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ABSTRACT

THIS document describes the development and testing of a novel Distributed Con-

trol Architecture (DCA). The DCA developed during the study is an attempt to

turn the components used to construct unmanned vehicles into a network of intelligent

devices, connected using standard networking protocols. The architecture exists at both

a hardware and software level and provides a communication channel between control

modules, actuators and sensors.

A single unified mechanism for connecting sensors and actuators to the control soft-

ware will reduce the technical knowledge required by platform integrators and allow

control systems to be rapidly constructed in a ‘Plug and Play’ manner. DCA uses

standard networking hardware to connect components, removing the need for custom

communication channels between individual sensors and actuators.

The use of a common architecture for the communication between components should

make it easier for software to dynamically determine the vehicle’s current capabilities

and increase the range of processing platforms that can be utilised. Implementations of

the architecture currently exist for Microsoft Windows, Windows Mobile 5, Linux and

Microchip dsPIC30 microcontrollers.

Conceptually, DCA exposes the functionality of each networked device as objects with

interfaces and associated methods. Allowing each object to expose multiple interfaces

allows for future upgrades without breaking existing code. In addition, the use of com-

mon interfaces should help facilitate component reuse, unit testing and make it easier

to write generic reusable software.

ii



ACKNOWLEDGEMENTS

Firstly I would like to thank my supervisors Professor Roy Kalawsky and Dr. Paul

Lepper for their support and good advice. I am also very grateful to Dr. Simon Dible

for kindly taking the time to read and comment on early versions of the thesis. I would

also like to thank Brian Ford and Graham Watson for their input and advice.

Time in the office was made much more enjoyable through the friendship of Dr. Andrew

Armstrong, Dr. Gordon Leonard, Dr. Simon Dible, James Cowie and S. Beesley. I am

grateful for their friendship and guidance.

Finally, I would like to thank my family for their support and encouragement.

iii



CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Research Challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Intelligent Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. Literature Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Unmanned Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Control Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Communication Abstractions . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Component Technologies . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Network Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

iv



Contents v

3. Design of a Flexible Distributed Control Architecture . . . . . . . . . . . . 48

3.1 Distributed Control Architecture (DCA) Requirements . . . . . . . . . 48

3.2 The Distributed Control Architectures Object Orientated Concepts . . . 50

3.3 Run time flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 DCA Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 Related Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.7 Areas of Originality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.8 DCA Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4. Processing Platforms Supported by the Distributed Control Architecture . . 66

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Development Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5. Network Technologies Supported by the Distributed Control Architecture . 74

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Controller Area Network (CAN) . . . . . . . . . . . . . . . . . . . . . 79

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6. The Distributed Control Architecture’s Communication Layer . . . . . . . 82

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3 Network Bridging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



Contents vi

6.4 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7. The Distributed Control Architecture’s Object Orientated Abstractions . . . 96

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.2 DCA Objects and Interfaces . . . . . . . . . . . . . . . . . . . . . . . 97

7.3 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.4 System Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.5 Additional C# Components . . . . . . . . . . . . . . . . . . . . . . . . 113

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8. The Distributed Control Architecture’s Graphical Configuration Tool . . . . 117

8.1 Application Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.2 Project Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.3 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9. Testing of the Distributed Control Architecture . . . . . . . . . . . . . . . 125

9.1 GPS - ICE Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9.2 Remote Procedure Call (RPC) Test . . . . . . . . . . . . . . . . . . . . 128

9.3 Publish / Subscribe Ethernet Test . . . . . . . . . . . . . . . . . . . . . 131

9.4 Publish / Subscribe Bridge . . . . . . . . . . . . . . . . . . . . . . . . 132

9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

10. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

10.1 Contribution of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 137



Contents vii

10.2 Suggestions for further work . . . . . . . . . . . . . . . . . . . . . . . 139

10.3 Overall Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Author’s Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

References and Bibliography . . . . . . . . . . . . . . . . . . . . . . . . 145

A. Component Technology Dimensions . . . . . . . . . . . . . . . . . . . . . 168

B. Sample Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

B.1 Sample Vehicle 1 - Commercial Underwater Vehicle . . . . . . . . . . 170

B.2 Sample Vehicle 2 - Student Underwater Vehicle With Single Board

Computers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

B.3 Sample Vehicle 3 - Humanoid Robot Controlled by a PDA . . . . . . . 175

B.4 Sample Vehicle 4 - Land vehicle controlled by a Laptop or Personal

Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

C. Related Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

D. Processing Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

E. Development Board dsPIC30F6015 . . . . . . . . . . . . . . . . . . . . . 181

F. Project Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

F.1 Ethernet/UDP/IP Network Stack . . . . . . . . . . . . . . . . . . . . . 183

F.2 Communication Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 183

F.3 Object Orientated Abstractions . . . . . . . . . . . . . . . . . . . . . . 185

F.4 Code Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186



Contents viii

G. SCP Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . 189

G.1 State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

G.2 The SCP Transmission Control Block (TCB) . . . . . . . . . . . . . . 190

G.3 SCP Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

G.4 SCP Connection Establishment . . . . . . . . . . . . . . . . . . . . . . 192

G.5 Ethernet (UDP) Implementation . . . . . . . . . . . . . . . . . . . . . 193

G.6 CAN Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

H. Publish Subscribe Implementation Details . . . . . . . . . . . . . . . . . . 199

H.1 Ethernet (UDP) Implementation . . . . . . . . . . . . . . . . . . . . . 199

H.2 CAN Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

I. System Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

J. Format of the Project File . . . . . . . . . . . . . . . . . . . . . . . . . . 202

K. Test Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

K.1 Testing of GpsIceBridge . . . . . . . . . . . . . . . . . . . . . . . . . 203

K.2 Testing of the Publish / Subscribe Bridge . . . . . . . . . . . . . . . . . 206



LIST OF ABBREVIATIONS

Abbreviation Expansion
ABE Autonomous Benthic Explorer
ADC Analog-to-Digital Converter
API Application Programming Interface
ARP Address Resolution Protocol

AUTOSAR AUTomotive Open System ARchitecture
AUV Autonomous Underwater Vehicle
CAN Controller Area Network
CBD Component-Based Development
CBSE Component-Based Software Engineering
CDL Component Description Language
CIP Common Industrial Protocol

CLARITy Coupled Layered Architecture for Robotic Autonomy
CLR Common Language Runtime
COM Microsoft Component Object Model

CORBA Common Object Request Broker Architecture
CSMA/CD Carrier Sense Multiple Access with Collision Detection

DARPA Defence Advanced Research Projects Agency
DCOM Distributed Component Object Model

DDS Data Distribution Service for real-time systems
DLL Dynamic-link library
DTC Defence Technology Centre
ECU Electronic Control Unit

FPGA Field-Programmable Gate Array
GPOS General-Purpose Operating System
GPS Global Positioning System

GUID Globally Unique IDentifier
HOOD Hierarchical Object Oriented Design

I2C Inter-Integrated Circuit
IC Integrated Circuit

ICE Internet Communications Engine
ICMP Internet Control Message Protocol
IDE Integrated Development Environment
IDL Interface Description Language

ix



Contents x

Abbreviation Expansion
IP Internet Protocol

JVM Java Virtual Machine
LIN Local Interconnect Network
MIT Massachusetts Institute of Technology

NASA National Aeronautics and Space Administration
ODBC Open Database Connectivity
OMG Object Management Group
OOA Object-Oriented Abstractions
PDA Personal Digital Assistant
RAM Random-Access Memory

ROOM Real-Time Object-Oriented Modelling
ROV Remotely Operated Vehicle
RPC Remote Procedure Call

RT-Java Real-Time Java
RTOS Real-Time Operating System
SCP Simple Communication Protocol

SEAS Systems Engineering for Autonomous Systems
SLAM Simultaneous Localisation And Mapping
SOC Service Oriented Computing
SPA Sense Plan Act
SPI Serial Peripheral Interface

TCB Transmission Control Block
TCP Transmission Control Protocol
UAV Unmanned Aerial Vehicle

UCAV Unmanned Combat Air Vehicle
UDP User Datagram Protocol
UGV Unmanned Ground Vehicle
UML Unified Modelling Language
USB Universal Serial Bus
USV Unmanned Surface Vehicle
UUID Universally Unique Identifier
UUV Unmanned Underwater Vehicle

WCET Worst-Case Execution Time
WHOI Woods Hole Oceanographic Institution
XML Extensible Markup Language



LIST OF FIGURES

1.1 A typical structuring the control hardware within an unmanned vehicle.

Adapted from [Nesnas, 2006]. . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The alternative method of connecting control components investigated

during the study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 The Tartan Racing autonomous vehicle, capable of navigating through

urban environments and winner of the DARPA 2007 Urban Challenge.

Image courtesy of DARPA. . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 NASA Robonaut, a teleoperated humanoid robot designed for opera-

tion in space. Courtesy NASA/JPL-Caltech. . . . . . . . . . . . . . . . 12

2.3 The Sense-Plan-Act (SPA) paradigm. The robot performs each of the

control primitives sequentially. . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Vertical layering of behaviours in a subsumption architecture with higher

level layers subsuming the roles of lower layers. Based on a figure from

Brooks [Brooks, 1985]. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 The client server communication abstraction. . . . . . . . . . . . . . . 21

2.6 Remote Procedure Call (RPC). Stubs and Proxies are used to hide the

complexities of the underlying communication channel. . . . . . . . . . 22

2.7 Under Publish/Subscribe the senders and receivers of messages are de-

coupled from one another, resulting in a more flexible architecture. . . . 24

xi



List of Figures xii

2.8 The ORCA robotics component framework makes use of the middle-

ware ICE. Supported platforms include Windows, Linux and Java. Based

on a figure by Makarenko et al. [Makarenko et al., 2006, Fig. 1]. . . . . 31

2.9 Electronic Control Units (ELUs) connected using networking technolo-

gies such as CAN and LIN. Adapted from a figure by Crnkovic [Crnkovic,

2004]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.10 The ISO 7 Layer Reference Model [Zimmermann, 1980]. . . . . . . . . 40

2.11 The Common Industrial Protocol (CIP) and its adaptation to various

physicals layers, including Ethernet and CAN. Based on a Figure by

Schiffer et al. [Schiffer et al., 2006, p. 6]. . . . . . . . . . . . . . . . . 45

3.1 High level software using dedicated communication channels to inter-

act with physical sensors and actuators. . . . . . . . . . . . . . . . . . 51

3.2 The DCA is built around a Communication Layer that is accessible to

both high level software and low level digital electronics. . . . . . . . . 52

3.3 All DCA components are treated the same. There can be multiple im-

plementations of the Communication Layer, each supporting different

network technologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 DCA Breakdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 An alternative view of the DCA. . . . . . . . . . . . . . . . . . . . . . 65

4.1 The spectrum of computing platforms commonly used by unmanned

vehicles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 The open source Mono platform allows .NET applications to execute on

computers running Linux. To execute on PDAs C# applications need

to be modified slightly so as to take account of the limitations of the

Windows Mobile operating system. . . . . . . . . . . . . . . . . . . . 70



List of Figures xiii

4.3 Three of the Microchip dsPIC30 development boards that were devel-

oped during the project. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Block diagram for the Microchip dsPIC30 development board. . . . . . 72

5.1 TCP/IP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 The Ethernet/IP/UDP network layers that were implemented in C dur-

ing the project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 The CAN Diagnostic tool developed during the project allowed activity

on the CAN bus to be monitored. . . . . . . . . . . . . . . . . . . . . . 80

6.1 Three implementations of the Communication Layer have been written

during the project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 The Communication Layer supports several styles of interaction be-

tween components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3 SCP State Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4 Pipe Connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.5 Remote Procedure Call Connection. . . . . . . . . . . . . . . . . . . . 89

6.6 The C# version of the Communication Layer uses WaitHandles to sus-

pend the calling thread while a RPC is in progress. . . . . . . . . . . . 90

6.7 Publish Subscribe Concept of Operation. . . . . . . . . . . . . . . . . . 91

6.8 Bridging SCP connections between Ethernet and CAN versions of the

Communication Layer. . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.9 Bridging Publish/Subscribe connections between Ethernet and CAN

versions of the Communication Layer. . . . . . . . . . . . . . . . . . . 93

6.10 SCP Test Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



List of Figures xiv

7.1 The functionality of a DCA device is subdivided into objects. Each

DCA object has one or more interfaces with methods, pipe connections

and data topics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.2 DCA object ‘objGps’ with interfaces ‘IGpsSimple’ and ‘IGpsStatus’. . . 98

7.3 The use of standardised interfaces would allow one component to be

replaced with another. . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.4 The C implementation uses structures to represent objects, interfaces,

methods and data topics. . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.5 An extract from ‘objGPS.c’. Structures are used to represent DCA in-

terfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.6 The C] class diagram of DCA Devices, Objects and Interfaces. . . . . . 105

7.7 An extract from ‘dev MotorControl.cs’. Software devices are based on

the ‘DCA ’ class ‘DCA SoftDevice’. . . . . . . . . . . . . . . . . . . . 106

7.8 Remote Device Drivers are similar to Software Devices but hold a Re-

mote Procure Call (RPC) connection to the remote device. When a

method is called on the device driver the RPC connection is used to

forward the call to the actual device. . . . . . . . . . . . . . . . . . . . 107

7.9 An extract from the file ‘ILed.cs’. The method call is forwarded to

the remote device using the line of code starting with ‘rpcConnec-

tion.SynchronousCall’. . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.10 A extract from the file ‘ILed.cs’. The C# implementation uses attributes

to mark properties as configurable parameters. . . . . . . . . . . . . . . 109

7.11 The IDE’s Property Grid. . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.12 Several of the interfaces exposed by DCA system objects inherit from

the generic RemoteEditableList<T>interface. . . . . . . . . . . . . . . 110



List of Figures xv

7.13 An implementation of the DCA includes several system objects that are

used to obtain device information and to configure the Communication

Layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.14 The methods implemented by the system object Identity. . . . . . . . . 112

7.15 Structure of the main C# components. . . . . . . . . . . . . . . . . . . 114

7.16 The user interface of the Device Library. . . . . . . . . . . . . . . . . . 115

7.17 Concept of operation of DCA Host. . . . . . . . . . . . . . . . . . . . 116

8.1 Screen capture of the DCA Integrated Development Environment (IDE). 118

8.2 The IDE makes use of the Object Orientated Abstractions to determine

the interfaces and configurable properties of devices. . . . . . . . . . . 119

8.3 The IDE loads each device into a separate application domain. . . . . . 120

8.4 (a) The IDE allows configuration data to be exported in an XML format

compatible with DCA Host and allows software devices to be started

from within the IDE. (b) The IDE allows remote devices to be config-

ured while offline and then synchronised later. . . . . . . . . . . . . . . 121

8.5 The IDE allows remote devices to be configured while offline and set-

tings to be synchronised next time the device is connected. . . . . . . . 122

8.6 Screen capture of the LabVIEW programming environment . . . . . . . 123

9.1 The GpsIceBridge allows ConSERT components to access GPS data . . 126

9.2 The GPS Bridge was written twice. The first implementation interfaces

directly with the Communication Layer, the other uses the Object Ori-

ented Abstractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

9.3 The user interfaces of the two implementations of the of GpsIceBridge. 127



List of Figures xvi

9.4 A Remote Procedure Call (RPC) bridge is used to allow software run-

ning on the laptop to call methods exposed by a device on a remote

CAN network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.5 The bridge is used transfer the remote procedure call details to the CAN

device and return the results of call back to the software executing on

the laptop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9.6 The components ‘MotorControl’ and ‘PubSubTest’ were used to test

the Ethernet implementation of Publish/Subscribe . . . . . . . . . . . . 131

9.7 The Publish/Subscribe packets sent between ‘MotorControl’ and ‘Pub-

SubTest’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

9.8 The arrangement of the components used to test the Publish/Subscribe

Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

9.9 An extract from objPressureSensor.c . . . . . . . . . . . . . . . . . . . 134

B.1 (a) Bluefin Robotic’s AUV ‘Bluefin-21 BPAUV’. Image source www.wikipedia.org,

credit Bluefin Robotics Corporation (b) The IFE’s ROV Hercules (im-

age source www.wikipedia.org). . . . . . . . . . . . . . . . . . . . . . 171

B.2 Hardware components of sample platform 1 . . . . . . . . . . . . . . . 172

B.3 Software architecture of sample platform 1. Adapted from Gat [Gat,

1998] and Assalih et al. [Assalih et al., 2007]. . . . . . . . . . . . . . . 173

B.4 Sample Platform 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

B.5 (a) RoboSapien, a humanoid robot produced by Wow Wee Toys (Image

source: www.wikipedia.org) (b) Sample Vehicle 3, a humanoid robot

controlled by a PDA . . . . . . . . . . . . . . . . . . . . . . . . . . . 176



List of Figures xvii

B.6 (a) Team AnnieWay’s entry in the DARPA 2007 Urban Challenge. Im-

age courtesy of DARPA (b) A mobile robot equipped with a LIDAR

sensor, allowing it to map the surrounding area and avoid obstacles.

(Image source: www.wikipedia.org) . . . . . . . . . . . . . . . . . . . 177

E.1 dsPIC30F6016 B1 Board. Approximate size: 98mm x 74mm . . . . . . 181

E.2 dsPIC30F6016 B1 Schematic . . . . . . . . . . . . . . . . . . . . . . . 182

F.1 Software components, coloured boxes represent software developed as

part of the project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

G.1 SCP State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

G.2 SCP Connection Establishment . . . . . . . . . . . . . . . . . . . . . . 192

G.3 The arrangement of Ethernet, IP, UDP and SCP packets as they are

transmitted across the network . . . . . . . . . . . . . . . . . . . . . . 193

G.4 SCP Packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

G.5 SCP Packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

G.6 CAN Connection Example . . . . . . . . . . . . . . . . . . . . . . . . 198

H.1 The arrangement of Ethernet, IP, UDP and Pub/Sub packets as they are

transmitted across the network . . . . . . . . . . . . . . . . . . . . . . 199

H.2 An extract from ETH PubSub.h . . . . . . . . . . . . . . . . . . . . . 200

K.1 Transfer of GPS data between the DCA object ‘GPS’ and the software

device GpsIceBridge . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

K.2 Using the CAN-ETH bridge to transfer GPS data between CAN and

Ethernet networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

K.3 The bridge has been configured to collect data from several CAN pack-

ets into a single Ethernet packet. . . . . . . . . . . . . . . . . . . . . . 206



List of Figures xviii

K.4 Testing of the Publish/Subscribe Bridge . . . . . . . . . . . . . . . . . 207



LIST OF TABLES

5.1 Although both suitable for control applications, CAN and Ethernet are

intended for different applications. . . . . . . . . . . . . . . . . . . . . 75

9.1 The number of lines of code required to implement GpsIceBridge. ‘Blank

lines’ refers to the number of empty lines within each file. . . . . . . . . 128

9.2 Average response time for SCP packets transmitted to the CAN/Ethernet

bridge. Calculated from 336 remote procedure calls. . . . . . . . . . . . 130

C.1 Related Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

G.1 The SCP Transmission Control Block (TCB) . . . . . . . . . . . . . . 190

G.2 SCP Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

G.3 SCP Flag Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . 191

G.4 Ethernet SCP Packet Stucture . . . . . . . . . . . . . . . . . . . . . . . 193

I.1 The System Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

xix



CHAPTER 1:

INTRODUCTION

UNMANNED vehicles are used in a wide variety of applications (Section 2.1).

Unmanned aerial vehicles are used by military and security organisations around

the world for combat and surveillance tasks. Remotely operated and autonomous un-

derwater vehicles have been used for scientific research, by the oil and gas industry for

underwater construction and by the military for the recovery of items from the sea floor.

Unmanned vehicle research is closely related to the larger research area of robotics and

a common generalisation is to refer to robots as well suited to tasks that are considered

too ‘dull, dirty or dangerous’ for humans. As a result, robotic vehicles are well suited

to tasks such as pipe inspection, bomb disposal and space exploration [Bright et al.,

1997] [Stroupe et al., 2001].

The study presented in this thesis focused on the internal structuring of the control

components within unmanned vehicles. The underlying hypothesis is that the control

components can be made more flexible, analysable and reusable by making use of the

networking and Component Based Software Engineering (CBSE) technologies origi-

nally developed for enterprise applications (Section 2.4.1).

An unmanned vehicle will typically require sensors such as video cameras, distance

measuring devices and accelerometers for collecting data about the vehicle’s location

and points of interest within the environment. In addition, a vehicle requires actuators

that allow it move and interact with the environment.

There is a range of different methods for structuring an unmanned vehicle’s control

hardware [Nesnas, 2006] but typically the sensors and actuators will be connected in a

manner similar to that shown in Figure 1.1.

1
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Figure 1.1: A typical structuring the control hardware within an unmanned vehicle. Adapted
from [Nesnas, 2006].

Some sensors and actuators will have digital interfaces that allow them to be connected

directly to the robot’s central processor. Other devices are likely to require additional

electronics to convert the electrical interface of the sensor or actuator into a format

supported by the central processing unit.

The need to handle such a large spectrum of hardware and software interfaces can

restrict the choice of processing platform and increase the technical knowledge required

by the developers of unmanned vehicles. Developers responsible for interfacing the

various analogue and digital devices will need to have the skills and tools necessary to

diagnose connection problems related to each type of interface.

In addition, if the central processor is required to directly control motors or read from

sensors then this can impose timing restraints on the control software. Ensuring de-

vices like electrical motors are serviced at the correct rate can in some situations limit

the choice of operating system, again increasing the technical knowledge required by

developers.

The alternative method of connecting control components, investigated during the study,

is to replace the custom communication channels with standard networking technolo-

gies (Figure 1.2). The approach requires each networked device, whether it be a sensor,
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Figure 1.2: The alternative method of connecting control components investigated during the
study.

actuator or control component, to be capable of interfacing to the network and of en-

coding and decoding data packets. In addition, since the network will be shared by

many devices all the devices need to agree on a common structure for data packets. As

a result, the study involved investigations into the types of data that need to transmitted

between control components and an evaluation of different network technologies.

The range of processing platforms found within unmanned vehicles ranges from small

microcontrollers with limited memory and processing capability to laptops and desktop

computers. Consequently, the study also included investigations to confirm that net-

work technologies such as CAN and Ethernet (Section 2.5.3) could be accessed from

the processing platforms commonly found in unmanned vehicles.

Having established a method of connecting control components using standard net-

working technologies the study then focused on how best to expose functionality to

other devices on the network. The key requirement was to expose functionality in

a modular, reusable way that allowed components to be added and replaced during

the life of a vehicle. As a result, Component Based Software Engineering (CBSE)

technologies developed for domains, such as Internet and enterprise software (Section

2.4.1), where investigated.

The result of the investigations has been the development of a novel distributed con-
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trol architecture, referrred to as ‘The Distributed Control Architecture’ (DCA). The

DCA is a component technology that allows vehicle control components to be dis-

tributed across a network. The DCA has been implemented in embedded C on small

microcontrollers and in C# for use on general purpose operating systems like Microsoft

Windows. The DCA currently supports the network technologies CAN and Ethernet

and has been developed in a layered manner that would allow support for additional

network technologies to be added in the future.

The DCA makes use of CBSE concepts and exposes device functionality using objects

that have interfaces, methods and data topics. Allowing each object to expose multiple

interfaces allows for future upgrades without breaking existing code. In addition, the

use of common interfaces will help facilitate component reuse, unit testing and make it

easier to write generic reusable software.

Components can be configured using configuration properties and system objects can

be used to configure the communication links between components. Several styles of

communication are supported, including Publish/Subscribe and Remote Procedure Call

(RPC).

A single unified mechanism for connecting sensors and actuators to the control software

will reduce the technical knowledge required by platform integrators and allow control

systems to be rapidly constructed in a ‘Plug and Play’ manner.

In addition, the DCA allows sensors and actuators to be separated from the high level

control logic and therefore allows a larger range of processing platforms to be utilised.

Low level control software can be implemented on small microcontrollers and high

level software can make use of general purpose processing platforms.

1.1 Research Challenge

The aim of the study has been to develop a standard method of connecting control

components that allows non-technical users to rapidly connect and configure unmanned

vehicle control components. This research objective required initial investigations into
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unmanned vehicle control architectures so that the requirements for the DCA could be

more precisely defined.

From the investigations into existing unmanned vehicle control architectures, network

technologies and component technologies (Chapter 2) it became clear that the architec-

ture developed during the study would need to:

• Be implementable on a broad range of processing platforms, from small micro-

controllers to desktop computers.

• Support a range of networking technologies.

• Support a wide range of methods for structuring the control logic. Early robots

tended to structure the control logic around the ‘Sense-Plan-Act’ paradigm while

more recently the ‘Hybrid Deliberate’ paradigm has become popular (Section

2.2.1).

• Support several styles of component interaction, including Remote Procedure

Call (RPC) and Publish/Subscribe (Section 2.3)

• Hide technical details from non-technical users and provide tools that allow ve-

hicle control components to be configured. Essentially provide a ‘Plug and Play’

capability that allowed devices to report their capabilities to the network and be

configured through graphical tools.

• Make use of Component Based Software Engineering (CBSE, Section 2.4) con-

cepts to allow control components to be treated as modular, reusable units of

functionality.

The above requirements guided the development of the sample implementations of the

DCA and are discussed in more detail in Section 3.1. Sample implementations have

been written in C# .NET and embedded C. The C# .NET implementation has been

tested on Linux, Windows XP and a PDA running Windows Mobile 5.0. The embed-

ded C implementation has been tested on a Microchip dsPIC based platform developed
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during the project. The test implementations support the network technologies Con-

troller Area Network (CAN) and Ethernet.

As covered in Section 3.7 this study included the following original aspects;

• The development of an integrated family of protocols that support Publish/Subscribe,

Remote Procedure Call and the Pipe communication abstractions and are suitable

for use on deeply embedded platforms.

• The development of a component framework that allows vehicle control archi-

tectures to be implemented on processing platforms ranging from small embed-

ded devices to desktop computers running operating systems like Microsoft Win-

dows.

• Investigations into a ‘plug and play’ mechanism that hides the software and elec-

trical integration issues from unmanned vehicle developers.

1.2 Thesis Outline

The thesis chapters are organised as follows;

• Chapter 2 provides a literature survey of unmanned vehicles and of technologies

relevant to the development of a control architecture for unmanned vehicles.

• Chapter 3 introduces the Distributed Control Architecture (DCA) in more detail.

Technologies and research projects related to the architecture are summarised and

aspects of the thesis that are believed to be novel are identified. Chapter 3 also

provides an overview of the hardware and software developed while writing this

thesis.

• Chapter 4 looks in more detail at the types of computing platform typically used

by the control software of robots and unmanned vehicles. The chapter also de-

scribes the hardware and software platforms used to test implementations of the

Distributed Control Architecture.
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• Chapter 5 outlines the networking technologies (CAN and Ethernet) that have

been investigated. Some network related tools were required to test the hardware

and software developed during the project and these are also described in Chapter

5.

• Chapter 6 discusses the development and implementation of the communication

Layer.

• Chapter 7 introduces the DCA’s approach to objects, interfaces, methods and data

topics.

• Chapter 8 gives an overview of the developed Integrated Development Environ-

ment (IDE), a tool that allows DCA components to be configured.

• Chapter 9 describes the testing of the DCA.

• Chapter 10 concludes the thesis and proposes further areas of research.

1.3 Intelligent Devices

In several places this theses describes the DCA devices developed during the study as

‘intelligent devices’. In this context describing a device as intelligent is meant to imply

that the device has its own microprocessor [Dictionary, 2009, intelligent] and not that

the device is necessarily capable of learning or of the higher level cognitive functions

normally associated with intelligence [Dictionary, 2009, intelligence].



CHAPTER 2:

LITERATURE STUDY

2.1 Unmanned Vehicles

THE term ‘unmanned vehicle’ covers a broad spectrum of devices and includes

numerous terms and abbreviations that refer to similar technologies. As well

as introducing the spectrum of vehicles that fall into this category it is hoped that this

section will define commonly used acronyms and clearly define the use of the term

‘unmanned vehicle’ within this document.

Unmanned vehicles are typically used in environments where it is considered too dull,

dirty or dangerous to send humans [Hinton et al., 2006] [Takayama et al., 2008] [Graf

and Pfeiffer, 2008]. Examples include the inspection of radio active environments,

bomb disposal and military surveillance.

Early vehicles were closely linked to the field of robotics and had only very simple

control systems. These vehicles were remotely operated and relied on a continuous

communication link to supply them with direct motor commands. More recent control

systems attempt to give vehicles ‘intelligence’ so that they can make decisions and take

corrective action without the need for operator intervention [Murphy, 2000, p. 19].

The military often use the terms UAV, UGV, UUV and USV to refer to Unmanned

Air, Ground, Underwater and Sea-surface Vehicles. Some authors prefer to use the

term ‘uninhabited’ rather than ‘unmanned’ to avoid implying any particular degree of

autonomy [Purcell, 2006].

The following sub sections give an overview of vehicles used in the domains of Air,

Land, Sea and Space. A more complete reference of current technologies and platforms

8
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is the Tech Database run by the US Department of Defence [Pastore et al., 2005].

2.1.1 Land Vehicles

Research into unmanned vehicles grew out of the related fields of mobile robotics,

Artificial Intelligence (AI) and cybernetics [Murphy, 2000, p. 37] . The ‘Machina

Speculatrix’ tortoises of W. Grey Walter [Arkin, 1998, p. 8] were developed in the

1950’s and are some of the earliest vehicles to be mentioned in literature. The vehicles

had a light sensor and were able to explore their environment while controlled by very

simple electronics involving valves and mechanical relays. Braitenberg continued in the

same theme as Grey Walter devising numerous vehicles that reacted to the environment

while controlled by very simple ‘brains’ [Braitenberg, 1984]

More recently research into unmanned land vehicles has focused on issues related to ob-

ject avoidance and location finding. Navigating an unknown environment while build-

ing an accurate map is a difficult task. Sensor inaccuracies, changes in the environment

and the slippage of drive wheels make simultaneous localisation and mapping (SLAM)

difficult [Taylor, 2003] [Evans, 2006] [Harris, 2006].

The expectation for unmanned vehicles to operate over more difficult terrain has lead

to investigations into platforms with legs. Boston Dynamics have developed a 4 legged

‘dog’ that can carry loads over rough terrain [Boston Dynamics, 2008] and there are

numerous examples of devices with four or more legs that can traverse terrain that

similarly sized wheeled devices would find difficult [Suhr et al., 2005], [Cham et al.,

2002], [Aksak et al., 2008], [Kennedy et al., 2006], [Roßmann and Pfeiffer, 1997].

However, building robotic limbs that can replicate the efficient running gaits of animals

appears to be difficult [Melhuish and Burn, 2006]. Humanoid robots such as Honda’s

ASIMO and the Technical University of Munich’s JOHNNIE [Loffler et al., 2003]

demonstrate that two legged walking robots are also possible.

The US military has taken an interest in the use of unmanned vehicles for what it terms

‘dull, dirty, or dangerous’ tasks and to encourage further research into land vehicles has
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Figure 2.1: The Tartan Racing autonomous vehicle, capable of navigating through urban en-
vironments and winner of the DARPA 2007 Urban Challenge. Image courtesy of
DARPA.

funded several ‘grand challange’ competitions. The most recent of which involved de-

veloping a vehicle capable of autonomously navigating through an urban environment,

while avoiding other vehicles and obeying traffic regulations. The 2007 competition

was won by Tartan Racing [Carnegie Mellon, 2007] with the vehicle pictured in Figure

2.1. Makarenka et al. [Makarenka et al., 2007] describe the hardware and software

used to control the Berkeley-Sydney entry in the 2007 competition. More information

is available on the Grand Challenge website [DARPA, 2007b].

In the UK, the Systems Engineering for Autonomous Systems (SEAS) Defence Tech-

nology Centre (DTC) [DTC, 2009] has provided funding to guide unmanned vehicle

research towards military applications.

2.1.2 Underwater Vehicles

Underwater vehicles are normally referred to as either Remotely Operated Vehicles

(ROVs) or Autonomous Underwater Vehicles (AUVs), depending on the level of au-

tonomy. Much of the development of underwater vehicles appears to have been driven

by the needs of scientific research, underwater construction and the military. Valavanis

et al., Yuh and Whitcomb provide overviews of underwater vehicles and typical config-

urations of the control systems [Valavanis et al., 1997], [Yuh, 2000], [Whitcomb, 2000].
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More recently, Kinsey et al. have provided a survey of recent advances in underwater

navigation [Kinsey et al., 2006].

Most of the older vehicles are physically quite large and remotely operated. NDSF’s Ja-

son II [Whitcomb et al., 2003] is typical of many deep sea Remotely Operated Vehicles

(ROVs). Built around 2002 it is remotely operated and can operate to 6,500m below

sea level. More information is available on the Woods Hole Oceanographic Institution’s

website [WHOI, 2007].

Underwater vehicles such as Jason II have good manoeuvrability but limited straight

line speed. As a result torpedo shaped vehicles are also common. The MIT AUV Lab

[Massachusetts Institute of Technology (MIT), 2008] and Bluefin Robotics [Bluefin

Robotics, 2008] produce a range of torpedo shaped AUVs designed for exploration and

survey. Recently, competitions such as the San Diego International AUV competition

[AUVSI, 2008] and the Student Autonomous Underwater Challenge - Europe (SAUC-

E) [SAUC-E, 2008] have provided an opportunity for undergraduate students to become

involved in the development of smaller AUVs.

2.1.3 Air Vehicles

The earliest unmanned air vehicles where developed towards the end of World War I as

‘Flying Bombs’ [Larm, 1996] for use against ground targets. Between the World Wars

several nations continued to develop Unmanned Aerial Vehicles (UAVs) and in June

1944 Germany launched the first operational V-1 rockets [Werrell, 1985].

During the cold war emphasis shifted towards the use of unmanned aircraft for re-

connaissance. The United States flew over 3,400 UAV sorties over Southeast Asia

during the Vietnam Conflict, collecting photographic data, electronic intelligence and

distributing propaganda leaflets [Cook, 2007]. For the US military, UAVs allowed mis-

sions to be conducted at a fraction of the cost of manned missions without endangering

American air crew.
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Figure 2.2: NASA Robonaut, a teleoperated humanoid robot designed for operation in space.
Courtesy NASA/JPL-Caltech.

Today UAV development is being pursued by more than 50 countries world-wide [Cook,

2007]. U.S. UAVs such as Global Hawk and Predator have seen operation in Iraq and

Afghanistan and typically carry daylight, infrared and laser sensors. A UAV system

typically involves one or more UAVs, a control system and a data link to the UAV. In

the case of the more sophisticated long range UAVs the data link can involve relaying

signals through space satellites.

With the exception of the U.S. Predator aircraft, most UAVs in use today do not carry

weapons. There is however increasing interest in the development of Unmanned Com-

bat Aerial Vehicles (UCAV), with several nations pursuing technology demonstrator

programs [Wezeman, 2007]. It is envisaged that future UCAVs would offer unmanned

alternatives for dangerous missions, such as the suppression of enemy air defences.

2.1.4 Space Vehicles

The hostile environment of space and the practical difficulties of sending humans to

remote planets have resulted in considerable interest in the use of robots for space

exploration [Murphy, 2000]. As a result, space probes and the NASA Mars rovers are
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common examples of unmanned space vehicles and are well documented by Stroupe et

al. [Stroupe et al., 2001].

An interesting current NASA project is the development of Robonaut, a humanoid robot

that can be operated in space (Figure 2.2). The project aims to build a robot that can

perform tasks in space that would otherwise have to be done by humans. Using telep-

resence, the hope is that manual construction can be performed without the need for

humans to be physically present. Robonaut uses a biologically inspired design for its

electronics, with the control signals linked into a ‘central nervous system’. Its onboard

software is programmed in C and C++ and runs on three 604 PowerPC computer boards

[NASA, 2008].

2.2 Control Architectures

2.2.1 Robot Control

The field of unmanned vehicles is closely related to robotics and as a result the methods

used to control vehicles builds on the previous work in robotics. Early research robots

such as SRI’s Shakey [Nilsson, 1984] were limited by the available processing power

and as a result were controlled remotely over a wireless radio link. Outside of research,

robots have been used in industry to automate repetitive processes such as car assembly

and within the home to automate tasks such as vacuuming [iRobot, 2008].

Arkin and Murphy [Arkin, 1998] [Murphy, 2000] both provide an historical overview

of fictional robots within popular culture. However, unlike the fictional ones, current

robots still struggle to interpret information from cameras and to navigate through clut-

tered environments. Designing algorithms to interpret visual information in real-time

and navigate through unknown environments are still active areas of research [Taylor,

2003].

In addition, linking together the various software algorithms is nontrivial. Limited pro-

cessing capability and the desire to reuse and share software components complicate
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ActPlanSense

Figure 2.3: The Sense-Plan-Act (SPA) paradigm. The robot performs each of the control prim-
itives sequentially.

the design. To operate safely the robots need to respond to environmental events within

acceptable time scales and sensibly combine the inputs from multiple, potentially un-

reliable, sensors.

Robot Paradigms

Several different approaches, or paradigms, have been used to structure robot control

software. The earliest paradigm to become popular was the hierarchical paradigm. The

paradigm is also refereed to as ‘Sense-Plan-Act’ (SPA) from the three control primi-

tives. The robot first uses sensor data to build or update an internal representation of

the external environment (SENSE). The internal representation, or world model, is then

used to determine the most appropriate response (PLAN), which is this then acted on

(ACT). Brooks [Brooks, 1985] describes the hierarchical paradigm as having a ‘hori-

zontal decomposition’ with each item happening in a sequential order (Figure 2.3). The

sequential ordering has the disadvantage of the processing and acting stages occurring

with ‘eyes closed’ and the robot oblivious to any changes to the environment since it

last collected data from sensors.

The approach relies on the construction of a reliable world model which is difficult

because of the frame problem and the need for a closed world assumption [Murphy,

2000, p. 7]. The frame problem refers to the difficulty of representing the real-world in

a way that is computationally tractable [McCarthy and Hayes”, 1969]. If a robot wishes

to plan future actions then it needs be able to predict how its actions will effect the

environment. This requires the robot to understand which properties will be changed

by each action and which properties it can assume will be unchanged. It is the difficulty

in providing this knowledge in a form that the robot can act upon that the frame problem
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Figure 2.4: Vertical layering of behaviours in a subsumption architecture with higher level lay-
ers subsuming the roles of lower layers. Based on a figure from Brooks [Brooks,
1985].

refers to.

A closed world assumption assumes that the world model contains everything the robot

needs to know. This clearly puts a heavy burden on the human operator to supply all of

the relevant information and results in the robot needing to sort through a huge amount

of information every time it makes a decision.

Partly because of limited processing power, but also because of limitations of the Sense-

Plan-Act approach designers of these early robots were forced to restrict the speed of

the robots, resulting in ‘sub-turtle’ [Murphy, 2000, p. 44] velocities. The Sense-Plan-

Act paradigm is the basis of SRI’s Shakey [Nilsson, 1984], one of the earliest mobile

robots to be control by a computer.

The Reactive paradigm was proposed as a method to improve robot reaction times. The

Reactive paradigm works without the internal representation and bases output purely

on current inputs. Behaviours are used to couple sensory inputs to actuator commands.

Typically, a reactive system includes a mechanism for triggering behaviours and for

combining the outputs from multiple behaviours (including combination, suppression

and cancellation). As illustrated by Braitenberg [Braitenberg, 1984] the effect of com-

bining the outputs from even a few simple behaviours can be difficult to predict. As a
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result, the overall behaviour of the robot is said to be ‘emergent’.

Brooks’ Subsumption architecture, an example of the Reactive paradigm, builds be-

haviours from a network of modules. Each module can have registers, timers and a

finite state machine [Brooks, 1985]. Modules are grouped into layers of competence

and joined using ‘wires’ which connect output ports to input ports (figure 2.4).

Although the reactive paradigm allowed faster response times than with Sense-Plan-

Act (SPA) and made the implementation of basic behaviours like obstacle avoidance

easier than with SPA there appeared to be a capability ceiling [Gat, 1998]. The reactive

approach lacks mechanisms for managing complexity and as a result research moved

towards a hybrid approach that combines Sense-Plan-Act with Reaction.

The resulting Hybrid Deliberate or Three-Layer [Gat, 1998] approach uses a planning

system to set high level goals and a reactive behaviour based approach for lower level

functionality. An intermediate sequencing layer is used to connect the planning and

reactive layers.

If the architecture allows multiple behaviours to be active at once then a mechanism

is required to combine the outputs from multiple behaviours into a value that can be

supplied to actuators. Options include subsumption, potential field summation, voting,

fuzzy logic and filtering [Murphy, 2000, p. 263].

There are numerious examples of the hybrid deliberate paradigm, including 3T [Bonasso

et al., 1997], Saphira [Konolige and Myers, 1998] and Clarity [Nesnas, 2006].

The Saphira Architecture uses a robot server to abstract away the robot hardware, al-

lowing the architecture to be more easily ported between platforms. The client/sever

approach used by Saphira has the advantage of allowing the robot to be controlled re-

motely over a low bandwidth connection.

Robot Control Architectures

Beyond the conceptual aspects of the control paradigm are the practicalities of the pro-

gramming language used to write the control software and the mechanisms used to link
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control components together. For performance software may be written in languages

like C or C++ and statically linked during the compilation process. Alternatively robot

behaviour can be controlled using scripting languages that are interpreted at run time.

A robot or unmanned vehicle needs to interact with its environment and as a result

requires sensors and actuators. As is described by Nesnas et al. [Nesnas et al., 2003],

[Nesnas, 2006] there are a wide range of approaches used to communicate with sensors

and actuators. At one end of the spectrum, devices can be interfaced directly to the

central processor using the microcontroller’s analog and digital ports.

The approach has the advantage of making the sensors and actuators readily accessi-

ble from software but may impose processing requirements, such as ensuring devices

are serviced within predefined time scales. This in turn may put restrictions on the

operating system and complicate the structure of the software. The approach also has

the disadvantage of requiring the processor to have suitable analogue and digital ports

available, possibly limiting the choice of processor.

At the other end of the spectrum, sensors and actuators can be connected to the central

processor through serial protocols like USB [USB, 2000], Firewire (i.Link, IEEE 1394)

and RS-232 (TIA-232-F). This relieves the main processor of some of the lower level

duties related to servicing sensors and actuators and can allow for more flexibility on

the choice of operating systems and programming language.

Foster et al. [Foster et al., 2006] suggest that the dynamic adaptability of future robots

can be best achieved using components and services that support self-assembly and

self-healing. Foster et al. consider a service to be implemented using one or more

components that can perform tasks and work towards achieving high level goals.

Self-assembly of robot control software is part of the larger field of Service-oriented

Computing (SoC) [Foster et al., 2007] in which self-managed systems support dynamic

reconfiguration during run time. Interestingly, a self-managed system needs to sense

the current state of the components, plan what (if any) changes need to be made to

the architecture and then act accordingly (Sense-Plan-Act, SPA) [Kramer and Magee,

2007]. As a result it is conceivable that a SPA or 3-layer hybrid SoC architecture may
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be in charge of managing a SPA or 3-layer robot control architecture. Effectively one

autonomous architecture managing another.

2.2.2 Real-Time Control

To allow a robot or unmanned vehicle to operate safely parts of the control architecture

normally need to respond to inputs within a set length of time. As a result the software

needs to be considered real-time.

By definition real-time software is software that needs to meet time deadlines. The

software is normally responsible for the control of physical processes and as a result

typically has additional non-functional requirements, such as power consumption, fault

recovery, security and robustness [Chung and Prado Leite, 2009].

As described by Burns, Liu and Layland the design and testing of ‘hard’ and ‘soft’

real-time systems are approached differently [Liu and Layland, 1973], [Burns, 1991].

Hard real-time systems are used in safety-critical systems and take a conservative ap-

proach. Worst-case execution time analysis is used to ensure the systems can be relied

on to meet timing deadlines and redundant hardware is used to detect and recover from

failures.

Within soft real-time systems a best-effort approach is taken and occasionally missing

a dead-line is considered acceptable. As a result a more flexible run-time environment

involving dynamic resource allocation is common.

Crnkovic [Crnkovic, 2004] splits the non-functional requirements imposed on real-time

software into the four headings below:

• Real-time properties. A real-time system needs to meet time deadlines. These

are typically expressed as the Response Time, Latency, Execution Time, or Worst

Case Execution Time of the system.

• Dependability. Control systems are often responsible for the control of poten-

tially dangerous systems, the failure of which can result in the loss of life. As a
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result the design, testing and maintenance of the control systems needs to ensure

reliability, availability, integrity, safety, confidentiality and maintainability.

• Resource consumption. Minimising the physical size, power consumption and

production costs often imposes restrictions on the processing platform available.

• Life cycle properties. In many domains embedded systems have very long life

times. During the life time of a system the hardware and software design tools

and the development methodologies can evolve significantly.

It is these non-functional requirements that complicate the design of real-time software

and mean that it cannot be treated in a similar way to general purpose software. Control

software needs to deal with the flow of time and may be required to perform multiple

tasks simultaneously. Some events may need to be handled more quickly than others

and the time taken for software to respond to events needs to be predictable. As a result

real-time software needs to be viewed as concurrent [Lee, 2002, p. 3].

Concurrency

The approach to concurrency most commonly used by general purpose software is to

split the problem into multiple independent ‘threads’ of execution. Each thread has its

own local variables and uses various methods to communicate with other threads. An

operating system is then used to allow multiple threads to execute on the same physical

processor and to provide synchronisation mechanisms such as semaphores and mutual-

exclusion locks. However, as described by Lee [Lee, 2006] the thread based approach is

primitive and can easily lead to software that cannot be readily understood by humans.

This clearly makes it difficult for humans to verify that the software will work reliably.

Additional difficulties arise when determining how best to share access to the processor.

Typically the operating system will have a scheduler that mediates between threads.

One option is to always allow the highest propriety thread to run, but this risks starving

lower priority threads. More sophisticated options exist but fundamentally, the problem
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is that the chosen scheduling mechanism can effect the run-time characterises of the

program.

As real-time software is frequently used to control safety-critical systems, methods to

verify that software will operate correctly are highly desirable. However, it is diffi-

cult to formally verify that software written in languages such as Assembly and C will

operate correctly in all situations. Interactions between multiple software threads, an

operating system and external pieces of hardware can be difficult to predict. As a result

minor variations in the arrival time of signals from the environment can have unfore-

seen effects in the run-time behaviour of the software, potentially causing unexpected

behaviour in apparently unrelated code. Effectively the run time flexibility provided by

the operating system has made the software non-deterministic and as a result difficult

to analyse and test.

The synchronous approach [Benveniste and Berry, 1991] is one method of solving the

above problem. It is based on the synchrony hypothesis [Berry and Gonthier, 1992], in

which each reaction is assumed to be instantaneous. Although it is obviously impos-

sible for an actual computing system to execute a series of commands instantaneously,

the simplification makes it possible to mathematically verify that a controller will be-

have correctly.

Synchronous programming languages like Esterel [Berry and Gonthier, 1992] are com-

plied into sequential automata and then translated into a general purpose language like

C or ADA, from which machine code can be generated. Concurrency is handled at

compile time rather than at run time and as a result the programs can be considered

deterministic. In addition, the compile time analysis of concurrency removes the over-

head of threads and results in efficient implementations that execute quickly and require

the minimum amount of program memory [Berry and Gonthier, 1992]. The approach

does however limit the run time flexibility and modularity of the software [Benveniste

and Berry, 1991] [Lee, 2002].

An alternative approach to concurrency is to view the control system as a number of

active objects that communicate using asynchronous messaging. Each active object is
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Figure 2.5: The client server communication abstraction.

given its own thread of control and interactions between objects are controlled by a

scheduler component. Implementations based on the active object approach include

Agha’s Actor paradigm [Agha, 1986], Real-time Object Oriented Modelling (ROOM)

[Selic et al., 1994], Hierarchical Object Oriented Design (HOOD) and Quantum Pro-

gramming (QP) [Samek, 2002] .

2.3 Communication Abstractions

Software applications where functionality is distributed across multiple components of-

ten benefit from the use of a structured approach to the communication between compo-

nents. The communication channels between components may be fixed for the lifetime

of the system (a static configuration) or communication channels may change dynam-

ically as the system is running. A static system is obviously easier to analyse [Agha,

1986, p. 17] but will tend to limit the flexibility of the system. The most common

methods of structuring communication between software components are introduced

below.

2.3.1 Client-Server (query-response)

This is the approach taken by traditional database applications and is best suited to sit-

uations where a single shared resource needs to be accessed by multiple clients (Figure

2.5). The Internet makes use of the client-server abstraction, allowing large numbers of
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Figure 2.6: Remote Procedure Call (RPC). Stubs and Proxies are used to hide the complexities
of the underlying communication channel.

client web applications (for example Microsoft Internet Explorer) to access resources

on a central web server.

Some client-server technologies, such as ODBC (Open Database Connectivity) are de-

signed for very specific applications. Others such as Microsoft’s DCOM and OMG’s

CORBA (introduced in section 2.4.1) are general purpose frameworks that allow dis-

tributed applications to be constructed and connected using standard networking proto-

cols.

2.3.2 Remote Procedure Call (RPC)

An extension of the Client-Server concept is Remote Procedure Call (RPC). It uses

a concept that maps easily into synchronous languages like C++ and helps hide the

complexities of network communication from the application developer. RPC uses

proxys and stubs (Figure 2.6) to allow applications to interact with the remote servers

as if both objects exist within the same local application space.

When the client application calls the server asking for a reference to a remote object
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what it actually gets is an automatically generated proxy object. This proxy object and

its corresponding stub are responsible for hiding the complexities of the underlying

communication channel. Although not explicitly part of the RPC concept, the calling

thread on the local machine is normally suspended while the remote call is executed.

Birrel [Birrell and Nelson, 1984] describes an early implementation. More commonly

used RPC protocols include OMG’s CORBA and Microsoft’s DCOM. RPC is also

referred to as Remote Method Invocation (RMI) and Location-Independent Invocation

(LII).

2.3.3 Message-passing

Message-passing is a conceptually very simple form of communication in which simple

data buffers are transferred between applications. This simplicity allows applications

to choose their own data format and potentially transmit large blocks of data very effi-

ciently.

Implementations like the inter-process communication used by Microsoft Windows

provide each application window with it’s own message queue. This asynchronous

method of communication greatly simplifies the writing of applications and allows

events like key presses and mouse clicks to be temporarily queued until the applica-

tion is ready to receive the message.

However, the use of asynchronous communication requires temporary buffers to hold

messages that are in transit between applications and so is not well suited to the trans-

fer of large blocks of data. An alternative is for the sending application to wait until

the receiver has read the message before it continues. In situations where both the

sender and receiver have access to the same memory space this synchronous form of

communication is effectively the same as memory mapped I/O or shared memory com-

munication [Attiya et al., 1995]. The key advantage is a reduced number of memory

copy operations but at the cost of tighter coupling between components.
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Figure 2.7: Under Publish/Subscribe the senders and receivers of messages are decoupled from
one another, resulting in a more flexible architecture.

Message passing is used for communication between objects in Real-time Object-

Oriented Modelling (ROOM) [Selic et al., 1994] and by Agha for communication be-

tween actors [Agha, 1986].

2.3.4 Publish/Subscribe

Although message passing is an efficient and flexible method of communication, soft-

ware designs based around messaging have a tendency to become inflexible. Program-

mers will often write message based applications in a manner that closely ties the pro-

ducers and consumers.

The publish/subscribe (pub/sub) concept is an attempt to overcome this problem. Nodes

publishing data provide a handle that uniquely identifies the type of data being pub-

lished and subscribing nodes specify the types of data they wish to receive. The pub/sub

middleware is then responsible for routing data between nodes.

OMG, the organisation that administers the CORBA specification has defined the real-

time pub/sub standard ‘Data Distribution Service’ (DDS) [OMG, 2007] [Pardo-Castellote,

2003] [Corsaro and Schmidt, 2006]. It has been implemented by at least two commer-

cial companies. PrismTech’s implementation is called ‘OpenSplice’ [PrismTech, 2008]

and RTI market their DDS middleware as ‘NDDS’ [RTI, 2008].

The major limitations however are that the OMG specification covers only the inter-

faces that the middleware should expose to client applications, and not the low level
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implementation. As a result implementations from different vendors are not interoper-

able. In addition the specification is feature rich and as a result difficult to implement

on resource constrained platforms [Rees et al., 2005].

Although DDS may not be ideal for use on deeply embedded platforms it seems to be

a standard that has been used. A promotional document on the RTI website describes

the use of NDDS on one of Bluefin’s current AUVs [Smith, 2005].

Two alternatives to the OMG DDS specification are described by Uvarov et al. [Uvarov

et al., 2004] and Rees et al. [Rees et al., 2005]. Both use off-line static configuration

and have been developed as research exercises to fulfil the needs of embedded real-time

systems.

2.4 Component Technologies

Component Based Software Engineering (CBSE) is a popular method of composing

complex software applications from existing components. It is an engineering approach

used in a large number of domains, including consumer electronics, automotive control

systems and robotics.

Development using components can be motivated by either ‘(1) a design philosophy

independent from any concern for reusing existing components, or (2) seen as off-the-

shelf building blocks used to design and implement a component-based system’ [Brown

and Wallnau, 1998].

There are numerous definitions of what a component is. Within the office and internet

domain components are usually considered to be ‘black box’, with the component’s

implementation hidden from the user. However developers of embedded and real-time

software prefer to have access to the source code and as a result prefer ‘white’ or ‘glass

box’ components. Parrish et al. [Parrish et al., 1999] define a software component as

‘a software artifact consisting of three parts: a service interface, a client interface and

an implementation.’ ... ‘To enforce the idea that a component must interact with other

software, we might also want to include a property that the service interface or the
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client interface might be empty, but not both’. Several other definitions along the same

lines are listed by Brown and Wallnau [Brown and Wallnau, 1998].

Benefits commonly attributed to component-based development, include reduced costs,

shortened time-to-market and increased software quality [Möller et al., 2005]. The

CBSE approach is based around allowing components to be tested individually (unit

testing), allowing individual components to be upgraded or replaced, and allowing com-

ponents to be reused in other projects (component reuse).

These benefits do however come at a potential cost. Management of multiple compo-

nent versions and variants can add complexity. In addition, if components are supplied

by an external organisation then control over the component’s maintenance and release

cycle is diminished [Brown and Wallnau, 1998].

Vinoski [Vinoski, 2005] suggests that an application built using a component technol-

ogy should be measured by the amount of coupling and cohesion. Coupling [Offutt

et al., 1993] measures the interdependencies between modules and should be min-

imised. Cohesion is related to the activities performed by modules and should be max-

imised.

Lee [Lee, 2000] provides a broader and more detailed method of evaluation based on

Ontology, Epistemology, Protocols and Lexicon (Appendix A). ‘Ontology’ refers to

design decisions such as how a component is defined and if it is active or passive.

A component technology’s ‘epistemology’ refers to the knowledge each component

has about itself, the framework and other components within the system. Component

‘lexicon’ defines how components interact and the type system used by components.

2.4.1 Office and Internet Component Technologies

Component based technologies first became popular within the Office and Intranet do-

main, including software such as word processors and the large distributed applications

that access corporate databases.
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The simplest method to share functionality between applications is to include the same

source code in both applications. This however requires both applications to be writ-

ten in the same language and requires the applications to be recompiled in order to

incorporate source code changes.

A more flexible method is to generate a separate library containing the shared function-

ality and place it in a location accessible by all applications. This library, sometimes

called a Dynamic Link Library (DLL), is linked at run time by the host application.

This is the basis of Component Based Software Development (CBSD) and allows the

software industry to share functionality between applications, while still protecting in-

tellectual property. Component Object Model (COM) is a popular example of the tech-

nology and is supported on all current versions of the Microsoft Windows Operating

System.

COM was followed by DCOM (Microsoft) and CORBA (Object Management Group).

DCOM and CORBA allow components to be located on physically separate machines,

communication is performed using protocols built on top of TCP/IP. Implementations

of DCOM and CORBA exist for several operating systems including Linux and Win-

dows. Typically a server will host one or more shared components and client applica-

tions will use DCOM or CORBA middleware to access the components remotely. More

recently, Java and Microsoft .NET have included mechanisms for achieving similar re-

sults.

The technologies are based on the principle of components exposing objects with in-

terfaces and methods. Methods represent functionality that can be called remotely and

interfaces are effectively contracts. An interface defines the methods exposed by an

object and how the object will behave.

These technologies emphasis run time dynamics and more recent extensions, such as

CORBA Component Model (CCM), Java Enterprise Beans and .NET assemblies have

improved support for the management of component versions and variants. Side-by-

side deployment and assembly manifests allow multiple versions of the same .NET

assembly to coexist on the same machine and provide post deployment control over
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which version of an assembly the application should bind to.

COM, CORBA, JAVA, and .NET have been used heavily in the domain of general

purpose software. They have allowed software running on office and home desktop

computers to share functionality between applications and have allowed business ap-

plications running on corporate networks to interact. The technology that allows a

Microsoft Excel Spread Sheet to be embedded within a Microsoft Word Document is

built on top of COM.

2.4.2 Robot Component Technologies

Robotic control systems have the same difficulties to overcome as other embedded

systems. Limited processing capability means efficient implementations of the control

logic are required. In addition, the control software needs to interact directly with the

physical world (through sensors and actuators) and so needs to be considered reactive,

or real-time (Section 2.2.2).

However, robot component technologies also have some robot specific challenges;

• Platforms are often experimental so the ability to test and upgrade components is

important.

• Collaboration between research groups is common and as a result the ability to

interface components that have been developed independently is desirable.

• Ideally robot control software should be portable between robotic platforms,

making the ability to hide platform specifics using abstractions desirable.

Numerious frameworks have been developed for the control of robots and unmanned

veicles. Several of the most common are introduced below. Mohamed et al. [Mohamed

et al., 2008] and Orebäck and Christensen [Orebäck and Christensen, 2003] provide a

more detailed evaluation.

There has been research in the field of robotics since the 1960’s [Nilsson, 1984] and

as a result there are now several different approaches to structuring the control logic
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(Section 2.2.1). The component architectures below are either intended to be flexible

enough to support all of the paradigms or in other cases choose to tailor the architecture

towards a particular paradigm.

OPEN-R

The OPEN-R [Fujita and Kageyama, 1997] [Fujita et al., 1999] [Fujita, 2001] architec-

ture has been developed by SONY and is used within the ABIO [SONY, 2006] range

of entertainment products.

The physical components communicate with the central controller through a serial pro-

tocol and are capable of describing themselves in terms of the physical dimensions and

capability. The architecture is based on Apertos [Yokote, 1992], an object-orientated

real-time distributed operating system developed by SONY.

Originally SONY had wanted to develop a range of physical components, such as legs

and wheels. End users would have been able to add and remove components from the

robot platform, for example, allowing a wheeled robot to be converted into a walking

one.

The early prototypes described by Fujita et al. [Fujita et al., 1999] could be dynamically

reconfigured from a quadruped to a wheel-based robot and were capable of determining

the components currently connected. Unfortunately the concept of modular hardware

was not carried to the entertainment products marketed under the ABIO range.

As well as the ABIO dog SONY also built humanoid robots that were based around the

OPEN-R platform. A research paper [Ishida et al., 2001] describes the development of

SDR-3X, a small (50cm high) prototype and talks about the benefits of building with

modular components. SDR-3X had 26 motorised joints and was capable of walking,

balancing on one foot and dancing to the tempo of music. The developers found OPEN-

R helped in the development and reuse of components.
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Underwater Vehicle Distributed Control Techniques

At a similar time to Sony’s development of OPEN-R there was interest in the use of Au-

tonomous Underwater Vehicles (AUV’s) for environmental monitoring and underwater

surveying. Several vehicles developed at the time, such as WHOI’s ABE and MIT’s

Odyssey [Valavanis et al., 1997], were controlled using a network of distributed micro-

controllers. ABE and Odyssey used a network of microcontrollers connected using a

serial protocol refered to as SAIL (Serial ASCII Instrumentation Loop). Ocean Voy-

ager II used a slightly more advanced approach based around LONTalk . Smith [Smith,

1994] describes the advantages of the distributed LONTalk approach, in terms of plug-

and-play reconfiguration, reduced apparent complexity and the resulting opportunity

to give sensors and actuators ‘intelligence’.

Valavanis et al. [Valavanis et al., 1997] describe a modular control architecture based

on shared memory, which is conceptually similar to global variables. As with SAIL’s

message passing the approach has the advantages of simplicity and low latency.

However, within the domain of high level application software, the use of global vari-

ables is discouraged [Offutt et al., 1993] because the resulting coupling between users

can easily become complex and difficult to analyse. It may be this coupling between

the networked nodes that caused research emphasis to move away from distributed con-

trol and towards the software abstractions supported by Player/Stage and more recently

ORCA and CLARAty.

Player/Stage, ORCA and CLARAty

The large number of robotic platforms combined with the desire of researchers to reuse

control software has been a motivation to hide differences between the various robotic

platforms using software abstractions. Player/Stage was one of the first robot control

frameworks to provide a hardware abstraction layer and allow access to robotic hard-

ware through common interfaces. Ideally, control software will send a command such

as ‘turn right 90 degrees’ or ‘move forward 20 centimetres’ and the hardware abstrac-
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Figure 2.8: The ORCA robotics component framework makes use of the middleware ICE.
Supported platforms include Windows, Linux and Java. Based on a figure by
Makarenko et al. [Makarenko et al., 2006, Fig. 1].

tion layer will determine what combination of motor commands is required to achieve

the desired result.

Robot control frameworks such as Player/Stage, ORCA and Coupled Layered Ar-

chitecture for Robotic Autonomy (CLARAty) contain a library of software compo-

nents for interacting with robotic hardware and define a mechanism for the interac-

tions between components. The frameworks also define a structuring for the control

logic, Player/Stage uses a client/server approach and CLARAty is based around a two

layer architecture. ORCA is more flexible and merely requires components to inter-

act using Internet Communications Engine (ICE) middleware. The three frameworks,

Player/Stage, ORCA and CLARAty are discussed in more detail below.

Player/Stage [Sourceforge, 2008b] [Collett et al., 2005] uses the Player Abstract Device

Interface (PADI) to provide a generic robot interface. Interaction with the robot follows

a client/server model, with the robot hardware acting as the server and the control soft-

ware as the client application. The server needs to be implemented on the robot but the

control software (the client) can access the server through a wireless link. As a result

the client software can be on a computer that is not physically located on the robot.

Austin Robot Technology’s 2007 entry in the DARPA Urban Challenge was controlled

using the player architecture [Stone et al., 2007, p. 10].

ORCA [Makarenko et al., 2006] is an open source component framework that targets

the needs of robotics and is used in one of the vehicles entered in the 2007 DARPA

urban challenge [Makarenka et al., 2007]. ORCA is based on the Internet Communica-
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tions Engine (ICE) [ZeroC, 2008] middleware and as a result supports a range of soft-

ware platforms, including Linux, Windows and Java virtual machines. ORCA allows

components to be distributed across a network and uses TCP/IP for communication be-

tween components (Figure 2.8). Programming languages supported include C++, C#

and Java. As well as the framework, The ORCA project [Sourceforge, 2008a] includes

an open source library of software components and definitions for standard component

interfaces.

Coupled Layered Architecture for Robotic Autonomy (CLARAty) [Nesnas et al., 2003]

[Nesnas, 2006] is a framework for developing reusable robotic software. It has been

developed by NASA/JPL and is used on the wheeled rovers used to explore remote

planets. CLARAty provides object-oriented software abstractions for the hardware in-

terfaces of the robotic platforms.

CLARAty is split into two layers, the lower Functional Layer and the Decision Layer.

The Functional Layer provides the hardware abstractions and the low-level behaviours.

Packages included in the functional layer include digital and analog I/O, locomotion,

vision and navigation. The implementation is based on generic algorithms that are then

extended to match the specifics of particular platforms.

Above the Functional Layer is the Decision Layer. The Decision Layer provides the

high-level autonomy, it plans, schedules, and executes activity plans. Interactions be-

tween the Functional and Decision Layers are based on the client-server model.

Several other robot frameworks that are similar to Player, ORCA and CLARAty are

covered by Mohamed et al. [Mohamed et al., 2008].

LEGO Mindstorms

With the exception of SONY’s OPEN-R (Subsection 2.4.2) the component technologies

covered in this section focus on software components. However, the toy manufacturer

LEGO has demonstrated that there is no reason why the modular concept cannot be

extended to the hardware.
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Small autonomous underwater vehicles suitable for student projects have been con-

structed from LEGO and controlled using LEGO RCX control units [Winter, 2001] [Ye

et al., 2007]. The RCX controller is supplied as part of the Lego MindStorms kit and is

powered by a 16-MHz microcontroller with 32 KBytes of RAM. The RCX can be pro-

grammed in several languages including NQC (Not Quite C), Java, a modified version

of LabVIEW and ADA [Fagin, 2003] [Klassner and Anderson, 2003].

LEGO has also released a newer more powerful ‘NXT’ control unit [Kim and Jeon,

2007] that includes Bluetooth and USB connectivity. The LEGO NXT can be pro-

grammed using the modified version of LabVIEW mentioned above and can also be

controlled remotely using Microsoft Robotics Studio [Microsoft, 2006]. Microsoft

Robotics Studio is a robotics framework built on top of the .NET Common Language

Runtime that includes a visual programming language and a simulation engine.

2.4.3 Embedded Real-Time Component Technologies

Traditionally software for embedded applications has been written in low level lan-

guages as a monolithic entity [Sandström et al., 2004]. The approach can result in well

optimised software and guarantees full control of the system behaviour, but at the cost

of flexibility. The future maintenance and reuse of software is not easy when it has been

written as a tightly coupled entity that targets a particular processing platform.

As a result there has been an interest in Component Based Software Engineering (CBSE)

as a mechanism to facilitate software reuse and to encourage a more modular approach

to embedded software engineering. However as introduced in Subsection 2.2.2, embed-

ded real-time systems typically have non-functional requirements such as timeliness,

concurrency, liveliness, heterogeneity, reactivity and resource consumption [Ibrahim

et al., 2006]. These non-functional requirements mean that general purpose CBSE

technologies, such as CORBA and COM (Section 2.4.1), are not generally suitable for

embedded real-time applications [Möller et al., 2004a].

The extra requirements have complicated the design of equivalent CBSE technologies
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for the embedded domain and as a result techniques and tools for embedded software

development are many years behind their desktop counterparts [Ibrahim et al., 2006].

The requirements given by Möller et al. [Möller et al., 2005] for a component technol-

ogy suitable for the automotive industry are applicable to most other real-time control

domains;

1. Technical Requirements (Analysable, Testable, Portable, Resource Constrained,

Component Modelling, Computational Model)

2. Development Requirements (Reusable, Maintainable, Understandable)

3. Derived Requirements (Source Code Components, Static Configuration)

The need for the resulting control system to be analysable and suitable for resource con-

strained platforms means that system resources are often allocated in advance, typically

when the software is compiled. This however effects the run time flexibility and as a

result the component technologies in this subsection have to strike a balance between

flexibility and real-time requirements.

Reduced Footprint Enterprise Technologies

Attempts have been made to adapt the component technologies originally designed for

desktop software to the needs of embedded real-time systems. Adapting existing tech-

nologies has several advantages, there is the possibility of reusing existing development

environments, of reusing existing components, and the integration with applications

from other domains becomes simpler [Lüders et al., 2006].

The three enterprise technologies most commonly adapted are Microsoft’s COM, OMG’s

CORBA and Java. All three technologies are discussed in more detail below. The

approaches rely on an underlying operating system and dynamic memory allocation,

which improves the run-time flexibility, but means they cannot be considered suitable

for deeply embedded applications [Henzinger and Sifakis, 2006].
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Luders et al. [Lüders et al., 2006] describe an adaptation of Microsoft’s COM technol-

ogy designed for use on Microsoft Windows CE platforms. The implementation uses

proxy objects generated from XML configuration files. The proxy objects are used to

monitor the components and measure the execution time, from which an approximate

value for the Worst Case Execution Time (WCET) can be found. The proxy objects

also provide synchronisation services and, by allowing non-responsive components to

be restarted, a degree of fault-tolerance.

Ibrahim et al. [Ibrahim et al., 2006] also describe a Microsoft COM based approach

and give several advantages:

• COM prevents name clashes between independently developed software which

in turn facilitates distributed development.

• It supports dynamic loading and can be used in distributed systems through

DCOM.

• It supports object orientation but is also language independent.

• COM classes can be extended over time.

• Unlike CORBA and Java Beans, the space/time overheads for inter-component

calls are small. Typically the same as C++ virtual method calls.

• It is a well-known and widely used component model with plenty of available

resources (both human and technical).

By comparison, Real-Time CORBA (RT-CORBA) [OMG, 2003] is an adaptation of

CORBA for real-time applications. Components can be distributed across a network

and network related quality of service (QoS) aspects, such as bandwidth, latency, jitter,

and dependability can be specified. RT-CORBA is intended to be used with real-time

operating systems and uses QoS polices to configure and control application execution

[Schmidt and Kuhns, 2000];
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1. processor resources via thread pools, priority mechanisms, intra-process mutual

exclusion algorithms, and a global scheduling service,

2. communication resources via protocol properties and explicit bindings, and

3. memory resources via buffering requests in queues and bounding the size of

thread pools.

As well as C++ implementations of CORBA and RT-CORBA there is also an open

source Java implementation. ZEN [Klefstad et al., 2002] [Krishna et al., 2004] is an

open source Java implementation of Real-Time CORBA that is built on top of Real-

Time Java.

Although Java is a programming language and execution platform rather than a compo-

nent technology, the object oriented nature of Java helps to facilitate code reuse. It was

originally designed as an interpreted language that was executed by a software layer

known as the Java Virtual Machine (JVM), an approach not particularly well suited to

embedded applications. However, interest in the use of Java for embedded applications

has caused several alternatives to be investigated.

The Real-Time Specification for Java (RT-Java) [Bollella et al., 2000] defines a sim-

plified Java Virtual Machine with an improved threading and memory model. Java

applications can either execute directly on a Java Virtual Machine or they can be pre-

compiled (ahead-of-time compilation) into the native instructions of the target plat-

forms, resulting in faster execution. jRate [Corsaro and Schmidt, 2002] performs

Ahead-of-time compilation on RT-Java applications.

Alternatively, processing platforms exist that directly execute Java byte codes and im-

plement the Java virtual machine in hardware. The Java Optimised Processor (JOP)

[Schöeberl, 2005] implements the Java Virtual Machine on a Field-Programmable Gate

Array (FPGA). JOP is the result of an academic research project but there are also

several commercial Java processors and coprocessors [Schoeberl and Pedersen, 2006].
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Consumer Electronics

As in other domains, pressures to add additional functionality and reuse existing soft-

ware has caused the manufactures of consumer electronics to investigate component

technologies. The Koala architecture, developed by Philips Semiconductor, [van Om-

mering, 1998] [van Ommering et al., 2000] is designed for consumer electronics de-

vices such as TVs and VCRs. It is intended for use with small (16-bit, 20 MHz) micro-

controllers and supports the use of multiple threads.

Koala allows for late binding between components and supports configuration both

at compile time and as the application loads, allowing the same program ROM to be

loaded onto a whole product line of devices. Components are defined using an Interface

Description Language (IDL) and a Component Description Language (CDL). Compo-

nent source code, header files and documentation are held in a central repository that

manages the history of components.

Automotive Component Technologies

Within the terminology of the automotive industry each computing node is called an

Electronic Control Unit (ECU). These ECUs are normally connected using networking

protocols such as Controller Area Network (CAN) and Local Interconnect Network

(LIN) (Figure 2.9).

The current practise is for each node to be developed by a single subcontractor, with the

proprietary software owned by the subcontractor. The approach however is inflexible

and as a result there is a desire to move to a more open system in which software is

spread across several nodes [Crnkovic, 2004]. The number of ECUs within modern cars

is growing rapidly, with top of the line cars having in excess of 100 ECUs. Allowing

the software from multiple suppliers to share the same ECU is seen as one method of

controlling the quantity of ECUs within future cars [Hansson et al., 2004].

In their recent evaluation of component technologies for the automotive industry [Möller

et al., 2004b], Möller et al. suggest that a component technology needs to satisfy both
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Figure 2.9: Electronic Control Units (ELUs) connected using networking technologies such as
CAN and LIN. Adapted from a figure by Crnkovic [Crnkovic, 2004].

technical and development requirements. These requirements are summarised below.

• Technical Requirements. The component technology needs to allow systems con-

structed using the technology to be analysed with respect to non-functional prop-

erties such timing behaviour and memory consumption. In addition, a successful

component technology requires tools to assist in testing and debugging, both at

component level and at the source code level.

The components need to be platform independent to the highest degree possi-

ble and ideally there should be no run-time overhead compared to not using a

Component Based Software Engineering (CBSE) approach. Möller suggests that

components should be passive, in other words without their own threads of ex-

ecution and the component framework should be based on a standard modelling

language such as Unified Modelling Language (UML) [Selic and Rumbaugh,

1998a].

• Development Requirements. To minimise risk the technology needs to allow

users to transition gradually to the new style of development, rather than requiring
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a revolutionary change. Components should be reusable and ideally the technol-

ogy should allow configuration parameters to be passed to components, thereby

allowing components to be reused in a wider range of environments. Well defined

component interfaces and the specification of non-functional properties such as

execution time and memory usage also help to enhance reusablity.

Möller also identifies that systems constructed using the component technology

need to be easy to understand. An understandable software model makes the

development process faster and is likely to result in fewer bugs.

• Derived Requirements. Möller takes the view that component software should

be source code rather than a binary as source code debugging is considered im-

portant. Lastly, Möller favours the static configuration of components, this is

primarily due to the lower resource consumption of a statically configured com-

ponent framework and because the resulting system is easier to analyse and test.

The static configuration of components is discussed in more detail in Section 3.3.

Möller’s identification of the importance of suitable tools and his preference towards

statically configured architectures has affected the development of the DCA (Section

3.1).

The SAVE project [Hansson et al., 2004] [Kerholm et al., 2007] aims to develop a

component-based development (CBD) technology for safety-critical embedded real-

time systems. SAVE assumes a real-time operating system (RTOS) as the underlying

platform and allows software components from multiple vendors to execute on the same

platform. Analysis and verification tools allow component execution times and control-

loop properties to be analysed. SAVE has both a textual and a graphical syntax for the

description of components.

AUTomotive Open System ARchitecture (AUTOSAR) [Autosar, 2008] is a partnership

of automotive manufacturers and suppliers to develop a standardised execution plat-

form for vehicle control software. The Virtual Function Bus (VFB) provides commu-

nication channels between components and allows for communication between com-
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Figure 2.10: The ISO 7 Layer Reference Model [Zimmermann, 1980].

ponents across network connections. Both client-server and sender-receiver styles of

communication are supported. Components and the connections between components

are configured statically using XML files prior to software compilation.

2.5 Network Technologies

2.5.1 The Open Systems Interconnection (OSI) Seven Layer Reference Model

As with operating systems, communication protocols often subdivide specifications

into several independent layers. Each layer makes use of the functionality provided

by the layer below and provides services to the layer above.

The most common conceptual model used when dealing with network technologies is

the Open Systems Interconnection (OSI) Seven Layer Reference Model [Zimmermann,

1980]. The examples to the right of Figure 2.10 show how the components that make

up the TCP/IP protocol stack fit into the model. TCP/IP is the mechanism used by most

desktop computers to access the Internet.

The layers allow a complex protocol to be split into smaller units of functionality that
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can be more easily documented and implemented. In addition, a layered approach can

provide more flexibility as multiple implementations of the same layer can be devel-

oped, each optimised for use in different situations.

Provided each implementation exposes the same interfaces to the layer above, users

will have flexibility to choose the implementation that is most appropriate to the current

situation. For example, desktop computers typically use 10Base-T Ethernet to connect

to other office machines and the internet (Figure 2.10) but the layered approach allows

the wired connection to be replaced by various wireless alternatives, without requiring

significant changes at the IP layer.

The top layers in the Seven Layer Model are focused on the software abstractions that

are provided to the applications that are wishing to communicate. As you then move

down the layers the focus shifts to the hardware and the physical transmission of bytes

of data across the network.

As shown in Figure 2.10 not all devices on the network need to implement the full

protocol stack. In the case of a TCP/IP protocol stack running on top of a 10Base-

T Ethernet, each of the network segments will joined using a Switch or Hub. Since

Switches and Hubs are only responsible for passing packets between network segments

they only need the first few layers of the network stack. A switch will process each

received packet only as much as is required to determine which node it should forward

the packet to.

2.5.2 Data Transmission Protocols

The digital transmission of data can be either parallel or serial. Parallel uses multiple

channels, allowing multiple bits to be sent simultaneously where as Serial sends each

bit sequentially along the same channel.

The Parallel approach is simpler to implement and is often used to connect memory

chips to Microcontrollers. However since Parallel uses a dedicated wire for each bit

sent during a clock cycle over longer distances the cost of wiring needed for parallel
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connections can be significant. In addition, the need for higher pin count connectors

and the difficulty in maintaining synchronisation at higher clock rates can make serial

protocols more attractive.

There are numerous serial protocols each designed for different transmission distances,

data rates and bus topologies [Becke et al., 2004]. Communication links can be either

simplex (one-way) or duplex (both directions) and can be Point-to-Point, Multidrop

(one transmitter, multiple receivers) or Multipoint (multiple transmitters, multiple re-

ceivers).

Specifications such as RS-232 (TIA-232-F), I2C [NXP Semiconductors, 2007], SPI

(Serial Peripheral Interface) and 1-Wire [Maxim, 2002] define the electrical charac-

teristics of the bus and the transmission of bits and bytes across the bus. Others, like

Controller Area Network (CAN) and Ethernet [IEEE, 2005, Section 14], go further and

also define the structure of packets.

USB [USB, 2000] and FireWire (i.Link, IEEE 1394) go even further and also define

how devices should describe themselves to other nodes on the network. As a result

USB and FireWire devices can be automatically detected by the operating systems of

personal computers, allowing the appropriate device drivers to be automatically loaded.

As the protocols become more advanced it becomes possible to offload work from the

central processor into dedicated logic. If the packet structure is included in the specifi-

cation then aspects of transmission and reception, such as the detection of transmission

errors can be handled by the bus transceiver. This has the advantage of reducing pro-

cessor work load, although at the expense of more complex bus transceivers. Some

CAN transceivers can be configured to automatically respond to certain message types,

allowing control data to be automatically transferred across the network.

2.5.3 Industrial Control And Automotive Networks

The use of network technologies is common within factory automation and the con-

trol systems of modern vehicles. However, industrial control and automotive networks
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typically have stringent reliability and performance requirements. These requirements

effect the choice of processing platforms, the operating systems and the communication

technologies.

In some cases, for example Ethernet and FireWire, existing technologies are adapted

[Zhang et al., 2005] [Loser and Hartig, 2002]. In others, like for example Modbus and

CAN, protocols have been developed specifically for use in control networks. Some of

the most common protocols are discussed below.

Modbus

Modbus, originally developed by Modicon, is a relatively simple OSI layer 7 query /

response protocol. It is used heavily in industrial automation and is based around the

concept of 1 byte function codes that allow clients to access the control registers of

remote devices. The original specification [Modbus.org, 2006] was designed for use

with asynchronous serial physical layer protocols such as RS-232 and RS-485. More

recently support for Ethernet (using TCP/IP) has been added.

Controller Area Network (CAN)

Controller Area Network (CAN) was developed in Germany in 1986 and was originally

designed to meet the needs of the automotive industry for in-vehicle networks but is

now also used extensively in other embedded control applications, including process

control and robotics [Johansson et al., 2005].

The protocol has a built-in error control mechanism and allows nodes to request infor-

mation stored on remote devices without requiring the help of the remote processor.

The protocol is based around short (8 byte) messages and encodes the message pri-

ority within the message identifier (11 or 29 bits). The approach ensures the highest

priority message always gets access to the bus [Corrigan, 2002] and is well suited to

the transfer of process data to multiple consumers. Although the data rate is limited to
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1 megabits per second (Mbps) the bus access mechanism means that the Worst-Case

Response-Time of the network can be determined [Nolte et al., 2003].

As CAN only defines the lowest two layers of the ISO 7 Layer model additional pro-

tocol layers are normally used. While these layers can be bespoke and customised for

a particular application several standard layers have emerged. These include CANk-

ingdom [Fredriksson, 1995], CANopen [Boterenbrood, 2000] and DeviceNet [Schiffer

et al., 2006].

The CANkingdom specification is phrased rather differently to that of most network

specifications. The central controller in a CANkingdom network is known as the ‘King’

and each of the devices is a ‘City’. Letters, Forms and Documents are used to provide a

level of abstraction between the data transmitted across the CAN bus and CAN message

IDs are used to identify individual message types. Configuration of devices and the

message identifiers can be adjusted while the network is operational.

CANopen exposes device functionality as a series of variables, each of which is ad-

dressed using a 16-bit identifier. Variables (called ‘objects’ in CANopen) are used to

control the operation of the device and obtain status information. Some objects are

mandatory on all devices and allow for management of the device, others are applica-

tion specific. Obtaining the value from a CANopen sensor or controlling an actuator

would be achieved by reading or writing to the appropriate CANopen object. The

CANopen standards organisation defines several device profiles (e.g. digital I/O, ana-

log I/O, motion controllers, encoders, etc.) that specify the behaviour of additional

CANopen objects.

DeviceNet is one of several implementations of the Common Industrial Protocol (CIP)

[Schiffer et al., 2006], all of which share the same application layers but are imple-

mented on different physical layers. The DeviceNet adaptation uses CAN for its phys-

ical layer, where as EtherNet/IP uses Ethernet and a standard TCP/IP stack (Figure

2.11). Other implementations include CompoNet and ControlNet.

CIP splits device functionality into objects. An object is an instance of a particular

class, with all objects of the same class having the same variables (called attributes in
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Figure 2.11: The Common Industrial Protocol (CIP) and its adaptation to various physicals lay-
ers, including Ethernet and CAN. Based on a Figure by Schiffer et al. [Schiffer
et al., 2006, p. 6].

CIP). Some classes are defined in the CIP specification while others are application

specific and specified by the device manufacture. As with CANopen, DeviceNet has

the concept of device profiles with all devices of the same profile exposing the same

objects. For each device the manufacture provides an Electronic Data Sheet (EDS) that

describes the capabilities of the device and the objects it exposes.

Ethernet

The wide spread use of Ethernet in other application domains and the low code of Eth-

ernet hardware has caused it to be adopted by several standards that target industrial

control (including EtherNet/IP, mentioned above). However, as Ethernet [IEEE, 2005,

Section 14] was not originally designed for applications requiring deterministic oper-

ation it is not the ideal choice for real-time control applications. The physical layer

mechanism used to handle bus collisions (CSMA/CD) results in colliding packets be-

ing aborted and retried at some point in the future. As a result, analysing network

behaviour from a timing perspective is difficult [Dolejs et al., 2004].

There are however several ways around the problem. If bus utilisation is low and mes-

sages are kept short then the probability of transmission delays becomes very small
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[Schneider et al., 2001]. Alternatively, an Ethernet network connected using hubs can

be replaced with one using full-duplex switches. Provided the switches support wire-

speed switching then the possibility for collisions can be removed [Schiffer et al., 2006,

p. 63] [Loser and Hartig, 2002], thereby removing the non-deterministic aspects of Eth-

ernet.

Alternatively, Ethernet Powerlink [Barklage, 2006] avoids the collision problem by

inserting a protocol on top of the Ethernet layer that manages access to the bus and

prevents multiple nodes attempting to access the bus simultaneously. A Time-Division

scheme is used to manage access to the bus.

2.6 Summary

This chapter has summarised the four domains in which unmanned vehicles operate,

air, land, sea and space. As mentioned in Section 2.1 Unmanned Vehicles are well

suited to tasks that are considered too dull, dirty or dangerous for humans.

The chapter continued with a discussion of the most common methods of structuring

robot control software and the difficulties that arise from the software needing to control

physical processes. Component Based Software Engineering (CBSE) was then intro-

duced. As covered in Section 2.4 CBSE allows components to be developed and tested

individually and has been used in several domains, including the control of unmanned

vehicles.

Lastly, this chapter has covered common network technologies, including CAN and

Ethernet. As mentioned in Section 2.5 protocol specifications are often subdivided into

layers. Layers allow complex protocols like TCP/IP to be more easily documented and

implemented. The network technologies CAN and Ethernet are used by the DCA and

are covered in more detail in Chapter 5.

The DCA also makes use of many of the CBSE concepts introduced during this chapter.

However, none of the component technologies (Section 2.4) fully meet the needs of un-

manned vehicles. Enterprise technologies such as Microsoft COM and CORBA are not
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suitable for use on small microcontrollers and the automotive component technologies

require component interactions to be defined before compilation. As a result, the DCA

introduced in the following chapter defines its own component framework that targets

the needs of unmanned vehicles.

The following chapter starts with an overview of the requirements that have affected the

design of the DCA and includes a comparison between the DCA and other component

technologies.



CHAPTER 3:

DESIGN OF A FLEXIBLE DISTRIBUTED CONTROL

ARCHITECTURE

3.1 Distributed Control Architecture (DCA) Requirements

AS stated previously, the aim of the study has been to develop a standard method

of connecting control components that allows platform integrators to rapidly

connect and configure unmanned vehicle control components.

Additional requirements have been collected from several sources. The literature study

highlighted several important considerations such as the need to support a range of

processing platforms, operating systems and methods of structuring the control algo-

rithms. Analysis of the sample platforms in Appendix B and the collaboration with the

ConSERT project (Section 9.1) also helped with the identification of requirements.

The main requirements that were identified are:

• Be implementable on a broad range of processing platforms, from small micro-

controllers to desktop computers. In addition, it was important to provide an

Application Programming Interface (API) that is intuitive to use from both C

programs that target embedded platforms and from object orientated languages

like C#.

• Support a range of networking technologies. There is no single optimum network

technology for unmanned vehicles. The size of the vehicle, the type of sensors

48
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and the performance requirements of the control system all effect the choice of

network technology. As a result, the DCA is designed to be network independent.

• Support the full range of robot control paradigms. The Literature Study covered a

range of methods for structuring robot control software, ranging from the ‘Sense-

Plan-Act’ paradigm to the more recent ‘Hybrid Deliberate’ paradigm (Section

2.2.1). Since no one paradigm is optimum for all situations the DCA needed to

be flexible enough to support any structuring of the control components.

• Support several styles of component interaction, including Remote Procedure

Call (RPC) and Publish/Subscribe (Section 2.3). Both types of interactions have

their advantages. Publish/Subscribe can be used to construct loosely coupled con-

trol architectures with well defined interfaces between components where as the

RPC style of interaction can be more intuitive to use from text based languages.

• Hide the technical software and electrical integration issues from vehicle devel-

opers and provide tools that allow vehicle control components to be configured.

Essentially provide a ‘Plug and Play’ capability that allows devices to report their

capabilities to the network and be configured through graphical tools.

• Give preference to well established tools and technologies. It was considered that

a more open and flexible architecture would be achieved if proprietary commu-

nication stacks and novel hardware was avoided. Approaches that would lock

the architecture to a particular software language or development tool have been

avoided.

Möller et al. recent evaluation of component technologies for the automotive indus-

try [Möller et al., 2004b] also provides some useful guidance. As with the DCA, the

automotive industry distributes a vehicle’s control components across a network of em-

bedded devices (Section 2.4.3).

Although Möller et al. requirements are collected from a different application domain

they have been considered broadly applicable to the development of control logic for
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unmanned vehicles. As mentioned previously, Möller et al. identification of the impor-

tance of suitable tools and their preference towards statically configured architectures

has effected the development of the DCA.

From the above requirements, it became clear that none of the component technologies

surveyed during the literature study (Section 2.4) fully covered the needs of unmanned

vehicles. As a result, emphasis shifted towards developing a suitable component tech-

nology that fitted the needs of unmanned vehicle developers.

The remainder of this chapter provides an overview of the Distributed Control Archi-

tecture (DCA), a component technology designed for use by unmanned vehicle devel-

opers. The DCA makes use of many of the concepts originally employed by the Office

and Internet Component Technologies (Section 2.4.1) but adapts them for use in the

embedded control domain. Section 3.6 of this chapter provides a comparison between

the DCA and related technologies, such as Microsoft COM, .NET and the Object Man-

agement Group’s (OMGs) Data Distribution Service (DDS).

3.2 The Distributed Control Architectures Object Orientated Concepts

The control components for most unmanned vehicles are connected in a similar way

to that shown in Figure 3.1. Typically there will be one or more pieces of software

written in a high level general purpose language that are responsible for making high

level decisions about the control of the vehicle (the yellow boxes in Figure 3.1).

All the software may run on the same processing platform or be split across several

computers, most likely connected using a general purpose networking technology like

Ethernet. To improve the flexibility of the control system and to allow the engineers

to postpone deployment decisions the high level software will probably be running on

top of an operating system and connected using a component technology like ORCA or

CORBA (introduced in Section 2.4 of the literature study).

Beneath the high level software will be the digital electronics and software that imple-

ment the low level control loops (the grey boxes in Figure 3.1). The electronics and
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Figure 3.1: High level software using dedicated communication channels to interact with phys-
ical sensors and actuators.

software might be tightly integrated with the processing platform on which the high

level software is running. Alternatively it may be run on dedicated circuit boards and

connected to the high level software through serial protocols like USB and FireWire.

Finally, the lowest orange layer in Figure 3.1 are the actuators and sensors through

which the vehicle actually interacts with the environment. Of the vehicles reviewed

during the project the arrangement of components just described is common.

A component architecture like ORCA or CORBA can help abstract away the complex-

ities of communication between the high level components (the yellow boxes). Most of

the technologies cannot however provide much help with communication between the

high and low level components (the yellow and grey boxes). As a result bespoke vehicle

specific solutions normally need to be implemented. The Author’s experience during

an undergraduate project was that a significant amount of time was spent providing this

low level functionality.

The primary theme of the Distributed Control Architecture (DCA) has been to insert

a Communication Layer that is accessible to both the high level software and the low

level digital electronics (Figure 3.2). By allowing all devices to communicate across

the same bus the need for custom solutions will be removed.

The aim of the project is therefore to make a component architecture that is more flex-

iable than ORCA or CORBA and that can support a broader range of components.

Where as high level technologies like ORCA and CORBA run on top of an operating

system and can make use of dynamic memory allocation the DCA needs to be imple-

mentable on much more restricted platforms (the grey boxes in Figure 3.2).
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Figure 3.2: The DCA is built around a Communication Layer that is accessible to both high
level software and low level digital electronics.

The next logical step is to view all components that access the Communication Layer

as identical, whether they be high level software components or embedded software

running on a small microcontroller. Figure 3.3 shows all DCA components as simply

modular units of the functionality that are working together to control the vehicle.

One potential problem is that different components will have different communication

requirements and as a result the DCA allows for multiple implementations of the Com-

munication Layer (Figure 3.3). Different implementations can be designed for different

network technologies and can provide different levels of reliability, bandwidth and la-

tency. Currently there are two versions of the Communication Layer, one supporting

Ethernet and the other Controller Area Network (CAN). As part of the project a bridge

has also been developed that allows the Ethernet and CAN versions of the communica-

tion layer to be interfaced.

As introduced in Section 2.3 there are numerous different abstractions used for com-

munication between components. Common examples include Remote Procedure Call

(RPC), message passing and Publish/Subscribe. The Communication Layer therefore

needs to strike a balance between supporting a broad range of component interaction

styles and allowing the Communication Layer to be simple and easily implemented

on small microcontrollers. The supported abstractions and compromises made are de-

scribed in Chapter 6.
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Figure 3.3: All DCA components are treated the same. There can be multiple implementations
of the Communication Layer, each supporting different network technologies.

3.2.1 Distributed Control

As just described the DCA splits the control of unmanned vehicles into components,

each of which provides a unit functionally. In some cases multiple components may be

executing on the same computing platform, in others components may be on separate

platforms that are connected using a networking technology like CAN or Ethernet.

This distributed nature of the architecture means that a mechanism to coordinate the

operations of the components is necessary. One option is to follow the example of the

PC architecture and give control to a central unit and make the other devices slaves.

This approach has the advantage of mapping easily to synchronous programming lan-

guages and remote procedure call technologies. Technologies like CORBA and DCOM

demonstrate how the thread of control can be transferred across process boundaries

Java and .NET go further and allow software objects to be transferred across networks

and methods called in a manner that makes the physical location of the object transpar-

ent to the programmer. However as Waldo et al. describe [Waldo et al., 1997] this is a

potentially hazardous approach because of the practical differences between local and

remote objects (latency, memory access, partial failure, and concurrency). In addition,

putting a single processor in full control makes the system vulnerable to single point

failures.

An alternative approach is to view the system as a collection of controllers working

together to solve the control problem. Interactions are more to exchange process data

than to provide control instructions. Decision making is then delegated to the individual
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computing nodes.

The distributed approach has the advantage of achieving true concurrency, but makes

maintaining a single global notion of ‘system state’ difficult. Lee [Lee, 2000], points

out that this lack of a global system state means the control system as a whole cannot

be considered to advance as separate, discrete events and as result, does not fit within

the traditional Von Neumann model [Riley, 1987].

The key issue, therefore, is whether the lack of global system state is compatible with

the design of control software for unmanned vehicles. According to Brooks, ‘there is

no need for a central control module of a mobile robot. The control system can be

viewed as a system of agents each busy with their own solipsist world’ [Brooks, 1985].

In addition Brooks concluded that ‘useful parallel computation can be performed on a

low bandwidth loosely coupled network of asynchronous simple processors’ [Brooks,

1985].

Drawing on Brooks’ conclusion the DCA allows components to be ‘active’ in that

they can have their own thread of execution and are free to invoke methods on other

components whenever the component’s internal logic decides to do so. Each component

can therefore execute independently of the other components and the responsibility for

maintaining control of the vehicle can be distributed across multiple components.

3.2.2 Hardware Components

Many embedded component technologies attempt to abstract away the processing plat-

form. While this approach works well for software designed for office and internet

applications it has the potential to be problematic for software running on resource

constrained platforms.

As mentioned in Section 2.2.2, embedded software typically has non-functional re-

quirements that need to be satisfied. These non-functional requirements make abstract-

ing the processing platform difficult as the developer will need to know details such as

execution speed in order to verify that timing deadlines will be met.
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It is therefore felt that it is not only inevitable but also desirable for there to be close

coupling between embedded control software and the platform it is executing on. Ex-

cepting the close coupling between hardware and software allows the programmers to

make best use of the hardware resources available.

It is also worth noting that within control devices the distinction between hardware and

software is not always clear. Software on a microcontroller is likely to be interact-

ing with programmable logic such as Analog-to-Digital Converters (ADCs), hardware

timers and motor control devices, all of which will be specific to that particular family

of microcontrollers. Attempting to use a software layer to abstract away the differences

between various microcontrollers will inevitably effect run-time performance. In addi-

tion, it will make it more difficult to take advantage of the custom features offered by a

particular microcontroller.

As an example, the microcontoller may have an automatic memory transfer mecha-

nism that transfers the measurements from the ADC into general purpose RAM. Such

a feature may be why the microcontroller was chosen as the target platform as it will

allow the ADC to operate at high sample rates while executing other software in the

background. It is difficult however to envisage how a hardware abstraction layer could

allow the unique capabilities of a particular ADC to be exploited while still allowing

the software to be ported to other microcontrollers.

The DCA therefore views the hardware and software of an embedded control device as

a single unit of functionality. Objects and interfaces are used to expose functionality

in a modular and extensible way but the DCA does not try to make application source

code portable between platforms.

Moving away from the use of hardware abstraction layers provides a lot of flexibility as

components can be written in any language and use any form of software engineering.

As long as devices expose their functionality through DCA objects and interfaces they

will be able to interact with other DCA devices. The DCA could therefore be viewed as

a ‘coordination language’ [Lee, 2006], with the DCA responsible for linking together

components written in many different languages.



3. Design of a Flexible Distributed Control Architecture 56

Henzinger and Sifakis discuss the ‘grand challenge’ facing embedded systems design

and the need for a ‘holistic approach that integrates essential paradigms from hardware

design, software design, and control theory in a consistent manner’ [Henzinger and

Sifakis, 2006]. The DCA does not deal with the security or robustness issues identified

by Henzinger and Sifakis. However, viewing the embedded hardware and software as

a single component may help with the constructivity issues they identify. In addition,

the use of components with well defined interfaces allows non-functional requirements

to be more easily analysed.

3.3 Run time flexibility

Limiting the run time dynamics of a component framework has the advantage of re-

ducing the resource consumption of the framework and can make the resulting system

easier to analyse [Möller et al., 2005, p. 60] [Rees et al., 2005]. As a result, the software

developed during the study has focused on off-line component configuration.

A static configuration also has the advantage of reducing the amount of initialisation

that is required as the component loads. Consequently, a static configuration will also

be preferable for components that need to recover quickly from failures, for example a

power supply interruption.

The embedded DCA devices developed during the project store communication details

such as Publish/Subscribe end points in the microcontroller’s non-volatile flash mem-

ory. This allows devices to connect to the network and begin sending and receiving

control parameters within a few tens of milliseconds of being powered on. For C#

DCA components, configuration parameters are stored in XML files that are passed to

the component as it is started.

However, there is nothing to stop the connections between components being viewed

and modified at run time. The same interfaces that are used by the DCA’s Integrated

Development Environment (Chapter 8) to view and configure devices can be used at

run-time to modify the connections between devices.
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A possible extension to the architecture would be development of a Look up Service

similar to Jini [Micosystems, 1999] that allows DCA devices to locate services at run-

time.

Alternatively, implementations of OMG’s DDS Publish/Subscribe specification (Sec-

tion 2.3.4 provide examples of dynamic configuration of Publishers and Subscribers.

DDS components specify the data topics they are interested in and the topics they will

be publishing as part of the initialisation process that occurs when the application is

started. The middleware is then responsible for configuring the end points at run time.

The important aspect is that a dynamic Publish/Subscribe or look up service could be

built on top of the DCA. The priority of the study has been to design the simplest archi-

tecture possible that imposes the minimum processing overhead while still providing

the services needed by the majority of vehicle control systems.

3.4 DCA Advantages

It is the opinion of the author that the DCA provides the following advantages to the

developers of unmanned vehicles;

1. The architecture is not tied to any particular size or type of vehicle. As a result

components (both hardware and software) can be more easily transferred between

vehicles.

2. A modular, loosely coupled architecture allows for future upgrades and compo-

nent reuse. This will be particularly beneficial for platforms with long life times

that require in-service upgrades.

3. The distributed nature of the resulting control system reduces the number of sin-

gle point failures. In addition, provided the software has been designed appropri-

ately, a distributed control system allows for graceful degradation in the event of

component failure.
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4. Integrated monitoring of the vehicle’s communication sub-system, processing

platforms, actuators and sensors can be coupled together to provide a detailed

view of the platform’s current capabilities.

5. The ability to replace smart sensors and actuators with the simulated equivalents

would allow the vehicle control algorithms to be tested and debugged on the

target hardware.

6. Simulated sensors and actuators would allow the vehicle’s capability to be pre-

dicted and optimised in the simulator before any physical construction occurs.

7. Pre-programmed missions could be tested in the simulator before the vehicle is

deployed, improving the chance of mission success.

3.5 Motivation

In recent years interest in unmanned vehicles has been moving from research into com-

mercial platforms designed to solve real world problems. Unlike research projects

commercial platforms need to be supported and upgraded over potentially long ser-

vice lives. They are likely to be developed and maintained by large groups of engineers

with diverse skills, ranging from high level application specific knowledge to low level

electrical and mechanical concerns.

Other industries, such as software and automotive, have solved the resulting problems

by defining interfaces and standards that allow for component reuse and easier integra-

tion of components from multiple suppliers. It seems likely that unmanned vehicles

will require similar component orientated standards.

The 2006 call for proposals from the Systems Engineering for Autonomous Systems

Defence Technology Centre (SEAS DTC) had several areas of interest that appeared to

align closely with the objectives of this project [Doggart, 2006];

• The first of the high priority areas of interest ‘Autonomous Systems Architec-

tures’ has existing work in the area of ‘system reconfiguration frameworks’ and
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defines one of the key topics as ‘Use of architecture frameworks in support of

autonomous system development, integration, operation and support’.

• Area 7 ‘Control of Autonomous Systems’ has existing work in the area of ‘Dis-

tributed control of autonomous systems’.

3.5.1 Other Applications for the DCA

Although the project has been focused on the needs of unmanned vehicles there does

seem to be some opportunities to make use of the DCA in other domains, particularly

if the DCA is viewed as a generic component framework.

Henzinger and Sifakis state that the development and maintenance of software for em-

bedded applications is currently ‘the most costly and least reliable part of systems in au-

tomotive, aerospace, medical, and other critical applications’ [Henzinger and Sifakis,

2006].

Although the DCA does not directly address the real-time or reliability aspects often

associated with critical applications it seems likely that it’s approach to embedded com-

ponents would be of use. Lee [Lee, 2002, p. 6] states that ‘Construction of complex em-

bedded software would benefit from component technology. Ideally, these components

are reusable, and embody valuable expertise in one or more aspects of the problem

domain.’ Lee goes on to say that, ‘to work, these components need to be abstractions

of the complex, domain-specific software that they encapsulate. They must hide the

details, and expose only the essential external interfaces, with well-defined semantics’.

The automotive industry seems like a domain that could benefit from the DCA. Möller

et al. [Möller et al., 2004b] have already identified the need for improved compo-

nent technologies within the automotive industry. The industry’s current approach to

Electronic Control Units (ECUs) is considered inflexible and makes adding additional

functionality difficult [Crnkovic, 2004].

According to Johnasson et al. the control systems of vehicles ‘are increasingly being

implemented in distributed computer systems and require a multitude of competences



3. Design of a Flexible Distributed Control Architecture 60

to be developed and integrated to meet quality requirements in a cost-efficient way. A

major research problem is to develop techniques and tools to bridge the gap between

functional requirements and the final design.’ [Johansson et al., 2005, p. 22]

Potentially this is a huge market, top of the line luxury cars typically have 65 or more

Electronic Control Units (ECUs) [Möller et al., 2005], [Hansson et al., 2004] and the

software represents a large and growing percentage of development costs [Möller et al.,

2005]. Even a very small per device, or per vehicle cost saving achieved through sim-

plified wiring and greater standardisation of components could amount to large overall

savings to the automotive industry.

In addition, the benefits are not limited to cost savings, a flexible in-car network would

make integration between satellite navigation systems, mobile phones, PDAs, and portable

entertainment devices considerably easier. In addition, a common in-car network would

also allow easier after-market upgrades. For example, the adding or upgrading of ‘in-

fotainment’ systems would benefit from standardised component interfaces.

The above possibilities would require extensions to the DCA but it seems likely that a

flexible vehicle network would provide benefits to manufactures and customers. It is

also worth noting that the potential market also includes construction equipment, farm

machinery and heavy goods vehicles.

3.6 Related Technologies

The DCA is designed to be accessible from software written in general purpose soft-

ware languages and running on operating systems like Windows and Linux. As a result

it has similarities with general purpose component technologies like COM, CORBA,

Java and .NET.

As with the general purpose component technologies, the DCA subdivides component

functionality into objects, interfaces and methods. The DCA borrows the concept of

Globally Unique Identifiers (GUIDs) from COM and, as with many component tech-

nologies, allows components to add new interfaces to existing objects. The ability to
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add additional interfaces is particularly useful as it means new functionality can be

added to existing components.

DCA’s support for the runtime reflection of components is inspired by the reflection

capabilities built into .NET. The DCA however goes further and provides runtime re-

flection of component interactions.

As with the Common Industrial Protocol (CIP, Section 2.5.3) the DCA is designed

to operate on top of more that one type of network technology. Both the DCA and

CIP support communication over CAN and Ethernet networks, although the low level

protocols used by the two architectures are different.

Communication abstractions supported by the Communication Layer include Publish/Subscribe,

Remote Procedure Call (RPC) and Pipe. As a result the Communication Layer has sim-

ilarities to existing implementations of the abstractions, like for example Transmission

Control Protocol (TCP), Distributed Component Object Model (DCOM) and the Object

Management Group’s (OMGs) Data Distribution Service (DDS).

Table C.1 (Appendix C) gives a more detailed comparison between the main features

of the DCA and the related technologies covered in the Literature Study.

3.7 Areas of Originality

Mäki-Turja et al. [Mäki-Turja et al., 2006], Lüders et al. [Lüders et al., 2006] and

Moller et al. [Möller et al., 2005] pointed out the modular design approach has been

used widely by software applications targeting the Desktop and enterprise markets.

Component-Based Software Engineering (CBSE) models like ActiveX, DCOM and

CORBA (Section 2.4.1) allow highly complex, business critical applications to be con-

structed with the help of off-the-self components. However suitable equivalent tools

are not available for the embedded control market [Möller et al., 2004b].

In an attempt to satisfy the needs of embedded control the Object Management Group

(OMG) has specified a real-time publish and subscribe protocol designed for control
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applications. As section 2.3.4 describes, the specification has been implemented by

several commercial companies but this is feature rich and therefore difficult to im-

plement on resource constrained platforms [Rees et al., 2005]. As a result the DCA

defines a simpler Publish/Subscribe protocol that is implementable on a wider range

of processing platforms, including platforms without an operating system or dynamic

memory allocation.

This project implements distributed control across a network of devices that are con-

nected using standard network protocols. The approach has been used before by sev-

eral underwater vehicles, including the Autonomous Benthic Explorer (ABE) and MITs

Odyssey both of which use a modular distributed control approach with each sensor and

actuator linked to a microcontroller. Ocean Voyager II made use of a similar control

strategy but instead used the LONTalk (Section 2.4.2).

These underwater vehicles however coordinated the various controllers using message

passing or the use of global variables, approaches that are normally considered inflex-

ible and can result in software that is difficult to analyse. As a result the DCA uses

components with objects and interfaces that interact using remote procedure call and

Publish/Subscribe semantics.

The industrial automation protocols like Modbus and Ethernet Power Link (Section

2.5.3) also allow control to be distributed across a network but do not fully cover the

needs of unmanned vehicles. In particular, industrial automation protocols normally

group related devices into ‘profiles’ whose functionality is defined by a central trade

organisation that is responsible for the specification and the certification of devices.

An architecture for unmanned vehicles would need a more open approach in which

individual developers can define new interfaces. In addition, the profiles of industrial

automation protocols cover the whole device whereas the interface definitions used by

the DCA are at the object level allowing one device to expose many interfaces.

A key advantage of the proposed architecture is that high level software will be able

to communicate directly with sensors and actuators through common interfaces. The

concept of exposing common interfaces is not new to the field of robotics and is imple-
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mented in the robot control architectures Player, ORCA and CLARAty (Section 2.4.2).

However the robot control architectures define only the software interfaces. In contrast,

the DCA extends the modular design concept down to the hardware.

Therefore the original aspects of the project are;

• The development of an integrated family of protocols that support Publish/Subscribe,

Remote Procedure Call and the Pipe communication abstractions and are suitable

for use on deeply embedded platforms.

• Development of a framework that allows the construction of vehicle control ar-

chitectures that span both low level embedded devices and high level applications

that are running on general purpose operating systems like Microsoft Windows.

• Investigations into a ‘plug and play’ mechanism that hides the software and elec-

trical integration issues from vehicle developers and allows developers to config-

ure control components without needing to understand network protocols or low

level electronics.

3.8 DCA Overview

The following five chapters are structured around the aspects of the project shown in

Figure 3.4. The ‘Communication Layer’ is the centre of the project and is respon-

sible for providing the common language used for interactions between components.

It makes use of the underling ‘Network Technologies’ Ethernet and CAN to physi-

cally move packets of data between senders and receivers. As described in subsequent

chapters, the Communication Layer is designed to support a wide range of networking

technologies.

On top of the Communication Layer are the ‘Object Orientated Abstractions’. They

are used to expose component functionality as a series of objects with interfaces and

methods. The abstractions are closely integrated with the Communication Layer and
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Figure 3.4: DCA Breakdown.

are designed to allow the data outputs of one DCA component to be connected to the

inputs of another.

An alternative view of the project is Figure 3.5. The figure shows the software com-

ponents all running on top of a ‘Processing Platform’. The DCA attempts to support

a wide range of processing platforms including Microsoft Windows, Linux and small

microcontrollers. There are currently implementations of the architecture written in

both C and C#.

The light blue boxes with curved edges in Figure 3.5 represent DCA objects. Some of

these objects will be application specific and represent software that is responsible for

controlling the vehicle. Other objects will be internal system objects that are used to

configure the architecture and are used by configuration tools such as the ‘Integrated

Development Environment’ (Chapter 8).
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CHAPTER 4:

PROCESSING PLATFORMS SUPPORTED BY THE

DISTRIBUTED CONTROL ARCHITECTURE

4.1 Introduction

DIFFERENT types of processing platform are suited to different tasks. The pro-

cessors found in desktop computers use speculative instruction execution, dy-

namic dispatch, and branch prediction to improve overall performance. These tech-

niques however, particularly when combined with a general purpose operating system,

make it difficult to analyse the timing characteristics of software executing on the plat-

form.

As a result low level control code can be easier to implement on small microcontrollers

where the developer is not burdened with an unnecessarily complex execution platform.

In between the microcontrollers and the processors designed for desktop computers are

a spectrum of processors optimised for other levels of performance, power consumption

and price. For simplicity the range of processors has been split into the four types

defined in Appendix D and summarised here as;

66
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Figure 4.1: The spectrum of computing platforms commonly used by unmanned vehicles.

1. Desktop. Desktop PCs, laptops and small form factor computers running general

purpose operating systems such as Microsoft Windows and Linux.

2. Mobile. Platforms built around processors for PDAs and mobile phones. The

platforms are likely to be running embedded versions of Windows or Linux.

3. Microcontrollers and Digital Signal Processors (DSPs). This includes chips de-

signed for demanding real-time control and signal processing tasks. To get max-

imum benefit from a platform of this type a real-time operating system would

probably be used.

4. Deeply Embedded. Includes Microprocessors where size and power consump-

tion is kept to an absolute minimum. Most likely programmed in C and running

without an operating system.

As illustrated in Figure 4.1 the DCA needs to allow software running on the various

types of platform to communicate with software on the other platforms. Allowing

easy communication between components means that high level control logic can use

platforms designed for high throughput and low level tasks can take advantage of mi-

crocontrollers designed specifically for control applications.
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Devices at the two ends of the spectrum have had the majority of the attention. The

assumption is that if the architecture can be implemented on an 8 or 16-bit microcon-

troller and on a general purpose operating system then implementations on intermediate

devices should also be possible.

The range of possible platforms does continue at both ends of the spectrum. Below the

Deeply Embedded platforms are control systems implemented on Field-Programmable

Gate Arrays (FPGAs) and at the other end of the spectrum, beyond Desktop Computers,

are multiprocessor server systems. Although both these types of platform are worth

further investigation they have not received much attention during the project.

In the case of FPGAs, there already exists FPGA based network stacks [Löfgren et al.,

2005] and Schöeberl [Schöeberl, 2005] demonstrates how a processor can be imple-

mented using a FPGA. As a result it seems likely that the embedded C implementation

of the architecture could be adapted to run on a FPGA based platform. It is also felt that

software designed for desktop computers could be adapted for use on server systems

but is beyond the scope of the current study.

To help provide focus and understand the requirements of the architecture four hypo-

thetical control architectures were developed. The first is for a small underwater vehicle

similar to the type of vehicle entered in the student International AUV competition [AU-

VSI, 2008] that is hosted every year in San Diego. The second is a control architecture

for a humanoid robot that might be entered in the RoboCup competition [RoboCup,

2006]. The third is the control architecture for a larger vehicle that might be entered

in the DARPA Urban Challenge [DARPA, 2007b]. The four hypothetical architectures

are described in more detail in Appendix B.

4.2 Development Platforms

Two implementations of the Distributed Control Architecture have been written during

the course of the project. The first is written in C# .NET and tested on Desktop comput-

ers running Microsoft Windows XP and Linux . In addition, a modified version of the
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C# software was tested on a PDA running Windows Mobile 5. The second implemen-

tation is written in C and targets the Microchip dsPIC30 family of microcontrollers.

This section describes the computing hardware and tools used to develop and test the

two implementations.

4.2.1 Windows Desktop PC

The C# .NET software was written using the Microsoft Visual Studio 2005 development

environment, which targets version 2 of the .NET Common Language Runtime (CLR).

Although Microsoft only provides versions of the CLR for versions of the Windows op-

erating systems the open source Mono project [Mono, 2008] allows .NET applications

to run on Linux (Figure 4.2).

Testing of the C# implemenation under Windows has been done using several desktop

and laptop computers running Windows XP. Testing the software under Linux was done

with the help of Brian Ford at the Systems Engineering Innovation Centre (SEIC) using

desktop computers running the Fedora distribution of Linux.

Mono 2.0 was still under active development at the time of testing and as a result sup-

port for applications with a graphical user interface was incomplete. Once Mono was

successfully installed and configured the DCA executed without problems and test ap-

plications were able to communicate with hardware devices.

4.2.2 Personal Digital Assistant (PDA)

The version of the Common Language Runtime (CLR) that is designed for PDAs only

supports a subset of the functionality normally available to desktop platforms. As a

result applications need to be complied slightly differently and user interfaces need to

be adapted. The PDA version of the software was therefore developed as a separate

project, with most of the source files shared with the regular version (Figure 4.2).

The software was tested using a HP iPAQ hx2700 series PDA. The device has 384MB

of RAM, a 624MHz processor and runs Windows Mobile 5.0. A Compact Flash Eth-
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Figure 4.2: The open source Mono platform allows .NET applications to execute on computers
running Linux. To execute on PDAs C# applications need to be modified slightly so
as to take account of the limitations of the Windows Mobile operating system.

ernet adaptor [Socket, 2008] allows software running on the PDA to access networked

devices.

4.2.3 Microchip PIC

The C# implementations have allowed the architecture to be tested on general purpose

operating systems. There was however also a need to test the architecture on a platform

with limited memory and processing power. In addition, the C# implementations have

easy access to dynamic memory allocation, a file system and a multithreaded run time

environment.

The Embedded C version is therefore an opportunity to test the architecture on a plat-

form without an operating system and the associated run time flexibility. The exact type

of microcontroller or the microcontroller’s manufacturer was not considered important.

The Microchip dsPIC30 family of microcontrollers was chosen primarily because of
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Figure 4.3: Three of the Microchip dsPIC30 development boards that were developed during
the project.

the low cost development tools and because of the availability of an Ethernet interface

chip that is designed to be compatible with the microcontrollers.

Early software development and testing was done using a 8-bit Microchip PIC18 plat-

form but the limited RAM and ROM of the microcontroller meant that alternatives were

investigated. The more powerful dsPIC30 family of devices chosen as a replacement

are 16-bit and include more ROM and RAM. The original PIC18 device had 16 Kbytes

of ROM and 768 bytes of RAM, the dsPIC30 device used later in the project includes

144 Kbytes of ROM and 8 Kbytes of RAM.

Several development boards were developed during the project for software testing, the

most recent of which is shown in Figure 4.3. At the centre of the board is a surface

mount version of the dsPIC30F6015 Digital Signal Controller (DSC) with a CAN in-

terface and several serial interfaces (Figure 4.4). The schematic and Printed Circuit

Board (PCB) layout are in Appendix E.

The embedded software has been written in C and compiled using Microchip’s MPLAB.

After some experimenting with MPLAB it was found to be more convenient to write

the code using Microsoft Visual C++ and use MPLAB for compiling and debugging.

The code could be made more memory efficient and faster if it was rewritten directly

in assembly language. As a result writing some of the most heavily used routines in

assembly was considered but the extra time it would take to write the code, combined
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Figure 4.4: Block diagram for the Microchip dsPIC30 development board.

with the tighter coupling of the code to the Microchip dsPIC30 family of processors

outweighed the potential performance improvements.

4.3 Summary

A key goal of the DCA is to support as broad a range of processing platforms and

programming languages as possible. Ideally, The DCA should allow high level control

algorithms to be implemented on desktop computing platforms and allow low level

control functionality to be implemented on small microcontrollers. For simplicity, the

spectrum of possible computing devices supported by the DCA has been split into four

groups; ‘Desktop’, ‘Mobile’, ‘Microcontrollers and DSPs’ and ‘Deeply Embedded’

(Appendix D).

Test implementations of the architecture have been written in two software languages.

The first implementation is written in Microsoft C# .NET and has been used to test the

architecture’s suitability for implementation on general purpose computing platforms.

The second is written in C and has been used to investigate the issues involved in

applying the architecture to resource constrained platforms.



4. Processing Platforms Supported by the Distributed Control Architecture 73

To support the development and testing of the C implementation several development

boards built around Microchip dsPIC30F6015 microcontrollers were developed during

the project (Section 4.2.3). These development boards also included CAN and Ethernet

network interfaces so that the processing overhead of the two network technologies

could be investigated. The range of network technologies supported by the architecture

is introduced in the next chapter (Chapter 5).



CHAPTER 5:

NETWORK TECHNOLOGIES SUPPORTED BY THE

DISTRIBUTED CONTROL ARCHITECTURE

5.1 Introduction

FUNDAMENTAL to any distributed architecture is the networking technology re-

sponsible for linking the components together. There is not however an optimum

technology for unmanned vehicles. The size of the vehicle, the type of sensors and

the performance requirements of the control system all effect the choice of network

technology.

As a result, the DCA is designed to be network independent. Currently implementations

exist for CAN and Ethernet networks but there is no reason why other technologies

could not be supported in the future. In addition, there is nothing to stop alternative

CAN and Ethernet implementations being developed.

As a result of this flexibility, the choice of technologies to be supported was not con-

sidered important. Supporting more than one technology was however considered im-

portant as it insured the architecture was not tied to a particular technology.

Table 5.1 shows the properties of CAN and Ethernet are hugely dissimilar. CAN was

originally designed for control applications and as a result uses short data packets and a

physical layer access mechanism that ensures the highest priory message always wins

access to the bus.

74
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CAN Ethernet/IP/UDP
Designed for in vehicle control applications
(also used in Industrial Automation).

Used mostly for connecting office equip-
ment.

Low Bandwidth (1MBit/s maximum) High bandwidth (10Mbit/s or more)
Short Packets (maximum payload of 8
bytes)

Huge payload (1500 bytes)

Maximum number of nodes limited (typi-
cally around 256)

Virtually unlimited IP Addresses (IPv4 has
232 addresses)

Messages broadcast on a shared bus Connection orientated (packet handling
based on the source and destination address
specified in the packet header)

Non destructive collision arbitration (high-
est priority message wins)

CSMA/CD (probability based)

Table 5.1: Although both suitable for control applications, CAN and Ethernet are intended for
different applications.

Ethernet was originally designed for connecting office equipment and supports much

higher data rates. Its popularity means that it is supported by almost all desktop com-

puters. In addition, the TCP/IP protocol layer that is usually used in conjunction with

Ethernet can also operate over other physical layers, such as fiber-optic and wireless

LAN.

It is envisaged that Ethernet will be used as the communication backbone of larger ve-

hicles and subsystems with stricter timing deadlines will use CAN. This does however

mean that CAN-Ethernet bridges will be required to connect the separate networks.

The development of a DCA network bridge is discussed in Chapter 6.

The remainder of this chapter introduces CAN and Ethernet in more detail and describes

the hardware and software tools used to test network components.

5.2 Ethernet

Standard 10Base-T twisted pair Ethernet [IEEE, 2005, Section 14] is a physical layer

communication protocol commonly used to connect office equipment. Communication

is over twisted-pair cables and cables can be up to 100m in length. The Ethernet speci-
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fication covers only the physical and data link layers and as a result additional protocols

are required to handle the routing of packets across the network.

The most common family of protocols to be used with Ethernet is TCP/IP. As illustrated

in Figure 5.1 the TCP/IP family includes IP [IETF, 1981a], responsible for the basic

sending and receiving of packets. On top of IP, TCP [IETF, 1981b] is normally used to

provided reliability and flow control.

Unfortunately the sophisticated mechanisms within TCP make it difficult to predict

exactly when TCP will deliver data to the receiver. As a result there is the option

to use UDP [Postel, 1980a] and gain direct control over the sending and reception of

packets. UDP is a simple interface to the IP layer. Like IP, UDP does not provide any

guarantee to deliver data and packets may not necessarily arrive in the order they were

sent. This reduced functionality makes it more suitable for low latency applications like

the streaming of audio and video data.

Both TCP and UDP allow multiple applications to share the same network IP address

by routing data packets to specific ‘ports’. A connection between two applications is

defined by the combination of IP Addresses and port numbers.

It was determined that for a number of reasons the simplest way of implement the

Ethernet version of the DCA was to make use of the standard TCP/IP protocol stack.
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When compared with the alternative of directly sending and receiving Ethernet packets,

TCP/IP has the advantage of being easily accessible from General Purpose Operating

Systems (GPOS), such as Microsoft Windows and Linux. In addition there are already

numerous diagnostic tools designed to support the development and testing of IP net-

works. To improve performance the UDP protocol is used instead of the more complex

TCP protocol.

The disadvantage of TCP/IP is the relatively large length of the IP and UDP packets and

the overhead resulting from the auxiliary ICMP [Postel, 1980b] and ARP [Plummer,

1982] protocols required by IP. As can been seen from Appendix F.4 this adds to the

overall size and complexity of the embedded C version of the code.

One of the advantages of using Ethernet, IP and UDP is the wide variety of inexpensive

diagnostic tools. The main tool used to monitor bus activity was the free open source

program Wireshark [Wireshark, 2008] that was previously known as Ethereal.

5.2.1 Ethernet Hardware

Although most microcontrollers and processors do not include Ethernet compatible

interfaces there are numerous Integrated Circuits (ICs) designed to provide the bridge

between the processor and the Ethernet medium. However most are designed to be

integrated into desktop or laptop computers and so are difficult to interface to small

microcontrollers.

One exception is the Microchip ENC28J60 Ethernet Controller. It communicates with

the host microcontroller through a three wire serial protocol known as SPI, an interface

supported by most microcontrollers. The block diagram in Chapter 4 (Figure 4.4) and

the schematic in Appendix E show how the ENC28J60 is interfaced to the dsPIC30

microcontroller.

Although the ENC28J60 has been used successfully, problems have been encountered

during development. These include problems with the built in checksum unit and also

with the stability of the transmit and receive logic, both of which need to be reset by
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the microcontroller after each operation. In addition, when compared to other Ethernet

controllers, the ENC28J60 has a relatively high power consumption. If the project

was to be taken further it would be sensible to investigate alternatives, for example the

Microchip ENC624J600.

5.2.2 Embedded C UDP/IP Network Stack

Since the C# version of the DCA is designed to run on Windows and Linux the sending

and receiving of UDP packets was trivial as the required functionality is built into the

operating system. However for the embedded C version, the task is more complicated

as the implementation is not using an operating system. There was therefore a choice

between adapting an existing protocol stack to the needs of the DCA or writing a new

one.

The software required to send and receive Ethernet, IP, UDP, ARP and ICMP packets

is fairly large and complex. As well as the obvious requirement to encode UDP and IP

packets the ability to resolve IP address (ARP) and respond to ping commands (ICMP)

is also desirable.

Several companies sell implementations that are designed to be used on small micro-

controllers and there are also implementations designed for use with FPGAs [Löfgren

et al., 2005]. In addition there are free open source options, including uIP [Dunkels,

2003] and the Microchip TCP/IP stack [Rajbharti, 2008].

It was originally hoped that the free source code provided by Microchip would be suit-

able but limitations were found. The limitations could have been rectified but it was

felt easier to rewrite the code (Figure 5.2). The Microchip code was however used for

reference and time consuming activities like specifying packet structures was avoided

by borrowing elements of the Microchip implementation.

Writing a custom network stack provided an opportunity to use some of the RAM

within the ENC28J60 as swap space. The stack uses the RAM in the ENC28J6 for

the storage of the internal ARP table and details of current SCP connections. To help
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Figure 5.2: The Ethernet/IP/UDP network layers that were implemented in C during the project.

limit coupling between the higher layers and the Ethernet interface chip an intermediate

software layer called the ‘E Buffer’ is used to hide most of the complications that come

from using memory that is not directly supported by the C complier.

The E Buffer has been used for the storage of data that has been sent but not yet ac-

knowledged by the remote host, thereby allowing lost or corrupt packets to be automat-

ically resent by the network layer. In addition part of the E Buffer’s 8 Kbytes of RAM

is used for the storage of status information related to the network connections, such as

packet sequence numbers and the IP addresses of remote devices.

5.3 Controller Area Network (CAN)

Controller Area Network (CAN) is in many respects the opposite of Ethernet. Whereas

Ethernet is high bandwidth and allows packets to be of virtually unlimited length CAN

operates at significantly slower bit rates and packets are limited to 8 bytes. It is a broad-

cast protocol that uses message priorities to resolve bus collisions in a non-destructive

manner. CAN bus transceivers typically consume less power than Ethernet transceivers

and the quantity of software needed to communicate using CAN is less.
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Figure 5.3: The CAN Diagnostic tool developed during the project allowed activity on the CAN
bus to be monitored.

Although originally developed for automotive applications, CAN is now used in numer-

ous other applications, including industrial control, unmanned vehicles [Nakasako and

Takase, 2005] [Yin et al., 2003] and marine automation systems [Etschberger et al.,

2002]. The CAN version of the Communication Layer (CL) has similarities to sev-

eral of the industrial automation protocols (Section 2.5.3). The CAN CL uses a similar

mechanism to ensure that message identifiers transmitted across the network are unique

and to protect against lost or corrupted packets. Unlike the industrial automation pro-

tocols however, implementations of the CL are designed to integrate closely with the

Object Oriented Abstractions (OOAs) described in chapter 7.

To help with the testing and debugging of the CAN software a tool was developed to

monitor traffic on the CAN bus. Although less sophisticated than commercial tools it

allows messages that are transmitted across the CAN bus to be to be forwarded to a

Windows computer.

The basic operation is shown in Figure 5.3. The broadcast nature of CAN means that

messages sent between ‘CAN Device 1’ and ‘CAN Device 2’ will also be received by the

diagnostic tool and so can be forwarded to the computer for display. Although simple,

the tool was useful during the development and testing of the Communication Layer.
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5.4 Summary

The DCA is designed to be network independent and has been implemented using two

very different network technologies, CAN and Ethernet. CAN was originally designed

for automotive applications and uses very short packets that are broadcast on a shared

bus. By comparison, Ethernet was originally designed to connect office equipment and

allows for much higher data rates and longer packets.

The Ethernet implementation makes use of the TCP/IP protocol stack and uses UDP

packets to send data instead of the more common TCP packets. On Windows and

Linux the architecture can make use of the Ethernet and TCP/IP functionality built into

the operating system. For the C implementation, a UDP/IP/Ethernet protocol stack has

been developed as part of the project.

The C implementation is designed to run on small microcontrollers without the help

of an operating system or dynamic memory allocation. This has affected the imple-

mentation and meant all resources required by the network stack need to be allocated

before compilation. Since the microcontroller used for testing the architecture (Section

4.2.3) has only a limited amount of RAM, the additional 8 Kbytes of RAM within the

Ethernet controller has been used for the temporary storage of data used by the network

software.

The network technologies described in this chapter are responsible for the movement of

data bytes between computing nodes. Above these network technologies is the Com-

munication Layer responsible for adding meaning to the bytes of data. As there are

currently two network technologies supported (Ethernet and CAN) there are also two

versions of the Communication Layer defined. These implementations are described in

the following chapter (Chapter 6).



CHAPTER 6:

THE DISTRIBUTED CONTROL ARCHITECTURE’S

COMMUNICATION LAYER

6.1 Introduction

ANY two devices wishing to exchange information need to agree on a common

language, and it is the purpose of the Communication Layer to provide this

language. Figure 6.1 shows three implementations of the Communication Layer, two

written in C and one in C#. One of the C implementations and the C# implementation

uses the Ethernet network technology. The other C implementation uses Controller

Area Network (CAN).

The Communication Layer sits beneath the Object Orientated Abstractions (OOA). The

‘Application Interface’ between the communication Layer and the OOA is designed to

allow easy integration with the data topics, methods and pipe connections of the DCA

objects. As a result the Application Interface is closely tied to the OOA covered in the

next chapter.

Most component technologies support a single style of communication between compo-

nents. Agha’s Actor paradigm [Agha, 1986], ROOM and HOOD (Section 2.2.2) are all

built around the passing of messages between components. Microsoft COM, CORBA

and .NET allow components to interact through Remote Procedure Calls (RPCs).

Supporting only one style of communication is however restrictive. The RPC approach
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Figure 6.1: Three implementations of the Communication Layer have been written during the
project.

works well with traditional text based and object oriented languages as the procedures

used in such languages are called, execute and then return. Lee [Lee, 2002] however

points out this approach does not map easily to control software which often runs con-

tinually.

Publish/Subscribe and message passing are both better at transferring process control

data. However it is difficult to envisage how run-time reflection or the transfer of config-

uration data could be implemented using just Publish/Subscribe or just message pass-

ing. As a result, the Communication Layer supports several abstractions (Figure 6.2).

The Communication Layer provides Publish/Subscribe, Pipe and Remote Procedure

Call (RPC) abstractions. There is obviously a balance between including lots of ab-

stractions and the need to keep the architecture simple so that it can be implemented on

resource constrained platforms. Publish/Subscribe is intended for the transfer of con-

trol data, RPC is included to support object oriented operations and the Pipe abstraction

allows serial data to be steamed across the network.

Both the RPC and Pipe abstractions rely on the reliable transmission of data packets

so an intermediate Simple Communication Protocol (SCP) layer has been developed as

part of this project (Figure 6.2). SCP is based on TCP [IETF, 1981b] but as described
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later in the chapter several simplifications have been made so that it can be more easily

implemented on devices with limited memory (Section 6.2.1).

There are currently two versions of the Communication Layer, one supporting CAN and

the other Ethernet. It is worth noting that technical details as to how the two versions

move data across the network are not particularly important. They are intended only to

demonstrate and test the rest of the architecture and there is nothing to stop alternative

versions being developed in the future.

As long as all implementations support the same abstractions and expose the same

‘Application Interface’ (Figure 6.2) to the software above then one can be replaced

with another. This flexibility is intended to be one of the main advantages of the DCA.

Control systems that require a high reliability transmission of real-time data can use

one implementation and control systems with other requirements can use another.

As a result, the sample implementations presented in this chapter are not intended to be

optimum solutions, but more tests to ensure that the communication mechanisms can

be implemented on the full range of processing platforms.

There may be instances where data cannot be conveniently transferred using the DCA.

This might be because the component’s timing or synchronisation requirements are

tighter than is provided by the architecture or because it is a commercial component

that does not support the architecture. For example, a web camera [D-Link, 2008] may
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have an Ethernet interface but use a proprietary protocol to transfer data across the

network. Or a sensor may have a CAN interface but communicate using one of the

industrial automation protocols.

From the perspective of the DCA, the optimum solution would obviously be to redesign

the devices to support the DCA. As this is not always going to be practical the best

alternative would be to ensure that non-DCA devices can co-exist on the same network

as DCA devices. For Ethernet this is accomplished easily as IP addresses and UDP port

numbers allow for an almost unlimited number of network connections, although the

available bandwidth is obviously limited.

For CAN, allowing devices to co-exist is slightly more difficult. There are however

two types of identifiers that can be attached to CAN messages, an 11-bit identifier

used by most industrial automation protocols and a 29-bit identifier. Most devices

that are configured to use 11-bit identifiers ignore messages with the 29-bit identifiers

and as a result will be unaffected by the messages. The solution used by the CAN

implementation has therefore been to use 29-bit identifiers for DCA messages and so

allow non-DCA devices free use of the shorter identifiers.

6.2 Implementations

Unlike the C# implementation, the C implementation is designed to run on small em-

bedded devices without an operating system and as a result it is not multi-threaded. The

implementations rely on the methods ETH CL Service() and CAN CL Service() being

called regularly so that received data can be processed and unacknowledged packets re-

sent.

The remainder of this section describes the implementations of the SCP, RPC, Pub-

lish/Subscribe and Pipe abstractions.
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6.2.1 Simple Communication Protocol (SCP)

SCP has been developed during the project and acts as the transport mechanism for

both the Pipe and the RPC abstractions. It is responsible for ensuring that packets

of data arrive at the receiver uncorrupted, only once, and in the correct order. The

CAN and Ethernet implementations are closely related and documented in Appendix G.

Both are based loosely on the Internet Protocol TCP [IETF, 1981b]. TCP is commonly

used by desktop computers to reliably exchange information such as files and web

pages. Several simplifications have been made to TCP so that it can be more easily to

implemented on microcontrollers.

TCP attaches a sequence number to each byte of data that it transmits. By requiring

sequence numbers to be acknowledged the protocol can ensure that all data arrives at

the receiver. SCP however attaches a sequence number to the packets, rather that the

individual bytes. Doing so allows SCP to use shorter sequence numbers that are more

compatible with the limited length of CAN messages.

The sliding window protocol of TCP has also been simplified. Whereas TCP allows

multiple packets to be in transit across the network, SCP waits for each packet to be

acknowledged before sending the next. This simplifies the implementation as only one

memory buffer is required to hold details of unacknowledged data. In addition, limiting

the protocol to one packet at a time provides a basic form of flow control.

Other simplifications include the removal of the options field from the TCP header and

the removal of TCP’s complex connection close procedure. In SCP either end of the

link can close the connection at any time by sending a reset packet.

This simplified close procedure reduces the twelve states of the TCP protocol to a more

manageable five states. As shown Figure 6.3, all sockets start in the ‘Closed’ state. If

the socket wishes to connect to a remote socket it will send a ‘SYN’ packet and move to

the ‘SYN Sent’ state. A socket can however choose to ‘Listen’ for incoming connections

and then move to the ‘SYN Received’ state once an appropriate ‘SYN’ packet is received.

‘SYN’ packets contain initial sequence numbers for the two ends of the connection and
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Figure 6.3: SCP State Diagram.

once these numbers have been exchanged the sockets will move to the ‘Established’

state. Once in the ‘Established’ state applications will be able to transfer data across

the connection. An illustration of the connection establishment process and details of

the SCP packet structure is in Appendix G.

6.2.2 Pipe

The pipe or stream abstraction is commonly used by operating systems to represent

files and by programming languages like Java to represent communication channels.
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As a result it seemed sensible to implement a basic layer on top of SCP that could be

used for tasks like the streaming of sensor data and the delivery of firmware updates.

It is the simplest of the communication mechanisms supported by the architecture and

does not do much more that provide a wrapper around the SCP protocol.

As illustrated in Figure 6.4 the interfaces of DCA objects can have associated with them

Pipe End Points. These End Points are software handles on to which Communication

Layer Pipes can connect.

Details such as the network address of the SCP connection are handled by the Com-

munication Layer, allowing the DCA end points to be accessed identically, regardless

of the underlying communication layer. System objects described in the next chapter

are used to interact with the Communication Layer and allow SCP Connections to be

added, edited and removed.

The Communication Layer Pipes contain internal buffers so that data can be held tem-

porarily by the Pipe before it is transferred across the network. The buffer length is

configurable, as is the length of time the layer will hold data before handing it over to

SCP for transmission.

This buffering of data allows network bandwidth and processing resources to be used

more efficiently. If, for example, a piece of software is generating one or two bytes of

data every millisecond and the bytes were handed directly over to SCP it would result

in a lot of small packets being transferred across the network. The Pipe however, allows
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the bytes to build up in the local buffer and then be transferred once a set number of

bytes have accumulated or a time limit expires.

6.2.3 Remote Procedure Call

Remote Procedure Call (RPC) is a commonly used way of invoking software on a

remote computer. Although not explicitly part of the RPC concept, the calling thread

on the local machine is normally suspended while the remote call is executed. Common

examples of RPC include Microsoft’s DCOM and CORBA (section 2.3.2).

As with the Communication Layer’s Pipe, the RPC abstraction makes use of SCP for

the reliable transition of data across the network (Figure 6.5). Two bytes at the start

of the SCP message are reserved to hold details of the method to be called and unused

binary flags within the SCP header are used to differentiate been method calls and the

replies.

The C implementations of RPC are only capable of receiving remote calls and so cannot

invoke calls on remote computers. This is a result of the C implementations being

deigned to run on platforms without an operating system and so the suspension of the

calling thread is difficult to implement.

The C# version of the Communication layer is however multithreaded and uses a syn-

chronisation mechanism known as a ‘WaitHandle’ to suspend the calling thread while
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Figure 6.6: The C# version of the Communication Layer uses WaitHandles to suspend the call-
ing thread while a RPC is in progress.

the remote call executes (Figure 6.6). An internal worker thread is responsible for op-

erating the network connection and returning control to the original thread once the call

completes.

This synchronous approach allows the methods on remote objects to be called in the

same way as the methods on local objects. The C# Remote Device Drivers discussed

in the next chapter make use of the approach to implement proxy objects. By using

method signatures that correspond to methods on the remote objects the complexity of

remote calls can be hidden.

6.2.4 Publish / Subscribe

The Publish/Subscribe paradigm provides a flexible method of connecting the produc-

ers and consumers of data. Subscribers register an interest in particular data topics

and producers notify the middleware when updated topic values are available. It is

then the responsibility of the middleware to communicate the updated topic values to

subscribers.

A Publish/Subscribe system needs to know which consumers are interested in each data

topic and how often new issues of a topic should be sent to consumers. This information

can be determined dynamically, as is done by implementations of the OMG’s Data
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Distribution Service (DDS) [OMG, 2007]. Alternatively, a static configuration results

in a simpler but less flexible system [Rees et al., 2005].

As Rees et al. discuss, the sophisticated mechanisms within OMG’s DDS increase

the processing overhead making it difficult to implement without the use of dynamic

memory allocation [Rees et al., 2005]. In addition, dynamic configuration increases the

start up time since each of the nodes needs to determine where topics should be sent.

Möller also favours static configurations [Möller et al., 2004b, p. 6]. He takes the view

that dynamic configuration is normally unnecessary for embedded systems and con-

siders static configuration more suitable because all possible configurations are known

before run-time.

For the reasons mentioned above, the current implementations of Publish/Subscribe

have deliberately been kept as simple as possible and only support static configuration.

In order to coordinate the publishers and subscribers of data a mechanism is required

to identify individual topics. Eugster et al. use Uniform Resource Locators (URLs) to

identify topics [Eugster et al., 2000]. Alternatively, OMG’s DDS uses a Topic Name

and Topic Type to identify individual topics.

The DCA however associates Data Inputs and Outputs with interfaces (Figure 6.7).

Each topic is therefore identified by specifying the interface and the topic number.

As shown in Figure 6.7 each Data Output can be linked to multiple subscribers. Con-
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nections between a Data Outputs and Inputs are specified using Subscriber and Sub-

scription records. Each Subscriber record contains the network address that topic up-

dates should be sent to as well as the retransmission frequency. In order to receive

topics a Data Input needs a subscription record that details the network address that it

should accept updates from.

Each topic update is transmitted across the network using a separate data packet. The

Ethernet implementation of the Communication Layer uses User Datagram Protocol

(UDP) packets and the CAN implementation uses CAN messages. Appendix H con-

tains detailed information about the CAN and Ethernet packets used by the Publish/Subscribe

implementations.

6.3 Network Bridging

As mentioned in Chapter 3 not all control components will have the same communi-

cation requirements. Quality of service attributes such as bandwidth and latency or

more fundamental requirements like power consumption and physical size of network-

ing hardware may restrict the choice of Communication Layer. For larger unmanned

vehicles it is envisaged that Ethernet would be used for the communication backbone

and interactions between subsystems could be across CAN networks. As a result a

method of bridging between instances of the Communication Layer are required.
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Figure 6.8 shows that the bridging is done using a device that has both CAN and Eth-

ernet versions of the Communication Layer. For SCP connections the bridge device

contains a number of ‘SCP Bridges’ each of which provides a RPC or Pipe connection

and exposes CAN and Ethernet Connection Points.

Internally the bridge just transfers received bytes from one connection to the other.

Since Ethernet packets can be longer than CAN packets, one SCP Ethernet packet may

result in several CAN packets. In the reverse direction, the bridge attempts to combine

several CAN packets of data into a single Ethernet packet.

Bridging of Publish/Subscribe topics is similar to the bridging of SCP connections.

Adding a new Publish/Subscribe bridge results in a new Data Output and Input also

being created (Figure 6.9). The Publish/Subscribe bridge then transfers topics received

on each Data Input to the corresponding Data Output.

6.4 Testing

The main method of testing the SCP aspects of the Communication Layer has been

using the software application ‘DCA ScpTestApp’. The ‘Connections’ tab on the main

form (Figure 6.10) allows Pipe and RPC connections to be opened and closed. Multi-

ple connections can be opened at once and internal variables associated with the SCP

connections can be viewed. In addition, the application can act as a pipe end point
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Figure 6.10: SCP Test Application.

and allows RPC methods to be invoked. The second tab ‘CL Event Log’ allows debug

messages from the communication layer to be viewed.

The Publish/Subscribe implementations were tested with the help of the diagnostic in-

formation available through the application DCA Host (Section 7.5.2) and through the

use of network monitoring tools. For Ethernet, the network packet analyser Wireshark

[Wireshark, 2008] was used to monitor and log network packets. For CAN, the mon-

itoring of bus activity was done with the help of the tool described in the previous

chapter (Section 5.3). The testing of the DCA is covered in more detail in Chapter 9.
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6.5 Summary

The Communication Layer provides the common language that allows DCA objects

executing on separate computers to communicate. Three implementations of the Com-

munication Layer have developed during the project and support the network technolo-

gies CAN and Ethernet. One implementation has been written in Microsoft C# and the

other two in C.

The implementations allow for several types of interactions between components. The

Publish/Subscribe abstraction is intended for the transfer of control data, RPC is in-

cluded to support object oriented operations and the Pipe abstraction allows serial data

to be streamed across the network. Implementations of the Communication Layer make

use of an underlying network technology (Chapter 5) and expose a software interface

that is designed to integrate easily with the Object Orientated Abstractions (OOA) de-

scribed in the next chapter.



CHAPTER 7:

THE DISTRIBUTED CONTROL ARCHITECTURE’S

OBJECT ORIENTATED ABSTRACTIONS

7.1 Introduction

THE DCA uses objects and interfaces to subdivide and group device functionality

(Figure 7.1). If, for example, a device contains a Global Positioning System

(GPS) receiver then functionality relating to the receiver would normally be assigned to

the same DCA object. Allowing each DCA object to have multiple interfaces provides

flexibility and allows new functionality to be added to existing objects without breaking

existing code.

The Object Orientated Abstractions (OOA) are however optional. The Integrated De-

velopment Environment (IDE, Chapter 8) and the first version of the GPS Bridge (Sec-

tion 9.1) bypass the abstractions and simply embed a version of the Communication

DCA Device

DCA Object
DCA Objects

DCA Object

~> Published Topics

()   Methods

<~ Subscribed Topics

== Pipe Connections

Interface

Figure 7.1: The functionality of a DCA device is subdivided into objects. Each DCA object has
one or more interfaces with methods, pipe connections and data topics.
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Layer directly within the application. Alternatively, applications can use the abstrac-

tions and expose their functionality using DCA objects and interfaces. Doing so lets in-

ternal mechanisms within the DCA architecture manage the communication with other

DCA devices.

As with the Communication Layer, implementations of the OOA have been written in

C# and embedded C. Software DCA devices written in C# that expose their functional-

ity using the OOA can then be hosted using the application DCA Host (described later

in this chapter) and configured using the IDE.

Part of the purpose of the abstractions is to provide a user friendly interface to the mech-

anisms within the Communication Layer. As a result there is a close relationship be-

tween the items that make up a DCA interface and the communication types supported

by the Communication Layer. Method calls are implemented using the Communica-

tion Layer’s Remote Procedure Call mechanism, data topics are communicated using

the Publish / Subscribe Topics and pipe connections use Communication Layer Pipes.

7.2 DCA Objects and Interfaces

As just discussed, the functionality of a DCA device can be subdivided into objects

and interfaces. Objects can have multiple interfaces, so a GPS object (for example ‘ob-

jGps’) might have an interface ‘IGpsSimple’ that allows access to basic information,

like the Longitude and Latitude currently reported by the receiver. There might then be

a second ‘IGpsStatus’ interface that provides more detailed information, like the num-

ber of satellites currently within range or the strength of the received signal. Figure

7.2 shows objGps with interfaces IGpsSimple and IGpsStatus. The square box repre-

sents an object, the line with a circle an interface, and items below are the associated

methods.

Multiple interfaces can help facilitate code reuse and can allow new functionality to be

added without breaking existing code. For example the GPS receivers from multiple

manufactures could all implement the same IGpsSimple interface, thereby allowing the
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DCA Object

Interface

~> Published Topics

() Methods

<~ Subscribed Topics

== Pipes

objGps

IGpsStatus

get_SatellitesCount()

get_SignalStrength()

IGpsSimple

get_Longitude()

get_Latitude()

Figure 7.2: DCA object ‘objGps’ with interfaces ‘IGpsSimple’ and ‘IGpsStatus’.

same code to be used to interact with all of the receivers regardless of the manufacture.

Different manufactures however might want to implement different interfaces for ac-

cessing diagnostic and debug information, as such information is likely dependent on

the underlying hardware used to decode the GPS signal.

7.2.1 Globally Unique Identifiers (GUIDs)

While interfaces can be application specific and only implemented on a single object

others might be generic and used by multiple devices. Programmers normally use tex-

tual names to identify items. However, an identification scheme based purely on text

strings could allow two programmers to define different interfaces with the same name.

The problems resulting from software mistakenly thinking the interfaces were the same

might not be discovered until an attempt was made to call a non-existent method.

A central authority could be responsible for assigning globally unique numbers to each

interface. This is the approach taken by industrial automation protocols like CANopen

and DeviceNet (Section 2.5.3) where a central authority is responsible for defining

Device Profiles.

An alternative approach used by enterprise component technologies such as Microsoft

COM and CORBA (Section 2.4.1) is to use a randomly generated number as an iden-

tifier. The 128-bit Globally Unique Identifiers (GUID), Microsoft’s implementation of

Universally Unique Identifiers (UUID) [The Open Group, 1997, Appendix A], have

been used to identify DCA interfaces.
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GPS
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(Output)

GPS 

(Input)
Course and Heading 

Commands
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Interface

Navigation 

Component
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Figure 7.3: The use of standardised interfaces would allow one component to be replaced with
another.

GUID identifiers are longer than the device type identifiers typically found in industrial

automation protocols and so require more memory to store and take longer to compare.

However they are also more flexible because anyone implementing a new interface is

free to generate a new identifier without worrying about conflicts with other devices

on the network and the need for a central authority is removed. The GUID approach

therefore provides a compromise between needing to uniquely identify the type of each

interface and allowing programmers to freely define new interfaces.

7.2.2 Generic Interfaces

An important design goal for the DCA is to make robotic control components more

reusable. The robot control architectures Player and ORCA (Section 2.4.2) demonstrate

the advantages of using standard interfaces and the same concepts have been applied to

the DCA.

In the ideal situation, all objects that provide Global Positioning System (GPS) data

would implement the same IGps interface and as a result could communicate with

any navigation component that accepted GPS data. Ideally, all navigation components

would use the same interface to output course and heading commands and as a result

could be used to control a broad range of vehicle platforms. As shown in Figure 7.3 the

resulting solution would give platform integrators flexibility when choosing or upgrad-

ing control components.

In addition, replacing a component with a simulated equivalent becomes easier if stan-

dard interfaces are used throughout. For example, a developer may want to test that the



7. The Distributed Control Architecture’s Object Orientated Abstractions 100

navigation component correctly handled the transition of the vehicle across the equator

or loss of the GPS signal. The ability to replace the GPS receiver with a simulated

equivalent could help by allowing arbitrary positions and velocities to be supplied to

the navigation component.

There are similar potential benefits to using generic interfaces to interface with actua-

tors, making it easier to move control components between platforms and allowing the

control algorithms to control simulated vehicles. However, the number of generic in-

terfaces is potentially huge and the optimum specification is likely to change with time.

For example, a generic satellite-navigation interface based around the American GPS

system is unlikely to be a perfect fit when applied to the forthcoming Galileo system.

As a result defining and documenting interfaces is a large task and is beyond the scope

of this thesis. Desktop software has tended to solve the problem in an ad-hoc manner

with new interfaces created as needed and ones that are sufficiently generic adopted by

other developers. It is assumed that the same approach would be taken by users of the

DCA, where possible basing interfaces on ones defined by other control architectures,

like for example Player and ORCA.

7.2.3 Binary Interfaces

With objects distributed across a network it becomes important to consider how trans-

parent the location of objects should be to programmers. Issues that should be con-

sidered include how object references to remote objects should be handled and if the

architecture should allow objects to be transferred across the network.

Java and .NET both attempt to achieve full transparency and allow objects to be move

between locations. In addition, .NET’s runtime behaviour of remote objects is cus-

tomizable. The programmer can choose to allow some objects to be automatically

transferred while fixing others to the computer that originally created the object.

Java and .NET can achieve the high level of transparency because all software is known

to be running on the same type of platform, either a Java Virtual Machine or the .NET
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Common Language Runtime (CLR).

If all software is running on the same type of platform then the binary representation

of the object on one platform will be the same as on another. As a result the commu-

nication architecture can pack the object’s data into a serial stream of bytes for transit

across the network and just reverse the process at the other end to recreate the object.

The process however becomes more complex if objects are being transferred between

different types of processing platform, particularly if the objects contain methods as

well as data. It was therefore decided that a Java or .NET approach with support for the

movement of objects across the network and remote object references would have been

extremely difficult, if not impossible to implement in the DCA.

Instead a binary approach similar to Microsoft COM has been taken. This is much

simpler and therefore easier to implement in C on small microcontrollers. Also, as

Waldo et al. [Waldo et al., 1997] point out, attempting to hide the location of objects

is unwise as local and remote objects are physically different and should therefore be

treated differently.

The DCA therefore provides the Remote Procedure Call (RPC) abstraction so that func-

tionality on remote devices can be accessed easily but the DCA does not attempt to hide

the location of remote objects.

Component technologies such as COM and CORBA include a type system that defines

the binary format of types such as strings and floating point numbers. This aspect of

the DCA has not been investigated. Instead the DCA defines all arguments and return

values as byte arrays.

The lack of a type system does however have a few advantages as not implementing

one is simpler and avoids the runtime overhead caused by marshaling data types. In

addition, embedded C programmers are familiar with byte manipulation so manually

handling arguments and return arrays is a relatively easy task. For high level languages

byte handling can be easily hidden within proxy objects.

Finally, the last major limitation of the binary COM style approach to objects is that
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DCA_InterfaceTable

Interface No. GUID

0 0x56AA01... 

1 0x925B32...

DCA_ObjectInterfaceTable

Object No. Interface No. Interface Def.

0 0 <Pointer>

0 x <Pointer>

Output Definition

{

  Topic Length

}

Methods

{

  Method Count

  {

     Method 1 Def.,

     Method 2 Def.,

     Method x Def.,

  }

}

Data Outputs

{

  Output Count

  {

     Output 1 Def.,

     Output 2 Def.,

     Output x Def.,

  }

}

Interface Definition

{

  Methods,

  DataOutputs,

  DataInputs,

  Pipes,

  References

}

Method Definition

{

  Argument Length

  Return Length

  Method Pointer

}

Data Inputs

Pipes

Input Definition

Pipe Definition

Figure 7.4: The C implementation uses structures to represent objects, interfaces, methods and
data topics.

object inheritance is not supported. A local object, for example written in C], cannot

inherit from a remote object, for example written in C and running on a embedded plat-

form. However it is questionable whether in reality it would be wise to take advantage

of this feature even if it was available because it would make analysing execution times

difficult and introduce considerable coupling between objects.

7.3 Implementations

Two implementations of the object orientated abstractions have been developed as part

of the project, one written in C, the other in Microsoft C ] .Net. The two versions are

described in more detail below.

In both versions, the design concept is that the items that can be accessed remotely are

defined before the code is compiled and it is left to the DCA subsystem to provide the

connections at run-time.
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const DCA_METHOD m_IUnknown_QueryInterface = {1 , 1, &IUnknown_QueryInterface};

const DCA_METHOD_PTRS ObjGPS_IGPS_Methods = {1, {&m_IUnknown_QueryInterface}};

const DCA_PIPE GpsPipe0 = {/* unsigned char * txBuffer */ PipeTxBuffer[0],

/* unsigned char txBufferLength; */ GPS_CONFIG_TX_BUFFER_LENGTH,

/* void (*pBytesReceived) */ 0x00,

/* void (*pConnectionOpened) */ 0x00,

/* void (*pConnectionClosed) */ 0x00,

/* void (*pConnectionRemoved) */0x00};

/* <const DCA_PIPE GpsPipe1> */

/* <const DCA_PIPE GpsPipe2> */

const DCA_PIPE_PTRS ObjGps_IGps_Pipes = {GPS_PIPE_COUNT, {&GpsPipe0, &GpsPipe1, &GpsPipe2}};

const DCA_INTERFACE_DEFINITION ObjGPS_IGPS_Def = {&ObjGPS_IGPS_Methods, 

&ObjAny_IAny_PubTopicsNone, 

       &ObjAny_IAny_SubTopicsNone,

&ObjGps_IGps_Pipes, 

&ObjAny_IAny_ReferencesNone};

Figure 7.5: An extract from ‘objGPS.c’. Structures are used to represent DCA interfaces.

7.3.1 Embedded C Implementation

The C implementation of objects and interfaces is based around structures that are

stored in program memory (ROM). A ‘table’, implemented as an array of structures,

contains a list of all of the objects and interfaces exposed by the device. Figure 7.4

shows that each entry in the Object/Interface table has a pointer to the ‘Interface Def-

inition’, a structure containing details of the interface. The Interface Definition in turn

points to structures that list all the methods, data topics and pipe end points that are part

of the interface.

Figure 7.5 shows the code required to define the interface ‘IGPS’. Since the IGPS inter-

face only exposes methods and pipes, the structures for the data topics are not required

and so are replaced by pointers to generic ‘ObjAny IAny’ structures.

Remote Procedure Calls (RPC) identify the target method by ‘Interface Pointer’ and

‘Method Number’. For the C implementation, the Interface Pointer corresponds to the

index of an interface in the Object/Interface table and the Method Number is the index

of a method in the Methods structure. so, for example, if the following remote call is

received;
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• Interface Pointer: 5

• Method Number: 3

• Arguments: 6 byte array

The code responsible for processing remote calls will read the sixth entry in the Ob-

ject/Interface table and use the resulting ‘Interface Def.’ pointer to access the Interface

Definition. The Interface Definition will in turn point to the methods table. Since the

RPC specified Method Number 3, the fourth entry in the Methods table will be used.

Provided the length of the supplied arguments matches with the expected value the re-

quested method will be called. The C method ‘DCA RPC Call()’ that implements the

process described above is located in the file ‘DCA.c’.

The C implementation is designed to run on small embedded devices without an op-

erating system and as a result it is not multi-threaded. In addition, to save program

memory the textual names and descriptions of objects, interfaces and methods are not

stored in the device.

7.3.2 C# Implementation

The C# implementation of objects and interfaces builds on top of the C# objects. Be-

cause C# does not directly support some of the DCA’s concepts, such as GUIDs, Data

Topics and Pipe Endpoints, C# classes have been written to add the DCA specific func-

tionality.

The main Device, Object and Interface classes are shown in Figure 7.6. As illustrated

by the red lines with double arrows, each instance of the DCA Device class holds a

collection of the DCA Objects exposed by the device and each DCA Object holds a

collection of DCA Interfaces.

The classes DCA SoftDevice and DCA RemoteDevice are derived from DCA Device

and are provided for the benefit of the Integrated Development Environment (IDE)

that is covered in the next chapter. The IDE needs to distinguish between Software
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Figure 7.6: The C] class diagram of DCA Devices, Objects and Interfaces.

Devices that are executing on the local machine and local proxies that represent devices

elsewhere on the network.

Software devices make use of the DCA SoftDevice class and have a collection of

DCA LocalObjects. Proxies to remote devices use the DCA RemoteDevice and DCA

RemoteObject classes. Similar classes are used to represent DCA methods, data topics

and configuration properties.

Most of the functionality required by the internals of the DCA is hidden within ‘DCA ’

classes. As a result developers wishing to define software devices just need to define an

object that inherits from the appropriate ‘DCA ’ class.

As an example, Figure 7.7 shows the definition of the software device ‘device MotorControl’,

which inherits from the internal ‘DCA ’ class ‘DCA SoftDevice’. The GetControl()

method is used to obtain a default user interface component and the getObjects() method

provides a list of all of the objects exposed by the device. All of the other functionality

required by the DCA is hidden within the class ‘DCA SoftDevice’ and as a result does

not need to be considered by the developer.
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public class device_MotorControl : DCA_SoftDevice

{

  internal static Guid m_GUID = new Guid("F882128……C4C26E58");

private objMotorControl m_objMotorControl;

private ctlMotorControl m_control;

public device_MotorControl(Mode runMode)

      : base(runMode)

  {

    m_objMotorControl = new objMotorControl(this);

    SetInterfaceNumbers();

    SetInterfacePtrs();

  }

public override void getObjects()

  {

base.getObjects();

this.m_Objects.Add(m_objMotorControl);

  }

public objMotorControl ObjMotorControl 

  { get { return m_objMotorControl; } }

public override string Name {get { return "Motor Control"; } 

public override UserControl GetControl()

  {

if (m_control == null)

    {

m_control = new ctlMotorControl(this);

    }

return m_control;

  }

<Application Functionality>

}

Figure 7.7: An extract from ‘dev MotorControl.cs’. Software devices are based on the ‘DCA ’
class ‘DCA SoftDevice’.

The C# project ‘DCA Devices LboroTest’ contains several sample devices that demon-

strate the process of defining software devices and the associated objects, interfaces and

data topics.

Remote Device Drivers

The C# implementation contains support for remote device drivers (Figure 7.8). The

device drivers act as proxies and contain the same objects, interfaces and methods as the

remote device. When a method is called on the local proxy device the call is forwarded

on to the actual method on the remote device using the Communication Layer’s Remote

Procedure Call (RPC).
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.NET Platform

Remote Device Driver Remote Device
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Figure 7.8: Remote Device Drivers are similar to Software Devices but hold a Remote Procure
Call (RPC) connection to the remote device. When a method is called on the device
driver the RPC connection is used to forward the call to the actual device.

The remote device drivers are implemented using classes that inherit from the same base

classes as standard software devices and as a result can be handled by local software in

the same way as local devices. In addition, because the proxies are standard C# objects

the normal C# runtime facilities like remoting and reflection are available.

The Integrated Development Environment (IDE) described in the next chapter relies

heavily on remote device drivers and remoting to allow remote devices to be viewed

and configured (Section 8.2).

The remote device drivers also provide C# applications with information not available

on the remote device. Due to limited program memory, the embedded C implemen-

tation does not contain the textual names or descriptions of the objects, interfaces and

methods. Instead the information is held in the device driver. Software such as the

IDE uses the device drivers to obtain the object names and display default values for

configuration parameters.

Figure 7.9 shows the C# source code of a method on the class I Led. The class is

based on DCA Interface and contains the method ‘SetBlinkRate’. As this is a class

intended for use by a remote device driver the method simply forwards calls on to the

remote device. The remote procedure call is executed by the line of code starting with

‘rpcConnection.SynchronousCall’ (the red box in Figure 7.9).



7. The Distributed Control Architecture’s Object Orientated Abstractions 108

public class I_Led : DCA_Interface, ILed

{

   << … >>

// ILed_SetBlinkRate()

// -------------------------

//

// Args[2]:

// WORD BlinkRate;

//

// Return[0]:

//

// Exceptions [0]:

// None

public static void SetBlinkRate(Byte interfacePtr, IRpcConnection rpcConnection,

ushort blinkRate)

   {

bool applicationException;

byte[] bytes = rpcConnection.SynchronousCall(interfacePtr, 2, BitConverter.

GetBytes(blinkRate), true, out applicationException);

<< ... >>

return;

}

   << ... >>

}

Figure 7.9: An extract from the file ‘ILed.cs’. The method call is forwarded to the remote device
using the line of code starting with ‘rpcConnection.SynchronousCall’.

Configuration Parameters

Möller et al. describe how configurable parameters can make components more generic

and reusable [Möller et al., 2005, p. 76]. The embedded C implementation is limited to

using methods prefixed with the words ‘Get’ and ‘Set’ to define configurable parame-

ters. In the C implementation, the ‘SetBlinkRate()’ method in Figure 7.9 would be used

to set the parameter BlinkRate.

The C# implementation however goes further and makes use of attributes to define

properties that represent configurable parameters. Figure 7.10 shows the I Led class

contains a GetBlinkRate() method which, as with the SetBlinkRate() method, forwards

calls on the corresponding method on the remote device.

For the benefit of configuration tools, I Led also defines the public property ‘BlinkRate’

(the red box in Figure 7.10). The property simply forwards get and set requests on to

the corresponding method and so does not provide any additional functionality, except

for defining the relevant attributes.
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public class I_Led : DCA_Interface, ILed

{

   << … >>

public static ushort GetBlinkRate(Byte interfacePtr, IRpcConnection rpcConnection)

{ << … >> }

public static void SetBlinkRate(Byte interfacePtr, IRpcConnection rpcConnection,

ushort blinkRate)

{  << … >> }

[DCA_Property(),

CategoryAttribute("Configuration"),

DisplayName("LED Blink Rate"),

DescriptionAttribute("Rate (in ms) that the LED changes state")]

public ushort BlinkRate

{

get { return ((ILed)this).GetBlinkRate(); }

set { ((ILed)this).SetBlinkRate(value); }

}

  << … >>

}

Figure 7.10: A extract from the file ‘ILed.cs’. The C# implementation uses attributes to mark
properties as configurable parameters.

Figure 7.11: The IDE’s Property Grid.

The attribute ‘DCA Property’ marks the property as a DCA Configuration Property and

the Category, DisplayName and Description attributes are provided for the benefit of

the Integrated Development Environment. DCA properties appear in the IDE as items

in the Property Grid (Figure 7.11).
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Figure 7.12: Several of the interfaces exposed by DCA system objects inherit from the generic
RemoteEditableList<T> interface.

Interface Inheritance

Inheritance is a commonly used technique that allows software interfaces to be more

flexible and existing components to be extended. Although adding support for inheri-

tance to the C implementation has not been investigated, it was achieved quite easily in

the C# implementation.

As discussed later, there are several system objects that are used to configure instances

of the Communication Layer. Many of these system objects expose a list of items that

can be added, removed and updated. For the configuration of Ethernet SCP sockets

each of the items is a ‘EthScpSocket Item’ and for configuration of CAN SCP sockets

each of the items is a ‘CanScpSocket Item’.

To avoid code duplication it seemed sensible to define a base class called RemoteEd-

itableList<T> that all of the relevant classes could inherit from. The base class in-

cludes the methods for reading and writing to the remote lists, thereby simplifying the
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Figure 7.13: An implementation of the DCA includes several system objects that are used to
obtain device information and to configure the Communication Layer.

implementation of derived classes.

Figure 7.12 shows that RemoteList<T> and RemoteEditableList<T> act as base classes

for I CanSockets and I EthSockets. This approach greatly reduced the amount of soft-

ware needed for the proxy objects used by Remote Device Drivers and allowed for

the creation of generic helper classes like ‘RemoteListReadHelper’ (Figure 7.12). Be-

cause all remote lists expose the same generic IRemoteEditableList<T> interface, Re-

moteListReadHelper can be used to synchronise any local list with the corresponding

copy on the remote device. The approach is therefore used heavily by the IDE when

reading and writing parameters to remote devices.

7.4 System Objects

Each DCA device implementing the Object Orientated Abstractions needs to imple-

ment several system objects that support the architecture and expose common func-

tionality. Figure 7.13 shows how these objects allow the Communication Layer and

networking components to be configured. In addition, the ‘Identity Object’ provides

access information such as the device name and manufacturer. This subsection pro-

vides an overview of the main system objects.



7. The Distributed Control Architecture’s Object Orientated Abstractions 112

IIdentity
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getDeviceName()
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DCA.
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Figure 7.14: The methods implemented by the system object Identity.

7.4.1 Identity Object

The Identity Object is a concept borrowed from the industrial control protocol De-

viceNet. It provides details of the device to the rest of the network, including the name,

version and GUID of the device. The list of methods exposed by the ‘IIdentity’ interface

on the object is shown in Figure 7.14.

Originally each device was also going to include an XML string that contained detailed

information about each of the objects and interfaces, accessed through the getXML()

method. This would have allowed remote devices and development tools to get user

friendly names and descriptions of methods. In addition extra information, such as the

worst case execution time could have been easily accessible at development time.

However, storing such a large string would have been difficult in small devices with

limited ROM and as a result implementation of this feature has been made optional. The

reasoning is that, provided all devices are capable of returning their unique identifier

(GUID), name, version and manufacture the associated XML can be found through

other means, for example downloaded from the Internet.

7.4.2 Communication Layer Objects

The implementations of the Communication Layer described in the previous chapter

(the green boxes in Figure 7.13) are responsible for the mechanics of moving data

between the senders and receivers. These implementations however need to allow Pipe,

RPC and Pub/Sub connections to be viewed and configured, and this is accomplished

with the help of system objects.
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Configuration is split between the six objects and fourteen interfaces listed in Appendix

I. A detailed description of the methods associated with each interface is contained in

the source code of each interface. To allow additional Communication Layer imple-

mentations to be added in the future the configuration specific to each implementation

is grouped into separate interfaces.

So for example, the PubSub object allows the Publish/Subscribe aspects of the com-

munication layer to be configured and currently has six interfaces, three control the

Publishing of data and three control Subscriptions (Appendix I). One of the Publish

interfaces is generic and therefore relevant to all implementations, one is specific to the

CAN implementation and one specific to the Ethernet implementation.

Objects and interfaces will only be present when the component they are configuring

is included. So if the CAN version of the Communication Layer has not been included

then all of the CAN related interfaces will be excluded from the compilation.

7.5 Additional C# Components

The main C# components written during the project are shown in Figure 7.15. In ad-

dition to the Communication Layer covered in the previous chapter and the Integrated

Development Environment (Chapter 8) there is the application DCA Host, the Device

Library and the various Software Devices and Remote Device Drivers developed during

the project.

Most of the Software Devices and Remote Device Drivers are documented in Chapter

9. DCA Host and the Device Library are described below.

7.5.1 The Device Library

The Device Library maintains a list of the Software Devices and Remote Device Drivers

that are located on the local machine. Figure 7.16 shows that the main form used to

view and modify library items has two tabs. The first tab ‘Software Devices’ lists the
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Figure 7.15: Structure of the main C# components.

devices that can be hosted in DCA Host. The second tab contains a list of the Remote

Device Drivers currently in the library. The user interface (Figure 7.16) can be accessed

through a menu option on IDE’s main form and allows library items to be added and

modified.

Internally, the library uses typed data sets to hold the library records and saves the

contents of the library to an XML file when the application closes. Details held in the

library include the name and version of devices and the file paths to the devices. The

functionality of the Device Library is complied into the Dynamic Link Library (DLL)

‘DCA Core.dll’.
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Figure 7.16: The user interface of the Device Library.

7.5.2 DCA Host

An important outcome from the work with the ConSERT group (Section 9.1) was iden-

tifying the importance of separating DCA software devices from the Communication

Layer. Doing so allows each DCA Software Device to contain only the functionality

that is specific to the device. Generic DCA functionality like the Communication Layer

and the Object Oriented Abstractions are provided by the application DCA Host. As

illustrated by Figure 7.17 the application DCA Host acts as a container for the Software

Device and is responsible for providing the user interface and processing the configu-

ration parameters.

The configuration data is supplied to DCA Host as an XML file that contains details of

the device that should be loaded, any configuration parameters and any Communication

Layer connections that should be established. The XML files can be manually edited

or generated by the IDE discussed in Chapter 8.

The Software Device for DCA Host to load can either be specified using the full file

path to the ‘.dll’ or by specifying an item in the Device Library.
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Figure 7.17: Concept of operation of DCA Host.

7.6 Summary

The DCA uses objects and interfaces to group related functionality. Each object can

have multiple interfaces, a feature that helps to facilitate code reuse and allows new

functionality to be added without breaking existing code. Each DCA interface can

include methods, data topics and pipe end points.

The Object Oriented Abstractions (OOA) provide a user friendly interface to the mech-

anisms with the Communication Layer. As a result there is a close relationship between

the items that make up a DCA interface and the communication types supported by the

Communication Layer.

As with the Communication Layer, there are implementations of the Object Oriented

Abstractions (OOA) written in C# and C. The C implementation uses data structures

that are defined before the code is complied to represent DCA objects and interfaces.

The C# implementation builds on the object oriented nature of the C# language to

provide the OOA.



CHAPTER 8:

THE DISTRIBUTED CONTROL ARCHITECTURE’S

GRAPHICAL CONFIGURATION TOOL

AN Integrated Development Environment (IDE) has been developed to allow users

to view and configure DCA devices (Figure 8.1). It is in part inspired by Na-

tional Instrument’s software language LabVIEW (Figure 8.6) and allows users to view

and configure the devices within a graphical tool. Device settings can then be saved

to an XML project file and the configuration details of remote devices can be read and

written.

Within the IDE, a device can be a software device written in C# or a physical device

with a corresponding device driver listed in the device library. The application shows

devices and their objects in the centre of the main window. The ‘Device Objects’ tree-

view on the right of Figure 8.1 lists all of objects and interfaces exposed by a device and

the properties window below provides further information about the currently selected

item.

8.1 Application Structure

Where possible, existing libraries for standard parts of application functionality have

been used. The visual representation of devices and objects is drawn with the help

of Piccolo [Bederson et al., 2004], an open source 2D drawing library. The floating

tool bars are drawn with the help of the free open source ‘Magic Library’ [Crownwood

117
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Figure 8.1: Screen capture of the DCA Integrated Development Environment (IDE).

Software, 2008] and the code used to manage the context sensitive menus is based on

CommandManager, a library provide by Microsoft [Foster and Araya, 2002].

The internal structure of the application is shown in Figure 8.2. Although the IDE is not

a DCA device and does not expose objects or interfaces it uses the Object Orientated

Abstractions (OOA) within ‘DCA Core.dll’ to interact with devices and determine the

objects, interfaces and properties of devices. The ‘Device Objects’ tree view (see Fig-

ure 8.1, upper right panel) is constructed by working through the various collections

provided by the OOA. An instance of the Communication Layer (from ‘DCA CL.dll’)

is used to interact with remote devices.

The Device Library described in Section 7.5.1 is used to locate suitable drivers for each

of the remote devices within a project. In addition, the device library provides a level

of abstraction between the name of a software device and the file path to the DLL that

contains its implementation.

Within the IDE a ‘Project’ represents a collection of devices that have been configured

to solve a particular control problem. The ‘Project Items’ (Figure 8.2) are used to
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Figure 8.2: The IDE makes use of the Object Orientated Abstractions to determine the inter-
faces and configurable properties of devices.

control the properties shown in the Property Grid and are responsible for storing visual

settings.

As well as reading and writing parameters to devices the IDE is capable of saving the

settings of the current project to an XML file that can be reopened later. The format of

the XML project file is defined in Appendix J.

8.2 Project Devices

Most of the functionality within the IDE is based around ‘ProjectDevice’ objects. The

ProjectDevice objects hold collections of objects and interfaces associated with the

device and a reference to the corresponding record in the device library.

If the device being configured is a software device then configuration will be performed

by loading the device into memory and initialising it in ‘design’ mode. In this mode

the IDE can access the list of exposed objects, interfaces and configuration parameters.

For Remote Devices the procedure is slightly more complex. Although the IDE could

connect directly to the remote device and obtain a list of objects and interfaces the user
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friendly names for the various items would not be available. As discussed in Section

7.3.1 one option would have been to include the names as constants within the C code

and provide methods to allow them to be accessed remotely. This however would have

increased the size of the resulting programs and therefore required the use of larger

microcontrollers.

Instead the IDE uses remote device drivers that act as proxies. The IDE first connects to

the remote device to obtain the name, Globally Unique Identifier (GUID) and version

of the device. It then uses the Device Library to locate an appropriate remote device

driver and uses the driver to interact with the remote device. Since the driver is written

in C] and so does not have the same resource limitations as an embedded C application,

including the textual names and descriptions of the objects and interfaces is trivial.

8.2.1 Application Domains

Each software device or remote device driver accessed by the IDE is complied into a

Dynamic Link Library, or DLL (in Windows a DLL file has a ‘.dll’ file extension). To

interact with a device the IDE therefore needs to load the DLL into memory so that

it can initialise and call methods on the device. While the DLL could be loaded into

the memory used by the rest of the application this would prevent the DLL from being
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(a) (b)

Figure 8.4: (a) The IDE allows configuration data to be exported in an XML format compatible
with DCA Host and allows software devices to be started from within the IDE. (b)
The IDE allows remote devices to be configured while offline and then synchronised
later.

unloaded later. In addition, if the DLL references other libraries then these would also

need to be loaded before the device could be initialised. This could potentially cause

problems, especially if multiple DLLs reference different versions of the same shared

libraries.

To avoid the above problems, the IDE creates a separate Application Domain, or mem-

ory space, for each device. The approach is illustrated in Figure 8.3. The default domain

that is created when the application starts is used for the majority of the objects created

while the application is running, including the Device library and the Communication

Layer. The only exception is the software device (or device driver for remote devices)

which is loaded into a separate application domain and accessed using .NET Remoting

[Robinson et al., 2002, Chapter 16].

The approach has the advantage of making reloading a device relatively easy. When

the user selects ‘Reload Device’ from the menu shown in Figure 8.4 all the application

needs to do is dispose of the relevant application domain and reload a new copy of the

device into a new application domain.

8.2.2 Software Devices

To simplify the development and testing the IDE integrates with the application DCA Host.

Right clicking on a device in the ‘Device Objects’ tree view (see Figure 8.1) displays

the context sensitive menu shown in Figure 8.4. The IDE can generate the XML file re-
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Figure 8.5: The IDE allows remote devices to be configured while offline and settings to be
synchronised next time the device is connected.

quired by DCA Host (option ‘Build DCA Host File’) and can start DCA Host directly

(‘Run Soft Device’).

8.2.3 Remote Devices

For remote devices, it was considered desirable to allow parameters to be configured

in an offline mode since this avoids the need for the remote device to be physically

attached to the PC. In addition, for remote devices there is effectively two copies of

the configuration data, one within the remote device’s EEPROM and a copy that is

displayed within the IDE.

Keeping the two copies synchronised and supporting offline configuration is done using

the method shown in Figure 8.5. When settings are read from the project file or are

entered by the user the collections attached to the project device (the ‘Project Items’

configuration data) is updated. These changes are also propagated to data structures

within the remote driver (the orange box in Figure 8.5).
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Figure 8.6: Screen capture of the LabVIEW programming environment

It is then the responsibility of the device driver to update the remote device. If the

device is online the changes will be applied immediately, otherwise they will be written

next time ‘Write All’ or ‘Write Changes’ is selected from the menu shown in Figure

8.4. The ‘Read All’ menu option does the reverse and copies the data on the remote

device into the device driver and the ‘Project Items’ collection.

8.3 Connections

An important aspect of a system built from components is obviously the connections

between components. As a result the original intention was to visually show the data

flows between components, in a manner similar to National Instruments LabVIEW

(Figure 8.6).

Unfortunately the visual aspect has not been implemented but the IDE does allow con-

nections to be added and configured using the Device Objects tree view and the Prop-

erty Grid. Clicking on a Data Input, Output or Pipe in the main visualisation causes the

relevant Communication Layer parameters to be displayed in the Property Grid.

The IDE supports all of the Communication Layer concepts required to interact with

connections, such as Publish/Subscribe subscriptions and as SCP sockets. As a result

adding the capability to visually show the connections should not present any major

technical obstacles.
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8.4 Summary

The Integrated Development Environment (IDE) developed during the project allows

users to graphically view and configure DCA devices. The IDE uses the Object Orien-

tated Abstractions to determine the objects, interfaces and properties of devices. The

connections between data topics and pipe end points can then be configured and settings

saved to an XML project file.

The Device Library introduced in Chapter 7 is used by the IDE to locate appropriate

device drivers. The IDE also integrates with the application ‘DCA Host’ and allows

software devices to be directly launched from within the IDE.



CHAPTER 9:

TESTING OF THE DISTRIBUTED CONTROL

ARCHITECTURE

9.1 GPS - ICE Bridge

CONSERT [ConSERT, 2008], a BAE Systems program, is focused on the integra-

tion of components related to the control of unmanned vehicles. The ConSERT

group has experience using robot control architectures and as a result were able to pro-

vide useful insights into the requirements of control architectures.

It was originally planned that the DCA would be tested using robots provided by the

ConSERT project. Unfortunately due to time constraints only the first phase of the

planned work was completed. It was however a useful collaboration that provided

guidance and direction for the rest of the work under taken in this study. Although a

difficult decision, time freed by not pursuing the second phase of the ConSERT work

allowed more to be spent developing the Integrated Development Environment (IDE)

and allowed the integration between the IDE and Object Orientated Abstractions (OOA)

to be improved.

125
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Figure 9.1: The GpsIceBridge allows ConSERT components to access GPS data

The majority of the existing software components used by the ConSERT group are

based around the ORCA control platform, which makes use of the ICE middleware

[ZeroC, 2008] for communication between components.

Rewriting all of ConSERT’s ORCA/ICE components as DCA components would have

been a significant undertaking and so methods to allow ORCA/ICE and DCA com-

ponents to interact were investigated. The investigations focused around allowing

ORCA/ICE components to access Global Positioning System (GPS) data that was sup-

plied by a DCA component.

The basic concept of operation is shown in Figure 9.1 with a Global Positioning System

(GPS) receiver being interfaced to ORCA components through a bridge component.

The bridge component (‘GpsIceBridge’) executes on the same laptop as the ORCA/ICE

components and receives the GPS data as a serial stream of data from a Communication

Layer Pipe. The bridge decodes the serial data and populates the data structure used

by the ORCA/ICE middleware. Provided the GPS data appears to be correct and the

checksum is valid the data structure is then passed to ORCA/ICE to be distributed

among subscribers.

The GPS object that supplies the bridge with data is executing on one of the dsPIC30

development boards developed during the project (Section 4.2.3) and is supplied with

GPS data by an standard GPS receiver module [RF Solutions, 2006].
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Figure 9.3: The user interfaces of the two implementations of the of GpsIceBridge.

As illustrated in Figure 9.2 the bridge was written twice. The first implementation (Fig-

ure 9.3 (a)) bypasses the Object Orientated Abstractions (OOA) and receives the GPS

data by interfacing directly with a Communication Layer pipe. The other implemen-

tation is compiled into a Dynamic Link Library (DLL) and is executed by DCA Host

(Figure 9.3 (b)). Implementing the components twice provided an opportunity to eval-

uate the advantages of the Object Orientated Abstractions.
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Components Lines Blank 
Lines 

Designer 
Lines 

Comments Code 
Lines 

      
Common Components 10067 1491 101 264 8211 
       
User Interface (IntegratedCL) 679 40 430 4 205 

      
User Interface (SoftwareDevice) 209 12 149 0 48 

      
DCA OOA (SoftwareDevice) 312 63 0 18 231 
 

Table 9.1: The number of lines of code required to implement GpsIceBridge. ‘Blank lines’
refers to the number of empty lines within each file.

The first implementation, without the abstractions, was simpler. Being a stand alone

application it can be executed directly. In addition, not using the Object Orientated Ab-

stractions to expose functionality saved 231 lines of code (Table 9.1). The cost however

is that first implementation cannot be configured using the Integrated Development En-

vironment (IDE) and so the network address of the GPS device that it should connect

to needs to be manually entered by the user every time the application is started.

In addition, it was difficult to make the first implementation connect to devices on

remote networks as users needed to enter the network address of the remote CAN device

and the address of the bridge through which the CAN device could be accessed.

The second implementation executes with the help of DCA Host and is configured with

the IDE. Although extra code is required to expose functionality through DCA objects

and interfaces it can more easily connect to devices on remote networks. In addition,

the IDE can be used to generate an XML file containing the configuration data. As a

result the second implementation was considered to be a more elegant approach.

Details of the testing of the two implementations of GpsIceBridge are in Appendix K.

9.2 Remote Procedure Call (RPC) Test

The Remote Procedure Call functionality was demonstrated and tested with the help of

a pressure sensor module from Intersema [Intersema, 2006]. The module is connected

to a Microchip dsPIC30 microcontroller using a 3-Wire serial interface and includes

pressure and temperature sensors. A DCA object was written that exposes the func-
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Figure 9.4: A Remote Procedure Call (RPC) bridge is used to allow software running on the
laptop to call methods exposed by a device on a remote CAN network

tionality of the module and allows the current pressure and temperature returned by the

unit to be accessed through the remote method calls GetPressure() and GetTempera-

ture().

As shown in Figure 9.4 the test device has a CAN interface and as a result connects to

the laptop though a network bridge. The test application shown on the left of Figure

9.4 calls the GetPressure() and GetTemperature() methods and then displays the results

in the text boxes on the form.

The test form has an ‘Auto Refresh’ facility that causes the application to repeatedly

call the remote methods, at a frequency determined by the value of the ‘Refresh Timer’

(Figure 9.4).

The packets transmitted across the network as a result of a remote method call are

shown in Figure 9.5. The Laptop is shown on the left of the diagram with the CAN /

Ethernet Bridge in the middle and the device with the pressure sensor on the right.

The laptop starts by using a SCP connection to send a a Remote Procedure Call (RPC)

to the bridge. The bridge acknowledges receipt of the packet and forwards the contents

to the Sensor. Upon receiving the RPC packet the sensor executes the appropriate

method and returns the result in a RPC reply packet. The bridge then forwards the

reply to the laptop and the laptop acknowledges receipt of the reply.

The above description assumes that the bridge between the laptop and the sensor has

already been created and that and the SCP connections associated with the bridge have
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Figure 9.5: The bridge is used transfer the remote procedure call details to the CAN device and
return the results of call back to the software executing on the laptop.

Maximum Minimum Average
PIC Response Time 1.6 ms 1.27 ms 1.3 ms
Laptop Response Time 36.2 ms 69 µs 0.94 ms
RPC Response Time 16 ms 6 ms 8.5 ms

Table 9.2: Average response time for SCP packets transmitted to the CAN/Ethernet bridge. Cal-
culated from 336 remote procedure calls.

been established. For testing, the bridge was configured using the IDE described in the

previous chapter.

The ‘Auto Refresh’ facility on the test form allowed the remote methods GetPressure()

and GetTemperature() to be called repeatedly and the resulting packets from 336 remote

calls are saved to log files. The Ethernet packets were captured using Wireshark [Wire-

shark, 2008] and CAN packets were captured using the software described in Section

5.3. Analysis of the log files allows the average time taken for a remote call to complete

to be calculated (Table 9.2).
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Figure 9.6: The components ‘MotorControl’ and ‘PubSubTest’ were used to test the Ethernet
implementation of Publish/Subscribe

9.3 Publish / Subscribe Ethernet Test

Testing of the Ethernet version of Publish/Subscribe was done with the help of the test

objects shown in Figure 9.6. The software device ‘MotorControl’ allows the user to

select a desired ‘Speed’ using a slider control. The selected value is displayed in a text

box on the form and used to update the device’s Data Output.

The IDE has then been used to connect the MotorControl’s Data Output to the Data

Input of the test object ‘PubSubTest’. PubSubTest simply transfers the data it receives

on its input to its output and so is a convenient way of testing that the data has been

correctly received. PubSubTest’s output in then connected to MotorControl’s input

(Figure 9.6). As a result, moving the top slider control results in an updated ‘Speed’

being transferred across the network to the PubSubTest object and then back again. The

received value is then displayed by the lower ‘Motor Response’ slider.

The publish end points are both configured to send the topic every time it changes and to

resend the most recent value every second. To avoid flooding the network with packets

the Data Output of MotorControl has been configured to wait at least 30 milliseconds

between sending packets.

Figure 9.7 shows the timing of some of the Ethernet packets sent between the devices.

The delay of around 10 milliseconds that occurs before the device returns the updated
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Figure 9.7: The Publish/Subscribe packets sent between ‘MotorControl’ and ‘PubSubTest’.

value to the laptop is a result of a limitation with the current C implementation. Cur-

rently, when an application publishes an updated topic value the C implementation sets

a flag to indicate that the topic has changed but does not immediately send the updated

value to subscribers. Instead, the updated value is sent when an internal service routine

is executed and this only occurs every 10 milliseconds.

The problem would be best solved by implementing a custom timer module that han-

dled all of the timers used by the Communication Layer and allowed callbacks to be

executed when timers expired. Future development of the DCA could allow this feature

to be implemented and the handling of time to be improved.

9.4 Publish / Subscribe Bridge

The final test configuration to be described is shown in Figure 9.8. It is based around

the same Intersema pressure sensor [Intersema, 2006] used to test the remote procedure

call functionality (Section 9.2). This time however the pressure and temperature values

are accessed through data outputs rather than remote methods.
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Figure 9.8: The arrangement of the components used to test the Publish/Subscribe Bridge

The pressure and temperate values are represented using four byte floating point num-

bers and displayed using instances of the software device ‘FloatDisplay’. The pressure

sensor is on a CAN device and as a result Publish/Subscribe bridges are required to

transfer the data to the local Ethernet network (Figure 9.8).

Figure 9.9 shows the code used to publish the pressure and temperature values. When

the device CanSensor is switched on the pressure sensor object performs some initiali-

sation tasks. These include reading the calibration data from the sensor and obtaining

the unique handles used by the Communication Layer to refer to the two Data Outputs.

The two handles obtained are saved in the variables ‘PS TopicHandle Temperature’

and ‘PS TopicHandle Pressure’. Later, once initialisation of CanSensor has been com-

pleted the Pub PublishTopic() method is used to notify the Communication Layer when

the temperature and pressure values change.

Appendix K.2 shows some of the CAN and Ethernet packets captured while testing the



9. Testing of the Distributed Control Architecture 134

 
const DCA_PUB_TOPIC pubTopic_Pressure = {/* BYTE TopicLength; */ 4 }; 
const DCA_PUB_TOPIC pubTopic_Temperature = {/* BYTE TopicLength; */ 4 }; 
 
void PressureSensor_init(void) 
{ 
   << Initialise the pressure sensor and read calibration data >> 
 
   Pub_FindTopicHandle( 
        /* DCA_PUB_TOPIC * pPub_Topic */ &pubTopic_Pressure,  
        /* BYTE * pPub_TopicHandle */ &PS_TopicHandle_Pressure); 
 
   Pub_FindTopicHandle( 
        /* DCA_PUB_TOPIC * pPub_Topic */ &pubTopic_Temperature,  
        /* BYTE * pPub_TopicHandle */ &PS_TopicHandle_Temperature) 
} 
 
void PressureSensor_Service(void) 
{  
   << Read latest pressure and temperature values>> 
 
   Pub_PublishTopic( 
         /* BYTE Pub_TopicHandle */ PS_TopicHandle_Temperature,  
         /* unsigned char *pBuffer */ & floatValue.v); 
 
   Pub_PublishTopic( 
        /* BYTE Pub_TopicHandle */ PS_TopicHandle_Pressure,  
        /* unsigned char *pBuffer */ & floatValue.v); 
} 

Figure 9.9: An extract from objPressureSensor.c

Publish/Subscribe bridge and the pressure sensor.
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9.5 Summary

This chapter has demonstrated the functionality of the DCA. The work done with the

ConSERT group at the SEIC [ConSERT, 2008] provided useful insights into the re-

quirements of unmanned vehicle control architectures. In addition the ‘GpsIceBridge’

developed as a result of the work with the ConSERT group provided an opportunity to

demonstrate the use of the application DCA Host.

The device ‘CanSensor’ was developed to test the CAN/Ethernet bridge and demon-

strate the movement of data between the CAN and Ethernet networks. The Pub-

lish/Subscribe aspect of the bridge demonstrated the movement of temperature and

pressure data topics across both networks. Remote Procedure Call (RPC) was also

tested with the help of ‘CanSensor’. A software device hosted by DCA Host was used

to repeatably query the pressure sensor and display the most recent results.



CHAPTER 10:

CONCLUSION

THE purpose of this thesis was to adapt the networking and Component Based

Software Engineering (CBSE) technologies originally developed for enterprise

applications to the needs of unmanned vehicles. The goal was to allow the control

components of unmanned vehicles to be viewed as a network of intelligent devices

connected using standard networking hardware.

During the course of the work a control architecture referred to as the ‘Distributed Con-

trol Architecture’ (DCA) has been developed. The architecture allows control compo-

nents that are distributed across a network to interact and is implementable on a broad

range of processing platforms.

The architecture allows components running on deeply embedded platforms with lim-

ited memory and processing power to interact with components running on desktop

computers. It supports a broad range of programming languages, operating systems

and types of networking technology.

Conceptually, the architecture has been split into two separate layers. The lower Com-

munication Layer and the upper layer that implements the Object Oriented Abstractions

(OOA).

The Object Oriented Abstractions are partly inspired by enterprise technologies like

COM and CORBA (Section 2.4.1). They allow components to expose functionality

using Methods, Interfaces and Objects. However the DCA also allows components to

define Data Inputs and Outputs. The Inputs and Outputs can then be connected together

using the Publish/Subscribe mechanism within the Communication Layer.
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The Communication Layer is responsible for providing the common language so that

components on different platforms can interact. It supports several styles of component

interaction, including Publish/Subscribe and Remote Procedure Call (RPC).

The Communication Layer supports a range of network technologies. Currently imple-

mentations exist for Controller Area Network (CAN) and Ethernet but the underlying

concept is that any implementation of the Communication Layer can be used. The only

requirement is that each implementation exposes the same software interface to the

OOA layer above. As a result, developing custom implementations of the Communica-

tion Layer allows the runtime behaviour of the DCA to be customised to meet specific

requirements.

The DCA defines some standard system objects that are implemented by all DCA de-

vices. The objects provide access to device information, including the device’s name,

Globally Unique Identifier (GUID) [The Open Group, 1997, Appendix A] and version.

The objects also allow the connections between devices to be configured and these ob-

jects are used by the Integrated Development Environment (IDE) to configure devices.

The IDE developed during the project allows the objects and interfaces of devices to be

viewed and the connections between devices to be edited. Configuration information

can be saved to an XML project file.

10.1 Contribution of this thesis

10.1.1 Components and Object Orientated Abstractions

The main contribution of this thesis has been to design and demonstrate a method

of applying Component-Based Software Engineering (CBSE) to small embedded de-

vices. The DCA’s Object Orientated Abstractions (OOAs) allow software written in

non-object orientated languages like C to expose their functionality in terms of objects

and interfaces. In addition, the DCA allows each object to have multiple interfaces and

allows new interfaces to be added to existing components.
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The DCA extends the object oriented concept by allowing interfaces to have data in-

puts, outputs and pipe connections as well as methods. Together these more data centric

methods of communication allow for easier communication between control compo-

nents than would be possible using remote procedure calls.

From an unmanned vehicle perspective, the concept of distributing control of a vehicle

across a number of ‘active’ components has been investigated (Section 3.2.1). The

conclusion was to accept Brooks’ [Brooks, 1985] view that ‘The control system can be

viewed as a system of agents each busy with their own solipsist world’ and that ‘useful

parallel computation can be performed on a low bandwidth loosely coupled network of

asynchronous simple processors’.

Accepting Brooks’ view removed the need for an unmanned vehicle to have a central

control component and so allowed the control problem to be shared across a number

of control components. As a result a vehicle built using the DCA can be viewed as a

collection of intelligent components working together to solve the control problem.

10.1.2 Component Configuration

It was felt important to investigate not just the low level technical aspects of the archi-

tecture but also consider how components would be used. Möller et al. point out that

to be adopted by industry a component technology requires appropriate development

tools and components need to be reusable and configurable [Möller et al., 2004b].

A method of specifying configuration parameters is described in Section 7.3.2. In ad-

dition, the architecture defines several system objects (Section 7.4) that are used by

the Integrated Development Environment (Chapter 8) to allow the connections between

components to be configured.

10.1.3 Binary Interfaces

To minimise the run time overhead and make the architecture implementable on plat-

forms without an operating system, interfaces and remote method calls are defined at
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the binary level (Section 7.2.3). In addition the DCA does not have a type system and

so treats all arguments and return values as arrays of bytes.

When compared to component technologies such as Microsoft .NET the above lim-

itations do slightly limit the flexibility of the architecture. However, the C# imple-

mentation provided an opportunity to investigate alternative solutions. The C# Remote

Device Drivers (Section 7.3.2) demonstrate a method of hiding the lack of a type system

and allows interfaces to provide interface inheritance (Section 7.3.2).

10.2 Suggestions for further work

10.2.1 Mode Changes/Profiles

It would be useful if the architecture allowed for the transition between multiple modes,

with the option to specify different connections and configurations for each mode. For

example, an aircraft control system might have taxi, takeoff, cruise and landing modes.

Alternatively, an underwater vehicle might have an emergency mode that was triggered

if water was detected within the pressure housing.

Möller points out in his review of embedded component technologies for the automo-

tive industry that ‘most vehicles can operate in different modes, hence the technology

must support switches between a set of statically configured modes’ [Möller et al.,

2004b, p. 5].

For mode changes in real-time uniprocessor systems there are methods of managing

the transition so as to ensure that timing deadlines are met [Søndergaard et al., 2008],

[Real and Crespo, 2004], [Martins and Burns, 2008]. The problem however becomes

more complex when the processors are distributed across a network.

In the case of the DCA, a transition between modes would require Communication

Layer connections to be modified and the configuration parameters of objects to be

changed. Details of the alternate configurations could be stored within each device’s

memory and activated in response to instructions received from a master device.
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There are however potential difficulties if a device looses contact with the master or if

conflicting instructions are received. Similarly, the managing of the transition to ensure

bandwidth and processing requirements are not exceeded would be important.

10.2.2 Design Tools

Möller et al. make the point that the advantages of the component based development

come at the cost of increased complexity and tools are needed to manage this com-

plexity [Möller et al., 2005]. The DCAs Integrated Development Environment (IDE)

provides a graphical method of viewing devices and allows editing of the connections

between components.

However the IDE does not provide component testing tools. As Weyuker describes,

successful component based software development requires components to be tested in-

dividually (Unit Testing) and once integrated together (Integration and System Testing)

[Weyuker, 1998]. The DCA would therefore benefit from tools to help with component

testing.

National Instruments LabVIEW allows software ‘probes’ to be attached to outputs of

subVIs and it would be helpful if the Communication Layer had a similar facility. In

addition, it would be helpful if the architecture allowed communications to be replayed

and statistical data such as dropped packets and missed timing deadlines to be collected.

In addition, tools are required to manage the life cycles of the various versions and

variants of components [Möller et al., 2005]. For example the same unmanned vehicle

many have multiple versions of the same component, each possibly configured differ-

ently. Ideally tools are required to manage each of the components and to store related

information such as test scripts and the location of source code.

10.2.3 Extensions to the DCA’s Integrated Development Environment (IDE)

As described by Selic, layering is a common method of reducing the apparent complex-

ity of large systems [Selic et al., 1994]. It is used by networking software to simplify
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the definition and implementation of protocol stacks (for example the ISO 7 Layer

model [Zimmermann, 1980]). The concept is also used by operating systems to sepa-

rate low level kernel processes from user applications and by the DCA to separate the

Communication Layer from the Object Oriented Abstractions.

Real-time Object Oriented Modeling (ROOM) [Selic et al., 1994] demonstrates a method

of grouping objects into layers and visually showing the connections between objects

and the services provided by lower layers. Separating objects into layers allows ROOM

diagrams to be simplified and complex interactions to be hidden.

It would seem that the DCA’s Integrated Development Environment would benefit from

the addition of layers. A number of robot control systems utilise the layer concept [Gat,

1998], [Nesnas et al., 2003] and allowing the IDE to support layers could improve the

understanding of object interactions.

The use of Unified Modelling Language (UML) would also improve the IDE. Currently

the IDE uses square boxes to represent DCA devices and objects but a standardised for-

mat such as Unified Modelling Language (UML) [OMG, 2007] [Gomaa, 2001] would

be a sensible improvement.

Selic and Rumbaugh [Selic and Rumbaugh, 1998b] demonstrate a method of modelling

the structure and behaviour of real time systems using UML. The approach is based on

ROOM [Selic et al., 1994] and allows a component’s behaviour to be specified using

hierarchical state machines.

10.2.4 Component Attributes

Several authors [Crnkovic et al., 2002] , [Ibrahim et al., 2006], [Henzinger and Sifakis,

2006], [Möller et al., 2005] have suggested that the definition of embedded and real-

time components should include non-functional properties. For example, the worst case

execution time of software methods and the mean-time to failure of hardware devices

should be specified.
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Crnkovic et al. [Crnkovic et al., 2002] give four dimensions that need to be specified

to fully define a software component: syntax, behaviour, synchronisation and quality

of service. In the DCA, quality of service is in part handled by the Communication

Layer and syntax is defined by the object, interface and method definitions. However

synchronisation and concurrency issues are not currently dealt with by the DCA.

Making such information available at run-time would be a considerable benefit to the

self-managed systems discussed in Section 2.2.1 and could be used at design time to

verify the correct operation of control loops. The difficulty however is determining how

best to measure such properties [Crnkovic et al., 2005] and how the information should

be made available to other components and development tools.

For deeply embedded devices the information could either be stored within the device,

as is currently the case with the device name and unique identifier, or the Device Library

(Section 7.5.1) could be extended to include the additional information. For software

devices and remote device drivers implemented using Microsoft C# the properties could

be made available through C# attributes.

10.3 Overall Conclusion

This thesis has demonstrated a method of applying component based development

techniques to unmanned vehicles. The thesis has also outlined the Distributed Con-

trol Architecture (DCA), a distributed component technology that supports a range of

processing platforms, programming languages and network technologies. The DCA

groups component functionality into objects that have interfaces, methods and data

topics. Components interact using Remote Method Calls and Publish/Subscribe se-

mantics.

The DCA has been implemented in embedded C and C# and supports the network

technologies CAN and Ethernet. The study has also included the development of an

Integrated Development Environment (IDE) that allows devices to be viewed and the

connections between devices edited.
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There is however considerable scope for further development of the DCA. The archi-

tecture would be benefit from a mechanism to transfer DCA devices between different

modes of operation. In addition, testing of DCA devices would be improved by the

addition of tools for monitoring interactions between components and for verifying

non-functional requirements were being met. Lastly, the IDE could be improved by the

addition of a mechanism that allowed control components to be placed into separate

layers.
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APPENDIX A:

COMPONENT TECHNOLOGY DIMENSIONS

Lee [Lee, 2000] provides the following dimensions to measure a component technol-

ogy.

• Ontology. A framework defines what it means to be a component. Is a component

a subroutine? A state transformation? A process? An object? An aggregate of

components may or may not be a component. Certain semantic properties of

components also flow from the definition. Is a component active or passive -

can it autonomously initiate interactions with other components or does it simply

react to stimulus?

• Epistemology. A framework defines states of knowledge. What does the frame-

work know about the components? What do components know about one an-

other? Can components interrogate one another to obtain information (that is, is

there reflection or introspection)? What do components know about time? More

generally, what information do components share? Scoping rules are part of the

epistemology of many frameworks. Connectivity of distributed components, via

name servers for example, is another part of the epistemology.

• Protocols. A framework provides mechanisms that dictate how components in-

teract. Do they use asynchronous message passing? Rendezvous? Semaphores?

Monitors? Publish and subscribe? Timed events? Sequential transfer of control?

• Lexicon. This is the vocabulary of component interaction. For components that

interact by sending messages, the lexicon is a type system that defines the pos-
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sible messages. The words of the vocabulary are types in some languages (or

family of languages, as in CORBA).



APPENDIX B:

SAMPLE PLATFORMS

The optimal architecture for a remotely controlled vehicle will depend on the users

it targets, the size and type of vehicle and the data that is to be collected or moved.

The four sample implementations described below were generated following a detailed

examination of the control architectures from a wide range of unmanned vehicles.

The technical reports written by groups entering autonomous vehicle competitions

[AUVSI, 2008] [SAUC-E, 2009] [IARC, 2009] [IGVC, 2009] [DARPA, 2007a] pro-

vided a useful starting point. In addition academic publications summarising the cur-

rent state of technology provided guidance [Stroupe et al., 2001] [Nesnas, 2006] [Whit-

comb, 2000] [Valavanis et al., 1997]. Also, technical publications describing the con-

trol systems of commercial vehicles were used. For example, Grieve and Belie’s project

proposal provides insights into the control architecture employed by Bluefin in their

AUVs [Grieve and Belie, 2004].

B.1 Sample Vehicle 1 - Commercial Underwater Vehicle

The first sample platform considered is a commercial underwater vehicle. The vehicle

may be a torpedo shaped autonomous underwater vehicle (Figure B.1 (a)) with a design

intended to minimise drag and therefore increase the operational range. Alternatively

the vehicle may be remotely operated and designed for sub-sea engineering or oceano-

graphic research (Figure B.1 (b)). In the second case, the vehicle is likely to have video

cameras and robotic arms which are linked by the vehicle’s tether to operators on a

surface ship.
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(a) (b)

Figure B.1: (a) Bluefin Robotic’s AUV ‘Bluefin-21 BPAUV’. Image source www.wikipedia.org,
credit Bluefin Robotics Corporation (b) The IFE’s ROV Hercules (image source
www.wikipedia.org).

Figure B.2 shows a possible arrangement of the control components. The number of

thusters, the presence of robotic arms and the type of sensors installed will depend on

the requirements of the vehicle.

For a tethered ROV the surface link will be a permanent connection, most likely over a

fibre optic cable. For an AUV that is expected to travel long distances, the difficulties

of underwater communication [Kilfoyle and Baggeroer, 2000] mean that the vehicle is

likely to be operating without a permanent communication link back to an operator. As

a result the implementation of the ‘Surface Communication Link’ (Figure B.2) will be

dependant on the type of vehicle.

Some of the AUVs produced by BlueFin Robotics have an Ethernet connection on

the vehicle that allows operators to connect to the vehicle while it is on the deck of

the support ship. Bluefin’s Operator Tool Suite includes tools for mission planning,

data management, post-mission analysis and vehicle maintenance. The software is

capable of communicating with the vehicle over a wired Ethernet connection and, when

available, various wireless communication methods such as an acoustic modem, RF

modem or through an Iridium satellite link [Willcox et al., 2007], [Innovations, 2005],

[Grieve and Belie, 2004].

As with the sample architecture in Figure B.2 the Bluefin vehicles use Ethernet for com-
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Figure B.2: Hardware components of sample platform 1

munication between some of the processing platforms on the vehicle. Ethernet’s [IEEE,

2005, Section 14] high bandwidth and large packet size makes it ideal for streaming

large quantities of data, such as high resolution video or sonar data. However, the

TCP/IP communication protocol (Section 5.2) usually associated with communication

over Ethernet can impose a noticeable processing overhead on less powerful processing

platforms. As a result, the sample implementation uses Control Area Network (CAN)

for communication between some of the devices on the vehicle and then provides a

network bridge to join the CAN and Ethernet networks.

In an ideal implementation all devices would natively support the Distributed Control

Architecture (DCA) described in this thesis and as a result would be able to connect

directly to the network. For some devices such as commercially available video cam-

eras this may not practical. In such cases the devices would need to be connected to

the architecture through other mechanisms, such as USB or Firewire. In other situa-
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Figure B.3: Software architecture of sample platform 1. Adapted from Gat [Gat, 1998] and
Assalih et al. [Assalih et al., 2007].

tions, such as the thrusters, interface electronics can be used to implement the DCA

and expose the software interfaces needed to control the device.

A possible structuring of the software components is shown in Figure B.3. The impor-

tant point is that DCA does not impose a particular method of structuring the compo-

nents. The software could be implemented using the ‘Sense-Plan-Act’ paradigm or as

a purely reactive architecture (Section 2.2.1) or using Gat’s Three-Layer Architecture

[Gat, 1998]. The DCA merely defines the binary syntax used to define software inter-

faces and provides the communication mechanisms need to connect the outputs of one

object to the inputs of another.

In addition, the architecture does not impose any requirements on where components

are located. Some components can be written in a high level language and located on a

processing platform running Microsoft Windows while other components can be writ-

ten in C and running on a small embedded Microcontroller. As described in Chapter

3 the DCA hides the details of the underlying networking technology used to connect

control components and allows DCA objects to communicate using the Remote Proce-

dure Call (RPC), Pipe and Publish/Subscribe communication abstractions.
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Figure B.4: Sample Platform 2

B.2 Sample Vehicle 2 - Student Underwater Vehicle With Single

Board Computers

The second of the sample platforms is based loosely around an autonomous underwater

vehicle built to compete in the San Diego International AUV competition [AUVSI,

2008] or the Student Autonomous Underwater Challenge - Europe (SAUC-E) [SAUC-

E, 2009].

A team from the Massachusetts Institute of Technology (MIT) has entered the San

Diego competition every year since 1998 and has come 1st on five occasions. Each of

MIT’s ORCA vehicles [ORCA, 2007] has used a single PC/104 embedded computer,

running Linux. Sensors used by the vehicle typically include depth (pressure), inertial

measurement, compass, sonar and a video camera. More recent vehicles used RS-232

for communication between the computer and the sensors and used Java for the control

software.

Although the MIT team chooses to use a single computer running Linux other entrants,

such as Georgia Tech Marine Robotics Group [Cataldo et al., 2005], use multiple em-
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bedded computers. Java, Microsoft Windows and Linux all appear to be common plat-

forms.

The 2007 SAUC-E entrants from the University of Nice-Sophia Antipolis [Amate et al.,

2007] used Esterel [Berry and Gonthier, 1992] State Machines to define the vehicles

control automation and Microsoft Robotics Studio as a simulation environment. The

2006 SAUC-E entry from the University of Girona [Ribas et al., 2006] used NEPTUNE

[Ridao et al., 2004] for Hardware In the Loop (HIL) testing of the control software.

A possible design for the electronics is shown in Figure B.4. The processing has been

split between two embedded computers running Windows or Linux. In this imaginary

implementation, the control software has been written mostly in Java, with time critical

aspects of the image processing algorithm written in C++. One embedded board per-

forms the majority of the control, with a second board providing the image processing.

Some devices, such, as the wireless serial link and the video camera, are connected

directly to the embedded computers using protocols like RS-232, USB and Firewire.

Other devices, like the sonar transducers, connect directly into the vehicle’s distributed

control architecture and can communicate directly with high level application code.

Less sophisticated electronics, such as the thrusters, would require an interface chip

between the motors and the internal network.

B.3 Sample Vehicle 3 - Humanoid Robot Controlled by a PDA

The third platform is a humanoid robot controlled by a Personal Digital Assistant

(PDA). Using a commercial robot controlled by a PDA is a popular approach amongst

teams competing the in Humanoid League of the RoboCup competition [RoboCup,

2006].

Behnke et al. [Behnke et al., 2005] describe the development of several PDA controlled

robots, one of which is based on the toy robot RoboSapien (Figure B.5 (a)). Others are

built from kits and use standard hobby servos for movement of the joints. The use of
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Figure B.5: (a) RoboSapien, a humanoid robot produced by Wow Wee Toys (Image source:
www.wikipedia.org) (b) Sample Vehicle 3, a humanoid robot controlled by a PDA

Compact Flash web cameras seems to be the most common way of giving the robots

vision.

The theoretical robot is shown in Figure B.5 (b). The only forms of wired connectivity

supported by most PDAs is RS-232 and USB. The DCA network will therefore need

to be interfaced with the PDA through one of these serial protocols. Microcontrollers

with an implementation of the DCA would be used to network the hobby servos and

other sensors.

B.4 Sample Vehicle 4 - Land vehicle controlled by a Laptop or

Personal Computer

The final sample vehicle is a wheeled vehicle controlled by one or more personal com-

puters. The vehicle might be one of the small shoe box sized robots used by researchers,

for example the K-Team Koala [K-Team, 2006] robots used by the SEIC ConSERT

project [ConSERT, 2008]. Alternatively, the vehicle might be an adapted passenger

vehicle competing in the DARPA Urban Challenge [DARPA, 2007b].

Team AnnieWay’s Urban Challenge entry [Kammel et al., 2007] (Figure B.6 (a)) uses

a single PC with a dual-core AMD processor. Some of the low level control loops are
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(a) (b)

Figure B.6: (a) Team AnnieWay’s entry in the DARPA 2007 Urban Challenge. Image courtesy
of DARPA (b) A mobile robot equipped with a LIDAR sensor, allowing it to map
the surrounding area and avoid obstacles. (Image source: www.wikipedia.org)

off-loaded to an embedded platform that is linked to the main computer using Ethernet.

Most of the sensors are connected directly to the main computers. The actuators are

controlled by software running on the embedded platform.

For smaller vehicles the computer is likely to be a laptop, for larger vehicles there

may be several desktop computers connected using Ethernet. The vehicle may well be

equipped with one or more laser range finders, for example the yellow SICK ranger

finder in Figure B.6 (b). Larger vehicles might also have a Global Positioning System

(GPS) receiver, electronic compass and inertial navigation system. Vehicles are also

likely to have one or more cameras, possibly arranged as a stereo system so that depth

information can be obtained from the images.

Several of the Urban Challenge vehicles interface directly with the CAN bus of the

vehicle [Kammel et al., 2007] [Stanford Racing Team, 2007]. Direct access to the

vehicle’s bus provides the control software with vehicle state data, such as individual

wheel speeds, and allows direct control of the throttle and gearbox.



APPENDIX C:

RELATED TECHNOLOGIES

Architectural Aspect Existing Technologies

Component Technology;
- for general purpose software COM, CORBA, Java, .NET
- for embedded real-time control SAVE, AUTOSTAR
- that supports run time reflection of compo-

nents
.NET

- that supports run time reflection of compo-
nent interactions

- that is object oriented COM, CORBA, Java, .NET
- that uses binary interfaces for minimum run-

time overhead and language independence.
COM

- that prevents name clashes between inde-
pendently developed software (facilitates dis-
tributed development.)

COM, CORBA, Java, .NET

- allows classes to be extended over time COM, CORBA, Java, .NET

Communication;
- abstractions that allow multiple types of in-

teraction between components.
- using the Publish/Subscribe abstraction OpenSplice, NDDS
- using the Remote Procedure Call (RPC) ab-

straction
DCOM, CORBA, Java, .NET

- using the Pipe abstraction TCP

Network Technology;
- independence (i.e. supports multiple types of

networking technology)
Common Industrial Protocol
(CIP)

- for distributed real-time control Modbus, CANopen, DeviceNet

Table C.1: Related Technologies
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APPENDIX D:

PROCESSING PLATFORMS

Breaking the spectrum of computing platforms down by power consumption, physical

size and performance has led to four categories.

1. Desktop. This category includes desktop PCs, laptops and small form factor

computers with standard Intel or AMD x86 processors running standard versions

of Windows or Linux. These processors have long pipe lines, memory manage-

ment units and are designed for high throughput rather than real-time predictabil-

ity. As a result these platforms are well suited to processor intensive operations

like video processing and complex problem solving algorithms. It is assumed that

most of the vehicle control software running on these platforms will be written

in high level programming languages.

2. Mobile. This includes processors designed for mobile devices like PDAs and

smart phones. The processors still have memory management units but do not

have the same levels of capability. RAM is unlikely to be more than 250MB

and the boards will normally not require active cooling. These platforms would

normally be running embedded versions of Windows or Linux, possibly with

real-time extensions or a Java Virtual Machine (JVM). Since these operating sys-

tems provide file systems, mission data can be written to log files and embedded

databases can be used. Platforms of this type are well suited to high level control,

image processing and communication with devices external to the vehicle.

3. Microcontrollers and Digital Signal Processors (DSPs). This category in-

cludes chips such as the Infineon C167 and XC16x; designed specifically for
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embedded applications with demanding real-time requirements. Chips of this

type have short pipe lines, very simple operating systems and lots of integrated

peripherals. In most cases the operating system will not provide virtual memory

or a file system, but chips are well suited to signal processing tasks and low level

control of external devices. To get maximum benefit from a platform of this type

a real-time operating system would probably be used.

4. Deeply Embedded. This includes microprocessors where size and power con-

sumption is kept to an absolute minimum. Low performance microcontrollers

are normally single chip devices, with the processor, memory and peripherals in-

tegrated into a single package. The simplicity of the tasks they perform means

they can be programmed in C or assembly language and do not require an op-

erating system. Potentially this category also includes Field Programmable Gate

Arrays (FPGAs) and other devices with reconfigurable logic. Within the vehicle

control architecture small microcontrollers could be used to provide the interface

between devices such as motors and the vehicle’s communication bus.



APPENDIX E:

DEVELOPMENT BOARD DSPIC30F6015

Figure E.1: dsPIC30F6016 B1 Board. Approximate size: 98mm x 74mm
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Figure E.2: dsPIC30F6016 B1 Schematic



APPENDIX F:

PROJECT SOFTWARE

The software components developed during the project are represented by the coloured

boxes in Figure F.1. Approximately 50,000 lines of code have been written during the

project (Appendix F.4). Around a fifth of the software has been written in C and is

written for Microchip dsPIC30 microcontrollers. The other four fifths has been written

in Microsoft C# .NET and is intended to run on either a desktop PC or a Personal

Digital Assistant (PDA).

F.1 Ethernet/UDP/IP Network Stack

The source code for the networking components developed during the project is in the

directory ‘[PhD]\4 Software\C\ ENC IP UDP\trunk’.

F.2 Communication Layer

In total, three implementations of the Communication Layer have been written during

the project. Two are written in C and one in C#. One of the C versions is built on top of

the network protocol CAN and the other uses Ethernet. The application ‘SCP Test App’

is covered in Chapter 6 and was used to test the implementations of Communication

Layer.

The C# implementation has been written as a multithreaded library, with an internal

thread responsible for background tasks like handling communication timeouts. The

183
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Figure F.1: Software components, coloured boxes represent software developed as part of the
project.
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source code for the C# implementation is in the directory ‘[PhD]\4 Software\dotNet\DCA

CL\trunk’.

The source code for the C implementations is split between three folders;

• PIC ETH CL. The functionality that is shared between the CAN and Ethernet

versions is in the folder ‘[PhD]\4 Software\C\CL\trunk’.

• PIC30 CAN CL. The CAN implementation is in the folder ‘[PhD]\4 Software\

C\PIC30 CAN CL\trunk’.

• PIC ETH CL. The Ethernet implementation is in the folder. ‘[PhD]\4 Software\

C\PIC ETH CL\trunk’.

F.3 Object Orientated Abstractions

‘DCA Host’, the two implementations of the Object Oriented Abstractions and the

‘DCA System Objects’ are covered in Chapter 7. The Integrated Development Envi-

ronment (IDE) is documented in Chapter 8 and the ‘Test Devices’ and ‘Test Objects’

are described in Chapter 9.

The C# implementation is complied in to the Dynamic Link Library (DLL) ‘DCA Core

dotNet2.dll’ and the source code is in the directory ‘[PhD]\4 Software\dotNet \DCA

Core\trunk’. The C implementation is in the directory ‘[PhD]\4 Software\C\DCA\trunk’.
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F.4 Code Size

F.4.1 Microsoft C# .NET Components

Component Lines Blank 
Lines 

Designer 
Lines 

Comments Code 
Lines 

DCA_CL      
 - 1422 242 0 161 1019 
 PubSub 2469 349 0 378 1742 
 SCP 5268 753 0 721 3794 
  Total: 9159 1344 0 1260 6555 
DCA_Core      
 - 319 37 77 32 173 
 Device Library 3657 253 1939 89 1376 
 DCA Objects 7928 1228 38 463 6199 
 Controls 2568 178 1286 46 1058 
 Remote Interfaces 5229 856 0 378 3995 
 SharedConnections 660 127 0 56 477 
  Total: 20361 2679 3340 1064 13278 
DCA_Devices_LboroTest      
 - 35 4 0 23 8 
 MotorControl 436 61 148 8 219 
 GPS 148 11 91 0 46 
 CanSensor 817 85 306 28 398 
 CanEthBridge 1681 223 457 158 843 
  Total: 3117 384 1002 217 1514 
IDE      
 - 2962 411 525 269 1757 
 Controls 7093 675 2229 344 3845 
 ViewItems 2366 368 0 153 1845 
 ProjectItems 9921 1587 0 652 7682 
  Total: 22342 3041 2754 1418 15129 
        
DCA_Shared      
 - Total: 3385 635 248 185 2317 
        
DCA_ScpTestApp      
 - Total: 3820 346 1509 130 1835 
        
DCA_Host      
 - Total: 300 22 89 37 152 
       
  Total: 62484 8451 8942 4311 40780 
 

The C# source code is in the folder ‘[PhD]\4 Software\dotNet’.
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F.4.2 Components required to implement the ‘CAN Sensor’ device.

Program Memory Usage 
(PC units) 

 
Component 
 

 
Lines 

of 
Code 

Instructions Constants 

 
EEPROM 

(bytes) 

 
RAM 

(bytes) 

Microchip      
 - 0 1384 0 0 80 
  Total: 0 1384 0 0 80 
BoardHardware      
 DataEEPROM.o 0 174 0 0 0 
 delay.o 0 56 0 0 0 
 LEDS.o 0 112 0 0 0 
 SSP.o 0 394 0 0 0 
 traps.o 0 82 0 0 0 
 Clock_NoOS.o 0 64 0 0 0 
 EEPROM2.o 0 398 0 2 10 
  Total: 0 1280 0 2 4 
PIC30_CAN_CL      
 CAN.o 290 1788 0 0 134 
 CAN_CL.o 94 98 0 0 2 
 CAN_Pipe.o 272 2076 0 0 112 
 CAN_PubSub.o 692 4576 96 264 222 
 CAN_SCP.o 1333 9402 48 98 374 
  Total: 2681 17940 144 362 844 
CL      
 C_PubSub.o 865 3654 60 154 330 
  Total: 865 3654 60 154 330 
DCA Objects      
 DCA.o 332 354 268 0 10 
 objDCA_IDENTITY.o 153 274 96 0 0 
 objDCA_CAN_NetworkInterface.o 91 108 46 0 0 
 objPipes.o 295 1222 30 0 50 
 objPipeTest.o 94 30 58 0 90 
 objRealTimeClock.o 139 384 26 0 8 
  Total: 1104 2372 524 0 158 
CAN_Sensor      
 main.o 49 86 0 0 0 
 objPressureSensor.o 242 1160 26 0 60 
  Total: 291 1246 26 0 60 
       
  Total: 4941 27876 754 518 1476 
 

The C source code is in the folder ‘[PhD]\4 Software\C’.
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F.4.3 Components required to implement the ‘CAN ETH Bridge’ device.

Program Memory Usage 
(PC units) 

 
Component 
 

 
Lines of 

Code Instructions Constants 

 
EEPROM 

(bytes) 

 
RAM 

(bytes) 
Microchip      
 - 0 708 0 0 80 
  Total: 0 708 0 0 80 
BoardHardware      
 DataEEPROM.o 0 174 0 0 0 
 delay.o 0 56 0 0 0 
 LEDS.o 0 112 0 0 0 
 SSP.o 0 394 0 0 0 
 traps.o 0 82 0 0 0 
 Clock_NoOS.o 0 64 0 0 0 
 UART2.o 0 420 0 0 132 
 EEPROM2.o 0 398 0 2 10 
 ENC28J60_pins.o 0 32 0 0 0 
  Total: 0 1732 0 2 142 
PIC30_CAN_CL      
 CAN.o 290 1788 0 0 134 
 CAN_CL.o 94 98 0 0 2 
 CAN_Pipe.o 272 2076 0 0 112 
 CAN_PubSub.o 692 4576 96 264 222 
 CAN_SCP.o 1333 9590 48 98 384 
  Total: 2681 18128 144 362 854 
ENC_IP_UDP      
 ENC28J60.o 876 1098 0 0 20 
 Ethernet_Buffer.o 243 568 0 0 32 
 ICMP.o 84 124 0 0 0 
 IP.o 601 1796 24 152 70 
 UDP.o 86 162 0 0 0 
  Total: 1890 3748 24 152 122 
PIC_ETH_CL      
 ETH_CL.o 107 88 0 0 2 
 ETH_Pipe.o 284 2212 0 0 132 
 ETH_PubSub.o 806 5180 96 344 382 
 ETH_SCP.o 1439 6528 48 162 290 
  Total: 2636 14008 144 506 806 
CL      
 C_PubSub.o 865 3690 60 154 330 
  Total: 865 3690 60 154 330 
DCA Objects      
 DCA.o 332 358 480 0 10 
 objDCA_IDENTITY.o 153 302 100 0 0 
 objDCA_CAN_NetworkInterface.o 91 108 46 0 0 
 objDCA_ETH_NetworkInterface.o 235 788 120 0 0 
 objPipes.o 295 1342 30 0 50 
 objPipeTest.o 94 30 58 0 90 
 objPubSubTest.o 114 126 48 0 4 
 objRealTimeClock.o 139 384 26 0 8 
 objGPS.o 122 128 58 0 244 
  Total: 1575 3566 966 0 406 
CAN_ETH_Bridge      
 main.o 66 116 0 0 2 
 objCanEthPs_Bridge.o 331 1952 48 42 80 
 objCanEthScp_Bridge.o 495 3460 48 32 1612 
 objLED.o 161 412 38 4 8 
  Total: 1053 5940 134 78 1702 
       
  Total: 10700 51038 1472 1254 4442 
 

The C source code is in the folder ‘[PhD]\4 Software\C’.



APPENDIX G:

SCP IMPLEMENTATION DETAILS

G.1 State Diagram

MethodA()

Actions 1, Action 2, … 

Actions (1 & 2) taken as a result of 

external method ‘A’ being called
=

Receive: xyz

Action A, Action B

Actions (A & B) taken as a result of packet 

xyz being received
=

State =
Current connection state 

(closed represents no connection)

ACK

RST

SYN

TCB

=   Packet carrying an acknowledgment

=   Reset Packet

=   Synchronization Packet

=   Transmission Control Block 

Closed

Listen

Close()

Delete TCB

PassiveOpen()

Create TCB

SYN Sent

ActiveOpen()

Create TCB, Send SYN

SYN 

Received

Established

Send()

Send SYN
Receive: SYN

Send SYN + ACK

Receive: SYN

Send ACK

Receive: ACK of SYN Receive: SYN, ACK

Send ACK

Receive: Valid RST -or- Timeout Event

Delete TCB

Figure G.1: SCP State Diagram
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G.2 The SCP Transmission Control Block (TCB)

SND LAST The Sequence number or the last segment sent.
SND ACKed The Sequence number of the last segment to be acknowledged. If the last

segment has been acknowledged then SND LAST = SND ACKed and the
protocol will be free to load the next packet into the TX buffer.

ISS Initial send sequence number. A semi-random number generated as the
connection is opened.

RCV LAST The sequence number of the last segment received.
RCV ACKed The sequence number of the last packet to be acknowledged. If

(RCV LAST != RCV ACKed) then there is an outstanding acknowledg-
ment that needs to be sent.

IRS initial receive sequence number

Table G.1: The SCP Transmission Control Block (TCB)

G.3 SCP Flags

Flags listed in table G.2 are used to specify the purpose of SCP packets. Packets con-

taining ‘SYN’ flags are used to signal the start of the connection establishment process,

during which time both ends of the link exchange synchronisation parameters. ‘ACK’,

‘TST’ and ‘MSGEND’ flags are used during normal operation of the link to maintain

synchronisation and test the current status of the connection. ‘RST’ packets are used

to close connections, either because an error has occurred or because software on the

local machine has signalled that the link is no longer required.

Only certain flag combinations convey meaningful information. For example, a ‘SYN’

and ‘RST’ sent in the header of the same packet would imply that the sender wants to

simultaneously open and close a connection, an operation that would achieve nothing.

‘TST RST’ and ‘MSGEND RST’ are equally ambiguous. To avoid problems resulting

from meaningless combinations the 7 valid combinations are transmitted using 3 bits

as shown in table G.3. In both CAN and ETH implementations flags are transmitted in

the most significant 3 bits of the first byte.
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SYN Synchronization Used to signal the start of the handshaking process
ACK Acknowledgment Acknowledgment of previously received data
RST Reset Reset (close) connection
TST Link Test
MSGEND Message End Data is buffered in the receiving SCP layer until a packet

with the MSGEND flag is received

Table G.2: SCP Flags

Flag Combination Binary Value Hexadecimal Value
(1) SYN 100x xxxx 0x80
(2) SYN ACK 110x xxxx 0xC0
(3) ACK 010x xxxx 0x40
(4) TST ACK 111x xxxx 0xE0
(5) MSGEND ACK 011x xxxx 0x60
(6) RST ACK 001x xxxx 0x20
(7) RST 101x xxxx 0xA0
(-) FLAG MASK 1110 0000 0xE0
(-) INVALID 000x xxxx 0x00

Table G.3: SCP Flag Combinations



G. SCP Implementation Details 192

G.4 SCP Connection Establishment

Closed
Listen

ActiveOpen():

Create TCB, Send SYN

SYN Sent

<SEQ=32, SYN>

Tx:

ACKed

Rx:

-

ACKed

SYN

32

SYN Rec

Receive: SYN

Send SYN + ACK

Tx:

ACKed

Rx:

33

ACKed

SYN

0x1B

SYN

Estab

Receive: SYN + ACK

Send ACK

<SEQ=0x1B, ACK=33, SYN_ACK>

<SEQ=33, ACK=0x1C, ACK>

Estab

Receive: ACK of SYN

UnACKed TX: Yes

UnACKed RX: No

Nothing to send 

start link idle 

timer

UnACKed TX: Yes

UnACKed RX: No

Check for user data 

waiting to be sent

Nothing to send 

start link idle 

timer

Tx:

ACKed

Rx:

0x1C

ACKed

SYN

32

SYN

33

0x1B

UnACKed TX: No

UnACKed RX: No

Check for user data 

waiting to be sent

Tx:

ACKed

Rx:

33

ACKed

SYN

0x1B

SYN

0x1C

UnACKed TX: No

UnACKed RX: No

Node 1 Node 2

TCB

TCB

TCB

TCB

Link Idle

Figure G.2: SCP Connection Establishment
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G.5 Ethernet (UDP) Implementation

As shown in Figure G.3 Simple Communication Protocol (SCP) packets are transmitted

in the payload portion of User Datagram Protocol (UDP) packets. UDP packets are in

turn transmitted using Internet Protocol (IP) packets and Ethernet frames. The 5 byte

SCP header is defined in table G.4.

To provide end to end protection the SCP checksum covers the IP and UDP address

fields as well as the SCP header and payload. The checksum uses the standard Eth-

ernet mechanism ‘16-bit one’s complement of the one’s complement sum of all 16-bit

integers’ [Microchip, 2008, p. 72].

Ethernet

14 Bytes

CRC

4minimum size: 46 Bytes 

Payload

IP Packet PayloadHeader

20 Bytes

UDP Packet Payload

8 Bytes

Payload

5

Header

Header

Hea.SCP Packet

Padding

Figure G.3: The arrangement of Ethernet, IP, UDP and SCP packets as they are transmitted
across the network

Field Bytes Index Description

Virtual Header

4 IP Header: [12 - 15] Source IP Address
4 IP Header: [16 - 19] Destination IP Address
2 UDP Header: [0, 1] Source Port
2 UDP Header: [2, 3] Destination Port
2 UDP Header: [4, 5] Length
2 UDP Header: [6, 7] Zero (0x0000)

SCP Header

1 [0] (Flags) Bit 0 - Data Flag 0
Bit 1 - Data Flag 1
Bits [2-4] - Must be 0
Bits [5-7] - SCP Flags

1 [1] Sequence Number
2 [2, 3] Checksum
1 [4] Ack. Number

Payload >= 0 Payload Data

Table G.4: Ethernet SCP Packet Stucture
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G.5.1 Packet Rules

Packets that violate any of the rules below are invalid and should be dropped:

• Checksum. Must be correct.

• Packet Length. If the packet has the flags ACK or MSGEND ACK then it can

contain Payload data (PacketLength >= 5) otherwise packet must contain only

the header (PacketLength == 5)

• Reserved Bytes. SCPHeader[Byte 0][Bits 3-5] Must be 0

G.5.2 Ethernet Connection Example

The following diagram shows the transfer of packets between a laptop computer run-

ning Windows XP and a Microchip dsPIC30F6015 with an internal instruction cycle

clock of 10MHz. The laptop is running a version of the communication layer writ-

ten in Microsoft C] .NET, the dsPIC30F implementation is written in C. The two de-

vices are connected using 10MBit/s Ethernet Hub. Since the dsPIC30F6015 does not

have the hardware to interface directly with Ethernet a Microchip ENC28J60 Ethernet

controller is used as an interface. The network protocol analyser Wireshark [Wire-

shark, 2008] has been used to monitor the bus activity and the packet transmission

and reception times have been extracted from the resulting log file ([PhD]\2 Docs\

6 CommunicationLayer\3 Implementations\EthScp SYN RPC.cap).

The process of creating a connection and executing a remote procedure call is shown

graphically in Figure G.4. Initially there is no connection and the dsPIC30F Socket is

in listening state. At Time 0.00s the Laptop starts the connection establishment process

by sending a ‘SYN’ packet with the information for the dsPIC30F to configure its end of

the link. The dsPIC30F replies with a ‘SYN ACK’ packet which is then acknowledged

by the laptop.
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Reply

Reply

Remote Procedure Call

Remote Procedure Call

Laptop

192.168.0.154

SYN

SYN_ACK

ACK

51.2 µs

104 µs

CanEthBridge

192.168.0.158

Time = 0.00 s

Time = 0.001680 s

1.6 ms

51.2 µs

Time = 0.001784 s

Time = 0.112718 s
MSGEND_ACK

MSGEND_ACK

233  µs

Time = 0.114217 s

MSGEND_ACK

MSGEND_ACK

Time = 0.118361 s

Time = 0.118697 s

1.4 ms

4 ms

Figure G.4: SCP Packets

The laptop then initiates two remote procedure calls. In each case the dsPIC30F exe-

cutes the appropriate method and the method return value is placed into a reply packet.

The laptop acknowledges receipt with an ‘ACK’ packet.
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G.6 CAN Implementation

Identifier (29 bits)

11

Payload (0 to 8 Bytes) CRC

(15 bits)18 bits

11 bit standard ID 18 bit extended identifier

priority

(highest = 0x00)

reserved 

(1111)

Destination Mac ID

8 bits 4 bits 1 bit 8 bits 8 bits

SCP = 1

PubSub = 0

Source Mac ID

Pub/Sub Topic No. (16 bits = 65535 topics)

Identifier:

CAN Extended Data Frame:

SCP Packet Bytes:

Byte 1Byte 0 Byte 2 Byte 3 Byte 4 5-7

Bits [0-4] Socket No.

Bits [5-7] SCP Header

               Flags

Bit 0 – Data Flag 0

Bit 1 – Data Flag 1

Bits [2, 3] – Must be 0

Bits [4, 5] – ACK No.

Bits [6, 7] – SEQ No.

if ([SCP Header Flags] == SYN)

if ([SCP Header Flags] == SYN_ACK)

else

Source Port Dest. Port Source Index

Source Index

-

- - -

Payload Data

G.6.1 CAN SCP Packet Rules

Any packets that violate any of the rules below are invalid and should be dropped:

• Packet Length. If the packet has the flags ACK or MSGEND ACK then it can

contain Payload data (PacketLength >= 2) otherwise packet must contain only

the header (PacketLength == 2)

• Reserved Bytes. SCPHeader[Byte 1][Bits 2, 3] Must be 0

G.6.2 Testing of the CAN implementation

The CAN implementation was rather difficult to test as most desktop computers cannot

interface directly with CAN networks. As an alternative, the CAN monitoring program
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Figure G.5: SCP Packets

described in Section 5.3 was used to monitor network traffic. In addition, the appli-

cation shown in Figure G.5 was written to decode CAN SCP packets and present the

contents in a human readable format.

G.6.3 CAN Connection Example

An example of a SCP connection being established between two CAN devices is shown

in Figure G.6. Once established, the device ‘CanEthBridge’ uses the connection to send

a Remote procedure Call. The bytes returned from the procedure are more than will fit

in a single CAN message and as a result the return is split across several messages.

Figure G.6 is based on the log file ‘[PhD]\2 Docs\6 CommunicationLayer\3

Implementations\CanScp SYN RPC TST.txt’.
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CanEthBridge

CAN Address: 20 (0x14)

06:40:21.4218750: 

Extended ID: 0x0FBE1E14, 

Data 5 Bytes: 0x9F,0xC0,0x00,0x00,0x00

06:40:21.4218750: 

Extended ID: 0x0FBE141E, 

Data 3 Bytes: 0xC0,0x00,0x00

06:40:21.4218750: 

Extended ID: 0x0FBE1E14, 

Data 2 Bytes: 0x40,0x10

06:40:21.5000000: 

Extended ID: 0x0FBE1E14, 

Data 4 Bytes: 0x60,0x11,0x01,0x01

06:40:21.5000000: 

Extended ID: 0x0FBE141E, 

Data 8 Bytes: 0x40,0x50,0x01,0x01...

06:40:21.5000000: 

Extended ID: 0x0FBE1E14, 

Data 2 Bytes: 0x40,0x60

06:40:21.5000000: 

Extended ID: 0x0FBE141E, 

Data 8 Bytes: 0x40,0x90,0x8A,0x85...

06:40:21.5000000: 

Extended ID: 0x0FBE1E14, 

Data 2 Bytes: 0x40,0x70

06:40:21.5156250: 

Extended ID: 0x0FBE141E, 

Data 8 Bytes: 0x60,0xD0,0x11,0xB6...

06:40:21.5156250: 

Extended ID: 0x0FBE1E14, 

Data 2 Bytes: 0x40,0x40

CANalyser Log File

SYN

SYN

SeqNo: 3, SourcePort: 0, DestPort: 0, 

SourceSocketNo: 0

SYN_ACK

DestSocketNo: 0, SeqNo: 0, AckNo: 0, 

SourceSocketNo: 0

SYN_ACK

ACK

DestSocketNo: 0,  SeqNo: 0, AckNo: 1

PayloadBytes 0: 

ACK

MSGEND_ACK

DestSocketNo: 0, SeqNo: 0, AckNo: 1

PayloadBytes 2: RPC Call: getGUID()

MSGEND_ACK

ACK

DestSocketNo: 0, SeqNo: 1, AckNo: 1

PayloadBytes 6: RPC Reply: (first 6 bytes)

ACK

ACK

ACK

DestSocketNo: 0, SeqNo: 1, AckNo: 2

PayloadBytes 0: 

ACK

DestSocketNo: 0, SeqNo: 2, AckNo: 1

PayloadBytes 6:  RPC Reply: (next 6 bytes)

ACK

ACK

DestSocketNo: 0, SeqNo: 1, AckNo: 3

PayloadBytes 0: 

ACK

MSGEND_ACK

DestSocketNo: 0, SeqNo: 3, AckNo: 1

PayloadBytes 6: RPC Reply: (last 6 bytes) 

MSGEND_ACK

ACK

ACK

DestSocketNo: 0, SeqNo: 1, AckNo: 0

PayloadBytes 0: 

CanSensor

CAN Address: 30 (0x1E)

Figure G.6: CAN Connection Example
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PUBLISH SUBSCRIBE IMPLEMENTATION

DETAILS

H.1 Ethernet (UDP) Implementation

Ethernet

14 Bytes

CRC

4minimum size: 46 Bytes 

Payload

IP Packet PayloadHeader

20 Bytes

UDP Packet Payload

8 Bytes

Pay.

14 Bytes

Header

Header

HeaderPub/Sub Packet

Padding

Figure H.1: The arrangement of Ethernet, IP, UDP and Pub/Sub packets as they are transmitted
across the network

As with SCP packets, Publish/Subscribe packets are carried in the payload portion of

UDP packets. The checksum uses the standard Ethernet mechanism ‘16-bit one’s com-

plement of the one’s complement sum of all 16-bit integers’ [Microchip, 2008, p. 72]

and covers the Publish/Subscribe header and the topic value.

199
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typedef struct _ETH_PUBSUB_PACKET_HEADER /* 14 bytes */ 
{ 
 BYTE InterfacePtr;   /* 0 */ 
 BYTE SubTopic_No;    /* 1 */ 
 BYTE IssueNo;    /* 2 */ 
 BYTE TopicChangeCounter;  /* 3 */ 
 struct _TimeStamp  
 { 
  DWORD Seconds;   /* 4, 5, 6, 7 */ 
  DWORD uSeconds;   /* 8, 9, 10, 11 */ 
 } TimeStamp; 
 WORD Checksum;    /* 12, 13 */ 
} ETH_PUBSUB_PACKET_HEADER; 
 

Figure H.2: An extract from ETH PubSub.h

H.2 CAN Implementation

Identifier (29 bits)

11

Payload (0 to 8 Bytes) CRC

(15 bits)18 bits

11 bit standard ID 18 bit extended identifier

priority

(highest = 0x00)

reserved 

(1111)

Destination Mac ID

8 bits 4 bits 1 bit 8 bits 8 bits

SCP = 1

PubSub = 0

Source Mac ID

Pub/Sub Topic No. (16 bits = 65535 topics)

Identifier:

CAN Extended Data Frame:

Latest Topic Value (0 to 8 Bytes)
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SYSTEM OBJECTS

Object Name Interface Name Description
Identity Identity Provides information about the de-

vice.
PubSub PubTopics Read only list of topics that can be

published (Data outputs).
PubSub SubTopics Read only list of topics that can be

subscribed to (Data Inputs).
PubSub EthPub Read/write list of Ethernet ad-

dresses that topics should be sent
to.

PubSub EthSub Read/write list of Ethernet ad-
dresses that topics should be ac-
cepted from.

PubSub CanPub Read/write list of CAN addresses
that topics should be sent to.

PubSub CanSub Read/write list of CAN addresses
that topics should be accepted
from.

Pipes Pipes Read only list of pipe endpoints
exposed by the device.

ScpSockets CanSockets Read/write list of CAN sockets.
ScpSockets EthSockets Read/write list of Ethernet sockets.
CanNetworkInterface NetworkInterface Generic interface required by all

‘NetworkInterface’ objects.
CanNetworkInterface CanNetworkInterface Allows the CAN network stack to

be configured.
EthNetworkInterface NetworkInterface Generic interface required by all

‘NetworkInterface’ objects.
EthNetworkInterface EthNetworkInterface Allows the Ethernet/IP/UDP net-

work stack to be configured.
ARP StaticARP Read/write list of entries in the de-

vices’ ARP table.

Table I.1: The System Objects

201
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FORMAT OF THE PROJECT FILE

<?xml version="1.0" encoding="utf-8"?> 
<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified" 
xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
    <xs:element name="Project"><xs:complexType><xs:sequence> 
        <xs:element name="LocalEthNetwork_FriendlyName" type="xs:string" /> 
        <xs:element name="Devices"><xs:complexType><xs:sequence> 
             <xs:element maxOccurs="unbounded" name="Device"><xs:complexType><xs:sequence> 
                 <xs:element name="FriendlyName" type="xs:string" /> 
                 <xs:element name="DeviceType" type="xs:string" /> 
                 <xs:element name="NetworkAddress"><xs:complexType><xs:sequence> 
                     <xs:element name="AddressType" type="xs:string" /> 
                     <xs:element name="NetworkName" type="xs:string" /> 
                     <xs:element name="TypeSpecific"><xs:complexType><xs:sequence> 
                         <xs:element name="IpAddress" type="xs:string" /> 
                         <xs:element name="PortNumber" type="xs:unsignedShort" /> 
                         <xs:element minOccurs="0" name="SoftDeviceIsOnLocalComputer" type="xs:boolean" /> 
                     </xs:sequence></xs:complexType></xs:element> 
                 </xs:sequence></xs:complexType></xs:element> 
                 <xs:element name="DeviceDriver"><xs:complexType><xs:sequence> 
                     <xs:element name="ItemType" type="xs:string" /> 
                     <xs:element name="LibraryItemName" type="xs:string" /> 
                 </xs:sequence></xs:complexType></xs:element> 
                 <xs:element name="ViewItem"><xs:complexType><xs:sequence> 
                     <xs:element name="X" type="xs:unsignedByte" /> 
                     <xs:element name="Y" type="xs:unsignedByte" /> 
                     <xs:element name="Width" type="xs:unsignedShort" /> 
                     <xs:element name="Height" type="xs:unsignedByte" /> 
                 </xs:sequence></xs:complexType></xs:element> 
                 <xs:element name="Objects"><xs:complexType><xs:sequence> 
                     <xs:element maxOccurs="unbounded" name="Object"><xs:complexType><xs:sequence> 
                         <xs:element name="Name" type="xs:string" /> 
                         <xs:element minOccurs="0" name="CustomSettings" type="xs:string" /> 
                         <xs:element minOccurs="0" name="ViewItem"><xs:complexType><xs:sequence> 
                             <xs:element name="X" type="xs:unsignedShort" /> 
                             <xs:element name="Y" type="xs:unsignedShort" /> 
                             <xs:element name="Width" type="xs:unsignedByte" /> 
                             <xs:element name="Height" type="xs:unsignedByte" /> 
                             <xs:element name="ItemVisible" type="xs:boolean" /> 
                         </xs:sequence></xs:complexType></xs:element> 
                         <xs:element name="Interfaces"><xs:complexType><xs:sequence> 
                             <xs:element maxOccurs="unbounded" name="Interface"><xs:complexType><xs:sequence> 
                                 <xs:element name="Name" type="xs:string" /> 
                                 <xs:element name="Guid" type="xs:string" /> 
                                 <xs:element name="ConfigPropertiesSaved" type="xs:boolean" /> 
                                 <xs:element name="Nodes"><xs:complexType><xs:sequence minOccurs="0"> 
                                     <xs:element maxOccurs="unbounded" name="Node"><xs:complexType><xs:sequence> 
                                         <xs:element name="NodeType" type="xs:string" /> 
                                         <xs:element name="NodeNum" type="xs:unsignedByte" /> 
                                         <xs:element minOccurs="0" name="Node"><xs:complexType><xs:sequence> 
                                             <xs:element name="L" type="xs:unsignedByte" /> 
                                             <xs:element name="Edge" type="xs:string" /> 
                                             <xs:element name="ItemVisible" type="xs:boolean" /> 
                                         </xs:sequence></xs:complexType></xs:element> 
                                     </xs:sequence></xs:complexType></xs:element> 
                                 </xs:sequence></xs:complexType></xs:element> 
                             </xs:sequence></xs:complexType></xs:element> 
                         </xs:sequence></xs:complexType></xs:element> 
                     </xs:sequence></xs:complexType></xs:element> 
                 </xs:sequence></xs:complexType></xs:element> 
             </xs:sequence></xs:complexType></xs:element> 
         </xs:sequence></xs:complexType></xs:element> 
         <xs:element name="Networks"><xs:complexType><xs:sequence> 
             <xs:element maxOccurs="unbounded" name="Network"><xs:complexType><xs:sequence> 
                 <xs:element name="FriendlyName" type="xs:string" /> 
                 <xs:element name="PhysicalLayer" type="xs:string" /> 
                 <xs:element name="AccessMechanism" type="xs:string" /> 
                 <xs:element name="TypeSpecific" /> 
                 <xs:element name="ViewItem" /> 
             </xs:sequence></xs:complexType></xs:element> 
         </xs:sequence></xs:complexType></xs:element> 
     </xs:sequence></xs:complexType></xs:element> 
</xs:schema> 
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APPENDIX K:

TEST DEVICES

K.1 Testing of GpsIceBridge

The software device GpsIceBridge takes a serial stream of Global Positioning System

(GPS) data in NMEA 0183 format and converts it to the format used by ConSERT’s

ORCA/ICE components (Section 9.1).

The Figures below show the transmission of GPS data across the network. In the first

figure (Figure K.1) GpsIceBridge is connected using a Communication Layer Pipe to

an instance of the GPS receiver on the device ’CanEthBridge’. The Integrated Devel-

opment Environment (IDE) project file used to configure the devices and a log file of

Ethernet packets captured while the devices were communicating are in the directory

‘[PhD]\2 Docs\9 TestDevices\1 GpsIceBridge\SoftwareDevice Eth’.

The GPS Receiver provides details of the current location through a asynchronous serial

port configured at 4800 bits/s, which equates to one byte every 1.8 ms. Clearly sending

a separate Ethernet packet for each byte of data received on the serial port would be

an inefficient use of resources. Instead the Communication Layer pipe is configured to

hold bytes in a temporary buffer for between 20 and 30 milliseconds.

Once the buffer is full or the maximum wait time has expired the contents of buffer is

transmitted across the network. As can be seen from Figure K.1 this occurs approxi-

mately every 35 milliseconds. The Pipe holds on to the buffer for 5 millisecond longer

than the value of MaxWaitTime because the internal timers with the C implementation

operate on a 5ms resolution. The Minimum and Maximum lengths of time the Pipe

should hold on to data can be configured using the IDE.
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Laptop

GpsBridge

35 ms

Ethernet

0.396068

0.396263

0.361401

0.361615

0.432101

0.432397

0.467133

Pipe: “$GPRMC, 01 5441.00”

Pipe: “,V,4907.8 000,N,12”

ACK

Pipe: “303.6000, W,,,1502”

ACK

Pipe: “04,,,N*54□”

ACK
0.467388

ACK

36 ms

35 ms

CanEthBridge

GPS

Asynchronous serial 
configured at 4800 bits/s 
(1.8 ms per byte).

Time taken to receive 61 bytes:
1.8 ms * 61 = 0.11s

“$GPRMC, 01 5441.00,V,4907.8 
000,N,12303.6000,W,,,150204,,,N
*54□”

Pipe
MaxWaitTime = 30
MinWaitTime = 20

Figure K.1: Transfer of GPS data between the DCA object ‘GPS’ and the software device Gp-
sIceBridge

Figures K.2 and K.3 show GPS data being transferred across both an Ethernet and a

CAN network with the help of a network bridge.

As shown in Figure K.2 the CAN and Ethernet segments operate independently. Each

time the DCA object ‘GPS’ sends data the CAN Communication Layer running on

‘CanEthBridge’ acknowledges receipt and passes the data to the relevant bridge ob-

ject. As the bridge in Figure K.2 is configured to forward received bytes immediately

(MaxWaitTime = 0, MinWaitTime = 0) the bytes are passed directly to the Ethernet

Communication Layer for transmission to the laptop.

The configuration in Figure K.3 is identical except the bridge holds bytes for up to

70 milliseconds before sending them to the laptop. Doing so reduces the number of

Ethernet packets required and therefore also the processing overhead imposed on the

bridge and laptop.
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ACK

Laptop CanEthBridge CanGps

(1) Pipe: “$GPRMC”

Ethernet CAN

Bridge
MaxWaitTime = 0
MinWaitTime = 0

Pipe
MaxWaitTime = 15
MinWaitTime = 10

GpsBridge GPSBridge

(2) Pipe: “,18194”

ACK

Time: 0.999968

Time: 1.000589

Time: 1.014839

Time: 1.015054

Time: 1.025086

Time: 1.039924

Time: 1.044226

Asynchronous serial 
configured at 4800 bits/s 
(1.8 ms per byte).

Pipe: “$GPRMC”

ACK

(3) Pipe: “3.00,V”

Pipe: “,18194”

Pipe: “3.00,V”
Time: 1.024857

ACK

ACK

ACK

(4) Pipe: “,4907.”

Pipe: “,4907.”

ACK

(5) Pipe: “8000,N”

Pipe: “8000,N”
Time: 1.049964 ACK

Time: 1.050066
ACK

ACK

ACK

ACK

ACK

ACK

ACK

ACK

ACK

ACK

ACK

ACK

Time: 1.064830
Pipe: “,12303”

(6) Pipe: “,12303”

Time: 1.065307

Time: 1.074848
Pipe: “.6000,”

(7) Pipe: “.6000,”

Time: 1.075052

Time: 1.089965
Pipe: “W,,,17”

(8) Pipe: “W,,,17”

Time: 1.090404

Time: 1.099967
Pipe: “0204,,”

(9) Pipe: “0204,,”

Time: 1.100079

Time: 1.114885
Pipe: “,N*55”

(10) Pipe: “,N*55”

Time: 1.115307

Time: 1.134967
Pipe: “□”

(11) Pipe: “□”

Time taken to receive 61 bytes:
1.8 ms * 61 = 0.11s

“$GPRMC,181943.00,V,4907.800
0,N,12303.6000,W,,,170204,,,N*5
5□”

1.3 s

Figure K.2: Using the CAN-ETH bridge to transfer GPS data between CAN and Ethernet net-
works.

Details of the test shown in Figure K.2 are in folder ‘[PhD]\2 Docs\9 TestDevices\1

GpsIceBridge\SoftwareDevice CanEth\Test3’ and details of Figure K.3 are in ‘[PhD]\

2 Docs\9 TestDevices\1 GpsIceBridge\SoftwareDevice CanEth\Test4’.
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Laptop CanEthBridge CanGps

(1) Pipe: “$GPRMC”

Ethernet CAN

Bridge
MaxWaitTime = 70
MinWaitTime = 70

Pipe
MaxWaitTime = 15
MinWaitTime = 15

GpsBridge GPSBridge

(2) Pipe: “,22115”

Asynchronous serial 
configured at 4800 bits/s 
(1.8 ms per byte).

ACK

(3) Pipe: “8.00,V”

ACK

ACK

(4) Pipe: “,4907.”

(5) Pipe: “8000,N”

Pipe: 
“$GPRMC,221158.00,V,4907.

8000,N,12303”

Time: 0.000000

ACK

Time: 0.000346
ACK

ACK

ACK

ACK

ACK

ACK

ACK

ACK

(6) Pipe: “,12303”

(7) Pipe: “.6000”

(8) Pipe: “,W,,,1”

Time: 0.074990

Pipe: 
“.6000,W,,,170204,,,N*5E□”

(9) Pipe: “70204,”

Time: 0.075188

(10) Pipe: “,,N*5E”

(11) Pipe: “□”

Time taken to receive 61 bytes:
1.8 ms * 61 = 0.11s

“$GPRMC,221158.00,V,4907.8000,
N,12303.6000,W,,,170204,,,N*5E□”

Figure K.3: The bridge has been configured to collect data from several CAN packets into a
single Ethernet packet.

K.2 Testing of the Publish / Subscribe Bridge

Details of the test shown in Figure K.4 are in folder ‘[PhD]\2 Docs\9 TestDevices\4

PubSubBridge\Test1’
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CanSensor

Ethernet

Laptop CanEthBridge

Time: 1.003818

Time: 1.013866

0x2A,0x49,0x7E,0x44

0x66,0x86,0xC5,0x41

Time: 2.008629

Time: 2.018660

0x88,0x51,0x7E,0x44

Time: 3.013453

Time: 3.023438

PressureSensor
FloatDisplay Pub/Sub Bridge

FloatDisplay Pub/Sub Bridge

CAN

0x9A,0x95,0xC5,0x41

Time: 4.018246

Time: 4.028214

Time: 5.023024

Time: 5.033006

Time: 6.027823

Time: 6.037799

0x2A,0x49,0x7E,0x44

0x66,0x86,0xC5,0x41

0xD1,0x72,0x7E,0x44

0x33,0x77,0xC5,0x41

0x7D,0x51,0x7E,0x44

0xCD,0xA4,0xC5,0x41

0x0C,0x49,0x7E,0x44

0xCD,0xA4,0xC5,0x41

0x28,0x5A,0x7E,0x44

0x9A,0x95,0xC5,0x41

0x88,0x51,0x7E,0x44

0x9A,0x95,0xC5,0x41

0xD1,0x72,0x7E,0x44

0x33,0x77,0xC5,0x41

0x7D,0x51,0x7E,0x44

0xCD,0xA4,0xC5,0x41

0x0C,0x49,0x7E,0x44

0xCD,0xA4,0xC5,0x41

0x28,0x5A,0x7E,0x44

0x9A,0x95,0xC5,0x41

Figure K.4: Testing of the Publish/Subscribe Bridge
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