
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Fall 2012

Search-based system architecture development using a holistic Search-based system architecture development using a holistic

modeling approach modeling approach

Renzhong Wang

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Systems Engineering Commons

Department: Engineering Management and Systems Engineering Department: Engineering Management and Systems Engineering

Recommended Citation Recommended Citation
Wang, Renzhong, "Search-based system architecture development using a holistic modeling approach"
(2012). Doctoral Dissertations. 2256.
https://scholarsmine.mst.edu/doctoral_dissertations/2256

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2256&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2256&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2256?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2256&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

SEARCH-BASED SYSTEM ARCHITECTURE DEVELOPMENT

USING A HOLISTIC MODELING APPROACH

by

RENZHONG WANG

A DISSERTATION

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

In

SYSTEMS ENGINEERING

2012

Approved by

Cihan H. Dagli, Advisor

Venkat Allada

Steven M. Corns

Ivan G. Guardiola

Sanjay Madria

 2012

Renzhong Wang

All Rights Reserved

iii

ABSTRACT

This dissertation presents an innovative approach to system architecting where

search algorithms are used to explore design trade space for good architecture

alternatives. Such an approach is achieved by integrating certain model construction,

alternative generation, simulation, and assessment processes into a coherent and

automated framework. This framework is facilitated by a holistic modeling approach that

combines the capabilities of Object Process Methodology (OPM), Colored Petri Net

(CPN), and feature model. The resultant holistic model can not only capture the

structural, behavioral, and dynamic aspects of a system, allowing simulation and strong

analysis methods to be applied, it can also specify the architectural design space. Both

object-oriented analysis and design (OOA/D) and domain engineering were exploited to

capture design variables and their domains and define architecture generation operations.

A fully realized framework (with genetic algorithms as the search algorithm) was

developed. Both the proposed framework and its suggested implementation, including the

proposed holistic modeling approach and architecture alternative generation operations,

are generic. They are targeted at systems that can be specified using object-oriented or

process-oriented paradigm. The broad applicability of the proposed approach is

demonstrated on two examples. One is the configuration of reconfigurable manufacturing

systems (RMSs) under multi-objective optimization and the other is the architecture

design of a manned lunar landing system for the Apollo program. The test results show

that the proposed approach can cover a huge number of architecture alternatives and

support the assessment of several performance measures. A set of quality results was

obtained after running the optimization algorithm following the proposed framework.

iv

ACKNOWLEDGMENTS

I own my gratitude to all those people who made this study possible. First, I

would like to gratefully and sincerely thank my advisor, Dr. Cihan H. Dagli, for his

guidance, support, understanding, and patience in this research and my entire studies at

the Missouri University of Science and Technology. His guidance has made this a

thoughtful and rewarding journey. I would also like to extended sincere appreciations to

my advisory committee members, Dr. Venkat Allada, Dr. Steven M. Corns, Dr. Ivan G.

Guardiola, and Dr. Sanjay Madria, for their time and insightful criticisms that help me to

have this research well-structured.

Special thanks to the Engineering Management and Systems Engineering

Department for funded my studies. Thanks also extend to the department staff who

helped me, especially Ms. Turner who has always been very responsive and helpful. I am

also thankful to Ms. Hudgins, in Graduate office, who is very professional and always

quick to my requests. Additionally, I am very grateful for the friendship of my colleagues

in the Smart Engineering Systems Lab who have always encouraged me and helped me.

I am deeply indebted to my parents, Enming Wang and Xiuyun Hong, for their

faith in me and allowing me to be as ambitious as I wanted. As such, they have been

sacrificed too much for me throughout my life. I would not haven been where I am today

without their constant source of love, concern, support and strength. I am grateful to my

sister Yang Wang who has always been supporting me and caring about me. She has been

taking my responsibility for taking care of my parents since I was absent most of the

time. I would also like to thank all my relatives, friends, and past colleagues, who have

encouraged me, helped me, supported me and cared about me.

Finally and most importantly, I would like to give my special thanks to my lovely

wife, Beibei Cheng, for the joy she brought to me, and her endless love, support,

tolerance, and understanding during the course of my studies.

