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ABSTRACT 

This dissertation presents an innovative approach to system architecting where 

search algorithms are used to explore design trade space for good architecture 

alternatives. Such an approach is achieved by integrating certain model construction, 

alternative generation, simulation, and assessment processes into a coherent and 

automated framework. This framework is facilitated by a holistic modeling approach that 

combines the capabilities of Object Process Methodology (OPM), Colored Petri Net 

(CPN), and feature model. The resultant holistic model can not only capture the 

structural, behavioral, and dynamic aspects of a system, allowing simulation and strong 

analysis methods to be applied, it can also specify the architectural design space. Both 

object-oriented analysis and design (OOA/D) and domain engineering were exploited to 

capture design variables and their domains and define architecture generation operations. 

A fully realized framework (with genetic algorithms as the search algorithm) was 

developed. Both the proposed framework and its suggested implementation, including the 

proposed holistic modeling approach and architecture alternative generation operations, 

are generic. They are targeted at systems that can be specified using object-oriented or 

process-oriented paradigm. The broad applicability of the proposed approach is 

demonstrated on two examples. One is the configuration of reconfigurable manufacturing 

systems (RMSs) under multi-objective optimization and the other is the architecture 

design of a manned lunar landing system for the Apollo program. The test results show 

that the proposed approach can cover a huge number of architecture alternatives and 

support the assessment of several performance measures. A set of quality results was 

obtained after running the optimization algorithm following the proposed framework.  



 

 

iv 

ACKNOWLEDGMENTS 

I own my gratitude to all those people who made this study possible. First, I 

would like to gratefully and sincerely thank my advisor, Dr. Cihan H. Dagli, for his 

guidance, support, understanding, and patience in this research and my entire studies at 

the Missouri University of Science and Technology. His guidance has made this a 

thoughtful and rewarding journey. I would also like to extended sincere appreciations to 

my advisory committee members, Dr. Venkat Allada, Dr. Steven M. Corns, Dr. Ivan G. 

Guardiola, and Dr. Sanjay Madria, for their time and insightful criticisms that help me to 

have this research well-structured.  

Special thanks to the Engineering Management and Systems Engineering 

Department for funded my studies. Thanks also extend to the department staff who 

helped me, especially Ms. Turner who has always been very responsive and helpful. I am 

also thankful to Ms. Hudgins, in Graduate office, who is very professional and always 

quick to my requests. Additionally, I am very grateful for the friendship of my colleagues 

in the Smart Engineering Systems Lab who have always encouraged me and helped me.  

I am deeply indebted to my parents, Enming Wang and Xiuyun Hong, for their 

faith in me and allowing me to be as ambitious as I wanted. As such, they have been 

sacrificed too much for me throughout my life. I would not haven been where I am today 

without their constant source of love, concern, support and strength. I am grateful to my 

sister Yang Wang who has always been supporting me and caring about me. She has been 

taking my responsibility for taking care of my parents since I was absent most of the 

time. I would also like to thank all my relatives, friends, and past colleagues, who have 

encouraged me, helped me, supported me and cared about me.  

Finally and most importantly, I would like to give my special thanks to my lovely 

wife, Beibei Cheng, for the joy she brought to me, and her endless love, support, 

tolerance,  and understanding during the course of my studies. 

 



 

 

v 

TABLE OF CONTENTS 

Page 

ABSTRACT ....................................................................................................................... iii 

ACKNOWLEDGMENTS ................................................................................................. iv 

LIST OF ILLUSTRATIONS ........................................................................................... viii 

LIST OF TABLES .............................................................................................................. x 

NOMENCLATURE .......................................................................................................... xi 

SECTION 

1. INTRODUCTION ...................................................................................................... 1 

1.1. NEEDS ................................................................................................................ 1 

1.2. AIMS AND APPROACHES .............................................................................. 1 

1.3. DISSERTATION SYNOPSIS ............................................................................ 2 

2. LITERATURE REVIEW ........................................................................................... 4 

3. OVERVIEW OF RELATED FIELDS AND TECHNOLOGIES ............................ 10 

3.1. OBJECT-ORIENTED MODELING AND DOMAIN ANALYSIS ................ 10 

3.1.1. Object-Oriented Modeling (OOM) .................................................. 10 

3.1.2.  Feature Models..................................................................................... 11 

3.2. MODELING LANGUAGES FOR ARCHITECTING .................................... 13 

3.2.1.  UML and SysML ................................................................................ 13 

3.2.2. OPM ...................................................................................................... 14 

3.2.3.  Petri Nets ............................................................................................... 15 

3.3. RECONFIGURABLE MANUFACTURING SYSTEMS ............................... 17 

4. SEARCH-BASED ARCHITECTURE DEVELOPMENT APPROACH ................ 22 

4.1. SEARCH-BASED ARCHITECTURE DEVELOPMENT FRAMEWORK ... 22 

4.1.1.  Requirements Analysis and Design Formulation ............................ 22 

4.1.2.  Search-based Architecture Development Process ............................. 24 

4.2. ARCHITECTURE MODELING ...................................................................... 28 

4.2.1. System Design Set ............................................................................... 28 

4.2.2.  Object-Oriented Abstraction and Metamodel ...................................... 31 

4.2.3.  Modeling Process .................................................................................. 33 



 

 

vi 

4.3. ARCHITECTURE ASSESSMENT.................................................................. 38 

4.3.1. Architecture Analysis ............................................................................ 38 

4.3.1.1 Evaluation-based approaches ...................................................39 

4.3.1.2 Emulation-based approaches and reasoning about system  

interactions ..................................................................................40 

4.3.2. Architecture Selection .......................................................................... 43 

4.3.2.1 A priori approaches .....................................................................45 

4.3.2.2 A posteriori approaches ..............................................................46 

4.3.2.3  Interactive methods..................................................................46 

4.3.3. Optimization ......................................................................................... 48 

5. HOLISTIC MODELING APPROACH ................................................................... 54 

5.1. DEVELOPING A HOLISTIC MODELING APPROACH ............................. 54 

5.1.1. Strengths and Weaknesses of Some Existing Modeling  

          Languages ............................................................................................ 54 

5.1.2. Characteristics of an Ideal Holistic Modeling Language ..................... 61 

5.1.3. Combining UML/SysML, OPM, Petri Nets, and Feature Models ......... 61 

5.1.3.1 Formal definition of the extended OPM .....................................63 

5.1.3.2 Extend OPM with feature model concepts to capture  

           design space ...............................................................................66 

5.1.3.3 Supplementing execution semantics of OPM with CPN ........71 

5.1.4. The Roles of CPN in Architecture Modeling and Analyses .................. 86 

5.2. ARCHITECTURE GENERATION ................................................................. 91 

5.2.1. Architecture Alternative Generation Operations .............................. 91 

5.2.1.1 Generate element instances ........................................................92 

5.2.1.2 Generate structural variants....................................................92 

5.2.1.2.1 Add/remove/modify links – operation 1 ................ 92 

5.2.1.2.2  Add/remove/modify entities - operation 2 ................. 93 

5.2.1.2.3 Side effects handling ................................................. 95 

5.2.1.2.4 Advanced operations .................................................. 95 

5.2.1.3 Generate full architecture alternative .......................................96 

5.2.2. Automatic Generation of All Architecture Alternatives ...................... 97 

6. GENERIC IMPLEMENTATION .......................................................................... 100 



 

 

vii 

6.1. PACKAGE ARCHITECTURE ...................................................................... 100 

6.2. MODULES ..................................................................................................... 104 

7. APPLICATION DEMONSTRATIONS ................................................................ 109 

7.1. RECONFIGURABLE MANUFACTURING SYSTEM ................................ 109 

7.1.1. Problem Definition............................................................................. 110 

7.1.2. Building a Holistic System Model for the RMS .................................. 113 

7.1.3. Building Analysis Models .................................................................... 124 

7.1.4. Building Optimization Models ............................................................ 125 

7.1.5. Development of Problem-Specific Modules in Python ...................... 125 

7.1.6. Results and Discussion ........................................................................ 127 

7.2. THE APOLLO PROGRAM (RETROSPECTIVE) ........................................ 135 

7.2.1. Problem Definition and Analysis ....................................................... 135 

7.2.2. Architecture Modeling......................................................................... 137 

7.2.3. Design Space Analysis ......................................................................... 138 

8. CONCLUSION AND FUTURE WORK ............................................................... 146 

8.1. DISCUSSION ................................................................................................. 146 

8.1.1. Comparisons with other Approaches for Solving Similar Problems..... 146 

8.1.2. Strengths and Weaknesses................................................................... 147 

8.1.3. Scalability of the Proposed Approaches ............................................... 150 

8.2. CONCLUSIONS............................................................................................. 152 

8.3. FUTURE WORK ............................................................................................ 153 

APPENDICES 

A. MACHINE PROCESSING INFORMATION FOR THE RMS DESIGN 

     EXAMPLE ............................................................................................................ 157 

B. SELECTED RESULTS OF THE RMS DESIGN EXAMPLE ............................. 163 

C. PYTHON CODE, OUTPUT ARCHIVE FILES, AND OPM AND CPN  

     MODELS ON CD-ROM ....................................................................................... 167 

BIBLIOGRAPHY ........................................................................................................... 171 

VITA  .............................................................................................................................. 188 

 

 

 



 

 

viii 

LIST OF ILLUSTRATIONS 

Figure               Page 

3.1.   Various Interpretations of the Petri Net Semantics .................................................. 16 

3.2.   Illustration of a Reconfigurable Manufacturing System [52] .................................. 17 

4.1.   Framework of the Search-Based Architecture Development Process ..................... 23 

4.2.   Elaboration on the Architecture Assessment Process .............................................. 26 

4.3.   System Design Set ([13]) ......................................................................................... 29 

4.4.   An Example of the Four-Layer Metamodel Hierarchy [27] .................................... 32 

4.5.   A Simple Taxonomy of Optimization Algorithms ([13]) ........................................ 49 

5.1.   Combining Existing Modeling Languages to Achieve Holistic Modeling .............. 62 

5.2.   A Sample Feature Model ([30]) ............................................................................... 70 

5.3.   An OPM Model (Created by OPCAT) Extended with Feature Model Concepts  

         to Capture Design Space .......................................................................................... 70 

6.1.   Components of the Software Implementation ....................................................... 101 

6.2.   Workflow of the Implementation of the Search-Based Architecture  

         Development Framework....................................................................................... 103 

6.3.   Illustration of the GUI of the ABCD Simulator..................................................... 106 

7.1.   Example of a Selected RMS Configuration ([56]) ................................................ 111 

7.2.   Part to be Produced by the RMS ([57]) ................................................................. 113 

7.3.   OPM/H Model for a RMS - Overview .................................................................. 114 

7.4.   OPM/H Model for a RMS – Zoom-in into Manufacturing Process ...................... 114 

7.5.   CPN Model for the RMS ....................................................................................... 115 

7.6.   CPN Model for the RMS Specified in the ABCD Language ................................ 116 

7.7.   Examples of Information Set at the Property Sheet of OPCAT ............................ 119 

7.8.   An Alternative Way to Model the RMS - Un-fold RMS ....................................... 122 

7.9.   An Alternative Way to Model the RMS - Zoom-in into Manufacturing Process .. 122 

7.10. An Alternative Way to Model the RMS - Zoom-in into OS1 Process .................. 123 

7.11. Chromosome Encoding of the Design Variables for Solving the RMS Problem 

         ([56]) ...................................................................................................................... 126 

7.12. String Representation of a Solution ([56]) ............................................................. 126 

7.13. The Pareto Front of the Solutions Found Using GA for the RMS Problem .......... 129 

7.14. Near-Optimal Solutions in the Pareto Front .......................................................... 129 



 

 

ix 

7.15.  Illustration of One of the Near-Optimal Solution ................................................. 130 

7.16.  Convergence Curve of the NSGA-II in Solving the RMS Configuration ............ 130 

7.17.  Discrete-Space Representation of the Trajectory of the Manned Lunar  

          Landing System ([1]) ............................................................................................ 136 

7.18.  OPM/H Class Model Representing the Architecture of the Manned Lunar  

          Landing System Represented ................................................................................ 139 

7.19.  CPN Model Used for the Design Space Exploration ............................................ 143 

7.20.  An Instance Model Representing an Architecture Alternative (LOR System 

          Configuration) ....................................................................................................... 145 

 



 

 

x 

LIST OF TABLES 

Table               Page 

5.1.  Comparison of UML/SysML, OPM, and Petri Nets ................................................. 56 

5.2.  Properties of OPM Links .......................................................................................... 65 

5.3.  Syntax and Semantics of OPM and its Mapping to CPN ......................................... 76 

7.1.  Attributes of the Machine Object in the OPM/H Model......................................... 117 

7.2.  Attributes of the Part Object in the OPM/H Model ................................................ 118 

7.3.  Parameters Used in the GA ..................................................................................... 128 

7.4.  Impact of the Number of Part Tokens Used in the CPN Model on the  

        Computation of the Unit Production Time and the Production Rate ...................... 132 

7.5.  Statistics from 10 CPN Simulations ....................................................................... 132 

7.6.  Final Marking on the Place M_Idle Obtained from One Simulation Run of  

        the CPN Model for the RMS .................................................................................. 133 

7.7.  Final Marking on the Place P_Arrived Obtained from One Simulation  

        Run of the CPN Model for the RMS ...................................................................... 134 

7.8.  Major Modes of the Manned Lunar Landing System and the Corresponding 

        Spacecraft Configuration ........................................................................................ 141 

7.9.  Dimensions of the Design Space of the Manned Lunar Landing System .............. 142 

7.10.Summary of Token Values at the Place A_Earthlans Representing the  

        Architecture Alternatives Discovered ..................................................................... 143 

 



 

 

xi 

NOMENCLATURE 

Abbreviation   Description         

ABCD               Asynchronous Box Calculus with Data 

ABM                 Agent based model 

ABMS               Agent Based Modeling and Simulation  

AHP                 Analytic Hierarchy Process 

ALF                 Action Language for Foundational UML 

ANP                 Analytical Network Process 

ATAM               Architecture Tradeoff Analysis Method 

AVM                 Architecture Value Map 

BBN                 Bayesian Belief Network 

BPML               Business Process Modeling Language 

CM               Command Module 

CPN                 Colored Petri Net 

DF                Direct Flight 

DP                Demand Periods 

EA                  Evolutionary Algorithm 

EOR                 Earth Orbit Rendezvous 

ELECTRE         ELimination and Choice Expressing REality 

FAMA    FeAture Model Analyser 

FODA                Feature–Oriented Domain Analysis 

FOM                 Figures of Merit  

FUML               Foundational Subset for Executable UML  

GA                Genetic Algorithm 

GP                Generative Programming 

GUI                Graphical User Interface 

HC               Hill Climbing 

INRS                Improved Net Rewriting System 

JDPM                 Joint Probability Distribution Method 

KISS                Keep It Simple, Stupid 



 

 

xii 

KPA                Key Performance Attributes 

LEM                Lunar Excursion Module 

LEV                Lunar Excursion Vehicle  

LOR                Lunar Orbit Rendezvous  

LTDB                Lunar Touchdown Module 

MC                Machine Configuration 

MOE                Measure of Effectives 

MOEA    Multi-Objective Evolutional Algorithm 

MOF                Meta-Object Facility 

NMS                Number parallel Machines 

NP                Number of Parts 

NS                Number of Stages 

NSL                Number of Stage Locations 

NSGA                Nondominated Sorting Genetic Algorithm 

OC                Operation cluster 

OCL                Object Constraint Language 

OOA                  Object-Oriented Analysis 

OOA/D              Object-Oriented Analysis and  Design 

OOD                  Object-Oriented Design 

OOM                 Object-Oriented Modeling 

OOP                  Object-Oriented Programming 

OP                      Operation 

OPL                  Object Process Language 

OPN               Object Process Network 

OPM               Object Process Methodology 

OPM/H   OPM for Holistic modeling 

OPM/T   OPM with real-time extension 

OS      Operation cluster Setup 

PG      Precedence Graph 

PROMETHEE  Preference Ranking Organization Method for Enrichment, Evaluation 

QFD                  Quality Function Decomposition 



 

 

xiii 

RMS                Reconfigurable Manufacturing System 

RMT                Reconfigurable Machine Tool 

SA                    Simulated Annealing 

SBSE                Search -Based Software Engineering 

SM                Service Module 

SPFL                Single Product Flow Line 

SQL                Structured Query Language 

STD                Standard Deviation 

SysML              System Modeling Language 

TOPSIS            Technique for Ordered Preference based on Similarity to Ideal Solution 

UML                 Unified Modeling Language 

URL                  Uniform Resource Locator 

XMI                  XML Metadata Interchange 

 

 



 

 

1. INTRODUCTION 

1.1. NEEDS 

Computational technologies applied in design, analysis and optimization have 

flourished in various domain specific disciplines. Well defined methodologies and 

sophisticated tools have been developed in a large variety of engineering domains to 

alleviate humans from tedious tasks while increasing design efficiency and quality, for 

example the computer aided design and computer aided engineering. However, 

conceptual design in general and architecture design in particular are poorly supported by 

automated analysis, design and optimization tools. Such design domain is very 

challenging because: (1) conceiving and designing such systems requires abstract concept 

formulation and development, (2) the subjects are characterized by ambiguous, 

intangible, poorly defined, and uncertainty, (3) available implicit or explicit knowledge 

and experience about the actual system is scarce and the operating environment is 

entrenched with high degree of uncertainty [1], (4) such design involves multiple 

knowledge domains, (5) the design space is vast and is difficult to specify due to 

ambiguity, and (6) transforming information and knowledge from architecture 

representation to architecture assessment is a field that has not been fully explored.  

Traditional architecture design, analysis and development approaches and the 

modeling, analysis and simulation tools developed for them usually only focus on a 

single system model or very limited design alternatives. Trade-off studies, as a separate 

process, are only conducted on simplified system model using partial system information. 

On the other hand, architecture design space is usually vast since fewer constraints have 

been identified in this stage of design. In the meantime, architecture design shapes the 

final form and function of a system. A significant amount of project cost is usually 

committed at this stage.  Hence, architecture design is crucial to the success of the 

system. Overlooking potential architecture alternatives means loss.  

 

1.2. AIMS AND APPROACHES 

This research is aimed at developing a framework with a set of enabling 

technologies to achieve optimum architecture development through an effective search 



 

 

2 

process. As the architecture design space is usually vast, such design approach requires 

automating certain model construction, alternative generation, simulation, and assessment 

tasks. These tasks should also be integrated into a coherent framework. In order to 

support such integration and automation, a holistic system model is needed for capturing 

all relevant design information and supporting architecture analyses. Particularly, the 

focuses of this research can be summarized as follows  

 Identify the tasks needed in a search-based architecture development process 

and develop a framework to integrate related tasks  

 Develop a holistic modeling approach such that the system of interest can be 

modeled by a holistic model that captures all structural, behavior and dynamic 

aspects of the system. Such models should not only capture all the design 

information and variables but also be able to specify the design space.  

 Develop an effective approach to generate all architecture alternatives within 

the design space specified by that holistic system model. Such alternative 

generation mechanism should be based on the modeling formalisms proposed. 

 Identify applicable architecture assessment techniques that can reach rational 

decisions regarding the selection of architecture alternatives based on the 

information provided by the architecture model. Identify the required design 

information and variables that must be captured by such an architecture 

model. 

With such design approach, vast design space can be explored and evaluated 

before commitment to more detailed design, thus reducing time, cost, and risks and 

improving design quality. 

 

1.3. DISSERTATION SYNOPSIS 

This dissertation is organized as follow: 

Section 1, introduction, briefly introduces the motivation of this research. 

Section 2, literature review, discusses the application of search-based algorithms 

in various architecture related problems. 

Section 3, overview of related fields and technologies, provides a brief review of 

some background knowledge needed to develop the approaches proposed in this research 
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such as object-oriented paradigm, domain analysis, and some related modeling 

languages. It also briefly introduces the RMS, which will be used as an example to 

demonstrate the application of the proposed approaches.  

Section 4, search-based architecture development framework, presents the 

proposed architecture development framework along with the discussions of some 

enabling technologies for each of its components.  

Section 5, holistic modeling approach, presents the development of a holistic 

modeling approach achieved by integrating three modeling formalisms, i.e., OPM, CPN 

and feature model. A set of architecture variant generation operations is also defined. 

Section 6, programming implementation, presents how the proposed approaches 

are implemented using Python programming language. 

Section 7, application demonstration, applies the proposed approach to the design 

of reconfigurable manufacturing systems and the manned lunar landing system for the 

Apollo program (retrospective). 

Section 8, conclusion and future work, discusses the scalability, strengths and 

limitations of the proposed approach before concluding the dissertation. It also provides 

some insights into possible future expansions of the current work. 
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2. LITERATURE REVIEW 

This section focuses on reviewing the application of search-based algorithms to 

the architecture development and its sub-problems. Discussions of other related topics are 

presented in related sections throughout this dissertation.  

Search algorithms have been used widely in different fields of research, such as 

engineering, business and financial and economic modeling [2]. However, search-based 

system architecting as a research domain is far from mature and recently there has been 

an increasing interest in implementing search algorithms to complex system design 

including architecture design. This review covers the application of search-based 

algorithms to architecture related problems from a variety of domains. Although many of 

such applications are either problem specific or domain specific, when studied at the 

abstract level, they share a lot in common with the system architecture design in general. 

Therefore studies of these applications may reveal useful inspiration and insights as to 

how search algorithms can be used in the field of system architecting in general.  

A lot of research has been conducted on applying search-base algorithms to 

software system architecture designs. A software development paradigm known as 

Generative Programming (GP) is first proposed in the dissertation of Dr. Dipl.-Inf. 

Krzysztof Czarnecki [3] and later become an active research topic in software 

engineering [4].  GP is defined in [3] as follows: 

Generative Programming (GP) is about designing and implementing 

software modules which can be combined to generate specialized and 

highly optimized systems fulfilling specific requirements. The goals are to 

(a) decrease the conceptual gap between program code and domain 

concepts (known as achieving high  intentionality), (b) achieve high 

reusability and adaptability, (c) simplify managing many variants of a 

component, and (d) increase efficiency(both in space and execution time).  

GP builds on system-family engineering (also referred to as product-line 

engineering). It concerns with designing and implementing reusable software for 

generating specific systems rather than developing each of the specific systems from 

scratch [3]. It covers a broad range of reusable workproducts (or reusable assets), which 

include reusable components, requirements, analysis and design models, architectures, 

patterns, generators, domain-specific languages, frameworks. Particular, it identifies 
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feature modeling and domain analysis as the main means for specifying design space. 

Using such an approach, given a system specification, a concrete system can be 

automatically generated based on a set of reusable components. However, GP focuses on 

a class of systems within a domain not necessarily exploring all possible variants. Its 

major application is software systems.  

Extensive research has been conducted on a new field emerged in software 

engineering domain, i.e., the so-called Search-Based Software Engineering (SBSE) [5–8]. 

SBSE is a collection of a variety of approaches to software engineering in which search-

based optimization algorithms are used to address problems in software engineering. The 

work presented in [6] divides areas where search algorithms are used into four major 

categories: analysis, design, implementation, and testing. Examples include classifying 

software production data, project scheduling, static task scheduling related to parallel 

computing, allocating modules to subsystems, N-version programming, test data 

generation and generating an integration test order [6]. A more refined classification of 

software engineering areas to which SBSE has been applied and the various applications 

within each category are discussed in [8]. Such areas include network protocols, 

requirements/specifications, design tools and techniques, coding tools and techniques, 

software/program verification, testing and debugging, distribution, maintenance and 

enhancement, management, distributed artificial intelligence, and security and protection 

[8]. 

Another related study in the software engineering field is the generic 

programming. Generic programming is a programming style and a set of language 

mechanisms to achieve program reuse by implementing type-safe polymorphic containers 

[9]. Generic programming centers around the idea of abstracting from concrete, efficient 

algorithms to obtain generic algorithms that can be combined with different data 

representations to produce a wide variety of useful software [10]. Generic programming 

depends on the decomposition of programs into components which may be developed 

separately and combined arbitrarily, subject only to well-defined interfaces [11]. 

However, as summarized in [3] generic programming limits code generation to 

substituting concrete types for generic type parameters and welding together pre-existing 

fragments of code in a fixed pattern. 
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Search-based approaches developed for architecture development in systems 

engineering field are relatively rare.  A Smart Systems Architecting framework is 

proposed in [12]. It highlights the tasks of applying computational intelligence into 

architecture trade-off space exploration but provides few implementation details. A 

generic framework for constructing an evolutionary design model for design of complex 

systems is presented in [13]. This framework identifies the architecture modeling tasks 

for various design states and a set of existing technologies applicable to each design task. 

The resultant design model is described as an evolutionary model that moves a system’s 

design from simple abstract states to more complex and detailed states. However, it 

presents the framework only. No implementation is developed.  

A meta-language for systems architecting called object-process network (OPN) 

was developed by Koo in [1]. It is a Petri net like executable language that utilizes a 

small set of linguistic primitives, i.e., objects and processes that transform them. The aim 

of the language is to support system architects’ modeling process by automating certain 

mechanical communication and computational tasks in architectural reasoning. Koo [1] 

suggested three usage of OPN in architectural modeling: (1) as a declarative language to 

specify the space of architectural options, (2) as an imperative language to create 

architectural option instances and to compute the performance metrics for those 

instances, and (3) as a simulation language. The rationale behind usage (1) and (2) is an 

analogue of defining classes and creating instances. Therefore, its variability generation 

mechanism, like that in OOA/D, is limited to the intra-application variability (i.e., 

creating object variants only) as pointed out by [3]. It still lacks an explicit mechanism to 

model both the variations and the related constraints like the one provided by feature 

models and the domain engineering [3], [14]. Thus, although OPN is effective in creating 

element instances, it still lacks an effective way to automatically generate the entire 

architecture as alternatives.  Nevertheless, Koo demonstrated that tokens can be used to 

record the execution trace in a simulation of an OPN model in [1]. Such traces can 

represent the architecture alternatives discovered. The execution semantics of OPN is 

based on the function-algebraic model, which supports discrete, continuous, and 

probabilistic events simulation. Furthermore, the emphasis of the modeling language is 

for creating computational model. The language is not intuitive to represent static 
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relationships between system entities. A software environment is developed for the 

proposed meta-language in [1].  

The evolutionary algorithms and other metaheuristic based algorithms such as 

simulated annealing and tabu search have been broadly applied to many architecture 

related designs [2]. Most of such applications use no explicit system models or use very 

simple system description to contain related information. Instead, the idea is to develop 

problem specific chromosome representations and crossover/mutation operators. For 

example, the Genetic Algorithm (GA) is applied to software architecture design in [15]. 

In this work, a complicated chromosome representation is used. Such chromosome is 

comprised of a list of supergenes following the supergene idea given by [16]. Each of the 

supergene corresponds to one responsibility in the system. Each responsibility is 

described by a set of attributes and has a set of responsibilities depend on it. Each 

responsibility is also associated with a class which implements an interface, belongs to a 

super class, and communicates with a set of responsibilities through a dispatcher. 

Accordingly sophisticated mutation operator is defined based on the structure of 

supergene. The crossover operator is a simple one point crossover that is applied at a 

random selected supergene. Such type of chromosome encodes the complete information 

of an architecture model into a chromosome representation. Therefore no extra 

architectural model is needed. Such chromosome encoding scheme also eliminates the 

needs to develop additional alternative generation mechanism because mutation and 

crossover operators can be used to generate alternatives directly. However, the 

disadvantage of this approach is that its chromosome encoding is rather rigid and cannot 

generalize well for use in non-software systems. Such approach also assumes a fixed set 

of responsibilities which may not be the case in other types of systems.   

Another problem-specific application of GA in architecture related problem is 

presented in [17], where GA has been applied to dynamic and multiple criteria web-site 

optimizations. The purpose is to find the best-possible arrangements (in terms of both 

combinations and sequences) of a given set of web-objects, such as banners, images, 

splash screens, leased spots, sounds, and other multimedia objects, based on simultaneous 

optimization of multiple criteria: (1) download time; (2) visualization; and (3) product 

association level [17]. Again, no system model is used. The system can be simply 
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described by a look-up table containing a set of candidate web-objects, each of which is 

described by a set of attributes such as product name, download time, visualization score, 

and likelihood that the product will be sold in combination with other products or 

services [17]. The chromosome representation is simply a sequence of web-objects. The 

mutation is achieved by swapping two random web-objects within the chromosome. The 

crossover operator works as follows: select the first k members of parent 1 as the first k 

members of the offspring, where k is a random number between 0 and the number of 

web-objects in the chromosome. The remaining members of the offspring come from 

parent 1 but following the order in which they appear in the parent 2 sequence. The 

results achieved by Asllani and Lari [16] show that the algorithm provides dynamic and 

timely solutions independent of the number of objects to be arranged. 

System architecting is a broad field comprised of many sub-problems. Studies on 

solutions to the sub-problems also contribute to the overall body of knowledge of 

architecture design in general. Räihä [15] studied many search-based algorithms applied 

to problems that constitute to sub-problems of software architecture design. These 

solutions also provide useful insights into application of search-based algorithms in 

system architecture design in general. These sub-problems studied in [15] include search 

algorithms in clustering, systems integration, system refactoring, and program 

transformation. Clustering is a classical problem that is often studied in system 

architecting as a means to achieve modularity, particularly in software engineering [2], 

[18], [19]. Systems integration in software engineering [2], [20] is in a way quite similar 

to module clustering, only now the modules are known, and the order in which they are 

incorporated to the system is what needs to be decided [15]. Refactoring is the process of 

changing a software system in such a way that it does not alter the external behavior of 

the code yet improves its internal structure [21]. Refactoring is basically a variant of 

restructuring [22] used in object-oriented system. The key idea here is to redistribute 

classes, variables, and methods across the class hierarchy in order to facilitate future 

adaptations and extensions [23–25]. Program transformation enables programming at a 

higher-level of abstraction, thus increasing maintainability and re-usability [26]. All 

approaches to transformation share the common principle that they alter the program's 

syntax without affecting its semantics [2].  
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This dissertation presents a search-based architecture development framework 

that integrates architecture modeling, alternative generation, and architecture assessment 

into a coherence process. A holistic modeling approach is developed to facilitate the 

implementation of such framework. This modeling approached is achieved by combining 

the capabilities of OPM, CPN and feature modeling into one holistic representation. The 

resultant holistic model not only can capture the structure, behavior, and dynamic aspects 

of a system but can also support simulation and formal model analysis. This holistic 

modeling approach not only supports the generation of instance models that contain all 

information needed for architecture specification and analysis but also support the 

development of a class model that captures the specification of design space (or 

constraints). An architecture generation mechanism based on the proposed modeling 

formalism is also developed to support the generation of all architecture alternatives that 

cover the entire design space. The proposed approaches are implemented using Python 

with the support of some open source libraries for implementing the CPN and 

evolutionary algorithms. Two sample projects, the design of RMSs and the architecture 

design of a manned lunar landing system for the Apollo program (retrospective), are used 

to demonstrate how to apply the proposed approaches. 
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3. OVERVIEW OF RELATED FIELDS AND TECHNOLOGIES 

This section presents a brief review of some technologies related to developing 

the proposed approaches as well as some background knowledge of the sample problem 

to be used for demonstrating the application of the proposed approach. The aim is to 

reach a common understanding of related terminologies and to provide the background 

and foundation for further discussions in later sections. 

 

3.1. OBJECT-ORIENTED MODELING AND DOMAIN ANALYSIS 

3.1.1. Object-Oriented Modeling (OOM).  OOM is a modeling paradigm  

originating from computer science, known as object-oriented programming (OOP). OOP 

uses “objects” as the primary constituents to build a system. An object contains 

encapsulated data fields and procedures, together with interface, to represent an entity. 

An object-oriented program is described by the interaction of these objects. Closely 

related to OOM, are the concepts of Object-Oriented Design (OOD) and Object-Oriented 

Analysis (OOA). OOD is the discipline of defining the objects and their interactions to 

solve a problem that was identified and documented during object-oriented analysis 

(OOA). There are two major approaches to object-oriented design, class-based approach, 

where objects are obtained by instancing classes, and prototype-based approach, where 

objects are typically obtained by cloning other (prototype) objects. Only the class-based 

approach is discussed in this dissertation. The basic object-oriented concepts are briefly 

introduced as follows (biased toward software engineering) [27]: 

An Object  is an entity that has state, attributes and services.  

A Class describes a set of objects that share the same specifications of features, 

constraints, and semantics [28].  

Attributes together represent an object’s static features and state.    

Relationships include “is_a” classification relations, “part_of” assembly 

relationships, and any “associations” between classes.  

Methods (services, functions) are the operations that all objects in a class can do.  

An Interface defines how objects interact with each other. In software 

engineering, it defines the functions or methods signatures without implementing them.  
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Such kind of abstractions is so universal that OOM is claimed to be more 

“natural”. Some key features of OOD include: 

Object/Class: A class defines common properties of a set of objects in terms of 

what it is and what it can do.  A class is used to create instances of itself, referred to as 

class instances, or simply objects.  

Inheritance: In heritance is a process of sharing properties of the higher level 

object or class [28]. Part of the subclass can be derived (inherited) from the superclass. 

The subclass can “specialize” the parent class by adding additional attributes and 

methods or by replacing an inherited attribute or method with another. Multiple 

inheritance (i.e., multiple different superclasses) is also possible. Inheritance facilitates 

reuse (part) of class definition by allowing building new class or objects from the base 

class or super class [28]. 

Polymorphism: Polymorphism allows a name to denote instances of many 

different classes as long as they are related by some common superclass [29]. Any object 

denoted by this name is thus able to respond to some common set of operations in 

different ways [29].  

3.1.2. Feature Models.   Feature models [14], [30] are widely used in software 

product line engineering. The term feature model first appeared in the Feature–Oriented 

Domain Analysis (FODA) report [31] and has been an active research topic in software 

product lines since then. 

A feature model represents the information of all possible products of a software 

product line in terms of features and relationships among them [14]. A feature model 

defines a hierarchical structure over the set of features of a domain using: (1) 

relationships between a parent (or compound) feature and its child features (or 

subfeatures); (2) cross–tree constraints [14]. The root of a feature tree always represents 

the domain whose features are modeled. A child feature can only appear in a product if 

its parent feature does. A basic feature model has the following relationships among 

features: 

• Mandatory: Mandatory relations connect mandatory features to their parent 

feature. Mandatory features are always part of the system if their parent feature is part of 

the system. 
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• Optional: Optional relations connect optional features to their parent feature. 

Optional features can be optionally included in the system if their parent feature is 

already in the system. 

• Alternative: Alternative relations are exclusive or relations connecting optional 

features to their parent feature. Exactly one feature out of a set is part of the system if the 

parent feature is part of the system.  

• Or: one or more of children can be included in the system in which its parent 

feature appears. 

Cross-tree constraints between features typically include: 

• Requires. If a feature A requires a feature B, the inclusion of A in a system 

implies the inclusion of B in such system.  

• Excludes. Only one out of a set of features can be part of the system. 

The basic feature model has difficulty to express complex concepts. Hence 

various extensions have been proposed. For example, the cardinality-based feature 

models [32] extend FODA feature model with multiplicity concepts like the ones used in 

Unified Modeling Language (UML). Particularly, two types of cardinality exist: feature 

cardinality and group cardinality as summarized in [14]. Feature cardinality (denoted by 

[n..m] with n and m as the lower and upper bound respectively) determines the number of 

instances of the feature that can be part of a product and is a generalization of the original 

mandatory ([1, 1]) and optional feature ([0, 1]) [14]. Group cardinality (denoted by  n..m 

 with n and m as the lower and upper bound respectively) determines the number of child 

features that can be part of a product when its parent feature is selected [14]. More 

advanced extensions to basic feature models can also be found in literature. Such 

extensions include adding feature attributes (, which usually contain at least a name, a 

domain and a value) and complex constraints among attributes and features as 

summarized in in [14].  

In addition, a variety of operations of analysis, tools, paradigms and algorithms 

have been developed to support automated analysis of feature models. David et al 

provides an extensive review of the operations developed for automated analysis of 

feature model in [14]. 



 

 

13 

In order to implement these operators the usual graphical notations of features are 

mapped to various computational languages such as Propositional Logic, Constraint 

Programming, Description Logic and other ad-hoc solutions [14]. Once a feature model is 

transformed into a suitable representation, various off-the-shelf solvers can be applied to 

analyze a feature model automatically. Such solvers include Constraint Satisfaction 

Problem solver, Boolean Satisfiability Problem solver, and Binary Decision Diagrams 

solver, etc.  

 

3.2. MODELING LANGUAGES FOR ARCHITECTING 

This section provides a brief review some existing modeling languages that 

support system specification and/or system analysis. Here the discussion is focused on 

three languages UML, OPM, and Petri nets. Each of these languages has distinct 

language design goal and capabilities, along with its own merit. This section briefly 

review their language features only. A detailed comparison of their strengths and 

weaknesses in the context of search-based architecture development will be further 

discussed in Section 5.1.1. 

