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20 The eigenvectors of Â are shown for R16,10. The eigenvectors with
eigenvalues close to 1 (left) indicate the block structure with differing
frequencies. The eigenvectors close to −1 (right) assign opposite signs
to the internal vertices and corner vertices of each block. . . . . . . . 111

21 Asymptotic estimates of spectral gaps (left) and Fiedler eigenvalues
(right) for rings of cliques with parameters b = 10, 100, 1000 and q =
2, 4, ..., 8096. Lines represent leading-order terms derived in Theo-
rems 9 and 10 and ’+’ represent actual eigenvalues as given by the
formulas in Theorem 8. . . . . . . . . . . . . . . . . . . . . . . . . . 114

22 Empirical measurements of minimal error perturbations on a log-log
scale. Lower bounds are shown in the same color with dashed lines. . 120

23 First several iterations of the power method applied to Rb=20,q=30.
Above: sweep conductance of A reordered by sorting the 1st (top-
left), 2nd (top middle), and 3rd iterations (top-right). Horizontal axis
represents which vertex to split at under the induced ordering; vertical
axis is the conductance for each split on a log scale. Below: ma-
trix sparsity plots of A reordered by sorting the 1st (bottom-left), 2nd
(bottom-middle), and 3rd iterations (bottom-right). Red lines demon-
strate which edges are cut for the optimal cut in each ordering. . . . 127

ix



Graph analysis combining numerical, statistical, and streaming techniques

James Paul Fairbanks

138 Pages

Directed by Professor David A. Bader

Graph analysis uses graph data collected on a physical, biological, or social

phenomena to shed light on the underlying dynamics and behavior of the agents in

that system. Many fields contribute to this topic including graph theory, algorithms,

statistics, machine learning, and linear algebra.

This dissertation advances a novel framework for dynamic graph analysis that

combines numerical, statistical, and streaming algorithms to provide deep under-

standing into evolving networks. For example, one can be interested in the changing

influence structure over time. These disparate techniques each contribute a fragment

to understanding the graph; however, their combination allows us to understand dy-

namic behavior and graph structure.

Spectral partitioning methods rely on eigenvectors for solving data analysis prob-

lems such as clustering. Eigenvectors of large sparse systems must be approximated

with iterative methods. This dissertation analyzes how data analysis accuracy de-

pends on the numerical accuracy of the eigensolver. This leads to new bounds on the

residual tolerance necessary to guarantee correct partitioning. We present a novel

stopping criterion for spectral partitioning guaranteed to satisfy the Cheeger inequal-

ity along with an empirical study of the performance on real world networks.



SUMMARY

Graph analysis uses graph data collected on a physical, biological, or social

phenomena to shed light on the underlying dynamics and behavior of the agents in

that system. Many fields contribute to this topic including graph theory, algorithms,

statistics, machine learning, and linear algebra.

This dissertation advances a novel framework for dynamic graph analysis that

combines numerical, statistical, and streaming algorithms to provide deep under-

standing into evolving networks. For example, one can be interested in the changing

influence structure over time. These disparate techniques each contribute a fragment

to understanding the graph; however, their combination allows us to understand dy-

namic behavior and graph structure. Based on the desire to use spectral features

such as Pagerank, Katz Centrality, commute time, and spectral partitioning for dy-

namic graph analysis, this dissertation studies the utility of approximate eigenvectors

for solving graph analysis problems. This leads to a detailed analysis of spectral

partitioning of graphs using approximate eigenvectors.

Spectral partitioning methods rely on eigenvectors for solving data analysis prob-

lems such as clustering. Eigenvectors of large sparse systems must be approximated

with iterative methods. This dissertation analyzes how data analysis accuracy de-

pends on the numerical accuracy of the eigensolver. This leads to new bounds on the

residual tolerance necessary to guarantee correct partitioning. We present a novel

stopping criterion for spectral partitioning guaranteed to satisfy the Cheeger inequal-

ity along with an empirical study of the performance on real world networks.

The analysis of spectral partitioning on a model problem that leads to a con-

structive proof of error and residual bounds for finding the optimal partitions on the

x



model problem. This proves that a residual tolerance smaller than O
(
n−5/2

)
is nec-

essary for finding the Fiedler partitions for general graphs. For this class of graphs

a residual tolerance smaller than O (n−1) is sufficient for finding the natural clusters

in the graph. This understanding of the relationship between numerical errors and

graph partitioning leads to a novel stopping criterion for spectral partitioning, which

is validated on real-world networks.

The method of analyzing spectral partitioning presented here can be applied to

more general graph analysis and data analysis problems. This work leads to improve-

ments in algorithms for analyzing dynamic graphs as well as a deeper understanding

of the impact of numerical approximation in spectral partitioning.
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CHAPTER I

INTRODUCTION

This dissertation advances a novel framework for dynamic graph analysis that com-

bines numerical, statistical, and streaming algorithms to provide deep understanding

into evolving networks as well as a thorough analysis of the accuracy requirements of

graph partitioning with spectral methods. Graph data is information regarding enti-

ties (vertices) and the connections between them (edges). Research in graph analysis

uses graph data collected on physical, biological, or social phenomena to understand

the dynamics and behavior of the agents in that system. For example, understand-

ing which vertices are influential and changes in the influence structure over time

informs design of message distribution networks. Finding subsets of vertices that are

more densely connected to each other than to the rest of the graph is another prob-

lem of interest. These subsets can represent communities of users with a common

interest or well connected regions of a road network such as cities. Novel graph anal-

yses performed in this dissertation heavily utilize graph algorithms, matrix analysis,

and statistics. These disparate techniques each contribute a fragment to our under-

standing of graphs; however, their combination constructs systems for understanding

dynamic behavior and graph structure.

The methods featured in this dissertation are similar in their treatment of the

vertices of a graph. Each method represents the vertices of a graph as points defined

by some operation accounting for the topological information in the graph. Then,

a further processing step uses these points to solve the domain problem. In some

applications, the operation is to measure graph theoretic features of the vertices and

then perform inference on this feature representation to classify or cluster the vertices.
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For community detection and data clustering problems, the first embed the graph

using spectral coordinates, and then infer cluster structure among the embedded

positions.

Chapter 4 demonstrates the advantages of using this feature extraction method-

ology for understanding dynamic graphs. Dynamic graphs push the limits of our

ability to represent and display information. The complex structure of real world

networks, such as social networks, makes a two dimensional embedding of the graph

difficult to construct and limited in utility. In addition to the complex structure at

each point in time, a dynamic graph is undergoing evolution during analysis. This

presents a real challenge for understanding the relationships between the actors in the

network — between each other and over time. Feature embeddings followed by sta-

tistical and machine learning techniques provide insight into these complex temporal

relationships.

Community detection and graph partitioning lead to difficult optimization prob-

lems on the graph. One approach to solving these problems is to find spectral coor-

dinates of the vertices as defined by the graph Laplacian then partition the vertex

set into groups by optimizing an objective function based on these coordinates. A

significant hurdle to using this approach at the scale of large social networks is the

ill-conditioning of the corresponding eigenvalue problems. It is hard to solve the

eigenvalue problem accurately because these graphs lead to Laplacian matrices with

eigenvalues close together.

Previous work on real world networks has shown that the computed eigenvectors

are sensitive to computational error. In order to reliably partition networks, one must

address the sensitivity of the problem. The key insight is that the eigenvectors are

a means of producing spectral coordinates while the primary goal is to find a good

partition of the graph. Unlike prior work, which computes high accuracy approxima-

tions to the eigenvectors, this dissertation directly addresses the issue of numerical

2



accuracy and derives error bounds that ensure correct recovery of cluster structure.

Chapter 5 addresses the accuracy requirements for real world networks by de-

veloping a condition on the approximate eigenvectors providing the same theoretical

guarantee as the exact eigenvectors, which obtains good performance on real world

networks. Chapter 6 examines the sensitivity of computing invariant subspaces in-

stead of eigenvectors, and applies this analysis to a model problem. The model prob-

lem determines upper bounds on the sufficient eigenvector accuracy for solving the

spectral partitioning problem. The model problem approach allows the construction

of useful theory for understanding the difficulty of the spectral partitioning problem.

The approaches in Chapter 5 and Chapter 6 complement each other because the error

bounds from Chapter 6 require a priori estimates of the spectrum.

A consistent theme of this work is using a graph processing system to gener-

ate an embedding of the vertices and then answers a graph analysis question with

the best available technique applied to the embedding. This unified view of graph

analysis methods allows one to combine structural graph techniques, spectral graph

techniques, and statistical and machine learning techniques to solve the toughest

problems in graph analysis. This dissertation provides results on this methodology

and guidance for applications of these techniques by combining theoretical analysis

of simple problems with experimental evaluations on real world problems.

3



CHAPTER II

CONTRIBUTIONS

Chapter 4 contributes to the dynamic outlier detection, dynamic behavioral cluster-

ing, and graph partitioning problems by combining streaming feature extraction with

methods of statistical inference. A deeper understanding of the relationship between

numerical accuracy and data analysis accuracy in graph analysis applications is pro-

vided. Specifically, Chapter 5 studies the practical aspects of this relationship, and

Chapter 5 studies spectral partitioning using blends of eigenvectors.

2.1 Statistical analysis of graphs

Chapter 4 presents an empirical examination of vertex features as random variables.

The conclusion of this study is that even when the stream of incoming temporal edges

is not amenable to modeling using standard parametric distributions with well un-

derstood properties and estimators the induced vertex features approximately follow

such distributions. This finding is important for applying the statistical techniques

to dynamic graphs. Application of this framework to real world dynamic graphs

contributes to dynamic outlier detection and dynamic behavioral clustering.

2.2 Numerical methods for graph analysis

Chapter 5 and Chapter 6 study the relationship between numerical accuracy and

graph analysis objectives. Chapter 5 studies the dependence of partitioning qual-

ity on the numerical accuracy leading to the first meaningful stopping criterion for

spectral partitioning. Section 5.4 introduces a novel parameter-free stopping criterion

for iterative methods for spectral partitioning. This criterion guarantees, under the

standard eigensolver assumptions, that the output partition satisfies Cheeger’s bound

4



on the conductance of the graph. This criterion allows one to find partitions without

specifying a residual or error tolerance, which is important for clustering a graph with

unknown spectrum. Experiments in Section 5.6 show good performance on real world

networks.

Chapter 6 provides new results connecting partitioning graphs with linear combi-

nations of low energy Laplacian eigenvectors. In general, when blends of eigenvectors

can solve a data analysis problem, we provide pointwise convergence guarantees.

Section 6.3 demonstrates this theory on an accessible model problem, the Ring of

Cliques, by showing that the top eigenvectors recover the correct partition. This

model problem is thoroughly analyzed including a derivation of the normalized ad-

jacency eigenvalues and eigenvectors. Analysis of the structure of this graph along

with the properties of the eigenvalues provides bounds on the necessary and sufficient

residual tolerance for correctly recovering the cluster structure. These results com-

bine to bridge the gap between linear algebra based data analysis and convergence

theory of iterative approximation methods.

2.3 Algorithmic improvements

This work leads to improvements in practical algorithms for graph analysis. By

applying ideas and techniques from various disciplines one is able to solve problems

in new ways.

1. Using dense linear algebra on the output of sparse graph kernels leads to better

scalability and analysis.

2. Analysis of the interaction between iterations of a numerical solver and the final

objective yields improved stopping criteria.

3. Using approximate eigensolvers for partitioning with blends allows faster solvers.

5



CHAPTER III

BACKGROUND AND LITERATURE REVIEW

This section introduces many of the necessary concepts and surveys the state of the

art. The important fields to cover are graph theory (Section 3.1), (numerical) linear

algebra (Section 3.3), and streaming algorithms (Section 3.4). Section 3.2 describes

motivating applications.

3.1 Graph Theory

Let G = (V,E) be a graph. The vertex set is V = {1, 2 . . . , n} and the edge set E ⊂

V ×V . Graphs can be used to model many problems in science and engineering. This

work treats the vertices as the agents and the edges as representing the connections

between them. In some problems the edges can have a weight wij storing the strength

of the connection. Dynamic graphs are represented as an ordered stream et = (it, jt),

possibly with weights. Edge streams arise when the process creating the edges occurs

over time. At any point in time t ∈ {1, 2 . . .}, an algorithm can only access the edges

that happened prior to t that is, Gt = (V,Et) where Et = {e1, e2 . . . , et}. Dynamic

processes are prolific in modern data driven environments where technology allows

the creation of data quickly and demands answers just as quickly.

3.1.1 Social Network Features

In the social network analysis literature, there is a long tradition of constructing func-

tions from vertices to numbers. These functions, called vertex features here, are used

to study the effect of graph structure on human behavior. A diverse literature sur-

rounds the features, and each feature attempts to capture some aspect of an intuitive

social property.
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Centrality metrics on static graphs provide an algorithmic way to measure the

relative importance of a vertex with respect to information flow through the graph.

Higher centrality values generally indicate greater importance or influence. Between-

ness centrality [31] is a specific metric based on the fraction of shortest paths on

which each vertex lies. The definition is shown in Equation (1) using σuw to denote

the number of shortest paths from u to w, and σuvw for the number of those paths

that pass through v.

bc(v) =
∑
u,w

σuvw
σuv

(1)

The computational cost of calculating exact betweenness centrality can be prohibitive

due to the O (n3) complexity of all pairs shortest paths; however, approximating by

sampling betweenness centrality is tractable and produces accurate values for the

highest centrality vertices [23, 3]. According to observations of scale free networks,

betweenness centrality follows a heavy tail distribution. Chapter 4 examines the

logarithm of the betweenness centrality score for each vertex to account for the heavy

tailed distribution.

The local clustering coefficient of a vertex v is the number of triangles centered at

v divided by the number of wedges centered at v as seen in Equation (2) [96]. The

number of triangles centered at v is triangles(v) = |{u ∼ v ∼ w ∼ u | u, v, w ∈ V }|

cc(v) = triangles(v)
degree(v)(degree(v)− 1) (2)

The clustering coefficient is a measure of how tightly knit the vertices are in the

graph.

Previous research uses a feature extraction and then feature analysis framework to

study large static graphs using vertex features including Oddball [2], which performs

graph anomaly detection using local (egonet) features, and RolX [40], which uses

Nonnegative Matrix Factorization (NMF) on locally extracted features. This work is

the first to use both global features and dynamic information. Here we are learning

7



Table 1: A reference table of graph matrices and vectors.

Term Definition

Adjacency Matrix Aij =
1, if vi ∼ vj

0, otherwise
.

Degrees Dii = deg(vi) all other entries 0.

Combinatorial Laplacian L = D − A

Normalized Laplacian L̂ = I −D−1/2AD−1/2

Normalized Adjacency Matrix Â = D−1/2AD−1/2

Stochastic Propagator P = AD−1

Random Walk with Restart αP + (1− α)evT

Perron Vector Âx = x

Normalized Laplacian Kernel (I − Â)x = 0x

Stationary Distribution Py = 1y

Eigenvalue λ, Eigenvector x Ax = λx

Generalized Eigenvalue Problem Lx = λDx

the roles of the vertices, and the structure of those roles over time as the graph

changes.

3.1.2 Spectral Methods

Spectral graph theory is the study of graphs through the techniques of matrix analysis

and linear algebra. Many important theoretical results are derived this way including

the Matrix Tree Theorem, and the Perron-Frobenius theorem, and also practical

efficient algorithms [11, 89]. The relevant algorithms derived from graph spectra

are for partitioning and ranking. Table 1 provides the definitions and connections

between various graph matrices and vectors for reference.

Let A denote the adjacency matrix of an undirected graph with entries ai,j equal

to 1 if vertex i is adjacent to vertex j. Use I to represent the identity matrix and 1 to

represent the vector of ones. If D is the diagonal matrix whose entries are the degrees
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di = ∑
j ai,j = A1, then L = D−A is the combinatorial Laplacian. The combinatorial

Laplacian satisfies the equation L1 = 0, which can be seen by (Lx)i = di
∑
j∼i aij = 0

Let S be a subset of the vertex set and use S̄ = V \ S to denote set complement.

The sets S, S̄ represent a cut of the graph. The edges between these sets is the edge

expansion of S denoted E(S, S̄). Graph partitioning applications focus on identifying

sets S that minimize |E(S, S̄)| relative to some normalization. The normalization is

important because choosing a small set S will lead to a small edge expansion but

applications require some sense of balance between the two sets.

This dissertation measures the quality of a (vertex) cut of the graph using conduc-

tance (Equation (3)), which is the surface area to volume ratio of a subset of vertices

in the graph. Define vol(S) = ∑
i,j∈S ai,j as the total weight of the edges within S.

The conductance of a cut S is thus given by the formula [11]:

φ (S) = |E(S, S̄)|
min(vol(S), vol(S̄))

(3)

The conductance of the graph, φG = minS φ (S), is the minimum over all cuts S

of φ (S). There are other possible objective functions such as normalized edge cut

defined in Equation (4).
E(S, S̄)

min(|S|, |S̄|)
(4)

Normalized cut divides by the number of vertices in the smaller of the two sets. The

conductance normalization is used because of its fundamental connections to Markov

random walks on the graph [67].

The conductance objective is a quadratic functional φ : Rn → R with a linear

algebra interpretation. A set S is encoded as a vector b using the definition bi = 1 if

vertex i is in S and bi = 0 otherwise. This gives a bijection between sets S and vectors

b ∈ {0, 1}n. Using this convention we derive the edge cut |E(S, S̄)| = bTLb, and

the vol(S) = bTDb. This formulation expresses the objective function as a quadratic
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form

φ(b) = bTLb
bTDb

, (5)

where bTLb = ∑
i∼j(bi − bj)2 and bTDb = ∑

iDiib
2
i = ∑

i∈S deg(vi).

By relaxing the constraint of integer assignment we minimize over vectors x ∈ Rn

as in Equation (6). The constraint that x ⊥ 1 follows from the fact that 1TL1 = 0.

min
x⊥1

bTLb
bTDb

(6)

The Fischer-Courant theorem implies that the minimum value is the smallest

nonzero generalized eigenvalue, and the minimizer in a connected graph is the second

smallest eigenvector, also called the Fiedler vector [11]. This leads to the generalized

eigenvalue problem

Lx = λDx (7)

A change of variables allows one to apply theorems and computational tools for

symmetric eigenvector problems to this generalized eigenvalue problem. A pair λ,y

solves the generalized eigenequation Ly = λDy, if and only if the pair λ,x = D−
1
2 y

solves Equation (8)

L̂x = λx. (8)

Also, the vector D 1
2 1 lies in the kernel of L̂ since L̂D 1

2 1 = D−
1
2LD−

1
2D

1
2 1 = L1 =

0. Another reason to use this normalization is that for graphs with skewed degree

distributions the high degree vertices can dominate the spectrum of A [68]. The

normalized Laplacian can recover the skewed degree planted partition model [17].

This dissertation focuses on the normalized adjacency matrix Â = D−1/2AD−1/2

and the normalized Laplacian L̂ = I − Â. Eigenvalues and eigenvectors are defined

as the solutions to the equation Ax = λx. The vectors x are the eigenvectors and

the scalar values λ are the eigenvalues. The eigenvalues and eigenvectors are intrinsic

quantities of the matrix A. For symmetric real matrices, the eigenvalues are always
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real and there exists an orthonormal basis {qi | i ∈ 1 . . . n} to represent the eigenvec-

tors. The vectors qi,qj are orthogonal qTi qj = 0 when i 6= j and unit norm ‖qi‖2 = 1.

Each qi corresponds to an eigenvalue λi. When eigenvalues are repeated this basis is

not unique and algorithms must choose a basis for representation.

When the matrix is a graph Laplacian L̂, all eigenvalues are nonnegative. When

the graph is connected, L̂ has a unique 0 eigenvalue and we sort the eigenvalues 0 =

λ1 ≤ λ2 ≤ . . . λn and label the associated eigenvectors q1,q2 . . .qn. Undirected graphs

have symmetric Laplacian matrices which implies the existence of an orthogonal basis

for the eigenvectors. In terms of matrix decomposition L̂ = QΛQT , where QQT = I

and Λ is a diagonal matrix with nonnegative entries. The properties of the Laplacian

eigenvalues and eigenvectors determine whether spectral partitioning will find good

cuts and how difficult said cuts are to find.

Spectral partitioning algorithms use eigenvectors of the normalized Laplacian to

embed the vertices of G into a low dimensional space. An algorithm for partition-

ing vector space data is then applied to the embedded vertices. The simplest such

algorithm is to embed into one dimension and use a threshold cut. However, this

does not guarantee the minimum value of the objective is satisfied. One approach to

partitioning with one dimensional embeddings is to take an optimal sweep cut.

For any vector x let Sx(t) = {i | xi > t} be the sweep cut at threshold t. For every

cut S the vector x = eS−eS̄ expresses S as a sweep cut. We call the conductance of a

vector the conductance of the minimal sweep cut of that vector: φ (x) = mint φ
(
STx
)
.

The optimal sweep cut of a vector can be found with one pass over the edges of the

graph as in Algorithm 3. We represent the graph partitioning problem as minimizing

φ (x) over all x. This work focuses on the spectral partitioning algorithms that use a

sweep cut of the eigenvector q2 of L̂ to partition the graph.

One reason to use conductance to measure success when applying spectral methods

is bounds on the optimal conductance derived from the eigenvalues of the graph.
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Cheeger’s Inequality (Theorem 3) bounds the relaxation error in terms of the exact

eigenvalue λ2. Theorem 3 guarantees that exact eigenvectors provide a sweep cut

with conductance less than
√

2λ2.

Theorem 1. [11] Let L̂ be the normalized Laplacian of a connected graph with

degree matrix D. If L̂x = λ2x then y = D−
1
2 x has a sweep cut S such that φ (S) =

φ
(
D−

1
2 x
)
≤
√

2λ2.

Theorem 3 guarantees that small eigenvectors of the graph Laplacian reveal low

conductance cuts of the graph. Section 5.5 examines the effects of approximation of

the eigenvector on the guarantee provided by Cheeger’s inequality.

Since general eigenvalue problems cannot be solved exactly, we must use approxi-

mations. Section 3.3 and Chapter 5 study the impact of numerical error in eigenvec-

tors when applying spectral partitioning. For a recent survey of the graph partitioning

problem see [8]. A tutorial on spectral clustering for data mining can be found in [93].

Pagerank and the personalized version is traditionally defined in terms of comput-

ing the stationary distribution of a random walk on the graph. The pagerank problem

can be solved as a linear system [19]. The intuition behind this comes from viewing

the power method as summing powers of the adjacency matrix and the summation

formula ∑∞
i=1 x

k = 1/1− x. Solution of Equation (9) gives the desired personalized

page rank vector.

(I − αP − αvdT )z = (1− α)v (9)

By application of the Sherman-Morrison formula the equation can be reduced to

Equation (10).

(I − αP T )z = v, z̄ = z
‖x‖1

(10)

and 1-normalizing the result. Spectral partitioning and Pagerank calculation, heavily

utilize numerical linear algebra to achieve graph analysis goals. The error analysis

and general method in Chapter 6 could be applied to Pagerank in order to study
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how numerical accuracy affects the ranking given by a Pagerank solver. Section 3.3

reviews some concepts.

3.2 Applications

Large graphs are found in many domains including the analysis of social networks,

document collections, and transportation networks. Many applications of interest

depend on deriving insight into the behavior of individuals within the network or the

large scale structure that defines the network. Applications aimed at understanding

vertex behavior focus on computing properties such as clustering coefficients and

rankings such as Pagerank and betweenness centrality. One method for understanding

the large scale structure of the network is to decompose the vertex set into a partition

whose parts are called communities. The driving assumption of this work is that

vertices that are more connected to each other than to the rest of the graph are

behaving in a subsystem. Identifying these subsystems will enable one to better

understand the individuals participating in the network. Finding good partitions of

these graphs is a challenging data analysis task.

The primary focus of this dissertation is on the analysis of social networks and

information networks. The growth of internet technology has vastly expanded the

ability of researchers and organizations to acquire information on the interactions

between users and machines.

Social networks such as Twitter and Facebook represent a large portion of infor-

mation transfer on the Internet today. Each new post provides a small amount of

new information about the dynamics and structure of the network of human interac-

tion. New posts reveal connections between entities and possibly new social circles or

topics of discussion. Social media is a large and dynamic service; at its peak, Twitter

recorded over 13,000 Tweets per second [91] and revealed that the service receives

over 400 million Tweets per day on average [92]. Social media events — such as two
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users exchanging private messages, one user broadcasting a message to many others,

or users forming and breaking interpersonal connections — can be represented as a

graph in which people are vertices and edges connect two people representing the

event between them. The nature of the edge can vary depending on application, but

one approach for Twitter uses edges to connect people in which one person “mentions”

the other in a post. The edge is marked with a timestamp that represents the time

at which the post occurred. The format of a Twitter post makes this information

accessible. Because of the nature of Twitter, we do not use deletions, and the edge

weights count the number of times that one user has mentioned the other.

Previous research shows that Twitter posts reflect valuable information about the

real world. Human events, such as breaking stories, pandemics, and crises, affect

worldwide information flow on Twitter. Trending topics and sentiment analysis can

yield valuable insight into the global heartbeat.

A number of crises and large-scale events have been extensively studied through

the observation of Tweets. Hashtags, which are user-created metadata embedded in

a Tweet, have been studied from the perspective of topics and sentiment. Hashtag

half-life was determined to be typically less than 24 hours during the London riots

of 2011 [33]. The analysis of Twitter behavior following a 2010 earthquake in Chile

revealed differing propagation of rumors and news stories [66]. Researchers in Japan

used Twitter to detect earthquakes with high probability [80]. Analysis of Twit-

ter data can track the prevalence of influenza on a regional level in real time [82].

Betweenness centrality analysis applied to the H1N1 outbreak and historic Atlanta

flooding in 2009 revealed highly influential tweeters in addition to commercial and

government media outlets [23].

Understanding the internet as a graph provides information about major geopolit-

ical events. Dainotti et al. [16] conducts a thorough analysis of the internet blackout
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caused by the Egyptian government during the Arab Spring revolution. Understand-

ing patterns of internet connections yields insight into the methods of agents acting

to restrict the flow of information. IP network data collected by the Center for Ap-

plied Internet Data Analysis (CAIDA) with the UCSD Network Telescope reveals

the progress of a botnet composed of 3 million unique IP addresses, in scanning IP

space [15]. Understanding how the botnet traversed the internet allows constructs

inferences into the logic of the malware that produced the botnet. An analysis of IP

network data and graph metrics is presented by Henderson et al. [39] focused on the

relationships between different metrics. These applications connect this research to

large scale and important human endeavors such as social networks, natural disasters,

internet censorship, and cyber-security.

3.2.1 Ranking and importance

Many attempts at quantifying influence have been made. Indegree, retweets, and

mentions are first-order measures, but popular users with high indegree do not nec-

essarily generate retweets or mentions [9]. These first-order metrics are traditional

database queries that do not take into account topological information. Pagerank and

a low effective diameter reveal that retweets diffuse quickly in the network and reach

many users in a small number of hops [56]. Users tweeting URLs that are judged to

elicit positive feelings are more likely to spread in the network, although predictions

of which URL will lead to increased diffusion are unreliable [4].