v

TABLE OF CONTENTS

Page

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

LIST OF ILLUSTRATIONS ... viii

LIST OF TABLES .. x

NOMENCLATURE .. xi

SECTION

1. INTRODUCTION .. 1

1.1. NEEDS .. 1

1.2. AIMS AND APPROACHES .. 1

1.3. DISSERTATION SYNOPSIS .. 2

2. LITERATURE REVIEW ... 4

3. OVERVIEW OF RELATED FIELDS AND TECHNOLOGIES 10

3.1. OBJECT-ORIENTED MODELING AND DOMAIN ANALYSIS 10

3.1.1. Object-Oriented Modeling (OOM) .. 10

3.1.2. Feature Models... 11

3.2. MODELING LANGUAGES FOR ARCHITECTING 13

3.2.1. UML and SysML .. 13

3.2.2. OPM .. 14

3.2.3. Petri Nets ... 15

3.3. RECONFIGURABLE MANUFACTURING SYSTEMS 17

4. SEARCH-BASED ARCHITECTURE DEVELOPMENT APPROACH 22

4.1. SEARCH-BASED ARCHITECTURE DEVELOPMENT FRAMEWORK ... 22

4.1.1. Requirements Analysis and Design Formulation 22

4.1.2. Search-based Architecture Development Process 24

4.2. ARCHITECTURE MODELING .. 28

4.2.1. System Design Set ... 28

4.2.2. Object-Oriented Abstraction and Metamodel 31

4.2.3. Modeling Process .. 33

vi

4.3. ARCHITECTURE ASSESSMENT.. 38

4.3.1. Architecture Analysis .. 38

4.3.1.1 Evaluation-based approaches ...39

4.3.1.2 Emulation-based approaches and reasoning about system

interactions ..40

4.3.2. Architecture Selection .. 43

4.3.2.1 A priori approaches ...45

4.3.2.2 A posteriori approaches ..46

4.3.2.3 Interactive methods..46

4.3.3. Optimization ... 48

5. HOLISTIC MODELING APPROACH ... 54

5.1. DEVELOPING A HOLISTIC MODELING APPROACH 54

5.1.1. Strengths and Weaknesses of Some Existing Modeling

 Languages .. 54

5.1.2. Characteristics of an Ideal Holistic Modeling Language 61

5.1.3. Combining UML/SysML, OPM, Petri Nets, and Feature Models 61

5.1.3.1 Formal definition of the extended OPM63

5.1.3.2 Extend OPM with feature model concepts to capture

 design space ...66

5.1.3.3 Supplementing execution semantics of OPM with CPN71

5.1.4. The Roles of CPN in Architecture Modeling and Analyses 86

5.2. ARCHITECTURE GENERATION ... 91

5.2.1. Architecture Alternative Generation Operations 91

5.2.1.1 Generate element instances ..92

5.2.1.2 Generate structural variants..92

5.2.1.2.1 Add/remove/modify links – operation 1 92

5.2.1.2.2 Add/remove/modify entities - operation 2 93

5.2.1.2.3 Side effects handling ... 95

5.2.1.2.4 Advanced operations .. 95

5.2.1.3 Generate full architecture alternative96

5.2.2. Automatic Generation of All Architecture Alternatives 97

6. GENERIC IMPLEMENTATION .. 100

vii

6.1. PACKAGE ARCHITECTURE .. 100

6.2. MODULES ... 104

7. APPLICATION DEMONSTRATIONS .. 109

7.1. RECONFIGURABLE MANUFACTURING SYSTEM 109

7.1.1. Problem Definition... 110

7.1.2. Building a Holistic System Model for the RMS 113

7.1.3. Building Analysis Models .. 124

7.1.4. Building Optimization Models .. 125

7.1.5. Development of Problem-Specific Modules in Python 125

7.1.6. Results and Discussion .. 127

7.2. THE APOLLO PROGRAM (RETROSPECTIVE) .. 135

7.2.1. Problem Definition and Analysis ... 135

7.2.2. Architecture Modeling... 137

7.2.3. Design Space Analysis ... 138

8. CONCLUSION AND FUTURE WORK ... 146

8.1. DISCUSSION ... 146

8.1.1. Comparisons with other Approaches for Solving Similar Problems..... 146

8.1.2. Strengths and Weaknesses... 147

8.1.3. Scalability of the Proposed Approaches ... 150

8.2. CONCLUSIONS... 152

8.3. FUTURE WORK .. 153

APPENDICES

A. MACHINE PROCESSING INFORMATION FOR THE RMS DESIGN

 EXAMPLE .. 157

B. SELECTED RESULTS OF THE RMS DESIGN EXAMPLE 163

C. PYTHON CODE, OUTPUT ARCHIVE FILES, AND OPM AND CPN

 MODELS ON CD-ROM ... 167

BIBLIOGRAPHY ... 171

VITA .. 188

viii

LIST OF ILLUSTRATIONS

Figure Page

3.1. Various Interpretations of the Petri Net Semantics .. 16

3.2. Illustration of a Reconfigurable Manufacturing System [52] 17

4.1. Framework of the Search-Based Architecture Development Process 23

4.2. Elaboration on the Architecture Assessment Process .. 26

4.3. System Design Set ([13]) ... 29

4.4. An Example of the Four-Layer Metamodel Hierarchy [27] 32

4.5. A Simple Taxonomy of Optimization Algorithms ([13]) .. 49

5.1. Combining Existing Modeling Languages to Achieve Holistic Modeling 62

5.2. A Sample Feature Model ([30]) ... 70

5.3. An OPM Model (Created by OPCAT) Extended with Feature Model Concepts

 to Capture Design Space .. 70

6.1. Components of the Software Implementation ... 101

6.2. Workflow of the Implementation of the Search-Based Architecture

 Development Framework... 103

6.3. Illustration of the GUI of the ABCD Simulator... 106

7.1. Example of a Selected RMS Configuration ([56]) .. 111

7.2. Part to be Produced by the RMS ([57]) ... 113

7.3. OPM/H Model for a RMS - Overview .. 114

7.4. OPM/H Model for a RMS – Zoom-in into Manufacturing Process 114

7.5. CPN Model for the RMS ... 115

7.6. CPN Model for the RMS Specified in the ABCD Language 116

7.7. Examples of Information Set at the Property Sheet of OPCAT 119

7.8. An Alternative Way to Model the RMS - Un-fold RMS 122

7.9. An Alternative Way to Model the RMS - Zoom-in into Manufacturing Process .. 122

7.10. An Alternative Way to Model the RMS - Zoom-in into OS1 Process 123

7.11. Chromosome Encoding of the Design Variables for Solving the RMS Problem

 ([56]) .. 126

7.12. String Representation of a Solution ([56]) ... 126

7.13. The Pareto Front of the Solutions Found Using GA for the RMS Problem 129

7.14. Near-Optimal Solutions in the Pareto Front .. 129

ix

7.15. Illustration of One of the Near-Optimal Solution ... 130

7.16. Convergence Curve of the NSGA-II in Solving the RMS Configuration 130

7.17. Discrete-Space Representation of the Trajectory of the Manned Lunar

 Landing System ([1]) .. 136

7.18. OPM/H Class Model Representing the Architecture of the Manned Lunar

 Landing System Represented .. 139

7.19. CPN Model Used for the Design Space Exploration .. 143

7.20. An Instance Model Representing an Architecture Alternative (LOR System

 Configuration) ... 145

x

LIST OF TABLES

Table Page

5.1. Comparison of UML/SysML, OPM, and Petri Nets ... 56

5.2. Properties of OPM Links .. 65

5.3. Syntax and Semantics of OPM and its Mapping to CPN ... 76

7.1. Attributes of the Machine Object in the OPM/H Model... 117

7.2. Attributes of the Part Object in the OPM/H Model .. 118

7.3. Parameters Used in the GA ... 128

7.4. Impact of the Number of Part Tokens Used in the CPN Model on the

 Computation of the Unit Production Time and the Production Rate 132

7.5. Statistics from 10 CPN Simulations ... 132

7.6. Final Marking on the Place M_Idle Obtained from One Simulation Run of

 the CPN Model for the RMS .. 133

7.7. Final Marking on the Place P_Arrived Obtained from One Simulation

 Run of the CPN Model for the RMS .. 134

7.8. Major Modes of the Manned Lunar Landing System and the Corresponding

 Spacecraft Configuration .. 141

7.9. Dimensions of the Design Space of the Manned Lunar Landing System 142

7.10.Summary of Token Values at the Place A_Earthlans Representing the

 Architecture Alternatives Discovered ... 143

xi

NOMENCLATURE

Abbreviation Description

ABCD Asynchronous Box Calculus with Data

ABM Agent based model

ABMS Agent Based Modeling and Simulation

AHP Analytic Hierarchy Process

ALF Action Language for Foundational UML

ANP Analytical Network Process

ATAM Architecture Tradeoff Analysis Method

AVM Architecture Value Map

BBN Bayesian Belief Network

BPML Business Process Modeling Language

CM Command Module

CPN Colored Petri Net

DF Direct Flight

DP Demand Periods

EA Evolutionary Algorithm

EOR Earth Orbit Rendezvous

ELECTRE ELimination and Choice Expressing REality

FAMA FeAture Model Analyser

FODA Feature–Oriented Domain Analysis

FOM Figures of Merit

FUML Foundational Subset for Executable UML

GA Genetic Algorithm

GP Generative Programming

GUI Graphical User Interface

HC Hill Climbing

INRS Improved Net Rewriting System

JDPM Joint Probability Distribution Method

KISS Keep It Simple, Stupid

xii

KPA Key Performance Attributes

LEM Lunar Excursion Module

LEV Lunar Excursion Vehicle

LOR Lunar Orbit Rendezvous

LTDB Lunar Touchdown Module

MC Machine Configuration

MOE Measure of Effectives

MOEA Multi-Objective Evolutional Algorithm

MOF Meta-Object Facility

NMS Number parallel Machines

NP Number of Parts

NS Number of Stages

NSL Number of Stage Locations

NSGA Nondominated Sorting Genetic Algorithm

OC Operation cluster

OCL Object Constraint Language

OOA Object-Oriented Analysis

OOA/D Object-Oriented Analysis and Design

OOD Object-Oriented Design

OOM Object-Oriented Modeling

OOP Object-Oriented Programming

OP Operation

OPL Object Process Language

OPN Object Process Network

OPM Object Process Methodology

OPM/H OPM for Holistic modeling

OPM/T OPM with real-time extension

OS Operation cluster Setup

PG Precedence Graph

PROMETHEE Preference Ranking Organization Method for Enrichment, Evaluation

QFD Quality Function Decomposition

xiii

RMS Reconfigurable Manufacturing System

RMT Reconfigurable Machine Tool

SA Simulated Annealing

SBSE Search -Based Software Engineering

SM Service Module

SPFL Single Product Flow Line

SQL Structured Query Language

STD Standard Deviation

SysML System Modeling Language

TOPSIS Technique for Ordered Preference based on Similarity to Ideal Solution

UML Unified Modeling Language

URL Uniform Resource Locator

XMI XML Metadata Interchange

1. INTRODUCTION

1.1. NEEDS

Computational technologies applied in design, analysis and optimization have

flourished in various domain specific disciplines. Well defined methodologies and