3.2.1. UML and SysML.  UML [28], [33]  is comprehensive language family 

served as a general-purpose, standardized modeling language for object-oriented analysis 

and design. It uses a set of diagrams to model a system from multiple views such as 

requirements view (by use case diagrams), structure view (by class, package diagrams, 

composite structure, component diagrams etc.), behavior view (by state machine, activity, 

interaction diagrams, etc.), and implementation view (by deployment diagrams) [34]. An 

additional textual language, the Object Constraint Language (OCL), is also provided with 

UML for expressing static consistency constraints on sets of objects and their 

interrelations. Although UML was initially designed for software developers, its usage 

has been expanded to many non-software systems due to its popularity and 

comprehensiveness. 

Currently, the semantics of UML language constructs is only defined in a textual, 

informal way [35]. The syntax of UML is defined by UML metamodel, which is itself a 

UML class diagram together with OCL-constraints and it defines the context-free as well 

as context-sensitive syntax of all UML diagram types [35]. 
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Among other capabilities, UML models are often used to serve three purposes: 

presentation, specification, and documentation. Presentation is the activity of using 

diagrams for communicating the design ideas with other engineers or stakeholders. 

Specification involves using UML’s prescriptive power to precisely define the system to 

be built. Documentation involves using UML models as a means to archive designs, 

requirements or knowledge throughout the development process.  

SysML (Systems Modeling Language) [36] is an extension of UML through the 

profile mechanism of UML. SysML is intended to be a general-purpose modeling 

language for systems engineering [36]. SysML supports the specification, analysis, 

design, verification, and validation of a broad range of complex systems [36]. In a 

manner similar to how UML unified the modeling languages used in the software 

industry, SysML is intended to unify the diverse modeling languages currently used by 

systems engineers [36]. It is particularly effective in specifying requirements, structure, 

behavior, allocations, and constraints on system properties to support engineering 

analysis [36]. The language is intended to support multiple processes and methods such 

as structured, object-oriented, and others, but each methodology may impose additional 

constraints on how a construct or diagram kind may be used [36]. 

SysML is a smaller language, compared to UML, in terms of both diagram types 

and total constructs, as it removes many of UML's software-centric constructs. SysML 

reuses a subset of UML 2 and provides additional extensions. Seven out of nine diagram 

types of SysML come from UML. The remaining two, requirements diagrams and 

parametric diagrams, are achieved through the extension mechanisms of UML.  

3.2.2. OPM.  OPM developed by Dori [37]  is a general-purpose modeling 

language with a single model formalism and a small set of symbols consists of objects, 

processes and a variety type of relational links connecting them. OPM can be used to 

specify both the structural and behavioral aspects of a system [38].  

The building blocks of OPM are entities (things and states) and links. A thing is a 

generalization of an object and a process. Objects are things that exist and they may have 

states. States are lower level entities since they reside in objects. At any particular point 

in time, an object can be exactly in one state, and object states are changed through 

processes [39]. Processes are things that transform objects.  Links can be structural or 
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procedural. Structural links express static (persistent, long-term relations) relations 

between pairs of objects or process [40]. Procedural links, on the other hand, connect 

entities to describe the behavior of a system [40]. The behavior of a system is manifested 

in three major ways: (1) processes transform (generating, consuming or affecting) 

objects; (2) objects can enable process without being transformed by them; and (3) things 

can trigger events that invoke processes [41]. 

OPM manages system complexity through three refinement/abstraction 

mechanism: (1) in-zooming/out-zooming exposes/hide the inner details of a thing within 

its frame; (2) unfolding/folding is used for refining/abstracting the structural hierarchy of  

a thing; and (3) state expressing/suppressing expose/hides the state of an object [42]. 

These mechanisms enable OPM to recursively specify a system to any desired level of 

detail without losing legibility and comprehension of the resulting specification [40].  

OPM has bimodal representation. One is graphic and the other is textual. Both are 

semantically equivalent. The graphical representation, known as Object-Process Diagram 

(OPD), uses graphical syntax with each OPM element being denoted by a symbol. The 

textual representation, known as Object-Process Language (OPL), specifies the same 

OPM model in a subset of English, enabling direct mapping between the graphic and the 

textual representations [13]. OPL is a dual-purpose language, oriented towards both 

humans and machines [41]. 

The known tools that support OPM model development are OPCAT [43] and 

Systematica. Features of OPCAT include: animated simulation of the model, automatic 

generation of OPL from OPD or the reverse, code generation (Java, SQL), UML diagram 

generation, and automatic document generation 

3.2.3. Petri Nets.   A Petri net [44], [45] is a mathematical modeling language for  

discrete event system modeling and simulation. A Petri net is a directed bi-partite graph 

consists of places and transitions and directed arcs that connect a place to a transition or 

vice versa. A place can represent the state of an object in the system being modeled. 

Place can store tokens which represent objects in the system. The distribution of tokens 

over the places collectively marks the state of the system. With the use of tokens to mark 

the state of a system, Petri nets can captures the dynamic aspects of a system. Transitions 

represent the actions of a system. When certain conditions hold, a transition will fire, 



 

 

16 

causing a change in the placement of tokens and thus the change of system states. The 

firing of transition is nondeterministic, i.e., when multiple transitions are enabled, anyone 

(and only one) of them may fire. Furthermore multiple tokens may be present anywhere 

at in the net at the same time. Therefore Petri nets are well suited for modeling the 

concurrent behavior of distributed systems.   

A Petri net can be viewed from two levels. In macro view A Petri net can be 

interpreted as a state machine. With the movements of tokens from places to places, the 

system undergoes a series of state transitions. This is the perspective to understand 

UML/SysML State Machine. In micro view, a Petri net can be seen as a condition/event 

graph, where places are conditions (availability of certain object or an object being at 

certain state) and transitions are events. A transition is fired means an event occurs. It can 

only occur if all conditions for the event hold. Such perspective is usually used in 

behavior analysis. Such condition/event/effects semantics can also be interpreted 

input/process/output according to Carlsen [46], who classifies Petri net as a 

transformational model language. These interpretations of the Petri net semantics are 

summarized in Figure 3.1. 

 

 

 

 

Figure 3.1.  Various Interpretations of the Petri Net Semantics 
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The Petri net is named after Carl A. Petri and was first introduced in his Ph.D. 

dissertation [47]. It then has since be extensively studied and extended. Through 50 years 

development, there are several variants of Petri net being developed, for example CPNs, 

which allow tokens to be typed, timed Petri nets, which introduce time concepts into 

transition, stochastic Petri nets, which add nondeterministic time through adjustable 

randomness of the transitions, and Object-oriented Petri nets, which support object-

oriented modeling, to name a few. The Petri net and its many variants have been applied 

to a wide range of applications, such as workflow management, concurrent programming, 

distributed computing systems, manufacturing system design, and many others [48], [49].  

 

3.3. RECONFIGURABLE MANUFACTURING SYSTEMS 

A reconfigurable manufacturing system (RMS) is one designed at the outset for 

rapid change in its structure, as well as its hardware and software components, in order to 

quickly adjust its production capacity and functionality within a part family in response 

to sudden market changes or intrinsic system change [50]. A schematic diagram [51] of a 

RMS is shown in Figure 3.2. 

 

 

 

 

Figure 3.2.  Illustration of a Reconfigurable Manufacturing System [51] 
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RMS is a new manufacturing paradigm that attempts to combine the high 

throughput of dedicated manufacturing lines with the flexibility of flexible manufacturing 

systems and react to changes quickly and efficiently [52]. Instead of providing a general 

flexibility through the use of equipment with built-in high functionality, as in flexible 

manufacturing systems, RMSs provide customized flexibility through scalability and 

reconfiguration as needed when needed to meet market requirements [53].  

RMS is marked by six core reconfigurable characteristics as summarized in [54]: 

customization (flexibility limited to part family), convertibility (design for functionality 

changes), scalability (design for capacity changes), modularity (components are 

modular), integrability (interfaces for rapid integration), and diagnosability (design for 

easy diagnostics) 

There are many aspects of a RMS configuration. Roughly speaking, a RMS 

configuration includes system level configuration (such as arrangement of machines and 

facilities) and machine level configuration (such as machine setup, programming, and 

machine tool configurations). This dissertation is concerned with the system-level 

configurations of RMS in a metal-cutting industry. 

A huge variety of techniques have been applied to solve the RMS configuration 

problems. For example, Youssef and H. ElMaraghy [55], [56] developed an approach for 

optimizing the capital cost of RMS configurations with multiple aspects using GA. This 

approach can be used to find optimum configuration for a multi-product, flow-line type 

RMS with identical machines in each production stage. The various aspects of the RMS 

configurations being considered include arrangement of machines (number of stages and 

number of parallel machines per stage), equipment selection (machine type and 

corresponding machine configuration for each stage) and assignment of operations 

(operation clusters assigned to each stage corresponding to each part type) [55]. A novel, 

real-coded chromosome representation is proposed. Such chromosome encoding scheme 

can guarantee the feasibility of the alternatives generated thus making the algorithm 

efficient. This problem has been adopted as an example and solved using the approach 

proposed in this dissertation. The details are presented in Section 7.1. 

Dou et al. [57] developed a graph theory-based approach to single product flow 

line (SPFL) optimization problem with small-to-medium size. Such approach is able to 
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find p economical and diversified flow-lines which include the optimal and p – 1 near 

optimal solutions. A machine graph is developed to represent the RMS. The full 

topological sorting and graph augmentation procedures are developed to derive a 

combined machine graph from the operation precedence graph of a specific product [57]. 

In such graph, each node represents a feasible workstation. A directed arc connecting 

nodes represents the precedence of workstations in accordance with operation 

assignments. For a given operation sequence, the problem of finding the minimal cost 

flow-line can be modeled as a shortest path problem on the machine graph associated 

with the operation sequence. The proposed search algorithm approach is divided into two 

stages. The first stage is to find the optimal and K – 1 suboptimal configurations by 

solving a constrained K-shortest paths problem on a combined machine graph derived 

from the specified operation precedence graph. The second stage is to find p distinctive 

ones out of K configurations using the algorithms for p-dispersion problem [57]. The 

experimental results showed that this approach performs well for small-to-medium size 

problems of configuration generation. Further development is needed for the approach to 

scale up to large size problems and to support multi-objective optimizations for multiple 

Demand Periods (DPs).  

Tang et al. [58] develop an approach to RMS configurations that considers the 

reconfiguration process of a RMS as a network of potential activities and configurations. 

Then a shortest path graph-searching strategy is applied to find the best configuration. A 

generic reconfigurable object model is developed to capture necessary information for all 

levels of objects in the RMS. A reconfigurable object is an object whose structure and 

state can be modified by a set of actions to realize changes in its performance [58]. 

Particularly, A reconfigurable object consists of the following elements: member objects 

(components of a reconfigurable object), states (the current condition of an object, 

including relationships between its member objects and their conditions), constraints 

(defines the domain of a state variable), performance metrics (measures for some 

functionality that an object possesses),  set of reconfigurable actions, mapping functions 

(relationship between the states and the performance of the object), and rules (heuristic 

knowledge and expertise that assist the derivation of a reconfiguration plan). An 

Artificial Intelligence-based computer-aided reconfiguration planning framework has 
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been developed in order to derive reconfiguration plans for a RMS and reconfigurable 

hardware in the system [58]. The A* algorithm and a genetic algorithm are employed to 

perform the search for the reconfiguration plan. Case studies in planning a RMT and a 

RMS are conducted and the results show that efficient plans are generated in both 

situations [58]. 

The Petri net and its variants such as timed Petri nets, stochastic Petri nets, and 

object-oriented Petri nets have also been applied to RMS configuration [59–62]. The use 

of Petri net allows using simulation to gain insights into various performance metrics of a 

RMS. Li et al. [63] developed an approach that uses rapidly reconfiguring Petri net 

models for RMS design. An improved net rewriting systems (INRS) is developed to 

achieve such rapid configuration. Such INRS can implement dynamical adjustments to 

the structure of a Petri net model and maintain its important behavioral properties, i.e., 

liveness, boundedness (or safeness), and reversibility. Using such approach, changes in a 

RMS configuration adjusted with production demands can be rapidly formalized into 

graph rewriting rules of an INRS [63]. Subsequently, by applying these rewriting rules, 

the existing Petri net model can be reconfigured rapidly into a new one for the RMS with 

a new configuration [63]. Validity of the resulting Petri net model can be guaranteed 

naturally throughout the reconfiguration process. The proposed approach is applied to a 

reconfigurable manufacturing cell. The results showed that the proposed method can 

generate configuration solution in a rapid and successive manner, without requiring 

verification [63]. However, such model provides a description of the RMS and valid its 

configuration only. Little performance metrics can be derived due to the basic Petri net 

model used. A similar work that uses hierarchical Petri and INRS for supervisory control 

of reconfigurable manufacturing systems model is presented in [60].  

Cai and Yan [59] developed an approach that use timed reconfigurable Petri nets 

to model RMS. In this work, each machine or equipment in the RMS is modeled with an 

object-like subnet. In each subnet, a set of states and transitions are used to model the 

operations of the machine or equipment. For example, the states can be idle, ready, 

preparing, loading, processing, and unloading. Each subnet also has a number of 

“message” places to receive or to send information regarding the operation requests or 

responses. The whole RMS system is composed of a number of such connected subnets 
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representing machines or equipment. The parts are represented by tokens of the Petri net. 

Features of the parts to be processed are encoded in the color set of related tokens. With 

time associated each transition, such Petri net model for the RMS can provide, through 

simulations, a variety of performance measures such as completion time of a job, average 

throughput for a part, and resource utilization.  Given a new configuration, a new Petri 

net model will be generated based on the modification of the precious model. There are a 

number of similar works that use various object-oriented Petri nets to build a similar 

model for the RMS [62], [61].  

Note that these Petri net-based RMS models primarily serve as analysis models 

only. The purposes are to derive performance measures or to valid the configuration. A 

dedicated optimization process is still needed if there are a large number of alternatives to 

be evaluated. 
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4. SEARCH-BASED ARCHITECTURE DEVELOPMENT APPROACH 

This section first presents the search-based architecture development framework. 

Then the guidelines and concerns in implementing two of its components, architecture 

modeling and assessments, are further discussed. The architecture modeling section 

discusses what to be modeled, how to use abstraction to extract necessary information 

and how to systematically develop a system model and define its design space. The 

architecture assessment component is presented in three sub-sections: architecture 

analysis, selection and optimization. A set of applicable technologies is also identified, 

compared, and discussed for each components of the framework. 

 

4.1. SEARCH-BASED ARCHITECTURE DEVELOPMENT FRAMEWORK 

The four distinctive tasks in search-based architecture development are: 

 Developing an architectural model,  

 Generating architecture instances,  

 Assessing architectural instances,   

 Validating design and/or further refining design.  

Figure 4.1 depicts these processes using an OPD.  

4.1.1. Requirements Analysis and Design Formulation.   The architecture 

development cycle is always preceded by a requirements analysis process. Alfaris [13] 

suggested using the four categories of requirements developed by Buede [64] in system 

design. Such categories are input/output, technology and system-wide, tradeoff, and test. 

These types of requirements are adapted and expanded to encompass a set of tasks 

together called design formulation in this dissertation. A design formulation includes 

detailed design concepts, constraints, and plans to guide the architecture development 

process. More specifically, the design formulation contains the following components: 

input/output, context and boundary, system function breakdown, constraints, performance 

metrics, tradeoff, and plan. The details of each are described in the following sections: 

 Input/Output. Input/output include inputs, outputs, and interfaces of the 

system with its external environment. 
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Figure 4.1.  Framework of the Search-Based Architecture Development Process 
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outputs generated by the system. The KPA can be decomposed into Measure 

Of Effectives (MOE) [66]. MOE can in turn be decomposed into Figures Of 

Merit (FOM). For any design under consideration it is necessary to be able to 

estimate or measure the values of these FOMs [65]. 

 Constraints. Constraints include recourse, budgets, schedule, and various 

other types of limitations or restrictions. One particular type of constrains is 

technology constrains. The technology requirement consists principally of 

limitations specified by the customer on the technologies available to build the 

system [65].  

 Trade-off Requirements. Trade-off requirements specify the nature of trade-

offs among input/output, system’s technologies, and systems requirements. 

Trade-off requirements will make the actual system selection based on the 

priorities of the customer [65].  

 Plans. Plans include various tasks such as choosing appropriate analysis, 

decision, and optimization techniques to be used in the architecture 

assessment, prioritizing the objectives to be addressed, and formulating a 

general concept that guides the problem solving.  

 Architecture/Design Patterns: An architect may choose to apply architecture 

or design patterns to improve design efficiency. Architecture or design 

patterns are descriptions, best practices, or templates for how to solve a 

problem that can be used in many different situations. In software 

engineering, design patterns are defined as general, reusable solutions to a 

commonly occurring problem, within a given context, in software design [67].  

Note that the list of elements in the design formulation identified above is not 

intended to be complete. The architect can either develop additional one or use a subset 

of this list according to both the problem to be solved and the current design phase. 

4.1.2. Search-based Architecture Development Process.   Once the requirements 

have been analyzed, the architecture synthesis can proceed. The architecture synthesis 

includes both architecture modeling and alternative generations. A generative class model 

that can describe a collection of systems is first developed. A generative class model 

should not only encode the design knowledge but also capture all of the design variables, 
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along and their domains. Such requirements usually necessitate a holistic model that can 

capture all of the structural, behavioral and dynamic aspects of a system as well as 

constraints. Moreover, such system model may also need to support simulation and 

system analysis, which are very useful in both system assessment and verification / 

validation. Then, an architecture generative mechanism is applied to generate all of the 

architecture alternatives within the design space specified. Next, the architecture 

assessment process can proceed with the following activities:  

 Analyze the behavior of the generated architecture alternatives for verification 

or validation.  

 Derive the performance metrics of the generated architecture alternatives 

using analysis models or through simulation;  

 Search for the best architecture alternative(s) using an appropriate 

optimization algorithm. 

 Making decisions regarding the preference of one or a set of architecture 

alternatives based on the evaluation of multiple objectives  

The architecture assessment process is represented as an aggregated process in 

Figure 4.1. Its details are exposed in Figure 4.2. The optimization as a search process 

should be capable of covering the entire solution space. Since the entire architecture 

alternative space is usually vast, it is not necessary to generate all the possible 

alternatives in one step. Rather, the search should be guided by the optimization process. 

Therefore, only a small set of architecture instances are generated and assessed in each 

iteration given an iterative optimization algorithm is used. Accordingly, there will be a 

tight coupling between the architecture generation process and the architecture 

assessment process. This architecture assessment process should consider all performance 

metrics of interest, covering all factors impacting them so as to yield unbiased results. 

The solution from the optimization is subject to verification and validation to ensure the 

selected architecture alternative(s) can 

 Conform to the constraints set in the requirements, 

 Perform the intended functionality, 

 Generate desired behavior, and 

 Satisfy the performance requirements.  
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Figure 4.2.  Elaboration on the Architecture Assessment Process 

 

 

 

Additionally, both the emergent behavior and side effects need to be examined 

and interpreted for undesired results. The architecture can be further refined with a 

refinement plan if necessary. This refinement plan can include either the entire or subset 

of elements in the design formulations, as discussed in the requirements analysis phase. 

Once a refinement plan is made, another round of the design cycle can proceed. This 

entire development process is intended to proceed automatically as the design space 

might be vast. However, it is crucial for human experts to intervene and guide the 

requirements analysis process, the design validation, and the refinement process. The role 

of human experts is illustrated using the Agent link in the OPD in Figure 4.1. 

As illustrated in Figure 4.2, three key tasks exist in the architecture assessment 

process: analysis, decision making, and optimization. Each is facilitated by a specific 

type of model commonly used in engineering design. The following discussion focuses 

on the objectives and inputs/outputs of these models. Section 4.3 focuses in detail on the 

techniques available for each type of model. 
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The analysis process derives the behavioral properties and/or performance 

measures from a system model using various analysis methods (or models in general) 

and/or simulations. The input to the analysis model is extracted from the information 

captured in the system model. Such information can include the structural properties, the 

behavioral properties, the numerical properties, the relationships between these 

properties, the interactions between system components, the transitions of system states 

and more. Depending on the needs of a specific analysis model used, such input data may 

be subject to a preprocessing process. Both performance measures and behavior 

properties can be output from an analysis model. Depending on the modeling language 

used, a system model can sometime double as an analysis model. For example, a Petri net 

model can be used as both a system model to describe a system and as an analysis model 

to reason the behavior of a system and simulate the behavior. The reason that a Petri net 

model can play these dual roles is that Petri nets have rigorous mathematical definitions 

and they can precisely model the states of a system and, under what conditions, 

transitions between these states will happen. On the other hand, a design problem usually 

involves multiple domains. Each domain can develop one or more analysis models. These 

models range in their required input, type and amount of information, domain of outputs, 

and degree of accuracy. 

The selection process is facilitated by a decision-making model, which is used in 

conjunction with the optimization model to select good designs that constitute a desired 

trade-off between conflicting objectives. Various performance measures output from 

multiple analysis models, expressed in an n- dimensional (with “n” being the number of 

design objectives), provide the input to a decision model. The output of the decision 

model is the preference for each solution.  

Many real-world optimization problems involve the simultaneous optimization of 

several incommensurable and often competing objectives. For nontrivial multi-objective 

problems, there is no single optimal solution, but rather a set of alternative solutions. 

These solutions, known as Pareto-optimal solutions, are optimal in the wider sense that 

no other solutions in the search space are superior to them when all objectives are 

considered [68]. In such cases, decisions have to be made in the presentence of trade-offs 

between conflicting objectives. Based on the system and the design objectives to be 
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evaluated, the efficiency of the decision tools, and the decision maker’s preference, this 

selection can be an automatic, semi-automatic, or even a manual process (given that there 

are only a very limited number of solutions to be evaluated). 

The optimization process is primarily a search process in the search-based 

architecture development process. Multi-objective optimization involves two search 

spaces, the decision variable space and the objective or criterion space. Although the two 

spaces are related by unique mapping between them, often the mapping is nonlinear and 

the properties of the two search space are not similar [69]. The design variable space, 

comprised of architecture instances, is discrete in nature and usually is subject to certain 

constraints. The choice of an appropriate search algorithm depends on several factors, 

including the nature of design variable space (e.g. linear or nonlinear, continue or 

discrete, deterministic or scholastic, convex or nonconvex, etc.), the nature of constraints, 

the interaction both between design variables and between design objectives, the 

efficiency of the search algorithm and their ability to found global optima, knowledge of 

the system and the objectives. The input to the optimization model is a set of values 

evaluated according to the objective functions. The output of the optimization model is 

either one or a set of architecture instances. 

 

4.2. ARCHITECTURE MODELING 

This section provides special guidelines with respect to architecture modeling. 

The emphasis is on the special needs for an architecture model to support automatic 

design space exploration. It structures the landscape and identifies regions of related 

topics for later sections of this dissertation. 

4.2.1. System Design Set.  Alfaris [13] formalizes the tasks in  architecture 

modeling as a design set. According to [13], the system design set S includes related 

components (Sc) and a structure (Ss). The structure (Ss) allows components to interact 

with each other through interfaces (Si). Together, Sc, Ss and Si comprise the system’s form 

(Sf). This form executes certain system Behaviors (Bs). These behaviors include both 

anticipated behaviors (Ba) and emergent behaviors (Be) that should enable system’s 

functions (Fs). The combination of Sf  and Ba defines the system's architecture (Sa). In the 

context of working with a set of architecture alternatives, as in the search-based 
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architecture development framework, an additional component (constraints C) needs to 

be identified. Constraints are conditions, or restrictions, attached to the constrained 

elements for the purpose of declaring some additional, semantic information. A constraint 

is an assertion that indicates what restrictions must be satisfied by a correct design [28]. 

As such, constraints can be represented as Boolean expressions. They can specify the 

range of possible values for any design elements and, therefore, can be used to define 

design options. Both the elements in a design set and their relationships are depicted in 

Figure 4.3 using OPD.  

 

 

 

 

Figure 4.3.  System Design Set ([13]) 

 

 

 

The design set Figure 4.3 summarizes the components in a system architecture. A 

system architecture, however, has three major aspects that are more relevant to system 

analysis or architecture reasoning. These aspects are structure, dynamics, and behavior.  

A brief survey defining each is provided in the following discussion. 
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Structure in UML [33] refers to “a composition of interconnected elements, 

representing run-time instances collaborating over communications links to achieve some 

common objectives describes the assembly of components within a system”. Dori [37] 

defines structure as “pertaining to the relatively fixed, non-transient, long-term relationship 

that exists among components or parts of the system”. When explicit considering time in 

the definition, structure has also been viewed as a snapshot [37]. Note that, in Alfaris’ 

[13] definition of the system design set, the concept of structure is used somewhat 

narrowly.  It refers only to the composition of system components without including 

those components and their interfaces. The concept of structure, in many system 

modeling contexts, is referred as the collection of composition, components, and 

interfaces, which is defined as form in [13]. In this dissertation, the term, structure, is 

used broadly and it is equivalent to the form defined in Alfaris [13].  

Dynamic aspects describe the changes of a system along time during operation, 

together with the causes and effects of these changes. The concepts of both states and 

transitions are often used to describe the dynamic aspects of a system. A state is defined 

as “a situation of position at which the object can exist for a period of time” in [37]. 

According to UML [33], “a state models a situation during which some (usually implicit) 

invariant condition holds”. A transition, on the other hand, describes the switch between 

states. It describes the transit aspect of a system in contrast with the static aspect. A 

transition is, therefore, often associated with action or process that transforms system. 

System model without dynamic aspects cannot precisely describe the state of a system at 

a particular point of time, or can only provide a snapshot of the system at a particular 

point of time but cannot describe how and why the system changes over time.  

Behavior of a system can be viewed as the collective effects (or consequences, 

outcomes) of the actions and interactions of system components [33]. This view 

emphasizes behavior’s association with objects. On the other hand, “A behavior describes 

how the states of these objects, as reflected by their structural features, change over time” 

according to UML [33]. As such, the system dynamics discussed above provides a way to 

describe the behavior of a system. The aim of a system design is to achieve both the 

desired behaviors that are outputs of functions and certain desired properties while both 

predicting and limiting undesired behaviors [13]. Both anticipated and emergent 
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behaviors need to be estimated and constrained during system design in order to prevent 

undesired behaviors. 

In summary, a system architecture is “the overall system’s structure-behavior 

combination, which enables it to attain its function while embodying the architect’s 

concept” [37]. 

4.2.2. Object-Oriented Abstraction and Metamodel.   All information needed 

by the analysis models discussed in Section 4.1.2 should be captured in the architecture 

model and/or its associated constraints. An effective way to do so is by using abstraction 

appropriately to extract the needed information. Abstraction captures only those details 

about an object that are relevant to the current perspective [70]. Abstraction applies to 

every aspect of modeling. Abstraction is defined as “a concept or idea not associated with 

any specific instance” in [71]. Therefore, the results of abstraction are concepts. The 

easiest, most natural way to describe a concept is to list its properties [3]. According to 

Czarnecki’ study [3], concepts can be regarded as natural modeling elements. Therefore, 

concepts are directly related to classes in object-orientation (especially the classical 

object model). The concept of object is such a fundamental abstraction that it can cover 

virtually any entities. As a result, it is a more natural way to represent things. 

Class in OOM is a construct for defining objects. In UML, class (in MOF level) is 

a universal way to define any entities, including objects, procedures (actions), and 

relationships, except for atomic attributes. With such capabilities, the abstract syntax of 

UML diagrams can be defined by UML itself. In another word, the metamodel of UML is 

itself a UML class diagram, together with OCL-constraints. It defines the context-free as 

well as context-sensitive syntax of all UML diagram types [35]. Figure 4.4 illustrates the 

metamodeling concepts used in UML [28]. A model that is instantiated from a 

metamodel can, in turn, be used as a metamodel for a lower level model in a recursive 

manner. A model typically contains model elements. These are created by instantiating 

model elements from a metamodel (i.e., metamodel elements). MOF level class is a 

metaclass known as Element in [28]. It is an abstract metaclass with no superclass used 

as the common superclass for all metaclasses.  MOF defines all metamodel (UML) 

constructs using a quad-fold Element {attributes, associations, constraints, and 

operations}, along with textual semantics defined for each element within the quad-fold.  
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Figure 4.4.  An Example of the Four-Layer Metamodel Hierarchy [28] 

 

 

 

Abstraction can hide implementation details. Consequently, a system can have 
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concrete level is usually subject to more constraints than that at a relative abstract level. 

Hence design space shrinks as design resolution increase.  

Abstraction can create and use concepts that are purely theoretical entities (i.e., 

without physical embodiment). They, therefore, cannot be instanced. The use of abstract 

concepts can simplify a system description. For example, software engineering uses an 

abstract data type, which is defined indirectly, only by the operations that may be 

performed on it and by mathematical constraints on the effects (and possibly cost) of 
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those operations [73]. Components implementing an abstract concept can take a variety 

of forms. For example, the interface of a component (object) can be specified by both the 

input/output and the service provided by the component during its interaction with other 

system components. Such an interface can be implemented by objects in a variety of 

ways. Such type of abstraction is so useful that design pattern in software engineering 

advocates the practice of “program to interface” [74]. 

Since abstraction provides less detailed definition of a concept than its real-word 

embodiment, the use of abstraction often implies approximation. Abstractions, though not 

necessarily exact, should be sound [70]. Some considerations in using abstraction are 

summarized below: 

 Simplicity vs. Completeness: Architectural abstraction has to maintain 

information completeness while applying the KISS (Keep it simple, stupid) 

principle. 

 Precision/Fidelity: Architectural abstraction must keep the approximation 

error within a reasonable range.  

 Multiple Aspects/Angles and Consistency: Consistent definition of a system or 

its component must be maintained while abstracting the same subject from 

different aspects or angles.   

 Levels/ Resolution of Abstractions: abstraction has to be detailed enough to be 

useful. 

 Understandability: Abstraction should yield meaningful results that are human 

comprehensible, or interpretable. Therefore, human experts must be involved 

in developing abstraction.  

 Formality/ Representation: Abstraction can be represented using textual or 

graphical format depending on the domain to be abstracted. Operations can 

then be defined on such representation to either support analyses or automate 

such analyses. Examples are mathematical operators on equations, graph 

theory on graphic representation, and regular expression programming on text. 

4.2.3. Modeling Process.  Modeling  process, in this context, refers to a systematic 

way of developing a system model in terms of identifying both its forms and behaviors as 

well as being aware of possible design options. It also includes the rational to derive such 
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information. This section discusses both the modeling process and related techniques that 

support the identification and modeling of a collection of systems. The modeling 

elements created in a modeling process are instances of the design set implemented by 

the chosen modeling language. For example, when using OPM as the modeling 

languages, the modeling elements include objects, processes, states, and links. 

The modeling process is strongly influenced by modeling paradigms. Popular 

modeling paradigms include functional programming, object-oriented programming, and 

model driven architecture. As discussed in Section 4.2.2, object-oriented modeling is 

preferred for modeling most systems. As a result, the discussion here focuses on the 

object-oriented paradigm. Several object-oriented modeling processes and development 

methods have been proposed. Prominent examples include the Unified Process [75], the 

Catalysis approach [76], and the approach for real-time applications [77].  

Typical object-oriented modeling consists of two steps: Object-Oriented Analysis 

(OOA) and Object-Oriented Design (OOD). OOA applies object-modeling techniques 

when analyzing the functional requirements for a system. Object-oriented design (OOD) 

elaborates the analysis models to produce implementation specifications. OOA is part of 

the design formulation (as discussed in Section 4.1.1). It focuses on what the system 

does. The result of OOA is the function breakdown (as discussed in Section 4.1.1).  OOD 

focuses on how the system does it. The result of OOD is derived system behavior (as 

discussed in Section 4.2.1). 

Traditional OOA/D methods [29], such as OOSE [78], OMT [79], and Rational 

Unified Process [80], [81], focus on developing single systems only [3]. Such methods 

are inadequate in search-based architecture development, which requires explicit 

modeling of large design alternatives rather than single systems. As identified in [3], a 

general problem associated with the existing modeling techniques used in OOA/D 

methods is an inadequate modeling of variability. Their variability modeling capabilities 

are limited to variability of certain objects over time or creation of different variants of an 

object (e.g., inheritance and parameterization in object diagrams). These OOA/D methods 

do not include the abstraction and modeling of commonality, variability, and 

dependencies [3]. 
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In software engineering, domain engineering, also known as product line 

engineering, is the systematic activity of using domain knowledge and reusable assets in 

the production of new software systems. The key aspects of domain engineering are 

variability and dependency modeling. Many of the techniques developed for domain 

engineering can be used in the variability and dependency modeling of systems in 

general. The application of feature modeling, a major technique in domain engineering, 

to search-based architecture development will be further discussed in Section 5.1.3.1. The 

engineering process of using domain engineering in the design space modeling of the 

search-based architecture development process is discussed here. Domain engineering 

encompasses three main process components: domain analysis, domain design, and 

domain implementation [3].  

Domain analysis is used to define the domain (identifying domains and their 

boundaries), collect relevant domain information, and produce a domain model [82]. A 

domain model is an explicit representation of both the common and the variable 

properties of the systems in a domain, as well as the dependencies between the variable 

properties [3]. In general, a domain model consists of the following components: domain 

definition, domain lexicon, concept models, and feature models [3].  

Domain design uses the domain model produced during the domain analysis 

phase to produce a generic architecture to which all systems within the domain can 

conform [17]. Such a generic architecture is an architectural pattern that can solve a 

problem common across the systems within the domain [18]. Domain implementation 

involves applying appropriate technologies to implement components, automatic 

component assembly, reuse infrastructure, and application production process [3] . 

Domain engineering methods aim at supporting the development of models for 

classes of systems. OOA/D methods, however, concentrate on single systems [3]. 

Domain engineering supports both a multi-system-scope engineering process and 

adequate variability modeling techniques. OOA/D methods provide effective system 

modeling techniques [3]. Thus, the integration of domain engineering methods with 

OOA/D methods can provide the full engineering process support to the search-based 

architecture development process. Such an integration can take four forms [3]:  

 Upgrading older domain engineering methods,  
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 Specializing customizable domain engineering methods,  

 Extending existing OOA/D methods, and  

 Integrating two or more methods developed for above.  

Many of the techniques developed for these methods are designed specially for 

software engineering. Some of the principles, however, can be applied to non-software 

systems. The integration of domain engineering and OOA/D methods for general system 

development, particularly in the context of search-based architecture development, are 

discussed next.  Such an integration can encompass the following two steps. 

Step 1. Augment OOA with context analysis: “The purpose of context analysis is 

to define the boundaries and contents of the system to be analyzed” [3]. Variability 

should be analyzed along with establishing the relationships between the domain of focus 

and other domains or entities [3]. 

Step 2.  Augment OOD with domain modeling: The purpose is to identify and 

model the commonalities, variabilities, and their dependencies in a domain model [3]. 

This phase can involve the following activities:  

(1) Entity Analysis: The main purpose here is to capture both major system 

entities and the relationships between them [3].  

(2) State and Process Analysis: The main purpose here is to capture the major 

states that the system needs to go through to achieve certain functions. Then 

identify the processes that enable the achievement of these states or the 

transitions between then. 

(3) Operational Analysis: Operational analysis identifies how the system operates 

by capturing the relationships between the objects, object state, and processes 

in the system. It also maps processes to objects. 

(4) Domain and Constraint Analysis: Domain and Constraints Analysis identifies 

the attributes to describe the class of the object identified in the Entity 

Analysis step, along with the domain and its boundary of each attribute. It also 

identifies the implementation constraints for the identified object, processes, 

and states.  

(5) Commonalty, Variability, and Dependency Analysis. This step involves 

analyzing system functionalities, contexts, interfaces, and both similarities and 
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variations between entities, activities, events, relationships, structures, etc. 

The purpose is to identify the common elements, variable elements, and the 

dependencies and constraints between these elements. The design options, or 

variants, can be identified in a variety of ways. For example, 

 Alternative and optional functionality [83]. For example, in responsibility-

driven design, design variants can be defined around a responsibility and 

the input/output that it exchanged.  

 Varying constraints and business rules [83]. Such constraints include 

constraints imposed by the chosen alternative, implementation constraints, 

and any non-functional constraints (technological or environmental). 

 Varying user or system interfaces [83].   

 Performance and scalability differences [83].   

 Varying functional and behaviors mapping. Functions and behaviors may 

be mapped to either different physical elements or different internal 

interactions between those elements.  

Although the search-based architecting approach intends to be an automatic 

process, designers must be actively involved in both the model synthesis phase and the 

validation phase. During model synthesis phase, designers should assist in the 

identification of design options as computers do not have the knowledge and data to do 

so. Similarly, in the validation phase, designers need examine the behavior produced by 

the system model and ensure it satisfies the requirements. 

A system design process is a hierarchy reduction of ambiguity. Levels of system 

ambiguity can refer to both different levels of design details (or design resolution) and 

different levels of abstraction types. The former is associated with design decomposition 

activities. The purpose is to achieve more detailed and refined system designs as the 

design progresses. The latter refers to the nature of design models at various design 

phases, such as the functional architecture design, the system architecture design, and the 

physical architecture design. The system design completed at a certain level also 

establishes requirements for the next level. As a result, requirements flow down as the 

design progresses [13]. Furthermore, additional implementation constraints can be 

identified as more detailed information is available in each refined design level. 
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Therefore, as the design proceeds in such a process, the constraints increase (e.g., a 

physical model is subject to more constraints than a relative abstract model), the design 

complexity increases (as design resolution increases), the design space shrinks, and the 

ambiguity reduces. 

 

4.3. ARCHITECTURE ASSESSMENT 

This architecture assessment in general includes three subtopics, analysis, 

selection, and optimization. The following discussions, therefore, are divided according 

to these three subtopics. 

4.3.1. Architecture Analysis.  The architecture analysis involves using analysis 

models or simulations to assess system performance. Architecture analysis is domain 

dependent and problem specific as the performance metrics, the extraction of raw data, 

and the problem formulation are all highly problem specific. Nevertheless, the analysis 

and simulation methods share some commonality. This section highlights some of these 

methods that can be used in architecture analysis, along with the discussion of some 

possible issues and concerns in applying these methods. 

In order to distinguish the roles that simulation plays in architecture analysis, the 

architecture analysis methods discussed here are first roughly grouped into two 

categories: the evaluation based methods and emulation based (or reasoning about system 

interactions) methods. Parunak [84] used such classification in comparing agent-based 

modeling and equation-based modeling. Some of his conclusions apply largely to most of 

the evaluation based methods and emulation based methods discussed here. For example, 

both families recognize a system comprised of two kinds of entities: individuals and 

observables, each of which may have a temporal aspect [84]. “Individuals are bounded 

active regions of a domain while observables are measurable characteristics of interest” 

[84]. Evaluation based methods focus on numerical relationships, or mapping, between 

observables while emulation based methods focus on the causal relationships among 

entities or the behaviors resulting from individuals interacting with each other [84]. 

However such distinction is a tendency rather than hard rules. The two methods can be 

combined [85]. These two types of methods are further discussed in the next two 

sections. 
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4.3.1.1 Evaluation-based approaches.  Here, analysis  models for calculating 

performance measures are discussed in general followed by the discussion of some of 

those methods developed specially for architecture assessment. The search-based 

architecture development also poses additional challenges in architecture assessment such 

as ambiguity, error propagation and evaluation of large number of alternatives.   

Alfaris provides an extensive review of analysis models for computing 

performance measures in his dissertation [13]. Generally speaking, analysis models differ 

in the nature of the metrics (qualitative or quantitative models), the way that the model is 

derived (deductive, inductive, or floating models), the fidelity or resolution of the 

solution produced (exact or approximation), the way that solutions are obtained 

(analytical or numerical), and the speed that solutions can be obtained. The designers 

have to make trade-offs sometimes between these aspects in choosing an appropriate 

analysis model for the system of interest. 

A strong mathematical analysis usually requires a precise model, well-defined 

abstraction, and accurate data. Alternatively, when such details are not available, the 

architecture analysis can be performed by domain experts. Metrics may give very good 

values to individual observables but as a whole the architecture may not be at all suitable 

for the system in question [86]. Metrics, therefore, cannot replace the assessment of 

experts completely in some cases. Some popular system assessment methods that 

incorporate subjective information are Architecture Tradeoff Analysis Method (ATAM) 

[87], Quality Function Decomposition (QFD) [88], [89], Analytic Hierarchy Process 

(AHP) [90], Analytical Network Process (ANP) [91], Technique for Ordered Preference 

based on Similarity to Ideal Solution (TOPSIS) [92], elimination and choice expressing 

reality (ELECTRE) [93], preference ranking organization method for enrichment, 

evaluation (PROMETHEE) [94], Joint Probability Distribution Method (JPDM) [95], 

fuzzy logic based approach [96–98], Architecture value map (AVM) [66], and the 

canonical decomposition fuzzy comparative methodology [86].  

The advantage to include subject matter expert’s assessment and heuristics into 

the architecture assessment process is that they can address ambiguity, uncertainty and 

risks easily and the assessment can scale well to even complex systems [86]. The 

disadvantage is that these methods are low-resolution, subjective and unrepeatable [86]. 
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Some of these methods places a heavy cognitive load on the decision maker and therefore 

are very difficult to be incorporated into automated search process [66], For example, the 

QFD, as one of the most used system assessment method in the system engineering field, 

requires the subject matter experts to be actively involved in the assessment process. 

QFD is a “method to transform user demands into design quality, to deploy the functions 

forming quality, and to deploy methods for achieving the design quality into subsystems 

and component parts, and ultimately to specific elements of the manufacturing process” 

[99]. One of the most used techniques to implement QFD is the house of quality. A house 

of quality contains a relationship matrix that links customer’s requirements with the 

technical performance measures of the system with varying strengths. Both setting values 

for this relationship matrix and setting the rating and weight values for various 

dimensions involved in this house of quality require the active involvement of subject 

matter experts.  Another example is the ATAM method, which is one of the most widely 

used and known method for the architecture assessment in software engineering. “The 

main points of ATAM are to elicit and refine a precise statement of the key quality 

attribute requirements concerning the architecture, to elicit and refine precise designing 

decisions for the architecture, and based on the two previous goals, to evaluate the 

architectural design decisions to determine if they fulfill the quality attribute 

requirements satisfactorily” [87]. The ATAM uses scenarios to analyze whether the 

architecture fulfills all the necessary requirements and to see risks involved in the 

architecture. The ATAM proceeds in nine steps: presenting the method for the group of 

experts, presenting business drivers, presenting the architecture, identifying architecture 

approaches, generating quality attribute utility tree, analyzing architecture approaches, 

brainstorming and prioritizing scenarios, again analyzing architecture approaches, and 

finally presenting the results [87].  

4.3.1.2 Emulation-based approaches and reasoning about system  interactions. 

System properties resulting from the interactions of system components, action sequences 

and procedural specifications usually need to be captured and reasoned with the aids of 

modeling languages that are capable of capturing the causal relations between system 

components. Such properties can then be obtained through either analysis or simulation. 

Some related methods of this category are discussed and compared below. 
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Probabilistic Graphical Models [100], such as Bayesian Belief Networks (BBNs) 

[101–104] and Markov networks [105], use graph-based representations to encode the 

conditional independence structure among a set of random variables. BBNs use directed 

graph while Markov networks use undirected graph. “Both families provide the duality of 

independences and factorization, but they differ in the set of independences they can 

encode and the factorization of the distribution that they induce” [100].  

Bayesian Belief Networks describes the relationships between causes and effects 

in a probabilistic sense (i.e., via conditional probabilities) and thus allow modeling and 

reasoning about uncertainty. Both associative and causal types of relationships can 

effectively be modeled and processed in a BBN [103]. The main use of BBNs is 

statistical inference. Given some observations, values of all the other probabilities in the 

BBN can be computed using propagation algorithms. Explicit modeling of causal 

relationships in a BNN not only allows to represent and respond to changing 

configurations but also “facilitates the analysis of action sequences, their consequences, 

their interaction with observations, and their expected utilities, and hence the synthesis of 

plans and strategies under uncertainty” [106]. BNN in conjunction with Bayesian 

statistical techniques also facilitates the combination of domain knowledge and data 

[104]. 

A Markov network is an undirected graph comprised of a set of random variables 

having a Markov property [100]. It represents the joint probability distribution over the 

variables. It is also possible to convert between a BBN and a Markov network [107]. 

Markov chains [108] are often used as statistical models of real-world processes. 

A discrete-time Markov chain is a state-transition system where transitions between 

states are specified by probabilities. The set of all states and transition probabilities 

completely characterizes a Markov chain. 

Petri nets are a discrete-event-driven system modeling and simulation language as 

discussed in Section 3.2.3. Their core execution semantics is based on conditions, events 

and effects. The outcome of such causal relationships can be characterized by a state-

transition system in a global sense and therefore can be described by a Markov chain. The 

state space of a Petri net is determined by the initial tokens and the conditions-events-

effects-based execution semantics. Such a state space can be described using graphical 
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representation, which allows the user to actually observe the stochastic processes during a 

simulation. The major strength of Petri nets is that it combines a well-defined 

mathematical foundation, an interactive graphical representation, and the capability to 

carry out simulations and formal verifications. With a concise mathematical definition 

and a small set of model primitives, Petri nets allow a large number of formal analysis 

methods to be developed.  A Markov chain expresses global states and transitions, the 

size of which grows quickly as the number of variables and their values increase and is, 

therefore, subject to explosion, like the state space explosion of Petri nets.  A Petri net, in 

comparison, is somewhat an iterative state space generator because it focuses on 

expressing the states and events showing just one global state in each simulation step. 

Therefore, the model size of a Petri net is easier to manage than that of a Markov chain, 

irrespective of the number of tokens present or the domain size of token colors.  

System Dynamics [109–111] is “a computer-aided approach to policy analysis 

and design” [112].  In system dynamics modeling, dynamic behavior is thought to arise 

due to the principle of accumulation [113]. The basic building blocks of a system 

dynamics model are stocks (or accumulations, state variables) and flows. A Stock 

represents an entity or variable that changes in a system. A flow is the rate of change in a 

stock. The dynamics of a system is caused or generated by loops of internal feedback and 

circular causality as well as time delays [112]. There are two types of feedback loops: 

positive loops and negative loops. Positive (or self-reinforcing) loops tend to reinforce or 

amplify the initial action while negative (or self-correcting, balancing) loops counteract 

and oppose the initial action [109]. Combined, positive and negative circular causal 

feedback processes can generate all manner of dynamic patterns [112].   

Mathematically, the basic structure of a system dynamics simulation model is a 

system of coupled, nonlinear, first-order differential (or integral) equations [112]. The 

simulation is, however, achieved through numeric integration instead of solving 

differential equations analytically. 

The system dynamics considers behavior as a consequence of system structure 

[112]. It models interdependencies among variables using structures. Unlike the event-

oriented, reactionary approach of Petri nets, the system dynamics advocates the 

continuous view of structure and dynamics. Such view focuses not on events or discrete 
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decisions but on the policy structure underlying decisions [112]. Events and decisions are 

merely surface phenomena result from underlying system structure and behavior [112].  

System dynamics also takes endogenous point of view of system behavior, i.e., the causes 

are contained within the structure of the system itself [112]. Therefore, most system 

dynamics models are time invariant. However, as identified in [1], using numeric values 

and arithmetic equations to specify the behavior of a system has difficulties to achieve 

change of model structure given certain triggering event. 

Agent Based Modeling and Simulation (ABMS) [114–116] studies the actions 

and local interactions of constituent entities (agents) and their impacts on the system as a 

whole. In an Agent Based Model (ABM), a system is modeled as “a collection of 

autonomous decision-making entities called agents, each of which individually assesses 

its situation and makes decisions on the basis of a set of rules” [85]. Applications of 

ABMS span a broad range of areas and disciplines. ABM  is  “most  appropriate  for  

domains  characterized  by  a  high  degree  of localization  and  distribution, dominated  

by  discrete  decisions”  [84] and there is potential for emergent phenomena.  Bonabeau 

summarizes [85] the benefits of ABM over other modeling techniques as: (1) “ABM 

captures emergent phenomena from the bottom up” (i.e., by modeling and simulating the 

behavior of the agents and their interactions) (2) “ABM provides a natural description of 

a system” (i.e., from the perspective of its constituent units’ activities); and (3) “ABM is 

flexible” (e.g., adding agents, tuning the complexity of the agents, change levels of 

description and aggregation). The emphasis on modeling the heterogeneity of agents and 

the emergence of self-organization distinguish ABMS from other simulation techniques 

such as discrete-event simulation (Petri nets) and system dynamics [115]. 

4.3.2. Architecture Selection.   As discussed in Section 4.1.2,  multi-objective 

optimizations need an selection process to choose good designs that constitute a 

compromise of several different objectives. Such selection processes are supported by 

decision models. This section focuses on the decision models used in an optimization 

while the next section will focus on the search process of an optimization. 

Depending on when the preference for each objective is expressed, multi-

objective optimization methods can be broadly classified into two categories: decision 

making before search methods (also known as scalarization approaches), and search 
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before decision making methods (also known as Pareto approaches). As summarized in 

[13], [69], [117], examples of scalarization approaches include weighted sum approach, 

multi-attribute utility analysis, ϵ-constraint methods, compromise programming (non-

linear-combinations), physical programming, goal programming, lexicographic 

approaches, acceptability functions, and fuzzy logic; examples of Pareto approaches  

include exploration and Pareto filtering, multi-objective genetic algorithms, adaptive 

weighted sum method, normal boundary intersection, and multi-objective simulated 

annealing.  

There are other classifications of optimization algorithms according to various 

considerations. Cohon [62] classified them into the following two types based on whether 

Pareto-optimal solutions are generated or not:  

 Generating methods. In such methods, a set of non-dominated solutions are 

generated for the decision maker without a priori knowledge of relative 

importance of each objective. The solutions obtained are then present to the 

decision maker for selection. 

 Preference-based methods. In such methods, some known preference for each 

objective is used in the optimization process.  

Hwang and Masud [63] and later Mittinen [64] fine-tuned Cohon’s classification 

into the following four classes of methods: 

 No preference methods are generating methods that do not assume any 

information about the relative importance of each objective. Instead, a 

heuristic is used to find a single optimal solution. It is worth noting that these 

methods do not make any attempt to find multiple Pareto-optimal solutions 

[69]. 

 A priori methods are preference-based methods that use information about the 

preferences of objectives A priori and usually find one preferred Pareto-

optimal solution.  

 A Posteriori methods are generating methods where preference is used a 

posteriori. A set of Pareto-optimal solutions are produced by the algorithm. 

The decision maker then selects the most preferred one according to some 

further considerations.  
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 Interactive methods are preference-based methods that use the preference 

information progressively during the optimization process. It requires the 

interaction with the decision maker. 

Some selected a priori, a posteriori and interactive methods are further discussed 

and compared below. 

4.3.2.1 A priori approaches.   In the decision making before search approaches,  

the designer decides how to aggregate different objectives into a single objective function 

(also known as fix-up) before the actual search is performed [117]. Such approaches 

require a priori knowledge to make rational aggregation. Several scalarization methods 

have been developed. A few of them are briefly reviewed here. 

In the weighted sum approach, the “scalar substitute objective is obtained by 

assigning subjective weights to each objective and summing up all objectives multiplied 

by their corresponding weight” [118]. Optimization of this composite objective (scalar 

substitute objective) results in the optimization of individual objectives, which should not 

be related [119]. The weights reflect the trade-off (or preference) among the objectives. 

Hence, the outcome of such methods is highly affected by the chosen weights. The 

weighted sum approach can also be utilized to find the Pareto-front. This is achieved by 

varying the weights along the curve of a convex area. Such usage, however, does not 

apply to non-convex Pareto-fronts since not all points on the Pareto-front can be 

determined [69]. 

Utility approaches are based on the general formulations of utility theory. Most 

scalarization approaches can somehow be represented via the utility function approach 

[120]. An individual utility function is defined for each objective to represent the relative 

importance of the objective. “The overall utility function is an amalgamation of the 

individual utility functions and is a mathematical expression that attempts to model the 

decision-maker’s preferences.” [121] 

ϵ-constraint methods choose one of the objective functions and treat the rest of the 

objectives as constraints by limiting each of them within certain pre-defined limits. 

Unfortunately, “the outcome of single-objective constrained optimization results in a 

solution which depends on the chosen constraint limits.” [69] 



 

 

46 

Goal programming methods [122–124] attempt to find solutions which attain a 

predefined target for one or more objectives. If no such solution can be found for all 

objective functions, the task is then to find solutions which minimize deviations from the 

targets. Note that, this task is somehow similar to that in satisfying decision-making and 

the obtained solution is a satisfying solution, which can be different from an optimal [69].  

4.3.2.2 A posteriori approaches. In the search before decision making approaches,  

the search for optimal solutions is performed with multiple objectives being evaluated 

simultaneously, typically using the concept of “dominance” to rank solutions. 

Particularly, a solution x1 dominates another solution x2 if (1) x1 is no worse than x2  in all 

objectives and (2) x1 is strictly better than x2 in at least one objective [69]. This means a 

dominant solution is at least better in one objective while being at least the same in all 

other objectives. Strong (strict) dominance, however, requires x1 to be better in all 

objectives than x2. The Pareto-optimal set is the entire set of non-dominated solutions 

among the search space, where the rest of the solutions are called dominated solutions 

[125]. Most Pareto-methods are concentrated on the approximation of the Pareto set 

[125]. They try to find a set of solutions as close as possible to the Pareto-front while 

keep the solutions diverse.  

“All elements in the Pareto-optimal set define reasonable solutions and are subject 

to further decision factors in order to choose a design for a given problem” [117]. In this 

manner an unbiased search can be performed. Moreover, Pareto methods also allow a 

single search to serve several problem-specific decisions without the need to repeat the 

search [117]. This feature gives Pareto methods an advantage over single objective 

methods because the designers are provided with a wide range of non-dominated 

solutions from which one or more solutions can be chosen. This post-search selection can 

be supported by further analyses using domain knowledge, additional problem 

information, or decision criteria, which are not necessarily formulated in the design task. 

4.3.2.3  Interactive methods.    Interactive methods require minimum knowledge  

a priori but need the involvement of the decision maker occasionally during the 

optimization process. When some Pareto-optimal solutions are found, their locations and 

interactions are analyzed. The decision maker then provides some information about the 

search direction, weight vector, reference points, and other factors [69]. These 
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preferences are then incorporated in formulating and solving the optimization in the next 

iteration. Some of the most popular interactive methods include: interactive surrogate 

worth trade-off method [126], step method [127], guess method [128], non-differentiable 

interactive multi-objective bundle-based optimization system approach [129], reference 

point method [130], and light beam search [131]. 

No decision model is superior to others under all circumstances. The designer 

needs to select appropriate ones based on both the problem to be solved and the 

optimization algorithm employed. For example, the interactive methods require the 

involvement of the decision maker during the optimization. Hence it is only a semi-

automatic process and, therefore, cannot handle large design space. Pure a priori methods 

are not flexible enough since the change of preference will affect the optimality of the 

obtained solution. A posteriori methods allow the designer to re-evaluate the obtained 

solutions after the optimization process. Deb [69] compared many decision models used 

in the multi-objective optimization. Here, the weaknesses of some of the widely used 

decision models are discussed based on Deb’s study [69]. 

Disadvantages of weighted sum methods: Such methods require a precise weight 

value for each objective. As discussed in [69], since the mapping between the distribution 

of weight vectors and the Pareto-optimal solutions is usually unknown, it becomes 

difficult to set the weight vectors to obtain a Pareto-optimal solution in a desired region 

of the objective space. Similarly, different weight vectors do not necessarily lead to 

different Pareto-optimal solutions. Furthermore, most single-objective optimization 

algorithms are designed to find a solution that only satisfies the first-order optimality 

criterion but not necessarily be a global optimum. In addition, “if the chosen single-

objective optimization algorithm cannot find all optimum solutions for a weight vector, 

some Pareto-optimal solutions cannot be found” [69]. 

Disadvantages of ϵ-constraint methods: In such methods, the solution largely 

depends on the chosen ϵ vector, which must lie within the minimum and maximum 

values of the individual objective function. “As the number of objectives increase, there 

exist more elements in the ϵ vector, thereby requiring more information from the user.” 

[69] Such methods also suffer the issue of non-uniformity in obtained Pareto-optimal 

solutions as the weighted sum methods do. 
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Disadvantages of utility methods: Such methods require designers to specify a 

utility function which is globally applicable over the entire search space. Such a utility 

function might be over-simplified. Moreover, the obtained solution entirely depends on 

the chosen value function. 

Disadvantages of fuzzy logic methods: Such methods rely heavily on subjective 

judgment, which not only is subject to the limitation of human expertise but may also not 

always be available or may not be possible to be integrated into an automated 

computational process. The aggregation rules might also be subjective and often lack 

sound justification. The fuzzy rules try to establish a nonlinear mapping between design 

properties and the objectives. It is often either impractical or impossible to find an exact 

set of rules for a specific situation. Such methods also rely on converting a multi-

objective optimization into a single-objective optimization and therefore suffer the same 

problems as other scalarization approaches. 

4.3.3. Optimization.   The  architecture  optimization in general is a constrained  

(e.g., by design requirements and restrictions), multi-objective optimization on a discrete 

design space. Optimization models used in the architecture search enable “moving from 

one configuration to the other in an ongoing search for better solutions, but more 

importantly it is established with the aim of control and guidance” [13]. In general, more 

than one acceptable design may exist. The multi-objective optimization requires a 

selection process to handle the trade-off among conflicting goals as discussed in last 

section.  

Optimization methods have reached a high degree of sophistication, especially 

with the rapid advancement of computer technology. There are many optimization 

algorithms developed, some of which are presented in Figure 4.5. From the searching 

process perspective, optimization algorithms can be classified into either deterministic or 

stochastic (or heuristic) methods. Deterministic methods can be classified into gradient 

based methods and derivative-free methods [132]. 

Gradient-based algorithms can find local optima with high reliability and, in many 

cases, with high efficiency but might be trapped by local optima. Heuristic based 

algorithms can escape local optima and are stochastic in nature. They cannot guarantee 

the optimality of the solutions obtained and often yield different set of solutions each  
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Figure 4.5.  A Simple Taxonomy of Optimization Algorithms ([13])  

 

 

 

time they are run. No existing optimization technique is guaranteed to find the global 

optimum of a nonlinear, non-convex problem [133], [134] 

 No single optimization technique is applicable in general to all types of problems. 

The most effective way, however, to solve a given problem will always be dependent on 

the specifics and details of that unique problem [135]. A hybrid method that combines 

optimization methods in a complementary way may ideally both benefit from the relative 

strengths of each individual method and restrain its weaknesses.  

In the case of architecture development, the design space could be exceptionally 

large thus precluding the use of brute force algorithms. On the other hand, deterministic 

algorithms that would be fast enough either might not exist or would be too complicated 

to define. Hence the heuristic based search algorithms are more appropriate in such 

application, as they can find good enough solutions from a large design space within a 

reasonable amount of time with little or no reliance on the knowledge of the search space. 

Some heuristic based optimization algorithms that can possibly be applied to the search-

based architecture development process are briefly discussed below. All these algorithms 

are good at handling problems with discrete solution space. 
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Hill Climbing (HC) [136] is an iterative algorithm that starts with an arbitrary 

initial candidate solution, then attempts to find a better solution by examining the set of 

“near neighbors” to the current solution. If a near neighbor can be found with a better 

fitness value, a move to the new solution is made. Such “walk up the hill” process is 

repeated until no further improvement can be found. The “near neighbors” are defined on 

the solution space. What constitutes a “near neighbors” is problem specific. Two types of 

strategies exist regarding the move to a better neighbor solution: (1) in the next ascent 

HC, the move is made to the first neighbor with an improved fitness; (2) in the steepest 

ascent HC, the move is made to the neighbor that gives the greatest increase in fitness 

after the entire neighborhood is examined [136]. 

Such HCs are only guaranteed to find local optima. Near-global optima can be 

reached by using restarts (known as multiple-restart hill climbing), or more complex 

schemes based on iterations (e.g., iterated local search), on memory, (e.g., reactive search 

optimization and tabu search), on memory-less stochastic modifications (e.g., simulated 

annealing) [137]. HC algorithms are memory efficient since they do not maintain a search 

tree. They consider only the current state and immediate future states [138]. A HC is easy 

to implement but surprisingly effective in many SBSE problems as discussed in [19], 

[139], [140].  

Simulated Annealing (SA) [141], [142] is inspired by, and derives its name from, 

the annealing process in metallurgy. SA is another local search algorithm exploiting 

neighborhood concepts. It avoids the local optima (maxima) problem of HC by 

permitting moves to less fit solutions. At each iteration of the search process, SA attempts 

to replace the current solution with a random solution chosen according to a candidate 

distribution, which is often sampled from the neighborhood of the current solution. The 

new solution may be accepted with a probability that is a function of both the drop in 

fitness and a global parameter T (called the temperature). T is gradually reduced during 

the search process. Thus, with this T parameter, the SA can avoids local optima to a 

certain extent by giving more chances to less fit solutions in the earlier exploration stages 

but increasingly choosing the better solutions in the latter converging stages. The SA has 

been applied to several SBSE problems as discussed in [139], [140], [143–145].  
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Tabu search [146], [147] is another meta-heuristic local search algorithm that 

proceeds by setting barriers or restrictions to guide the search process. Tabu search uses a 

local search procedure to iteratively move from one potential solution to an improved one 

in its neighborhood until some stopping criteria are met. It avoids being stuck at local 

optima by using memory structures (known as the tabu list) which are a set of rules and 

banned solutions used to filter which solutions will be admitted to the neighborhood to be 

explored [146]. Such rules are applied to the neighborhood of the current solution 

resulting in the set of available moves, from which the best move is selected. Both the 

tabu rules and the ways of defining neighborhood vary greatly depending on the problem 

or the application. The memory structures used in tabu search can be divided into three 

categories [148]: short-term, intermediate-term, and long-term. Short-term memory 

prevents revisiting solutions recently considered. Intermediate-term rules bias the search 

towards promising areas of the search space. Long-term rules promote diversity in the 

search process (e.g., resets when the search gets stuck). The application of tabu search in 

architecture related problems can be found at [149], [150] 

 Genetic Algorithm (GA) [151] is one of the most used Evolutionary Algorithms 

(EAs). In GA, solutions (known as candidates, individuals or phenotypes) are encoded in 

a string form known as chromosomes (or genotypes of the genome). GA uses an iterative 

evolution process starting from a population of randomly generated candidates. In each 

generation, multiple candidates are stochastically selected from the current population 

based on their fitness. These candidates are then modified (by applying mutations, 

crossovers, or other reproduction operators) to form the offspring. The new population 

for the next iteration of the algorithm is produced from the offspring and the original 

population using a selection process. The GA terminates when certain pre-determined 

termination criteria (e.g. the maximum number of generations exceeded, satisfactory 

fitness level reached, etc.) are met. Many variants of this overall process exist, but the 

key ingredients i.e., recombination and selection guided by fitness functions, remain the 

same.  

There is a variety form of EAs besides GAs, for example, evolution strategies, 

genetic programming, and evolutionary programming. Evolution strategies [152], [153] 

use primarily mutation and selection as search operators and use vectors of real numbers 
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as representations of solutions. In genetic programming, computer programs, rather than 

function parameters, are optimized and a tree-based chromosome is often used [154]. 

Evolutionary programming is similar to genetic programming, but the structure of the 

program is fixed and its numerical parameters are allowed to evolve [155]. It uses 

mutation as the main variation operator.  

EAs, as popular search techniques, have many applications in architecture related 

problems, for example, the architecture design [6], [15], formulation of predictive models 

of software projects [156], [157], and testing [158], [159]. 

The multi-objective evolutional algorithm (MOEA) is a popular Pareto-based 

optimization approach. Deb [69] suggested the following principle for an ideal multi-

objective optimization procedure: 

Step 1: Find multiple trade-off optimal solutions with a wide range of values for 

objectives.  

Step 2: Choose one of the obtained solutions using higher-level information. 

There are a number of advantages with ideal multi-objective optimization 

procedure as noted in [69].  

 In such procedure, the decision-making becomes easier and less subjective. In 

Step 1, no preferences for the objectives need to be specified. The task is to 

find as many well-distributed, good solutions as possible. In Step 2, problem 

information, domain knowledge, or even subject experts can be used to 

conduct more detailed analyses before a final solution is chosen.  

 The output of the algorithm is a population of solutions. If multiple optimal 

solutions are expected, such algorithm can yield multiple optimal solutions in 

its final population. On the other hand, if a single optimum is expected, all 

population members can be expected to converge to it as the algorithm runs.  

 Such procedure also “eliminates the fix-up and can, in principle, find a set of 

optimal solutions corresponding to different weight and ϵ-vectors” [69].  

 “The avoidance of multiple simulation runs, no artificial fix-ups, availability 

of efficient population-based optimization algorithms, and above all, the 

concept of dominance helps to overcome some of the difficulties and give a 

user the practical means to handle multiple objectives”[69].  
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In summary, the MOEA is well suited for the search-based architecture 

development process. In addition, EAs “require little knowledge about the problem being 

solved, and they are easy to implement, robust, and inherently parallel” [160]. Deb [69] 

also summarized a number of deficiencies (especially when multiple Pareto-optimal 

solutions are expected) of many classical multi-objective optimization algorithms 

comparing to MOEA. Deb [69] noted that: 

(1) Only one Pareto-optimal solution can be expected to be found in one 

simulation run  

(2) Not all Pareto-optimal solutions can be found by some algorithms in 

nonconvex multi-objective optimizations 

(3) All algorithms require some problem knowledge, such as suitable 

weights or ϵ or target values. 
 

Moreover, another problem with the methods that solve multi-objective 

optimizations by converting multi-objective optimization into single-objective 

optimization is that the solution obtained from solving single objective optimization is 

specific to the parameters used in the conversion process. In order to find a different 

Pareto-optimal solution, the parameters must be changed and the resulting new single-

objective optimization problem has to be solved again [69]. Thus in order to find N 

different Pareto-optimal solution, at least N different single-objective optimization 

problems need to be formed and solved. Even doing so, some algorithms do not 

guarantee finding solutions in the entire Pareto-optimal region [69]. 

This section presented the search-based architecture development framework and 

its implementation guidelines, along with the discussions of some applicable techniques 

for each of its components. The implementation of such a framework entails a system 

model that can capture all the information needed for architecture specification and 

analyses, as well as a way to define the design space. Such kind of model cannot be 

readily developed using existing modeling techniques. Therefore, a holistic modeling 

approach is developed and presented in the next section. 
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5. HOLISTIC MODELING APPROACH  

This section presents the development of a holistic modeling approach. It starts 

with a definition of the holistic modeling approach. Then the landscape of drawbacks and 

open issues of current modeling languages and paradigms is investigated. The purpose is 

to find the road to a solution that can address the specific needs of the search-based 

architecture development process. Follows the discussion, the characteristics of an ideal 

holistic modeling language are summarized. In order to achieve such holistic modeling, 

an integration of some existing modeling languages is proposed. Accordingly, an 

architecture alternative generation mechanism based on the proposed modeling approach 

is developed. 

 

5.1. DEVELOPING A HOLISTIC MODELING APPROACH 

In the search-based architecture development process, the design space is 

comprised of architecture models, which are actively involved in the assessment and 

search process. Hence, an integrated architecture model that contains all aspects of 

information needed for both design and analysis is preferred. Moreover, such an 

architecture development process also requires both a generative class model to represent 

the design space and a set of instance models to participate in the computation. Thus 

there is a need for holistic modeling. Particularly, the concept of a holistic modeling 

approach in this context is fivefold:  

 One integrated model for system specification instead of multiple disjoint 

diagrams,  

 Capture structural, behavioral, and dynamic aspects of the system of interest  

 Capture design space (or constraints)  

 Can be used as both static presentation and dynamic simulation.  

 Support system analysis. 

5.1.1. Strengths and Weaknesses of Some Existing Modeling Languages. 

Jorgensen [161] conducted an extensive study on modeling languages for active process 

modeling. The languages studied include UML, System Dynamics, Petri nets, and BPML 

(Business Process Modeling Language) as well as other textual, informal, and semi-
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formal process languages. Jogensen’s studies shows that these languages share some 

common weaknesses as far as the interactive process modeling is concerned. Such 

weaknesses also apply when more general system modeling is concerned. Hence it is 

cited here. Particularly, during these studies, Jorgensen [161] notated the following: 

1. Many languages are complex, containing numerous types and views not 

integrated in a systematic manner. This is especially the case for UML. 

2. In many cases mathematical, logical or technical concepts are applied 

instead of user or domain oriented (needs). Petri nets and constraint-

based languages exemplify this. 

3. The languages that are precise and formal enough for automatic 

execution offer few opportunities for human contributions to 

interactive activation. The languages do not handle process models 

with varying degrees of specificity. 

4. The semantics of language elements is generally static and not easily 

adopted to local context or multiple perspectives. 

As the literature review suggests, existing modeling languages emphasize and 

excel at only certain aspects of system modeling.  The search-based architecting is still in 

need of a holistic modeling language. This section focuses on three major languages, 

UML/SysML, OPM, and Petri net, which are more relevant to the needs of search-based 

architecting.  Table 5.1 summarizes the performance of these languages in some major 

aspects of comparison. The detailed discussion will be followed.  

Although UML and SysML are the de facto object-oriented modeling languages 

for software engineering and systems engineering respectively, they have some 

drawbacks as far as the search-based system architecture development is concerned. Such 

drawbacks can be summarized as complexity, multiplicity, inconsistency and insufficient 

support of system analysis. The details are discussed as follows: 

UML/SysML is intended to be a comprehensive modeling language capable of 

providing as much details as needed for building a product. Such intension inevitably 

results in its complex in terms of both language structure and entity definition. For 

example, UML contains more than 200 different graphical primitives and 13 diagram 

types [20], many of which involve advanced but convoluted concepts. Mastering and 

correctly using such languages requires highly skilled professionals and the language 

itself might be even more complicated than the problem to be solved. On the other hand, 

such complexity is not necessary for use in conceptual designs or architecture designs but 
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Table 5.1.  Comparison of UML/SysML, OPM, and Petri Nets 

Aspects UML/SysML OPM Petri Nets 

Model 

format 

Graphic O O O 

Text X O X 

Mathematics X X O 

Model Singularity X O O 

Model 

Coverage 

Structure O O X 

Behavior O O O 

Dynamic X X O 

Mathematics O 

(OCL) 

X By 

programming 

Model 

Capability 

Presentation Good Excellent Poor 

Specification Excellent Good Excellent 

Communication Excellent Excellent Poor 

Simulation Poor By extension Excellent 

Analysis Poor Poor Excellent 

Model 

Notation 

Compactness Poor Good  Excellent 

Usability and 

convenience 

Poor Excellent Poor 

Advanced expression  Excellent Good Poor 

Note: The dimensions within the notation category are adopted from [162]. Their 

definitions are as follows: 

 Compactness: the number of (1) different symbols required to fully model the 

system, and (s) distinct diagram types. 

 Usability and convenience: the time required to model the system, including 

necessary rework, number of entities in a single diagram, and the level of support for 

complexity management from a tool independent stand point. 

 Advanced expression: the ability of the methodology to represent specific types of 

model components such as object, states, logical conditions, message sequencing, 

deployment or physical views, and packaging or encapsulation. 
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will complicate the design task correctly using such languages requires highly skilled 

professionals and the language itself might be even more complicated than the problem to 

be solved. On the other hand,such complexity is not necessary for use in conceptual 

designs or architecture designs but will complicate the design task.  

A complete UML/SysML model specifying a system usually consists of multiple 

views such as use case view, structure view, behavior view, and implementation view. 

Each of these views may employ multiple diagrams. The UML/SysML specifications 

have not explicitly identified the necessary, direct, one-to-one, semantic mapping 

between related entities from different UML/SysML diagrams. For example, the 

definition of state in UML is arbitrary. According to UML [33], “a state models a 

situation during which some (usually implicit) invariant condition holds”. “The invariant 

may represent a static situation such as an object waiting for some external event to 

occur. However, it can also model dynamic conditions such as the process of performing 

some behavior (i.e., the model element under consideration enters the state when the 

behavior commences and leaves it as soon as the behavior is completed)”. It is not clear 

how such so-called dynamic conditions can be mapped to the actions or activities in the 

activity diagrams.  A composite state either contains one region or is decomposed into 

two or more orthogonal regions. Each region has a set of mutually exclusive disjoint 

subvertices and a set of transitions [33]. However, it is not clear how such orthogonal 

regions can be reflected in the activity diagrams. A state can have such associations as 

doActivity, entry, and exit. These are defined as behavior but not necessarily 

reflected in the activity diagrams. A state can either be explicitly associated with an 

object identified in the class diagrams or implicitly with a set of objects. State transitions 

are triggered by events. Such events could be but may not be explicitly identified in other 

diagrams. Many other diagrammatic languages with multiplicity features suffer the same 

inconsistency issues as UML/SysML. Although venders of UML/SysML modeling tools 

may choose to implement, more or less, such consistency constraints in their products 

(such as Artisan Studio), integrating multiple graphical representation and maintaining 

full consistency are still challenging.  

On the other hand, these diagrams are intended to be illustrations of design 

concepts; they are not inherently computable graph structures [1]. Automatic analyses 
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and simulation using UML/SysML models requires precise execution semantics. Hence, 

the Semantics of a Foundational Subset for Executable UML Models (FUML) Standard 

[163] is recently developed.  With such a semantic supplement, UML execution models 

can be executed, independent of target implementation, by means of a virtual machine.  

Since graphical modeling notations are not appropriate for detailed programming a 

standard textual action language conforming to FUML semantics was also developed 

called Action Language for Foundational UML (ALF) [164]. Recently, a reference 

implementation of FUML activity models was also developed using Java [165].  This 

implementation is capable of accepting as its input an XMI file from a conformant UML 

model. Additionally it provides an execution trace of the selected activity model(s) as its 

output.  This reference implementation, however, provides simulation capabilities only. 