3.2.2 Dynamic behavior analysis

Dynamic behavior analysis [77] involves understanding the state of vertices in a graph

over time. A set of functions define the state such as the number of neighbors, number

of participating triangles, Pagerank, or centrality of a vertex. The behavior of the

vertex is defined as the temporal pattern of these functions for that vertex. In [26],

we found that nonnegative matrix factorization can be used to find clusters of vertices
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with the same behavior. The goal of dynamic behavior analysis is to understand how

the activity of individual vertices evolves over time in contrast to work studying the

evolution of the entire network [59].

3.2.3 Partitioning and community detection

Partitioning graphs is useful improving computational performance, distributed com-

puting, understanding communities in social networks, and identifying subsystems

of biological systems. The performance of Dijkstra’s algorithm for finding shortest

paths in graphs can be improved by first precomputing a partition of the graph and

then applying a modified Dijkstra’s algorithm that performs fewer edge traversals.

This method shows large speedup for real world road networks [69]. METIS is used

to partition matrices for efficient distributed computing [49].

Detecting communities leads to insight into the behavior of subgroups of agents in

the network. For example detecting communities in the social networks of bottle-nose

dolphins leads to an understanding of the social behavior of dolphin pods [63, 62].

Metabolic networks contain functional units that can be found with community de-

tection [38]. Community detection can produce hierarchies of communities which

provide more information than a single partition [70]. Distributed computation re-

quires that the problem to be solve is decomposed into independent pieces of work

that can be performed independently. These diverse applications lead to a variety of

methods, objectives, and software.

Statistical physics champions the modularity maximization method which uses a

functional on partitions that measures the additional in intracluster density and inter-

cluster sparsity relative to a background null model of independence. Because finding

an optimal modularity partition is NP-Hard, the modularity maximization approach

uses heuristics to find the partition which maximize the modularity functional. Mod-

ularity maximization has been thoroughly studied including a fundamental resolution
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limit [30], and practical approximation algorithms [6].

The Markov chain and random walk community prefers to optimize measures such

as conductance, because of its deep connection to mixing times of Markov chains [45,

74, 67].

Section 5.2 shows the application of spectral partitioning to a class of graphs with

known community structure called the stochastic block model. It is known that the

eigenvectors of the adjacency matrix can recover the labeling of a graph drawn from

the stochastic block model [65]. This research focuses on recovering the hidden as-

signment of the vertices into blocks. Some approaches to graph partitioning involve

modeling the edge set directly and designing estimators directly for these model pa-

rameters [28, 95, 77]. The statistical hypothesis testing field defines a hypothesis

test for detecting localized increases in activity within a temporal graph [95]. This

work emphasizes a particular generative model of the data and leads to a streaming

computation of the test statistic. Groups of vertices with communication density

much higher than a typical group are considered significant according to this test.

Community detection and graph partitioning appear in a broad class of applications

where the data heterogeneity in the form of substructures.

3.3 Linear Algebra

Matrix factorizations are useful for many tasks and provide a unified view of many

matrix analysis algorithms [34]. For example, Gaussian Elimination for solving linear

systems builds a factorization A = LU revealing triangular structure for solving

linear equations quickly. Such algorithms spend most of their time constructing the

factorization and then the problem is solved by leveraging the factorization efficiently.

The eigenvalue decomposition and singular value decomposition reveal the spectrum

of the matrix and allow for the rapid computation of matrix functions including

analytic functions such as the matrix exponential. Operations such as vertex ranking
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or spectral partitioning only need part of the appropriate factorization. For example,

Pagerank only requires computing the first eigenvector of the random walk with

restart matrix. Spectral partitioning uses some number of the minimal eigenvectors

of the graph Laplacian. Low Rank approximation is a general method of computing

a factored form of a matrix which is close in the appropriate norm to the original

data matrix. These ideas and techniques have found success in many areas of data

analysis [5, 34, 72]. Matrix analysis algorithms appear throughout this dissertation.

In Section 4.2 the nonnegative matrix factorization is used to determine groups of

vertices which have similar temporal behavior. Chapter 5 uses eigenvectors of the

Laplacian to find low conductance partitions of graphs and derive approximation

bounds necessary to recover cluster structure.

Direct methods are used for both dense and sparse problems. The performance on

sparse problems depends heavily on the amount of fill-in that occurs. They typically

follow a fixed pattern of operations and produce an answer after a fixed number

of steps. For sparse problems that are highly structured such as banded problems

sparsity aware direct methods are sufficient [35]. For sparse problems without regular

structure, such as those arising from graph analysis, direct methods have too much

fill-in for practical application to large problems.

For large sparse problems, iterative methods are the only scalable solution tech-

nique. Iterative methods take an approximate solution to the problem and iteratively

improve it until reaching the desired level of accuracy. The number of iterations

depends strongly on the characteristics of the problem. We focus on these methods

because they are more widely applicable to the sparse systems needed for graph anal-

ysis. Access to a matrix vector multiplication routine is usually sufficient to apply

iterative methods.

Throughout the text vector norms are used to measure distance. We use ‖x‖ =

‖x‖2 = (∑i x
2
i )
− 1

2 , ‖x‖∞ = maxi xi, and ‖x‖1 = ∑
i|xi|. The norm of a matrix A
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is either the operator norm ‖A‖ = max‖x‖2 xTAx or the Frobenius norm ‖A‖F =∑
i,j ai,j. The distance between two vectors x,y is denoted ‖x− y‖.

For example, Algorithm 1 depicts the power method which is an algorithm for

computing extremal eigenvectors of matrices. Convergence of the power method

can be analyzed in terms of the distribution of energy in the basis of eigenvectors

of the matrix. The algorithm as written below guarantees that the residual is less

that ε. This is expected to happen in O (log(λ2/λ1) log ε−1) steps [97]. For linear

Data: an n× n matrix M , tolerance ε, iteration limit k
Result: an approximate extremal eigenvector v
v← randn(n);
v← v/ ‖v‖;
for i in 1:k do

x←Mv;
µ← vTy;
if ‖Mv− µv‖ < ε then

return v;
end
v← x/ ‖x‖;

end
return v

Algorithm 1: The Power Method

systems, the condition number , ‖A‖
‖A−1‖ is the appropriate measure of sensitivity of the

system [35]. For extremal eigenvalue problems the relevant measure is the spectral

gap |λ1 − λ2| [73].

Iterative methods can generate solutions to arbitrary approximation factors. Both

runtime and solution accuracy increase with the number of iterations performed.

Iterative methods [58, 79] for solving the eigenvector problem Ax = λx have been

shown to provide fast approximate solutions. For example, the implicitly restarted

Arnoldi method (IRAM) allows one to solve for a small number of eigenvalues of a

linear operator A [83]. A function that evaluates the action of A on arbitrary vectors

along with O(n(k + p) + (k + p)2) space is sufficient to use the method. A practical

implementation of the Arnoldi method, which is commonly used in practice, can be
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found in [58].

For a matrix A and a unit vector x define two numerical quantities of interest, the

error and the residual. The error in an eigensolver is measured as e =
∥∥∥x− qqTx

∥∥∥,
the norm of the projection of the vector onto the eigenspace. The residual r is defined

as ‖Ax− µx‖ where µ = xTAx
xTx is the Rayleigh Quotient of x. The error represents

distance between the computed solution and the true solution. Residual measures

how close the computed solution is to solving the eigenequation. The goal of an

eigensolver is to produce an x that satisfies e = 0. Since this cannot be done exactly

(for general problems), the error and residual evaluates the quality of a solution.

In practice, the error cannot be measured directly, and we must rely on theorems

relating the residual to the error. The standard approach is to iterate until r is less

than a prescribed tolerance chosen by the user. One cost of using iterative methods is

that the level of accuracy necessary to solve a problem must be chosen by the user or

dictated by the application. Section 5.4 addresses this choice for spectral partitioning.

3.3.1 Nonnegative Matrix Factorization (NMF)

Paatero and Tapper [72] formulates the Nonnegative Matrix Factorization problem

as “Positive Matrix Factorization”. Lee and Seung [57] defines Kullback-Leibler (KL)

Divergence as the closeness of the input matrix to the product of low rank factors.

This leads to the Multiplicative Updates algorithm which is straightforward to im-

plement. However, Gonzales and Zhang [36] proves that the Multiplicative Updates

algorithm lacks converge guarantees. Convergence to a stationary point is one of the

desiderata for optimization algorithms, and C.J. Lin [61] proposes a projected gradi-

ent descent based algorithm that converges to a stationary point. Similarly, Cichocki

et al. [13, 12] proposes the Hierarchical Alternating Least Squares (HALS) algorithm

which is independently described in Ho et al. [42] as rank-one residue iteration (RRI).

Kim, He and Park [51] gives a unified framework based on Block Coordinate Descent
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that explains convergent NMF algorithms. Kim and Park [52] proposes a fast greedy

active set based method to solve the NMF problem with convergence guarantees. The

greedy active set method is the fastest convergent algorithm in the literature. Given

the sufficient literature for NMF algorithms, we address graph applications of NMF.

Much of the literature on social networks using NMF assumes the input to be

an adjacency matrix where each element Ai,j represents the strength of connection

between node i and node j. The most important applications of NMF on adjacency

matrices are graph clustering and community detection. Kuang, Yun, and Park [55]

applies NMF to the symmetric adjacency matrix of an undirected graph to cluster

the vertices. Wang et al. [94] detects communities in social networks with NMF.

Psorakis, Robert, Ebden, and Sheldon [76] proposes a Bayesian framework with NMF

for detecting overlapping communities in networks. Yang and Leskovec [99] applies

NMF to extremely large social networks to detect overlapping communities.

The primary applications of NMF for social network analysis are clustering and

community detection; however, Tong and Lin [87] examines a related problem of

anomaly detection in social networks using a nonnegative matrix factorization with

a nonnegativity constrained additive residual representing the anomalous edges. The

additive component is sparse and nonnegative thus containing edges which deviate

from the low rank structure of the adjacency matrix. By applying NMF to recursively

extracted local vertex features, Henderson et al. [40], discovers the roles of vertices

within the structure of a static graph. This role extraction (RolX) method distin-

guishes network role discovery from network community discovery. NMF provides

natural explanation of network role discovery.

Irregular memory access, difficult load balancing, and difficult partitioning on dis-

tributed memory systems. are perpetual difficulties of traversing large and irregular

graphs such as social networks. Factorizing the adjacency matrix of a large and irreg-

ular social network directly suffers the same problems. To overcome these difficulties,
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Chapter 4 proposes an approach combining high performance graph processing al-

gorithms with parallel, dense, linear algebra algorithms to extract insight from the

graph.

3.3.2 Numerical Methods for Data Mining

Many data mining algorithms are phrased as optimization problems with numerical

solutions [54]. The solution to the original data mining problem depends on the

accuracy of the solution to the induced numerical problem, and many theoretical

results quantify the relationship between the exact solution to the numerical problem

and the quality of the solution to the data mining problem. However, there is little

work evaluating the quality of a data mining solution produced by an approximate

solution to the numerical problem. In this paper, we address this topic for spectral

partitioning. Spectral partitioning is performed in two steps. First, one or more

vectors approximating some eigenvectors of a graph matrix are computed and then

those vectors are used to partition the graph. The eigenvector computation step

is often treated as a primitive operation without considering the trade-off between

runtime and accuracy. This is the case in [48], which evaluates the running time and

quality, in terms of conductance, of both spectral and other partitioning algorithms.

Pothen et al. [75], when applying spectral partitioning to distributed memory sparse

matrix computation, recognized the value of low accuracy solutions. Since solving

sparse linear systems is the computational goal, producing an accurate solution to

the eigenvalue problem in order to solve a single linear system is not feasible. Thus,

understanding the relationship between the error in eigenvalue approximation and

the error in the original data mining problem is important. This work addresses the

effect of the error in the computed eigenvalue on the quality of the sweep cuts of the

computed eigenvector. Allowing more error in the eigenvector computation improves

runtime performance with a potential loss in partition quality. Section 5.4 provides
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a stopping criterion with the same guarantees as the true eigenvectors. Section 5.6

shows that this stopping criterion yields good performance on real world networks. If

the partition quality is not affected too greatly, trading quality for performance can

be useful, especially for computationally expensive problems on large datasets.

Although eigenvectors produced by these methods are approximations, the impact

of the error of these approximation techniques on the error of the original data mining

solution has not been sufficiently studied. When eigenvectors of a kernel matrix are

approximated with the power method and then k-means is applied to these approx-

imations to cluster the graph, the k-means objective function is well approximated

when using approximate eigenvectors [7]. The bounds given in [7] depend on using the

k eigenvectors to partition into k parts and depend on the kth spectral gap. On the

approximate eigenvectors, k-means is faster and sometimes more accurate in terms of

normalized mutual information compared to using exact eigenvectors.

Instead of using k-way partitioning, this work focuses on partitioning into two

clusters based on sweep cuts of a single approximate eigenvector. Because two way

partitioning can be used recursively to find small communities, successfully partition-

ing into two groups is sufficient. The effects on multilevel partitioning [49], multiway

partitioning, and local methods to improve the cut are beyond the scope of this work.

Other work focuses on the impact of probabilistic sampling error on data mining

quality. In the context of Graham (kernel) matrices, Huang et al. [44] study the effect

of perturbing the original data points on the spectral partitioning method. A similar

topic is pursued in [98], where data points are quantized to reduce bandwidth in a

distributed system. This work differs because it treats the data as correctly observed

and evaluates error in the iterative solver.

When applied to large graphs, the Laplacian eigenvalues can be very close together

implying that small residual tolerances are necessary to give the same pointwise guar-

antees. Small residual tolerance lead to many iterations and long run times. Chapter 5
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studies the impact of numerical error in order to understand what accuracy levels are

necessary to recover the data mining information and to derive stopping specific to

the spectral clustering problem.

In the problem of graph partitioning, multiple good partitions may exist. In a

resource constrained environment, one would like to be able to recover one of these

near optimal partitions while expending as few resources as possible. Chapter 6

shows that finding vectors which produce these near optimal partitions is much less

expensive than highly accurate approximations to the eigenvectors.

3.4 Streaming Algorithm concepts

Early work on the theory of streaming algorithms involves summarizing data streams.

In a seminal paper by Flajolet and Martin [29], the data is presented in a streaming

context and the number of distinct elements must be counted. The algorithms in

this field are streaming but the analysis of that data is not necessarily temporal.

Feigenbaum et al. [27] have contributed to one model of streaming graph analysis

by considering the “semi-streaming model” where graphs are presented “as a stream

of edges in adversarial order” and the goal is to compute properties of the graph in

one or sub-linearly many passes over the edge stream. This semi-streaming model

takes the perspective of a fixed graph with limited access to the data. The work

addresses the theoretical issues in computing solutions to “classical graph problems”

with necessary approximations due to the constraints on accessing the edges.

Another way to handle a large graph G = (V,E) is to consider it as |V | points

in |V | dimensional space, where V is the vertex set, and then use dimensionality

reduction techniques. These methods are used in the sketching data structures found

in Ahn, Guha and McGregor [1], where linearity of the sketch gives rise to incremen-

tal and dynamic updates to the data structure. A more traditional way to apply

dimensionality reduction to graph analysis is to apply a matrix approximation to
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the adjacency matrix directly and use the approximation to study the graph. One

example of this work is Colibri-D [88].

In the massive streaming data analytics model [22], we view the graph of social

media events as an un-ending stream of new edge updates. For a given interval of

time, we have the static graph, which represents the previous state of the network,

and a sequence of edge updates that represent the new events that have taken place

since the previous state was recorded. An update can take the form of an insertion

representing a new edge, a change to the weight of an existing edge, or a deletion

removing an existing edge.

Previous approaches have leveraged traditional, static graph analysis algorithms

to compute an initial metric on the graph and then a final metric on the graph after

all updates. The underlying assumption is that the time window is large and the

network changes substantially so that the entire metric must be recomputed. In the

massive streaming data analytics model, algorithms react to much smaller changes

on smaller time-scales.

Given a graph with billions of edges, inserting 100,000 new edges has a small

impact on the overall graph. An efficient streaming algorithm recomputes metrics

on only the regions of the graph that have experienced change. This approach has

shown large speed-ups for clustering coefficients and connected components on scale-

free networks [22, 24].

This work builds on the high performance software package for streaming graph

analysis called STINGER, which runs on large shared memory parallel computers. The

key data structure is a blocked adjacency list that allows for efficient insertion, mod-

ification and deletion of edges 1. The paradigm for an algorithm using STINGER is to

perform initial work using a static graph that is possibly empty along with parameters

to the algorithm. Then as edges are inserted from a stream, the algorithm (kernel)

1See http://www.stingergraph.com/ for code and data
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maintains a data structure on the graph as changing edges necessitate changes to

the data structure. These edges are received as batches which allow for parallelism.

After each update a vertex feature is computed for each vertex in parallel and this

is transmitted to another process that is awaiting the values of the vertex feature.

The STINGER package allows for coordination between kernels so that multiple vertex

features can be computed simultaneously without duplicating the effort and memory

requirements of updating and storing the graph. This coordination is handled by

running a main server which transmits the new edge updates to each kernel and then

synchronizes the stages of computation.

Each algorithm produces a vector of length |V | that is stored for analysis. The

computation after each batch considers all edges in the graph up to the current time.

As the graph grows, the memory will eventually become exhausted, requiring edges

to be deleted before new edge insertions can take place. We do not consider this

scenario, but propose a framework by which we can analyze the graph in motion.

An evaluation of the performance of the STINGER platform and various vertex

features is presented in [21]. The time for various algorithms is measured by running

them on an Intel Xeon E5–2670 with 16 hyperthreaded cores and 64 GiB of main

memory. A fully operational server which is concurrently performing the data ingest

and each feature computation is used to give an approximation of a realistic workload

in operation. The list of computed features is degree velocity, Pagerank, and approx-

imate betweenness centrality, where degree velocity is the change in degree for each

vertex. The updates are performed in batches of 5000 to expose parallelism, because

inserting a single edge into an adjacency list leads to a serial computation. Large

batches also amortize the overhead of communicating the edges between processes.

Since the computation of different kernels takes different amounts of time per batch

and STINGER preserves the temporal ordering of the edge stream, we cannot allow

faster algorithms to run ahead of the slower algorithms. This produces an overall
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system that takes as long as the slowest algorithm.

In an experiment, STINGER ingested a total of 53 batches of 5000 edges from the

Hurricane Sandy Twitter dataset. The average time required to insert and update

5000 edges in the STINGER data structure was 2.89 milliseconds with a median of 2.85

milliseconds. This yields an update rate of 1.73 million updates per second. The

degree velocity kernel had an average update time of 24.2 milliseconds per 5000 edges

and a median update time of 24.4 milliseconds, and an update rate of 207,000 updates

per second. The Pagerank kernel had an average update time of 132 milliseconds per

5000 edges and a median update time of 126 milliseconds, with a capacity to process

38,000 updates per second. The betweenness centrality kernel had an average update

time of 214 milliseconds per 5000 edges and a median update time of 193 milliseconds,

processing 23,400 updates per second. The more complex information takes longer to

extract. The time to update degree velocity is closer to the raw update time than to

the time to update Pagerank and betweenness centrality. Global information about

the graph is more expensive than local information, but this additional computation

provides deeper insight into the vertex behavior.
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CHAPTER IV

UNDERSTANDING DYNAMIC GRAPH STREAMS

This chapter proposes a general technique for applying statistical methods to stream-

ing graph data. Despite an algorithmic approach to streaming data, we lack statistical

methods to reason about the dynamic changes taking place inside the network. These

methods are necessary to perform reliable anomaly detection in an on-line manner.

Section 4.1 analyzes the values of vertex features in order to understand the dynamic

properties of the graph. This allows us to leverage existing techniques from statistics

and data mining for analyzing time series. Behavioral clusters of vertices can be found

by applying a clustering technique to these features after they have been computed

by a streaming graph processing system such as STINGER. Section 4.2 applies NMF

to the extracted features in order for form clusters of vertices with similar temporal

behavior. These techniques are evaluated on two real world data sets a collection

of tweets regarding Hurricane Sandy and a sample of internet traces provided by

CAIDA.

4.1 Insight from Streaming Features

There are many domains of data analysis that can be modeled with the graph ab-

straction. In particular we are interested in social networks and internet connection

networks. These networks are collections of interactions occurring in complex pat-

terns. Analyzing these patterns is essential to leveraging the information contained

in these networks. Because the most important networks are the networks that are in

heavy use right now, methods to understand temporal patterns in dynamic networks

are important. Some networks do not naturally handle deletions, for example Twit-

ter and IP networks where messages are sent and received. In these cases we count
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the number of messages as the edge weight. With a dynamically changing graph

where only those edges occurring in the past can be accessed, there are a new set of

temporal queries to answer. This work contributes to the analysis of modern graph

problems that only appear when the edge set is fluctuating over time. We provide

insight into applications of temporal data analysis techniques to large data sets that

are well represented by the dynamic graph abstraction.

The availability of big data has driven an adoption of large scale statistical tech-

niques, both classical and modern. These techniques are not immediately applicable

to graph data and this leaves analysts separated from their familiar software tools.

In order to connect graph analysis and statistical reasoning, we introduce vertex fea-

tures which can be calculated efficiently and then analyzed using familiar large scale

statistical software tools. This connection is bidirectional because statistical analy-

sis of vertex features informs the computation of additional features. The curse of

dimensionality indicates that applying vectorial techniques directly to a large graph

will be difficult and plagued by overfitting. The observed difficulty of writing scalable

parallel graph algorithms for scale-free and irregular graphs advises against writing

inferential and mathematical code to analyze the graphs directly. In this framework

we address this gap by first applying non-inferential graph code to generate vectorial

data that is statistically well behaved, then applying a state of the art vectorial tech-

nique to this data, which provides insight into the original graph. A representation

of this framework is presented in Figure 1.

4.1.1 Vertex Features

We define a graph kernel as an algorithm that builds a data structure or index on

a graph.1 We define a vertex feature as a function from the vertex set to the real

numbers. Graph kernels are analogous to high performance computing kernels such

1This is distinct from a kernel function that compares the similarity of two graphs.
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Figure 1: Our framework combines sparse parallel graph algorithms and dense parallel
linear algebra algorithms.

as applying a stencil operator. These low level computation kernels are applied to

build scientific software for answer questions about physical systems. Vertex fea-

tures are analogous to data features in machine learning where they provide a set

of observations describing each element of the dataset. In the context of a dynamic

graph, we use temporal vertex feature to refer to any vertex feature that captures

temporal or dynamic information. For example, a connected components algorithm

is a graph kernel because it creates a mapping from the vertex set to the component

labels. The function that assigns each vertex the size of its connected component is a

vertex feature. The function that assigns to each vertex the number of new vertices

in its component at time t is a temporal vertex feature. Graph kernels can be used

as subroutines for the efficient computation of vertex features. Any efficient parallel

implementation of a vertex feature will depend on efficient parallel graph kernels.

Another example of a kernel-feature pair is breadth-first search (BFS) and the ec-

centricity of a vertex, which is the maximum distance from v to any vertex in the
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connected component of v. The eccentricity of v can be computed by measuring the

height of the BFS tree rooted at v.

Vertex features are mathematically useful ways to summarize the topological in-

formation contained in the edge set. Each feature compresses the information in the

graph; however by compressing it differently, an ensemble of vertex features can ex-

tract higher-level features and properties from the graph. Each feature also defines

a sense in which two vertices are similar. For example, two vertices with the same

degree have the same neighborhood size, and two vertices with the same clustering

coefficient have the same local triangle structure.

One implication of this framework for graph analysis is that the computation of

these vertex features will produce a large amount of extracted data from the graph. As

shown in Figure 1, the data for each feature can be stored as an |V |×|T | array, which

is indexed by vertex set V and time-steps T = t1, t2, . . . , tn. These dense matrices

are amenable to parallel processing using techniques from high performance linear

algebra. In Section 4.2.2.4 we apply both Nonnegative Matrix Factorization (NMF)

and Singular Value Decomposition (SVD) in order to infer the temporal relationships

between the vertices. Once we have created these dense matrices of features, we can

apply large scale data analysis techniques in order to gain insight from the graph

in motion, mainly to study the rise and fall of influential nodes over time. Another

advantage of the vertex feature approach is the ability to visualize the large temporal

graph. Typical visualizations attempt to show the nodes and connections on the plane

capturing the spatial relationship of the nodes. Using vertex features, one can see the

relationship between the behavior of the vertices without bombarding the user with

all of the edges. This is demonstrated along with our observations in Section 4.3.
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4.1.2 Temporal Analysis

In order to explain our temporal analysis and construction of useful vertex features, we

introduce a running example using Twitter data. Specifically, we assembled a corpus

around a single event maximizing the likelihood of on-topic interaction and interesting

structural features. At the time, there was great concern about the rapid development

of Hurricane Sandy. Weather prediction gave more than one week of advanced notice

and enabled us to build a tool chain to observe and monitor information regarding

the storm on a social network from before the hurricane made landfall through the

first weeks of the recovery effort. For diversity we also demonstrate these techniques

with applications to CAIDA data that was collected passively on internet traffic.

In order to focus our capture around the hurricane, we selected a set of hashtags

(user-created metadata identifying a particular topic embedded within an individual

Twitter post) that we identified as relevant to the hurricane. These were #hurricane-

sandy, #zonea, #frankenstorm, #eastcoast, #hurricane, and #sandy. Zone A is the

evacuation zone of New York City most vulnerable to flooding.

The data set includes 1.4 million public Twitter posts starting from the day before

the storm made landfall as an edge list. This edge list includes any mentions of

one user by another as well as cases where a user “retweeted” or reposted another

user’s post, because retweets mention the author of the original Tweet similar to a

citation. The dataset included over 1,238,109 mentions from 662,575 unique users.

We construct a graph from this stream in which each username is represented as a

vertex. The file contains a set of tuples containing two usernames which are used to

create the edges in the graph. The temporal ordering of the mentions is maintained

through the processing tool chain resulting in a temporal stream of mention events

encoded as graph edges. The edge stream is divided into batches of 10,000 edge

insertions for our analysis. As each batch is applied to the graph, we compute the

betweenness centrality, local clustering coefficient, number of closed triangles, and
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(a) The cumulative distribution function for
logarithm of betweenness centrality empirical
(solid) and exponential best fit (dashed)

(b) CDF of the derivative evaluated at time
98. Vertices with increasing Betweenness
centrality are separated to show the differ-
ence in distribution.

Figure 2: The distributions of logarithm of betweenness centrality and the derivative
of logarithm of betweenness centrality provide information about vertices with rare
behavior.

degree for each vertex in the graph.

4.1.3 Temporal Features

In order for this framework of connecting graph algorithms to machine learning algo-

rithms to be applied, one must first choose a set of vertex features to compute. We

discuss here how one can study a direct vertex feature, as well as temporal features

that can be derived from the direct features.

4.1.3.1 Betweenness Centrality

Centrality metrics on static graphs provide an algorithmic way to measure the relative

importance of a vertex with respect to information flow through the graph. Higher

centrality values generally indicate greater importance or influence. Betweenness

centrality is described in Section 3.1. In order to account for the heavy tail, we

examine the logarithm of the betweenness centrality score for each vertex. Since

many vertices have zero or near zero betweenness centrality we add one before taking

the logarithm and discard vertices with zero centrality.