sophisticated tools have been developed in a large variety of engineering domains to

alleviate humans from tedious tasks while increasing design efficiency and quality, for

example the computer aided design and computer aided engineering. However,

conceptual design in general and architecture design in particular are poorly supported by

automated analysis, design and optimization tools. Such design domain is very

challenging because: (1) conceiving and designing such systems requires abstract concept

formulation and development, (2) the subjects are characterized by ambiguous,

intangible, poorly defined, and uncertainty, (3) available implicit or explicit knowledge

and experience about the actual system is scarce and the operating environment is

entrenched with high degree of uncertainty [1], (4) such design involves multiple

knowledge domains, (5) the design space is vast and is difficult to specify due to

ambiguity, and (6) transforming information and knowledge from architecture

representation to architecture assessment is a field that has not been fully explored.

Traditional architecture design, analysis and development approaches and the

modeling, analysis and simulation tools developed for them usually only focus on a

single system model or very limited design alternatives. Trade-off studies, as a separate

process, are only conducted on simplified system model using partial system information.

On the other hand, architecture design space is usually vast since fewer constraints have

been identified in this stage of design. In the meantime, architecture design shapes the

final form and function of a system. A significant amount of project cost is usually

committed at this stage. Hence, architecture design is crucial to the success of the

system. Overlooking potential architecture alternatives means loss.

1.2. AIMS AND APPROACHES

This research is aimed at developing a framework with a set of enabling

technologies to achieve optimum architecture development through an effective search

2

process. As the architecture design space is usually vast, such design approach requires

automating certain model construction, alternative generation, simulation, and assessment

tasks. These tasks should also be integrated into a coherent framework. In order to

support such integration and automation, a holistic system model is needed for capturing

all relevant design information and supporting architecture analyses. Particularly, the

focuses of this research can be summarized as follows

 Identify the tasks needed in a search-based architecture development process

and develop a framework to integrate related tasks

 Develop a holistic modeling approach such that the system of interest can be

modeled by a holistic model that captures all structural, behavior and dynamic

aspects of the system. Such models should not only capture all the design

information and variables but also be able to specify the design space.

 Develop an effective approach to generate all architecture alternatives within

the design space specified by that holistic system model. Such alternative

generation mechanism should be based on the modeling formalisms proposed.

 Identify applicable architecture assessment techniques that can reach rational

decisions regarding the selection of architecture alternatives based on the

information provided by the architecture model. Identify the required design

information and variables that must be captured by such an architecture

model.

With such design approach, vast design space can be explored and evaluated

before commitment to more detailed design, thus reducing time, cost, and risks and

improving design quality.

1.3. DISSERTATION SYNOPSIS

This dissertation is organized as follow:

Section 1, introduction, briefly introduces the motivation of this research.

Section 2, literature review, discusses the application of search-based algorithms

in various architecture related problems.

Section 3, overview of related fields and technologies, provides a brief review of

some background knowledge needed to develop the approaches proposed in this research

3

such as object-oriented paradigm, domain analysis, and some related modeling

languages. It also briefly introduces the RMS, which will be used as an example to

demonstrate the application of the proposed approaches.

Section 4, search-based architecture development framework, presents the

proposed architecture development framework along with the discussions of some

enabling technologies for each of its components.

Section 5, holistic modeling approach, presents the development of a holistic

modeling approach achieved by integrating three modeling formalisms, i.e., OPM, CPN

and feature model. A set of architecture variant generation operations is also defined.

Section 6, programming implementation, presents how the proposed approaches

are implemented using Python programming language.

Section 7, application demonstration, applies the proposed approach to the design

of reconfigurable manufacturing systems and the manned lunar landing system for the

Apollo program (retrospective).

Section 8, conclusion and future work, discusses the scalability, strengths and

limitations of the proposed approach before concluding the dissertation. It also provides

some insights into possible future expansions of the current work.

4

2. LITERATURE REVIEW

This section focuses on reviewing the application of search-based algorithms to

the architecture development and its sub-problems. Discussions of other related topics are

presented in related sections throughout this dissertation.

Search algorithms have been used widely in different fields of research, such as

engineering, business and financial and economic modeling [2]. However, search-based

system architecting as a research domain is far from mature and recently there has been

an increasing interest in implementing search algorithms to complex system design

including architecture design. This review covers the application of search-based

algorithms to architecture related problems from a variety of domains. Although many of

such applications are either problem specific or domain specific, when studied at the

abstract level, they share a lot in common with the system architecture design in general.

Therefore studies of these applications may reveal useful inspiration and insights as to

how search algorithms can be used in the field of system architecting in general.

A lot of research has been conducted on applying search-base algorithms to

software system architecture designs. A software development paradigm known as

Generative Programming (GP) is first proposed in the dissertation of Dr. Dipl.-Inf.

Krzysztof Czarnecki [3] and later become an active research topic in software

engineering [4]. GP is defined in [3] as follows:

Generative Programming (GP) is about designing and implementing

software modules which can be combined to generate specialized and

highly optimized systems fulfilling specific requirements. The goals are to

(a) decrease the conceptual gap between program code and domain

concepts (known as achieving high intentionality), (b) achieve high

reusability and adaptability, (c) simplify managing many variants of a

component, and (d) increase efficiency(both in space and execution time).

GP builds on system-family engineering (also referred to as product-line

engineering). It concerns with designing and implementing reusable software for

generating specific systems rather than developing each of the specific systems from

scratch [3]. It covers a broad range of reusable workproducts (or reusable assets), which

include reusable components, requirements, analysis and design models, architectures,

patterns, generators, domain-specific languages, frameworks. Particular, it identifies

5

feature modeling and domain analysis as the main means for specifying design space.

Using such an approach, given a system specification, a concrete system can be

automatically generated based on a set of reusable components. However, GP focuses on

a class of systems within a domain not necessarily exploring all possible variants. Its

major application is software systems.

Extensive research has been conducted on a new field emerged in software

engineering domain, i.e., the so-called Search-Based Software Engineering (SBSE) [5–8].

SBSE is a collection of a variety of approaches to software engineering in which search-

based optimization algorithms are used to address problems in software engineering. The

work presented in [6] divides areas where search algorithms are used into four major

categories: analysis, design, implementation, and testing. Examples include classifying

software production data, project scheduling, static task scheduling related to parallel

computing, allocating modules to subsystems, N-version programming, test data

generation and generating an integration test order [6]. A more refined classification of

software engineering areas to which SBSE has been applied and the various applications

within each category are discussed in [8]. Such areas include network protocols,

requirements/specifications, design tools and techniques, coding tools and techniques,

software/program verification, testing and debugging, distribution, maintenance and

enhancement, management, distributed artificial intelligence, and security and protection

[8].

