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INTEGRATION OF POLYNOMIALS OVER
N-DIMENSIONAL LINEAR POLYHEDRA

H. T. Rathod and H. S. Govinda Raot

Department of Mathematics, Central College Campus, Bangalore University, Bangalore,
560 001, India

Abstract—This paper is concerned with explicit integration formulae for computing integrals of n-variate
polynomials over linear polyhedra in n-dimensional space R". Two different approaches are discussed; the
first set of formulae is obtained by mapping the polyhedron in n-dimensional space R" into a standard
n-simplex in R”, while the second set of formulae is obtained by reducing the n-dimensional integral to
a sum of n — 1 dimensional integrals which are n + 1 in number. These formulae are followed by an
application example for which we have explained the detailed computational scheme. The symbolic
integration formulae presented in this paper may lead to an easy and systematic incorporation of global
properties of solid objects, such as, for example, volume, centre of mass, moments of inertia etc., required
in engineering design problems. © 1997 Elsevier Science Ltd

1. INTRODUCTION

The computation of area, volume, centre of mass,
moment of inertia and other geometrical properties
of rigid homogeneous solids are of central interest
in a large number of engineering applications such
as CAD/CAE/CAM, geometric modelling and, in
addition, a variety of other disciplines including
modern developments in robotics. Though most of
these applications are three-dimensional in nature,
interest in multi-dimensional modelling is growing.
Some applications of geometric modelling higher
than three-dimensional space are: the efficient
representations of moving three-dimensional objects
(in the four-dimensional space-time domain),
simulation and robotics. Computation of physical
quantities for such applications is defined by multiple
integrals over domains of three-dimensional
Euclidean spaces and higher-dimensional spaces.
This has aroused great interest in analytical and
numerical methods used in the development of
integration formulae for multiple integrals.

A good overview of various methods for evaluating
volume (triple) integrals in this context is given by
Lee and Requicha [1]. These authors observed that
most computational studies in multiple integration
often deal with calculations over very simple
domains, such as a cube or a sphere, while the
integrating function is very complicated; on the
contrary, in most engineering applications, the
converse problem usually arises. In such problems,
the integration domain may have a non-convex shape
and the function inside the integral sign is a trivariate
polynomial. The same authors [2] outlined a family of
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approximate algorithms for computing inertial
properties of solids. Such algorithms are based on
a representation conversion from CSG to octree
via recursive subdivision. Using a different approach
based on the concept of finite-element coordinate
transformations, O’Leary [3] developed integration
formulae based on a quasi-disjoint decomposition of
the solid in volume elements of simple, predefined
shape. Wilson and Farrior [4] presented a large
number of formulas for the computation of the
main geometrical and inertial properties of planar
polygons and of rotational solids. Timmer and
Stern (5] discussed a theoretical approach to the
evaluation of the volume integral by transforming it
to a sum of surface integrals over the boundary of
the integration domain. Lien and Kajiya [6] pres-
ented an outline of a closed formula of volume
integration for a tetrahedron and suggested that
volume integration for a linear polyhedron can be
obtained by decomposing it into a set of solid
tetrahedrons. Cattani and Paoluzzi[7,8] gave a
symbolic solution to both the surface and volume
integration of trivariate polynomials in R® by using a
triangulation of the polyhedral shaped solid based on
the concepts proposed by Timmer and Stern [5]. In
a recent paper, Rathod and Govinda Rao [9] pres-
ented some explicit integration formulae for com-
puting integrals of polynomials over an arbitrary
tetrahedron in Euclidean three-dimensional space. In
another recent work, Bernardini {10] presented the
evaluation of integrals over linear polyhedra in an
n-dimensional space. The related work in this area,
by Ferrucci and Paouluzzi [11], discusses a method
that permits the simplical complex associated with an
n-dimensional polyhedron to be obtained by ‘extrud-
ing’ an n-1 dimensional polyhedron with simple
combinatorial rules. An application of this method
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to the motion planning of a robot is shown by
Paoluzzi [12].

In the present paper, we have developed closed
form integration formulae which mainly follow the
concepts developed in our earlier work [9], but these
concepts are further generalized in this paper to
compute integrals in an n-dimensional space. Two
different approaches are considered. The first set of
formulae is based on the fact that an arbitrary
polyhedron in R" can always be transformed into a
standard n-simplex in R” by means of an appropri-
ate mapping; the second set of formulae is based on
the proof of a generalized form of a divergence
theorem for a standard n-simplex in R”, according
to which an n-dimensional integral for standard
n-simplex in R” reduces to a sum of n + 1 integrals
of dimension n — 1 for a standard (n — 1)-simplex
in R"~'. In these derivations, we have made
reference to the well-known theorem on differen-
tiation of integrals (Leibnitz’s Rule), Leibnitz’s
theorem on differentiation and Taylor series expan-
sions [13,14]. It is very clear from the present
derivations that the explicit formulae obtained in
this paper as well as in our previous work [9] are
more compact than other researchers[7, 8]. These
explicit integration formulae are followed by an
application example for which we have explained
the detailed computational scheme with reference to
both sets of formulae.

2. INTEGRATION OVER A STANDARD N-SIMPLEX IN R*

The standard n-simplex &, in R" is defined
mathematically by the following inequalities:

20,204,220, Yu<l. 4y
i=1

Hence, the n + 1 vertices of the standard n-simplex
have the coordinates:

4% =1(0,0,0,...,0
n=(,00,...,0
V,=(0,1,0,...,0)
I i i
; B
) i )
I | I
| I I
| i |
V,=(0,0,0,...,1) o (@

A closed formula for the integration of monomials
over a standard simplex is well known. Here we give
the formula with a simple proof, but the integrand is
a complex expression slightly different from a
monomial. Let us introduce, for the sake of brevity,
the notation:

O =1—-uy—uy—,...,— U, k=12,...n—1
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so that u, = ®,_, is the equation of the hyperplane
containing the points ¥,...,V,.. Let us consider the
following integral over &,= &,(x), the standard
n-simplex in R":

! 1 2 (R
I \(ho,h,.. . k) deffrf,.,,,r
0 JO 0 0

X ubuladle, .l putdu,du, _y,...dudu,  (3)
where
o=1—t —p— ..., — U, . 4

Now we have

Uy=VY—u—t,—,...,— u,

=(1 —ul'-u2—s-“’_un~l)~'un

=q>"_,<1 - Q‘::). )

Substituting from eqn (5) and integrating eqn (3)
successively, we obtain:

I(’)’ * l(hlll,hlyhls mer 1hn

)

1 (0, (0, ot )
= | @ (1 “")
N G

x byt utn-idu,du, ... dudu, . (6)

Now letting

“" Q)

and substituting in eqn (6), we obtain:

13 * I(hO)hhh21 .. 9hn)

L o, (o, (", 2 M1 hg
= yes P (1 —1
JO JO JO Vo 0

x @Ot w1 @, (dedu, ... dudy,
(! [ (02 (-2
= yeers ulude, ...l
VO JO JO VO
LY LY
X (D:O— 1" ho + hn +1 dun— Idun—ls--'aduZdul
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= h +h 1 frr r ul‘u ,uﬁn:f
n-2
X (r ubn -y @lorhatidy, l)du,,,z,...,
0

Now writing

U
O, =0, _,1 - 2= 9
n-1i 2( ¢n~2> ()

and then with the substitution

du,dy, . (8)