No time events or constraints are implemented. Support for formal analysis, such as 

construction of occurrence graphs (representing all reachable states), has yet to be 

developed [166].  Its ability to analyze, verify, and validate system requirements and 

design is, therefore, limited.  Since these standards have just been published on 2011, 

their vender supports are rare. 

On the other hand, comparison studies [37], [39], [162], [167], [168] show that 

OPM have some advantages over UML in both software systems design and system 

modeling and design in general. Firstly, OPM is able to avoid the model-multiplicity 

issues of UML [168]. While UML is a multiple-view, object-oriented modeling language, 

OPM supports a single unifying, structure-behavior view [168] (i.e. both object and 

process oriented). UML/SysML uses several views to separate concerns, while OPM 

handles complexity by gradual refinement/abstraction of information and smooth 

transition across lifecycle phases [162].  Secondly, OPM is geared towards modeling 

systems in general [37]. OPM provides a much smaller set of modeling primitives and 

notations that are easy to comprehend while still maintaining good specification quality 

[168]. Over complicated modeling formalisms, on the other hand, will jeopardize both 

comprehensiveness and specification quality. Furthermore, OPM has not only adopted 

and extended many object-oriented concepts and ideas but also incorporated a number of 

fundamental ideas that go beyond object-oriented principles, for example, the definition 

of processes independently of objects and the way objects interact with each other via 
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processes [37]. Such feature further enhances the flexibility of modeling a system which 

in turn also increases user's comprehension and processing capability. In addition, it is 

easy to extend OPM or map OPM to other modeling formalisms, for example, the UML 

[39] and SysML [169].   

However an OPM model usually cannot capture as much details as UML/SyML 

can [162].  Nevertheless, the granularity of an OPM model is high enough for general 

system modeling and even for detail-demanding tasks like code generation [30], [152].  A 

major drawback of OPM is that it does not have a formal mathematical definition, does 

not have well-documented execution semantics, and does not specify a formal 

computational model for either discrete or continuous event systems [1]. It cannot capture 

the dynamic aspects of a system either, i.e., an OPM model cannot describe the state of a 

system at a particular point of time. OPM as a visual modeling language provides a 

limited set of rules to specify the precedence of process execution order [1] and does not 

supported advanced features such as nested state either. The animation of OPM model 

supported by OPCAT provides the capabilities to check logic correctness of the modeled 

behavior only. Such animation is not formal enough to support strong analysis. 

Furthermore, a standard OPM (without extension) does not have numeric concepts and 

time concepts. Nevertheless, its flexible definition of object and process can be mapped 

onto operands and operators, respectively, of a wide range of formal computational 

models [1] and thus allows enhanced, formal definition of its modeling primitives. As a 

matter of fact, the OPCAT has already incorporated some numeric and time concepts. 

Unlike UML and OPM, Petri nets have well-defined execution semantics and 

rigorous mathematical representation [70], which contains very few, but powerful, 

primitives. Such concise mathematical definition is a dominating strength of Petri net 

because it not only allows extending the basic Petri nets to achieve more enhanced 

functionalities but also makes it easy to develop many formal analysis methods and tools. 

Because Petri net has well-defined execution semantics, it can easily be implemented by 

programming language. Moreover, there exists a large collection of analysis methods and 

tools developed for various types of Petri nets, making Petri nets a very powerful tool for 

modeling, simulating, and analyzing discrete event systems. As discussed in Section 

3.2.3, with the use of tokens, Petri nets can describe the dynamic aspects of a system 
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which neither UML nor OPM can. CPNs extend the vocabulary of basic Petri nets by 

allowing tokens to have an associated attribute. CPNs also support hierarchical Petri nets 

making it easier to scale to large system modeling. The incorporation of high-level 

programming languages also provides CPNs with the primitives for definition of data 

types and manipulation of their data values [170]. Therefore complex information can be 

represented in the token values and inscriptions of a CPN model [171], making CPNs 

capable of modeling complicated behavior with great flexibility. Jensen [170] provides an 

in-depth discussion of the advantages of CPN. 

Although the reference implementation of FUML provides convenient simulation 

capability by allowing direct execution of a SysML activity model, CPN provides 

capabilities beyond those of which reference implementation and many other executable 

formalisms are capable of. A detailed comparison of the simulation capabilities between 

CPN and FUML can be found in [166]. Hence only the key points are highlighted here. 

First, CPNs combine a rigorous mathematical definition, an interactive graphical 

representation, and capabilities to carry out simulations and formal verifications into a 

concise modeling formalism. The FUML reference implementation only provides textual 

execution trace. Secondly, it is possible to use the same (or at least very similar) models 

to check both the logical and functional accuracy of a system and to analyze performance 

[172]. Third, CPNs are very flexible in token definition and manipulation making CPN 

modeling even more flexible. Finally, CPNs can be extended with a time concept that has 

not yet been implemented in FUML. 

However, Petri nets are weak in defining the structural aspects of a system. For 

example they cannot represent long-term relationships between system objects. CPNs are 

not object-oriented. Additionally, they do not have the facilities to support either model 

reuse or scalability like the classification-instance, inheritance, and polymorphism 

supported by most object-oriented formalisms. Various versions of object-oriented Petri 

nets have been proposed in literature, such as [173–179]. These object-oriented Petri nets 

extend the basic Petri net, or CPN, with object-oriented concepts and constructs. They 

also support various degrees of object-oriented concepts or ideas, such as inheritance and 

polymorphism. Although they can capture persisting objects, they still cannot capture 



 

 

61 

long term relationships between objects. Thus, these object-oriented Petri nets still have 

difficulty to capture full structural aspects of the system. 

5.1.2. Characteristics of an Ideal Holistic Modeling Language.  Based on the 

needs of the search-based architecture development process, an ideal holistic modeling 

language as defined in the beginning of Section 5.1 should have the following characters: 

 It must be domain independent; 

 It must be universal and support generic object-oriented concepts; 

 It must be capable of modeling the structural, behavioral, and dynamic aspects 

of a system; 

 It should support both graphical and textual syntax; 

 It must be precise, mathematically rigorous, and executable; 

 It must support system analysis; 

 It must capture design space or constraints; 

 It must support hierarchical abstractions; 

 It should consist of a relative small set of modeling constructs and notations. 

 It should be easy to understand and use. i.e., the modeling constructs and 

notations should be intuitive to architect; 

 It should facilitate data exchange for sharing models and communicating with 

other computer programs and database;  

 It should facilitate the communication between stakeholders and architects 

from different knowledge domains;  

 It must be easy to implement using programming language; 

 It should encourage the use of one integrated representation instead of 

multiple disjoint diagrams. 

5.1.3. Combining UML/SysML, OPM, Petri Nets, and Feature Models. Based 

on literature review conducted, a holistic modeling language as identified in Section 5.1.2 

has yet to be designed. Each of the modeling languages studied has only been able to 

partially fulfill these needs. Defining and implementing a fully-fledged modeling 

language not only is a very challenging task but also has the disadvantage of lacking 

supports and acceptance. Therefore, instead of developing a new modeling language from 

scratch, this research proposes the integration and combinational usage of existing 
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modeling languages, i.e., the OPM, CPN and feature model. This approach not only 

allows user to benefit from the advantage of these individual modeling language but also 

allows the existing software tools and analysis methods developed for them to be reused. 

The way that these languages can be integrated is illustrated in Figure 5.1: 

 

 

 

 

Figure 5.1.  Combining Existing Modeling Languages to Achieve Holistic Modeling 

 

 

 

The integration works like this: The formal system model is to be specified by 

OPM which serves as the hub of integrating other modeling formalisms. The reason that 

OPM is selected to play the integrator’s role is that it is the closest to holistic modeling 

among those languages investigated.  Additionally, it contains a very small set of 

language primitives which make it easy to extend OPM’s definition to include new 

capabilities. A UML (or SysML) model with multiple diagrams can be generated by 

either using the generation capability provided by OPCAT [42] or following some other 

proposed mapping schemes [39], [169]. UML (or SysML) models are expected because 

they are usually considered as more standard way for illustration or communication. A 

standard OPM model, however, still lacks the ability to capture dynamic aspects of 

system behavior, certain numeric properties (e.g., time), and constraints. Additionally, it 

lacks well-documented execution semantics. This research proposes utilizing CPN to 

formally define the execution semantics of OPM such that the simulation capability and 

analysis methods developed for CPN can be utilized. Moreover, OPM models are not 
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intended to capture design space. Thus, this research propose incorporating feature model 

concepts and domain engineering into OPM modeling so that OPM can be used to 

develop a class model that represents a collection of instance models. 

The mapping between these modeling languages must be developed. This 

dissertation employs the existing work to map OPM to UML [39] or SysML [169]. This 

dissertation proposes extending OPM with feature model concepts. Such extension will 

be introduced in Section 5.1.3.1. This dissertation also proposes the mapping between 

OPM to CPN as a way to supplement OPM with well-defined execution semantics. Such 

mapping will be introduced in Section 5.1.3.2.  

The holistic modeling approach proposed here uses OPM as the formal language 

for specifying a system. Thus, the OPM model should provide extended information to 

incorporate the concepts of the feature model for design space specification and to 

support the generation of CPN model. Such an extension can be achieved by defining the 

metamodel of the OPM/H using the object-oriented paradigm such as the MOF of UML 

[33].  In doing so, the extended information can be incorporated into the metamodel of 

the extended OPM in the form of properties added to related metaclass. A formal 

definition of the extended OPM is given in Section 5.1.3.1 below. There are a few other 

extensions to OPM in literature. For example, Mor Peleg and Dov Dori [180] proposed 

OPM/T. This is an extension of OPM for the specification of reactive and real-time 

systems. This extension (provided in OPM/T) includes triggering events, guarding 

conditions, temporal constraints, and timing exceptions. This research adopted some of 

Mor Peleg and Dov Dori’s ideas [181]  in developing the extended OPM. 

5.1.3.1 Formal definition of the extended OPM.  The metamodel of an extended 

OPM for holistic modeling (known as OPM/H hereafter) can be defined, using an object-

oriented paradigm, as follows: (Optional properties are enclosed in “<” and “>.”) 

    {          }  

where  

1.     = OPM/H model of the system.  

2.   = a set of objects in the system. That is, 

  {               },  

where  
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   = the object i in the system. It is defined by an 11-tuple property set, (Name, 

Type, <Value>, <Constraint>, Essence, Affiliation, <States>, <multiplicity>, 

<Description>, <URL>, <Dynamic>). The property sets can be extended with additional 

fields if necessary.  

   = the total number of objects in the system.  

1.   = state set defined for each object in the system, i.e., an elaboration of the 

state property of the object class. That is, 

   {             },  

where  

   = {               } is the set of states in object   .  

    = the total number of states in object   . 

2.    = a set of processes in the system. That is, 

  {             },  

where  

   = the process i in the system. It is defined by an 8-tuple property set, (Name, 

Essence, Affiliation, <Guard condition>, <Code segment>, <Time delay>, 

<Description>, <URL>). The property sets can be extended with additional fields (e.g., 

adding a Body field).  

   = the total number of processes in the system.  

5.   = a set of links among distinct things (objects or process) in the system. That 

is,  

  {              },  

where 

   = the link i in the system. It is defined by a 3-tuple property set, (Source, 

Destination, <TypeProperties>). Among them, the TypeProperties is a set of properties, 

the value of which depends on the type of the link as summarized in Table 5.2. The 

property sets can be extended with additional fields if necessary. 

The “XOR” and “OR” relations are special types of links. An XOR (or OR) 

relation connects one entity (object, process, or state) at its singularity end (source or 

destination) to a set of links (other than XOR or OR) at the other, multiplicity, end 

(destination or source). An XOR relation applies the XOR operation to the set of links  



 

 

65 

Table 5.2.  Properties of OPM Links 

Category Links Properties 

Structural 

Relations 

Aggregation-Participation Participation constraint 

Exhibition-Characterization 

Generalization-Specialization 

Classification-Instantiation 

Unidirectional Relation Tag, Source participation constraint, 

Destination participation constraint 

Bidirectional Relation Forward Tag, Backward, Tag, Source 

participation constraint, Destination 

participation constraint 

XOR/OR N/A 

Procedure 

Links 

Agent Link Condition, Path, Description 

Instrument Link 

Result/Consumption Link 

Effect Link Condition, Path, Resource, Description 

Instrument Event Link Condition, Path, Reaction Time, 

Description 

Consumption Event Link Condition, Path, Reaction Time, 

Description 

Condition Link Condition, Path, Description 

Exception Link Condition, Path, Reaction Time, 

Description 

Invocation Link Condition, Path, Reaction Time, 

Description 

 

 

 

that it connects before those links are connect to the entity at the other end of the XOR 

relation. An OR relation works the same way as the XOR relation, except that it applies 

OR operation to the set of links that it connects to. 
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   = the total number of links in the system.  

6.    = (   ,    ) = the set of initial markings of an OPM/H  

where,  

    = marking of all objects in the system. That is,  

    ∑       
  
   , where       is the initial marking of object   , i.e., the initial 

value of object   . 

   = marking of state of all objects in the system. That is  

    ∑       
  
   , where       is the initial active state of object   . 

Note: The possible values for property Essence (in object or process) is either 

physical or informatical; the possible values for property Affiliation (in object or process)  

is either environmental or systemic (Refer to the OPM manual [182] for definitions of  

the values of these properties.) 

5.1.3.2 Extend OPM with feature model concepts to capture design space. 

In software engineering, domain analysis and feature models are used to define product 

line. Such concepts can be incorporated into OPM modeling to define the architectural 

design space. For example, the concept of features (as in a feature model) can be applied 

to any model element in an OPM model because features are higher level concepts. Such 

usage of feature concept can be justified by the definition of features as introduced in 

[183], i.e., a feature is a prominent or distinctive user visible aspect, quality, or 

characteristic of a software system or system. Appling the feature concept to OPM model 

elements is more straightforward than applying it to other modeling languages, such as 

UML/SysML. Object-orientation makes more specific assumptions about objects, i.e., 

they have state and behavior and collaborate through  interactions [3] while an object 

concept in OPM is broken down into its constituent object, state, and processes, which all 

have an explicit appearance in the OPM model. 

A design space [30] is “a multidimensional space representing both requirements 

and design choices. It is spanned by a set of dimensions identifying relevant criteria for 

characterizing artifacts in a specific domain – components, subsystems, or complete 

systems”. Design spaces may comprise two types of dimensions: discrete dimensions 

(enumerate possible alternatives) and continuous dimensions (take values in a range, such 

as real values). 
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Following the concepts of the feature model, design elements in an architectural 

model can be categorized as either common or variable elements. Common elements are 

always part of a system and, therefore, can be modeled as mandatory elements using 

feature model concepts. Variable elements are part of only some systems and, therefore, 

can be modeled as either optional, alternative, or OR-relationship elements using feature 

model concepts. Common elements are not relevant to the decision making process. 

Variable elements span the design space, the dimensions of which is constituted by three 

types of entities, an optional element, a set of alternative elements, and a set of OR-

relationship elements. Therefore, variable elements are the design variables, the value of 

which need to be determined in the system design process. Additionally, each variable 

element might be described by a set of attributes. Again these attributes can be 

categorized as either common attributes or variable attributes using the above feature 

model concepts. These variable attributes constitute the sub-dimensions of the variable 

element. It is the cross product of these variable attributes that determines the domain of 

the variable element. The total effective dimensions of the design space of a system are, 

therefore, the sum of sub-dimensions from all of the main dimensions computed 

recursively until to the top elements. Extended with the concepts of the feature model, 

OPM can be used to develop the generative class model. 

Before presenting the rules to extend OPM with the feature model concepts, a 

cardinality concept needs to be defined first:  

Cardinality is an interval denoted as [min..max] applied to an OPM element, 

where min is the lower bound and max is the upper bound. Two types of cardinality exist: 

participation cardinality (corresponding to the feature cardinality in the feature model) 

and group cardinality (corresponding to the group cardinality in the feature model). 

An OPM can be extended with the feature model concepts by following the rules 

below: 

1. A set of alternative things can be grouped and represented by one OPM object 

(or process, whichever applicable). Fill the value field of this object (process) with a 

Boolean expression, which is constructed by connecting the values representing 

alternatives with “XOR”. For example, the expression “(a) XOR (b) XOR (c)” 

means exactly one alternative out of the set {a, b, c} can be present. Such a Boolean 
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expression can be replaced with a notation that represents a generative function to be 

implemented if too many alternatives exist. The “Initial Value” field of the OPCAT can 

be used to contain such Boolean expressions.  

In addition to representing the set of alternatives using a Boolean expression, 

OPM objects (processes) representing the alternatives can be created and then connected 

with the parent object (process) using the classification-instantiation link of OPM. Such 

mechanism is known as “expand” here. To expand is necessary if any of the alternatives 

needs to connect to other OPM things. 

2. Similarly, a set of things with the “OR” relationship can be modeled by the 

same mechanism described above.  However, the “OR” operator should be used to 

connect the set of values representing the OR-relationship things. If child objects 

(processes) are to be created, they can be connected to their parent object (processes) by 

any applicable OPM structural links. 

3. The group cardinality of a feature can be captured by adding a multiplicity 

attribute to each OPM thing. Therefore, if a thing represents a set of alternatives, its 

multiplicity will be [1, 1]. If a thing represents a set of OR-relationship things, its 

multiplicity will be [1, N], where N is the number of end nodes in the relationship. If a 

thing represents a set of things that are related by compound relationship with both XOR 

and OR operators in the Boolean expression, set the value of the multiplicity attribute 

accordingly. Otherwise, if a thing has no child connected to it with OPM structural link, 

its multicity value is [1, 1] by default. The Number of instances attribute of a thing in 

OPCAT can be used as the multiplicity attribute to model such group cardinality. 

4. The mandatory and optional relationships of a feature model can be represented 

by participation cardinalities in an OPM. Particularly, add a participation constraint 

attribute to the structural links of OPM. Then apply the above defined cardinality concept 

to each terminal end of the link. It is known as participation cardinality here. Participation 

cardinality is a generalization of the mandatory ([1, 1]) and optional ([0, 1]) concepts of 

the feature model. The OPCAT provides such a participation constraint attribute.  

5. The “requires” relationship of a feature model can be expressed by various 

OPM procedure links or OPM tagged structural links depending on the relationships 

between these entities in OPM semantics.  
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6. Other cross-tree constraints between things are represented by OPM tagged 

structural links. 

7. The “OR” and “XOR” relationships between OPM procedure links can be 

expressed directly using the “OR” or “XOR” notations of OPM. 

8. A root node representing the entire system is optional if all of its children nodes 

have a participant cardinality of [1, 1].  

9. Other extended features and constraints can be added to corresponding OPM 

elements as feature attributes. 

Note that the XOR operators, the OR operators, and the tag values in the OPM 

tagged structural links representing cross-tree relationships appeared in the above rules 

are for illustration purpose only. They can be replaced by other syntax entailed by the 

implementation. For example, the OR-relationship can be expressed, using PL notations, 

as f1∨f2∨...fn , with fi | i ∈[1...n] being the set of children participating in the OR 

relationship [184]. 

From the rules introduced above it can be seen that the current expressiveness of 

the OPCAT is capable of modeling these feature model concepts with little extension 

required. Hence it can be used to specify the design space of an OPM model. In order to 

illustrate using OPM notations and feature model concepts to define a design space, an 

example is give here. Figure 5.2 shows a sample feature model for the mobile phone, 

adopted from [14]. The corresponding OPM model, extended with the feature model 

concepts, is presented in Figure 5.3 (a). Both the mandatory elements (Calls and 

Screen) and the optional elements (GPS and Media) were captured by the 

participation cardinality of the aggregation-participation link. The alternative 

relationships  (between Basic, Color, and High resolution) were captured both 

by the group cardinality applied to the Screen (default value 1 is not shown in the 

figure) and the Initial Value field of the Screen object as illustrated in Figure 5.3 

(b). OPM objects were created for those alternatives because two of them (Basic and 

High resolution) were connected to other OPM things. OR relationship (between 

Camera and MP3) were captured both by the group cardinality applied to the Media 

(value “2” inside the box representing the Media object, which is the upper bound of the 

group cardinality) and the Initial Value field of the Media object as illustrated in Figure 
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5.3 (c). OPM objects were created for those alternatives because two of them (Basic 

and High resolution) were connected to other OPM things. Both requires 

constraints and the excludes constraints were captured by the tagged structural links of 

OPM. 

 

 

 

 

Figure 5.2.  A Sample Feature Model ([14]) 
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Figure 5.3.  An OPM Model (Created by OPCAT) Extended With Feature Model 

Concepts to Capture Design Space 

Mobile 

Phone 

Calls Screen 

Color Basic High resolution Camera MP3 

Mandatory 

GPS Media 

Optional Excludes 

Alternative Requires 

Or 

 

 

  



 

 

71 

 (b) 

                (c) 

Figure 5.3.  An OPM Model (Created by OPCAT) Extended with Feature Model 

Concepts to Capture Design Space (cont.) 

 

 

 

The number of dimensions for the design space of this system was 3. These 

dimensions, along with their domains, were as follows: (1) GPS: {True, False}, (2) 

Screen: {Basic, Color, High resolution}, (3) Media: {Camera, MP3, 

Camera AND MP3, False}. 

5.1.3.3 Supplementing execution semantics of OPM with CPN.  An OPM/H 

model also contains extended information to support the construction of a CPN model. 

Such additional information can be viewed as annotations added to a regular OPM model. 

Such information includes link conditions, guard conditions, code segments, time delays, 

and markings. These types of information should be defined according to the need of the 

CPN model to be generated. Their semantics is pure CPN semantics. The details of these 

types of extended information are as follows:  

The link condition, corresponding to the CPN arc inscription [170], [185], [186] 

or arc annotation [187], is an annotation to the procedure link of OPM. A link condition 

can include values, variables and expressions used alone or organized in a tuple. An 

instance of value allows consuming or producing a known value. A variable requires 
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binding of values to variable. Expressions yield new values through computation. 

Functions are also allowed in expressions. Functions used in link conditions allow 

complicated computations that are defined elsewhere. An Expression instance is only 

used in output procedure links. For more advanced topics regarding defanging link 

conditions, refer to arc inscription in CPN [185]. A link condition can be added to the 

“Condition” field of a procedure link. The syntax of the link conditions depends on the 

programming language chosen for implementing the CPN. 

The guard condition, corresponding to the CPN guard [170], [186], [188], is a 

Boolean expression that evaluates to true or false. A guard condition can be added to the 

“Guard condition” field of a process (or, if using OPCAT, add to the description field 

using the format “[Guard: (expression)]”, where expression is to be 

replaced with the intended guard condition). The syntax of the guard conditions depends 

on the programming language chosen for implementing the CPN. Guards are used for 

testing variables in input link conditions (enabling restrictions) or restricting values of 

output link conditions variables. For more advanced topics regarding defining guard 

conditions, refer to guard in CPN [188]. 

The code segment, corresponding to the CPN code segment [170], [186], [189], is 

a piece of code executed when the hosting transition (corresponding to the OPM/H 

process) fires. A code segment can be added to the “code segment” field of a process (or, 

if using OPCAT, add to the description field using the format “[Code: 

(expression)]”, where expression is to be replaced with the intended code segment). 

The syntax of the code segments depends on the programming language chosen for 

implementing the CPN. For more advanced topics regarding defining code segments, 

refer to code segments in CPN [188]. 

A time delay is an expression evaluated to integer. A time delay can be applied 

both to a process and to an output procedure link from a process. When applied to a 

process, a time delay corresponds to the transition delay of the CPN. Such time delay can 

be added to the “Time Delay” field of a process (or, if using OPCAT, add to the 

description field using the format “[Time: (expression)]”, where expression 

is to be replaced with the time delay expression). When applied to a procedure link, a 

time delay corresponds to the arc delay of the CPN. Such time delay can be attached to 



 

 

73 

the end of the corresponding link conditions, using @+ as a separator. The syntax of the 

time delay expression depends on the programming language chosen for implementing 

the CPN. 

Setting the initial marking of the OPM/H involves two operations: (1) Setting the 

initial values for related objects by giving a value expression to the “Value” field of each 

object. This operation will result in creating object instances for those objects. The value 

expression can be a single value, a set of values or a generative function defined 

elsewhere. The syntax of the value expression depends on the programming language 

chosen for implementing the CPN. (2) Selecting the initial state for objects with states.  

In addition, there may be some OPM objects that have no impact on the dynamic 

of a CPN model. These objects should be identified and left out from mapping to CPN to 

avoid creating redundant information in the CPN model. For example, in a manufacturing 

system, the cost attributes of machine objects have no impact on the operation of the 

manufacturing system. Therefore, the OPM/H object representing the cost attributes can 

be left out from mapping to a CPN. To left out an OPM/H object from mapping to a 

CPN, mark the object by setting its “Dynamic” properties to false or add “[nd]” to the 

description field of the object if using OPCAT. 

With such extensions, an OPM/H model can be transformed to a CPN model. As 

both OPM and CPN have graphical syntax, their mapping can be illustrated using graphs 

as well. Table 5.3 summarizes the mapping between OPM (where the syntax and 

semantics of OPM is extracted from [190]) and CPN. The basic idea is as follows. Map 

OPM processes to CPN transitions. Map OPM attribute objects (objects connected to 

their parent object using exhibition-characterization link) to CPN color sets. Such color 

set thus defines the set of class attributes for the OPM object being connected by those 

attribute objects. Map non-attribute objects that have no states and object states of OPM 

to CPN places. Map the value(s) of an OPM object to CPN token(s).  One or a set of 

tokens on a CPN place represents either the existence of an object or an object being at 

the state represented by that place. The former corresponds to the cast that the place is 

mapped from an OPM object with no state and the token(s) on that place represent 

alternative objects. The latter corresponds to the case that the place is mapped from an 

OPM state. As discussed in Section 3.1.1, an object in the object-oriented modeling is 
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defined by three parts, states, attributes and services.  By following the mapping scheme 

discussed above, a CPN token can capture the attribute and state part of an object 

definition. The service (or method, function or process) part of an object definition can be 

inferred if the CPN model created from the OPM follows certain naming convention. For 

example, an object’s service can be modeled as an OPM process connected to the 

corresponding OPM object using an exhibition- characterization link. When such process 

is mapped to a CPN transition, the transition can be named by prefixing the 

corresponding OPM process name with the corresponding OPM object name. In doing 

so, the ownership relation between the object and the process can then be inferred. OPM 

structural links that have no effect on the system dynamics are not mapped to CPN. The 

details of the procedure for mapping an OPM/H model to a CPN model are as follows. 

Step 1. Create a CPN transition for each OPM process (except for zoomed-in 

process). Name the transition with the format of “O_T,” where “O” represents the name 

of the OPM object connected to the process with an exhibition-characterization link and 

“T” represents the name of the process. 

Step 2. Create a place for each OPM state. Name the place with the format of 

“O_S,” where “O” represents the name of the OPM object corresponding to that state and 

“S” represents the name of the state. 

Step 3. Create a place for each OPM object connected to an OPM process with 

either an enabling / transforming procedural link or event / condition procedural link. 

a. If an OPM object with states is itself connected to an OPM process with such 

links, do not create a place for this object. Instead, create a set of arcs, each of 

which connects to a place created for a state of the object using the procedure 

in Step 8 below treating the relationship between these arcs as an OR. 

Step 4. Objects that are not connected to any processes do not need to be mapped 

to CPN places. 

Step 5. Create a color set declaration for each OPM object that is a child object in 

the exhibition-characterization link (except for those objects that are marked as “[nd]” 

in their description field). Name the color set with the name of the OPM object using 

uppercase letters. Type the color set with the type attribute in the description field of the 

extended OPM.  
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a. Create a product color set declaration for each OPM object connected by more 

than one child via exhibition-characterization links. 

b. Start with the lowest level (leave nodes) of exhibition-characterization links. 

Move upward when there are multiple levels of parent-children relations with 

exhibition-characterization links.  

Step 6. Type each place with the color set declared for the corresponding object in 

Step 5. 

Step 7. Declare a variable for each color set identified in Step 5. Name the 

variable with the corresponding color set’s name using lowercase letters. 

Step 8. Create an arc for each enabling / transforming procedural link or event/ 

condition procedural link connected with the process being mapped in Step 1 according 

to the mapping scheme presented in Table 5.3. 

Step 9. Add arc inscription to each link identified in Step 8 according to the color 

set of the place the arc is connected to. 

a. The expression in the condition field of the link can override the arc 

inscription defined above. Replace the variable name (corresponding to the 

OPM object name) in the expression with the corresponding variable name 

defined in Step 7. 

Step 10. Create a guard condition, code segment, or time delay for each transition 

identified in Step 1 using the respective expression in the description field of the 

corresponding OPM process. Replace the object names within the expressions with the 

corresponding variable names defined in Step 7.  

Step 11. Assign tokens to places with the initial values of the corresponding OPM 

object  

Step 12. When an Exclusive relationship connecting two OPM process exists, add 

a CPN state between the corresponding CPN transitions. Name the place with the name 

of the end process (both if bidirectional) proceeded with “EXL”. Type the place with a 

unit-like type. (Such typing depends on the language implementing the CPN.) 

Step 13. Create a double arrow arc for each effect link that connects an object 

with no state.  
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Table 5.3.  Syntax and Semantics of OPM and its Mapping to CPN 
ENTITIES 

 

Name Symbol OPL CPN 

Thing 

Object 

 

B is physical.(shaded 

rectangle) 

C is physical and 

environmental.(s

haded dashed 

rectangle) 

E is physical.(shaded 

ellipse) 

F is physical and 

environmental. (shaded 

dashed ellipse) 

 

Process 

 

Definition An object is a thing that exists. 

A process is a thing that transforms at least one 

object. 

Transformation is object generation or 

consumption, or effect—a change in the state of an 

object. 

For a simple OPM object, the 

corresponding CPN place is class and a 

token on that place represents the 

existence of an instance of that class. 

No distinction of physical/informatical or 

environmental/systemic in CPN. 
 

State 

 

A is s1. 
 
B can be s1 or s2. 
 
C can be s1, s2, or s3. 

s1 is initial. 

s3 is final. 

 

Definition A state is situation an object can be at or a value 

it can assume. 

States are always within an object. States can be 

initial or final. 

Places are identified as states. Tokens are 

identified with objects. 

The color set correspond to the state 

place identify the set of objects that can 

visit those places, i.e., the set of objects 

owning those states. The tokens on a state 

place identify what objects are in that 

state 

 

Object A 

Process D 

A_s1 

 

C 

F 

B_s2 

 

B 

E 

B_s1 

 

Token 

C_s3 

 

C_s2 

 

C_s1 

 

1 

1 

 

1’ A 

 

1’ A 

C 

1’ B 
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Table 5.3.  Syntax and Semantics of OPM and its Mapping to CPN (cont.) 
Structural Links  

 

Name Symbol OPL CPN 

Fundamental Structural Relations 

Aggregation- 

Participation 

 

A consists of B 

and C. 

 

 

A consists of B 

and C. 

 

Definition A is the whole, B and C are parts. No CPN mapping of aggregation 

relationships between OPM objects. 

Use substitute Transition plus  sub-net to 

map aggregation relationships between  

OPM processes if hierarchical CPN is to 

be used. 

No need to create transition for process A 

in non-hierarchical CPN 

Exhibition- 

Characterization 

 

 

A exhibits B, as well 

as C. 

 

 

A exhibits B, as well 

as C. 

 

Definition Object B is an attribute of A and 

process C is its operation (method). 

A can be an object or a process. 

Exhibited OPM objects are mapped to the 

color set definition of the OPM exhibiting 

object. Multiple exhibited objects are 

mapped to product color set. 

No mapping of exhibition relations for 

OPM processes in CPN. 

A 

Process A 

 

I 

A 

 

C 

C 

C 

B 

B 

B 

CA 

C 

Token 

E 

colset CA = B; 

 

O I 

O I 
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Table 5.3.  Syntax and Semantics of OPM and its Mapping to CPN (cont.) 
Structural Links  

 

Name Symbol OPL CPN 

Fundamental Structural Relations 

Generalization- 

Specialization 

 

B is an A. 

C is an A. 

 

 

B is A. 

C is A. 

 

Definition A specializes into B and C. 

A, B, and C can be either all objects or all 

processes. 

No explicit map of Generalization- 

Specialization relations.  

Map children objects/processes only. 

Classification- 

Instantiation 

 

B is an instance of 

A. 

C is an instance of A. 

 

Definition Object A is the class, for which B and C are 

instances. Applicable to processes too. 

 

Unidirectional 

& 

bidirectional 

tagged 

structural links 

 

A relates to B. 

(for unidirectional) 

A and C are 

related. 

(for bidirectional) 

 

Definition A user-defined textual tag describes any 

structural relation between two objects or 

between two processes. 

No mapping of tagged structural links. 

Link Relations 

XOR Relation 

 

C1 consumes either B1 

or A1.  

 

 

Definition  Guard will determine the XOR 

relation. 

 

B 

B 

A 

B 

A 

C 

C 

2 

For process:  

 

B 

1’B++ 

1’C 

 

A 

C 

For object:  

 

C 

colset CA = B;  

 
C : A 
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Table 5.3.  Syntax and Semantics of OPM and its Mapping to CPN (cont.) 
Name Symbol OPL CPN 

XOR Relation 

 

C2 yields either B2 or 

A2. 

 

 

Definition  Arc inscription will determine whether it 

is OR, AND or XOR 

OR Relation 

 

C5 consumes A5 or 

B5. 

 

 

Definition  Guard will determine the OR relation. 

OR Relation 

 

C6 yields B6 or A6.. 

 

 

Definition   Arc inscription will determine whether it 

is OR, AND or XOR 

Complexity Management  

In-zooming 

 

A exhibits C. 

A consists of B. A 

zooms into B, as 

well as C. 

Sub-net.  

Definition Zooming into process A, B is its part and C 

is its attribute. 

Same as the mapping for aggregation- 

participation link with parent thing being 

process. 

Expose subnet structure, i.e., no 

substitution for non-hierarchical CPN. 

 

 

A exhibits C. 

A consists of B. A 

zooms into B, as well 

as C. 

N/A 

Definition Zooming into object A, B is its part and C is its 

operation. 

Same as the mapping for aggregation- 

participation link with parent thing being 

object. 

 

A 

 

 

 

C B 

file:///F:/UMR/Research/Dissertation/dx.doi.org/10.1016/j.is.2008.02.002
file:///F:/UMR/Research/Dissertation/dx.doi.org/10.1016/j.is.2008.02.002
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Table 5.3.  Syntax and Semantics of OPM and its Mapping to CPN (cont.) 

Enabling and Transforming Procedural Links 

 

Name Symbol  OPL CPN(A) CPN (B) 

Enabling links 

Agent Link 

 

A handles B. 

 

 

Definition Denotes that the object is a human 

operator. 

Instrument 

Link  

B requires A. 

Definition "Wait until" semantics: Process B 

cannot happen if object A does not 

exist. 

Place A: class A (existence). 

A token on A: an instance of A.  

Color set colA: set of possible instance values of 

class A (e.g. suppose A represents message, which 

can carry diffrent values. therefore color set/token 

corresponds to object attributes/values).  

Arc variable os: the color set to be bound. 

State-

Specified 

Instrument 

Link 

 

B requires s1 

A. 

  
 

 "Wait until" semantics: Process B 

cannot happen if object A is not at 

state s1. 

Place A_s1: the s1 state of object A. 

Token on A_s1: existence of object A in state s1. 

Color set colA: set of possible instance values of 

class A. 

Arc variable os: the color set to be bound. 

Transforming links 

Consumption 

Link 

 

B consumes A. 

 

 

 

colset COLA = unit;  
var oe: COLA;  
val cr = 5; 

colset COLA = unit;  
var oe: COLA;  
val cr = 5; 
var amt: AMT; 
closet AMT = INT; 
colset AxAMT = product 
COLA * AMT; 

colset colA = unit;  
var os: colA;  

colset colA = unit;  
var os: colA;  
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Table 5.3.  Syntax and Semantics of OPM and its Mapping to CPN (cont.) 

Enabling and Transforming Procedural Links 

 

Name Symbol  OPL CPN(A) CPN (B) 

Definition Process B consumes Object A Place A1: class A1 

(existence). 

A token on A1: an 

instance of A1. 

Number of tokens: 

number of instances of 

A1. 

Color set COLA: set of 

possible instance values 

of class A1. 

Arc variable oe: the 

colorset to be bound. 

Variable: cr: 

Consumtion rate. 

Place A: class A. 

A token on A: an instance 

of A with amount 

attribute.  

Support consuming more 

than one unit of object A 

at a time. 

Compound colorset with 

one dimension (AMT) 

identify the amount of 

object A. 

Color set AxAMT: set of 

possible instance values 

of class A. 

Expression "amt-cr": 

amount consumed.  

Only one token 

representing A is needed. 

State-

Specified 

Consumption 

Link 

 

B consumes 

s1of A. 
 

 

 

 

Definition Process B consumes Object A when it 

is at State s1. 

