7 research outputs found

    Neural network force control for industrial robots

    Get PDF
    In this paper, we present a hierarchical force control framework consisting of a high level control system based on neural network and the existing motion control system of a manipulator in the low level. Inputs of the neural network are the contact force error and estimated stiffness of the contacted environment. The output of the neural network is the position command for the position controller of industrial robots. A MITSUBISHI MELFA RV-MI industrial robot equipped with a BL Force/Torque sensor is utilized for implementing the hierarchical neural network force control system. Successful experiments for various contact motions are carried out. Additionally, the proposed neural network force controller together with the master/slave control method are used in dual-industrial robot systems. Successful experiments an carried out for the dual-robot system handling an object

    Human Inspired Behavioural Control for Robot-to-Human Object Handover

    Get PDF
    āļ§āļīāļĻāļ§āļāļĢāļĢāļĄāļĻāļēāļŠāļ•āļĢāđŒāļĄāļŦāļēāļšāļąāļ“āļ‘āļīāļ• (āļ§āļīāļĻāļ§āļāļĢāļĢāļĄāđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļāļĨāđāļĨāļ°āđ€āļĄāļ„āļēāļ—āļĢāļ­āļ™āļīāļāļŠāđŒ), 2564Currently, robots play an increasingly important role in human life, as the robots are capable of safely performing human-robot interactive tasks. As ageing and disability societies have become a challenge social problem in Thailand and all over the world, due to the shortage of care workers. Subsequently, to enhance the quality of life of elderly and disabled people, service robots have been taken into account to support household chores, particularly passing an object to a human. Therefore, this thesis focuses on the development of robotic human-like control by initially understanding how an equivalent human-human interaction can perform object handover naturally, reliably and safely. The preliminary human-human handover (HHH) tests were carried out to acknowledge the dynamic behavioural characteristics