Un_ 1

¢n~2

t= (10)

we can evaluate the last integral in eqn (8), getting

n—2
r ulo (@t 'y,
b

1 o,
= f (t(bn-2> Qotfut (1 — tyotht'®, _dr
o

—_ q)h,,Ar»h +h0+2flth,, ,(1 )h0+h +|dt

Where we have utilized the well known formula

l l_a 'ﬁ_
(] — YWt = —m—
J;t(l t)’ds 1

substituting from eqn (11) into eqn (8) we obtain:

(In

(12)

16' * ](hﬂshh e ’hn)

&& Ll_ln_, |hy+h +1

T lhth +1 Th+h +h_+2
1 1 2 n—3

ffr,,r gDttt iy,
0 Jo {1 0

du,_3, du, _a, . .. dudu

Iterating the method, we ﬁnally get
i

i=0

‘ (thi+ n)

and substituting 4, = 0 in eqn (13a), we obtain

1 (e w1
I(’)'+ l(hO’hl:hZV-',hn) @ J J\v 7---:Jw
0 JO 0

I(’)'+I(h09hls"'9hn) = (133)

X upndly, ... ui-du,du, _y,... dudu, def 15(hy ... h,)

fi n,

_— = (13b)

(Zh+n)

3. INTEGRATION OVER AN N-POLYHEDRON IN R*

Suppose we have an n-polyhedron P in R’
described by the coordinates of its n + 1 vertices,

V;= (xliaxlia'--axm') (l = 0’1725-“9”) . (14)
We want to compute the integral:
LA 25 < sAn) ggﬁ...,jxfleZ,...,xjndr (15)
P

where dr is the differential (#n-dimensional) element.
A parametric representation for P is [10]:

X, = Cyp + Chtly + Colly + ..., + Cil, (16a)
where
Co=Xo (i=12,...,n),
=X — X (J=1,2,. =1,2,...,n). (16b)

We can also express eqn (16a) and eqn (16b) in an
alternative form as:

X; = Xolly + Xpthy + Xpthh + ..., + X1,  (172)

where

ey — U i=12,...,n

(17b)

Uy=1—uy—uy—uy —

We can now substitute either equations (16) or (17)
into eqn (15) and perform intergration to obtain
I}(A,...,4,). Let us first consider the following
theorem which uses eqn (16a) and eqn (16b).

Theorem 1. A structure product I}(4,,4,...,4,)
over an n-polyhedron is a polynomial combination
of the coordinates of vertices ¥ = (x,,Xu,....%n)
(i=0,1,2,...,n):

(A, 20, A,) def J:...,Jx,"xQZ, JXindx,dx,,. .. ,dx,
{4

_ ‘Jl[ Cfbc£69-"9c%+<ﬁ l&“
m i=1

x I‘l‘(k,,kz,...,kn)G.<k,,k2,...,kn)]
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G 1 n

y yeees Y I'IF, KL
Rtk T E R Ll

R=k—-r—-r—,.,—r203G0=12,.,n (19
ciéC:f,
F(r,,r,, ")_ L—I—_ L (20)
[/] = |det J| = absolute value of det J,
SN R
ou, du, ou,
o o o,
det J= | Oy ou, ou,
- T
ou, 0u, ou,
h i i |7
— |t C'.zz Con
Cnl c.nZ Crm
CG=X;— Xn, j=12,...0,i=0,1,2,...,n and
Co=Xop i=12,....n (21)
and I(k, k,,...,k,) is the structure product:
1 (klykb
J r JW r g, . ubdu,du, _ ... duydu,
m |k
= 'T [from eqn (13b)),
(Zk+n)
O=1-0-uy—,.,—ui=12,....n-1). (22)

Proof. The natural coordinates of the standard
n-simplex 6, = &,(u) = 6,(u,uy,...,u,) in R" are
related to the coordinates of n-polyhedron P in R" by
eqn (16a) and (16b):

X = xU) = Xp + Cuth + Colls + ..., + Ciplhy
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with

Cip = Xg,
Cy = Xy — Xy

(i=12,...n,j=12,..n). 23)
If we now consider the mapping between the
n-dimensional space x,, x,..., x, and the n-dimen-
sional space u,, u,,...,4, by the parametric eqn (23), we
have for the differential element:
d7 = dx,dx,,...,dx, = |det J|du,du,,...,du, (24)
where |det J] is defined in eqn (21).
Therefore, if we change the coordinates according
to eqn (23) and express consistently the differential
element by eqn (24), we obtain:

(A, A,) def jf,,J‘ Xixk, . xbdx,dx,,...,dx,
/4

= f f f xb(u)xiu), .. . xir(u)ldet Jidudus, .. du,
¢

xp() x5 (@), xp(u)det Jidudwy,... du,  (25)
where
O=1-uy—-—w—,.,—u(i=12,....n—1)
Letting
X(uw) = xiu) (I=12,...n),
J) = XXu),....X, ()
= x{(u)xFw),... X () (26)

we can now write eqn (25) as:

I

- f 'Jv f " fwldet Jduduy,... du, . (27)

We can now use the well-known Taylor’s
theorem to expand the function f(¥) in powers of
U U, Uy Ug; We then obtain:

’i’l)

fw) = flo) + 23:.

8 0
(u.gu—l T . )@f(_) (282)
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Now, by application of binomial theorem, we can
write:

ity ]
£\ — phipka ohe L %‘ —
JH) = Co€205-- -0 T L
S
k ok -k kky—ky = —
x ¥ Y.,
ky =0k, = k,_, =0
Ll_(_ 8\ o\
X e Uy =
‘k] |k7 . kn ! 6u, 2 auz e

k=0 k=0
xkikl R TR ubu U iy
yeres
ky =0 PR Ik, 1k,.....|k_, k.

5 [ Mw O\
oukidule, ..., Oulr

()

where

ky=k —ki—ky— ooy —ko_r. (29)

We can also write eqn 28a in the alternative form

kgt bk, =k

Duskn )

T @

0f(w)

11.’52
hat ]

kl kZ kn
et ( (0)

We shall now determine the coefficients

[ ofw ]

L ououlr, ... ,O0uk

of eqn (30).
Using Leibnitz’s theorem on differentiation and
eqn (26) we can write

hflu)  Erghedrt koo n,
auf‘ ’éwéﬂ réo ’ ’ ,#
! 2 } n—1

833
% kl_r}“';",-u,"r;—z
Faci
( oix, \( %X, \( a'ﬁxs\
\ oui N\ oup N\ oup )T
5 /U-VI_A,,_]\/ ak.#r“—‘yr‘— r';r N\
K oup- )(au’l‘l—’l"z‘ ''''' "n~l)
3h
Inw letting
Now letting
Pl=ki—rl—r—, ..~ (32)

we can also write, in short notations, the partial
derivatives:

X, ¢
-7.—.1l = X!,r!', “ﬁz = Xz,n‘,...,
ouy oup -
-1 . . a’.’.X
A _.I” = Ay psln-n and :l.,r." = errlv . (33)
O Fy [or7

From eqns (32) and (33), we now have:

12 ky k=rlk—rl—r]
P, 305
au‘. rlé‘OrzF:‘O r3'=0
1
k—rl=rj =,

A+t =k

1 1 1
(‘Yh'ri)(‘YZJZ)(‘XS"’;),'~-s\‘Ymrn) (35)
i i i i
LA L
Continuing in this manner, we derive:
fw \
= 11k, |k, |K,..... k
o (LA LY
— Ck, k. .
=S S 1 e GSHa S
. (‘yi’rllsr%"r?S"'ar?) . (“ZarZIVr%’ _."rg)
i 2 |3 n 2 e
N N R L T
2
(XPISr’llSr'l9""r:) (36)

X({:_l,,@....@)

where

X—r? r?r? sl = —rT‘“
AU ELFRUNERERELE) au,;‘auz,”'au,? N
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i
Fao1=0

We can also write eqn (36) in the alternative form:

ok
l: 6u{"0u§2f,(.??,6uﬁ~ /(m ‘El \5 """ Iﬁ >:|

seeesy
etk eds L 4ri=ky A+ =k,

n
(.nlxi’ril’ri29 v J?)
=

' (38)
Sl 12 |43 n
Al 1A 1 )
From eqn (16a), (16b) and eqn (26), we have
X, = xii = (xg + oty + Catts + ,...,.cttn) . (39)

Differentiating eqn (39) partially, with respect to
Uy, Us,...,U,, WE Obtain:

ar} +rl 4t 4’1‘/,_
A AT AT
ouiouy,...,0ul

A f(c, ) o
= I_ (Cil) (CiZ) 5---5(cin) Xi}"' “'ul _riz_ ''''' o . (40)
l)\.i - I‘li —_— 1'2i — eeeenns

n

=TI,
i

Thus, from eqn (40), we further derive

arl' +r,z+,...v+’?Xi 1 ) a
[( Uy oug, ... ,0u )/(‘L L 00....0

) 12
=(X,,H e Do 0 ’<|L b ..... ™ )
= th

x‘ n
A (co) "~ i, .. ch

A—tl -2 — o L P o
L i i i i i i i
1)

Let us define

) -
cells. el

0 1 n
l'i l'i ...... l'i

F(lrl ity = (42a)

where
i=12,.0,P=d—r—rt—,..,—r=0. (42b)
Using eqn (42a) and (42b), we can write eqn (41) as:

Xorlrt s o0, = 4 Frlri,...r) . (43)

H. T. Rathod and H. S. Govinda Rao

From eqns (38),(43), we obtain:

ohf(u)
[6u{‘16u§2,...,0u§~ /(Lk—‘ &&XI

(0,0,....0)

seeey
At +r,5=k|r]2+722+ ..... -f-r,f=k2 A4ty =k,

-(m Ay Ay )iljllFi<r?,ri',r§,,..,r?)

= Iﬁ &....&G.(k,,kz,...,kn) (say) 44)
where
Gl(kl,kz,...,k,,) - Z Z gerny

Y LOE[AA )b 45)
A=k, =}

Using eqn (44), we can rewrite eqn (30) as:

S = (clachy ) + (P [y oy ) S

k=0

3 ubule,. . ,u’;"G,<k,,k2, . ,k,,) . (46)

ky kgt otk =k

Substituting the expansion for f(#) from eqn (36) into
eqn (27) and performing integration, we obtain the
result stated in eqn (18). This completes the proof of
Theorem 1. ]

Theorem 2. A structure product I,(4,,4,,...,4.)
over an n-polyhedron is a polynomial combi-
nation of the coordinates of vertices ¥ =
(XuisXais .o Xm) (= 0,1,2,...,0):

I'(Ay A 4,) def ‘[,,J‘ xhx, .. xirdxdx,,...,dx,
p

=(|1‘1 Ay Ay Ay )lJi )} .

kotky+hy+ o thkymk= 3 4

iw]

IS N ‘<ko,k1 9k2a vee ,k">GO(k0,kl PR !k") (47)

where

k, |k,...]k
P gl L L

GO(kO’kl’kZa“-skn) = z Z serny

e+l mkgl it =k
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X Z fI Fi<r?aril9ri27---’r:‘)1

e ek, P

x;‘»’ o r? 0
0XilXids .+, Xih
R

R+ 4+, ., +r=40=12,.,n)

0 1.2
Fr,o,r,...,if) =

(48)

and |J| = absolute value of det J = |det J| and det J
is same as defined in eqn (21).

Proof. The natural coordinates of the standard
n-simplex &, = 6,(u) = 6,(u,u,,...,4,) in R" are also
related to the coordiantes of n-polyhedron P in R" by
the eqn 17a, b):

X = XU) = UpXp + WXy + X + 4.y + U X,

G, = 6,(1) = 6,(u,us,...,.1t,) (49)
where

u,i=12,..,n

(E) = (uO’ul’ ce ’un) .

up=1-w, —u,—,..., —

(50)

Now, proceeding in a way similar to the proof of
Theorem 1, we can write

(A A, Ay) def J:[,,J‘ xhxi,.. xidx,dx,,...,dx,
/4

x{(u)x5:u),... . x(u)det J|du,du,,...,du,  (5la)
where

Q=1—u—ty—,...,~u,i=123,..,n—1(51b)

and x,(u) are as expressed in eqn (49).
Letting

Xi) = xi(w) (i=1.2,...,n),
J@) = X@)Xow),.... X, () (52)

we can write eqn (5laj as:

(A1 Az . hn)

- j f r " fuyidet Jiduduy,... du, . (53)

We can now use the Taylor’s theorem to expand

CAS 65/6—C
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the function f(u) in powers of wup,u;,uy,.... 0, 1,U,
and then obtain:

I
fw) =
Ao+ A+ ..+ A,
a a a Agt Ay ta,
x[(uoa+u.a—m+,...,+u,,5u—") f@)]

(U =0,u,=0,....u,=0). (54)

The use of the multinomial theorem in eqn (54) now
yields:

fw) = Yy .
gtk vk 4+, +h,=k=Y i

i=1

ulodh Lk

f(w)
( 5u§°auf',. . .,6uf,‘~ g =0y =0,...1, = 0) ' (55)

We shall now determine the coefficients

[ i)

duboduk,... ,0ub

where
k=ko+ki+hk+,...,+k,=73 4

By the use of the multinomial theorem and from
eqn (52), it can be shown that:

K
[ af(uﬂ,uhuh-“yun) ]
koouk k,
Ougodut,. .. ,0ut AP

where

Xi = XI(E) = x;‘"(ﬂ), E = (anuth"-"un)’

Arrte L+
gt X,

xX.ror N
SRl . 7 S

(i=12,..,n). (56b)
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Using eqn (50) and treating u,u,,...,u, as independent
variables, we obtain:

0 .1
(1\’/,’,‘,",‘,...

l
’ri )(u0=0,u| =0,..4,=0)

(X)L =
0, otherwise,

_ { LEYERUEN
(56¢)
From eqns (56a)~(56¢), we obtain:
{Golkorkersks- .- k(A1 g [Aa)

NEE N

(0,0,...,0)

= <ﬂ§‘L§L)o X }; Lo y ,.n,j:“ ) :

Bt =kttt rn =k

= kn( ITF, (r?,r.‘,r?, r,")) (57)
i=1
where
F(rl ’rl b n)
’ r. I‘z
XX Xids - Xin P4r 4., +rr=24.(58)

r
= 1 2 n
I‘i l”i I‘i...l‘i

Now substituting from eqn (57) into eqn (55), we
obtain:

fw) = (Ij li)k() ki kn=k= )“:x

uo“ﬂu‘l‘l,...,uf,nG(,(ko,kl,...,kn). (59)

Using eqn 13alegns (53),(50) and performing
integration, we obtain a result claimed in the
statement of this theorem viz. eqn (47). This
completes the proof of Theorem 2. []

4. SURFACE INTEGRATION OVER AN N-DIMENSIONAL
POLYHEDRON

The integration of the scalar function f(P) =
xhixd . xh (A, Aasdas.. -4, = 0 and positive integers)
can be easily derived by using the divergence theorem

for a standard n-simplex &, = 6,(u) = 6, (u,us,...,u,)
in R".
Theorem 3. Let 6, = G, (u) — 6,(th,t,...,u,) be

the standard n-simplex in R" defined by the
inequalities u; >0, >0,....4, 20, Z_ ;< 1 and
the n + 1 vertices ¥, = (0,0,0.,...,0), ¥ = (1,0,0,...,0),
¥, = (0,1,0,...,0),..., ¥,=1(0,0,0,...,1).

H. T. Rathod and H. S. Govinda Rao

Then the integral over 6, = 6,(u) = 6,(u,4y,...,U,)
of the divergence of a vector function

- l 4 (_) + 12A2(_) + .. + i,,An(E)’ with Ai@)a
i=1,2,.,n as scalar functions in n-independent
variables, u,u,,...,u, can be expressed as:

J j J : )V"~;1du,du2,...,du” def I"(4)
CACTE TSR

Gy ottty )

{ZA(uth, Uyl =ty —ty— .. — n—l)}

x dudu,,...,

O = Nyt gty ity 4 | g)

[A Gttt 11 it (60)
K#i
where
: 0 : 0 s 0 2z :
v, =i T + i, o, + e, + l"a_u—,, and i,b,... 1,

are the unit vectors in the u,,u,,...,u, space.

(61)

Proof. We shall give proof of this theorem by using
the principle of mathematical induction. Let us verify
this theorem for n = 2. We have from the left hand
side of eqn (60):

J f v, Adu,du, def 1*(4)

BT P » 0
‘I}L ("au. +126u2>

'(ilAl(ul’MZ) + izAz(ul,llz))dulduz

_ PLLL— 0A(uy,u,) 0Ax(u;,u5)
= J; [ ou, + du, uodus 62

/0

- ([ 0A (w,t) du,du
i __5u1 1du,

Vo

|
+ [Az(u,,l — u.) — Az(u,,0>]du, .
0

To find a reduction to first integral of eqn (63), let us

(63)
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recall the well-known result on differentiation under
integral sign: see Ref. [13]:

d b1y
“&J Sflx,0)dx
atr)

(.0
= f(b(1).0b' (D)~ fla()Da’(t) + f PeD g (o4)

alr)

Using eqn (64), we can write:

L]l o
= \rlﬁ — A|<u1,1 - ul) + J.l - —“644'{(5“““2) duz:ldul .
o o U

(65)

From eqn (65), we thus obtain:

1 (*1 —ul
5A.(u.,u2) duzdu,
b o Ou,

1 1
= J.A,<u,,l ~ u,)dul — fA,(O,m)duz . (66)
i 0

Substituting from eqn (66) into eqn (63), we obtain:

J J v, Adu,du, =

- flAl(O,uz)duz — flAz(u,,O)du, . (67

12
ZA,»(ul,l — u,)du,

o i=1

From eqn (67), we see that the theorem is true
for n=2. Let us now verify the theorem for
n=13. We again have, from the left hand side
of eqn (60):

= M1 —u -y
H f P, Adududu, def (1) = J J J
4 0 Jo 0

« O A, (uy,uz,113) + O Ay uz,4) + O A (uy uz,1)
ou, ou, Ous

X dusdu,du,. (68)

Let us now reduce each of the integrals on the right
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hand side of eqn (68), so that we have for the last term
in eqn (68):

T = M —uy—uy
J‘ J j %42' dulduzdug
o Jo o U
1 -
= JJ I:AZl(uth,l —u — uZ)
0 JO
- Ag(“],“g,O)]dulduz .

On using the well known result on integration that is
stated in eqn (64), we obtain:

TRy L —uy -y
% du,du,du,
bJo J Ouy

0

1l —u
= J ‘A[(“],uz,l —u — u2>du2dul
6 JO
) (PP
+ J‘ 5;‘ (J‘ Al(ulyuz,u3>du3>duzdul
Jo Jo 1\Je

(70)

(69)

and

T M-y M —uy —uy aAz
L J; ] EZ du3du2dU|

0

1 Pl-y
= j IAz<ul,u2,1 —u - u2>duzdu,
o Jo
-y 0 1 —u —u,
+ 2 Aol vy Vs Vo, .
UOL o, <£ 2(“1 Uy us) “3) Udu,

(7H)

Substituting from eqns (69) - (71) into egn (68), we
obtain:

J J f 7y Adudu,du, def I’(4)

[4

(RN o
= J j I:ZAz(unuz,l —u - u2>:|du2du,
0 O i=1
11—
- J‘ J‘ AS(“l:quO)duzdul
0 Jo
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11— a | —up — 1y
+ J; J; u <J; Al<u.,uz,u3)du3)duzdu,
1w a I = —uy
= As| uy,u,, .
+ ﬁj; % ( J‘: z(u, U, u;)du,)duzdu,

(72)

Letting

1 —u—uy
At (uy,uz) = J Al(“n“z,'h)dus,
o

1 —u —u
AF(uu) = J Az(“u“z,ua)dus (73)
o

the sum of the last two integrals in eqn (72) can be
written as:

10 -al V= uy —uy
e Ay thuuy )du )
[ A R
a 1 —uy - Uy
+ o, (J A2<u,,u2,u3)du3>:|du2du,
0
du,

f T ( aA’ )duzdul
Ji (u.,l —u,)dul fAl*(O,uz)duz
- [ ‘A;<u,,o)du,

(by the use of the statement of this theorem for
n=2)

[
=0- f J A,(O,uz,u,)dugduz
0 O
1M -y
— JJ Az(ul,O,u3>du3du, . (74)
0 JO

Now, on substituting from eqn (74) into eqn (72), we
obtain:

” f v, Adu,du,du, def I’(A)
"3

[ -

0AYF

u — uz)]duzdu,

1=y
- J f A|<0,uz,u3)du3duz
0 JO
11~
— j j Az(u,,O,u3)du3du.
0 JO
1T~
- J‘ J Ag(uhuz,0>du2du| .
0 JO

From eqn (75), we find that the theorem is true
for n =3. Now let us assume that the theorem is
true for n = m; we shall then prove that the theorem
is also true for n=m + 1. To prove this, let us
consider:

mf Vs Aduduy,... . du,, , , def 1"+ '(4)

(75)

aAm+l

aum+l

o4, , o4,
[6u, -+ s + .., + ]dum.du,,,,...,du,.