Another related study in the software engineering field is the generic

programming. Generic programming is a programming style and a set of language

mechanisms to achieve program reuse by implementing type-safe polymorphic containers

[9]. Generic programming centers around the idea of abstracting from concrete, efficient

algorithms to obtain generic algorithms that can be combined with different data

representations to produce a wide variety of useful software [10]. Generic programming

depends on the decomposition of programs into components which may be developed

separately and combined arbitrarily, subject only to well-defined interfaces [11].

However, as summarized in [3] generic programming limits code generation to

substituting concrete types for generic type parameters and welding together pre-existing

fragments of code in a fixed pattern.

6

Search-based approaches developed for architecture development in systems

engineering field are relatively rare. A Smart Systems Architecting framework is

proposed in [12]. It highlights the tasks of applying computational intelligence into

architecture trade-off space exploration but provides few implementation details. A

generic framework for constructing an evolutionary design model for design of complex

systems is presented in [13]. This framework identifies the architecture modeling tasks

for various design states and a set of existing technologies applicable to each design task.

The resultant design model is described as an evolutionary model that moves a system’s

design from simple abstract states to more complex and detailed states. However, it

presents the framework only. No implementation is developed.

A meta-language for systems architecting called object-process network (OPN)

was developed by Koo in [1]. It is a Petri net like executable language that utilizes a

small set of linguistic primitives, i.e., objects and processes that transform them. The aim

of the language is to support system architects’ modeling process by automating certain

mechanical communication and computational tasks in architectural reasoning. Koo [1]

suggested three usage of OPN in architectural modeling: (1) as a declarative language to

specify the space of architectural options, (2) as an imperative language to create

architectural option instances and to compute the performance metrics for those

instances, and (3) as a simulation language. The rationale behind usage (1) and (2) is an

analogue of defining classes and creating instances. Therefore, its variability generation

mechanism, like that in OOA/D, is limited to the intra-application variability (i.e.,

creating object variants only) as pointed out by [3]. It still lacks an explicit mechanism to

model both the variations and the related constraints like the one provided by feature

models and the domain engineering [3], [14]. Thus, although OPN is effective in creating

element instances, it still lacks an effective way to automatically generate the entire

architecture as alternatives. Nevertheless, Koo demonstrated that tokens can be used to

record the execution trace in a simulation of an OPN model in [1]. Such traces can

represent the architecture alternatives discovered. The execution semantics of OPN is

based on the function-algebraic model, which supports discrete, continuous, and

probabilistic events simulation. Furthermore, the emphasis of the modeling language is

for creating computational model. The language is not intuitive to represent static

7

relationships between system entities. A software environment is developed for the

proposed meta-language in [1].

The evolutionary algorithms and other metaheuristic based algorithms such as

simulated annealing and tabu search have been broadly applied to many architecture

related designs [2]. Most of such applications use no explicit system models or use very

simple system description to contain related information. Instead, the idea is to develop

problem specific chromosome representations and crossover/mutation operators. For

example, the Genetic Algorithm (GA) is applied to software architecture design in [15].

In this work, a complicated chromosome representation is used. Such chromosome is

comprised of a list of supergenes following the supergene idea given by [16]. Each of the

supergene corresponds to one responsibility in the system. Each responsibility is

described by a set of attributes and has a set of responsibilities depend on it. Each

responsibility is also associated with a class which implements an interface, belongs to a

super class, and communicates with a set of responsibilities through a dispatcher.

Accordingly sophisticated mutation operator is defined based on the structure of

supergene. The crossover operator is a simple one point crossover that is applied at a

random selected supergene. Such type of chromosome encodes the complete information

of an architecture model into a chromosome representation. Therefore no extra

architectural model is needed. Such chromosome encoding scheme also eliminates the

needs to develop additional alternative generation mechanism because mutation and

crossover operators can be used to generate alternatives directly. However, the

disadvantage of this approach is that its chromosome encoding is rather rigid and cannot

generalize well for use in non-software systems. Such approach also assumes a fixed set

of responsibilities which may not be the case in other types of systems.

Another problem-specific application of GA in architecture related problem is

presented in [17], where GA has been applied to dynamic and multiple criteria web-site

optimizations. The purpose is to find the best-possible arrangements (in terms of both

combinations and sequences) of a given set of web-objects, such as banners, images,

splash screens, leased spots, sounds, and other multimedia objects, based on simultaneous

optimization of multiple criteria: (1) download time; (2) visualization; and (3) product

association level [17]. Again, no system model is used. The system can be simply

8

described by a look-up table containing a set of candidate web-objects, each of which is

described by a set of attributes such as product name, download time, visualization score,

and likelihood that the product will be sold in combination with other products or

services [17]. The chromosome representation is simply a sequence of web-objects. The

mutation is achieved by swapping two random web-objects within the chromosome. The

crossover operator works as follows: select the first k members of parent 1 as the first k

members of the offspring, where k is a random number between 0 and the number of

web-objects in the chromosome. The remaining members of the offspring come from

parent 1 but following the order in which they appear in the parent 2 sequence. The

results achieved by Asllani and Lari [16] show that the algorithm provides dynamic and

timely solutions independent of the number of objects to be arranged.

System architecting is a broad field comprised of many sub-problems. Studies on

solutions to the sub-problems also contribute to the overall body of knowledge of

architecture design in general. Räihä [15] studied many search-based algorithms applied

to problems that constitute to sub-problems of software architecture design. These

solutions also provide useful insights into application of search-based algorithms in

system architecture design in general. These sub-problems studied in [15] include search

algorithms in clustering, systems integration, system refactoring, and program

transformation. Clustering is a classical problem that is often studied in system

architecting as a means to achieve modularity, particularly in software engineering [2],

[18], [19]. Systems integration in software engineering [2], [20] is in a way quite similar

to module clustering, only now the modules are known, and the order in which they are

incorporated to the system is what needs to be decided [15]. Refactoring is the process of

changing a software system in such a way that it does not alter the external behavior of

the code yet improves its internal structure [21]. Refactoring is basically a variant of

restructuring [22] used in object-oriented system. The key idea here is to redistribute

classes, variables, and methods across the class hierarchy in order to facilitate future

adaptations and extensions [23–25]. Program transformation enables programming at a

higher-level of abstraction, thus increasing maintainability and re-usability [26]. All

approaches to transformation share the common principle that they alter the program's

syntax without affecting its semantics [2].

9

This dissertation presents a search-based architecture development framework

that integrates architecture modeling, alternative generation, and architecture assessment

into a coherence process. A holistic modeling approach is developed to facilitate the

implementation of such framework. This modeling approached is achieved by combining

the capabilities of OPM, CPN and feature modeling into one holistic representation. The

resultant holistic model not only can capture the structure, behavior, and dynamic aspects

of a system but can also support simulation and formal model analysis. This holistic

modeling approach not only supports the generation of instance models that contain all

information needed for architecture specification and analysis but also support the

development of a class model that captures the specification of design space (or

constraints). An architecture generation mechanism based on the proposed modeling

formalism is also developed to support the generation of all architecture alternatives that

cover the entire design space. The proposed approaches are implemented using Python

with the support of some open source libraries for implementing the CPN and

evolutionary algorithms. Two sample projects, the design of RMSs and the architecture

design of a manned lunar landing system for the Apollo program (retrospective), are used

to demonstrate how to apply the proposed approaches.