of the human participants in HHH. The experimental findings intensively explained human handover strategies, the interactive force profiles, object handover times, transfer locations, and the mathematical model of the giver’s arm while regulating the exerted force. The understanding of HHH behavioural responses leads to the proper design of a conceptual framework for a robot control system. The substantive tests were developed, in which a Toyota Human Support Robot (HSR) was implemented based on human-like behavioural control. Additionally, the robotic impedance control, which is suitable to control the HRS’s force-position relation while interacting with the human environment, was used. The optimized impedance parameters were experimentally identified. The main results show that the performance of the robot impedance control can be considered acceptable for HHH. This allowed the HSR to successfully pass the object to the human in a safe, reliable, and timely manner.āļ›āļąāļˆāļˆāļļāļšāļąāļ™āļŦāļļāđˆāļ™āļĒāļ™āļ•āđŒāđ€āļĢāļīāđˆāļĄāļĄāļĩāļšāļ—āļšāļēāļ—āļ—āļĩāđˆāļŠāļģāļ„āļąāļāļĄāļēāļāļ‚āļķāđ‰āļ™āļ•āđˆāļ­āļāļēāļĢāļ”āļģāļĢāļ‡āļŠāļĩāļ§āļīāļ•āļ›āļĢāļ°āļˆāļģāļ§āļąāļ™āļ‚āļ­āļ‡āļĄāļ™āļļāļĐāļĒāđŒāļ­āļąāļ™ āđ€āļ™āļ·āđˆāļ­āļ‡āļĄāļēāļˆāļēāļāļŦāļļāđˆāļ™āļĒāļ™āļ•āđŒāļŠāļēāļĄāļēāļĢāļ–āļ—āļģāļ‡āļēāļ™āļĢāđˆāļ§āļĄāļāļąāļ™āļāļąāļšāļĄāļ™āļļāļĐāļĒāđŒāđƒāļ™āļŦāļĨāļēāļĒāļĢāļđāļ›āđāļšāļšāđ„āļ”āđ‰āļ­āļĒāđˆāļēāļ‡āļ›āļĨāļ­āļ”āļ āļąāļĒ āļ­āļĩāļāļ—āļąāđ‰āļ‡āļžāļšāļ§āđˆāļē āļŠāļąāļ‡āļ„āļĄāļœāļđāđ‰āļŠāļđāļ‡āļ­āļēāļĒāļļāđāļĨāļ°āļ„āļ™āļžāļīāļāļēāļĢāļāļĨāļēāļĒāđ€āļ›āđ‡āļ™āļ›āļąāļāļŦāļēāđƒāļŦāļāđˆāļ—āļĩāđˆāļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒāđāļĨāļ°āļ—āļąāđˆāļ§āđ‚āļĨāļāđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāļ‚āļēāļ” āđāļ„āļĨāļ™āļ„āļ™āļ”āļđāđāļĨ āđ€āļžāļ·āđˆāļ­āļĒāļāļĢāļ°āļ”āļąāļšāļ„āļļāļ“āļ āļēāļžāļŠāļĩāļ§āļīāļ•āļ‚āļ­āļ‡āļœāļđāđ‰āļŠāļđāļ‡āļ­āļēāļĒāļļāđāļĨāļ°āļœāļđāđ‰āļžāļīāļāļēāļĢ āļˆāļķāļ‡āđ€āļĢāļīāđˆāļĄāļĄāļĩāļāļēāļĢāļžāļīāļˆāļēāļĢāļ“āļēāļ™āļģāļŦāļļāđˆāļ™āļĒāļ™āļ•āđŒ āļšāļĢāļīāļāļēāļĢāđ€āļžāļ·āđˆāļ­āļŠāļ™āļąāļšāļŠāļ™āļļāļ™āļ‡āļēāļ™āļšāđ‰āļēāļ™ āđ‚āļ”āļĒāđ€āļ‰āļžāļēāļ°āļ­āļĒāđˆāļēāļ‡āļĒāļīāđˆāļ‡āļāļēāļĢāļŠāđˆāļ‡āļŠāļīāđˆāļ‡āļ‚āļ­āļ‡āđƒāļŦāđ‰āđāļāđˆāļĄāļ™āļļāļĐāļĒāđŒāļ”āļąāļ‡āļ™āļąāđ‰āļ™āļ§āļīāļ—āļĒāļēāļ™āļīāļžāļ™āļ˜āđŒāļ™āļĩāđ‰āļˆāļķāļ‡ āļĄāļļāđˆāļ‡āđ€āļ™āđ‰āļ™āđ„āļ›āļ—āļĩāđˆāļāļēāļĢāļžāļąāļ’āļ™āļēāļāļēāļĢāļ„āļ§āļšāļ„āļļāļĄāļŦāļļāđˆāļ™āļĒāļ™āļ•āđŒ āđ‚āļ”āļĒāđ€āļĢāļīāđˆāļĄāļ•āđ‰āļ™āļĻāļķāļāļĐāļēāļāļēāļĢāļ„āļ§āļšāļ„āļļāļĄāđ€āļŠāļīāļ‡āļžāļĪāļ•āļīāļāļĢāļĢāļĄāđƒāļ™āļāļēāļĢ āļ›āļāļīāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāļĢāļ°āļŦāļ§āđˆāļēāļ‡āļĄāļ™āļļāļĐāļĒāđŒāļāļąāļšāļĄāļ™āļļāļĐāļĒāđŒāļ—āļĩāđˆāļŠāļēāļĄāļēāļĢāļ–āļŠāđˆāļ‡āļ§āļąāļ•āļ–āļļāļĢāļ°āļŦāļ§āđˆāļēāļ‡āļāļąāļ™āđ„āļ”āđ‰āļ­āļĒāđˆāļēāļ‡āđ€āļ›āđ‡āļ™āļ˜āļĢāļĢāļĄāļŠāļēāļ•āļīāđāļĨāļ°āļ›āļĨāļ­āļ”āļ āļąāļĒ āđ‚āļ”āļĒāļāļēāļĢāļ—āļ”āļŠāļ­āļšāļāļēāļĢāļŠāđˆāļ‡āļ§āļąāļ•āļ–āļļāļĢāļ°āļŦāļ§āđˆāļēāļ‡āļĄāļ™āļļāļĐāļĒāđŒāļāļąāļšāļĄāļ™āļļāļĐāļĒāđŒāđ€āļšāļ·āđ‰āļ­āļ‡āļ•āđ‰āļ™ (Human-Human Handover : HHH) āđ€āļĢāļīāđˆāļĄāļˆāļēāļāļāļēāļĢāļĻāļķāļāļĐāļēāļĨāļąāļāļĐāļ“āļ°āļžāļĪāļ•āļīāļāļĢāļĢāļĄāļāļēāļĢāļŠāđˆāļ‡āđāļšāļšāđ„āļ”āļ™āļēāļĄāļīāļāļ‚āļ­āļ‡āļœāļđāđ‰āđ€āļ‚āđ‰āļēāļĢāđˆāļ§āļĄāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āđƒāļ™ HHH āļœāļĨāļ—āļĩāđˆāđ„āļ”āđ‰ āļˆāļēāļāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āļŠāļēāļĄāļēāļĢāļ–āļ­āļ˜āļīāļšāļēāļĒāļžāļĪāļ•āļīāļāļĢāļĢāļĄāļāļēāļĢāļŠāđˆāļ‡āļ§āļąāļ•āļ–āļļāļ‚āļ­āļ‡āļĄāļ™āļļāļĐāļĒāđŒāļ­āļĒāđˆāļēāļ‡āļĨāļ°āđ€āļ­āļĩāļĒāļ”, āļĢāļđāļ›āđāļšāļšāđāļĢāļ‡āļ›āļŽāļīāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒ, āđ€āļ§āļĨāļēāđƒāļ™āļāļēāļĢāļŠāđˆāļ‡āļĄāļ­āļšāļ§āļąāļ•āļ–āļļ, āļ•āļģāđāļŦāļ™āđˆāļ‡āļāļēāļĢāļ–āđˆāļēāļĒāđ‚āļ­āļ™, āđāļĨāļ°āđāļšāļšāļˆāļģāļĨāļ­āļ‡āļ—āļēāļ‡āļ„āļ“āļīāļ•āļĻāļēāļŠāļ•āļĢāđŒāļ‚āļ­āļ‡āđāļ‚āļ™āļ‚āļ­āļ‡āļœāļđāđ‰āļŠāđˆāļ‡āļ‚āļ“āļ° āļŠāđˆāļ‡āļ§āļąāļ•āļ–āļļ āđ‚āļ”āļĒāļœāļĨāļˆāļēāļāļāļēāļĢāļĻāļķāļāļĐāļēāļāļēāļĢāļ•āļ­āļšāļŠāļ™āļ­āļ‡āļ•āđˆāļ­āļžāļĪāļ•āļīāļāļĢāļĢāļĄāļ‚āļ­āļ‡ HHH āļˆāļ°āļ™āļģāđ„āļ›āļŠāļđāđˆāļāļēāļĢāļ­āļ­āļāđāļšāļšāļāļĢāļ­āļš āđāļ™āļ§āļ„āļīāļ”āļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄāļŠāļģāļŦāļĢāļąāļšāļĢāļ°āļšāļšāļ„āļ§āļšāļ„āļļāļĄāļŦāļļāđˆāļ™āļĒāļ™āļ•āđŒāļŠāļģāļŦāļĢāļąāļšāļŦāļļāđˆāļ™āļĒāļ™āļ•āđŒāļŠāđˆāļ‡āļ‚āļ­āļ‡āđƒāļŦāđ‰āļĄāļ™āļļāļĐāļĒāđŒ (Human-Robot Handover : HRH) āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļ™āļģāļŦāļļāđˆāļ™āļĒāļ™āļ•āđŒāļšāļĢāļīāļāļēāļĢāļ—āļĩāđˆāļĄāļĩāļŠāļ·āđˆāļ­āļ§āđˆāļē Human Support Robot (HSR) āđƒāļ™āļāļēāļĢ āļ—āļ”āļĨāļ­āļ‡ āđ‚āļ”āļĒāļĄāļĩāļˆāļļāļ”āļ›āļĢāļ°āļŠāļ‡āļ„āđŒāļ„āļ·āļ­āļ•āđ‰āļ­āļ‡āļāļēāļĢāļ„āļ§āļšāļ„āļļāļĄāļžāļĪāļ•āļīāļāļĢāļĢāļĄāļāļēāļĢāļŠāđˆāļ‡āļ§āļąāļ•āļ–āļļāļ‚āļ­āļ‡āļŦāļļāđˆāļ™āļĒāļ™āļ•āđŒāđƒāļŦāđ‰āļĄāļĩāļžāļĪāļ•āļīāļāļĢāļĢāļĄāļ—āļĩāđˆ āđƒāļāļĨāđ‰āđ€āļ„āļĩāļĒāļ‡āļāļąāļšāļĄāļ™āļļāļĐāļĒāđŒ āļ”āđ‰āļ§āļĒāļāļēāļĢāļ„āļ§āļšāļ„āļļāļĄāđāļšāļšāļ­āļīāļĄāļžāļīāđāļ”āļ™āļ‹āđŒāļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļģāļŦāļĢāļąāļšāļ„āļ§āļšāļ„āļļāļĄāļ•āļģāđāļŦāļ™āđˆāļ‡āļ‚āļ­āļ‡ HSR āļ—āļĩāđˆāļ‚āļķāđ‰āļ™āļ­āļĒāļđāđˆ āļāļąāļšāđāļĢāļ‡āļ›āļāļīāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāļ‚āļ“āļ°āļ—āļĩāđˆāļ›āļāļīāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāļāļąāļšāļĄāļ™āļļāļĐāļĒāđŒ āļ„āđˆāļēāļžāļēāļĢāļēāļĄāļīāđ€āļ•āļ­āļĢāđŒāļ­āļīāļĄāļžāļīāđāļ”āļ™āļ‹āđŒāļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄāļ•āđˆāļ­āļāļēāļĢāļ„āļ§āļšāļ„āļļāļĄ āļžāļĪāļ•āļīāļāļĢāļĢāļĄāļāļēāļĢāļŠāđˆāļ‡āļ§āļąāļ•āļ–āļļāļ‚āļ­āļ‡āļŦāļļāđˆāļ™āļĒāļ™āļ•āđŒ HSR āļ–āļđāļāļĢāļ°āļšāļļāđƒāļ™āļāļēāļĢāļ—āļ”āļĨāļ­āļ‡ āđ‚āļ”āļĒāļœāļĨāļˆāļēāļāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āđāļĨāļ°āļāļēāļĢāļĒāļ­āļĄāļĢāļąāļš āļˆāļēāļāļœāļđāđ‰āđ€āļ‚āđ‰āļēāļĢāđˆāļ§āļĄāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āļžāļšāļ§āđˆāļē āļāļēāļĢāļ„āļ§āļšāļ„āļļāļĄāđāļšāļšāļ­āļīāļĄāļžāļīāđāļ”āļ™āļ‹āđŒāļŠāļēāļĄāļēāļĢāļ–āļ„āļ§āļšāļ„āļļāļĄāđƒāļŦāđ‰āļŦāļļāđˆāļ™āļĒāļ™āļ•āđŒāļĄāļĩāļžāļĪāļ•āļīāļāļĢāļĢāļĄāļāļēāļĢ āļŠāđˆāļ‡āļ§āļąāļ•āļ–āļļāļ—āļĩāđˆāđƒāļāļĨāđ‰āđ€āļ„āļĩāļĒāļ‡āļāļąāļšāļĄāļ™āļļāļĐāļĒāđŒāđ„āļ”āđ‰āļ”āļąāļ‡āļ™āļąāđ‰āļ™āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļāļĨāđˆāļēāļ§āđ„āļ”āđ‰āļ§āđˆāļēāļŠāļēāļĄāļēāļĢāļ–āļ—āļģāđƒāļŦāđ‰āļŦāļļāđˆāļ™āļĒāļ™āļ•āđŒHSR āļŠāļēāļĄāļēāļĢāļ–āļŠāđˆāļ‡āļ§āļąāļ•āļ–āļļ āđƒāļŦāđ‰āđāļāđˆāļĄāļ™āļļāļĐāļĒāđŒāđ„āļ”āđ‰āļ­āļĒāđˆāļēāļ‡āđ€āļ›āđ‡āļ™āļ˜āļĢāļĢāļĄāļŠāļēāļ•āļī āđāļĨāļ°āļ›āļĨāļ­āļ”āļ āļą

