1,034 research outputs found

    GEANT4 : a simulation toolkit

    Get PDF
    Abstract Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics. PACS: 07.05.Tp; 13; 2

    Novel analysis and modelling methodologies applied to pultrusion and other processes

    Get PDF
    Often a manufacturing process may be a bottleneck or critical to a business. This thesis focuses on the analysis and modelling of such processest, to both better understand them, and to support the enhancement of quality or output capability of the process. The main thrusts of this thesis therefore are: To model inter-process physics, inter-relationships, and complex processes in a manner that enables re-exploitation, re-interpretation and reuse of this knowledge and generic elements e.g. using Object Oriented (00) & Qualitative Modelling (QM) techniques. This involves the development of superior process models to capture process complexity and reuse any generic elements; To demonstrate advanced modelling and simulation techniques (e.g. Artificial Neural Networks(ANN), Rule-Based-Systems (RBS), and statistical modelling) on a number of complex manufacturing case studies; To gain a better understanding of the physics and process inter-relationships exhibited in a number of complex manufacturing processes (e.g. pultrusion, bioprocess, and logistics) using analysis and modelling. To these ends, both a novel Object Oriented Qualitative (Problem) Analysis (OOQA) methodology, and a novel Artificial Neural Network Process Modelling (ANNPM) methodology were developed and applied to a number of complex manufacturing case studies- thermoset and thermoplastic pultrusion, bioprocess reactor, and a logistics supply chain. It has been shown that these methodologies and the models developed support capture of complex process inter-relationships, enable reuse of generic elements, support effective variable selection for ANN models, and perform well as a predictor of process properties. In particular the ANN pultrusion models, using laboratory data from IKV, Aachen and Pera, Melton Mowbray, predicted product properties very well

    The integration of hazard evaluation procedures and requirements engineering for safety-critical embedded systems

    Get PDF
    Although much work has been done on assessing safety requirements in programmable systems, one very important aspect, the integration of hazard evaluation procedures and requirements engineering, has been somewhat neglected. This thesis describes the derivation and application of a methodology, HAZAPS (HAZard Assessment in Programmable Systems). The methodology assists at the requirements stage in the development of safety-critical embedded systems. The objectives are to identify hazards in programmable systems, construct and model the associated safety requirements, and, finally, to assess these requirements. HAZAPS integrates safety engineering and software modelling techniques. The analysis of more than 300 computer related incidents provided the criteria used to identify, select and modify safety engineering techniques. [Continues.

    Software engineering methodologies and tools

    Get PDF
    Over the years many engineering disciplines have developed, including chemical, electronic, etc. Common to all engineering disciplines is the use of rigor, models, metrics, and predefined methodologies. Recently, a new engineering discipline has appeared on the scene, called software engineering. For over thirty years computer software has been developed and the track record has not been good. Software development projects often miss schedules, are over budget, do not give the user what is wanted, and produce defects. One estimate is there are one to three defects per 1000 lines of deployed code. More and more systems are requiring larger and more complex software for support. As this requirement grows, the software development problems grow exponentially. It is believed that software quality can be improved by applying engineering principles. Another compelling reason to bring the engineering disciplines to software development is productivity. It has been estimated that productivity of producing software has only increased one to two percent a year in the last thirty years. Ironically, the computer and its software have contributed significantly to the industry-wide productivity, but computer professionals have done a poor job of using the computer to do their job. Engineering disciplines and methodologies are now emerging supported by software tools that address the problems of software development. This paper addresses some of the current software engineering methodologies as a backdrop for the general evaluation of computer assisted software engineering (CASE) tools from actual installation of and experimentation with some specific tools

    Space Generic Open Avionics Architecture (SGOAA) reference model technical guide

    Get PDF
    This report presents a full description of the Space Generic Open Avionics Architecture (SGOAA). The SGOAA consists of a generic system architecture for the entities in spacecraft avionics, a generic processing architecture, and a six class model of interfaces in a hardware/software system. The purpose of the SGOAA is to provide an umbrella set of requirements for applying the generic architecture interface model to the design of specific avionics hardware/software systems. The SGOAA defines a generic set of system interface points to facilitate identification of critical interfaces and establishes the requirements for applying appropriate low level detailed implementation standards to those interface points. The generic core avionics system and processing architecture models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied

    GEANT4--a simulation toolkikt

    Get PDF
    Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics

    Search-based system architecture development using a holistic modeling approach

    Get PDF
    This dissertation presents an innovative approach to system architecting where search algorithms are used to explore design trade space for good architecture alternatives. Such an approach is achieved by integrating certain model construction, alternative generation, simulation, and assessment processes into a coherent and automated framework. This framework is facilitated by a holistic modeling approach that combines the capabilities of Object Process Methodology (OPM), Colored Petri Net (CPN), and feature model. The resultant holistic model can not only capture the structural, behavioral, and dynamic aspects of a system, allowing simulation and strong analysis methods to be applied, it can also specify the architectural design space. Both object-oriented analysis and design (OOA/D) and domain engineering were exploited to capture design variables and their domains and define architecture generation operations. A fully realized framework (with genetic algorithms as the search algorithm) was developed. Both the proposed framework and its suggested implementation, including the proposed holistic modeling approach and architecture alternative generation operations, are generic. They are targeted at systems that can be specified using object-oriented or process-oriented paradigm. The broad applicability of the proposed approach is demonstrated on two examples. One is the configuration of reconfigurable manufacturing systems (RMSs) under multi-objective optimization and the other is the architecture design of a manned lunar landing system for the Apollo program. The test results show that the proposed approach can cover a huge number of architecture alternatives and support the assessment of several performance measures. A set of quality results was obtained after running the optimization algorithm following the proposed framework --Abstract, page iii

    Distributed Control Architecture

    Get PDF
    This document describes the development and testing of a novel Distributed Control Architecture (DCA). The DCA developed during the study is an attempt to turn the components used to construct unmanned vehicles into a network of intelligent devices, connected using standard networking protocols. The architecture exists at both a hardware and software level and provides a communication channel between control modules, actuators and sensors. A single unified mechanism for connecting sensors and actuators to the control software will reduce the technical knowledge required by platform integrators and allow control systems to be rapidly constructed in a Plug and Play manner. DCA uses standard networking hardware to connect components, removing the need for custom communication channels between individual sensors and actuators. The use of a common architecture for the communication between components should make it easier for software to dynamically determine the vehicle s current capabilities and increase the range of processing platforms that can be utilised. Implementations of the architecture currently exist for Microsoft Windows, Windows Mobile 5, Linux and Microchip dsPIC30 microcontrollers. Conceptually, DCA exposes the functionality of each networked device as objects with interfaces and associated methods. Allowing each object to expose multiple interfaces allows for future upgrades without breaking existing code. In addition, the use of common interfaces should help facilitate component reuse, unit testing and make it easier to write generic reusable software

    Rigorous object-oriented analysis

    Get PDF
    Object-oriented methods for analysis, design and programming are commonly used by software engineers. Formal description techniques, however, are mainly used in a research environment. We have investigated how rigour can be introduced into the analysis phase of the software development process by combining object-oriented analysis (OOA) methods with formal description techniques. The main topics of this investigation are a formal interpretation of the OOA constructs using LOTOS, a mathematical definition of the basic OOA concepts using a simple denotational semantics and a new method for object- oriented analysis that we call the Rigorous Object-Oriented Analysis method (ROOA). The LOTOS interpretation of the OOA concepts is an intrinsic part of the ROOA method. It was designed in such a way that software engineers with no experience in LOTOS, can still use ROOA. The denotational semantics of the concepts of object-oriented analysis illuminates the formal syntactic transformations within ROOA and guarantees that the basic object- oriented concepts can be understood independently of the specification language we use. The ROOA method starts from a set of informal requirements and an object model and produces a formal object-oriented analysis model that acts as a requirements specification. The resulting formal model integrates the static, dynamic and functional properties of a system in contrast to existing OOA methods which are informal and produce three separate models that are difficult to integrate and keep consistent. ROOA provides a systematic development process, by proposing a set of rules to be followed during the analysis phase. During the application of these rules, auxiliary structures are created to help in tracing the requirements through to the final formal model. As LOTOS produces executable specifications, prototyping can be used to check the conformance of the specification against the original requirements and to detect inconsistencies, omissions and ambiguities early in the development process
    corecore