For the Twitter data set after inserting 98 batches of edges we find that the right
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half of the distribution of logarithm of betweenness centrality can be modeled as an

exponential distribution. The cumulative distribution function (CDF) is well ap-

proximated by F (x) = 1− exp [−λ(x− x0)] where the maximum likelihood estimates

for the location and rate parameters are x0 = 5.715 λ = 1.205 respectively. Since

betweenness centrality estimates are more accurate for the high centrality vertices

[32], we focus our analysis on the vertices whose centrality is larger than the median.

Figure 2a shows both the empirical CDF and the modeled CDF for the log(betweenness

centrality). It is apparent in the figure that the exponential distribution is a good fit

for the right tail. We can use the CDF to assign a probability to each vertex, and

these probabilities can be consumed by an ensemble method for a prediction task.

This will allow traditional machine learning and statistical techniques to be combined

with high performance graph algorithms while maintaining the ability to reason in a

theoretically sound way. Such distributional analysis connects the analysis of graph

topology to the well studied fields of parameter estimation and nonparametric den-

sity estimation. Understanding the distribution of these features allows us to choose

transformations of the data that will be helpful in follow-on analysis.

Figure 3a, traces the value of betweenness centrality for a selection of vertices over

time. In the sociological literature, this corresponds to a longitudinal study. It is clear

that there is a significant amount of activity for each vertex. Such a longitudinal study

of vertices can be performed for any vertex feature that can be devised for graphs.

4.1.3.2 Finite Differences

Tracking the derivatives of a feature can provide insight into changes that are occur-

ring in a graph in real time. Equation 11 defines the (discrete) derivative of a vertex

feature for a vertex v at time t using the following equation where b(t) is the number

of edges inserted in batch t. Note that the derivative of a vertex feature is also a
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(a) Traces of betweenness centrality value for
selected vertices over time.

(b) The derivative of the logarithm of be-
tweenness centrality values for selected ver-
tices.

Figure 3: Tracing values of vertex features over time provides information about
vertex behavior and changes in graph structure.

vertex feature.
df

dt
(v, t) = f(v, t+ 1)− f(v, t− 1)

b(t) + b(t+ 1) (11)

When concerned about maximizing the number of edge updates that can be processed

per second, fixing a large batch size is appropriate. However when attempting to

minimize the latency between an edge update and the corresponding update to vertex

features, the batch size might vary to compensate for fluctuations in activity on the

network. Dividing by the number of edges per batch accounts for these fluctuations.

For numerical or visualization purposes one can scale the derivative by a constant.

The data can be examined in a cross section by examining the distribution of the

derivatives at a fixed point in time. Figure 2b shows the CDF of d
dt
|log(BC)|(v) at

batch 98 on a log scale, where the vertices are grouped by the sign of their derivative.

The separation of the two curves show that the distribution of increases in logarithm

of betweenness centrality is different than the distribution of decreases in logarithm

of betweenness centrality. By counting the number of vertices of each group, we

determined that the most vertices decrease in betweenness centrality in this batch.

For example, Figure 3b shows the derivative of logarithm of betweenness central-

ity. These traces indicate that changes in the betweenness centrality of a vertex are
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larger and more volatile at the beginning of the observation and decrease in magni-

tude over time. The reason for taking logs before differentiation is that it effectively

normalizes the derivative by the value for that vertex.

Because the temporal and topological information in the graph is summarized

using real numbers, we can apply techniques that have been developed for studying

measurements of scientific systems to graphs. Since the derivative of a vertex feature

is another vertex feature, these derivatives can be analyzed in a similar fashion.

By estimating the distribution of df
dt

for any feature we can convert the temporal

information encoded in the graph into a probability for each vertex.

By measuring dynamic properties of the graph change-points in the edge stream

can be detected as in Figure 4 Section 4.1.4 applies this method behavioral outliers,

that is, a set of vertices whose behavior is significantly different from the bulk of the

vertices.

Once we construct the vertex features for each time coordinate, we are able to

take finite differences of a time series. We can measure the overall activity of a

graph according to a statistic such as clustering coefficient by counting the number

of vertices that change their value in each direction. For clustering coefficient this is

shown in Figure 4. One observation is that more vertices have increasing clustering

coefficient than decreasing clustering coefficient. We also learn that only a small

fraction of vertices change in either direction. Monitoring these time series could

alert an analyst or alarm system that there is an uptick in clustering activity in the

graph. The increase in the number of vertices with increasing clustering coefficient

around batch 70 corresponds to October 30th, which is the day after the storm passed

through New Jersey. By studying these changes we can describe changes to the system

at the graph level, which complements our knowledge of the specific behavior of the

individual vertices.
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Figure 4: Counting vertices by sign of their finite differences at each time step.

4.1.4 Anomaly Detection

Because anomaly detection is a vague problem, we focus on the more well-defined

problem of outlier detection. For the purposes of this work, the outliers of a data set

are defined as the points that appear in the lowest density region of the data set.

One method for finding outliers is to assume that the data are multivariate Gaus-

sian and use a robust estimate of mean and covariance [78] — a method known as the

elliptic envelope. This is appropriate when the data is distributed with light tails and

one mode. The one class support vector machine (SVM) can be used to estimate the

density of an irregular distribution from a sample. By finding the regions with low

density, we can use an SVM to detect outliers [81]. This nonparametric technique is

well suited to this data analysis task.

We seek a method to apply these multivariate statistical methods to our temporal

graph data. Because we have been computing the triangle counts and local clustering

coefficient for each vertex in an on-line fashion, each vertex has a time series. This
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time series can be summarized by computing moments.

We extract the mean and variance of the original local clustering coefficient series.

In order to capture temporal information, we use the finite differences of the local

clustering coefficient and extract the mean and variance. Summary statistics for the

differences are taken over non zero entries because most vertices have no change in

local clustering coefficient at each time step. These summary statistics are used as

features that represent each vertex. This is an embedding of the vertices into a real

vector space that captures both topological information and the temporal changes to

the network. This embedding can be used for any data mining task. Here we use an

outlier detection algorithm to illustrate the usefulness of this embedding.

Once these features are extracted, the vertices can be displayed in a scatter plot

matrix. This shows the distribution of the data for each pair of features. These

scatter plots reveal that the data is not drawn from a unimodal distribution. Because

the robust estimator of covariance requires a unimodal distribution this eliminates

the elliptic envelope method for outlier detection.

Using a single class support vector machine with the Gaussian Radial Basis Kernel,

we are able to estimate the support of the data distribution. Because the SVM is

sensitive to scaling of the data, we whiten the data so that is has zero mean and unit

standard deviation. By grouping the data into inliers and outliers, we see that the

two distributions are distinct in feature space.

Figure 5 shows a scatter matrix with the inlying vertices in blue and the outliers

in red. We can see that in any pair of dimensions some outliers are mixed with inliers.

This indicates that the SVM is using all of the dimensions when forming a decision

boundary. The diagonal plots show normalized histograms in each dimension with

inliers in blue and outliers in red. These histograms show that the distribution of the

inliers differs significantly from the distribution of the outliers. This indicates that

the SVM is capturing a population that is distinct from the majority population in
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Figure 5: Scatter plot matrix showing the outliers (red) and normal data (blue)

terms of their dynamic clustering coefficient behavior.

Considering the betweenness centrality of vertices represents the vertices in terms

of their influence over time. The influence behavior as measure by the mean logarithm

of betweenness centrality value and variance in logarithm of betweenness centrality

over time has a distribution well approximated by a two dimensional Gaussian distri-

bution as seen in Figure 6. Figure 6 shows a scatter matrix with the inlying vertices

in blue and the outliers in red as found by an elliptical envelope method.

Inspection of the results indicate that the outliers are primarily accounts associ-

ated to news agencies and jokes. The news agencies are spreading information that is

useful to the public and this analysis indicates that their messages are being spread

effectively. Joke twitter accounts are popular because their comment is highly en-

tertaining. According to these methods, joke accounts are also effective in spreading

their messages. The news agencies are found in the high mean and low variance region

of the data while the joke accounts are in the high variance region. This matches the
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Figure 6: Scatter plot matrix showing the betweenness centrality outliers (red) and
normal data (blue)

intuition that news agencies are consistently influential over time while the jokes be-

come popular quickly and then lose their influence rapidly. While it would be possible

to curate a list of known news agencies and look for them in the data using the text

of the tweets and metadata, a goal of graph analysis is to use topological information

to find the users who effectively spread their messages. Finding known news agencies

without a priori looking for them supports the value of these methods.

Through the use of temporal features, we are able to learn about the behavior

of the individual vertices and changes to the graph as a whole. These features allow

analysts to study the vertices using visualization techniques that avoid the complex

topology of the graph instead conveying more compact summaries of the vertex be-

havior. This feature based approach also allows the cutting edge techniques from

statistics and machine learning to apply to graph analysis without inventing new

complex problems.
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4.2 Behavioral Clustering in Dynamic Graphs

Another study using this framework clusters the vertices based on their temporal

behavior. The extracted features are designed to capture influence, and the cluster-

ing produced by nonnegative matrix factorization recovers groups of vertices which

rise and fall in influence together. Experiments show the parallel scalability of this

approach. In this work we show that the vertex features, as explained above, can be

used to understand the vertex behavior as well as the behavior of the entire graph as

a whole. The nonnegative factorization of these feature matrices provides a clustering

of the vertices into groups and a segmentation of the edge stream into phases, which

are two important data analysis tasks.

This section contributes a method for combining sparse parallel graph algorithms

with dense parallel linear algebra algorithms in order to understand dynamic graphs

including the temporal behavior of vertices. This method is the first to cluster vertices

in a dynamic graph based on arbitrary temporal behaviors. In order to successfully

implement this method, we develop a feature based pipeline for dynamic graphs and

apply Nonnegative Matrix Factorization (NMF) to these features. We demonstrate

these steps with a sample of the Twitter mentions graph as well as a CAIDA network

traffic graph.We contribute and analyze a parallel NMF algorithm presenting both

theoretical and empirical studies of performance. This work can be leveraged by

graph/network analysts to understand the temporal behavior cluster structure and

segmentation structure of dynamic graphs.

In this work we show that the vertex features, as explained above, can be used

to generate an understanding of the vertex behavior as well as the behavior of the

entire graph as a whole. The nonnegative factorization2 of these feature matrices

provides a clustering of the vertices into groups and a segmentation of the edge stream

2Matrix factorization and low rank approximation are used interchangeably for consistency with
the literature.
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into phases, which are two important data analysis tasks. These feature matrices

are broadly applicable and many applications are beyond the scope of this paper,

including tensor factorizations which will provide latent feature based understanding

of the three way interaction between the vertices, the different features, and the

time-steps.

• Graph analyst can use traditional statistics and modeling to understand the

data and then apply an advanced technique to solve a particular problem. The

first step allows for the design of useful features also called feature engineering

which is an integral step of the machine learning and data analysis workflow.

• Vertex level temporal changes can be connected to graph level temporal changes.

Latent features from a matrix factorization are graph level features. Discovering

explicit graph features is difficult.

• Treating the vertices of a graph as n points in n dimensional space and applying

a vector data analysis technique ignores the complex topological information in

the graph. This method uses graph theoretic knowledge and computations to

represent each vertex in a vector space and use vector data analysis on these

points. This approach allows us to leverage parallel graph algorithms that are

not aware of probabilistic or machine learning techniques, and familiar dense

linear algebra instead of performing inference on sparse graph data structures.

• Smooth temporal changes in the graph are found with SVD. NMF produces

clear demarcations of graph level changes revealing phases of graph activity.

4.2.1 Contributions

With the relevant literature in mind, we contribute a broad framework for connect-

ing high performance graph algorithms to large scale data analysis techniques. Our

method is the first to find behavioral vertex clusters in a dynamic graph. We present
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a feature based pipeline for dynamic graphs and apply Nonnegative Matrix Factor-

ization (NMF) to these features, which reveals vertex clusters and phases of network

activity over time.

The algorithms used in this paper present good performance in both theory and

practice. Three important tasks about temporal graphs are clustering the vertices,

segmenting the edge stream and visualizing changes to the graph. The low rank

approximation method used in this paper provides answers to all three of these im-

portant questions.

Section 4.1.2 takes a stream of Twitter posts (“Tweets”) from the time surrounding

the landfall of Hurricane Sandy, a tropical storm that hit the Northern Atlantic coast

of the United States, and forms a temporal social network of mentions. We compute

graph metrics, including betweenness centrality and Pagerank, in a streaming manner

for each batch of new edges arising in the network. Statistical analysis of these

features leads to the construction of additional features. In Section 4.3, we describe

some insights into cluster structure in the CAIDA Network derived by NMF. The

performance of our parallel NMF algorithm is empirically demonstrated in Section 4.4

and validated our theoretical analysis of parallel NMF in Section 4.2.2.2

4.2.2 Foundations

In this section, we present the necessary foundations for describing our feature based

graph analysis pipeline. We discuss our representation of a graph in terms of vertex

features, our parallel platform for computing such features, the relevant algorithm for

NMF used to detect temporal clusters, and methods for comparing the similarity of

graphs over time.

4.2.2.1 Block Principal Pivoting Algorithm for NMF

After computing vertex features using STINGER, we will apply NMF in order to

make inferences about vertex and graph behavior. Here we discuss the NMF problem
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for general matrices F . Given a non-negative matrix F ∈ Rm×n
+ , the problem of

Non-negative Matrix Factorization (NMF) is to find two matrices W ∈ Rm×k
+ and

H ∈ Rk×n
+ such that F ≈ WH. Formally the NMF problem can be defined as

W ∗, H∗ = arg min
W,H

‖F −WH‖2
F s.t., W ≥ 0;H ≥ 0; (12)

The NMF problem is non-convex to solve W and H together. However, if we

assume one of them is given, solving the other is a convex problem. Hence, we

alternatively solve two sub problems of finding W and H until a stopping criteria.

H ← arg min
H≥0

‖WH − F‖2
F and W ← arg min

W≥0

∥∥∥HTW T − F T
∥∥∥2

F
. (13)

By taking transposes, we see that the algorithm for finding W is the same as the

algorithm for finding H, thus we focus our attention on solving for H. The columns

can be partitioned into independent blocks and each block can be solved for with a

concurrent NNLS with multiple right hand sides. We leverage the fact that if I is a

partition of the index set, we can expand the Frobenius norm as shown in Equation 14.

‖WH − F‖2
F =

∑
I∈I

∑
i∈I
‖Whi − fi‖2

2 (14)

There are different algorithms for solving the above NMF problem. Also there are

many variants depending on the characteristics of the input matrix such as sym-

metric [55], bounded [47] etc. For a general non-negative input matrix, the most

common algorithms are multiplicative update [57], Hierarchical Alternative Least

Squares (HALS) [12] and Block Principal Pivoting [52]. Kim, He and Park [51],

present a detailed comparison and the properties of these algorithms using Block

Coordinate Framework. For this paper, we are using BPP as it is the fastest and

scalable NMF algorithm.

∑
I∈I
‖WHI − FI‖2

F ; where,HI ∈ Rk×|I|
+ (15)
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We can decompose the Frobenius norm into a sum over columns and consider

only a subset of the columns, which gives equation (15). Minimization of the above

expression is a non-negative least squares (NNLS) problem with multiple right hand

sides. In general the NNLS problem with multiple right hand sides is

min
X≥0
‖CX −B‖2

F (16)

The Block Principal Pivoting (BPP) algorithm listed as Algorithm 2 for the above

problem is discussed by Kim and Park [52]. We are using this algorithm because it has

scalable performance as demonstrated in 4.4. Here we briefly explain the algorithm

which is an iterative algorithm inspired by the active set method. If we knew which

indices correspond to nonzero values in the optimal solution, then computing the

optimal solution is an unconstrained least squares problem on these indices. Call the

set of indices i such that xi = 0 the active set and the remaining indices the passive

set. The BPP algorithm works to find this active set and passive set. Since the

above problem is convex, the correct partition of the optimal solution will satisfy the

Karush-Kuhn-Tucker (KKT) condition. The BPP algorithm greedily swaps indices

between the active and passive sets until finding a partition that satisfies the KKT

condition. In the partition of the optimal solution, the values for indices that belong

to the active set will be zero. The values of the indices that belong to the passive

set are determined by solving the least squares problem using normal equation 3

restricted to the passive set.

We have all the necessary building blocks to explain our parallel multicore NMF

algorithm using ANLS-BPP. Broadly the algorithm has two major components. (a)

Given W ≥ 0, F ≥ 0, find a non-negative H ≥ 0 and then given F and H, find a W ,

alternating until the stopping criteria is satisfied. (b) Partitioning columns of H and

3The solution to least squares problem ||Ax− b||22 is obtained by solving the system of linear
equations for ATAx = AT b
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W calling ANLS −BPP with each partition.

input : Matrix F ∈ Rm×n
+ , target rank k

output: Matrices W ∈ Rm×k
+ , H ∈ Rk×n

+

Initialize W as nonnegative random matrix ;
while stopping criteria not met do

// Find matrix H given F,W
H ← findOptimal (F,W );
// Find matrix W given F,H
// Transpose the returned matrix
W ← findOptimal(F T , HT )T ;

end
function findOptimal(F ∈ Rm×n

+ ,W ∈ Rm×k
+ )

I ← Partition (1, . . . , n);
for I ∈ I do in parallel

// Assign the returned matrix from BPPNNLS to the index I
of H

// BPPNNLS with multiple right hand sides from [52]
// According to equation (16), C = W and B = FI
HI ← BPPNNLS (W,FI);

end
Algorithm 2: Multicore NMF Algorithm

4.2.2.2 NMF Parallelism Theory

The ANLS − BPP routine in Algorithm 2 is an iterative method. It requires the

computation of few matrix matrix products once and a least square for each iteration

of the method. The matrix matrix multiplication or level-3 BLAS cost is O(mkn +

k2m) and the time spent over all iterations is O(k4(m+n)). The upper bound comes

from the fact that the active set method can take at most k iterations in order to

find a solution of length k and we are solving for m NNLS vectors for W and n

NNLS vectors for H. Each iteration of the active set method requires at most a

Cholesky decomposition for k× k matrix and a two triangular solves involving k× k

matrix. Since the parallelization is over the number of solution vectors, we can see a

parallel run time on p processors that is O(k4m/p) when solving for W and O(k4n/p)

when solving for H where p is limited to m or n respectively. The asymptotic cost
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to compute the product of a m × k matrix with an n × k matrix is well known

as O(mkn/p) in shared memory parallel computers. This indicates that for rank k

decompositions where k3 exceeds either m or n, the limiting step in the computation

is the k least squares step for the larger of W or H. In detail assume m > k3 > n,

then mkn > nk4 so matrix multiply exceeds the cost of the k least squares solve for

H. However, mkn < mk4 implying that the cost of least squares for W exceeds the

matrix multiplication cost. In our case there are more vertices than time-steps and

so the k least squares is the dominant cost when k3 exceeds n. One implication of

this analysis is that the chosen number of communities effects not only the overall

runtime of the algorithm but also which step is the dominant cost. We study these

runtime considerations empirically in Section 4.4

4.2.2.3 Graph Similarity Metrics

One task when analyzing a dynamic graph, is to determine how much the graph has

changed over a period of time. We will use several measures to address this task and

draw some conclusions about their relative merit. The simplest measure determines

the similarity without looking at which edges we insert but only the number of edges

inserted and the size of the graph. We define the relative impact of a batch of

insertions as the number of edges in the batch divided by the average size of the

graph during the insertions. Letting the |Ei| = bi be the number of edges in the

graph at time i, which corresponds to a batch size of b edges, we obtain Equation 17

for the relative impact of batches i to i+ s.

RI(i, i+ s) = 2bs
bi+ b(i+ s) = s

i+ s/2 =
(
i

s
+ 1

2

)−1
(17)

The relative impact allows us to reason a priori about what the behavior of a measure

of graph similarity over time. If we fix a gap or delay of size s then the impact of each

batch decreases over time. Also as the delay s increases, the relative impact increases.

The similarity of a dynamic graph to future instances should behave as the inverse

47



of the relative impact of those edge insertions. Thus similarity should weaken as the

gap size increases and similarity should strengthen as the size of the graph increases.

Additionally, we can define a measure of similarity for any set of vertex features.

Let F ∈ Rm×n be a feature matrix, where each row represents a vertex and each

column represents a time stamp, (F TF )ij represents the similarity of the graph at

time i to the graph at time j. These similarities are the inner product (cosine)

similarities one gets by representing the graph as a point in n dimensional space where

the vth coordinate is the value of the vertex feature for vertex v. These similarities are

specialized to particular vertex features and their nature is defined by the behavior

captured by the chosen vertex features.

Using matrix factorization F ≈ WH we can get another similarity measure defined

as HTH. This similarity matrix takes account of the relationships between the vertex

feature at different vertices. The nature of the factorization determines the behavior

of this similarity. For example, the Singular Value Decomposition (SVD) for a given

rank F ≈ UΣV T gives two orthogonal matrices U, V and a nonnegative diagonal

matrix Σ that best approximate F in the two norm among rank k matrices. We can

compute a similarity based on this factorization as F TF ≈ V ΣTΣV T . By definition

of the SVD, this similarity will contain a smooth approximation of the similarity and

will account for the interrelation of the vertices. The orthogonal vectors found by

the SVD are those that best represent the variance in the data. Each vector well

approximates the variance of the entire data set. According to Kuang, Yun, and

Park [55] NMF is a form of clustering, where W ∈ Rm×k is a set of basis vectors such

that each basis vector is a representative of a cluster, and H ∈ Rk×n represents the

distribution of every data point over these k clusters. Hence, H identifies clusters

in time. Thus HTH will represent the graph similarity accounting for the clustered

structure of the vertex set. In contrast to the SVD, each representative of a cluster is

predominantly determined by the members specific to that cluster. We observe the
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differences between the SVD and NMF in Section 4.3. These similarity measures are

useful ways to compare each snapshot of the graph to previous and future snapshots.

4.2.2.4 Temporal Graph Analysis using NMF

Here we reiterate the connections among NMF, vertex feature extraction and graph

analysis. Our objective is to study the behavioral changes of vertices and the graph

over time. Towards this end, we construct vertex features using highly scalable infras-

tructure such as STINGER. We study the vertex changes over time using the exploratory

data analysis techniques explained in the previous section. Given the vertex features

and the temporal features, in this section we explain our novel method to understand

behavioral clusters and temporal changes in the graph using NMF.

Identifying and constructing explicit features of graphs that are good for under-

standing temporal changes is difficult. In order to avoid constructing explicit features,

we construct implicit (latent) features through the low rank approximation of the

original feature matrix. These implicit features capture the structure of the vertex

features extracted from the graph. Given the temporal edge stream containing N

vertices, we form a matrix F ∈ Rm×n
+ matrix where n is the number of time-steps and

m = d|V | is the number of vertex and temporal features times the number of vertices,

as explained in previous section. Given this matrix F , we build graph features of di-

mension k over n time-steps, such that these latent features are good representation

for the graph as a whole. It is important to appreciate the difference between vertex

features and latent features. Vertex features are constructed from the graph struc-

ture such as between centrality, Pagerank, and clustering coefficient, whereas latent

features are implicitly defined from the values of these vertex features.

In our scenario, we use NMF to separate the input matrix F ∈ Rm×n
+ , which

relates the vertex features to the time-steps, into W ∈ Rm×k
+ , which relates the vertex

features to the latent features, and H ∈ Rk×n
+ , which relates the latent features to
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the time-steps. This process discovers k latent features that mediate the interactions

between vertices and time-steps. The matrix W reveals a clustering on vertices, and

the matrix H provides a representation for studying the temporal changes in the

graph as a whole. Since a direct clustering of F would not produce both pieces of

information concurrently, we choose a low rank approximation approach. In the next

section we show a case study from a real world graph and demonstrate the usefulness

of W,H for understanding the temporal behavior in the dynamic graph.

4.3 Case Study - CAIDA Dataset

In this section, we present the observation and analysis of temporal clusters generated

by NMF. As illustrated in Figure 1, we are using the explicit vertex features matrix as

input to the NMF. The output of NMF gives the temporal clusters of nodes that aids

in visualizing the rise and fall of influential nodes. Experiments on IP network data

demonstrate the utility of these vertex feature matrices. The STINGER library is

used to extract the betweenness centrality and Pagerank for each vertex at each time-

step. Because this is a bipartite network we do not find any triangles. The CAIDA

passive traces form an IP network where vertices are host IP addresses and an edge

means that a packet was sent from one host to another. This graph has timestamped

edges extracted from the packet capture (pcap) data. CAIDA releases this data in

an anonymized form under an acceptable use policy and it can be obtained from

them [86]. 4 Edges are processed as undirected for the purpose of graph kernels. We

examine logarithm of betweenness centrality, its squared discrete derivative, and the

exponentially weighted moving average and exponentially weighted moving standard

deviation. These derived statistics capture the temporal nature by finite differences

and the distributional aspects by capturing the center and spread of the distribution

of recently observed data. These features are arranged as a matrix F ∈ R+
m×n. Since

4http://www.caida.org/data/passive/passive_2014_dataset.xml
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we perform only edge insertions we use exponentially weighted moving averages to

discount the historical data. If more augmenting features are found to be interesting,

they can be computed without impacting the behavior of the graph algorithmic code.

In this context, the matrix F TF (normalized so that (F TF )i,i = 1) gives similarity

of the graph over time. The construction of F TF as the similarity between timesteps,

implies that two timesteps are similar if for each feature and each vertex the values

are similar. The unnormalized version of F TF is show in Equation (18).

(F TF )s,t =
∑

v∈V,k∈{1...d}
fk(v, s)fk(v, t) (18)

The formula in Equation (18) is a covariance between timesteps. By normalizing so

that the diagonal entries are 1, we get the correlation version.

The nature of the graph similarity is determined by the choice of feature. If one

is interested in the influence structure of the graph, then influence metrics such as

betweenness centrality and Pagerank can be used. The i, jth entry of this matrix is

the similarity between the graph at time ti to time tj. When we examine this matrix

in Figure 7a all we see is the large scale trend. By factorizing this matrix into low

rank factors, we reveal a more refined picture of the dynamics. Figure 7b shows the

similarity after using the Singular Value Decomposition (SVD) F = UΣV T to account

for the intervertex dependencies.

The approximate block structure of HTH indicates a clustering on the rows and

columns. The NMF has determined that certain time-steps belong together. Be-

cause we are inserting edges into the graph, we are not surprised that the clusters are

identified as contiguous subsets of the time domain. By comparing these similarity

matrices to the formula for relative impact given in Equation 17, we see that all three

of these similarity functions agree with the dependence on s. As the gap between

two observations i and i+ s increases, the similarity of the graph at those two times

decreases. In the case of the basic similarity that does not account for vertex interac-

tions, we see only this trend effect. The SVD accounts for the vertex interactions and
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Figure 7: The temporal similarity of betweenness centrality structure between all
pairs of time-steps, in internet traces data.

gives a more specific similarity. However, the real difference occurs when we examine

the cluster structure of the data. The NMF similarity HTH gives a discrete sense of

similarity. If two time-steps are in the same phase (cluster of time-steps), then the

similarity is very high, and if they are in different clusters the similarity is very low.

This validates the claim that NMF produces a segmentation of the edge stream into

phases of activity. Pivoting our attention to W , the left hand factor, we discover the

clusters of vertices. The index of the largest element in each row of W indicates to

which cluster that vertex belongs. Returning to the longitudinal study of vertices

and grouping the vertices into their clusters, Figure 8 shows the plot of logarithm of

betweenness centrality for each vertex over time, which reveals a clear pattern. Most

elements of each cluster peak in betweenness centrality around the same time. The

timing and duration of these peaks correspond to the diagonal blocks of HTH. We

have clustered vertices into groups that rise and fall in influence together. The sim-

ilarly matrix V ΣTΣV T , is smoother as every data point is projected onto the basis

U representing the entirety of the data. Both the SVD and NMF approximations
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Figure 8: Longitudinal plot of a sample of vertices from each cluster identified by NMF
on the betweenness centrality derived feature matrix. Each subplot represents a group
of vertices that peak at the same time. The logarithm of betweenness centrality is
shown on the ordinate.
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account for the interdependence of vertices and features, thus revealing more infor-

mation than F TF . In the next section we present the scalability experiments of the

NMF algorithm.

4.4 Performance Experiments

In order to validate the application of NMF to graph analysis, we give empirical

evidence that the parallel BPP algorithm presented in Section 4.2.2.1 is scalable.

The experiments are conducted on a dual socket Intel Xeon CPU E5-2620 machine

clocked at 2.00GHz. Each socket has 6 cores along with hyperthreading, hence there

are 12 cores in total and 24 threads of execution. Our input matrix is a dense matrix

of size 2840256x103, where 103 represents number of time-steps and 2840256 are

8 different features observed over each of 355032 vertices. One of the parameters

for BPP is the rank k which determines the number of clusters and for practical

applications, k is chosen on the order of 10’s. Since the rank of the matrix is 103

(the number of independent columns) we show experiments where k = 10, 25, 50.

For this experimentation, our code uses the Intel MKL implementation of BLAS and

LAPACK. Since our machine has 12 physical cores but can support 24 threads with

hyperthreading, we choose the number of threads as 1, 2, 4, 6, 8, 12, and 24 so that

we also study the performance when the number of threads is more than number of

physical cores. In the Figure 9, the number of cores is presented on the x-axis and

the running time (Figure 9a) and speedup factor (Figure 9b) is shown on the y-axis.

From these graphs we observe linear scaling up to the number of physical cores on the

system. When hyperthreading is used, the speedup is no longer linear, as we achieve

a speedup of approximately 10 on 12 cores and a speedup of approximately 12 on 24

cores. From these experiments we also infer that the algorithm achieves less parallel

efficiency when forming a very low rank approximation of the matrix. Since the work

per core is O(k4(m + n)/p) we expect more parallel efficiency for larger values of
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Figure 9: NMF—BPP Scalability experiments on a 2840256×103 dense matrix

k than for very small values of k. According to the BPP algorithm, when we find

H, the majority of the time is taken towards computing the matrix multiplications

W TF and W TW , which surpasses the time needed for computing the small matrix

H of size 103xk. Where as, in the case of computing W , the computational effort for

the matrix multiplications HTH and HF T was smaller than for the iteration to find

W . Thus the effort for finding every vector wi is very scalable with multiple threads

and this advantage is more pronounced for k = 50. The observed linear scaling with

better efficiency for larger values of k confirms the behavior predicted by theory. One

implication of this parallel performance analysis is that the partitioning of matrices

for distributed memory processing must account for the asymmetry between the left

and right factors.

4.5 Conclusions and Future Work

We contribute a novel framework for making inferences about dynamic vertex be-

havior based on streaming graph computations. This framework provides both a

principled method of finding anomalous vertices and a new method for detecting

clusters of vertices based on temporal behavior. The inferred temporal behavior is

interpretable, easy to visualize, and found without explicitly searching for a prede-

fined pattern. We developed a successful feature based pipeline for dynamic graph
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streams and applied NMF to these features. The computed low rank approximation

is useful for several graph analysis tasks including temporal similarity at the graph

level, vertex clustering and graph temporal segmentation. We contribute a theoret-

ical and empirical evaluation of a new parallel algorithm for NMF based clustering,

which scales up to 12 cores and exhibits good performance up to 50 clusters, even on

graphs with large vertex sets. These techniques yield an algorithm which is linear in

the number of vertices m and time-steps n when the number of temporal behavior

clusters is O((m + n)1/4). Application of this method to Twitter data reveals pat-

terns, change points, anomalous vertices. A case study analyzing CAIDA internet

traces provides understanding into the behavior of the ubiquitous internet connection

graph. This feature based pipeline takes advantage of longitudinal studies of vertex

behavior over time to inform the generation of derived features. A low rank approx-

imation to the matrix of features produces clusters of vertices that rise and fall in

influence together. The clusters of vertices correlate with sharp boundaries in time

which form phases of the network’s evolution. Our approach loosely couples parallel

graph algorithms with machine learning algorithms, which allows the application of

both systems effectively.
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CHAPTER V

NUMERICAL METHODS FOR GRAPH PROBLEMS

When conducting any scientific or engineering task that involves approximate compu-

tations, the question of accuracy arises. It is impossible to execute the computations

of continuous mathematics exactly in a computer. In order to solve the problems of

continuous mathematics with computers, approximations must be made. One aspect

of numerical analysis is to derive algorithms that give accurate approximations. An-

other aspect is to understand the properties of these approximations. This chapter

studies numerical approximation for the graph partitioning problem. The goal is to

compute good partitions of a graph efficiently. The spectral method is commonly used

for this problem. When applying the spectral method we ask how accurate does the

numerical solution need to be in order to provide correct partitioning of the graph.

Section 5.1 discusses some details of the spectral partitioning method. Section 5.2 il-

lustrates the spectral method for partitioning graphs from the stochastic block model.

Section 5.3 provides a motivational example of using approximate solutions to a nu-

merical problem in order to solve a graph partitioning problem. Section 6.2 studies

the usages of approximate eigenvectors to partition graphs in detail, and Section 5.4

develops a new stopping criterion based on conductance. This chapter explores how

analysis of numerical methods applied to graph analysis problems can improve our

understand of both fields.

5.1 The Spectral Sweep Cut Algorithm

Spectral partitioning is a family of algorithms for finding good cuts of a graph.

1. Construct a graph matrix M one of A, Â, L, L̂, P .
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2. Compute some eigenvectors of M .

3. Use these vectors to compute a partition V = diSi.

These steps can be repeated to find smaller communities if necessary. The choice of

A, Â, L, L̂, P depends on the structure of the analysis goals, data distribution, and

chosen numerical methods. For recovering the stochastic block model parameters A

provides the best estimator [65]. For finding local partitions the random walk matrix

P is used [53]. This work uses L̂ and Â for finding global partitions as in [11].

A multidimensional embedding formed by computing more eigenvectors of the

graph matrix allows one to make a multiway cut in one step, but is more difficult

to analyze because there is a larger design space for spatial partitioning in multiple

dimensions. This dissertation focuses on partitioning the graph into two parts using

sweep cuts (Algorithm 4).

One way to apply spectral bisection to a graph given a vector x is to divide the

graph at a threshold such as 0 or the median value of xi. This method is sensitive

to small errors because if the true value of |xi| is close to the threshold, then a small

perturbation in x, as measured in the two norm, can push xi over the threshold. One

solution to this problem is to compute the conductance of all n possible cuts, and take

the optimal cut. These sweep cuts give partitions with at most the same conductance

as using a fixed threshold, and often give much better cuts. An efficient algorithm

for computing the conductance of all possible sweep cuts can be derived from the

definition of conductance in Equation (3). Lemma 1 gives a recurrence relation for

the cut size.

Lemma 1. The edge cut size follows the recurrence relation

E(Si, S̄i) = E(Si−1, S̄i−1) +
∑
j≥i

ai−1j +
∑
k<i−1

ak,i.
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Proof. Let Ei = E(Si, S̄i) be defined as Ei = ∑
k<i

∑
j≥i akj

Ei − Ei−1 =
∑
k<i

∑
j≥i

akj −
∑
k<i−1

∑
j≥i−1

akj

=
∑
j≥i

ai−1j +
∑
k<i−1

∑
j≥i

akj −
∑
k<i−1

∑
j≥i−1

akj

=
∑
j≥i

ai−1j +
∑
k<i−1

ak,i +
∑
k<i−1

∑
j≥i−1

akj −
∑
k<i−1

∑
j≥i−1

akj

=
∑
j≥i

ai−1j +
∑
k<i−1

ak,i

Thus, Ei = Ei−1 +∑
j≥i ai−1j +∑

k<i−1 ak,i and the conclusion follows.

One must compute for all i the volume of the vertices v1 . . . vi according to

vol(Si) = ∑
k≤i

∑
k≤i aij.

Lemma 2. The volume of S = {1 . . . k} follows the recurrence relation

V (Sk) =
∑
j≤k

ak,j +
∑
i≤k−1

ai,k + V (Sk−1).

Proof. Let Vk = V (Sk) = ∑
i∈Sk

∑
j∈Sk aij.

Vk =
k∑
i=1

k∑
j=1

aij =
k∑
j=1

akj +
k−1∑
i=1

k∑
j=1

aij =
k∑
j=1

akj +
k−1∑
i=1

aik + Vk−1

From these recurrence relations, algorithm 3 provides an efficient algorithm from

computing the conductance of every possible sweep cut.

The sweep cut algorithm can be used to partition once an ordering of the vertices

has been given. A convenient way to construct the ordering is to use an approximate

eigenvector and sort the vertices according to their spectral coordinates. That is when

using a vector x vj 7→ vj if j = |{k | xk > xi}|. According to Theorem 3 this method

is guaranteed to approximate the true minimum conductance cut of the graph. Let

eigensolve(G, r, ε) be a function that computes the second smallest eigenvector of

the graph Laplacian of G, such as the power method, Algorithm 1, or IRAM [58].
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Data: a graph G labeled v1 . . . vn
Result: an array of conductances φ{v1 . . . vi}
A← adjacency(G);
φ = zeros(n);
e = zeros(n);
for i in 2:n do

ei = sum(Ai−1,i:n) + sum(A1:i−1,i);
voli = voli−1 + sum(Ai,1:i−1) + sum(A1:i,i);
φi = ei/min(voli, n− voli);

end
Algorithm 3: Sweep Cut

Also let argsort(v) be the function returning a permutation of the indices of v that

sorts the values of v with the corresponding function permute(G,s) applying that

permutation to a graph. Algorithm 4 provides an algorithm for partitioning a graph

G into two parts given the functions eigensolve() and argsort(), which yields the

permutation that sorts an input array.

Data: a graph G, a tolerance ε
Result: a partition S, conductance φ(S)
n =| V |;
x0 = randn(n);
x = eigensolve(A,x0, ε);
φ = zeros(n);
s = argsort(x);
φ = sweep(permute(G, s));
j, φmin = arg mini φi;
return s1:j, sj+1:n

Algorithm 4: Spectral Sweep Cut

Theses operations define a particular algorithm spectral sweep cut Algorithm 4.

The remainder of this work uses spectral partitioning to refer to this particular algo-

rithm.

5.2 The Stochastic Block Model

When studying the graph partitioning problem, a common class of problems to study

is the stochastic block model, where the vertices in the same block are stochastically
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equivalent meaning they are interchangeable with no effect on the probability distri-

bution [43]. The stochastic block model is a latent space model where the latent space

is discrete. The model is parameterized by the set of blocks C1 ∪ C2 ∪ . . . Cq = V ,

and the block interaction coefficients B. In a linear algebra interpretation the block

assignment of the vertices is given by the matrix Q ∈ {0, 1}n×q, with q denoting the

number of blocks.

Qik =


1 : i ∈ Ck

0 : i /∈ Ck
The probability of an edge between a vertex in Ck and a vertex in Cl is given by the

block interaction coefficient Bk,l. This can be represented in matrices as

Pij =
[
QTBQ

]
ij

=
∑
k

∑
l

QikBklQlj (19)

The adjacency matrix A ∈ {0, 1}n×n is drawn from independent Bernoulli trials. The

probability is given in equation 20.

P (A) =
∏
i≤n

∏
j≤n

P
aij
ij (1− Pij)1−aij . (20)

When restricting to undirected graphs, one draws only from the upper triangle of

indices satisfying i < j.

These block models are expressive enough to model diverse community structure.

One such community structure is shown in Figure 10, which depicts a random stochas-

tic block model graph both with a graph drawing and the sparsity plot. A consistent

estimator of the block identities can be derived from the eigenvectors of the adjacency

matrix of a graph drawn from the stochastic block model under certain conditions

on B [64]. One condition is that the block association matrix B must be positive

semidefinite. If the intrablock probabilities are larger that the sum of the interblock

probabilities for each row of B, the Gershgorin Circle Theorem [35] implies B is pos-

itive semidefinite. The remaining conditions relate to the density of the graph, the

separation of the eigenvalues and the separation of the rows of Q
√
B. For a wide
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Figure 10: A stochastic block model with 12 blocks each of size 25 graph drawn to
show structure (left). A sparsity plot of the same graph (right).

variety of parameters for the stochastic block model the eigenvectors can give perfect

partitioning of the observed graphs.

As can be seen from Equation (19), the matrix of probabilities has at most q

nonzero eigenvectors. When passing from the probability matrix P to the sampled

adjacency matrix A, this low rank property implies that A has at most q large eigen-

values and at least n− q small eigenvalues. When applying spectral sweep cut, Algo-

rithm 3, to partition a stochastic block model graph, the goal is to recover a partition

into two groups that does not split any of the blocks C1, C2, . . . Cq. If Algorithm 4 is

applied recursively and at each level no block is split, then all of the blocks will be

recovered on the final level. This motivates convergence analysis of methods comput-

ing an approximation to a linear combination of dominant eigenvectors. Section 6.2

shows that when the adjacency matrix has only a small number of large eigenvalues,

a linear combination of these eigenvectors are easily computed. In order to show that

this approach is sufficient to recover graph partitions Section 6.3 examines a highly

structured graph with this property.

For an example of a stochastic block model graph refer to Figures 10-12 The

62



0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

λ

1

3

5

7

9

11

13

co
u
n
t

Distribution of eigenvalues

Figure 11: A histogram of the top 37 eigenvectors of the graph in Figure 10. The
eigenvectors close to 1 correspond to vectors which reveal low conductance partitions.

graph in Figure 10 is drawn from a stochastic block model where B is circulant that

is Bi,j = Bi−1,j−1 modulo q. The diagonal entries of B are large relative to the off

diagonal entries. This implies that most vertices will have more neighbors in their

community compared to outside of their community, which matches the intuitive

definition of a community. The distribution of eigenvalues for the example graph

can be seen in Figure 11. The adjacency eigenvalues are distributed such that q

eigenvectors are close to 1 and the remaining n−q eigenvectors are small in magnitude.

In Figure 12 we see that the adjacency eigenvectors of a stochastic block model graph

are concentrated into blocks Figure 12. An extreme form of this concentration is

exploited in Section 6.3 to prove results about the numerical accuracy requirements

of spectral partitioning.
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Figure 12: The top eigenvectors of the graph in Figure 10 show concentration for
vertices in the same block. This concentration implies that the block identities can
be recovered from the spectral coordinates.

5.3 High Quality Partitioning from Low Quality Eigenvec-
tors

This section provides a motivational example of applying numerical analysis ideas to

a graph problem yielding insight into a computational process. For some graphs, low-

accuracy eigenvectors can outperform high-accuracy eigenvectors. Eigenvector solvers

such as ARPACK [58] use random seed vectors to compute a candidate eigenvector.

This candidate eigenvector is guaranteed to satisfy some approximation bound and

depends on the chosen random seed. We can see the effects of treating the eigenvector

returned from ARPACK as a random variable.

Fix a graph G and take an ensemble of random seeds r1 . . . rk, then the output

of ARPACK applied to this ensemble is x1 . . .xk where xi = p(L̂−1)r using ARPACK’s SM

setting and a prescribed tolerance ε. From xi we can determine the best sweepcut

Si, S̄i and compute the conductance φ (xi). In this way an eigensolver induces a

distribution of conductances at tolerance ε.
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On a Gn,p random graph, we see that the cut size is more concentrated for tighter

tolerances than for looser tolerances [25]. As we decrease the tolerance ε, we are more

likely to get the same partition from the vectors in the ensemble. Since the goal is

to find the minimum cut of the graph, we can take several approximate eigenvectors

and take the best induced cut. Table 2 shows the distribution of cut size when an

ensemble of eigenvectors are computed. The minimum of the distribution is the best

cut induced at tolerance ε.

Results of this experiment conducted on an Erdős-Rényi random graph Laplacian

with tolerance 10−2, 10−4, 10−8 are shown in Table 2. The smallest conductance value

is found for ε = 10−2 which indicates that the low accuracy solution is outperforming

the high accuracy solution.

Table 2: As the residual tolerance decreases the distribution of conductance values
becomes more concentrated. However the minimum value seen in a sample increases.
Each column represents the distribution over 30 samples.

Distribution of conductance sizes φ
1e-2 1e-4 1e-8

mean 0.317831 3.156708e-01 3.156708e-01
std 0.001842 2.258405e-16 2.258405e-16
min 0.314898 3.156708e-01 3.156708e-01
25% 0.315849 3.156708e-01 3.156708e-01
50% 0.318569 3.156708e-01 3.156708e-01
75% 0.318669 3.156708e-01 3.156708e-01
max 0.321631 3.156708e-01 3.156708e-01

In order to understand this phenomenon we examine the distribution of com-

puted eigenvectors. Figure 13 shows the distribution of
∥∥∥|x| − ¯|x|

∥∥∥ where ¯|x| is the

average solution produced1 The quantity
∥∥∥|x| − ¯|x|

∥∥∥ represents the deviation of each

solution from the average solution. As the computation becomes more accurate, this

distribution becomes more concentrated.

This behavior is possible because we are relaxing the min cut partitioning problem

1The absolute values are necessary to account for Ax = λx can be satisfied by both x and −x.
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Figure 13: Tighter eigenresidual bounds imply tighter distributions of approximate
solutions. Log scale implies that the distributions on the left have smaller variances.

to the eigenvector problem and then rounding. With two balls centered at the same

point with different radii r < R, the best integer solutions in the larger ball are

better than the best integer solutions in the smaller ball. This is a consequence of if

S ⊂ T are sets, then minx∈S f(x) ≥ minx∈T f(x). The experiments show that in this

case, the intuition extends to sampling. Further experimentation shows that this is

not an efficient method for accelerating spectral partitioning in general graphs. This

work has been published in a poster “Discovering Block Structure in Graphs with

Approximate Eigenvectors” at SIAM-CSE 2015.

This example is presented to motivate how numerical analysis can be applied to

graph analysis problems to gain insight into the phenomena observed in algorithms.

The observation is that low accuracy approximate eigenvectors can sometimes out-

perform high accuracy approximate eigenvectors for the graph partitioning problem.

This phenomenon can be understood by considering the eigensolver as a random pro-

cess that samples from a distribution over vectors. The remainder of this chapter

discusses ways that numerical analysis can be applied to the spectral partitioning
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problem in order to understand how numerical error affects the quality of the graph

partitions.

This work is relevant because we have a large literature on how to approximately

solve data analysis problems using the exact solution of numerical problems, and a

large literature on approximately solving numerical problems, but we do not have

a firm grasp on the relation between accuracy in the numerical solution and the

approximation quality of the data analysis solution. This leads to practical difficulties

such has how to choose convergence tolerances for eigensolvers when they are used for

spectral partitioning. When using numerical solvers for problems such as studying

the behavior of systems governed by partial differential equations (PDEs), we know

that there is a baseline error that comes from modeling the continuous problem with

a finite set of points. This discretization error allows one to use the properties of

the PDE and the number of points to determine at what accuracy the solution is

close enough to the continuous solution. For data analysis applications of numerical

methods, there has not been sufficient research into understanding the appropriate

convergence tolerances.

Section 5.4 gives an analysis using Cheeger’s inequality that improves the state of

the art in choosing convergence tolerances. Keep in mind that the desired accuracy of

a numerical solution depends on the context of its application. With the knowledge

of the downstream data analysis problem, one can choose numerical solvers with

different properties that are advantageous to that data analysis problem.

5.4 Stopping Criteria for Spectral Partitioning

The relationship between numerical accuracy and data mining quality is not thor-

oughly understood. This section shows that analyzing numerical accuracy and data

mining quality together can lead to algorithmic improvements. Specifically, we study
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spectral partitioning using approximate eigenvectors of the normalized graph Lapla-

cian as described in Algorithm 4. We introduce a novel, theoretically sound, param-

eter free stopping criterion for iterative eigensolvers designed for graph partitioning.

On a corpus of social networks, we validate this stopping criterion by showing the

number of iterations is reduced by a factor of 4.15 on average, and the conductance

is increased by only a factor of 1.24 on average. Regression analysis of these results

shows that the decrease in the number of iterations needed is greater for problems

with a small spectral gap, thus our stopping criterion helps more on harder prob-

lems. Experiments show that alternative stopping criteria are insufficient to ensure

low conductance partitioning on real world networks. While our method guarantees

partitions that satisfy the Cheeger Inequality, we find that it typically beats this

guarantee on real world graphs.

This work fits into a larger framework of studying how knowledge of the data min-

ing task can shape our choice of numerical procedure. It is already common to see the

computer architecture or networking capabilities of a distributed system shape the

choice of numerical algorithm [46]. In some applications numerical solutions are used

such that errors compound, but in other applications the numerical solution is used

in a way that reduces error. For instance in spectral partitioning, one spends many

cycles computing high accuracy numerical solutions to an equation only to round the

solution vector. In order to make efficient design choices in our algorithms, we must

consider the accuracy requirements we face. This chapter shows that for spectral par-

titioning, the numerical accuracy required is much lower than that which is typically

assumed by users of these solvers. The default solver accuracy for Matlab’s eigs is

machine ε times ‖A‖ which is approximately 10−15 in double precision arithmetic,

this accuracy is often necessary for many scientific applications, but is not necessary

for this particular data mining application. The goal of this chapter is to understand
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the effect of eigensolver accuracy on partitioning quality. Stopping criterion for iter-

ative methods are an important facet of this relationship. Without a good stopping

criterion, an iterative method will either take too few iterations and fail to solve the

problem, or take too many iterations and waste computational resources. We intro-

duce a stopping criterion for computing eigenvectors which combines conductance

and estimates of numerical error.

Under the standard assumptions on eigensolvers, Section 5.5 analyzes eigenvalue

accuracy in the context of spectral partitioning to derive a condition on approximate

eigenvectors that provides the same theoretical guarantees as sweep cuts of the exact

eigenvectors. Section 5.6 shows this new stopping criterion reduces the number of

iterations compared to traditional stopping criteria on real world networks from the

Newman and SNAP collections. This provides a parameter free convergence crite-

rion that is theoretically sound and empirically verified. Graphs can have multiple

partitions of similar quality and throughout this chapter we assume that an applica-

tion finds any of them to be sufficient. In this chapter we show that, using this new

stopping criterion, we can compute approximate eigenvectors which induce nearly

optimal graph partitions. These approximate eigenvectors are computed faster than

approximation using the classical stopping criterion based on approximation error.

Therefore, we decrease running time while sacrificing little quality. Many of these

insights can generalize to other applications where a numerical method solves a data

mining problem, such as using personalized PageRank [19] to rank vertices in a graph,

commute times [20] to compute a metric distance on the vertices, or the heat equation

on a graph [10] to construct low conductance local cuts.

5.4.1 Contributions

Sections 5.5-5.6 make the following contributions:

1. A novel parameter free stopping criterion for spectral partitioning with both
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theoretical and experimental support.

2. Demonstrations that alternative stopping criteria are too weak to ensure high

quality partitions.

3. Evidence that this method works when restricting to balanced sweep cuts.

4. Guidance on practical choices for the residual tolerance parameter of eigen-

solvers for this problem.

5.5 Eigenvalue accuracy and Cheeger’s inequality

The Cheeger inequality guarantees that exact eigenvectors provide a sweep cut with

conductance less than
√

2λ2. The remainder of this section derives a stopping crite-

rion providing the same guarantee for approximate eigenvectors. As one iterates a

numerical solver, they can compute the conductance of each iterate. Once a partition

with conductance less than
√

2λ2 is found, the solver can stop while satisfying the

same guarantee provided by the exact solution. However, when running the solver,

the true value of λ2 is unknown. Thus one cannot use this comparison as a stop-

ping criterion directly. One way to create a stopping criterion is to use µ as an

estimate of λ2 then stop when φ (y) ≤
√

2µ; however, this criteria does not ensure

that φ (y) ≤
√

2λ2 as φ (y) can fall between
√

2µ and
√

2λ2. Section 5.6.4 discusses

further some alternative stopping criteria found to be unreliable for this problem.

To derive a stopping criterion that does guarantee φ (y) ≤
√

2λ2, we find a lower

bound on
√

2λ2 is sufficient. The lower bound must be computable from information

available to the solver. Both the eigenresidual r and the Rayleigh Quotient µ are

computable without knowledge of the true eigenvalue and thus form the inputs to the

stopping criterion.

Theorem 2. Let L̂ be the normalized graph Laplacian of a connected graph, and x

be a unit vector orthogonal to D1 and µ = xT L̂x and y = D−
1
2 x. If µ− λ2 < |µ− λ|
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for all other eigenvalues λ, then φ (y) <
√

2(µ− r) = ψ(x) is a stopping criterion

that guarantees φ (y) <
√

2λ2.

Proof. First the fact that
√

2α is an increasing function gives, for any positive ε,

µ − ε < λ2 implies
√

2(µ− ε) <
√

2λ2. We show that r > |µ − λ2| directly. Using

the eigendecomposition of L = QΛQT , let z = QTx. Since x ⊥ q1, z1 = 0. From the

hypothesis that |µ− λ2| is minimal, one sees

r2 = ‖(Λ− µI)z‖2 > (λ2 − µ)2∑
i

zi
2 = (λ2 − µ)2.

So r > |λ2 − µ|, and µ − r < λ2. Thus under these conditions we know that√
2(µ− r) <

√
2λ2. Since all terms on the left hand side are known to the solver

at each iteration, this is a valid stopping criterion.

This stopping criterion is the first stopping criterion for spectral partitioning that

does not require the implementation to specify a chosen parameter value. Unlike

prior methods there is no choice of acceptable error that must be considered and no

choice of tolerance exposed to the user. This simplifies practical application of this

method for graph analysis.

The assumption that µ is closer to λ2 than to any other eigenvalues implies that

ε is less than the spectral gap, δ = λ2 − λ3, of the matrix. Thus under the standard

assumption that the Ritz value is close enough to the desired eigenvalue, we have a

stopping criterion bounding φ (y).

When the eigenvalue is computed exactly, this bound coincides with the original

Cheeger inequality. While this theorem does not imply that further iteration of the

eigensolver will not reduce φ (y), it gives a condition under which it is possible that

further iteration will not reduce φ (y). The vector output will always satisfy the
√

2λ2 guarantee of Theorem 3 as long as the assumptions are true. The experiments

in Section 5.6.2 show for many graphs, termination according to this new criterion

leads to only a small increase in the conductance of a partition. For some graphs the
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partition produced by the lower quality approximate has lower conductance than the

partition produced by the higher quality approximation.