    Lungs cancer nodules detection from ct scan images with convolutional neural networks

    Get PDF
    Lungs cancer is a life-taking disease and is causing a problem around the world for a long time. The only plausible solution for this type of disease is the early detection of the disease because at preliminary stages it can be treated or cured. With the recent medical advancements, Computerized Tomography (CT) scan is the best technique out there to get the images of internal body organs. Sometimes, even experienced doctors are not able to identify cancer just by looking at the CT scan. During the past few years, a lot of research work is devoted to achieve the task for lung cancer detection but they failed to achieve accuracy. The main objective of this piece of this research was to find an appropriate method for classification of nodules and non-nodules. For classification, the dataset was taken from Japanese Society of Radiological Technology (JSRT) with 247 three-dimensional images. The images were preprocessed into gray-scale images. The lung cancer detection model was built using Convolutional Neural Networks (CNN). The model was able to achieve an accuracy of 88% with lowest loss rate of 0.21% and was found better than other highly complex methods for classification

    External force control of an industrial puma 560 robot

    No full text

    Force-controlled Transcranial Magnetic Stimulation (TMS) robotic system

    Get PDF
    The use of robots to assist neurologists in Transcranial Magnetic Stimulation (TMS) has the potential to improve the long term outcome of brain stimulation. Although extensive research has been carried out on TMS robotic system, no single study exists which adequately take into account the control of interaction of contact force between the robot and subject’s head. Thus, the introduction of force feedback control is considered as a desirable feature, and is particularly important when using an autonomous robot manipulator. In this study, a force-controlled TMS robotic system has been developed, which consists of a 6 degree of freedom (DOF) articulated robot arm, a force/torque sensor system to measure contact force and real-time PC based control system. A variant of the external force control scheme was successfully implemented to carry out the simultaneous force and position control in real-time. A number of engineering challenges are addressed to develop a viable system for TMS application; simultaneous real-time force and position tracking on subject’s head, unknown/varies environment stiffness and motion compensation to counter the force-controlled instability problems, and safe automated robotic system. Simulation of a single axis force-controlled robotic system has been carried out, which includes a task of maintaining contact on simulated subject’s head. The results provide a good agreement with parallel experimental tests, which leads to further improvement to the robot force control. An Adaptive Neuro-Fuzzy Force Controller has been developed to provide stable and robust force control on unknown environment stiffness and motion. The potential of the proposed method has been further illustrated and verified through a comprehensive series of experiments. This work also lays important foundations for long term related research, particularly in the development of real-time medical robotic system and new techniques of force control mainly for human-robot interaction. KEY WORDS: Transcranial Magnetic Stimulation, Robotic System, Real-time System, External Force Control Scheme, Adaptive Neuro-Fuzzy Force ControllerEThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Force-controlled Transcranial Magnetic Stimulation (TMS) robotic system

    Get PDF
    The use of robots to assist neurologists in Transcranial Magnetic Stimulation (TMS) has the potential to improve the long term outcome of brain stimulation. Although extensive research has been carried out on TMS robotic system, no single study exists which adequately take into account the control of interaction of contact force between the robot and subject’s head. Thus, the introduction of force feedback control is considered as a desirable feature, and is particularly important when using an autonomous robot manipulator. In this study, a force-controlled TMS robotic system has been developed, which consists of a 6 degree of freedom (DOF) articulated robot arm, a force/torque sensor system to measure contact force and real-time PC based control system. A variant of the external force control scheme was successfully implemented to carry out the simultaneous force and position control in real-time. A number of engineering challenges are addressed to develop a viable system for TMS application; simultaneous real-time force and position tracking on subject’s head, unknown/varies environment stiffness and motion compensation to counter the force-controlled instability problems, and safe automated robotic system. Simulation of a single axis force-controlled robotic system has been carried out, which includes a task of maintaining contact on simulated subject’s head. The results provide a good agreement with parallel experimental tests, which leads to further improvement to the robot force control. An Adaptive Neuro-Fuzzy Force Controller has been developed to provide stable and robust force control on unknown environment stiffness and motion. The potential of the proposed method has been further illustrated and verified through a comprehensive series of experiments. This work also lays important foundations for long term related research, particularly in the development of real-time medical robotic system and new techniques of force control mainly for human-robot interaction. KEY WORDS: Transcranial Magnetic Stimulation, Robotic System, Real-time System, External Force Control Scheme, Adaptive Neuro-Fuzzy Force ControllerEThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore