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Abstract. In this paper, we present a hierarchical force control framework consisting of a high level
control system based on neural network and the existing motion control system of a manipulator
in the low level. Inputs of the neural network are the contact force error and estimated stiffness
of the contacted environment. The output of the neural network is the position command for the
position controller of industrial robots. A MITSUBISHI MELFA RV-M1 industrial robot equipped
with a BL Force/Torque sensor is utilized for implementing the hierarchical neural network force
control system. Successful experiments for various contact motions are carried out. Additionally,
the proposed neural network force controller together with the master/slave control method are used
in dual-industrial robot systems. Successful experiments are carried out for the dual-robot system
handling an object.
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1. Introduction

For tasks performed by most industrial robot manipulators, such as spray painting,
position controllers give adequate performance. However, when a contact is made
between the end-effector and the environment, the interaction force must be con-
trolled properly, since otherwise the arising contact forces may damage the object
or the robot structure. Two force control methods have been studied extensively
over recent years, namely, the hybrid position/force control [1–3] and impedance
control [4–8]. As the name implies, the hybrid position/force controller can be
used to track positional trajectories and force trajectories in different subspaces
simultaneously. One difficulty in implementing the hybrid control method is that
we usually do not have precise information on the shape of an object with which
the end-effector contacts. To cope with the problem, several approaches to estimate
the constraint surface for force control have been studied [9, 10]. Impedance con-
trol aims at developing a relationship between interaction forces and end-effector
position. By controlling the end-effector position and specifying its relationship
to the interaction forces, designers can ensure that the manipulator maneuver in a
constrained environment while maintaining appropriate contact forces. In addition
to these two methods, there are new approaches developed in recent years. See
[11, 12] for details.
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In order to implement the hybrid or impedance controllers, the control system
must be allowed to have a direct access to actuator torques. However, most in-
dustrial robots have built-in position controllers and do not allow direct access
to actuator torques. It will be helpful to accomplish force control by using the
existing position controllers. This type of control is known as position-based force
control [13]. In the applications of force control on industrial robots, Degoulange
and Dauchez [14] described an external force control scheme on a non-modified
industrial robot controller, and the implementation of this control scheme in PUMA
560 robots UNIMATE controller is carried out.

In most practical applications, conventional control theories are not intelligent
enough to tackle more complicated tasks, such as nonlinear dynamics, unknown
dynamics, and others. Thus the need for research of neural networks and fuzzy
logic control has been noticed by many researchers and in various fields [15–23].
In this paper, we design a neural network force controller and integrate it with
an industrial robot position control system. For robot contact tasks, it is difficult
to model the environment dynamics accurately. The concept of neural-fuzzy has
been applied to robot force control in the presence of environment uncertainties.
Ventaraman et al. [24] used neural networks for identifying environments that
a robot contacts with. Both function approximation and parameter identification
results are presented. Kiguchi et al. [25] designed a controller using fuzzy logic
in order to realize a human-like control and then modeled a neural network to
adjust membership functions and rules in order to achieve a desired contact force
in the presence of unknown environment. Katic and Vukobratovic [26] proposed a
new learning control algorithm based on neural network classification of unknown
dynamic environment models and neural network learning of robot dynamic model.
In this paper, a neural network is used to learn the mapping between the contact
force error, environmental stiffness and the accommodated position command to
the position controller of an industrial robot.

Of late, the research on multi-arm robot control is an active area. Evidently,
multi-arm systems yield greater dexterity and provide capability of transmitting
heavy or large objects. It is well known that the coordinated operation of multiple
robots opens up new applications in assembly automation and flexible manufactur-
ing systems.

The control problems in coordinated robots are very complex and various con-
trol methods have been developed. Hu et al. [27] roughly classified these control
approaches in two categories:

• master/slave control, in which one plays the role of the master and the rest is
moved in conjunction with the master, and

• object-oriented control, in which users have the ability to specify the interac-
tion between the object and the environment regardless of the robot details. In
other words, the position and force trajectories can be specified regardless of
the independent robot action.
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For further details, see [28, 29]. In the pioneering work, variations of mas-
ter/slave control have been proposed for cooperation of two robots, see [30, 31].
The basic concept of master/slave control scheme is that the force controlled slave
arm follows the position controlled master arm. In other words, the position tra-
jectories of the slave arm are determined by the position trajectories of the master
arm. In this paper, the master/slave method is used because only one force/torque
sensor is available.