Same as the above 

consumption link except 

the following:  

Place A_s1: the s1 state 

of class A. 

A token on A_s1: an 

instance of class A (i.e., 

object A) at state s1 

 

Same as the above 

consumption link except 

the following: 

Place A_s0: the s0 state 

of class A. 

A token on A_s0: the 

instance of class A (i.e., 

object A) at state s with 

amount attribute.  

colset COLA  = unit;  
var oe: COLA;  
val cr = 5; 

 

colset COLA = unit;  
var oe: COLA;  
val cr = 5; 
var amt: AMT; 
closet AMT = INT; 
colset AxAMT = product 
COLA * AMT; 



 

 

82 

Table 5.3.  Syntax and Semantics of OPM and its Mapping to CPN (cont.) 

Enabling and Transforming Procedural Links 

 

Name Symbol  OPL CPN(A) CPN (B) 

Result Link 

 

B yields A. 

 

 

 

 

Definition Process B creates Object A. Same as the 

consumption link except 

that the direction of the 

arc is reversed.  

Same as the consumption 

link except that the 

direction of the arc is 

reversed. 

State-

Specified 

Result Link 

 

 

B yields s1 A. 

 

 

 

 

Definition Process B creates Object A at State 

s1. 

Same as the state-

specified consumption 

link except that the 

direction of the arc is 

reversed. 

Same as the state-

specified consumption 

link except that the 

direction of the arc is 

reversed. 

Input-Output 

Link Pair 

 

B changes A 

from s1 to s2. 

 

Definition Process B changes the state of 

Object A from State s1 to State s2. 

Same as the state-specified consumption link 

except the following:  

Place A_s1: the s1 state of class A. 

Place A_s2: the s2 state of class A. 

A token on A_s1 (or A_s2) : an instance of class A 

(i.e., object A) at state s1 (or s2). 

 

Effect Link 
 

 

B affects A. Same as the input-output link pair. 

colset colA = unit;  
var oe: colA;  
val cr = 5; 
 

colset colA = unit;  
var oe: colA;  
val cr = 5; 
var amt: AMT; 
closet AMT = INT; 
colset AxAMT = product 
COLA * AMT; 

colset COLA = unit;  
var oe: COLA;  
val cr = 5; 

colset COLA = unit;  
var oe: COLA;  
val cr = 5; 
var amt: AMT; 
closet AMT = INT; 
colset AxAMT = product 
COLA * AMT; 

colset COLA  = unit;  
var oe: COLA;  
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Table 5.3.  Syntax and Semantics of OPM and its Mapping to CPN (cont.) 

Enabling and Transforming Procedural Links 

 

Name Symbol  OPL CPN(A) CPN (B) 

Definition Process B changes the state of Object 

A; the details of the effect may be 

added at a lower level. 

It will always be replaced with input-output link 

pair after the hierarchical decomposition of place in 

CPN. 

Event, Condition, And Invocation Procedural Links 

 

 

Instrument 

Event Link 

 

A triggers B. 

B requires 

A. 

 

 

Definition Existence or generation of object A 

will attempt to trigger process B once. 

Execution will proceed if the 

triggering failed. 

Place A: class A (existence). 

A token on A: an instance of A.  

Color set COLA: set of possible instance values of 

class A.  

Arc variable oe: the color set to be bound. 

State-

Specified 

Instrument 

Event 

Link 

 

A triggers B. 

when it 

enters s1. B 

requires s1 

A. 

 

 

Definition Entering state s1 will attempt to 

trigger the process once. Execution 

will proceed if the triggering failed. 

Place A_s1: the s1 state of class A. 

A token on A_s1: an instance of class A (i.e., object 

A) at state s1 

Color set COLA: set of possible instance values of 

class A.  

Arc variable os: the color set to be bound. 

Consumption 

Event Link 

 

A triggers B. 

B consumes 

A.  

 

 

 

Definition Existence or generation of object A 

will attempt to trigger process B 

once. If B is triggered, it will 

consume A. Execution will proceed 

if the triggering failed. 

Same as consumption link. Same as consumption 

link. 

 

colset COLA = unit;  
var oe: COLA;  

colset COLA = unit;  
var oe: COLA;  
 

colset COLA = unit;  
var oe: COLA; 
var cr = 5;  
 

colset COLA = unit;  
var oe: COLA;  
val cr = 5; 
var amt: AMT; 
closet AMT = INT; 
colset AxAMT = product 
COLA * AMT; 
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Table 5.3.  Syntax and Semantics of OPM and its Mapping to CPN (cont.) 

Event, Condition, And Invocation Procedural Links 

 

Name Symbol  OPL CPN(A) CPN (B) 

State-

Specified 

Consumption 

Event Link 

 

A triggers B 

when it enters 

s2. 

B consumes 

s2A. 

 

 

 

 

Definition Entering state s2 will attempt to 

trigger the process once. If B is 

triggered, it will consume A. 

Execution will proceed if the 

triggering failed. 

Same as the mapping for 

state-specified 

consumption link. 

Same as the mapping 

for state-specified 

consumption link. 

Condition 

Link 

 

B occurs if A 

exists. 

 

Definition Existence of object A is a condition to 

the execution of B.If object A does 

not exist, then process B is skipped 

and regular system flow continues. 

Same as the mapping for instrument event link 

State-

Specified 

Condition 

Link 

 

B occurs if A 

is s1. 

 

Definition Existence of object A at state s2 is a 

condition to the execution of B. 

If object A does not exist, then 

process B is skipped and regular 

system flow continues. 

Same as the mapping for state-specified instrument 

event link  

Invocation 

Link 

 

B 

invokes 

C. 
 

Definition Execution will proceed if the 

triggering failed (due to failure to 

fulfill one or more of the conditions in 

the precondition set). 

Add place Completion_Triger_Event between 

transition B and C to signal the end of the former 

and the triggering of the later.  

Color set EVENT: a class of system level message 

object. 

 

 

colset COLA  = unit;  
var oe: COLA;  
val cr = 5; 
 

colset COLA = unit;  
var oe: COLA;  
val cr = 5; 
var amt: AMT; 
closet AMT = INT; 
colset AxAMT = product 
COLA * AMT ; 
 

colset COLA  = unit;  
var oe: COLA;  
 

colset COLA  = unit;  
var os: COLA;  
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As an executable language, CPN is much more restrictive than OPM in terms of 

expressing execution semantics. For the execution semantics of the enhanced OPM 

model to be effectively captured by CPN, some styling rules should be applied when 

developing the OPM model. Before introducing the styling rules, a theorem regarding the 

equivalence of state and attribute needs to be established first.  

Theorem: An attribute and a set of states can be inter-exchanged when modeling. 

The set of states of an object can be modeled as an attribute known as a state attribute 

here. In doing so, the set of states becomes the set of possible values for the attribute and 

vice versa.  

Based on this theorem, the following styling rules for developing the OPM/H can 

be applied: 

1. The developer can model a thing either as a state or as an attribute according to 

the needs of expressing the execution semantics. For example, 

 (1) If an object with states needs to connect to a process with a procedural link, it 

is better to model the set of states as a state attribute. Furthermore, if these set of states 

being replaced by the state attribute were connected to other process(es) using procedural 

link(s), These links will be redirected to the newly created state attribute. Accordingly, 

appropriate link conditions should be set so that these links are only active upon a 

particular value (corresponding to the state that the link originally connected to) of this 

newly created state attribute. 

(2) An attribute object with states is not recommended. Such objects is usually 

created when an object has more than one set of overlapping states (i.e., the object can 

simultaneously be at more than one state, each of which come from a state set). In such 

case, the normal solution would be to group these states into groups and creating an 

attribute object to contain each group of states. However, such attribute object will have 

problem mapping to CPN because a token representing the object cannot be at more than 

one places (corresponding to the overlapped states) simultaneously. Therefore, the 

recommended solution is to keep only one group of states and model the other groups of 

states as attributes in the same way as the one presented in example 1 above. 

Alternatively, the designer can redefine these states and create a new set of states what is 

the cross product the states from each group. 
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2. Each enabling / transforming procedural link or event / condition procedural 

link connected to a zoomed-in OPM process must also connect to an OPM process 

enclosed in the zoomed OPM process.  

3. It is highly recommended to take advantage of the flexibility of token definition 

in CPN. For example, it is highly recommended to identify alternative components only 

by a set of attributes (so as to model alternatives using tokens) rather than identify them 

by a group of elements organized in a certain structure.  It is easy much easier to create 

an alternative object by changing the values of its attributes than creating a group of 

elements with a different structure.   

5.1.4. The Roles of CPN in Architecture Modeling and Analyses. As discussed 

in Section 5.1.3., in the holistic modeling approach proposed here, the formal system 

model is specified by OPM and the mapping to CPN is conducted only when needed. 

However, CPN is very useful in many cases. A significant advantage of CPN is that the 

same model for system modeling can also be used to check the logical or functional 

correctness of a system and for performance analysis. There are a large number of 

analysis methods and software tools developed for Petri net models [191], [49], [192]. 

These methods share a lot in common but may differ in the type of Petri net supported. 

The discussion here focuses on the analysis methods for CPN. Many algorithms and their 

software implementations are developed for analyzing CPN. Such facilities include 

support for collecting data during simulations, for generating different kinds of 

performance-related output, and for running multiple simulation replications [171]. Note 

that there is a distinction between modeling the behavior of a system and monitoring the 

behavior of a model. Therefore, for model analysis purpose, auxiliary CPN constructs are 

allowed to be added to the original CPN model without affecting the behavior of the 

model. The roles that CPN plays in architecture modeling and analysis in the search-

based architecture development framework include simulation, performance analysis, and 

system verification and validation. The details are discussed as follows: 

Simulation of a CPN model allows user to examine the enabling of transitions and 

flow of tokens step wise or fully automatically. Such token flow information can be used 

to examine the behavior of the model, e.g., check whether the system behavior as 

modeled is expected, or derive performance related information. With the aid of software 
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tools it is also possible record the simulation process in the form of trace history 

(sequence of fired transitions and their bindings) and state history. For example, the 

simulation report [170] of the CPN Tools provides such information.  

Since stochasticity is almost always involved in a CPN model and one simulation 

run can only generate one occurrence sequence out of many possible ones, the result 

obtained from one simulation run is usually not enough to reflect the true performance 

measures. Therefore, many of the software tools for simulating Petri net model support 

batch simulation, i.e., running multiple independent simulations automatically. Data can 

be automatically collected and saved during each simulation. A proper formulated 

simulation scheme allows conducting experiments on the system behavior as modeled 

give certain test cases of scenarios. Such experiments can be used for example to evaluate 

and estimate the performance measures, to compare different system configurations, to 

choose appropriate values for parameters of certain system components, to derive certain 

system properties for performance analysis purpose, or to obtain confidence intervals 

[193].  

CPN models and their simulations contain detailed quantitative information about 

the performance of a system, such as throughput, processing time, queue lengths, and 

resource utilization, which can be extracted to support the investigation and discovery of 

structural and dynamic system properties [171]. The size, complexity, and time concept 

for CPN prohibit the generation and solution of analytical models from CPN models 

[171]. Therefore, performance analysis using CPN must rely on extracting from 

simulation the information needed for deriving performance measures of the system 

being modeled. The major source of such information is contained in the token values 

and number of tokens at some particular places of the model, the state of the system as 

marked by the entire set of tokens as well as from the events that occur (fired transitions 

and their bindings) during simulations [171]. There are a variety of ways to extract such 

information from the simulation of a CPN model. A simple way to do so is to add report 

places [170] to the CPN model. Such places collect historical information about the 

simulation runs without influencing the simulation [170]. Software tools like the CPN 

tools also support an advanced way for collecting data called monitors. A monitor is a 

mechanism that is used to observe, inspect, control or modify a simulation of a CPN 
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without having to modify the model [171]. A monitor can examine both the states of the 

model and the events that occur during a simulation [171]. The CPN tools provides a set 

of stand monitors such as simulation breakpoint monitor (place contents monitor and 

transition enabled monitor), data collector monitor, count transition occurrences monitor, 

list length monitor, and write-in-file monitor. It also supports user-defined monitors. 

Details regarding these monitors can be found at [171], [172]. Advanced CPN software 

like the CPN Tools also supports the generation of various kinds of simulation output 

such as log files, statistical reports, and scripts for plotting data values [194]. 

In another hand, certain attributes can be included in token values to encode 

required information for deriving performance metrics. For example, time attributes can 

be included in token values to record time-related information such as the cumulated time 

that a token spent at a certain place. CPN can be viewed as information processing 

system with operands being tokens, the value of which can be changed by expressions 

specified by arc inscriptions or code segments associated with transitions. Therefore, very 

rich information can be encoded in token values.  

With data extracted, various performance measures can then be computed. What 

information to be extracted from the simulation and how to compute performance 

measures is problem dependent.  

In some cases, simulation may not be the only way to compute certain 

performance measures; other methods, such mathematical equations, may also be used. 

However, it is possible that developing such a mathematical model might be much more 

difficult than constructing a CPN model and then deriving the performance metric using 

simulation. In such cases, simulation might be a better alternative for performance 

analysis, especially when creating and simulating a CPN model add no additional efforts 

(if they are also needed for computing other performance measures) while developing a 

mathematical model does. Furthermore, simulation based performance analysis is more 

robust.  Changes in a CPN model directly result in changes in behavior and thereby 

changes in the simulation result. On the other hand, if a CPN model is changed, the 

mathematical model developed before might not be valid anymore and thus need to be 

redeveloped. 
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Another branch of formal analysis methods for Petri is concerned using 

generating and solving analytical models, such as continuous-time Markov chains, for 

performance analysis [192]. Although analytical models can provide exact solutions 

regarding the performance of a model they are subject to the state explosion problem 

[171]. 

Rigorous validation and verification of system specifications requires executable 

models. The use of CPN model and simulation adds an additional level of verification 

and validation. The rational is that an architecture will not be fully operational until all 

components and their interconnections are properly specified and all terminology, 

definition, and data exchange syntax are consistent. Therefore, by generating a CPN 

model from the OPM model and simulating it, the developed system model can be 

verified in the architecture development phase. Consequently, the designers might go 

back and force several times between OPM and CPN when developing the architecture 

model. Some available techniques for model verification and validation are discussed 

briefly as follows:  

Validation can be achieved in many cases by simply observing the simulation 

result and check, for example, whether the CPN terminates at the desired state (for 

terminating systems [194]), reaches the right steady-state (for non-terminating systems 

[194]), gets the expected tokes at certain places. The logic correctness can be examined 

by testing each step of the simulation to ensure that the model follows the desired logic. 

The behavior of the system such as precedence relations amongst events, concurrent 

operations, appropriate synchronization, freedom from deadlock, repetitive activities, and 

mutual  exclusion of shared resources [195] can be observed directly from the simulation. 

However, it is often beyond the capability of human beings to observe the details of a 

simulation by watching the enabled transitions and markings at each simulation step. The 

information extraction techniques mentioned in the performance analysis can be used to 

examine the behavior more efficiently. More information and details regarding these 

techniques can be found at [170–172], [186], [196], [197]. Particularly, when all 

conditions and events of a system are specified correctly in a CPN model, the simulation 

of the model should proceed with an expected sequence of state transitions. The system 

design can thus be verified by comparing the behavior as modeled with the desired 
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behavior. If the comparison shows a match, the model can be verified and validated. If 

the match is insufficient, then either the architecture model must be modified to better 

represent the system, or the system architecture must be reconfigured to better satisfy the 

requirements.  

On the other hand, model behavior validation also leads to result validation, 

thereby result in increased confidence in the performance measured obtained. This is 

another advantage of using simulation to calculate performance measures over 

mathematical equations because mathematical equations developed for calculate 

performances measures also need to be validated. 

Furthermore, dynamic properties characterize the behavior of a CPN and are often 

rather difficult to verify. Some most used dynamic properties are introeduced in [186]. 

For example boundedness properties (the number of tokens can exist at a particular 

place), home properties (markings or sets of markings to which it is always possible to 

return), liveness properties (a set of binding elements X remains active), and fairness 

properties (how often the different binding elements occur), to name a few. More details 

about these properties can be found at [186]. A much more complete set of dynamic 

properties of a CPN can be found in Chap. 4 of [197]. More formal analysis methods that 

can be used to prove dynamic properties include state space analysis (or occurrence 

graphs, which illustrate all reachable markings) and place invariants (to construct  

equations which are satisfied for all reachable marking) [186], [197]. 

Simulations can only cover a finite number of execution sequences of a CPN 

model out of potentially many possibilities. Formal verification of system behavior 

requires examining all possible states. The state space analysis provides such capability. 

A full state space can be expressed by a directed graph with a node for each reachable 

marking and an arc for each occurring binding element [186]. However, such graph can 

be too large to construct even for a small CPN. This is a major drawback of the state 

space analysis called state space explosion [170] and it make state space analysis of 

limited usage in some cases. A number of methods have been developed to alleviate the 

state explosion problem as indicated in [170], [198], [199]. 

CPN model and its simulation can also help in identifying missing specifications 

and requirements during the architecture development phase because an incomplete 
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model is not executable. Missing requirements, in this context, are functions or 

capabilities not yet specified but needed, without which, the system cannot generate the 

expected behavior or performance. 

Note that not all of these techniques discussed above need to be applied during the 

architecture search process when using the search-based architecture development 

framework. It is more appropriate to carry out some detailed analyses after limited 

number of near-optimum solutions are obtained by the search process and when designer 

need to choose one final solution out of those alternatives. 

 

5.2. ARCHITECTURE GENERATION 

By following the methods described in Section 5.1.3, a generative class model for 

the system of interest can be developed. Such generative class model describes a 

collection of models rather than a single instance. Accordingly, an architecture alternative 

generation mechanism is needed. Such mechanism should support the generation of all 

instance models that coverer the entire design space as defined by the generative class 

model. The architecture generation mechanism proposed here includes both a set of 

architecture alternative generation operations that apply to various levels of model 

constructs and an automatic generation mechanism that enumerate all possible instances 

covered by the design space. 

5.2.1. Architecture Alternative Generation Operations.  The generation of 

architecture alternative is guided by the design space as specified by the generative class 

model. Elements in an architecture model can be divided into variable part and common 

part. The common part is shared by all architecture alternatives. The variable part differs 

from architecture to architecture. The architecture alternative generation is only 

concerned with generating variable part so it is also known as architecture variant 

generation. Each set of generated variable elements is then combined with the constant 

part to form a complete architecture alternative. Architecture alternative generation 

operations (or variant generation operations in short hereafter) work on three levels. The 

most fundamental level operation applies to a single element. Structural generation 

operations work on a set of related elements with different types. The system level 
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operation forms a complete variable part based on the generated variable elements and 

eventually combined with the common part to form a complete architecture alternative.  

5.2.1.1 Generate element instances.   The most fundamental variant generation  

operation is concerned with a single model element that can be abstract as an object from 

the object-oriented sense. An element can be any OPM/H construct (i.e., elements in Sysk 

as defined in Section 5.1.3.1) since every OPM construct is an instance of the 

corresponding class in the metamodel of OPM/H. This operation is fundamental because 

it is used in all other variant generation operations proposed here.  There are two steps of 

the operation: 

Step 1: generate all possible instances of an element (class) according to the 

constraints of its properties. Particularly, generate all possible values of a property for an 

element according to the constraints of that property. Then generate the whole set of 

instances for the element using the cross product of the generated property values but 

eliminating those invalid combinations according to the constraints.  

Step 2: generate a set of such element instances (i.e., duplicate the generated 

instances) according to the participation cardinality constraints. 

5.2.1.2 Generate structural variants.  The second level variant generation 

operations include a set of primary operations, side-effect handling, and advanced group 

operations. There are two primary operations. One adds/removes/modifies links between 

distinct entities (objects, processes, or states) in the system model (Operation 1). The 

other changes the set of entities (objects, processes, or states) in the system by either 

adding entities to or removing entities from the system (Operation 2). These operations 

can be applied, in turn, with Operation 1 proceeding Operation 2 in each cycle if both 

changes are needed to create a variant. The procedures of these two operations are as 

follows:  

5.2.1.2.1 Add/remove/modify links – operation 1.  The following conditions 

are given: 

(1) The system is currently specified by 

     {                } 

where the subscript k indicates the configuration of the model is after its k
th

 change.   

(2) The set of links to be removed from the system is   
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(3) The set of links to be added to the system is   
   

After the (k+1)
th

 change, the system will be specified by 

       {                          } 

such that:  

(1)           
    

  

This equation shows the changes of the links in the system when some links are 

added and/or removed. Modifying a link is equivalent to removing a link and then adding 

a link with the same Source and Destination properties but different values for other 

properties. Note that a link is an instance of the link class from the metamodel of OPM/H 

as defined in Section 5.1.3.1. Therefore, along with adding a link, both the properties of 

the link and their associated constraints should also be specified at the same time. 

Similarly, removing a link also removes the properties, along with their constraints, from 

the link.    

(2)           
    

  

where   {     } is an entity (object, process, or state) and   
     is a subset of 

entities that are isolated from the system because all of their links with other entities 

(     
 ,) are removed during the change.   

    
  is the subset of isolated entities to be 

reconnected to the system. The   
  can be expressed as: 

      
    

  [    (Source)      
         (Destinaiton)      

              ] 

where,     (Source) and     (Destination) are the values of the Source property and 

Destination property of link     , respectively.  

(3)           
    

  

where   {         }  is the number of either objects, processes or states in the 

system and   
  is the number of isolated entities and   

  is the number of entities to be 

reconnected to (i.e., kept in) the system.  

(4)                 
      

 , where     
  is the marking on the isolated 

objects or states (i.e.,   
  or   

 ) and     
  is the marking on the objects or states to be 

reconnect to (i.e., kept in) the system (i.e.,   
  or   

 ).  

5.2.1.2.2 Add/remove/modify entities - operation 2. Here entities include object 

processes, and states. The following conditions are given:   
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(1) The system is currently specified by 

      {                } 

(2) The subset of entities (objects, processes, and states) to be removed from the 

system is 

  
   (    

             
  )     

where   {     } is an entity (object, process, or state) and     
   is the i

th
 entity to be 

removed and   
   is the total number of entities to be removed. Accordingly, the links 

with entities in   
   as either Source or Destination should also be removed. These links 

to be removed can be expressed as follows: 

  
   (    

   ,                   (Source)    
          (Destinaiton)    

  ) 

(3) The subset of entities to be added to the system is 

  
   (    

             
  )     

Where   {     } is an entity (object, process, or state) and     
   is the i

th
 entity to be 

added and   
   is the total number of entities to be added. Along with adding entities, links 

connecting these entities to either the existing entities or the newly added entities can be 

added as well. These links are denoted as   
  . 

After the (k + 1)
th

 change, the system will be specified by 

       {                          } 

such that:  

(1)          
     

    

This equation shows the effects of both removing and adding entities. Modifying 

an entity is equivalent to removing an entity and then adding an entity with the same 

values for the “Name” property but different values for other properties. Note that an 

entity (object, process, or state) is an instance of the corresponding class from the 

metamodel of OPM/H as defined in Section 5.1.3.1. Therefore, along with adding an 

entity, both the properties of the entity and their associated constraints should also be 

specified. Similarly, removing an entity also removes the properties, along with their 

constraints, of the entity.  

(2)                 
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where     
   is the marking of either objects or states to be removed from the system (i.e., 

  
   or   

  )  and     
   is the marking of the objects to be added to the system (i.e.,   

   or 

  
  ).  

(3)           
     

   

where   
   and   

   are the numbers of entities to be removed and added, respectively. 

(4)           
     

   

This equation shows the effects of both removing the links with entities in   
   as 

either Source or Destination values and adding links along with adding entities. 

5.2.1.2.3 Side effects handling.  The variant generation operations introduced 

above indicate that the order of implementing the operations defined in  Operation 1  and 

 Operation 2 matters. Both isolated objects and dangling links need to be cleaned up to 

prevent side effects. Additional rules also apply when removing objects connected by 

structural relations. The related scenarios are handled by applying Operation 1 and 

Operation 2 in an appropriate order. These rules, and the methods to handle related 

scenarios, are summarized as follows.  

(1) Removing the source (or root, parent) object also removes its destination (or 

leaf, child) objects for an object connected with a group of objects using aggregation-

participation links, exhibition-characterization links, or classification-instantiation links. 

Therefore, if any of the child objects are to be preserved, their corresponding links with 

the parent object must be removed before the parent object is removed. 

(2) Removing a source (or root, parent) object also removes the attributes, 

structure, procedure, and state inheritance [37] of all destination (or leaf, child objects for 

objects connected to it by generalization-specialization links. 

5.2.1.2.4 Advanced operations.   Some advanced variant generation operations 

operations can be constructed using the primary operation (i.e., Operation 1 and 2) 

defined above. With the primary operation, the system can be expanded or shrunk 

horizontally by adding or removing entities or links. In contrast, the advanced operations 

are concerned with connecting things to a root thing to achieve vertical scalability (i.e., 

either refinement or its reverse, aggregation). Such advanced operations are summarized 

as follows: 
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(1) Object decomposition. Object decomposition is achieved by adding a group of 

entities (possibly linked) and connecting them with the chosen root object using 

aggregation-participation links. Additionally, appropriate links between these new 

entities and the existing ones can be added. This is the scenario for adding a sub-system.  

(2) Process decomposition. Process decomposition is achieved by adding a group 

of entities (possibly linked) and connecting them with the process to be decomposed 

using exhibition-characterization links. Then redirect (via remove and add) the existing 

links from connecting the process to connecting appropriate entities just added.  

(3) Aggregation. Aggregation is achieved by adding a new thing (as root, parent 

or source) and connecting it with related things in the system using aggregation-

participation links. This is the scenario for grouping existing system components to create 

a new subsystem. 

(4) De-Aggregation. De-Aggregation is the reverse process to the Aggregation 

operation. It is achieved by first removing the aggregation-participation links between the 

root (or source, parent) object and its leaf (or destination, child) objects. The root (or 

source, parent) object is then removed. 

(5) Breakout, i.e., replacing a single thing with a set of things. Breakout is 

achieved by both removing and adding things. Additionally these newly added things can 

be connected to the existing entities using appropriate links. This is the scenario for using 

a set of components to achieve the same functionality as the one achieved by a single 

component.    

(6) Merge, i.e., replacing a set of things with a single thing. This is the reverse 

process to the Breakout operation. It is also achieved by both removing and adding things 

and possibly followed by adding links. This is the scenario for using one component to 

achieve the same functionality as the one achieved by a set of components.    

5.2.1.3 Generate full architecture alternative.  In order to generate the entire 

variable part of an architecture alternative, the above defined variant generation 

operations should be applied to each applicable dimension of the design space as 

specified by the generative class model. The entire variable part of an architecture 

alternative can then be generated by applying the step 1 of the fundamental variant 

generation operation defined in Section 5.2.2.1 to the entire variable part. In this case the 
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entire variable part can be viewed as a class. Accordingly, the dimensions of the design 

space can be viewed as the properties of the class. Finally, the generated variable part is 

combined with the common part to form a complete architecture alternative. 

5.2.2. Automatic Generation of All Architecture Alternatives.   An automatic 

mechanism that can enumerate an entire set of architecture alternatives, in a systematic 

way, is always desired, especially when the design space is either very large or very 

complicated. In the research of automated analysis of feature model, several operations of 

analysis on feature models have been proposed. These operations can be utilized for both 

generating architecture alternatives and analyzing a generative class model since an 

OPM/H model contains feature model information. Among these operations, there is one 

known as “all products” (or “all valid configurations”, “list of products”), which is 

defined for generating all variants of a feature model. Particularly, this operation takes a 

feature model as input and returns all of the products represented by the feature model.  

The “product” in this context is the complete set of features to be selected [14]. Various 

implementations of these feature model analysis operations based on a variety of 

paradigms have been proposed as summarized in [14]. However, tool support of these 

analysis operations is still inadequate. The work presented in [184] is the only one, found 

so far, that supports the analysis of extended feature models (i.e. including feature 

attributes). In [184], feature model analysis operations are implemented by translating a 

feature model into a Constraint Satisfaction Problem using a set of mapping rules. An 

implementation framework known as FAMA (FeAture Model Analyser) is presented in 

[200]. FAMA integrates some of the most commonly used logic representations and 

solvers proposed in the literature into one comprehensive tool suite. It is claimed to be the 

first tool integrating different solvers for the automated analyses of feature models. The 

extended feature model, however, supported by FAMA implementation includes feature 

attributes only (i.e., no support for complex constraints among attributes or features). For 

example FAMA struggles to address the input link to a feature decorated by either XOR 

or OR join. If such links are connected to a subfeature, a duplicated feature violation will 

result. If such links are “requires” links, it is not supported by the implementation. Due to 

the complexity of architecture modeling, an extended feature model with both feature 

attributes and constraints (among attributes or features) are, in many cases, needed.  
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Alternatively, various ad-hoc approaches for automatic generation of all 

architecture alternatives can be developed using CPN. Such approaches can be based on 

the idea that tokens of CPN can be used to record the trace of states or transition along 

the path that tokens travel during execution. One of such approach is proposed here. The 

purpose of this approach is to explore process related alternatives, for example, exploring 

alternative execution paths or determining whether to use an optional object according to 

the processes to be included in the system. The details of this method are as follows: 

 The OPM processes, objects, or states are mapped to CPN transitions or 

places the same way as the mapping methods presented in Section 5.1.3.2.  

 Execution path and required objects can be recorded in token values, which 

are set as list types. For each transition a token travels through, add values of 

all input tokens and the name of the transition to the tokens sending out from 

the transition. A token stops traveling at a place with no outgoing arcs.   

 The “requires” or “excludes” constraints are encoded in the guard of related 

CPN transitions. The expression of a transition’s guard can be used to check 

the existence of certain values in the input tokens of the transition. For 

example if a process needs to exclude something, the guard can be set to false 

given that the input token of the transition contains a value corresponding to 

the thing to be excluded.  

Such an approach requires the identification of an initial CPN place, where all 

variations originate or equivalent to the root node of the corresponding feature model. 

Additionally, there must also be a limited set of end places with no outgoing arcs 

(corresponding to leaf nodes of the tree-structured feature model). All of the generated 

alternatives (represented by tokens) can be collected at these end places after a simulation 

run of the CPN model. The collection of these tokens represents the alternatives 

discovered. Case study 2 provides an example of applying the above suggested approach. 

This section identified the need of the holistic modeling and proposed combining 

OPM, CPN and feature model to achieve such holistic modeling. The architecture 

alternative generation mechanism was also developed based on the proposed modeling 

approaches. The search-based architecture development process requires automating the 

alternative generation, architecture evaluation, and optimization process. Therefore, a 
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software implementation of the proposed approaches is needed. Such implementation 

should integrate the development of holistic system models, the generation of architecture 

alternatives, the calculation of performance metrics, and the search for optimum solutions 

into one coherent process. Such implementation is presented in next section. 
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6. GENERIC IMPLEMENTATION 

This section presents the software implementation of the proposed approaches. 

This implementation covers the holistic system model development, part of the 

alternative generation, the model simulation, the performance analysis, and the 

optimization process. The overall architecture of the programs developed is first 

presented, followed by a summary of the workflow of related activities. This workflow 

integrates the programs developed and related activities into one coherent problem 

solving process. The design rationale and implementation strategies of some major code 

modules are also provided.  

The entire implementation of the proposed approaches and their application in 

solving the first sample problem, the design of reconfigurable manufacturing system, is 

written in Python 2.7.3. Python is chosen as the programming language because there are 

a huge number of open source libraries available in Python. This implementation uses 

two of them: the SNAKES package [187], for its CPN support, and the Inspyred package 

[201], for its GA support. SNAKES is a general Petri net library implemented in Python. 

It provides the necessary components to create, edit, and execute many sorts of Petri nets. 

It also supports state-space construction. The Inspyred library contains a set of modulus 

for implementing various types of evolutionary computations and swarm intelligence. 

The library separates problem-specific computation from algorithm-specific computation 

thus making it easy for users to integrate GA computation into their own code. 

Nevertheless, extensive modifications to these libraries are made to achieve the 

capabilities required for the implementation in this research.  

 

6.1. PACKAGE ARCHITECTURE 

The overall program implementation strategy can be visualized as a layered 

architecture as shown in Figure 6.1. The top layer is the user interface. Modules in this 

layer allow user to specify the input information (such as part, machine and processing 

information for the RMS problem), system models, analysis models, control parameters 

of the genetic algorithms and the overall process, and output processing and archiving. 

The bottom layer contains the components for alternative generation, chromosome 
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encoding, candidate simulation and evaluation. The middle layer calls the services 

provided by the facilities in the bottom layer and organize them into a coherence search 

process in searching for good alternatives. Note that, in Figure 6.1, the lighter shaded 

blocks at the bottom layer are from the external libraries. However, amount them, the 

components denoted in bold text are heavily modified for this research. The rest are 

developed from scratch for this research. 
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The snakes.nets module as the core element implementing the Petri net in the 

SNAKES library only provides the capability to execute a one-step firing of a selected 

transition with a selected binding. The full simulation capability is provided by the 

ABCD simulator in the abcd plugin which also provides a simple Graphical User 

Interface (GUI). The graphical ABCD simulator requires specifying a Petri net model 
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using the ABCD (Asynchronous Box Calculus with Data) language whose semantics is 

given in terms of CPN. The syntax of ABCD is a mix between Python and a process 

algebra. The abcd utility provides the parser to create a computational model of Petri net 

using the snakes.nets module from the textual Petri net model specified in ABCD. 

However, there is very little or no documentation regarding this ABCD language. The 

semantics and syntax of ABCD can only be inferred from two files used by the ABCD 

parser:  snakes/lang/abcd/abcd.pgen, which contains the concrete grammar, and 

snakes/lang/abcd/abcd.asdl, which provides the abstract syntax. Due to the limited 

information and knowledge regarding the ABCD language, the code to transform an 

OPM/H model to a CPN model has not been developed yet.  

Based on the search-based architecture development framework introduced in 

Section 4.1, using the multi-objective genetic algorithm as the optimization model, the 

workflow among various modules of the program implementation and activities of the 

designer is illustrated in Figure 6.2 using OPM notations. Such workflow is a concrete 

implementation of the search-based architecture development framework presented in 

Section 4.1.2 with GA as the search algorithms. The designer needs to involve in this 

problem-solving process through five activities as represented by the five blue shaded 

OPM processes in Figure 6.2. These activities are (1) developing a problem-specific data 

preprocessing module to handle input data according to the need of the system model 

developed for the system of interest, (2) developing the system model, (3) developing 

analysis models to compute various performance measures needed to assess the models, 

(4) developing the optimization model to conduct the search for optimum solutions, and 

(5) developing a decision model to choose one final solution out of a set of non-dominant 

solutions obtained from the optimization model. These activities are carried out according 

to the design requirements. A preprocessing process is needed to transform raw data into 

a format that the system model can use. Such pre-processing is problem specific. As 

indicated in Figure 6.2, each of these activities results in certain kind of models. Once 

these models and parameters are set, the search process can proceed in an automated way. 

The developed OPM/H class model also contains the specification to build a CPN model 

and the specification of design space in the form of feature model. A set of OPM instance 

models, along with the mapped CPN models, can then generated by the alternative 
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generation process. Such instance models are transformed to chromosome representations 

according to the encoding scheme developed in the process of developing the 

optimization model. Then the GA-based search process can proceed. The calculation of 

performance metrics needs to invoke the analysis models, which may involve the 

simulation of the corresponding CPN models. The search process stops when a user 

specified termination criterion is met. A set of non-dominant solutions can be obtained 

after the search process. Selected results can be saved to files besides displaying on the 

screen. The user can then use the developed decision model to select a final solution. This 

selection process can optionally be supported by more detailed analyses.  

 

 

 

 

Figure 6.2.  Workflow of the Implementation of the Search-Based Architecture 

Development Framework 
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6.2. MODULES 

The program implementation consists of a set of Python modules. Some of them 

are developed from scratch; others are modified based on existing open-source libraries. 

Some major modules, along with their design rationale and implementation strategies, are 

summarized as follows (the italics in the parentheses following each module is the name 

of the corresponding Python module in the program package): 

OPM/H module (e_opm): This module provides the classes for both building and 

editing an OPM/H model. The class functions for adding, deleting, and modifying basic 

OPM/H constructs are also used to achieve the basic architecture generation operations. 

CPN module (snakes.nets): This is the main Petri net module provided by 

the SNAKE library. However it is heavily modified to achieve the capabilities required in 

this research. The major modifications include: 

(1) Support for timed CPN. The time semantics of the Petri net adopted here is the 

same as the one used in the CPN Tools [202]. Such semantics utilizes timed token and 

simulated clock to implement the time concepts in CPN. A timed token is a regular token 

attached with a number, called the time stamp. The simulated clock is a counter (globally 

available within an executing model) whose current value is the current abstract 

simulation time. A timed token is not available for any purpose unless the clock time is 

greater than or equal to the token's time stamp. When there are no enabled transitions, but 

there would be if the clock had a greater value, the simulator increments the clock by the 

minimum amount necessary to enable at least one transition.  Therefore, the time stamp 

of a token can be interpreted as the time since when (in terms of simulated time) the 

token is available. The units of simulated time do not inherently represent any particular 

absolute time unit but can be interpreted as real time according to the subject being 

modeled [202]. Simulated time is sometimes referred to as model time [202].  

Particularly, the timed token here is implemented as a Python tuple with the last 

element in the tuple being the time stamp. Such time stamp is a string type constructed by 

proceeding an integer representing the time with an “@”. For example, a regular token 

“10” with a time stamp of value “5” become “(10, ′@5′)” when represented as a 

timed token. An interpreter is inserted into the sankes.nets module to translate such 

notations. The time information contained in the time stamp will be extracted. 
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In order to evaluate a time delay expression, a “sys_time” keyword is allowed 

to be used in an ABCD model. This keyword will be interpreted as the current simulated 

time within the snakes.nets module (particularly, within function binding of class 

Expression of the nets module). 

(2) Allowing a transition to send empty tokens (i.e., do nothing,) to its output 

places. Therefore, the keyword “None”, which is a special Python data type frequently 

used to represent the absence of a value, is allowed in an expression of an ABCD model. 

Such capability makes it much easier to develop arc annotations (or arch inscriptions) in 

some cases. 

ABCD simulator module (simulngui replacing snakes.utils.abcd.si-

mul). The ABCD simulator provided by the SNAKES library only supports simulating 

the firing a single selected transition with a selected enabled binding using the ABCD 

simulator GUI (Figure 6.3). Details regarding this simulation GUI can be found at [203]. 

The optimization process in the search-based architecture development may invoke the 

simulation and require the simulation to proceed automatically until desired results are 

returned. Therefore, several enhancements are made to the original ABCD simulator and 

a new module called simulngui is created to replace the one. These enhancements and 

modifications to the original module are briefly summarized as follows:  

(1) Adding an option to disable GUI. The users are given the option to disable 

ABCD simulator GUI to save computational time. The simulation is invocated 

automatically by the optimization model when a candidate needs to be evaluated. The 

simulation will be conducted numerous times in the entire search process conducted by 

GA. Therefore there is no need to show the GUI for each simulation in such case.  

(2) Adding an option to do multi-step automatic simulation. The user can specify 

the maximum number of steps a simulation is to be executed. The simulator randomly 

chooses an enabled binding from a randomly chosen enabled transition and fires that 

transition. The simulation will stop when either there is no enabled transition or the 

maximum number of simulation steps has been reached.  Such enhancement does not 

impair the original functionalities of the simulator. The user can still chose a binding 

from the list of enabled ones to fire a transition and observe the change of system state 

after firing that transition if the ABCD simulator GUI is turned on. 
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Figure 6.3.  Illustration of the GUI of the ABCD Simulator 

 

 

 

(3) Adding resuming capability. The Resume simulation button of the ABCD 

simulator GUI is redefined to include the multi-step simulation capability. Particularly, if 

after running an N-step automatic simulation, there is still enabled transitions, click this 

button will run another N-step automatic simulation. 

(4) Storing state and trace histories. The marking of each simulation step can be 

stored in the state history, which is written in an out file named 

filenameStatHistory.txt, where “filename” is the file name of the ABCD 

model. The fired transition and its associated fired binding of each simulation step can 

also be stored in the trace history, which is written in an out file named 

filenameTraceHistory.txt, where “filename” is the file name of the ABCD 

model too. The state and trace history can also optionally be shown on screen during the 

simulation. 
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(5) Retrieving the simulation result. A function is added to the Simulator class 

of the simulngui module so that the simulation result can be retrieved in the form of 

final markings be external programs. 

Complier and simulation control module (abcd_build_simu replacing  

snakes.utils.abcd.main): The original main module of the abcd utility 

provided by the SNAKES library is designed to take a command line input, which 

contains the file name of a ABCD model, a set of options and parameters for those 

options, and to provide services according to the options. Such services include 

simulating a Petri net model, drawing a Petri net model and saving it as .PNG file using 

the Graphviz plugin [204] for Python, saving a Petri net model into one represented by 

the Petri net markup language, etc. All these services need to first have the input ABCD 

model compiled using the parser module. The result is a computational model of the 

Petri net model created using the snakes.nets module. The modification was made 

on the original snakes.utils.abcd.main module and saved as a new module 

named abcd_build_simul. This new module takes function arguments as input 

instead of from the command line.  The simulation result, in the form of final markings, 

can also be returned as an augment return. Such modifications make it possible for other 

Python functions to call the services provided in this module within a Python thread 

instead of through command lines.  

Variation operator module of the Inspyred library (inspired.ec.variato-

rs.mutators and inspired.ec.variators.crossovers). Candidates 

generated by any crossover (or mutation) operator provided in the crossovers (or 

mutators) module of the Inspyred library are subject to a validity check. Such check 

is added to the decorating functions of both crossover operators and mutations operators. 

If a candidate generated by the crossover operator is not valid, then redo the crossover 

operation (using a different pair of parents) until the validity check is passed. Similar 

procedure is gone through for the mutation operation too. The actual validity is checked 

by a function in an external module, i.e., problem-specific module. The result is then 

returned to the decorating functions of either crossover operators or mutation operators. 

This repairing mechanism makes sure that only valid candidates are evaluated and kept in 
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the population. This is necessary because evaluating a candidate might cost a lot of 

computation time and resources, especially when simulation is used.   

Main module. The main module is the top level module through which the user 

controls the problem solving process. It, therefore, is highly customized. The major 

functionalities provided by this module include loading input data and base CPN model, 

choosing the optimization algorithm to be used and setting related parameters and 

options, executing the search process, showing and plotting results, and saving results to 

archive files. 

Problem specific modules. The tasks needed to solve a problem various from 

problem to problem. The most common functionalities to be supported include: (1) data 

preprocessing function that transforms raw data into the format required by the system 

model, (2) chromosome encoding (create chromosomes from the system models) and 

decoding (convert chromosomes into machine/human interpretable format for recreating 

system models) function, (3) candidate (chromosome) generation function, (4) analysis 

model development and candidate assessment function, (5) validity check function for 

generated candidates. Note that alternative generation is usually associated with 

candidate (chromosome) generation through chromosome encoding and decoding 

process. 

This section presented the software implementation of the proposed approach. 

Such implementation is generic except for the data pre-processing part which must be 

problem-specific. Such implementation is applied to the design of RMS to demonstrate 

the usage of the proposed approach in solving real-world architecture design problem. 

The implementation details and test results are presented in the next section. As 

suggested in the workflow depicted in Figure 6.2, for solving a different problem, the 

user needs to develop a problem-specific data preprocessing module and also needs to 

develop the system model, the analysis models, the decision model and the optimization 

model according to the problem to be solved. The user then can control all the activities 

using the main module by setting options and parameter values.   

The Python code developed for this implementation is enclosed in the attached 

CD. The contents of the files included are listed in Table C1. 
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7. APPLICATION DEMONSTRATIONS  

This section uses two examples to demonstrate the application of the proposed 

approach and the developed software implementation. These sample projects are the 

configuration of RMS and the architecture design of a manned lunar landing system for 

the Apollo program (retrospective). 

A full implementation of the proposed approaches is presented on the first 

example problem along with the test results. Such implementation is generic meaning 

that the code is capable of solving similar RMS configuration problem. Only some of the 

assignment expressions in the data input module needs to be updated according to the 

new raw input data. In the second example problem, the focuses are architectural model 

development and alternative generation. No optimization is actually conducted due to 

lack of data.  

 

7.1. RECONFIGURABLE MANUFACTURING SYSTEM  

The operation life of an RMS consists of more than one DP, each of which would 

have a specific duration and a corresponding demand scenario. The RMS is configuraed 

according to each demand scenario. The demand scenario under consideration here is 

characterized by multiple products with mid-to-large production volumes. For this 

scenario, the flow-line configuration proposed in [205] and used in [55], [206] is adopted 

here. Such an RMS is comprised of a set of stages each of which contains multiple 

identical stations/machines arranged in parallel with identical operation assignments.  

Generally, the number of feasible configurations for a given DP is significantly 

large in an RMS. Therefore, a method is needed to find RMS configurations that are not 

only capable of meeting functional and capacity requirements of each DP but also have 

low cost, good performance and desired “ilities”. Therefore the RMS configuration is a 

constrained, multi-objective optimization problem. In addition, unlike conventional flow-

line optimization that pursues the optimal solution, for RMSs, the goal is to find a set of  

solutions which include the optimal solution and near optimal solutions [55]. One reason 

is that the optimal configuration for the current DP may not be the best one considering 

the cost of reconfiguring previous configuration to the current one. Another reason is that 
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other system objectives and criteria (e.g., quality, convertibility, scalability) besides cost 

should also be considered in the selection of the best configuration [207], [208].  For the 

example problem to be solved here, only one DP and two quantitative objects, cost and 

production rate, are considered. The goal is to find a set of near-optimal solutions to be 

used in more in-depth analyses.  

7.1.1. Problem Definition.    In order to facilitate the benchmark comparison 

this dissertation adopted the case study used in [55]. The same problem definition is used 

except that multi-objective optimization is assumed in this dissertation. A second 

objective, maximizing production rate (or equivalently minimizing unit production time), 

is added in addition to the minimizing capital cost objective. This dissertation only 

provides a brief summary of the problem and some key data for clarity whereas some 

addition and modifications to the problem definition are described in detail. Readers are 

encouraged to refer to the original paper [55] for detailed problem definitions and data 

structures used to describe the problem. Related input data for designing the 

configuration the RMS are also extracted and presented in Appendix A. 

Youssef and H. ElMaraghy [55] define the following core concepts to be used in 

describing an RMS:  

An operation cluster setup (OS) is a set of one or more operation clusters 

(OCs) that can be performed together on a specific machine with a specific 

configuration. An operation cluster (OC) is a set of operations (OPs), 

which are always machined together with a specific order due to different 

types of constraints such as logical or datum tolerance constraints. MCij 

stands for machine configuration j corresponding to machine/station i. 

Only one feasible machine configuration (MC) can be assigned to a 

machine/station (M) in a selected configuration.  
 

Figure 7.1 shows an example of a selected configuration in a specific 

configuration period capable of producing two different types of parts within a part 

family. In Figure 7.1, there are two rows of OSs each representing the OS assignments to 

different stages for one of the two part types to be produced and the zeros mean that the 

stage is not used for that specific part type [55]. 

The input parameters and information assumed to be available include:  

(1) Demand scenario, which specify the types of product to be produced by the 

RMS and their demand rates along with the configuration period [55]. 
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Figure 7.1.  Example of a Selected RMS Configuration ([55]) 

 

 

 

(2) Parts processing information (OPs, OCs, OSs and PGs). OPs must be 

accompanied by operations precedence graphs (PGs) that define sequential constraints 

between the different OPs and subsequently between different OCs [55]. 

(3) Machines/stations (Ms) information: types of machine/station available for 

use in the system, each of which may have a set of machine configurations (MCs) and 

cost [55]. 

(4) Feasibility and operation time for each M–MC–OS combination. 

Output and decision variables: A solution of the architecture design includes 

determining the following decision variables: Number of stages (NS) to be used in the 

system, Machine types (Ms), their configurations (MCs), and numbers of parallel 

machines for each stage, and the OS assigned to the machines in each stage for each part.   

Objective functions: Two objectives are considered here. The details are as 

follows: 

1) Minimize the capital cost of the configuration (the computation of present 

value as did in the original paper is omitted in this paper for simplicity) 
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2) Minimize the average unit production time (equivalent to maximize production 

rate)  

Constraints: The constraints for this problem include:  

(1) Space limitations.  The space allocated to the flow-line is constrained by the 

length and width available. Such constraints are simply expressed as the maximum 

number of stage locations (NSL), which reflects the length, and the maximum number of 

parallel machines/stations allowed within a stage (MMS), which reflects the width. For 

other shapes of floor layout, a mapping function can be developed to transform the NSL 

and MMS into space related features. Therefore, the basic idea introduced here is still 

applicable. 

(2) Investment limitation:  The total initial investment in the configuration cannot 

exceed the maximum allowable values [55]. 

(3) Precedence and non-overlap constraints.  This provides the full information 

that 

(4) Capacity constraint: the configuration should have sufficient capacity to 

satisfy the required demand rate for all parts [55]. 

The description of other implicit constraints such as functionality constraints and 

decision variable domain constraints are omitted here. 

As in [55], the parts to be produced in such an RMS are the ANC-101 and ANC-

90, which belong to the same products family. Figure 7.2 illustrates these two parts and 

their features. The detailed input information, including machining processing 

information, operation data, operation precedence graph, operation cluster definition for 

each part, available machine information, and time and production rate information, is 

provided in Appendix B, which is extracted from Appendix A of [55].  

During a configuration period, the production rate requirement for this RMS is 

120 parts/hour for ANC-90 (Part A) and 180 parts/hour for ANC-101 (Part B), 

respectively. Both parts are to be produced simultaneously on the RMS. The maximum 

number of stages allowed is 10. The maximum number of parallel machines per stage is 

5. The maximum allowable budget for initial investment is 30 million US Dollars. All 

these settings are the same as that in [55]. 
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Figure 7.2.  Part to be Produced by the RMS ([56]) 

 

 

 

7.1.2. Building a Holistic System Model for the RMS.   Following the proposed 

holistic modeling approach, a generative class model is first developed using OPM/H as 

shown in Figures 7.3 and 7.4. Figure 7.3 shows a high-level overview of the RMS while 

Figure 7.4 shows the zoomed-in manufacturing process. The execution semantics of this 

OPM/H model can be precisely specified using CPN as shown in Figure.7.5, which is 

developed using CPN Tools (Shorthand notations of the OPM constructs are used). The 

same CPN model specified the by the ABCD language is shown in Figure 7.6. Since all 

stages of the RMS share the same structure, only one representation is needed in such a 

generative class model. Information regarding the configuration of each particular stage 

is reflected in the instance values (or token values) of both Machine object and Part 

object, which are the only variable elements in this system.  These variable elements are 

alternatives from a feature model perspective. Note that the variable elements in this 

particular model only involve objects, no processes or links. An OPM/H model with only 

objects as variable elements makes it much easier to generate architecture alternatives. 

Modeling a system in such a way is encouraged when applying the search-based 

architecture development proposed in this research. The reason will be explained later.  

A Machine object is described by 10 attributes as illustrated in Figure 7.4. Their 

details are explained in Table 7.1. The number of machines in each stage is reflected by 

the number of machine instances created for each stage. Note that attributes 7 to 10 are 

attributes describing the dynamic aspects of the Machine object, which would not 

normally present in a model with static information only. Attribute 6, cost, has no 

impact on the dynamic of the RMS system and is, therefore, not mapped to CPN. 
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Figure 7.3.  OPM/H Model for a RMS - Overview 

 

 

 

 

Figure 7.4.  OPM/H Model for a RMS – Zoom-in into Manufacturing Process 

 

 

 

A Part object is described by 8 attributes as shown in Figure 7.4.  Their details 

are explained in Table 7.2. Again, attributes 2 to 8 are dynamic attributes, the values of 

which keep changing along with the change of the dynamic of the system. 

Allowable alternatives for variable elements are specified in the initial value filed 

of the respective element in the OPM/H model, which are added through the property 
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sheet of the respective element using the OPCAT tool. As shown in Figure 7.7 (a), a 

function denoted by “@M_IDLE_INIT@” is used to specify the initial value of the 

machine object. Such function will be implemented by the alternative generation module 

of the Python program to generate appropriate instance values as the search process 

proceeds. A set of initial instances for objects in the RMS model is visible on the mapped 

CPN model in the form of initial markings on the place P_ready and M_idle, 

respectively. The extended information contained in the OPM/H model for specifying the 

CPN is also set at the property sheet. Such information includes arc annotation (or 

inscription) (Figure 7.7 (b)) and guard conditions (Figure 7.7 (c)). The added attributes 

for design space specification is not obvious on Figure 7.3 or 7.4 either. An example that 

shows the specification of the range of the stage_assignment(stg) attribute is 

shown in Figure 7.7 (d). Nevertheless most of these types of information are visible or 

inferable from the corresponding CPN (Figure 7.5) model though.   

 

 

 

 

Figure 7.5.  CPN Model for the RMS 

(mtp, mid, cfg, mbf, bfsz, stg, tsm, it, ot)

(mtp, mid, cfg, mbf, bfsz, stg, tsm, it, ot)

upd_prd@+proctime(ptp, osseq, osdistr, mtp, mid, tsi, at, wt, pt)

if tsi = 0

then (ptp, osseq, osdistr, mtp, mid, intTime(), intTime(), wt, pt)

else (ptp, osseq, osdistr, mtp, mid, intTime(), at, wt, pt)

Transport

M_Unmount

M_Proces

M_Mount

M_Working

MCH

P_ready

PRD

P_Processed

PRD

P_mounted

PRD

M_Idle

MCH

P_Arrived

PRD

input (ptp, osseq, osdistr, mtp, mid, tsi, at, wt, pt);

output (upd_prd, proctime);

action

Proc (ptp, osseq, osdistr, mtp, mid, tsi, at, wt, pt);

(ptp, osseq, osdistr, mtp0, mid0, tsi,  at, wt, pt)

[osdistr <>nil andalso (hd osdistr)=stg]

(mtp, mid, cfg, mbf, bfsz, stg, tsm, it, ot)

if mbf >1 

then 1`(mtp, mid, cfg, mbf-1, bfsz, stg, tsm, it, ot)

else empty

if mbf <bfsz -1

then 1`(mtp, mid, cfg, mbf+1, bfsz, stg, tsm, it, ot)
else empty

(ptp, osseq, osdistr, mtp, mid, tsi, at, wt, pt)

n_pa`(A, osseqa, osdistra, 1, 0, 0, 0, 0, 0)++

n_pb`(B, osseqb, osdistrb, 1,0, 0, 0, 0, 0)

(ptp, osseq, osdistr, mtp, mid, tsi, at, wt, pt)

(ptp, List.drop(osseq,1), List.drop(osdistr,1), mtp, mid, tsi, at, wt, pt)

1`(1, 1, 3, 3, 3, 1, 0, 0, 0)++

1`(1, 2, 4, 4, 4, 2, 0, 0, 0)++

1`(1, 3, 5, 1, 1, 3, 0, 0, 0)++
1`(1, 4, 5, 1, 1, 3, 0, 0, 0)++

1`(1, 5, 5, 1, 1, 3, 0, 0, 0)++

1`(1, 6, 5, 1, 1, 3, 0, 0, 0)++

1`(1, 7, 5, 1, 1, 3, 0, 0, 0)++

1`(1, 8, 2, 2, 2, 4, 0, 0, 0)++

1`(1, 9, 5, 1, 1, 5, 0, 0, 0)++

1`(1, 10, 5, 1, 1, 5, 0, 0, 0)++
1`(2, 1, 3, 3, 3, 6, 0, 0, 0)++

1`(2, 2, 3, 3, 3, 7, 0, 0, 0)++

1`(2, 3, 3, 3, 3, 7, 0, 0, 0)++

1`(1, 11, 3, 3, 3, 8, 0, 0, 0)

(ptp, osseq, osdistr, mtp, mid, tsi, at, wt, pt)

if mbf = 1 

then 1`(mtp, mid, cfg, mbf-1, bfsz, stg, intTime(), it+(intTime()-tsm), ot)

else empty

if mbf = bfsz-1

then 1`(mtp, mid, cfg, mbf+1, bfsz, stg, intTime(), it, ot+(intTime()-tsm))
else empty
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# The last element (type C{str}) of PRD and MCH is time stamp 

typedef PRD : int*tuple*tuple*int*int*int*int*str 

typedef MCH : int*int*int*int*int*int*int*int*int*str 

const p_ready_init = @P_READY_INIT@ 

const m_idle_init = @M_IDLE_INIT@ 

const osmachinetime = {1:{1:30 , 2:20 , 3: 30 , 4:20 , 5:60 , 6:120 , 18:90 , 7:18 , 

    8:20 , 9:40 , 10:18 , 11:24 , 12:60 , 13:30 , 14:40 , 15:60 , 16:60 , 17:90}, 

    2:{3: 30 , 6:120, 18:90}} 

buffer P_Arrived :  PRD = () 

buffer P_Ready: PRD = p_ready_init 

buffer P_Mounted: PRD = () 

buffer P_Processed: PRD = () 

buffer M_Idle: MCH = m_idle_init 

buffer M_Working: MCH = () 

net M_Mount () : 

    [P_Arrived-((ptp, osseq, osdistr, mtp0, mid0, at, pt, ptstamp)), M_Idle-((mtp, 

mid, cfg, mbf, bfsz, stg, tsm, it, ot, mtstamp)), M_Idle+((mtp, mid, cfg, mbf-1, 

bfsz, stg, tsm, it, ot, '@'+str(sys_time)) if mbf > 1 else None ), P_Mounted+((ptp, 

osseq, osdistr, mtp, mid, sys_time, pt, '@'+str(sys_time)) if int(ptstamp[1:]) ==0 

else (ptp, osseq, osdistr, mtp, mid, at, pt, '@'+str(sys_time)) ) , M_Working+((mtp, 

mid, cfg, mbf-1, bfsz, stg, sys_time, it + (sys_time - tsm), ot, '@'+str(sys_time)) 

if mbf==1 else None) if ((osdistr!=()) and ((osdistr[0])==stg))]* [False] 

net M_Process () : 

[P_Mounted-((ptp, osseq, osdistr, mtp, mid, at, pt, ptstamp)), M_Working?((mtp, 

mid, cfg, mbf, bfsz, stg, tsm, it, ot, mtstamp)), P_Processed+((ptp, osseq, osdistr, 

mtp, mid, at, pt,  '@'+str(sys_time + osmachinetime[mtp][osseq[0]]) ))] * [False] 

net M_Unmount () : 

    [P_Processed-((ptp, osseq, osdistr, mtp, mid, at, pt, ptstamp)), M_Working-((mtp, 

mid, cfg, mbf, bfsz, stg, tsm, it, ot, mtstamp)), M_Working+((mtp, mid, cfg, mbf+1, 

bfsz, stg, tsm, it, ot, '@'+str(sys_time)) if mbf < (bfsz -1)  else None), 

P_Ready+((ptp, osseq, osdistr, mtp, mid, at, pt + osmachinetime[mtp][osseq[0]], 

'@'+str(sys_time))), M_Idle+((mtp, mid, cfg, mbf+1, bfsz, stg, sys_time, it, ot + 

(sys_time - tsm), '@'+str(sys_time)) if mbf == (bfsz -1) else None)]* [False] 

net Transport () : 

    [P_Ready-((ptp, osseq, osdistr, mtp, mid, at, pt, ptstamp)), P_Arrived+((ptp, 

osseq[1:], osdistr[1:], mtp, mid, at, pt, '@'+str(sys_time)))] * [False] 

# main process with one instance of each net 

M_Mount() | M_Process() | M_Unmount() | Transport() 

 

Figure 7.6.  CPN Model for the RMS Specified in the ABCD Language 
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Table 7.1.  Attributes of the Machine Object in the OPM/H Model 

No. Attribute  Description Value 

type 

Possible values 

1 machine_type(

mtp):  

Machine types int  1 or 2 

2 machine_id 

(mid) 

A unique id for each type of 

machine 

int [1, maximum 

number of available 

machines for each 

machine type) 

3 machine_confi

guration(cfg) 

Machine configuration id int [1, 5] for machine 

type 1,[1, 4] for 

machine type 2 

4 buffer_size(b

fsz) 

Buffer capacity, i.e., the number 

of part that can be processed 

simultaneously on a machine. It 

equals to the number of spindles 

of a machine in this particular 

example 

int [1, 4] 

5 stage_assignm

ent(stg) 

The stage that the machine is 

installed   

int [1, 10] 

6 cost Cost of the machine int Refer to Table A5 

for the set of 

possible values 

7 avaliable_buff

er_space(mbf) 

Buffer space left int [0 to buffer size] 

8 accu_idle_tim

e(it) and  

Accumulated idle time int [0, ) 

9 accu_operatio

n_time(op) 

Accumulated operation time int [0, ) 

10 machine_time_

stamp(tsm) 

Time stamp of the machine int [0, ) 
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Table 7.2.  Attributes of the Part Object in the OPM/H Model 

No. Attribute  Description Value type Possible values 

1 part_type(pt

p) 

Part type int 7 or 11 

2 os_sequence(

osseq) 

The sequence of operation 

cluster setups to be processed for 

the part 

int list Computed 

according to the 

algorithm in [55] 

3 os_stage_dis

tribution(os

distr) 

The distribution of the sequence 

of operation cluster setups 

among available stages 

int list Computed 

according to the 

algorithm in [55] 

4 Binding_mtyp

e(mtp) 

The machine type that the part is 

mounted to 

int Same as attribute 1 

in Table 7.1 

5 Binding_mid(

mid) 

The machine id that the part is 

mounted to 

int Same as attribute 2 

in Table 7.1 

6 arrival_time

(at) 

The time that the part is first 

mounted 

int [0, ) 

7 accu_process

ing_time(pt) 

Accumulated processing time of 

the part 

int [0, ) 

8 ptime_stamp(

tsi) 

Time stamp of the part int [0, ) 

 

 

 

The CPN model is worth a closer look. Initially, tokens representing parts are all 

at the place P_ready simulating that they are ready to be moved to the next stage 

(which may be the first stage) and tokens representing machines are all at the place 

M_Idle simulating the fact that all machines are available before production begins. A 

token representing a part (or a part token in-short, hereafter) is moved from the place 

P_ready to the place P_Arrived when the transition MHE_Transport fires 

simulating that the material handling equipment moves a part from a stage where the part 

has just been processed to the next stage where the part should be processed according  to  
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      (a) 

      (b) 

      (c) 

      (d) 

Figure 7.7.  Examples of Information Set at the Property Sheet of OPCAT 
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the OS assignment. As indicated in the input and out arc inscriptions of the transition 

MHE_Transport, when this transition fires, the input token’s osseq and osdistr 

attribute both have their head values of their respective list removed thus having the 

information regarding the remaining OSs and their corresponding stage assignments 

updated. Within each stage, a part goes through the M_Mount, M_Process, 

M_Unount, and MHE_Transport processes and iterates like this for all stages that the 

part should be processed. A part is finished when the corresponding part token reaches 

the place P_Arrived and when its ossseq, and osdistr list are both empty, 

signaling no further processing is needed. 

Although there is only one set of transitions in the CPN model, they can still 

represent actions of all stages of the RMS, thus allowing the modeling of concurrent 

behavior, as long as bindings can be concurrently enabled. For example, the set of tokens 

on the place P_mounted represent that multiple parts can simultaneously be at the 

mounted state, each of which may belong to a different stage. The transition 

M_Process can concurrently enabled for all tokens on the place P_Ready. The firing 

of a transition takes no time and there can be at most one transition being fired at each 

simulation step according to the CPN semantics. Hence whether transitions fires 

sequentially or concurrently makes no difference in the resultant system states. The result 

of using multiple M_Process transitions firing sequentially is the same as that of using 

just one M_Process transition firing multiple times. Where a part is mounted is 

reflected by which machine it is bound to as suggested by the value of the corresponding 

part token’s mtp and mid attributes. These attribute values are determined each time the 

transition M_Mount is fired.  

The transition M_Mount has a guard inscription. Hence it can only fire when the 

next stage that a part needs to go (as suggested by the head value of the part token’s 

osdistr list attribute) matches the value of the stage attribute (stg) of a machine 

token. Each time the transition M_Mount fires, the matching machine token’s available 

buffer (represent by mbf) is decreased by 1. A machine token is moved from the place 

M_Idle to the place M_Working when its buffer is full simulating the situation that a 

machine is fully loaded (thus not available for mounting any more) and begins to process 
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parts. Hence, the bfsz attribute of a machine token simulates the product bunch that a 

machine can simultaneously handle. The transition M_Unmount has a reverse effect as 

that of the transition M_Mount. Which machine’s buffer is reduced when the transition 

M_Unmount fires depends on the value matching of the mtp and mid attributes of a part 

token and a machine token. 

A time delay is added after the transition M_Process is fired (by function Proc 

in the model shown in Figure 7.5 or by output expression in the model shown in Figure 

7.5) representing the time needed to process a part. This is the only transition in this CPN 

model that changes the time stamp of a token. The time needed for other processes is 

omitted to simplify the problem. The idle time (it) and operation time (ot) attributes of 

a machine token keep tracking the accumulated idle time and operation time, 

respectively, of the machine represented by the token. These attributes, therefore, can be 

used to measure the resource utilization. The final value of a part token’s time stamp 

minus the arrival time of the token (represented by the value of the token’s at attribute) 

represents the total time that the part is in the system. The total machine time needed for 

processing a part is fixed for each part type as determined by the sum of the standard 

machine time corresponding to the set of OSs assigned for the part. The difference 

between a part’s total time in system and its total processing time is the time that a part 

spent in waiting. The smaller this time is the more efficient the RMS system is. 

The generative class model like the one presented in Figures 7.3 and 7.4 can 

simplify the problem representation and alternative generation by grouping a set of 

variable elements into one representation. This is achieved by identifying variable 

elements as object attributes and encoding structural information into attribute values as 

much as possible. The rational of such approach is that, given the proposed architecture 

alternative method, it is much easier to create object instances, even with complicated 

attributes, than to create a structure (i.e., a set of interconnected objects and, possibly, 

processes). For example, the production stage could have been modeled as an object with 

machines and OS as its attributes. Accordingly, the alternative way of representing the 

RMS is presented in Figure 7.8 through Figure 7.10. The problem with such RMS models 

is that there must be a representation for each individual stage in the OPM model. 

Consequently, each RMS configuration with a different OS sequence distribution will  
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Figure 7.8.  An Alternative Way to Model the RMS - Un-fold RMS 

 

 

 

 
Figure 7.9.  An Alternative Way to Model the RMS - Zoom-in into Manufacturing 

Process 
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Figure 7.10.  An Alternative Way to Model the RMS - Zoom-in into OS1 Process 

 

 

 

need a unique structure to be expressed by the OPM model. Generating architecture 

alternatives for such kind of system model requires executing a lot of variant generation 

operations, making solving the problem rather difficult. Since a production stage is a 

virtual concept, by merging stage information to the attributes of machines (mstg) and 

parts (osseq and osdistr). Both the problem representation and alternative 

generation can be greatly simplified.  

From the OPM/H model presented in Figures 7.3 and 7.4, the dimensions of the 

design space of the RMS configuration can be expressed explicitly. The main dimensions 

of the design space are (Machine × Part). The sub-dimensions of Machine are 

(machine_type(mtp) × machine_configuration(cfg) × 

stage_assignment(stg) × number_of_machine). The sub dimensions of 

Part is (part_type(ptp) × os_sequence(osseq) × 

os_stage_distribution(osdistr)). Transit (or dynamic) attributes of an 

object only make sense when the system is running and therefore should not be counted 
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in the dimensions of the system design space. The transit attributes for the machine object 

in the OPM/H model presented in Figure 7.4 include 

avaliable_buffer_space(mbf), accu_idle_time(it), 

accu_operation_time(op), and machine_time_stamp(tsm). For the part 

object, the transit attributes include arrival_time(at), binding_mid(mid) , 

binding_mtype(mtp) , arrival_time(at) , 

accu_processing_time(pt) , and ptime_stamp(tsi). 

The constraints between attributes of objects within the OPM/H model presented 

in Figures 7.3 and 7.4 have not been captured. For example the information in the 

operation precedence graph shown in Figure A1 cannot be captured by such model. In 

order to capture such information, the extended (or advanced) feature model [209–213] 

concepts must be implemented. Such advanced feature models not only allow features to 

have attributes, which can have domain and values, and but can also capture the complex 

relationships and constraints among features and feature attributes. 

7.1.3. Building Analysis Models.    Two quantitative objects are considered here. 

One of them is obtained from mathematical equation; the other is derived from 

simulation. The details are as follows: 

 1) The capital cost of the configuration is computed from the following equation: 

    ∑ (        (  ))
  
       (7.1) 

where CC is the capital cost of the configuration,    is the number of machines in stage s, 

     (  )is the cost of machine M at stage s when configured at configuration c, and 

NS is the number of stages in the system.  

2) The average unit production time and production rate is derived from the 

information obtained from the simulation of the CPN model and computed according to 

the following equations: 

PTu = Tsys  / NPf     (7.2) 

PR = 3600 / PTu     (7.3) 

Where PTu is unit production time (seconds), PR is production rate (parts/hour), Tsys is 

the model time of the CPN model when the simulation is end, and NPf is the number of 

parts finished, which is the number of tokens at the place P_Arrived with their 

ossseq and osdistr list both empty when the simulation is end. 



 

 

125 

7.1.4. Building Optimization Models.  As concluded in [214] and referenced in 

[55], a special case of this optimization problem with fixed machine configurations, fixed 

order of operations and no consideration of capacity requirements was proven to be NP-

hard. Therefore the GA, as a meta-heuristic global optimization algorithm, is good for 

solving this problem. Since this problem is a multi-objective optimization problem, the 

search algorithm adopted here is the non-dominated sorting genetic algorithm II (NSGA-

II) [215]. NSGA- II is a modified version of the NSGA, a popular non-domination based 

genetic algorithm for multi-objective optimization. NSGA- II reduces the computational 

complexity of NSGA, incorporates elitism and requires no sharing parameter to be 

chosen a priori [215].  

As suggested in Section 5.1.3.2, the chromosome encoding of the RMS model 

only needs to capture the variable elements of the RMS model. According to the design 

space analysis conducted at Section 7.1.2, the information regarding these variable 

elements can be summarized as: (1) the OS sequence for each part type, (2) the 

distribution of OS sequence over the available production stages, (3) the selected 

machine type and its configuration and multiplicity for each stage. A chromosome can be 

constructed accordingly as shown in Figure 7.11. Each element of the chromosome can 

be a real number representing a selected value of the respective design variables. This 

chromosome encoding scheme coincides with the one proposed in [55]. In order to 

facilitate the comparison of the proposed approaches in this research with the work done 

in [55], the exactly same real encoded (ranging from 0 and 1) chromosome is used in this 

dissertation. A more intuitive string representation of a configuration solution can be 

developed as suggested in [55] (Figure 7.12). Such string representation starts with one 

element representing the number of stage, followed by NS number of segments (i.e., 

groups of elements), each of which represents a configuration of a stage. Within each 

segment, there is a list of elements representing the machine, the machine configuration, 

the number of machines, and the OS assignment for each part, respectively. Therefore the 

total length of each segment is (3 + NP), where NP is the number of part. 

7.1.5. Development of Problem-Specific Modules in Python.   Three problem- 

specific Python modules have been developed for solving the RMS problem. The 

RMS_DataPcs  module processes the raw input data in order to generate all kinds of 
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Figure 7.11.  Chromosome Encoding of the Design Variables for Solving the RMS 

Problem ([55]) 

 

 

 

 

Figure 7.12.  String Representation of a Solution ([55]) 

 

 

 

data required by both the system model and the alternative generation. It contains an Rms 

class along with some other classes and functions needed by the Rms class. The Rms 

class contains the data model for the RMS problem and the functions needed to compute 

and generate various kinds of data. The RMS_data_provider module is responsible 

0.11 0.32 0.35 0.03 0.83 0.42 0.37 0.36 0.74 0.58 0.12 0.22 0.19 
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m: Machine 

c: Machine configuration 
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o: Operation clusters setup 

 

OS: Operation cluster setup 

NP: Number of parts 
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MC: Machine configuration 
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for loading the raw input data for constructing the RMS data mode.  It runs on top of the 

RMS_DataPcs module and uses the services provided by it to create an rms object of 

the Rms class to contain all data regarding the RMS required by other programs. The 

RMS_GA_problem module encompasses several functions to support the running of the 

main GA program. It contains an Rms_dgn class, which provides the generator (for 

generating candidates) and evaluator (for computing objective functions) functions 

needed by the main GA program. The Rms_dgn class also contains a function to decode 

a chromosome into a string representation of the configuration solution in the format 

illustrated in Figure 7.12, which is both human and machine readable. It also contains a 

function to construct a CPN model using the decoded chromosome (i.e., string 

representation). The simulation of a CPN model is invocated by the evaluator function.  

A CPN simulation is end when there are no more enabled binding.  The simulation result 

is then returned in the form of final markings. The evaluator then use the information 

derived from the final marking to compute one of the objectives, the unit production time. 

The other objective, system cost, is computed using the machine cost information stored 

in the rms object of the Rms class according to the machine information contained in 

the decoded chromosome. More objectives can be used by defining more objective 

functions within the Rms_dgn class and adding them to the evaluator function.  As 

suggested in Section 7.1.2, the simulation of a CPN model can provide several 

performance metrics, which can also be used to construct objective functions. 

The CPN model for the RMS was initialized with 24 tokens for part A and 36 

tokens for part B. The ratio between these two numbers is in proportion to the production 

rate requirements of these two types of parts. The parameters used in the GA are 

summarized in Table 7.3. 

7.1.6. Results and Discussion.  The results  (Pareto-front or population)  can be 

plotted after the GA finishes running. Figure 7.13 shows the Pareto-front obtained from 

an optimization run, which contains 5 non-dominant solutions. The user can select one of 

them as the final solution based on more detailed analyses. This research is only intended 

to provide such reduced solution space. The string representations of these five solutions 

are provided in Figure 7.14. One of them is illustrated graphically on Figure 7.15. Figure 

7.16 demonstrates the convergence curve of the GA for the two objectives. 
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Table 7.3.  Parameters Used in the GA 

Parameter Value 

GA algorithm NSGA-II 

Population size  80 

Number of generations 80 

Crossover operator 

 

blend_crossover (blx_alpha: 0.1,  blx_points: 1, 2 or 5 to 14),  

simulated_binary_crossover (sbx_distribution_index: 5), 

heuristic_crossover, arithmetic_crossover 

crossover_rate 0.9 

Mutation operator gaussian_mutation (gaussian_stdev: 0.3) 

nonuniform_mutation 

mutation_rate 0.1 

selector tournament_selection (tournament_size: 5) 

replacer nsga_replacement 

terminator generation_termination (max_generations: Number of 

generations), evaluation_termination (max_evaluations: 

5000), time_termination (max_time: 72,0,0) 

archiver best_archiver 

observer file_observer  

* The key words used in the Inspired package are in italic  

 

 

 

For this RMS problem, with 60 (24+60) part tokens initialized, each simulation 

run of a CPN model took approximately 1 minutes to finish (by using an Intel CORE i5 

computer with 4 Gb RAM). It included both the simulation time and the time it took to 

parse the CPN model (Every instance of the CPN model, specified by the ABCD 

language, has to be parsed by the ABCD parser and then be built using the modified nets 

module in the current implementation). With a CPN initialized with the same number of 

part tokens, the CPN Tools took less than 3 seconds to finish the simulation. Therefore, 

the current code is not efficient  enough and there should be a large space for improvement. 
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Figure 7.13.  The Pareto-front of the Solutions Found Using GA for the RMS Problem 

 

 

 

Alternative 1 (17.12, 17.33)  Alternative 2 (17.46, 17.18) 

S 1 2 3 4 5 6 7  S 1 2 3 4 5 6 7 

M 1 1 1 1 1 1 2  M 1 1 1 1 1 2 1 

MC 2 2 5 5 3 5 3  MC 1 3 5 2 5 4 2 

NMS 2 1 3 5 1 2 3  NMS 3 2 3 1 4 3 1 

OSA 1 15 0 5 0 0 18  OSA 1 15 0 0 5 18 0 

OSB 1 0 16 5 12 9 6  OSB 1 15 5 13 9 6 11 

                 Alternative 3 (17.72, 15.16)  Alternative 4 (18.51, 14.86) 

S 1 2 3 4 5 6 7  S 1 2 3 4 5 6 7 

M 1 1 1 1 1 1 2  M 1 1 1 1 1 1 2 

MC 2 1 5 5 5 3 3  MC 2 1 5 5 5 4 4 

NMS 1 1 5 2 5 1 3  NMS 1 1 5 2 5 1 3 

OSA 0 1 15 0 5 0 18  OSA 0 1 15 0 5 0 18 

OSB 1 0 16 9 5 12 6  OSB 1 0 16 9 5 12 6 

 

Figure 7.14.  Near-Optimal Solutions in the Pareto-front 
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Figure 7.15.  Illustration of One of the Near-Optimal Solution 

 

 

 

 

 Figure 7.16.  Convergence Curve of the NSGA-II in Solving the RMS Configuration 

 

 

 

For example, eliminating the need of the ABCD parser can at least save the time to parse 

and build the CPN model. Currently it takes approximately 140 hours to run the GA for 

80 generations with a population size of 80. Increasing the population size and number of 

generations can yield better solutions as implied by the work in [55] where the population 

size is 100 and number of generations is 150.  

0

5

10

15

20

25

30

35

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

Sys Cost

Unit Production Time

Cost*0.5 + U. P. T.*0.5

Population average

  

M: Machine/Station 

MC: Machine Configuration  

OS: Operation Clusters 

   Setup  

S: Stage 

M1   

  

  M1 

  

M1 

M1 

 

0 

OS1 

OS15 

OS16 

OS1 

0 

S1 S3 S2 

MC1
2
 MC1

5
 MC1

1
 

M1 

 
  

M1   

 

 M1 

M2

  

 

0 

OS9 

 

 0 

OS12 

 

OS5 

OS5 

S4 

OS12 

S6 

OS5 
S5 

MC1
5
 

 

MC1
3
 

 

MC1
5
 

M2

w 
 M2 

 

 OS18 

OS6 

 

S7 

 MC2
3
 

 

 

 M

1 

M1 

 M1 

 

M

C2
3
 M1 

M

1 

M1 

M1 

M1 



 

 

131 

There are a number of factors affecting the computation of the performance 

metrics. A near-optimal architecture is needed for such analyses in order for the result to 

make sense. Hence the optimum solution present in [55] is used to facilitate the 

comparison. Its configuration has already been shown in Figure 7.1.  

As indicated in equation (7.2) and (7.3), the computation of the unit production 

time and the production rate has not eliminated the impact of the ramp-up period. Since 

the system is not fully loaded during the ramp-up period, the results computed from 

equation (7.2) or (7.3) do not truly reflect the unit production time or the production rate. 

Leaving out the first few finished parts from the computation can reduce or remove the 

impact of the ramp-up period but will require more part tokens to be used in the CPN 

simulation and, therefore, has not been implemented in the result shown above. The 

impact of the ramp-up period on the computation of the unit production time or the 

production rate can also be reduced by using more part tokens in the CPN simulation. 

The more part tokens used, the less impact the ramp-up will have, and the closer the 

equation (7.2) and (7.3) will be to the true values. The impact of increasing part tokens on 

the computation of the unit production time and the production rate is demonstrated in 

Table 7.4. The simulations used the architecture presented in Figure 7.1 (i.e., the optimal 

one in [55]) initialized with 60, 90, 300 and 600 part tokens in each simulation run, 

respectively.  

Using more part tokens in the CPN simulation itself can improve the accuracy of 

the computed results because the variance will be reduced as the sample size increase. 

Similarly, running the simulation multiple times can also result in better accuracy but the 

performance margin is small because the randomness dose not play a big role in this 

problem setting. Table 7.5 shows the results obtained from 10 CPN simulation runs using 

the same architecture with 60 part tokens in each run. As can be seen that the standard 

deviation is really small and therefore the accuracy from one simulation run should be 

acceptable. There is another factor that can make the production rate computed from 

equation (7.3) lower than it should be. Some machines in the system can handle multiple 

parts simultaneously. In the current implementation, such machines require all needed 

parts to be mounted before it can begin processing. If the number of part tokens used in 

the simulation is too small, it happens that some parts are not able to form complete batch  
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Table 7.4.  Impact of the Number of Part Tokens Used in the CPN Model on the 

Computation of the Unit Production Time and the Production Rate 
# finished part 60 84 300 600 

Finish time 1290 1630 4730 9050 

Unit production time 21.50 19.40 15.77 15.08 

Production rate 167.44 185.52 228.33 238.67 

 

 

 

 

Table 7.5.  Statistics from 10 CPN Simulations 

Exp. # 1 2 3 4 5 6 7 8 9 10 Mean STD 
STD 

/Mean 

Finish time 1270 1230 1290 1230 1310 1210 1310 1290 1310 1270 1272 37.059 0.029 

# finished part 60 60 60 60 60 60 60 60 60 60 60 0.000 0.000 

Unit production 

time 
21.17 20.5 21.5 20.5 21.83 20.17 21.83 21.5 21.83 21.17 21.2 0.618 0.029 

Production rate 170.1 175.6 167.4 175.6 164.9 178.5 164.9 167.4 164.9 170.1 169.9 5.022 0.030 

 

 

 

and eventually cannot have all the required OSs processed. Such tokens do consume 

some processing time and machine resources but are left out from equation (7.2 and 7.3). 

Hence the result obtained from equation (7.3) is lower (or higher in equation (7.2)) than it 

should be.   

By comparing the solutions obtained using the approach proposed in this research 

(Figures 7.13 and 7.14) with the one developed in [55] (as shown in Table 7.5), it can be 

seen that the solutions obtained in this research has lower unit production time (i.e., 

higher production rate) but higher cost ($17.12 million obtained here vs. $ 13.92 million 

obtained in [55]) than the best solution obtained in [55]. However, the simulation results 

presented in Table 7.4 show that the best solution obtained in [55] could not actually 

satisfy the production rate requirements, which is 300 (180 + 120) parts per hour. This 

conclusion holds even when running the simulation with 600 part tokens, where impact 

of the ramp-up period should be very small. A closer examination of the final marking 

obtained from the CPN simulation of an RMS configuration can explain why the 

calculated production rate is lower than expected.  Table 7.6 and 7.7 present summaries 

of the final markings, along with some calculations, obtained from a CPN simulation 
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with 60 part tokens using the best configuration obtained in [55] (Figure 7.1). The 

resource utilization rate of each machine shown in Table 7.6 suggests that most of the 

machines were not fully utilized during the simulation period. Therefore, the production 

rate of the entire production line is usually lower than the capacity of any of its stage.   

Furthermore, Table 7.7 indicates that the accumulated waiting time of a part is not zero. 

Such observation happens to apply to all parts being processed by the RMS as shown in 

Table 7.7. The machine time of each stage is usually not the same. The number of 

machine in each stage is a discrete number. Therefore, the production rate of each stage 

may not match each other exactly. Accordingly a part has to spend some time in waiting 

between stages. For such reasons, a design with each stage satisfying the minimum 

production rate requirements usually won’t be able to satisfy the production rate 

requirements as far as the entire production line is concerned. From this example, it can 

be concluded that the scale of the waiting time spent by parts and the effective production 

rate of the production line cannot be accurately assessed without using simulations like 

the one provided by CPN. 

 

 

 

 

Table 7.6.  Final Marking on the Place M_Idle Obtained from One Simulation Run of 

the CPN Model for the RMS 

 mtp mid cfg mbf bfsz stg tsm it ot Time 

stamp 

Resource 

Utilization 

1 1 1 3 3 3 1 600 0 600 600 100% 

2 1 2 4 4 4 2 940 60 880 940 94% 

3 1 3 5 1 1 3 980 260 720 980 73% 

4 1 4 5 1 1 3 920 200 720 920 78% 

5 1 5 5 1 1 3 1000 280 720 1000 72% 

6 1 6 5 1 1 3 1000 220 780 1000 78% 

7 1 7 5 1 1 3 980 320 660 980 67% 

8 1 8 2 2 2 4 1010 470 540 1010 53% 

9 1 9 5 1 1 5 1070 350 720 1070 67% 

10 1 10 5 1 1 5 1070 350 720 1070 67% 

11 1 11 3 3 3 8 1270 550 720 1270 57% 

12 2 1 3 3 3 6 1090 370 720 1090 66% 

13 2 2 3 3 3 7 1190 470 720 1190 61% 

14 2 3 3 3 3 7 1150 430 720 1150 63% 
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Table 7.7.  Final Marking on the Place P_Arrived Obtained from One Simulation Run 

of the CPN Model for the RMS 

# 
ptp at pt 

finish 

time 
wt 

Time in 

System  
# ptp at pt 

finish 

time 
wt 

Time in 

System 

1 11 0 380 450 70 450 

 

31 7 300 240 700 160 400 

2 11 0 380 450 70 450 

 

32 7 300 240 790 250 490 

3 11 0 380 450 70 450 

 

33 11 300 380 730 50 430 

4 11 30 380 510 100 480 

 

34 7 330 240 700 130 370 

5 11 30 380 510 100 480 

 

35 7 330 240 790 220 460 

6 11 30 380 510 100 480 

 

36 11 330 380 890 180 560 

7 7 60 240 430 130 370 

 

37 7 360 240 610 10 250 

8 7 60 240 430 130 370 

 

38 11 360 380 810 70 450 

9 11 60 380 570 130 510 

 

39 11 360 380 950 210 590 

10 11 90 380 570 100 480 

 

40 7 390 240 1090 460 700 

11 11 90 380 570 100 480 

 

41 11 390 380 810 40 420 

12 11 90 380 890 420 800 

 

42 11 390 380 1270 500 880 

13 7 120 240 520 160 400 

 

43 7 420 240 700 40 280 

14 7 120 240 520 160 400 

 

44 11 420 380 950 150 530 

15 11 120 380 630 130 510 

 

45 11 420 380 1270 470 850 

16 7 150 240 430 40 280 

 

46 7 450 240 910 220 460 

17 11 150 380 630 100 480 

 

47 7 450 240 1090 400 640 

18 11 150 380 730 200 580 

 

48 11 450 380 1270 440 820 

19 7 180 240 1000 580 820 

 

49 11 480 380 950 90 470 

20 11 180 380 630 70 450 

 

50 11 480 380 1050 190 570 

21 11 180 380 810 250 630 

 

51 11 480 380 1210 350 730 

22 7 210 240 610 160 400 

 

52 7 510 240 790 40 280 

23 7 210 240 1000 550 790 

 

53 11 510 380 1110 220 600 

24 11 210 380 730 140 520 

 

54 11 510 380 1210 320 700 

25 7 240 240 520 40 280 

 

55 7 540 240 1000 220 460 

26 7 240 240 610 130 370 

 

56 7 540 240 1090 310 550 

27 7 240 240 910 430 670 

 

57 11 540 380 1110 190 570 

28 7 270 240 910 400 640 

 

58 11 570 380 1050 100 480 

29 11 270 380 890 240 620 

 

59 11 570 380 1110 160 540 

30 11 270 380 1050 400 780 

 

60 11 570 380 1210 260 640 

Mean: 

      

202.5 526.5 

Standard deviation  

      

144.6 152.6 
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7.2. THE APOLLO PROGRAM (RETROSPECTIVE) 

The Apollo program was a benchmark problem in the discipline of systems 

engineering and has been very well studied. To further demonstrate the application of the 

proposed approach, a retrospective study of the manned lunar landing system architecture 

design for the Apollo program is made here. The actual architecture design for such a 

system is very complicated involving many design factors. Since the purpose is 

demonstration, only very limited design aspects are considered in this study. Even 

though, the information needed to support the architecture reasoning task is not fully 

available. Moreover, a solution based on such a scaled down problem, with only limited 

aspects considered, may not agree with the one obtained in the real-world scenario. 

Therefore, rather than trying to find a design solution, this study focuses on 

demonstrating how to use the proposed modeling approach to develop a holistic 

architectural model that supports design space specifications and alternative generations 

(with structural difference between alternatives). 

7.2.1. Problem Definition and Analysis.  The primary objective of the Apollo 

program is to accomplish the initial manned lunar landing and return of a United States 

citizen before the end of the 60s decade. Such objective include three sub-goals: manned 

lunar landing, crew return, and a one decade time limit [216–218]. 

An architecture development can start from analyzing the initial, final, and critical 

mission states that the system need to achieve and then find the means to achieve the 

transitions between these states. Achieving lunar landing implies conquer the distance 

obstacle.  Therefore, the positions of the lunar landing system can be modeled as critical 

states to be considered in the design process. For the Apollo mission, the initial state of 

the lunar landing system is the Earth launching site, the final state is the Earth landing 

site, and the critical mission state in between is the moon surface. The trajectory of the 

lunar landing system describes the trace of the intermediate states between the initial state 

and the critical mission state and between the critical mission state and the final state.  

In a continuous space, such trajectories are infinite.  For the initial architecture 

design phase, a precise trajectory is not necessary. Hence the description of trajectory can 

be simplified by identifying it as discrete design space. As stated in [1], Frazolli [219] 

developed an approach to quantizes the description of continuous dynamic systems into a 
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set of motion primitives. This approach describes the motion of an object using two 

motion primitives. One is repeatable motions, which are motions at constant speeds or 

constant accelerations. The other is finite time motions, which are other (non-constant) 

motion speeds and accelerations.  Using such method, the entire trajectory for the Apollo 

mission can be described using Figure 7.17 as suggested in [1]: 

 

 

 

 

 Figure 7.17.  Discrete-Space Representation of the Trajectory of the Manned Lunar 

Landing System ([1]) 

 

 

 

Different motion trajectories may require lunar landing system to have different 

operation sequences during the journey, which in turn require the support of different set 

of equipment and different system configurations. A selection of the trajectory and 

operational sequence is called a mode in the Apollo program [216], [217]. The choice of 

mode affects not only design requirements for many system elements but also the 

schedule and program risks. Therefore the mode selection is regarded as the most import 

design factors according to many studies and history records [217], [218], [220]. 

A mode includes both a launch vehicle capability and a required set of maneuvers 

[218]. According to the initial Apollo program studies [218], the major modes considered 

for the initial manned lunar missions are: 

Surface 

Orbit Trim 

Trajectory 

Orbiting Orbiting Departing 

Direct 

Ascent 

Transiting 

De-Orbiting 

Orbiting Attaining 
Direct Decent 

Orbiting Entering 
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1. Lunar Orbit Rendezvous (LOR) using the C-5 launch vehicle and the 

present Apollo Command Module. 

a. 1-day stay-time on the moon with 24-hour contingency 

b. 7-day stay-time on the moon 

2. Earth Orbit Rendezvous (EOR) using the C-5 launch vehicle and the 

present Apollo Command Module. 

3. Direct Flight (DF / Liquid Nova) using the Liquid Nova or C-8 launch 

vehicle and the present Apollo Command Module. 

a. 8 F-1, 9 J-2, 1 J-2 [C-8 (9)] 

b. 8 F-1, 5 J-2, 1 J-2 [C-8 (5)] 

c. 8 F-1, 2 M-1, 1 J-2 [Nova] 

4. Direct Flight (DF/C-5) using the C-5 launch vehicle and a smaller, 

modified Command Module. 

5. Direct Flight (DF / Solid Nova) using the Solid Nova launch vehicle 

and the present Apollo Command Module. 

A manned lunar landing system is comprised of a launch vehicle and a spacecraft. 

The launch vehicle is responsible for escape the Earth gravity. The spacecraft is 

responsible for the moon orbit entering and the remaining flying task plus the landing 

mission. The major design factor for selecting launch vehicle is its payload. Depending 

on the mission mode, the spacecraft can have different configuration and accordingly 

require different propulsion system. The lunar landing module should further consider 

parameters such as weights, size, mission duration, crew capacity.  

7.2.2. Architecture Modeling.   Based on the above analyses, a primary system 

architecture can be developed for the manned lunar landing system by identifying the 

system elements required by various mission operations. Such an architecture can be 

modeled using the OPM/H as shown in Figures 7.16. The overall manned lunar landing 

system is modeled as an OPM object, with a set of states corresponding to the progress of 

the mission. Among those states, are the initial state, Earth launch site, the final 

state, Earth landing site, the critical miss states, Moon landing site and 

Moon launching site, and a set of states describing the trajectory of the system in 

between. As presented in Section 7.2.1, the repeatable motions of the trajectory are 
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modeled as the states of the Manned lunar landing system object whereas the 

finite time motions of the trajectory are modeled as a set of OPM processes that change 

the states of the Manned lunar landing system object. Note that some of the 

finite time motions, i.e., the midcourse maneuvers and the orbiting maneuvers have been 

omitted in the model shown in Figure 7.18 for simplicity of representation. These two 

types of maneuvers maintain the state of the manned lunar landing system instead of 

making it transit to another state. Hence it is not that important for the problem 

considered here. Moreover, the system should have the capability to abort the mission at 

any state if necessary. Such aborting maneuvers are omitted too for simplicity.  For each 

of the maneuver (or operation) modeled as an OPM process, one or more system 

elements needed to support it are identified and connected to it using OPM instrument 

links. For example, the process MissionPerforming needs either Command Module 

(CM) or Lunar Excursion Vehicle (LEV). Therefore, two OPM objects representing them 

(CM and LEV) are connected to the process MissionPerforming using OPM 

instrument links. These two links are also joined by an OPM XOR representing that 

exactly one of them is needed.  

In the original design, the EOR and DF modes also use a Lunar Touchdown 

Module (LTDM) for executing the midcourse maneuvers and providing the Lunar 

Braking Module (LBM) thrust vector control. In this simplified architecture model, the 

functionality of the LTDM is combined with that of the LBM and only one 

representation, the LBM, is present on the model. The LOR mode can also use a two 

stage Service Module (SM) and a LEV, which is composed of a Lunar Excursion Module 

(LEM) and two fully-staged propulsion systems. The simplified architecture model 

present here makes no distinction between the two stages of the SM and uses a LEV to 

represent both the LEM and its propulsion systems. 

7.2.3. Design Space Analysis.   The architectural model shown in Figure 7.18 is a 

generative class model that can capture the design space. All design alternatives can be 

generated based on such model. One dimension of the design space is the mode. All 

possible maneuvers (modeled as OPM process) and system states are present on the OPM 

model (except for those left out intentionally as explained in Section 7.2.2). A possible 

mode is a sequence of interconnected maneuvers and system states interleaving each 



 

 

139 

 

 Figure 7.18.  OPM/H Class Model Representing the Architecture of the Manned Lunar 

Landing System Represented 

 

 

 

other along the sequence. When multiple processes originating from or joining the same 

state using the OPM result/consumption links, the relationships between these links  

should be specified (the relationship is “AND” by default). For example, there are three 

maneuver-state sequences between the state EarthLaunchSite and the state 

MidcourseMB. They are (1) (EarthOrbitAttaining – EarthOrbitMB – 

EarthRendezvous – Furled – EarthEscape), (2) (EarthDirect-

Ascending) and (3) (EarthOrbitAttaining – EarthOrbitMB – 

EarthEscape).  Several OPM XOR relations were used to connect related 

result/consumption links. Such usage of the OPM XOR relations suggests that exactly 

one of these sequences should present in a particular architecture alternative. The above 

CM: Command Module 

SM: Service Module 

LBM: Lunar Braking Module 

LEV : Lunar Excursion Vehicle 
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sequence (2) and (3) are mostly equivalent to each other so the sequence 3 is excluded in 

the discussions below. 

A mode outlines a profile of the Apollo mission and thus will determine a 

particular spacecraft configuration. The total weight of the spacecraft, along with the 

trajectory, will in turn determine the launch vehicle to be used. The major concerns in 

selecting the launch vehicle are the payload and the trajectory requirement. Table 7.8 

summarizes three major modes captured by the architecture model and the corresponding 

spacecraft configuration. It can be inferred from Table 7.8 that the both CM and SM are 

mandatory while both LBM and LEV are optional. Such mandatory/optional features 

have been specified using the participation cardinality on the OPM/H architectural model 

shown in Figure 7.18. The information in Table 7.8 further proves that the mission mode 

is the most critical factor in the architecture design of the lunar landing system as it has a 

significant impact on the requirements of other system elements. 

For each module within the spacecraft, there are also a set of parameters to be 

determined such as the propulsion system (which is related to thrust and mass fraction), 

mission duration, crew capacity, weight, and size. Depending on these parameters, there 

are a number of alternatives available for each of these modules. With such information, 

the dimensions of the design space of the manned lunar landing system and their domains 

can be briefly summarized in Table 7.9, where the data is obtained from [218]: 

Unlike the architecture model developed for the first application demonstration 

(Figures 7.3 and 7.4), The OPM/H architecture model shown in Figure 7.18 contains both 

structural variations (modes and system configurations) and object variations (the rest). 

Even for this small design space, it is still error-prone for humans to discover all possible 

modes (trajectories) and system configurations. Therefore, a CPN model is developed, for 

design space exploration, using the approach proposed in Section 5.2.2. Such CPN model 

is presented in Figure 7.19 (note that shorthand notations have been used for place names 

and transition names on the CPN model to save space). The place A_EarthlauS is the 

initial place where all variantions originate and is given one list type initial token, 

[A_EarthLauS]. After a simulation run, tokens representing the architecture 

alternatives discovered can be collected at the place A_EarthlanS, which is the only 

end place in this model.  The purpose of this CPN model is to assist the discovery of all 
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Table 7.8.  Major Modes of the Manned Lunar Landing System and the Corresponding 

Spacecraft Configuration 

Mode Sequence of maneuvers  Sequence of states Spacecraft 

configuration 

EOR Earth orbit attaining – Earth 

rendezvous – Earth escape – 

Moon direct descending – 

Mission performing – Moon 

direct ascending – Earth direct 

descending 

Earth launch site – Earth orbit 

Moon bound – fueled – 

Midcourse Moon bound – 

Moon landing site – Moon 

launching site – Midcourse 

Earth bound – Earth landing 

site   

LBM, 

CM,SM 

LOR Earth direct ascending – Moon 

orbit entering – Separating 

LEM – Moon braking touch 

down – Mission performing – 

Moon orbit attaining – Moon 

rendezvous – Moon escape – 

Earth direct descending 

Earth launch site – Midcourse 

Moon bound – Moon orbit 

Moon bound – LEM separated 

– Moon landing site – Moon 

launching site – Moon orbit 

Earth bound – Docked – 

Midcourse Earth bound – 

Earth landing site  

SM, CM 

LEV 

DF Earth direct ascending – Moon 

direct descending – Mission 

performing – Moon direct 

ascending – Earth direct 

descending  

Earth launch site – Midcourse 

Moon bound – Moon landing 

site – Moon launching site – 

Midcourse Earth bound – 

Earth landing site   

LBM, 

CM,SM 

 

 

 

 

structural variants so the values of each dimension of the design space are not included in 

this CPN model. In another word, this model is only intended to discover all possible 

combinations of the OPM processes, objects and links in the OPM/H model shown in 

Figure 7.18. The final marking at place A_EarthlanS, i.e., the token values 

representing the discovered architecture alternatives are summarized in Table 7.10. In   
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Table 7.9. Dimensions of the Design Space of the Manned Lunar Landing System 

Dimension  Domain 

Mode  LOR, EOR, DF 

Launch vehicle  C-5, C-8, Liquid Nova, Solid Nova 

 Extra Tank True, False 

LBM (propulsion) Pressured-fed hypergolic, Pressured-fed LOX/LH2, Pump-fed 

LOX/LH2   

SM (propulsion)  Pressured-fed hypergolic, Pressured-fed LOX/LH2, Pump-fed 

LOX/LH2   

CM 

  

  

  

Mission duration  2day, 7day 

Crew capacity  2 men, 3 men 

Weight 

(including SM) 

 11,228 lbs (NAA. 154 in.), 9,148 lbs (STL. 154 in.), 8,400 lbs 

(STL. 138 in.), 6,728 lbs (AMES. 138 in.) 

diameter  138 inch, 154 inch 

LEV  weight  5,475 lbs (Chance-Vought), 3,143 lbs (Manned S/C Center), 5,330 

lbs (Grumman-RCA),5,568 lbs (Martin), 

 

 

 

this table, an architecture alternative is shown as state-maneuver sequences along with 

the required system components (configuration) to support these maneuverers. The cells 

shaded with the same color share the same mode (state-maneuver sequences) but having 

different system configurations. An instance model representing a discovered architecture 

alternative (corresponding to alternative 12 in Table 7.10) is shown in Figure 7.20, which 

is a LOR system configuration. 

The system models (including OPM/H models developed using OPCAT and CPN 

models developed using CPN Tools) for both the RMS and the Apollo examples, the 

Python code developed for the RMS example, and a set of sample output archive files for 

the RMS example are presented in the attached CD as summarized in Appendix C. The 

statistics obtained from one run of the NSGA-II for the RMS example are also shown in 

Appendix B. 
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 Figure 7.19.  CPN Model Used for the Design Space Exploration 

 

 

 

Table 7.10.  Summary of Token Values at the Place A_Earthlans Representing the 

Architecture Alternatives Discovered 

No. Alternatives 

1 

1`[SCSM,A_EarthLauS,LV,EOrbitAttn,A_EOrbitMB,LV,T_Earth,PreLaunch,T_EOrbit

,ERendez,A_Fuled,LV,EEscape,A_MidCMB,SCSM,MOrbitEntering,A_MOrbitMB,SC

LBM,Braking,A_MoonLanS,SCCM,MissionPerf,A_MoonLauS,MDirectAsc,A_MidCE

B,SCCM,EDirectDescend,A_EearthLanS]++ 

2 

1`[SCSM,A_EarthLauS,LV,EOrbitAttn,A_EOrbitMB,LV,T_Earth,PreLaunch,T_EOrbit

,ERendez,A_Fuled,LV,EEscape,A_MidCMB,SCLBM,MOrbitEntering,A_MOrbitMB,S

CLBM,Braking,A_MoonLanS,SCCM,MissionPerf,A_MoonLauS,MDirectAsc,A_MidC

EB,SCCM,EDirectDescend,A_EearthLanS]++ 

3 

1`[SCSM,A_EarthLauS,LV,EOrbitAttn,A_EOrbitMB,LV,T_Earth,PreLaunch,T_EOrbit

,ERendez,A_Fuled,LV,EEscape,A_MidCMB,SCLBM,MDirectDescend,A_MoonLanS,

SCCM,MissionPerf,A_MoonLauS,MDirectAsc,A_MidCEB,SCCM,EDirectDescend,A_

EearthLanS]++ 

archt

archt

archt

archt

archt

archt

archt

archt1

archt1

archt

archt

archt2

archt
archt

archt

archt

archt1

archt

archt1

archt

archt

archt

archt

archt

archt

archt

archt

archt

archt

archt

archt

archt

archt

archt
archt

archt

archt

archt

archtarcht

archt1

archt1

archt

1`[SCLEV]

archt

archt

archt

archt

archt

archt
archt

archt
archtarcht

archt

archt

archt2archt^ [̂PreLaunch]^ [̂T_EOrbit]

archt1

archt1
archt1

archt1

archt1

archt2

archt1

archt1

archt

archt1

archt1

archt^^archt1^ [̂EDirectDescend, A_EearthLanS]

archt

archt^^archt1^ [̂MDirectAsc,A_MidCEB]

archt^^archt1^ [̂MEscape,A_MidCEB]

archt^^archt1^^archt2^ [̂MRendez,A_Docked]

archt^^archt1^ [̂MOrbitAttain,A_MOrbitEB]

archt

archt^^archt1^ [̂MDirectDescend, A_MoonLanS]

archt^^archt1^ [̂Braking, A_MoonLanS]

archt^^archt1^^archt2^ [̂SeperateLEV,A_LEVSep]

archt^^archt1^ [̂MOrbitEntering,A_MOrbitMB]

archt^^archt1^ [̂EdirectAsc, A_MidCMB]

archt^^archt1^ [̂EEscape,A_MidCMB]

archt^^archt1^^archt2^ [̂ERendez, A_Fuled]

archt^^archt1^ [̂EOrbitAttn,A_EOrbitMB]

archt

ORTT1 OR6T2

MOrbitEnt2 OR7T2OR7T1

A4

A2

A1

OR5T2OR5T1

OR4T2

OR4T1

OR3T1

O3T2

OT1T2OR1T1

PreLaunch

EOrbitAttn

ERendez

EDirectDescend

MRendez

(not ((mem  archt ERendez) orelse (mem  archt MDirectDescend))) andalso ((mem  archt SeperateLEV))

MDirectAsc

not (mem  archt1 SeperateLEV)

EEscape

Braking

MissionPerf

MOrbitEnt1 SeperateLEV

MDirectDescendEdirectAsc

OR6

ARCHT

AOP6

ARCHT

OR7

ARCHT

A4P2

ARCHT

A4P1

ARCHT

A2P2

ARCHT

A2P1

ARCHT

AO3P

ARCHT

AOP

ARCHT

A1P2

ARCHT

A1P1

ARCHT

OR5

ARCHT

OR4

ARCHT

OR3

ARCHT

A2P3

ARCHT

OR1

ARCHT

A_Fuled A_MidCMB

ARCHT

A_MOrbitMB

ARCHT

A_LEVSep

ARCHT

A_EOrbitMB

ARCHT

A_EarthLauS

1`[A_EarthLauS]

ARCHT

T_Earth

1`[T_Earth]

ARCHT

A_EearthLanS

ARCHT

A_MidCEB

ARCHT

A_Docked

ARCHT

A_MOrbitEB

ARCHT

ARCHT

ARCHT

SCLEV

1`[SCLEV]

ARCHT

SCCM

1`[SCCM]

ARCHT

SCSM

1`[SCSM]

ARCHT

SCLBM

1`[SCLBM]

ARCHT

T_EOrbit

ARCHT

LV

1`[LV]

ARCHT

A_MoonLanS

ARCHT

MOrbitAttain

archt^^archt1^ [̂MOrbitEntering,A_MOrbitMB]

not (mem  archt ERendez)

A_MoonLauS
archt^^archt1^ [̂MissionPerf,A_MoonLauS]

((mem archt SeperateLEV) andalso (archt1=[SCLEV])) orelse ((not (mem archt SeperateLEV)) andalso (archt1=[SCCM]))

((mem archt SeperateLEV) andalso archt1=[SCLEV]) orelse ((not (mem archt SeperateLEV)) andalso (archt1=[SCLBM]))

MEscape

((mem  archt SeperateLEV) andalso (mem  archt MRendez)) orelse (not (mem  archt SeperateLEV))

((mem  archt SeperateLEV) andalso (archt1 = [SCLEV])) orelse ((not (mem  archt SeperateLEV)) andalso (archt1 = [SCSM]))
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Table 7.10  Summary of Token Values at the Place A_Earthlans Representing the 

Architecture Alternatives Discovered (cont.) 

No. Alternatives 

4 

1`[SCSM,A_EarthLauS,LV,EOrbitAttn,A_EOrbitMB,LV,EEscape,A_MidCMB,SCSM,

MOrbitEntering,A_MOrbitMB,SCLBM,Braking,A_MoonLanS,SCCM,MissionPerf,A_

MoonLauS,MDirectAsc,A_MidCEB,SCCM,EDirectDescend,A_EearthLanS]++ 

5 

1`[SCSM,A_EarthLauS,LV,EOrbitAttn,A_EOrbitMB,LV,EEscape,A_MidCMB,SCLB

M,MOrbitEntering,A_MOrbitMB,SCLBM,Braking,A_MoonLanS,SCCM,MissionPerf,

A_MoonLauS,MDirectAsc,A_MidCEB,SCCM,EDirectDescend,A_EearthLanS]++ 

6 

1`[SCSM,A_EarthLauS,LV,EOrbitAttn,A_EOrbitMB,LV,EEscape,A_MidCMB,SCLB

M,MDirectDescend,A_MoonLanS,SCCM,MissionPerf,A_MoonLauS,MDirectAsc,A_M

idCEB,SCCM,EDirectDescend,A_EearthLanS]++ 

7 

1`[SCSM,A_EarthLauS,LV,EdirectAsc,A_MidCMB,SCSM,MOrbitEntering,A_MOrbit

MB,SCLBM,Braking,A_MoonLanS,SCCM,MissionPerf,A_MoonLauS,MDirectAsc,A_

MidCEB,SCCM,EDirectDescend,A_EearthLanS]++ 

8 

1`[SCSM,A_EarthLauS,LV,EdirectAsc,A_MidCMB,SCLBM,MOrbitEntering,A_MOrbi

tMB,SCLBM,Braking,A_MoonLanS,SCCM,MissionPerf,A_MoonLauS,MDirectAsc,A_

MidCEB,SCCM,EDirectDescend,A_EearthLanS]++ 

9 

1`[SCSM,A_EarthLauS,LV,EdirectAsc,A_MidCMB,SCLBM,MDirectDescend,A_Moo

nLanS,SCCM,MissionPerf,A_MoonLauS,MDirectAsc,A_MidCEB,SCCM,EDirectDesc

end,A_EearthLanS]++ 

l10 

1`[A_EarthLauS,LV,EOrbitAttn,A_EOrbitMB,LV,EEscape,A_MidCMB,SCSM,MOrbit

Entering,A_MOrbitMB,SCCM,SCLEV,SeperateLEV,A_LEVSep,SCLEV,Braking,A_M

oonLanS,SCLEV,MissionPerf,A_MoonLauS,SCLEV,MOrbitAttain,A_MOrbitEB,SCC

M,SCLEV,MRendez,A_Docked,SCSM,MEscape,A_MidCEB,SCCM,EDirectDescend,

A_EearthLanS]++ 

11 

1`[A_EarthLauS,LV,EOrbitAttn,A_EOrbitMB,LV,EEscape,A_MidCMB,SCLBM,MOrb

itEntering,A_MOrbitMB,SCCM,SCLEV,SeperateLEV,A_LEVSep,SCLEV,Braking,A_

MoonLanS,SCLEV,MissionPerf,A_MoonLauS,SCLEV,MOrbitAttain,A_MOrbitEB,SC

CM,SCLEV,MRendez,A_Docked,SCSM,MEscape,A_MidCEB,SCCM,EDirectDescend,

A_EearthLanS]++ 

12 

1`[A_EarthLauS,LV,EdirectAsc,A_MidCMB,SCSM,MOrbitEntering,A_MOrbitMB,SC

CM,SCLEV,SeperateLEV,A_LEVSep,SCLEV,Braking,A_MoonLanS,SCLEV,Mission

Perf,A_MoonLauS,SCLEV,MOrbitAttain,A_MOrbitEB,SCCM,SCLEV,MRendez,A_D

ocked,SCSM,MEscape,A_MidCEB,SCCM,EDirectDescend,A_EearthLanS]++ 

13 

1`[A_EarthLauS,LV,EdirectAsc,A_MidCMB,SCLBM,MOrbitEntering,A_MOrbitMB,S

CCM,SCLEV,SeperateLEV,A_LEVSep,SCLEV,Braking,A_MoonLanS,SCLEV,Missio

nPerf,A_MoonLauS,SCLEV,MOrbitAttain,A_MOrbitEB,SCCM,SCLEV,MRendez,A_

Docked,SCSM,MEscape,A_MidCEB,SCCM,EDirectDescend,A_EearthLanS] 

14 

1`[A_EarthLauS,LV,EOrbitAttn,A_EOrbitMB,LV,T_Earth,PreLaunch,T_EOrbit,ERend

ez,A_Fuled,LV,EEscape,A_MidCMB,SCSM,MOrbitEntering,A_MOrbitMB,SCLBM,B

raking,A_MoonLanS,SCCM,MissionPerf,A_MoonLauS,SCSM,MOrbitAttain,A_MOrbi

tEB,SCSM,MEscape,A_MidCEB,SCCM,EDirectDescend,A_EearthLanS]++ 

15 

1`[A_EarthLauS,LV,EOrbitAttn,A_EOrbitMB,LV,T_Earth,PreLaunch,T_EOrbit,ERend

ez,A_Fuled,LV,EEscape,A_MidCMB,SCLBM,MOrbitEntering,A_MOrbitMB,SCLBM,

Braking,A_MoonLanS,SCCM,MissionPerf,A_MoonLauS,SCSM,MOrbitAttain,A_MOr

bitEB,SCSM,MEscape,A_MidCEB,SCCM,EDirectDescend,A_EearthLanS]++ 
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Table 7.10.  Summary of Token Values at the Place A_Earthlans Representing the 

Architecture Alternatives Discovered (cont.) 