(76)

Clearly, the last term in the above integral [i.e.
eqn (76)] can be reduced to:

1 M- 1wy =y = '"aA,,,
[ S Gt ity

Jdu,dy,

X I:Am+l<ul’u2’--'aum71 — U = U —

— A, .(u,,uz,...,u,,.,O)]du,,,du,,, e nydug,duy .

an

Now, on using the well known result on integration
which we have stated in eqn (64), we obtain:

J‘xJ‘p.;, J’I—ulAuz—.,...—um%du du
LRREER] m + M.
o Jo o Ou,

,du;dul

X A,(u,,uz,...,l — U — Uy —
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11—y T — )~y — ey -,
xdu,,,du,,,_‘,,..,du,+J.J‘ ,...,J‘
0 JO 0
a I —uy —iy— oy =,
X b‘&:(([) Al(ulauZy"'9um+l))

x dugy, , - du,du, _ ..., du; . (78)

Proceeding in a similar manner, we can show that:

1T M ~u 1 —uy =y — by —umaA,_
eees ?37du,,,+.du,,,,...,du2duI
0 JO o i
M -y Tty =y — o -ty
0 JO 0
X A,-(u,,uz,...,l — U — Uy — ey — u,,,)
1M - T —up—uy =~y — Uy .y
x du,du,,_,,...,du, + yeers
0 JO 0
6 T—uy—uy— ., =,
X 5= Aty Uy Uy 1)
0, \ |,

x du,, , du,du,, _,...,dw, (i =12,...,m). a9

Letting

X A,-(u,,uz,...,u,,,+ .)du,” ¢ (80)

we can now write the sum of first m-integrals in
eqn (76) as:

x du, , du,,...,dudy,

1" -y, T~y =y — ey by _y
= yeoes
0 JO 0
m
x| ¥ A u,,uz,...,u,,,,l—ul—-uz—,...,~u,,,)
i=]
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X 0A¥
X = \du,du,,_1,...,du,du
(Z"': 5u;)d 1 LAy

1 l—ul L=y =y~ ey —ty g m
= yeens ZA,.
o JO ] i=1
X (u,,uz,...,u,,,,l — Uy — Uy ey — u,,,)]
11 -u 1 —uy — Uy~ Uy g
-du, du,, _ ... didu -+ yeees
0 o0 0

m
X ZA,*(u,,uz,...,u,,,-.,l —Uy Uy — ey — u,,,-.)
i=1

'du,,, - ,du,,, TR ,duzdul

m
- Sl
i=1 AR UTE PN ST AN RRN

x [A¥*(u,,us,. ..,u,,,)],,‘:okl;llduk .

Ke#i

81

From eqn (80), we find that

A¥uuy,. Ml — —th — o, — U ) =0

(82)

Substituting from eqn (82) into eqn (81), we obtain:

T 1 —u 1 -y =y =,y —¥,
= cany
0 JO a

ittty 1. iy — 3

i=1

* J’J‘J‘,“.,J’
dm(ul'ul""'“t—l'"i+I“"’"mum+I)

X Ai(uhub"wui— I,O!ui+ 1yerestlmt 1)

'( ﬁ duk)dum+] .
K=l

Kei

(83)



840

I"*'(A). This sum proves that the theorem is true
for n=m+ 1. Thus, by using the principle of
mathematical induction, we find that the theorem
is true for all n. This completes the proof of
Theorem 3. [

Theorem 4. Let P be an n-dimensional polyhedron
with n + 1 vertices V¥, with each ¥, defined in terms of
coordinates as: V= (x;;,Xy,...,%,) (i = 1,2,3,...,n),
then the structure product:

(A1 2050 def ‘”‘,...,fx,*lxég...,x,‘;ndx,dxz,...,dx,,
{4

(34)
where det Jj = det J as defined in eqn (21),
ou,’ o, > °
0x; _ O0xi—,
ou, ' Ou >
Jn—l — 1 2
. 0% 4, 0% 1)
o, ° 0w,
ox, o,
ou,’ Ou, T
Cay, C22 PR
— Ch_115 Ce-12 PR
Corrs Chrrz 5770
Caiy CnZ PR

is reducible to a sum of n+ 1 integrals over
polyhedral surfaces of dimension n — 1,

_ __ldetJi

By g (e ptigsnitly 1)

x {J;’“' T (~ 1)""J;’"}

xj(u,,uz,...,u,,,,,l — U — Uy — ...

-du, _du, _,du, _;,...,dudu, — JJ‘, ..

1;(11’)'29' .. 7’171)
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X KO,uz,ub...,u,,)du,,du,,_ RN’ (7204 72

+ (Ji[”f ( )J;~ l/(“lso,u3’u4,--~aun)
x du,,du,,_,,...,du;du.),... + (( - 1)"".[[,...,‘[
X (uhuh"'sun— ])J:* ]/(u],uz,...,u,, - I:O)

X du,,v,du,,,z,l..,duzdu,> 85)

0x, 0x, 0x,
ou " O, u,
0%, 0x_, X,
ow_,’ Oup,y 7 ou,
X 0% 41 . 0X 41
O’ 0wy, du,

ox, ox, ) ox,
ou_,” Owy 7 Ouy

Cok—15 Cok 41 PR Can
Cootp—1s Chtk+t 3Ty Ck—1n
Corth-1s  Crrrk+r 3 Chtan

Crk—15 Cok +1 »TTTy Con

(k=12,..,n) (86)

Sz, ) = X0 @x3(W), - X ()
where we have from eqn (16a) and eqn (16b):

X; = (Co + Cuthy + Coly + ..oy + Ctty) (i = 1,2,...,0),

co=Xp (G=123,...n), ¢;=x;— X (Iij=12,...,n)

and also, from eqn (17a) and eqn (17b),

Xi = UXpy + WXy + 5y + X, (P =1,2,3,...,0)

and

@7

h=1—u—u—,...,—u,.
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Proof. We have, from Eqns (24-26): Clearly,

) Ji=det JT = det J,
IZ(AI:)Q;""}'")

6T(x2,x3, X, )

. ) Jrl= i=12,..,n1).
d__e_ffj,...,fo'xQZ,...,x,’;ndx.dx;,...,dx,,_.dx,, Oty Uy 1l 15 sUy) ( )
b N
= |detJg| f j j xh(u)x(w),....xi(uydudu,,...,du, We can also rewrite eqn (89) as:
. ) 1 |det J]
(88) 1,,(111,12,...,}.,,) (ll + 1) (det J)
veos | _V-Fdudus,... du,_ du, (92
where &,(u,1,,...,u,) is the standard n-simplex &, X ff L(;) et oty (92)

defined in eqns (1) and (2) and det J, is the same as
det J; we can also write eqn (88) in an alternative

form as: where

Fi(u) = (= 1)~ @)xju),... xi(u)
. _ Idet Jg| 0 =(=1"Viflw) (i=1273,..1). (93)
(A h) = Gt I)H LM o

V = Xj. i,0/du, withi, as unit-normal vectors along
the u, (k=1.2,.,n) directions. Now, using the
statement on divergence theorem for a standard
n-simplex proved in Theorem 4 via eqns (60)
and (61), we can write, on using eqns (92) and

_|detJg :
(/1 + I)(det J3) f j J { B (93) as:

I;(ll],lz,'-‘,;“n)
x [f(ﬂ) a (xzsxl’---rxn) :I
+ aiuz[_f(y)a(x;,X3,...,x,,)]+’."’+(_l)n—lgi_

X {x" ik, ,xﬁ"}duld“z’ -y, 1du,

a(“b“}r-w“n) 1 ‘det Jl
(il + 1) (det J) [J‘J‘ J Wity — )
ot 1y,...,u,) n n

z E(ul’ub""un—l’l = U T Uy, — un»l)

a7 3A330 e 9kn
x [f@m% ]}du,duz,...,du,,_,du,, (89) n
dudu,,... . du, _du, — Y

i=1

where

J.J.,,j {F,(u.,uz,...,u,,)} ﬁ duk:I
) = xh)xi(u),...,xi(u) and 87(xp.x,...,X,)/ (e ) wir 0]

Oty Uy Uiy Uy) (= 1,2,...,0) 1 Idet J|
(/1. +1) (det J) [fJ:’J;

R ity _ 1)

are cofactors in

x { =T L+ (= 1)"*'1:-'}

ax,  dxy 0x, 0x,
ou,’ 0w, ,, Ou,_,’ Ou,
o 0x e, 0x 0x, -j(u Uy sty oyl — ) — 1y — -
JT= au' R 6142 514"_' R aun ) (90) 15429 - v o 9lpn — 5y 1 U [ERXEY Uy
ox, ox ox,  0x, x du,_,du,_,,...,du,d Ji!
ou,’  Ou, ou,_,’ Ou, 1 Q=200 QUG =

LT



842 H. T. Rathod and H. S. Govinda Rao

X f(O,u;,u;,...,u,,_ ,,u,,)du,,du,,_ o FTX 7N
U

j(u,,O Usyoosly_ 1, ,,)du,,du,,,,,...,duzdu,>,...,
(el

= Muyay

X /(u,,uz,‘..,u,, - ,,O)du,, _du, 5. ..,duzdu,)] . (94)

This completes the proof of Theorem 4. ]

We could now use Theorems 1 and 2 with some
partial modifications to compute all the n+ 1
integrals to find I;(,,4,,...,4,).

5. APPLICATION EXAMPLE

We shall illustrate an application example which
was previously considered in Refs [9, 10] by using the
algorithm proposed in Theorem 2. The illustration of
the same example by the use of Theorems 1 and 4 can
be easily worked out following Ref. [9] in which the
concepts were developed by use of finite-element
coordinate transformations and the Gauss’s diver-
gence theorem for a three-dimensional Euclidean
space.

Let us consider:

2,100 = Ji”‘ xix,dxdx,dx;
P

where P is the tetrahedron in R® with vertices

(952)

<V =(550), ¥, =(10,10,0), ¥5(8,7.8),

V= (10,50) > . (95b)

5.1. Volume Integration

Using the statement of Theorem 2 for 4, =2, 4, =1,
A =0, V| =(550), V=(»0,10,0), V;=(8,7,8) and
¥, = (10,5,0), we can compute the integral of
eqn (95a) and eqn (95b) by the following equation:

peo=vizlLl ¥

ko+k +hky+ky=3

1 3(ko,k1,kz,k3>Go(ko,k.,kz,ks)

= 2|J)[13(0,0,0,3)G(0,0,0,3) + 13(0,0,1,2)G0,0,1,2)
+ 13(0,0,2,1)G(0,0,2,1) + 13(0,0,3,0)G(0,0,3,0)
+ 13(0,1,0,2)G(0,1,0,2) + I5(0,1,1,1)Gy(0,1,1,1)
+ 13(0,1,2,00G(0,1,2,0) + 15(0,2,0,1)G,(0,2,0,1)

10,2,1,00G(0,2,1,0) + I4(0,3,0,0)G4(0,3,0,0)

141,0,0,2)G(1,0,0,2) + 1(1,0,1,1)G,(1,0,1,1)

1(1,0,2,00G(1,0,2,0) + I(1,1,0,1)G,(1,1,0,1)

+ 13(1,1,1,0)00(1,1,1,0) + 14(1,2,0,0)G,(1,2,0,0)

+ 132,0,0,1)G(2,0,0,1) + I4(2,0,1,0)G(2,0,1,0)
+ I4(2,1,0,00Gy(2,1,0,0) + 1:(3,0,0,0)G(3,0,0,0)] .

(96)
From eqn (13a) and eqn (48), we obtain:
k, k, |k, |k
Ig(ko’khkbk]) = I:E.l.—@i__ , (97a)
6
GO(k07kl 7k29k3)

= Z‘ l Z 2 Z : Z . ‘HIF(r?,r",r,z,r,3>

it =kt kit =kpi 4=

Gince P +rl+ri+ri=4,i=123and A, =0, we
have =ri=ri=ri=0)

Al 2
Xgxixixi
0 1 2 3
L Lo L L

From eqn (97b), we obtain:

F(rl ’rl ’rl ,r3) =

(97b)

G(0,0,0,3) = F(0,0,0,2)Fx0,0,0,1)
Gi(0,0,1,2) = {F(0,0,1,1)F,(0,0,0,1)

+ F,(0,0,0,2)Fx0,0,1,0)}
Gy(0,0,2,1) = {F,(0,0,2,0)F,(0,0,0,1)
+ F,(0,0,1,1)F(0,0,1,0)}
F,(0,0,2,0)F(0,0,1,0)
{F\(0,1,0,1)F,(0,0,0,1)
+ F,(0,0,0,2)F5(0,1,0,0)}
Gy(0,1,1,1) = {F(0,1,1,0)F,(0,0,0,1)
+ F,(0,1,0,1)F5(0,0,1,0)
+ F\(0,0,1,1)Fx(0,1,0,0)}
{F\(0,1,1,0)F(0,0,1,0)
+ F\(0,0,2,0)F%0,1,0,0)}
Gi(0,2,0,1) = {F(0,2,0,0)F5(0,0,0,1)

+ Fi(0,1,0,1)F%0,1,0,0)}

GO(0’07370) =
GO(Oy 1 ’032) =

GIJ(09 1 3290) =

Gi(0,2,1,0) = {F,(0,2,0,0)F,(0,0,1,0)

+ F,(0,1,1,0)F0,1,0,0)}
G(0,3,0,0) = F,(0,2,0,0)Fx(0,1,0,0)
G«(1,0,0,2) = {F\(1,0,0,1)F,0,0,0,1)

+ Fl(0’0’0’2)F2(190’0’0)}
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Gi(1,0,1,1) = {F(1,0,1,0)F,(0,0,0,1)
+ F,(1,0,0,1)F,(0,0,1,0)
+ £,(0,0,1,1)F(1,0,0,0)}
{F(1,0,1,0)F0,0,1,0)
+ F(0,0,2,0)F,(1,0,0,0)}
Go(1,1,0,1) = {F(1,1,0,0)F,0,0,0,1)
+ F,(1,0,0,1)Fx(0,1,0,0)
+ F,(0,1,0,1)F%1,0,0,0)}
{F(1,1,0,0)F(0,0,1,0)
+ F(1,0,1,0)F(0,1,0,0)
+ F(0,1,1,0)F(1,0,0,0)}
Gi(1,2,0,0) = {F\(1,1,0,0)F,(0,1,0,0)

+ F1(0,2,0,0)F(1,0,0,0)}
Gi(2,0,0,1) = {F,(2,0,0,0)F,(0,0,0,1)

+ F(1,0,0,1)F,(1,0,0,03}
Go(2,0,1,0) = {F,(2,0,0,0)F,(0,0,1,0)

+ F(1,0,1,0)F(1,0,0,0)}

GO( 1 9072’0) =

Go(l,l,l,o) =

Go(2,1,0,0) = {F,(2,0,0,0)F(0,1,0,0)
+ F1(171)0’0)F2(190’090)}
G0(3,030y0) = R(Z,0,0,0)F}(I,0,0,0) .

Now using eqns (97a)-(97c), we obtain:

2
Xi3X23

2210 = m[ L

2
* 360 (x,2x23 + 2xl2x13x22> + x—l'zz)gz
L 2
+ 360 2x11X13X53 + XizXa

1
+ 360 (xnxlzxz; + Xy X% + x12x|3x2|>

1 2 5
360 XX Xn + XipXy

i
+ 320 (xlzl-x23 + 2x.,x,3x2.)

(%)

(anzz + 2xx0%0 | + 55 (xnle)
1 2
+ 360 2X10X13X23 + XisXzo

1
+ 3_66 (xloxlzxzs + XX 35X + xlzx13x20>

97c)

1
+ 360 <2x|2xuxz3 + Xfaxlz)

360 (2xmx|2xzz + x|2x20>

1
+ —6— XoXnX2 + XioXi3X2 + XXX

X1oXnX2n + X10X12X21 + X1 X 12X

W
(=23
(=]

2
XXXz + x11x20>

w
O

1

(
(
s
s

XijoXy + 2x.ox13x20)

b)
o

L
6

(x
o

W
[==3

XjpXn + 2x.0x,2x20>

w

1
360 XioXy + 2x10x||X20> 120 (xmxzo):l (98)

For the application example of eqn (95a) and (95b),

Vo = (x10,%20,%3) = (10,5,0),
WV = (onyxa,x3) = (5,5,0),
Vi = (X12,X0,%3) = (10,10,0),

Vi = (x13,%5,%33) = (8,7,8), [J| = |det J| = 200. (99)

Using eqn (99) and rewriting eqn (98) as:

1,3,(2,1,0) = ‘Jl[ 120 <x,3x23 + Xty + XipXy + x12x22>

1
+ 360 {(xlzlxzo + 2x11xmx21> + (xfzxzo + 2x|leox22)
+ (xlzsxze + 2X13xmxzs> + (xxzole + 2xuxwxzo>
(xlsxm + 2x0X)3%%

+ | xfoxn + 2x1x16%2

+ (anxm + 2x”x12x22>

2
+ { xnix + 220X30

)
)
( )
(

+ (xxzaxzz + 2X|2X|3x23> + (xlzoxza + 213219
) + (x122x23 + 2x1213%

+ | XnX0Xz + XipX0Xy + Xuxmxn)
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+ (xnxlsxzo + Xi3X10% + x1|x10x23>

+ (xlleaxzo + X;3X10X2 + xlleoxza)

+ <x,,x13x22 + X12X13%y + 'xllx12x23>}:'

= (200)[ % (500 + 125 + 1000 + 448)

+ ( 3é0 ){625 + 2500 + 1440 + 1000 + 1500
+ 880 + 2000 + 750 + 1760 + 1500 + 575

+ 2300 + 1250 + 950 + 1900 + 1150}]

( 25 >[(2073) @ 080)] 2—2 (@ )

47 165

3 (100)
The result obtained in eqn (100) is in agreement with
Ref. [10]). We see that the present algorithm is on par
with the one illustrated in Ref. [9]. Hence, it is also
economical in terms of arithmetic operations,
compared to Ref. [10], by about 60%.

5.2. Surface Integration

We shall again illustate the application example of
eqn (95a) and (95b) by the second algorithm based on
the concept of surface integration, stated in Theorem
4. Following the method outlined in Theorems 1 and
2, we can also state the following two corollories
without proof:

Corollary 1. A structure product over a standard
(n — 1)-simplex &, _ \(u,tr,... 4 ) = 6,_(u) in R"™!
defined by:

] -2
Ig,,_,(u)(”l’“bn-,ﬂn) @ J‘ r !"-,J“
0 JO 0

UhUrw),...,

U(w)du,,...,du
and is expressible as

DD, ... Dry

) = n

15, wlptt,- .

+ \h&&

k=1 kythkyt,k,_ =k
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I’I'_ l<k|’k2,--~skn— l)G(kth""’k"‘ ]) (101)

where

I-Yeoky. ik, )= T
(Zk+@-D)
o =1-u—~u-—

Ui(E) = Di0 + Di]ul + Di2u2 + seeay

ey — U i=12...n—2,
+ Din—-lun—l

D; depends upon C;, (i =1,2,...,n, j = 0,1,2,...,n)

G](kl,kz,.--,k,,, 1) =

W=ki—=r—ri—, ., = '20(3G=12,...n),
S(rO rl r2 n—I) — D,ﬁD,]D,ﬂ, 5Dmill
LI L I l .
Ll L L
(102)

Corollary 2. A structure product over a standard
(n — 1)-simplex G,_ (u,4,...,4, 1) = G,_,(u) in R"~'
is defined by:

1;,,_1(11)(.“1’”2""’“") ge_f I;,,_ VGt gssity, ,)(#h.u'Z’--w”n)
1 fo, n -2
= Jrr Ut@Us),...,
0 JO 0
x Ub(u)du, _ du, _,,...,dudy,
ko+ky +kyt ok, =k= ¥ i

i=1

X Ig(kO’kl,kZa--wkn— l)GO(kOaklskanaknv l) (103)

where
U:(E) = Ui(uhub"-,un— I)
= “rnuo + uilul + LREREY + ui,n—lunAl:
U; i=12,..,n;j=0,1,2,...,n) depend on x;,

{:jl:)ki +(a-1)}

LR L)

{2 ¥, + (n-1)}

18— I(kﬂykths--'akn—— l)=
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O=1-u-uw—,.,—u (i=12,..n-2),

Golko.ky ks, ko2 1) = Z Z ERERE)

n
0 .1 —1
x Y . _l'ISi<ri,ri,rf,...,r? )),
[ S RS L hl ) S i=1

UsULUs,..., U,
% 1 [P e

P44+, =ni=12,.,n).

0 1 -1
Si(ri9r|7ri2""r|!1 )=

(104)

We shall now illustrate the computation of eqn (95a)
and (95b) by the use of Theorem 4 and Corollory 2,
since the use of Corollory 1 has appeared in a
different context in the earlier paper by the
authors [9]. By the use of Theorem 4, we can now
write, from eqn (85) and eqns (95a), (95b):

”‘jxfxzdx‘dxzdx;
/4
_ 1 |det J| [ f f
T 3 (det J) )
"2(.4,.“2)
3
X <ZF,~<u,,u2,1 —u — u2>>du2du.
i=1
- I \F.(O,uz,z@)du;duz
diz(uz,u3)
— J ( )Fz(u.,O,u3>du3du1

1;(2,1,0)

"
- j ( _)F,(u.,uz,0>duzdu.:l. (105)
We have, clearly:
tn Cip Cp
detJ=|c; ¢n ¢’
Gy Cn €y
3
ZFi(unuz,l — U — uz>
F=1
= (Ji = I3 + I)xi(u 0,1 — uy — )

X Xty thy, 1 — uy — uy),
Fi(0,u5,u3) = x3(0,u,u3)x(0,u,u,)J 2,
F(u,,0,u5) = — x3(u7,0,03)x3(u,,0,03)13,
Fy(u,,u,,0) = x7(uy,15,0)x(14y,1,,0)J3,

Cn Cn
€3 Oy

€y Cy

2
Ji=
31 C3

2
s J2=

€ = Xy — X9, €12 = Xip — Xyoy C13 = X3 — X5
Cyp = X1 — X, Cpp = Xgp — Xpg, €3 = X3 — X5

C3) = X33 — X3, €2 = X3 — X305 C33 = Xy3 — X3p.

Using eqn (95b), we obtain:

2,10 = — ? [Jf ( )xf(u,,uz,l —uy - u2>
35| Uy

X xz(u.,uz,l —u — uz)duzdu,

— ‘”‘ ( )x,’(O,uz,m)xz(O,uz,u3)du3du2]
Gl uay

107)
since

det J= — 200, /2=40,/3=0,72=0. (108)

We shall now illustate the application of integrals in
eqn (10) by use of Corollory 2. We see that from
eqn (108):

Xy, 1 — wy — 1) = Xy + X + (1 — 1y — wy)x;5
= UpXy + U Xy + X,
Xi(0,u5,143) = (1 — thy — w3) X + X + usx3(i = 1,2,3).

(109)

Using eqn (103), we find that:

Igz(ul,uz)(3’190) = J‘J\( )Ula(“l,uz)Uz(ul,uz)duzdux

=3[Llo ¥ 13<k0,k1,k2>60(k0,k.,k2)

kg+ky +ky=4

=3 L]0 (£3(0,0,4)G(0,0,4) + 13(0,1,3)G(0,1,3)
+ I3(1,0,3)G4(1,0,3) + I3(2,0,2)G(2,0,2)
+ I3(1,1,2)G,(1,1,2) + I}(0,2,2)G(0,2,2)
+ I3(3,0,1)G,(3,0,1) + I}(2,1,1)G,(2,1,1)
+ I3(1,2,1)G(1,2,1) + I}(0,3,1)G«0,3,1)
+ 13(4,0,00G(4,0,0) + I3(3,1,0)G4(3,1,0)
+ 13(2,2,00G4(2,2,0) + I3(1,3,0)G(1,3,0)

+ 13(0,4,0)G(0,4,0)] . (110)
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We also have, from eqn (104):

Go(ko,klskz) = Z Z Z =k,

Rtk el +riard=k el sri=k,
2 0 .1 2 0 1 2
_I'IIS,- i), +r=0i=123.
i=

Clearly, since u = 3, Wy = 1, U =0, we have
B=ri=ri=0and S;,r,r) =1
Hence, we have

Go(ko,kl,kz) = Z—k . Z 2 Z (inIlSi<r?5ril ,ri2>)

r?+ ry=ky

A+ri+r=38+r+rn=1). (111)

From eqn (111) we obtain:

G,(0,0,4) = $,(0,0,3)5,(0,0,1),

Gy(0,1,3) = 5,(0,1,2)5,(0,0,1) + 5,(0,0,3)S,(0,1,0),

Gy(1,0,3) = 5(1,0,2)5,(0,0,1) + 5:(0,0,3)85(1,0,0),

Gy(2,0,2) = 5,(2,0,1)5,(0,0,1) + 5,(1,0,2)85(1,0,0)

G(1,1,2) = Si(1,1,1)8,(0,0,1) + S,(1,0,2)5:(0,1,0)
+ 5,(0,1,2)5%1,0,0),

Gy(0,2,2) = 5,(0,2,1)5,(0,0,1) + 5,(0,1,2)55(0,1,0),

Gy(3,0,1) = 5.(3,0,0)5,(0,0,1) + 5,(2,0,1)Sx(1,0,0),

Gy(2,1,1) = $,(2,0,1)50,1,0) + 5,(2,1,0)5:(0,0,1)
+ 8,(1,1,1)81,0,0)

Gy(1,2,1) = 5,(1,2,0)5:0,0,1) + 5,(0,2,1)5(1,0,0)
+ 5,(1,1,1)8:(0,1,0),

Go(0,3,1) = 5,(0,3,0)5,(0,0,1) + 5,(0,2,1)5,(0,1,0),

G(4,0,0) = 5,(3,0,0)5:(1,0,0),

Go(3,1,0) = 8,(3,0,0)5,(0,1,0) + S,(2,1,0)51,0,0),

Go(2,2,0) = 8,(2,1,0)55(0,1,0) + 5,(1,2,0)85(1,0,0),

Go(1,3,0) = 5,(1,2,0)5,(0,1,0) + 5,(0,3,0)8,(1,0,0),

Gy(0,4,0) = 5,(0,3,0)5,(0,1,0) . (112)

From eqn (104), we also have:

K, |k, |k
Tiko ki k) = _I—L;‘I_—i., since ko + k, + k, = 4.

(113)
From egns (110) - (112) we obtain:

132(u|,u2)(3,1’0) = ”.( Uls(ulyuZ)UZ(uth)dlﬁdul
&) u iy
B

- le

[(AULUy) + {(3ULULU, + UlUn}

+ {3UUhUy, + UhUy}
+ {2URU LU, + 22U, UL Uy)
+ {2U U, Ui) Uy + (U,oUl)Usy + (U, Ul U}
+ {2UZ U Uy + 22U U Uy}
+ {UlUy, + 3URU U}
+ {(ULU DUy + (URU,)Up + 22Uy U, Up)Ux}
+ {(UyUR)Up + (U U ) Uy + 2(UsoU, Up)Uss}
+ {U§\ Uy + 3(UHUp)Uy} + {4U3 Uy}
+ {(Ui)Un + 3(URU)Un}
+ {2U3U, ) Uy, + 2(UU) Uy}

+ {3(U UL Uy + (U Uy} + {4UL UL . (114)

Using the explicit expression of eqn (114), we can
obtain integrals of eqn (107) by allowing the
following two sets of substitutions: first set [to
evaluate first integral of eqn (107)),

Ue=8,U,=5U,=10,Uy= 7,

Uy =5 U,=10. (115)
Second set [to evaluate second integral of eqn (107)]:

U= 10, U,, =10, U;; =8, Uy =5,

Uy =10, Uy =7. (116)

Using eqns (107),(114) and (115), we obtain:

13(2,1,0) = — %9 [Jij‘ ( )x%(uhubl —u - u2>
&l u(tp

X xz(u,,uz,l —u — uz)duzdu,

- ‘[ J x,’(O,uz,ug)xZ(O,uz,ug>du,du{|
d1(“|v"z)

_ 43
3 16

+ (31 000) + (24 000) + (15 500)

+ (10 000) + (18 560)+ (12 000)+(7750)

+ (5000) + (14 336) + (9280) + (6000)

[{(40 000) + (20 000)

+ (3875)+(2500)}-— {(14 336)+(18 560)

+ (16 000) + (17 600) + (20 800)
+ (24 000) + (19 000) + (23 000)
+ (27 000) + (31 000) + (20 000)
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+ (25 000) + (30 000) + (35 000

+ (40 000)}]

- - 5[219 801 — 361 296 = 47163

=
(117)

The result of eqn (117) is again in agreement with that
in eqn (100). Both these results are in total confirmity
with the previous work of Bernardini [10] and the
work of the authors[9]. Clearly the present
computational scheme is more efficient than the
previous work of Bernardini [10].

7. CONCLUSION

The theorems we have presented in this paper
are interesting for various reasons; they provide us
with a powerful method to compute the integrals
of n-variate polynomials over linear polyhedra in
n-dimensional space R". We have presented two
algorithms that permit us to achieve the exact
computation of the integral

fo'xZ‘Z, xidx,dx, ... ,dx,
P

where P is a regular n-polyhedron (an n-dimensional
polyhedron), eventually non-convex, unconnected
and non-manifold, embedded in the n-dimensional
space. The first algorithm is well suited to a
decompositive representation, the second works well
with a boundary representation, where the boundary
faces are known or the effort of extracting them is
easy. We have developed a new technique to expand
the spatial expression

X1 X320 X

in terms of the natural coordinates of the transform-
ation. This has clearly demonstrated the use of
Taylor series expansion, the generalized form of
Leibnitz’s theorem on differentiation, multinomial
theorem and Leibnitz’s rule on differentation of
integrals. The first algorithm uses direct mapping to
transform an n-polyhedron in R” into a standard
n-simplex in R".
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The second algorithm computes the n-dimensional
integral

J xiix, .. xhdx,dx,,...,dx,

P

as a sum of n+ 1 integrals of dimension n —1 in
R"~'. These derivations are followed by a numerical
example which, although worked out earlier by the
authors, has now been illustrated again with a slightly
modified algorithm which we believe is as efficient
and accurate as our previous algorithm [9].
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