2. Hierarchical Neural Network Force Control

In this paper, we propose a hierarchical control framework based on neural net-
work to accomplish force control problem of a manipulator. The hierarchical force
control is shown in Figure 1. The high level of the hierarchical system consists
of two parts: neural network control and stiffness estimator. A built-in motion
controller of an industrial manipulator is treated as a low level control system.
The high level control system determines the motion control commands based on
sensory information. The low level control system controls the motion of the robot
according to control commands given by the high level control system.

2.1. NEURAL NETWORK CONTROL

The neural network is used to learn the mapping between the contact force error
and the accommodated position command to the built-in position controller of the
industrial robot. A popular feedforward error-back propagation neural network is
used in this paper. The structure of the neural networks is shown in Figure 2, where
1fda= fd−fa is the contact force error,Kn is the environmental stiffness and1xc

is the position command to the built-in position controller of the industrial robot.
Figure 2 shows that the neural network consists of three layers, including in-

put/output layers and one hidden layer which has ten neurons. The input to a hidden

Figure 1. The structure of the hierarchical neural network force control.
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Figure 2. Structure of the neural network.

layer or output layer node is a weighted sum of the previous layer. This sum is
passed through a nonlinear activation functionf (x). The input–output relationship
of neuron unit are as follows:

neti =
n∑
j=1

wijoj , (1)

oi = f (neti ), (2)

whereneti is the state of uniti, wij is the interconnection weight between unitsj
andi, andoi is the output of uniti. In this paper, a typical continuous activation
function

f (net) = 2

1+ exp(−λnet)
− 1 (3)

is used. The input layer has two nodes and the output layer has one node. Input
data consists of contact force error and estimated environmental stiffness. The
environmental stiffness is included in the input data to adapt various contact con-
ditions. The output data is the position command to the position controller so that
the contact force error will converge to zero.

The neural network is trained using the generalizedδ rule [32] to learn the
mapping between inputs and outputs of the system. Four different kinds of material
labeled as Spring, Sponge, Rubber1, and Rubber2 are used to obtain the training
data. A complete training data are listed in Table I. For the generalizedδ rule, the
weight betweenith andj th unit is changed by the following equation:

wij (k) = wij (k − 1)+ ηδioj , (4)

whereη is the learning rate andδi is given by the following equation:

δi = (di − oi)f ′(neti) for output units, (5)

δi = f ′(neti )
∑
k

wkiδk for other units, (6)

JINT1433.tex; 25/01/1999; 14:27; p.4



NEURAL NETWORK FORCE CONTROL FOR INDUSTRIAL ROBOTS 257

Table I. Training data of the neural network

Kn 1fda 1xc Kn 1fda 1xc

0.250 –0.600 –0.800 0.889 –0.600 –0.225

0.250 –0.525 –0.700 1.060 –0.525 –0.165

0.250 –0.450 –0.600 1.049 –0.450 –0.143

0.250 –0.375 –0.500 1.041 –0.375 –0.120

0.250 –0.300 –0.400 1.020 –0.300 –0.098

0.250 –0.225 –0.300 1.000 –0.225 –0.075

0.250 –0.150 –0.200 0.943 –0.150 –0.053

0.250 –0.075 –0.100 1.086 –0.075 –0.023

0.250 0.000 0.000 1.086 0.000 0.000

0.250 0.075 0.100 1.086 0.075 0.023

0.250 0.150 0.180 1.667 0.150 0.030

0.250 0.225 0.270 1.974 0.225 0.038

0.250 0.300 0.370 1.887 0.300 0.053

0.250 0.375 0.490 1.667 0.375 0.075

0.250 0.450 0.590 1.530 0.450 0.098

Spring Sponge

Kn 1fda 1xc Kn 1fda 1xc

0.454 –0.600 –0.441 1.429 –0.600 –0.140

0.526 –0.525 –0.333 1.446 –0.525 –0.121

0.575 –0.450 –0.261 1.613 –0.450 –0.093

0.604 –0.375 –0.207 1.488 –0.375 –0.084

0.654 –0.300 –0.153 1.538 –0.300 –0.065

0.695 –0.225 –0.108 1.596 –0.225 –0.047

0.695 –0.150 –0.072 1.785 –0.150 –0.028

0.926 –0.075 –0.027 1.316 –0.075 –0.019

0.833 0.000 0.000 1.136 0.000 0.000

0.758 0.075 0.033 1.000 0.075 0.025

0.980 0.150 0.051 1.471 0.150 0.034

1.041 0.225 0.072 1.786 0.225 0.042

1.010 0.300 0.099 1.923 0.300 0.052

1.096 0.375 0.114 1.667 0.375 0.075

1.111 0.450 0.135 1.686 0.450 0.089

Rubber1 Rubber2
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wheredi is the desired output of the unit,f ′(·) is the derivative of the functionf (·)
with respect tonet, andk denotes the number of units in the succeeding layer.