No. Alternatives 

16 

1`[A_EarthLauS,LV,EOrbitAttn,A_EOrbitMB,LV,T_Earth,PreLaunch,T_EOrbit,ERend

ez,A_Fuled,LV,EEscape,A_MidCMB,SCLBM,MDirectDescend,A_MoonLanS,SCCM,

MissionPerf,A_MoonLauS,SCSM,MOrbitAttain,A_MOrbitEB,SCSM,MEscape,A_Mid

CEB,SCCM,EDirectDescend,A_EearthLanS]++ 

17 

1`[A_EarthLauS,LV,EOrbitAttn,A_EOrbitMB,LV,EEscape,A_MidCMB,SCSM,MOrbit

Entering,A_MOrbitMB,SCLBM,Braking,A_MoonLanS,SCCM,MissionPerf,A_MoonLa

uS,SCSM,MOrbitAttain,A_MOrbitEB,SCSM,MEscape,A_MidCEB,SCCM,EDirectDes

cend,A_EearthLanS]++ 

18 

1`[A_EarthLauS,LV,EOrbitAttn,A_EOrbitMB,LV,EEscape,A_MidCMB,SCLBM,MOrb

itEntering,A_MOrbitMB,SCLBM,Braking,A_MoonLanS,SCCM,MissionPerf,A_MoonL

auS,SCSM,MOrbitAttain,A_MOrbitEB,SCSM,MEscape,A_MidCEB,SCCM,EDirectDe

scend,A_EearthLanS]++ 

19 

1`[A_EarthLauS,LV,EOrbitAttn,A_EOrbitMB,LV,EEscape,A_MidCMB,SCLBM,MDir

ectDescend,A_MoonLanS,SCCM,MissionPerf,A_MoonLauS,SCSM,MOrbitAttain,A_M

OrbitEB,SCSM,MEscape,A_MidCEB,SCCM,EDirectDescend,A_EearthLanS]++ 

20 

1`[A_EarthLauS,LV,EdirectAsc,A_MidCMB,SCSM,MOrbitEntering,A_MOrbitMB,SC

LBM,Braking,A_MoonLanS,SCCM,MissionPerf,A_MoonLauS,SCSM,MOrbitAttain,A

_MOrbitEB,SCSM,MEscape,A_MidCEB,SCCM,EDirectDescend,A_EearthLanS]++ 

21 

1`[A_EarthLauS,LV,EdirectAsc,A_MidCMB,SCLBM,MOrbitEntering,A_MOrbitMB,S

CLBM,Braking,A_MoonLanS,SCCM,MissionPerf,A_MoonLauS,SCSM,MOrbitAttain,

A_MOrbitEB,SCSM,MEscape,A_MidCEB,SCCM,EDirectDescend,A_EearthLanS]++ 

22 

1`[A_EarthLauS,LV,EdirectAsc,A_MidCMB,SCLBM,MDirectDescend,A_MoonLanS,

SCCM,MissionPerf,A_MoonLauS,SCSM,MOrbitAttain,A_MOrbitEB,SCSM,MEscape,

A_MidCEB,SCCM,EDirectDescend,A_EearthLanS] 

 

 

 

 
Figure 7.20.  An Instance Model Representing an Architecture Alternative (LOR System 

Configuration) 
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8. CONCLUSION AND FUTURE WORK 

This section first compares the proposed approach with other approaches in 

solving similar problems and then discusses the strengths, limitation, implementation 

concerns, and scalability of the proposed approach. The conclusions can then safely be 

drawn. This section also provides some insights into further development of the proposed 

approach and directions for future research. 

 

8.1. DISCUSSION 

8.1.1. Comparisons with other Approaches for Solving Similar Problems.  For 

solving the RMS configuration problem, a number of approaches have been discussed in 

Section 3.3. All these approaches developed some problem-specific models particularly 

for RMS, which cannot (or are very hard to) be generalized and applied to other systems. 

Moreover, all these approaches can only take into account very limited aspects in the 

objective space and limited factors and design variables in the design space due to the 

lack of a comprehensive (holistic) model. For example, the approaches proposed in [55], 

[57] used capital cost as the only objective for optimization. Their modeling approaches 

can only capture some static (or structural) aspects of the system and thus cannot support 

the assessment of many of the critical performance metrics that are associated with the 

behavioral aspects of the system (e.g., production rate, processing time, and resource 

utilization). Petri net based approaches [59–62], on the other hand, cannot capture, and 

thus cannot be used to assess, pure static (or structural) aspects of the system of interest.  

An optimization covering limited dimensions of the objective space while 

ignoring other, potentially critical, objectives tends to be biased. This is the common 

drawbacks of traditional optimization approaches that use no comprehensive system 

model. For example, with capital cost as the only optimization goal, the resulting system 

might use more dedicated machines, which, although cheap, may not have good 

modularity or convertibility.  

Moreover, optima are often obtained at somewhere near the boundaries in an 

optimization. Therefore, if there is a change in the boundary or it was poorly estimated, 

the optimization results obtained there might be invalid. For example, an optimization 



 

 

147 

towards minimizing capital cost only, may yield solutions that have either too many 

stages or too many machines in a stage, yet still satisfying the space constraints. Such 

solutions may leave no room for adding machines (e.g., when demand rate is to be 

increased) or adding stages (e.g., when a similar type of part with more features are to be 

added to the part family of the RMS). For scenarios, such as shorter demand periods, 

diversified products to be produced, or frequently changing demand rate, the capital cost 

objective is not as important as features such as modularity, convertibility, and 

scalability. In such cases, it is very important for the system model to capture more 

design information and to support the assessment of more objectives. The simple 

problem-specific models proposed in literature are not adequate for such purposes.  

When multiple objectives need to be considered, the usual solution is to develop 

multiple models for the system of interest, each of which being used to optimize certain 

aspect(s) of the system. The problem with such approaches is that multiple designs will 

be produced from these optimizations. Each of the design has certain objective(s) 

optimized. Integration of these designs into one final design not only needs extra efforts 

but also will almost certainly compromise some objective(s). The optimality of the 

integrated design is not guaranteed. The system needs to be reevaluated before the 

performance of the final design can be known. 

The holistic modeling approach, along with the search-based architecture 

development framework, proposed in this research allows more information to be 

captured in a single holistic model, which also supports CPN-based analyses and 

verification/validation. Such a model approach enables multiple performance objectives 

to be optimized and maintained using one integrated system model. 

8.1.2. Strengths and Weaknesses.  In the proposed holistic modeling approach, 

the OPM, CPN and feature model are used in a complementary way. Together, they offer 

a full-featured system modeling language. The OPM provides both object-oriented and 

process-oriented modeling capabilities. Object-oriented modeling is one of the most 

popular modeling paradigms that can capture a variety of systems, at various levels of 

abstraction, from various types of perspective. Process-oriented modeling adds to the 

flexibility of modeling by allowing defining processes independently of objects. This 

feature makes it possible to specify a system model that leaves the implementation of 
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some of its processes to be specified by later design cycles. This is particularly useful in 

the software architecture design. For example, an interface is often defined as abstract 

type with methods defined only. A class having all the methods defined by an interface is 

said to implement that interface. 

The CPN provides the simulation and model analysis capabilities. The simulation 

capability is an indispensable means to derive certain performance metrics and to conduct 

behavior analyses. There exists also a large collection of analysis methods and tools 

developed for CPN. Such analysis methods and tools not only support detailed 

architecture analyses, but can also be used to verify and/or validate the model.  Such 

integration of a system model with an analysis model not only avoids the loss of fidelity 

during model transformation but also eliminate the need to develop a new analysis model 

when the system model changes.  

A holistic model also provides a common foundation to integrate various design 

activities. By using a holistic model, various design aspects and knowledge from multiple 

domains can be integrated and represented in one single system model that can be used in 

multiple design activities. Such integration thus eliminates both the need to transform 

models between design activities and the efforts to maintain model consistency. “Without 

a holistic modeling approach, the cost of model construction and the effort required to 

integrate various system models may present critical concerns to be reflected in the 

resulting system” [1].  

However, there are still some limitations in applying the proposed approach. 

Some of these limitations and constraints are identified and summaries as follows: 

(1) Limitation imposed by the model expressiveness.  The standard OPM is not 

effective in capturing mathematical relationships between entities. With the extension of 

CPN, it is possible to incorporating programming languages, and therefore mathematical 

computations, into the modeling. However, many mathematical relations between entities 

have to be constructed on the basis of state-transition-based structure, which may not be 

intuitive in some applications and may have limited expressiveness. 

Zeigler [221] proposed a categorization scheme that distinguishes formal 

simulation models into five dimensions i.e., (1) continuous time – discrete time, (2) 

continuous state – discrete state, (3) deterministic – non-deterministic , (4) autonomous – 
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non-autonomous, and (5) time invariant – time varying. According to these dimensions, 

the proposed modeling approach is not capable of capturing fully continuous time and 

continuous state [27], [70], [159], [160]. 

(2) Limitation imposed by available analysis, evaluation, or optimization models. 

Deriving accurate performance measures from architectural model is much more difficult 

than that from other well-studied problems due to several reasons, such as ambiguity, 

multiple domains, limited information or knowledge, limited resources or capability for 

conducting experiments. Heuristic-based optimization cannot guarantee optimum 

solutions. Analytical models, although very powerful, come at the expense of limited 

applicability, as many real-world systems are too complex for analytical modeling or 

evaluation or their solutions are too complex and demand immense computation [222].  

(3) Fidelity and computational efficiency. Fidelity issues exist in both architecture 

models and analysis models. Low-fidelity models might have adverse impact on the final 

results. The degree of fidelity necessary to guarantee good solutions is difficult to 

estimate in most cases. The estimation and control of model fidelity are challenging and 

are not addressed in this research. High fidelity models often demand more 

computational resources. A trade-off between complexity and fidelity has to be made 

sometimes. 

(4) Accuracy and error control. Errors propagate once generated and it is hard to 

control the propagation. Errors must be estimated and controlled within tolerable range. 

Otherwise, the analysis results may not be credible or viable.  Accuracy and error control 

issues are not addressed in this research. 

(5) Design space might be incompletely specified. Design options are either 

identified explicitly by designers or be specified implicitly by constraints. Due to limited 

knowledge and experience of designers, there is the possibility of overlooking some part 

of the design space. 

In addition, there are some additional concerns to be considered in order to 

prevent bias or unfaithful results when applying the proposed approach. The proposed 

modeling approach suffers the same risks as most modeling approaches, such as 

inappropriate specified requirements, unexpected interactions among the constituent 

components of the system, low fidelity of architecture models or analysis models, 
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uncontrolled error propagation, and uncertainty. Many of the limitations identified above 

also transform to risks in applying the proposed approach. Since the proposed approach 

incorporates optimization process into the architecture development process, it also 

suffers the issue of sensitive to boundaries, which is a common issue of most 

optimization algorithms.  Optimization algorithms in general tend to find optimum 

solutions at the boundary of certain constraints. If such constraints are not accurately 

specified or subject to uncertainty, the optimum solution obtained might be invalid. 

In addition, the architecture generation mechanism currently proposed still 

provides only rudimentary functionality. Generation of structural variants that are 

specified by complicated constraints may need some additional problem-specific 

programming.   

8.1.3. Scalability of the Proposed Approaches.  The proposed approach consists 

of several components. Hence the discussion of scalability won’t be complete without 

examine each individual components.     

(1) Scalability of the search-based architecture development framework. Such a 

framework, as presented in Section 4.1, is domain independent and problem neutral. It 

should be able to apply to a broad range of systems at various levels of abstraction. 

(2) Scalability of the modeling approach. The scalability of the modeling 

approach is determined by the expressiveness of the modeling languages adopted and the 

modeling paradigm assumed by the modeling languages. The proposed modeling 

approach combines the capabilities of OPM, CPN, and the feature model. It, therefore, 

roughly has the expressive power that equals to the sum of the capabilities of these three 

individual modeling languages. The modeling units (objects, processes, links, states, 

transitions, features, etc.) of these modeling languages are very primitive with little 

assumption to the entities being modeled. Therefore they can be applied to a broad range 

of abstract concepts. These individual languages have been proved to have the capability 

to support the modeling of a huge variety of systems at various levels of abstraction for 

many types of architectures (including functional architecture, system architecture, and 

physical architecture). For example, in terms of model resolution, the OPM provides 

three refinement/abstraction mechanisms as discussed in Section 3.2.2. These 
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mechanisms enable OPM to recursively specify a system to any desired level of detail 

without losing legibility and comprehension of the complete system [40].   

Object-oriented modeling has been proved to have the capability to model a huge 

variety of systems and at a broad level of abstraction. The concepts of class and object 

can be used to model any abstract concepts at any level of abstraction as discussed in 

Section 3.1 and Section 4.2. The power of the object-oriented paradigm can simply be 

demonstrated by the fact that UML can be defined by itself, which has been discussed in 

Section 4.2.2.  

As discussed in last section, the OPM modeling is also process-oriented. 

Specifying a process without identifying the object responsible for it also allows 

modeling of functional architecture intuitively. As an example, refer to the RMS model 

developed in Section 7.1.2. Figure 7.3 shows a top level abstraction of the RMS. It can be 

viewed as a functional architecture that describes the main function of a RMS, i.e., in this 

case, transforming a raw work piece into a finished product. Such function can be 

achieved through the interactions of the constituent components of the system and their 

behaviors. Figure 7.4, elaborating the manufacturing process, can be viewed as a system 

architecture.  

(3) Scalability of the architecture generation mechanism. The architecture 

generation mechanism proposed in Section 5.2 is modeling language dependent, not 

problem specific. Therefore, its scalability is the same as the modeling languages that the 

architecture generation mechanism is based on.   

(4) Scalability of the modeling process. The modeling process proposed in 

Section 4.2.3 is based on the OOA/D and domain engineering, both of which have been 

proved to have the capability to model a huge variety of systems at various levels of 

abstractions. Such a modeling process supports hierarchical development and design 

cycles where each lower level becomes more detailed and refined as the design 

progresses. This modeling process also includes functional and behavioral mapping, 

which provides a mechanism to connect models either at different levels of abstraction or 

at different design stages, for example mapping functional architecture to system 

architecture and mapping system architecture to physical architecture. These two 

mechanisms, i.e., mapping models at different design stages and decomposing models 
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within each stage, allows the hierarchal reduction of ambiguity. The hierarchal reduction 

of ambiguity has also been addressed in Section 4.2.3. However, the integration of 

system models across different design stages has not been well addressed yet. Since 

different design stages (or levels) use different levels of abstraction, thus different design 

sets and different system models, an explicit mapping between these models should be 

further studied and developed.  

(5) Scalability of the architecture assessment process. The proposed search-based 

architecture development framework identifies three sub processes within the architecture 

assessment process (Figure 4.2), i.e., architecture analysis process, architecture selection 

process, and architecture optimization process. This research discussed some applicable 

techniques to each of these three processes but has not developed any of such techniques.  

The claim is that the architect can apply any analysis methods to derive the performance 

metrics as needed and the architectural model should provide the necessary input to the 

analysis models. The scalability of the architecture assessment process depends primarily 

on the chosen analysis methods, along with the available information provided by the 

system model and the available knowledge regarding the system of interest. For example, 

the state space analysis cannot scale well to large and complex models. 

 

8.2. CONCLUSIONS 

The development of a generative class model and the generation of all instance 

models enable architectural models to be used as design alternatives in various search 

algorithms with the aim of discovering optimum architecture designs. Then the concepts 

and knowledge encoded in architectural models can be processed automatically through 

computation, thus saving the architect from discovering and evaluating large number of 

alternatives. As such, an architecture development problem can be converted to a search 

search-based optimization problem. The search-based architecture development 

framework implements this idea by integrating architecture modeling, alternative 

generation, and architecture assessment into a coherence process. Such an architecture 

development process allows vast design space to be explored before commitment to more 

detailed design, thus reducing time, cost, and risks of the project and improving design 

quality.  
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The proposed modeling approach combines the full features of OPM, CPN and 

feature models. Therefore, its expressiveness is the sum of these individual languages. 

More specifically, the proposed modeling approach supports both object-oriented and 

process-oriented paradigm as provided by OPM. Such OPM is supplemented by CPN for 

execution semantics. So it has state-transition-based execution semantics supporting 

discrete-event system simulation. The incorporation of CPN into the architecture 

modeling also allows the developed system model to be also used as a analysis model. A 

large collection of analysis methods and tools developed for CPN can be utilized for 

strong model analysis, verification, and validation. Such OPM is also extended to support 

the feature model concepts so it can model a collection of systems. In summary, such 

modeling approach not only can model a broad range of systems at various levels of 

abstraction but also can support the needs of search-based architecture development by 

providing both comprehensive information needed for architecture reasoning and the 

design space specification needed for architecture alternative generation.  

The other components in the proposed approach, including the search-based 

architecture development framework, the architecture alternative generation mechanism, 

and the suggested implementation architecture assessment, are all domain independent 

and problem neutral. Therefore, the entire approach set is generic and should be able 

applied to a broad range of systems that can be specified using conceptual models with 

either object-oriented or process-oriented paradigm. Still, a large number of case studies 

are needed to further examine the capabilities of the proposed approach. 

Architectures can arise within a variety of scenarios [223]. These include the 

deliberate design of a system from scratch, the evolution of a design from previous 

designs, the expansion of smaller systems, or the exploration of form and behavior 

requirements. The proposed architecture development approach can facility both 

incremental design through hierarchical refinement and adapting an existing architecture 

to new or changing design needs. 

 

8.3. FUTURE WORK 

The architecture generation mechanism proposed in Section 5.2 need to be further 

researched to allow fully automatic generation of all types of architecture alternatives 
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with little or no need of problem-specific programming. One possible way to achieve 

such capabilities is to develop a mapping from OPM class model directly to a suitable 

logical representation, such as the propositional logic, the constraint programming, and 

the description logic. The strengths of logical representations are their support of 

computational implementation and their capabilities to process complexity dependencies 

between features. With such logical representations, it is possible to use the off-the-self 

solvers to generate all possible architecture alternatives and perform other automatic 

model analyses. Alternatively, a parser that translates an OPM class model to a feature 

model can be developed so that the current tool support and analysis methods of the 

feature model can be utilized. Furthermore, since a design space represented by the 

feature model is a tree-like structure, generative algorithms in conjunction with tree-

based algorithms might be useful in discovering all possible architecture alternatives.  In 

addition, algorithms need to be developed to prove the completeness (i.e., covering the 

entire design space) of the generated alternatives (closure). 

All design variables can be identified through design space analysis using the 

feature model information. Algorithms can be developed to conduct automatic design 

space analysis. Since a chromosome needs only to capture these design variables. A 

unified chromosome representation scheme can be developed to automate the process 

from OPM/H class model development to chromosome encoding. With the fully 

automated alternative generation and chromosome encoding, a fully automated search-

based architecture development process can be achieved.  

In order to capture complex design space, more advanced feature model concepts 

should be incorporated and implemented.  For example the full support of feature 

attribute [209–213] is needed. According to [14], the attribute of a feature should consist 

at least of a name, a domain and a value. The example studied in Section 7.1 also reveals 

the need for capturing complex relationships and constraints between features and feature 

attributes [14], [209], [213]. 

The ABCD language, as a higher level language for specifying a Petri net, makes 

writing a Petri net specification easier by hiding programming implementation details. 

However, it also creates an extra level of formality that is not necessary in the search-

based architecture development process since a CPN model should ideally be constructed 
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directly from the OPM/H model. Moreover, using the ABCD language for specifying 

CPN models adds another layer of computation between the CPN model specification 

and the computational model building. In the case of producing a large number of model 

instances, like in the proposed the search-based architecture development process, such a 

layer of computation wastes a lot of computation resources in compiling the ABCD 

specification. Especially, when model instances share a large portion in common, 

rebuilding the entire CPN computational model for each instance of ABCD specification 

is not necessary.  Therefore the use of ABCD for CPN specification should be removed 

from the implementation of the search-based architecture development framework. 

In the current implementation of the modeling approach, the simulation of CPN 

models depends on the ABCD language layer so the transformation from OPM/H model 

to CPN model is not an automatic process yet.  A fully automatically transformation can 

be developed once the dependency on the ABCD language layer is removed. 

Furthermore, a hybrid OPM-CPN modeling language can be developed and 

implemented to fully integrate the execution semantics and simulation capability of CPN 

into the OPM modeling such that an OPM/H model can be executed directly. In addition, 

inclusion of BBN can also be considered in this hybrid modeling language so that 

uncertainty can be modeled and managed effectively. 

As discussed in Section 8.12. Model fidelity affects the accuracy of the 

performance metrics derived from the system model. The estimation and control of 

model fidelity should be further studied. Moreover, the error propagation issue and the 

uncertainty management should also be studied. Furthermore, since architecture models 

are special types of design alternatives, methods need to be developed to support the 

sensitivity analysis in the context of optimization algorithms used for architecture 

optimization.  

In addition, the support of traceability analysis based on the proposed architecture 

development framework deserves further study. The estimation of the impact of changes 

in architecture to performance metrics can offer several benefits. For example, (1) it 

provides designers a better understanding of the system of interest, (2) it provides 

designers the insights into the relative importance of certain part of the system to certain 

performance metrics, (3) it can point out the direction of possible architecture 
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improvement, (4) it allows incremental development, in which case, only partial update 

of the system is desired. The last point is especially important when updating an existing 

system where the system architecture is expected to keep relative stable and only partial 

improvement is expected (or can be afforded).  

Besides the genetic algorithms, other meta-heuristic search algorithms also 

deserve a try. As discussed in Section 4.3.3, each of these optimization algorithms has its 

own merit. Depending on the problem to be solved and the data available, some 

optimization algorithms may perform better than others. 

On the other hand, with the incorporation of feature model concepts, the holistic 

modeling approach also facilities the management of architecture variants, including the 

variants of subsystems and components. This can in turn facilitate the system family 

development and management. Such types of application can be further explored. 
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APPENDIX A. 

MACHINE PROCESSING INFORMATION FOR THE RMS DESIGN EXAMPLE 
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Table A1.  Operations data for part ANC-90 ([55]) 

Feature Description Operation Op. ID TAD 

candidates 

Tool 

candidates 

F1 Planar surface Milling OP1 +Z C6, C7, C8 

F2 Planar surface Milling OP2  Z C6, C7, C8 

F3 
Four holes arranged as 

a replicated feature 
Drilling OP3 +Z,   Z C2 

F4 A step Milling OP4 +X,    Z C6, C7 

F5 A protrusion (rib) Milling OP5 +Y,    Z C7, C8 

F6 A protrusion Milling OP6  Y,    Z C7, C8 

F7 A compound hole Drilling OP7  Z C2, C3, C4 

Reaming OP8  C9 

Boring OP9  C10 

F8 Six holes arranged in a 

replicated feature 

Drilling OP10'  Z C1 

Tapping OP11'  C5 

F9 A step Milling OP12  X,    Z C6, C7 
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Table A2.  Operations Data for Part ANC-101([55]) 

Feature Description Operation Op. ID TAD 

candidates 

Tool 

candidates 

F1 Planar surface Milling OP1 +Z C6, C7, C8 

F2 Planar surface Milling OP2  Z C6, C7, C8 

F3 Four holes arranged as 

a replicated feature 

Drilling OP3 +Z,    Z C2 

F4 A step Milling OP4 +X,    Z C6, C7 

F5 A protrusion (rib) Milling OP5 +Y,    Z C7, C8 

F6 A protrusion Milling OP6  Y,    Z C7, C8 

F7 A compound hole Drilling OP7  Z C2, C3, C4 

Reaming OP8 C9 

Boring OP9 C10 

F8 Nine holes arranged in a 

replicated feature 

Drilling OP10  Z C1 

Tapping OP11 C5 

F9 A step Milling OP12  X,    Z C6, C7 

F10 Two pockets arranged as 

a replicated feature 

Milling OP13 +X C6, C7. C8 

F11 A boss Milling OP14  a C7, C8 

F12 A compound hole Drilling OP15  a C2, C3, C4 

Reaming OP16 C9 

Boring OP17 C10 

F13 A pocket Milling OP18  X C7, C8 

F14 A compound hole Reaming OP19 +Z C9 

Boring OP20 C10 
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Figure A1.  Operation Precedence Graph for the Two Parts ([55]) 

 

 

 

 

 

Table A3.  Operation Cluster Definitions for Part ANC-90 ([55]) 

Operation cluster  Operations 

OC1  [OP1]  

OC2  [OP2]  

OC3  [OP3]  

OC4  [OP4] 

OC5  [OP5, OP6, OP7, OP8, OP9]  

OC60  [OP10’ , OP11’ ] 

OC7  [OP12] 
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Table A4.  Operation Cluster Definitions for Part ANC-101 ([55]) 

Operation cluster  Operations 

OC1  [OP1]  

OC2  [OP2]  

OC3  [OP3]  

OC4  [OP4] 

OC5  [OP5, OP6, OP7, OP8, OP9]  

OC6  [OP10, OP11] 

OC7  [OP12]  

OC8  [OP13] 

OC9  [OP14, OP15, OP16, OP17]  

OC10  [OP18] 

OC11  [OP19, OP20] 

 

 

 

Table A5.  Available/Obtainable Resources Description and Cost ([55]) 

Machine (M)  Machine configuration (MC) Initial cost 

(in 1000 USD) Code Description  Code Description  

M1 Reconfigurable 

horizontal 

milling machine 

 MC11  Three-axis with one spindle  860 

 MC12  Three-axis with two spindles  1140 

 MC13  Three-axis with three spindles  1420 

 MC14  Three-axis with four spindles  1700 

 MC15  Four-axis with one spindle  1010 

M2 Reconfigurable 

drilling press 

 MC21  One spindle  385 

 MC22  Two spindles  555 

 MC23  Three spindles  725 

 MC24  Four spindles  895 
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APPENDIX B. 

SELECTED RESULTS OF THE RMS DESIGN EXAMPLE 
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Table B1.  Statistics of the Results from Running the NSGA-II for the RMS 

Configuration Problem 

Gen. System Cost 

– Best 

Individual 

Unit Production 

Time – Best 

Individual 

Population 

Median 

Population 

Average 

Population 

Standard 

Deviation 

0 27.39 18.04 21.03 27.20 10.27 

1 22.62 17.88 21.17 24.98 8.18 

2 26.44 17.04 20.70 24.06 7.56 

3 26.44 17.04 21.16 23.69 7.22 

4 22.19 16.10 20.41 23.58 7.43 

5 22.19 16.10 20.41 23.34 7.15 

6 22.19 16.10 20.41 22.91 6.81 

7 22.19 16.10 20.27 22.89 6.95 

8 22.19 16.10 19.01 22.93 7.12 

9 22.19 16.10 19.02 22.87 7.14 

10 22.19 16.10 19.29 22.76 7.04 

11 22.19 16.10 19.01 22.46 6.95 

12 22.19 16.10 19.48 22.09 6.69 

13 22.19 16.10 19.48 21.81 6.45 

14 22.19 16.10 19.33 21.47 6.01 

15 22.19 16.10 19.33 21.24 5.82 

16 22.19 16.10 19.33 21.31 6.00 

17 22.19 16.10 19.33 21.27 6.03 

18 22.19 16.10 19.33 20.94 5.66 

19 22.19 16.10 19.10 21.04 5.89 

20 22.19 16.10 18.64 20.99 5.87 

21 22.19 16.10 18.62 20.87 5.78 

22 22.19 16.10 18.49 20.85 5.79 

23 22.19 16.10 18.40 20.86 5.80 

24 22.19 16.10 18.40 20.84 5.81 

25 22.19 16.10 18.40 20.69 5.52 

26 22.19 16.10 18.40 20.73 5.58 

27 22.19 16.10 18.40 20.34 5.09 

28 22.19 16.10 18.40 20.33 5.09 

29 22.19 16.10 18.40 20.30 5.08 

30 22.19 16.10 18.52 20.30 5.08 

31 22.19 16.10 18.52 20.26 5.05 

32 22.19 16.10 18.15 20.14 4.93 

33 22.19 16.10 18.15 20.13 4.94 

34 22.19 16.10 18.15 20.14 5.00 

35 20.17 16.20 18.19 19.99 4.83 

36 20.17 16.20 18.19 19.96 4.81 
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Table B1.  Statistics of the Results from Running the NSGA-II for the RMS 

Configuration Problem (cont.) 

Gen. System Cost 

– Best 

Individual 

Unit Production 

Time – Best 

Individual 

Population 

Median 

Population 

Average 

Population 

Standard 

Deviation 

37 20.17 16.20 18.19 19.98 4.84 

38 20.17 16.20 18.19 19.94 4.83 

39 20.17 16.20 18.19 19.94 4.83 

40 20.17 16.20 18.35 19.85 4.71 

41 20.17 16.20 18.35 19.72 4.47 

42 20.17 16.20 18.35 19.68 4.42 

43 20.17 16.20 18.35 19.75 4.54 

44 20.17 16.20 18.19 19.68 4.43 

45 20.17 16.20 18.17 19.57 4.12 

46 20.17 16.20 18.15 19.35 3.56 

47 20.17 16.20 18.04 19.39 3.63 

48 20.17 16.20 17.94 19.46 3.81 

49 20.17 16.20 17.94 19.38 3.65 

50 20.17 16.20 17.94 19.32 3.55 

51 20.17 16.20 18.14 19.25 3.43 

52 20.17 16.20 18.32 19.23 3.41 

53 20.17 16.20 18.32 19.20 3.39 

54 20.17 16.20 18.24 19.16 3.31 

55 20.17 16.20 18.15 19.18 3.36 

56 20.17 16.20 18.14 19.17 3.37 

57 20.17 16.20 18.13 19.16 3.37 

58 20.17 16.20 18.15 19.12 3.34 

59 20.17 16.20 18.13 19.12 3.35 

60 20.17 16.20 18.13 19.10 3.34 

61 20.17 16.20 18.13 18.92 3.01 

62 20.17 16.20 18.34 18.89 2.98 

63 20.17 16.20 18.42 18.86 2.95 

64 20.17 16.20 18.42 18.83 2.92 

65 20.17 16.20 18.34 18.80 2.89 

66 20.17 16.20 18.34 18.82 2.91 

67 20.17 16.20 18.34 18.83 2.92 

68 20.17 16.20 18.34 18.82 2.92 

69 20.17 16.20 18.34 18.84 2.93 

70 20.17 16.20 18.43 18.79 2.89 

71 20.17 16.20 18.43 18.71 2.75 

72 20.17 16.20 18.43 18.70 2.74 

73 20.17 16.20 18.36 18.69 2.75 
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Table B1.  Statistics of the Results from Running the NSGA-II for the RMS 

Configuration Problem (cont.) 

74 20.17 16.20 18.36 18.68 2.74 

75 20.17 16.20 18.36 18.66 2.73 

76 20.17 16.20 18.43 18.67 2.77 

77 20.17 16.20 18.04 18.57 2.63 

78 20.17 16.20 18.04 18.57 2.63 

79 20.17 16.20 18.04 18.60 2.69 

80 20.17 16.20 18.04 18.62 2.71 

81 20.17 16.20 18.04 18.65 2.77 

82 20.17 16.20 18.04 18.67 2.80 

83 20.17 16.20 18.04 18.70 2.84 

84 20.17 16.20 18.04 18.66 2.82 

85 20.17 16.20 18.00 18.64 2.80 

86 20.17 16.20 18.04 18.67 2.84 

87 20.17 16.20 18.04 18.77 3.04 

88 20.17 16.20 18.04 18.77 3.04 

89 20.17 16.20 18.04 18.84 3.19 

90 20.17 16.20 18.18 18.81 3.12 
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APPENDIX C. 

PYTHON CODE, OUTPUT ARCHIVE FILES,  

AND OPM AND CPN MODELS ON CD-ROM 

 

  



 

 

168 

INTRODUCTION 

Included with this dissertation is a CD-ROM, which contains the PYTHON CODE 

for both the generic implementation of the proposed approaches and the problem specific 

code for the RMS example (as listed in Table C1), the output archive files after running the 

program (as listed Table C2), and the system models developed for both the RMS design and 

the Apollo program (as listed Table C3).  Each module of the PYTHON CODE has been 

developed using PYTHON 2.7.2 for Windows 32 bit.  All output archive files are 

automatically generated by the program in .csv format.  The system models for both example 

problems are developed using both OPCAT and CPN Tools. The contents of the CD-ROM 

are summarized in Tables C1, C2, and C3. 
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Table C1.  List of Developed Python Code, OPM Models, and CPN Models 

Module Description 

RMS_GA.py Top level module for loading input data and CPN base model, 

setting the GA parameters, plotting results, and saving archive files. 

RMS_GA_proble

m.py 

Module for formulating the problem to be solved by GA (e.g., 

chromosome encoding and decoding, alternative generation, 

candidate assessment, etc.). 

RMS_DataPcs.py Module for preprocessing input data and generating attribute values 

for design alternative. 

RMS_data_provid

er.py 

Module for specifying part and machine processing data.  it creates a 

rms object of type Rms that contains the processed   data and some 

related functions 

nets.py Modified Petri net module (to replace the original one located at 

Python27\Lib\site-packages\snakes\net.py). 

simulngui.py Alternative Petri net simulation engine that suppresses the GUI. 

Otherwise it is the same as the simul.py below 

simul.py Modified Petri net simulation module (to replace the original one 

located at Python27\Lib\site-packages\snakes\utilits\abcd\simul.py). 

abcd_build_simul.

py 

Build and simulate a Petri net. It is a modified version of the 

snakes\utilits\abcd\main.py. it use the simulngui.py as the simulation 

engine 

main.py Modified main module for organizing the tasks of compiling and 

simulating a Petri net (to replace the original one located at 

Python27\Lib\site-packages\snakes\utilits\abcd\main.py). 

runPN.py A program that allows user to set Petri net simulation parameters 

and test run a Petri net simulation 

ec.py Modified evolutionary computation module (to replace the original 

one located at Python27\Lib\site-packages\inspyred\ec.py). 

crossovers.py Modified crossover operator (to replace the original one located at 

Python27\Lib\site-packages\inspyred\crossovers.py). 

mutators.py Modified mutation operator module (to replace the original one 

located at Python27\Lib\site-packages\inspyred\mutators.py). 

e_opm.py  OPM/H module for creating and editing OPM/H models. 
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Table C2.  List of Output Archive Files Generated from Running the Program 

File name Description 

rms_ec_individuals.csv The entire individuals (the entire population from all generations) 

generated and evaluated by one run of the NSGA-II for the RMS 

example, along with their objective function values. 

rms_ec_statistics.csv Key statistics (worst, best, median, average, and standard 

deviation) of each generation obtained from running the NSGA-II 

for the RMS example. 

RMS_StatHistory.txt State history from one simulation run of a CPN model for the 

RMS example. 

 

 

 

Table C3.  System Models 

Models Description 

RMS.opz OPM system architecture model of the RMS developed using OPCAT 

v3.1. 

RMS.cpn CPN model for the RMS developed using CPN Tools v 3.2.2. 

RMS.abcd CPN model for the RMS developed using ABCD language. 

Apollo.opz OPM system architecture model of the manned lunar landing system for 

the Apollo program example developed using OPCAT v3.1. 

Apollo.cpn CPN model for generating the design space of the manned lunar landing 

system developed using CPN Tools v 3.2.2. 
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