A valid concern is that ensuring that one satisfies
√

2λ2 is too weak of a guarantee

for practitioners. We see that the final partitions are much better than the guarantee.

The cycle and the hypercube show that for some graphs the eigenvectors achieve a

partition with conductance Ω(
√

2λ2) [90]. Thus for a method applicable to all graphs,

this is the best guarantee possible. However, if one knows the graph in question comes

from a family where φ (G) ≤ f(λ) where f(x) is an increasing function, then one could

apply the technique used in the proof of Theorem 2 by checking if the conductance of

the current iterate is less than f(µ− r) < f(λ). Planar Graphs [84] are such a family

of graphs. Experiments in Section 5.6 show that this stopping criterion typically gives

partitions that outperform the guarantee by at least a factor of λ/5.

5.6 Experiments

Iterative eigensolvers such as IRAM were developed for solving problems from physics

and engineering. Thus they are designed to quickly minimize error and residual.

However when using eigenvectors for graph partitioning, minimizing the error to the

true eigenvectors is less important than finding an x minimizing φ (x). This leads

to an experiment showing the conductance of the optimal sweep cut approaches the

minimal value before the eigenresidual is small and that our approach returns such a

vector with a low conductance.

5.6.1 Experimental Design

While spectral partitioning finds a sweep cut with low conductance, it does not guar-

antee the minimum possible conductance. Therefore, for our experiments, we com-

pute a baseline eigenvector and partition using the standard approach of iterating

until the residual is within an application determined tolerance. We use a tolerance

of ‖Ax− µx‖ < 10−6, but stop if the number of iterations reaches 800. Let IF denote
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the corresponding number of eigensolver iterations. The conductance of the sweep

cut of this approximate eigenvector is our baseline conductance φF For our experi-

ments, we compare this standard approach using residual tolerance to the stopping

criterion from Theorem 2. The restart parameter and maximum number of iterations

was chosen manually at 15 to balancing time and memory constraints. For 34 of the

graphs, the first time φ (x) < ψ(x), hypothesis of Theorem 2 is not satisfied, but by

taking one more step the number of such graphs drops to 17. Because stopping at

the next iteration after φ (x) < ψ(x) has a small impact on the average number of

iterations needed and leads to a large decrease in the average conductance that we

find, we use this iteration, represented by IC , in our experiments. φC represents the

conductance of the sweep cut after IC iterations. We use IN to represent the first

iteration where φ (x) <
√

2λ2.

Experiments are conducted on matrices from the Newman [71] and the SNAP [60]

collections. These include graphs from co-purchasing, citation, co-authorship, road,

autonomous systems, and online networks2. Table 3 includes the size of each graph

along with the first 3 eigenvalues, which gives a sense of the difficulty of the various

problems. From error analysis in [73] we know that when the small eigenvalues of L̂

are close together, the eigenvectors are difficult to compute accurately. The problems

range from the small and well conditioned N/lesmis to the large and ill conditioned

S/web-Google.

For the purpose of experimentation, we compute functions of each iterate3. These

include the conductance φ, the Rayleigh quotient µ, and the residual r = ‖Ax− µx‖.

These measurements can be seen in detail in Table 4 for a single graph. We also show

the lower bound on the Cheeger bound ψ(x) =
√

2(µ− r) from Theorem 2. From

2Adjacency matrices are made symmetric by taking A + AT . Because we can find connected
components faster than solving the eigenequation, we restrict to the largest connected component
of each graph

3Requesting the approximate eigenvector at each step also prompts using an alternative imple-
mentation of IRAM over the standard ARPACK.
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Table 3: Shows the size of each graph along with some eigenvalues. Small values of
λ3 − λ2 indicate difficult problems. Graphs from the Newman and SNAP collections
are abbreviated with N and S, respectively.

name |V | |E| λ2 λ3 λ4

N/adjnoun 112 850 0.35604 0.37559 0.39457
N/as-22july06 22963 96872 0.01936 0.02418 0.02621
N/astro-ph 16706 242502 0.00328 0.00383 0.00478
N/celegansneural 297 2345 0.19524 0.25629 0.33204
N/cond-mat 16726 95188 0.00718 0.00729 0.00816
N/cond-mat-2003 31163 240058 0.00427 0.00606 0.00788
N/cond-mat-2005 40421 351382 0.00428 0.00484 0.00616
N/dolphins 62 318 0.03952 0.23435 0.24662
N/football 115 1226 0.13680 0.18292 0.22509
N/hep-th 8361 31502 0.00558 0.00888 0.01010
N/karate 34 156 0.13227 0.28705 0.38731
N/lesmis 77 508 0.08813 0.09222 0.15107
N/netscience 1589 5484 0.00303 0.00850 0.00993
N/polblogs 1490 19025 0.08144 0.10904 0.13685
N/polbooks 105 882 0.03780 0.17589 0.24433
N/power 4941 13188 0.00027 0.00055 0.00043
S/amazon0302 262111 1234877 0.00029 0.00083 0.00135
S/amazon0312 400727 3200440 0.00425 0.00361 0.00153
S/amazon0505 410236 3356824 0.00070 0.00078 0.00085
S/amazon0601 403394 3387388 0.00036 0.00085 0.00088
S/as-735 7716 26467 0.03349 0.04254 0.04635
S/as-caida 31379 106762 0.01120 0.01826 0.01939
S/ca-AstroPh 18772 396160 0.00629 0.01038 0.01706
S/ca-CondMat 23133 186936 0.00719 0.00803 0.01622
S/ca-GrQc 5242 28980 0.00187 0.00206 0.00367
S/ca-HepPh 12008 237010 0.00178 0.00400 0.01009
S/ca-HepTh 9877 51971 0.00312 0.00718 0.00801
S/cit-HepPh 34546 421578 0.01572 0.02300 0.03220
S/cit-HepTh 27770 352807 0.01839 0.02391 0.02598
S/email-Enron 36692 367662 0.00353 0.00454 0.00668
S/email-EuAll 265214 420045 0.00010 0.00213 0.00234
S/Oregon-1 11492 46818 0.03290 0.04820 0.04958
S/Oregon-2 11806 65460 0.02919 0.04191 0.04551
S/p2p-Gnutella04 10879 39994 0.02189 0.08147 0.17245
S/p2p-Gnutella05 8846 31839 0.10959 0.14601 0.15297
S/p2p-Gnutella06 8717 31525 0.12074 0.13797 0.17567
S/p2p-Gnutella08 6301 20777 0.04037 0.08103 0.09628
S/p2p-Gnutella09 8114 26013 0.03515 0.08965 0.12833
S/p2p-Gnutella24 26518 65369 0.06600 0.09155 0.11575
S/p2p-Gnutella25 22687 54705 0.02837 0.04100 0.06361
S/p2p-Gnutella30 36682 88328 0.06124 0.08551 0.09075
S/p2p-Gnutella31 62586 147892 0.05989 0.06141 0.06811
S/soc-Epinions1 75888 508837 0.00479 0.01323 0.01573
S/soc-sign-epinions 131828 841372 0.01123 0.01575 0.01717
S/soc-sign-Slashdot081106 77357 516575 0.02105 0.02175 0.03069
S/soc-sign-Slashdot090216 81871 545671 0.01723 0.01769 0.03069
S/soc-sign-Slashdot090221 82144 549202 0.01723 0.01769 0.03069
S/soc-Slashdot0811 77360 905468 0.01247 0.01529 0.01772
S/soc-Slashdot0902 82168 948464 0.01174 0.01321 0.01772
S/web-Google 916428 5105039 0.00043 0.00044 0.00064
S/web-NotreDame 325729 1497134 0.00248 0.00182 0.00134
S/web-Stanford 281903 2312497 0.00002 0.00008 0.00016
S/wiki-Talk 2394385 5021410 0.01680 0.01941 0.02410
S/wiki-Vote 8297 103689 0.10055 0.16859 0.24277
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Theorem 2 we know that if φ < ψ then φ <
√

2λ, which means that our partition is

within the guarantee provided by the Cheeger inequality. A dash in Table 4 indicates

µ− r < 0 and thus the stopping criteria cannot be satisfied.

Because L̂ = I−Â, the eigenvalues of L̂ are the same as one minus the eigenvalues

of A with the same eigenvectors. Thus we can solve for the largest eigenvalues of Â

and then compute the corresponding smallest eigenvalues of L̂. This allows us to avoid

the need for a linear solver for L̂x = b. We can also work with vectors orthogonal

to q1 = D−1/21
∥∥∥D−1/21

∥∥∥−1
by iterating with the linear operator M = Â − q1qT1 .

The desired eigenvalue and eigenvector of the Laplacian correspond to the largest

eigenvalue of M . This improves the performance of the solver while allowing us to

compute the appropriate Laplacian eigenvalues and eigenvectors.

5.6.2 Summary of Results

Table 5 compares, for all graphs, our stopping criterion to the standard criterion of

iterating until ‖r‖ < 10−6. Values for each graph are averaged across 10 runs, with

the last row showing the average across all graphs. The values in Table 5 differ from

those seen in Figure 16 because the latter shows results from individual runs. We

can see that stopping at IC results in a conductance less than five times the final

conductance for every graph. On average across all graphs the conductance resulting

from our approach is only 1.24 times greater and only 0.24 times as many iterations

are needed or a reduction by a factor of 4.15. This is the primary result of the

experiments. This stopping criteria reduces the number of iterations significantly

without creating a large loss in the achieved conductance.

Table 4 shows a sample of iterations in detail for the S/web-Google graph. Al-

though we show such detailed results for only one graph, these observations apply to

many of the large graphs seen in the experiment. Table 4 also shows that the approx-

imate eigenvalue µ is monotonically decreasing, but the minimal conductance of a
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Table 4: Some iterates of the solver are shown in detail for the graph S/web-Google.
Because Theorem 2 requires that µ− r ≥ 0, ψ is not supplied when this condition is
not met. We find that µ − r > 0 is a good proxy for the stopping criterion φ ≥ ψ,
which implies that one can use this test in order to reduce the number of times that
φ must be computed.

iter φ µ
√

2µ ψ r

20 0.02283 0.00881 0.13276 – 0.01900
30 0.00571 0.00445 0.09435 – 0.01110
40 0.00399 0.00277 0.07438 – 0.00755
50 0.00297 0.00193 0.06209 – 0.00584
60 0.00203 0.00144 0.05372 – 0.00423
70 0.00153 0.00117 0.04837 – 0.00347
80 0.00143 0.00101 0.04493 – 0.00267
90 0.00100 0.00090 0.04248 – 0.00234

110 0.00100 0.00074 0.03859 – 0.00194
120 0.00062 0.00069 0.03703 – 0.00169
130 0.00062 0.00064 0.03579 – 0.00158
140 0.00062 0.00061 0.03483 – 0.00142
160 0.00062 0.00056 0.03339 – 0.00120
170 0.00071 0.00054 0.03288 – 0.00111
250 0.00071 0.00046 0.03030 – 0.00085
260 0.00083 0.00045 0.03006 – 0.00079
620 0.00083 0.00041 0.02878 0.02554 0.00009
630 0.00083 0.00041 0.02877 0.02552 0.00009
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sweep cut is not. We can see many iterations with µ− r < 0, and few iterations with

µ− r > 0 and φ < ψ so one can check µ− r > 0 as a preliminary stopping criterion

that is faster to evaluate than φ. This can reduce the number of times conductance

must be evaluated.

This improvement can be summarized with the distribution of the reduction in

iterations and the increase in conductance. The goal of choosing a good stopping

criteria for an optimization routine is to keep the number of iterations low and the

quality of the results high. Figures 14 and 15 show that for most graphs the number
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Figure 14: The distribution of iteration reduction over the experiments.

of iterations decreases by a large factor, more than 2X, and the conductance does not

increase by a large factor. The median increase in conductance is less than 2X. From

this empirical evaluation, we conclude that the effects of using this stopping criterion

are a dramatic improvement in performance with a slight degradation of quality. This

trade-off will not satisfy all applications, but for the community detection application
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Table 5: Improvement shown for each graph averaged over 10 runs. The columns are
the graph name, iterations until φ < ψ, iterations until r < tol, ratio of φ

(
xIC

)
to

φ
(
xIF

)
, the conductance found when r < tol, and the residual upon early termina-

tion. This table shows the graphs where our convergence criterion was reached within
the maximum number of iterations.

Graph IC IF ΦC
ΦF

ΦF Residual

N/adjnoun 10.0 42.0 1.0515 0.4615 0.0407
N/as-22july06 17.0 132.0 1.7490 0.0298 0.0363
N/astro-ph 54.5 315.5 1.2273 0.0046 0.0031
N/celegansneural 10.0 24.5 1.1272 0.2258 0.0345
N/cond-mat 43.0 487.5 0.9184 0.0152 0.0072
N/cond-mat-2003 67.0 225.5 1.0948 0.0064 0.0041
N/cond-mat-2005 59.0 329.5 1.1051 0.0064 0.0041
N/dolphins 14.5 20.0 1.0000 0.0682 0.0011
N/football 10.0 29.5 1.1107 0.1207 0.0254
N/hep-th 46.0 187.0 1.0331 0.0250 0.0067
N/karate 10.0 15.0 1.0000 0.1515 0.0049
N/lesmis 11.5 31.0 0.9916 0.1526 0.0187
N/netscience 46.5 108.5 1.1571 0.0048 0.0022
N/polblogs 12.0 30.0 0.7371 0.1250 0.0220
N/polbooks 14.5 20.0 0.9973 0.0476 0.0027
N/power 236.5 785.5 0.9240 0.0025 0.0003
S/Oregon-1 14.5 83.5 1.3502 0.0685 0.0372
S/Oregon-2 14.5 87.5 1.3659 0.0489 0.0379
S/amazon0302 233.5 493.0 1.0324 0.0008 0.0003
S/amazon0312 103.0 800.0 1.2125 0.0018 0.0017
S/amazon0505 147.0 800.0 1.0702 0.0011 0.0007
S/amazon0601 229.5 641.5 1.0724 0.0006 0.0004
S/as-735 11.5 95.0 1.3674 0.0651 0.0531
S/as-caida 30.5 115.5 1.0527 0.0302 0.0121
S/ca-AstroPh 37.5 124.5 1.1896 0.0102 0.0069
S/ca-CondMat 41.0 155.0 1.1845 0.0109 0.0063
S/ca-GrQc 60.0 199.0 1.4333 0.0025 0.0028
S/ca-HepPh 62.0 138.5 1.2651 0.0024 0.0019
S/ca-HepTh 58.5 168.5 1.7388 0.0036 0.0029
S/cit-HepPh 21.5 89.0 1.3945 0.0357 0.0250
S/cit-HepTh 18.5 143.0 1.6112 0.0312 0.0267
S/email-Enron 58.0 188.0 1.0037 0.0045 0.0029
S/email-EuAll 158.0 259.0 1.0000 0.0001 0.0001
S/p2p-Gnutella04 17.5 33.0 1.0000 0.0455 0.0124
S/p2p-Gnutella05 10.0 50.5 1.2796 0.1500 0.0857
S/p2p-Gnutella06 10.0 49.0 1.0991 0.2222 0.0947
S/p2p-Gnutella08 12.5 46.5 1.2493 0.0500 0.0486
S/p2p-Gnutella09 15.0 39.0 1.0000 0.0429 0.0205
S/p2p-Gnutella24 10.0 55.5 1.7662 0.1000 0.0875
S/p2p-Gnutella25 13.5 61.0 1.5241 0.0435 0.0511
S/p2p-Gnutella30 10.0 70.0 1.3673 0.1000 0.0762
S/p2p-Gnutella31 10.0 142.0 1.0657 0.1111 0.0878
S/soc-Epinions1 49.5 122.0 1.2661 0.0061 0.0050
S/soc-Slashdot0811 18.5 143.5 2.2980 0.0135 0.0305
S/soc-Slashdot0902 12.5 155.5 4.0594 0.0119 0.0477
S/soc-sign-Slashdot081106 21.5 131.0 1.8164 0.0238 0.0295
S/soc-sign-Slashdot090216 25.0 124.5 1.5721 0.0192 0.0178
S/soc-sign-Slashdot090221 25.5 121.0 1.2030 0.0192 0.0157
S/soc-sign-epinions 32.0 155.0 1.5445 0.0138 0.0132
S/web-Google 278.0 800.0 0.9728 0.0007 0.0004
S/wiki-Talk 13.5 156.5 2.0337 0.0321 0.0650
S/wiki-Vote 10.0 30.5 1.0000 0.1250 0.0580
Average 49.1 189.4 1.2432 0.0557 0.0246
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Figure 15: The distribution of conductance increases over the experiments.

on large social networks the improvement in speed is worth making this trade-off,

especially when the community detection is part of the streaming framework described

in Chapter 4.

5.6.3 Effect of Eigengap

It is not sufficient to check that a method works on some fixed set of inputs. In order to

know that an improvement will generalize one must understand the factors that affect

its efficacy. Regression analysis on the experimental results delivers understanding

into the problem factors that affect the effectiveness of this new stopping criterion.

Standard error analysis says that that e <
√

2 r
δ

[73] as can be seen in Section 6.2.

This error bound says that the difficulty of an eigenproblem is controlled by the

eigengap δ. For a fixed error the residual necessary to guarantee that error is linear

in the eigengap δ = |λ2−λ3|. Thus we focus on the dependence of our method on the

eigengap δ. When predicting the iteration ratio IC
IF

as a function of the rows, nnz, gap,
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If , and λ2 only the coefficients of gap, and λ2 are significant with R2 = 0.3173. These

coefficient indicate that as the problem gets harder, the we save more iterations. This

is taken over 851 samples and is significant at p < 0.001. When predicting φF
φC

as a

function of the same variables the R2 < 0.1 indicating that there is no good linear

fit. None of the coefficients are significant given the same thresholds as above. This

indicates that there is no reason to believe that this method breaks down on harder

problems. Regression analysis of iterratio, IF
IC

, and phiratio, φC
φF

, as a function of gap,

δ is shown in Figure 16. One can see that there is a linear relationship between log δ

and IF
IC

showing that as the problem gets harder our stopping criterion saves more

iterations. Based on the lack of a linear relationship between log δ and φC
φF

, there is no

evidence to suggest that this method loses approximation quality on harder problems.

5.6.4 Alternative Stopping Criteria

A stopping criterion based on the General Cheeger Inequality can be derived by sub-

stituting an estimate of λ2 into the inequality. Choosing µ as the estimate yields the

criterion φ (x) <
√

2µ. This test does not consider the accuracy of the estimate. We

can see from Table 4 that this criterion is satisfied too early to ensure a close approxi-

mation to the value of φ given by a close approximation to the true eigenvector. Once

one considers a rigorous lower bound on λ2 instead of an arbitrary approximation,

one derives a stopping criterion that works.

An alternative approach to stopping criteria comes from examining changes in

the objective function. A common approach in data mining is to stop when the

objective function does not decrease from one iteration to the next. This comes

from an idea that changes in the objective function are monotonically decreasing in

magnitude. This strategy works for some solvers and thus appears to be a good

convergence criterion. However in this case φ (xi) can stall. More precisely, for some
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Figure 16: Results for individual runs on each graph, not averaged, are plotted. The
iteration savings IF

IC
, shown on top, increase as the gap decreases and the loss in

conductance φC
φF

, shown on bottom, does not increase as the gap decreases.

iteration i, φ (xi) − φ (xi+1) = 0 while there exists a j much larger than i such that

φ (xj) < φ (xi). Therefore, stopping when the conductance stops improving yields

large loss in conductance. This occurs for ill conditioned problems such as the Web-

Stanford graph as is illustrated in Figure 17.

5.6.5 Balance

The theorems used in this paper do not guarantee the existence of balanced cuts.

Balanced cuts are favored in applications. One way to get a multi-way partition is

to recursively construct 2-way partitions until the parts are sufficiently small. If the

smaller part of the 2-way partition contains more than pn vertices for large enough

p < 1/2, this creates a balanced, low depth recursion tree. In order to understand
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Figure 17: The decrease in conductance and residual for SNAP/web-Notre-Dame is
shown. The flat regions of the conductance curve indicate where one would stop based
on φ (xi)− φ (xi+1) = 0. This shows that neither stopping at IN iterations nor when
the objective function stops decreasing achieves low conductance partitions for this
problem, even though both satisfy φ (x) <

√
2λ2. Using our criterion and stopping

at IC iterations does achieve a low conductance cut.
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the effects of our stopping criterion on choosing a balanced cut we make a similar

comparison as Section 5.6.2 while restricting to balanced cuts. We introduce the

notation φp as the best sweep cut which contains at least p percent of the vertices on

each side. Table 6 shows the minimum, maximum, and mean taken over all graphs,

of the best sweep cut of the final iterate φ0
F , the best balanced sweep cut of the final

iterate φ10
F , and the ratio between the conductance of the best balanced sweep cut of

the IC-th iterate φ10
C . The value of φ0

C and φ0
F for each graph can be found as φC and

φF in Table 5. For balanced cuts, the increase in conductance due to our stopping

criterion is on average less than a factor of 1.3 and for over half the graphs the same

conductance is found, which suggests that our methods works well in practice even

with a balance condition. In contrast, for half the graphs, the ratio of conductance

between the best cut and the best balanced cut for the final iteration is at least 4.5.

In other words, the cost of restricting to a balanced cut exceeds the cost due to the

novel stopping criterion.

Table 6: The effect of restricting to balanced cuts is shown. The max, mean, and
min are taken over all graphs. φ10

F represents the conductance of the best cut of the
final computed eigenvector with at least n

10 vertices on each side. φ10
C represents the

conductance of the best balanced cut achieved with our stopping criterion.

φ0
F φ10

F
φ10
C

φ10
F

φ10
F

φ0
F

min 0.0001 0.0017 0.4111 1.0000
median 0.0455 0.2080 1.0000 4.5926
mean 0.0736 0.2732 1.2557 36.829
max 0.6133 0.8245 5.0514 1001

5.7 Conclusions

This work fits into a larger context of understanding the connection between numerical

accuracy of solvers and data mining quality. We measure the solver accuracy using

the norm of the residual vector and the data mining quality as the conductance of
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the resulting partition. We show that by careful analysis of both measures, one can

rigorously derive improved parameter free stopping criterion. This stopping criterion

is empirically validated on real world networks. The result of our careful analysis is a

large reduction in the number of iterations used to solve this data mining problem with

iterative methods. This leads to faster methods for large problems. Understanding

the relationship between the numerical method and the data mining method leads to

an algorithmic improvement. This improvement is shown on real world networks and

is realized in a state of the art solver. We also demonstrate empirically that simpler

convergence criteria based on intuition do not achieve factor of two approximations

to the prior work.

This paper draws the following quantitative conclusions.

1. Our stopping criterion for spectral partitioning leads to a 4.15 fold decrease in

iteration with only a 1.24 fold increase in resulting conductance.

2. A practical choice for the residual tolerance parameter of eigensolvers for low

conductance partitioning is 10−4.

3. Alternative stopping criteria are too weak to ensure high quality solutions, as

is shown on the S/web-Google graph.

4. When imposing a balance condition of 10% on the cuts, stopping using our

criterion increases the conductance by a factor of 1.4 on average compared to

using the high fidelity eigenvectors.

5. Analyzing the performance of our method as a function of spectral graph indi-

cates that our method reduces cost more on harder problems.

By analyzing the numerical accuracy of iterative methods along with the data
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mining objective function, we are able to gain new insights. This opens new ques-

tions about the relationship to preconditioning, multiway cuts, and higher dimen-

sional techniques. The conclusions in this work should be robust to improvements in

preconditioning. The guarantees of our stopping criteria are valid and still decrease

the number of iterations. When developing preconditioners for these problems, one

must be aware of the effect on data mining accuracy. The effect of this method on

hierarchical spectral partitioning is an open question.

In order to apply the proof of ψ ≤
√

2λ, one must ensure |µ− λ1| = mini|µ− λi|.

While we show empirically that stopping when φ < ψ provides low conductance

cuts, the proof used in the guarantee does not apply without that hypothesis. For

some difficult problems this condition is not ensured by the IRAM solver. Further

study of approximating arbitrary linear combinations of the low energy eigenvectors

is necessary to improve these techniques.
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CHAPTER VI

SPECTRAL PARTITIONING WITH BLENDS OF

EIGENVECTORS

In order to understand the numerical aspects of spectral partitioning, we examine the

convergence of iterative solvers to invariant subspaces rather than single eigenvectors.

Experiments with the stochastic block model from Section 5.2 show that linear com-

binations of the leading eigenvectors lead to good partitions. Section 6.2 proves error

bounds for invariant subspaces, and Section 6.3 analyzes a model problem to show

that when the graph has the right structure, we can find large residual tolerances

that lead to correct partitions.

Spectral partitioning covers a broad class of methods that use eigenvectors and

eigenvalues to partition graphs. Convergence analysis of eigensolvers uses the distri-

bution of energy in the Fourier basis of the matrix in order to quantify the convergence

rate and conditioning of the problem. In the case of ill conditioned problems, the en-

ergy is spread among several eigenvalues close together. Blends of eigenvectors (linear

combinations of eigenvectors with energy concentrated on only a subset of eigenvec-

tors) model the output of eigensolvers. By treating blends of eigenvectors as the

target of the computation and not a side effect of the approximation, we show better

error bounds for their computation. For a model graph partitioning problem, we are

able to prove the utility of computing spectral blends. These ideas are derived from

an analysis of the ring of cliques. This analysis leads to evidence that as the number

of parts increases, the partitioning problem becomes harder, and as the size of the

parts increases, the problem is easier, although the run-times still increase in problem

size. Localization in eigenvectors is used to show that a blend of top eigenvectors
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partition the ring of cliques graphs.

We provide new results connecting data analysis error to numerical accuracy in the

context of spectral graph partitioning. We provide pointwise convergence guarantees

so that spectral blends (linear combinations of eigenvectors) can be employed to solve

data analysis problems with confidence in their accuracy. We apply this theory to

an accessible model problem, the ring of cliques, by deriving the relevant eigenpairs

and finding necessary and sufficient solver tolerances. Analysis of the ring of cliques

provides an upper bound on eigensolver tolerances for graph partitioning problems.

These results bridge the gap between linear algebra based data analysis methods and

the convergence theory of iterative approximation methods. These results explain

how the combinatorial structure of a problem can be recovered much faster than

numerically accurate solutions to the associated linear algebra problem.

6.1 Introduction

Spectral methods are a valuable tool for finding cluster structure in data. While all

spectral methods rely on approximating the eigenvectors of a matrix, the impact of

numerical accuracy on the quality of the partitions is not fully understood. Spectral

partitioning methods proceed in two steps, first one or more vectors approximat-

ing eigenvectors of a graph matrix are computed, and then a partitioning scheme is

applied to those vectors. While many theoretical results quantify the relationship

between the exact solution to the numerical problem and the solution to the orig-

inal data mining problem, few address data analysis errors introduced by error in

the numerical solution. For instance, [48] studies the runtime and quality (in terms

of conductance) of partitioning algorithms including spectral methods. Often the

eigenvector computation is used as a primitive operation without accounting for the

trade-off between run time and numerical accuracy. Guattery and Miller [37] studies
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various methods of applying exact eigenvectors to partition graphs by producing ex-

amples where each variation does not find the optimal cut. This chapter addresses

the effect of numerical error in the eigenvector computation on the quality of sweep

cuts which reveal graph structure.

