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INTEGRATION OF POLYNOMIALS OVER 

N-DIMENSIONAL LINEAR POLYHEDRA 

H. T. Rathod and H. S. Govinda Raot 

Department of Mathematics, Central College Campus, Bangalore University, Bangalore, 
560 001, India 

Abstract-This paper is concerned with explicit integration formulae for computing integrals of n-variate 
polynomials over linear polyhedra in n-dimensional space W. Two different approaches are discussed; the 
first set of formulae is obtained by mapping the polyhedron in n-dimensional space R into a standard 
n-simplex in KY’, while the second set of formulae is obtained by reducing the n-dimensional integral to 
a sum of n - 1 dimensional integrals which are n + 1 in number. These formulae are followed by an 
application example for which we have explained the detailed computational scheme. The symbolic 
integration formulae presented in this paper may lead to an easy and systematic incorporation of global 
properties of solid objects, such as, for example, volume, centre of mass, moments of inertia etc., required 
in engineering design problems. 0 1997 Elsevier Science Ltd 

1. INTRODUCTION 

The computation of area, volume, centre of mass, 
moment of inertia and other geometrical properties 
of rigid homogeneous solids are of central interest 
in a large number of engineering applications such 
as CAD/CAE/CAM, geometric modelling and, in 
addition, a variety of other disciplines including 
modern developments in robotics. Though most of 
these applications are three-dimensional in nature, 
interest in multi-dimensional modelling is growing. 
Some applications of geometric modelling higher 
than three-dimensional space are: the efficient 
representations of moving three-dimensional objects 
(in the four-dimensional space-time domain), 
simulation and robotics. Computation of physical 
quantities for such applications is defined by multiple 
integrals over domains of three-dimensional 
Euclidean spaces and higher-dimensional spaces. 
This has aroused great interest in analytical and 
numerical methods used in the development of 
integration formulae for multiple integrals. 

A good overview of various methods for evaluating 
volume (triple) integrals in this context is given by 
Lee and Requicha [l]. These authors observed that 
most computational studies in multiple integration 
often deal with calculations over very simple 
domains, such as a cube or a sphere, while the 
integrating function is very complicated; on the 
contrary, in most engineering applications, the 
converse problem usually arises. In such problems, 
the integration domain may have a non-convex shape 
and the function inside the integral sign is a trivariate 
polynomial. The same authors [2] outlined a family of 
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approximate algorithms for computing inertia1 
properties of solids. Such algorithms are based on 
a representation conversion from CSG to octree 
via recursive subdivision. Using a different approach 
based on the concept of finite-element coordinate 
transformations, O’Leary [3] developed integration 
formulae based on a quasi-disjoint decomposition of 
the solid in volume elements of simple, predefined 
shape. Wilson and Farrior [4] presented a large 
number of formulas for the computation of the 
main geometrical and inertial properties of planar 
polygons and of rotational solids. Timmer and 
Stern [5] discussed a theoretical approach to the 
evaluation of the volume integral by transforming it 
to a sum of surface integrals over the boundary of 
the integration domain. Lien and Kajiya [6] pres- 
ented an outline of a closed formula of volume 
integration for a tetrahedron and suggested that 
volume integration for a linear polyhedron can be 
obtained by decomposing it into a set of solid 
tetrahedrons. Cattani and Paoluzzi [7, 81 gave a 
symbolic solution to both the surface and volume 
integration of trivariate polynomials in Iw’ by using a 
triangulation of the polyhedral shaped solid based on 
the concepts proposed by Timmer and Stern [5]. In 
a recent paper, Rathod and Govinda Rao [9] pres- 
ented some explicit integration formulae for com- 
puting integrals of polynomials over an arbitrary 
tetrahedron in Euclidean three-dimensional space. In 
another recent work, Bernardini [lo] presented the 
evaluation of integrals over linear polyhedra in an 
n-dimensional space. The related work in this area, 
by Ferrucci and Paouluzzi [ 111, discusses a method 
that permits the simplical complex associated with an 
n-dimensional polyhedron to be obtained by ‘extrud- 
ing’ an n-l dimensional polyhedron with simple 
combinatorial rules. An application of this method 
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to the motion planning of a robot is shown by 
Paoluzzi [ 121. 

In the present paper, we have developed closed 
form integration formulae which mainly follow the 
concepts developed in our earlier work [9], but these 
concepts are further generalized in this paper to 
compute integrals in an n-dimensional space. Two 
different approaches are considered. The first set of 
formulae is based on the fact that an arbitrary 
polyhedron in aB” can always be transformed into a 
standard n-simplex in KY by means of an appropri- 
ate mapping; the second set of formulae is based on 
the proof of a generalized form of a divergence 
theorem for a standard n-simplex in R”, according 
to which an n-dimensional integral for standard 
n-simplex in IF!” reduces to a sum of n + 1 integrals 
of dimension n - 1 for a standard (n - I)-simplex 
in IX’- ‘. In these derivations, we have made 
reference to the well-known theorem on differen- 
tiation of integrals (Leibnitz’s Rule), Leibnitz’s 
theorem on differentiation and Taylor series expan- 
sions [13, 141. It is very clear from the present 
derivations that the explicit formulae obtained in 
this paper as well as in our previous work [9] are 
more compact than other researchers [7,8]. These 
explicit integration formulae are followed by an 
application example for which we have explained 
the detailed computational scheme with reference to 
both sets of formulae. 

so that u, = @. _ , is the equation of the hyperplane 
containing the points v,...,V,.. Let us consider the 
following integral over 5, = ZJ$), the standard 
n-simplex in W: 

l$+‘&,,h ,,..., h,) def [rr ,..., r-’ 

x u~uou:lu~,. . . ,u;&“du,,du, _ ,, . . . ,du?du, (3) 

where 

24, = 1 - u, - ut - ,. .., - U” . (4) 

Now we have 

240 = 1 - u, - fl2 - . 7 .9--u, 

=(l -u,-uj- ,.‘., -u,_,)-24, 

=@.,(l- 5) 

Substituting from eqn (5) and integrating eqn (3) 
successively, we obtain: 

2. INTEGRATION OVER A STANDARD N-SIMPLEX IN R’ z~+‘(h(,h,,h*,...,h”) 

The standard n-simplex 6” in [w” is defined 
mathematically by the following inequalities: =~[~,...,[%?_,(l - e>” 

u,20,u220 ,..., u.20, &I. (1) 
i= I x u$u:I,.. .,&:rdu.du,_ ,,..., du,du, (6) 

Hence, the n + 1 vertices of the standard n-simplex 
have the coordinates: 

Now letting 

r$ = (0, 0, 0, . . , 0) C=e 
6 = (l,O, 0,. . ,O) 

and substituting in eqn (6), we obtain: 

A closed formula for the integration of monomials x (I+ ,fh~u:‘u$,. . .,u,hy-D,_ ,dtdu. _ ,,. . .,du,du, 

over a standard simplex is well known. Here we give 
the formula with a simple proof, but the integrand is = 
a complex expression slightly different from a 
monomial. Let us introduce, for the sake of brevity, 

(7) 

the notation: 

Qk = 1 - u, - u, - )..., - Uk, k = 1,2 ,..., n - 1 

& & 
x 4$?,hn + ’ ,h,+h,+ 1 du.-,du.-Ir...,duzdu, 1 



Integration of polynomials over n-dimensional linear polyhedra 831 

= ~;J;+ 1 ~‘k~,,,.,~-,~~,~~,.,_,~~“=~ x U:‘U:‘,...,U~,‘.d#.du,-,,...rdU2dU,~Z;(h,rh2,...,h,) 

in ~ 
W) 

n-2 

X (S u:n:$‘$Jp_f:n+ ‘du, _ , du, _ 2,.. ,du,du, . (8) =i(i,hi+n) . 
Cl 

Now writing 

and then with the substitution 

3. INTEGRATION OVER AN N-POLYHEDRON IN R* 

Suppose we have an n-polyhedron P in R 
(q) described by the coordinates of its n + 1 vertices, 

K = (x1,9x2 ,,. ..,x,,) (i = 0,1,2 ,..., n) . (14) 

We want to compute the integral: 

t=z (10) 

I;(&,& ,..., 1,) def - 
s s 

,..., x$x$ ,..., x;ndr (1% 
we can evaluate the last integral in eqn (8), getting P 

where dr is the differential (n-dimensional) element. 
A parametric representation for P is [lo]: 

x, = cfi + C,IU, + C&2 + )...) + c,,ll, 

= 
N > 

(16a) 
h.- I 

t@,_, @C$+‘(l - t)h0+hn+‘@,_2dt 
0 where 

cn, = xnr (i = 1,2 ,..., n), 

c,, = x,, - xin (j = 1,2 ,..., n, i = 1,2 ,..., n) (16b) 

(l l) We can also express eqn (16a) and eqn (16b) in an 
alternative form as: 

Where we have utilized the well known formula 

x; = x&l + x,,u, + X,2& + ,. ..) + X,“U. (17a) 

s t’(1 - t)8dt = Ml?_ 
lcx+p+l 

(12) 
0 where 

substituting from eqn (11) into eqn (8) we obtain: u0 = 1 - uI - u2 - u) - ,..., - u., i = 1,2 ,..., n . 

We can now substitute either equations (16) or (17) 
into eqn (15) and perform intergration to obtain 
Z,“(d,J,,.. .,I.,). Let us first consider the following 
theorem which uses eqn (16a) and eqn (16b). 

Theorem 1. A structure product Z;(I,,n,,. . .,A.) 
over an n-polyhedron is a polynomial combination 
of the coordinates of vertices K= (x,,,x*~ ,..., x.,) 
(i = 0,1,2,. . .,n): 

Iterating the method, we finally get 

ir ih: 

z; + ‘(h,,h I).. .,h,) = 
i-0 LL 

1 ( i h: + n) 
(13a) 

and substituting ho = 0 in eqn (13a), we obtain 

’ I 

z,“+‘(ho,h,,h* I..., h,) def - Sf r “-I ,..., 
0 0 0 

Z;(I,J, ,.,., I,) &f 
s I 

,..., x$x$ ,..., x;mdx,dx, ,..., dx, 
P 

k, + k2 + . . . . . k, - k 

(18) 
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where 

rp = ai - rl - rf - 
1..., - rl 2 0 (i = 1,2,...,n) (19) 

IJI = (det J( = absolute value of det J, 

dx, ax, .., &IT 
au, au, au, 
ax, ax, ax, 

det J = au, au2 “’ au, 

ax, ax, .., 2 
au, au, n 

Cl1 c,z ..’ Cln T 
c21 c22 ... C2n 

= . . , . 
. . 

Cd C”2 . ‘. C”” 

ci/=x,-x,,j= 1,2 ,..., n,i=0,1,2 ,..., n and 

cro = x8, i = 1,2 ,..., n (21) 

and Z;(k, ,k2,. . . , k,) is the structure product: 

W,,k,, . . . At) 

= [[‘s,..., r-u:‘& ,..., &du.du,_ ,,..., du,du, 

in ~ = 
” 

[from eqn (13b)], 

1 (i,ki+n) 
Oi = 1 - u, - u2 - - ui (i = 1,2 ,..., n - ,..., 1). (22) 

Proof. The natural coordinates of the standard 
n-simplex d, = Z,(u) = c?&,,u~ ,..., u.) in IW are 
related to the coordinates of n-polyhedron P in Iw” by 
eqn (16a) and (16b): 

H. T. Rathod and H. S. Gain& Rae 

cfj = xij - xfi 

(i = 1,2 ,..., n, j = 1,2 ,..., n). (23) 

If we now consider the mapping between the 
n-dimensional space x,, x1,..., x, and the n-dimen- 
sional space u,, u2,...,u. by the parametric eqn (23), we 
have for the differential element: 

dr = dx,dx z ,..., dx, = ldet Jldu,du2,. ..,du,, (24) 

where ldet JI is defined in eqn (21). 
Therefore, if we change the coordinates according 

to eqn (23) and express consistently the differential 
element by eqn (24), we obtain: 

x+x:2,. . . ,x$dx,dx,, . . . ,dx n 

= x:@4)xjqu) ,. . .,xi$u)/det Jldu,du2,. . .,du, 

x$@)x:I@),.. .,x$&)ldet Jldu,du2,. . .,du, (25) 

where 

ai = 1 - u, - u2 - ,..., - u, (i = 1,2 ,..., n - 1) 

Letting 

X,(g) = x?(g) (i = 1,2 ,,.., n), 

f(E) = ~,@4)~2W,...,m!!) 

= x;@)x$(u), . . . ,X~“(lt) (26) 

we can now write eqn (25) as: 

r;(M,,. . . A) 

n-a 

f@)ldet JJdu,du,, . . ,du, . (27) 

We can now use the well-known Taylor’s 
theorem to expand the function f@) in powers of 
u,,u2 ,..., u,_ ,,u,; we then obtain: 

‘,Cr12i ,..., +i, 

fW =m + 
1 

z, j-g-- 

XI = x,(g) = x, + C,IU, + c&42 + ,..., + C,U” ( a a a k 
“‘G +u2-& +,...9+4au, 

> 

fG4. WW (e) 
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Now, by application of binomial theorem, we can 
write: 

k k-k, k-k,-k,-.. .-km_1 

x 1 c 7..., 
k,=Ok,=O 

k-k,-. ,-k,_, 

fW 1 cd 

k - k, k-k,-...,-k,_, 

c 

uflu:l ,...,U$&fl 

k,_i= 0 I& ~.....(k,_,(k, 

( wm 
’ au:lau:,,...,adn (~, ) 

(28b) 

where 

k, + k2 + , ., + k, = k, 

k,=k-k,-kz- ,..., -k,_,. (29) 

We can also write eqn 28a in the alternative form 

c 

kc0 k,+kl+ I..., +k,,=k 

We shall now determine the coefficients 

of eqn (30). 
Using Leibnitz’s theorem on differentiation and 

eqn (26) we can write 

(31) 

Now letting 

r: = k, - rl - rl - ,..., -r:_, (32) 

we can also write, in short notations, the partial 
derivatives: 

a% arty, _ x r, 
at4 ,, ,, I = X2,4,..., 

&J;, 

awe-, 
I 

%r,- i 
= X”_,,rj_, and s = X.,rl. (33) 

From eqns (32) and (33), we now have: 

X 
“~‘~-‘~-~-~-‘~-2(X,,r~)(X2,r~)(X3,r~),...,(Xn,r~) (34) 

T 
‘n-1 c [ri2 Irig . . . . . t ” 

=h c 
,;+,“+,;+ ,.., +r;=k, 

Continuing in this manner, we derive: 

(36) 

where 

X_ r! rf r3 ,, ,, ,, ,,...A= 
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rb = k. - r; - ri - ,..., - r:_ ,, From eqns (38),(43), we obtain: 

We can also write eqn (36) in the alternative form: 

1 akm 
au:lau$, . . ,auin /(lb I& 1% . . . ..~)] 

= c r;+r;+, c ,...t 
,+,:=k,,;+r;+.. .+r;=k> 

c 
r;+r;+..,..+r,“=k, 

( fi X r! r? r? i=, I, I, I,‘.., 1) 

From eqn (16a), (16b) and eqn (26), we have 

X, = x:, = (xi0 + c,,u, + C&2 -t ). . . ,C,.U”)ii . (39) 

Differentiating eqn (39) partially, with respect to 
u,,u* ,..., u,, we obtain: 

(38) 

( 
a( + r: + ,..., + f* 

au;:au$,...,au+ ) 

= IA (Cil)‘i(ci2)~,...,(Cin)r’ x;,-+r~_,,..,r~ (40) 

ai _ r’, - r2i _ . . . . . . . _ rn, 
I 

Thus, from eqn (40), we further derive 

I% 
= 

@,)“, - I! - t -. ‘.. - f&;i’,. . . ,c;$ 

[ai - rli - rzi - - r”. , lrii (rzi . . . . . . . . . b ’ 

(41) 
Let us define 

Zd”(k,,k,,k,,....k.)G,(k,,k,,..,k.) ‘-’ (47) 

f@,rf,rf,...ry) = 
CA&, . . . ,C$ 

Jroi Jrli . . . ...& (42a) 
where 

where 
1;’ ‘(ko, k,,kl,. . .,k,) = 

pll P&n , 

1 (ioki+n) i=12 9 ,..., n rs=l,-r/-r:- ,..., -r:zO. (42b) , 

Using eqn (42a) and (42b), we can write eqn (41) as: 

= [A, Ih, . . ..~Gl(W2 ,... ,k,) (say) 

where 

w 

G,(k&,,...,kJ = C c ,.‘.I 

r:“+r;+ ,..., +,I=k,,:+,:+,..+r~=k, 

Using eqn (44), we can rewrite eqn (30) as: 

c 
k,+k2+...,+k,=k 

u:I& ,..., u:.,,(,,,,, ,..., k.) (46) 

Substituting the expansion forjii) from eqn (36) into 
eqn (27) and performing integration, we obtain the 
result stated in eqn (18). This completes the proof of 
Theorem 1. 0 

Theorem 2. A structure product I@,,&,. . .,A.) 
over an n-polyhedron is a polynomial combi- 
nation of the coordinates of vertices I,$= 
(x,,,x2i,. ,X”J (i = 0,1,2,. ..,n): 

z;(n,,n, ,..., n,) && 
f s ,..., x$x$,. . .,x$dx,dx,,. ..,dx n 

P 

(X,,rf ,rt, . . . . ri”)cor ,.,,. 0j = A fXrP,rj,...,rl) . (43) 
G&k&2,. . A.) = c c ,..., 

,p+r;+ ,..., +r;-kf;+r;+ I.,.. +r;-k, 
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the function f(u) in powers of u0,u,,u2 ,..., u,_ ,,u. 
and then obtain: 

ro r’ 9 

F,(rF,ri,r’,..., r:) = 
XibXijXii,. . .,X$ 

\roi ’ jrli jrzi . . . . . . Jr”i 
fW = 

,ko+A,l...+k* 

rp + r: + rf + ,..., + r: = hi (i = 1,2 ,..., n) (48) 

K 

a a 
X uo-+u,-++...,+u,d 

> 

a+;,+. ,+i" 

ah au, au. 
fed 

I 
and JJJ = absolute value of det J = Jdet JJ and det J 
is same as defined in eqn (21). (u, = o,u, = 0 )..., U” = 0). (54) 

Proof. The natural coordinates of the standard 
n-simplex d, = 6&) = dn(u,,u2 ,..., u,) in Iw” are also The use of the multinomial theorem in eqn (54) now 
related to the coordiantes of n-polyhedron P in Iw” by yields: 
the eqn 17a, b): 

x, = x,(g) = 24,x, + UIX,l + f4242 + ,...i + WJ,“, 
f&4 = c ” 

kg+k,+kl+, ,+k”=k= xi, 

6” = cY&) = cqU,,U*,. . .,u.) (49) 

.- 
k k k U&',...,U," 

where lk, (k ,...... (kn 

uO = 1 - u, - uz - ,..., - u., i = I,2 ,..., n 

cu) = (w4,...,U”)~ (50) 

Now, proceeding in a way similar to the proof of We shall now determine the coefficients 

Theorem 1, we can write 

am.4 
au:oau:l,. . . ,au:” 

x$x$, . . ,x$dx,dx,, . . ,dx, 
(k,--~~ 91,". = O,“, = 0 )..., U” i 0, 

where 

k = S + k, + k, + ,..., + k. = ia,. 
,=I 

x~qu)x~(u) ,..., x$(li)ldet Jldu,dur ,..., du, (51a) By the use of the multinomial theorem and from 
eqn (52), it can be shown that: 

where 

Q, = 1 - u, - u2 - ,..., - ui, i = 1,2,3 ,..., n - 1 (51b) 

and x,(u) are as expressed in eqn (49). 
Letting 

X,(u) = xi(u) (i = 1,2 ,..., n), 

f&l = X,(II)~*(IIh.. . mL4 (52) (~l~~.P~~~~~~~~)yO = O,“, = O ,,.., “, = O 
X 

(56a, 

we can write eqn (51a) as: (i+j(i~$)9...(lie) . ’ 
Z,“(M,,...,~“,) 

where 
1-I 

= f(u)jdet JJdu,du, ,..., du, (53) 
X, = X,(u) = X”‘(u), u = (U&,U2 ,..., u,), 

We can now use the Taylor’s theorem to expand 
_y. f-0 r! 

” ” ’ “““’ = 
“‘,‘“‘, ““xi (i= I,2 ,..., n). (56b) 
auolau;i,. ..,au: 

CAS 6516-C 
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Using eqn (SO) and treating u~,u,,...,u. as independent 
variables, we obtain: 

Then the integral over 8, = I?,,(U) = ~?Ju,,u~, .,u,) 
of the divergence of a vector function 
d = ;,A,@) + &A,(g) + ,..., + ;,A,@), with A,(u), 
i = 1,2,...,n as scalar functions in n-independent 
variables, u,,u2 ,..., u, can be expressed as: 

= 

i 

o$t~J%J! ,..., (x,X, rY + rf + ,..., + r: = 1; 
3 , 

(56~) 

From eqns (56a)-(56c), we obtain: 

{G,(k,,k,,k,,...,k,)}((3L1 1% ... /&) 

def K awdh,. ..,u,) 
adpau;l,. . ,a+ ):’ p, lb.lk, 1 

1 (OA...,O) 

c c ,..., 
ry + r; + , ..,r; - k,r; + r; + ,.. , + r: = k’ r;+r;+,. .+r; 

= k.(,e,Fi(r:,r!,r? ,... ,rF)) (57) 

x u,,u2 ,..., u,_,,l - UI - uz - ,..., - um-,) 

x du,du, ,..., du,_, - i 
r=, 

where 

E.(r,O,rt,...,r:) 

P r’ J 
%Pii&~>~~~ ,x2 = 

lroi (rli Jr2i . ..( 
,rf+r,‘+ ,..., +r:=1,. (58) 

Now substituting from eqn (57) into eqn (55) we 
obtain: 

c ” 
M+kl+....,+kn=k= XX, 

1-1 

u$u:l,..., &+,,k I,..., k.) (59) 

Using eqn 13aleqns (53),(50) and performing 
integration, we obtain a result claimed in the 
statement of this theorem viz. eqn (47). This 
completes the proof of Theorem 2. q 

4. SURFACE INTEGRATION OVER AN N-DIMENSIONAL 
POLYHEDRON 

The integration of the scalar function f(P) = 
x:1x:2 ,..., xi* (A,,&,12 ,,..., i, 2 0 and positive integers) 
can be easily derived by using the divergence theorem = 

for a standard n-simplex d, = 6&) = dn(uI,uZ,...,u.) 
in 88”. 

Theorem 3. Let d. = 8,(u) - dn(u1,u2 ,..., u.) be 
the standard n-simplex in Iw” defined by the 
inequalities u, 2 0,~~ 2 0 ,..., u. 2 0, CC ,ui I 1 and 
the n + 1 vertices I$ = (O,O,O ,..., 0), v = (l,O,O ,..., 0), 
v, = (O,l,O ,..., 0) ,..., v, = (O,O,O )...) 1). 

+ I’[Az(uJ - u,) - +,O))u, (63) 

To find a reduction to first integral of eqn (63) let us 

where 

are the unit vectors in the uI,u2 ,..., u. space. (61) 

Proof. We shall give proof of this theorem by using 
the principle of mathematical induction. Let us verify 
this theorem for n = 2. We have from the left hand 
side of eqn (60): 

V,.;ldu,du2 &f I*(& 

I I-l+ ss ( a a = i,- +I,- 
0 0 

au, au, > 

+ ww*) ~ du,du, 
au, 1 (62) 
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recall the well-known result on differentiation under hand side of eqn (68), so that we have for the last term 

integral sign: see Ref. [13]: in eqn (68): 

‘-“I-y2 aA, 
au du,du2duj 

3 

=f(b(t),t)b’(t)-f(u(t),t)u’(t)+ 
MO af(x t) s 1 dx . (64) 

aw at = u,,u~,l - uI - ~2 

Using eqn (64), we can write: 
- A, ( >I u,,u2,0 du,du, . (69) 

On using the well known result on integration that is 
stated in eqn (64), we obtain: 

=I’[ -A,(+u,)+[-“‘~du+iu,. 

(65) 

From eqn (65), we thus obtain: = 

’ ss 0 0 

= I’+,1 - u,)du, - i’R,(O,u,)d,. 

(70) 
(66) 

and 

Substituting from eqn (66) into eqn (63), we obtain: 

P,.;ldu,du, = I’$$( u,,l - u,)du, 

- 
s 

‘A,(O,uz)duz - 
s 

‘A&,.O)du, . (67) 
II II 

From eqn (67), we see that the theorem is true 
for n = 2. Let us now verify the theorem for 

(71) 

n = 3. We again have, from the left hand side 
of eqn (60): Substituting from eqns (69) - (71) into eqn (68), we 

obtain: 

P,.idu,duldu, def I@) = 

x ~AIGww4 
[ au, 

+ ~Mww3) + aMww,) 
8% au, 1 

x du,du*du, (68) 

Let us now reduce each of the integrals on the right 

au du,du*du, 
2 

I,.AduIdu,duj def I’(& 

- I’I’ -“A,( s,u,+u&, 
duzdu, 
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+ I'I'-"'~(I'-"'-"*,(u,,,,,)d,)d.,u, . - dlJCl-“‘A*(u,,O,u~>dU,du, 

Letting 

(72) 
- i’I’ -“A( u,,u,,+u,du, . (75) 

From eqn (79, we find that the theorem is true 

A:(u,,uJ = 6’ -“I - “*A( u,,u,,u,)du,, 
for n = 3. Now let us assume that the theorem is 
true for n = m; we shall then prove that the theorem 
is also true for n = m + 1. To prove this, let us 

A:(u,,u,) = ~-“‘-“zA,(u,,u,,u,)du, (73) 

,..., du,,, &f Z”+‘(x$ 

the sum of the last two integrals in eqn (72) can be 
written as: I-“,-“*--. .,-c 

+ ~(C’-“‘-“‘A*(u,,u~,u,)d,)ldu~du, 

= !$ + $$ du,du, 
’ 2 

Clearly, the last term in the above integral [i.e. 
eqn (76)] can be reduced to: 

(by the use of the statement of this theorem for 
n = 2) 

- = 0 - d’I’ -“*A,(O,y,u,)du~du, 
A,+,(u,,u,... .,u.,O)ldu.du.-,....,du,,du, . 

(77) 

- I’i’ -“A,(u,,O,u,)du,du, (74) Now, on using the well known result on integration 
which we have stated in eqn (64), we obtain: 

NOW, on substituting from eqn (74) into eqn (72), we 
obtain: 

[[-“I ,..., 1 
I - u, - uI - . ., - u, aA 

$ du,,,, Idu,,, ,..., du*du, 

P,.Adu,du2du, &f Z’(& = 

u,,u2,1 - u, - u2 du,du, 

1’I”‘,...J I--u,-u2- ,..., -u__, 

u,,u2 ,..., 1 - UI - uz - ,..., - u, 
> 
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x du,du,_ I,...) du, + [I-,..., ~-“‘---“--’ 

x dum+, .du,du, _ ,, . . ,du, . (78) 

Proceeding in a similar manner, we can show that: 

x A, u,,u2 ,..., 1 - uI - uz - ,..., - urn > 
x du,du,_ ,,..., du, + I’[-“‘,..., I’-“‘-“‘-’ -‘-un-’ 

a (S 
I--Y,-u2-. ,-urn 

“au, o 
Ai(ww..~m+J 

x du,+, .du,du,,_ ,,..., du, (i = 1,2 ,..., m) . (79) 

Letting 

s 1 -u, -Y* - ,..., - u”, 

A?@,,#, ,..., u,) = 
0 

we can now write the sum of first m-integrals in 
eqn (76) as: 

x du, + ,du,, . ,du,du, 

l&,1-u,-u*- )...) -u, 

u,du,_ I,..., du2du, 

x ( u,,u2 ,...) u,,l - u, - l42 - ,..., - u,, )I 

m 

x CA,+ uI,uz,..., I&_,,1 -u, - 242 - ,..., - ufn-I 
i-1 

.du, _ ,du,,, _ 2,. . . ,duldu, 

m 

x [A,*(u,,u,,...,u,)l,=~K~,du~ . 
K+i 

(81) 

From eqn (80), we find that 

A:(u,,u, ,..., u,_ ,,l -u, - u2 - ,... , - urn-,) = 0. 

(82) 

Substituting from eqn (82) into eqn (81’1, we obtain: 

x du, + ,du,, . . .,du,du, 

.du,,,du, _ ,,..., du2du, - F 
ir I 

du,,, . (83) 

Adding eqns (77),(83), we see that this sum is equal 
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I”+ ‘(A). This sum proves that the theorem is true 
for n = m + 1. Thus, by using the principle of X I(o,%,% )...) +du._ I)..., d&d& 

mathematical induction, we find that the theorem 
is true for all n. This completes the proof of 
Theorem 3. 0 + 

u1309u3P4*...J& Theorem 4. Let P be an n-dimensional polyhedron 1( > 
with n + 1 vertices V with each K defined in terms of 
coordinates as: K = (x,,,x, ,,.. .,x,) (i = 1,2,3 ,..., n), 
then the structure product: x du,du._ ,,..., du,du,) ,... + (( - ly-‘jj . . . . il, 

x;lx$, . . ,x;mdx,dx*, . . . ,dx, x UI,%,...,G ,,o 
JJ Jp \ / \ 

(84) 

where det J;I = det J as defined in eqn (21), 

x du._ ,du,_2,. ..,du*du, 
> 

J;-’ = 

ax, ax, ax, ax, - - ax, 
au, 3 au, ~“‘1 auk_, 7 auk+, 3”‘) au, 

ax,_, axk-, ax,-, axk-, _ _ . . . - - ax,_, 
au, * au, 3 3 auk_, ’ auk+, *‘-T au, 

ax,+, aXkCl ax,+, ax,+, - - - - axk,, 
au, 9 au2 9”‘) auk_, 9 auk+, 1”‘) au, 

ax, ax. ax, ax, ax, 
au, 9 au, t’.‘y auk_, 9 auk+, )“‘1 au, 

is reducible to a sum of n + 1 integrals over 
polyhedral surfaces of dimension n - 1, 

where we have from eqn (16a) and eqn (16b): 

(85) 

(k = 1,2,...,n) (86) 

f(u,,u2,. .,U”) = x++ ‘(g)xjqu), . .,x$(u) 

~,“(~,,L..,~.) = 
ldet Jo”1 

(A, + 1)det Jo” 
xi = (c, + c,,u, + ci2u2 + ,..., + c,,u,) (i = 1,2 ,..., n), 

X [ss s >..., 
d”_ ,(U,‘UI’. .“,,- ,) cio = xI (i = 1,2,3 ,..., n), c, = x,, - xIu (ij = 1,2,.. .,n) 

x J;-’ -J;-’ + ,..., + (- I)“-‘Jn”-’ and also, from eqn (17a) and eqn (17b), 

> 
x, = udc,U + u,x,, + ,..., + u.x,, (i = 1,2,3 ,... ,n) 

X U,,& ,..., u._,,l - 241 - uz - ,...,u,-I 

and 

.du,_,du,_,du._ ,,..., duzdu,-- 
uo = 1 - u, - u* - 1..., - u, . (87) 
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Proof. We have, from Eqns (24-26): 

qn,,L..J”) 

def !.I s , . . . , x+x/2,. ,x$dx,dx,, . . .,dx. _ ,dx, 
P 

= Idetf;I 

where dn(u,,u2,. . .,u,) is the standard n-simplex 8, 
defined in eqns (1) and (2) and det J0 is the same as 
det J; we can also write eqn (88) in an alternative 
form as: 

x xp + 1x2,. . . ,Xi” du,du2,. .,du,_ ,du. 

Idet J;11 
= (I, + I)(det 4) 

’ [ fG4 
a~(x2,x3,...,x,) 
acu+ ,..., u,) 1 

II du,dy,. . .,du,_ ,du, (89) 

where 

f(g) = x:qz4)x&4) ,..., x$(u) and P(x,,x, ,..., x.)/ 

a(u,,242,...,ui_,,ui+ ,,...,u.) (i = 1,2,...,n) 

are cofactors in 

JT’= 

&lax, &lax, 
au, 9 au2 ,..', all,_,' au, 
dx, ax, ,..., ax, _& 
au, 3 au2 au,_,' aurn 

. . . 

&ay'ax,& 
au, 9 au2 au._,’ au, 

(90) 

Clearly, 

J,” = det JT = det J, 

‘+ a( 
aT(x,,x3,...,xn) 

u,,uz,...tu,-,,u,+,,...,u*) 
(i = 1,2 ,..., n) . 

(91) 

We can also rewrite eqn (89) as: 

1 ldet JI 
mw*r...A) = (n, (det 

X P.kdu,du, ,..., du,_ ,du, (92) 

where 

F&) = ( - l>‘-‘J;x;‘(ll)x&),...,x;@) 

= ( - l>i-‘J:f(g) (i = 1,2,3 ,..., n) . (93) 

V = C; _ &a/au, with ir as unit-normal vectors along 
the uk (k = 1,2 ,..., n) directions. Now, using the 
statement on divergence theorem for a standard 
n-simplex proved in Theorem 4 via eqns (60) 
and (61), we can write, on using eqns (92) and 
(93) as: 

i F,(u,,u, ,..., u._,,l -u, - u* - ,...) - u._, 
i=l > 

.du,du,, . .,du, _ ldu. - i 
i= , 

ldet JI 
= & (det J) 

x J;-’ -8-l + ,..., + ( - l)“-‘J,“-’ 

+,., ,..., U”_,,l -u,-1(*- ,..., -U,_, 

> 

x du,, _ ,du, _ 2 ,..., dydu, - J;-’ 
I.. Icup). ,““B 



842 H. T. Rathod and H. S. Govinda Rao 

x O,uz,uj,. .,u,_ ,,u. u.du._ ,,. . .,du,du2 

X 

/( 
u,,O,u ,,..., u,_ ,,u, 

> 
du,du,_ I,..., dydu, 

> 
,..., 

+ ((- l~-l~~...~i_,~.,,.,, .““_,?_I 

X 

/( 
u,,u* ,,.., u,_,,O 

> 
du,_,du,_, ,..., du,du, )I . (94) 

This completes the proof of Theorem 4. 0 
We could now use Theorems 1 and 2 with some 

partial modifications to compute all the II + 1 
integrals to find I;(,$,& ,..., A,). 

5. APPLICATION EXAMPLE 

We shall illustrate an application example which 
was previously considered in Refs [9, lo] by using the 
algorithm proposed in Theorem 2. The illustration of 
the same example by the use of Theorems 1 and 4 can 
be easily worked out following Ref. [9] in which the 
concepts were developed by use of finite-element 
coordinate transformations and the Gauss’s diver- 
gence theorem for a three-dimensional Euclidean 
space. 

Let us consider: 

Ii(2,1,0) = 
sss 

x:x2dx,dx2dx, (95a) 
P 

where P is the tetrahedron in R3 with vertices 

< VI = (5,5,0), K = (lO,lO,O), K(8,7,8), 

6 = (lO,S,O) > (95b) 

5. I. Volume Integration 

Using the statement of Theorem 2 for 1, = 2, I, = 1, 
A3 = 0, q = (5,5,0), 6 = (lO,lO,O), 6 = (8,7,8) and 
V, = (10,5,0), we can compute the integral of 
eqn (95a) and eqn (95b) by the following equation: 

$(2,1,0) = VII2 IL IO 1 
k0+k,+k*+k)=3 

Z~~~,k,,k,,k,)Gdk,,k,,k,,k,) 

= 21~l~~,‘(0,0,0,3)~,(0,0,0,3) + ~,4(0,0,1,2)‘%(0,0,1,2) 

+ 1~(0,0,2,1)Go(O,O,2,1) + Z04(0,0,3,0)G0(0,0,3,0) 

+ &X0,1 ,%Wo(O, 1,0,2) + I@, 1,1,1YXO, 1,1,1) 

+ Z,4(0,1,2,O)G,(O,1,2,0) + Z,4(0,2,0,1)G,(O,2,0,1) 

+ ~,4(0,2,1,0)G~(0,2J,0) + C(O,3,O,O)G0(0,3,0,0) 

+ &Xl,0,0,2)G0(1,0,0,2) + Z~(l,O,1,1)Go(l,O,l,l) 

+ ZX1,0,2,O)Go(l,O,2,0) + ~o4(l,l,O,l)G,(l,l,O,l) 

+ &X1,1,1 ,O)G,(l,l,l,O) + AX1,2,0,0)G0(1,2,0,0) 

+ &X2,O,O,l)G0(2,0,0,1) + %2,O,l,O)G0(2,0,1,0) 

+ h%‘, LWW, 1 A-W) + &X3,0,0,0)G0(3,0,0,0)1 . 

(96) 

From eqn (13a) and eqn (48), we obtain: 

%M,,M,) = 
IkoIk,Ik,Ik, ) (97) 

a 
IL 

G&J&A) 

(since 6 + r: + r,’ + r: = A,, i = 1,2,3 and 1, = 0, we 
have rt = rl = r: = r: = 0) 

From eqn (97b), we obtain: 

G0(0,0,0,3) = 

r&(0,0,1 72) = 

‘X0,0,2,1) = 

G&0,3,0) = 

G,(O,l,O,2) = 

G,(O,l,l,l) = 

G&l GAO) = 

G&42,0,1) = 

GWJ 4% = 

G0(0,3,0,0) = 

G0( 1,0,0,2) = 
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Go(l,O,Ll) = {~,(1,0,1,0)~,(0,0,0,1) 

+ ~,(1,0,0,1)~*(0,0,1,0) 

+ ~,(0,0,1,1)~,(1,0,0,0)} 

Got1 ,KW = {&Cl A 1 ,OMO,O,1,0) 

+ ~,@,w,w2(1 ,wot) 

Go(l,l,O,l) = (~,(1,1,0,0)~,(0,0,0,1) 

+ ~,(1,0,0,1)~*(0,1,0,0) 

+ ~,(0,~,0,~)~,(1,0,0,0)} 

GoU, l,l,O) = {~,(l,l,O,O)~,(O,O,l,o) 

-I- F,U ,071 >w2(0,1 ,W) 

+ ~,(0,1,1,0)~*(1,0,0,0)~ 

Gdl,2,0,0) = I~,(1,1,O,O)~,(O,l,0,0) 

+ ~,(0,2,0,0)F,(1,0,0,0)) 

GoGYW, 1) = {~,(2,0,0,0)~,(0,0,0,1) 

+ ~,(~,0,0,1)F,(1,0,0,0)} 

GoCW,1,O) = {~,(2,O,O,O)F,(O,O,l,O) 

+ ~,(1,0,1,0)~,(1,0,0,0)) 

Go(2J A’3 = ~~,W,O,O)~2(0,1 ,O,O) 

+ ~,(l,l,o,o)~~(l,o,o,o)J 

1 
+ 360 

( 
2%&1*X** + x:*x, 

) 

1 
+ - 360 ( 

Xldcl& + ~,&x,,&l + XIIXI3X20 
) 

1 
+ - 360 ( 

XI&ll& + ~Iox12X21 + xII~12x20 

) 

1 
+ 360 

( 
XldcIIX21 + x:,x*0 

) 

1 
+ 360 

( 
&& + 2Gl~13x*o 

) 

1 
+ 360 

( 
&A* + 2~,&2~*0 

) 

+ &j(& +2x,0%x,)+ j&(x&x*,,)]. (98) 

For the application example of eqn (95a) and (95b), 

Kl = (~IoJ*0,%0) = (10,5,0), 

VI = (X,,J*,,X,,) = (5,5,0), 

K = (~,*,X*2,~3*) = (lO,lO,O), 

G(3,0,0,0) = F,(2,O,O,O)F,(l,O,O,O). 

Now using eqns (97a)-(97c), we obtain: 

(97c) K = (x~~,x*~,x~~) = (8,7,8), IJJ = Jdet JJ = 200. (99) 

Using eqn (99) and rewriting eqn (98) as: 

~,3(2,LO) = I4 120 
L 

&23 1 
+ 360 

( 
2x,*x,,x*~ + x:,x,* 

> 

1 
#2,1,0) = VI - 

1 ( 120 x:,x,, + x:,x2, + x:@x,, + x:*x** 
) 

1 
+ Jqj 

( 
&% + 2x,*x,3x22 

> 

&*2 
+ - 

120 
1 

+ $qj 
{( 

x:,x*0 + 2x,l&lx*, + 
> ( 

x:*x, + 2x,*x,ex** 
> 

1 
+ 360 

( 
2X1P%X*3 + &x*1 

) + 
( 

A% + 2%%?-%3 
> ( 

+ x:G% + 2X,,X,&o 
> 

1 
+ - 360 ( 

XIIXd23 + XllX13X22 + X12X13X21 

) 
+ + x:3x2, + 2x,,x,,x*, 

1 ( 
x:*x*, + 2x,,x,2x22 

) ( ) 
+ 360 

( 
2.%x,*x** + x:*x21 

) 

+ 

( > 

( 
&J22 + 2x,*x,0x20 + x,,x** + 2x,,x,*x*, 

1 

+ &j 4x23 + 2Xd,3X*, 
> ( > 

+ $ (x;,x,2 + 2x,,X,2x,,) + &) (x;,x*,) 
+ x:,x** + 2x,*x,$*3 

( > + (xfG23 + 2x13x1fi2o) 

1 
+ 360 

( 
2%3&3x23 + x:,x20 

> 

+ 
( 

4x23 + 2GW*, + 
> ( 

x:*x*, + 2x,*x,3x** 
> 

1 
+ 360 

( 

XIox12XZ3 + Xdi3X22 + xI*xnx*o 

> 

+ 

( 

~~I~I2~20 + xi*x,cJ2, + X,lX,rJ22 

> 
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+ xIIx13x20 + ~l3~ldc21 + xllxIr923 

> 

+ 

( 

x12x13x20 + ~13~I0x22 + &2x,&23 

> 

+ 

( 

xllx13x22 + ~12~13~21 + xllx12x23 II 
= (200) 

[ 
A(500 + 125 + 1000 + 448) 

+ 
( >{ 

$0 625 + 2500 + 1440 + 1000 + 1500 

+ 880 + 2000 + 750 + 1760 + 1500 + 575 

+2300+ 1250+950+ 1900+ 1150 II 
(2073) + $22 080) 

47 165 =- 
3 . (100) 

The result obtained in eqn (100) is in agreement with 
Ref. [lo]. We see that the present algorithm is on par 
with the one illustrated in Ref. [9]. Hence, it is also 
economical in terms of arithmetic operations, 
compared to Ref. [lo], by about 60%. 

5.2. Surface Integration 

We shall again illustate the application example of 
eqn (95a) and (95b) by the second algorithm based on 
the concept of surface integration, stated in Theorem 
4. Following the method outlined in Theorems 1 and 
2, we can also state the following two corollaries 
without proof: 

Corollary 1. A structure product over a standard 
(n - I)-simplex dn_,(u,,u2 ,..., a,_,) = tV-,@4) in Iw”-’ 
defined by: 

and is expressible as 

zY-(k,,k, I..., k.,)G(k,,k, 1..., k”_d (101) 

where 

z;-‘(k&2 ,...) k”_,) 
h h....lk,.l 

= 
JIi,ki+(n-1)) ’ 

@i = 1 - U1 - U2 - ,..., - Ui, i = 1,2 ,..., n - 2, 

Ui&) = 00 + D,,uI + Di2u2 + I..., + D,n_1~“_l 

D, depends upon C, (i = 1,2 ,..., n, j = 0,1,2 ,..., n) 

= k2,..., 
,;-‘+I;-’ 

c 
+ ,..., +,f-‘=k,_, 

.(~~i(r~,r: ,..., r:-‘>), 

rP = 1, - r: - rf - ,..., - r:-’ 2 0 (i = I,2 ,..., n), 

, ,...,D’?’ 
Si(rP,r~,r,2,...r:-‘) = ,rzjrfrzi .., k, .(102) 

Corollary 2. A structure product over a standard 
(n - I)-simplex dn_,(u,,u2 ,..., u,_,) = fY:,-,(zl) in P-’ 
is defined by: 

x U$@)du, _ ,du, _ 2,. . ,du2du, 

(103) 

where 

Ui@) = UihU,, . A - I) 

= u,u, + uj,u, + )...) + Uj,,_,U”_,, 

U, (i = 1,2 ,..., n; j = 0,1,2 ,..., n) depend on x,, 

[k, Ik, IkY-p& 
Z; - ‘(k0,k,,k2,. . . ,k. _ ,) = 

14, Ik, ~b-~ 

= I(e,Pi+(n-111 ’ 
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@i = 1 - u, - u2 - ,..., - u,, (i = 1,2 ,..., n - 2) 

Go(ko,k,,k2,...rkn-,) = C c 3.“) 

ry+r;+ ,..., +r;=kg;+r;, ,+r:=lc 

X c 
( ( 
ir S r” r! ? . r”-’ 

rc - ’ + r; ’ + ,. , + r; ’ = k, ._ / i=i ’ ““” >> 
,I 3 

S,(r~,r:,r,2 ,... r:-‘) = 
U$U$U$, . . ,U$L’, 

(r”, jrli \r2i . ..I ’ 

0 I 2 “-I r, + r, + r, + ,..., r, = p, (i = 1,2 ,..., n). (104) 

We shall now illustrate the computation of eqn (95a) 
and (95b) by the use of Theorem 4 and Corollory 2, 
since the use of Corollory 1 has appeared in a 
different context in the earlier paper by the 
authors [9]. By the use of Theorem 4, we can now 
write, from eqn (85) and eqns (95a), (95b): 

Zi(2,1,0) = x:x2dx,dx2dx, 

1 (det JI -- 
= 3 (det J) 

We have, clearly: 

CII = XII - XIO, c12 = XI2 - Xl09 Cl3 = x13 - XlOI 

G = x21 - x20, c22 = x22 - x20, c23 = x23 - x20, 

C3I = x31 - x30, c32 = x32 - x30, c33 = x33 - x30. (106) 

Using eqn (95b), we obtain: 

JX2LO) = - f [[[&+,,u2,1 - U, - u2) 

since 

x x2 u,,u2,1 - u, - u2 
> 

du,du, 

det J = - 200, J: = 40, J: = 0, J: = 0 . (108) 

We shall now illustate the application of integrals in 
eqn (10) by use of Corollary 2. We see that from 
eqn (108): 

X,(U,,U2,1 - UI - u2) = U&i, + u2x*z + (1 - u, - &)X,3 

= udc, + UlXil + uzx,z, 

x,(O,u2,ux) = (1 - u2 - u&q,, + ~2x32 + u,x,,(i = 1,2,3). 

(109) 

Using eqn (103) we find that: 

+.,I - ui - u2) 
,=I 

= (J: - J: + J:)x:(u,,u2,1 - u, - u2) 

x X2(UI,U2,1 - UI - u2), 

F,(O,u,,d = ~:(0,~2,~,)~2(O,u,,u,)J:, 

F2(u,,O,u2) = - x:(u,,O,~,)x,(u,,O,~,)J:, 

F,(u,,u2, 0) = ~:(~,,u2,0~~2(~,,u,,O~J:, 

(105) 

=kkk k +k;, _F ko,h>k, Go(M&,) 
0 t * ( > 

= k 11. @ E(O,O,4)Go(O,O,4) + G(O,L3)Go(O, 193) 

+ LX1,0,3)Go(L0,3) + G(2,O,Wo(W,2) 

+ G(l,l AGo(1,1,2) + G(O,WGo(O,2,2) 

+ bX3,0,1)G(3,0,1) + &@,1,1)Go(2,L1) 

+ AX1,2,1)Go(1,2,1) + G(O,3,1)Go(O,3,1) 

+ ~~(4,0,O)Go(4,0,0) + %3,LO)Go(3,LO) 

+ G(‘V,O)Go(2,2,0) + ~~(L3,OWo(L3,0) 

+ G(0,4,0)G0(0,4,0)1. (110) 
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We also have, from eqn (104): 

[j~(rY,d,rf)], t-7 + t-l + rf = pi, i = 1,2,3. 

Clearly, since p, = 3, p(2 = 1, uj = 0, we have 
ry = rl = rf = 0 and &(&r:,r:) = 1. 

Hence, we have 

(8 + rf + rf = 3,r,O + r: + r: = 1) . (111) 

From eqn (111) we obtain: 

Go(O,O,4) = S,(O,O,3)S,(O,O,l), 

Go@, 1,3) = S,(O, 1 J)S*(O,O, 1) + S,(O,O,3)S,(O, LO), 

Go(l,O,3) = S,(1,0,2)S,(O,O, 1) + S,(O,O,3)&(1 ,O,O), 

Go(2,0,2) = S&O, l)S,(O,O, 1) + S,(l,O,2)S,(l ,O,O) 

Go(1,1,2) = S,(l,l,l)S,(O,O,l) + S,(l,O,2)S,(O,l,O) 

+ S,(O, 1,2)S,(l ,O,O), 

Go(O,2,2) = S,(O,2,1)S,(O,O,l) + S,(O, 1,2)&(0,1 ,O), 

Go(3,0,1) = S,(3,O,O)S,(O,O,l) + S,(2,O,l)S,(l,O,O), 

Go(2,1,1) = S,(2,0,1)&(0,1,0) + S,(2,l,O)S,(O,O,l) 

+ S,(l,l,l)S*(1,0,0) 

Go(lJ,l) = S,(1,2,O)S,(O,O,l) + S,(O,2,l)S,(l,O,O) 

+ S,(l,l,l)S,(O,l,O), 

Go(O,3,1) = S,(O,3,O)S,(O,O,l) + S,(O,2,1)S,(O,l,O), 

Go(4AO) = S,(3,O,O)S,(l,O,O), 

Go(3,1,0) = S,(3,O,O)S,(O, 10) + S,(2,1 ,O)S,(l ,O,O), 

Go(2,2,0) = S,(2,1 ,O)S,(O,l,O) + S,(l,2,O)S,(l ,O,O), 

G,(1,3,0) = S,(l,2,O)S,(O,l,O) + S,(O,3,O)S,(l,O,O), 

Go(O,4,0) = S,(O,3,O)S,(O,l,O) . 

From eqn (104), we also have: 

IcXko,k,,M = 
l!khl!k ,sinek 

k_ 

0 

From eqns (110) - (112) we obtain: 

rr 

(112) 

+k,+k2=4. 

(113) 

I&(“,,“I,(3, 130) = 
JJ 

U:(u,,u,)U*(u,,u2)du*du, 

Iz 

+A) 

= E [(4u:&) + (3u:I VJJZ + UX,,) 

Using the explicit expression of eqn (114), we can 
obtain integrals of eqn (107) by allowing the 
following two sets of substitutions: first set [to 
evaluate first integral of eqn (107)], 

U,. = 8, U,, = 5, U,2 = 10, U,, = 7, 

u,, = 5, u,, = 10. (115) 

Second set [to evaluate second integral of eqn (10711: 

Ulo = 10, U,, = 10, U,2 = 8, U,, = 5, 

u,, = 10, u,, = 7 . 

Using eqns (107),( 114) and (11 S), we obtain: 

x x2 u,,u*,l - u, - uz 
> 

du,du, 

(116) 

+ (31 000) + (24 000) + (15 500) 

+ (10 000) + (18 560)+(12 000)+(7750) 

+ (5000) + (14 336) + (9280) + (6000) 

+ (3875)+(2500) - 
11 

(14336)+(18 560) 

+ (16 000) + (17 600) + (20 800) 

+ (24 000) + (19 000) + (23 000) 

+ (27 000) + (31 000) + (20 000) 
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+ (25 000) + (30 000) + (35 000 

+ (40 000) II 
= - ;[219801 -361296]= y. 

(117) 

The result of eqn (117) is again in agreement with that 
in eqn (100). Both these results are in total confirmity 
with the previous work of Bemardini [lo] and the 
work of the authors [9]. Clearly the present 
computational scheme is more efficient than the 
previous work of Bernardini [lo]. 

7. CONCLUSION 

The theorems we have presented in this paper 
are interesting for various reasons; they provide us 
with a powerful method to compute the integrals 
of n-variate polynomials over linear polyhedra in 
n-dimensional space [w”. We have presented two 
algorithms that permit us to achieve the exact 
computation of the integral 

s x$x$, . ,x$dx,dx,, . . . ,dx n 
P 

where P is a regular n-polyhedron (an n-dimensional 
polyhedron), eventually non-convex, unconnected 
and non-manifold, embedded in the n-dimensional 
space. The first algorithm is well suited to a 
decompositive representation, the second works well 
with a boundary representation, where the boundary 
faces are known or the effort of extracting them is 
easy. We have developed a new technique to expand 
the spatial expression 

in terms of the natural coordinates of the transform- 
ation. This has clearly demonstrated the use of 
Taylor series expansion, the generalized form of 
Leibnitz’s theorem on differentiation, multinomial 
theorem and Leibnitz’s rule on differentation of 
integrals. The first algorithm uses direct mapping to 
transform an n-polyhedron in Iw” into a standard 
n-simplex in DB”. 

The second algorithm computes the n-dimensional 
integral 

s x+x$, . . . ,x$dx,dx,, . . . ,dx n 
P 

as a sum of n + 1 integrals of dimension n - 1 in 
Iw” - I. These derivations are followed by a numerical 
example which, although worked out earlier by the 
authors, has now been illustrated again with a slightly 
modified algorithm which we believe is as efficient 
and accurate as our previous algorithm [9]. 
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