2a20 + 3a30,

�xsNW
x = ∂ g

∂ξ
(0,1) = a10 + a11 + a12 + a13,

�xsNE
x = ∂ g

∂ξ
(1,1) = a10 + a11 + a12 + a13 + 2a20 + 2a21 + 2a22 + · · ·

+ 2a23 + 3a30 + 3a31 + 3a32 + 3a33, (32)

�ysSW
y = ∂ g

∂η
(0,0) = a01,

�ysSE
y = ∂ g

∂η
(1,0) = a01 + a11 + a21 + a31,

�ysNW
y = ∂ g

∂η
(0,1) = a01 + 2a02 + 3a03,

�ysNE
y = ∂ g

∂η
(1,1) = a01 + 2a02 + 3a03 + a11 + 2a12 + 3a13 + · · ·

+ a21 + 2a22 + 3a23 + a31 + 2a32 + 3a33, (33)
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�x�ysSW
xy = ∂2 g

∂ξ∂η
(0,0) = a11,

�x�ysSE
xy = ∂2 g

∂ξ∂η
(1,0) = a11 + 2a21 + 3a31,

�x�ysNW
xy = ∂2 g

∂ξ∂η
(0,1) = a11 + 2a12 + 3a13,

�x�ysNE
xy = ∂2 g

∂ξ∂η
(1,1) = a11 + 2a12 + 3a13 + 2a21 + 4a22 + 6a23 + 3a31 + 6a32 + 9a33. (34)

The system of linear relations (31)–(34) can be expressed in the matrix form

Aα = x, (35)

where

α = [ a00 a10 a20 a30 a01 a11 a21 a31 a02 a12 a22 a32 a03 a13 a23 a33 ]T ,

x = [
sSW sSE sNW sNE �xsSW

x �xsSE
x �xsNW

x �xsNE
x �ysSW

y �ysSE
y �ysNW

y �ysNE
y . . .

�x�ysSW
xy �x�ysSE

xy �x�ysNW
xy �x�ysNE

xy

]T
.

Finally, the solution for the coefficients aij is α = A−1x, with

A−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

−3 3 0 0 −2 −1 0 0 0 0 0 0 0 0 0 0
2 −2 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 −3 3 0 0 −2 −1 0 0
0 0 0 0 0 0 0 0 2 −2 0 0 1 1 0 0

−3 0 3 0 0 0 0 0 −2 0 −1 0 0 0 0 0
0 0 0 0 −3 0 3 0 0 0 0 0 −2 0 −1 0
9 −9 −9 9 6 3 −6 −3 6 −6 3 −3 4 2 2 1

−6 6 6 −6 −3 −3 3 3 −4 4 −2 2 −2 −2 −1 −1
2 0 −2 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 2 0 −2 0 0 0 0 0 1 0 1 0

−6 6 6 −6 −4 −2 4 2 −3 3 −3 3 −2 −1 −2 −1
4 −4 −4 4 2 2 −2 −2 2 −2 2 −2 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (36)

Appendix B. Adaptive time-stepping

The adaptive time-stepping procedure is an a priori estimation of the next time-step increment �t before solving of 
the velocity. The next time-step increment is determined, according to the specified maximum Courant number Cmax. The 
temporal variation of the velocity during the next time-step is approximated with a first-order Taylor expansion:

û
(
tn+1) = u

(
tn) + �t

du

dt

∣∣∣∣
tn

+ O
�t→0

(
�t2), (37)

where û(tn+1) is the a priori estimate of the velocity at the next the time step.
In order to avoid overshooting of the maximum Courant number, the maximal allowable time-step increment is restricted 

with the two conditions:

�t
∣∣u(

tn)∣∣ ≤ Cmax�x,

�t
∣∣û(

tn+1)∣∣ ≤ Cmax�x. (38)

Three scenarios are possible, depending on the sign of the u(tn) and du
dt

∣∣
tn :

1) When u(tn) �= 0 and du
dt

∣∣
tn = 0, the maximal allowable time-step increment is simply:

�tmax = �xCmax

|u(tn)| . (39)
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2) When u(tn) and du
dt

∣∣
tn are not zero and have the same sign, the velocity û(tn+1) at the next time-step is larger in 

absolute values than the current velocity u(tn). Combining Eqs. (37) and (38) yields a second-order polynomial equation 
in �tmax, which has the following solution:

�tmax =
−|u(tn)| +

√
u(tn)2 + 4

∣∣ du
dt

∣∣
tn

∣∣�xCmax

2
∣∣ du

dt

∣∣
tn

∣∣ . (40)

3) When u(tn) and du
dt

∣∣
tn are not zero and have opposite signs, there is a possibility for the velocity to change sign 

during the time-step increment. It cannot be asserted a priori which of the current and next velocities will be largest 
in absolute values, yet both restrictions of the equation must be fulfilled. It leads to two restrictions on the maximal 
allowable time-step increment:

�tmax
1 <

�xCmax

|u(tn)| if
∣∣u(

tn)∣∣ >

∣∣∣∣�tmax du

dt

∣∣∣∣
tn

∣∣∣∣, (41)

�tmax
2 <

|u(tn)| +
√

u(tn)2 + 4
∣∣ du

dt

∣∣
tn

∣∣�xCmax

2
∣∣ du

dt

∣∣
tn

∣∣ if
∣∣u(

tn)∣∣ <

∣∣∣∣�tmax du

dt

∣∣∣∣
tn

∣∣∣∣ (42)

and

�tmax = min
(
�tmax

1 ,�tmax
1

)
(43)

Note that �x in Eqs. (39) and (41) is the length of the downwind cell, while �x in Eqs. (40) and (42) is the length of the 
upwind cell.
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a b s t r a c t

A new streamfunction/log-conformation formulation of incompressible viscoelastic flows is presented.
The log-conformation representation guaranties the positive-definiteness of the conformation tensor
and obviates the high Weissenberg number problem. The streamfunction is defined as a vector potential
of the velocity field, and provides a pressureless formulation of the conservation laws, which automati-
cally enforces the incompressibility. The resulting numerical method is free from velocity–pressure
decoupling errors, and can achieve stable calculations for large Courant numbers, which improve the
robustness and the efficiency of the solver. The two-dimensional flow of an Oldroyd-B fluid inside the
lid-driven cavity is simulated for a large range of Weissenberg numbers. The numerical results demon-
strate the second-order accuracy of our scheme, and our solutions are in good agreement with the avail-
able data from the literature for Weissenberg number 3 and below. Finally, the simulations at higher
Weissenberg numbers 5 and 10 reveal a structural mechanism that sustains quasi-periodic elastic insta-
bilities arising at the upstream corner of the moving lid.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The simulation of viscoelastic flows has a wide range of applica-
tions in natural science and engineering. Viscoelastic fluids exhibit
different flow features as compared to purely viscous fluids, such
as turbulence drag reduction [1], elastic instabilities [2,3], and elastic
turbulence at low Reynold numbers [4,5]. These viscoelastic effects
are magnified in micro-fluidics [6]. To cite but a few examples of
applications in polymer processing: viscoelasticity plays a role in
the well-known extrudate swelling [7,8] and fracture melt [9,10]
phenomena seen in extrusion. In multilayer co-extrusion, elastic
forces can generate interfacial waves [11,12], and secondary flows
known as elastic rearrangement [13,14], that deform the interface.
Thus, the development of accurate numerical tools for the simula-
tion of viscoelastic flows is important from both fundamental and
practical points of view.

Phenomenologically, viscoelastic materials have stress
responses that do not only depend on their current deformations
but also on their deformation history. Thus, time is a key parame-
ter; and viscoelastic materials have different stress responses
depending on the time-scales of the deformation. They typically

exhibit stress relaxation, creep deformation and shape memory.
The relative effect of viscoelasticity is usually quantified by the
dimensionless Weissenberg number1 Wi, which is given by the pro-
duct of a characteristic relaxation time k of the material and a char-
acteristic deformation rate _e of the flow:

Wi ¼ k _e: ð1Þ

Another dimensionless quantity, the Deborah number, is sometimes
used for flows with non-constant stretch history (i.e. deformation
rate). It is defined as the ratio between the characteristic relaxation
time and the time-scale of observation tc:

De ¼ k=tc: ð2Þ

For a critical discussion about the different uses of Wi and De, we
refer to [15].

We specifically focus on the case of polymeric materials, where
the viscoelastic effects arise from the kinetics of the polymer
chains. The relaxation of diluted short-chain polymers is captured
by the Rouse model, while the kinetics of entangled long-chain and
branched polymers are described in the tube theories [16,17] that
include the reptation mechanism. Multi-scale micro–macro
simulations, where the viscoelastic stress is directly computed

http://dx.doi.org/10.1016/j.jnnfm.2015.05.003
0377-0257/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
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1 Also noted We in some publication; not to be confused with the dimensionless
Weber number which compares the fluid’s inertia to its surface tension.
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from kinetics theories, using Brownian dynamics methods or
stochastic models, can be found in [18]. However, the most popular
approach to simulate macroscopic flows remains continuum
mechanics. The derivation of continuum constitutive equations
from the kinetics theories requires closure approximations, but in
most of the numerical simulations with practical applications,
the constitutive model and the material properties are rather
determined from rheological measurements. The extension of con-
stitutive models estimated by curve-fitting of rheometric flows
(e.g. in simple shear or uniaxial extensional), to the description
of more complex flows, should however be approached cautiously
[19]. Many of the popular constitutive models can predict unphys-
ical features [20], referred to as constitutive instabilities, which are
classified into two types: the Hadamard instability and the dissipa-
tive instability [21,22]. The first is related to the elastic response
under sudden or high frequency wave disturbances. The latter is
related to unbound free energy or rate of energy dissipation with
increasing deformations. Thus, appropriate constitutive models
should be chosen carefully.

In addition to the physical flow instabilities and the unphysical
constitutive instabilities, the numerical simulations of viscoelastic
flows are also prone to numerical instabilities, due to the stiff hyper-
bolic nature of the differential constitutive equations. The numer-
ical difficulty in solving the constitutive equations, referred to in
the literature as the high Weissenberg number problem (HWNP),
has been one of the main challenges of computational rheology
for more than two decades [23–25]. The HWNP manifests itself
by a loss of reliability of the simulations, leading to a blowup of
the numerical values. It is triggered when the Weissenberg number
(or the Deborah number) reaches a critical value, which depends
on the flow problem, the spatial discretization, and the numerical
algorithm. Common stabilization strategies have consisted in
enhancing the elliptic operator related to the viscous stresses, as
for instance with the both-side-diffusion scheme [26]. However,
this stabilization approach degrades the accuracy of transient solu-
tions [26], and values of magnitude �1 are still considered as high
values of the Weissenberg numbers. Kupferman [27] has subse-
quently showed that the smoothness of the numerical solution
can be destroyed by divergence-free stress perturbations, which
do not couple back to the velocity field. Therefore, it was rather
suggested to add stress diffusion terms into the constitutive mod-
els, in order to change the equation type from hyperbolic to para-
bolic [28], and ultimately to improve the numerical stability.
Moreover, a small amount of isotropic stress diffusion has a phys-
ical justification, because of the Brownian motion of the polymer
molecules. Although excessive artificial stress diffusion negatively
affects the accuracy of numerical simulations [29,30], small values
do not alter the flow dynamics while enhancing numerical stability
by maintaining a smooth and bounded stress solution [31,32].

Lately, the origin of the HWNP was identified. First, it is
acknowledged [33–35] that the loss of positive-definiteness of
the conformation tensor—an internal variable representing the
macromolecular configuration of the polymer chains, which should
be symmetric positive-definite, by definition—is a precursor of the
HWNP. Secondly, Fattal and Kupferman [36,37] have shown that
numerical instabilities arise from the under-resolution of spatial
stress profiles, which is problematic, since the solutions of vis-
coelastic flows tend to have stress boundary layers with large vari-
ations in the stress gradients and exponential stress profiles near
geometrical singularities [38]. Failure to represent the stress gradi-
ents accurately (for instance due to polynomial interpolations of
exponential profiles) results in underestimations of the convective
stress fluxes, which are compensated by a multiplication of the
stress growth rate, eventually leading to a numerical blowup.

Based on these observations, several techniques have been
developed in order to enforce the positive-definiteness of the

conformation tensor by construction. Today, the most popular
method is the log-conformation representation of Fattal and
Kupferman [35,36], which consists in a change of variable using
the matrix-logarithm of the conformation tensor. In addition to
preserving the positive-definiteness, the log-conformation repre-
sentation improves the representation of large stress gradients,
since it linearizes the exponential stress profiles. The
log-conformation representation has been implemented in various
finite-volume [39–42] and finite-element [37,43–48] codes.
Alternatively, Vaithianathan and Collins [49] have presented two
other schemes that guaranty the positive-definiteness of the con-
formation tensor, based on matrix decompositions. The first
scheme uses the eigendecomposition, and evolves the eigenvalues
and eigenvectors of the conformation tensor; the second scheme
uses the Cholesky decomposition. Lozinski and Owens [50] and
Balci et al. [51] have both proposed the square root conformation
representation, based on the matrix decomposition of the confor-
mation tensor with its principal square root (i.e. its unique
positive-definite square root). Other transformations preserving
the positive-definiteness of the conformation have been discussed
in [52]. However, among all these different techniques, the
log-conformation representation is the only one that linearizes
the exponential stress profile, while for instance the square root
conformation representation only reduces the exponential growth
[53]. Thus, the log-conformation representation has superiority in
representing stress profiles with exponential variations.

The novelty of our work lies in the combination of the
log-conformation representation alongside with the pure stream-
function formulation of the Navier–Stokes equations, which was
introduced in [54] as an improvement of the vorticity-based meth-
ods. The pure streamfunction formulation has demonstrated its
robustness and efficiency in the case of Newtonian fluid mechanics
[55–57]. Our paper aims at presenting additional arguments show-
ing the particular benefits of the pure streamfunction formulation
in the case of viscoelastic flows. The concept of streamfunctions
has already been used by Chilcott and Rallison [58], and in the
stream-tube algorithm [59,60], to solve static equilibriums in vis-
coelastic fluids. In contrast, the herein pure streamfunction
method solves the entire flow dynamics. The pure streamfunction
formulation is a pressureless method which automatically enforces
the fluid incompressibility. Thus, the numerical errors are signifi-
cantly reduced, as compared to projection methods which use
velocity and pressure as primary variables. In essence, the pure
streamfunction formulation has a more implicit nature, which
improves the numerical stability. Thus, the combination of the
log-conformation representation and the pure streamfunction for-
mulation yields a robust numerical method for the simulation of
viscoelastic flow. The present work focuses on two-dimensional
viscoelastic flows; however, the pure streamfunction formulation
can also be implemented in three-dimensions, see for instance
[61].

The rest of the paper is organized as follows: Section 2 presents
the governing equations of the viscoelastic flows and recalls the
log-conformation representation of the constitutive models.
Section 3 gives a critical discussion about the standard decoupling
methods used for the velocity–pressure flow formulation. The pure
streamfunction formulation of the conservation laws is presented
in Section 4. The numerical methods used in our
two-dimensional implementation of the streamfunction/log-con
formation scheme are described in Section 5. The numerical results
in Section 6 illustrate the second-order accuracy of our scheme,
and demonstrate the stability of the method in solving the vis-
coelastic lid-driven cavity flow, at high Weissenberg numbers. In
spite of the simple geometry, the fluid inside the lid-driven cavity
is subjected to complex flow features, combining shear and exten-
sional deformations. Therefore it is a good benchmark test to
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access the robustness of the transient viscoelastic flow solver.
Finally, the main results are summarized in the conclusion.

2. Governing equations

2.1. Standard differential model

In the standard Eulerian flow formulation, the dynamics of
incompressible flows is governed by the conservation of mass
and linear momentum:

r � u ¼ 0; ð3Þ

q
@u
@t
þ u � ru

� �
¼ �rpþr � s; ð4Þ

where u is the velocity vector, q is the density of the fluid, p is an
isostatic pressure field, and s is the stress response of the material
to the deformation, determined from constitutive relations. The
material response is decomposed with the solvent–polymer stress
splitting technique, into a purely viscous contribution sS, which cor-
responds to the instantaneous response of the solvent, and a vis-
coelastic contribution sP, accounting for the memory effects of the
polymers:

s ¼ sS þ sP; ð5Þ

with

sS ¼ 2gSD; ð6Þ

sP ¼ G0f S cð Þ; ð7Þ

where gS ¼ bg0 is the solvent viscosity, G0 ¼ 1� bð Þg0=k is the elas-
tic moduli,

D ¼ ruþruT� �
=2 ð8Þ

is the rate of deformation tensor, and f S cð Þ is a strain function
expressed in terms of the conformation tensor c. The steady-state
viscosity g0, the relaxation time k, and the retardation ratio
b 2 0;1½ � are the material parameters of linear viscoelasticity.

The conformation tensor represents the spatial configuration, or
the orientation, of the polymer chains. It is defined as the statistical
average of the dyadic product of the end-to-end connector vector

Q
!

of the polymer chain carrying the elastic load:

c � Q
!

Q
!

T
� �

¼
Z

Q
!

Q
!

Tw Q
!
; t

� �
d Q
!
; ð9Þ

where w Q
!
; t

� �
is a probability distribution function following the

Fokker–Planck equation. Consequently, the conformation tensor
is—by definition—symmetric positive definite. The conformation ten-
sor is normalized such that, at equilibrium, it is equal to the identity
matrix I. The conformation tensor is governed by an additional
partial-differential equation that describes the relaxation of the
internal deformation, with the following generic form:

c
r
¼ �1

k
f R cð Þ; ð10Þ

where f R cð Þ is the relaxation function, and c
r

is the upper-convected
time derivative, defined as:

c
r
� @c
@t
þ u � rc � ru � c þ c � ruT

� �
: ð11Þ

The contravariant terms (those which are inside the parenthesis) in
Eq. (11) are necessary in order for the model to fulfill the principle
of material frame-invariance (also referred to as ‘‘material objectiv-
ity’’). The functions f S cð Þ and f R cð Þ are polynomials (generally first
and second order) of the conformation tensor, where their coeffi-
cients gk can depend on the first and second invariants of c:

f cð Þ ¼
X

k

gkck: ð12Þ

Within this generic formulation, Eqs. (7), (10)–(12) can encompass a
large choice of differential constitutive models derived from molec-
ular theories [62]. However, Eq. (10) excludes the models using the
Gordon–Schowalter convected time derivative, since it can produce
unphysical behavior [22,63–65]. Table 1 provides the strain and
relaxation functions corresponding to the most popular differential
constitutive models, where L2; b, e and a are material parameters of
the nonlinear viscoelasticity.

In the present work, we solely address the simulation of
Oldroyd-B fluids, which have the following strain and relaxation
functions:

f S cð Þ ¼ f R cð Þ ¼ c � I; ð13Þ

where I is the identity matrix. The Oldroyd-B model corresponds
to the limiting case of linear-viscoelasticity, for most of the
non-linear models. It is known for making unrealistic predictions
in pure extensional deformations, due to the dissipative constitu-
tive instability. Nevertheless, it is a relevant model for benchmark-
ing the numerical solver, because it is more prone to numerical
instabilities than the—more realistic—non-linear viscoelastic mod-
els. In practice, the non-linearity in the constitutive models
enhances the stability of the flows, and improves the numerical
convergence of the solvers; see for instance the numerical investi-
gations in [34].

2.2. The log-conformation representation

In our algorithm, the HWNP is remedied with the
log-conformation representation of Fattal and Kupferman [35,36].
The generic viscoelastic model (10)–(12) is more general than
the constitutive equations originally considered in [35], but it is
equally applicable to the log-conformation representation, which
consists in a change of variable in the term of the
matrix-logarithm of the conformation tensor

W ¼ log c: ð14Þ

Fattal and Kupferman have proven that the velocity gradient
ru can be decomposed as

Table 1
Expressions of the recoverable strain functions and the relaxation functions for popular differential constitutive models.

Constitutive models f S cð Þ f R cð Þ
Oldroyd-B c � I c � I
FENE-P c

1�tr cð Þ=L2 � I c
1�tr cð Þ=L2 � I

FENE-CR c�I
1�tr cð Þ=L2

c�I
1�tr cð Þ=L2

Exponential PTT c � I exp e tr c � Ið Þð Þ c � Ið Þ
Linear PTT c � I 1þ e tr c � Ið Þð Þ c � Ið Þ
Giesekus c � I ac2 þ 1� 2að Þc � 1� að ÞI
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ru ¼ Xþ E þ Nc�1; ð15Þ

where X and N are pure rotation (anti-symmetric) matrices, and E is
a pure extension (symmetric traceless) matrix. When inserting the
relations (14) and (15) into Eq. (11), the term Nc�1 vanishes, and,
the constitutive Eq. (10) finally yields the following evolution equa-
tion for the log-conformation tensor (see [35]):

@W

@t
þ u � rð ÞW� XW�WXð Þ � 2E

¼ �1
k

exp �Wð Þf R exp Wð Þ½ �: ð16Þ

In practice, the matrices E and X are obtained from the projection of
the velocity gradient into the principal base of the stress tensor. Let
the eigendecomposition of the conformation tensor in a
two-dimensional flow be

c ¼ R
k1 0
0 k2

� �
RT ; ð17Þ

where k1 and k2 are the eigenvalues and R the orthogonal matrix
containing the eigenvectors. Then the change of base of the velocity
gradient is

RT ruð ÞR ¼
m11 m12

m21 m22

� �
: ð18Þ

Finally, the pure extension and rotation matrices in the refer-
ence base are obtained as:

E ¼ R
m11 0

0 m22

� �
RT ; ð19Þ

and

X ¼ R
0 f

�f 0

� �
RT ; ð20Þ

where

f ¼ m12 þm21

k2 � k1
: ð21Þ

In the special case where the reference base is the principal base of
the stress tensor, i.e. c is already diagonal, then E ¼ D and X ¼ 0.

In summary, the viscoelastic stress solver finds the solution
of Eq. (16) and recovers the conformation tensor with the
matrix-exponential of W:

c ¼ exp Wð Þ: ð22Þ

The formula (22) enforces by construction the symmetric
positive-definiteness of the conformation tensor. Note that the
matrix-logarithm and the matrix-exponential are tensor operations,
where the logarithm and the exponent are applied to the eigenval-
ues of a tensor, for instance:

log cð Þ � R
log k1 0

0 log k2

� �
RT : ð23Þ

3. Comments on the velocity–pressure decoupling methods

In the standard flow formulation, the evolution of the velocity
vector is determined from the momentum Eq. (4), while the conti-
nuity Eq. (3) is simply a kinematic constraint. Unlike the velocity
vector and the conformation tensor, the isostatic pressure field
does not have an evolution equation; it is determined through
the coupling of Eqs. (3) and (4). The isostatic pressure is defined
as the isotropic stress component of the material:

p � �1
3

tr rð Þ ð24Þ

where

r � �pI þ s ð25Þ

is the Cauchy stress, I is the identity matrix, and s is the deviatoric
stress component. Since the entire Cauchy stress must contribute to
the conservation of momentum, Eqs. (4), (24) and (25) imply that

s ¼ s: ð26Þ

For inelastic (purely viscous) materials, sP ¼ 0 and s ¼ sS is by def-
inition traceless, hence the consistency between Eqs. (6), (24)–(26).
However, in the case of viscoelastic materials, the polymer stress
component sP is in general not traceless, i.e. it also contributes to
the isotropic stress. Thus, inserting relations (5)–(7), (25) into Eq.
(26) yields

r ¼ �pI þ 2gSDþ G0f S cð Þ; ð27Þ

which is inconsistent with the pressure definition (24), since
tr f S cð Þ½ �– 0 in general. Fortunately, the pressure field in an incom-
pressible flow is not a thermodynamic state variable (as opposed to
the case of compressible flows); therefore this inconsistency does
not affect the dynamics of the flow [66]. Here, the pressure variable
rather acts mathematically as a Lagrange multiplier that ensures
that the continuity constraint (3) is locally fulfilled [67]. This could
explain why this inconsistency has received relatively little atten-
tion in the computation rheology literature, yet.

Oliveira [68] has proposed a traceless viscoelastic stress formu-
lation for the Oldroyd-B model, where an augmented pressure ~p is
defined as the true isotropic stress component

~p � p� 1
3

tr sPð Þ; ð28Þ

and a new constitutive equation is derived for the deviatoric part of
the viscoelastic stress

~sP � sP �
1
3

tr sPð ÞI: ð29Þ

Although both formulations are equivalent from a dynamical point
of view, the results of Oliveira shows that the traceless viscoelastic
stress formulation improves the convergence of the numerical algo-
rithm, i.e. it is numerically more stable. Oliveira tested the traceless
viscoelastic stress formulation in two geometries, with and without
a geometrical singularity, for Weissenberg numbers ranging from
0.3 to 1.5. In these numerical experiments, the traceless viscoelastic
stress formulation saved between 24% and 84% of the total number
of iterations, as compared to the standard pressure formulation.
Moreover, the higher the Weissenberg number, the larger the gain
in computational efficiency. This result suggests that the polymer
contribution to the Cauchy stress degrades the iterative conver-
gence of the velocity–pressure–extra-stress segregated solver algo-
rithms. In general, an iterative segregated algorithm that is used to
solve more than two coupled variables can be prone to convergence
difficulties, if two of the variables have competing effects on the
third. This is the case of the standard velocity–pressure–extra-stress
decoupled approach, where both the pressure p and the isotropic
part of the elastic stress tr sPð Þ=3 interact with the velocity field as
Lagrange multipliers of the continuity constraint. It can be seen in
the simulations of Kwon [69] that fluctuations in the viscoelastic
stress cause fluctuations in the pressure field. Therefore, it is rea-
sonable to assume that numerical errors propagate to the different
variables because of the segregated algorithm. Moreover, the
absence of direct coupling in the equations between the pressure
and viscoelastic stress, which could have stabilized the algorithm,
negatively impacts the convergence of the decoupled velocity–pres
sure–extra-stress methods.

Xue et al. [26] have investigated the efficiency of various decou-
pled velocity–pressure algorithms of the SIMPLE (Semi-Implicit
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Method for Pressure Linked Equations) family, in the context of vis-
coelastic flows. In their numerical experiments, Xue et al. have
considered the 1D start-up and decay of plane Poiseuille flow with
an Oldroyd-B fluid, at Re = 0.05. They showed that above a thresh-
old value of the Courant number, the transient solution of the vis-
coelastic flow is prone to unphysical oscillations, although all the
governing equations are temporarily discretized with uncondition-
ally stable schemes. These numerical instabilities come from the
semi-implicit velocity–pressure decoupling. Xue et al. have deter-
mined that the SIMPLEST and PISO schemes, which are the most
accurate algorithms of the SIMPLE family, are also the most stable
(i.e. they have higher threshold Courant number), in both the
Newtonian and the viscoelastic cases. The threshold Courant num-
ber for stable calculations also depends on the temporal discretiza-
tion scheme. For instance, the threshold values for the SIMPLEST
algorithm were C = 2 for the Crank–Nicolson scheme, and C = 3.3
for the two-level backward differentiation formula. However, the
test case considered in Xue et al. is relatively simple: the 1D nature
of the problem disables the coupling between some of the velocity
and stress components, which are zeros in this case. Moreover, the
constant and uniform solution for the pressure gradient along the
channel, which is entirely determined by the pressure difference
imposed at the boundaries, produces a particularly mild coupling
between the velocity and the pressure. Therefore, lower threshold
Courant numbers are to be expected in less favorable cases of com-
plex flows.

The decoupled algorithms of the SIMPLE family can be seen as
special cases of the general projection (or fractional-step) methods
[70]. The velocity and pressure unknowns are linearly coupled in
the discretized momentum and continuity equations. Thus, the
coupled flow problem can be formulated as a matrix system con-
taining the linear system of equations:

A G
D 0

� 	
u
p

� 	
¼

S
0

� 	
; ð30Þ

where the matrix operator A is the Jacobi matrix of the velocity for
the momentum equations, G is the gradient operator of the pressure
inside the momentum equation, D is the divergence operator of the
velocity inside the continuity equation, S is the source term vector
of the momentum equation (containing the boundary conditions,
the polymer stress contributions, external forces and additional
explicit terms), and 0 is a null vector or null matrix. The Jacobi oper-
ator A has the following form:

A ¼ 1
Dt

Iþ Dt N� b
Re

L
� �� 	

; ð31Þ

where I is an identity matrix, N is the linearized operator of the con-
vective terms, L is the operator for the viscous stress (similar to a
Laplace operator), Dt is the time-step size, and Re is the Reynolds
number of the flow. Direct solving of the matrix system (30) is a dif-
ficult task because of the zero block diagonal matrix, reflecting the
absence of pressure terms in the continuity equation, which pro-
duces an ill-conditioned matrix system. The standard projection
method resolves the velocity–pressure coupling with an
LU-decomposition of the matrix system:

A G
D 0

� 	
¼

A 0
D �DA�1G

� 	
I A�1G
0 I

" #
: ð32Þ

Therefore, intermediate variables u� and p� can be introduced, such
that:

A 0
D �DA�1G

� 	
u�

p�

� 	
¼

S
0

� 	
; ð33Þ

I A�1G
0 I

" #
u
p

� 	
¼

u�

p�

� 	
; ð34Þ

which leads to the following sequential (of fractional-step) decou-
pled solution:

Au� ¼ S;
DA�1Gp ¼ Du�;
u ¼ u� � A�1Gp:

8><>: ð35Þ

In this type of decoupling algorithm, solving the vector of pressure
unknowns p is often the bottleneck of the computational cost. At
this point the projection method is exact, however, the inverse

matrix A�1 is unknown and expensive to compute. Fractional step
methods introduce an approximation of the inverse matrix as

B � A�1. Following the analysis of Perot [67], approximate inverses
of arbitrary order of accuracy can be constructed in the form of ser-
ies expansion:

B ¼
XN

k¼1

Dtk �1ð Þk�1 N� b
Re

L
� �k�1

þ O DtNþ1� �
; ð36Þ

where N is the order of accuracy of the approximate inverse matrix
B. Such approximations introduce decoupling errors

e ¼ AB� Ik k ð37Þ

that add up to the other sources of numerical errors (discretization,
iterative solver, round-off, etc.), and which translates into
non-conservation of the momentum. Decoupling errors are gener-
ally considered acceptable if the approximate inverse B has an order
of accuracy N equal or higher than the order of accuracy of the dis-
cretization. However, a dimensional analysis of the decoupling
errors shows that:

e / Dt
b

Re
� 1





 



N : ð38Þ

Consequently, the decoupling errors become large at low Re num-
bers (and especially when Re < b=2Þ, unless Dt gets very small.
This can also be explained intuitively: at low Re, the flow is driven
by the pressure gradients (since the inertia effects are negligible);
therefore the coupling between viscous stress and the pressure
gradient is strong. Furthermore, relation (38) shows that beyond
a critical case where Re < b=2, the decoupling errors become very
large, and get worse with higher order N of the decoupling
method. In this case, limiting the decoupling errors by low
time-step sizes would become immensely onerous. Therefore,
the decoupled velocity–pressure approach used in sequential sol-
vers becomes inefficient and inaccurate at low Re number.
Moreover, since the continuity equation is solved indirectly, the
mass conservation is usually not fulfilled to the machine precision,
but its accuracy depends on the conditioning number of the
matrix product BC.

In conclusion, the decoupled velocity–pressure methods, in the
SIMPLE family or in the more general fractional step methods, pre-
sent several limitations in the solving of viscous and viscoelastic
flow. To summarize:

– the competing effects of the pressure and the extra-stress terms
degrade the iterative convergence of segregated solvers,

– the decoupled velocity–pressure approach produces additional
numerical errors that can trigger unphysical oscillations,

– the splitting technique requires restrictions of the time-step
size, which become very severe at low Re,

– the discrete continuity is not fulfilled exactly, potentially pro-
ducing artificial compressibility effects.
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For all these reasons, the use of a pressureless flow formulation
(i.e. based on the vorticity equation ensuing from the conservation
of angular momentum) is justified, in order to improve the accu-
racy and the stability of the viscoelastic flow solvers.

4. The pure streamfunction formulation

The inherent numerical difficulties due to decoupling (or pro-
jection) methods used with the velocity–pressure flow formulation
can be avoided with a pressureless formulation based on the vor-
ticity equation. In this section, the conservation laws are reformu-
lated in term of a streamfunction field—which is a vector potential
of the velocity field—and which removes all the previously men-
tioned drawbacks of the decoupled velocity–pressure methods. In
particular, its implicit nature improves the accuracy and stability
of the calculation.

By means of the vector calculus identity r	 rpð Þ ¼ 0 for any
scalar field p, the pressure unknown vanishes from the conserva-
tion laws by taking the curl of the momentum Eq. (4), yielding
the following equation:

@x
@t
þr	 u � rð Þuð Þ ¼ r	 r � s

q

� �
; ð39Þ

where

x ¼ r	 u ð40Þ

is the vorticity of the flow. The curl of the inertia term (second term
of the left hand side) is further treated using the following vectorial
identities:

u � rð Þu ¼ 1
2
r u � uð Þ � u	 r	 uð Þ ð41Þ

and

r	 u	xð Þ ¼ u r �xð Þ �x r � uð Þ þ x � rð Þu� u � rð Þx; ð42Þ

where r �x ¼ 0 by definition, and r � u ¼ 0 because of the incom-
pressibility. In addition, the curl of the purely viscous stress
becomes:

r	 r � 2gSD
q

� �
¼ bg0

q
r2x: ð43Þ

Finally combining Eqs. (39)–(43) yields the vorticity equation:

@x
@t
þ u � rð Þx� x � rð Þu ¼ g0

q
br2xþ 1� b

k
r	 r � f S cð Þð Þ

� 	
:

ð44Þ

The vorticity equation is still coupled with the continuity Eq. (3).
The incompressibility further yields a Poisson equation for the
velocity:

r2u ¼ �r	x: ð45Þ

Various methods exist to solve velocity–vorticity flow formulations,
where the vorticity equation is coupled with either the continuity
Eq. (3), or the Poisson Eq. (45). However, vorticity-based methods
are still subjected to decoupling errors. Moreover, the lack of natu-
ral boundary conditions for the vorticity is an additional difficulty,
especially since the vorticity is created at the walls.

In the pure streamfunction formulation, the incompressibility
constraint is enforced using the Helmholtz decomposition, which
states that any vector field that is twice continuously differentiable
in all points can be decomposed into the sum of an irrotational
(curl-free) vector field and a solenoidal (divergence-free) vector
field. Hence, there exits scalar and vector potentials, u and U,
respectively associated to the irrotational and the solenoidal veloc-
ity components, such that:

u ¼ ruþr	U: ð46Þ

These potentials are not unique, but defined up to an arbitrary con-
stant. For an incompressible flow, the velocity field is by definition
solenoidal; hence its irrotational component ru must be zero,
yielding the following equation:

u ¼ r	U: ð47Þ

Combining the relations (45) and (47) also yields the following
constraint:

x ¼ �r2
U ð48Þ

Finally, a unique dynamical equation can be derived by replacing all
the velocity and vorticity unknowns in Eq. (44) by the streamfunc-
tion unknown, using Eqs. (47) and (48).

In the two-dimensional case, the velocity vector has two
in-plane components, while the vorticity and the streamfunction
fields only have their out-of-plane component which is non-zeros:

u ¼ u; v;0ð ÞT ; x ¼ 0;0;xð ÞT ; U ¼ 0;0;/ð ÞT : ð49Þ

Thus, the two-dimensional flow is governed by a single equation
accounting for both the momentum conservation and the incom-
pressibility constraint:

@r2/
@t
þ @/
@y

@r2/
@x

� @/
@x

@r2/
@y

¼ g0

q
br4/� 1� b

k
r	 r � f S cð Þð Þ

� 	
;

ð50Þ

where the term r4/ is the biharmonic operator of the streamfunc-
tion. Then, the two components of the velocity vector are recovered
as:

u ¼ @/=@y;

v ¼ �@/=@x;
ð51Þ

which automatically fulfills the continuity constraint to the
machine precision. Hence, the pure streamfunction flow formula-
tion yields a fully implicit scheme, without splitting or fractional
steps.

The solving of the streamfunction Eq. (50) requires boundary
conditions for the streamfunction, as well as its derivatives,
which are obtained from the boundary conditions of the velocity.
Pressure and traction boundary conditions are not implementable
as such, although tangential pressure gradients to the boundary,
representing for instance a hydrostatic pressure, can be included
as source terms in the streamfunction equation. Consequently,
the boundary conditions for the flows which are driven by pres-
sure differences must be specified in terms of the corresponding
inflow velocity profiles and fully developed outflows. The imple-
mentation of the boundary conditions is discussed in the next
section.

Finally, the pressure field can be post-processed by solving the
Poisson equation, obtained by taking the divergence of the
momentum equations. By virtue of the continuity, the divergence
of the velocity time-derivatives and the purely viscous stresses
vanishes; hence yielding:

r2p ¼ r � r � sPð Þ � qr � u � ruð Þ: ð52Þ

Neumann pressure boundary conditions are obtained from the pro-
jection of the moment equation along the normal vector of the
boundaries. In opposition to the velocity–pressure methods, here
the pressure field is only calculated at the specific discrete times
of interest; and it does not affect the computation of the flow
dynamics.
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5. Numerical methods

5.1. Discrete curl operators

Directly discretizing the streamfunction Eq. (50) is a rather dif-
ficult task because of the third and fourth spatial derivatives, which
require high-order schemes and appropriate boundary conditions.
The procedure presented in [71] alleviates this difficulty by apply-
ing discrete curl operators to the discretized momentum equa-
tions. Let the linear matrix system for the discretized momentum
equations be:

Au ¼ b; ð53Þ

where u is the solution vector of the discrete velocity variables, A is
the Jacobi matrix of the discrete velocity variables in the discretized
momentum equations, and b is the source term vector. Note that
the pressure gradients do not need to be included in the system
of Eq. (53) since they vanish with the curl transformation. A linear
system of equations for the vorticity equation is first obtained by
applying the discrete curl operator R, which relates the solution
vector of the discrete velocities to the solution vector x of discrete
vorticity variables, to the system of discretized momentum
equations:

RAu ¼ Rb; ð54Þ

with

x ¼ Ru: ð55Þ

The curl operator R results in the integration of the momentum
equations along closed lines around the discrete streamfunction
variables. Secondly, the linear matrix system for the vorticity equa-
tion is expressed in terms of discrete streamfunction variables, by
the following change of variable:

u ¼ CU; ð56Þ

where C is the discretized curl operator relating to the discrete
velocity variables to the vector of the discrete streamfunction vari-
ables U. Note that R and C are two different curl operators. Finally
these transformations yield a linear matrix system expressing the
vorticity equation in terms of discrete streamfunction variables:

RACU ¼ Rb; ð57Þ

where the matrix products RAC and Rb are the Jacobi matrix and
the source term vector, respectively.

The discrete curl operators R and C are discretized using
finite-differences, taking advantage of a staggered variable
arrangement on a Cartesian grid, see Fig. 1. Discrete streamfunc-
tion values are located at the grid intersections. The normal veloc-
ity components laying on the cell’s edges, evaluated from Eq. (56),
correspond to the face-average values. Fig. 1 shows how the dis-
crete curl operators R and C are constructed for a Cartesian grid,
but the procedure is essentially the same for unstructured grid,
see [71] for more details. It is important to notice that the
discrete curl operators are discretized in a way such that the null
vector calculus identities r	 rað Þ ¼ 0;8a 2 R and r � r	 Að Þ
¼ 0; 8A 2 R3 are fulfilled on the discrete level:

RG ¼ 0; ð58Þ

DC ¼ 0; ð59Þ

where G and D are the discrete gradient and divergence operators in
the coupled matrix system (30). These relations ensure the elimina-
tion of the pressure unknowns in the conservation equations, and
the automatic enforcement of the continuity constraint on the dis-
crete level to the machine precision.2 Note that the line-integrations
around the discrete streamfunction variables laying on the boundary

Fig. 1. Staggered variable arrangement, numbering of the unknowns, and finite-difference construction of the discrete curl operators R and C, in a 2D geometry.

2 In practice, there is no need to discretize the gradient and divergence operators to
solve the streamfunction matrix system (57); therefore the discrete null vector
calculus identities (58) and (59) are actually mental constructions.
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are incomplete; hence these streamfunctions are rather determined
by boundary conditions.

Essential streamfunction boundary conditions are obtained
from the integration of the normal velocities over the boundary.
Using the relation (47) and the Kelvin–Stokes theorem of vector
calculus yields a contour integral:Z Z

@X
u � n̂dS ¼

Z Z
@X
r	Uð Þ � n̂dS ¼

I
R

U � dr ð60Þ

where R is the contour of boundary surface @X. In the
two-dimensional case, the surface integral of the normal velocity
becomes a line integral along the boundary, and the contour inte-
gral of the streamfunction turns into an oriented difference.
Hence, the streamfunction boundary condition along the boundary
segment between two points p1 and p2 is given by:

/p1
� /p2

¼
Z p2

p1

v xð Þdx; along an horizontal boundary;

/p2
� /p1

¼
Z p1

p2

u yð Þdy; along a vertical boundary: ð61Þ

This yields constant values of the streamfunction along the walls
and the symmetry lines. At the inlet boundaries, the line integral
of the normal velocity is calculated either analytically or numeri-
cally. At the outlets, where the normal velocity is an unknown,
the streamfunction boundary condition is derived from the
fully-developed Neumann boundary condition @un=@xnj@X ¼ 0,
which gives:

@/=@xnj@X ¼ 0: ð62Þ

In addition, since the streamfunction is a potential field, a reference
value needs to be specified at a reference point on the boundary, in
order to set the streamfunction level:

/ xrefð Þ ¼ /ref ; where xref 2 @X; ð63Þ

for instance, with a null value on a symmetry line or a wall bound-
ary. Finally, the boundary conditions (61)–(63) replace the incom-
plete equations for the boundary streamfunction variables in the
matrix system (57).

The discretization of the Jacobi operator A of the momentum
equation is treated in the next section. Natural boundary condi-
tions for the tangential velocity to the boundaries are imposed
through the source terms in the matrix system (53), with the same
procedure as the one described in [67,71].

5.2. Finite-volume discretization

In this subsection, we describe the finite-volume discretization
of a generic convection-diffusion equation with the form:

@v
@t
þ uk

@v
@xk
¼ Cv

@2v
@xk@xk

þ Sv; ð64Þ

which can either be the momentum Eq. (4) or the
log-conformation Eq. (16), depending on the interpretation of
v;Cv and Sv; see Table 2. Eq. (64) is integrated over a control vol-
ume V and the divergence theorem is applied to the convective
and diffusive terms:

Z
V

@v
@t

dV þ
I
@V

uv� Cv
@v
@n̂

� �
� n̂dS ¼

Z
V

SvdV ; ð65Þ

yielding a flux balance between the faces f of the control volume:

@vV

@t
þ 1

V

X
f

ufvf � Cv
@v
@xn






f

� �
¼ Sv;V ; ð66Þ

where vV and Sv;V are the volume-average of the transported quan-
tity and the source term, inside the control volume. The evaluation
of the fluxes requires an interpolation of the quantities vf at the
faces of the control volumes, as well as their gradients @v=@xnð Þjf
in the normal directions. The latter gradients, which are related to
the diffusive fluxes, are evaluated with the second-order
central-differences of the volume-average quantities in the neigh-
boring cells.

The face-averaged values vf are obtained with the CUBISTA
scheme introduced by Alves et al. [72], which consists of a quadra-
tic upwind scheme, with total-variation-diminishing flux limiters
promoting the numerical stability. The CUBISTA scheme was spe-
cially developed to enhance the iterative convergence of viscoelas-
tic flow solvers. For convenience, the interpolation scheme is
expressed in terms of the normalized variable and space formula-
tion, where

v
_

f ¼
vf � vUU

vD � vUU
; v

_

U ¼
vU � vUU

vD � vUU
ð67Þ

are the normalized averaged-values of the transported quantities at
the CV’s face, and inside the upwind cell, respectively, and

n
_

f ¼
nf � nUU

nD � nUU
; n

_

U ¼
nU � nUU

nD � nUU
ð68Þ

are the normalized space variables, with subscripts ‘‘D’’, ‘‘U’’ and
‘‘UU’’ referring to volume-average values in the downstream, first
upstream and second upstream control volumes, respectively, see

Fig. 2. The interpolation v
_

f v
_

U; n
_

U; n
_

f

� �
with the CUBISTA scheme

reads:

v
_

f v
_

U;n
_

U;n
_

f

� �
¼

1þ n
_

f�n
_

U

3 1�n
_

U

� �� 	
n
_

f

n
_

U

v
_

U; if 0<v
_

U<
3
4 n
_

U

n
_

f 1�n
_

f

� �
n
_

U 1�n
_

U

� �v_Uþ
n
_

f n
_

f�n
_

U

� �
1�n

_

U

; if 3
4 n
_

U6v
_

U6
1þ2 n

_

f�n
_

U

� �
2n
_

f�n
_

U

n
_

U

1� 1�n
_

f

2 1�n
_

U

� � 1�v
_

U

� �
; if

1þ2 n
_

f�n
_

U

� �
2n
_

f�n
_

U

n
_

U<v
_

U<1

v
_

U; otherwise

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð69Þ

Table 2
Interpretation of the terms v;Cv and Sv in the generic convection-diffusion Eq. (64), for
the momentum and log-conformation equations.

Equations v Cv Sv

ith-component of the momentum qui bg0=q 1�bð Þg0
k f S cð Þ½ �ij

ijth-component of the log-conformation Wij 0 XW�WXð Þij þ 2Eij � 1
k exp �Wð Þf R exp Wð Þ½ �f gij

Fig. 2. Definition of the local variables and local coordinates in the upwind and
downwind cells, related to interpolation v

_

f v
_

U; n
_

U; n
_

f

� �
at a faces of the control

volumes.
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The time derivative @vV=@t is discretized implicitly with the
two-level backward differentiation formula (BDF2):

@vV

@t





n ¼ 1
Dtn

2-þ 1
-þ 1

vn
V � -þ 1ð Þvn�1

V þ -2

-þ 1
vn�2

V

� �
þ O Dt2� �

; ð70Þ

where the subscript n refers the value at the current time tn,
the superscripts n � 1 and n� 2 refer to the values at the
two previous discrete times tn�1 and tn�2;Dtn ¼ tn � tn�1 is the
time-step increment, and - ¼ Dtn=Dtn�1 is the time-step incre-
ment ratio. The BDF2 scheme is A-stable and second-order accu-
rate, which makes it suitable to solve stiff hyperbolic equations,
with a good compromise between numerical stability and
accuracy.

The quadratic non-linear terms for the inertia, in the momen-
tum equation, are linearized using a second-order Taylor
expansion:

uiuj
� �n ¼ uiuj

� �n�1 þ
@ uiuj
� �
@uk





n�1

un
k � un�1

k

� �
þ O Dt2� �

¼ un
i un�1

j þ un�1
i un

j � un�1
i un�1

j þ O Dt2� �
: ð71Þ

This approximation is suitable for approximating inertia terms
for flows at low and moderate Reynolds numbers. For instance,
Kim et al. [73] were able to solve accurately turbulent
Newtonian flows at Re = 4200, with the same implicit
linearization.

The divergence of the viscoelastic stress-tensor, in the source
term of the momentum equations, is also approximated with
finite-differences. Note that all the normal and shear components
of the extra-stress are located at the center of the control volumes,
similarly as the components of the log-conformation tensor. The
classical finite-difference schemes take advantage of the staggered
variable arrangement, by assuming linear variations of the vis-
coelastic extra-stresses inside the control volume (see for instance
in [36]):

@rxx

@x
¼ rxx;E � rxx;W

DxE þ DxWð Þ=2
; ð72Þ

@rxy

@y
¼ 1

2
rxy;NW þ rxy;NE � rxy;SW � rxy;SE

DyN þ 2Dyþ DyS
; ð73Þ

where the different subscripts refer to the different neighboring
extra-stresses to the velocity’s control volume, see Fig. 3. This
classical scheme is hereinafter referred to as the LIN scheme.
Here, we suggest a higher-order scheme assuming linear varia-
tions of the gradient of the viscoelastic extra-stress; hence quad-
ratic variations of the viscoelastic extra-stress. This scheme is
referred to as the QUAD scheme and the volume-averages of

the stress-divergences are obtained with the following arithmetic
averages:

@rxx

@x
¼

DxE
@rxx
@x




W þ DxW

@rxx
@x




E

DxE þ DxW
; ð74Þ

@rxy

@y

DyþDySð Þ DxE
@rxy

@y





NW
þDxW

@rxy

@y





NE

� �
þ DyNþDyð Þ DxE

@rxy

@y





SW
þDxW

@rxy

@y





SE

� �
DyNþ2DyþDySð Þ DxEþDxWð Þ ;

ð75Þ

where

@rxx

@x






W
¼ 1

DxWW þ 2DxW þ DxE
DxW þ DxWWð Þ rxx;E � rxx;W

DxE þ DxWð Þ=2

�
þ DxE þ DxWð Þ rxx;W � rxx;WW

DxW þ DxWWð Þ=2

	
; ð76Þ

@rxx

@x






E
¼ 1

DxW þ 2DxE þ DxEE
DxE þ DxWð Þ rxx;EE � rxx;E

DxEE þ DxEð Þ=2

�
þ DxEE þ DxEð Þ rxx;E � rxx;W

DxE þ DxWð Þ=2

	
; ð77Þ

@rxy

@y






NW
¼ rxy;NW � rxy;W

DyN þ Dyð Þ=2
; ð78Þ

@rxy

@y






NE
¼ rxy;NE � rxy;E

DyN þ Dyð Þ=2
; ð79Þ

@rxy

@y






SW
¼ rxy;W � rxy;SW

Dyþ DySð Þ=2
; ð80Þ

@rxy

@y






SE
¼ rxy;E � rxy;WE

Dyþ DySð Þ=2
; ð81Þ

are the finite-difference approximations of the viscoelastic
extra-stress gradient, using the same staggered variable arrange-
ment as in Fig. 3.

The nonlinearities in the constitutive equations, due to the
material-derivative and the matrix-exponential of the
log-conformation tensor, are treated explicitly. As a result, each evo-
lution equation for a variable vn

V is discretized into the algebraic form

av
0v

n
V ¼

X
nb

av
nbv

n
nb þ bv

; ð82Þ

where vn
nb are unknown values in the neighboring control volumes,

av
0 ; a

v
nb and bv are coefficients containing explicit expressions of the

solutions of the previous time-step. The contributions of the source
terms are included in bv. The explicit representation of the covari-
ant term XW�WX decouples the three components of the

Fig. 3. Staggered variable arrangement used for the finite-difference approximation of the divergence of the viscoelastic extra-stress inside the hatched control volume.
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log-conformation tensor. Therefore, the two-dimensional stream
function/log-conformation scheme yields four matrix systems:
one for the streamfunction field, and one for each of the three com-
ponents of the log-conformation tensor that are solved in parallel.
Finally, the streamfunction and the log-conformation tensor are
solved sequentially, with successive substitution iterations until
the convergence of the nonlinearities.

5.3. Solution algorithm

At the beginning of nth time-step, provisional guessed solution
vectors Un

0 and Wn
0 are evaluated by linear extrapolation from the

results of the previous time-steps. The provisional guessed solution
for the velocity vector is un

0 ¼ CUn
0. Then, the solution algorithm

computes iteratively the components of the new log-conformation
tensor and the new streamfunctions.

Since the governing equations are discretized with the implicit
BDF2 scheme, there is no formal restriction on the time-step size.
However, the successive substitution iterations can have
convergence issues when the Courant number exceeds unity.
The convergence of the solution algorithm is enhanced with the
under-relaxation of the solution iterates. The log-conformation
tensor contributes linearly to the streamfunction equations, thus
the convergence of the log-conformation tensor results in the

convergence of the streamfunction. In contrast, the velocity has a
non-linear effect on the evolution of the log-conformation
tensor. Therefore, the under-relaxation is only applied to the
log-conformation iterates. We use an adaptive under-relaxation,
the Aitken’s delta-squared process, which improves the conver-
gence rate of a series of solution vectors. At each kth iteration,
the Aitken’s relaxation factor ak is evaluated as:

ak ¼ ak�1 1þ
D eWk�1 � D eWk

� �T
� D eWk

D eWk�1 � D eWk

� �2

0B@
1CA; ð83Þ

with

D eW k ¼ Wn
k�1 � eWn

k ; ð84Þ
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Fig. 4. Flow classifier # (left) and extensional strain rate _e (right) of the steady-state solution, for Wi = 0.25.

Table 3
Spatial convergence rates with the LIN and QUAD stress interpolation schemes.

Variables Spatial convergence rates

LIN interpolation scheme QUAD interpolation scheme

/ 1.17 2.04
W11 1.16 1.97
W22 1.15 2.03
W12 1.75 2.00
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Fig. 5. Asymptotic convergence of the spatial relative error norm, for the LIN and QUAD stress interpolation schemes.
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where eWn

k is the latest non-under-relaxed iterate vector of the
log-conformation solution, and Wn

k�1 is the log-conformation vector
of the previous under-relaxed solution iterate. In general,
adaptive under-relaxation is more efficient than under-relaxation
with a fixed relaxation factor. Since the Aitken’s adaptive
under-relaxation requires two previous solution iterates, the
under-relaxation is activated from the third iteration, and the two
first solution iterates are not under-relaxed.

In summary, the solution algorithm at the kth iteration proceeds
as follows:

1. Compute the new solution vector eWn

k of the discretized system
of equations for each component of the log-conformation
tensor:

1
Dtn

2-þ 1
-þ 1

eWn

k þ un
k�1 � r eWn

k

¼ 1
Dtn -þ 1ð ÞWn�1 � -2

-þ 1
Wn�2

� �
þ X un

k�1;W
n
k�1

� �
Wn

k�1 �Wn
k�1X un

k�1;W
n
k�1

� �� �
þ 2E un

k�1;W
n
k�1

� �
� 1

k
exp �Wn

k�1

� �
f R exp Wn

k�1

� �
 �
; ð85Þ

where un
k�1 is the velocity vector of the previous solution iterate.

2. Under-relax the solution vector of the log-conformation tensor
with the relaxation factor ak evaluated from (83):

Wn
k ¼ ak

eWn

k þ 1� akð ÞWn
k�1: ð86Þ

3. Recover the conformation vector cn
k via the matrix-exponent of

Wn
k:

cn
k ¼ exp Wn

k

� �
: ð87Þ

4. Build-up the linear matrix system of the momentum equations
discretized as:

q
Dtn

2-þ 1
-þ 1

un
k þ qN un

k ;u
n�1� �
� gSL un

k

� �
¼ q

Dtn -þ 1ð Þun�1 � -2

-þ 1
un�2

� �
þ D G0f S cn

k

� �� �
: ð88Þ
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Fig. 6. Asymptotic convergence of the temporal relative error norm.

Table 4
Temporal convergence rates, for C < 8.

Variables Temporal convergence rates

/ 2.13
W11 1.97
W22 1.96
W12 1.97
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5. Apply the discrete curl transformation to the momentum
matrix system and compute the new iterate of the streamfunc-
tion vector Un

k from the linear matrix system (57).
6. Recover the discrete velocity vector as:

un
k ¼ CUn

k : ð89Þ

7. Evaluate the scaled norm of the residual vector of the
log-conformation systems of equations, using the new solution
vectors Wn

k and un
k:

rk ¼
jLHSW un

k ;W
n
k

� �
�Wn

k � RHSW un
k ;W

n
k

� �

 

j2
jLHSW un

k ;W
n
k

� �

 

j2 � jWn
k



 

j2 þ jRHSW un
k ;W

n
k

� �

 

j2 ; ð90Þ

where LHSW and RHSW are the new left-hand-side matrix and
the right-hand-side vector for the log-conformation matrix sys-
tem (85) that will be solved at the next iteration. The 2-norm of
the matrix LHSW is approximated as its largest component in

absolute value jLHSWj jj2 ffimaxi;j LHSWð Þij
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The iteration procedure is converged when the following termi-
nation criterion is fulfilled:

rk 6 etol; ð91Þ

where etol is a user-specified residual tolerance. The bulk of the
computation resides in solving the linear matrix systems of the
steps 1 and 5. The other steps of the solution algorithm consist in
simple evaluations of explicit expressions.

6. Numerical results

The above scheme has been implemented to solve the regular-
ized lid-driven cavity flow, which is a benchmark test, also solved
in [35,36,45,74,75]. The geometry consists in a square cavity with a
unit length L = 1. The flow is driven by the tangential motion of the
upper wall, while the other boundaries are stationary, with the
no-slip condition. The tangential velocity profile of lid is regular-
ized as in [36]:
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Fig. 10. Results at time t = 8, for Wi = 1: velocity and stress profiles along the lines x = 1/2 and y = 3/4 (compared with references [36,74]); history of the kinetic energy and
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ut x;tð Þ¼16x2 1�xð Þ2 0:5þ tanh 8 t�0:5ð Þð Þ=2ð ÞU; x2 0;1½ �; t>0;
ð92Þ

in order to remove the stress singularity at the corners [76]. In
this way, the stagnation points located at the corners are not
subjected to any deformation rate, preventing the appearance
of infinitely increasing stress gradients, which could compromise
the smoothness of the solution [77]. The regularized velocity
profile can be interpreted physically as the result of the fluid
slippage on the moving lid, as shown by molecular dynamics
simulations [78]. In addition, the hyperbolic tangent function
smoothes the acceleration of the lid, and removes the sudden
deformation rate at the initial time. The lid velocity has reached
its nominal values when t > 1. The maximum lid velocity is set
to U = 1. In this setup, the Weissenberg number is defined as
Wi ¼ kU=L ffi k.

In spite of the simple geometry, this problem is considered as
particularly difficult to solve, especially at high Weissenberg num-
bers, since the flow exhibits complex features combining shear and
extensional deformations. For Wi = 0.25, Fig. 4 (left) represents the
flow classifier #, which is defined as:

# � 1� RS

1þ RS
; ð93Þ

where

RS ¼
x=2j jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_e2 þ _c2

p ð94Þ

is the persistence-of-straining parameter [79], x is the vorticity,
_e � @u=@x is the extensional strain rate, and _c � @u=@yþ @v=@xð Þ=2
is the shear rate. The flow classifier has the following properties:
# ¼ 1 RS ¼ 0ð Þ in pure extensional flow, # ¼ 0 RS ¼ 1ð Þ in pure shear
flow, and # ¼ �1 RS !1ð Þ in pure rigid-body rotation (# and RS

are indefinite when the flow is at rest or in pure translation). The
magnitude of the extensional strain rate is also depicted in
Fig. 4(right), for Wi = 0.25. Fig. 4 shows that the material succes-
sively experiences shear and extensional deformations. Moreover,
the extensional rate reaches large values near the moving lid. As
the cavity is a closed system (without inlets and outlets), there is a
critical Weissenberg number above which the recirculating material
build-up extra-stresses faster than it relaxes. Then, the flow cannot
reach a steady state solution, and it exhibits elastic instabilities. In
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this scenario, the flow develops steep stress boundary layers that
require a very fine resolution, otherwise the under-resolution pro-
duces numerical instabilities [36]. Moreover, in the case a
Oldroyd-B fluid, which lacks finite extensibility, an unbounded
stress growth occurs under steady extensional deformations, when
_e > 1= 2kð Þ, as a manifestation of the dissipative constitutive instabil-
ity. Thus, from a numerical point of view, the simulation of the

viscoelastic lid-driven cavity flow at high Weissenberg numbers is
similarly challenging as its Newtonian counterpart at high
Reynolds numbers.

In the following subsections, the regularized lid-driven cavity
flow of the Oldroyd-B fluid is simulated for various Weissenberg
numbers by varying the relaxation times. A constant retardation
ratio b ¼ 1=2 is used. The Reynold number is set to the negligible
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value Re ¼ qUL=g0 ¼ 5 � 10�4, such that the flow can be virtually
considered as a creeping flow. To the knowledge of the authors,
there is no result of viscoelastic lid-driven cavity flows reported
in the literature for Weissenberg numbers above Wi = 3.

6.1. Order of convergence

In this subsection, where the spatial and temporal order of con-
vergences are assessed, the residual tolerance of the iterations
algorithm is set to the value etol ¼ 10�12. The spatial convergence
rate is estimated from the relative errors with respect to successive
mesh refinements, since there is no analytical solution to evaluate
the absolute errors. The simulation is carried out on Cartesian
mesh with the grid spacings h = 1/40, 1/80, 1/160 and 1/320, and
with a fixed time step size Dt ¼ 10�2. The relative error is locally
monitored on a sample of 81 points evenly distributed inside the
cavity (whose locations correspond to the intersections of the grid
lines plotted in Fig. 4). For a grid size h, the relative error er h; xi; yj

� �
of the numerical solution vh xi; yj

� �
at the point with coordinates

xi; yj

� �
¼ iL=10; jL=10ð Þ is:

er h; xi; yj

� �
¼ v2h xi; yj

� �
� vh xi; yj

� �

 

: ð95Þ

A norm for the global relative error is defined as the
root-mean-square of all the local relative errors:

Er hð Þ ¼ 1
81

X9

i;j¼1

er h; xi; yj

� �2

" #1=2

: ð96Þ

The numerical solution has a spatial convergence rate p when its
relative error norm asymptotically converges to the zero grid size
limit as:

Er hð Þ ’
h!0

jhp þ O hp� �
; ð97Þ

where j is a constant. The convergence rate is determined as the
slope of the best fitting line of the relative errors norm plotted on
logarithmic scale, see Fig. 5, where:

log Er hð Þ½ � ’ log jð Þ þ p log hð Þ: ð98Þ

The spatial convergence rates for the streamfunction and the three
components of the log-conformation tensor are reported in Table 3,
for the LIN and QUAD stress interpolation schemes. As it can be seen,
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only the QUAD scheme exhibits second-order accuracy. The conver-
gence rate of the LIN scheme—which is used in [36,74]—is between
first and second-orders. This confirms that linear stress interpola-
tions, in the momentum equations, degrade the second-order accu-
racy of the CUBISTA and the central-differencing schemes.

The temporal convergence is assessed from the transient solu-
tion at the time t = 2, for Wi = 1, such that the flow has not reached

its steady-state yet. The simulation is performed for different
time-step sizes, but with the same grid spacing h = 1/160, using
the QUAD stress interpolation scheme. The temporal convergence
rates are evaluated similarly as for the spatial convergence rates,
except that the convergence is calculated with respect to refine-
ments of the time-step size (i.e. the Courant number CÞ, see
Fig. 6. The temporal convergence is second order, for Courant
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numbers below 8. Above this value, the convergence of the
log-conformation tensor is degraded to first order, because the
time increments become too large to catch the details of the tran-
sient flow and the ramping of the lid velocity with the hyperbolic
tangent function. The temporal convergence rates, for Courant
numbers C < 8, are provided in Table 4.

It is interesting to note that stable solutions can be obtained
with Courant numbers as large as C = 64, in contrast to the decou-
pled velocity–pressure methods [26]. This result demonstrates the
robustness of the fully implicit streamfunction method for solving
the conservation laws. At large Courant numbers, each time-step
requires more iterations in order to converge, but the simulation
comprises less time-steps. As we use a direct matrix solver, the
computation cost is directly proportional to the total number of
iterations within the entire simulation. Fig. 7 (left) compares the
recorded computation costs for the different Courant numbers. It
clearly shows that the use of large time-step sizes is beneficial,

as far as the computation cost is concerned. However, the precision
of the calculations should also be considered for assessing the com-
putational efficiency. The absolute errors of each variable are eval-
uated at all the grid points, and normalized by the largest values:

e
_

a vC ; xi; yj

� �
¼

vC xi; yj

� �
� ~v0 xi; yj

� �

 


maxi;j ~v0 xi; yj

� �
 � ; ð99Þ

where e
_

a vC ; xi; yj

� �
are the normalized absolute errors, vC xi; yj

� �
is

the numerical solution obtained with the Courant number C, and
~v0 is the reference solution obtained with the finest time increment
(C = 1/8). Fig. 7(right) provides the maximum values and the
root-mean-squares of the normalized absolute errors of each vari-
able. These data can be used to estimate the maximum allowable
time-step size (i.e. the Courant number), in order to reach a given
numerical precision.
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6.2. Simulations at moderate Weissenberg numbers

In this subsection, the transient viscoelastic lid-driven cavity
flow is solved for the moderate Weissenberg numbers Wi = 1, 2
and 3. Our numerical solutions are compared with the available
results in the literature [36,74]. A non-uniform Cartesian grid com-
prising 250 	 250 control volumes is used. The grid is symmetri-
cally refined near the walls, with a constant contraction ratio
Dxkþ1=Dxk ¼ 0:96 when approaching the walls, see Fig. 8. The max-
imum and minimum grid spacings are 0.02 at the center of the cav-

ity, and 1:27	 10�4 at the walls, respectively. The computational
efficiency is enhanced with an adaptive time-stepping procedure
based on the convergence rate of the residuals; see details in
Appendix.

The solution of the streamlines and the components of the
log-conformation tensor are represented in Figs. 9, 11 and 13, at

t = 8 for Wi = 1, and t = 40 for Wi = 2 and 3, respectively. Figs. 10,
12 and 14 provide velocity and log-conformation profiles along
the vertical line x = 1/2 and horizontal line y = 3/4, for Wi = 1, 2
and 3, respectively. These figures also display the history of the
specific kinetic energy Ek, and the specific elastic energy Ee (i.e.
the Helmholtz free energy), defined as:

Ek ¼
1
2

Z
X

u2 þ v2� �
dV ; ð100Þ

Ee ¼
1
2

Z
X

tr c � Ið ÞdV : ð101Þ

For Wi = 1 and 2, our results are in good agreements with those in
[36,74]. For Wi = 3, we observe some disparities of the results in
the vicinity of the upper right corner. Nonetheless, our solution is
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obtained with grid spacings near the walls 30 time finer than in
[36], and a second-order accurate scheme. As observed in [36],
the solution for Wi = 3 exhibits small oscillations due to vortices
repeatedly created and annihilated, in the vicinity of the upper right
corner. Moreover, Fattal and Kupferman [36] reported convergence
difficulties attributed to the under-resolution of subgrid vortices.
Under-resolution is generally manifested by chaotic oscillations in
the history of the kinetic energy or the elastic energy. However, in
our simulation the history of the kinetic and elastic energies exhi-
bits a quasi-periodicity, for Wi P 2. This quasi-periodicity under-
pins that the oscillations in the flow are likely to be linked to a
structural pattern of elastic instabilities rather than numerical
errors. A further discussion on the elastic instabilities is given in
the next subsection.

6.3. Simulations at high Weissenberg numbers

In this subsection, the viscoelastic flow in the lid-driven cavity
is solved for the high Weissenberg numbers Wi = 5 and 10. We
use the same mesh and the same adaptive time-stepping proce-
dure as in the previous simulations for lower Weissenberg num-
bers. The results for Wi = 5 and 10 present similar features that
are described below.

After the lid velocity has reached its maximum value, the flows
undergo transient developments, where the kinetic energy slowly
decreases, while elastic energy gets stored in the fluid. The tran-
sient developments of the flows take longer times at high
Weissenberg numbers, because the fluid has larger relaxation
times. During the flow development, some vortices appear at the
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Fig. 17. Snapshots of the streamlines and the 2-norm of the log-conformation tensor at the upper left corner, for Wi = 5.
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upper right corner and move downward along the wall, until they
either annihilate or merge with the vortex at the lower corner.

At some point, the flows evolve into quasi-periodic unsteady
states. The quasi-periodicity of the flows are clearly visible in the
histories of the specific elastic and kinetic energy, represented in
Figs. 15 and 16 for Wi = 5 and 10, respectively. The amplitude of
the oscillations increases with the Weissenberg number, but not
the quasi-periodicity, interestingly. Two videos showing the pat-
terns of the vorticity and streamlines, for Wi = 5 and 10, are pro-
vided as supplementary material for this paper. Figs. 15 and 16
also display the evolution of the center of the primary vortex, as
well as the normalized intensity of vortices generated at the upper
corners (scaled by the intensity of the primary vortex). The red and
yellow colored areas on the graphs correspond to the
time-intervals of noticeable secondary vortices at the upper left

and right corners, respectively. Our results show a clear correlation
between the appearance of secondary vortices at the upper left
corner and the flows’ quasi-periodicity.

When examining the region of the upper left corner in details,
we can see the presence of a small corner vortex, see Figs. 17
and 18 for Wi = 5 and 10, respectively. However, the corner vortex
has such a low intensity that it can be consisted as virtually stag-
nating, within the time scale of the material relaxation.
Nevertheless, the fluid at the interface between the corner vortex
and the primary vortex is subjected to shear deformations. Thus,
an elastic stress layer is built-up at the interface between the vor-
tices, as it can be seen in Figs. 17 and 18, where the stress level is
monitored by the entrywise 2-norm of the log-conformation ten-

sor jWj jj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ijW
2
ij

q
. The large elastic stress stored in this stress
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Fig. 18. Snapshots of the streamlines and the 2-norm of the log-conformation tensor at the upper left corner, for Wi = 10.
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layer is responsible for the increases of elastic energy observed in
Figs. 15 and 16. When the accumulated elastic energy reaches a
threshold value, another secondary vortex appears just below the
corner vortex. The secondary vortex destroys the elastic stress
layer while it grows and propagates downward the wall. The elas-
tic energy stored in the stress layer is partly converted into kinetic
energy and partly dissipated through viscous dissipation. The sec-
ondary vortex also affects the primary vortex of the cavity. Its cen-
ter gets pushed to the right and starts to oscillate, which results in

the fluctuation in the kinetic and elastic energy, see Fig. 15 and 16.
Finally, the secondary vortex annihilates when most of the energy
elastic stored in the corner region is cleared, and the system finds
itself at the beginning of another cycle, with the formation of a new
corner vortex. To the knowledge of the authors, this structural
mechanism of the elastic instabilities in upper left corner of the
lid-driven cavity has never been identified in numerical simula-
tions before. It is interesting to note that the elastic instabilities
are solely initiated at the corner, where the flow has curved
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Fig. 19. Specimens of secondary vortex generated at the upper right corner, for Wi = 5 and 10.
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streamlines, while the elastic stress layer is also built-up along the
left wall and the moving lid. This feature is consistent with the
general mechanism of elastic instability in curved streamlines, dis-
cussed by Pakdel and McKinley [80].

Small eddies are also generated and annihilated at the upper
right corner of the cavity, see Fig. 19. However, only few of them
develop a reasonable size, and they globally have no noticeable
impact on the primary flow. Moreover, they do not present any
regular pattern, and their occurrence seems independent from
the quasi-periodic oscillations of the rest of the flow. Aperiodic
fluctuations of the viscoelastic flow at the upper right corner of
the lid-driven cavity have been observed experientially in [81].
Whether these fluctuations originate from elastic turbulences is
still an open question.

7. Conclusions

We have presented a new formulation for incompressible vis-
coelastic flows, based on the streamfunction and the
log-conformation as primary variables. First, the log-conformation
representation obviates the high Weissenberg number problem,
and enhances the stability and accuracy of the viscoelastic stress
calculation. In essence, it provides a better interpolation of expo-
nential stress profiles, and guaranties the positive-definiteness of
the conformation tensor. Secondly, the streamfunction formulation
provides a fully implicit pressureless method that remedies the
issues related to the coupling of the velocity with pressure field.
The convergence of the solution algorithm is improved and the
mass conservation is automatically fulfilled to the machine preci-
sion. Furthermore, it eliminates the decoupling errors that are
inherent to velocity–pressure fractional step methods, and which
become large in the creeping flow regime. Therefore, numerical
schemes based on the streamfunction formulation are generally
more robust and accurate than those based on the classical veloc-
ity–pressure decoupled methods.

Our implementation of the streamfunction/log-conformation
method with finite-volumes, quadratic interpolations and discrete
curl operators, has demonstrated second-order spatial and tempo-
ral accuracy. Moreover, the fully implicit discretization and the
absence of velocity–pressure decoupling errors remove the restric-
tions on the time-step size. Our numerical experiments show that
stable calculations are attainable with Courant numbers as large as
64. Thus, the streamfunction/log-conformation method is also a
progress toward more efficient and reliable viscoelastic flow
solvers.

Our scheme has been used to solve the two-dimensional vis-
coelastic flows in the lid-driven cavity with a regularized lid veloc-
ity. The numerical results are in good agreement with the available
data from the literature, for Weissenberg numbers 1, 2 and 3.
However, some differences are observed in the region of the upper
right corner, which we attribute to under-resolution in the previ-
ous studies, since we have a much finer mesh resolution at the cor-
ners. The viscoelastic lid-driven cavity flow has further been solved
at higher Weissenberg numbers 5 and 10. Our numerical solutions
present quasi-periodic oscillations due to cyclic elastic instabilities
that arise at the upper left corner of the cavity. In this region, the
fluid accumulates a large amount of elastic energy in a thin stress
layer. Our simulations revealed the structural mechanism that sus-
tains the quasi-periodic elastic instability by the conversion of the
stored elastic energy into kinetic energy. The elastic instability
arises at the corner where the streamlines have a large curvature.

In summary, we have shown that stable calculations of vis-
coelastic flows at high Weissenberg numbers are feasible, and
can be used to simulate elastic instabilities, provided that the mesh
resolution is a fine enough. We would like to outline that the str

eamfunction/log-conformation framework is not tied to
finite-difference or finite-volume discretizations. The streamfunc
tion/log-conformation methodology could be implemented using
the finite-element method, as well as higher-order discretization
schemes. Finally, in addition to accuracy and robustness, the stre
amfunction/log-conformation scheme is also expected to have bet-
ter convergence in multi-physics simulations, since one iteration
or decoupling is removed (between the velocity and the pressure).
This will be beneficial when the simulation of the viscoelastic flow
is coupled for instance with a thermal solver or an interface track-
ing procedure. There are a wide range of applications for
multi-physics simulations encompassing viscoelastic flows in the
fields of polymer processing and biomechanics.
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Appendix A. Adaptive time-stepping procedure

An adaptive time-stepping technique has been used in our sim-
ulation, in order to enhance computational efficiency. On the one
hand, time-increments that are smaller than necessary result in
an extension of the calculation time. On the other hand, excessively
large time increments degrade the convergence of the iterations,
and can cause convergence difficulties. The results in Section 6.1
show that large time-increments (requiring more iterations but
fewer time-steps) are preferable to short time increments, pro-
vided that convergence is reachable. Convergence difficulties occur
when the series of the residuals does not decrease anymore but
oscillates around a critical value above the prescribe residual toler-
ance etol. An empirical adaptive time-stepping procedure based on
the convergence rate of the residuals has been developed, accord-
ing to the following principles:

(i) The time increment must increase whenever possible to
speed up the computation.

(ii) The time increment must preventively decrease whenever
necessary in order to avoid convergence difficulties.

(iii) In case of convergence difficulties, the calculation for the
current time-step must restart with a smaller time
increment.

The convergence rate of the residual between two successive
iterations is defined as the ratio Rk ¼ rkþ1=rk. The geometric mean
of the convergence rates for all the iterations within a time-step is:

�R ¼ rN

r1

� �1= N�1ð Þ

; ðA:1Þ

where N is the total number of iterations to reach convergence. An
objective convergence rate Robj is specified, together with the toler-
ance dRobj. When the value of �R falls outside the interval
Robj � dRobj;Robj þ dRobj

 �

, the time increment for the next
time-step is adjusted according to the formula:

Dtnþ1 ¼ Robj
�R

� �q

Dtn: ðA:2Þ
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The tolerance dRobj avoids small oscillations of the time-step size at
every iteration. The reactivity of the adaptive time-stepping is
tuned with the exponent q. For instance, exponents larger than
unity produce faster increases than decreases of the time incre-
ment. In addition, the variations of the time-step size are limited
by specified maximum and minimum variation factors f min and
f max. In summary the adaptive time-stepping proceeds as follows:

� if Robj þ dRobj 6
�R 6 Robj þ dRobj, the time-step size is kept con-

stant for the next time-step,

� if �R 6 Robjf
�1=q
max , the time-step size is increased as

Dtnþ1 ¼ f maxDtn,

� if Robjf
�1=q
min 6

�R, the time-step size is decreased as
Dtnþ1 ¼ f minDtn,
� Otherwise, the time-step size is adapted using the formula

(A.2).

Furthermore, a convergence difficulty is detected when the
number of iterations within the current time-step either exceeds
a specified maximum number Nmax, or f max times the number of
iterations of the previous time-step. In that case, the series of iter-
ations is stopped and the all the calculations of the current
time-step are restarted from the first iteration, with a smaller
time-step size reduced by the factor f min. If on the contrary the iter-
ation series converges with less iterations than a specified mini-
mum number Nmin, then the time-step size for the next time-step
is automatically increased by the factor f max. Finally, the
time-step size itself is bounded by a maximum and a minimum
value Dtmax and Dtmin. Table 5 provides recommended parameters
of the adaptive time-stepping, which are used in our simulation.

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.jnnfm.2015.05.
003.
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