2.2. STIFFNESS ESTIMATOR

In order to control the contact force between the end-effector (tool) and the un-
certain environment, estimation of the stiffness of the environment becomes very
important. If the environment is modeled as a spring, a position command1xc

corresponding to an actual reaction force1fa can be used to determine the stiff-
nessKn:

Kn = 1fa(k)

1xc(k)
. (7)

To estimate the stiffness of the system, the recursive least-squares (RLS) method is
considered [33]:

Kn(k) = Kn(k − 1)+ R(k)(1fa(k)−1xc(k)Kn(k − 1)
)
, (8)

R(k) = P(k − 1)1xc(k)
(
1+ P(k − 1)1x2

c (k)
)−1
, (9)

P(k) = (1− R(k)1xc(k)
)
P(k − 1), (10)

where incremental force1fa(k) is a measured data corresponding to an incremen-
tal position command1xc(k). The initial condition is set to beKn(0) = 1300.
Although the resolution (the smallest command allowed) of the RV-M1 industrial
robot motion controller is 0.1 mm, the position repeatability of the motion con-
troller is only 0.3 mm, hence the estimatedKn(k) = Kn(k − 1) if 1xc(k) <

0.3 mm.

3. Control Strategy For Dual-Robot Systems

An object is grasped symmetrically by two robots with open palms as indicated in
Figure 3.

Figure 3. Symmetrical grasp configuration.
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Figure 4. Block diagram of dual-arm robot force control system.

The contact surfaces have friction, thus the surfaces of the robot arms and the
object surfaces did not slip if a sufficient squeezing force is maintained. The robot
arm that is equipped with a F/T sensor is called the slave arm and the other, without
F/T sensor, is called the master arm. The basic concept is that the master arm moves
along the prescribed trajectory without concern over the desired squeezing force
and the slave arm has to move in a way such that the squeezing force remains
constant.

A world reference Cartesian coordinate system is fixed at the base of each robot
as shown in Figure 3. The task is planed with respect to the reference frame of
the leader arm. The position command1xcomplier for complier arm and position
command1xleaderfor leader arm are given as

1xcomplier= 1xG +1xc, 1xleader= 1xG, (11)

where1xG is the position command that is yielded by trajectory generator while
1xc is generated by the neural network. Figure 4 shows the block diagram for the
force control system of a two-robot system.

4. Experiment Results

The implementation of the hierarchical neural network force control scheme is
carried out using a MITSUBISHI MELFA RV-M1 industrial robot, equipped with
a BL Force/Torque sensor. The configuration of the force control system is shown
in Figure 5.

The hierarchical neural network force controller is realized on a Pentium75 per-
sonal computer in C Language. The accommodated position command is computed
by the force control laws, which is resided in the PC, according to the Force/Torque
information. The Drive Unit takes responsibility on position/motion control. The
primary function of the F/T sensor controller is to transform the strain gauge data
from the transducer (labeled “F/T sensor” in Figure 5) into Cartesian force/torque
components and transmit this force/torque information to the PC. Since the position
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Figure 5. Experimental setup.

controller of the industrial robot do not accept a new position command until the
previous one is completed, the neural network force controller sends a new position
command only after the previous one is completed. The only exception is when the
force sensor sensed a contact force large enough to damage the robot, the controller
will send an emergency stop command to the robot. Because of this characteristic,
the sampling frequency of the proposed force controller is not fixed.

In the following experiments, the learning rateη = 0.1 andλ = 1 in the
activation function. The scaling factors of the input and output parameters of the
neural network are 0.003 and 10, respectively.