In order to understand the impact of numerical error on spectral partitioning,

we study both general matrices and a specific family of graphs. Finding error and

residual tolerances for general graphs is a difficult problem. Section 6.2 provides

tools for deriving a residual tolerance for arbitrary graphs. Section 6.3 analyzes a

model problem with clear cluster structure, where linear combinations of eigenvectors

represent a space of multiple good partitions, and applies Section 6.2 results to derive

a residual tolerance sufficient for solving this model problem. This use of a model

problem is well established in the linear algebra literature where the Laplace equation

on a regular grid is common in papers and software regarding the solution of systems

of equations. Analysis of this model problem allows us to derive a solver tolerance for

correctly recovering the clusters with a sweep cut scheme. This analysis illustrates

the difference between accurately solving the equation and correctly recovering the

combinatorial structure.

This approach to approximate eigenvectors can be applied to other applications

where a numerical method solves a data mining problem, such as solving personalized

Pagerank as a linear system [19] to rank vertices in a graph, or evaluating commute

times [20] to produce a metric distance on the vertices. These methods also apply

numerical solvers to infer a combinatorial or data analysis structure from the graph.

A similar treatment, in terms of a model problem, of these methods would benefit

our understanding of the relationship between numerical accuracy and data analysis

accuracy.

Here we introduce the necessary concepts of data analysis quality and eigensolver

accuracy. For this work we focus on partitioning graphs to minimize conductance
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as defined in Equation 3. For any vector x, represent the sweep cut of x at t as in

Equation (21).

S = Sx(t) = {i | xi > t} (21)

We denote by φ (x) the minimal conductance of a sweep cut of x, that is mint φ (Sx(t)).

This chapter treats deals with applications that can accept any partition with con-

ductance less than a prescribed value ψ.

The accuracy of a solution to the eigenvector problem can be measured in three

quantities: Rayleigh quotient, error, and residual. Spectral methods for finding low-

conductance partitions rely on computing vectors x and corresponding scalars λ that

solve the equations L̂x = λx for some graph-associated matrix L̂. The Rayleigh

quotient, µ = xT L̂x is an approximation to the eigenvalue λ. The error ‖v− x‖,

where v is the closest exact solution, is not accessible to a solver in general. The

solver can use the norm of the eigenresidual,
∥∥∥L̂x− µx

∥∥∥, to determine when to stop

iterations. For practical application of an eigensolver one must choose a residual

tolerance
∥∥∥L̂x− µx

∥∥∥ < ε small enough to ensure that the computed eigenvector is

accurate enough to solve the application problem. This chapter provides concrete

residual tolerances for a specific model problem and provides tools for finding such

tolerances for more general graphs.

This chapter uses the normalized adjacency matrix D−
1
2AD−

1
2 = Â as defined

in Table 1. We apply the identity λk(L̂) = 1 − λn−k(Â) to replace computations

involving small eigenvalues of the normalized Laplacian matrix with computations

involving large eigenvalues of the adjacency matrix.

Conductance is an appropriate measure of partition quality for spectral partition-

ing because of Cheeger’s inequality Theorem 3 which bounds the conductance of the

graph in terms of the eigenvalues of the Laplacian matrix. A more general form of

Cheeger’s inequality is proven in [67].

Theorem 3. General Cheeger Inequality [67] If x is a unit vector orthogonal to D 1
2 1
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such that xT L̂x = µ then D−
1
2 x has a sweep cut S such that φ (S) = φ (x) ≤

√
2µ.

When x satisfies L̂x = λ2x, φG ≤ φ
(
D−

1
2 x
)
≤
√

2λ2. This general form of

Cheeger’s inequality indicates that finding low-energy Laplacian eigenvectors is suffi-

cient for constructing low-conductance partitions of the graph.

In graph partitioning, the goal is to compute a partition of the graph that opti-

mizes the chosen objective. When applying spectral methods to graph partitioning,

our goal is not to compute very accurate eigenpairs, but instead to partition the vertex

set of a graph correctly. Our results on the model problem indicate that approximate

eigenvectors are sufficient to solve the data analysis problem and are much faster to

compute if the graph has the right structure.

6.1.1 A Model Problem

We use a simple model (the ring of cliques) to study the capabilities of spectral parti-

tioning algorithms, form theory to characterize performance, and potentially enhance

these algorithms. Such use of model problems is well-established in the numerical

analysis literature regarding iterative solutions to discretized partial differential equa-

tions (PDEs). The Dirichlet Laplacian on a unit square discretized on a Cartesian

lattice is a simple problem with known eigenpairs and is used to study the properties

of various eigensolvers. These simple model problems do not demonstrate the algo-

rithms perform well on real-world problems, but are incredibly important tools for

algorithm development and theoretical analysis. For spectral partitioning, the ring

of cliques is one candidate model problem for which we can derive complete knowl-

edge of the eigenpairs. In PDEs, the order of discretization error (difference between

continuous solution and discrete solution) provides the solver with a stopping crite-

rion. In spectral graph partitioning, we do not have this luxury, and we must develop

theory to understand how perturbations in a spectral embedding impact partitioning

quality. Another reason to develop a collection of model problems is to enable careful

90



study of this impact in well-understood situations.

In order to provide a striking example of our improved analysis, Section 6.3 studies

our model problem in detail. The goal is to understand when approximate eigenvec-

tors have sweep cuts that correctly identify graph structures. The ring of cliques has

been studied as “the most modular network” in order to demonstrate a resolution

limit in the modularity maximization procedure for community detection [30]. For

this family of highly structured graphs, the correct partition is unambiguous. We

use the ring of cliques to investigate how spectral embeddings for partitioning are

affected by numerical error. Because of the high degree of symmetry, the ring of

cliques allows for a thorough closed form analysis producing formulas for the eigen-

vectors and eigenvalues. A sweep cut using exact eigenvectors partitions the graph

with small conductance and successful recovery of all the clusters. We quantify the

effects of approximation error on sweep cut partitions of this graph. Our findings

demonstrate that despite a small spectral gap, which implies slow convergence of

non-preconditioned eigensolvers, the ring of cliques is well partitioned by low accu-

racy approximations to the eigenvectors.

Studying the ring of cliques provides guidance for practitioners on useful tolerances

for eigensolvers. We are able to construct the smallest perturbation that induces a

mistake in the sweep cut partition. This perturbation shows that when looking for

clusters of size b in a general graph the eigensolver tolerance must be smaller than

O
(
b−

1
2
)
. Analysis of the ring of cliques provides an upper bound on the eigensolver

accuracy that is sufficient to recover community structure.

6.1.2 Contributions

This chapter provides the following contributions. Section 6.2 extends a known error

bound on the computation of eigenvectors to the computation of linear combinations

of eigenvectors. By extending this classical error bound to linear combinations of
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eigenvectors, we find a condition on the spectrum of where numerically accurate

blends are easy to achieve. Theorem 6 provides a general condition under which

approximate eigenvectors preserve sweep cuts. Section 6.3 analyzes a model problem

and derives necessary and sufficient error tolerances for solving the model problem,

which are essentially tight for some parameter regime. We show for the model problem

where the number of clusters is polynomial in the size of the clusters, the power

method takes O (1) iterations to identify the clusters.

6.1.3 Related Work

Iterative methods [58, 79] have been shown to provide fast approximate solutions

for a wide range of problems. Many iterative eigensolvers can be represented as

y = p(M)x where p is a polynomial applied to the matrix M times a vector. The

degree of p depends on the number of iterations of the method, which is controlled by

the eigenresidual tolerance ‖My− µy‖ < ε. The simplest such method is the power

method (Algorithm 1), which is easy to analyze because p(M) is always Mk where k

is the number of iterations. More sophisticated methods choose p(M) adaptively and

typically converge more quickly. A practical implementation of the Arnoldi method

can be found in [58], which is commonly used in practice.

Localized eigenvectors are essential to analysis of the ring of cliques. Cucuringu

and Mahoney examine the network analysis implications of localized interior eigen-

vectors in the spectrum of the co-voting network of US Senators [14]. The graph is

defined with connections between members of the same session of Congress who vote

together on the same bills and connections between individuals who are reelected to

consecutive sessions. The first 41 eigenvectors are oscillatory across the congressional

sessions with little variation between the vertices in the same session, but the next

eigenvectors are small in magnitude on most sessions, but take large positive values

on members of one party and large negative values on members of the other party
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within a few sessions. Thus blends of the dominant eigenvectors indicate the sessions

of Congress. The ring of cliques also exhibits globally periodic extremal eigenvectors

and localized interior eigenvectors due to its Kronecker product structure. We show

that the ring of cliques has a basis for an interior eigenspace with the nonzero en-

tries of each vector completely restricted to an individual clique. This localization

allows us to show that approximate eigenvectors recover the interesting combinatorial

structure.

Other work focuses on the impact of errors in measurement on the behavior of

data analysis algorithms. In the context of Gram (kernel) matrices, Huang et al. [44],

studies the effect of perturbing the original data points on the spectral partitioning

method. A similar line of investigation is pursued in [98], where data points are

quantized to reduce bandwidth in a distributed system. This work connects approxi-

mation with performance. If one can demonstrate that data analysis accuracy is not

affected too much, then one can use an algorithm which sacrifices accuracy to improve

performance. Our paper treats the data as correctly observed and handles error in

the iterative solver.

The impact of approximate numerical computing has been shown useful for sev-

eral applications. In [7], eigenvectors of a kernel matrix are approximated with the

power method and then k-means is applied to these approximations. The k-means

objective function is well approximated when using approximate eigenvectors. The

bounds given in [7] depend on using the k eigenvectors to partition into k parts and

depend on the kth spectral gap to control accuracy of approximation. Experiments

also show that k-means on the approximate eigenvectors is faster and sometimes more

accurate in terms of Normalized Mutual Information (NMI) compared to using exact

eigenvectors. Our paper focuses on partitioning into two clusters based on sweep cuts

of a single approximate eigenvector and makes a rigorous analysis of a model prob-

lem in order to understand how the numerical accuracy interacts with combinatorial
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structure of the data clusters. Pothen et al. [75], which used spectral partitioning for

distributed memory sparse matrix computation, recognized the value of low-accuracy

solutions. Approximate spectral coordinates are used to reorder matrices before con-

ducting high accuracy linear solves. Our paper contributes to the understanding of

how numerical approximation accuracy contributes to data analysis accuracy.

6.2 Blends of Eigenvectors

In order to understand the relationship between eigensolver error and graph parti-

tioning, we study error bounds and the effect of pointwise error on the sweep cut

procedure. Theorems 4 and 5 bound the error to a subspace in terms of the residual

and quantities derived from the eigenvalues of the matrix. This control over the error

is then used in Theorem 6 to relate eigenresidual to the conductance of a sweep cut

of the graph. These results apply to general matrices. Although a small spectral gap

implies poor control on the error to a single eigenvector, we derive a condition where

low accuracy approximations effectively partition the graph. Section 6.3 applies these

theorems to a special family of graphs to show that blends are faster to compute and

provide nearly optimal partitions.

6.2.1 Converging to a Single Eigenspace

Let L̂ ∈ Rn×n, L̂ = L̂T be a general symmetric matrix. Consider the solutions

to the equation L̂v = λv. Because L̂ is symmetric, there are n eigenvalues in R

(counting multiplicities). The set of all eigenvalues is the spectrum λ(L̂), which we

order decreasingly as λ1 ≥ λ2 ≥ · · · ≥ λn. For k = 1, . . . , n, let vk be an eigenvector

associated with λk, L̂vk = λkvk, such that vTk vl = 0 whenever l 6= k. Define the

eigenspace associated with λk as the invariant subspace associated with λk, that is

X k :=
{

x ∈ Rn : L̂x = λkx
}
.

These definitions imply dim(X k) = mult(λk) and X k = X l when λk = λl.
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Remark 1. The results in this section are stated and proved in terms of generic

symmetric matrix L̂ because they apply beyond spectral graph theory. Spectral parti-

tioning methods use the eigenvectors of L̂ = I− Â. Counting eigenvalues from largest

to smallest starting with 1, we see λ2(Â) = λn−1(L̂) with the same eigenvectors. Let-

ting k = D1/21
∥∥∥D1/21

∥∥∥−1
, the normalized eigenvector of Â associated with λ1(Â) = 1,

one can use L̂ = Â − kkt in the results of this section. Subtracting kkT moves the

eigenvalue 1 to 0, or k is an eigenvector associated with 0 ∈ λ(Â − kkt). Thus, for

this L̂ and for k where λk(L̂) > 0, we have

λk(L̂) = λk+1(Â).

In particular, for the Fiedler eigenvalue, λ1(L̂) = λ2(Â) = 1 − λn−1(L̂), and the

Fiedler vectors in the associated eigenspace correspond to extremal eigenvalue λ1(L̂).

Computationally, implementations of iterative methods approximating the eigenvec-

tors of λ2(Â) perform better with a routine applying the operator Â− kkt.

Let (x, µ), x ∈ Rn, µ ∈ R, be an approximate eigenpair of L̂ with ‖x‖ = 1

and µ = xT L̂x, the Rayleigh quotient, which minimizes the function
∥∥∥L̂x− θx

∥∥∥ over

all real values θ. Define the two-norm of the eigenresidual as ε =
∥∥∥L̂x− µx

∥∥∥. As

in [73, 50], we have a simple eigenvalue bound. By decomposing x in the eigenbasis

x = ∑n
k=1 αkvk, we see

ε2 =
∥∥∥L̂x− µx

∥∥∥2
=

n∑
k=1

α2
k(λk − µ)2 ≥

(
n∑
k=1

α2
k

)(
min

1≤k≤n
(λ− µ)2

)
meaning there exists an eigenvalue λk within ε of µ,

min
1≤k≤n

|λk − µ| ≤ ε.

Also in [73], we have bounds estimating convergence to an eigenspace in angle.

Define the eigengap for λk as δk = minλ∈λ(L̂)\λk |λk − λ|. Moreover, if ε is small

compared to δk there exists a normalized eigenvector v ∈ X k with which x has a

small angle,
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min
v∈Xk

√
1− 〈x, v 〉2 ≤ ε

δk
.

Instead of presenting a proof of this well-known result, we derive a similar bound

for `2 and point-wise approximation to an eigenspace associated with an extremal

eigenvector.

Theorem 4. Consider approximate eigenpair (x, µ) of symmetric L̂ ∈ Rn×n with

‖x‖ = 1 and µ = xT L̂x. Assume

|µ− λ1| < min
λ∈λ(L̂)\λ1

|µ− λ|.

Given eigenresidual ε and eigengap δ1, there exists an eigenvector v ∈ X 1, with

‖v‖ = 1, and error bound

‖x− v‖ ≤
√

8ε
δ1

.

Proof. Let αv be the closest vector in X 1 to x. Decompose x into its eigenvector

components within X 1 and perpendicular to X 1, x = αv +∑
vk⊥X 1 αkvk. Because µ

is closer to λ1 than any other eigenvalue, we have

ε2 = |λ1 − µ|2α2 +
∑

vk⊥Xk
|λk − µ|2α2

k ≥
∑

vk⊥Xk
|λk − µ|2α2

k ≥
δ2

1
4

∑
vk⊥Xk

α2
k.

Rearranging gives

4ε2
δ2

1
≥

∑
vk⊥Xk

α2
k = 1− α2.

‖x− v‖2 = ‖x− αv‖2 + ‖v− αv‖2 ≤ ‖x− αv‖2 + (1− α)2 ≤ 2(1− α2) ≤ 8ε2
δ2

1
,
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This result implies,

1
n

∑
i∈V
|xi − vi|2 ≤ ‖x− v‖2 ≤ 8ε2

nδ2
1

so if ε2/n is small compared to the δ2
1, then the average average error squared is also

small. Moreover we have a point-wise error bound,

max
i∈V
|xi − vi| ≤ ‖x− v‖ ≤

√
8ε
δ1

For a large graph, it is typical that Fiedler eigenvalue is so close to the next-to-

largest eigenvalue, that the error bounds demand an extremely small eigenresidual

for convergence. Note that this error analysis is independent of the algorithm used

to compute the solution. Choosing x = v3 shows that the condition |µ − λ1| <

minλ∈λ(L̂)\λ1
|µ − λ| is necessary. Thus, for matrices L̂ with small δ, we need to

remove this condition. When the δ is small, a reasonable number of iterations of an

eigensolver may produce a vector x with xT L̂x close to λ1, which may not be very

close to the true extremal eigenspace. In this case we examine convergence to a linear

combination of eigenvectors associated with a range of eigenvalues.

In some situations, a small spectral gap does not imply that the graph is difficult

to partition. Section 6.3 describes a class of graphs that are easy to partition with an

approximate eigenvector, but for which calculating an eigenvector with close point-

wise approximation is extremely costly. Let G0 be the ring of cliques in Section 6.3.1

and form G by weighting one internal edge (i, j) with 1− η. If the edge is chosen so

that i and j are both interior vertices (no connections outside their blocks) then the

spectral gap for G gets arbitrarily small as η → 0 by We omit this algebra, but note

it yields

δ ≤ cη2

(b− 1)2 ,

where c < 1 is a positive constant independent of η.
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6.2.2 Converging to a Subspace Spanned by Multiple Eigenspaces

This section generalizes the previous error bound to the distance between x and a

subspace spanned by the eigenvectors associated with a range of eigenvalues. Assume

that linear combinations of eigenvectors associated with a range of eigenvalues [λq, λp]

are satisfactory for subsequent data analysis algorithms. If the Rayleigh quotient is

within [λq, λp] and the eigenresidual is smaller than the distance between µ and any

eigenvalue outside [λq, λp], then the following theorem holds. The following theorem

is a consequence of the Davis–Kahan Theorem [18]. It is presented here in this form

for clarity..

Theorem 5. Consider approximate eigenpair (x, µ) of symmetric L̂ ∈ Rn×n with

‖x‖ = 1 and µ = xT L̂x ∈ [λq, λp]. Define

δp,q(µ) = min
{k<p}∪{k>q}

|λk − µ| and X q
p :=

q⊗
k=p
X k.

Given eigenresidual ε =
∥∥∥L̂x− µx

∥∥∥ ≤ min(µ− λq−1, λp+1 − µ) there exists a vector

v ∈ X q
p, with ‖v‖ = 1, `2 error bound,

‖x− v‖ ≤
√

2ε
δp,q(µ) ,

Proof. Let x = ∑n
k=1 αkvk and Πx = ∑q

k=p αkvk, the `2-orthogonal projection onto

X q
p. Note ∑n

k=1 α
2
k = 1. In the case where ‖Πx‖ = 1, we can let v = x and see

the bound is clearly satisfied. For ‖Πx‖ < 1, we first demonstrate that ‖x− Πx‖ is

controlled by ε,
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ε2 =
∥∥∥L̂x− µx

∥∥∥2

ε2 =
n∑
k=1

α2
k|λk − µ|2

ε2 =
∑

{k<p}∪{k>q}
α2
k|λk − µ|2 +

q∑
k=p

α2
k|λk − µ|2

ε2 ≥ δp,q(µ)2 ∑
{k<p}∪{k>q}

α2
k +

q∑
k=p

α2
k|λk − µ|2

ε2 ≥ δp,q(µ)2 ∑
{k<p}∪{k>q}

α2
k

ε2 ≥ δp,q(µ)2

1−
q∑

k=p
α2
k


ε

δp,q(µ) ≥ ‖x− Πx‖ .

There is a unit vector in X q
p that is also within some factor of ε to x. Let v =

Πx/ ‖Πx‖, then ‖v− Πx‖ = 1− ‖Πx‖. We have

‖Πx‖2 + ‖(I − Π)x‖2 = 1

‖Πx‖2 = 1− ‖(I − Π)x‖2

‖Πx‖2 ≥ 1− ε2

δp,q(µ)2

‖Πx‖ ≥

√√√√1− ε2

δp,q(µ)2 .

Using the inequality a ≤
√
a for a ∈ (0, 1), we see

‖v− Πx‖ = 1− ‖Πx‖ ≤ 1−

√√√√1− ε2

δp,q(µ)2 ≤
ε

δp,q(µ) .

Then, because (x− Πx)T (Πx− v) = 0, we have

‖x− v‖2 = ‖x− Πx‖2 + ‖Πx− v‖2 ≤ 2ε2
δp,q(µ)2 .
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Remark 2. Note that the size of the blend gap, δp,q(µ), is dependent on i) the size

of |λp − λq|, ii) how internal Rayleigh quotient µ is within [λq, λp], iii) and how far

the exterior eigenvalues are, |λq − λq+1| and |λp−1 − λp|. For a problem where the

spectrum is not known a priori, it is difficult to state an acceptable interval [λq, λp]

for accomplishing a given data mining task. Section 6.3.2 provides an example where

one can choose [λq, λp] a priori. The Congress graph has λ41−λ42 ≥ 0.4 and the first

41 eigenvectors indicate the natural clustering of the graph into sessions [14]. This

analysis thus applies to this real world network.

For our application, p = 1 and δpq = µ−λq+1
(
Â− kkt

)
≥ λq−λq+1, which can be

much larger than the spectral gap λ1(Â−kkt)−λ2(Â−kkt). In Section 6.2.1 the goal

of computation is a single eigenvector and the output of the approximation is a blend

of eigenvectors, the coefficients of the output in the eigenbasis of the matrix describes

the error introduced by approximation. The goal of computation in Section 6.2.2 is

a blend of eigenvectors, and we improve the error bound when the spectral gap is

small.

In order to relate numerical accuracy to conductance for general graphs we ex-

amine the impact of pointwise error on sweep cuts. For any prescribed conductance

value ψ, we derive a condition on vectors v such that we can guarantee that small

perturbations of v have conductance less than or equal to ψ. Let Sv(t) represent the

sweep cut of v at t as in Equation (21).

Lemma 3. For any graph G, vector v ∈ Rn and scalar ψ > 0, define Tψ(v) = {t |

φ (Sv(t)) ≤ ψ}. Let gv(t) = mini|vi − t| and gv = maxt∈Tψ(v) gv(t). If ‖z‖∞ < gv,

then φ (v + z) ≤ ψ.

Proof. If Sv(t) = Sv+z(t) we can apply φ (v + z) < φ (Sv+z(t)) = φ (Sv(t)) ≤ ψ.

Sv(t) = Sv+z(t) if and only if sign(vi + zi − t) = sign(vi − t) for all i. By checking

cases, one can see that ‖z‖∞ < mini|vi − t| is sufficient to guarantee that vi + zi − t

has the same sign as vi − t.
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Note that Lemma 3 is not a necessary condition — z = 1
2(v− t1) is a much larger

perturbation of v such that φ (v + z) ≤ ψ. Lemma 3 defines gv as a measure of

sensitivity of a single vector with respect to preserving sweep cuts of conductance less

than or equal to ψ. For vectors v with small gv, a small perturbation can disrupt the

sweep cuts which achieve conductance less than ψ. By defining the sensitivity of an

invariant subspace appropriately, Theorem 6 provides a path to deriving a residual

tolerance for arbitrary graphs. The minimum and maximum degree of G are denoted

by dmin, dmax.

Theorem 6. Let G be a graph and ψ > 0. Define V = span{D− 1
2 v1 . . . D

− 1
2 vq},

where for j ∈ {1 . . . q} Âvj = λqvj and vj are orthogonal. For any vector x, let

µ = xT Âx and δp,q(µ) = min{k<p}∪{k>q} |λk − µ|. For any q ∈ V , let gv be defined

as in Lemma 3. Define g = minv∈V,‖v‖2=1 gv. If
∥∥∥Âx− µx

∥∥∥ < 1√
2

√
dmin
dmax

δp,q(µ)g, then

φ
(
D−

1
2 x
)
≤ ψ.

Proof. By Theorem 5 applied to x, there is a unit vector q ∈ Span{v1 . . .vq} such

that ‖x− q‖∞ ≤ ‖x− q‖2 <
√

dmin
dmax

g. Define z = (D− 1
2 x − v) ‖v‖−1, where v =

D−
1
2 q ∈ V . By scaling and normalizing we see

‖z‖2 =

∥∥∥D− 1
2 x−D− 1

2 q
∥∥∥

2∥∥∥D− 1
2 q
∥∥∥

2

<

√
dmax
dmin

‖x− q‖ < g

Since

‖z‖∞ < g = min
v∈V,‖v‖2=1

max
t∈Tv

min
i∈{1...n}

|vi − t| < gv,

Lemma 3 implies φ
(
D−

1
2 x
)
≤ ψ.

If one can bound the value of g from below, then Theorem 6 gives a residual

tolerance for the eigenvector approximation when using sweep cuts to partition the

graph. Section 6.3.3 applies this theorem to the ring of cliques family of graphs.

This section connects the eigenresidual to the error when computing blends of

eigenvectors, and quantifies the impact of error on the sweep cut procedure. If the
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eigengap is small enough, then one cannot guarantee that the Rayleigh quotient is

closest to the Fiedler value, thus one cannot guarantee that the computed eigenvector

is close to the desired eigenvector. In this small gap setting, a small eigenresidual

indicates that the computed vector is close to the desired invariant subspace. The-

orem 6 shows that vectors with small eigenresidual preserve low conductance sweep

cuts for general graphs. Theorem 6 illustrates how the residual tolerance depends on

both the blend gap δp,q(µ) and the sensitivity g of the eigenvectors. The following

section applies this theory to the ring of cliques in order to derive solver tolerances

for graph partitioning.

6.3 The Ring of Cliques

To demonstrate the theory developed in Section 6.2, we employ a previously studied

model problem, the ring of cliques [30]. Theorems 7 and 8 derive explicit formulas

for all eigenvalues and eigenvectors. These formulas determine the relevant residual

tolerance. Moreover, complete spectral knowledge gives a strong understanding of

the convergence properties of simple iterative methods.

The ring of cliques has several attractive properties for analysis of spectral parti-

tioning. The community structure is as extreme as possible for a connected graph,

so the solution is well-defined. Also, theorems about block circulant matrices [85]

produce closed form solutions to the eigenvector problem. This graph serves as a

canonical example of when solving an eigenproblem accurately is unnecessarily ex-

pensive to achieve data analysis success. This example shows that it is possible for the

combinatorial structure of the data to be revealed faster than the algebraic structure

of the associated matrices. The graph is simple to partition accurately as there are

many cuts relatively close to the minimum, any robust partitioning algorithm will

correctly recover the cliques in this graph. However, a Fiedler eigenvector is difficult

to calculate with guarantees of point-wise accuracy when using non-preconditioned
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iterative methods. An algorithm that computes a highly accurate eigenpair will be

inefficient on large problem instances. Sections 6.3.3 and 6.3.4 apply the tools from

Section 6.2 in order to derive a residual tolerance sufficient for solving the ring of

cliques. Section 6.3.5 bounds the number of power method iterations necessary to re-

cover the ring of cliques, and Section 6.3.6 validates and illustrates these observations

with an experiment.