10

3. OVERVIEW OF RELATED FIELDS AND TECHNOLOGIES

This section presents a brief review of some technologies related to developing

the proposed approaches as well as some background knowledge of the sample problem

to be used for demonstrating the application of the proposed approach. The aim is to

reach a common understanding of related terminologies and to provide the background

and foundation for further discussions in later sections.

3.1. OBJECT-ORIENTED MODELING AND DOMAIN ANALYSIS

3.1.1. Object-Oriented Modeling (OOM). OOM is a modeling paradigm

originating from computer science, known as object-oriented programming (OOP). OOP

uses “objects” as the primary constituents to build a system. An object contains

encapsulated data fields and procedures, together with interface, to represent an entity.

An object-oriented program is described by the interaction of these objects. Closely

related to OOM, are the concepts of Object-Oriented Design (OOD) and Object-Oriented

Analysis (OOA). OOD is the discipline of defining the objects and their interactions to

solve a problem that was identified and documented during object-oriented analysis

(OOA). There are two major approaches to object-oriented design, class-based approach,

where objects are obtained by instancing classes, and prototype-based approach, where

objects are typically obtained by cloning other (prototype) objects. Only the class-based

approach is discussed in this dissertation. The basic object-oriented concepts are briefly

introduced as follows (biased toward software engineering) [27]:

An Object is an entity that has state, attributes and services.

A Class describes a set of objects that share the same specifications of features,

constraints, and semantics [28].

Attributes together represent an object’s static features and state.

Relationships include “is_a” classification relations, “part_of” assembly

relationships, and any “associations” between classes.

Methods (services, functions) are the operations that all objects in a class can do.

An Interface defines how objects interact with each other. In software

engineering, it defines the functions or methods signatures without implementing them.

11

Such kind of abstractions is so universal that OOM is claimed to be more

“natural”. Some key features of OOD include:

Object/Class: A class defines common properties of a set of objects in terms of

what it is and what it can do. A class is used to create instances of itself, referred to as

class instances, or simply objects.

Inheritance: In heritance is a process of sharing properties of the higher level

object or class [28]. Part of the subclass can be derived (inherited) from the superclass.

The subclass can “specialize” the parent class by adding additional attributes and

methods or by replacing an inherited attribute or method with another. Multiple

inheritance (i.e., multiple different superclasses) is also possible. Inheritance facilitates

reuse (part) of class definition by allowing building new class or objects from the base

class or super class [28].

Polymorphism: Polymorphism allows a name to denote instances of many

different classes as long as they are related by some common superclass [29]. Any object

denoted by this name is thus able to respond to some common set of operations in

different ways [29].

3.1.2. Feature Models. Feature models [14], [30] are widely used in software

product line engineering. The term feature model first appeared in the Feature–Oriented

Domain Analysis (FODA) report [31] and has been an active research topic in software

product lines since then.

A feature model represents the information of all possible products of a software

product line in terms of features and relationships among them [14]. A feature model

defines a hierarchical structure over the set of features of a domain using: (1)

relationships between a parent (or compound) feature and its child features (or

subfeatures); (2) cross–tree constraints [14]. The root of a feature tree always represents

the domain whose features are modeled. A child feature can only appear in a product if

its parent feature does. A basic feature model has the following relationships among

features:

• Mandatory: Mandatory relations connect mandatory features to their parent

feature. Mandatory features are always part of the system if their parent feature is part of

the system.

12

• Optional: Optional relations connect optional features to their parent feature.

Optional features can be optionally included in the system if their parent feature is

already in the system.

• Alternative: Alternative relations are exclusive or relations connecting optional

features to their parent feature. Exactly one feature out of a set is part of the system if the

parent feature is part of the system.

• Or: one or more of children can be included in the system in which its parent

feature appears.

Cross-tree constraints between features typically include:

• Requires. If a feature A requires a feature B, the inclusion of A in a system

implies the inclusion of B in such system.

• Excludes. Only one out of a set of features can be part of the system.

The basic feature model has difficulty to express complex concepts. Hence

various extensions have been proposed. For example, the cardinality-based feature

models [32] extend FODA feature model with multiplicity concepts like the ones used in

Unified Modeling Language (UML). Particularly, two types of cardinality exist: feature

cardinality and group cardinality as summarized in [14]. Feature cardinality (denoted by

[n..m] with n and m as the lower and upper bound respectively) determines the number of

instances of the feature that can be part of a product and is a generalization of the original

mandatory ([1, 1]) and optional feature ([0, 1]) [14]. Group cardinality (denoted by n..m

 with n and m as the lower and upper bound respectively) determines the number of child

features that can be part of a product when its parent feature is selected [14]. More

advanced extensions to basic feature models can also be found in literature. Such

extensions include adding feature attributes (, which usually contain at least a name, a

domain and a value) and complex constraints among attributes and features as

summarized in in [14].

In addition, a variety of operations of analysis, tools, paradigms and algorithms

have been developed to support automated analysis of feature models. David et al

provides an extensive review of the operations developed for automated analysis of

feature model in [14].

13

In order to implement these operators the usual graphical notations of features are

mapped to various computational languages such as Propositional Logic, Constraint

Programming, Description Logic and other ad-hoc solutions [14]. Once a feature model is

transformed into a suitable representation, various off-the-shelf solvers can be applied to

analyze a feature model automatically. Such solvers include Constraint Satisfaction

Problem solver, Boolean Satisfiability Problem solver, and Binary Decision Diagrams

solver, etc.

3.2. MODELING LANGUAGES FOR ARCHITECTING

This section provides a brief review some existing modeling languages that

support system specification and/or system analysis. Here the discussion is focused on

three languages UML, OPM, and Petri nets. Each of these languages has distinct

language design goal and capabilities, along with its own merit. This section briefly

review their language features only. A detailed comparison of their strengths and

weaknesses in the context of search-based architecture development will be further

discussed in Section 5.1.1.

3.2.1. UML and SysML. UML [28], [33] is comprehensive language family

served as a general-purpose, standardized modeling language for object-oriented analysis

and design. It uses a set of diagrams to model a system from multiple views such as

requirements view (by use case diagrams), structure view (by class, package diagrams,

composite structure, component diagrams etc.), behavior view (by state machine, activity,

interaction diagrams, etc.), and implementation view (by deployment diagrams) [34]. An

additional textual language, the Object Constraint Language (OCL), is also provided with

UML for expressing static consistency constraints on sets of objects and their

interrelations. Although UML was initially designed for software developers, its usage

has been expanded to many non-software systems due to its popularity and

comprehensiveness.

Currently, the semantics of UML language constructs is only defined in a textual,

informal way [35]. The syntax of UML is defined by UML metamodel, which is itself a

UML class diagram together with OCL-constraints and it defines the context-free as well

as context-sensitive syntax of all UML diagram types [35].

14

Among other capabilities, UML models are often used to serve three purposes:

presentation, specification, and documentation. Presentation is the activity of using

diagrams for communicating the design ideas with other engineers or stakeholders.

Specification involves using UML’s prescriptive power to precisely define the system to

be built. Documentation involves using UML models as a means to archive designs,

requirements or knowledge throughout the development process.