4.1. PUSH AGAINST WORKPIECES

Four workpieces labeled as Spring, Sponge, Rubber1 and Rubber2 are used for
the experiment. The results are shown in Figure 6. This figure shows that the
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Figure 6. Experimental results: various kinds of materials.

response of the system using Spring has the best performance. The reason for
this phenomenon is that Sponge and Rubber can not be modeled as just a spring.
However, throughout the experiment, we find that although the response of the
system using Sponge or Rubber is not as good as that using Spring, it is still
acceptable. Figure 7 shows that the estimated environmental stiffness using the
proposed stiffness estimator is close to the true value (1086 kg/m) when the robot
pushes against the Rubber1 material. Note that although the performance of the
proposed neural network force control method is satisfactory in this experiment, it
is available only for soft workpieces due to the limitation of precision of the robot’s
position controller.

To see the effect of the stiffness estimator, Figure 8 shows the response of the
system if we turn off the stiffness estimator and command the robot to push against
the Rubber1 material. This figure indicates that a large overshoot and oscillation
occurs.
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Figure 7. EstimatedKn with recursive least-squares (RLS).

Figure 8. Experiment result if the stiffness estimator is off.

4.2. TRACKING THE SURFACE OF A WORKPIECE

In this experiment, the robot is commanded to track the surface of a workpiece with
prescribed normal force 20 N. In order to minimize the resistant force between the
end-effector and the contact surface, a roller is mounted to the end-effector. Note
that the proposed neural network force control is used only in the normal(X)

direction of the workpiece. The original motion controller of the industrial robot
is used in the tracking(Y ) direction. Figures 9 and 10 show the force response of
the system for tracking the surface of two different material, Rubber1 and a mouse
pad, respectively. Note that the mouse pad is not included in the training material.
These two figures show that the proposed neural network force controller performs
well for both trained and untrained materials.
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Figure 9. Experiment result by using Rubber1.

Figure 10. Experiment result by using a mouse pad.

4.3. A DUAL -ROBOT SYSTEM HANDLING AN OBJECT

In this experiment, two MELFA RV-M1 robots (one is equipped with a F/T sensor
and the other is not) were used to hold an object, and to move it along a prescribed
trajectory, by maintaining squeezing force and constant orientation throughout the
motion. In the experiment, the same neural network trained in the single robot
system is used for the slave robot. The configuration of the two-robot system is
shown in Figure 11. The dual-robot system grasps a tennis ball symmetrically
and moves the tennis ball along the semicircular trajectory with diameter 6 cm,
and maintains the orientation of tennis ball as shown in Figure 12. At the ini-
tial stage, a small bias squeezing force about 2 N to 3 N is applied to the ob-
ject to prevent the object from falling down. Two cases are considered as fol-
lows:

Case 1: The desired squeezing forcefd = 20 N while moving along the semicir-
cular trajectory. The experimental result is shown in Figure 13. Disturbance force
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Figure 11. The experiment setup of a two-robot system.

Figure 12. Prescribed semicircular trajectory.

was added to show the capability of disturbance rejection while the object was
moved along the trajectory. The result is shown in Figure 14.

Case 2: Track the desired squeezing forcefd = 1+ 0.5 sin(2θ) while moving
along the semicircular trajectory, where 06 θ 6 π as indicated in Figure 15. The
experimental result is shown in Figure 16.

Experimental results show that the two-robot system has the capability in track-
ing force trajectory during the operation of moving object. The key factor is that the
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Figure 13. Move along semicircular trajectory with constant desired squeezing force.

Figure 14. Experimental result of disturbance rejection.

Figure 15. Semicircular trajectory.

neural network force control system generates reasonable accommodated position
command1xc to maintain the squeezing force. It is verifiable that if the neural
network force controller is turned off, the response of the squeezing force diverges
as indicated in Figure 17. This situation illustrates that the squeezing force is not
under control.
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Figure 16. Experiment result with sinusoid desired force trajectory.

Figure 17. Experiment result if the neural network force controller is switched off.

To conclude, the neural network force control with master-slave algorithm sys-
tem can be easily applied to the dual-robot system and the control response is quite
satisfactory in some applications.

5. Conclusion

In this paper, a hierarchical neural network force control strategy has been applied
to industrial robots. The advantage of designing a neural network force controller
is that mathematical models of the robot manipulator and contacted environment
are not needed. The concept of hierarchical control is more easily applied to the
existing industrial manipulators equipped with the motion control system only. For
dual-arm robots, the master-slave scheme provides acceptable performance and it
could be applied to practical tasks, for example, only one F/T sensor could be
equipped what is economically advantageous.
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