6.3.1 Definition

A q-ring of b-cliques, Rb,q, is parameterized by a block size b and a number of blocks

q. Each block represents a clique of size b and all possible internal connections exist

within each individual set of b vertices. For each block, there is a single vertex called

the corner connected to the corners of the adjacent cliques. These q corners form

a ring. Each block also has (b − 1) internal vertices that have no edges leaving the

block. The adjacency matrix associated with Rb,q is a sum of tensor products of

simple matrices (identity, cycle, and rank-one matrices). We have

A = Iq ⊗ (1b1Tb − Ib) + Cq ⊗ (e1eT1 ),

where the Ik are identity matrices of dimension k, 1b is a constant vector with dimen-

sion b, e1 ∈ Rb is the cardinal vector with a one in its first entry and zero elsewhere,

and Cq is the adjacency matrix of a cycle graph on q vertices. The matrix A and

other matrices associated with this graph are block-circulant, which implies the eigen-

vectors are the Kronecker product of a periodic vector and the eigenvectors of a small

eigenproblem defined by structure in the blocks. Figure 18a shows the structure of

the graph, and Figure 18b shows the block structure of the adjacency matrix.

Any partition that breaks a clique cuts at least b − 2 edges while any partition

that does not break any cliques cuts at most q edges. The minimum conductance

partition is break the ring into two contiguous halves by cutting exactly two edges.

There are q/2 partitions that achieve this minimal cut for even q. We will consider
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(a) A drawing of Rb,q laid out to show
structure.



Jb e1eT1 0 · · · e1eT1
e1eT1 Jb e1eT1 0

0 e1eT1 Jb e1eT1 0
... . . . . . . . . .

0 e1eT1 Jb e1eT1
e1eT1 0 e1eT1 Jb



where Jb = 1b1Tb − Ib.

(b) The adjacency matrix of Rb,q has
block circulant structure.

any of these equivalent. Any partition that breaks fewer than b − 2 edges will be

regarded as a good, but not optimal cut. The fact that many partitions are close to

optimal and the vast majority of partitions are very far from optimal is a feature of

this model problem.

6.3.2 Eigenpairs of ROC Normalized Adjacency Matrix

0.0 0.2 0.4 0.6 0.8 1.0 1.2

λ
(k)
2 Xnoiseλ

(k)
1

Figure 19: Distribution of eigenvalues of L̂ for Rb=8,q=32. The gray bars represent a
histogram of the eigenvalues, including multiplicities. The red diamond represents a
large multiplicity of (n− 2q) at −(b− 1)−1 corresponding to X noise (see Theorem 7).
There is a green interval near 1 containing the portion of the spectrum given by λ(k)

1
and a blue interval near 0 containing λ(k)

1 for k = 0, 1, . . . bq/2c (see Theorem 8). The
open left endpoint of each interval signifies that the eigenvalue corresponding to λ(k)

dq/2e
is not present when q is odd. Small eigenvalues of the Laplacian matrix correspond
to large eigenvalues of the Adjacency matrix.

Due to the block-circulant structure of the ring of cliques, we can compute the
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eigenvalues and eigenvectors in a closed form. Let ck,q, sk,q be the periodic vectors as

defined in Equation (22).

ck,qj = cos
(

2πk
q
j

)
sk,qj = sin

(
2πk
q
j

)
for j = {1 . . . q} (22)

These vectors are periodic functions with k cycles through the interval [−1, 1] sampled

at the qth roots of unity. We employ results from [41] and [85] to derive the full

spectrum of Â and a full eigenbasis. In summary, there is an eigenvalue −(b − 1)−1

with a large multiplicity, n − 2q = (b − 2)q. Furthermore, the eigenspace associated

with −(b − 1)−1 can be represented in a basis that contains variation internal to

each clique, that is with eigenvectors of the form h⊗ ei where ei is the ith standard

basis vector for each i ∈ {1 . . . q}. For this reason, we call λnoise = −(b − 1)−1 a

noise eigenvalue. The positive eigenvalues are called signal eigenvalues. The signal

eigenvectors have the form pk,q ⊗ (ξe1 + g1), where pk,q is either sk,q or ck,q, e1 is one

in its first entry, g1 is zero in its first entry and one elsewhere, and ξ is a scalar. All of

the internal members of the cliques take the same value in any eigenvector associated

with λk(Â) 6= (b− 1)−1. The slowly varying eigenvectors (associated with λk(Â) ≈ 1)

give nearly optimal partitions of the graph. Linear combinations of these slowly

varying signal eigenvectors also give low conductance partitions. There are q−1 non-

localized eigenvectors with small positive or negative eigenvalues. These eigenvectors

have the internal clique members and their corner with different sign which causes

them to misclassify some of the corners. The distribution of the eigenvalues of Rb,q is

illustrated in Figure 19. The rest of Section 6.3.2 contains formulas for the eigenpairs

and the details of their derivations.

Theorem 7. (Rb,q Noise Eigenpairs) There is an eigenspace Xnoise of multiplicity

(n− 2q) associated with eigenvalue

λnoise = −1
b− 1 .
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Any vector that is zero-valued on all corner vertices and sums to zero on each indi-

vidual set of internal vertices is in Xnoise.

Proof. This is a specific case of locally supported eigenvectors [41] (LSEVs) brought

on by a high level of local symmetry in Rb,q. For each clique K, let x = ei − ej for

vertices i and j that are internal vertices of K. Both x and Âx are zero valued outside

of K. Internally, due to D−1/2(ei − ej) = (b − 1)−1/2(ei − ej) and the orthogonality

1Tb (ei − ej) = 0, we see

Â(ei − ej) = 1
b− 1(1b1Tb − I)(ei − ej) = −1

b− 1(ei − ej).

Thus, x is an eigenvector of Â associated with −1/(b − 1). There are (b − 2) such

linearly independent eigenvectors for K, and the same is true for all q cliques. Thus,

we have a multiplicity of q(b− 2) = n− 2q for eigenvalue λnoise = (b− 1)−1.

These vectors are in the interior of the spectrum and thus are very well atten-

uated by the power-method1. The remaining eigenvectors must be constant on the

internal nodes of the blocks because of orthogonality to the LSEVs which are spanned

by ei − ej. In any vector v the projection of v onto the global eigenvectors defines

a mean value for the elements of the blocks. Since all of the eigenvectors of inter-

est are orthogonal to the constant vector, their entries must sum to zero. So the

LSEVs cannot change the mean of a block. The remaining eigenvectors are given in

Theorem 8.

1In a single iteration the shifted power method, xk+1 = (Â+ (b− 1)−1
I)xk, perfectly eliminates

all of the energy in the (n − 2q)-dimensional eigenspace associated with λ = −(b− 1)−1. If the
graph is perturbed with the addition and removal of a few edges, the eigenvectors become slightly
less localized and the associated eigenvalues spread out to a short range of values and are not
perfectly eliminated in a single iteration. However, the power method or a Krylov method will
rapidly attenuate the energy in the associated eigenspaces.
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Theorem 8. (Rb,q Signal Eigenpairs) For k = 0, . . . d q2e − 1, define

αk = 2 cos
(

2πk
q

)

βk = 1
2

αk
√
b− 1
b+ 1 −

√
b2 − 1 +

√
b+ 1
b− 1


ξ

(k)
1 = βk +

√
β2
k + (b− 1)

ξ
(k)
2 = βk −

√
β2
k + (b− 1)

λ
(k)
1 = ξ

(k)
1√
b2 − 1

+ 1− 1
b− 1

λ
(k)
2 = ξ

(k)
2√
b2 − 1

+ 1− 1
b− 1

Let 1b and 1q be the vectors of all ones in Rb and Rq, respectively. Also let

e1 ∈ Rb have a one in its first entry, zero elsewhere and g1 = 1b − e1. We have

the following eigenpairs.

(i) For k = 0, we have 2 eigenvalues of Â, λ(0)
1 and λ

(0)
2 , each with multiplicity 1.

The associated (unnormalized) eigenvectors are

v(0)
1 =

√
b+ 1(1q ⊗ e1) +

√
b− 1(1q ⊗ g1)

and

v(0)
2 = (b− 1)3/2(1q ⊗ e1)−

√
b+ 1(1q ⊗ g1)

respectively.

(ii) For each k = 1, ..., d q2e− 1, we have 2 eigenvalues of Â, λ(k)
1 and λ(k)

2 , each with

multiplicity 2. Two independent (unnormalized) eigenvectors associated with

λ
(k)
1 are

v(k)
1,1 = ck,q ⊗

(
ξ

(k)
1 e1 + g1

)
and v(k)

1,2 = sk,q ⊗
(
ξ

(k)
1 e1 + g1

)
.
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Two independent (unnormalized) eigenvectors associated with λ(k)
2 are

v(k)
2,1 = ck,q ⊗

(
ξ

(k)
2 e1 + g1

)
and v(k)

2,2 = sk,q ⊗
(
ξ

(k)
2 e1 + g1

)
.

(iii) If q is even, then for k = q
2 , we have 2 eigenvalues of Â, λ(q/2)

1 and λ(q/2)
2 , each

with multiplicity 1. The associated (unnormalized) eigenvectors are

v(q/2)
1 = cq/2,q ⊗

(
ξ

(q/2)
1 e1 + g1

)

and

v(q/2)
2 = sq/2,q ⊗

(
ξ

(q/2)
2 e1 + g1

)
respectively.

Note if values of λ(k)
p and λ(l)

q coincide for (p, k) 6= (q, l) the eigenvalue multiplici-

ties add up.

Proof. Let Db = diag((b+ 1)1− 2g1). Matrix Â can be organized into blocks that all

co-commute with each other implying the eigenvectors are tensor products involving

the eigenvectors of the blocks. We decompose Â = (Iq ⊗B1) + (Cq ⊗B2), where Iq is

the identity in Rq, Cq is the adjacency matrix of a q- cycle, (Cq)ij = 1⇐⇒ |i− j| = 1

mod q, B1 = D
−1/2
b (1b1Tb − I)D−1/2

b , and B2 = 1
b+1e1eT1 . Because any eigenvector

y of Cq is also an eigenvector of Iq, eigenvectors of Â have the form y ⊗ z. Vectors

z are derived by plugging various eigenvectors of Cq into y and solving for a set of

constraints that z must satisfy for (y⊗ z) to be an eigenvector associated with Â.

We describe the eigendecomposition of Cq. For k = 0, . . . , d q2e−1, αk = 2 cos(2π/k)

is an eigenvalue of Cq. For k = 0, α0 is simple, and 1b is the associated eigenvector.

For k = 1, . . . d q2e-1, αk has multiplicity 2 and the associated 2-dimensional eigenspace

is span({ck,q, sk,q}), as defined in (22). If q is even, then αq/2 is a simple eigenvalue as

well and the associated eigenvector is cq/2,q. Letting y be an eigenvector associated
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with αk and using the properties of Kronecker products, we see

Â(y⊗ z) = [(Iq ⊗B1) + (Cq ⊗B2)] (y⊗ z) = [(Iqy⊗B1z) + (Cqy⊗B2z)]

= [(y⊗B1z) + (αky⊗B2z)] = [(y⊗B1z) + (y⊗ αkB2z)]

= y⊗ (B1z + αkB2z) = y⊗ [(B1 + αkB2)z] .

Here we see that if z is an eigenvector ofHk := B1+αkB2, then (y⊗z) is an eigenvector

associated with Â. Observe that Hk = D
−1/2
b (1b1Tb + αke1eT1 − I)D−1/2

b is a scaling

of a rank-2 shift from the identity matrix, where we would expect 3 eigenvalues: two

simple and one of multiplicity (b− 2).

We can easily verify that there is a (b − 2)-dimensional eigenspace of Hk associ-

ated with −1/(b − 1). The tensor products of these vectors are an alternative basis

associated with the locally supported eigenvectors from Theorem 7. The associated

eigenspace of Hk is orthogonal to span({e1,g1}). Due to eigenvector orthogonal-

ity, the last two eigenvectors must be in the range of span({e1,g1}). Note that

Dp
be1 = (b+ 1)pe1 and Dp

bg1 = (b− 1)pg1. We use this to solve for these eigenvectors

and their associated eigenvalues in terms of αk and b,

Hk(ξe1 + g1) = λ(ξe1 + g1)

(1b1Tb + αke1eT1 − Ib)D
−1/2
b (ξe1 + g1) = λD

1/2
b (ξe1 + g1)

The right-hand side expands to

(
λξ
√
b+ 1

)
e1 +

(
λ
√
b− 1

)
g1,

The left-hand side expands and simplifies to(
ξ√
b+ 1

+
√
b− 1

)
(e1 + g1) +

(
ξαk√
b+ 1

− ξ√
b+ 1

)
e1 +

(
−1√
b− 1

)
g1 =(

ξαk√
b+ 1

+
√
b− 1

)
e1 +

(
ξ√
b+ 1

+
√
b− 1− 1√

b− 1

)
g1 =
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The coefficients of e1 and g1 must be equal, individually, because they are not

linearly dependent. Equating the left-hand and right-hand sides and simplifying gives

two nonlinear equations in ξ and λ,

ξαk
b+ 1 +

√
b− 1
b+ 1 = ξλ (23)

ξ√
b2 − 1

+ 1− 1
b− 1 = λ. (24)

Multiplying the second equation by ξ, setting the left-hand sides of both equations

equal to eliminate λ, then simplifying, yields the following quadratic equation in ξ,

ξ2 −

αk
√
b− 1
b+ 1 −

√
b2 − 1 +

√
b+ 1
b− 1

 ξ − (b− 1) = 0,

which is easily solved. Define

βk = 1
2

αk
√
b− 1
b+ 1 −

√
b2 − 1 +

√
b+ 1
b− 1

 and γk = b− 1.

Given ξ, λ is determined by the second equation in (24). The solution set to nonlinear

equations (23)-(24) is then

ξ
(k)
1 = βk +

√
β2
k + γk, λ

(k)
1 = ξ

(k)
1√
b2 − 1

+ 1− 1
b− 1 , and

ξ
(k)
2 = βk −

√
β2
k + γk, λ

(k)
2 = ξ

(k)
2√
b2 − 1

+ 1− 1
b− 1 .

Thus we have local eigenpairs of Hk, ((ξ(k)
1 e1 + g1), λ(k)

1 ) and ((ξ(k)
2 e1 + g1), λ(k)

2 ).

The local eigenpairs ((ξ(k)
1 e1 +g1), λ(k)

1 ) yield global eigenpairs of Â of the form ((ck⊗

(ξ(k)
1 e1 +g1)), λ(k)

1 ) and ((sk⊗ (ξ(k)
1 e1 +g1)), λ(k)

1 ). Similarly, ((ξ(k)
1 e1 +g1), λ(k)

2 ) yield

global eigenvectors of Â associated with λ(k)
2 . This accounts for the last 2q eigenpairs

of Â.

In order to illustrate these formulas, Figure 20 shows the computed eigenvectors for

the graph R16,10 along with the eigenvalues. Eigenvectors associated with eigenvalues

close to 1 have low conductance sweep cuts.
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λ2 =0.9984 λn−1 =−0.2609

λ4 =0.9939 λn−2 =−0.2479

0 20 40 60 80 100 120 140 160
vertex index

λ16 =0.9680

0 20 40 60 80 100 120 140 160
vertex index

λn−3 =−0.2479

Figure 20: The eigenvectors of Â are shown for R16,10. The eigenvectors with eigen-
values close to 1 (left) indicate the block structure with differing frequencies. The
eigenvectors close to −1 (right) assign opposite signs to the internal vertices and
corner vertices of each block.

Corollary 1. The asymptotic expansions of the eigenvalues are as follows.

(i) For the signal eigenpairs, we see

λ
(k)
1 = 1− 4− αk

2(b2 − 1) + 1
4(b− 1)2 + α2

k

4(b+ 1)2 +O(b−3)

(ii) For the non-signal (and non-noise) eigenpairs, we see

λ
(k)
2 = αk − 1

b+ 1 −
α2
k

4(b+ 1)2 −
αk

2(b2 − 1) −
1

4(b− 1)2 +O(b−3)

(iii) In particular, if q is even we have

λ2 = λ
(1)
1 ≈ 1−

[
2− cos

(
2π
q

)]
1

b2 − 1 + 1
4(b− 1)2 + cos2

(
2π
q

)
1

(b+ 1)2 ,

λq = λ
(q/2)
1 ≈ 1− 3

b2 − 1 + 1
4(b− 1)2 + 1

(b+ 1)2 ,

λq+1 = λ
(0)
2 ≈ 1

b+ 1 −
1

(b+ 1)2 −
1

b2 − 1 −
1

(b− 1)2 ,

λn = λ
(q/2)
2 ≈ −2

b+ 1 −
1

(b+ 1)2 + 1
b2 − 1 −

1
(b− 1)2 .
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In other words,

1− C2

b2 < λ2 < 1, 1− Cq
b2 < λq < 1,

0 < λq+1 <
Cq+1

b
, −Cn

b
< λn < 0,

where C2, Cq, Cq+1, and Cn are positive quantities of order 1.

Proof. These are seen through the formulas in Theorem 8 and first-order Taylor ex-

pansion of
√
β2
k + (b− 1) about leading asymptotic term 1

4((b2 − 1)2) and simplifica-

tion. Let θ =
√
b− 1 and η =

√
b+ 1. Then

β2
k = 1

4

(
αkθ

η
− θη + η

θ

)2

= α2
kθ

2

4η2 + θ2η2

4 + η2

4θ2 −
αkθ

2

2 + αk
2 −

η2

2 .

The first-order Taylor expansion we employ is
√
a2 + x = a + 1

2a
−1x + O(a−3x2),

which yields

√
β2
k + θ2 =

√√√√[θη
2

]2

+
[(

1− αk
2

)
θ2 − η2

2 + α2
kθ

2

4η2 + αk
2 + η2

4θ2

]

= θη

2 + 1
θη

[(
1− αk

2

)
θ2 − η2

2 + α2
kθ

2

4η2 + αk
2 + η2

4θ2

]
+O(b−2)

= θη

2 +
(

1− αk
2

)
θ

η
− η

2θ + α2
kθ

4η3 + αk
2θη + η

4θ3 +O(b−2).

Now, we see

ξ
(k)
1 = βk +

√
β2
k + θ2 = 1

2

(
αkθ

η
− θη + η

θ

)
+
√
βk + θ2

= θ

η
+ α2

kθ

4η3 + αk
2θη + η

4θ3 +O(b−2), and

ξ
(k)
2 = βk −

√
β2
k + θ2 = 1

2

(
αkθ

η
− θη + η

θ

)
−
√
βk + θ2

= −θη + (αk − 1) θ
η

+ η

θ
− α2

kθ

4η3 −
αk
2θη −

η

4θ3 +O(b−2).
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Then, noting η−1 − θ−1 = −2η−1θ−1, we see

λ
(k)
1 = 1− 1

θ2 + ξ
(k)
1
θη

= 1− 1
θ2 + 1

η2 + αk
2θ2η2 + 1

4θ4 + α2
k

4η4

= 1− 4− αk
2θ2η2 + 1

4θ4 + α2
k

4η4 +O(b−3).

Substituting in for θ and η gives the result presented in (i). Similarly, we see (ii) via

λ
(k)
2 = 1− 1

θ2 + ξ
(k)
2
θη

= αk − 1
η2 − α2

k

4η4 −
αk

2θ2η2 −
1

4θ4 +O(b−3).

Lastly, (iii) is seen by plugging in for specific values of k and αk = 2 cos
(

2πk
q

)
.

Remark 3. We observe several facts:

• The vector D−1/2v(0)
1 is the constant vector. It causes no errors, but does not

help to separate any of the cliques.

• The vectors D−1/2v(k)
1,1 and D−1/2v(k)

1,2 for k = {1 . . . dq/2e − 1} assign the same

sign to the corners as the internal members of each block and are associated

with positive eigenvalues. Note that we can consider all these eigenvectors as

signal eigenvectors,

X signal = span
{
v(1)

1 ,v(2)
1 , ...,v(dqe−1)

1

}
.

Because X signal ⊥ X noise, all sweep cuts of vectors in X signal keep internal

vertices of each clique together.

• If q is even, the vector D−1/2v(q/2)
2 has values at the corners of opposite sign to

the values of the internal vertices and the sign of each corner oscillates around

the ring. This is the most oscillatory global eigenvector.
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• The vectors D−1/2v(k)
2,1 and D−1/2v(k)

2,2 for k = {1 . . . dq/2e − 1} assign opposite

signs to the corners and the internal members of each block. If vectors make

large contributions to the blend we compute, then there is potential to misclassify

several of the corner vertices.
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Figure 21: Asymptotic estimates of spectral gaps (left) and Fiedler eigenvalues (right)
for rings of cliques with parameters b = 10, 100, 1000 and q = 2, 4, ..., 8096. Lines
represent leading-order terms derived in Theorems 9 and 10 and ’+’ represent actual
eigenvalues as given by the formulas in Theorem 8.

We use the previous result to derive asymptotic estimates of the gaps between

eigenvalues near 1 and the size of the Fiedler eigenvalue. These asymptotic esti-

mates are compact formulas in terms of b and q. Figure 21 verifies these estimates

empirically.

Theorem 9. (ROC Asymptotic Eigengap) For the graph Rb,q the spectral gap rel-

evant for computing an eigenvector associated with λ2(L̂) is asymptotically O (b−2q−2)

for large b and q.

Proof. Because λ2(Â) = λ3(Â), the eigenvalues of interest are λ2(Â) = λ
(1)
1 and

λ4(Â) = λ
(2)
1 . We will take Taylor expansions and collect the leading-order terms to

understand the asymptotic behavior. Define the scalar function f(x) =
√
x+ a, for

a constant a that we define below. Using the formulas in the previous result, we see

114



that λ(1)
1 − λ

(2)
1 =

ξ
(1)
1 − ξ

(2)
1√

b2 − 1
=
β1 − β2 +

√
β2

1 + (b− 1)−
√
β2

2 + (b− 1)
√
b2 − 1

= β1 − β2 + f(x1)− f(x2)√
b2 − 1

(25)

with

xk =
(

1
4 −

1
2(b+ 1)

)
α2
k +

(
1− b

2

)
αk and a = b2

4 + b

2 −
3
2 + 1

2(b− 1) .

We expand the two differences in the numerator of (25) separately, concentrating on

the f(x1)− f(x2) term first. A first-order Taylor expansion of f(x) at x1 yields

f(x2) = f(x1) + f ′(x1)(x2 − x1) + f ′′(y)
2 (x2 − x1)2.

where y ∈ (min(x1, x2),max(x1, x2)). Rearranging and plugging in, we see

f(x1)− f(x2) = f ′(x1)(x1 − x2)− f ′′(y)
2 (x1 − x2)2 = x1 − x2

2
√
x1 + a

− (x1 − x2)2

4(y + a)3/2 .

Further, assume q >> 4πk and use a third-order Taylor expansion at 0 to see

αk = 2 − 4(πk/q)2 + O(q−4). Similarly, α2
k = 4 cos2(2πk/q) = 2(1 + cos(4πk/q)) =

4− 16(πk/q)2 +O(q−4). Thus,

(x1 − x2) =
(

1
4 −

1
2(b+ 1)

)(
48π2

q2

)
+
(

1− b

2

)(
12π2

q2

)
+O

(
bq−4

)
= −6π2b

q2 + 24π2

q2 +O
(
bq−4

)
.

Expansion of β1 − β2 using the cosine Taylor expansions shows

β1 − β2 = α1 − α2

2

√
b− 1
b+ 1 = 6π2

q2

√
b− 1
b+ 1 +O(q−4).

Lastly, (y + a)3/2 is O(b3) and (x1 + a)1/2 is O(b), so

λ
(1)
1 − λ

(2)
1 = 6π2

q2(b+ 1) + −3π2b

q2√x1 + a
√
b2 − 1

+ 12π2

q2√x1 + a
√
b2 − 1

+O(b−1q−4).

As b→∞ we see 2b−1√x1 + a→ 1, so the first two terms cancel asymptotically and

the third term is O (q−2b−2).
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Theorem 10. (ROC Asymptotic Fiedler Eigenvalue) Let b and q be large and

the same order. For graph Rb,q the smallest nonzero eigenvalue of L̂ is O(b−2q−2).

Proof. The eigenvalue of interest is λ2(L̂) = 1 − λ2(Â) = 1 − λ
(1)
1 . Define scalar

function g(z) =
√
z + 1/4. Using the formulas in Theorem 8, we see

1− λ(1)
1 = 1

b− 1 −
ξ

(1)
1√
b2 − 1

= 1
b− 1 −

β1 +
√
β2

1 + (b− 1)
√
b2 − 1

= 1
b− 1 −

β1√
b2 − 1

− g(z)

(26)

with

z = (1− α1)b
2(b2 − 1) + 2α1 − 3

2(b2 − 1) + 1
4(b− 1)2 + α2

1
4(b+ 1)2 .

We derive the result by demonstrating that the larger terms in (26) cancel. Expanding

the second term in in the right-hand-side yields

β1√
b2 − 1

= α1

2(b+ 1) −
1
2 + 1

2(b− 1) = −1
2 + (1 + α1)b

2(b2 − 1) + 1− α1

2(b2 − 1) .

A second-order Taylor expansion of g(z) at zero shows for each z, we see g(z) =

g(0) + g′(0)z + 1
2g
′′(0)z2 + 1

6g
′′′(0)z3 + 1

24g
(iv)(y)z4 = 1

2 + z − z2 + 2z3 +O(z4), where

g′(z) = 1
2
√
z + 1/4

, g′′(z) = − 1
4(z + 1/4)3/2 , and g′′′(z) = 3

8(z + 1/4)5/2 .

Plugging in, we see the terms of g(z) up to order b−2 are

1
2 + (1− α1)b

2(b2 − 1) + 2α1 − 3
2(b2 − 1) + 1

4(b− 1)2 + α2
1

4(b+ 1)2 −
(1− α1)2b2

4(b2 − 1)2 .

The constant terms in β1/
√
b2 − 1 and g(z) cancel. The order b−1 terms in 1−λ(1)

1

cancel to an order b−2 term,

1
b− 1 −

(1 + α1)b
2(b2 − 1) −

(1− α1)b
2(b2 − 1) = 1

b− 1 −
b

b2 − 1 = 1
b2 − 1 .

Combining fractions, the order b−2 terms in 1− λ(1)
1 are reduced to

1
b2 − 1 −

[
1− α1

2(b2 − 1) + 2α1 − 3
2(b2 − 1) + 1

4(b− 1)2 + α2
1

4(b+ 1)2 −
(1− α1)2b2

4(b2 − 1)2

]

= (2− α1)b2

(b2 − 1)2 + (2α2
1 − 3)b

2(b2 − 1)2 + −α
2
1 + 2α1 − 9

4(b2 − 1)2
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Factoring in the other b−3 terms and the cosine expansion α1 = 2−4(π/q)2 +O(q−4),

we see
4π2b2

q2(b2 − 1)2 +O
(
b−4 + b−2q−4

)
.

Theorem 11. For any vector x ∈ X signal of Rb,q, φ (y) ≤ q φ (v2).

Proof. For any x ∈ X 2, let S, S̄ be the partition given by the optimal sweep cut of

D−
1
2 x. Fiedler’s nodal domain theorem implies at least one of S, S̄ is a connected

component. Because the eigenvectors are block constant, all vertices of each clique

are assigned to the same side of the partition. These imply that E(S, S̄) = 2. The

optimal conductance partition is found when vol(S) = vol(S̄) = q
(
b
2

)
. Thus φG =

φ (v) = 2(q
(
b
2

)
)−1.

For any x ∈ X signal, the optimal sweep cut of D− 1
2 x will partition the graph into

two pieces one containing k blocks and the other containing n − k blocks for some

k ≤ n
2 . That is, min(vol(S), vol(S̄)) = k

(
b
2

)
. Since only edges between cliques are

cut, E(S, S̄) ≤ 2k. Thus φ (y) ≤ 2
(
b
2

)−1
. By assigning adjacent blocks to alternating

sides of the partition, we see that the bound is tight.

Notice that the smallest eigenvalue of L̂ scales as O (b−2q−2), but the optimal

conductance scales as O (b−2q−1), and that the worst case sweep cut partition of

a blend has conductance 2
(
b
2

)−1
independent of q. The remainder of this section

shows that by accepting this factor of q in conductance, one gains tremendously in

computational efficiency.

6.3.3 A residual tolerance for ring of cliques

In order to derive a residual tolerance for the ring of cliques, we show that for any

vector in Span{v1 . . .vq} at least one block is sufficiently far from the other blocks

in spectral coordinates.
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Lemma 4. Define Bi = {ib+ 2 . . . ib+ q} as the vertex blocks of Rb,q. For any vector

x, let µj = |Bi|−1∑
i∈Bj xi. Let W be the span of {eib+1 | i ∈ 0 . . . q − 1} ∪ {eBi | i ∈

0 . . . q − 1}. For any vector x ∈ W, ‖µ‖∞ > n−1/2 ‖x‖2.

Proof. By construction of x, µi = xj for all j ∈ Bi. Thus ‖x‖∞ = ‖µ‖∞. Equivalence

of norms implies ‖x‖2 <
√
nµq.

We are able to apply Theorem 6 and derive a residual tolerance for recovering the

ring of cliques.

Corollary 2. If x is an approximate eigenvector of Rb,q with eigenresidual less than
C
q
√
n

for some constant C and xT1 = 0, then φ
(
D−

1
2 x
)
≤ 2

(
b
2

)−1

Proof. In the setting of Theorem 6, choose G = Rb,q, ψ = 2
(
b
2

)−1
. In the notation

of Lemma 4 applied to sorted v, for all v ∈ V , gv = maxi(µi+1 − µi) ≥ q−1 ‖µ‖∞ ≥

(q
√
n)−1. For some C ∈ O (1), δp,q(µ)g > C

q
√
n
. So Theorem 6 implies computing x to

a residual tolerance of C
q
√
n

is sufficient to guarantee φ (x) ≤ 2
(
b
2

)−1
.

Corollary 2 gives a sufficient condition on approximate eigenvectors of Rb,q such

that x partitions the graph at least as well as any partition that recovers the cliques.

Theorem 12 and Theorem 13 using analysis specialized for Rb,q in Section 6.3.4 to

construct the minimal perturbation that causes the sweep cut proceedure to fail.

6.3.4 Minimal Perturbation

We want to find the minimal error at which a vector can make a mistake. The effects

of the corner vertices only enter into the constants of the following results, and for

clarity of exposition we omit handling of the corner vertices. Theorem 12 shows that

no perturbation with norm less than (1 + 2qn)−
1
2 can induce a mistake in the sweep

cut. Theorem 13 constructs a perturbation that induces a mistake in the sweep cut

and has norm less than b−
1
2 . For the parameter regime q ∈ O (1), the bounds in

Corollary 2, Theorem 12, and Theorem 13 are all equivalent up to constant factors.
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Using the same notation as Lemma 4, we say that a vector y recovers all the

cliques of Rb,q if there is a threshold t ∈ (mini yi,maxi yi) such that for all Bi with

j, k ∈ Bi, yj < t if and only if yk < t.

Theorem 12. Let W be defined as in Lemma 4, and let PW be the orthogonal

projector onto W. For any vector y orthogonal to 1, define z = (I − PW)y. If

‖z‖2 ≤ (1 + 2qn)−
1
2 ‖y‖2, then y recovers all the cliques of Rb,q.

Proof. Define x = PWy. Without loss of generality, relabel the vertices and blocks

such that µi ≤ µi+1. Let αi = maxi zi and βi = mini zi for each Bi. Note that

αi > 0 and βi < 0 since z ⊥ eBi . The vector y recovers all the cliques if and only if

there is a Bi where αi − βi+1 ≤ µi+1 − µi. In this case, a threshold can be chosen in

(µi + αj, µi+1 + βk). Suppose that y does not recover all the cliques, then for all Bi

αi − βi+1 > µi+1 − µi. This implies ∑q−1
i=0 αi − βi+1 >

∑q−1
i=0 µi+1 − µi. Thus we can

bound the 1-norm error as follows:

‖z‖1 ≥
∑
i

(αi − βi+1) ≥ µq − µ1 ≥ n−
1
2 ‖x‖2 .

Since z must have at least q nonzero entries ‖z‖2 > (2qn)−
1
2 ‖x‖2. Applying ‖y‖2 =

‖x‖2 + ‖z‖2, we see that (1 + 2qn)−
1
2 ‖y‖ < ‖z‖2.

The proof of Theorem 12 yields a construction for the minimal perturbation of x

that does not recover all the cliques.

Theorem 13. For any unit vector x ∈ W orthogonal to 1, there exists a perturbation

z where ‖z‖ < b−
1
2 ,PWz = 0 such that y = x + z does not recover all the cliques.

Proof. For any x ∈ W , set α0 = 0, βq−1 = 0, αi = −βi+1 = µi+1−µi
2 .

‖z‖2
2 =

q−1∑
i=0

α2
i + β2

i+1 = 1
2

q−1∑
i=0

(µi+1 − µi)2 = b−1 ‖x‖2
2 − 2

q−1∑
i=0

µi+1µi < b−1 ‖x‖2
2
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Theorem 12 implies that (1 + 2qn)−
1
2 is a sufficient accuracy to ensure recovery of

all the cliques, and Theorem 13 implies that for some elements of the top invariant

subspace accuracy less than b− 1
2 is necessary to ensure recovery of all the cliques from

that vector.

Figure 22 lends validation to the formulas in Theorem 12. The experiment shown

is to take a random (Gaussian unit norm) linear combination of X signal, and then

construct the minimal perturbation that makes a mistake. Figure 22 shows the min-

imum over all samples as a function of n. This experiment is conducted for three

different parameter regimes, q = 25, b = 25, and b = q =
√
n. One can see that the

lower bound from Theorem 12 is below the empirical observation, and that this lower

bound is within a constant factor of the observed size of the minimal perturbation.

102 103 104 105 106

n=qb

10-4

10-3

10-2

10-1

|z
|

b=25

q=25

q=b

Figure 22: Empirical measurements of minimal error perturbations on a log-log scale.
Lower bounds are shown in the same color with dashed lines.

We can now apply Theorem 4 and Theorem 5 to determine the residual tolerance
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for an eigensolver for graph partitioning. The residual tolerance can be no larger than

that for the the ring of cliques, but some graphs may require smaller tolerances.

We can specialize the above analysis for the Fiedler vector in order to derive

error and residual tolerances for recovering the optimal partition. A Fiedler vector

of Rb,q is a shifted version of v2 = cq ⊗ 1b. The block means for the fiedler vector

are proportional to µi = cos 2πi
q

, or a phase shifted version of this vector. Once

Fiedler vector is sorted the block means are µi = cos
(

2π
q
d i2e

)
where i ranges over

{q, q + 1 . . . 2q − 1}.

Theorem 14. For x = v2/|0v2|0, which is a unit norm Fiedler vector of Rb,q, there

exists a z satisfying Equation (27) such that any sweep cut of z+v2 makes a mistake.

‖z‖2 = 2b−1 sin2
(
π

q

)
(27)

Proof. We examine

µi+1 − µi =
(

cos 2π(i+ 1)
q

− cos 2πi
q

)2

and the sum
2q−1∑
i=q

(µi+1 − µi)2 =
(

cos 2π(i+ 1)
q

− cos 2πi
q

)2

The fact that d i2e = d i+1
2 e implies µi+1 = µi allows us to reparameterize the above

sum as

q−1∑
i=dq/2e

=
(

cos 2πdi+ 1/2e
q

− cos 2πi
q

)2

=
q−1∑
dq/2e

(
cos 2π(i+ 1)

q
− cos 2πi

q

)2

= q sin2 π

q

Thus there exists a z, ‖z‖2 = q sin2
(
π
q

)
such that any sweep cut of z + v2 makes

a mistake. Normalization of x yields the theorem.

The vector in Theorem 14 is minimal in 1-norm by construction. Similar but

more involved algebra could be used to find the minimal 2 norm perturbation. Table 7
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verifies these equalities on a range of problems using the formulas in Theorem 8. This

leads to relative errors on the order of 10−16. Table 8 compares the error threshold

computed by Equation (27) to the error bound found by numerical simulation. One

can solve the problem using ARPACK, and then compute the necessary error to perturb

the provided solution. The relative errors of Table 8 are on the order of 10−3, which

is sufficiently small considering the value is computed by taking the sum of squared

differences in an eigenvector computed to an accuracy of 10−15 × n2.

An error tolerance quaranteeing the optimal partitioning of Rb,q is b−1/2 sin(π
q
).

The residual error bound ε <
√

8b−1/2 sin(π
q
)δ2 = O

(
n−5/2q−1/2

)
is a residual toler-

ance guaranting optimal partitioning of Rb,q using spectral sweep cuts. Even with a

solver requiring O (log ε−1) iterations, this is O (n) iterations. In contrast the residual

tolerance for recovering the cliques is O
(
q−

1
2n−

1
2
)
. The next section shows how the

larger residual tolerance required by partitioning Rb,q with spectral blends leads to

fewer iterations of an iterative solver.

6.3.5 The Power Method

From the eigenvalues and error tolerances above, one can determine an upper bound

on the number of iterations required by the power method to recover all the cliques

in Rb,q.

Theorem 15. Let x0 be sampled from N n(0, 1). Let xk be the k-th iteration of the

power method, xk+1 ←− Âxk/ ‖xk‖ for Rb,q. Let ζ =
(
e7/8

8

)q/2
+
(

2
e

)(n−q)/2
. There is

a k∗ of O (logb q) such that for k ≥ k∗ a sweep cut based on xk makes no errors with

probability at least 1− ζ.

Proof. First, we bound ‖(I−PW)x0‖2 and ‖PWx0‖2 probabilistically. Each entry in

x0 is independently sampled from N (0, 1). For any orthonormal basis of Rn, {vk}nk=1,

the distribution of each vTk x0 is also N (0, 1). Therefore, the distribution of ‖PWx0‖2

is a χ2-distribution of order q, which has expected value q and cumulative distribution
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Table 7: Validation of Theorem 14 by comparing to formulas in Theorem 8.

n q b εobserved εformula relerror
21 3 7 4.6291e-01 4.6291e-01 -2.2204e-16
60 3 20 2.7386e-01 2.7386e-01 -4.4409e-16
80 4 20 2.2361e-01 2.2361e-01 0.0000e+00

120 6 20 1.5811e-01 1.5811e-01 -2.2204e-16
126 9 14 1.2927e-01 1.2927e-01 -6.6613e-16
160 8 20 1.2102e-01 1.2102e-01 -4.4409e-16
160 8 20 1.2102e-01 1.2102e-01 -4.4409e-16
240 12 20 8.1846e-02 8.1846e-02 -4.4409e-16
320 16 20 6.1693e-02 6.1693e-02 -6.6613e-16
360 18 20 5.4912e-02 5.4912e-02 -1.3323e-15
384 24 16 4.6148e-02 4.6148e-02 -1.1102e-15
520 26 20 3.8117e-02 3.8117e-02 -2.2204e-15
567 27 21 3.5827e-02 3.5827e-02 -1.9984e-15
576 24 24 3.7680e-02 3.7680e-02 -8.8818e-16
640 32 20 3.0996e-02 3.0996e-02 -1.7764e-15
768 24 32 3.2632e-02 3.2632e-02 -1.3323e-15
780 39 20 2.5446e-02 2.5446e-02 -2.6645e-15
960 24 40 2.9187e-02 2.9187e-02 -1.3323e-15

1152 24 48 2.6644e-02 2.6644e-02 -1.1102e-15
1160 58 20 1.7120e-02 1.7120e-02 -3.5527e-15
1280 64 20 1.5517e-02 1.5517e-02 -3.5527e-15
1344 24 56 2.4667e-02 2.4667e-02 -1.1102e-15
1536 24 64 2.3074e-02 2.3074e-02 -1.1102e-15
1728 24 72 2.1754e-02 2.1754e-02 -8.8818e-16
1920 24 80 2.0638e-02 2.0638e-02 -1.3323e-15
2112 24 88 1.9678e-02 1.9678e-02 -1.3323e-15
2268 81 28 1.0363e-02 1.0363e-02 -6.2172e-15
2304 24 96 1.8840e-02 1.8840e-02 -8.8818e-16
2560 128 20 7.7606e-03 7.7606e-03 -6.6613e-15
5120 256 20 3.8806e-03 3.8806e-03 -1.2657e-14

10240 512 20 1.9403e-03 1.9403e-03 -2.5757e-14
20480 1024 20 9.7017e-04 9.7017e-04 -4.9516e-14
40960 2048 20 4.8509e-04 4.8509e-04 -9.9032e-14
81920 4096 20 2.4254e-04 2.4254e-04 -1.9362e-13

163840 8192 20 1.2127e-04 1.2127e-04 -3.8591e-13
327680 16384 20 6.0636e-05 6.0636e-05 -7.6650e-13
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Table 8: Validation of Theorem 14 by comparing to vectors provided by ARPACK.

n q b εobserved εformula relerror
60 3 20 2.4104e-01 2.7386e-01 1.1983e-01
80 4 20 2.0519e-01 2.2361e-01 8.2368e-02

120 6 20 1.4880e-01 1.5811e-01 5.8876e-02
160 8 20 1.1670e-01 1.2102e-01 3.5656e-02
240 12 20 8.0070e-02 8.1846e-02 2.1702e-02
300 30 10 4.6069e-02 4.6747e-02 1.4487e-02
360 18 20 5.4157e-02 5.4912e-02 1.3747e-02
450 30 15 3.7788e-02 3.8168e-02 9.9635e-03
520 26 20 3.7777e-02 3.8117e-02 8.9165e-03
592 37 16 2.9762e-02 2.9983e-02 7.3936e-03
600 30 20 3.2804e-02 3.3055e-02 7.5749e-03
750 30 25 2.9385e-02 2.9565e-02 6.1059e-03
780 39 20 2.5302e-02 2.5446e-02 5.6318e-03
888 37 24 2.4359e-02 2.4481e-02 4.9988e-03
900 30 30 2.6851e-02 2.6989e-02 5.1127e-03

1050 30 35 2.4877e-02 2.4987e-02 4.3968e-03
1160 58 20 1.7057e-02 1.7120e-02 3.6767e-03
1184 37 32 2.1121e-02 2.1201e-02 3.7728e-03
1200 30 40 2.3283e-02 2.3373e-02 3.8565e-03
1350 30 45 2.1961e-02 2.2037e-02 3.4343e-03
1480 37 40 1.8906e-02 1.8963e-02 3.0290e-03
1500 30 50 2.0841e-02 2.0906e-02 3.0953e-03
1650 30 55 1.9877e-02 1.9933e-02 2.8172e-03
1776 37 48 1.7267e-02 1.7311e-02 2.5299e-03
2072 37 56 1.5992e-02 1.6027e-02 2.1719e-03
2368 37 64 1.4963e-02 1.4992e-02 1.9026e-03
2664 37 72 1.4110e-02 1.4134e-02 1.6927e-03
2960 37 80 1.3389e-02 1.3409e-02 1.5245e-03
3256 37 88 1.2767e-02 1.2785e-02 1.3867e-03
3552 37 96 1.2225e-02 1.2241e-02 1.2717e-03

124



function γ(q/2, z/2)/Γ(q/2), where Γ(·) is the gamma function and γ(·, ·) is the lower

incomplete gamma function. Let c0 ∈ (0, 1), using Chernoff bounds we have

p0 := Prob
[
‖PWx0‖2 > c0q

]
= 1−

γ
(
q
2 ,

c0q
2

)
Γ
(
q
2

) ≥ 1−
(
c0e

1−c0
)q/2

Similarly, ‖(I−PW)x0‖2 is from a χ2-distribution of order order n − q, with

expected value n − q and known cumulative distribution function. Let c1 ∈ (1,∞),

we have

p1 := Prob
[
‖PWx0‖2 < c1(n− q)

]
=
γ
(
n−q

2 , c1(n−q)
2

)
Γ
(
n−q

2

) ≥ 1−
(
c1e

1−c1
)(n−q)/2

The union of events
[
‖PWx0‖2 > c0q

]
and

[
‖PWx0‖2 < c1(n− q)

]
is a subset of

all possibilities for which
[
‖(I−PW )x0‖2

‖PWx0‖2
< c1(n−q)

c0q

]
holds. Therefore, setting c0 = 1/8

and c1 = 2, we see

Prob
[
‖(I−PW)x0‖2

‖PWx0‖2 <
c1(n− q)

c0q

]
> p0p1 > 1− ζ

where ζ :=
(
e7/8

8

)q/2
+
(

2
e

)(n−q)/2
is a small positive constant when q, b > 4. Because a

sweep cut does not depend on the norm of a vector, we consider the iteration, xk ←−
1
λq
Âxk−1 which is equivalent to the power method. Letting λ∗ = max(|λq+1|, |λn|),

this iteration accentuates vector components in the range of PW by a factor greater

than 1 and attenuates those orthogonal to this space by factors less than λ∗/λq. If

‖PWx0‖2 > c0q, then

‖xk‖2 ≥ ‖PWxk‖2 ≥ ‖PWx0‖2 ≥ c0q.

Also, if ‖(I−PW)x0‖2 ≤ c1(n− q), then

‖(I−PW)xk‖2 ≤
(
λ∗

λq

)2k

‖(I−PW)x0‖2 ≤
(
λ∗

λq

)2k

c1(n− q).

Therefore, under the assumptions on x0, the k-th iteration satisfies
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‖(I−PW)xk‖
‖xk‖

≤
(
λ∗

λq

)k√
c1

c0
(b− 1) = 4

(
λ∗

λq

)k√
b− 1.

By Theorem 12, if this ratio is less than (1 + 2qn)−1/2, then xk makes no errors.

We see this is ensured by

k ≥ k∗ :=
⌈

log 4 + log(b− 1) + log(1 + 2qn)
2 log (λq/λ∗)

⌉
.

Revisiting Corollary 1 we that λq > 1−Cq/b2 and λ∗ < max(Cq+1, Cn)/b so λq/λ∗ =

C∗b, where C∗ is an order 1 constant. Plugging this in we see that k∗ is in O (logb q).

6.3.6 Experiment

Here we show the results of a numerical experiment in order to lend intuition and

validation to the theorems. Take Rb,q and a random seed vector x(0). Then apply the

power iteration x(i) = (Â− kkt)x(i−1). Far b = 20 and q = 30 the relevant measures

of convergence are shown in Table 9. Figure 23 illustrates the convergence behavior

in terms of the conductance of all sweep cuts, and the reordered adjacency matrix

represented in sparsity plots. Table 9 shows that the convergence to the Fiedler vector

stalls after iteration 3, but convergence to the space orthogonal to X noise continues

unabated. Letting Π be the projection onto X⊥noise, we measure
∥∥∥Πx(i)

∥∥∥ for each

iteration. Applying Theorem 15, we calculate that k∗ = 5 iterations will perfectly

resolve the clique structure with probability at least 1 − ζ = 0.99999998575. After

one iteration the sweep cut did not split any cliques, but only a single clique is shaved

off. After 3 iterations a nearly optimal partition is found.

6.4 Conclusions

When partitioning graphs where the spectral gap is small, computation of an accurate

approximation to a Fiedler vector is difficult. In order to satisfy the needs of spectral

partitioning without computing eigenvectors to high accuracy, we introduce spectral
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Figure 23: First several iterations of the power method applied to Rb=20,q=30. Above:
sweep conductance of A reordered by sorting the 1st (top-left), 2nd (top middle), and
3rd iterations (top-right). Horizontal axis represents which vertex to split at under the
induced ordering; vertical axis is the conductance for each split on a log scale. Below:
matrix sparsity plots of A reordered by sorting the 1st (bottom-left), 2nd (bottom-
middle), and 3rd iterations (bottom-right). Red lines demonstrate which edges are
cut for the optimal cut in each ordering.

Table 9: Table corresponding to Figure 23 with 10 iterations. Convergence to the
Fiedler eigenpair is slow, yet convergence to the orthogonal complement of X noise is
rapid (column 2).

i
∥∥x(i) −P2x(i)

∥∥ ∥∥Πx(i)
∥∥ µ φ(x)

√
2µ

0 1.24806e+01 2.25433e+01 1.52966e+00 2.03094e+00 1.74909e+00
1 9.20534e-01 5.02679e-02 8.37276e-01 1.05263e-02 1.29404e+00
2 1.02629e-01 1.45977e-02 5.67751e-02 6.68577e-03 3.36972e-01
3 1.08242e-02 8.10095e-04 1.01284e-02 4.89853e-03 1.42326e-01
4 1.01568e-02 4.28591e-05 9.87761e-03 4.89853e-03 1.40553e-01
5 1.01262e-02 2.26698e-06 9.85062e-03 4.89853e-03 1.40361e-01
6 1.01022e-02 1.19907e-07 9.82549e-03 4.89853e-03 1.40182e-01
7 1.00782e-02 6.34217e-09 9.80038e-03 4.89853e-03 1.40003e-01
8 1.00543e-02 3.35448e-10 9.77526e-03 4.89853e-03 1.39823e-01
9 1.00303e-02 1.77422e-11 9.75013e-03 4.89853e-03 1.39643e-01
10 1.00063e-02 9.38388e-13 9.72498e-03 4.89853e-03 1.39463e-01
· · · · · · · · · · · · · · · · · ·
∞ 0.00000e+00 0.00000e+00 1.14176e-04 3.50018e-04 1.51113e-02

λ2(L̂) φ(v2) = φG

√
2λ2(L̂)

127



blends and in particular the blend gap. Section 6.2.2 controls the distance between an

approximate eigenvector and an invariant subspace in terms of the eigenresidual and

blend gap thereby showing that accurate approximation to a spectral blend is easier to

compute than an accurate approximation of a single eigenvector. We provide a general

tool for deriving residual tolerances based on the structure of the graph spectrum. In

order to illustrate the utility of spectral blends, Section 6.3 studies a model problem

and uses the theory of block cyclic matrices and locally supported eigenvectors to

present a closed form for the eigenvalues and vectors. We show that any blend of

large eigenvalue eigenvectors for the ring of cliques recovers a correct clustering. This

indicates that for problems where there are multiple good partitions of the graph,

spectral blends can be used to partition accurately. The eigendecomposition of the

model problem provides error and residual tolerances for solving this problem with

sweep cuts. Theorem 12 allows us to give guidance for error tolerances for spectral

partitioning. One should solve the eigenproblem to a residual tolerance no greater

thanO (n−1) for graphs of size n. In contrast, recovering the optimal spectral partition

requires a residual of O
(
n−7/2

)
, which is infeasible for large datasets. Theorem 15

shows that for the ring of cliques where the number of clusters is polynomial in the

sizes of the clusters, the number of power method steps taken to recover the clusters

is O (1). Further research will be able to expand these results to more general graphs

which have multiple good partitions.
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CHAPTER VII

CONCLUSION

This thesis explores the application of numerical, statistical, and streaming data

analysis techniques to graphs. Chapter 4 advances a novel framework for graph

analysis based on streaming graph features combined with statistical analysis of those

features. Vertex feature construction using STINGER leads to statistical analysis and

machine learning applications for dynamic behavior analysis, outlier detection, and

behavioral clustering. The behavioral cluster structure of dynamic complex networks

can be found with a two phase process. The first phase extracts graph topology based

features representing each vertex, which incorporate information about the changes

in the graph, and the second phase applies well understood statistical and machine

learning methods solve the analysis problem such as revealing the temporal cluster

structure of the vertices. This framework allows one to apply the best streaming

graph algorithms with the best statistical methods to understand complex data sets

without reinventing statistical methods in the graph theoretic context.

Chapter 5 and Chapter 6 study the impact of approximation error when numerical

methods are applied to graph analysis. Novel analysis of these numerical approaches

gives rise to convergence criteria and deeper understanding of the interaction be-

tween numerical methods and graph analysis. By studying the relationship between

numerical accuracy and data mining quality, a novel stopping criterion for spectral

partitioning is derived and experimentally validated. This stopping criterion works

better for ill conditioned graphs when spectral partitioning takes the longest. New

theorems are proven to understand the convergence behavior of iterative methods for

matrices with clustered spectra. The key parameter introduced in the analysis is the
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blend gap, which characterizes the separation of the invariant subspaces as reflected

in a test vector. The impact of numerical error on sweep cuts can be understood

by examining the sensitivity of the invariant subspace associate with the low energy

Laplacian eigenvalues. Applying this technique to a model problem yields concrete

bounds on the necessary tolerances for such graphs. These bounds can be used to

predict the necessary and sufficient solver tolerances for general graphs. This analysis

connects the continuous values of the Laplacian eigenvectors to the discrete sweep cut

algorithm.

These techniques improve the understanding of dynamic graphs and our under-

standing of how to compute under the constraint of rapid changes to the input data.

The link between numerical accuracy and data analysis accuracy is difficult to char-

acterize in general and this dissertation contributes to a specific aspect of this link.

For the spectral partitioning problem, we show that there is a large gap between the

accuracy required to recover the Fiedler vector partitions and the accuracy required to

recover the cluster structure in the data. This gap can be exploited to solve problems

with fewer iterations and to ensure algorithms are robust to numerical errors.
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[25] Erdős, P. and Rényi, A., “On the strength of connectedness of a random
graph,” Acta Mathematica Hungarica, vol. 12, no. 1-2, pp. 261–267, 1961.

[26] Fairbanks, J. P., Kennan, R., Park, H., and A., B. D., “Behavioral clus-
ters in dynamic graphs,” Parallel Computing, 2015.

[27] Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., and Zhang, J.,
“On graph problems in a semi-streaming model,” Theoretical Computer Science,
vol. 348, no. 2-3, pp. 207–216, 2005.

[28] Fishkind, D., Sussman, D., Tang, M., Vogelstein, J., and Priebe, C.,
“Consistent adjacency-spectral partitioning for the stochastic block model when
the model parameters are unknown,” SIAM Journal on Matrix Analysis and
Applications, vol. 34, no. 1, pp. 23–39, 2013.

[29] Flajolet, P. and Martin, G. N., “Probabilistic counting,” in Proceedings
of the 24th Annual Symposium on Foundations of Computer Science, SFCS ’83,
(Washington, DC, USA), pp. 76–82, IEEE Computer Society, 1983.
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