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Abstract 
Often a manufacturing process may be a bottleneck or critical to a business. This thesis 

focuses on the analysis and modelling of such processes, to both better understand them, 

and to support the enhancement of quality or output capability of the process. 

The main thrusts of this thesis therefore are- 

e To model inter-process physics, inter-relationships, and complex processes in a 

manner that enables re-exploitation, re-interpretation and reuse of this knowledge and 

generic elements e. g. using Object Oriented (00) & Qualitative Modelling (QM) 

techniques. This involves the development of superior process models to capture 

process complexity and reuse any generic elements. 

9 To demonstrate advanced modelling and simulation techniques (e. g. Artificial Neural 

Networks(ANN), Rul e-B ased- Systems (RBS), and statistical modelling) on a number 

of complex manufacturing case studies. 

To gain a better understanding of the physics and process inter-relationships exhibited 

in a number of complex manufacturing processes (e. g. pultrusion, bioprocess, and 

logistics) using analysis and modelling. 

To these ends,, both a novel Object Oriented Qualitative (Problem) Analysis (OOQA) 

methodology, and a novel Artificial Neural Network Process Modelling (ANNPM) 

methodology were developed and applied to a number of complex manufacturing case 

studies- thermoset and thermoplastic pultrusion, bioprocess reactor, and a logistics 

supply chain. It has been shown that these methodologies and the models developed- 

support capture of complex process inter-relationships, enable reuse of generic elements, 

support effective variable selection for ANN models, and perform well as a predictor of 

process properties. In particular the ANN pultrusion models, using laboratory data from 

IKV, Aachen and Pera, Melton Mowbray, predicted product properties very well. 

Keywords- object oriented, qualitative, process modelling, artificial neural networks, 

pultrusion, bioprocess, logistics. 
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Chapter 1: Introduction 

1.1 Introduction 
There follows an introduction to the main themes of this thesis- the importance of 

modelling manufacturing and business processes. Then, a problem statement is given in 

section 1.2, followed by a thesis summary in section 1.3, and a thesis contribution 

summary in section 1.4. 

Significance of Manufacturing and Business Processes 

Currently Computer Integrated Manufacturing (CIM), Concurrent Engineering (CE), 

Simultaneous Engineering (SE), Just In Time (JIT), Total Quality Management (TQM), 

Business Process Reengineering (BPR), Computer Aided Design/ Computer Aided 

Manufacturing (CAD/CAM), Capacity Requirements Planning (CRP), Manufacturing 

Resource Planning (MRP 11), and Object Orientation (00) have been implemented 

within engineering and business organisations to achieve a step change in performance 

[STOREY 94]. At the heart of these changes, and vital to an organisation's flexibility 

and capability, are considerations of data and information. The technologies of 

Manufacturing Automation Protocol/ Technical Office Protocol (MAP/TOP) and CIM 

may address complex factory-wide integration and optimisation. Within Small 

Manufacturing Enterprises (SMEs) such schemes may be neither possible nor desirable. 

There is often a focus on a single manufacturing process whose capability is a 

bottleneck, and around which all products are centred. Current research in supply chain 

management and BPR focuses on removal of wasteful activities of a business which 

surround such core business processes [EVANS et al 95]. In this case, the need for 

David Thomas Wright, "Novel Analysis ad Modelling Methodologies Applied to Pultrusion and Other 

Processes", Ph. D. Thesis, Manufacturing Engineering, Loughborough University of Technology, 1995. 
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increasing process understanding through the use of process models, to enhance process 
capability in terms of quality or output, may easily be commercially justified. 

What is a Process Model? 

From the literature we understand that process behaviour involves change 
[STEPHANOPOULOS 84]. Complex processes simply involve change that may be 

either hidden or unobservable, or involve such a large number of interactions that an 

accurate simplification is not feasible [MIEYER 84]. Additionally, this complexity may 

mean that simulation is not feasible in terms of time for a desired level of model 

granularity [CARSON/HOVORKA 95]. 

One purpose of a (process) model is to support enhanced understanding, which in turn 

acts as a basis for developing an improved process control ler/system or process/product 
designs [FORBUS 84]. By representing both the static state (of system parameters) and 
the dynamic state (of iterative states) of a system i. e. data in absolute terms as well as the 

context/ intent of the data (possibly for an application later), off-line experimentation 

with the modelled process is possible. Knowledge about the system may be represented 
in a number of ways: semantic nets, frames, objects, flow diagrams, numeric or symbolic 
data from models or real-world experiments [DAVIS 90]. A number of different models 

can be constructed to capture the statics and dynamics of a system. They may be 

constructed in an ad hoc manner, or through various design methodologies e. g. 00 or 

traditional structured methodologies for software. Mathematical submodels, using 

physical and chemical laws can generate simulated data to validate the model. 

Furthermore, a mathematical submodel may be a starting point for the model 

construction, especially when it must be created de novo due to novelty of the problem/ 

solution domain [THOMPSON 89]. Alternatively, real-world sensor data from a 

laboratory experiment can aid construction of an empirical statistical model and the 

validation experiment of it. Irrespective of the source of validation data (simulation or 

real), care must be taken that it is broad to test global extreme performance of the model 

for dynamic trueness. A common Artificial Neural Network (ANN) model failing is a 

narrow training set which creates a model incapable of acceptable global performance 

[MASTERS 93]. 
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1.2 Problem Statement 
The intention to carry out this research follows three closely related Science and 
Engineering Research Council (SERC) Application of Computers to Manufacturing 

Engineering (ACME) projects' addressing the application of knowledge based and other 

control paradigms to complex manufacturing process control problems. The first of these 

showed clearly that knowledge based control when implemented in an 00 manner 

allowed the control of a complex materials processing problem. The second project 

showed that there are actually a large variety of techniques that can be applied to the 

signal processing and control of such problems. Implementation activities also indicated 

that each of the techniques has a different control performance and development effort. 
These projects also indicated that close process observation, by an experimenter, is 

required to develop software solutions to the control problem. These observations taken 

together indicated that an environment is required to allow the construction of such 00 

models to support real-time control system design for processes and processing machine 

systems. 

The main thrusts of this thesis are- 

9 To model inter-process physics, inter-relationships, and complex processes in a 

manner that enables re-exploitation, re-interpretation and reuse of this knowledge and 

generic elements e. g. using 00 and Qualitative Modelling (QM) techniques. This 

involves the development of superior process models to capture process complexity 

and reuse any generic elements. 

o To demonstrate advanced modelling and simulation techniques (e. g. ANNs, Rule 

Based System (RBS), statistical modelling) on a number of complex manufacturing 

case studies. 

9 To gain an increased understanding of the physics and process inter-relationships 

exhibited in a number of complex manufacturing processes (e. g. pultrusion, 

bioprocess, and logistics) using advanced analysis and modelling. 

'GWE40040 "Knowledge based control of adhesive dispensing for SMD assembly", 
GR/F71973 "The selection of software techniques for discrete process control 
applications", and GR/G37101 "A discrete process control software testbed". 
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Figure 1.1 illustrates the scope of the three main areas considered.. software development 

methodologies, control paradigms and artificial intelligence, and complex manufacturing 

processes. Combined, these areas offer a broad coverage of key issues, and tools 

available to solve real-world complex process control problems. The consideration of 

qualitative models of complex processes is an area of interest in order to gain a deeper 

knowledge of the process and what is significant. The evaluation of 00 techniques 

against alternatives focuses on how we structure knowledge and models, and for what 

reasons. The review of control theory and artificial intelligence focuses on intelligent 

aspects of the control problem. 

ýCll-t III IT, - 

Figure 1.1 - Scope of Thesis Research 

1.3 Thesis Summary 

There are many methodologies, techniques and tools available for problem analysis, 

modelling and implementation of solutions. Some are whole life-cycle, others 

concentrate on certain application domains [PRESSMAN 92]. 
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This thesis has been structured to support the methodologies developed by the author for 

problem analysis and process modelling as applied to a number of complex industrial 

case studies. The methodology and supporting research are described (similarly to 

[ALBUS 91]) in terms of questions, definitions, axioms, theorems, and hypotheses. 

Questions are pointers to key issues that guide text flow. Axioms are statements assumed 

true without proof Theorems could be demonstrated true. Hypotheses could probably be 

demonstrated true with future research or later in the text. Acronyms are defined in the 

nomenclature section preceding this chapter. 

Following this introduction, Chapter 2 reviews the literature. It considers aspects of 

intelligence and the representation of knowledge, problem analysis and modelling 

methods to aid the design of complex process models. The chapter includes a review of 

structured software design, 00 design, QM, mathematical modelling, RBS, and ANNs, 

manufacturing processes and representation, control theory and requirements, and some 

software tools available to support process analysis and modelling. 

Object Oriented and Qualitative Analysis (OOQA) to aid design is addressed in Chapter 

3. The OOQA methodology developed by the author is both presented and illustrated, 

using the pultrusion process as an example. 

Chapter 4 details pultrusion laboratory trials and materials testing carried out at Institut 

Fur KOnststoffverarbeltung (IKV), Aachen, Germany, Loughborough University of 

Technology (LUT), Loughborough and Pera, Melton Mowbray, in gathering real process 

data. 

Chapter 5 focuses on themodelling of the pultrusion process using Artificial Neural 

Networks and process data, using the Artificial Neural Network Process Modelling 

(ANNPM) methodology developed by the author. 

Chapter 6 draws on the previous chapters 3,4 and 5 together and considers what has 

been learnt from the modelling that challenges the design assumptions. Expert and 

statistical models of pultrusion are presented, and the concept of genericness is 
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addressed. The OOQA and ANNPM methodologies are applied to another two complex 
processes- bioprocess reactor and a logistics supply chain- to demonstrate the utility of 
the methodologies to typical complex industrial problems. 

Chapter 7 concludes the thesis with a discussion. It restates the problem, summarlses the 

main thesis contributions, critiques the limitations of these contributions, and offers 

suggestions for further work. 

1.4 Thesis Contribution Summary 

The key contributions of this thesis are: 

" The development of OOQA problem analysis methodology. 

" The development of the ANNPM process modelling methodology. 

" The combined use of OOQA and ANNPM to identify candidate variables of 

importance. 

" The application of OOQA and ANNPM to complex processes- thermoset and 

thermoplastic pultrusion, bioprocess reactor, and logistics supply chain. 

The contributions' novel characteristics include: 

" The use of 00 analysis on the pultrusion process. 

" The use of qualitative analysis on the pultrusion process. 

" The successful use of ANN modelling of the pultrusion process. 

" The successful use of ANN modelling of the logistics supply chain process. 

" The process insight into pultrusion and genericness to support better control of 

pultrusion. 

" The methodology incorporating OOQA and ANNPM to model manufacturing 

processes. 
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Chapter 2: Literature Review 
4 

2.1 Introduction 

As the introduction shows, the research reported in this thesis requires elements of 

software development methodologies including 00, modern process control paradigms 

including Fuzzy Logic (FL) and ANN, manufacturing processes, and knowledge 

representation. 

There follows a review of the literature including examination of complex processes, and 

the classification of knowledge in Section 2.2. Section 2.3 examines analysis 

methodologies and techniques primarily from software/ engineering science fields, and 

considers whether viewpoints bias the analysis task. These methodologies and techniques 

include traditional structured software development, 00, QM, mathematical modelling, 

expert systems, and ANNs. Trends in manufacturing process control, and issues relating 

to composites processing, and in particular pultrusion, are reviewed in Section 2.4. 

Section 2.5 is a precis of the practical problem to be addressed- pultrusion. Throughout 

the review reference is made to the range of software tools - Computer Aided Software 

Engineering (CASE), 00, ANN, and analysis - available for application to problem 

analysis, modelling, and solution. 

Hypothesis: That QM, 00 supported by Artificial Intelligence ( A-1) paradigms, enhance 

the representation of complex systems. Intelligence is defined as the capacIty to learn 

David Thomas Wright, "Novel Analysis and Modelling Methodologies Applied to Pultrusion and Other 

Processes", Ph. D. Thesis, Manufacturing Engineering, Loughborough University of Technology, 1995. 
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ftom experience and to adapt to one's environment. Such Intelligence is desirable in 

process models andprocess controllers. Further, learningftom experience is analogous 
to training a neural network. 

There is much Al work on knowledge representation and reasoning about complex 

systems [CALLAN 94]. This thesis will not re-present the full literature, but only 

elements pertaining to the problem at hand as discussed in the previous chapter. 
[WILLIAMS et al 91b] carried out experimental research with 00 analysis and 

representation, and ANN control implementations for a discrete few-variable robotic 
dispensing of glue application. This thesis extends experimentation to a continuous 

multi-variable problem where inter-process complexity exists. 

2.2 Representation of Complex Processes/Problems 

This section gives an overview of the literature relating to complex processes, the 

classification task, knowledge representation, reasoning/modelling, and elements of 

intelligence before ending the section with a discussion. 

2.2.1 Complexity of Processes 

Definition of aprocess [OED 89]: 

"The fact ofgoing on or being carried on, as an action, or a series o actions or events; 

progress, course ... 
leading to accomplishment of some result". 

Definition of complex [OED 89]: 

"Consisting ofparts or elements not simply co-ordinated, but some of them involved in 

various degrees of subordination; complicated, involved, intricate; not easily analysed or 

disentangled 

[KALPAKJIAN 89] defines a manufacturing process as involving "materials, 

machinery, and operators". Process capability relates to the ability of a manufacturing 

process to produce goods within a specified tolerance. The Icam DEFinition (IDEF) 

[USAF 198 1 a, b, c] and Structured Analysis Design Technique (SADT) modelling 
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methodologies consider processes as shown in Figure 2.1 - with inputs, outputs, control, 

and resource mechanisms supporting the change activity carried out by the process. 
[STEPHANOPOULOS 84] discusses the control of chemical processes, which exist as 

an operational system of interconnected parts of chemical plant (e. g. reactors, heat 

exchangers, pumps, distillation columns, absorbers, tanks etc. ). He classifies variables in 

terms of manipulated inputs, disturbance inputs, measured and unmeasured outputs. 
When little is known about the constituent equations of a process, it may be modelled as 

a black box. [JACOBSEN et al 94b] discusses re-engineering business processes using 

object technology, and uses Davenport's definition of processes within an organisation- 
"Whereas an organisation's hierarchical structure is typically a slice-in-time view of 

responsibilities and reporting relationships, its process structure is a dynamic view of 
how organisations deliver value". Further elaboration is made to indicate that "business 

processes are the set of internal activities performed to serve a customer ". 

Input process 

Figure 2.1 - IDEF/SADT View of Process 

There are a number of ways of measuring complexity. Complexity of software is 

measured in terms of lines of code, execution time, function calls, utility, numbers of 

discrete system states, or communication streams [PRESSMAN 92]. Complexity of 

(control) systems may be measured in terms of numbers of levels of hierarchies [ALBUS 
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91] [ESPEJO/HARNDEN 89]. The Stafford Beer Viable Systems Model (VSM) as 

reported in [ESPEJO/HARNDEN 89] offers an approach for measuring complexity of 

systems. System variety is measured in terms of the number of distinguishable elements 

in the system or the number of distinguishable systematic states. Complexity of 00 

representations of systems may be measured in terms of numbers of objects [BOOCH 

91] [RUMLBAUGH et al 91] [COAD/YOURDON 91]. This may be the number of 

objects classes, or the number of instantiated objects within a system model. It is 

axiomatic that complexity exists if a compact mathematical/logical representation of a 

system is not possible [BOBROW 85]. [COAD/YOURDON 91] based their version of 

Object Oriented Analysis/Design (OOA/D) on the principles for managing complexity as 

illustrated in Table 2.1. Many of these terms are further illustrated in Section 2.3.2 when 

discussing the 00 paradigm for software development. 

Table 2.1 - 00 Methods for Managing Complexity [COAD/YOURDON 911 
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Table 2.2 reviews methods of measuring complexity, as just discussed, with typical 

application domains. 

METHOD APPLICATION DOMAIN 
lines of code software 
execution time software, Human Computer Interaction (HCI) 
function calls software 
utility software, HCI, ergonomics 
discrete system states software, control, systems analysis 
communication streams software, control, communication 
hierarchical levels & inter-relationships modelling, control, management organisation 
variety by number of elements/states software, control, systems analysis 
objects/ events/ entities in analysis software, control, systems analysis 
objects/ events/ entities instantiated software, control, systems analysis 

Table 2.2- Review of Methods of Measuring ComPlexity 

2.2.2 The Classification Task 

Axiom. fhat theoretical models of manufacturing processes [WILLIAMS et al 91 a], and 

of intelligence [ALBUS 91 ] assist in managing complexity, offer insight and 

implementational benefits. 

Hypothesis. That such hierarchical models mayfit within a generic classification 

structure for a particularfamily of manufacturing processes. And that generation and 

validation of the generic classification structure may offerfurther insight and benefit. 

Definition of classification [OED 89] - "the action of classifying or arranging in classes 

according to common characteristics or affinities ". 

For many years philosophers have attempted to devise total classification schema since 

Aristotle classified ten categories and five predictables in a model which was considered 

to objectively mirror the world [WOJCEECHOWSKI 71]. Today, with ever growing data 

and knowledge [BOOCH 91] [COAD/YOURDON 91] and a change in understanding of 

the nature of knowledge about often subjectively observed reality (which is neither 

subjective nor objective [WOJCIECHOWSKI 71]), the question is whether total 

classification is achievable or desirable. The classification of knowledge using science 

and the scientific method offer a greater measure of rationality and objectivity when 

compared to common sense knowledge [BUNGE 67]. The scientific method being 
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described as- problem elicitation from available knowledge, use of general and special 
methods to develop an understanding and a hypothesis, which is tested to create new 

evidence, new knowledge, and a new problem to address [BUNGE 67]. Bunge further 

defines the goal of science as "the building ofprogressively truer partial constructions 

of reality "; and to develop "conceptual mappings of the patterns offacts JBUNGE 671. 

It is noted that these goals are not exclusive to the sciences- the arts and mythology make 

similar claims. 

The outline theory of intelligence expounded in [ALBUS 91] includes hierarchical levels 

of planning and subsystems. Intelligent control is a goal of many Al, control, and 

engineering researchers. A classification of control/systems/processes in terms of an 

intelligence schema may yield insight. There are close links between classification in this 

sense and the various 00, QM, and mathematical analysis and modelling techniques 

reviewed in this chapter. 

Figure 2.2 based on [WABLIN 71] illustrates important fields of knowledge and their 

connections. It is useful in illustrating the complexity of the world, but less so for 

practical applications such as, say, the task of classification for the purpose of storing 

books on library shelves (although other systems including Universal Decimal 

Classifications (UDC) exist for this [MARCELLA/NEWTON 94]). 

[BOOCH 91] defines classification as "the means whereby we order knowledge ". He 

suggests three classical approaches for the classification task: classical categorisation, 

conceptual clustering, and prototype theory. 

If an all-embracing classification schema eludes us, then within particular fields of pure 

and applied sciences, there are good examples of successful schemas. 

Natural sciences- chemistry -Mendeleefs "Periodic Classification of the Elements" in 

1864. 

* Applied sciences- engineering- [KALPAKJIAN 89] classification of manufacturing 

processes. 
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Natural sciences- zoology- the Linnean hierarchy (kingdom, phylum, class, order, 
family, genus, and species). 
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Figure 2.2- Class ifi cation of Important Fields of Knowledge & Connections 
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[MARCELL A/NEWTON 94] view classification through a library context as- "The 

systematic arrangement by subject of books and other learning sources andlor the 
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similar systematic arrangement of catalogue or index entries, in the manner most useful 
to those who are seeking either a definite piece of information or the display of the most 
likely sourcesfor the effective investigation of a subject of their choice ". 

[BUNGE 67] offers three rules relating to the classification task 

1. that the same classification criteria are used; 

2. that the same hierarchical rank is established between similar entities; and 
3. classifications are coincident and thus natural rather than artificial. 

2.2.3 Knowledge Representation 

Definition of knowledge [OED 89]: "Intellectual acquaintance with, orperception of, 
fact or truth; clear and certain mental apprehension; the fact, state, or condition of 

understanding. +Formerly, also, thefaculty of understanding, intelligence, intellect". 

[CALLAN 94] summarises the key Al methods of representation: rules, semantic 

networks, frames, the functional approach (similar to abstract data types), and 

connectionist networks (i. e. ANNs). A rule-based representation involves construction of 

IF 
... 

TBEN rules based on the problem domain, and a reusable inference engine to 

manipulate the rules towards the goal of the application. In forward chaining, the 

direction of inferencing is from the data towards the goal value/state. With backward 

chaining, the direction is from the goal state assumed true towards the data. Semantic 

networks involve facts represented as nodes, and associations between facts/ concepts as 

arcs. The main problem is the lack of standardised notation for semantic networks and 

the subjectivity of viewpoints and construction. Frames [MINSKY 75] organise 

knowledge into chunks. Each frame has a unique name and number of slots. These slots 

have an attribute name, a default value and a current value with possible pointers to other 

frames in the slots. Rules can be attached to slots, inheritance is possible, and demons 

can be invoked when current attribute values reach thresholds or a certain value. There is 

potential for confusion when overriding default values, and again a subjectivity of 

viewpoints and construction of frames for a given scenario. The functional approach, 

similar to abstract data types, is again subjective [CALLAN 94]. Connectionist networks 
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have knowledge stored in weights connecting units- this knowledge is not structured nor 

is it explicit [CALLAN 94]. The advantage is the highly parallel nature, and some 

redundancy of knowledge leading to fast implementations that are robust and able to 

work if part of the net is destroyed. 

The world model element of [ALBUS 91] represents knowledge using space maps, and 

entities, events and states via lists orftames. Rowe views knowledge in terms offacts 

and reasoning procedures, often in a form that can be understood by computers 
[ROWE 88]. Mathematical representations of knowledge typically includes variables and 
differential equations as in Kulper's Qualitative SIMulation (QSIM) [BOBROW 85]. 

Other mathematical representations of variable values include- matrices, black-box, 

logical, fuzzy sets, real numbers, integer numbers, statistical co-efficients (e. g. averages, 

gradients, correlation co-efficients). [ROIANTREE 81] categorises statistical variables as 

illustrated in Figure 2.3. 

Figure 2.3- Statistical Variables FROATNTREE811 

It is important to have a sufficiently expressive language to represent facts [ROWE 88]. 

Often semantic networks [SOWA 91] or cognitive maps [BUEDE/FERRELL 93] are 

used as visual tools to capture a complex situation. Pressman advises layered use of 

notation, diagrams and languages that are revisable, and understood at layers appropriate 

for the problem domain [PRESSMAN 92]. This includes the use of traditional and 00 

software development methodologies to enable representation of knowledge through the 

use of diagramming (e. g. static structure/objects, State Transition Diagrams (STDs), 

Data Flow Diagrams (DFDs), Entity-Relationship Diagrams (ERDs)) and textual 

descriptions. Further, it is suggested that practitioners tend to reuse representations and 
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methodologies that they are familiar with irrespective of the possible uniqueness or 
cc ungenericness" of a new problem domain [PRESSMAN 92]. Struss argues about the 

powerful nature of natural language in a qualitative context for expression of complex 
scenarios [STRUSS 88]. Davis presents further examples of representations of 

commonsense knowledge [DAVIS 90]. The point is made of the difference between 

knowledge and belief in reasoning systems- belief equating to error tolerances/ 

calibration of sensors and validity of reasoning mechanisms about facts [DAVIS 90]. 

[CHANDRASEKARAN 88] explores the classification task from numbers and symbols 
to knowledge structures. He reviews a number of knowledge-based/ expert systems in 

which the classification varies according to the particular field of the problem domain 

(the systems included MYCIN, PROSPECTOR, SACON, and MDX). 

[CHANDRASEKARAN 88] supports decomposition of the classification process 
hierarchically to assist the efficiency of classification. He further supports the use of 
hidden nodes in connectionist ANN models, as an intermediate abstraction, to enable 

realisation of the computational power of ANNs. Table 2.3 summarises the above 

discussion relating to methods of knowledge representation, and application domain. 

rules 
semantic networks/ cognitive maps 
frames 
abstract data types/ functional 
connectionist networks/ ANNs 
entities/ events/ states using lists/frames/ 
space maps 
facts and reasoning procedures 
mathematical, black box, and statistical 
natural language 

low/ high level programming language 
obj ects 

Al, Software, RBS, diagnostic/ control 
Al, software, modelling 
Al, software 
Al, software 
Al, modelling, control, business 
Al, software, modelling 

AT, modelling, control 
Al, theory, modelling, control, business 
Al, theory, modelling, business, 
communication 
Al, software, modelling, control, business 
software, modelling, control 

Table 2.3- Review of Methods of Knowledge Representation 

2.2.4 Reasoning/Model ling 

Definition of model [OED 89]- "Representation ofstructure. -A simplifiedor idealised 

description or conception of a particular system, situation, or process (qflen in 
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mathematical terms: so mathematical model) that is putforward as a basisfor 

calculations, predictions, orfurther investigation ". 

Many forms of knowledge representation are geared towards specific implementations of 

reasoning/ modelling, in particular those formats specific to computer software 
[ROWE 88]. Some software development methodologies, such as the [BOOCH 91] 00 

methodology, for example, encourage developers to incorporate textual class templates 

which closely mirror the SmallTalk programming environment object class templates. 
He further suggests that mechanisms are the soul of a design, and represent collaborative 

activities of objects. Rule-based representations can be implemented readily in high level 

programming languages such as C (refer to the author's rule-based C program to model 
the pultrusion process, in the appendix of this thesis). Alternatively, rule-based 

representations can be part of a black-board software system architecture,, where an 

inference engine acts on various rule-bases representing different aspects of 

process/system knowledge and system criteria, to perform model functions. These 

functions could include- simulation, envisionment, mental models, diagnosis, 

verification, and deducing functionality [BOBROW 85]. If knowledge is represented in 

terms of historical events or cases, the reasoning of a software program could be case- 
based. [BUEDE/FERRELL 93] has proposed a series of procedures for converting 

cognitive maps into influence diagrams through clustering, to enable reasoning/ 

modelling about nodes in the diagrams. [ZHANG et al 89] have developed a generic 

system for cognitive map development and decision analysis, with the potential for 

utilisation of structures for ANN modelling. The Stafford Beer VSM as reported in 

[ESPEJO/HARNDEN 891 offers an approach for modelling the 5 necessary cybernetic 

subsystems required for any organisation/system to maintain it's identity independently. 

The necessary 5 subsystems are: self-production/existence, anti-oscillatory, internal 

present sensing, external future sensing, and strategic policy/goals setting. Systems and 

subsystems can be recursive like Russian dolls (or like an 00 inheritance hierarchy). 

Axioms are: that it is not necessary to understand the black box to understand functions 

and calculate variety. Further axioms, principles, theorems and laws define the 

cybernetic model fully. This model offers insight into system context, communication, 

and variety [ESPEJO/HARNDEN 89]. 
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2.2.5 Elements of Intelligence 

Derinition of intelligence [OED 89] - "The action orfact of mentally apprehending 

something; understanding, knowledge, cognisance, comprehension (of something) ". 

[ALBUS 91] defines intelligence as "that which produces successful behaviour "; which 

spans both natural and artificial systems. The hierarchical system envisaged in [ALBUS 

91] includes - actuators, sensors, sensor processors, a world model, value judgment, and 
behaviour generation. [ROWE 88] considers Al to be concerned with- natural language, 

inference, planning, expert systems, vision, and robotics. [CALLAN 94] supports the 

statement that 00 and traditional software development methodologies have benefited 

from Al research in knowledge representation and reasoning. Table 2.4 summarises 
features of three intelligent hierarchical models. 

II 
field I robotics, Al, any system I process control 

features I sensors, actuators, sensor I sensors, actuators, 

processors, a world 

model, value judgment 

and behaviour 

generation. 

goals at hierarchical 

levels. 

any system 

self-existence, anti- 

oscillatory, internal 

present, external future, 

strategic policy/goal 

setting. 

Table 2.4- Three Alternative Intelligent Hierarchical Models 

Figure 2.4 illustrates elements of intelligence and the scope of the related areas of 

psychology and philosophy. 
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Figure 2.4- Elements of Intelligence (compiled from [GREGORY 871) 

2.2.6 Discussion 

This section has presented an overview of relevant literature relating to complexity of 

processes, the classification task, knowledge representation, reasoning/ modelling, and 

elements of intelligence. It has been shown that there are a large variety of complex 

processes, and means of measuring complexity. Also, it has been shown that there are a 

great number of ways of representing knowledge, many of them closely linked to the 

19 



reasoning/ modelling environment often executed within a software program 
[ROWE 88]. 

Further, from the literature, the goal of representing "intelligent" models is supported 
towards extracting insight and benefit [WELLIAMS et al 91 a]. Hierarchical models of 
intelligent controllers/ robots/ organisms exist (see table 2.4 for three examples). 
Common aspects of these models include: the hierarchical nature, goal setting/planning, 

sensing, actuating, a world/process model linked to reason ing/inference, and a 

representation of facts. These aspects and models are argued by [ALBUS 91] and 
Stafford Beer (in [ESPEJO/HARNDEN 89]) to be universally applicable to systems, and 

so worthy basis for a generic intelligent process model. 

Software development methodologies and programming environments feature much of 

the recent advances in knowledge representation and reasoning [CALLAN 94]. The next 

section of this thesis examines problem analysis methodologies and modelling methods 

to aid process and process model design. 

2.3 Problem Analysis and Modelling Methods to Aid 

Design 

Having given an overview of aspects of intelligent systems representation and reasoning 

in the preceding section, this section gives an outline of the significant problem analysis 

and modelling methods in the realm of- structured software development, 00 analysis, 

QM, mathematical modelling, expert systems, and ANNs. In most cases, after 

presentation of the method and applications, a table summarising the steps in the 

methodologies is presented with strengths and weaknesses for the analysis of complex 

processes. 
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2.3.1 Traditional Structured Software Development 
Methodologies 

Software is an important part of systems used to solve industrial problems [PRESSMAN 

92]. Figure 2.5 illustrates the evolution of software. The advancement of hardware led to 

increasingly complex software solutions, and an evolution of software development 

methodologies to better manage such complexity. Figure 2.5 describes software 

evolution in four phases- the early years before 1965 with much customisation and a 
batch orientation; the second era between 1965 and 1975 with multi-user real-time 

databases being introduced; the third era between 1975 and 1987 with low-cost hardware 

embedded distributed trends; and the fourth era from 1987 onwards with 00, ANNs, and 

expert systems. 

Thp i-2rlv vr-;; r. q Thp 
--tarnnri Prp Thp thirri i-rA Thi- fntirth P. m 

1950 1960 1970 1980 1990 2000 

Figure 2.5- Evolution of Software [PRESSMAN 921 

There are a number of models of the software development process. These models 

include the waterfall model, the prototyping model, and the spiral model incorporating 

elements from both the waterfall and the prototyping models (see Figure 2.6) 

[PRESSMAN 92]. These models are important, because upon them, software 

development methodologies have been devised. There are few software development 

models, and many software development methodologies. It is not surprising that there 

are commonalities between methodologies. The traditional structured software 

development methodologies are primarily based on the waterfall model of software 

development. In industry today, software systems based on older structured software 

methodologies and older computer hardware, programming languages, and operating 

systems are called legacy systems. 
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2.3.1.1 Icam DEFinition 

A methodology for modelling manufacturing systems was developed in the early 1970s 
by the US Air Force. The three IIDEF methodologies. IIDEFO, IDEF I and IIDEF2, model 
functionality, information, and dynamic hierarchical relationships respectively [USAF 

1981a, b, c]. For each process or operation, inputs, outputs, control, and mechanisms are 
documented across IDEFO, IIDEF I and IDEF2 hierarchical models in a similar manner to 
SADT. [MALHOTRA/JAYARAMAN 92] considered consolidation/cross-validation of 
the three viewpoints/ models as a major problem of the methodology. [ANG et al 94] 

have proposed a conceptual RBS framework to automatically generate IDEF models to 

overcome this problem and promote generic functions within alternate models. 

2.3.1.2 Structured Analysis and Design Technique 

This traditional approach to system definition, requirements analysis, and 

system/software design is familiar to many engineers and scientists. The basis of the 

method is hierarchical decomposition of the system, broken into processes or operations, 

with input, output, control, and mechanism elements documented. The SADT actigram 

and datagram show functional and informatic requirements separately using the same 

graphical notation and conventions [ROSS /SCHONLAN 77][ROSS 85]. The actigram is 

analogous to a context level model of Information Engineering (EE)/ Structured Software 

Analysis and Design (SSAD). The Hierarchical InPut-Output (HIPO) diagram of 

Yourdon Structured Analysis/ Structured Design (SA/SD) also contains similar 

information. Top level diagrams quickly expand hierarchically, but not with a 

simplifying abstraction of the real world- more of a complex abstraction. 

2.3.1.3 Yourdon Modern Structured Analysis 

The Yourdon Modem Structured Analysis methodology has been widely adopted in 

engineering computing applications [YOURDON 89]. The analysis, design, development, 

and implementation phases are outlined below- 

* The analysis phase- an event list is constructed of external events to affect the system. 

A context diagram is created which shows a static viewpoint of the system with data 
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and control flow from sourceslsinks. A data dictionary, and STD is created. The DFD 

expanded the operations within the system in the context diagram and the processes in 

the STD. More DFDs can be created for the internal processes within the initial DFD, 

or structured English mini-specifications are created. An ERD may also be used. 
The design phase- start to think about programming language for implementation. 

System flow or software structure diagrams are created, with modularisation showing 

software input, output, functions, mechanics, and data. Data is viewed more closely, 

as well as user-interaction issues. 

The development phases and implementation phases follow on, where programming, 
testing, and maintenance take place. 

2.3.1.4 Jackson System Development 

Jackson System Development 

(JSD) system models focuses on communicating processes [CAMERON 89]. JSD has six 

stages, 

" Entity action step- from the requirements statement. Establishes entities, with actions 

performed or suffered with the attributes that determine state change or performance 

of an action. 

" Entity structure step- actions of the real world are ordered diagrammatically. 

" Initial model step- the link between the real world and the abstract model via state 

vectors. 

" Function step- pseudocode (embedded, imposed or iterative) is created to state 

outputs of actions. 

" System timing step-performance constraints, and a focus on timing needs. 

40 Implementation step-a diagrammatic representation of the system, which involves 

scheduling and allocation of processors to processes. 

2.3.1.5 Extensions to Modem Structured Yourdon 

The previous sections presented well-tried and comprehensive software/system analysis 

and design methodologies. With the increasing power and capability of hardware, and 
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increasingly complex problem domains (often real-time), extensions were made to these 
methodologies including: WARD/MELLOR and HATLEY/PMHAd real-time 

extensions to Structured Yourdon [PRESSNLAN 92]. 

The [WARD/MELLOR 85] extended notation addresses the needs for- 

9 Continuous information flow. 

" Control information throughput and associated controllers. 

" Multiplicity of processes and multi-tasking. 

" The real-time system states and mechanisms for change. 

The [IIATLEY/PMHAI 87] extensions focus more on representation of control with 
fewer additional notation extensions. It introduces: the Control Flow Diagram (CFD) 

which is similar to the DFD but shows control flow rather than the data flow; the Control 

SPECification (CSPEC); and the Process SPECification (PSPEC) 

2.3.1.6 Examples of Implementations 

[ANG et al 94] used IDEF and a proposed RBS framework to examine manufacturing 

processes at three hierarchical levels (plant, department/cell, and equipment). This 

framework overcomes the problems associated with using manual or CASE-based IDEF 

models which exhibit little intelligence (being effectively merely CAD systems). The 

main IDEF problems are both the time-consuming nature of model generation and the 

inconsistencies between interfaces between models. 

[MALHOTRAJAYARAMAN 92] proposed an Integrated Framework for Enterprise 

Modelling (IFEM) based on IDEF, and used IFEM to create a reference architecture for 

a computer-integrated apparel manufacturing enterprise. IFEM overcame the IDEF 

problems of poor cohesion between the views, and poor abstraction. 

In [CAMERON 89] both JSD and Booch Object Oriented Analysis (OOA) are applied to 

the real-time motorcar cruise control task. He found that the JSD guidance is more 

important to tasks where time-ordering of events is important, and considers JSD 
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stronger and more flexible when dealing with user-speci fi cation issues. OOD is viewed 
as better for bottom-up component design. 

[TIPPELL 91] applies the Modern Structured Yourdon method with both the 
[WARD/MELLOR 85] and the [HATLEY/PIRBHAI 87] real-time extensions to the 

analysis of a fire-monitoring system. The WARDNELLOR extensions emphasised the 
behavioural aspects of the control system and its response to events. With the 

HATLEY/PMHAI extensions, functional decomposition was emphasised. 

[CROLUNIXON 91] examined development of safety-critical software using the 

[HATLEY/PIRBHAI 87] extensions and rapid-prototyping CASE tools. When applied to 

a case study of the coal-mining extraction process and using the extensions, the correct 

and safe states were rapidly generated and represented on STDs or State Transition 

Tables (STT). When Petri-Nets were applied to the same case study, potentially unsafe 

states were generated and represented before being disregarded in the CASE 

environment. 

Potentially 00 approaches offer superior handling of generic structuring and reuse of 

analysis when compared to, say, the [TIPPELL 91] and [CROLL/NIXON 91] use of 

traditional approaches to complex applications. 

2.3.1.7 Discussion 

Table 2.5 summaries and presents strengths and weaknesses of these methodologies. 

The same criteria are used to assess 00 methodologies in Section 2.3.2, and include: 

" the treatment of objects/ genericity problem abstraction, 

" the extensiveness of the software stages: requirements, analysis, design and 

implementation,, 

" the support of real-time control, and 

" strengths and weaknesses of the methodologies. 

Hypothesis: that software development methodologies are useful toolsfor problem 

analysis, but vary in effectiveness. 
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CRITERIA IDEF 72/91 SADT 77/85 Modem Yourdon 89 JSD 83/89 
OBJECT/GENERICITY weak weak weak moderate 
Abstraction 

V/ V/ V/ 
Encapsulation X X V 
Modularity X X X 
fEerarchy X X X X 
SOFTWARE STAGES 

REQUIREMENT X 
ANALYSIS V/ V/ V 
Static Model IDEFO Actigram. Context Diagram Textual Entity 

Dynamic Model IDEF2 Actigram ERD, STD, Entity Entity Actioii Step 
Structure Step, System 
Timing Step 

Data/Functional Model IDEF1 Datagram DFD Initial Model Step, 
Function Step 

Semantic Strength weak weak moderate strong 
Analysis Quality moderate moderate strong moderate 

of Method 

DESIGN V/ V/ 
Modularisation moderate moderate moderate/strong moderate 
Reviews strong strong auto-tools/ strong, pseudocode/ weak 

graphical clarity 

DEVELOPMENT V/ I/ V/ 
Diagramming Overhead moderate strong (low) moderate strong (low) 

EVIPLEMENTATION X X V/ V 

Speed to Code weak/moderate moderate weak/ moderate strong 
Implementation Step 

Training/ Tools strong strong strong weak 

H story (real-time) moderate moderate moderate strong 

(non real-t1lue) moderate moderate strong weak 

Ease of Update moderate moderate weak strong 

REAL-TIME CONTROL moderate moderate weak, considered late strong, considered 
early 

VERDICT 

Strengths Well known, Auto Well known, Well known, Effective Strong RT control. 
Tools, consistent Auto Tools, Tools, Auto Tools, Entity Roles, 
notation for Few with STID - 00 Behavioural, System 
Diagrams, Diagrams, stability to change 

Rapid 

Weaknesses Splits Data & Splits Data & Splits Data & Process, Pseudocode & few 
Process, Little Process, Weak to Changes, graphics, Little 00, 
00, Can Confuse, Little 00, Little 00, Weak RT Easily Confuse 
Time consuming Can Confuse Control 

Table 2.5 - Review of Traditional Software Development Methodologies 
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Modern structured Yourdon is well known, has effective automatic and CASE tools, and 
effective diagramming and stages. The failing, when viewed through 00 "eyes", is that 
it splits data and process, is weak to changes in software, and has weak real-time control 
[WRIGHT/WIILLIAMS 93]. SADT is also well known, with CASE tools to support the 
design task, and is rapid. It too splits data and process, and the rapidity of generation of 
diagramming acts to confuse rather than simplify. JSD has strong real-time control 
elements, and is stable to change. The problems include the difficulty in understanding 
the pseudocode and the limited extent in graphics. 

2.3.2 Object Oriented Methodologies 

There follows an overview of the benefits of 00, the key elements of the paradigm 
itself, the main 00 methodologies, implementations of the methodology, and a summary 
table with appropriate strengths and weaknesses. 

Table 2.6, based on [MARTIN/ODELL 91] lists the benefits of 00.00 was developed 

to resolve problems of dealing with increasingly complex software systems (using 

traditional methodologies) enabled by computer software and hardware technological 

advancements and evolution [BOOCH 91]. 

Generic 00 model 

The generic obj ect model is based on [BOOCH 91] [RUMBAUGH et al 91 

[JACOBSEN etal 94a]. 

An object model exhibits four major characteristics: 

o Abstraction- of the real world problem domain and solution systems to suppress 

complexity. It is of great use for analysis modelling. 

e Encapsulation and data hiding- named object classes contain attributes and actions 

which are hidden from other parts of a system. Object-based systems are less affected 
by system changes. 

* Modularity- partitioning to reduce complexity and produce documented boundaries or 

interfaces within the program. 
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* Hierarchy- ranking or ordering of abstractions. With class "kind of', and object "part 

of' hierarchical structures. Polymorphism results from multiple inheritance. 

0 

S 

S 

reusability 
stability 
the designer thinks in terms of 
behaviour of objects, not low level 
detail 
classes of ever-growing complexity are 
built 
reliability 
new software markets 
faster design 
higher quality design 
integrity 
easier programming 
easier maintenance 
inventability 
dynamic lifecycle 
refinement during construction 
more realistic modelling 
better communication between 
Information Technology (IT) 

" intelligent enterprise models 
" declarative specifications and design 
"a user-seductive screen interface 
" images video and speech 
" design interdependence 
" interoperability 
" client-server computing 
" massively distributed computing 
" parallel computing 
"a higher level of database automation 
" machine performance 
" migration 
" better CASE tools 
" industry class libraries 
" corporate class libraries 
" wide scope of potential applications 
" paradigm supports generic process 

modelling 
" market-perceived attractiveness of 

paradigm 

Table 2.6- Benefits of 00 

[BOOCH 91] adds 3 minor characteristics* 

o Typing- is "enforcement of a class of an object, such that objects of different types 

may not be interchanged, or at most, they may be interchanged only in very restricted 

ways 

Concurrency- is "the property that distinguishes an active objectftom one that is not 

active ". 

Persistence - is "the property of an object through which its existence transcends 

time... andlor space ". 

This general view of an object model guides the choice of objects, and offers a 

viewpoint. An object instance has state, behaviour and identity. In implementation an 

object features state transition, attributes, state, and action1procedures. Further guidance 

to object classes and instances is given by every methodology. 
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Of Objects and Classes 

The various software development methodologies and the supporting diagrammatic 

notation have heuristics which guide the choice of objects, and offer a system viewpoint. 
This viewpoint, and more importantly the differences in viewpoint between 

methodologies, may be significant in the effectiveness of analysis, design and 
implementation of a process control system. [BOOCH 91] describes objects in terms of 

the roles of actors, agents, and servers; with real-time systems needing more actors. 
HOOD [ALAGER/PERIYASAMY 92] describes objects in terms of being active or 

passive, as application domain and system objects. [JACOBSEN etal 94a] define an 

obj ect as - "characterised by a number of operations and a state which remembers the 

effect of their operations. JSHLAER/MELLOR 88] suggest that objects and classes are 

usually- tangible things, roles, events, or interactions. SADT [ROSS/SCHONLAN 77] 

suggests typical objects: people, places, things, organisations, concepts, events. 

[COAD/YOURDON 91] similarly suggest- structure, other systems, devices, events 

remembered, roles played, locations, and organisational units. [RUMBAUGH et al 91 

defines using Object Modeling Technique (OMT) an object as "Simply something that 

makes sense in an application context" and as a "concept, abstraction, or thing with a 

crisp meaningfor the problem at hand". OMT defines an object class as "a group of 

objects with similar properties (attributes), common behaviour (operations), common 

relationships to other objects, and common semantics ". OMT object examples include: 

person, company, animal, process, and window. JSD [JACKSON 83] views entities in 

terms of actions suffered and performed. 

2.3.2.1 ShlaerlMellor Information Modelling 

The main steps of the information Modelling (IM) methodology 

[SBLAER/MELLOR 881 are* 

e The graphical information structure diagram and overview information structure 

diagram (similar to ERD [CHEN 76]), with supporting use of STDs and DFDs. 

e The textual object specification document, the relationship specification document, 

and summary specification. 

9 The analysis phase incorporating the graphical diagrams. 
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* The external specification phase features either the boundary conditions, an external 
event list, or the narrative requirements document. 

This methodology is focused on database implementations, and has basic diagramming 

with no extensions for real-time control. [COAD/YOURDON 91] document the missing 
concepts of this methodology: e. g. services, messages,, inheritance, and structure. 

2.3.2.2 CoadlYourdon Object Oriented AnalysislDesign 

OOA/D are two methodologies developed by [COAD/YOURDON 91] to be used 

separately or combined for analysis and design. 

The problem domain and the system's responsibilities are modelled by OOA, featuring- 

*A five layer OOA model- the subject, the class and object, the structure, the attribute, 

and the service layers. 

9 The class and object specification template including- the object state diagram, and 

the service chart. 

A particular implementation is expanded from the OOA model by OOD, featuring: 

e Additional class and object definition reflecting implementation of the requirements 
(dialogue layer, task management layer, data management layer) 

Multi-component implementation- human interaction, problem domain, task 

management, and data management components. 

2.3.2.3 Booch Object Oriented Analysis 

The main steps and diagrams of the Booch OOA methodology [BOOCH 91] include. 

e Class diagram -a semantic net with relationships (uses, has, quantified), inheritance 

and information hiding (protected, private and implementation). Text may be used to 

define interface, relationships, visibility, and other information. Classes must have 

behaviour and state (an activity may be a class). 
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* Object diagram- of two types. The scenario object diagram shows the set of 

operations to pass on to a subclass (for testing of systems). The instance diagram 

shows an instantiation of a class scenario. 

State diagrams- show the dynamics of classes, and state changes. 
Process diagrams- offer implementation support. 

2.3.2.4 Rumbaugh Object Modelling Technique 

The steps of OMT [RUNMAUGH et al 91] include (with OMT notation shown in the 

appendix of this thesis)- 

e Static model- with attributes and inheritance (based on Chen's ERD)- classes have 

been previously optimised using heuristics; a data dictionary is developed, and the 

data dictionary is used to establish class associations and attributes from which a 
diagram can be created. 

* Dynamic model- develop rough user interface (as is one of two aspects of dynamic 

system interaction; the other being logical operations); describe interaction scenarios 
(possibly creating new object classes); graph event traces to show object interaction 

for each scenario and event flow (similar to EE context diagram) to show aggregation 

of interaction scenarios and event traces; and develop state diagrams (similar to 

STDs) for objects. 

" Functional model (similar to DFD). 

" System design phase considers concurrency and dynamic control flow. 

" Object design phase shifts to computer concepts, with algorithms for major functions. 

" Implementation phase has an emphasis on flexibility, extensibility and traceability. 

2.3.2.5 Jacobsen Use Cases 

The stages of the Use Case approach / Objectory [JACOBSEN et al 94a] include - 

e Requirements Analysis- creation of a domain object model using domain objects 

representing phenomena of the problem domain; development of systems-users use- 

cases to develop a use-case model to describe flow of events; and description of 

system interface. 
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Robustness Analysis- creation of analysis object model comprising of interface 

objects, control objects and entity objects; packages are created for project 

management purposes and to optimise system structure prior to implementation 

cons i derations/trade-offs. 

e Objectory Construction (possibly in parallel with robustness analysis)- the design 

object model merges implementation language & module considerations with the 

analysis object model. Interaction diagrams and STDs are constructed, and packages 

to group design objects for the system architecture. The implementation model is the 

final executable version of the system. 

Objectory Testing- in three stages: the integration test, the use-case test, and the 

system test. 

2.3.2.6 Use of 00 in Analysis,. Modelling and Control 

Much commercial and research activity has involved the development and use of 00 

principles in construction of models, software, and process controllers. This section 

reviews literature relevant to this thesis. 

[FOSS et al 95] developed their own methodology including control volume, and 

transport mechanism building blocks for the modelling of a chemical reactor. Within the 

chemical processes domain, they suggest modelling the unit processes of separation, 

storage, and chemical reaction using these building blocks. They use a mathematical 

combination of the objects to return vectors of new states. 

2.3.2.7 Discussion 

Hypothesis: that the 00 abstraction enhances understanding ofproblem domainl 

systems, and is beneficial in both rapidly creating and reusing solutions or part- 

solutions. 7-he goal ofgenericity is nearer using 00 techniques. 

Examination of 00 techniques involved the application of 00 software development 

methodologies to a case study (i. e. real-time control of the pultrusion process) 

[WRIGHTAVELLIAMS 93]. 
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00 offers a viewpoint on systems analysis and design that focuses on real world objects 

with semi-structured methods between initial analysis and design. Object Oriented 

Programming Languages (OOPLs) carry this viewpoint to implementation. A popular 

and representative model, the Booch object model features abstraction, encapsulation 

modularity, hierarchy/ inheritance, typing, concurrency and persistence as the basis for 

diagramming and system design. There are a number of different 00 analysis and design 

techniques including: Booch's OOA [BOOCH 91], OMT [RUMBAUGH et al 91], 

Jacobsen's Use-Case approach [JACOBSEN et al 94a] those of [SHLAER/MELLOR 

88], and of [COAD/YOURDON 91]. Alternatives include many structured software 
development methodologies. The main application domain of 00 techniques is in 

software engineering systems. Strengths include- the clear abstraction match of model to 

reality, systems stable to change due to encapsulation, modularity effective for system 

synthesis from isolated work packages, reuse of code/ model elements, principle is 

applicable in many problem domains and development stages. The main weaknesses 

include. the language overheads for dynamic binding and for distributed co-ordination, 

00 techniques are still in a state of flux (i. e. many methodologies are being developed, 

but industry convergence is to the Booch, Rumbaugh and Jacobsen future unified method 

[CONSPECTUS 95] [RATIONAL 95]) and black box software modules may not be 

adequate (i. e. unstated modelling assumptions behind modelling frameworks affecting 

performance e. g. discrete event simulators [SCFHUBER 95]). 

00 methodologies are essentially evolutionary in nature, using the most useful 

diagramming and stages of traditional structured design, with the clarity and 

conceptually changed view of the abstraction process. Booch's implementationally- 

neutral cloud diagrams are popular, encourage iterative "round trip gestalt design", and 

are easily maintained. But there is the impression of breadth rather than depth, an 

informality of the method that project managers may find difficult to manage, and the 

fault of weak dynamic guidance [RUMBAUGH et al 91]. OMT is also popular and well 

supported by CASE tools, it has clear stages and diagrams, and is effective. The failing is 

that OMT is very weak for real-time systems. Other 00 methodologies include 

Ward/Mellor, Hatley/ Pirhbai, and Shlaer/Mellor. Shlaer/Mellor in particular focuses on 

IM; considers objects, attributes, relationships, super/sub-types and associative objects, 
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but ignores services, messages, inheritance and structure [COAD/YOURDON 91]. 

00 techniques are not a panacea for solving the increasing complexity of software 
development projects, but there are a number of points worthy of mention. Justification 

for 00 software development techniques include the simplicity and naturalness of 

abstraction of the problem and solution domain into real world objects or physical 

events, or elements with a crisp boundary in the problem domain. Encapsulation hides 

data and actions of objects from other objects and the system - thereby increasing 

self- containment and stability to change. The use of "part of' or "kind of' hierarchies 

encourages reuse of object classes. This reuse is integral to reductions of development 

time, the use of Rapid Prototyping (RP), increased software quality and improved ease of 

maintenance in final implemented systems. 

One can develop software systems in procedural languages (e. g. FORmula TRANslation 

(FORTRAN)) using 00 design methodologies. Use of 00 techniques in this instance 

reduces design time, and offers subjectively good real-time performance [THOMPSON 

93] OOPLs such as C++, SmallTalk, and Eiffel constrain the programmer to use 00 

concepts in implementation. SmallTalk is particularly useful for RP exercises. 

RP [MULLIN 90] is a software development methodology which through extensive use 

of 00 class libraries, greatly reduces the time spent generating functional systems 

models. Development is intertwined with design, and the initial focus is on generating a 

stable core around which to hang the rest of the design. The prototype and design 

constantly reflect each other. The user interface is generated before the program, unlike 

the sequence of traditional design. The key issues for RP are flexibility, a powerful 

language, and the environment. The strengths are the power of unstructured creativity, 

the rapid speed of client-customisation of a system, implicit reuse of 

code/libraries/objects, and the top-down view aiding abstraction and solution generation. 

But RIP does require a suitable environment, and does involve the client, at an early 

stage, viewing unrepresentative interfaces. 
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Software is used in a wide variety of applications- office, work, factory organisation, 
engineering and graphic design, factory and cell control, and process control are just a 
number of them. The use of different software development methodologies, and different 

programming implementations, affects thousands of tasks. At the analysis and design 
level, we are concerned with how we structure knowledge (and controllers for the 

process control problem domain), and for what reasons. At the implementation and user 
level, we are concerned primarily with naturalness and effectiveness of the system and its 

interface. 

Table 2.7 offers an evaluation matrix based on a number of 00 software development 

methodologies. Assessment is based on treatment of the object abstraction; software 

stages and diagramming; support for real-time control; and the main strengths and 

weaknesses. 

2.3.3 Qualitative Modelling 

There follows an overview of introductory concepts of QM7 a description of the key QM 

methodologies,, a review of extensions and applications of QM, before ending the section 

with a discussion of the strengths and weaknesses of the QM methodologies. 

In describing natural phenomena, complex processes or complex mechanical devices, 

words or pictures can convey a comprehension of the essential functionality of a system 

without resort to numbers (except where they may be used to indicate a range or order of 

magnitude). The word "qualitative" relates to qualities, attributes, or aspects of 

something. These aspects may be a number of things. non-numeric, interval, vagueness, 

discrete values, limited number of values,, tendencies, relative values) not ordered values, 

topology, classifying, behaviour, shape, or structure [STRUSS 88]. 
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CRITERIA im 98 OOA/D 90 OOA 91 OMT 91 Use-Case 92 
OBJECT/GENERICITY moderate strong strong stron2 stron2 
Abstraction x V/ V/ V/ 
Encapsulation x V/ V/ 
Modularity V/ V/ 
Hierarchy I/ V/ 
SOFTWARE STAGES 

REQUIREMENT Jc 

ANALYSIS V/ V/ 
Static Model Information Structure subject layer, Class Diagram Object Domain Object 

Diagram, Overview class & object Model Model 
Infori-nation Structure layer, 
Diagram (ERD) structure layer 

Dynamic Model STD service layer, Object Diagram, Dynamic Use-Case 
STD, State Diagram, Model Model 

Timing Diagram 

Data/Functional Model DFD attribute layer Process Diagram, Functional Analysis 
Module Diagram Model Model, Design 

Model 

Semantic Strength moderate moderate weak strong strong 
Quality of Method moderate moderate moderate strong strong 

DESIGN I/ V/ V V V/ 
Modularisation moderate moderate moderate strong strong 

Reviews weak moderate ADA auto-tools moderate Strong- 
else weak clarity Packages 

DEVELOPMENT V/ V/ V/ V/ V/ 

Diagramming Overhead strong (low) moderate moderate moderate moderate 

IMPLEMENTATION V V/ x x V/ 

Speed to Code weak/moderate strong- code Strong- code Strong- Strong- code 
reuse reuse code reuse reuse 

Training/ Tools strong moderate moderate moderate moderate 

History (real-time) weak moderate moderate weak moderate 

(non real-time) moderate moderate moderate moderate moderate 

Ease of Update weak strong moderate strong strong 

REAL-TIME CONTROL weak moderate moderate weak moderate 

VERDICT 

Strengths good for database maturity of Popular 00, Popular 00, Popular 00. 

development, similar approach - Implementation Clear Clear Stages & Z71 

to Yourdon modem evolution free diagrams, Stages, Diagrams. 

structured analysis from Easily maintained Diagrams, Software Reuse 
structured Software 
techniques Reuse 

Weaknesses weak RT, a partial Less 00 tools Breadth rather Weak RT Less 00 tools 
00 rnethod than others than Depth Control than others. 

Table 2.7- Review of Object_Oriented Sottware Development Methodologies 
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Qualitative Reasoning (QR) is concerned with automated reasoning about the real 
(physical) world. The key points are of QR are [BOBROW 85]- 

e Compositionality - that is, the description of a systems behaviour must be derivable 

from the structure of a system. 
Locality - so that effects propagate locally or in a causally directed manner. 
Function - is represented in terms of a different layer of description to the behaviour 

of a system. 

QR tasks are broad in scope, and include [BOBROW 85] - 
Simulation - starting with a structural description of some device or system, and some 

initial conditions, to determine a likely course of future behaviour. 

Envisionment - starting with a structural description, to determine all possible 
behavioural sequences. Two criteria apply, which are. all possible envisionment 
behaviours can be realised in some real system with some choice of parameters 

(realisability); and all possible real systems follow one of these behaviours 

(completeness). 

9 Mental models - are concerned with capturing the reasoning processes of people and 

modelling them. Noting that the ways in which people reason about system behaviour 

is often inconsistent with physically realisable systems. 

9 Diagnosis - where changes in behaviour often signaling structural changes/ faults are 

searched for. 

e Verification - or ascertainment that the composite behaviour of implementation 

structures match desired behavioural specification. 

* Deducingfunctionality - where functional descriptions are extracted from structural 

and behavioural descriptions. 

Representations vary in consideration of time: state variable processes are discretely 

manipulated, whilst real-valued function processes are continuously done. Quantisation 

of the domain is often to a discrete symbol set e. g. {+, 0, -). The ontological primitives 

of structural descriptors varies between three main forms- component oriented, process 

oriented, and constraint oriented [STRUSS 88]. Implementation involves propagation of 

constraints, and the notation for this varies. 
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A taxonomy of manufacturing processes might divide the processes into groups such as. 

metal casting, forming and shaping, material removal, joining, surface treatment, and 

assembly [KALPAKJIAN 89]. A deeper taxonomy might have just two categories - 

material deformation and motion, and material state change i. e. mechanics (involving 

kinematics and dynamics) and thermodynamics. 

In terms of metal, qualitative expressions such as ductility, malleability, and toughness 

characterise material properties. Various tensile, hardness, and impact tests relate to 

forces which cause the deformation. Liquid behaviour relates to molecules with a kinetic 

energy which is dependent on temperature. Characteristics of liquids include- surface 

tension, vapour pressure (equilibrium at saturation vapour pressure), viscosity (shear 

force between layers, with very short mean free path, relates to transfer of momentum), 

thermal expansion and diffusivity, heat of fusion, and change of density [PASCOE 821. 

The Hole Theory of Liquid proposed by Eyring accounts for this behaviour pattern. The 

qualitative features of gas behaviour include- homogeneity, large compressibility, the 

diffusion of gas, and the constant motion of the gas particles [PASCOE 82]. 

Quantitatively, the kinetic theory of gases explains this with the equation. 

PV=nRT ............................. 
Equation 2.1 - Kinetic Theory of Gas 

Where P= pressure of gas 

volume of gas 

n= number of moles of gas 

R= constant appropriate for gas 

T= absolute temperature 

The kinetic energies represent motion and equilibriums, and deal with pressure, volume, 

temperature, and the gas constant. Industry is interested in deformation, motion, or state 

change of material properties to a required standard or quality within given tolerances 

[KALPAKJIAN 89]. 
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Knowledge representation for process control can be achieved in a number of ways. Al 

based representations of the knowledge of dynamics or functionality of a system include: 

semantic nets, rule-sets, frames or objects. The knowledge representation may vary at 
different hierarchical levels. QM considers relative relationships between objects, 

processes, or variables rather than absolute numerical ones. The three main types of 

qualitative theory are- DeKleer's component-oriented ENVISION [WELD/DE KLEER 

90], Forbus's process-oriented Qualitative Process Theory (QPT) [FORBUS 84], and 
Kulper's constraint-oriented QSIM. These have been applied to a number of problem 
domains including- physical systems reasoning, fault diagnosis, data trend analysis, and 

system control. Table 2.8 illustrates the range of qualitative type and problem domain 

application from a survey of QM papers (which are not all referenced within this thesis). 

Simulation EnvisioiuneDt Understanding Control Diagnosis Miscellaricous 

Component - - I - 2 

Process 2 4 4 1 - 
Constraint 7 5 6 4 4 

Novel 2 3 - 3 4 

Table 2.8- Range of QM Applications 

One benefit of qualitative theory is that simplified interval mathematics, and calculus 

result in a computationally less intensive calculation for a given problem (especially 

suitable for large complex real-time problems). Other advantages include the 

effectiveness in solving problems, the efficiency in completing the calculations in time, 

and the naturalness of interaction with the framework [STRUSS 88]. 

Difficulties include- scaling up and application to complex real world problems, the 

weakness of temporal representations, use of incomplete models, and the distinctions 

(possibly artificial) between kinematic and thermodynamic problems, and between 

qualitative and quantitative models. 

Hypothesis: The goal of using QM is to gain a deep knowledge of the process, and of 

what is significant. The side bene ts of efficiency, timeliness, and naturalness are 
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desirable. A question to be addressed is the match between 00 and qualitative models, 
conflicts, and issues. 

There follows a description of a case study, around which the review of the QM 

methodologies was based. 

Case Study 

The physical schema of the test system involving non-trivial fluid flow around linked 

tanks, is shown in Figure 2.7. The system consists of two linked containers and a sump, 

connected with piping (each with valve to simulate pipe blockage), and a pump to drive 

fluid from the sump into the first tank. The sump is heated. 

pipe 1 

fluid sump 1 

heat 

Figure 2.7 - Qualitative Modelling Case Study System 

This system considers both changes in microstructure properties of the fluid due to 

temperature and energy changes, and changes in the macro properties of the fluid as a 

whole due to physical movement. It is attractive to model for a number of reasons, and 

characterises issues which QM has difficulties with. 

To devise suitable real-time metrics, further issues must be considered- interrupt 

handling and context switching. response time. data transfer rate and throughput, 

resource allocation and priority handling, task synchronisation and intertask 

communication [BURNS/WELLINGS 91]. 
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2.3.3.1 De Kleer Component Oriented 

The device topology represents the physical components of the system. The components 

with characteristic behaviour include: tank. sump, pump, and heater. The conduits 
linking the components are the pipes. The terminals are the nodes connecting 

components and conduits. The component structure is the origin of activities and 

changes. 

The device topology is context free, and overall global behavior is constructed from local 

behaviour. This enables construction of local models which are valid for a wide class of 

systems. There is no function in structure, and we use naive modelling by ruleset to 

represent function, in this case component rule models. Behaviour of the system is 

represented by qualitative states which is similar to a STD. Qualitative values are the set 

of the sign of a variable x (i. e. negative non-zero, zero, or positive non-zero) in the 

quantity space Q=I-, O, +). These values may be manipulated by addition or 

multiplication, but not differentiated (the qualitative derivatives are the qualitative values 

of the true derivatives). 

The qualitative state of a component e. g. PUMP is derived from the effects of different 

confluences, and may be expressed simply as- 

e. g. PUMP states 

ON F=Fmax, or maximum flow 

OFF F=O, or zero flow. 

Global behaviour of the entire system (i. e. the qualitative states of the system) is inferred 

combinations of the qualitative states of the individual components. This is expressed 

with a state diagram representing all possible behaviour, but without sequencing or 

temporal ranking. 

2.3.3.2 Forbus Process Oriented 

Textual objects and processes are first defined with preconditions, quantity conditions, 

relations and influences [FORBUS 84]. The physical properties of objects, called 
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parameters are represented by quantities in terms of amount and derivative. Quantity 

spaces exist as a finite set of numbers with partial order. Functional relationships and 
influences are established through the use of equality, qualitative proportionality, direct 

and indirect influences,, correspondence, and function specifications [STRUSS 881. 

Parameter histories document changes over time of parameter values. Episodes occur 

over an interval of time,, whilst events occur instantaneously. The set of parameter 
histories for an object is analogous to a state diagram in other representations. From a 

given initial situation, parameter and process histories are inferred. Deductions 

considered include. limit hypothesis, quantity hypothesis, changes in quantities, possible 

views (both process and individual), and activity instances (both process and individual). 

2.3.3.3 Kuipers Constraint Oriented 

One follows the flow of one particle of water with respect to position, velocity, 

acceleration, absolute temperature and viscosity using landmark values. For absolute 

temperature, between start and end temperature TO and TI respectively, some viscosity 

rule holds. Viscosity is the internal friction, or the resistance of the fluid during flow. 

Viscosity stress-strain diagrams are analogous to the stress-strain diagrams of Hookean 

solids. Viscosity is linked to molecular diffusion, and varies with temperature. From this 

mathematical treatment of the system, we derive qualitative constraint expressions. 

These expressions are manipulated, using the landmark values as data entries, to create a 

sequence of qualitative states. 

2.3.3.4 Examples of Implementations 

Nine distinct areas of research and application of QM were identified: 

1. Mathematical/ physics theory on dynamic systems [MORGAN 90] 

[FORBUS/FALKENTIAINER 90] [FORBUS/FALKENHAINER 92] 

[VAN BEEK 90] [CRAWFORD/ETBERINGTON 92] 

2. Medical applications, and diagnostics [IRONI et al 90] [CUNNTNGHAM/BRADY 91] 

[HUNTER et al 91]. 

3. Biological systems [CUI et al 92][ARDIZZONE et al 88]. 
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4. Geographical information systems [SIMMONS 83/84]. 
5. Civil engineering/ architecture [BISWAS et al 91 

6. Economics/ finance [BRIDGELAND 91 ]. 

7. Management information systems [NAYAK et al 92]. 

8. Process control and supervision - physical/movements or kinematics 

[RAJAG-OPALAN 83/4]. 

9. Process control and supervision - material state changes or thermodynamics 
[COREA et al 92] [LECLAIR/ABRAMS 89]. 

The previously presented Table 2.8 shows the range of types of QM, and applications. In 

terms of the methods most widely applicable, constraint-based QM is the most common 
to be applied to all types of task. Extensions are made when domain specific problems 

arise, for example the economic simulation area [BRIDGELAND 91]. QSIM does have 

failings. it requires knowledge of ranges and tendencies of all variables at the start of 

simulation; double-branching occurs when variables represented by intervals with a non- 

stable tendency occur; and differential equations used are complex for even quite trivial 

systems [COREA et al 92]. 

In terms of the tasks most commonly undertaken with QM, the simulation, envisionment 

and understanding tasks are the most common. Where problem size is large due to the 

complexity of the task, and in particular where time constraints on reasoning are strict 
(for example real-time process control), trade-offs between accuracy and timeliness are 

resultant [COREA et al 92] [VAN BEEK 90]. 

Are some types of QM more suitable for particular tasks? Process oriented QPT has 

strengths in the envisionment and understanding areas. But in safety critical systems, or 

systems which interact with a dynamic changing real-world, QPT inferred histories are 

liable to be unstable or lack fidelity. 

In general QM does have some drawbacks. Algorithmically QM is efficient. but 

envisionment causes a combinatorial explosion [IRONI et al 90] [ARDIZZONE et al 88] 

which requires trimming for effective use in real-time situations. To overcome this, 
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behaviour aggregation/ clumping has been suggested [IRONI el al 90], or the application 
of temporal constraints to control excessive branching in simulation [HUNTER et al 91 
Incremental envisionment trees are suggested [CRAWFORD/ETHERINGTON 92] as 
being more computationally efficient. A narrowed region of propagation is required for 

real-time efficiency [IWAMASA et al 92]. 

The multiple branches of networks also cause problems in consistency (both internal 

within the model, and externally) [MORGAN 90]. The question as to whether a full 

representation of a system is made by the model (in terms of fidelity to the real world) is 
difficult to assess [MORGAN 90] [CUI et al 92] [HUNTER et al 91]. Consistency of 

representation is an issue in many applications [MORGAN 90] [VAN BEEK 90] 

[NAYAK et al 92]. The concept of uncertainty of the real-world not being translated into 

the qualitative model, and the consequent lack of trueness is echoed in [MORGAN 90]. 

Constraints can be used to overcome uncertainty [KUIPERS 86]. One example of 

assumed independence amongst mapping [CRAWFORD/ETHERINGTON 92] is 

certainly not realistic. This results in applicability to only a small class of application. 

A deeper-level long term view of process goals is deemed the next step as short-term 

views are ultimately limited [LECLAIR/ABRAMS 89]. Algebraic constraints can limit 

the power of envisionment [FORBUS/FALK-ENHAINER 90] 

[FORBUS/FALKENHAINER 92], whereas causal reasoning by rules is more supportive 

of this. Representation of causal reasoning by rules has been found to lack succinctness 

[CUNNINGHAM/BRADY 91], even though these rules were attempting to address deep 

issues of modelling. 

Where modelling is flawed or domain knowledge imperfect, refinement occurs only 

through extensive simulation [SIMMONS 83/84]. An increase in the scale of domain 

knowledge obviously increases the scale of the implementation task [ARDIZZONE et al 

88]. Where external interactions are not represented the results have been found to be 

flawed [CUNNINGHAMABRADY 91]. Extensions to topology have been found 

necessary to fully capture the problem domain in the instance of space and time 

45 



formalisms in biological systems [CUI et al 92] (extensions to express metric and motion 
would have been beneficial). 

2.3.3.5 Discussion 

Hypothesis: QMhas the potential to meet the needý of industrial process control- with 
efficiency, effectiveness, and a naturalness of user interaction. 

Table 2.9 outlines key features of three main flavours of qualitative model. 

Knowledge representation for process control can be achieved in a number of ways. Al 

based representations of the knowledge of the dynamics or functionality of a system 

include: semantic-nets, rule-sets, frames or objects [COREA et al 92]. The knowledge 

representation may vary at different hierarchical levels [COREA et al 92]. QM (after 

primarily Forbus [FORBUS 84], DeKleer [DEKLEER/BROWN 83], Kuipers 

[KUIPERS 86] considers relative relationships between objects, processes or variables 

rather than absolute numerical ones. Consideration of system structure and system 

behaviour in QM vary, as does prediction, envisionment, and simulation, in qualitative 

simulation. Consideration of the differences in effectiveness, and any shortcomings of 

different qualitative modelling methods is of more than academic interest. Simplified 

interval mathematics, and calculus result in computationally less intensive calculations 

for a given problem. The scaling down of problem size may benefit solution of complex 

real-time control problems. The challenge is to represent the system with completeness 

and simplicity [MORGAN 90]. When interpreting results, qualitative parsing of either 

numeric or qualitative data has a number of advantages. It has a deep interpretation with 

greater significance than a mere stream of numbers (say, there is a stream of numbers, 

which indicates that temperature rises in the system possibly due to causes x, y, or z). It 

is computationally efficient parsing "qualitative set" data rather than real numbers. 

Justification for use of a qualitative modelling framework includes: effectiveness in 

solving problems, efficiency of task completion in time, and naturalness of interaction 

with the framework [RAJAGOPALAN 83/4][STRUSS 88]. Present problem domains 

include physical systems reasoning, fault diagnosis, data trend analysis and system 

control. 
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Component Oriented 
ENVISION 

Process Oriented QPT Constraint 
Oriented QSIM 

Structural Diagrammatic, a fixed flat Textual, passive objects. Textual/ 
Representation structure. Individual view of objects, numeric. 

Components- physical with individuals, pre- Landmark 
objects with characteristic conditions, post-conditions, values, and 
behaviour. relations. Acted on by qualitative 
Conduits- links between processes which are textually states. QSIM 
components. represented. constraints/ 
Ten-ninals- nodes between functions. No 
components and conduits. physical world 
Origin of activities and ontology. 
changes 

Behavioural "no function in structure" Textual, active processes. Distinguished 
representation Component model by Interaction via conditions time points. 

rules (local context of causally directed with possible Qualitative 
components). multiple interaction. behaviour of 
Behaviour derived from Process vocabulary built up, function or 
rules. representing dynamic system over 
Quantity space of structure. time. Similar 
variables 1-, 0, +). Quantity (amount, derivative). to parameter 
Component qualitative Relations: equality, qualitative history of QPT. 
states. proportionality, function 
Interaction by connections specification, correspondence, 
in local context. direct influence, indirect 

influence. 
Inference of Transition rules: causality, Flistories of parameters & Tree of 
behaviour limit rule. processes composed of qualitative 

Continuity: equality episodes occurring over stages as 
change, epsilon ordering intervals of time, and representation 
rule. instantaneous events of partial 
Resulting state diagram (graphical). envisionment. 
(no concept of sequence of Infer history by: possible 
states). process and individual views, 

activity of process instances 
and view instances, change in 
quantities, quantity 
hypotheses, limit hypotheses. 

Strengths Rapidity of model Rapidity of generation. Compactness. 
generation. Application 
Ease of understanding focus. 
local behaviour 

Weaknesses Too "objecty". Uses whole physics book for Process 
Difficulty in all problems. knowledge 

understanding global No 00 paradigm support. required. 
behaviour. No 00 
Computationally paradigm 
inefficient. support. 

Table 2.9- Features of QM Methodologies 
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But QM has weaknesses which need to be addressed before it is more widely and 
usefully applicable, including: 

o Scaling up to more complex problems [COREA et al 92] 
[FORBUS/FALKENHAINER 90][FORBUS/FALKENHAINER 92]. 

Application to real world problems [FORBUS/FALKENHAINER 92]. 

Stronger representations of time [STRUSS 88] [VAN BEEK 90] 

[CRAWFORD/ETHERINGTON 92] [CUI et al 92]. 

9 Using incomplete qualitative models [COREA et al 92] [MORGAN 90] 

[VAN BEEK 90] [CRAWFORD/ETIHERINGTON 92] [IRONI et al 90]. 

Merging mechanical kinematics and thermodynamic problems. 
Merging qualitative and quantitative models [COREA et al 92] 

[FORBUS/FALKENHAINER 90] [IRONI et al 90] [CUNNINGHAM/BRADY 91]. 

When considering the case study control application (see Figure 2.7), the types of QM 

yielded different results: 

* Component oriented Envision: uses active objects with local rule-sets, derives system 

behaviour from objects using intelligent "parsing", is too "objecty" and lacks 

sufficient process detail for control. 

o Process oriented QPT: uses passive objects and active processes, uses all physical 

laws and relationships to tackle any given problem, is inefficient in scope and too 

"physicsy" for control purposes. 

e Constraint oriented QSIM: uses mathematical modelling with landmark ranges, uses 
few variables, good physics process knowledge required), is compact, usable, with an 

application focus, but does not fit the 00 paradigm. 

Wider Issues - An Industrial Context 

00 is a viewpoint on solving systems problems that focuses on objects which interact, 

are distinct units (each encapsulating both data and methods for behaviour) and so stable 

to change in the system, are part of an inheritance hierarchy ("part of' or "kind of"), and 

thus able to be reused. The use of objects as an abstraction and simplification of the 
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problem domain is attractive. With the QM methods focused on in this section 
(component, process, and constraint oriented) there is not a direct mapping to the 00 

paradigm. This is because structure and behaviour are split in all instances. The 
diagramming of object/ system topology increases knowledge of relationships between 

objects in a system. There is a possibility of automatic generation of system behavioural 

models from basic object diagrams and a topology diagram, in terms of system states, 

object states, and object variable attribute states. The question of graphic support focuses 

on user interface needs. It is worthwhile for diagramming topology (and in particular 

used with 00 concepts), for illustrating state changes on a diagram, as a check of global 
behaviours, and for graphs of numerics of control variables and system responsiveness. 
But the area of linguistic descriptions of objects, of interval mathematics (essential for 

system, but complex for user), and of mathematical operations benefit little from 

graphical treatment. 

This section of the literature review has come to the conclusion that: 

e The benefits of QM for control, include- effectiveness, efficiency/timeliness, and the 

naturalness of interaction. 

* The main benefit of QM for process modelling is to improve knowledge of process 

physics including mechanical and thermodynamic elements. 

There are potential benefits from a qualitative control framework for computer aided 

control system design, possibly incorporating 00 elements. 

Constraint oriented QSIM has proven compact, usable, with an applications focus. In 

terms of ease to generate a process model and good potential performance, it seems the 

preferred QM flavour. 

2.3.4 Mathematical Modelling 

This section reviews a number of different mathematical approaches both to modelling 

and to support other modelling approaches. The mathematical approaches reviewed 

include- input-output analysis, state variable, finite difference, simulation, genetic 

algorithms, statistical analysis, and principal component analysis. 
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In discussion of modelling approaches based on data, it is assumed appropriate accurate 
data is gathered representing a full range of process/system behaviour. [CAWLEY et al 
95] and [BENRY/CLARKF_ 93] focus on advances in sensor technology to reduce on- 
line uncertainty of the sensors. Experimental design activities ensure gathering of the full 

range of data representing process/system behaviour. [STEPHANOPOULOS 84] 

considers the task of developing chemical process controllers, and suggests two 

approaches for investigating process behaviour or gathering data- either through 
laboratory experimentation, or through theoretical mathematical modelling. 

2.3.4.1 Input-Output Analysis 

DSblock (i. e. Dynamic System block) describes an input-output block of a general 

nonlinear dynamic system in a neutral way as shown in Figure 2.8 [OTTER/ELMQVIST 

95]. DSblocks are mathematically described using differential -algeb rai c equations or 

ordinary differential equations. Although hand programming of DSblock is possible, a 

number of translators of DSblock are available for the C, Fortran, ACSL, and Dymola 

programming languages. [STEPHANOPOULOS 84] describes an input-output model of 

a chemical process as shown in Figure 2.9, with the main block representing the process, 

with associated inputs, outputs, and disturbances. The approach is then to develop a set 

of equations in the form of Equation 2.2 describing directly the relationship between the 

input and output variables of a process [STEPHANOPOULOS 84]. He further suggests 

that a state variable model may assist in developing an input-output model, particularly 

when state variables coincide completely with the output variables of a process. 

output =f (input variables) 

-- 
Equation 2.2- Chemical Approach to Input-Output Modelling 
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parameters initial conditions 

or database 

Figure 2.8- DSblock Approach to Input-Output Modelling [OTTER/ELMQVIST 951 
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disturbances 
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Figure 2.9-. Chemical Approach to Input-Output Modelling [STEPHANOPOLJLOS 841 

2.3.4.2 State Variable 

[STEPHANOPOULOS 84] suggest use of a fundamental set of qualities/variables, and 

set of equations to describe the natural state of a given system at a given time. These 

equations relate to conservation of a number of fundamental qualities/ variables S, such 

as total mass, mass of individual components, total energy, or momentum, in the form 

shown in Equation 2.3. These fundamental variables may be characterised by sensed 
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state variables such as energy, concentration, temperature, pressure and flow rate. 
Equations relating state variables to fundamental qualities S, are called state equations. 

accumulation of S within a system flow of S in a system flow of S out of the system 
time period time period time period 

amount of S generated within the system amount of S consumed within the system 
time period 

1-1 

time period 

Equation 2.3- State Variable Equation 

2.3.4.3 Finite Difference 

[STEPHANOPOULOS 84] gives guidance on developing a discrete-time model from an 

equivalent continuous dynamic model- 

" 1. Start with the differential equations describing a continuous model in the time 

domain. 

2. Approximate the derivatives of any order byfinite differences. 

3. Approximate any integral terms in the model by a scheme of numerical integration. 

4. The values of any simple terms are equated with the corresponding discrete-time 

values at the sampling instants. " 

The resulting discrete-time equations are known as difference equations. 

2.3.4.4 Simulation 

There are a large number of software products available to simulate discrete and 

continuous systems [OTTER/ ELMQUIST 95]. Frequently graphical interfaces enable 

analysts to select modelling objects to build up a modelled system, in software such as 

Simple ++, and Witness discrete event manufacturing simulators, and MATLAB (with 

Simulink and other toolboxes). [SCHRIBER 95] makes the point that the underlying 

assumptions of the developers of discrete event simulators varies, and so for a given 

simulation case study, different discrete event simulators produce different results 

according to these assumptions. He reviews differences in implementations of the 
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discrete event simulators SIMAN V and GPSS/H with regard to- entities, resources, 
operation logic, current events list, future events list, delay list, and Independent list- 

2.3.4.5 Genetic Algorithms 

[HOLLAND 92] discusses adaptation in natural and artificial systems using biological 

analogies. Although similar in approach to that of adaptive advanced control, much 

modelling has been carried out using this approach [BETTEN-HAUSEN/MARENBACH 

95]. He discusses adaptive plans or genetic algorithms in terms of an adaptive plan, 

with operators selected by the plan, structures tried, and performance observed in the 

environment. The successful structures are adopted by the plan, for further iterations of 

evolution of structures [HOLLAND 92]. [BETTENHAUSEN/MARENBACH 95] 

discuss self-organising modelling of batch and fed-batch fermentations using genetic 

algorithms. Key features of this approach are the symbolic generation of an appropriate 

model structure, and the optimisation or identification of the included set of parameters 

as shown in Figure 2.10. [BETTENHAUSEN/MAREN-BACH 95] had success in 

modelling the manipulating variables of temperature, pH, and substrate feed rate. 

generation of 67f-i 

Figure 2.10- Genetic Algorithm Approach [BETTENHAUSEN/MARENBACH 95] 
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2.3.4.6 Statistical Analysis 

"Descriptive statistics summarise or describe observations, and inferential statistics use 
those observations as a basisfor making estimates or predictions (i. e. inferences about a 
situation that has not yet been observed)" [RO"TREE 81]. Descriptive statistics 
include mean, mode, median, range, inter-quartile range, frequency distributions, the 

normal distribution, and standard deviations. Inferential statistics include considerations 
of samples and populations when inferencing some of the descriptive statistics, plus 
significance testing, analysis of relationships in terms of correlations, and analysis of 

variance. The ability of descriptive statistical approaches to summarise data is of 

significance when modelling, particularly where much noisy data is present. 
Additionally, the ability of inferential statistics to analyse data and draw conclusions, 
lends itself to use independently as a form of modelling. 

2.3-4.7 Principal Component Analysis 

Principa Component Analysis (PCA) "transforms a data matrix X into a matrix with 

fewer orthogonal dimensions, while keeping most of the variance of the data matrix X' 

[QIN 93]. It is a statistical technique for reducing data sets, reducing noise (when noise 

is similar to process data in value) or redundancy within data sets to enable more 

effective computation or modelling based on the reduced data set. [DTI 94] suggests the 

use of PCA on data sets prior to training ANNs. [QIN 93] demonstrates a reduction of 

prediction error of trained Multi-Layer Perceptron (MIP) backpropogation ANNs, using 

statistical techniques including PCA on data sets prior to ANN training. 

2.3.4.8 Summary 

This section has reviewed a number of different mathematical approaches both to 

modelling and to support other modelling approaches. The mathematical approaches 

reviewed include: input-output analysis, state variable, finite difference, simulation, 

genetic algorithms, statistical analysis, and principal component analysis. 
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2.3.5 Rule-Based Systems Including Fuzzy Logic 

There follows a review of the characteristics of RBS, and a number of application 

examples. 

2.3.5.1 Characteristics 

[KALPAKJIAN 89] defines an expert system or knowledge-based system, as "an 

intelligent computer program that has the capability to solve difficult problems using 
knowledge and inference procedures". Knowledge is usually expressed in the form of 
if.. then rules, appropriate for computer coding, hence the phrase Rule-Based System. 

Figure 2.11 shows a typical architecture for an expert system. Replication of heuristic 

human decision-making processes is difficult, as the process is intuitive and imprecise. 

user 

lk 

I 

(rule interpreter) 

II 

Figure 2.11- Basic Structure of an Expert System [KALPAKJIAN KI 

In the 1960s, Zadeh developed a fuzzy representation to assist in reasoning about 

uncertain knowledge. [FOSLEEN/SANLA-D 93] describe the process of developing a 
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modern fuzzy controller- "in the process of designing and refining afuzzy controller, the 

control system designer has many options to chooseftom. A universe of discourse must 
be definedfor each input and output variable and associated linguistic labels. A 

mapping must be defined which relates measured variables and manipulated variables to 
the appropriate universes of discourse. Allembershipfunctionsfor each linguistic label 

must be defined. Rules must be developed which create a relationship between input 
linguistic variables and output linguistic variables. When the controller does not 

minimise the desired costfunction, it is generally not clear which of the controller 

parameters must be modified, not to mention how the controller parameters should be 

modified to achieve optimal performance. " 

[FOSLEEN/SAMAD 93] consider the data-intensive nature of ANNs complimentary to 

the knowledge-intensive fuzzy approach for process control design. 

[TOWELL/SHAVLM 94] suggest three problems with expert systems - 1. that they 

assume the domain theory is complete and correct; 2. that complete and correct domain 

theories are very large, and thus computationally slow and inefficient; and 3. that domain 

theories are difficult to change. [FOSLEEN/SAMAD 93] suggest advantages of the fuzzy 

approach: 1. it does not require analytical process characterisation; and 2. fuzzy rules are 

effective in representing operator expertise and heuristic knowledge. 

Summary of Features of Fuzzy Logic 

FL involves knowledge represented by precise and imprecise linguistic rule sets. Control 

actions are taken under given conditions. FL features fuzzy algorithms in the form of 

IF 
... 

THEN rule sets, and a partitioned universe of input and output rules, and the fuzzy 

set shapes of variables (i. e. range)(use of fuzzimetric arcs)[RAO/RAO 93]. There are a 

number of different types. direct linguistic rules, fuzzy model generated rules, or fuzzy 

model with control rules derived algebraically. Rule-based systems, expert systems, and 

case-based systems are of a similar nature to FL. The application domain is any process 

in which a human being uses subjective skills in an important role. In particular, complex 

processes that tend to be non-linear, stochastic, and ill-defined. Examples include many 

consumer electronics goods from the Far East (e. g. cameras, washing machines) 

[RAO/RAO 93]. The strengths of FL include: the fact that imprecise knowledge does not 
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hinder control (good robustness), and the potential for adaptive fuzzy controllers to 
modify rules to improve performance. The weaknesses include: the fact that knowledge 
is stored as facts and procedures encoded as rules with no explicit learning or inferencing 
mechanism, and that most applications are static rather than dynamic. 

2.3.5.2 Applications 

[DAVIS et al 93] presented a generic framework for on-line knowledge-based diagnosis 

of batch chemical processes. They used the G2 real-time expert programming system 
from Gensym Corporation to develop their application. A phase-step-model of discrete 

operation strategy was devised, with malfunction hierarchies for continuous and discrete 

chemical processes, to capture process knowledge. A number of test cases (e. g. the 
delayed cokin unit, a local malfunction diagnosis, a reactive malfunction diagnosis, and a 
reactive malfunction hypothesis) proved the value of procedural decomposition based on 
phase-steps, and the G2 rule-based implementation. 

[SCHRUNDER et al 94] developed a fuzzy, knowledge based decision support tool for 

production operations management. It is suggested that the approximate, inexact, vague, 
linguistic articulations of knowledge of this domain would be ideally represented using a 
fuzzy approach. The knowledge was represented in rules using Turbo-Prolog for 

MicroSoft Disk Operating System (MS-DOS). These rules included linguistic variables 

concerning: production volume, time pressure, unit contribution as a percentage of 

product value, family variety, and product life remaining. The resultant system was 

evaluated using data from documented JIT studies, and performed well in its capacity to 

provide information to support production operations management. 

[WEST et al 88] developed a hybrid representation of control rules for demonstration of 

robotic dispensing of adhesive for surface mount electronic components. The MUSE 

real-time rule-based development environment was used to create rules relating to 

adhesive viscosity, solenoid pressure, temperature, time, robotic arm position, vision- 

system adhesive blob image and area. The rules were of hierarchical levels. 
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2.3.6 Artificial Neural Networks 

Introduction 

[HECHT-NIEL SEN 901 defines a neural network as "a parallel, distributed information 

processing structure consisting ofprocessing elements (which can possess a local 

memory and can carry out localised information processing operations) interconnected 

via unidirectional signal channels called connections. Each processing element has a 

single output connection that branches ('fans out') into as many collateral connections 

as desired, - each carries the same signal- the processing element output signal. The 

transferfuntion can be of any mathematical type desired. Ae information processing 

that goes on within each processing element can be defined arbitrarily with the 

restriction that it must be completely local; that is, it must depend only on the current 

values of the input signals arriving at the processing element via impinging connections 

and on values stored in the processing elements local memory ". ANNs are a multiple 

instruction multiple data parallel processing architecture. The ANN is a directedgraph 

consisting of a set of points or nodes along with a set of directed line-segments or links. 

The further sub-definitions of this representation as illustrated in Figure 2.12 are- 

"J. 7-he nodes of the graph are calledprocessing elements. 

2. The links of the graph are called connections. 

3. Each processing element can receive any number of incoming input connections. 

4. Each processing element can have any number of outgoing connections carrying 

identical signals. 

5. Processing elements have local memory. 

6 Each processing element carries out a transferfunction which can use local 

memory, input signals, andproduces the elements output signal. Transfer 

functions can operate continuously or episodically (if episodically it must 

receive an activate input). 

7. There are input and output connections between the network and the outside 

world. " [BECHT-NEELSEN 90]. 
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Figure 2.12 - Computation of Single Neural Network Unit 

[TOWELL/SHAVLIK 94] discuss two methods of developing computer-based problem- 

specific expertise: hand-built classifiers (e. g. expert systems), or empirical learning (e. g. 
ANN). They suggest a number of problems with empirical learning techniques* that an 

infinite number of characteristics describe objects, and the selection of them can be 

subjective, the context dependent nature of the classification task; that complex feature 

constructs can greatly assist learning, but such constructs are difficult to realise, and that 

gathering of a statistically representative data set is difficult, leading to difficulties with 

the trained system dealing with uncommon cases. 

[BROUVv'N/KRIJGSMAN 94] suggest three important properties of ANNs for use as 

nonlinear system modelling. "representation ability of arbitrary nonlinear mappings. - 

static behaviour; representation ability of system states (memory): dynamic behaviour; 

and learning ability in a time-varying environment: adaptive behaviour ". 

Summary of Features of ANNs 

ANN are massively parallel distributed processing units, connected according to various 

types of architecture or topology [THIBAULT/GRANDJEAN 92] 
. 
Knowledge is not 
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stored within the individual processing elements, but is represented by the strengths of 
connections between the elements. An ANN comprises of connected neurons, and a 
learning algorithm [RAO/RAO 93]. Each neuron comprises of weighted connections, an 

integration function, and an activation function. An ANN has distributed information 

acquisition and storage, parallel computation, and non-linear adaptive nodes/neurons. 
There are more than fifty types of neural network , including: supervised, unsupervised, 
binary, analogue, fully interconnected, and feedforward [TFI[[BAULT/GRANDJEAN 

92]. The number of layers of neurons varies (input layer, hidden layer(s), and output 
layer), as does the number of neurons per layer. The major application domain is pattern 

recognition; but also includes: speech synthesis, retrieval of data from fragments, 

robotics, process analysis and control, data compression, and fault detection and 
diagnosis [TI-HBAULT/GRANDJEAN 92]. The strengths include- deterministic 

computational speed (back propagation is one method which improves self-organising 

quality), ability to provide a high degree of robustness/ fault tolerance, inherently 

qualitative, ability to learn, ability to generalise from previous examples to new ones, 

abstraction of essential characteristics from inputs containing noise, and hardware 

implementation possible. Weaknesses include: numerical results are not always precise 

(especially if extrapolated from training data), and full training is usually required (a data 

intensive exercise). Opportunities exist for a generic 00 structured set of input and 

output neurons, to be selected for process control implementation, and rapid reuse. 

2.3.6.1 Data Requirements 

It is important to select a complete representative data set of the system to be modelled, 

which represents every possible system class of behaviour, and stochastic process/system 

error [MASTERS 93]. Figure 2.13 illustrates a near-ideal data set for a variable- which 

includes values from the full range possible for the variable, and has regions of rapid 

change, both positive and negative. This range of data is necessary to assist effective 

training of the neural network. The data set will be partitioned for the tasks of training, 

testing, and validation [DTI 94]. Selection of variables for data gathering can be 

achieved through analysis. 
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Figure 2.13- Example of Good Data Set for Effective ANN Trainin 

[COOK/SHANNON 91] consider development of the training data as being one of the 

most important steps in ANN modelling-, and it includes- 

1. Collection of data from many different scenarios. 

2. Collection of data regarding all influential variables and factors. 

3. Capture of as much history of the process as possible. 

[MASTERS 93] has guidelines relating to encoding, and ANN structures for a number of 

different variable types- nominal, ordinal, and interval. When coding nominal variables, 

say fruit type as "apple", "banana", or "peach", each can have a separate node on the 

ANN structure, with a binary value "I" or "0" (called one-of-n coding). Another option 

is to scale the value as 0,0.5, and I for a single node (but this is implicitly assigning an 

order relationship). A third option is equilateral coding, where the basis vectors are 

projected on one less dimension as shown in Figure 2.14, requiring I less neuron than 

classes. 
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Figure 2.14 - Equilateral Coding of Nominal Variables [MASTERS 931 

Ordinal variables, are a hierarchically higher form of information then nominal 

variables, with order relationships [MASTERS 93]. Apercentile transformalion based 

on local or global information (say, class average height against national average height) 

can be used to represent ordinal variables. Another representation, is of nodes as 

thermometers, as illustrated in Figure 2.15, where multiple nodes are presented with 

binary input based on categorisation of the data. 

on =off 

Figure 2.15- Thermometer Representation of Ordinal Data [MASTERS_qýj 
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We can order interval data and order differences between the interval data [MASTERS 
93], by using mean and standard deviation values. The hierarchically highest form of 
data are ratio variables, where zero is a true zero (e. g. zero degrees Kelvin, or weight 
measured in any units). It is considered important to scale data so that all variable values 
presented to an ANN are in the same range, to initially equalise importance of variables, 
and assist algorithms to train the ANN. 

[QIN 93] takes a statistical perspective on ANNs for process modelling and control. It is 
shown that collinearity of data, presents problems to training algorithms based on least- 

squares optimisation. The resultant trained ANN using collinear data enlarge variance of 
prediction. It is suggested to use PCA or Partial Least Squares (PLS) statistical analysis 
of data prior to training to enable the trained ANN to avoid such problems. 

2.3.6.2 Architectures and Algorithms 

There are a number of different ANN architectures and algorithms. Table 2.10 

characterises the main ANN architectures in terms of network name, type of network, 

application areas, strengths and weaknesses. Training of ANNs is either supervised, 

where both inputs and outputs are presented to the ANN, or unsupervised, where ANN is 

presented with just the inputs. After a training run, with all training data sets having been 

passed to the ANN, an error or cost function is calculated [DTI 94]. Several common 

cost functions are- total sum of squares, weighted sum of squares, LI norm, cross 
2 

entropy, and R. Each ANN architecture uses a different algorithm to adjust the weights 
based on the error or cost value. The most common algorithm for use with MLP ANNs is 

the "gradient descent with momentum" or standard backpropogation algorithm [DTI 94]. 

[HAPPEUMURRE 94] examine the design and evolution of modular ANN architectures 

towards developing a general theory relating architecture to specific neural functions. 

They support the view that the best performing architectures have reproduced the overall 

characteristics of the natural vision system. They discuss the work of Solla (1989) in 

attempting to extract rules from ANN configurations, they suggest that this is likely to 

occur "if the summed intrinsic probability of aIlANN configurations that realise the 
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NETWORK 
- 

TYPE APPLICATIONS STRENGTHS WEAKNESSES KiFp feed forward, discrimination-, suited to a wide range will not indicate when 
supervised classification, of problemsl inputs are outside the 
learning pattern; interpolates and scope of training data: 

recognition; generalises well, can requires iterative 
interpolation; accept both training. 
prediction and continuous and 

forecasting-, categorical inputs. 
process 

modelling. 
Radial Basis feed forward, discrimination, can model local data poor at representing 
Function (RBF) supervised classification; more accurately than global properties of 

learning pattern MLP-, can indicate data. not suitable for 
recognition, novel inputs-, rapid problems with many 
interpolation; training-I greater non- inputs, limited 
process linear capability than interpolation 
modelling. MLP; can be trained capability-, there is no 

using a mixture of generally accepted 
labelled and method for choosing 
unlabelled data. radial basis function 

vectors. 
Learning feed forward, discrimination, can cope when poor at representing 
Vector supervised classification; individual classes global properties of 
Quantisation learning pattern have a rich varietv of data. 
(LVQ) recognition. forms. 
Recurrent and feedback, time series has a form of poor at using 
Recursive supervised prediction. "memory"; compact contextual 

learning representation of information. 
problems 

Auto- feed forward, data validation; can be used in difficult to produce 
associative e. g. unsupervised data different problem complex models of 
a5 layer MLP teaming compression. areas from other data. 

ANNs. 
Unsupervised feed forward, clustering; does not need labelled difficult to determine 
Learning e. g. unsupervised finding patterns training data; can be when training is 
Kohonen learning within data, data used when little is complete; need to 

compression. known about data. make assumptions 
about the 
dimensionalitv of the 
output map. 

Multiple multiple ANNs various can provide better requires more 
of different results on complex detailed problem 
types problems. analysis. 

Table 2.10 - Characteristics ot'Main A-NN Architectures (based on I-DTI 94 1) 

desired mapping is high ". [HAPPEUMURRE 94] discuss the work of Lecun et al 

(1990), who state that "good generalisation can onl be obtained by design *ng a ANN yI 

architecture that contains a certain amount of a priori Imowledge about a problem 
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[TOWELL/SHAVLIK 94] present a hybrid learning system- Knowledge-Based 

Artificial Neural Networks (KBANN)- built on top of connectionist learning techniques 

using backpropogation. Figure 2.16 shows the process of converting both rules and data 

into a combined trained ANN. The empirical results suggest than KBANN performs 
better than six empirical learning algorithms, and two hybrid algorithms. 

( in 

k)t 

z1 -1-1 ; -l., 
---l 

\(data, ' 

Figure 2.16 - Combined Rule and Data Training of ANN rTOWELL/SHAVLIK 941. 

[BROUWN/KRUGSMAN 94] suggest that hybrid linear/ RBF ANNs are effective and 

stable in modelling as a function approximation. Further, they suggest the OLS 

algorithm as being a reliable and effective optimisation tool. They suggest a number of 

problems with NELP ANNs with regard to adaptive system identification. the nonlinearity 

of weights detracts from the ability to optimise weights through supervised learning, and 

that the hidden layer detracts from ability to analyse static and adaptive behaviour. 

2.3.6.3 Structure 

Structure relates to the number of nodes in the input, hidden,, and output layer. The 

hidden layer, if present, may include just one layer of nodes, or several layers of nodes. 

When training, the input and output nodes are presented with an equal number of 

variables in a number of sets of data. Alteration of structure, and training are iterative 

processes for the analyst. [MASTERS 93] suggests that larger networks require larger 

training sets, as with larger number of input nodes there is a greater opportunity for false 

random patterns to be learnt. He further suggests that the connections between the inputs 

to the hidden layer form the majority of free parameters (this will be (n+1) *m weights). 
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A useful heuristic for calculating the minimum training data set, is - the minimum training 
data set should be double the number of weights in an AAW (double this for much better 

training). [COOK/SHANNON 91] suggests that the number of iterations required of an 
ANN to converge on the desired output depends on the learning rate amongst the hidden 

nodes. They suggest increasing the number of nodes in the hidden layer until the 

convergence rate no longer decreases. 

2.3.6.4 Training,. Testing and Validation 

There are three stages before utilisation of the ANN, which are training, testing, and 

validation, each using different partitions of the data set [DTI 94] [MASTERS 93]. 

[MASTERS 93] emphasises the need for random starting weights, as the trained ANN 

needs to interpolate between data samples, and sometimes hidden nodes specialise in 

regions of the data set to the detriment of the overall ANN. Randomisation of starting 

weights ensures that repeated training will not usually result in repetition of excess 

specialisation on the part of the ANN. [MASTERS 93] suggests adding hidden layer 

neurons, if training error is unacceptable; and merging test set and training data sets if 

tested ANN does not have acceptable error levels. 

[TASCELLO et al 93] review methods of training ANNs to avoid the "much feared" 

local minima. These include: "incorporating afinal layer trained with the least squares 

method; use of the steepest descent autotuning method to vary the sigmoidal activation 

function; and use of a genetic algorithm to swap values within the AAW controller, which 

has been held initially stable by afixedfeedback controller". 

2.3.6.5 Software and Hardware Environments 

[DTI 94] summarise the selection factors with regard to implementation of ANNs- "the 

choice between parallel or sequential hardware; the differences between a sofiware 

simulation and a hardware implementation; the choice ofplaýform for software 

implementation; and the required training and execution speed". Software solutions tend 

to be: " general purpose and flexible, easy to understand, slower than a hardware version, 
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and able to implement a wide range of ANN architectures". Also, software solutions tend 
to be: "much faster than general purpose devices, use dedicated software, and impose 

restrictions on ANN architecture". [LUTZY/DENGEL 93] reviewed a number of ANN 

software simulators available free of charge by anonymous File Transfer Protocol (FTP) 

via the internet: PlaNET v. 5.6 from the University of Colorado at Boulder, Pygmalion 

v. 2.0 from the University of London, Rochester Connectionist Simulator v. 4.2 from the 
University of Rochester, Stuttgart Neural Net Simulator v. 1.3 and v. 2.0 from the 
University of Stuttgart. A MLP ANN with backpropogation for optical character 

recognition was tested on these simulators. The input layer was 375 units from a 15x25 

optical grid. [LUTZY/DENGEL 93] found that performance and functionality of these 

simulators varied significantly. At present, NIATLAB with the Neural Network Toolbox, 

and Neuralworks are the leading commercial packages for ANN software simulation 
[DTI 94]. The NIATLAB Neural Network Toolbox, a leading commercial ANN 

environment, supports the following architectures: MLP, Linear, Backpropogation, RBF, 

Associative Learning, Self-Organising, LVQ and Recurrent. Textbooks such as 
[MASTERS 93], and [RAO/RAO 93] contain less sophisticated software to enable ANN 

simulation. 

2.3.6.6 Applications 

Since the Hopfield ANN of 1982 and increasing computational power availability, 

ANNs have become the focus of much research [TEIEBAULT/GRANDJEAN 92]. There 

follows a review of the literature, with particular reference to manufacturing processes, 

bioprocesses, and manufacturing production management applications. 

[REETNLAN/LORY 93] describe the use of ANNs in modelling semiconductor 

manufacturing processes, in particular plasma etch modelling. Their model was designed 

to predict a wafer attribute rather than a rate of chemical reaction (a step more abstract 

than comparable plasma etch ANN models). A three layer MLP with backpi-opogation 

algorithm was used with a single hidden layer with a variety of nodes, input/output nodes 

(flow rates of gases, applied rf power, pressure, reflected rf power, induced dc-blas, pre- 

and post- etch oxide thickness, etch times, and several fields to act as keys). They 
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suggest that "development of ANN architecture is analogous to choosing all optimal 

subset of regression variablesfor a statistical model". A data set of 1744 input/output 

vectors was gathered for the process. After a number of trials, a single node was added to 
both the input and hidden layer with a fixed value of I to allow neurons to self-adjust 

thresholds. 

[NADI et al 91] use a combination of feedforward backpropogation algorithm and single 

associative memory ANNs to capture the process dynamics of, and model semiconductor 

manufacturing processes. The data set used to predict stress comprised of variables 

concerning- pressure, temperature, flow rate, time, position, thickness, and deposition 

rate. Influence diagrams were developed which represented qualitative knowledge about 

the process physics (See Figure 2.17). The influence diagram was partitioned into 

different ANN structures for training and testing (See Figure 2.18). It was found, after 

training, that ANN performance was not as good as expected (although still superior to 

statistical models)- the cause was thought to be due to absence of a significant variable in 

the influence diagram, or noisy data. They conclude with. the proposed use of influence 

diagrams and multiple ANN architectures as a flexible methodology for capturing both 

qualitative and quantitative aspects of a process; the recognition of the ability of this 

approach to generalise relationships from data; and the indication of superior 

performance of this technique over statistical modelling. 
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Figure 2.17- Influence Diagram [NADI et alýlj 
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Figure 2.18- Integrated ANN from Influence Diagram [NADI el al-21 -tj 

[LEE at al 92] use ANNs to design cellular manufacturing systems identifying part 
families for Group Technology (GT). A four layer Kohonen ANN was used with data 

relating to ten parts and fifteen machines. This application was able to classify known 

parts to families and machining centres, and assign new parts to appropriate machining 

centres (from the ANNs ability to generalise). 

[COOK/SHANNON 91] use a MLP ANN with backpi-opogation algorithm for predicting 

process parameters of the composite board manufacturing process. Input data at time t, t- 

1, and t-2 included- moisture content at two points, dryer temperature at two points, bulk 

density, blender infeed moisture content, product, blender outfeed moisture, amp usage, 

and classification of resin treatment, used to predict output blender outfeed moisture 

content at time t+1, and classification of resin treatment at time t+1. They found that the 

trained ANNs predicted process parameters correctly 70% of the time. Minimal 

convergence was found with small learning rates (0.3 and less), and a momentum factor 

of 0.9. The predictive accuracy increased by between 7% and 19% if the data set was 

enlarged from 30 examples to 60 examples. 
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[M11DDLEALI 93] describe the application of ANNs for modelling the robotic arc 
welding process. A MLP ANN with backpropogation algorithm was used wl ith 0,1 or 
hidden layers and the input variables of: welding current, welding voltage, travel speed, 
plate thickness, and joint gap, to predict the outputs of bead width, bead height, and bead 
penetration. It was observed that the greater the complexity of the relationship between 
the input and output data, the greater the number of nodes in the hidden layer required. 
Between 5,, 320 and 25,000 iterations were required for convergence to enable the ANN 

models to be predictive within 5% and 10% of data values. 

[ZENG/FANG 93] use ANNs to model Tungsten Inert Gas (TIG) welding to enable 
parameter prediction and quality inspection. A feedforward MILP ANN with 
backpropogation algorithm was used with I or 2 hidden layers, and the input variables 

of: mild steel,, stainless steel, flat position, H/V position, vertical position, overhead 

position, sheet thickness, joint gap, and filler rod diameter, used to predict the outputs of 

current, voltage, filler rod consumed per meter of weld, weight of weld metal deposited 

per metre of weld, and arc time per metre of weld. A total of 72 input-output data pairs 

were used from the Welding Institute to train the ANNs. It was observed that the ANN 

trains much faster with two hidden layers. Convergence took between 2,885 and > 15,000 

iterations for the ANN models to predict values in agreement with the data. 

[TFILBAtJLT/GRANDJEAN 92] describe a fedbatch fermentation application in which 

a single pipe feeds a single reaction tank, with the control objective of maximising the 

productivity of the fermentation. They used a three layer MLP ANN with 

backpropogation algorithm, with 10 nodes in the hidden layer, 5 in the input layer 

(biomass concentration, substrate concentration, influent medium flow rate, fermenter 

volume, a bias of I at instant k), and a single output node (biomass maximisation 

criterion a step ahead of k). It is suggested that ANN models that predict the change in 

total biomass are more discriminating than those that predict the total biomass. 

[TASCILLO et al 93] determine robotic hand control using ANNs and fuzzy sets. The 

robotic hand has two three-jointed fingers, and a two-jointed thumb; and [TASCELLO el 
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al 93] seek to carry out an effective first grasp of a tubular object. A grasp stability 
hierarchy is developed, and fuzzy sets are defined for tip and slip control based on the 
hierarchy and sensed variables. A genetic algorithm was used during a stage of the 
training, to avoid backpropogation local minima. A number of different structures were 
tested, with training up to 9,900 iterations (although the majority of learning had been 

accomplished by 800 iterations). Nine inputs relating to approach and rotation vectors, 
and finger and thumb angles (in fuzzy sets), were used to predict object grasp 
effectiveness successfully. 

[SU/MCAVOY 93] use ANNS for the predictive control of nonlinear chemical 

processes. It is suggested that MLP adapted as NARX models (i. e. a one-step ahead 

predictive model), have decreasing performance in large time horizons. [SU/MCAVOY 

93] use both a series-parallel and parallel MILP (as attached to plant model) with Feasible 

SQP algorithm with three manipulated variables, and one output variable varying the 

certainty of measurement delay. 

2.4 Manufacturing Processes Modelling and Control 

In the original scope of the CASE award with Pera, was consideration of novel and 

advanced control paradigms for control of the pultrusion process. After the introduction 

to control concepts in Section 2.4.1, there follows a review of conventional and advanced 

control paradigms in Sections 2.4.2 and 2.4.3. Then manufacturing process applications 

of modelling and control are presented in Section 2.4.4, focusing on the pultrusion 

process, bioprocesses, and other examples of process control which demonstrate 

effectively modem control paradigms. 

2.4.1 Introduction 

Control systems can be designed empirically, using past experience and repeated 

experimentation, or analytically, using modelling, equations, analysis and design 

[CBEN 93]. Different kinds of control system exist: position, velocity, temperature, and 

trajectory control. Things or systems are controlled automatically, remotely, or by 
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scaling up the input system (magnification). Open loop control is where the actuating 

signal is some function of the reference signal (the function being a qualitative or 

quantitative model of the process, predicting output in response to input and in line with 
desired value). Closed loop control is where the actuating signal is some function of the 

reference signal and the plant output (the plant output being the "feedback"). There are a 

number of types of control problem: linear, non-linear, deterministic, stochastic, 

single-variable, and multi-variable. 

A real-time or embedded system is a generic type of computer application which 

processes information, but has some other prime function [BURNS/WELUNGS 91 

Real-time systems must exist and interact with the real world. They must perform actions 

in response to external events in a time frame dictated by the problem domain. The 

correctness of a real-time system depends upon both the logical result of the 

computation, and the time in which the results are produced. Examples include- process 

control, manufacturing, and communication, command, and control. 

Dynamic attributes which form part of the functional specification of a real-time system 

include: interrupt handling and context switching, response time, data transfer rate and 

throughput, resource allocation and priority handling, tasks synchronisation and intertask 

communication [BURNS/WELLINGS 91]. These could be used as a basis for assessing 

the performance of alternative novel controllers. 

[OGATA 90] considers the transient-response and steady-state error analysis as 

important in identifying what order a control system is. Use of typical test signals (e. g. 

step functions, ramp functions, accelerations functions, impulse functions, and sinusoidal 

functions) allow simple mathematical and experimental analysis of control systems. The 

transient response is defined as "that which goesftom the initial state to thefinal state"; 

and steady-state response as "the manner in which the system output hehaves as time t 

approaches infinity". Further defined are ahsolute stahility, relative stahility, and steady- 

state error. 

72 



[OGATA 90] views control systems as being one of four hierarchical levels of 
complexity: open loop, closed loop, adaptive loop, and learning loop. The latter two are 
typical of advanced controllers. Each level is responsible to a different performance 

index or control error. 

2.4.2 Conventional Control 

"Conventional control theory is based on the input-output relationship, or transfer 
function" [OGATA 90]. A number of conventional control analysis and design methods 

are presented, which are summarised below. These methods include- the root-locus 

method, the frequency-response method, design and compensation techniques, and 
describing function analysis. 

The root-locus method is based on the characteristic of the transient response of closed- 
loop systems being related closely to the closed-loop pole position [OGATA 90]. This is 
demonstrated when the system gain is varied from zero to infinity, by the locus of roots 

of the characteristics equation (showing a clear contribution of each open-loop pole or 

zero to the locations of the closed loop poles). The techniques is graphical, and may be 

extended for systems with several parameters being varied, with the resultant plot being 

called the root contour. This method is useful for assisting in the design of single-input 

single-output control systems. [CHEN 93] adds that the method is trial and error based, 

and does not consider constraints on actuating signals (the constraint must be checked 

after system design, and if not met the system must be redesigned). 

The ftequency-response method involves varying the sinusoidal input signal over the 

range of interest, and studying the steady-state response of the system [OGATA 90]. 

Stability criterion (such as Nyquist) support investigation of absolute and relative 

stabilities of linear closed-loop systems from a qualitative knowledge of their response 

characteristics. This method is useful for assisting in the design of single-input single- 

output control systems. The three commonly used representations of sinusoidal transfer 

functions are the- bode diagram or logarithmic plot, polar plot, and log-magnitude versus 

phase plot. The tests are simple using readily available signal generators and 
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measurement equipment, and enable experimentally-determined transfer functions of 
complicated/ complex equipment/ systems to be determined. 

Design and compensation techniques use the root-locus method and trans i ent-response 
method to design control systems to the specifications of accuracy, relative stability, and 
speed of response [OGATA 90]. Use is made of Proportional (P), Integral (1), and 
Derivative (D) compensators (or a combination) to design desired control system 

performance. The combined PID controller is common in industry, particularly for 

control of chemical processes [CHEN 93]. Zeigler and Nicols developed a widely used 
quarter-decay criterion heuristic for tuning PID controllers, which states that if the 

second unit-step response of a system is approximately 25% of the first, then the integral 

of the absolute error with r(t)=1 is minimised. 

The describing-function analysis of nonlinear control system is defined as the complex 

ratio of the fundamental harmonic component of the output to the input [OGATA 90] as 

shown in Equation 2.4. 

N= Y, L-ý, 
.................... 

Equation 2.4- Describing Function Analysis 

x 
Where N= describing function 

x= amplitude of input sinusoid 

Y, amplitude of the fundamental harmonic 

component of output 

ý, = phase shift of the fundamental harmonic 

component of output 

[OGATA 90] characterises non-linear control systems in terms of inherent nonlinearities 

(e. g. saturation, dead-zone, hysteresis, backlash, static friction, coulomb friction or other 

non-linear friction, nonlinear spring,, and compressibility of fluid), or intentional 

nonlinearities (e. g. to simplify construction and/or system performance). 
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2.4.3 Advanced Control 

"Modern control theory is based on the description of system equations in terms of n 
first-order differential equations, which may be combined into afirst-order vector-matrix 
differential equation" [OGATA 90]. Advanced control techniques (including optimal 

and adaptive controllers) can readily deal with multiple-input, multiple-output, time- 

varying nonlinear systems. The state-variable equations (using the first-order vector- 

matrix) form a linear space, called state space [CHEN 93]. Commercial software 

packages such as NIATLAB, are suited to matrix manipulations for controller analysis 

and design. 

Adaptive controllers continuously and automatically measure dynamic characteristics 

(such as transfer function, or state equation) of a process, and compare these to desired 

values, and send appropriate actuating signals to control the process irrespective of 

environment instability [OGATA 90]. Adaptive systems must measure their own 

performance, and adapt internal parameters in a self-organising manner [OGATA 90]. 

Optimising control systems "search the space of variables controller parameters as a 

function of some performance index to determine where the performance index is 

maximised or mimimised" [OGATA 90]. 

Learning (control) systems are capable of recognising patterns from historical situations, 

and react in an optimal manner [OGATA 90]. Learning systems represent a higher level 

control system than an adaptive control system. 

2.4.4 Manufacturing Process Theory 

There follows a review of the literature relating to mathematical models and theory 

regarding pultrusion, bioprocesses, and logistics. ANN and RBS application examples of 

these processes are documented in the ANN and RBS sections of this thesis respectively. 
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2.4.4.1 The Pultrusion Process 

[KALPAKJIAN 89] outlines a taxonomy of forming and shaping processes for plastics, 

elastomers, and composite materials (see Figure 2.19). Pultrusion is one of a group of 

processes that combines fibres with the resin system to produce end products (the products of 

pultrusion are often called pultrudate). The variety of pultrudate typically includes long 

shapes with constant cross-section profiles, such as golf clubs, drive shafts, ladders, 

walkways, and rails. Pultrusion is being used to manufacture increasingly large structural 

components, such as railway cars, and bridge pillars [ROGERS 90]. [JOHNSON/GHOSH 

81] review physical defects arising from composite material fabrication. These defects, with 

respect to glass-fibre reinforced plastics (e. g. some pultrudates) include- "incomplete 

impregnation offibre, incomplete cure of resin, poor wetting and subsequent poor adhesion 

offibre to the matrix, the presence of bubbles, voids, delaminations, broken strands', loose 

ends offibres, knotted strands, wrinkled strands and crevices, crazing cracks and local resin- 

rich areas". 

The pultrusion process produces a uniform cross-section continuous composite product. The 

process typically involves continuous fibres/fabric/rovings pulled through a resin tank, 

through an optional breaking station to loosen fibres, preformed in the preformer to remove 

excess resin and air voids, and then cured or finally shaped in the constant cross section 

heated die before being cut to length by a cut-off saw (see Figure 2.20) [HAMLEE 86]. 

The basic inputs are raw materials (fibre, mats, resin). Thermosetting resin systems set 

irreversibly through the process of crosslinking, under the influence of heat and pressure 

within the die. Thermoplastic resin systems, experience polymer chain growth and weak van 

der Waals forces upon cooling, which is reversible upon the application of heat (unless too 

much prior heat has been applied leading to chain breaks and material degradation) [HULL 

81][BOUZON/VERGNAUD 92]. Further differences between thermoset and thermoplastic 

pultrudates are experienced at: the resin tank/ point of application of resin to fibre, the die, 

and the exit from the die. At the resin tank, thermoset pre-pultrudate is usually a glass fibre 

passing through the liquid-form resin to achieve wetout. The thermoplastic pre-pultrudate 

could be: premingled resin and glass fibre and no resin tank, or glass fibre passing through a 

pool of molten resin in the tank (similar to typical thermoset), or glass fibre passing through a 
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fluidised powder bed of resin. At the die, entry geometry varies between thermoset and 
thermoplastic pultrudate, and also the typical nature of the reaction- thermoset pultrudate is 
exothermic, and thermoplastic pultrudate is endothermic. Thermoplastic pultrusion dies often 
have higher temperatures due to the higher melting points of resin systems/ polymers. At the 

exit from the die, thermoset pultrudate is rigid and cured, whilst thermoplastic pultrudate 
could be either rigid or flexible, depending on if the pultrudate temperature is above or below 

a critical temperature of the polymer (if above, flexible, if below, rigid). Presently available 

operator control mechanisms are to vary line speed and die temperature. Physical components 

of the processing equipment are usually fixed in sequence. Significant process variables 
include cure time, gel time, peak exothermic/endothermic temperature, polymer melting point 
temperature, and product quality. The complex non-linear nature of the process, and the 

exothermic/endothermic reaction and temperature gradient within the heated die, add 
difficulty to consistent control of key variables to desired setpoints [LEE et a/ 91]. 
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Figure 2.20- Physical Schema of Pultruslon Process 

Thermoplastic pultrusion, yet to be optimised, offers the potential of post-forming Z7) 
pultruded parts (i. e. stopping the process midstream, and returning to it later rather than 

scrapping it) [ROGERS 90]. Resin systems must suit pultrudate material and equipment 

output requirements, and thermoset resin systems using multiple catalysts are 

increasingly common [COLANGELONAITOVE 83]. 

Models of the Pultrusion Process 

Research on the pultrusion process has focused on mathematical models. Table 2.11 

present an overview of this research, which will then be critiqued in the following text. 

e Heat transfer & degree of Ie HanALee, Walsh/Charmchi, Lo el al, 
ý 

cure I Batch, Gorthala et al. 

e Combined cure & pull 19 Lee et al (including G. S. Springer). 

force model 

e Pull force & General I* Gutowski, Gorthala el al, Larock ei 

concepts I al, Wilson el al. 

Table 2.11 - Overview of Research into Pultrusion Modelling and Control 
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[HAN/LEE 86] have developed a mathematical model of the pultrusion process with a 
view to understanding those fundamental aspects of the process which are important for 

maintaining consistent product quality. They consider achieving a uniform degree of cure 
in the cross section of a pultruded product as critical, with control of temperature the 
most important processing variable. With respect to material properties of the pultrudate, 
pulling speed is seen as the most important processing variable. Noting that a 't I1011- 
uniform distribution of temperature in the cross section of material implies a non-unýfornl 
distribution of the extent of crosslinking reactions, which in turn means a non-liniform 
distribution of molecular weight and thus, of mechanical properties Qf the pultruded 
product". Pultrudates investigated include- unsaturated polyester resin/glass fibre, epoxy 
resin/glass fibre, and epoxy resin/ carbon fibre. They make the following assumptions in 
their model - "(1) the process is at steady state, (2) the velocity profile isflat, (3) the heat 

conduction in the axial direction is negligibly small compared to that in the radial 
direction, (4) the diffusion of the resin during cure is negligible, (5) the local motion of 
the resin during cure is negligible ". The model consists of continuity and energy balance 

equations, and a rate expression for cure reaction. Table 2.12 lists the parameters of the 

submodels. They conclude that their model performs well, and that the rate of cure is 

greatly affected by the resin/fibre mixture. 

Continuity And Energy Balance Rate Expression For Cure Reaction 
" Concentration of resin being Degree of cure, a 

cured, CA Constants, m and n 
" Temperature of Cylindrical rod Rate constants which vary with 

moving through the die, T temperature, k, and k2 

" Bulk density, p Frequency factors of Arrhenius 

" Bulk specific heat, Cp relationship, kjo and k20 

" Bulk thermal conductivity, k 0 Activation energies of Arrhenius 

" Rate of formulation of cured relationship, El and E2 

resin, RA 0 Universal gas constant of 
" Heat of reaction due to cure, AHR Arrhenius relationship, R 

" Initial concentration of the 
reactive resin at die entrance, CAO 

Table 2.12- Parameters of [HAMLEE 861 Pultrusion Process Model 

[LEE et al 91] assert that no complete model of the thermoplastic pultrusion process has 

been produced. They developed a simulation model that considered "temperaliire, 

79 



crystallinity and bonding inside the composite, and the requiredpullingforce din-ing 

pultrusion offiber reinforced thermoplastic matrix composites". The objectives of their 
model were to determine temperature, pressure, crystallinity, and consolidation as a 
function of position and time inside the composite; and to find the pulling force as a 
function of time. LEE et al utilised their own previous research of the simulation of the 

autoclave curing, and filament winding processes to devise three submodels- the 

thermochernical submodel, the consolidation submodel, and the pulling force submodel. 
Thermochernical Submodel Consolidation 

Submodel 
Pulling Force 
Submodel 

Input 0 Density of fibre, Qf 0 Original height Coulomb 
Parameters 0 Specific heat of fibre, Cf of rectangular friction 

0 Thermal conductivity of fibre, element, ao coefficient 
Kf 0 Original width between die 
Density of resin, Q, of rectangular wall and 
Specific heat of resin, Cr elements, bo composite, 
Thermal conductivity of resin, 0 Original spacing f, 
Kr between Viscosity of 
Matrix mass fraction, mm rectangular resin as a 
Number of plies, N elements, wo function of 
Thickness of one ply, So 0 Viscosity of temperature 
Pulling speed, V fibre-resin , ýtr (T) 
Relationship between mixture as a Thickness 
crystallinity, temperature and function of of resin 
cooling rate, dc/dt =f (T, dT/dt) temperature, ýtmf layer 
Die height as a function of x, H (T) between die 
(X) wall and 
Die wall temperature as a composite, 
function of x, T. (x) 
Length of die, L 
Length of the cooling section, Lp 
Air temperature at cooling 
section, Ta 

Calculation length step, Ax 

Output Temperature inside the composite Degree of Pulling force 
Parameters as a function of location consolidation as a required 

Crystallinity inside the composite function of 
as a function of location location 

Pressure inside the 
composite as a 
function of 
location 

TAIP 2 13 - Parameters of Subrnodels of rLEE et al 9 11 Thermoplastic Pultrusion Model 
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Table 2.13 lists the input and output parameters of the submodels. Use was made of finite 
difference methods to consolidate the submodels, and computer code used to simulate the 
pultrusion process. They consider the code results descriptive enough for use in assisting 
the design of pultrusion equipment. Many of the variables of the models, are not typical 

of those gathered in industrial environments. The model is limited to thermoplastic 

pultrusion. 

Consideration of the importance of pull speed in relation to a velocity profile and an axial 

pressure profile of the pultrusion process is the basis of a combined mathematical and 

experimental ly-based process model [GORTHALA et al 94a]. They consider kinetic 

parameters as important for predicting temperature profiles and degree of cure profiles. 

The combined model velocity, temperature and degree of cure profiles using equations 

concerning- "conservation of mass, two parabolised Navier-Stokes equations (radial and 

axial momentum), energy equation, and a species reaction equation ". 

Continuity Radial 
Momentum 

Axial 
Momentum 

Energy Species 

" Radial 0 Pressure 0 Pressure 0 Bulk 0 Degree of 
velocity ofthe ofthe density, Q cure, T 
of liquid resin, p resin, p 0 Specific 0 Reaction 
resin, v 0 Density 0 Density heat, c rate, RA 

" Axial ofthe ofthe 0 Thermal 0 Activation 
velocity resin, Q resin, Q conductivity, energy, Ek 
of liquid 0 Dynamic 0 Dynamic k 0 Universal 
resin, u viscosity viscosity 0 Source terrn gas constant, 

ofthe ofthe due to R 
resin, ýt resin, ýt reaction, 

SA 0 Order of 
(using heat reaction, n 
of reaction, 0 Initial 
AH , initial concentratio 
concentratio n of uncured 
n of uncured resin, C, ý 
resin, C, I Concentratio 
concentratio n of uncured 
n of uncured resin at anv 
resin at any time or 
time or location, C,. \ 
location, CA) 

A -1 Zý 

Table 2.14- Parameters of Submodels of [GORTHALA et al 94a] General Pultrusion 

Model. 
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Table 2.14 lists the input parameters of the equations. The model illustrates the increase 

on die core temperature due to increased pulling speed. Predicted degree of cure was 

compared to experimentally determined degree of cure using a Differential Scanning 

Calorimetry (DSC) and fibreglass/epoxy and graphite/epoxy pultrudates (using Shell 

EPON resin 9310/9360/537 system). They assert that the correlation of mechanical 

properties with variables of a model can be vital in characterising the pultrusion process, 

and thereby the optimisation of the pultrusion process. 

The key features of these three models are shown in Table 2.15. 

Features/ Model [HAN/LEE 86] [LEE el al 91] [GORTHALA el til 
94a] 

Goal of model to Temperature Temperature, Temperature profile. 
determine profile. pressure, crystallinity, Degree of 

Degree of consolidation profiles cure profile. 
cure profile. w. r. t. position and 

time. 
Pulling force 
profile w. r. t. time. 

Equations used Continuity. Consolidation Continuity. Radial. 
Energy balance. submodel. Momentum. Axial 

Thermochemical momentum. Energy. 
submodel. Species reaction. 
Pulling force 
submodel. 

Table 2.15- Key Features ot-Pultrusion mathematical mocteis 

[ASTROMJPIPES 91] asserts that a number of mathematical models of thermoset 

pultrusion have been proposed, but thermoplastic pultrusion has been less frequently 

modelled. The thermoplastic mathematical model predicts pressure, temperature, and 

pulling force. Experimental work qualitatively validated the model to a satisfactory level 

(due to few data points, absolute certainty not possible). Total pulling force shows a 

dependency upon die (and pre-heater) temperature, and pulling. They identify refining 

extensions of the model, that include. "extension offlo-w and heat transfer to more 

dimensions; coupling of the temperature andpressure models; pressure modelling of the 

cooled die; and allowing matrix viscosity to depend on temperature andpressure ". 
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[CHEN/MA 92] carried out experimental work to see the effects of processing 

parameters (e. g. pulling rate, die temperature, filler type and content, post-cure time and 

temperature) on mechanical properties (e. g. flexural strength and flexural modulus) of 

glass fibre and polyurethane. The conclusions include: die temperature must be less than 

200'C to avoid composite degradation; the shrinkage ratio of composites decreased with 

increased filler content', post-curing can improve thermal and mechanical properties of 

pultruded parts when the post-cure temperatures are in the range 100- 15 O'C. 

[TANG et al 87] carried out experimental work to investigate the effects of "cure 

pressure on resinflow, compaction, void content, and mechanical properties" on fibre 

reinforced thermoset pultrudates. To characterise cure pressure, qualitative descriptions 

of resin flow and pressure distribution were presented. Experimental work verified the 

qualitative descriptions to a good degree. It is asserted that cure pressure influences void 

content, which in turn influences mechanical properties. In conclusion, it is stated that the 

major objective of a cure model should be to predict. compaction, resin flow, and void 

content. 

[TAJEVWGROZEER 88] examined the chemorheology of an epoxy resin for pultrusion. 

It is suggested that the resin should gel "as it leaves the die in order to ensure 

dimensional stability of the part, and to simultaneously minimise the drawing energy and 

pullingforce ". Two approaches to modelling the chemorheology are discussed- a 

viscosity time expression with temperature dependence of parameters, or a viscosity- 

temperature with relation to kinetics of polymerisation parameters. 

2.4.4.2 Bioprocesses 

A number of applications of ANN approaches to modelling and control for bioprocesses 

have been reviewed in Section 2.3.6.6. 

[SCHNEIDER et al 94] consider adaptive predictive control of the fed-batch 

fermentation process. "Conventional wisdom" has been used to assist in developing a set 

of mathematical equations to model the fermentation process, with further kinetic 
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equations to model the mixing in the reactor. These models were used as the basis of a 
model-based predictive controller. They emphasise the importance of appropriate time 
horizons for calculations, and the impact of noise on data in industrial environments. 

2.4.4.3 Logistics 

From the literature, we understand logistics [1PRODE 89] to Involve the "art ofgetting 
the right goods, in the right quantity, to the right place, at the right time, and at the right 

cost". The organisation involves both the flow of data between customer and supplier, 

and the flow of goods to the customer [LEWISNAIM 95]. Manufacturing process 

control systems similarly involve data and materials flow- from factory wide MRP 11 and 
CIM systems to a single NC machine tool. The single Numerical Control (NC) machine 

tool utilises data from sensors fed-back and processed to assist the machining of metal 
(say) to a desired shape and specification. 

[HOEK S TRA/RONME 92] have shown a number of supply chain groupings, including- 

pipeline, single route, shared resource, convergence, divergence, and network groupings. 

If viewed purely as data processing structures, several of these structures are analogous 

to electronic logic AND/ORNOT devices. If viewed as a representation of the 

manufacture of a customer product, there is little difference between the groupings and 

Project Evaluation and Review Technique (PERT) project charts. 

[EVANS et al 95] discuss BPR of the supply chain, as a method of streamlining, and 

pursuing on-going improvement of organisation and process in (manufacturing) 

organisations. A control view is taken of BPR with sources and sinks of material flow, 

and external pressures on organisations to be competitive. Cost benefits are shown to 

result from carrying out re-engineering of organisations (the greatest savings first in the 

following list): retuning controlling mechanisms, improving pipeline controls, reducing 

all lead times, integrating information flow, and removing the distributor echelon. 

[TZAFESTAS/KAPSIOTIS 95] examine the optimisation of hierarchical supply chains 

in three scenarios: 1. top level manufacture cost optimisation; 2. co-operative chain 
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relationships to minimise overall supply chain cost, and I conflicting local level 

optimisation goals for all stages in the supply chain. Costs and delays are incorporated in 

each stage of the supply chain. They successfully used mathematical inventory balance 

equations to model these scenarios, and offer insight into the dynamics of the supply 

chain process. 

2.4.4.4 Other Processes 

A limited review of a significant paper regarding S-RIM, a process related to pultrusion 

follows. 

[GONZALEZ-ROMERO/MACOSKO 90] present initial design strategies for definition 

of Structural Reaction Injection Moulding (S-RIM), and Resin Transfer Moulding 

(RTM), focused on the use of mouldability diagrams (see Figure 2.21). With the use of 

these diagrams it is possible to define a set of conditions necessary to meet process 

requirements. 
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Figure 2.21 - Mouldability Diagram for the Curing Step of the S-RIM or RTM Process 
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2.4.5 Discussion 

Complex processes may be characterised in two ways- mechanics and thermodynamics. 
Increasing automation of discrete and continuous manufacturing processes has led to an 

almost exponential increase in the numbers of sensors, actuators and data that needs to be 

monitored and controlled in real-time. The question is: how can we develop 

controllers and monitors that rit within the existing hierarchical plant-wide control 

structures? Generic qualitative process models, and/or possibly 00, could be used 

within an existing framework of hierarchical plant-wide control. The advantages would 
include- reuse of process models, reduced data intensity due to use of QM concepts, and 

reduced development time. 

Control systems have elements which may be different control paradigms, each of these 

elements may be hybrid (e. g. some PID, some rule based, some hierarchical). The 

problem is that, firstly, we don't know enough about the process. Secondly, that we 

know less about how to control it. The solution, at first glance, is to develop an 

environment to develop both the controller, and implicitly our knowledge of the process. 

The environment could achieve this by the generation of an initial fairly complete model, 

with the possibility of refinement or trimming. 00 techniques, QM, and the use of 

multiple control paradigms are all relevant to this environment and the solution of 

industrial problems. 

2.5 Prdcis 

Section 2.5.1 defines complex processes, using as an example the pultrusion process. 

Section 2.5.2 outlines important issues relating to process characterisation. Section 2.5.3 

states key areas to be addressed in the design and execution of models of complex 

processes, again using the pultrusion process as an example. Section 2.5.3, in defining 

the key areas of investigation, supports the structure of this thesis and the approach to the 

work undertaken in Chapters 3,4,5,6, and 7. 
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2.5.1 Thermoset and Thermoplastic Pultrusion 

The pultrusion process is relatively new and not yet fully understood 
[COLANGELO/NAITOVE 83]. Much of the technology required for the process was 
developed in the early 1960s, similar to the technology of filament winding as in 
[ROSATO/GROVE 64]. There is potential for significant reductions in process set-up 

time, improvements in product quality, increased process line speed, product output, less 

over-specification in product design, better on-line error (i. e. product or process) 
detection and correction through the development of an improved process control system 

[WELSON/BUCKLEY 94]. For these reasons, and the similarities between pultrusion 

and other related complex processes (i. e. due to an imprecise knowledge of the results of 

the interacting sub-processes e. g. Reactive Injection Moulding (RIM) and RTM 

[GONZALEZ-ROMIERO/MACOSKO 90]), the pultrusion process was chosen as one 

case study. It is described in section 2.4.4.1. 

2.5.2 Process Characterisation Through Laboratory Trials 

Depending on the process addressed, pertinent and relevant data must be gathered to 

assist in its characterisation. Problem analysis methodologies may assist in identification 

of what data will be relevant. Key goals to follow when deciding on process 

characterisation procedures/trials include. 

Being broad in scope to ensure full coverage of the range of process properties. 

Being compatible with the relevant British Standards (BS), European standards and 

International Standards Organisation (ISO) standards. 

Being directly comparable with results from alternative modelling implementations. 

Being a benchmark to compare further modelling and implementation progress. 

Chapter 4 details the laboratory trials, data gathering activities and resulting data for the 

case study presented. This includes utilisation of the thermosetting Derakane 440/40 

resin system in pultrusion laboratory trials at MV characterised through process data and 

materials trials at LUT. Also detailed are laboratory trials and materials testing of a 

thermoplastic resin system at Pera and the resulting data. 

87 



2.5.3 Design of Models of Complex Processes 

Chapter 3 details fully the steps involved towards the design of models of complex 

processes. Section 2.5.3.1 identifies the goals and aspects of desired functionality of a 

pultrusion process control system. Section 2.5.3.2 expands this into key areas of 

investigation towards an enhanced understanding of complex processes. 

2.5.3.1 Goals of Pultrusion Process Monitoring System 

Figure 2.22 considers the match between process parameters and the monitoring/ control 

system attached to the pultrusion process in schematic form. Figure 2.23 illustrates a 

parameter map of the pultrusion process. It considers an initial 00 viewpoint of physical 

objects within a typical pultrusion system, user-set variables/ parameters , sensed 

variables, object variables (or inter-process variables), and common system fault states. 

Figure 2.24 illustrates sensor positioning in die (i. e. for thermoset trials at IKV). Table 

2.16 identifies what parameter is being monitored, with the key justification for 

monitoring the parameter, and the transducer/ encoder used to monitor the parameter (the 

"how"). This is based on a range of manufacturers' literature relating to data acquisition, 

monitoring and process control (e. g. Adept Scientific, Arcom, National Instruments, 

Carnaud-Metal Box, and Pera). Table 2.17 lists heuristics about the pultrusion process, 

which serve to focus parameter monitoring strategy and focus, and as a test of the IKV 

laboratory pultrusion data. The heuristics listed in Table 2.17 are drawn from the 

literature and from brainstorming activities with collaborators. 
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Figure 2.24 - Pultrusion Sensor Positioning in Di 

Parameter monitored Significance Transducer 

pull force at let off roll friction affects line 'lension"/cure x pressure/ force transducer 

roll advance at let off roll correlate with set linespeed for "slip" position encoder on spindle 

pull force at break-up station measure of fibre/mat break-up pressure/ force transducer 

resin temperature at break-up statior affects cure platinum resistance thermomete 

resin mix at break-up station affects cure SPC sample tested 

pull force at heated die detect jams etc.. pressure/ force transducer 

temperature at heated die detect thermal profile of die platinum resistance thermomete 

cure state at heated die affects quality - voids etc.. consumable thermocouple 

pull force at pull rolls affects line tension pressure/ force transducer 

linespeed at pull rolls sets line speed position encoder on spindle 

cuftina force at cut-off saw - 
force indicative of void content Dressure/ force transducer 

Table 2.16- Transducers of Pultrusion Monitoring ýSystern 
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i ne process is noi innerenny rename, ana woct wetout is required for good materials 
is not suitable for the manufacture of properties. 
aerospace parts. 

* Different production heuristics apply when 
It is possible to inject resin directlv into the 
die. 

looking at aesthetic qualities, 
physical qualities, etc.. 

9 considering different die profiles 

* Pultrusion is a continuous process. 
Pultrusion is a discrete process with small 
inter-process cycle times. 

Pultrusion is a "'jerky" process repeated at 
part-steps over short time periods to 
resemble a continuous process, 
Externalities (e. g. humidity, factory 
temperature, factory air contamination) 
affect process significantly. 

Vibration of machine (e. g. non-rigid) 
enhances/ detracts from the quality of cure 
Twisting of fibre before cure enhances final 
products material properties. 

" Thermoset cure is exothermic and complex 
due to temperature gradients across the die. 

" Temperature gradient is detrimental/ good. 

" Cross section of pultrude must be constant 
due to die and quality constraints. 

" Variable cross section is possible with an 
"'intelligent" die, 

" Die pressure is lowest at highest 
temperature. 

" Cutting force at cut-off saw indicates void 
content and cure quality. 

" "Slip" within process (between actual line- 
speed along process) causes irregular cure. 

" Tension within line affccts quality of cure. 

" All linc-speeds are not possible with some 
die temperatures. 

" Varying fibre content affects optimum cure 9 Too fast, will not cure. temperature and pressure. 

" Weight of fibre affects cure process and 
0 Too slow, and resin cures rapidly, and die 

linc-speed (less weight improves wetout). 
j am s. 

" Good fibre breakup is needed for good 
0 Good wetout, cure, and quality is not 

resin penetration/ wetout and good cure. 
possible at high line-speeds. 

Resin mixture varies over time, and 
Ultrasonics could be used as a continuous 

significantly afficts cure state. quality assessment method. 

Table 2.17- Heuristics About the Pultrusion Process 

2.5.3.2 Key Areas of Investigation 

The previous section outlined the goals to be the monitoring of user-set variables, and 

inter-process variables to enhance process knowledge towards process optimisation. 

From the literature, and the information within the previous section, we can define the 

issues and questions of interest with regard this thesis to include- 

Identification and validation of suitable complex process " roblems " to be modelled/ p 

controlled' solved 
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The pultrusion process is a real industrial problem, from which the benefits of 
application of advanced control techniques could be demonstrated 

, is not unduly 
constrained by pre-research management decisions on time-scales, tools, resources and 
implementation, and is of sufficient complexity. Similarly the biomass reactor, and the 
logistics supply chain examples are of real industrial interest. 

Analysis of data structure needsfor complex real-worldprocess modelling and ascertain 
fit to 00 techniques. 

This explores the relevance of 00 techniques to the structuring of the data, attempts to 

gauge the complexity of data requirements for process modelling, and tests the relevance 
of 00 techniques to industry for the monitoring, modelling and control of complex 
processes. 

Analysis of concept ofgeneric models, and determine extent of usefulness. 
The broadness of data gathered to test cases allows exploration of the concept of 

genericness of approaches, and the fit with data integration in organisation. Is 

genericness useful at world, national, industry, organisation, workcell, process or 

sub-process level? What are the strengths, weaknesses and metrics? What are the 

implementation issues? 

Analysis of the role of graphics in the modelling of complex processes. 

Software development methodologies and systems analysis use diagramming to solve 

problems and design systems. Within an integrated process modelling framework, which 

diagramming is most useful, and why? Does the development of complex process 

models require special treatment? There are further questions relating to the naturalness 

of the user interface. 

To develop aftamework that allows modelling to capture processes that include both 

mechanical and thermodynamic elements along a temporal scale. 

Not all processes can be characterised by just mechanical or thermodynamic elements, 

some require consideration of both for determining process parameters for monitoring 

and control. Development of such a framework involves extension to work on the role of 
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graphics for process modelling, involves work on symbolic or numeric representations of 

process models and time, and the consideration of mapping between graphical process 

model representations, and the symbolic or numeric representations required for signal 

processing, process monitoring, modelling and control. 

Examination ofpotentialfor unified qualitative and quantitative models in control. 

There are advantages and disadvantages for both qualitative and quantitative models. 

Some process model implementations involve quantitative sensor and actuation data, and 

qualitative control decisions, with parsing between the data. This research begins to 

examine the issues for combinations of qualitative and quantitative models. 

Measurement and analysis ofperformance of qualitative versus quantitative modelsfor 

complex process modelling. 

This was tied to a particular complex case study process that characterises both 

mechanical and thermodynamic elements e. g. pultrusion. This research involves 

development and application of modelling metrics, and verification exercises of the 

models using real-world data and processes. 

Measurement ofprocess model performance when using incomplete qualitative models. 

Information about real world complex processes is often incomplete, and the 

relationships between data e. g. process control data and quality data, is often 

ill-understood. An understanding of the significance of this gap in knowledge in terms of 

system performance, and knowledge of how to develop models that learn relationships is 

of interest for the industrial monitoring, modelling and control of such processes. 

Development of a novel 00 qualitative controlftamework and associated metrics. 

Based in the real world, this focuses on practical industrial benefits, generic modelling 

strategies, qualitative modelling of complex processes, and novel worthwhile techniques. 
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2.6 Discussion 

At the start of this Chapter in section 2.1 a hypothesis was proposed. The review of the 

literature has sought to support the hypothesis, which in turn has led to development of 

the OOQA and ANNPM methodologies described in Chapters 3 and 5. The OOQA 

problem analysis methodology supports the QM and 00 representations of complex 

systems. The ANNPM modelling methodology demonstrates learning, an aspect of 

intelligence. The resultant process models of OOQA and ANNPM activities are seen to 

capture some intelligence or insight relating to the processes analysed and modelled. 
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Chapter 3: Object Oriented and 
Qualitative Analysis to Aid Design 

3.1 Introduction 
A complex process case study- thermoset and thermoplastic pultrusion- was introduced 

in Chapter 2. This Chapter presents a novel real-time problem analysis methodology 

combining elements of 00 and QM methodologies to aid the design of process models. 
Section 3.2 defines this novel OOQA methodology. Section 3.3 demonstrates the OOQA 

methodology on the complex process case study. The OOQA methodology is focused on 

the analysis of manufacturing and business processes to enable effective modelling. The 

OOQA methodology is used to assist in identification of important process variables to 

assist data gathering activities. 

Chapter 2 presented the literature supporting the OOQA methodology, and fully 

discusses the 00 paradigm, and QM methodologies. There follows a brief overview of 
00 and QM, before presenting the OOQA methodology. 

Object Oriented Analysis 

The 00 paradigm was developed in the early 1980s as a tool for software problem 

domain analysis and defensive programming. The paradigm involves abstraction of 

system elements into objects which encapsulate data hidden from other objects, and have 

David Thomas Wright, "Novel Analysis and Modelling Methodologies Applied to Pultrusion and Other 

Processes", Ph. D. Thesis, Manufacturing Engineering, Loughborough University of Technology, 1995. 
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relationships with other objects, and certain behaviours; and a reusable inheritance 

hierarchy of objects. The [BOOCH 91] and [RUMBAUGH et al 91] 00 methodologies 
have proven most popular, and have been applied widely [CONSPECTUS 95]. Each has 

strengths and weaknesses as described in the literature review in Chapter 2. The OOQA 

uses a combination of the two methodologies to overcome these weaknesses for real-time 

process modelling. 

Qualitative Modelling 

[LECLAIIRJABRAMS 89] used qualitative models to represent the complexity of 

relationships between inter-process variables for autoclave composites manufacturing 

processes. [NADI et al 91] used similar influence diagrams which capture relationships 
between process variables for semiconductor manufacturing processes, from which 

regions were mapped onto neural network structures. The three main types of formal 

qualitative analysis and modelling techniques are component, process and constraint, and 

vary in suitability for generic representations. The OOQA methodology uses aspects of 

Component and Constraint Oriented QM, as beneficial for analysis supporting process 

modelling. 

There follows a description of the OOQA methodology used for real-time problem 

analysis. 

3.2 Methodology Used for Analysis 

Figure 3.1 outlines the steps in this methodology. A goal of this research is to develop a 

methodology that is most productive for the design and implementation of a real-time 

manufacturing process control system for processes that include considerable uncertainty 

and complexity. Most existing 00 and traditional software development methodologies 

have evolved from earlier generation methodologies [PRESSNLkN 92]. Thus evolution 

of a methodology, borrowing the most relevant parts of existing methodologies, tailored 

for a particular problem domain, is extending this practice. 
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Figure 3.1 Object Oriented Qualitative Modelling Methodolo 

The resultant OOQA methodology uses a complex process problem as an input, and 

ANNPM or process modelling activities as an output. ANNPM is the ANN modelling 

methodology assembled by the author primarily from the heuristics of [RAO/RAO 93] 

[DTI 94][NLASTERS 93]. 
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The stages of the OOQA methodology include: 

1. Select VieWDOint to Aid Definition of Modelling Metrics 

A brief statement of requirement is used to identify the primary goals- these may be in 
terms of both the level of analysis, simulation, or implementation of industrial 

controllers and the specific operational goals e. g. to improve product quality for a low 

cost high speed pultrusion process. 

2. Textual Description of Process/System Characteristics 

The statement of requirement is enhanced through use of knowledge elicited from 

experts to become a full problem statement. Use is then made of OMT techniques and 
heuristics to identify object classes and key aspects of real-time dynamics via dynamic 

scenario models. 

3.00 Diagrammatic Design 

This stage involves the use of Booch, OMT & novel techniques including iterative 

creation of semantic networks representing the real-time system characteristics and 

objects with relations, behaviour and attributes. It also includes the use of STDs, novel 

real-time enhanced DFDs, and ERDs. This combination has been found effective in both 

representing problems to gain understanding, and to implement models and systems to 

solve them [WRIGHT/WELLIAMS 95]. 

4.00 Design Validation 

00 design validation combines the concept of stopping the design process, as "the key 

object abstractions are simple enough to require nofurther decomposition " [BOOCH 

91], and that of design optimisation [RUMBAUGH et al 91] to increase implementation 

efficiency possibly to the detriment of clarity. Further validation is gained from 

comparison of the identified object classes with the qualitative process model nodes. 

5. Qualitative Process Modelling 

Qualitative process modelling is the combination of a hierarchical abstraction of the 

function of a system in terms of strategic/ operational/ numerical/ microstructure 

[WELLIAMS et al 91 a], and a flat hierarchical influence diagram [NADI et al 91] of 

data/variable flows characterising the key mechanisms of the process [BOOCH 91] 
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6. Experimental Design & Data Collection 

The cost and effort of gathering data must be traded off against the desirability of a set of 
data that captures the full range of process and variable behaviour. [MAY 94] defines 

experimental design as 44an organised methodfor extracting as much information as 

possible ftom a limited number of experiments " to "explore systematically and efficiently 
the effects of a set of input variables orfactors on responses". Consideration must also 
be made as to the reliability of the data or sensors gathering the data [CAWLEY et al 95] 

[HENRY/CLARKE 93]. 

3.2.1 Select Viewpoint to Aid Definition of Modelling Metrics 

The selection of viewpoint (i. e. a way of regarding a subject) has a significant impact on 

the eventual objects selected to represent a system, and the performance of that system 

measured by metrics. This is supported by the concept that: "Methods viewpoint will 

influence modelling "[ SUTCUFFE 91]; and of "diagramming as a language essential 
1 for clear thinking and better communication " [MARTIN/ODELL 91]. The selection of 

metrics influence perceived performance of the system. Ideally both metrics and 

viewpoint should be selected at the same time to avoid inconsistencies. 

There is support in the literature for the use of objects to support reduction of complexity 

to aid problem analysis and solution [BOOCH 91][COAD/YOURDON 91] 

[RUMBAUGH et al 91]. 

A further complication in respect to viewpoint, is whether it should involve 

considerations of implementation requirements (say, data storage or communication) or 

remain purely a concept to aid reduction of problem complexity and its analysis. By 

extension, another question is. - should viewpoints be necessary for devising metrics of 

the implemented system or model? The author supports the OMT definition of objects 

' the author analysed the concept of viewpoint with respect to software development methodologies in 

[WRIGHT/WILLIAMS 931. 
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and viewpoints (see above), with the proviso that definite strategic/operational goal of 
the system is established to guide choice of objects, the characteristics modelled, and 
metrics established for the implemented system or model. Examples of such strategic/ 
operational goals could be: low cost & high speed thermoplastic pultrusion, high cost & 
high value thermosetting pultrusion, shortened more coordinated supply chains, and 
rationalisation of a supply web (i. e. the supply web being defined as an overlaying 

matrix of multiple supply chains for multiple products/services). 

[MEYER 84] offers general guidance on modelling and simulation metrics- 

" Consistency with the real system and within the model. 

" Completeness to the extent to be useful. 

" Robustness. 

9 Modelling efficiency, in terms of rapidity and ease of generating process models. 

[BURNS/WELLINGS 91] offers additional real-time system metrics, 

" Computational efficiency. 

" Accuracy in achieving desired goal state. 

" Controller efficiency, in terms of ease of generating a tuned controller. 

Additionally [BURNS/WELLINGS 91] suggest other important real-time issues- 

interrupt handling and context switching, response time, data transfer rate and 

throughput, resource allocation and priority handling, task synchronisation and intertask 

communication. 

Viewpoint equates to the view taken of the problem domain and solution system, and 

also how the problem is represented to manage complexity. Metrics relate to how to 

measure performance of a system to deal with the problem. Analysis and design 

activities of a system are stages between these two points. Viewpoint can be seen as a 

starting point upon which to establish a set of unified system/model metrics de novo for 

the problem in hand based upon the strategic/operational insight of complexities by 

domain expert. 
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3.2.2 Textual Description of Process/System Characteristics 

The purpose of this stage is to capture the dominant physical, chemical, and informatic 

phenomena and typical disturbances and impact (an extension of a typical chemical 
engineering approach e. g. as in [STEPHANOPOULOS 84]). Following [BOOCH 91], it 
is advised to concentrate on the mechanisms, or how objects collaborate with each other 

using patterns of interaction. Knowledge elicitation is achieved by interviewing of 

process/system experts, site visits, and process walk-throughs (both real and imaginary- 

conceptual). Having selected a viewpoint in the previous stage, such knowledge 

elicitation should be focused on solving the problem at hand, gaining an insight into the 

process problem, and also meeting operational goals. The knowledge at this stage should 
be represented as a textual description. 

Within OMT [RUMBAUGH et al 91] there are extensive heuristics for object class 
identification using textual descriptions, which have been adopted within the OOQA 

methodology. These include stages within both a static and a dynamic object model. The 

static object model defines object classes through: extraction of nouns from the problem 

statement, the addition of nouns through use of general or problem domain specific 

knowledge, the testing of nouns using heuristics to identify usable object classes. These 

heuristic include testing for: redundancy, attribute, vagueness, irrelevance, 

implementation, operation, and role. The dynamic model considers- an event takes place 

any time any input is made into the system, or any output is taken from the system, 

construction of scenario sequences to determine the corresponding sequential interactions 

between objects to construct a model of states of objects, and ignores internal processing 

actions (e. g. Central Processing Unit (CPU)). Consideration of the "dynamic semantics 

of how processes are scheduled" [BOOCH 91 ] allows the addition of a code for message 

synchronisation to each interaction sequence scenario of the dynamic model (as defined 

in Table 3.1). A [BOOCH 91] external event list is created to assist in 00 design 

validation. 
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CONTROL 
THREADS 

MESSAGE 
FORM 

DEFINITION OOQA 
CODE 

single simple The sender sends a message to the receiver, TO 
who receives it, and then performs some 
action, or passes a message to another receiver 
sequentially. 

multiple synchronous An operation only commences when the TI 
sender has initiated the action and the receiver 
is ready to accept the message; the sender and 
the receiver will wait indefinitely until both 
parties are ready to proceed. 

multiple baulking The same as synchronous, except that the T2 
sender will abandon the operation if the 
receiver is not immediately ready. 

multiple timeout The same as synchronous, except that the T3 
sender will only wait for a specified amount of 
time for the receiver to be ready. 

multiple asynchronous A sender may initiate an action regardless of T4 
whether the receiver is expecting the message. 

Table 3.1 - Message Synchronisation Code for OMT Dynamic Model after [BOOCH 9 11 

3.2.3 00 Diagrammatic Design 

Based on the extraction of object classes through use of ONIT heuristics and analysis, the 

next stage is to carry out iterative modelling of the problem using various parts of OMT 

and Booch 00 methodologies diagramming. The diagrams include- 

9 ONIT static model with attributes and inheritance (based on Chen's ERD)- classes 

have been previously optimised using heuristics, a data dictionary is developed, and 

the data dictionary is used to establish class associations and attributes from which a 

diagram is created. 

e OMT dynamic model- develop conceptual user interface (i. e. as is one of two aspects 

of dynamic system interaction; the other being logical operations); describe 

interaction scenarios (possibly creating new object classes); graph enhanced real-time 

event traces (adding features of [BOOCH 91] timing diagram) to show object 

interaction for each scenario, and graph event flow (similar to IE context diagram) to 

show aggregation of interaction scenarios and event traces, and develop state 

diagrams (similar to STDs) for objects. To further assist in real-time representation, 

use is made of the Booch timing diagram, and the Booch external event list. 
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* OMT Functional model (similar to DFD). A new notation for representation of real- 

time elements on the OMT Functional model is presented in Figure 3.2 (based on 
[WARD/MELLOR 85][HATLEY/PIRBHAI 87]). This notation captures real-time 

continuous data flows, and the type of control thread and message form (as defined in 
Table 3.1). The hybridisation of the Booch, Ward/Mellor, and Hatley/]Pirbhai notation 

and classification supports fuller description of real-time elements, and the potential 

to yield greater insight. 

OMT System design phase considers concurrency and dynamic control flow. 

OMT Object design phase shifts to computer concepts, with algorithms for major 

functions. 

e OMT Implementation phase has an emphasis on flexibility, extensibility and 

traceability. 

nts a real-time control item or 

be4 

r. II' rrcr rr r' fr rIfrrI 

of events. 

Figure 3.2- Real-Time Extensions to OMT Functional DFD 

3.2.4 00 Design Validation 

The external event list is used to validate the object, dynamic and functional models. If 

further events cannot be represented in the models, a further iteration of system redesign 

is made. In particular, the external event list is considered against the static object 

model, the interface format, the event flow, and the input-output diagrams. Further 
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validation is gained from comparison of the identified object classes with the qualitative 
process model. 

3.2.5 Qualitative Process Modelling 

00 methodologies support hierarchical object class structures, but the nature of the 

abstraction is to encapsulate data and actions within objects which have relationships 

with other objects. ERDs are semantic networks which similarly represent multi- 
dimensional aspects of the problem domain (e. g. physical relationships between 

objects/entities and functional aspects of the relationship). Whilst there is flexibility in 

execution of such diagrams, there is a need to capture material state changes within 

manufacturing processes in terms of hierarchical goals and inter-variable relationships 
[NADI et al 91][WRIGHT/WELLIAMS 95]. Such a multi-dimensional semantic network 

represents enhanced understanding of system inter-relationships based on the above 

stages of OOQA. The process of qualitative process modelling in OOQA involves: 

" Use of the static object model attribute list to create nodes of first qualitative model 
(see Figure 3.10). 

" Use of the dynamic model external event list to link nodes and check dynamic 

functionality, and "influence" relationships between nodes of the qualitative model. 

" Use of the real-time enhanced DFD and analysis viewpoint to further validate 
dynamic functionality of the qualitative model, add further connections between 

nodes, and guide choice of candidate variables for data collection. 

3.2.6 Experimental Design & Data Collection 

Data Gathering 

OOQA enables selection of representative and relevant data for the purpose of analysis 

and modelling of the problem at hand. Data gathering involves design and completion of 

trials, experiments, surveys, simulation or locating other sources of data to generate a set 

of data that represents every class of process behaviour and any statistical/process 

variation within each class [MAY 94]. Often collection of a large laboratory data set (in 
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excess of 200,000 data points) is necessary to try to include most stochastic cases of 

process error; although absolute certainty cannot be assured [DTI 94]. 

Statistical Analysis and Pre-Processin 

Depending on the implementation requirements some statistical analysis and pre- 

processing may be necessary before data can be utilised. Although the analysis identifies 

important aspects, there may not be enough representation to capture the knowledge 

thoroughly, or alternatively data "swamps" the knowledge. Statistical tools such as 
Pearson's correlation co-efficient and use of standard deviations, arithmetic mean, and 

Principal Component Analysis can reduce a large data set into a more compact one that 

has a greater representation of the problem domain/system [QIN 93][DTI 94]. If the 

implementation is to be an ANN model for the process, say, normalisation of all 

variables is necessary [MASTERS 931. Thus statistical analysis and pre-processing 

considers the interface between analysis and implementation with an emphasis on 

knowledge efficiency. 

3.3 Analysis of Manufacturing Processes 

OOQA was used for analysis of a number of manufacturing processes- thermoset and 

thermoplastic pultrusion, the bioprocess reactor, and logistics supply chain. The 

diagramming and methodology are fully demonstrated on these complex process case 

studies in turn (pultrusion in this chapter, bioprocess reactor and logisitcs supply chain in 

Chapter 6). 

3.3.1 Pultrusion Process 

The previous chapter outlined a complex process case study- thermoset and 

thermoplastic pultrusion manufacturing process. There follows OOQA as applied to this 

complex case study, in the stages: viewpoint selection, textual description of process 

characteristics, 00 diagrammatic design, 00 design validation, qualitative process 

modelling, and experimental design. Unless indicated otherwise the analysis applies to 

both thermoset and thermoplastic pultrusion utilising fibres pulled through a molten resin 
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tank, through a heated die (different entry geometry's are ignored), and exiting the die at 
a temperature below the polymer melting point (thus rigid for both thermoset and 
thermoplastic pultrudate). 

3.3.1.1 Select Viewpoint to Aid Definition of Modelling Metrics 

A brief statement of requirement is used to identify the primary goals- these may be in 
terms of both the level of analysis, simulation, or implementation of industrial 

controllers and the specific operational goals e. g. to improve product quality for a low 

cost high speed pultrusion process. 

Statement of Re(: Tuirement- Pultrusion 

A system is required to control in real-time a pultrusion process. 

The inputs are raw materials (fibre, mats, and resin). Presently 

available operator control mechanisms are variable line speed, and 

die temperature. Physical components of the processing equipment are 

presently fixed in sequence. Significant process variables include: 

cure time, gel time, peak exothermic/endothermic temperature, and 

product quality. Finished product output must meet quality standards 

in terms of physical dimensions, material characteristics (including 

'strength' and void content). 

Thus the primary goals are to develop a real-time pultrusion process controller to meet 

product quality targets (as yet undefined specifically). There are a large number of 

options in deciding the nature of the intended controller (see literature in Chapter 2). The 

focus of the OOQA approach is to analyse the real-time static, dynamic, and informatic 

characteristics of a system which can then be used to implement simulation models or 

implementations. 

3.3.1.2 Textual Description of Process/System Characteristics 

The statement of requirement is enhanced through use of knowledge elicited from 

experts to become a full problem statement. Use is then made of OMT techniques and 
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heuristics to identify object classes and key aspects of dynamics via dynamic scenario 
models. 

OMT Static Model 

Problem Statement- 

The pultrusion process consists of continuous fibres pulled through a 

resin tank, preformed in the pre-former to remove excess resin and 

air voids, and then cured/shaped in the constant section heated die 

before being cut to length by a cut off saw. 

The basic inputs are raw materials (fibre, mats, and resin). 
Presently available operator control mechanisms are variable set line 

speed and die temperature. Physical components of the processing 

equipment are presently fixed in sequence. Significant process 

variables include cure/shaping time, gel time, peak 

exothermic/endothermic temperature, die pressure, degree of fibre 

wetout, tank viscosity, degree of cure/shaping, viscosity in die, 

viscosity in tank, load, fluid flow, and product quality. Finished 

product output must meet quality standards in terms of physical 

dimensions, material characteristics (including mechanical strength, 

and void content). 

The problem is to design a control system for the pultrusion process 

to operate in real time (effectively continuous receipt of sensor 

data, and processing of it, say at 10-100 Hz) . The system must accept 

operator input of linespeed (0 to 100 inches/min) and die temperature 

(0 to 500*F). It must monitor the transport mechanism (let off rolls, 

guide rolls, pull rolls, and cutoff saw) and adjust automatically 

where necessary to ensure the correct and optimal operation of the 

process to operator input levels. The complex non-linear nature of 

the process and in particular the exothermic or endothermic reaction 

and temperature gradients within the heated die, add difficulty to 

the consistent control of key variables to desired setpoints. 

Achievement of consistent control is assumed to aid better quality of 

product. Assessment of quality (by destructive testing) in terms of 

mechanical strength and void content is to be carried out by the 
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operator, who is responsible for adjustment of system inputs. The 
system is to utilise a rule-based system operating on a SPARC station 
(or sufficiently capable workstation) which communicates via various 
interfaces between it and the process. Cost is unimportant:. 

The nouns are extracted from the problem statement: 
puitrusion process 

SPARCstation 

exothermic reaction 

line speed set 

continuous fibres 

real time 

quality 

let off roll 

pre-former 

control system 

voids 

raw material 

control mechanism 

physical component 

gel time 

fibre wetout 

degree of cure 

physical dimension 

system 

consistent control 

peak endothermic temp. 

operator 

process 

various interfaces 

temperature gradient 

die temperature set 

resin 

operation/error 

destructive testing 

guide roll 

heated die 

cutoff saw 

fibre 

line speed 

processing equipment 

peak exothermic temp. 

tank viscosity 

load 

material characteristic 

operator input 

workstation 

complex non-linear process 

input 

product 

cost 

setpoints 

transport mechanism 

resin tank 

rule based system 

mechanical strength 

pull roll 

time 

mat 

die temperature 

cure time 

die pressure 

die viscosity 

fluid flow 

void content 

key variable 

endothermic reaction 

The nouns are then tested against OMT heuristics. The usable object classes are 

underlined, and the failed potential classes are identified by test code (RE-redundancy, 

AT-attribute, VA-vagueness, IR-irrelevant, IM-implementation, OP-operation, and RO- 

role). 
pultrusion process 

processRE 

SPARCstation 

exothermic reactionOP 

line speed setAT 

continuous fibres 

real timeRO 

operato 

processRE 

various interfacesVA 

temperature gradientOP 

die temperature setAT 

resin 

complex non-linear 

input 

product 

costIR 

setpointsVA 

transport mechanismVA 
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quality 

let off roll 

pre-former 

control systemIM 

voidsAT 

raw materialVA 

control mechanismVA 

physical componentVA 

gel timeAT 

fibre wetoutAT 

degree of cureAT 

physical dimensionAT 

system VA 

consistent controlRO 

peak endothermic temp-AT 

operation/errorRO 

destructive testingRO 

quide roll 

heated die 

cutoff saw 

fibreAT 

line speedAT 

processing equipment VA 

peak exothermic temp. AT 

tank viscosityAT 

loadAT 

material characteristicVA 

operator inputOP 

workstationIM 

resin tank 

rule based systemRE 

mechanical strengthAT 

pull roll 

time 

matAT 

die temperatureAT 

cure timeAT 

die pressureAT 

die viscosityAT 

fluid flowAT 

void contentAT 

key variableVA 

endothermic reactionOP 

It is seen that OMT object class identification stresses physical/ external reality of the 

problem domain as presented by the problem statement. The class tests readily identify 

static object, dynamic state, and the implementation form of objects. An object data 

dictionary is then built up to help clarify associations and relationships between objects. 

Objects & Definitions 

continuous fibres- combined with resin. Transport mechanism guides 

and controls speed of movement. Made of various materials. 

cutoff saw- travelling at speed of transport mechanism, and a part of 

it. Cuts cured/shaped continuous fibres and resin into end product. 

quide roll- part of transport mechanism. Guides continuous fibre at 

various stages of the process. 

heated die- cures/shapes continuous fibre and resin across constant 

cross section. Temperature is set by operator via SPARCstation. 

Features exothermic or endothermic reaction, and temperature 

gradient. 

input- of operator, used as setpoint by SPARCstation to set linespeed 

and die temperature of process. 

let off roll- part of transport mechanism. Continuous fibre and mat 

let off from stored roll form to be pulled by pull roll through the 

different stages of the process. 
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oPe-rator- supplies input to SPARCstation to control process. 

pre-fo. rmer- removes excess resin and voids from combined continuous 

fibre and resin before curing in the heated die. 

pull roll-part of transport mechanism. Pulls continuous fibre through 

stages of process at linespeed set by operator through SPARCstation. 

pultrusion process- continuous fibres pulled through a resin tank, 

preformed, and then cured/shaped before being cut off into lengths. 

p-roduct- pultruded end product of pultrusion process. 

crualitv- assessed by operator in terms of mechanical strength and 

voids. Better economical control is the goal of the process. 

resin tank- contains resin 

resin- of various types and viscosity's, and may be heated. Combines 

with continuous fibre to form basic raw material of process. 

SPARCstation- an element of control of the process, linking operator, 

process, interfaces, and the rule based system. 

time- deterministic response of the control system is desired. 

Associations which define the relationships between objects are identified by reference to 

the object data dictionary for words like: with, uses, combines with, contains, and is part 

of Attributes of objects are defined and used to identify links between objects (but 

avoiding derived and implementation attributes e. g. main on/off). 

The thermoset attributes are: rule-set, set_linespeed, set-die-temp, act-linespeed, 

act-die_temp, die_pressure, die_viscosity, degree_of cure, exotherm-temp, wetout, 

fluid_flow, tank_temperature, tank_viscosity, load, qual-voids, qual_strength, 

letofroll-availmatl, and restnk_availresn measured at intervals of the variable time. 

Consideration of thermoplastic pultrusion would yield a different attribute list- as above 

excluding- exotherm-temp and degree_of cure, but including: endotherm-temp, 

degree_of shaping, and poly_melt-temp. 

OMT Dynamic Model 

Typical interaction sequence scenarios are used to define the dynamic aspects of the 

model. Consideration of single or multiple thread real-time control is represented by a 

message synchronisation code added to each interaction in the sequence from Table 3.1. 
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In the case of the pultrusion process controller as presented, all interaction messages can 
be defined as simple single-thread (TO), or asynchronous multiple-thread (T4), and so 
the codes are not added to each interaction. 

Manual 

The SPARCstation asks operator for input; operator inputs. 

SPARCstation accepts input, and checks if is valid within range 

against ruleset. 

In input not valid, then SPARCstation informs operator, and awaits 
input. 

SPARCstation calculates values and tells part of process via 
interface. 

Part of process adjusts as required; modifies actual line speed and 
die temperature to set values of these. 

The SPARCstation asks operator for input. 

Automatic-1 

SPARCstation asks part of process for actual value (linespeed die 

temperature) via interface. 

Part of process sensors detect & return data to SPARCstation via 

interface. 

SPARCstation calculates error between actual & desired values. 

Sparcstation calculates new value (using ruleset) and tells part of 

process via interface. 

Part of process adjusts value. 

Automatic-2 

Part of process sensors detect material error/jam. 

Part of process tells SPARCstation status via interface. 

SPARCstation assesses situation (using ruleset) and decides on 

action. 

SPARCstation tells part of process via interface of action. 

Part of process reacts as required. 

SPARCstation tells operator of status via VDU. 
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This is condensed into a [BOOCH 91] external event list with continuous real-time 
events indicated by **RT** for emphasis, and the same message synchronisatlon code 
(TO-T4) as for interaction sequences (see Table 3.1). Again, as the events are simple 
single-thread or asynchronous multiple thread, the code is not appended to each event. 
The external event list is used to test the functionality of the resultant 00 design. 

External events: 

pultruder is turned on/off 

operator changes desired linespeed 

operator changes desired heater temperature 

actual line speed changes **RT** 

actual heater temp changes **RT** 

curing abnormality occurs **RT** 

transport system failure 

equipment failure 

material is out of specification 

time passes **RT** 

3.3.1.3 00 Diagrammatic Design 

On the following pages are a number of the key OOQA diagrams for thermoset 

pultrusion. 
Figure 3.3-OMT Static Object Model 

Figure 3.4- OMT Dynamic Model- Interface Format. 

Figure 3.5- OMT Dynamic Model with Real-Time Extensions - Event Trace 

Figure 3.6- OMT Dynamic Model- Event Flow 

Figure 3.7- OMT SPARC State Diagram 

Figure 3.8- OMT SPARC Input-Output Identification 

Figure 3.9- OMT Functional Model with Real-Time Extensions- SPARC DFD 

These figures are described briefly below: 

Figure 3.3 captures the static objects as identified in the OMT textual analysis, and 

describes the pultrusion control system with a breakdown into product, control, and 

process modules. Figure 3.4 represents the important "obvious"' elements of a typical 
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practical industrial user interface for a control system, (it is partly based on the OMT 

dynamic model textual interaction sequences). Figure 3.5, an event trace diagram, is an 

enhanced graphical representation of the OMT dynamic model textual interaction 

sequences. The vertical axis is scaled similarly to [BOOCH 91]'s timing diagram. As the 

interaction events have been categorised as a simple single-thread (or asynchronous 

multiple thread),, the actual discrete or relative timings are not significant, and so are not 

scaled. Enhanced event trace diagrams for different situations, can be superimposed on 

one another, like transparencies, to show multiple threads of control. I this instance, due 

to the simple single thread events the interface object is treated as transparent with no 

time delay. Figure 3.6 is an event flow diagram which demonstrates an aggregated view 

of the event trace diagram, with the interaction of each object grouped together. Figure 

3.7 is one state diagram for one object in the event flow diagram. Further state diagrams 

would be generated as required for the application of interest. Figure 6.1 in Chapter 6 is 

a similar format STD representing the states of an overall pultrusion process controller. 

Figure 3.8 is an input-output identification based on identification of the significant 

object/system in the event flow diagram and from the external event list. Figure 3.9 is an 

OMT functional model with real-time extensions as described in Figure 3.2 and Table 

3.1, and is similar to a DFD. In addition to describing data flows, it captures real-time 

flows, control threads, and message form. A number of functional models would be 

created at hierarchical levels, as required for the application of interest. 
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Figure 3.3-OMT Static Object Model 
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Figure 3.4- OMT Dynamic Model- Interface Format. 
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Figure 3.5- OMT Dynamic Model with Real-Time Extensions- Event Trace 

Operator 
input value 

request input 
tell operator of status 

SPARC 
station 

set value 
request actual value 

Interface 

verifies value within range 
calculates value 
error caics 

Ruleset 

returns calc result 

tells process error 
returns actual value 

set value 
request actual value 

tells process error 
returns actual value 

VI adjusts value 
queries actual value 

Process Sensor 

No detects jam 
returns actual valud 
returns error 
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Figure 3.9- OMT Functional Model with Real-Time Extensions- SPARC DED 

3.3.1.4 00 Design Validation 

The external event list is used to test the functionality of the object model, dynamic 

modet, and functional model. The diagrams tested include- the static object model, the 

dynamic model interface format, the dynamic model extended event trace, the dynamic 

model event flow,, and the functional model input-output identification (Figures 3.3,3.4, 

3.51,3.6, and 3.8 respectively). Each external event is applied to the diagram to test if the 

graphical model can "respond" appropriately. 

It is noted that all external events are multiple-thread asynchronous or single-thread 

simple (depending on how the pultrusion process controller is viewed), except for the 

periodic event of "time passes". The act of relating the external event list to the OOQA 

diagrams helps to test the understanding of the behaviour of the system and test the 

completeness of the object abstraction. Following [BOOCH 91]'s suggestion we can say 

that the 00 modelling is complete, as "the key abstractions are simple enough to require 

nofurther decomposition. " 
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The functional hierarchical decomposition, with a focus on communications 
requirements (from problem domain knowledge) rapidly generates object class sets that 
potentially yield a strong foundation for further design activity. 

3.3.1.5 Qualitative Process Modelling 

Figure 3.10 demonstrates a typical thermoset pultrusion qualitative process model 
resulting from this stage of the OOQA analysis methodology. The steps to create this 
figure include: 

* Use was made of the thermoset static object model attribute list to create nodes of first 

qualitative model. 
The dynamic model external event list was used to link nodes and check dynamic 
functionality, and "influence" relationships between nodes of the qualitative model. 
The real-time enhanced DFD and analysis viewpoint were used to further validate 
dynamic functionality of the qualitative model, add further connections between 

nodes, and guide choice of candidate variables. 

00 modelling gave insight into control/commun i cation requirements due to the initial 

viewpoint selected with the inputs of speed, temperature, and materials and the outputs 

of quality and sensor values. A basic knowledge of physics and a review of the literature 

on mathematical models of the pultrusion process aided construction of cognitive maps 

or qualitative models of the process similar to [NADI et al 91] [LECLAIR/ABRAMS 

89]. The approach to abstraction and diagramming includes aspects of the DeKleer's 

component-oriented physical-object focus, and the Kuiper's constraint-oriented critical- 

mechanism focus [STRUSS 88]. The 00 aspects of OOQA ensured key aspects of 

control were not ignored, and the QM aspects allowed capture of uncertainty about 

precise relationships between the 00 inputs/outputs and the inter-process variables. This 

theoretical model, as seen in Figure 3.10, provides the basis for experimental design and 

data collection. In Figure 3.10, the physical properties are the strategic hierarchical goals 

of the process, with the numerical level being the user-set inputs. The intermediate 

properties characterise both the operational and microstructure goals. 
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Figure 3.10- Thermoset Pultrusion Qualitative Model of Pultrusion Process 

From inspection of thermoset pultrusion in Figure 3.10, and consideration of the analysis 

viewpoint, the candidate variables selected are: linespeed, die temperature, degree of 

cure, pressure, degree offilbre wetout, voids, and materials properties (in particular 

flexural strength). From the literature, supporting some of the candidate variables 

selection is [TANG et al 87], who produced a cure process model qualitatively linking 

cure pressure to void content to mechanical properties. Carrying out the full OOQA 

analysis on thermoplastic pultrusion yields a qualitative model similar to Figure 3.10, 

which excludes. exotherm-temp and degree_of cure, but includes: endotherm-temp, 

degree_of shaping, and poly_melt-temp. For the pultrusion process, the qualitative 

representation indicates relationships/influences which occur in real-time, but does not 

further describe those elements of real-time (which are described in Figures 3.5 and 3.9). 

3.3.1.6 Experimental Design & Data Collection 

Using the object classes generated in the 00 analysis and the Qualitative model, 

laboratory pultrusion trials were undertaken to record the relevant variables: linespeed, 

die pressure, die temperature at positions along the die, material characteristics, finished 

product quality, pultrusion setup in terms of configuration, and the use of a breaking 

station at a sample rate of between 0.5 and 5Hz. Chapter 4 details the laboratory trials, 

data gathering activities and the resulting real-time data for the pultrusion process. 
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Chapter 4: Gathering Real Process Data 

4.1 Introduction 

This chapter presents data gathering activities based on the OOQA analysis of the 
thermoset and thermoplastic pultrusion process case study carried out in Chapter 3. The 
data was gathered both from process sensors, and from materials testing activities carried 

out at IKV, LUT, and Pera. 

4.2 Process Case Studies 

This section outlines both data gathering activities and the resulting data for thermoset 

and thermoplastic pultrusion. There follows an introduction to pultrusion material 

characterisation, and to the pultrusion trials. The ultimate objective is to capture 

sufficient process knowledge to allow the manufacture of aerospace quality pultrusions. 

These require high uniform stiffness and strength, and are ideally straight. Section 4.2.1 

details the thermoset laboratory trials and materials testing. Section 4.2.2 details the 

thermoplastic laboratory trials and materials testing. 

Material Characterisation 

Table 4.1 lists the key properties by which we can characterise materials. Depending on 

the market needs, the importance of the different properties varies [BABBINGTON et al 

87]. These properties include those of bulk mechanical, bulk non-mechanical, surface, 

production, and an aesthetic nature. Additionally, isotropic materials have the same 

David Thomas Wright, "Novel Analysis and Modelling Methodologies Applied to Pultrusion and Other 

Processes", Ph. D. Thesis, Manufacturing Engineering, Loughborough University of Technology, 1995. 
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properties in all directions. Anisotropic materials have properties which vary according 
to the direction. Load carrying materials are divided according to the mechanism 
involved in their deformation under applied forces. Elastoplastic materials experience 
plastic deformation; viscoelastic materials experience viscous deformation, and elastic 
materials experience elastic deformation [HULL 81]. 

-r---- --I -- _" -, -- 

Bulk Mechanical Properties 
" modulus 
" yield strength, tensile stress, hardness Mechanical Flexural strength 
" fracture toughness Density 
" fatigue strength 
" creep strength 
" density 
Bulk non-Mechanical Properties 
" thermal Thermal Resistance to hot oil 
" optical Optical & Colour 
" magnetic Electrical Electrical strength 
" electric Insulation resistance 
Surface Properties Chemical Water absorption 
" oxidation & corrosion 
" friction, abrasion, wear 
Production Properties 
" ease of manufacture, fabrication, Dimensional Dimensional 

joining, finishing Rheological Straightness 

" price & availability of material 
Aesthetic Properties 
9 appearance, texture, feel Visual 

Table 4.1 - Material Characterisation and Standards 

The bulk mechanical properties of polymers are largely determined by magnitude and 

distribution of the attraction forces between molecules. By controlling the molecular 

weight or chain length of individual macromolecules, it is possible to vary the properties 

of the polymer. Intermolecular forces are greatly increased by the presence of polar 

groups along the polymer chains. Assessment of a material's bulk mechanical properties 

falls under the areas of elasticity, plasticity, flow, and strength. Radiation , in particular, 

changes material properties (through excitation, ionization, and the release of free 

radicals). 
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Further material characterisation is in terms of non-mechanical properties. Determining a 
material's electrical properties involves categorisation into the classes- conductors, 
semiconductors, and insulators. Areas of interest include: dielectric constant, power 
factor, insulation resistance, dielectric strength, and resistivity. The magnetic properties 
arise from the spin of electrons and the orbital motion of electrons around atomic nuclei. 
The thermal properties consider: heat resistance, heat capacity, thermal expansion, 
thermal conductivity, thermal diffusivity, and thermal shock resistance. 

4.2.1 Thermoset Pultrusion 

This section details thermoset pultrusion laboratory trials and pultrudate materials 
testing, to gather data about the pultrusion process. 

4.2.1.1 Thermoset Pultrusion Laboratofy Trials 

The Derakane 440/40 resin system was used with glass fibres, and die profile as in 

Figure 2.24 in Chapter 2. User set variables were line-speed (ranging between 50- 

160cm/minute), die temperature (ranging between 140-190"C) and whether or not to 

include the breaking station. Die pressure, actual line-speed, and actual temperature at 

the front and rear of the die were monitored throughout the trials (sensor positions as in 

Figure 2.24). Samples 60cm long were produced at the various settings and tested. 

Figure 4.1 illustrates the alternative pultrusion set-ups correlated with the three point 

bend flexural strength test results. Figure 4.2 illustrates density and straightness deviation 

results for the same trials. More than 200,000 data points were gathered. Materials 

testing included: simple tension, three point bend, density, dimensional acceptability, 

visual appearance, DSC, and microscopy. 

Interpretation of Process Data 

Laboratory data covered- set line-speed, actual line-speed, set die temperature, actual die 

temperature at front of die, actual die temperature at rear of die, die pressure, and time. 

Primarily the set line-speed and set die temperature were varied, with other variables 

being sensed. Varying material properties were established through various mechanical, 
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thermal, chemical and dimensional tests to British and International standards F1 gure 4.3 
illustrates a trial where parameters are altered without breaking station. Figure 4.4 
illustrates trial where parameters are altered with the breaking station. The trials recorded 
in Figures 4.3 and 4.4 show stable behaviour of process, with varying line-speed. 

700 
Cwith breakýig sýlalion 

600 - ---------------------------------------- - ---------- ---------------------------------------- ------- - 

500 ----------------------------------- --2 ------- 
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300 4 -------------------- 4 -------------------------------- I -------------------------------------------------- 
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01!!!! i1! 11!!!! 11!! 111iiiiiiiiiii!!! jiij 

2468 10 12 14 16 18 20 2 24 26 28 30 32 34 36 38 40 
trial number 

set line-speed (cnVmin) -v- set die-temp (deg. C) 3-pt. bend forý)ýJ_ 

Figure 4.1 - Alternative Thermoset Pultrusion Trial Setups, and Results of 3-Point Bend Test 

(note that setups are discrete, curves are to assist visualisation only) 

5- 
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density (g/mm) -m- straightness deviation (mm) 

Figure 4.2 - Thermoset Pultrusion Density and Straightness Deviation Results 

(note that setups are discrete, curves are to assist visualisation only) 
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The following observations were made on materials samples. 

e An exothermic reaction of the process was illustrated by values for rear die 

temperature being higher than front die temperature. Both temperatures are below the 

set die temperature. 

* Approximately 600 seconds is required at startup for the temperature to stabilise at the 

front of the die (400 seconds for the rear of the die). Further, only 200 seconds is 

required at startup for the line-speed to stabilise. 

e At the highest extreme of line-speed, actual die temperature is slightly reduced 

compared to lower line-speeds; with the rear die temperature being more stable than 

the front die temperature. 

9 Pressure in the die is low except at combined highest set die temperature and set line- 

speed. 
Actual line-speed is offset by a constant from the set line-speed (less). 

Adding breaking station enables a closer match between the set die temperature and 

the actual rear die temperature ( actual front die temperature is still offset). 

o Adding breaking station marginally increases pressure in all conditions. 

The next section outlines the results of bulk mechanical, visual, thermal, and microscopy 

tests undertaken to gain an appreciation of the material properties of Derakane 440/40 

with glass fibre as processed by pultrusion. 

4.2.1.2 Thermoset Pultrusion Materials Testing 

Simple Tension Tests 

A simple tension strength test proved inconclusive, as the prepared sample slid through 

the teeth of the grip. Typical applications are not subjected to this type of loading. 

Further, machining the sample for testing caused damage to adjacent resin/fibre bonds. 

Impact trials were discounted due to the small dimensions of our samples and influence 

of edge-effects [BUCKNALL 92]. 
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+0 Three Point Bending Tests 

A three point bend (with effectively zero friction at the pultrude surface, and free rolling 
smooth points 45mm apart, to minimise risk of crushing at loading points) test proved a 
much better match to real-world loading conditions. It was found that variation in cross 
sectional area was significant to results. Calculations (from [HULL 81 ]) supported the 
test as set up, which demonstrated resin breaking internally along the centre-line of the 
samples rather than being broken at the outer surface interface between sample and a free 

rolling point. Multiple samples along the length of the pultrude were taken to check fr 0 
consistency along length of the sample. Further tests involving the three-point bend 

apparatus and altered load speeds (5,10,15,20,25,30mm/minute) to indicate strain rate 
sensitivity. Sample failure typically occurred within 30 seconds. The performance along 
the length of the pultrude proved consistent to typically within 10% of Ultimate Tensile 
Strength (UTS) force. The difference between the results for samples varied between 

150N and 650N without breaking station to 400 and 70ON with breaking station. 

Figure 4.1 illustrates this performance in relation to set die temperature, and set line- 

speed. In two regions of the chart (one in the centre of the trials without breaking station-, 

the other at the end of the trials with breaking station) there appears to be a region of 

stable behaviour, where the 3-point bend force increases linearly with increased set line- 

speed, suggesting speed related mechanical properties of the pultrude. Figures 4.3 and 

4.4 illustrate laboratory sensor data (see below) for the same regions. Figure 4.1 also 

illustrates that when line-speed is kept constant, and die temperature is varied there is no 

discernible trend; suggesting that line-speed is more important than die temperature for 

mechanical material properties. The region in Figure 4.1 without breaking station for 

trials 0 to 9, where the 3 point bend force is significantly lower could be due to- material 

variations , in process errors, or different ambient conditions or the unusual combined 

effect of inter-process variables of the process itself 

Analysis of flexural stress and flexural modulus was carried out following BS 2782 part 

3 method 335A (ISO 178) [BS 93]. The flexural stress series of values had a similar 

profile to the three point bend force (as expected), with values ranging between 200 and 

1200 MPa. Flexural modulus values ranged between 8000 MPa and 30000 MPa. Data 
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accuracy limitations make it difficult to ascertain any definite trends for the flexural 

modulus. 

Density 

Density was calculated following the method described in British Standard BS 2782 part 

6, Method 620A [BS 87] (this is identical to ISO standard 1183). Figure 4.2 illustrates 

the density variation based on the mean of at least 4 results for each pultrude sample to 

examine potential variability of density along the length of each sample. This figure also 

charts the deviation from straightness along the length of sample (see below). 

From values of density or cross sectional micrographs we can calculate values for 

Volume Fraction (Vf) [HULL 8 11 [WFHTNEY et al 82]. Charting the resulting values, 

the profile is similar to the three point bend strength values for pultrude samples. Thus 

density is related to Vf, which is further related to mechanical (and other) material 

properties. 

Dimensional Acceptabilily 

Dimensional acceptability is defined as the required dimension ± 0.25mm to British 

Standard BS 6128 [B S81]. Multiple measurements were taken along sample lengths. For 

99.7% to be within tolerance, one standard deviation for these measurements should be 

equal to 0.50/6 i. e. 0.083mm (assuming normal distribution 66 =0.50 is 99.7%). There 

was a significant difference between the results for samples produced without a breaking 

station (41% acceptable), and those produced with a breaking station (69% acceptable). 

Departure from straightness in mm, according to BS 6128, should not exceed 6. OL 2 

where L is the length in metres (for the 60cm samples, the upper limit departure from 

straightness is 2.13mm). Figure 4.2 illustrates that the majority with breaking station are 

acceptable (92%), and the majority without breaking station were not (only 3 1% 

acceptable). 

127 



Visual Appearance 

Visual appearance such as - discoloration, scratching/die damage, and excess resin or 
fibre - was recorded in addition to geometry of cross section. Without a breaking station 
82% of cross sectional geometrys were acceptable (i. e. parallel and not notched, bulged, 

or asymmetrical); 23% of resin fibre bonding was acceptable (i. e. few loose fibres in 
finished pultrude); and 15% of samples had acceptable surface finish. The corresponding 
figures for samples produced using a breaking station are- 45%, 62%, and 33% 

respectively. Of all the samples with poor surface finish, excess resin was the main cause 
(57% of unacceptable samples). 

Differential Scanning CalorimetEy 

DSC could not detect significant uncured material. 

Microscopy 

Using microscopy, the sample microstructure perpendicular to fibre direction/ax's was 

examined. Again, numerous samples were taken along the length of samples to examine 

variation. Additionally, investigations attempted to discover links between poor wetout, 

excess resin, low fibre-volume, voids, edge details and homogeneity of fibre-resin mix 

and the properties of the samples. It was found that there was consistency along the 

length of samples in terms of fibre-resin structure, and major resin-rich areas. Voids 

were more randomly located. In general it was found that samples produced without a 

breaking station often had: a small number of areas of resin with no fibre, larger regions 

of voids, and less consistent edge detail (correlating with visual excess fibres on surface). 

Samples produced with a breaking station had: a larger number of smaller areas of resin 

with no fibre, smaller and fewer regions of voids, more consistent edge detail, and a 

more homogenous fibre-resin structure. Figure 4.5 shows a region of poor edge detail. 

Figure 4.6 shows a region of homogenous resin-fibre mix with no voids, and small areas 

of resin. Figure 4.7 shows a region where the resin-fibre mix is non-homogenous, a 

medium sized void is present (the out of focus region), and some small and medium 

sized regions of resin. (Figures 4.5,4.6, and 4.7 at x 100). Figure 4.8 (at magnification 

x200) illustrates a non-homogenous region of resin-fibre mix, with a small area of resin 

present. Note that the black areas on the edge of the circular fibres are not chips or voids, 

128 



but are a result of the sample preparation to ensure that a visible difference between resin 
and fibre resulted. 
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Figure 4.6 - Microscopy, Homogenous Resin-Fibre Region (magnification x 100) 

Figure 4.5 - Microscopy, Poor Edge Region (magnification x 100) 



j 

Figure 4.8 - Microscopy, Enlarged Non-Homogenous Region (magnification x200) 
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Figure 4.7- Microscopy, Non-Homogenous Resin-Fibre Region with Void (magnification x 100) 



4.2.1.3 Summary of Interactions in Thermoset Pultrusion Results 

Examination of the microstructures and the three point bending results together indicates 
that low strength is associated with non-uniformity of microstructure., especially the 
presence of large volumes of resin. The low strength could be associated with - the 
difficulty of curing thick sections of resin, and/or difficulties in heat transfer because of 
the low volumes of fibre leading to slower or less cure (more matrix means lower Vf 
which also reduce strength). It would also appear important to understand how the initial 
flow of fibres and matrix in the die behaves - i. e. the effect of a preformer - as the 
distributions of properties seem consistent with each run, it is important to understand 
how the initial fibre matrix arrangement is developed. This highlights the significance of 
understanding resin viscosity, flow and cure in building pultrusion process models. In the 
specimens studied in these samples they appear to have good "wetout" i. e. all fibres seem 
to be wetted but there are large resin rich areas. 

Wetting is seen as impregnation of resin into fibre bundles, and is understood using the 
Dupre equation for adhesion and Young's equation [HULL 81]. Ideally, resin must cover 
all surface topology, expelling air. Poor wetting or wetout is due to: entrapped air, or 
shrinkage stresses during curing, or contamination of resin or fibre surfaces. If good 

wetout is considered to be the uniform distribution of well wetted fibres throughout the 

pultrusion, it should be improved by the loosening of glass fibres at the station, and the 

increased ability of resin to penetrate and diffuse amongst the fibres. Further, the 
breaking station also enables excess resin to be removed, this potentially reducing void 

content, and increasing mechanical properties. This may be confirmed by the presence of 

a resin film on the surface of those specimens prepared using a breaking station. This 

could also have the effect of improving three point bending performance by reducing 

their notch sensitivity. 

It is therefore considered of value to promote wetout. This is likely to be increased by a 

number of means. These include: reduced fibre volume; increased resin temperature (less 

viscous); increased fibre temperature; pre-mixed resin to improve the consistency of 

material in the resin bath or the equivalent of "prepreg" for pultrusion; injected resin into 

fibre, under pressure, perhaps by careful design of a preforming station; improved 
I 
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wetting characteristics for the fibres (by material change, or better breaking station 
profile); and increased contact time of resin and fibre (by longer path of contact or larger 
bath). 

4.2.1.4 Summary of Interactions Understood 

There follows a discussion of these results in respect to what is already known about the 

process, and inter-process variables and interactions from the literature. 

How do process variables set by the operator (i. e. equipment configuration, set line- 

speed and set die temperature) affect crosslinking of the resin system; and is it 

significant? Investigations were carried out on the effects of irradiation of crosslinking 

on the mechanical properties of a resin system [SCHREEBER et al 90]. It was found that 

elastic moduli and other mechanical properties depend on the degree of crosslinking 

attained, and also vary within the balance of interactions among constituents of a system 
Further, that non-uniform distribution of components and crosslinking within the 

structure caused significant variation in mechanical properties. 

[HULL 81] considers an important aspect of the mechanical properties of fibres to be 

variability, and suggests a statistical approach to account for the strength of fibres. 

Further,, the properties of glass fibres are isotropic due to the three dimensional network 

structure of the glass which results in a brittle failure model. During processing, glass 

fibres sustain damage when rubbing against one another. It is accepted that increased 

glass content increases strength, modulus and impact resistance [BABBINGTON et al 

87]. Commercial manufacturing limits tend to be a Vf of about 0.7 [HULL 81]. Our tests 

focused on the strength of the fibre-resin bonding rather than on the elements 

individually. 

Local Vf measurements are of significance where the presence of fibre modifies the 

surrounding matrix [HULL 81]. A high Vf usually results from irregular packing 

throughout the lamina with some resin rich regions. This description corresponds with 

many samples from the pultrusion setup using the breaking station. A low Vf results 
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from very irregular packing, with some fibre bunching, and large resin rich regions. 
Misalignment of fibres is more pronounced, with the irregular dispersion of fibres 

significantly affecting properties e. g. transverse strength and modulus. This description 

closely matches microstructure seen through microscopy for samples produced without 
the breaking station. From the micrographs, the author has found relatively uniform 

matrix topology and Vf for each sample, but have found significant variability between 

samples produced by different setups; in particular setups using a breaking station, and 

setups not using a breaking station. 

The Vf of voids can be determined by quantitative analysis of micrographs, calculations 

from density, or ultrasonic scanning. Voids occur because of incomplete wetting of 

fibres by resin, and the presence of volatiles produced during curing. Empirical studies 

[HULL 81] suggest that voids reduce interlaminar shear strength of composite material 

by 7% for each 1% of voids, up to a total void content of 4%. Given that fibres are 

continuous within samples, the wetting variability (e. g. in resin, matrix penetration, 

contamination, and voids) is the main cause for variability in density values. The density 

variability of 1.7 to 2.1 g/mm results in a range of Vf values which significantly effect a 

simple tensional test. The three point tests undertaken by the author shows material 

property weaknesses, with the results confirming the importance of density and Vf to 

mechanical material properties. 

Bouzon/Vergnaud [BOUZON/VERGNAtTD 92] consider homogeneity with respect to 

the effect of the distribution of the components of a binary mixture of epoxy resin on the 

kinetic parameters of the cure reaction. Further, they acknowledge the complexity of 

cure processes, and the importance of simulation. "simulating the process is necessary to 

determine precisely, without using "rule-of-thumb ", the best operational conditionsfor 

the development of the cure process on a larger scale than the laboratory scale at which 

the experiments were performed and the model tested' [BOUZON/VERGNAUD 92]. 

This points to a need to establish scaling laws for the process. 

[HANALEE 86] developed a mathematical model of the pultrusion process with a view to 

understanding those fundamental aspects of the process which are important for 
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maintaining consistent product quality. They consider achieving a uniform degree of 
cure in the cross section of a pultruded product as critical, with control of temperature 
the most important processing variable. Noting that a "non-uniform distribution of 
temperature in the cross section of material implies a non-uniform distribution of the 
extent of crosslinking reactions, which in turn means a non-uniform distribution of 
molecular weight and thus, of mechanical properties of the pultrudedproduct 
[HAN/LEE 86]. 

Both temperature and pressure are considered important by [TANG et al 87]. Trials 

varying pressure on laminates to investigate void size supported three notions - 'first, the 

void sizes do not vary appreciably across the laminate. Second, there was no apparent 

motion of the voids, implying that voids do not migrate through the resin. Third, there is 

reasonable agreement between the measured andpredicted void content " [TANG et al 
87]. Pultrusion die pressure varied due to different process setups (see Figures 4.3 and 
4.4). Microscopy supported points two and three above. There was evidence of varying 

pressure affecting void content; further trials need to be designed to closely examine this 

phenomena in the pultrusion process. It was found that the cure pressure influences void 

content and also mechanical properties of the composite. 

Consideration of the importance of pull speed in relation to a velocity profile and an 

axial pressure profile of the pultrusion process is the basis of a mathematical process 

model [GORTHALA et al 94a]. Kinetic parameters are important for predicting 

temperature profiles and degree of cure profiles. The model illustrates the increase on 

die core temperature due to increased pulling speed. The data in Figures 4.3 and 4.4 

support increased die pressure with increased line-speed, and also slightly reduced front 

die temperature with increased line-speed. These results however show the effect of line 

speed on die temperature are very small for these process conditions. 

Examining the links between process and property, [SAMUELS 85] outlines the 

equivalent state concept, structural state functions, and a "process-structure-property 

correlation" schema. The advantages include. the ability to correlate internal structure 

quantitatively with a number of seemingly different mechanical and optical property, 
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identification of quantitative behavioural rules generically valid; and the ability to 

predict properties directly from a knowledge of the structural state of a material. 

The generation of a diagram equivalent to a mouldability diagram (see Figure 2.21 in 
Chapter 2) [GONZALEZ-ROMERO/MACOSKO 90], with a surface representing 

possible and optimal regions of cure for different process variables (e. g. time in die/ fine- 

speed, and die temperature) is worthwhile. Computationally matching the shape rather 
than a numerical equivalence of a point on the surface, potentially is useful for 

characterising various similar processes effectively, with conciseness. This lends itself to 

use real-time in process control. 

[DAY 89] investigates the use of both DSC and dielectric measurements to consider 

crosslinking in the cure process. It was found that DSC was insensitive, and dielectric 

measurement sensitive to crosslinking towards the end of the cure process. 

[JOHNSON/GHOSH 81] outline potential defects in glass fibre reinforced plastics' 

"incomplete impregnation offibre, incomplete cure of resin, poor wetting and 

subsequent poor adhesion offibre to matrix, the presence of bubbles, voids, 

delaminations, broken strands, loose ends offibres, knotted strandý, wrinkled strands 

and crevices, crazing cracks and local resin-rich areas". Further micrographs illustrate 

faults- poor wetting, excessive fibre/matrix reaction, and fibre degradation and splitting 

[JOHNSON/GHOSH 81]. 

4.2.1.5 Thermoset Pultrusion Discussion about Data 

This section has presented a initial characterisation of varying material properties due to 

alternative process setups. The work has in particular shown the variation of properties 

of samples produced with and without a breaking station. The author considers that the 

major effect of the breaking station is to promote a more uniform distribution of the resin 

within the pultrude, and that this distribution is achieved before entry to the pultrusion 

die and is maintained during much of the pultrusion process. 
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This clearly requires some further experimentation to understand the effect of different 

breaking station strategies, the formation of the initial distribution (process start up) of 
the fibres in the matrix including the effects of different material viscositys, for example, 

and the effect of a preforming station, perhaps by simulation. Further work is also 

needed to understand the wetting behaviour of fibre matrix combinations, and the effect 

of global and local changes in volume fraction of the performance of the process 
including its effect on variation of cure. It is also necessary to capture the process 
knowledge in a representation that allows its scaling to other geometrys and be 

applicable to other resin formulations. If both straightness and strength are required, the 

trade-offs consequent on not applying the breaking station need to be captured and 

understood. 

Some of the present trials show regions of stable behaviour with line speed. It would be 

of considerable interest to explore the limits of this behaviour to include the effects of 

temperature and the breaking station. At the start of these experiments it was expected 

that there would be considerable variation of temperature in the die during an extended 

process run and that this was likely to have considerable effect on the process. This was 

not observed. Similarly increased line speed was not observed to have a significant effect 

on die temperature. 

4.2.2 Thermoplastic Pultrusion 

The previous section introduced pultrusion material characterisation, and detailed both 

laboratory trials and materials testing activities on the Derakane 440/40 thermoset resin 

system. This section, using the same pultrusion material characterisation techniques, 

details laboratory trials and materials testing activities undertaken by Pera to provide 

data for this thesis. 

4.2.2.1 Thermoplastic Pultrusion Laboratory Trials 

The polyester thermoplastic resin system was used with glass fibre, and a die profile 

similar to Figure 2.24 in Chapter 2. User set variables were line-speed (ranging between 

50-125cm/minute), die temperature (ranging between 0-160 C) at four positions along 

the die 
, including the breaking station in all cases. Die pressure, actual line-speed, and 
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actual temperature at the front, middle and rear of the die was monitored throughout the 

trials. Temperature of pultrudate at exit was less than polymer melting point. Samples 

60cm long were produced at the various settings and tested. Figure 4.9 illustrates the 

alternative pultrusion set-ups with Figure 4.10 correlating the setups to the three point 
bend flexural modulus test results. More than 50,000 data points were gathered. 
Materials testing included: three point bend, density, dimensional & visual acceptability. 
Interpretation of Process Data 

Laboratory data covered: set line-speed, actual line-speed, set die temperature in four 

positions, actual die temperature in four positions, die pressure, and time. Primarily the 

set line-speed and set die temperature were varied, with other variables being sensed. 
Varying material properties were established through various mechanical, thermal, 

chemical and dimensional tests to British and International standards. 
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Figure 4.9- Alternative Thermoplastic Pultrusion Trial Setups 

(note that setups are discrete, curves are to assist visualisation only) 

The following observations were made on the laboratory data. 

Actual die temperatures, actual line-speed and die pressure are stable for all setups, 

with a small positive gradient/drift. 

Die pressure is low except for the highest linespeed, when it is double the pressure of 

other setups. 
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Figure 4.10-Alternative Thermoplastic Pultrusion Setups and Flexural Strength Results 

(note that setups are discrete, curves are to assist visualisation only) 

e At the highest extreme of line-speed, actual die temperature is reduced more than with 
lower line-speeds; with the rear die temperature being more stable than the front die 

temperature. 

* Pressure in the die is low except at combined highest set die temperature and set line- 

speed. 

9 Actual line-speed is offset by a constant from the set line-speed (less). 

4.2.2.2 Thermoplastic Pultrusion Materials Testing 

Three Point Bending Tests 

The failure loads varied between 1128 and 2569 N. Figure 4.10 illustrates the 

relationship between setup and mechanical performance- at both low linespeed (e. g. 

50cm/minute) and low set die temperature (e. g. 100 Q, the flexural strength is low. 

When either or both the linespeed and set die temperature are increased, mechanical 

performance increases. The flexural modulus results varied between 120 MPa to 272 

MPa. 

Dimensional Acceptability & Visual Appearance 

All samples produced were dimensionally acceptable to BS 6128. 
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Chapter 5: Artificial Neural Network 

Modelling Using Process Data 

5.1 Introduction 
This Chapter presents a novel methodology- for use of ANNs for Process Modelling 

(ANNPM) and use to aid design of real-time process controllers, and Its application to 

the ANN modelling of the pultrusion process. This methodology is based primarily on 

aspects and heuristics of [MAY 94] [MASTERS 93] [RAO/RAO 93] [DTI 94][QIN 93] 

and [CALLAN 95]. The methodology has been developed to both be used 
independently, and in combination with, and subsequent to, the OOQA methodology 

presented in Chapter 3. Section 5.2 describes the ANNPM methodology. Important 

aspects of the methodology addressed in turn are- data collection, data representation, 

and data pre-processing; the selection of ANN structures and algorithm; and ANN 

training, testing and validation. Section 5.3 details the application of the ANNIPM 

methodology to the modelling of the thermoset and thermoplastic pultrusion process 

(sections 5.3.1 and 5.3.2 respectively). Discussion addresses areas identified in Chapter 

2- the performance of alternative ANN pultrusion process models; the role of analysis to 

aid model design; and the use of ANN process models to aid controller design, in 

sections 5.4,5.5 and 5.6 respectively. 

Overleaf is a brief discussion on the benefits of the use of ANNs for process modelling. 

David Thomas Wright, "Novel Analysis and Modelling Methodologies Applied to Pultrusion and Other 

Processes", Ph. D. Thesis, Manufacturing Engineering, Loughborough University of Technology, 1995. 
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Why Use ANNs for Process Modelling? 

The traditional approaches to mathematical process modelling are- input-output analysis, 
state variables) finite difference, and simulation [STEPHANOPOULOS 84] 

[OTTER/ELMQVIST 95][HOLLAND 92]. The main shortcoming of such a 

mathematical approach is the need for considerable process knowledge (and time! ) 

required to develop rigorous theoretical mass/ energy/ momentum balance equations. 
Where much data and little in-depth process knowledge is available, empirical data- 

based models offer advantages. Where the goal is process optimisation or a function 

approximator (e. g. suggesting material physical characteristics from process pressure 

readings), non-linear ANNs are suitable [DTI 94]. 

Figure 5.1 illustrates the relationship between process knowledge, data and 

computational process models as reviewed in the literature in Chapter 2. Black box 

models such as ANNs, can perform effectively where much data is available, and little 

process knowledge exists [MAY 94]. 

Figure 5.1 -The Relationship Between Process Knowledge, Data and Process Models 

5.2 MethodologY Used for Modelling 

Figure 5.2 illustrates the steps of the ANNPNI methodology. Following a brief summary 

of the steps, each stage is described in turn before being demonstrated using the case 

studies. 
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Figure 5.2- ANN Process Modelling Methodology 
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The last stage of OOQA and the first part of the first stage of ANNPM are concerned 

with data gathering, and are included so that both methodologies can be used 
independently as analysis and modelling methodologies. If both OOQA and ANNPM are 
to be used in combination, only one data gathering activity is required. 

Briefly, the stages are as follows: 

1. Data Collection, Representation and Pre-Processing. 

The cost and effort of gathering data must be traded off against the desirability of a set of 
data that captures the full range of process and variable behaviour. [MAY 94] defines 

experimental design as "an organised methodfor extracting as much information as 

possible ftom a limited number of experiments ýI to "explore systematically and efficiently 

the effects of a set of input variables orfactors on responses". Consideration must also 

be made as to the reliability of the data or sensors gathering the data [CAWLEY et al 

95][HENRY/CLARKF- 93]. 

A large rich data set is reduced to a more compact (yet complete representation) suitable 

for training ANNs. The data is then analysed to determine if correlation occurs between 

any of the variables. If so, a mathematical modelling approach (not defined in this thesis) 

may be adopted instead of the ANNPM approach. Pre-processing of the data converts the 

reduced data sets into a form suitable for ANN training, testing, and validating. The 

resultant set is split into subsets for the tasks of ANN training, testing, and validating in 

the ratio 45: 45: 10 respectively [DTI 94]. Figure 2.13 in Chapter 2 shows a good data set 

characterising a range of variable behaviour. Data subsets should ideally contain a 

similar range of high, low, stable, and oscillating behaviour. 

2. Architecture, Alaorithm and Structure Selection. 

Different ANN architectures are suitable for different tasks (see Table 2.10 in Chapter 

2). Choose the appropriate architecture for the task. 

AN-Ns are trained by supervised, or unsupervised learning depending on the task and 

availability of both input and output variables. After a training run, with all training data 

sets having been passed to the ANN, an error or cost function is calculated [DTI 94]. 
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[DTI 94] describe several common cost functions: total sum of squares, weighted sum of 
2 

squares, L, norm, cross entropy, and R. The different ANN architectures use different 

algorithms to adjust the weights based on the error or cost value. The most common 
algorithm for use with MLP ANNs is the "gradient descent with momentum" or standard 
backpropogation algorithm [DTI 94]. 

ANNs have a number of input, hidden and output layers with a variable number of nodes 
in each layer, depending on the data and modelling requirements. It is easy to change the 

number of nodes and layers in ANN software environments e. g. MATLAB with Neural 

Network Toolbox,, or the code of [RAO/RAO 93]. 

3. Identification of Input-Output Nodes. 

There are three main methods for identifying ANN input/output nodes: "eyeballing", 

OOQA, or use of any problem analysis methods (e. g. traditional structured software, 00 

software, QM, and mathematical analysis and modelling approaches). Select the 

appropriate method for the analyst and problem domain. A range of different 

input/output nodes and responding data subsets can be used to train the ANN. 

4. Re-Identification/Validation of Input/Output Nodes (optional). 

Use of PCA or other statistical methods for reducing redundancy in data sets can assist in 

reducing the number of input/output nodes of an ANN [QIN 93][DTI 94]. This enables 

creation of a computationally faster ANN model [QIN 93], that will not be unduly 

biased by having many correlated variables in the data sets. 

5. Selection of Trial Sets/ANNs for Training. 

The internal aspects of the ANN must be defined, including: momentum, learning rate, 

hidden layers, iterations, and goal error tolerances must be established. These internal 

aspects are varied for a given data set with input/output variables in search of optimum 

ANN performance. (Additionally, a range of different input/output nodes and responding 

data subsets can be used to train the ANN). 
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6. Supervised Learning and Result Collation. 

The ANN is trained using the first subset of data- both input and output values (for 

supervised learning). The weights of the connections between nodes in the ANN are 
(usually) initially randomly determined, and then are trained through the use of an 

error/cost function and a learning algorithm to enable the combined ANN to perform 

effectively as a black-box model. Iterative trials using the trial sets with varied internal 
ANN characteristics, result in a tabulated set of results for the different ANN 

configurations. 

7. Validation and Performance Metrics. 

Selection is made of the best performing ANNs with input/output node and internal 

configurations. Having trained the ANN to an acceptable level, a separate set of data is 

used to test the performance of the ANN- using input variables to predict output 

variables, and compare these to real data output variable values. If the ANN performs 

well, the final set of data is used similarly to validate the model and predict output 

variable values. The metrics defined during OOQA or analysis are used to judge the 

performance of both the tested ANN, and the validated ANN results. 

There follows fuller details of each of these stages. 

5.2.1 Data Collection, Representation, and Pre-Processing 

Data Gathering 

With a manufacturing process, data gathering involves design and completion of 

laboratory trials, and sample materials testing to generate a set of data that represents 

every class of process behaviour and any statistical/process variation within each class 

[MASTERS 93]. Within a business process, data gathering involves the design and 

completion of business activity models (akin to a laboratory experiment) to generate a set 

of data representing the full range of activity behaviour and variation. In both 

manufacturing and business processes, such data may already be available in dispersed 

locations requiring collection (trying to ensure the capture of the full range of process 

behaviour). For manufacturing processes, data can be about absolute process capability 
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and the repeatable controllability of the process e. g. speed rates, feed rates, time per tool 

change, time per operation, impact of variable material on process capability, quality of 
finish and so on. For business processes, data could involve aspects of the completion of 

project milestones with time, cost, resource, process learning curve, and customer 

satisfaction variables linked to information throughput and organisational profitability. 

It is clear that some form of analysis is necessary so that data gathered is pertinent to 

solution of the problem at hand. OOQA offers a suitable effective analysis methodology. 
[LECLA-TRJABRAMS 89] used qualitative models to represent the complexity of 

relationships between inter-process variables. [NADI et al 91] used similar influence 
diagrams which capture relationships between process variables, from which regions 

were mapped onto neural network structures. Alternatively any analysis method that 

captures complexity sufficiently is suitable. Such analysis of the process enabled 

selection of sensor information, and materials testing information required as data for 

model generation. 

Data Representation 

An important consideration is that of converting a large rich bulk of data into a compact, 

but representative training set. For example, it may be that from observation that for each 

sensor value (e. g. speed, temperature and pressure) has constant response times with 

little oscillation. By noting the average value, the response time, and the overall gradient, 

a large amount of data can be compactly represented with completeness. In this casel a 

normalised value of the response time, gradient, and average would have been included 

in the training data set. 

Pre-Processing the Data 

Then the data set should be analysed to determine if a linear or simple correlation exists. 

If this is the case, the use of mathematical models rather than ANNs may be worthwhile 

to establish relationships between inter-process variables. In converting the data set into 

for use in computational modelling, three other factors were important: completeness/ 

relevance of data set; consistency of data set elements with other data set elements; and 

conciseness of representation for computer manipulation [MEYER 84][ROWE 88]. 
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When using ANNs, the whole set should be divided into three groups [DTI 94]. Each 

was separately used by the ANN for the tasks of: training, testing and validation 
(approximately dividing the total data set in the ratio 45: 45 : 10 respectively [DTI 

94]). (This division should not necessarily be consecutive, but each subset should ideally 
incorporate aspects of oscillatory, and increasing, and decreasing behaviour, and the full 

variable range, as per Figure 2.13 in Chapter 2) 

Combining extreme values, say 100 and 0.001, in the same data set would bias the 

weights of the neurons, and realistic ANN performance expectations would be low. It is 

important to keep the scale of data elements, with respect to each other, consistent 
[MASTERS 93]. A reciprocal of values maintains relative values, and is computationally 
both easy to do and to reverse (for conversion of ANN numbers into useful 

representative values). Alternatives include. incremental change in values (say, for a time 

series value to monitor changes in temperature over time); and percentage changes of 

values. In the applications described in this thesis, where we are interested a variable in 

respect to a quality standard (e. g. British Standards or ISO standards); data values have 

been changed to a logical V or '1' i. e. 'good' or 'bad'. 

5.2.2 Architecture, Algorithm and Structure Selection 

Architecture Selection 

According to the [DTI 94] guidelines, the main stable architectures of interest are- 

e feedforward, supervised learning neural networks: 

- Multi-layer Perceptron (MLP) 

- Radial Basis Function (RBF) 

- Learning Vector Quantisation (LVQ) 

o recurrent neural networks. 

Different architectures are suitable for different tasks. Table 2.10 in Chapter 2 is based 

on [DTI 94], and outlines characteristics of these architectures. 

146 



Algorithm Selection 

ANNs are trained by supervised, or unsupervised learning depending on the task and 
availability of both input and output variables. Mter a training run, when all training data 
sets having been passed to the ANN, an error or cost function is calculated [DTI 94]. 
[DTI 94] describe several common cost functions- total sum of squares, weighted sum of 
squares, L, norm, cross entropy, and R2. The different ANN architectures use different 

algorithms to adjust the weights based on the error or cost value. The most common 
algorithm for use with MLP ANNs is the "gradient descent with momentum" or standard 
backpropogation algorithm [DTI 94]. 

Structure Selection 

ANNs typically have input, hidden, and output layers. In determining the number of 
hidden layers, it is suggested to follow [NLASTERS 93] suggestion that more than I 

hidden layer is of little benefit, and often complicates the ANN. Further, [MASTERS 93] 

suggests a heuristic for determining the number of nodes in the hidden layer. If there are 

too few nodes in the hidden layer, the ANN 'starves, if too many then the ANN tends to 

overfit training data leading to implementation problems. Alternatively, [NADI et al 91] 

used an ad hoc approach to determination of the number of nodes in the hidden layer. It 

is suggested that a range of values of nodes in the hidden layer is used for the different 

ANN configurations, encompassing both the Masters-heuristic suggested value of hidden 

nodes and also an ad hoc range to fine tune the ANN during supervised learning trials. 

Nhid ::::::: NfNinp XNout ................ Equation 5.1 --The Masters Hidden Node-number Heuristic 

where Nhid= number of hidden layer neurons; 
Ni,, 

p= number of input layer neurons; 

N,,,, t= number of output layer neurons. 

5.2.3 Identification of Input/Output Nodes 

The three main methods of identifying ANN input/output nodes are- "eyeballing 1)) 
) 

OOQA, or use of any problem analysis method. "Eyeballing" involves examination of 
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the process by the process expert using heuristics based on experience to establish the 
key variables of the process and making "best guesses" at what variables should be 

represented as input/output nodes. OOQA is the methodology introduced in chapter 3. 
Our focus in using these techniques, was structuring and representing complexity and 
incomplete knowledge of a system or process, in an attempt to usefully 'solve' a 
problem. This enabled a more structured approach to building the ANN used for 

modelling the process. 

5.2.4 Re-ldentification/Validation of Input/Output Nodes 

PCA is a statistical method for reducing redundancy in data sets. The aim in its use is to 

reduce bulk the of data whilst retaining the majority of characteristics of it through 

removal of principal axes of data along which variance is minimal [DTI 94][QIN 93]. A 

training set of data can be analysed statistically with each node/variable representing an 

axis. Removal of axes corresponds to removal of nodes/ streams of data/ variables. The 

final sets of nodes of data after PCA can be used to identify input and output nodes. The 

Masters hidden layer heuristic should still apply. 

5.2.5 Selection of Trial Sets/ANNs for Training 

Having selected structure, algorithm, and input/output nodes, the internal aspects of the 

nodes themselves must be established. The key terms of momentum (i. e. to assist 

network converging to global maxima/minima instead of a local one), learning rate (i. e. 

rapidity of convergence), hidden layers, iterations, and goal error tolerance must be 

established. Typically a large range of values for each are used with the data and ANNs 

in a empirical ly-driven search for optimum combinations for the task in hand. This range 

of values is recorded on a table waiting results of the trials in the next step. 

5.2.6 Supervised Learning and Result Collation 

The table of trials of ANNs and the internal node values are put to the test and results 

collated. The first 45% of the full data set is used to train the ANN. In the search for 
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lowest error levels with minimal learning times, a reselection of a table of trials or 

input/output nodes may have to be undertaken. 

5.2.7 Validation and Performance Metrics 

Having trained an ANN to an acceptable level, use of a separate unseen set of data (the 

second 45%) is made to test the performance of the ANN. With a supervised trained 

network,, the input nodes would be presented to generate the output pattern which would 
be cross-referenced for error with the original output data set values. Having done this, 

presentation of the final unseen 10% of data would be made to the ANN- this is 

equivalent to a real-world test of the ANN. Typically, a trained ANN with very low 

training errors may have higher testing and validation errors. Conversely, a trained ANN 

with an average error may have a much lower testing and validation error. [MASTERS 

93] suggest that this is due to overtraining of the ANN to the noise of the data. Another 

way of determining the success of the training of the ANN is to plot a distribution of the 

weights in the network. A "healthy" trained network results in a normal distribution 

typically between +1 and -1. An "unhealthy" network would produce a skewed plot as 

represented in Figure 5.3 [DTI 94]. 

"brain dead" 

-8 +8 

"healthy" 

+8 

new network 

+8 

Figure 5.3- 
__ 

At Distributlon Histograms [DTI 941. 
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5.3 Modelling Manufacturing Processes 
The ANNPM methodology is demonstrated on two manufacturing processes- thermoset 
pultrusion, and thermoplastic pultrusion- using data gathered as described in Chapter 4. 

5.3.1 Thermoset Pultrusion 

There follows demonstration of the ANNPM methodology for the thermoset pultrusion 

process. The stages as previously described are. 
1. Data Collection, Representation and Pre-Processing. 

2. Architecture,, Algorithm and Structure Selection. 

3. Identification of Input-Output Nodes. 

4. Re-Identification/Validation of Input/Output Nodes (optional). 

5. Selection of Trial Sets/ANNs for Training. 

6. Supervised Learning and Result Collation. 

7. Validation and Performance Metrics. 

5.3.1.1 Data Collection, Representation, and Pre-Processing 

Data Collection 

In collaboration with JKV and Pera, a series of instrumented pultrusion trials were 

undertaken in IKV. This resulted in a rich data set that captures knowledge of the process 

including data from process sensors (in excess of 200,000 data points), and LUT 

materials testing (including mechanical 3 point bend test result, density, dimensional, 

surface finish, geometric, and microscopy). An attempt was made to try to include most 

stochastic cases of process error; although absolute certainty cannot be assured. There 

was some noise present due to electrical actuation interference on sensors which was 

filtered by inspection (although ANN have been used for noise-filtering [MASTERS 

93]). The plots of the full data set is included in the appendix of this thesis. 

Knowledge Representation 

[LECLAIRJABRAMS 89] used qualitative models to represent the complexity of 

relationships between inter-process variables. Figure 5.4 is a hierarchical pultrusion 
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model after a hierarchical autoclave curing model from [WELLIAMS et al 91 a]. This 

model has incorporated heuristics observed from laboratory data and materials analysis. 
[NADI et al 91] used similar influence diagrams which capture relationships between 

process variables, from which regions were mapped onto neural network structures. This 

analysis of the process enabled selection of sensor information, and materials testing 
information required as data for model generation. 

y in die 
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ant & distribution 
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state of cure" 
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Figure 5.4 - Qualitative Model of Pultrusion Process 

Pre-Processing of Data 

The whole data set was compacted using statistical measures (means, standard deviation, 

and linear trend analysis) to a set totalling 1,025 data points in 41 sets (each set 

representing different laboratory process set-ups and resulting sensor and materials 

testing data). These data points were represented alternately as normalised real numbers, 

qualitative fuzzy sets, and binary logic. The reduced data set is included in the appendix 

of this thesis. 

Conclusive determination of relationships/trends from visual inspection of plots of all 

variable pairs (i. e. each variable in turn with each other variable) is not possible. 
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However some correlation between high pressure and high 3 point bend and high density 

exists. Further, some consistency between high speed and high 3 point bend and high 

density exists. Table 5.1 shows the variables and the respective coefficients. A -I 
indicates a perfect negative correlation, a +1 score, a perfect positive correlation, and a0 

no correlation relationship between the two variables. Apart from the slight (--0.5) 

inverse relationship between having a breaking station and I/density and 1/3 point bend 

(see Figure 5.5), there is little evidence of a statistical relationship between the process 

variables of I/actual speed, I/actual front temperature, I/actual rear temperature, 

pressure, and whether a breaking station is present or not, and the quality 'results 

variables of I/density and 1/3-point bend. With only the data in the training set, it would 

be difficult to create a mathematical model linking input process variables, and output 

quality variables. 

I/density 1/3 pt bend 

I /act speed 0.208 0.383 

1 /act temp F -0.346 -0.160 
I/act temp R -0.120 0.070 

pressure -0.346 -0.401 
breaking station? -0.587 -0.468 

Table 5.1 - Pearson Correlation Coefficient on Pultrusion Variables 

0.62- 

----- ------- 0.6 -- ---------------------------------------------------- ----------------- --------- 

0.58 - -------------------------------------------------------------- ------------------ ------------------- 

: ý7 0.56 - ---------------------------------------- -- ----------- -------- - ----------------------------- 
V) 

70 

0.54 - --------------- ---- -- ---------------------------------------------------------------------------- 

0.52 -- ------- -- ----------------------------------------------------------- ------- ----------- 

0.5 - ------ ------------------------------------------------------------------------------ ---------- ----- 

0.48- 
0.001 0.002 0.003 0.004 0.005 0.006 0,007 

1/3-point bend result 

Figure 5.5- etween Two Thermoset Pultrusion Variables 
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5.3.1.2 Architecture, Algorithm and Structure Selection 

Our focus in using OOQA, was to structure and represent complexity and incomplete 
knowledge of a system or process, in an attempt to usefully 'solve' a problem. This 
enabled a more structured approach to building the ANN used for modelling the process. 
Of various ANN architectures, a MILP with backpropogation supervised training 
algorithm and three-layer networks was used with varying layer structures and varying 
training data sets for heteroassociation tasks. The reasons for this choice include- 

availability of case studies and exemplars for comparison; the suitability to a wide range 
of problems; the MILP interpolates and eneralises well; it can accept both continuous 9 

and categorical inputs; and it is suited to tasks such as discrimination, classification, 
pattern, recognition, interpolation, prediction and forecasting, and process 
modelling [DTI 94]. The code was taken from [RAO/RAO 93]. Use was made of a 
spreadsheet program, and a text editor to manipulate data and the output from the 
[RAO/RAO 93] code as illustrated in Figure 5.6. This procedure offers the benefits of 
low cost and ready availability to other researchers to replicate and build on the work 
within this thesis. Alternatively, an environment such as Matlab with the Neural Network 
Toolbox, if available, would be more flexible and effective as a modelling tool. 

The training data sets used alternate data representations and structures which were used 

on various different ANN structures i. e. varying the number of neurons in the input, 

hidden, and output layers. The single hidden layer had a variety of number of nodes 
following [MASTERS 93], and ranged between the number of input and the number of 

output nodes (e. g. if 2 input variables, and 6 output variables, the number was varied 

between 2 and 6 with a [MASTERS 93] heuristic value of J12 i. e. 3.5, or 3 or 4 nodes 

in the hidden layer). 

5.3.1.3 Identification of InputlOutput Nodes 

Two broad structures were tested: a global structure where all inputs and outputs were 

used in a fully connected ANN, and a focused structure, where laboratory and materials 

data were analysed and a closer understanding of the process from use of OOQA was 

used to structure the ANN. Table 5.2 illustrates the different input/output sets for a 

number of global and focused structures. The whole condensed data set was split into 
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TRAINING 

enter 100% raw data pre-process 100% data export 45% appropriate 
into spreadsheet- in spreadsheet input/output set as 
each variable a column training. dat 

run C compiler and run [RAOIRAO 93] use text editor to print 
compile [RAO/RAO 931 -----O'code using training. dat ----lo-weights. dat & output. dat 
MLP ANN code as input, train ANN. and save as other filename 

output of ANN training: 
weights. dat, output. dat 

TESTING ensure appropriate export from spreadsheet 
weights. dat file ready 45% appropriate input set 
for ANN testing as test. dat 

run C compiler and run [RAO/RAO 931 use text editor to print 
compile [RAO/RAO 93] ý*code using test. dat output. dat and save as 
MLP ANN code as input, test ANN with other filename. 

weights. dat. I 

IS 
run C compiler and run [RAOIRAO 931 use text editor to print 

compile [RAO/RAO 931 code using test. dat output. dat and save as 
IVILP ANN code as input, test ANN with other filename. 

weights. dat. 
output of ANN: 
testing weights. dat, output. dat 

Import output. dat into 
spreadsheet. Plot predict( 
ANN variable against real 
data value. 

I ýy Figure 5.6- Training, Testing and valiciating using ý)preacisneet, i em r-cii Lm aiiu ivii-r- 

ANN [RAO/RAQ 931 C-Cod 
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parts as described earlier, which were presented to the alternate ANNs separately for 
training, testing, and validation. 

Global Structure 

The first global structure ANN incorporated all (6) input variables in the input layer, all 
(19) output variables in the output layer, with variable numbers of nodes in the hidden 
layer. Figure 5.7 shows a poor global structure ANN and results. A total of 120 global 
structure ANNs were tested with varying input/output and varying the number of nodes 
in a single hidden layer. 

rl- T ucused Structure 

The first focused structure ANN incorporated (4) input variables and (1) output variable. 
Figure 5.8 shows a focused structure ANN and results. 

A B C D E IF G H II J K IL N 0 P Q R S T U V I X Y 
GI I I I I 1 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G2 I I 1 0 0 0 0 0 0 0 0 0 0 0 0 
G3 I II- 1 0 0 0 

. 
0 

. 
0 01 

Fl 0 
F2 0 0 
F3 0 0 0 0 
F4 0 0 0 0 
G2A I I 1 0 0 0 0 0 0 0 0 0 0 0 0 
G3A I I 1 0 0 0 0. 0. 0. 
FIA 0 1 
F2A 0 01 
F3A 0 0 0 0 
174A 1 01 01 0 0 
I=input, O=output, Gxy=global, Fxy=focused 

A=I/time, B=I/setspeed, C=I/settmp, D=breaking station?, E=material?, F-die 

configuration?, G=I/actspeed, H=I/risespd, I=gradspd, J=acttmpF, K=risetmpF, L= 

gradtmpF, M=acttmpR, N=risetmpF, O=gradtmpR, P=pressure, Q=gradpressure, 

R=width?, S=depth?, T=straight?, U=smooth?, V=fibres?, W=profile?, X=I/density, 

Y=1/3 pt-bend result. 

(note- grad is short for gradient, rise is the response time to stable state, act is short for 

actual, tmp is short for temperature, ? question marks indicate fuzzy set or logical 

variables) 

Table 5.2 - ANN Input/output Selection Prom i nermoset ruitrusion uaia 
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5.3.1.4 Re-IdentificationlValidation of InputlOutput Nodes 

This optional step was not undertaken in this case study due to lack of statistical 
correlation between the variables (i. e. lack of redundancy) in the data set. 

5.3.1.5 Selection of Trial Sets1ANNs for Training 

Table 5.3 illustrates a selected range of trials undertaken for just one input/output 

structure: GI or global I as identified in Table 5.2. Table 5.4 illustrates a range of trials 
for other input/output structures as identified in Table 5.2. The full set of trials and 
results are included in the appendix of this thesis. The error tolerance was varied between 
100.0 and 0.01; the learning rate, varied between 1.0 and 0.01; and the number of 
iterations between 10 and 5,000. 

5.3.1.6 Supervised Learning and Results Collation 

Tables 5.3 and 5.4 detail selected results of trials undertaken. The full set of trials and 

results are included in the appendix of this thesis. 

It was found that, as expected, the ANN did not readily converge to an acceptable error 
level with any of the various global ANN structures (see Figure 5.7). Further ANN trials 

with altered structure (to emphasise our understanding of the qualitative relationships 
between variables onto the ANN, in particular the importance of the use of breaking 

station) were little better. In particular for the G1 or global I structure as identified in 

Table 5.2. the error in the last cycle per pattern (see last column in Table 5.3) stays close 

to 1.7 irrespective of the error tolerance, learning rate, number of iterations, and number 

of nodes in the hidden layer. This demonstrates both that careful consideration must be 

made of the significance of variables prior to ANN training, and also that use of a 

problem analysis methodology such as OOQA after ANN modelling is ineffective. Much 

time-consuming experimentation with the error tolerance, learning rate, number of 

iterations, and number of nodes in the hidden layer will not significantly assist in 

enhancing the performance of the ANN if the wrong input/output variables are 

identified. The high error last cycle per pattern in Table 5.4, trials 701-709, demonstrate 

that experimentation can yield significantly worse ANN training. 
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structure error I learning iterations structure av. error error error last 
tý tolerance Ir per cycle last cycle cy I ycle per 

I GI 0.1 0.5 10 6-6-19 18.81 60.18 1.72 
2 GI 50 8.39 58.93 1.68 
3 GI 100 weights blowing up 
4 GI 500 weights blowing up 
5 GI 1000 weights blowing up 
6 GI 10 18.81 59.38 1.70 
7 GI 50 8.50 61.04 1.74 
8 GI 100 5.96 59.64 1.70 
9 GI 500 weights blowing up 
10 GI 1000 weights blowing up 
II GI 1.0 10 18.74 59.45 1.70 
12 GI 0.75 18.59 58.64 1.68 
13 GI 0.10 18.63 59.71 1.71 
14 GI 0.05 18.52 58.62 1.68 
15 GI 0.01 18.53 58.30 1.67 
16 GI 1.0 6-10-19 18.76 59.78 1.71 

17 GI 0.75 18.72 58.52 1.67 

18 GI 0.50 18.76 60.13 1.72 

19 G1 0.25 18.83 59.83 1.71 

20 GI 0.10 18.43 58.04 1.66 

21 GI 0.05 18.49 58.48 1.67 

22 GI 0.01 18.60 58.66 1.68 

23 GI 1.0 6-12-19 18.82 59.84 1.71 

24 GI 0.75 18.77 59.42 1.70 

25 GI 0.50 18.66 58.94 1.68 

26 GI 0.25 18.78 59.60 1.70 

27 GI 0.10 18.62 59.30 1.69 

28 GI 0.05 18.57 58.89 1.68 

29 G1 0.01 18.54 58.17 1.66 

30 GI 1.0 6-15-19 18.84 59.70 1.71 

31 GI 0.75 18.79 59.94 1.71 

32 GI 0.50 18.85 59.86 1.71 

33 GI 0.25 18.70 59.08 1.69 

34 G1 0.10 18.63 59.59 1.70 

35 GI 0.05 18.36 58.60 1.67 

36 G1 0.01 18.82 58.84 1.68 

37 GI 1.0 6-19-19 19.10 61.17 1.75 

38 G1 0.75 18.49 59.15 1.69 

39 GI 0.50 19.69 59.79 1.71 

40 GI 0.25 18.85 60.21 1.72 

41 GI 0.10 18.46 59.67 1.70 

42 GI 0.05 18.34 58.20 1.66 

43 GI 0.01 18.73 58.96 1.68 

44 GI 1.0 1.0 6-6-19 18.90 60.12 1.72 

45 GI 0.75 18.81 59.75 1.71 

0 50 18.64 57.85 1.65 
46 G1 . 

25 0 18.24 58.21 1.66 
47 GI . 

0 10 18.67 59.64 1.70 
48 GI . 

0 05 18.38 58.48 1.67 
49 GI . 18 78 58.92 1.68 
50 GI 0.01 

1 0 6-10-19 
. 

18.81 60.28 1.72 
51 G1 . 

75 0 18.84 60.79 1.74 
52 G1 . 18 72 59.69 1.71 
53 GI 0.50 . 

77 18 60.56 1.73 
54 GI 0.25 . 

62 18 59.50 1.70 
55 GI 0.10 . 

18 60 58.85 1.68 
56 G1 0.05 . 

18 97 58.82 1.68 
57 GI 0.01 

1 0 6-12-19 
. 

18.74 59.27 1.69 
58 GI . 18 90 60.32 1.72 
59 G1 0.75 . 

18 78 59.40 1 1.70 
G1 0.50 . 60 l i 

Ta ble 5 
. 
3- Selection of Rang e of Thermoset Pultrusion a s ANN Tr 
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t l ria structure error teaming iterations stnicture av. error error error last 
type tolerance rate per cycle last cN, cle cycle per 

_ - pattern 701 G2 - 0.1 02 5 10 2-2-12 25.01 79.22 2.03 102 G2 2-6-12 24.91 78.76 2 02 103 G2 2-10-12 24.89 78.78 . 
2 02 104 G2 2-12-12 24.90 78.80 . 
2.02 105 G2 0.01 2-2-12 24.98 79.21 2.03 106 G2 2-6-12 24.91 78.76 2.02 107 G2 2-10-12 24.89 78.78 2.02 108 G2 2-12-12 24.89 78.79 2.02 

109 G2 50 2-6-12 weights blowing up 201 G3 0.1 10 2-2-6 24.48 78.03 2.00 
202 G3 2-4-6 24.58 78.07 2.00 
203 G3 2-6-6 24.62 78.06 2.00 
204 G3 0.1 2-2-6 24.50 78.04 2.00 
205 G3 2-4-6 24.58 78.07 2.00 
206 G3 2-6-6 24.62 78.06 2.00 
207 G3 50 2-2-6 weights blowing up 301 FI 0.1 10(l completed) 4-2-1 0.65 0.65 0.02 
302 F1 " (I completed) 4-4-1 0.39 0.39 0.01 
303 FI 0.01 " (I completed) 4-2-1 0.38 0.38 0.01 
304 F1 " (I completed) 4-4-1 0.23 0.23 0.006 
305 F1 50(1 completed) 4-4-1 0.15 0.15 0.004 
401 F2 0.1 10(1 completed) 4-2-2 1.36 1.36 0.035 
402 F2 (I completed) 4-4-2 0.67 0.67 0.017 
403 F2 0.01 4-2-2 0.18 0.45 0.01 
404 F2 4-4-2 0.20 0.44 0.01 
405 F2 50 4-4-2 0.067 0.45 0.01 
501 F3 0.1 10 4-2-4 1.51 4.61 0.12 
502 F3 11 11 4-4-4 1.41 4.49 0.12 
503 F3 0.01 4-2-4 1.50 4.68 0.12 
504 F3 4-4-4 1.43 4.44 0.11 
505 F3 50 4-4-4 0.63 4.26 0.11 
601 F4 0.1 10 3-3-4 1.55 4.84 0.12 
602 F4 11 11 3-4-4 1.52 4.81 0.12 
603 F4 0.01 3-3-4 1.53 4.85 0.12 
604 F4 3-4-4 1.53 4.81 0.12 
605 F4 50 3-4-4 0.68 4.81 0.12 
701 G2A 0.1 10 3-3-12 28.97 91.88 5.74 
702 G2A 11 3-6-12 29.03 91.80 5.74 
703 G2A 3-10-12 28.98 91.76 5.74 
704 G2A 3-12-12 28.90 91.46 5.71 
705 G2A 0.01 3-3-12 29.00 91.92 5.74 
706 G2A 11 3-6-12 28.99 91.69 5.73 
707 G2A 3-10-12 28.96 91.69 5.73 
708 G2A 3-12-12 28.87 91.36 5,71 
709 G2A 50 

I 
3-6-12 12.95 91.50 5.72 

Tab - le 5.4- Selection of Range of Thermoset Pultrusion ANN Trials 

Figure 5.8 details an example of good performance - which was dramatically superior to 

all global structures tested. A total of 40 focused structures were tested. Table 5.4 details 

the performance of a range of ANN structures including focused. The error last cycle per 

pattern is universally low for the focused ANN structures at about 0.0 1 to 0.1. This is 

between 17 and 170 times better than the typical global structured ANN. 

For both global and focused, the addition of the breaking station logical variable was an 

enhancement of the structure (indicated by the suffix A in Tables 5.2,5.3 and 5.4). In 
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both cases the results of the training were little different from the unenhanced structured 
ANNs. This is possibly because the global ANN was beyond rectification to train 

effectively, or because the focused ANN was optimised so effectively with the use of 
OOQA to identify candidate variables. 

A number of trained ANNs were selected to be tested and validated. For comparison 

purposes, this included several poorly performing global structured ANNs. 

48.9 (from A) 

I /act speed 32.0 (from B) 
48.3 (from C) 

1.22 

1 /act temp F 2.10 
0.567 

0.737 

-2 - 36 
1 /act tern pR 1.35 

-9.61 
pressure 195 

-7.91 

-2.86 
width? -0.08 5 

-1,37 

-2.08 
depth? -0.062 

-2.18 

straight? 243000 
2.80 
647000 

sm ooth? 
1.67 

-2.19 
0.0279 

Oý789 
fibres? -2.19 

0.949 

-8.11 
profiles? 126 

-9.41 

1 /density -2.15 
-0.557 
-1.68 

1/3pt bend -1.97 
-0 477 

-1.49 

Figure 5.7- Thermoset Global Structure ANN and Results 
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breaking? A 
0.383 (to A) 0.286 

-0.834 (to B) 
-0.297 (to C) -2.29 
-0.863 (to D) 
0.729 (to E) 

Pact speed -0.429 
0.614 
0.775 
0.681 

-2.30 
I/density 

0.379 
0.376 0.502 

1 /act tempF C 
-0.566 
0.715 1.14 0.0208 
0.0988 0.151 
-0.924 

I/act tempR 1/3 pt bend 
D 

0.864 0.754 
0.878 
-0.930 0 . 221 
-0.583 error tolerance 0.0 1 
0.679 

-1.14 learning rate 0.25 
pressure E structure 5: 5: 2 0.412 

average error per cycle 0.06 0.660 
-0.900 error last cycle 0.39 
0.0672 error last cycle per pattern 0.01 
0.925 

Figure 5.8- Thermoset Focused Structure ANN and Results 

5.3.1.7 Validation and Performance Metrics 

After using the split data set for training, a number of global and focused ANNs were 

tested and validated using separate (45% and 10%) data subsets as indicated in Figure 

5.6. The various ANNs were used to predict I/density and 1/3-pt bend (a key pultrudate 

quality indicator) i. e. the validation step. Figures 5.9 and 5.10 chart the relative 

performance of the global and focused ANN illustrated in Figures 5.7 and 5.8 with 

respect to the original data. The original data was representative of a wide range of 

operating die temperatures and pull-speeds for the Derakane 440/40 formulation with a 

simple rectangular cross-sectional die profile. We see that the focused ANN performed 

well (matching more closely the data), and the global ANN did not. Within each broad 

category of global and focused ANN, a significant performance variation occurred. 

Figure 5.11 shows the weight distribution of a focused trained ANN, which shows a 

healthy ANN. By inspection of Figure 5.7, the global structure ANN, we see that the 

weights range from 647,000 to -9.41 reflecting bias in the variables used which caused 

the weights to "explode' 
, and not train effectively. 
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Process insight from OOQA and laboratory experimentation led to increased confidence 
in the best ANN models. Table 5.5 summarises the salient features of both the data and 
alternate ANN models with respect to some defacto modelling metrics. From this table. 
the full laboratory data is not concise, nor generic, and the consideration of robustness is 
immaterial; the training data is more concise than the laboratory data; the global ANN 
did not give consistent emphasis to each variable, was not concise or compact a 

representation, did not perform with accuracy or precision; the enhanced global ANN 

with the additional breaking station logical variable was more inaccurate and imprecise, 

the focused ANN performed with accuracy and precision across a wide range of input 

variables, and was concise; the enhanced focused ANN did not perform in any way 

significantly differently from the focused ANN. 

0.7 

0.6 

0.5 

'-' 0.4 

0.3 
T- 

0.2 

0.1 

0 

------------------------------------------------------------------------- 

------------------------------------------------ ---------------------------------------------- I 

258 11 14 17 20 23 26 29 32 35 38 
Trial Number 

data ---v- global ANN - Focus ANN 

Figure 5.9- Thermoset ANN Performance Predicting I/density 
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0.3 -------------------------------------------------------- - -w-W 

0.25 ------------------------------------------------- --------------------------------------------- 
0.2 --------------------------------------- --- --- ---------------------------------------------- -0 4--j 

a- 

('ý 0.15 - ----------------------------------------------- ---------------------------------------------- 
lvý 0.1 -- ------- ------------------------------------------------------ -- --- ----- --- 

0.05 --- -------------------------------------- ---- ---- -------- 
0T-, r-" TTT. q04 IPT -F T11" 25 8'ýý'-14 17 20 23 26'ýb 32'35'38 

trial number 

data --y- global ANN - focus ANN 

Figure 5.10- Thermoset ANN Performance Predicting 1/3-pt bend 

Figure 5.11 - Focused Thermoset ANN "Healthy" Neuron Weight Distribution 

full 
laboratorv 
data 

training data global 
ANN 

enhanced 
global 
ANN 

focused 
ANN 

enhanced 
focused 
ANN 

consistency V/ V/ x x V/ 
completeness V/ V/ V/ V/ V/ 
(depth) 
conciseness Ix V/ V/ 
(efficiency) 
genericity V/ V/ 
(generality) 
accuracy V/ x xx V/ V/ 
precision VI/ V/ V/ Ix x Ix V/ V/ 
robustness not not V/ V/ 
(stability) applicable applicable 
Table 5.5 - Summaty of-Pultrusion Process Modelling Kesults Using Alternate ANNs 
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Process Insight- A Hybrid Model 

Analysis of the rich data set from laboratory trials revealed the significance of the 

breaking station in promoting a more uniform distribution of the resin within the 

pultrudate (and that this distribution is achieved before entry to the die and is maintained 

during the process). From statistical analysis of the data, some correlation between high 

speed and high 3-point bend and high density occurs. Also, some correlation between 

high pressure and high 3-point bend and high density is present. The focused ANNs 

which performed best, tended to have breaking station status, actual speeds and die 

temperatures (as opposed to set speeds and temperatures), and pressure as inputs with 

density and/or 3 -point bend as outputs. Figure 5.4 captures this information and some 

inter-process relationships in a hybrid qualitative model. 

Use of OOQA to identify candidate variables, and ANNPM has resulted in a ANN 

thermoset pultrusion process model than can readily predict important material 

properties from a small number of readily available variables: actual die temperature in 

two zones, actual line speed, and pressure. The ANN essentially contains a statistical 

model with a combination of trained weights and activation function which captures the 

complex interrelations between variables in the data. The trained and tested ANN is a 

very rich and compact representation of the key elements of the data. 

5.3.2 Thermoplastic Pultrusion 

The analysis and ANNPM application was for the most part similar to that of the 

thermoset pultrusion process model. Only areas where significant difference or specific 

results of interest occur are reported. 

5.3.2.1 Data Collection., Representation and Pre-Processing 

Chapter 4 details the thermoplastic pultrusion data collected, and noted the differences in 

values from those of thermoset pultrusion. Data was analysed to see if a variables were 

simply or linearly correlated- they were not, and so the ANNPM was continued. 
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5.3-2.2 Architecture, Algorithm and Structure Selection 

The same MILP architecture with backpi-opogation learning algorithm was used as for the 
thermoset ANN modelling. 

5.3.2.3 Identification of Input-Output Nodes 

Use was made of the same OOQA analysis to identify the same input/output nodes. Data 

relating to endothermic and exothermic temperatures was unavailable. 

5.3.2.4 Re-identificationlValidation of InputlOutput Nodes 

Little correlation existed between variables, and so there was no redundancy in the data- 

PCA was not used. 

5.3.2.5 Selection of Trial SetslANNs for Training 

Fewer ANN trials were undertaken, as global ANN performance and focused ANN 

performance was similar to the thermoset ANNs. This suggests that an element of 

genericity exists for ANN modelling of different exothermic and endothermic resin 

system types. 

5.3.2.6 Supervised Learning and Result Collation 

Table 5.6 indicates some of the range of ANN structures trained and results. The training 

data subset and ANN trials are included in the appendix of this thesis. All the ANNs 

tabulated are focused structures which perform similarly well, and are comparable to the 

thermoset ANNs for a very low average error per cycle. 

set error 
tolerance 

learning iterations structure average 
error 

error last 
cycle 

average 
error per 
cycle 

pal 0.01 0.05 10 3-2-1 0.69 2.16 0.027 

pa2 0.01 0.25 10 3-2-1 0.67 2.12 0.027 

pa3 0.01 0.50 10 3-2-1 0.63 1.99 0.25 

pa4 0.01 0.75 10 3-2-1 0.585 1.87 0.023 

pa5 0.01 0.50 10 3-3-1 0.584 1.87 0.023 

pa6 0.01 0.50 10 3-1-1 0.668 2.12 0.027 

pb7 0.01 0.50 2 3-3-2 1.235 0.32 0.008 

pb8 0.01 0.50 3 3-2-2 1.05 0.25 0.006 

PC9 0.01 0.50 2 4-4-1 0.40 0.14 0.004 

PCIO 0.01 0.50 2 4-3-1 0.66 0.18 0.005 

PCII 0.01 0.50 3 4-1-1 0.752 0.23 0.006 
---. .1 -1 1,. AX T-% T llr--* -IJ 

" 

i ame -: ). o- -)eieciea -i nermul2litSLIU 11LININ II lal, -, anu 1-11-, ZILMI, 
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5.3.2.7 Validation and Performance Metrics 

Figure 5.12 illustrates a successful thermoplastic ANN structure and results. Similar 
structure ANNs perform similarly for both thermoset and thermoplastic pultrusion, even 
though the data is very different, the different endothermic and exothermic 
characteristics of the resin types,, and the resultant weights are very different. Trained, 
tested and validated thermoplastic ANNs were used to predict thermoset material 
properties and vice versa- to no success. This suggests that a genericity of structure may 
exist, but not of the trained ANN itself. To fully justify this suggestion, the use of more 
specific exothermic and endothermic data, and a wider range of resin systems would be 

required. 

I /act speed 
'ý KA 

1 F7 

-0.515(to A) 

-0.973(to B) 

-0.237(to C) 
0.619(to D) 

I /act tempF B -2.46 0.321 
0.718 
1.10 

-1.03 1 /flex strength 
-1.65 1 /act tempR C 

0.275 
1.13 

-0.689 
0.404 -0.26 error tolerance 0 .01 learning rate 0.50 

pressure D structure 4: 4: 1 

-0.277 average error per cycle 0.66 
0.204 error last cycle 0- 18 

-0.218 error last cycle per pattern 0.005 
0.200 

Figure 5.12 -Focused Structure Thermoplastic Pultrusion ANN and Results 

5.4 Performance of Alternate ANN Pultrusion Models 

From OOA and use of qualitative modelling to develop hybrid process models, the data 

needs of the ANN process model were established. Trials were carried out with the 

intention to cover a range of operating conditions, and be broad enough so that typical 

processing faults would occur, and long enough in duration so that an increased range of 

stochastic faults would be encountered. 
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Use of OOQA to identify candidate variables,, and ANNPM has resulted in ANN 
thermoset and thermoplastic pultrusion process models than can readily predict important 
material properties from a small number of readily available variables- actual die 
temperature in two zones, actual line speed, and pressure. The structures, and 
input/output variables of good performing ANN models are similar for both resin 
systems, suggesting an element of genericity. The ANNs essentially contains a statistical 
model with a combination of trained weights and activation function which captures the 

complex interrelations between variables in the data. The trained and tested ANN is a 
very rich and compact representation of the key elements of the data. 

5.5 The Role of Analysis to Aid Model Design 
Thermoset and Thermoplastic Pultrusion 

Development of ANN process models was enhanced by the OOQA problem analysis 

methodology. It is of interest to apply this approach of problem analysis and modelling 

to aid development of further ANN process models (i. e. investigating other material and 
die configurations, in addition to other processes to explore the bounds of genericity). 

Also, to develop a greater understanding of the extent of genericity with the use of 00 

and qualitative modelling for analysis and process model generation and the extent of 

genericness within the processes themselves. 

Within this research, data and process knowledge had different representations. The 

training data set used to develop the models itself was a representation of the large rich 

raw data set from laboratory trials. Statistics and manual removal of noise enabled 

creation of the training data set. When considering utility of the data, different models 

have different needs. By contrast, a mathematical model deals readily with real numbers, 

but is less effective with incomplete data. And further, RBS models use linguistic 

if.. then structures to manipulate real data. Incomplete data does 

not stop the RBS model working, but does reduce confidence in the results. Generally, it 

is important to keep the scale of data elements in the ANN, with respect to each other, 

consistent. A reciprocal of values maintains relative values, and is computationally both 
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easy to do and to reverse (for conversion of ANN numbers into useful representative 

values). 

Use of process insight enabled faster creation of effective ANN models, which led to 

further insight, and iterative development of superior ANN models even when statistical 

correlation of variables was weak. This process led to development of worthwhile ANN 

models of the pultrusion process using Derakane 440/40. The techniques used are 

applicable to the creation of other pultrusion and other process models with more speed 

and comparable performance to theory and time intensive mathematical models. 

5.6 Use of Models to Aid Controller Design 

Thermoset and Thermoplastic Pultrusion 

Despite the difference in data values, similar ANN structures performed similarly well or 

poor. Examination of the weights on the nodes after training reveals, for the same 

structure but different data sets, very different weights. Upon trying thermoset -trained 

ANNs with thermoplastic data or alternatively trying thermoplastic-trained ANNs with 

thermoset data, the predicted values are very far from both the expected data values, and 

the correct data and trained ANN. There is the suggestion of genericness in form of 

ANN. 

The resultant ANN models could be used as a basis for ANN-model-based controllers. 

Further work at Pera is investigating this possibility. 

Another interesting result arises when, having carried out full OOQA analysis and 

ANNPM with a given viewpoint guiding object/node selection, the viewpoint Is changed. 

Much of the OOQA is reusable for the new viewpoint, but the ANNPM process must 

start afresh. The question is- can we structure the ANNPM to enable change of viewpoint 

to have minimum impact? Additionally- can we develop a hierarchically structured 

viewpoint to assist generic utilisation of ANNs? 
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Chapter 6: Benchmarking Performance 

& Genericity Of Pultrusion Process 

Models & Other Complex Processes 

6.1 Introduction 
This chapter discusses the benchmarking of both performance and genericity for 

alternative pultrusion process models, and two other complex processes. The exploitation 

of genericity of process models is also of interest to the business and engineering 

communities [BOOCH 91] [RUMBAUGH et al 91 ][JACOBSEN et al 94b]. This chapter 

explores the performance and genericity of the pultrusion process models presented in 

Chapter 5, and further applications of the OOQA and ANNPM methodologies to other 

complex processes: the chemical bioprocess, and a logistics supply chain process. These 

complex processes were selected to both illustrate the breadth and complexity of 

potential application of the methodologies, and be typical of industrial problems faced 

today. 

Modelling Performance Metrics Applied to Process Models 

The key modelling and simulation metrics [MEYER 84] with respect to performance are* 

consistency, completeness, robustness, Conciseness or modelling efficiency. 

Consistency can be enumerated, for example, as least-squares error on a graph plot of a 

model's predictions against laboratory/original data. A qualitative assessment can be 

David Thomas Wright, "Novel Analysis and Modelling Methodologies Applied to Pultrusion and Other 

Processes", Ph. D. Thesis, Manufacturing Engineering, Loughborough University of technology, 1995. 
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made of completeness and robustness. Conciseness/efficiency can be enumerated in 
terms of the number of lines of code, or the time for an effective model to perform. 
These metrics are used later to evaluate each model. 

Genericity 

A major measure of the value of the overall approach to analysis and modelling, is in its 

ability to generalise [BOOCH 91 ] [JACOBSEN et al 94a] [ RUMBAUGH et al 91]. 

[PRESSMAN 92] defines generality in terms of software as "the breadth of potential 

application of program components and modularity as the functional independence of 

program components. 

Explorations of genericity in application areas similar to this work include- 

[MARQUARDT 92] considers that a complete and generic conceptual framework has 

been established in scientific ontology, and considers the conceptual isation of a domain 

(in the reported case an 00 framework) as the critical step for design of an expert/Al 

system. [BOOCH 91] discusses general isation/special isation in terms of the inheritance 

hierarchy of objects: "a parametrised class or generic class of object is one that serves 

as a templatefor others. The class must be instantiated (become active through data) 

before being parametrised by other classes". [TSANG 86] considers that generic 

systems avoid wasteful duplication and supported his development of a more general and 

adaptive Al system for Group Technology classification building on variant and 

generative approaches. [NADI et al 91] uses influence diagram/models developed over 

time to establish ANN architectures used with generalised data to synthesise novel 

process recipes. 

The following Section 6.2 summarises the alternate ANN thermoset and thermoplastic 

pultrusion process models. Section 6.3 details aC computer program written by the 

author which performs as a RBS model of the thermoplastic pultrusion process. Section 

6.4 considers a mathematical model of the pultrusion process based on mathematically 

deconstructed ANN pultrusion process models. Genericity and performance of these 

pultrusion process models is discussed in the next Section 6.5, before two Sections 6.6 

and 6.7, applying the OOQA and ANNPM methodologies, with results, to the complex 
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industrial case studies of a bioprocess reactor and the logistics supply chain. Finally 
Section 6.8 considers aspects of genericity of the application of OOQA and ANNPM. 

6.2 Benchmarking ANN Pultrusion Process Models 
This section presents the key results of the process modelling activities of Chapter 5 for 

the thermoplastic and thermosetting pultrusion processes. Presented first is an overview 
of the OOQA, data gathering and ANNPM as applied to pultrusion process modelling as 
presented in chapters 3,4 and 5 respectively. The key issue to be explored here is the 

robustness of the approaches to the significant change in material behaviour associated 
with the differences between thermosetting and thermoplastic resin systems. 

6.2.1 OOQA Applied to Thermoset and Thermoplastic Pultrusion 
The viewpoint was selected first to aid the definition of modelling metrics. Based on an 
initial statement of requirement, this resulted in the definition of the primary goals of the 

pultrusion system as being: to develop a real-time pultrusion process controller to meet 

product quality targets (as yet undefined specifically). 

A textual description of process/system characteristics was created based on knowledge 

elicited from experts. OMT techniques and heuristics assisted in identification of object 

classes, attributes, and key aspects of dynamics via dynamic scenario models. The object 

classes are- continuousfibres, cutoff saw, guide roll, heated die, input, let off roll, 

operator, pre-former, pull roll, product, quality, resin, SPARCstation, and time. The 

thermoset attributes are: rule_set, set_linespeed, set_die_temp, act_linespeed, 

act-die-temp, die_pressure, die_viscosity, degree_of cure, exotherm-temp, wetout, 
fluid_flow,, tank_temperature, tank_viscosity, load, qual_voids, qual_strength, 
letofroll-availmatl, and restnk_availresn measured at intervals of the variable time. 

Consideration of thermoplastic pultrusion would yield a different attribute list- as above 

excluding- exotherm-temp and degree_of cure, but including- endotherm_temp,, 

degree-of shaping,, and poly-melt-temp. 
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A review of the goal and definition of the object classes indicates that they are to a great 

extent insensitive to changes in the resin formulation. We now turn to examine the 

detailed effects of that formulation change as reflected in the data collection and ANN 

structures. 

6.2.2 Data Gathering of Thermoset and Thermoplastic Pultrusion 

The objective was to capture sufficient process knowledge to allow the manufacture of 

aerospace quality pultrudates. British Standards [BS 81][BS 87][BS 93] assist in defining 

the range of laboratory trials useful for material characterisation. The OOQA analysis 

carried out in Chapter 3 assists further in defining what data is of interest to the problem 

at hand. 

The Derakane 440/40 thermoset resin system was used with glass fibres, and a basic 

rectangular die profile. User set variables were line-speed (ranging between 50- 

160cm/minute), die temperature (ranging between 140-190! 2C) and whether or not to 

include the breaking station. Die pressure, actual line-speed, and actual temperature at 

the front and rear of the die were monitored throughout the trials . 
Samples 60cm long 

were produced at the various settings and tested. More than 200,000 data points were 

gathered. Materials testing included. simple tension, three point bend, density, 

dimensional acceptability, visual appearance, DSC, and microscopy. 

The polyester thermoplastic resin system was used with glass fibre, and a similar die 

profile to thermoset trials. User set variables were line-speed (ranging between 50- 

125 cm/minute), die temperature (ranging between 0- 160 *Q at four positions along the 

die, including the breaking station in all cases. Die pressure, actual line-speed, and actual 

temperature at the front, middle and rear of the die were monitored throughout the trials. 

Samples, 60cm long, were produced at the various settings and tested. More than 50,000 

data points were gathered. Materials testing included: three point bend, density, 

dimensional acceptability, and visual appearance. 

Graphs and Tables illustrating the data sets for thermosetting and thermoplastic 

pultrusion are included in the appendix of this thesis. 
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6.2.3 ANNPM Applied to Thermoset and Thermoplastic Pultrusion 

The above sets of raw data, had all the various variables statistically analysed, and 
Pearson's correlation coefficients were calculated. The results indicated little 

mathematical correlation. The thermoset pultrusion data set was condensed to 1,025 

variables with 41 sets (i. e. 25 variables per data set). The thermoplastic data set was 

condensed to 288 variables with 8 sets (i. e. 36 variables in each set). The variables in 

each condensed data set were normalised so that the ranges of the variable values were 

similar in all instances- to ensure that the ANN would be able to train effectively without 

any particular variable skewing the results significantly. A MLP ANN architecture was 

used with a backpropogation learning algorithm to model the pultrusion process. Two 

broad structures were tested: a global structure where all inputs and outputs were used in 

a fully connected ANN; and a focused structure,, where laboratory and materials data 

were analysed and a closer understanding of the process was used to structure the ANN. 

The condensed data sets were partitioned with various combinations of data for training 

different structures using different sets of input/output nodes (each with a single hidden 

layer following [MASTERS 93]). For each structure, the momentum and learning rates 

were varied to add another dimension of experimentation towards finding an optimal 

ANN structure for modelling the pultrusion process. Having decided on structure and 

ANN configuration, the data sets were further partitioned for learning (45% of data), 

validation (45% of data) and testing (10% of data). For the thermoset pultrusion 

condensed data set a total of 400 different ANNs with varying structure, input/output 

configuration, number of nodes in the hidden layer, learning rate and momentum, were 

used. For the thermoplastic pultrusion condensed data set a total of 100 different ANNs 

were used. Tables 6.1 and 6.2 illustrate some key thermoset and thermoplastic 

pultrusion ANNs and performance. Performance of the ANNs will be discussed further 

in Section 6.5. 

Tables illustrating the reduced data sets and all ANN trials for both thermosetting and 

thermoplastic pultrusion are included in the appendix of this thesis. 
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Data Set and ANN 

............ 
........ ...... . 

Structure 

ý., (input/hidden/ 
output layers) 

Average 
Error Per 
Cycle 

Error Last 
Cycle 

Error Last 
Cycle per 
Pattern 

Thermoset 
Global- 1 (26) 6-12-19 18.78 59.60 1.70 
Global-2(106) 2-6-12 24.91 78.76 2.02 
Global-3(203) 2-6-6 24.62 78.06 2.00 
Focus-1(305) 4-4-1 0.15 0.15 0.004 
Focus-2(40 1) 4-2-2 1.36 1.36 0.035 
Focus-3(502) 4-4-4 1.41 4.49 0.12 
Focus-4(60 1) 3-3-4 1.55 4.84 0.12 
Global-2a(704) 3-12-12 28.90 91.46 5.71 
Global-3a(721) 3-5-6 24.65 78.08 2.00 
Focus-la(732) 5-3-1 0.23 0.23 0.006 
Focus-2a(743) 5-5-2 0.14 0.44 0.01 
Focus-3a(753) 5-5-4 1.42 3.89 0.10 
Focus-4a(763) 4-4-4 1.39 3.55 0.09 

Table 6.1- Performance of Some Key ANN Structures for Thermoset Data 

Data. &Ofan. :A NN 
.... ...... .......... ...... . .... ... ..... ....... ............ .. 

St ructure ..... ... verage :A Error Last Error Last 
................. ........ ....... .... .... .... ... ............. ..... 

............ ...... I .............. ý. : ..... ............................ .......... .... ....... ..... 
.. IR u :I t/h'dden 
.. - P 
... 

Error Per Cycle Cycle per 
. .... ...... . ....... . ..... . .... output I ayers) Cycl e Pattern 

Thermoplastic 
Focus-5(pa2) 3-2-1 0.67 2.12 0.027 
Focus-6(pb7) 3-3-2 1.05 0.25 0.006 
Focus-7(pc9) 4-4-1 0.40 0.14 0.004 

Table 6.2- Performance of Some Key ANN Structures for Thermoplastic Data 

6.3 RBS Model of Pultrusion Process 

This section presents a RBS model representation of the pultrusion process written in 

Borland C by the author. This overcomes difficulties in using expert system shells or 

discrete event simulators which encode unknown assumptions effecting results 

[SCFMIBER 95]. 

AC program was crafted for a RBS model of the thermoset pultrusion laboratory data 

set, including some elements for it's utilisation as a controller prototype. A STD (see 

Figure 6.1), part of [WRIGHT/WELLIAMS 93], was used to help with the program flow 

behind this model. The code fragment (see Figure 6.2) includes start-up variables 

detailing processing equipment and material set-up, and the starting states of flags 
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relating to process sensors, and actuation systems. The start-up rules include those to get 

operator input for setting linespeed, and die temperature. The runtime real-time rules 
iterate for the duration of the production run, and cover safety/ shutdown rules, actuator 

rules, process dynamics and internal physics rules, quality rules, and operator interrupt 

rules. For a given data stream of operator setpoints, and starting conditions, this model is 

able to generate data closely matching laboratory data for similar setpoints and 

conditions (see Figures 6.3 and 6.4). 

IDLE 

controller closed down 
controller started controller closed down 

(T)StOP Gontroller 
(T)set die_temp (T)sto 

-controller 
_ 

(T)set line s eed cl 
sy ys em sTa ing up 

system closing clown 

startup completed stop controller from user 

(E)get input (D)disable input channels 

P awaitin input 

stop controller 
die temp from user error signal received by error line speed from user 
(T)query status (T)indicate error to user (D)disable input 

panel (T)status response (T)query status channels 
updated 

v 
(T)status response 

(T)output temp] 
Feffing line setting die speed ing error 

to panel _ _ 

die tern set line_speed set 
_2ie 

ImI controller stabilised 

(T)set clieý temp (T)set line speed p (T)set die_temp 
d (T)set line 

_ 
speed 

updating conFroTpa_n_eF_ 

Figure 6.1 - State Transition Diagram of Pultrusion Process Control 

/**** SAFETY RULES ***/ 
if (set_speed>max 

- 
set_speed) 

fset_speed=max_set_speed; 

results[int(time/3)1[21=set_speed; ý 
if (set_temp>max 

- 
set_temp) 

fset_temp=max_set_temp; 

results[int(time/3)1[31=set-temp; I 

if (act-speed==O) 
fprintf("\n\n 

..... Die has jammed.. PROCESS SHUTDOWN 

underway... \n"); 
time=max_time; ý 

PROCESS DYNAMICS RULES 
if (set_speed>act_speed) 

fact_speed=act 
- 

speed+(change_speed/37)-2; 
results[int(time/3)1[4]=act_speed; ) 

174 



if (set_temp>act front_temp) 
(act_front temp=act_front 

- 
temp+(change_temp/63)-10; 

results[int(time/3)1[51=act_front_temp; ) 
if (set_temp>act-rear_temp) 

fact_rear_temp=act_rear_temp+(change_temp/106)-5; 

results[int(time/3)1[61=act_rear_temp; ) 
if (act_speed>=120) 

ýact_rear_temp=act_rear_temp-2; 

results[int(time/3)1[61=act_rear_temp; ) 
if (act_speed>120) 

if (act-front-temp>150) 
fact_pressure=15; 

results[int(time/3)1[71=act_pressure; ) 

else 
jact_pressure=5; 

results[int(time/3)1[7]=act_pressure; I 

Figure 6.2- C Code Fragments for RBS Model of Pultrusion Process 

This model is based on empirical data rather than theory, and so is complete, concise and 

performs well for our example. Changing part of the process would involve redesign of 

the RBS. 

The RBS model was shallow (i. e. had no knowledge of the process physics). It used high 

level programming language constructs to operate on simplified numeric and logical 

data. When incomplete input data was present, the model continued performing with 

some loss of accuracy. The speed of implementation was average to slow when 

compared to the other models evaluated. This model was also quick to produce, 

requiring little knowledge of the process physics, and some knowledge of process control 

requirements (e. g. actuators, sensors, control loops etc). This suggests that linguistic 

operators on simplified real and logic (or qualitative or fuzzy) data can generate models 

that match process data, even where mathematical statistical correlation is lacking 

between variables. Changing materials, or die configurations, which may produce 

significantly different data set trends and features, would require a new RBS to be built 

(if in the style of this representation) to work. It is possible that alternative RBSs could 

be created that focused on process physics, and would be more generic in character, and 

could yield superior results. 
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6.4 Mathematical Model of Pultrusion Process Based on 
ANN Model 

This section first gives an overview of theory-based mathematical modelling as reviewed 
in Chapter 2, before presenting a mathematical model of the pultrusion process based on 

mathematically deconstructed ANN models of the pultrusion process. 

6.4.1 Overview of Theory-based Mathematical Modelling of the 

Pultrusion Process 

A number of physics-based heat-transfer and cure models have been developed- 

[HAN/LEE 86] [LEE/SPRINGER 90a/b/c][GORTHALA et al 94a/b] 

[BATCHJMACOSKI 93]. 

These models only address prediction of temperature, degree of cure, and pull force 

profiles of pultrudate with respect to position and time within die. As such, direct 

comparison for model prediction of die pressures, pultrudate density and flexural 

modulus was not possible. Although incomplete data was available, the models gave 
indication of potential performance. The knowledge representation was mathematical to 

the degree of accuracy of the data. The formulae used are generic to the family of 

processes. The knowledge encompassed in the equations was deep. However, when 

presented with incomplete data, a math model may not function with regard to 

significant parts of the required data output. More process knowledge and more process 

data (often less readily obtainable in industrial environments) is required than with other 

models. Industrial users of pultruders need models that directly predict material 

properties (often mechanical) based on readily available data from setpoints, process 

sensors, and simple tests (e. g. 3 point bend) rather than data from complex laboratory 

trials and calculations. There is scope for improved quality and faster/ cheaper 

pultrudates through improved understanding of the complex non-linear exothermic cure 

process and the resulting pultrudate. The limitations of such approaches therefore 

indicated that other approaches would be necessary; and examination was made of a 

mathematically deconstructed ANN. 
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6.4.2 Mathematical Analysis of Trained ANNs 

The best ANNs for both the thermoplastic and thermosetting resin systems were 

mathematically deconstructed. The resulting pultrusion system equation included input- 

output variables, coefficients, and sigmoid operators. An examination was made to 

extract generic features, with the goal being to arrive at a simple non-linear mathematical 

model that would perform as well as the best ANN models, without the need for a 

computational framework or computer code. In the ANN, each neuron mathematically 

operates by summing the weighted values of its inputs, and then using a non-linear 

sigmoid transfer function to convert this to a value. This value may subsequently act as 

an input into other neurons, and so on. Deconstruction of the best ANN models, results 

in the same set of input-output variables, and a similar overall mathematical form 

(including sigmoid operators). The coefficients themselves (corresponding to the weights 

of the neuron inputs) were vastly different as shown in Equation 6.1. No further 

mathematically useful compact representation was found. 

The mathematical empirical model was complex in structure and performed nearly as 

well as the equivalent ANN model. The comparative simplicity of the ANNs (within a 

complex framework) meant that there was no benefit to be gained in using the empirical 

model. Mathematical deconstruction was used to model the ANNs to verify that, even 

though the ANNs were small, there were no simple model relationships. 

Preamble: a thermoset and a thermoplastic 4-4-1 trained ANN (in the 

manner of Figure 6.6) were rewritten mathematically to examine 

coefficients for possible reusability. The letters A, B, C and D refer 

to the activation function at the hidden layer nodes. M and N refer to 

the activation function at the output node. 

Thermoset focused 

A= sigmoid of 

( (0.19 x 1/actspd) + (-0.56 x 1/acttmpF) + (-0.60 x 1/acttmpR) + (0.023 x 

1/pressure) ) 

B= sigmoid of 

f (0.11 x 1/actspd) + (-0.93 x 1/acttmpF) + (0.15 x 1/acttmpR) + (0.50 x 

1/pressure) ) 
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C= sigmoid of 
( (0.54 x 1/actspd) + (0.82 x 1/acttmpF) + (-0.90 x 1/acttmpR) + (-0.35 x 
1/pressure) I 

D= sigmoid of 

( (0.27 x 1/actspd) + (0.24 x 1/acttmpF) + (0.96 x 1/acttmpR) + (0-54 x 

1/pressure) ) 

M= E( (-1.6A) + (-1.8B) + (-1.19C) + (-1.72D) J= 1/3 point bend test result 

Thermoplastic focused ANN: 

A= sig-moid of 

f (-0.515 x 1/actspd) + (0.321 x 1/acttmpF) + (0.275 x 1/acttmpR) + (-0.277 x 

1/pressure) I 

B= sigmoid of 

( (-0.973 x 1/actspd) + (0.718 x 1/acttmpF) + (1.13 x 1/acttmpR) + (0.204 x 

1/pressure) ) 

C= sigmoid of 

f (-0.237 x 1/actspd) + (1.10 x 1/acttmpF) + (-0.689 x 1/acttmpR) + (-0.218 x 

1/pressure) ) 

D= sigmoid of 

( (0.619 x 1/actspd) + (-1.03 x 1/acttmpF) + (0.404 x 1/acttmpR) + (0.200 x 

1/pressure) I 

N= Zf (-1.76A) + (-2.46B) + (-1.65C) + (-0.262D) )= 1/flex strength 

Equation 6.1- Deconstructed ANN 

6.5 Genericity and Performance of Pultrusion Process 

Models 
This section presents a comparison of the performance of the alternate pultrusion process 

models addressed in this thesis: ANN, expert RBS and mathematical. 

Table 6.3 details complexity, effort and performance of the alternate process models 

through the stages of development, configuration and execution. For all models, least 

squares error was assessed for model predictions of key process control variables (e. g. 

die pressures, pultrudate density and flexural modulus) against laboratory data. 
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: global ANN focused A NN manual 
RBS 

deconstructed 
ANN math 

Development 
Complexity/ effort- 2912 2912 640 350 
lines of code (C). 
Confiv, uration 
Data much much little as per ANN 
pre-processing. plus more 
Time training/ 0.5-5 each 0.25-3 each 60 5 
customising (mins). structure structure by expert by expert 
Execution 
Execution time- <2 <1 3-5 <1 
prediction (mins). 
Accuracy. very poor very good good good 

Table 6.3- Evaluation Matrix for Alternate Process Models 

Within the different process models (e. g. ANN, RBS, and mathematical) data and 

process knowledge has different representations. The training data set used to develop 

the models itself was a representation of the large rich raw data set from laboratory trials. 

Statistics and manual removal of noise enabled creation of the training data set. When 

considering utility of the data, different models have different needs. A mathematical 

model deals readily with real numbers, but is less effective with incomplete data. A RBS 

model, uses linguistic 11F. JBEN structures to manipulate real data. Incomplete data does 

not stop such models working, but does reduce confidence in the results. ANN uses 

normalised data, and can, once trained, readily work with incomplete data with little 

reduction in the confidence of the output. 

Performance of ANN Pultrusion Process Models 

After using the split data set for training, and testing, the various ANNs were used to 

predict I/density, 1/3-pt bend, and l/flexural modulus (key pultrudate quality indicators) 

i. e. the validation step. Note that flexural strength was numerically approximately equal 

to 3 point bend test values. 

Figures 5.8 and 5.12 in Chapter 5 show the structure, weights and performance of the 

best performing focused ANNs for both the thermoset and thermoplastic data sets. The 

suggestion is made that although the laboratory data, and the weights on the ANNs are 
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very different, the structure in terms of inputs and outputs for similarly performing 
ANNs were similar. Tables 6.1 and 6.2 detail the varying performance of the global and 
focused categories, and between similar thermoset and thermoplastic trained ANNs. 

These tables are a condensed version of more than 500 trials (due to the data set 

shortages a full comparison of all global structures was not possible). The author 

arbitrarily defined performance in three broad bands based on error last cycle per pattern. 

poor >2.1,2. I>average>0.05, and good<0.05. Note that the learning rate/momentum was 

varied between 1.0 and 0.01, with values between 0.25 and 0.5 typically being the best. 

Comparison of the results illustrated in Tables 6.1 and 6.2 show that the 4-4-1 structure 

with process inputs of I/line-speed, I/front die-temperature, I/rear die-temperature, and 
die pressure allowed successful modelling of the data to predict Ifflexural modulus of the 

pultrudate. 

ANN Thermoset and Thermoplastic Pultrusion Process Models 

Both global and focused structure ANNs were deep (i. e. represented inter-relationships 

of some of the process variables), with good speed. The performance range varied from- 

poor to average for the global structures, to- average to good for the focused structures. 

The ANN could be trained and tested with data that had little mathematical statistical 

correlation, and then be utilised to predict variables using incomplete data. Data 

representation was based on the training set data normalised for internal computer 

operations; and was a combination of real numeric values and logical set values. Where 

little process physics knowledge was used in the construction, (e. g. global), performance 

suffered. The focused ANN had good performance, when 00 [WRIGHT/WELLIAMS 

93] and qualitative mental models or cognitive maps [BUEDE/FERRELL 93] were used 

to aid their construction. 

Summary 

A number of models of the pultrusion process have been presented: global ANN, and 

focused ANN, RBS, mathematical models of the process physics. The data on which 

these models are based, and the implementation of the models has been influenced by 
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numerous methodologies: 00, qualitative modelling, and alternative data representations 
including fuzzy logic. 

Both sets of laboratory data for the thermosetting and thermoplastic resin systems 

showed little mathematical statistical correlation. The mathematical theoretical process 

model needs further data in the area of materials to function competitively with the other 

models presented. The RBS model worked well, but at a superficial level which was very 

specific to our data set (i. e. not generic). The global ANN did not perform well. The 

focused ANN preformed well, and used process knowledge, and the benefits of 00 and 

mental qualitative /cognitive mapping modelling to improve performance. OOQA 

assisted in the analysis of the static, dynamic, and informatic real-time aspects of the 

process, and identification of candidate variables for use of ANNPM for process 

modelling. 

The main conclusions include: 

OOQA proved useful for determining data to be collected, and in structuring ANNs. 

The thermoplastic and thermosetting data were very different, but could be used to 

successfully create ANN models. 

e The best ANN models were similar in structure for both thermoplastic and 

thermosetting data. 

* Unsuccessful comparison was made of a deconstructed ANN math model and the best 

ANN models to try and develop a more concise mathematical non-linear model of the 

pultrusion process. 

Some elements of genericity are present, particularly with regard the structure of 

successful ANN process models with different resin systems. 

Having tested the OOQA and ANNPM approaches on two closely related processes, it is 

now of value to test it's versatility on significantly different complex processes. 
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6.6 OOQA and ANNPM Applied to Bioprocess Reactor 
This section presents OOQA and ANNPM as applied to the bioprocess reactor example 

of a complex industrially relevant case study. The sub-sections define the problem 

statement, show the OOQA analysis, illustrate the data gathering activity, and present the 

ANNPM analysis for this process. 

6.6.1 Problem Statement 

A bioprocess system usually involves chemicals and biological organisms I reacting 

together to form desired compounds or products with critical variables being 

temperature, pressure, feed rates of chemicals and proportions of chemicals in batch, 

humidity and time as depicted in Figure 6.5. 

/ sun 0- 

I stirring mechanism 

input MM 
valves MM algae 

chemical 
compounds output 

valve 

h: e: a: t i 
: 
ng mec 

=ha 
nism 

Figure 6.5- Bioprocess Reactor Schematic 

1 "Optimisation of a biotechnological. processes involves the overcoming of natural limitations achieved 

by genetic manipulation or dynamic variation of environmental conditions ... thus control requires long 

term prediction of expected process behaviour for each strain of each organism in each fermentation in 

order to introduce time-varying setpoints of physical parameters like temperature, pH, and substrate feed 

rate and estimate consequences of these variations" [BETTF-NHAUSEN/MARENBACH 95]. 
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6.6.2 OOQA Applied to Bioprocess Reactor 
There follows OOQA as applied to the bioprocess reactor, in the stages- viewpoint 

selection, textual description of process characteristics, 00 diagrammatic design, 00 

design validation, qualitative process modelling, and experimental design. This is 
followed by ANN modelling of the bioprocess reactor system. 

6.6.2.1 Select Viewpoint to Aid Definition of Modelling Metrics 

A brief statement of requirement is used to identify the primary goals. 

Statement of Reauirement- Biovrocess Reactor 

A system is required to estimate the concentration of compound within 

a Bioprocess reaction three hours after chemical compounds have been 

mixed. Sunlight affects algae growth which affects the reaction in an 

unknown manner. Chemical compounds are fed into the reaction at one 

point, and extracted at another. Pressure is insignificant. Data 

samples are available every 5 minutes, and statistical techniques 

allow moving averages to be collected. If certain compound 

concentrations are allowed to exist, a safety hazard will result. If 

compound concentrations are controlled optimally with a greater 

degree of stability, much sought cost savings will result. 

Thus the primary goal is to develop a model to estimate compound concentration which 

is accurate enough to meet safety specifil cations. 

6.6.2.2 Textual Description of ProcesslSystem Characteristics 

The statement of requirement is enhanced through use of knowledge elicited from 

experts to become a full problem statement. Use is then made of OMT techniques and 

heuristics to identify object classes and key aspects of dynamics via dynamic scenario 

models. 
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OMT Static Model 

Problem Statement- 

The Bioprocess process involves chemical compounds which are fed 

through valves into the reaction tank at one point, and extracted at 
another valve. A stirring mechanism and/or heating mechanism may be 

present to assist the process reaction. Sunlight affects algae growth 

which can affect the reaction in an unknown manner. Pressure is 

insignificant. If certain compound concentrations are allowed to 

exist, a safety hazard will result. 

A predictive tool or system is required to estimate the concentration 

of compound within a Bioprocess reaction three hours after chemical 

compounds have been mixed. Data samples from sensors (i. e. from 

valve, heating mechanism, and stirring mechanism) are available every 
5 minutes, and statistical techniques allow moving averages to be 

collected. 

The system will be used by the process operator to control the 

process plant based on the system's estimates of concentrations. A 

history of data relating to previous Bioprocess reactors involving 

similar compounds is available. The system should be based on a basic 

IBM PC-compatible computer. Estimates should be generated real-time, 

so that process control decisions may be made in an appropriate time 

period. If the estimate is wrong, a potential safety hazard or cost 

penalty exists. The system should be extendible to provide estimates 

for other Bioprocess reactors and other chemical processes at a later 

date. 

The nouns are extracted from the problem statement. 
Bioprocess process predictive tool 

chemical compounds 

valves 

reaction tank 

stirring mechanism 

heating mechanism 

predictive system 

concentration of compound 

Bioprocess reaction 

data samples 

sensor 

185 



sunlight process operator 

algae control 

algae growth process plant 

reaction data history of similar compounds 

pressure IBM-PC compatible computer 

safety hazard cost penalty 

The nouns are then tested against OMT heuristics. The usable object classes are 

underlined, and the failed potential classes are identified by test code (RE-redundancy, 

AT-attribute, VA-vagueness, IR-irrelevant, IM-implementation, OP-operation, and RO- 

role). 

Bioprocess process-OP lDredictive tool 

chemical comiDounds predictive system-RE 

valves concentration of compound-AT 

reaction tank Bioprocess reaction-RE 

stirrinq mechanism data samples-AT 

heatinq mechanism sensor 

sunliqht iDrocess oiDerator 

algae-VA control-VA 

algae growth-AT iDrocess Dlant 

reaction-AT data history of similar compounds-IM 

pressure-AT IBM-PC compatible computer-IM 

safety hazard-RO cost penalty-RO 

.......................................................................................................................................................................................... ........................... 
An object data dictionary is built up to clarify associations and relationships between 

obj ects. 

Object and Definitions 

chemical compounds- the raw materials and end product of the 

Bioprocess process. 

heating mechanism- may be present in the reaction tank to assist the 

Bioprocess process reaction through application of heat at a variable 

rate. 

predictive tool- the tool used by the process operator to predict the 

compound concentration of the Bioprocess process. Used for decision 
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support when controlling the process plant, and valve feed rates of 
the various chemical compounds. 

process operator- uses the predictive tool to assist in making 
decisions regarding process plant control. Must consider potential 

safety hazards, and sought after cost savings. 

process-plant- the combined system in which the Bioprocess process 
takes place; includes: reaction tank, valves, heating mechanism, 

stirring mechanism. Control and data gathering instrumentation may 

also be present. 

reaction tank- where Bioprocess process reaction takes place when 

valves feed in various chemical compounds at a variable rate, and an 

extracting valve takes off the final product after a given time lag 

(say 3 hours). 

sensor- attached to reaction tank, input and output valves, heating 

mechanism, and stirring mechanism. 

stir-ring mechanism- may be present in the reaction tank to assist the 

Bioprocess process reaction through the agitation of chemical 

compounds at a variable rate. 

sunliqh - affects algae growth in the reaction tank which can affect 

the reaction in an unknown manner. 

valves- are controlled by the process operator to feed in various 

chemical compounds at a given rate to support Bioprocess process 

reaction in the reaction tank. 

Associations which define the relationships between objects are identified by reference to 

the object data dictionary for words like: with, uses, combines with, contains, and is part 

of Attributes of objects are defined and used to identify links between objects (but 

avoiding derived and implementation attributes e. g. main on/off). 

The attributes are- sun_rate, pred_conc, pred-time, bio_conc, bio-press, bio-time-react, 

heat-rate, stir_rate, ilvalve_rate,, i2valve_rate, olvalve_rate, plant-saf haz, 

sens-ivalve_val, sens_ovalve_val, sens_heat_val, sens_stir_val, sens_tank_heat-val, 

sens-tank_conc_val, sens_tank_sunlight, plant-cost-sav for a given bioprocess chemical 

system. 
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OMT Dynamic Model 

Typical interaction sequence scenarios are used to define the dynamic aspects of the 

model. Consideration of single or multiple thread real-time control is represented by a 

message synchronisation code added to each interaction in the sequence from Table 3.1 

in Chapter 3. In the case of the bioprocess controller as presented, all interaction 

messages can be defined as simple single-thread (TO), or asynchronous multiple-thread 
(T4), and so the codes are not added to each interaction. 

Bio-Drocess reaction to safetv hazard concentration level 

Sensor value Sens_tank_conc_val reveals concentration too high 

(possible safety hazard). 

Process operator informed via warning panel. 

Process operator validates concentration through predictive tool. 

If concentration too high, process operator increases appropriate 

valve feed rate to reduce concentration and/or changes heating 

mechanism rate, and/or changes stirring mechanism rate. 

If concentration is found to be low (safe), process operator 

expedites replacement of original faulty sensor. 

Biolprocess reaction to non-cost savings concentration level 

Sensor value Sens_tank_conc_val reveals concentration too low (not 

cost savings value). 

Process operator informed via warning panel. 

Process operator validates concentration through predictive tool. 

If concentration is found to be too low process operator increases 

appropriate valve feed rate to increase concentration, and/or changes 

heating mechanism rate, and/or changes stirring mechanism rate. 

If concentration too high, process operator process operator 

expedites replacement of original faulty sensor. 

Bio-process reaction to normal level 

Sensor value Sens_tank_conc_val reveals concentration normal. 

Process operator informed via panel. 

Process operator validates concentration through predictive tool. 

If concentration correct, process operator takes no further action. 
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If concentration is found to be incorrect, process operator expedites 

replacement of original faulty sensor. 

This is condensed into a [BOOCH 91] external event list with continuous real-time 
events indicated by **RT** for emphasis, and the same message synchronisation code 
(TO-T4) as for interaction sequences (see Table 3.1). Again, as the events are simple 
single-thread or asynchronous multiple thread, the code is not appended to each event. 
The external event list is used to test the functionality of the resultant 00 design. 

External events: 

predictive system is turned on/off 

operator changes query on panel 

operator changes preset safety or cost criteria 

actual sensed tank concentration changes **RT** 

actual sensed tank temperature changes **RT** 

actual sensed tank valve flow rates change **RT** 

actual sensed tank sunlight changes **RT** 

actual sensed tank pressure changes **RT** 

actual sensed stirring mechanism rate changes **RT** 

actual sensed heating mechanism rate changes **RT** 

equipment failure **RT** 

time passes **RT** 

6.6.2.3 00 Diagrammatic Design 

Figure 6.6- OMT Static Object Model 

Figure 6.7- OMT Dynamic Model- Interface Format 

Figure 6.8- OMT Dynamic Model with Real-Time Extensions - Event Trace 

Figure 6.9- OMT Dynamic Model- Event Flow 

Figure 6.10- OMT Process Operator State Diagram 

Figure 6.11- OMT Process Operator Input-Output Identification 

Figure 6.12- OMT Functional Model with Real-Time Extensions- Process Operator DFD 
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The ease and transparency of the diagramming indicates that the OOQA methodology is 
applicable to this case. 

predictive 
tool predicts 

bioprocess 
pred_conc 
pred_time 

uses 
process rocess P alve 
operator controls 

Zrit 
P 

i1valve rate- 
saf-haz i2valve_rate 
cost-sav o1 va lve_rate 

A V supplies 

sunlight stirring heating reaction tank chemical 
mechanism mechanism compounds 

sun_rate bio-conc 
stir_rate heat-rate bio-time_react 

bio_pressure 

has has has has ha 

sensor 

sens -ivalve_val sens ovalve val 
sens -heat-val sens -stir_val sens -tank - sunlight 
sens -tank_heat-val sens -tank_conc_val 

Figure 6.6 - OMT Static Object Model 
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PREDICTOR 
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QUERYSET 
concentration time 
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( 
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Figure 6.7- OMT Dynamic Model- Interface Format. 

tank process 
concentration operator 
sensor 
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actuation 
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: concentration low via 
: warning panel : validate concentration 
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Figure 6.8- OMT Dynamic Model with Real-Time Extensions- Event Trace 
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Figure 6.9- OMT Dynamic Model- Event Flow 
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Figure 6.11- QMT Process Operator Input-Output Identification 
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Figure 6.12-. OMT Functional Model with Real-Time Extensions- Process Operator DFD 
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6.6.2.4 Qualitative Process Modelling 

From the 00 static object model analysis the variable attributes of importance include- 

sun-rate, pred_conc, pred-time, bio_conc, bio_press, bio 
- 
time-react, heat-rate, 

stlr_rate , ilvalve_rate, i2valve_rate, olvalve_rate, plant_saf haz,, sens_ivalve_val, 
sens_ovalve_yal, sens_heat_yal, sens_stir_val, sens-tank_heat_val, sens_tank_conc_val, 
sens-tank_sunlight, plant-cost-sav for a given bioprocess chemical system. These are 
used with naive reasoning [STRUSS 88] about the interconnectedness of attributes to 
develop a qualitative model as in Figure 6.13. The external event list is used to check 
the dynamic functionality of this qualitative model. The link-lines or interconnections 

represent data flow, influences between variables, or naive reasoning. This qualitative 
model is the basis for selection of variables about which data is sought for use in an 
ANN process model. The candidate variables identified are: bio_conc, bio_time_react, 

sens-tank_heat_val, ) sens_tank_conc_val,, bio_press, sens_tank_sunlight, 11 valve_rate, 
i2valve_rate, and olvalve_rate. 

Physical 
Properties 
or Outputs 

bio-conc bio-time_react pred_time plant-cost-sa 

plant-saf haz 

sens-tank_heat-va sens-tank_conc_val bio_press Intermediate 
erties 

sens-tank_sun ight sens-heat-va sens-stir_val sens-ivalve va 

su n_rate viscosity sens-oval)/e_va 

heat-rate stir_rate i1 va Ive_rate ol valve_rat 

User Set 
Properties/ 
Inputs 

Figure 6.13- Qualitative Model of a Bioprocess 
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6.6.3 Gathering Data for Bioprocess Reactor 

Data was gathered from a chemical engineering research project (Andrew Bingham at 
LUT). The problem involves two chemical compounds reacting in a reaction tank to 

produce a desired concentration of a third chemical compound. Algae growth is 

stimulated by sunlight, and has an unknown affect on the reaction process. Data included 
two feed rates, two moving average feed rates, time, a concentration set point, a 

concentration actual value, and a math model estimated concentration. The data set 

totalled 648 data points in 81 sets (i. e. 8 variables per data set). The number of variables 

about which data has been gathered is smaller than the large range identified by the 

OOQA analysis. The full data set is included in a table in the appendix of this thesis. 

6.6.4 ANNPM Applied to Bioprocess Reactor 

Over 100 alternate ANN structures were tested (with MLP architecture and 

backpropogation learning algorithm). 

Table 6.4 illustrates the mixture of input/output nodes for different ANN structures. 

Figures 6.14-6.15- alternate bioprocess model ANN configurations. Figure 6.16 shows a 

graph of the performance of a number of the bioprocess ANNs in predicting the 

laboratory data. Table 6.5 illustrates the performance of a number of different ANN 

trials for the bioprocess data. 

structure 
code 

pri HO sec H pri MA sec MA mod 
set 

pri 
rate 

I I/pri 
rate 

output 
concentration 

ac 1 0 

ac2 1 0 

ac3 1 0 

ac4 1 0 

ac5 1 0 

ac6 0 

ac7 0 

Note- Izz: input, O=output, pri=primary, sec=secondary, MA=moving average, 
set=setpoint 

Table 6.4 - Input/Output Sets tbr Bioprocess A-NN 'I rials 
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Pri Ho 
weights: 
-0.395 (to A) 
-0.129 (to B) 
0.634 (to C) 

Sec H 
weights: 
1.05 (to A) 
0.657 (to B) 
0.798 (to C) 

1/Pri Rate 
weights: 
-0.065 (to A) 
-0.610 (to B) 
0.439 (to C) 

output 
concentration 
weights: 
-1.24 (from A) 
-0.923 (from B) 
-0.196 (from C) 

error tolerance: 0.01 
learning rate: 0.5 
structure: 3-3-1 
average error per cycle: 0.618 
error last cycle: 0.618 
error last cycle per pattern: 0.0080 

Figure 6.14- Good Performance Bioprocess ANN (acad) 

1/Pri Rate A 
weights: 
-0.143 (to A) 
0.203 (to B) 
0.416 (to C) 
0.123 (to D) 

Mod set B output 
weights: concentration 
-0.496 (to A) weights: 
-0.924 (to B) 

-0.802 (from A) 
0.203 (to C) -0.567 (from B) 
0.007 (to D) -0.546 (from C) 

-0.605 (from D) 

pri M ý-Qj 
weights: 
-0.794 (to A) 
0.061 (to B) 
0.419 (to C) 
-0.222 (to D) error tolerance: 0.01 

learning rate: 0.5 

sec MA structure: 4-4-1 
weights average error per cycle: 0.585 
0.487 (to A) error last cycle, 0.585 
0.622 (to B) error last cycle per pattern: 0.0076 
0.741 (to C) 

-0.757 (to D) 

Figure 6.15- Poor Performance Bioprocess ANN 
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Figure 6.16- Bioprocess ANNs Predictive Performance Against Data 

Data Set and ANN Structure 
(Input/hIdden/ 
output layers) 

Average 
Error Per 

Cycle 

Error Last 
Cycle 

Error Last 
Cycle per 
Pattern 

acIg 3-1-1 0.634 2.00 0.026 
ac2d 4-4-1 0.069 0.225 0.0029 
ac3d 3-3-1 0.124 0.373 0.0048 
ac3h 3-2-1 0.0560 0.537 0.009 
ac4f 4-1-1 0.183 0.447 0.0058 
ac4h 4-2-1 0.038 0.239 0.0039 
ac5a 6-6-1 0.6521 0.6521 0.0148 
ac5k 6-3-1 0.028 0.101 0.002 
ac6f 3-1-1 0.018 0.086 0.004 

ac7d 4-4-1 0.036 0.392 0.013 
Table 6.5 - Selected Bipprocess ANN Trials and Results 

It can be seen that even though the "error last cycle per pattern" are not significantly 

different for any of the input/output structures tested (See Table 6.5), the performance of 

these models varies significantly (see Figure 6.16). The good performing and poor 

performing bioprocess ANN models represented in Figures 6.14 and 6.15 respectively, 
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from inspection of the weights, do not appear to be very different (i. e. the weights have 

not exploded on the poorly performing ANN). Input/Output structures such as used by 

ac I and ac7 (see Table 6.4), performed very poorly. Input/Output structures as used by 

ac2, ac3 and ac5 performed significantly better, but were still typically up to 10% in 
error when compared to the data values. One explanation could be that the candidate 

variables about which data could not be gathered in this case study, previously identified 

in the OOQA, are required for the model to perform better. These identified variables 
include sunlight, tank pressure, and tank temperature. It can be seen that the combined 

use of OOQA and ANNPM has resulted in a number of potential ANN process models to 

assist in increasing understanding of significant candidate variables for implementation. 

6.7 OOQA and ANNPM Applied to Logistics Supply 

Chain 
Having demonstrated the OOQA and ANNPM approaches on a broadly similar process 

to pultruslon, it is now appropriate to turn to a further problem which can be thought of 

as representing a series of processes. 

This section presents OOQA and ANNPM as applied to the logistics supply chain 

example of a complex industrially relevant case study. The sub-sections define the 

problem statement, show the OOQA analysis, illustrate the data gathering activity, and 

present the ANNPM analysis for this process. 

6.7.1 Problem Statement 

From the literature, we understand logistics [IPRODE 89] to involve the "art of getting 

the right goods, in the right quantity, to the right place, at the right time, and at the right 

cost". The organisation involves both the flow of data between customer and supplier, 

and the flow of goods to the customer [LEWISNAIM 95]. Manufacturing process 

control systems similarly involve data and materials flow- from factory wide NIRP 11 and 

CIM systems to a single NC machine tool. The single NC machine tool utilises data from 

sensors fed-back and processed to assist the machining of metal (say) to a desired shape 
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and specification. Extrapolating this hypothesis, pultrusion could be viewed as a supply 

chain, with each processing stage (e. g. let-off rolls, resin tank, pre-former, heated die, 

pull rolls and cut-off saw) equating to a supplier/customers with data and goods 

requirements. 

[HOEKSTRA/RONME 92] have shown a number of supply chain groupings, including: 

pipeline, single route, shared resource, convergence, divergence, and network groupings. 

If viewed purely as data processing structures, several of these structures are analogous 

to electronic logic AND/ORNOT devices. If viewed as a representation of the 

manufacture of a customer product, there is little difference between the groupings and 

PERT project charts. 

Within this context,, the logistics supply chain case study may be viewed as a 

simplification or alternative representation of a manufacturing process e. g. pultrusion. 

Figure 6.17 illustrates the logistics supply chain of interest as the complex process case 

study: the production of a single technical feasibility study with eight chapters. The 

customer specifies his/her requirements- an eight chapter technical feasibility study- to 

the research director. This data is interpreted, and used to brief a number of research 

agents who gather data from a number of information sources. Information (i. e. the 

requirements) and physical goods in the form of photocopied reports, books, and the 

completed chapters are passed between information sources, research agents, the research 

director and the customer. Some chapters require more research effort to complete 

satisfactorily, and so take a longer time. Within the same Figure 6.17 there is a PERT 

representation of the researchers completing eight chapters within such a report for a 

given overall lead-time. It is assumed editing and compilation of the entire report is 

subsumed within the eight tasks shown representing the research of eight chapters. 

Although simplistic, this example is flexible for many alternate PERT representations, 

depending on resource availability. It demonstrates the potential for analysis and 

modelling of the impact on total lead-time of the delivery of the feasibility study through 

the change of resource available to the project. 
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Figure 6.17- Logistics Supply Chain Example- Feasibility Study 

6.7.2 OOQA Applied to Logistics Supply Chain 

The previous section outlined a complex process case study- the logistics supply chain of 

completion of a technical feasibility study. There follows OOQA as applied to this 

complex case study, in the stages: viewpoint selection, textual description of process 

characteristics, 00 diagrammatic design, 00 design validation, qualitative process 

modelling, and experimental design. 

6.7.2.1 Select Viewpoint to Aid Definition of Modelling Metrics 

A brief statement of requirement is used to identify the primary goals. 

Statement of Recruirement- LoqiStiCs SuT)-plv Chain 

A system is required to estimate the completion time of research 

projects, in particular technical feasibility reports. Significant 
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variables include: the number of researchers, the total difficulty of 
the report (i. e. customer requirement), individual difficulty of 
chapters, available information sources, quality of available 
information sources, the efficiency of researchers, the time of 
completion of chapters, and the dependency/sequencing needs for 

completion of individual chapters. Some of these variables are inter- 

related. The project plan (e. g. PERT chart) to complete the task is 

variable. Late delivery of the study to the customer or delivery of a 

sub-standard study is not permissible. 

Thus the primary goal is to develop a model to estimate research project lead-time which 

meets accuracy specifications. 

6.7.2.2 Textual Description of Process/System Characteristics 

The statement of requirement is then enhanced to become a full problem statement. Use 
is then made of OMT techniques and heuristics to identify object classes and key aspects 

of dynamics via dynamic scenario models. 

OMT Static Model 

Problem Statement- 

The research process involves customer specification of his/her 

requirements- fixed at say an eight chapter technical feasibility 

study- to the research director. This data is interpreted using 

research criteria, and used to brief a number of research agents who 

gather data from a number of information sources. Information (e. g. 

the requirements) and physical goods in the form of photocopied 

reports, books, and the completed chapters are passed between 

information sources, research agents, the research director and the 

customer. Information sources include libraries, computer databases, 

and laboratories. Some chapters require more research effort to 

complete satisfactorily, and so take a longer time. It is assumed 

editing and compilation of the entire report is subsumed within the 

eight tasks representing the research of eight chapters. 
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A predictive-tool is required to estimate the completion time of 

research projects, in particular technical feasibility reports. 
Significant variables include: the number of researchers, the total 
difficulty of the report (i. e. customer requirement), individual 

difficulty of chapters, available information sources, quality of 

available information sources, the efficiency of researchers, the 

time of completion of chapters, and the dependency/sequencing needs 
for completion of individual chapters. Some of these variables are 
inter-related. The project plan (e. g. PERT chart) to complete the 

task is variable. Late delivery of the study to the customer or 

delivery of a sub-standard study is not permissible. 

The system will be used by the research director to offer estimates 

of time and cost (equivalent to research effort and profit, related 

to number of researchers and project difficulty) to the customer. A 

history of data relating to previous research projects involving 8 

chapter feasibility studies is available- and so it is envisaged an 

implementation would be used for 8 chapter feasibility studies in the 

first instance. The system should be based on a basic IBM PC- 

compatible computer. Estimates should be generated real-time, so that 

telephone estimates may be generated from a "calculation" using data 

from telephone queries. If the estimate is lower than the real time 

and cost, then both the research director would lose money and the 

customer would be dissatisfied. If the estimates are higher than the 

real time and cost, then the research director may not get any 

business, as his/her competitors would often give more attractive 

estimates and win the business. There is potential for premium 

payments by the customer above estimated cost for a faster delivery. 

Profit is sought by the research director. The system should be 

extendible to provide estimates for feasibility studies with a 

different number of chapters. 
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The nouns are extracted from the problem statement. 
research process completion time 

customer research project 

customer specification researcher 

requirements total difficulty 

eight-chapter technical individual difficulty 

feasibility study available information sources 

study quality of available information 

research director sources 

research criteria efficiency of researchers 

data time of completion of 

research agents chapters 

information source dependency/sequencing 

information project plan 

physical goods PERT chart 

photocopied reports late delivery 

books delivery 

completed chapters sub-standard study 

chapter cost 

library project difficulty 

computer database history 

laboratory implementation 

research effort IBM PC-compatible computer 

time real-time 

editing calculation 

compilation estimate 

entire report money 

tasks business 

predictive-tool competitors 

The nouns are then tested against OMT heuristics. The usable object classes are 

underlined, and the failed potential classes are identified by test code (RE-redundancy, 

AT-attribute, VA-vagueness, IR-irrelevant, IM-implementation, OP-operation, and RO- 

role). 
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research process IR completion time RE 

customer 

customer specification 

requirements RE 

eight-chapter technical 

feasibility study AT 

studv 

research director 

research criteria 

data AT 

research agents RE 

information source 
information VA 

physical goods RE 

photocopied reports RO 

books RO 

completed chapters OP 

chaiDter 

library 

comiDuter database 

laborator 

research effort VA 

time AT 

editing OP 

compilation OP 

entire report RE 

tasks VA 

research iDroject 

researcher 

total difficulty AT 

individual difficulty AT 

available information sources AT 

quality of available information 

sourceS AT 

efficiency of researchers AT 

time of completion of 

chapters AT 

dependency/sequencing AT 

project plan OP 

PERT chart RE 

late delivery AT 

delivery VA 

sub-standard study AT 

cost AT 

project difficulty AT 

history IR 

implementation IR 

IBM PC-compatible computer IM 

real-time AT 

calculation VA 

estimate AT 

money IR 

business IR 

predictive-tool competitors IR 

..................................................................................................................................................................................................................... An object data dictionary is built up to clarify associations and relationships between 

obj ects. 

Object and Definitions 

chapter- a subclass version of a study. The chapter is created by a 

researcher using information sources. 
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com_vuter database- a subclass/ "kind of" information source which has 

age and reliability of data as an attribute, and operates as a store 

of data and information. 

customer- defines customer specification. Assesses study against 

customer specification. 

customer specification- a document defined by the customer which has 

a subject, with difficulty, timescales, and budget as attributes. It 
is used in negotiation between research director and customer in 
deciding a potential research project. The customer may have many 
customer requirements documents. 

info=ation source- has age and reliability of data as an attribute, 

and operates as a store of data and information. The information 

source is the superclass of Library, computer database, and 
laboratory information sources. Many researchers use many information 

sources to carry out research towards creation of chapters within the 

study. 

laborator -a subclass/ "kind of" information source which has age 

and reliability of data as an attribute, and operates as a store of 
data and information. 

lib-ra-rv- a subclass/ "kind of" information source which has age and 

reliability of data as an attribute, and operates as a store of data 

and information. 

predictive-tool- used by the research director using research 

criteria and customer requirements to predict cost, effort, and 

completion time of a study. It contains a ruleset with data about 

historical research projects. 

researcher- uses information sources to create chapters within the 

study. The researcher has ability as an attribute. Is directed by, 

and works for the research project and research director. 

research criteria- the research director uses the research criteria 

to develop many research projects in response to many customer 

specifications. 

research_j)-rojec - with a goal to create a study. Both have time and 

cost attributes. The research project uses researchers with ability 

to create chapters within the study. The research director develops 
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the research project based on research criteria and customer 

requirements. 

stud -a research report comprising of many chapters, which are 
themselves subclass versions of the study. The study is the main goal 

of a research project. The predictive-tool predicts the chance of 

correct completion of a study. The customer measures the study 

against the customer specifications. 

Associations which define the relationships between objects are identified by reference to 

the object data dictionary for words like. with, uses, combines with, contains, and is part 

of Attributes of objects are defined and used to identify links between objects (but 

avoiding derived and implementation attributes e. g. main on/off). 

The attributes are: cust_subject, cust_diffic, cust-time, cust_budget, data, proj_time, 

proj_cost, study_time, study_cost, res_ability. 

OMT Dynamic Model 

Typical interaction sequence scenarios are used to define the dynamic aspects of the 

model. Consideration of single or multiple thread real-time control is represented by a 

message synchronisation code added to each interaction in the sequence from Table 3.1 

in Chapter 3. In the case of the logistics process as presented, all interaction messages 

can be defined as simple single-thread (TO), or asynchronous multiple-thread (T4)., and 

so the codes are not added to each interaction. 

Cannot meet customer recfuirement 

The research director requests customer requirement. 

The customer defines the customer requirement. 

The research director uses predictive-tool to assess if can complete 

study to meet customer requirement. 

The predictive tool uses research criteria and the customer 

requirement and it's internal ruleset to estimate study cost, 

quality, and lead-time. 

The estimate does not meet customer requirement. 
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The research director rejects customer requirements and informs 

customer of rejection. 

Can meet customer requirement 
The research director requests customer requirement. 
The customer defines the customer requirement. 
The research director uses predictive-tool to assess if can complete 
study to meet customer requirement. 
The predictive tool uses research criteria and the customer 
requirement and it's internal ruleset to estimate study cost, 
quality, and lead-time. 

The estimate does meet customer requirement. 
The research director accepts the customer requirement and informs 

customer of acceptance. 

The research director develops a research project using research 
criteria. 
The research project uses/defines roles of researchers who access 

information sources to complete chapters for study. 

The study is completed by the researchers to research project goals 

as set by research director using research criteria. 

The customer assess the study against the customer specification. 

This is condensed into a [BOOCH 91] external event list with continuous real-time 

events indicated by **RT** for emphasis, and the same message synchronisation code 
(TO-T4) as for interaction sequences (see Table 3.1 in Chapter 3). Again, as the events 

are simple single-thread, the code is not appended to each event. The external event list 

is used to test the functionality of the resultant 00 design. 

External events: 

predictive system is turned on/off 

operator changes query on panel 

operator changes preset customer requirements or research 

criteria 
time passes **RT** 
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6.7.2.3 00 Diagrammatic Design 

On the following pages are a number of the key OOQA diagrams. 

Figure 6.18- OMT Static Object Model 

Figure 6.19- OMT Dynamic Model- Interface Format. 

Figure 6.20- OMT Dynamic Model with Real-Time Extensions - Event Trace 

Figure 6.21- OMT Dynamic Model- Event Flow 

Figure 6.22- OMT Research Director State Diagram 

Figure 6.23- OMT Research Director Input-Output Identification 

Figure 6.24- OMT Functional Model with Real-Time Extensions- Research Director 

DFD 

The ease and transparency of the diagramming indicates that the OOQA methodology is 

applicable to this case. 

customer 

assesses 

P has 2-0 customer 
specification 

_ usý_sur)ject 
for cust - 

diffic 
predictive cusLbudget 
tool predicts 
ruleset 

research 
criteria juses 

research research study 
director project delivers 

develops proj_cost study_cost 
proj_jrne study2ime 

qpdefines roles has 
8, COME pleted 
by 

information researcher chapter 
source uses creates 
data res-ability 

like 

F 
library 

/I\ -1 
computer laboratory 
database 

data data 

Figure 6.18- OMT Static Object Model 
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PREDICTOR 

study cost study time 

QUERYSET PRESET POWER 

subject cost time 
00 

0.0.1000.0 1000.0500 customer research 0 
requirement criteria ........ 

Figure 6.19- OMT Dynamic Model- Interface Format. 

time 

customer research director prediction-tool researcher information source 

request customer:, 
requirement: 

cannot meet 
: input customer input customer customer 
. requirement requirement and research 

iteria and querV requirement 

reject customer return verdict- reject:: +: 

14 

requirement. 
--------------L------------------------------------------ 

request customer: 
requirement can meet 

input customer customer 
ýinput customer requirement and research requirement : requirement criteria and query 

return verdict- accept: 
lefine 

role I 
Oirequest data 

: complete chapters return data: 
customer to assess: A study 

fini 

_Figure 
6.20- OMT Dynamic Model with Real-Time Extensions- Event I race 
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Figure 6.2 1- OMT Dynamic Model- Event Flow 
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Figure 6.22- QMT Research Director State Diagram 
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Figure 6.23- OMT Research Director Input-Output Identification 
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6.7.2.4 Qualitative Process Modelling 

From the 00 static object model analysis the attributes are- cust-subject, cust_diffic, 

cust_time, cust_budget, data, proj-time, proj_cost, study-time, study_cost, res_ability. 
for a given logistic supply chain system. These are used with naive reasoning [STRUSS 

88] about the interconnectedness of attributes to develop a qualitative model as in Figure 

6.25. The external event list is used to check the dynamic functionality of this 

qualitative model. The link-lines or interconnections represent data flow, influences 

between variables, or naive reasoning. This qualitative model is the basis for selection of 

variables about which data is sought for use in an ANN process model. The candidate 

variables identified are: proj-time, proj_cost, data, res-ability, and cust-Subject. 

Physical 

rojjim proj_cos 
Properties 
or Outputs 

study-tim data es-abi i study_cos 
Intermediate 
Properties 

User Set 
cust-diffi cust-budget Properties/ 

Inputs 

Figure 6.25 - Qualitative Model of the Logistics Supply Chain 

6.7.3 Gathering Data for Logistics Supply Chain 

ANNs can successfully be used to perform the logical functions AND, OR, NOT and so 

on [RAO/RAO 93]. This result suggests that perhaps smaller specific ANNs may be 

usefully combined to produce a model that performs as the sum of the parts. A typical 

process involves a number of sub-processes or activities. It would be useful towards a 

generic hierarchy of processes, if we could (sub)model parts of the process effectively, 

and scale up the submodel with the appropriate submodels representing the configuration 

(in terms of manufacturing processes) to create a (meta)model. The building of a logical 

network of AND/ORNOT etc.. representing a process, say logistic supply chain, is one 

option. Another is building upon [HOEK S TRA/RONEME 92]'s basic supply chain 
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configurations. Another still is use of a number of constrained PERT project charts 
(which are common logistics control tools) to represent a process. It is this last option 

which will be used to demonstrate ANNPM. 

6.7.3.1 Data Collection, Representation,. and Pre-Processing 

Figure 6.26 shows samples of the data set. The full data set is given in figures and a table 
in the appendix. The assumptions are: the number of tasks is fixed; each task duration is 
fixed; there is a single unitary output (say production of a single technical feasibility 

study with 8 chapters); the inter-dependencies is variable; the total time duration and 

critical paths are variable. This example tests the process of change of organisation or 

resource on a single inviolable task. The tasks and duration times are- A- I week, B- 2 

weeks, C- 3 weeks, D- 4 weeks, E- I week, F- 2 weeks, G- 3 weeks, H- 4 weeks. 
Direction of completion is from left to right, bottom to top. Solid lines indicate tasks, 
dashed lines logical pre-requisites prior to completion of activity. 

NETWORK & DURATION (YVEEKS) NETWORK & DURATION (WEEKS) 
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Figure 6.26 - Representative Set of Logistics Networks. 
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6.7.4 ANNPM Applied to Logistics Supply Chain 

Figures 6.27 and 6.28 illustrate examples of different ANNs used to model the logistics 

supply chain. Table 6.6 illustrates the input/output data sets used to structure the ANNs. 

Table 6.7 illustrates a range of results from the ANN trials. Figure 6.29 shows the 

performance of a number of trained ANNs in predicting lead-time of projects. A table of 

all ANN trials is included in the appendix. 

These demonstrate that both the OOQA and ANNPM approaches have been successful in 

modelling a supply chain problem. 

Idl IIIIIIIII10 
ld2 10 
ld3 II10 
ld4 0 
ld5 0 
Id6 0 
ld7 0 
ld8 0 
ld9 II10 
IdlO 10 
Idl 10 
Note- I=Input, O=output, A=excluding dummy, shortest chain between a and h, 
B=Including dummy longest chain between a and h; C=Including dummy shortest chain 
between a and h; D= including dummy maximum number of parallel activities; E= 

including dummy minimum number of parallel activities, F= number of dummy 

activities, G=biggest node (inputs and outputs); H= smallest node; I=including dummies 

number of nodes size 3; J== including dummy, the number of nodes size 4 or greater; 
Z=Iead-time in weeks to complete all activities a to h. 

Table 6.6- Input/Output Sets to Structure Logistics ANNs 
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1/biqqest node 
weights: 
0.127 (to A) 
-0.373 (to B) 
-0.307 (to C) 
-0.594 (to D) 

1/smallest node 
weights: 
-0.165 (to A) 
-0.511 (to B) 
-0.427 (to C) 
0.265 (to D) 

l/includinq dummy, 
number of nodes size 3 
weights: 
-0.551 (to A) 
-0.812 (to B) 
0.495 (to C) 
-0.272 (to D) 

l/includinq dummy, 
number of nodes 
>=size 4 
weights 
0.961 (to A) 
-0.868 (to B) 
-0.564 (to C) 
0.473 (to D) 

1/leadtime 
weights: 
-0.817 (from A) 
-0.632 (from B) 
-0.840 (from C) 
-1.421 (from D) 

rror tolerance: 0.1 
wning rate: 0.5 
tructure: 4-4-1 
verage error per cycle: 0.785 
rror last cycle: 0.785 
rror last cycle per pattern: 0.0341 

Figure 6.27- Poor Performing ANN for Logistics 
-(ld8a) 

1/excludin. q dummy, 
shortest chain a-h 
weights: 
-1.463 (to A) 
-0.539 (to B) 
-1.094 (to C) 
0.717 (to D) 

1/includin_q dummy, 
longest chain a-h 
weights: 
0.343 (to A) 

-0.450 (to B) 

-0.255 (to C) 
0.338 (to D) 

1/includinq dummy, max 
number parallel activities 
weights: 
0.924 (to A) 
0.299 (to B) 
1.162 (to C) 

-0.462 (to D) 

udina dummv. mi 
Inumber parallel activities 
weights 
0.251 (to A) 

-0.784 (to B) 
0.677 (to C) 

-0.726 (to D) 

Figure 6.28- Good Performing ANN for Logistics (Id 100 
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Data Set and ANN Structure 
(input/hidden/ 

t layers) Outpu 

Average 
Error Per 
Cycle 

Error Last 
Cycle 

Error Last 
Cycle per 
Pattern 

IdIg 10-10-1 0.0142 0.0813 0.0035 
Id2h 1-2-1 0.0163 0.0867 0.0038 
ld31 3-1-1 0.0255 0.1028 0.0045 
Id4e 2-2-1 0.4516 0.2013 0.0088 
ld5a 1-3-1 1.398 1.398 0.0608 
Id6f 2-1-1 0.3045 0.2066 0.0090 
Id7h 2-2-1 0.0269 0.1797 0.0078 
Id8a, 4-4-1 0.7852 0.7852 0.0341 
ld9g 4-4-1 0.0151 0.0757 0.0033 
IdIOg 4-4-1 0.0136 0.0791 0.0034 
Idl Id 4-4-1 0.6167 0.2148 0.0093 

Table 6.7- Results of Several ANNs for Logistics 
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Figure 6.29- Predictive Performance of Trained ANNs for Logistics 
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The majority of the structures were able to predict lead-time to a good accuracy as 

shown in Figure 6.29. Structure Id 10 interestingly is inaccurate in predicting the leadtime 

value, but follows the data curve shape more closely (if amplified/ magnified) than any 
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other structure for a trained ANN. Structure Id 8 is an example of a particularly poor 

performing trained ANN. 

6.8 Genericity 

[GREGORY 87] defines generalising as: "the deriving ofgeneral statementsftom 

individual instances; and occurs in learning. Generalising is the basisfor predicting the 

future ftom the past and drawing analogies". Table 6.8 presents an overview of the 

genericity of the OOQA and ANNPM approaches presented here. The contents of the 

table are then discussed at length. The author supports the hierarchical taxonomic view 

of the world of systems/ subsystems/ and specific applications [NLkRQUARDT 92] with 

genericity as described by [BOOCH 91]. Methodologies and tools exist for problem 

analysis, modelling, design, implementation and other systems processes which may 

themselves exhibit genericity alone or through application. 
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Genericity 
of: world of systems 
of subsystems of 
applications. 

Context Mechanism 

... . ........... X., ............. ................ .............. .................. . ..................... ....... ................. ....... ....... 

Result 
Y:: --yes 
--- =some 
N=no 

By-. 
Problem Analysis 
e. g. structured methodology viewpoint driven analysis based on set 
software development of tools. Some reuse possible due to 

modularity if process is in same --- 
domain. 

e. g. object oriented More reuse possible due to inheritance Y 
analysis hierarchy of abstraction. 
e. g. qualitative Component Oriented enables reuse, --- /N 
analysis otherwise less so. 
e. g. statistical analysis methodology/ Reuse of methodology/tool but not --- /N 

tool results unless statistically invariant 
process. 

Modellin methodology/ 
tool 

e. g. qualitative ý6 Component Oriented enables reuse, --- 
otherwise less so. 

e. g. mathematical Reuse of methodology/tool but not --- 
results unless statistically invariant 
process. 

e. g. expert/fuzzy Reuse possible if expert system Y/ --- 
constructed using 00 paradigm; also 
if generative/adaptive approach taken. 

e. g. ANNs Reuse of architectures, structures and Y/ --- 
algorithms possible through use of 
structured methodology. 

Application e. g. 
pultrusion 
e. g. OOQA example As defined in Chapter 4. Y 
e. g. ANN thermoset Weights of trained thermoset ANN are N 

not reusable with thermoplastic. 
e. g. ANN Weights of trained thermoplastic ANN N 
thennoplastic are not reusable with then-noset. 
e. g. ANN global Structure reusable to train both Y 

thennoset and thennoplastic data with 
similar results. 

e. g. ANN focused Structure reusable to train both Y 
then-noset and thermoplastic data with 
similar results. 

The breadth of re-application of methodology, tool or example potential 
potential i. e. reuse 

Table 6.8- Genericity ot'OOQA Methodology, and ANN Frocess Mociels 
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6.8.1 Goals of a Logistics Supply Chain & Bioprocess Reactor 

and Comparison to Pultrusion 

Tables 6.9,6.10,6.11,6.12,6.13 and 6.14 present the main goal of the analysis, the 

multiple goals of the process, trends illustrated, key process parameters, critical factors, 

and enhancement of critical factors respectively for the pultrusion process, the logistics 

supply chain process, and the bioprocess reactor. The contents of these tables are based 

upon the findings of the analysis and modelling activities presented within this thesis. 

Pultrusion Logistics Supply Chain Bioprocess Reactor 
Goals of * Monitor cycle * Monitor variables (user- * Monitor variables 
Process variables (user-set): set)- (user-set)- 

- die temperature, -number of researchers, - primary feed rate, 

- line-speed. -activity - secondary feed rate, 
Monitor process precedences/sequencing, -stirring mechanism rate, 

inputs -activity plan (e. g. PERT -heating mechanism 
(inter-process)- chart). rate. 

- die pressure/ * Monitor process inputs * Monitor process inputs 
force, (inter-process). (inter process) 

- line tension, -activity slack, sunlight, 

- die temperature -resource bottlenecks, viscosity, 
profile/ cure-state. -activity lead-time temperature, 
* Process (individual/overall), pressure, 
optimisation -critical path. concentration. 
(heuristics/ AI). Process optimisation process optimisation 

(heuristics/Al). (heuristics/Al) 

Table 6.10 - Summary of Case Study Process Cioals 
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Trends * Variation in raw * Variation in lead-time. * Variation in tank 
Illustrated material components. * Variation in activity concentration. 

* Variation in plans (e. g. PERT * Variation in 
inter-process variables/ charts). reaction time. 
parameters. * Variation in resource * Significance of 
* Variation in die (e. g. number of inter-process 
temperature during cure. researchers). variables. 
* Wetout affects cure * Significance of critical * Significance of 
most significantly. path. valve feed rates. 
Table 6.11 - Summary of Case Study Process Trends Illustrated 

Key Material variation- * Resources. Reaction tank. 
Process - resin mix, * Activity heating 
Parameters - fibre volume, precedence/ mechanism rate 

- fibre areal weight, start - stirring 
- fibre orientation, conditions. mechanism rate. 
- fibre "stretch", * Critical - pressure 
- fibre "absorbency". path leading - viscosity 
Wetout / resin penetration of fibre. to overall * User set valve 
Cure profile/ degree of cure (ratio project lead- feed rates. 

of % cure to time rather than in time * Reaction time. 
absolute terms). * Sunlight rate. 

Table 6.12 - Summaty of Case Study Process Key Parameters 

Critical A more rapid A shorter lead-time A more accurate control of 
Factor cure, enabling critical path, leading tank concentration in a 

increased to more rapid shorter time enabling 
output/ line- customer delivery, is increased profits, is 

speed, is achieved by achieved by more accurately 
achieved by optimisation of modelling the effects of all 
optimising allocation of resources variables including sunlight 
wetout. and the project plan. and optimising tank 

reaction. 
Table 6.13 - Summary of Case Study Process Critical Factors 
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Critical Reduced fibre volume. 
Factor Increased resin temperature 
Enhanced (less viscous). 
By Increased resin absorbency- 

- material change, 
- better breakup station 

profile. 
* Injected resin into fibre, 
under pressure. 
* Longer time in resin bath 
(but defeating purpose of 
increased line-speed). 
* Increased contact time of 
resin and fibre- 

- longer path of contact, 
- larger bath. 

* Increased fibre temperature 
* Pre-mixed resin and fibre 
on rolls. 

* More researchers 
carrying out 
research. 
* More data sources 
and technological 
research resources 
to increase research 
efficiency. 
* Better control 
using better project 
plans. 
* Increased research 
reviews during 
process that lead to 
synchronisation of 
researchers (i. e. 
larger nodes on 
project plan). 

* Due to the 
incompleteness 
of the set of 
variables about 
which data was 
gathered, the 
modelling was 
inconclusive in 
assisting any 
recommendatio 
ns. 

Table 6.14 - Summary of Case Study Process Enhancement of Critical Factors 
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Chapter 7: Discussion and Conclusion 

7.1 Introduction 

This chapter concludes the thesis. Section 7.2 gives a short restatement of the problem. 
Section 7.3 summarises the main contributions of this dissertation. in particular those 
contributions of 

" Development of OOQA Problem Analysis Methodology. 

" Development of ANNPM Process Modelling Methodology. 

" Combined Use of OOQA and ANNPM to Identify Candidate Variables. 

" Application of OOQA and ANNPM to Complex Processes. 

A critique of the limitations of these contributions is presented in Section 7.4, which is 

followed finally in Section 7.5 by suggestions for further work. 

7.2 Restatement of Problem 

Often a manufacturing process can be a bottleneck or critical to a business [STOREY 

94]. This thesis focuses on the analysis and modelling of such processes, to both better 

understand thern, and support the enhancement of the quality or output capability of the 

process. Unfortunately, from the literature we understand that process behaviour 

involves change [STEPHANOPOULOS 84]. Complex processes simply involve change 

that may be either hidden or unobservable, or involve such a large number of interactions 

that an accurate simplification is not feasible [MEYER 84]. Additionally, this 

David Thomas Wright, "Novel Analysis and Modelling Methodologies Applied to Pultrusion and Other 

Processes", Ph. D. Thesis, Manufacturing Engineering, Loughborough University of Technology, 1995. 
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complexity may mean that simulation is not feasible in terms of time for a desired level 

of model granularity [CARSONIHOVORKA 95]. 

The main thrusts of this thesis, supporting the hypotheses in Chapter 2, therefore are- 
To model inter-process physics, inter-relationships, and complex processes in a 

manner that enables re-exploitation, re-interpretation & reuse of this knowledge and 

generic elements e. g. using 00 & QM techniques. This involves the development of 

superior process models to capture process complexity and reuse any generic 

elements. 

To demonstrate advanced modelling and simulation techniques (e. g. ANNs, RBS, 

statistical modelling) on a number of complex manufacturing case studies. 
To gain a better understanding of the physics and process inter-relationships exhibited 

in a number of complex manufacturing processes (e. g. pultrusion, bioprocess, and 
logistics) using advanced analysis and modelling. 

7.3 Contributions of Dissertation 

There follows four sections summarising the main contributions of this thesis. 

7.3.1 Development of OOQA Problem Analysis Methodology 

The OOQA methodology developed by the author, is primarily based on the Booch 

[BOOCH 91], OMT [RUMBAUGH et al 91] 00 approaches with real-time extensions 

similar to [WARD/MELLOR 85][HATLEY/PHWHAI 87]. The OOQA methodology 

addresses the analysis of complex problems or processes to gain an understanding of the 

inherent static physical, real-time dynamic, and informatic behaviour of the process 

towards knowledge utilisation through process modelling. The Booch and OMT 00 

methodologies have been applied to a greater proportion of software projects than other 

methodologies, and are considered the most mature methodologies [CONSPECTUS 94]. 

The OOQA methodology is in advance of a recently announced Booch/Rumbaugh 00 

methodology "merger" about which the first paper will be presented in December 1995, 

and the methodology text book to be published in the latter part of 1996 [RATIONAL 
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95]. The main stages of the OOQA methodology are illustrated in Figure 3.1 in Chapter 

3. These stages, their notation and influences are detailed in Table 7.1. This methodology 

addresses weakness as revealed by the literature and the author's experimental work 

[WRIGHT/WILLIAMS 931 in 00 and structured software development methodoloogies In 

as used for problem analysis. 

Stage Notation Influences 
I. Select Viewpoint Brief textual statement of [SUTCLIFFE 91 

requirement 
2. Textual System Enhanced textual problem statement. [STEPHANOPOULOS 84] 
Description Use of OMT heuristics to identify [RUMBAUGH et al 91 

object classes. [BOOCH 91 
An Object dictionary. 
Object attributes. 
Extended real-time Dynamic model 
based on textual interactions. 
Booch external event list. 

3.00 Diagrammatic OMT Static Object Model. [RUMBAUGH el al 91 
Design OMT Dynamic Model- interface [BOOCH 91] 

format, extended real-time event [WARD/MELLOR 85] 
trace, event flow. [HATLEY/PIRBHAI 871 
OMT/Booch/ Modem Structured [YOURDON 89] 
State Diagram. 
OMT input/output identification. 
OMT/Modem Structured extended 
real-time DFD. 

4.00 Design Structured walkthrough using [RUMBAUGH et al 91 
Validation external event list, static object [BOOCH 91] 

model, interface format, event flow 

and input-output diagram 
-- 

5. Qualitative Process Use of 00 object attributes as a [LECLAIR/ABRAAMS 89] 
Modelling starting point for the qualitative [NADI et al 9 1] 

semantic network. [BOOCH 91] 
Use of external event list, extended 
real-time DFD, and viewpoint to 

connect attributes. 
Expert knowledge and 00 analysis 
supports qualitative semantic network 
incorporating uncertainty. 
Mapping of semantic network to 

process modelling, identification of 
candidate variables. 

6. Experimental Define object/ variable list based on [MASTERS 93] 

Design & Data OOA & QM. [MAY 94] 

Collection Design experiments to ensure capture 
full range of process behaviour. 

Table 7.1 - Influences Behind OOQA Stages & Notation 

224 



The key features of this contribution, the development of the OOQA problem analysis 

methodology, are: 

* Due to the similarity to elements of existing 00 methodologies it is envisaged that 

practitioners will experience a relatively short learning curve for the OOQA 

methodology. The learning curve could be measured by the time taken to learn the 

concepts, and the subsequent time taken to complete (case study) analysis 
implementations. 

e OOQA appears superior to OMT and Booch through use of the real-time extensions 

and Qualitative Modelling to enable more complex process inter-relationships to be 

captured. 
OOQA explicitly considers experimental design and data collection towards practical 

process modelling. 

7.3.2 Development of ANNPM Process Modelling Methodology 

The ANNPM methodology developed by the author, is derived from the ANN practices 

of [MAY 94] [NADI et al 91] [MASTERS 93 ] [RAO/RAO 93 ] [DTI 94] and [QIN 93 ]. 

The ANNPM methodology addresses the use of ANNs for process modelling supporting 

the design of real-time process control systems. In particular, elements of the [DTI 94] 

approach are followed by many of the ANN modelling and implementation practitioners 

in the UK [DTI 94]. The ANNPM methodology has been developed to be both used on 

its own for process modelling, and integrated with OOQA analysis. The main stages of 

the methodology are illustrated in Figure 5.2 in Chapter 5. These stages, their notation 

and influences are detailed in Table 7.2. This methodology overcomes shortcomings of 

the practices previously referenced in this section. 

The key features of this contribution, the development of the ANNPM process modelling 

methodology, are: 

* Due to the similarity to elements of existing ANN modelling approaches it is 

envisaged that practitioners will experience a relatively short learning curve for the 

ANNPM methodology. 
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* Explicitly uses analysis (e. g. OOQA) to assist in rapid identification of input/ output 

nodes likely to be successful for modelling. 
Explicitly develops metrics relevant to analysis from viewpoints statement. 
Designed to be integrated with OOQA or applied alone. 

Stage Notation Influence 
1. Data Collection, Refer to OOQA stage 6. [MAY 94] 
Representation & Pre- Carry out statistical analysis of data, possibly [DTI 94] 
Processing carry out mathematical modelling if many [MASTERS 93] 

statistical correlations. [RAO/RAO 93] 
Represent data as- logical 0/1, real, fuzzy sets. OOQA 
Scale all data elements to same range e. g. 
1) or (+1,0). 

2. ANN Architecture Refer to OOQA stages 5&6. [DTI 94] 
Selection Heuristic- select according to problem domain OOQA 

& constraints. 
3. Identification of Refer to OOQA stages 5&6. [DTI 94] 
Input/ Output nodes Heuristic- select according to problem domain [MASTERS 93] 

& constraints. OOQA 
4. Validation of Input/ (optional). [DTI 94] 
Output Nodes Use PCA technique. [QIN 93] 
5. Selection of Trial Heuristic, vary structure, learning rate, [DTI 94] 
Sets of ANNs momentum, hidden layers [MASTERS 93] & [MASTERS 93] 

iterations as per experimental design using [NADI et al 91 
45% data set. [MAY 94] 

6. Supervised Heuristic- utilise best 10% trained ANNs to test [DTI 94] 
Training & Results predictive performance against 45% data. 
Collation 
7. Validation & Heuristic: for chosen ANN process model use [DTI 94] 
Performance Metrics 10% of unseen data set to validate tested ANN. OOQA 

Refer to OOQA viewpoint for metrics. 
Table 7.2- Influences Behind ANNPM Stages & Notation 

7.3.3 Combined Use of OOQA and ANNPM to Identify Candidate 

Variables 

A methodology for selection of candidate variables and ANN structures is necessary for 

effective ANN modelling [NADI et al 91]. The combination of an 00 and QM analysis 

methodology, such as OOQA, explicitly considers candidate variables and ANN 

structures for ANN process modelling as described by a ANN methodology, such as 
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ANNPM. Within the software development field, the use of a coupled analysis and 
design method is not uncommon (e. g. COAD/YOURDON OOAID). Here the dynamic 

behaviour, static object structure, and data structure are the key results of the analysis 

which is passed on for the des ign/impl em entation of a given system. The coupled use of 

OOQA and ANNPM captures the same dynamic behaviour, static object structure and 

data structure as well as identifying clearly the candidate variables of significant inter- 

process relationships to assist in modelling. The key aspect of this knowledge capture is 

built upon the work of [LECLAIR/ABRAAMS 89] and [NADI et al 91] in the areas of 

applying QPA to composites manufacture, and in semiconductor manufacturing process 

modelling using ANNs respectively. Figure 7.1 illustrates the stages of this knowledge 

capture. 

Figure 7.1 -. Candidate Variable Capture Stages 

The key features of this contribution, the combined use of OOQA and ANNPM to 

identify candidate variables, are- 

Novel use of 00 and Qualitative constructs to identify candidate variables for 

ANNPM. 

Use of an 00 problem analysis methodology to identify ANN structures 
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7.3.4 Application of OOQA and ANNPM to Complex Processes 

This thesis presents the application of the methodologies, described above, to a number 

of complex processes- thermoset pultrusion, thermoplastic pultrusion, bioprocess reactor, 

and logistics supply chain. Table 7.3 shows the results of analysis metrics from the use of 

OOQA on these four complex processes. Table 7.4 shows the results of modelling 

metrics from the use of ANNPM on these four complex processes. 

Analysis effort 

Candidate 
variables/ 
obj ects 
Reuse Potential 
of/ Generic 
Aspects 

Strengths 

Weaknesses 

17 diagrams 
8 text sets. 
15 objects. 
7 candidates 

Much 
diagramming for 
similar "control" 
problems. 

Rapid 
identification of 
candidate 
variables. 

Quality aspects 
of process 
incorporated in 
just one 
candidate 
variable. 
Need software 
tool to speed up 
diagramming. 

17 diagrams 
8 text sets. 
15 objects. 
7 candidates 

Much 
diagramming for 
similar "control" 
problems. 

Majority reused 
from then-noset 
pultrusion 
analysis. 

Quality aspects 
of process 
incorporated in 
just one 
candidate 
variable. 
Need software 
tool to speed up 
diagramming. 

12 diagrams 
8 text sets. 
21 objects. 
9 candidates 

Much 
diagramming for 
similar "control" 
problems. 

OOQA identified 
variable about 
which data not 
gathered but 
possibly 
significant. 
Need software 
tool to speed up 
diagramming. 

14 diagrams. 
8 text sets. 
10 objects. 
5 candidates. 

Much 
diagramming for 
similar 
"management" 
problems. 
Initial 
Complexity 
simplified 
rapidly using 
notation. 

Multiple 
measures 
possible for 
candidate 
variables. 
Need software 
tool to speed up 
diagramming. 

Table 7.3- Metrics & Features ot- UOQA Appliect to kýase mucties 

The key features of this contribution, the application Of OOQA and ANNPM to complex 

processes, are- 

Confirmation of the significance of identifying candidate variables, possible ANN 

structures, and modelling viewpoint, and gathering such data, for effective modelling. 

Application of OOQA and ANNPM methodologies to a typical range of complex 

industrial processes, including pultrusion, bioprocess, and logistics. 
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o ANN modelling of the pultrusion process. 

Modelling 
effort 

Candidate 
variables/ 
obj ects 
Data variables 
/set number 
Reuse 
Potential/ 
Generic 
Strengths 

Weaknesses 

400 
structures. 

15 objects 
7 
candidates. 
25 variables 
in 41 sets. 
ANN 

100 structures 

15 obj ects. 
7 candidates 

21 variables in 
36 sets. 
ANN structures 

100 structures 

21 objects. 
9 candidates. 

8 variables in 81 sets 

ANN structures 
structures. 

Some ANN 
performance 
good. 
Widely 
varied data 
set. 
Many ANN 

structures 
unsuccessful 
Many 

candidates 
not required. 

Some ANN 
performance 
good. 

Many ANN 
structures 
unsuccessful. 
Many candidates 
not required. 
Data set not as 
widely varied as 
for thermoset. 

ANN performance 
fair. Possible use of 
OOQA identified 
missing variables 
may improve ANN 
performance. 
ANN performance 
fair. 
Limited data set- few 
variables. 

Supply 
Chain 
100 
structures. 

10 oýj ects. 
5 
candidates. 
12 variables 
in 23 sets. 
ANN 
structures. 

Many ANN 

structures 
successful. 

"Invented" 
data set. 

Table 7.4- Metrics & Features of ANNPM applied to Case Studies 

7.4 Critique of Limitations of Contributions 

There follows four sections summarising limitations of the contributions of this thesis. 

7.4.1 Development of OOQA Problem Analysis Methodology 

The main limitations of the OOQA methodology as presented In this thesis are- 

Further extensions to OOQA (possibly to the event trace diagrams) are necessary to 

capture real-time conditionality/ branching, and time lags/ response rates. 

e OOQA diagramming takes time, and needs software tools to support more rapid 

analysis. 

229 



Further usage of OOQA on a larger number of different case studies is suggested to 
fully validate the methodology. 

7.4.2 Development of ANNPM Process Modelling Methodology 

The main limitations of the ANNPM methodology as presented in this thesis are: 

* ANNPM has not been proven for use on applications where the number of significant 

variables is large. 

* ANNPM has not been proven for use with architectures and algorithms other than 

MLP and backpropogation respectively. 

9 ANNPM is restricted to use with ANNs for modelling and is not a generic modelling 

methodology. 

7.4.3 Combined Use of OOQA & ANNPM to Identify Candidate 

Variables 

The main limitations of the combined use of OOQA and ANNPM are the limitations of 

OOQA and ANNPM individually plus: 

* The relationship between OOQA identified candidate variables and those variables 

that prove important for ANNPM modelling success in not clear. 

9 ANNPM does not fully utilise data, dynamic behaviour and static structure constructs 

from OOQA. 

7.4.4 Application of OOQA & ANNPM to Complex Processes 

The main limitations of the use of OOQA and ANNPM for the complex processes 

demonstrated are: 

e The thermoset and thermoplastic pultrusion case studies used data from a small range 

of die/ material configurations. 

The thermoset and thermoplastic pultrusion case studies used data from process 

sensors and materials testing trials, but did not extensively use data about chemical 

characteristics of materials from materials supplier. 
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The bioprocess case study data was limited to one laboratory configuration. 
The logistics case study data was simulated. 

7.4.5 Other Research Limitations 

There are a number of other general limitations of the work presented in this thesis with 

respect to the original problem statement as envisaged by the industrial collaborators, 
Pera: 

Did not implement a pultrusion controller based on the ANN pultrusion process 

models. 

Have not yet proven or disproven the feasibility of an industrial ly-useful 

mathematical model of the pultrusion process. 

7.5 Suggestions for Further Work 

There follows five suggestions for further work based on the findings presented within 

this thesis. The suggestions, viewed separately, are intended to address the limitations of 

contributions as indicated in the previous Section 7.4 

7.5.1 Use of OOQA and ANNPM for Wide Range of Pultrusion 

Setups/Materials 

The pultrusion process has not yet been optimised- there are significant opportunities for 

increased utilisation of the technique for low-cost reinforced composite applications 

[ROGERS 90]. A number of mathematical models exist, which address aspects of the 

process using many data variables [HAN/LEE 86] [LEE et al 91]. It has been 

demonstrated that, using the OOQA analysis and ANNPM process modelling 

methodologies as described in this thesis, ANN modelling of the process, based on data 

from a limited number of variables (e. g. line-speed, die temperature, die pressure, and 

materials properties such as flexural strength), can successfully act as a predictor of 

material properties [WRIGHT/WILLIAMS 94]. The key limitation of this investigation, 

is that only a limited range of material types and die configurations were modelled. 
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Therefore, use of OOQA and ANNPM for the ANN modelling of a greater range of 
material types (both thermoset and thermoplastic) and die configurations is suggested, to 

enable development of a more generic pultrusion material-property-predicting process 

model. 

7.5.2 Use of OOQA and ANNPM for Wide Range of Bioprocess 

Applications 

Non-linear chemical bioprocesses are widespread in industry [SU/MCAVOY 93], and 

are typically analysed and modelled using mathematical chemical engineering 

approaches [STEPHANOPOULOS 84][SU/MCAVOY 93]. ANN modelling of such 

bioprocesses is not uncommon, and is often successful, although based upon extensive 

specialist process knowledge and heuristics [TFHBAULT/GRANDJEAN 92]. OOQA 

and ANNPM have been demonstrated in this thesis, to be useful in both modelling and in 

identifying candidate variables for a simple bioprocess. This approach relied less on 

extensive specialist knowledge and heuristics, but more on detailed comprehensive 

methodologies for both analysing complex processes with respect to static object, real- 

time dynamic, and informatic characteristics, and for ANN modelling. The complexity 

of bioprocesses lends itself to more comprehensive future investigation using the OOQA 

and ANNPM methodologies. 

7.5.3 Development of OOQA Software Tools to Assist Analysis 

It is necessary to analyse problems, and reduce complexity prior to development of a 

solution [COAD/YOURDON 91]. Many advances in Al knowledge representation, to 

assist in complexity reduction, have been adopted by many software development 

methodologies [CALLAN 95]. 00 methodologies feature a more comprehensible system 

of abstraction than many traditional software development methodologies [BOOCH 91]. 

Software tools have been found to, after scaling the learning curve, increase the speed of 

developing and modifying diagrammatic and textual analysis models [PRESSNLkN 92]. 

The OOQA analysis methodology presented in this thesis has been demonstrated to be 

effective for the analysis of a number of complex processes. It is suggested that a 

software tool be developed to assist in OOQA analysis, so that it may be more readily 

validated across a wider range and scale of case studies. 
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7.5.4 Extensions to OOQA to Support Generic Heterogeneous 
Systems Analysis 

It is necessary to analyse problems, and reduce complexity prior to solution 
[COAD/YOURDON 91]. Many advances in Al knowledge representation, to assist in 

complexity reduction, have been adopted by many software development methodologies 
[CALLAN 95]. 00 methodologies feature a more comprehensible system of abstraction 
than many traditional software development methodologies [BOOCH 91 ]. The OOQA 

analysis methodology decribed in this thesis primarily adopts features of [BOOCH 9 11 
[RUMBAUGH et al 91] 00 methodologies and DeKleer and Kuipers QM 

methodologies [STRUSS 88] to assist in real-time problem analysis. The OOQA 

methodology has been demonstrated in this thesis on a number of case studies- 
pultrusion, bioprocess, and logistics. It is suggested that OOQA be applied to a wider 
range and scale of case studies, to assist in validation of the genericity of the approach, 
and develop further OOQA enhancements to support generic heterogeneous systems 
analysis. Use of such an enhanced generic analysis approach by industry and business, is 
seen to be increasingly of use [JACOBSEN et al 94b]. 

7.5.5 Extension to OOQA and ANNPM to Support Multi-Paradigm 

Generic Modelling 

The OOQA analysis methodology decribed in this thesis primarily adopts features of 
[BOOCH 91] [RUMBAUGH et al 91] 00 methodologies and DeKleer and Kuipers QM 

methodologies [STRUSS 88] to assist in real-time problem analysis. The ANNPM 

modelling methodology described in this thesis primarily adopts the heuristics of 
[MASTERS 93] [RAO/RAO 93] [QIN 93] and [DTI 94] to model complex real-time 

processes using ANNs. The methodologies have been demonstrated (in this thesis) on a 

number of case studies: pultrusion, bioprocess, and logistics. It is suggested that both 

methodologies be applied to a wider range and scale of case studies, to assist in 

validation of the genericity of the approach, and develop further enhancements to 

support multi-paradigm generic modelling. Such an enhanced multi-paradigm generic 

approach is seen as increasingly of use to industry and business with regard to integration 

of data and systems in the "paperless factory" of the future [KALPAKJIAN 89]. 
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Appendix 1 

1.0 Laboratory Data Sets 
There follows graphical plots of the pultrusion laboratory data sets, and tables of the 
bioprocess and simulated logistics data. 

1.1 Thermoset Pultrusion Laboratory Data 

Figure Al. I Al. 2, Al. 3, AIA, Al. 5, and Al. 6 represent more than 200,000 data points 
from a series of laboratory trials at IKV as presented in Chapter 4. The aggregation of 

materials testing investigations at LUT are represented as logical "pass" or "fall 71 

variables in Table A3.1 in the ANN training section (Appendix 3 Section 3.1). The 

exception is the average (of three) profile deviation from straightness, average (of three) 

density measurements, and the average (of three) results of the three point bend test, 

which are numerically represented. 

David Thomas Wright, "Novel Analysis and Modelling Methodologies Applied to Pultrusion and Other 

Processes", Ph. D. Thesis, Manufacturing Engineering, Loughborough University of Technology, 1995. 
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1.2 Thermoplastic Pultrusion Laboratory Data 

Figure A1.7, A1.8, A1.9, Al. 10, Al. 11, Al. 12, Al. 13, and Al. 14 represent more than 

50,000 data points from a series of laboratory trials and materials testing Investigations at 

Pera as presented in Chapter 4. 
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1.3 Bioprocess Laboratory Data 

The data in Table Al. I is from a chemical engineering research project undertaken by 

Andrew Bingham at LUT as presented in Chapter 6. The only pre-processing undertaken 

prior to ANN training was the conversion of pri rate to I/pri rate (Le. the reciprocal 

value). 

time pri hoc sec ho pri ma sec ma mod set pri rate conc matli 
pred conc 

0 0.55 0.27 0.585 0.27 0.5 56 0-3-46 _ 0. 
0.083 0.57 0.27 0.592 0.27 0.5 55 0.346 0.3 
0.167 0.62 0.27 0.585 0.27 0.5 55 0.346 0.3 
0.25 0.6 0.27 0.6025 0.27 0.5 54 0.352 0.3 
0.333 0.62 0.27 0.615 0.27 0.5 50 0.363 0.3 
0.417 0.62 0.27 0.61 0.27 0.5 50 0.358 0.3 
0.5 0.6 0.27 0.61 0.27 0.47 50 0.358 0.3 
0.583 0.6 0.27 0.605 0.27 0.47 46 0.358 0.3 
0.667 0.6 0.27 0.6 0.27 0.47 46 0.352 0.3 
0.75 0.6 0.27 0.5925 0.27 0.47 43 0.346 0.3 
0.833 0.57 0.27 0.5925 0.27 0.47 43 0.346 0.3 
0.917 0.6 0.27 0.5975 0.27 0.47 43 0.352 0.3 
1 0.62 0.27 0.5975 0.27 0.47 39 0.352 0.3 
1.083 0.6 0.27 0.6175 0.2775 0.45 39 0.363 0.3 
1.167 0.65 0.3 0.6175 0.285 0.45 40 0.363 0.3 
1.25 0.6 0.3 0.6125 0.2925 0.45 37 0.358 0.3 
1.333 0.6 0.3 0.625 0.3 0.45 36 0.37 0.3 
1.417 0.65 0.3 0.6125 0.3 0.45 37 0.358 0.3 
1.5 0.6 0.3 0.6 0.3 0.45 34 0.352 0.3 
1.583 0.55 0.3 0.5925 0.3 0.45 34 0.346 0.3 
1.667 0.57 0.3 0.58 0.3 0.4 34 0.34 0.3 
1.75 0.6 0.3 0.5725 0.3 0.4 28 0.334 0.3 
1.833 0.57 0.3 0.5725 0.305 0.4 28 0.334 0.3 
1.917 0.55 0.32 0.5725 0.31 0.4 25 0.334 0.3 

2 0.57 0.32 0.56 0.315 0.4 25 0.328 0.32 

2.083 0.55 0.32 0.555 0.32 0.4 25 0.328 0.32 

2.167 0.55 0.32 0.5475 0.32 0.4 23 0.323 0,32 

2.25 0.52 0.32 0.53 0.32 0.35 23 0.311 0.33 2 

2.333 0.5 0.32 0.5175 0.3275 0.35 23 0.305 0.32 

2.417 0.5 0.32 0.505 0.335 0.35 21 0.299 0.35 

2.5 0.5 0.35 0.5 0.3425 0.35 20 0.293 0.35 

2.583 0.5 0.35 0.5 0.35 0.35 20 0.293 0.335 

2.667 0.5 0.35 0.5 0.35 0.35 18 0.293 0.35 

2.75 0.5 0.35 0.5 0.35 0.35 18 0.293 0.35 

2.833 0.5 0.35 0.4875 0.35 0.35 18 0.287 0. j5 

2.917 0.45 0.35 0.475 0.35 0.27 
_ 

15 0.282 0. '35 
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3 0.45 0.35 0.455 0.35 0.27 15 0.27 0. ) "' 5 
3.083 0.42 0.35 0.435 0.35 0.27 15 0.258 0. 

-15 3.167 0.42 0.35 0.4225 0.35 0.27 15 0.246 03 5 
3.25 0.4 0.35 0.4025 0.35 0.27 13 0.235 0.35 
3.333 0.37 0.35 0.4025 0.35 0.42 13 0.235 03 7 
3.417 0.42 0.35 0.3975 0.35 0.42 13 0.235 0.3 5 
3.5 0.4 0.35 0.39 0.35 0.42 13 0.229 0.37 
3.583 0.37 0.35 0.39 0.35 0.42 13 0.229 0.37 
3.667 0.37 0.35 0.3775 0.35 0.42 13 0.223 0.35 
3.75 0.37 0.35 0.3825 0.35 0.42 13 0.223 0.3 5 
3.833 0.42 0.35 0.39 0.3555 0.42 13 0.229 035 
3.917 0.4 0.37 0.3975 0.3555 0.42 13 0.235 0. J5 
4 0.4 0.35 0.3975 0.3555 0.42 13 0.235 03 3 
4.083 0.37 0.35 0.3925 0.3555 0.42 13 0.229 0.3 5 
4.167 0.4 0.35 0.3975 0.35 0.42 13 0.235 0.32 
4.25 0.42 0.35 0.4025 0.35 0.42 13 0.235 0.32 
4.333 0.42 0.35 0.41 0.35 0.42 13 0.241 0.32 
4.417 0.4 0.35 0.4025 0.3425 0.42 13 0.235 0 

-3 2 
4.5 0.37 0.32 0.3975 0.335 0.42 13 0.235 0.32 
4.583 0.4 0.32 0.385 0.3275 0.42 14 0.229 0.3 
4.667 0.37 0.32 0.385 0.315 0.42 14 0.229 0. ) 
4.75 0.4 0.3 0.3925 0.31 0.42 13 0.229 0.3 
4.833 0.4 0.3 0.3925 0.305 0.42 14 0.229 0.3 
4.917 0.4 0.3 0.4 0.3 0.42 13 0.235 0.3 
5 0.4 0.3 0.4 0.3 0.42 13 0.235 0.3 
5.083 0.4 0.3 0.3925 0.2925 0.42 13 0.229 0.27 
5.167 0.37 0.27 0.3925 0.285 0.42 13 0.229 0.27 
5.25 0.4 0.27 0.3975 0.2775 0.42 13 0.235 0.27 
5.333 0.42 0.27 0.3975 0.27 0.42 13 0.235 0.27 
5.417 0.4 0.27 0.3975 0.27 0.42 13 0.235 0.25 
5.5 0.37 0.27 0.39 0.265 0.42 13 0.229 0.25 
5.583 0.37 0.25 0.3775 0.26 0.4 13 0.223 0.25 
5.667 0.37 0.25 0.37 0.2475 0.4 14 0.217 0.25 
5.75 0.37 0.22 0.37 0.235 0.4 14 0.217 0.25 
5.833 0.37 0.22 0.37 0.2275 0.4 14 0.217 0.22 
5.917 0.37 0.22 0.365 0.22 0.4 14 0.217 0.22 
6 0.35 0.22 0.36 0.22 0.4 14 0.211 022 
6.083 0.35 0.22 0.355 0.22 0.4 14 0.211 022 
6.167 0.35 0.22 0.35 0.22 0.4 15 0.205 0-22 

6.25 0.35 0.22 0.35 0.22 0.4 15 0.205 0- 22 

6.333 0.35 0.22 0.35 0.22 0.4 15 0.205 0.22 

Table Al. I- Data for Bioprocess Uase ýiWcty 
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1.4 Logistics Simulated Data 

This data is from a theoretical case study devised by the author of this thesis as presented 

in Chapter 6. There follows Figures Al. 15, Al. 16 and Al. 17 which graphically show the 

24 different PERT charts about which data was gathered. Table Al. 2 converts these 

figures into a series of measures. The data set represented in Table A1.2 was not 

statistically reduced, but was pre-processed, by taking the reciprocal of all values, prior 

to ANN modelling. 

The assumptions are: the number of tasks is fixed; each task duration is fixed, there is a 

single unitary output (say production of a single technical feasibility study with 8 

chapters); the inter-dependencies is variable; the total time duration and critical paths are 

variable. This example tests the process of change of organisation or resource on a single 

inviolable task. The tasks and duration times are: A- I week, B- 2 weeks, C- 3 weeks, D- 

4 weeks, E- I week, F- 2 weeks, G- 3 weeks, H- 4 weeks. Direction of completion is 

from left to right, bottom to top. Solid lines indicate tasks, dashed lines logical pre- 

requisites prior to completion of activity. 
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Figure Al. 15- Schematic of Logistics PERT Charts Data 
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Figure Al. 16- Schematic of Logistics PERT Charts Data 
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Figure Al. 17- Schematic of Logistics PERT Charts Data 
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network 
(prefix L) 

1 2 
-1 4 5 6 7 9 9 10 11 12 14 ý 15 16 17 18 ly 20 11 -1 11 

excluding 8 7 5 4 6 5 4 3 2 1 4 4 4 4 
dummy, 
shortest 
chain a to 
11 
including 8 7 6 5 5 6 5 4 3 7 8 5 4 4 5 4 6 4 8 51 
dummy, 
longest 
chain a to 
h 
including 8 2 3 4 4 2 2 2 2 2 1 5 4 3 2 4 4 4 4 1 4 4 
dummy, 
shortest 
chain a to 
11 
including 1 2 2 2 2 3 4 5 6 7 8 3 3 4 4 4 2 4 4 
dummy, 
maximum 
number of 
parallel 

activities 
including 1 2 2 2 2 2 2 2 2 2 8 1 1 2 2 
dummy, 

minimum 

number of 
parallel 

activities 
number of 0 1 1 1 1 2 3 4 5 6 7 2 2 2 2 3 3 1 4 
dummy 

activities 
biggest 2 3 3 3 3 4 5 6 7 8 9 4 4 4 4 5 4 4 4 S 
node 
smallest 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 'A 2 2 2 2 

node 
including 0 2 2 2 2 2 3 4 5 6 7 2 2 2 2 3 1 4 2 3 3 4 4 
dummy, 

number of 
nodes of 
size 3 

includMg 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 2 1 3 1 1 
dummy, 

number of 
nodes of 

size -4 
lead-time 2 1 1 1 1 1 1 1 8 5 4 14 11 8 9 12 12 12 12 9 8 1 () 10 

0 8 4 2 2 5 1 0 1 1 1 1 1 

Table Al. 2- Simulated Data for Logistics Case Study 
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Appendix 2 

2.0 OMT 00 Diagramming Notation 
On the following pages is the diagramming notation of the OMT 00 analysis 

methodology taken from [RUMBAUGH et al 91 

" Object Model Notation- Basic Concepts. 

" Object Model Notation- Advanced Concepts 

" Dynamic Model Notation 

" Functional Model Notation. 

This notation is used as the basis for the OOQA analysis methodology developed by the 

author in this thesis. 

David Thomas Wright, "Novel Analysis and Modelling Methodologies Applied to Pultrusion and Other 

Processes", Ph. D. Thesis, Manufacturing Engineering, Loughborough University of Technology, 1995. 
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Class: 

Object Model Notation 
Basic Concepts 

Association: 

Class Name] Association Name 7Class-1 

role-1 role-2 

Class Name 

attribute 
attribute data_type 
attribute datalype = init-value 

operation 
operation ( arg_fist return_type 

Generalization (inheritance): 

Supercl 

Aggregation: 

Assembly Class] 

Qualified Association: 

Aossociatlon Name 
Class-1 

_! 
ualDifier 

role-1 role-2 

Multiplicity of Associations: 

Exactly one 

-fass 

Many (zero or more) 

Optional (zero or one) 

One or more 

Numerically specified 

Ordering: 
(ordered) 

-SEýl 

Part-l-Class Part-2-Class 

Aggregation (alternate torm): 

Assembly Class 

Link Attribute: 
Assscocciiatnown INvamme 

Class-1 Class-2 

link attribute 

Ternary Association: 

Parl-l-Class II Part-2-Class 

Object Instances: 
/-- (Class Name) 
attribute_name = value 

Association Name 

Class-1 - Class-2 
role-1 role-2 

role-3 

Class-3 

Instantiation Relationship: 

(ýý .............. W. ý 
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Object Model Notation 
Advanced Concepts 

Abstract Operation: 

I Superclass I 

oDerationiabsiract)l Operation isabstract 
I in the superclýass 

I Subclass-l I 

I operation I 

I Subclass-2 I 

I operation I 

Superclass 

Subclasses must 
provide concrete 
implementations 
of operation 

Association as Class: 

Class-1 -T--Class-2 

Association Name' 

link attribute 

link operation 

Generalization Properties: 

iI More suodasses Subdass-1 Subdass-2 ... exist. 

Multiple Inheritance: 

Superclass-1 Superclass-2 

Superclass 
Subclasses have 
overlapping (nondis. ioint) 
membership. 

Subcfass-l II Subclass-2 

Superclass 
Discriminator is an attribute 
whose value differentiates 
between subclasses. 

discriminator 

Subclass-1 II Subclass-2 
I Subclass 

Class Attributes and Class Operations: 

Class Name 

$attribute 

$operation 

Propagation of Operations: 

Class-1 Clas 

go operation ooeration 

Constraints on Objects: 

( attrib-1 -> 0 

Derived Attribute: 

Class Name 

attribute 

Derived Class: 

Class Namiýe 

Derived Association: 
=Class-2 

Constraint between Associations: 
AI 

Class-1 Class-2 
(subset) 

A2 
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Dynamic Model Notation 

Event causes Transition between States: 

Initial and Final States: 

State 0 State 

result 

Guarded Transition: 

(-Stat-e-l )_! vent [guard] 
State-2 

Actions and Activity while in a State 

State Name 

entry/ entry-action 
do. activity-A 
event-1 action-1 

ex1t f exit-action 

State Generalization (Nesting): 

eventl 
Superstate 

Substate-1 ) v- (Substate-2 

event3 I event2 

Event with Attribute: 

(attribute) 

Action on a Transition: 

State-2 

Output Event on a Transition: 
1/ event2 

State-2 

Sending an event to another object: 

event2 

Concurrent Subdiagrams: 

Superstate 

eventl 
i: 

of 
Substate Substate-3 

Substate-4 Substate-2 

event2 
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Splitting of control: Synchronization of control: 



Functional Model Notation 

Process: Data Flow between Processes: 

process (lata name (proicess- 
process, 

)-2 

Data Store or File Object: 

Name of 
data store 

Actor Objects (as Source or Sink of Data) 

I dl d2 
Actor-1 ---w- process 

Access of Data Store Value: 

Data store 

dl 

process 

Access and Update of Data Store Value: 

Data store 

dl 

process -4 

Duplication of Data Value: 

dl 

Data Flow that Results in a Data Store: 

Name of 
data store 

Control Flow: 

boolean resu, It 
....................... -I- process-2 

Update of Data Store Value: 

Data store 

dl 

process -4 

Composition of Data Value: 

composite 

dl ' 

d 

>2- 

Decomposition of Data Value: 

dl 
composite 

d2ýý 
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Appendix 3 

3.0 ANN Modelling of Reduced Data Sets 
Tables indicating reduced data sets and the results of ANN training are presented in the 
Sections: 

e 3.1 Reduced Thermoset Pultrusion Data Set 

0 3.2 Thermoplastic Pultrusion Data Set 

0 3.3 Results of ANN Training of Reduced Thermoset Pultrusion Data Set 

0 3.4 Results of ANN Training of Reduced Thermoplastic Pultrusion Data Set 

0 3.5 Results of ANN Training of Bioprocess Data Set 

0 3.6 Results of ANN Training of Logistics Data Set 

3.1 Reduced Thermoset Pultrusion Data Set 

Table A3.1 presents the reduced thermoset pultrusion data set. 

3.2 Thermoplastic Pultrusion Data Set 

Table A3.2 presents the thermoplastic pultrusion data set which was subsequently 

reduced. 

David Thomas Wright, "Novel Analysis and Modelling Methodologies Applied to Pultrusion and Other 

Processes", Ph. D. Thesis, Manufacturing Engineering, Loughborough University of Technology, 1995. 
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3.3 Results of ANN Training of Reduced Thermoset Pultrusion 

Data Set 

Tables A3.3 and A3.4 present the results of ANN training of the reduced data set. 

trial structure 
type 

en-or 
tolerance 

learning 

rate 
iterations structure av. error 

per cycle 
error 
last cycle 

cri-or last 

Cycle per 
pattem 

I GI 0.1 0.5 10 6-6-19 18.81 60.18 1.72 

2 GI 50 8.39 58.93 1.68 

3 GI 100 weights blowing lip 
4 GI 500 weights blowing Lip 
5 GI 1000 weights blowing lip 
6 GI 10 18.81 59.38 1.70 

7 GI 50 8.50 61.04 1.74 

8 G1 100 5.96 59.64 1.70 

9 GI 500 weights blowing tip 
10 GI 1000 weights blowing up 
11 GI 1.0 10 18.74 59.45 1.70 

12 GI 0.75 11 18.59 58.64 1.68 

13 GI 0.10 18.63 59.71 1.71 

14 GI 0.05 18.52 58.62 1.68 

15 GI 0.01 18.53 58.30 1.67 

16 GI 1.0 6-10-19 18.76 59.78 1.71 

17 GI 0.75 18.72 58.52 1.67 

18 GI 0.50 18.76 60.13 1.72 

19 GI 0.25 18.83 59.83 1.71 

20 GI 0.10 18.43 58.04 1.66 

21 GI 0.05 18.49 58.48 1.67 

22 GI 0.01 18.60 58.66 1.68 

23 G1 1.0 6-12-19 18.82 59.84 1.71 

24 GI 0.75 18.77 59.42 1.70 

25 GI 0.50 18.66 58.94 1.68 

26 GI 0.25 18.78 59.60 1.70 

27 G1 0.10 18.62 59.30 1.69 

28 GI 0.05 18.57 58.89 1.68 

29 GI 0.01 18.54 58.17 1.66 

30 GI 1.0 6-15-19 18.84 59.70 1.71 

31 G1 0.75 18.79 59.94 1.71 

32 G1 0.50 18.85 59.86 1.71 

33 G1 0.25 18.70 59.08 1.69 

34 GI 0.10 18.63 59.59 1.70 

35 GI 0.05 18.36 58.60 1.67 

36 G1 0.01 18.82 58.84 1.6X 

1 0 6-19-19 19.10 61.17 1.75 
37 GI . 18 49 59.15 1.69 
38 GI 0.75 . 

69 18 59.79 1.71 
39 G1 0.50 . 

85 18 60.21 1.72 
40 GI 0.25 . 

18 46 59.67 1.70 
41 G1 0.10 . 

34 18 58.20 1.66 
42 GI 0.05 . 

18 73 58.96 1.6X 
43 GI 0.01 

6-6-19 
. 

18.90 60.12 1.72 
44 GI 1.0 1.0 

18 81 59.75 1.71 
45 GI 0.75 . 

64 18 57.85 1.65 
46 GI 0.50 . 

24 18 58.21 1.66 
47 GI 0.25 . 

67 18 59.64 1.70 
48 GI 0.10 . 

38 18 58.48 1.67 
49 GI 0.05 . 

18.78 58.92 1.68 
50 GI 0.01 

6-10-19 18.81 60.28 1.72 
51 GI 1.0 

18 84 60.79 1 -74 

52 G1 0.75 . 
18.72 59.69 1.71 

53 G1 0.50 
18.77 60.56 1.73 

54 G1 0.25 
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55 GI 
56 GI 
57 GI 
58 GI 
59 GI 
60 Gl 
61 Gl 
62 GI 
63 GI 
64 GI 
65 GI 
66 GI 
67 Gl 
68 GI 
69 Gl 
70 GI 
71 Gl 
72 GI 
73 GI 
74 GI 
75 GI 
76 GI 
77 GI 
78 GI 
79 GI 
80 Gl 
81 Gl 
82 GI 
83 GI 
84 GI 
85 GI 
86 GI 
87 GI 

88 GI 

0.10 18.62 59.50 1.70 
0.05 18.60 58.85 1.68 
0.01 18.97 58.82 1.68 
1.0 6-12-19 18.74 59.27 1.69 
0.75 18.90 60.32 1.72 
0.50 18.78 59.40 1.70 
0.25 18.74 59.93 1.71 
0.10 18.64 59.85 1.71 
0.05 18.46 58.86 1.68 
0.01 18.80 58.45 1.67 
1.0 6-15-19 18.87 60.37 1,72 
0.75 18.84 59.67 1.7o 
0.50 18.86 59.51 1.70 
0.25 18.63 59.29 1.69 
0.10 18.56 59.50 1.70 
0.05 18.35 58.47 1.67 
0.01 18.66 58.40 1.67 
1.0 6-19-19 18.79 59.18 1.69 
0.75 18.85 59.80 1,71 
0.50 18.93 60.66 1.73 
0.25 18.68 59.93 1.71 
0.10 18.65 59.64 1.70 
0.05 18.34 59.21 1.69 
0.01 18.55 58.49 1.67 
0.05 6-6-19 18.67 59.01 1.69 

0.01 18.42 58.05 1.66 
0.1 18.79 59.77 1.71 
10.0 59.20 59.20 1.69 
100.0 60.07 60.07 1.72 
0.001 50 8.35 59.06 1.69 
0.01 11 8.29 58.30 1.67 
0.1 8.34 59.05 1.69 
10.0 (1 complete) 58.95 58.95 1.68 

100.0 (1 completed) 59.44 59.44 1 1.70 

Table A3.3- Results of ANN Training with Reduced Data Set 

101 G2 0.1 0.25 10 2-2-12 25.01 79.22 2.03 
102 G2 2-6-12 24.91 78.76 2.02 
103 G2 2-10-12 24.89 78.78 2.02 
104 G2 2-12-12 24.90 78.80 2.02 
105 G2 0.01 2-2-12 24.98 79.21 2.03 

106 G2 2-6-12 24.91 78.76 2.02 

107 G2 2-10-12 24.89 78.78 2.02 

108 G2 2-12-12 24.89 78.79 2.02 

109 G2 50 2-6-12 weights blowing up 
201 G3 0.1 10 2-2-6 24.48 78.03 2.00 

202 G3 11 2-4-6 24.58 78.07 2.00 

203 G3 2-6-6 24.62 78.06 2.00 

204 G3 0.1 2-2-6 24.50 78.04 2.00 

205 G3 11 2-4-6 24.58 78.07 2.00 

206 G3 2-6-6 24.62 78.06 2.00 

207 G3 50 2-2-6 weights blowing Lip 

301 F1 0.1 10(1 completed) 4-2-1 0.65 0.65 0.0ý 

302 F1 " (I completed) 4-4-1 0.39 0.39 0.01 

303 F1 0.01 " (I completed) 4-2-1 0.38 0.38 0.01 

304 F1 " (I completed) 4-4-1 0.23 0.23 0.006 

305 F1 50(1 completed) 4-4-1 0.15 0.15 0.004 

401 F2 0.1 10(l completed) 4-2-2 1.36 1.36 0.035 

402 F2 .1 " (1 completed) 4-4-2 0.67 0.67 0.017 

403 F2 0.01 4-2-2 0.18 0.45 0.01 

4-4-2 0.20 0.44 0.01 
404 F2 

50 4-4-2 0.067 0.45 0A) I 
405 F2 

10 4-2-4 1.51 4.61 0.1 
501 F3 0.1 

11 11 4-4-4 1.41 4.49 0.12 
502 F3 

4-2-4 1.50 4.68 0.12 
503 F3 0.01 

4-4-4 1.43 4.44 0.11 
504 F3 
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505 F3 16 11 50 4-4-4 0.63 4.26 0.11 
601 F4 0.1 10 3-3-4 1.55 4.84 0.12 
602 F4 66 1: 3-4-4 1.52 4.81 0.12 
603 F4 0.01 3-3-4 1.53 4.85 0.12 
604 F4 3-4-4 1.53 4.81 0.12 
605 F4 50 3-4-4 0.68 4.81 0.12 
701 G2A 0.1 10 3-3-12 28.97 91.88 5.74 
702 G2A 3-6-12 29.03 91.80 5.74 
703 G2A 3-10-12 28.98 91.76 5.74 
704 G2A 3-12-12 28.90 91.46 55.7 1 
705 G2A 0.01 3-3-12 29.00 91.92 5.74 
706 G2A 3-6-12 28.99 91.69 5.73 
707 G2A 3-10-12 28.96 91.69 5.73 
708 G2A 3-12-12 28.87 91.36 5.71 
709 G2A 50 3-6-12 12.95 91.50 5.72 
720 G3A 0.1 10 3-3-6 24.62 78.06 2.00 
721 G3A 3-5-6 24.65 78.08 2.00 
722 G3A 3-6-6 24.66 78.08 2.00 
723 G3A 0.01 3-3-6 24.62 78.06 2.00 
724 G3A 3-5-6 24.65 78.08 2.00 
725 G3A 3-6-6 24.66 78.08 2.00 
726 G3A 50 3-5-6 weights blowing up 
730 FIA 0.1 :, 10(1 completed) 5-3-1 0.93 0.93 0.02 
731 FIA It C " (I completed) 5-5-1 0.21 0.21 0.006 
732 FlA 0.01 " (I completed) 5-3-1 0.23 0.23 0.006 
733 FIA 11 (2completed) 5-5-1 0.26 0.29 0.007 
734 FIA 50(2 completed) 5-5-1 0.25 0.14 0.004 
740 F2A 0.1 10 1 completed) 5-3-2 0.74 0.74 0.02 
741 F2A 11 " (I completed) 5-5-2 1.36 1.36 0.03 
742 F2A 0.01 5-3-2 0.16 0.45 0.01 
743 F2A 1: 5-5-2 0.14 0.44 0.01 
744 172A 1 11 50 5-5-2 0.06 0.39 0.01 
750 173A 0.1 10 5-4-4 1.33 3.87 0.10 
751 F3A 11 1: 5-5-4 1.39 4.53 0.12 
752 BA 0.01 5-4-4 1.43 4.23 0.11 
753 DA 11 5-5-4 1.42 3.89 0.10 
754 BA 11 50 5-5-4 0.55 3.65 0.09 
760 F4A 0.1 10(6 completed) 4-6-4 1.73 3.88 0.10 
761 F4A 11 " (7completed) 4-4-4 1.64 3.81 0.10 
762 F4A 0.01 4-6-4 1.37 3.73 0.10 
763 F4A 4-4-4 1.39 3.82 0.10 
764 1 F4A 50 4-4-4 

11 
0.52 

1 
3.55 0.09 

Table A3.4- Results of ANN Training with Reduced Data Set 

3.4 Results of ANN Training of Reduced Thermoplastic 

Pultrusion Data Set 

Table A3.5 presents the results of ANN training with the reduced data set. 
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trial error ... 

tolerance 
learning 
rate 

structure : av. error 
per cycle 

error 
last cycle 

error Idst 

cycle per 
pattern 

pal 0.01 0.05 3-2-1 0.069 2.16 0.027 

pa2 cc 0.25 3-2-1 0.67 2.12 0.027 

pa3 cc 0.50 3-2-1 0.63 1.99 0.25 

pa4 cc 0.75 3-2-1 0.585 1.87 0.023 

pa5 CC 0.50 3-3-1 0.584 1.87 0.023 

pa6 cc 0.50 3-1-1 0.668 2.12 0.027 

pb7 cc 0.50 3-3-2 1.235 0.32 0.008 

pb8 0.50 3-2-2 1.05 0.25 0.006 

PC9 0.50 4-4-1 0.40 0.14 0.004 

PCIO 0.50 4-3-1 0.66 0.18 0.005 

PCI 1 0.50 4-1-1 0.752 0.023 0.006 

Table A3.4- Results of ANN Training with Reduced Data Set 
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3.5 Results of ANN Training of Bioprocess Data Set 
Table A3.6 presents the results of ANN training with the data set. 
trial error 

tolerance 
leaming 
rate 

stnicture av. error 
per cycle 

error - 
last cycle 

--ýr--rorlast 

cycle per 
pattem 

ac Ia 0.1 0.5 3-3-1 0.504 0.504 0.0066 
acIb 3-2-1 0.129 0.129 0.0017 
ack 3-1-1 0.579 0.579 0.0075 
acld 0.01 0.5 3-3-1 0.430 0.363 0.005 
acle 3-2-1 0.759 0.759 0.0099 
aclf 3-1-1 0.272 0.272 0.0035 
ac2a 0.1 0.5 4-4-1 0.756 0.756 0.0098 
ac2b 4-2-1 0.236 0.236 0.003 
ac2 c 4-1-1 0.221 0.221 0.0029 
ac2d 0.01 0.5 4-4-1 0.183 0.183 0.002 
ac2e , 4-2-1 0.364 0.364 0.005 
ac2f , 4-1-1 0.42 0.36 0.605 
ac3a 0.1 0.5 3-3-1 0.611 0.611 0.0079 
ac3b 3-2-1 0.907 0.907 0.0118 
ack 3-1-1 1.089 1.089 0.0141 
ac3d 0.01 0.5 3-3-1 0.413 0.413 0.0054 
ac3e 3-2-1 0.618 0.618 0.0080 
ac3f 3-1-1 0.643 0.643 0.0083 
ac4a 0.1 0.5 4-4-1 0.2217 0.2217 0.0029 
ac4b 4-2-1 0.5656 0.5656 0.0073 
ac4c 4-1-1 1.162 1.162 0.0151 
ac4d 0.01 0.5 4-4-1 0.253 0.253 0.003 
ac4e 4-2-1 0.454 0.426 0.0055 
ac4f 4-1-1 0.642 0.642 0.0083 

ac5a 0.1 0.5 6-6-1 0.531 0.531 0.0069 

ac5b 6-3-1 0.418 0.418 0.0054 

ac5c 6-1-1 1.012 1.012 0.0131 

ac5d 0.01 0.5 6-6-1 0.601 0.601 0.0078 

ac5e 6-3-1 0.5595 0.5595 0.0073 

ac5f 6-1-1 0.529 0.431 0.0056 

ac6a 0.1 0.5 3-3-1 0.695 0.695 0.0090 

ac6b 3-2-1 0.726 0.726 0.0094 

ac6c 3-1-1 0.656 0.656 0.0085 

ac6d 0.01 0.5 3-3-1 0.405 0.405 0.0053 

ac6e ýC 3-2-1 0.666 0.666 0.0087 

ac6f 41 3-1-1 0.553 0.537 0.0070 

ac7a 0.1 0.5 4-4-1 0.636 0.636 0.0083 

ac7b 4-2-1 0.567 0.567 0.0074 

ac7c 4-1-1 0.512 0.512 0.0067 

ac7d 0.01 0.5 4-4-1 0.585 0.585 0.0076 

ac7e 4-2-1 0.467 0.519 0.0067 

ac7f 4-1-1 0.755 0.755 0.0098 
I 

Table A3.6- Results of ANN Training with Bipprocess Data Set 
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3.6 Results of ANN Training of Logistics Data Set 
Table A3.7 presents the results of ANN training with the data set. 
trial error 

tolerance 
learning 

rate 
sanicture av. error 

per cycle 
error 
last cycle 

-Tri7or -1ast 

cycle per 
pattern 

Idla 0.1 0.5 10-10-1 0.385 385 0.0167 
IdIb 10-5-1 0.645 0.645 0.0280 
Idle 10-1-1 1.208 1.208 0.0525 
ldId 0.01 0.5 10-10-1 0.1839 0.1027 0.0045 
Idle 10-5-1 0.4080 0.1376 0.0060 
IdIf 10-1-1 0.3166 0.2218 0.0096 
ldIg 0.001 0.5 10-10-1 0.0142 0.0813 0.0035 
IdIh 10-5-1 0.0144 0.0834 0.0036 
Idli 10-1-1 0.0257 0.0958 0.0042 
ld2a 0.1 0.5 1-3-1 1.210 1.210 0.0526 
Id2b 1-2-1 1.270 1.270 0.0552 
Id2c 1-1-1 1.351 1.351 0.0587 
ld2d 0.01 0.5 1-3-1 0.2716 0.2273 0.0099 
ld2e 1-2-1 0.1252 0.2289 0.0099 
Id2f 1-1-1 0.1008 0.2263 0.0098 
Id2g 0.001 0.5 1-3-1 0.0208 0.0931 0.0041 
Id2h 1-2-1 0.0163 0.0867 0.0038 
Id2i 1-1-1 0.0245 0.0871 0.0038 
Id3a 0.1 0.5 3-3-1 1.193 1.193 0.0519 
Id3b 3-2-1 1.289 1.289 0.0561 
ld3c 3-1-1 1.177 1.177 0.0512 
Id3 d 0.01 0.5 3-3-1 0.1433 0.2278 0.0098 
Id3 e 3-2-1 0.1012 0.2295 0.0100 
ld3f 3-1-1 0.1712 0.2245 0.0098 
ld3g 0.001 0.5 3-3-1 0.0258 0.1025 0.0045 
ld3h 3-2-1 0.0258 0.0984 0.0043 
Id3i 3-1-1 0.0255 0.1028 0.0045 
ld4a 0.1 0.5 2-3-1 0.8883 0.8883 0.0386 
ld4b 2-2-1 0.9863 0.9863 0.429 
Id4c 2-1-1 1.831 1.831 0.0796 
ld4d 0.01 0.5 2-3-1 0.3988 0.1834 0.0080 
ld4e 2-2-1 0.4516 0.2013 0.0088 
ld4f 2-1-1 0.3815 0.1795 0.0078 
ld4h 0.001 0.5 2-2-1 0.0253 0.1613 0.0070 
Id5a 0.1 0.5 1-3-1 1.398 1.398 0.0608 
ld5b 1-2-1 1.009 1.009 0.0439 
We 1-1-1 1.302 1.302 0.0566 
ld5d 0.01 0.5 1-3-1 0.2398 0.2259 0.0098 
ld5e 1-2-1 0.4538 0.2246 0.0098 
Id5f 1-1-1 0.4631 0.2065 0.0090 
ld5i 0.001 0.5 1-1-1 0.0276 0.1631 0.0071 
ld6a 0.1 0.5 2-3-1 0.8892 0.8892 0.0387 
Id6b 2-2-1 1.458 1.458 0.0634 
Id6c 

6 2-1-1 1.362 1.362 0.0592 

Id6d 0.01 0.5 2-3-1 0.3021 0.2256 0.0098 

We 11 1, 2-2-1 0.2811 0.2262 0.0098 

Id6f 61 1, 2-1-1 0.3045 0.2066 0.0090 

Id6h 0.001 0.5 2-2-1 0.0305 0.1861 0.0081 

1d7a 0.1 0.5 2-3-1 1.024 1,024 0.0455 

Id7b 11 2-2-1 1.368 1.368 0.0595 
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ld7c 11 2-1-1 1.395 1.395 0.0607 
Id7d 0.01 0.5 2-3-1 0.3704 0.2201 0.0096 
Id7e 2-2-1 0.3582 0.2300 0.0100 
Id7f 2-1-1 0.5048 0.2023 0.0088 
Id7h 0.001 0.5 2-2-1 0.0269 0.1797 0.0078 
Id8a 0.1 0.5 4-4-1 0.7852 0.7852 0.0341 
Id8b 4-2-1 1.222 1.222 0.0531 
Id8c 4-1-1 1.721 1.721 0.0748 
Id8d 0.01 0.5 4-4-1 0.3245 0.2010 0.0087 
Id8e 4-2-1 0.5603 0.1981 0.0086 
Id8f 4-1-1 0.5467 0.2161 0.0094 
Id8h 0.001 0.5 4-2-1 0.0257 0.1662 0.0073 
Id9a 0.1 0.5 4-4-1 0.4092 0.4092 0.0178 
Id9d 0.01 0.5 4-4-1 0.5969 0.2134 0.0093 
ld9g 0.001 0.5 4-4-1 0.0151 0.0757 0.0033 
Idl0a 0.1 0.5 4-4-1 1.595 1.595 0.06936 
IdlOd 0.01 0.5 4-4-1 0.3891 0.1898 0.00825 
IdlOg 0.001 0.5 4-4-1 0.0136 0.0791 0.0034 
IdIla 0.1 0.5 4-4-1 1.240 1.240 0.0539 
IdIld 0.01 0.5 4-4-1 0.6167 0.2148 0.0093 

_Idllg 
0.001 0.5 4-4-1 0.02259 0.1551 0.0067 

Table A3.6- Results of ANN Traininiz with Loalstics Data Set 
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Appendix 4 

4.0 C-code For Rule Based System Model of Pultrusion 
There follows a listing of C-code presented in Chapter 6, written by the author to 

simulate the thermoset pultrusion process based on the laboratory and materials testing 

data from IKV, Aachen, Germany and LUT, UK. It was written and compiled using 
Borland C++ v3.1 for Windows 3.11. 

David Thomas Wright, "Novel Analysis and Modelling Methodologies Applied to Pultrusion and utner 

Processes", Ph. D. Thesis, Manufacturing Engineering, Loughborough University of Technology, 1995. 
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/* ****************************************** ** ******** 

Rule-Based-System: Thermoset Pultrusion Process 

D. T. Wrightl@lut-ac. uk 

vl. 5 Nov 94 

*** ** **** ** *********** *** ********* ********* ** 

#include <stdio. h> 

/** global variable declaration 

float max-set-speed=160; 

float max-set-temp=190; 

float max-time=3600; 

float set_speed=O; 

float set_temp=O; 

float get_speed=O; 

float get_temp=O; 

float startup=O; 

float act_speed=l; 

float act_front_temp=O; 

float act-rear_temp=O; 

float act_pressure=O; 

float act-time=O; 

int time=O; 

float change_speed=O; 

float change_temp=O; 

float quality_3pt=O; 

float quality_density=O; 

float quality_surface=O; 

float quality_dimension=O; 

char resin-type[]="derakane 440/40"; 

char process_type[]=, lpultrusion"; 

char die_type[]="rectangle 10x2mm"; 

int breaking_station_status=1; 

char filename[851; 
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float validation_data [3][391; 

float results[12001[111; 

FILE *outputfile; 

/*** function declarations ***/ 

f loat validation_data_routine (f loat validation_data [31 [39] ,f loat 

results[12001[111); 

float startup_rule_routine(float set_speed, float set_temp); 
f loat main_rule_routine (f loat results [1200] [11] ); 

f loat f ile_saving_routine (f loat results [1200] [11] 

int main 

char ch; 

printf Rule -Based- System- the pultrusion process 

****\n\n"); 

printf (11 1. load verification data set, run RBS & save RBS results 

set\n") ; 

printf(Il 2. Exit\n\n"); 

printf (11 >>>>>>enter choice<l> or <2> then <CR> 11) ; 

ch=getcharo; 

switch (ch) 

case 111: 

printf("\nExecuting loading verification set, running 

RBS, & saving results.. \n"); 

float validation_data_routine(float 

validation_data [31 [391 ,f loat results [12001 [111 ); 

float startup_rule_routine(float set_speed, float 

set_temp); 
float main_rule_routine(float results[1200][11]); 

float file_saving_routine(float results[12001[111); 

break; 
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case 121 : 

printf("\OK -we'll quit .... BYE!!! \n"); 

break; 

def ault : 

printf("\nInvalid menu selection \n"); 

return 0; 

routine to initialise results data array & load verification set 

f loat validation_data_routine (f loat validation_data [31 [391 ,f loat 

results[12001[111) 

I 

int numl=O, num2=0; 

while (numl<=1200) 

f 

while (num2<=11) 

results[numll[num2l=O; 

num2=num2++; 

numl=numl++; 

validation_data[3][391= 

50,50,50,50,50,50,70,105,70,80,90,100,120,140,160,50,60,80,100,120,50,5 

0,50,50,50,50,70,80,90,100,120,140,160,60,80,100,120,140,160), 

140,150,160,170,180,190,190,190,150,150,150,150,150,150,150,180,180,180 

, 180,180,140,150,160,170,180,190,150,150,150,150,150,150,150,180,180,18 

0,18 0,18 0,18 0) , 
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0,1200,2400,1,1,1,111,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 

�1,1,1,1,1,1) 
); 

/*** move positions of 0,1200, and 2400 to change set speed 

and set temp during simulation **/ 

return validation_data [31 [391 , results [12001 [ill 

routine to run RBS - the startup rules 

float startup_rule_routine(float set speed, float set temp) 

/** when using validation set, this stuff is null: 

printf (11 \n\ >>>>>>>enter set speed, <space>, and set temp and 

<CR>... \n"; 

get_speed=getcho; 

get_temp=getcho; 

if (get_speed<=max-set-speed) 

if (get_speed>=O) 

set-speed=get_speed; 

if (get_temp<=max-set-temp) 

if (get_temp>=O) 

set-temp=get_temp; 

return set-speed, set_temp; 

routine to run RNS the main rules & log results data set as 

RBS runs**/ 

f loat main rule routine (f loat results [12001 [111 

int time = i, numl=o; 
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while (time<=max-time) 

if (time<200) 

printf("\n\n ..... Line Speed is unstable .... 
\n"); 

if (time<600) 

printf("\n\n ..... Die Temperature is unstable ... 
\n") 

if (time==1) 

fnuml=O; 

while(numl<=39) 

f if (validation data[31[numll==O) 

fset_speed=validation_data[l][numll; 

results[int(time/3)1[21=set-speed; 

set-temp=validation_data[21[numll; 

results[int(time/2)1[31=set-temp; ý; 

numl=numl++; 
I 

if (time==1200) 

ýnuml=o; 

while(numl<=39) 

if (validation_data[31[numll==1200) 

fset_speed=validation_data[l][numil; 

results[int(time/3)1[21=set-speed; 

set-temp=validation_data[21[numil; 

results[int(time/2)1[31=set-temp; ); 

numl=numl++; 

if (time==2400) 

fnuml=O; 

while (numl<=39) 

f if (validation_data[31[numll==2400) 

(set_speed=validation_data[l][numil; 

results[int(time/3)1[21=set-speed; 

set-temp=validation_data[21[numil; 

results[int(time/2)][31=set_temp; ý; 
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numl=numl++; 

/**** SAFETY RULES ***/ 

if (set_speed>max_set_speed) 

fset_speed=max_set_speed; 

results[int(time/3)1[21=set_speed; I 

if (set-temp>max-set-temp) 

fset_temp=max-set-temp; 

results[int(time/3)1[31=set_temp; ) 

if (act_speed==O) 

fprintf("\n\n 
..... Die has jammed.. PROCESS SHUTDOWN 

underway \n"); 

time=max_time; ý 

/**** PROCESS DYNAMICS RULES 

if (set-speed>act_speed) 

fact_speed=act_speed+(change_speed/37)-2; 

results[int(time/3)1[41=act_speed; I 

if (set-temp>act-front-temp) 

fact-front-temp=act-front-temp+(change_temp/63)-10; 

results[int(time/3)1[51=act_front_temp; ý 

if (set-temp>act-rear_temp) 

fact_rear_temp=act_rear_temp+(change_temp/106)-5; 

results[int(time/3)1[61=act-rear_temp; ) 

if (act_speed>=120) 

ýact-rear_temp=act_rear_temp-2; 

results[int(time/3)1[61=act_rear_temp; ) 

if (act_speed>120) 

if (act-front-temp>150) 

ýact_pressure=15; 

results[int(time/3)1[7]=act_pressure; 
ý 

else 
fact_pressure=5; 

results[int(time/3)1[71=act pressure; ) 

/**** QUALITY RULES ***/ 

if (breaking_station_status==l) 

fact_pressure=act-pressure+2; 
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quality_3pt=500; 

quality_density=1.952; 

quality_surface=O; 

quality-dimension=l; 

results[int(time/3)1[7]=act_pressure; 

results[int(time/3)1[81=quality_3pt; 

results[int(time/3)1[91=qualityý_density; 

results[int(time/3)1[101=quality-surface; 

results [int (time/3)] [111 =qualityý_dimension; 

else 
fquality-3pt=400; 

quality_density=1.845; 

quality-surface=l; 

qualityý_dimension=o; 

results[int(time/3)1[7]=act_pressure; 

results[int(time/3)] [81=quality_3pt; 

results [int (time/3)] [91=quality_density; 

results[int(time/3)] [101=quality-surface; 

results[int(time/3)] [111=quality-dimension; ) 

/**** OPERATOR CHANGE RULES ***/ 

/*** at present disabled 

float get_speed, get_temp; 

printf (11 \n\ >>>>>>>enter set speed, <space>, and set temp and 

<CR> 

get_speed=getcho; 

get-temp=getcho; 

if (get_speed<=max_set_speed) 

if (get_speed>=O) 

set_speed=get_speed; 

if (get_temp<=max set-temp) 

if (get_temp>=O) 

set-temp=get-temp; 

293 



time=time+3; 

return results[12001[111; 

} 
/ **************************************************************-* 

/**** routine to save logged results onto disk file 

f loat f ile_saving_routine (f loat results [12001 [ill 

int numl=O, num2=0; 

if ( (outputf ile=f open ("A: \\results. dat", "w") )==NULL) 

I 

printf ("Error: no disk or disk full in drive A: \n") 

printf("EXITing program. \n"); 

return 0; 

while (numl<=1200) 

while (num2<=11) 

fwrite(results, sizeof(results), l, outputfile); 

num2=num2++; 

I 

numl=numl++; 

fclose(outputfile); 

return 0; 

/ 
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