SysML (Systems Modeling Language) [36] is an extension of UML through the

profile mechanism of UML. SysML is intended to be a general-purpose modeling

language for systems engineering [36]. SysML supports the specification, analysis,

design, verification, and validation of a broad range of complex systems [36]. In a

manner similar to how UML unified the modeling languages used in the software

industry, SysML is intended to unify the diverse modeling languages currently used by

systems engineers [36]. It is particularly effective in specifying requirements, structure,

behavior, allocations, and constraints on system properties to support engineering

analysis [36]. The language is intended to support multiple processes and methods such

as structured, object-oriented, and others, but each methodology may impose additional

constraints on how a construct or diagram kind may be used [36].

SysML is a smaller language, compared to UML, in terms of both diagram types

and total constructs, as it removes many of UML's software-centric constructs. SysML

reuses a subset of UML 2 and provides additional extensions. Seven out of nine diagram

types of SysML come from UML. The remaining two, requirements diagrams and

parametric diagrams, are achieved through the extension mechanisms of UML.

3.2.2. OPM. OPM developed by Dori [37] is a general-purpose modeling

language with a single model formalism and a small set of symbols consists of objects,

processes and a variety type of relational links connecting them. OPM can be used to

specify both the structural and behavioral aspects of a system [38].

The building blocks of OPM are entities (things and states) and links. A thing is a

generalization of an object and a process. Objects are things that exist and they may have

states. States are lower level entities since they reside in objects. At any particular point

in time, an object can be exactly in one state, and object states are changed through

processes [39]. Processes are things that transform objects. Links can be structural or

15

procedural. Structural links express static (persistent, long-term relations) relations

between pairs of objects or process [40]. Procedural links, on the other hand, connect

entities to describe the behavior of a system [40]. The behavior of a system is manifested

in three major ways: (1) processes transform (generating, consuming or affecting)

objects; (2) objects can enable process without being transformed by them; and (3) things

can trigger events that invoke processes [41].

OPM manages system complexity through three refinement/abstraction

mechanism: (1) in-zooming/out-zooming exposes/hide the inner details of a thing within

its frame; (2) unfolding/folding is used for refining/abstracting the structural hierarchy of

a thing; and (3) state expressing/suppressing expose/hides the state of an object [42].

These mechanisms enable OPM to recursively specify a system to any desired level of

detail without losing legibility and comprehension of the resulting specification [40].

OPM has bimodal representation. One is graphic and the other is textual. Both are

semantically equivalent. The graphical representation, known as Object-Process Diagram

(OPD), uses graphical syntax with each OPM element being denoted by a symbol. The

textual representation, known as Object-Process Language (OPL), specifies the same

OPM model in a subset of English, enabling direct mapping between the graphic and the

textual representations [13]. OPL is a dual-purpose language, oriented towards both

humans and machines [41].

The known tools that support OPM model development are OPCAT [43] and

Systematica. Features of OPCAT include: animated simulation of the model, automatic

generation of OPL from OPD or the reverse, code generation (Java, SQL), UML diagram

generation, and automatic document generation

3.2.3. Petri Nets. A Petri net [44], [45] is a mathematical modeling language for

discrete event system modeling and simulation. A Petri net is a directed bi-partite graph

consists of places and transitions and directed arcs that connect a place to a transition or

vice versa. A place can represent the state of an object in the system being modeled.

Place can store tokens which represent objects in the system. The distribution of tokens

over the places collectively marks the state of the system. With the use of tokens to mark

the state of a system, Petri nets can captures the dynamic aspects of a system. Transitions

represent the actions of a system. When certain conditions hold, a transition will fire,

16

causing a change in the placement of tokens and thus the change of system states. The

firing of transition is nondeterministic, i.e., when multiple transitions are enabled, anyone

(and only one) of them may fire. Furthermore multiple tokens may be present anywhere

at in the net at the same time. Therefore Petri nets are well suited for modeling the

concurrent behavior of distributed systems.

A Petri net can be viewed from two levels. In macro view A Petri net can be

interpreted as a state machine. With the movements of tokens from places to places, the

system undergoes a series of state transitions. This is the perspective to understand

UML/SysML State Machine. In micro view, a Petri net can be seen as a condition/event

graph, where places are conditions (availability of certain object or an object being at

certain state) and transitions are events. A transition is fired means an event occurs. It can

only occur if all conditions for the event hold. Such perspective is usually used in

behavior analysis. Such condition/event/effects semantics can also be interpreted

input/process/output according to Carlsen [46], who classifies Petri net as a

transformational model language. These interpretations of the Petri net semantics are

summarized in Figure 3.1.

Figure 3.1. Various Interpretations of the Petri Net Semantics

Event Conditions Effects

Transition
Place

(w tokens)

Place

(w tokens)

Transition State State

Petri Net

Discrete

Event

System

Causal

Model
 Data/Information

 Control signals

 Resources

 Time delay, post conditions, etc.

 Data/Information

 Control signals

 Resources

 Other

Action /

Activity (a

set of

actions)

Process Input Output

Transfor-

mational

Model

17

The Petri net is named after Carl A. Petri and was first introduced in his Ph.D.

dissertation [47]. It then has since be extensively studied and extended. Through 50 years

development, there are several variants of Petri net being developed, for example CPNs,

which allow tokens to be typed, timed Petri nets, which introduce time concepts into

transition, stochastic Petri nets, which add nondeterministic time through adjustable

randomness of the transitions, and Object-oriented Petri nets, which support object-

oriented modeling, to name a few. The Petri net and its many variants have been applied

to a wide range of applications, such as workflow management, concurrent programming,

distributed computing systems, manufacturing system design, and many others [48], [49].

3.3. RECONFIGURABLE MANUFACTURING SYSTEMS

A reconfigurable manufacturing system (RMS) is one designed at the outset for

rapid change in its structure, as well as its hardware and software components, in order to

quickly adjust its production capacity and functionality within a part family in response

to sudden market changes or intrinsic system change [50]. A schematic diagram [51] of a

RMS is shown in Figure 3.2.

Figure 3.2. Illustration of a Reconfigurable Manufacturing System [51]

Primary material handling system (e.g., gantry of conveyor)

Return system (e.g., Autonomous guided vehicle, conveyor, or gantry)

Stage 1

CNC

Inspection

stage

Stage 4

RMT

Stage 3

CNC

Inspection

stage

Stage 2

RMT

Cell gantries

18

RMS is a new manufacturing paradigm that attempts to combine the high

throughput of dedicated manufacturing lines with the flexibility of flexible manufacturing

systems and react to changes quickly and efficiently [52]. Instead of providing a general

flexibility through the use of equipment with built-in high functionality, as in flexible

manufacturing systems, RMSs provide customized flexibility through scalability and

reconfiguration as needed when needed to meet market requirements [53].

RMS is marked by six core reconfigurable characteristics as summarized in [54]:

customization (flexibility limited to part family), convertibility (design for functionality

changes), scalability (design for capacity changes), modularity (components are

modular), integrability (interfaces for rapid integration), and diagnosability (design for

easy diagnostics)

There are many aspects of a RMS configuration. Roughly speaking, a RMS

configuration includes system level configuration (such as arrangement of machines and

facilities) and machine level configuration (such as machine setup, programming, and

machine tool configurations). This dissertation is concerned with the system-level

configurations of RMS in a metal-cutting industry.

A huge variety of techniques have been applied to solve the RMS configuration

problems. For example, Youssef and H. ElMaraghy [55], [56] developed an approach for

optimizing the capital cost of RMS configurations with multiple aspects using GA. This

approach can be used to find optimum configuration for a multi-product, flow-line type

RMS with identical machines in each production stage. The various aspects of the RMS

configurations being considered include arrangement of machines (number of stages and

number of parallel machines per stage), equipment selection (machine type and

corresponding machine configuration for each stage) and assignment of operations

(operation clusters assigned to each stage corresponding to each part type) [55]. A novel,

real-coded chromosome representation is proposed. Such chromosome encoding scheme

can guarantee the feasibility of the alternatives generated thus making the algorithm

efficient. This problem has been adopted as an example and solved using the approach

proposed in this dissertation. The details are presented in Section 7.1.

Dou et al. [57] developed a graph theory-based approach to single product flow

line (SPFL) optimization problem with small-to-medium size. Such approach is able to

19

find p economical and diversified flow-lines which include the optimal and p – 1 near

optimal solutions. A machine graph is developed to represent the RMS. The full

topological sorting and graph augmentation procedures are developed to derive a

combined machine graph from the operation precedence graph of a specific product [57].

In such graph, each node represents a feasible workstation. A directed arc connecting

nodes represents the precedence of workstations in accordance with operation

assignments. For a given operation sequence, the problem of finding the minimal cost

flow-line can be modeled as a shortest path problem on the machine graph associated

with the operation sequence. The proposed search algorithm approach is divided into two

stages. The first stage is to find the optimal and K – 1 suboptimal configurations by

solving a constrained K-shortest paths problem on a combined machine graph derived

from the specified operation precedence graph. The second stage is to find p distinctive

ones out of K configurations using the algorithms for p-dispersion problem [57]. The

experimental results showed that this approach performs well for small-to-medium size

problems of configuration generation. Further development is needed for the approach to

scale up to large size problems and to support multi-objective optimizations for multiple

Demand Periods (DPs).

Tang et al. [58] develop an approach to RMS configurations that considers the

reconfiguration process of a RMS as a network of potential activities and configurations.

Then a shortest path graph-searching strategy is applied to find the best configuration. A

generic reconfigurable object model is developed to capture necessary information for all

levels of objects in the RMS. A reconfigurable object is an object whose structure and

state can be modified by a set of actions to realize changes in its performance [58].

Particularly, A reconfigurable object consists of the following elements: member objects

(components of a reconfigurable object), states (the current condition of an object,

including relationships between its member objects and their conditions), constraints

(defines the domain of a state variable), performance metrics (measures for some

functionality that an object possesses), set of reconfigurable actions, mapping functions

(relationship between the states and the performance of the object), and rules (heuristic

knowledge and expertise that assist the derivation of a reconfiguration plan). An

Artificial Intelligence-based computer-aided reconfiguration planning framework has

20

been developed in order to derive reconfiguration plans for a RMS and reconfigurable

hardware in the system [58]. The A* algorithm and a genetic algorithm are employed to

perform the search for the reconfiguration plan. Case studies in planning a RMT and a

RMS are conducted and the results show that efficient plans are generated in both

situations [58].

The Petri net and its variants such as timed Petri nets, stochastic Petri nets, and

object-oriented Petri nets have also been applied to RMS configuration [59–62]. The use

of Petri net allows using simulation to gain insights into various performance metrics of a

RMS. Li et al. [63] developed an approach that uses rapidly reconfiguring Petri net

models for RMS design. An improved net rewriting systems (INRS) is developed to

achieve such rapid configuration. Such INRS can implement dynamical adjustments to

the structure of a Petri net model and maintain its important behavioral properties, i.e.,

liveness, boundedness (or safeness), and reversibility. Using such approach, changes in a

RMS configuration adjusted with production demands can be rapidly formalized into

graph rewriting rules of an INRS [63]. Subsequently, by applying these rewriting rules,

the existing Petri net model can be reconfigured rapidly into a new one for the RMS with

a new configuration [63]. Validity of the resulting Petri net model can be guaranteed

naturally throughout the reconfiguration process. The proposed approach is applied to a

reconfigurable manufacturing cell. The results showed that the proposed method can

generate configuration solution in a rapid and successive manner, without requiring

verification [63]. However, such model provides a description of the RMS and valid its

configuration only. Little performance metrics can be derived due to the basic Petri net

model used. A similar work that uses hierarchical Petri and INRS for supervisory control

of reconfigurable manufacturing systems model is presented in [60].

Cai and Yan [59] developed an approach that use timed reconfigurable Petri nets

to model RMS. In this work, each machine or equipment in the RMS is modeled with an

object-like subnet. In each subnet, a set of states and transitions are used to model the

operations of the machine or equipment. For example, the states can be idle, ready,

preparing, loading, processing, and unloading. Each subnet also has a number of

“message” places to receive or to send information regarding the operation requests or

responses. The whole RMS system is composed of a number of such connected subnets

21

representing machines or equipment. The parts are represented by tokens of the Petri net.

Features of the parts to be processed are encoded in the color set of related tokens. With

time associated each transition, such Petri net model for the RMS can provide, through

simulations, a variety of performance measures such as completion time of a job, average

throughput for a part, and resource utilization. Given a new configuration, a new Petri

net model will be generated based on the modification of the precious model. There are a

number of similar works that use various object-oriented Petri nets to build a similar

model for the RMS [62], [61].

Note that these Petri net-based RMS models primarily serve as analysis models

only. The purposes are to derive performance measures or to valid the configuration. A

dedicated optimization process is still needed if there are a large number of alternatives to

be evaluated.

22

4. SEARCH-BASED ARCHITECTURE DEVELOPMENT APPROACH

This section first presents the search-based architecture development framework.

Then the guidelines and concerns in implementing two of its components, architecture

modeling and assessments, are further discussed. The architecture modeling section

discusses what to be modeled, how to use abstraction to extract necessary information

and how to systematically develop a system model and define its design space. The

architecture assessment component is presented in three sub-sections: architecture

analysis, selection and optimization. A set of applicable technologies is also identified,

compared, and discussed for each components of the framework.

4.1. SEARCH-BASED ARCHITECTURE DEVELOPMENT FRAMEWORK

The four distinctive tasks in search-based architecture development are:

 Developing an architectural model,

 Generating architecture instances,

 Assessing architectural instances,

 Validating design and/or further refining design.

Figure 4.1 depicts these processes using an OPD.

4.1.1. Requirements Analysis and Design Formulation. The architecture

development cycle is always preceded by a requirements analysis process. Alfaris [13]

suggested using the four categories of requirements developed by Buede [64] in system

design. Such categories are input/output, technology and system-wide, tradeoff, and test.

These types of requirements are adapted and expanded to encompass a set of tasks

together called design formulation in this dissertation. A design formulation includes

detailed design concepts, constraints, and plans to guide the architecture development

process. More specifically, the design formulation contains the following components:

input/output, context and boundary, system function breakdown, constraints, performance

metrics, tradeoff, and plan. The details of each are described in the following sections:

 Input/Output. Input/output include inputs, outputs, and interfaces of the

system with its external environment.

23

Figure 4.1. Framework of the Search-Based Architecture Development Process

 Context and Boundary. The context is the set of entities that interact with

systems through their external interfaces. These entities can impact the system

through input. They can be impacted by its outputs. The boundary identifies

the scope of the problem to be solved.

 System Function Breakdown. System function breakdown is a set of

functional relationships regulating both the reception and delivery of inputs

and outputs. Functional requirements do not convey any requirements with

regards to the technology being used, or the process followed in the design

[65].

