76 research outputs found

    Qualitative Characteristics and Quantitative Measures of Solution's Reliability in Discrete Optimization: Traditional Analytical Approaches, Innovative Computational Methods and Applicability

    Get PDF
    The purpose of this thesis is twofold. The first and major part is devoted to sensitivity analysis of various discrete optimization problems while the second part addresses methods applied for calculating measures of solution stability and solving multicriteria discrete optimization problems. Despite numerous approaches to stability analysis of discrete optimization problems two major directions can be single out: quantitative and qualitative. Qualitative sensitivity analysis is conducted for multicriteria discrete optimization problems with minisum, minimax and minimin partial criteria. The main results obtained here are necessary and sufficient conditions for different stability types of optimal solutions (or a set of optimal solutions) of the considered problems. Within the framework of quantitative direction various measures of solution stability are investigated. A formula for a quantitative characteristic called stability radius is obtained for the generalized equilibrium situation invariant to changes of game parameters in the case of the H¨older metric. Quality of the problem solution can also be described in terms of robustness analysis. In this work the concepts of accuracy and robustness tolerances are presented for a strategic game with a finite number of players where initial coefficients (costs) of linear payoff functions are subject to perturbations. Investigation of stability radius also aims to devise methods for its calculation. A new metaheuristic approach is derived for calculation of stability radius of an optimal solution to the shortest path problem. The main advantage of the developed method is that it can be potentially applicable for calculating stability radii of NP-hard problems. The last chapter of the thesis focuses on deriving innovative methods based on interactive optimization approach for solving multicriteria combinatorial optimization problems. The key idea of the proposed approach is to utilize a parameterized achievement scalarizing function for solution calculation and to direct interactive procedure by changing weighting coefficients of this function. In order to illustrate the introduced ideas a decision making process is simulated for three objective median location problem. The concepts, models, and ideas collected and analyzed in this thesis create a good and relevant grounds for developing more complicated and integrated models of postoptimal analysis and solving the most computationally challenging problems related to it.Siirretty Doriast

    A Series-Elastic Robot for Back-Pain Rehabilitation

    Get PDF
    Robotics research has been broadly expanding into various fields during the past decades. It is widely spread and best known for solving many technical necessities in different fields. With the rise of the industrial revolution, it upgraded many factories to use industrial robots to prevent the human operator from dangerous and hazardous tasks. The rapid development of application fields and their complexity have inspired researchers in the robotics community to find innovative solutions to meet the new desired requirements of the field. Currently, the creation of new needs outside the traditional industrial robots are demanding robots to attend to the new market and to assist humans in meeting their daily social needs (i.e., agriculture, construction, cleaning.). The future integration of robots into other types of production processes, added new requirements that require more safety, flexibility, and intelligence in robots. Areas of robotics has evolved into various fields. This dissertation addresses robotics research in four different areas: rehabilitation robots, biologically inspired robots, optimization techniques, and neural network implementation. Although these four areas may seem different from each other, they share some research topics and applications

    Graph analysis combining numerical, statistical, and streaming techniques

    Get PDF
    Graph analysis uses graph data collected on a physical, biological, or social phenomena to shed light on the underlying dynamics and behavior of the agents in that system. Many fields contribute to this topic including graph theory, algorithms, statistics, machine learning, and linear algebra. This dissertation advances a novel framework for dynamic graph analysis that combines numerical, statistical, and streaming algorithms to provide deep understanding into evolving networks. For example, one can be interested in the changing influence structure over time. These disparate techniques each contribute a fragment to understanding the graph; however, their combination allows us to understand dynamic behavior and graph structure. Spectral partitioning methods rely on eigenvectors for solving data analysis problems such as clustering. Eigenvectors of large sparse systems must be approximated with iterative methods. This dissertation analyzes how data analysis accuracy depends on the numerical accuracy of the eigensolver. This leads to new bounds on the residual tolerance necessary to guarantee correct partitioning. We present a novel stopping criterion for spectral partitioning guaranteed to satisfy the Cheeger inequality along with an empirical study of the performance on real world networks such as web, social, and e-commerce networks. This work bridges the gap between numerical analysis and computational data analysis.Ph.D

    Optimal Collision Avoidance Trajectories for Unmanned/Remotely Piloted Aircraft

    Get PDF
    The post-911 environment has punctuated the force-multiplying capabilities that Remotely Piloted Aircraft (RPA) provides combatant commanders at all echelons on the battlefield. Not only have unmanned aircraft systems made near-revolutionary impacts on the battlefield, their utility and proliferation in law enforcement, homeland security, humanitarian operations, and commercial applications have likewise increased at a rapid rate. As such, under the Federal Aviation Administration (FAA) Modernization and Reform Act of 2012, the United States Congress tasked the FAA to provide for the safe integration of civil unmanned aircraft systems into the national airspace system (NAS) as soon as practicable, but not later than September 30, 2015. However, a necessary entrance criterion to operate RPAs in the NAS is the ability to Sense and Avoid (SAA) both cooperative and noncooperative air traffic to attain a target level of safety as a traditional manned aircraft platform. The goal of this research effort is twofold: First, develop techniques for calculating optimal avoidance trajectories, and second, develop techniques for estimating an intruder aircraft\u27s trajectory in a stochastic environment. This dissertation describes the optimal control problem associated with SAA and uses a direct orthogonal collocation method to solve this problem and then analyzes these results for different collision avoidance scenarios

    Proceedings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    No full text
    International audienceThe Cologne-Twente Workshop (CTW) on Graphs and Combinatorial Optimization started off as a series of workshops organized bi-annually by either Köln University or Twente University. As its importance grew over time, it re-centered its geographical focus by including northern Italy (CTW04 in Menaggio, on the lake Como and CTW08 in Gargnano, on the Garda lake). This year, CTW (in its eighth edition) will be staged in France for the first time: more precisely in the heart of Paris, at the Conservatoire National d’Arts et Métiers (CNAM), between 2nd and 4th June 2009, by a mixed organizing committee with members from LIX, Ecole Polytechnique and CEDRIC, CNAM

    Convex optimization of launch vehicle ascent trajectories

    Get PDF
    This thesis investigates the use of convex optimization techniques for the ascent trajectory design and guidance of a launch vehicle. An optimized mission design and the implementation of a minimum-propellant guidance scheme are key to increasing the rocket carrying capacity and cutting the costs of access to space. However, the complexity of the launch vehicle optimal control problem (OCP), due to the high sensitivity to the optimization parameters and the numerous nonlinear constraints, make the application of traditional optimization methods somewhat unappealing, as either significant computational costs or accurate initialization points are required. Instead, recent convex optimization algorithms theoretically guarantee convergence in polynomial time regardless of the initial point. The main challenge consists in converting the nonconvex ascent problem into an equivalent convex OCP. To this end, lossless and successive convexification methods are employed on the launch vehicle problem to set up a sequential convex optimization algorithm that converges to the solution of the original problem in a short time. Motivated by the computational efficiency and reliability of the devised optimization strategy, the thesis also investigates the suitability of the convex optimization approach for the computational guidance of a launch vehicle upper stage in a model predictive control (MPC) framework. Being MPC based on recursively solving onboard an OCP to determine the optimal control actions, the resulting guidance scheme is not only performance-oriented but intrinsically robust to model uncertainties and random disturbances thanks to the closed-loop architecture. The characteristics of real-world launch vehicles are taken into account by considering rocket configurations inspired to SpaceX's Falcon 9 and ESA's VEGA as case studies. Extensive numerical results prove the convergence properties and the efficiency of the approach, posing convex optimization as a promising tool for launch vehicle ascent trajectory design and guidance algorithms

    Analysis and Manipulation of Repetitive Structures of Varying Shape

    Get PDF
    Self-similarity and repetitions are ubiquitous in man-made and natural objects. Such structural regularities often relate to form, function, aesthetics, and design considerations. Discovering structural redundancies along with their dominant variations from 3D geometry not only allows us to better understand the underlying objects, but is also beneficial for several geometry processing tasks including compact representation, shape completion, and intuitive shape manipulation. To identify these repetitions, we present a novel detection algorithm based on analyzing a graph of surface features. We combine general feature detection schemes with a RANSAC-based randomized subgraph searching algorithm in order to reliably detect recurring patterns of locally unique structures. A subsequent segmentation step based on a simultaneous region growing is applied to verify that the actual data supports the patterns detected in the feature graphs. We introduce our graph based detection algorithm on the example of rigid repetitive structure detection. Then we extend the approach to allow more general deformations between the detected parts. We introduce subspace symmetries whereby we characterize similarity by requiring the set of repeating structures to form a low dimensional shape space. We discover these structures based on detecting linearly correlated correspondences among graphs of invariant features. The found symmetries along with the modeled variations are useful for a variety of applications including non-local and non-rigid denoising. Employing subspace symmetries for shape editing, we introduce a morphable part model for smart shape manipulation. The input geometry is converted to an assembly of deformable parts with appropriate boundary conditions. Our method uses self-similarities from a single model or corresponding parts of shape collections as training input and allows the user also to reassemble the identified parts in new configurations, thus exploiting both the discrete and continuous learned variations while ensuring appropriate boundary conditions across part boundaries. We obtain an interactive yet intuitive shape deformation framework producing realistic deformations on classes of objects that are difficult to edit using repetition-unaware deformation techniques

    Derivative-Free Global Minimization in One Dimension: Relaxation, Monte Carlo, and Sampling

    Full text link
    We introduce a derivative-free global optimization algorithm that efficiently computes minima for various classes of one-dimensional functions, including non-convex, and non-smooth functions.This algorithm numerically approximates the gradient flow of a relaxed functional, integrating strategies such as Monte Carlos methods, rejection sampling, and adaptive techniques. These strategies enhance performance in solving a diverse range of optimization problems while significantly reducing the number of required function evaluations compared to established methods. We present a proof of the convergence of the algorithm and illustrate its performance by comprehensive benchmarking. The proposed algorithm offers a substantial potential for real-world models. It is particularly advantageous in situations requiring computationally intensive objective function evaluations

    Proceedings of the XIII Global Optimization Workshop: GOW'16

    Get PDF
    [Excerpt] Preface: Past Global Optimization Workshop shave been held in Sopron (1985 and 1990), Szeged (WGO, 1995), Florence (GO’99, 1999), Hanmer Springs (Let’s GO, 2001), Santorini (Frontiers in GO, 2003), San José (Go’05, 2005), Mykonos (AGO’07, 2007), Skukuza (SAGO’08, 2008), Toulouse (TOGO’10, 2010), Natal (NAGO’12, 2012) and Málaga (MAGO’14, 2014) with the aim of stimulating discussion between senior and junior researchers on the topic of Global Optimization. In 2016, the XIII Global Optimization Workshop (GOW’16) takes place in Braga and is organized by three researchers from the University of Minho. Two of them belong to the Systems Engineering and Operational Research Group from the Algoritmi Research Centre and the other to the Statistics, Applied Probability and Operational Research Group from the Centre of Mathematics. The event received more than 50 submissions from 15 countries from Europe, South America and North America. We want to express our gratitude to the invited speaker Panos Pardalos for accepting the invitation and sharing his expertise, helping us to meet the workshop objectives. GOW’16 would not have been possible without the valuable contribution from the authors and the International Scientific Committee members. We thank you all. This proceedings book intends to present an overview of the topics that will be addressed in the workshop with the goal of contributing to interesting and fruitful discussions between the authors and participants. After the event, high quality papers can be submitted to a special issue of the Journal of Global Optimization dedicated to the workshop. [...
    corecore