91,775 research outputs found

    Intelligent Self-Repairable Web Wrappers

    Get PDF
    The amount of information available on the Web grows at an incredible high rate. Systems and procedures devised to extract these data from Web sources already exist, and different approaches and techniques have been investigated during the last years. On the one hand, reliable solutions should provide robust algorithms of Web data mining which could automatically face possible malfunctioning or failures. On the other, in literature there is a lack of solutions about the maintenance of these systems. Procedures that extract Web data may be strictly interconnected with the structure of the data source itself; thus, malfunctioning or acquisition of corrupted data could be caused, for example, by structural modifications of data sources brought by their owners. Nowadays, verification of data integrity and maintenance are mostly manually managed, in order to ensure that these systems work correctly and reliably. In this paper we propose a novel approach to create procedures able to extract data from Web sources -- the so called Web wrappers -- which can face possible malfunctioning caused by modifications of the structure of the data source, and can automatically repair themselves.\u

    Design of Automatically Adaptable Web Wrappers

    Get PDF
    Nowadays, the huge amount of information distributed through the Web motivates studying techniques to\ud be adopted in order to extract relevant data in an efficient and reliable way. Both academia and enterprises\ud developed several approaches of Web data extraction, for example using techniques of artificial intelligence or\ud machine learning. Some commonly adopted procedures, namely wrappers, ensure a high degree of precision\ud of information extracted from Web pages, and, at the same time, have to prove robustness in order not to\ud compromise quality and reliability of data themselves.\ud In this paper we focus on some experimental aspects related to the robustness of the data extraction process\ud and the possibility of automatically adapting wrappers. We discuss the implementation of algorithms for\ud finding similarities between two different version of a Web page, in order to handle modifications, avoiding\ud the failure of data extraction tasks and ensuring reliability of information extracted. Our purpose is to evaluate\ud performances, advantages and draw-backs of our novel system of automatic wrapper adaptation

    Automatic Wrapper Adaptation by Tree Edit Distance Matching

    Get PDF
    Information distributed through the Web keeps growing faster day by day,\ud and for this reason, several techniques for extracting Web data have been suggested\ud during last years. Often, extraction tasks are performed through so called wrappers,\ud procedures extracting information from Web pages, e.g. implementing logic-based\ud techniques. Many fields of application today require a strong degree of robustness\ud of wrappers, in order not to compromise assets of information or reliability of data\ud extracted.\ud Unfortunately, wrappers may fail in the task of extracting data from a Web page, if\ud its structure changes, sometimes even slightly, thus requiring the exploiting of new\ud techniques to be automatically held so as to adapt the wrapper to the new structure\ud of the page, in case of failure. In this work we present a novel approach of automatic wrapper adaptation based on the measurement of similarity of trees through\ud improved tree edit distance matching techniques

    Adapting a general parser to a sublanguage

    Full text link
    In this paper, we propose a method to adapt a general parser (Link Parser) to sublanguages, focusing on the parsing of texts in biology. Our main proposal is the use of terminology (identication and analysis of terms) in order to reduce the complexity of the text to be parsed. Several other strategies are explored and finally combined among which text normalization, lexicon and morpho-guessing module extensions and grammar rules adaptation. We compare the parsing results before and after these adaptations

    Improving the translation environment for professional translators

    Get PDF
    When using computer-aided translation systems in a typical, professional translation workflow, there are several stages at which there is room for improvement. The SCATE (Smart Computer-Aided Translation Environment) project investigated several of these aspects, both from a human-computer interaction point of view, as well as from a purely technological side. This paper describes the SCATE research with respect to improved fuzzy matching, parallel treebanks, the integration of translation memories with machine translation, quality estimation, terminology extraction from comparable texts, the use of speech recognition in the translation process, and human computer interaction and interface design for the professional translation environment. For each of these topics, we describe the experiments we performed and the conclusions drawn, providing an overview of the highlights of the entire SCATE project

    Lexical Adaptation of Link Grammar to the Biomedical Sublanguage: a Comparative Evaluation of Three Approaches

    Get PDF
    We study the adaptation of Link Grammar Parser to the biomedical sublanguage with a focus on domain terms not found in a general parser lexicon. Using two biomedical corpora, we implement and evaluate three approaches to addressing unknown words: automatic lexicon expansion, the use of morphological clues, and disambiguation using a part-of-speech tagger. We evaluate each approach separately for its effect on parsing performance and consider combinations of these approaches. In addition to a 45% increase in parsing efficiency, we find that the best approach, incorporating information from a domain part-of-speech tagger, offers a statistically signicant 10% relative decrease in error. The adapted parser is available under an open-source license at http://www.it.utu.fi/biolg

    Web Data Extraction, Applications and Techniques: A Survey

    Full text link
    Web Data Extraction is an important problem that has been studied by means of different scientific tools and in a broad range of applications. Many approaches to extracting data from the Web have been designed to solve specific problems and operate in ad-hoc domains. Other approaches, instead, heavily reuse techniques and algorithms developed in the field of Information Extraction. This survey aims at providing a structured and comprehensive overview of the literature in the field of Web Data Extraction. We provided a simple classification framework in which existing Web Data Extraction applications are grouped into two main classes, namely applications at the Enterprise level and at the Social Web level. At the Enterprise level, Web Data Extraction techniques emerge as a key tool to perform data analysis in Business and Competitive Intelligence systems as well as for business process re-engineering. At the Social Web level, Web Data Extraction techniques allow to gather a large amount of structured data continuously generated and disseminated by Web 2.0, Social Media and Online Social Network users and this offers unprecedented opportunities to analyze human behavior at a very large scale. We discuss also the potential of cross-fertilization, i.e., on the possibility of re-using Web Data Extraction techniques originally designed to work in a given domain, in other domains.Comment: Knowledge-based System
    corecore