 Performance Metrics. Performance metrics include both stakeholder specified

and architect identified Key Performance Attributes (KPA). They measure

both the quality of the services provided by the system function and the

Consider all impact

factors.

Cover all

performance

metrics.

Cover entire

design space

Capture all

design variables

and constraints

Architecture Synthesis

24

outputs generated by the system. The KPA can be decomposed into Measure

Of Effectives (MOE) [66]. MOE can in turn be decomposed into Figures Of

Merit (FOM). For any design under consideration it is necessary to be able to

estimate or measure the values of these FOMs [65].

 Constraints. Constraints include recourse, budgets, schedule, and various

other types of limitations or restrictions. One particular type of constrains is

technology constrains. The technology requirement consists principally of

limitations specified by the customer on the technologies available to build the

system [65].

 Trade-off Requirements. Trade-off requirements specify the nature of trade-

offs among input/output, system’s technologies, and systems requirements.

Trade-off requirements will make the actual system selection based on the

priorities of the customer [65].

 Plans. Plans include various tasks such as choosing appropriate analysis,

decision, and optimization techniques to be used in the architecture

assessment, prioritizing the objectives to be addressed, and formulating a

general concept that guides the problem solving.

 Architecture/Design Patterns: An architect may choose to apply architecture

or design patterns to improve design efficiency. Architecture or design

patterns are descriptions, best practices, or templates for how to solve a

problem that can be used in many different situations. In software

engineering, design patterns are defined as general, reusable solutions to a

commonly occurring problem, within a given context, in software design [67].

Note that the list of elements in the design formulation identified above is not

intended to be complete. The architect can either develop additional one or use a subset

of this list according to both the problem to be solved and the current design phase.

4.1.2. Search-based Architecture Development Process. Once the requirements

have been analyzed, the architecture synthesis can proceed. The architecture synthesis

includes both architecture modeling and alternative generations. A generative class model

that can describe a collection of systems is first developed. A generative class model

should not only encode the design knowledge but also capture all of the design variables,

25

along and their domains. Such requirements usually necessitate a holistic model that can

capture all of the structural, behavioral and dynamic aspects of a system as well as

constraints. Moreover, such system model may also need to support simulation and

system analysis, which are very useful in both system assessment and verification /

validation. Then, an architecture generative mechanism is applied to generate all of the

architecture alternatives within the design space specified. Next, the architecture

assessment process can proceed with the following activities:

 Analyze the behavior of the generated architecture alternatives for verification

or validation.

 Derive the performance metrics of the generated architecture alternatives

using analysis models or through simulation;

 Search for the best architecture alternative(s) using an appropriate

optimization algorithm.

 Making decisions regarding the preference of one or a set of architecture

alternatives based on the evaluation of multiple objectives

The architecture assessment process is represented as an aggregated process in

Figure 4.1. Its details are exposed in Figure 4.2. The optimization as a search process

should be capable of covering the entire solution space. Since the entire architecture

alternative space is usually vast, it is not necessary to generate all the possible

alternatives in one step. Rather, the search should be guided by the optimization process.

Therefore, only a small set of architecture instances are generated and assessed in each

iteration given an iterative optimization algorithm is used. Accordingly, there will be a

tight coupling between the architecture generation process and the architecture

assessment process. This architecture assessment process should consider all performance

metrics of interest, covering all factors impacting them so as to yield unbiased results.

The solution from the optimization is subject to verification and validation to ensure the

selected architecture alternative(s) can

 Conform to the constraints set in the requirements,

 Perform the intended functionality,

 Generate desired behavior, and

 Satisfy the performance requirements.

26

Figure 4.2. Elaboration on the Architecture Assessment Process

Additionally, both the emergent behavior and side effects need to be examined

and interpreted for undesired results. The architecture can be further refined with a

refinement plan if necessary. This refinement plan can include either the entire or subset

of elements in the design formulations, as discussed in the requirements analysis phase.

Once a refinement plan is made, another round of the design cycle can proceed. This

entire development process is intended to proceed automatically as the design space

might be vast. However, it is crucial for human experts to intervene and guide the

requirements analysis process, the design validation, and the refinement process. The role

of human experts is illustrated using the Agent link in the OPD in Figure 4.1.

As illustrated in Figure 4.2, three key tasks exist in the architecture assessment

process: analysis, decision making, and optimization. Each is facilitated by a specific

type of model commonly used in engineering design. The following discussion focuses

on the objectives and inputs/outputs of these models. Section 4.3 focuses in detail on the

techniques available for each type of model.

27

The analysis process derives the behavioral properties and/or performance

measures from a system model using various analysis methods (or models in general)

and/or simulations. The input to the analysis model is extracted from the information

captured in the system model. Such information can include the structural properties, the

behavioral properties, the numerical properties, the relationships between these

properties, the interactions between system components, the transitions of system states

and more. Depending on the needs of a specific analysis model used, such input data may

be subject to a preprocessing process. Both performance measures and behavior

properties can be output from an analysis model. Depending on the modeling language

used, a system model can sometime double as an analysis model. For example, a Petri net

model can be used as both a system model to describe a system and as an analysis model

to reason the behavior of a system and simulate the behavior. The reason that a Petri net

model can play these dual roles is that Petri nets have rigorous mathematical definitions

and they can precisely model the states of a system and, under what conditions,

transitions between these states will happen. On the other hand, a design problem usually

involves multiple domains. Each domain can develop one or more analysis models. These

models range in their required input, type and amount of information, domain of outputs,

and degree of accuracy.

The selection process is facilitated by a decision-making model, which is used in

conjunction with the optimization model to select good designs that constitute a desired

trade-off between conflicting objectives. Various performance measures output from

multiple analysis models, expressed in an n- dimensional (with “n” being the number of

design objectives), provide the input to a decision model. The output of the decision

model is the preference for each solution.

Many real-world optimization problems involve the simultaneous optimization of

several incommensurable and often competing objectives. For nontrivial multi-objective

problems, there is no single optimal solution, but rather a set of alternative solutions.

These solutions, known as Pareto-optimal solutions, are optimal in the wider sense that

no other solutions in the search space are superior to them when all objectives are

considered [68]. In such cases, decisions have to be made in the presentence of trade-offs

between conflicting objectives. Based on the system and the design objectives to be

28

evaluated, the efficiency of the decision tools, and the decision maker’s preference, this

selection can be an automatic, semi-automatic, or even a manual process (given that there

are only a very limited number of solutions to be evaluated).

The optimization process is primarily a search process in the search-based

architecture development process. Multi-objective optimization involves two search

spaces, the decision variable space and the objective or criterion space. Although the two

spaces are related by unique mapping between them, often the mapping is nonlinear and

the properties of the two search space are not similar [69]. The design variable space,

comprised of architecture instances, is discrete in nature and usually is subject to certain

constraints. The choice of an appropriate search algorithm depends on several factors,

including the nature of design variable space (e.g. linear or nonlinear, continue or

discrete, deterministic or scholastic, convex or nonconvex, etc.), the nature of constraints,

the interaction both between design variables and between design objectives, the

efficiency of the search algorithm and their ability to found global optima, knowledge of

the system and the objectives. The input to the optimization model is a set of values

evaluated according to the objective functions. The output of the optimization model is

either one or a set of architecture instances.

4.2. ARCHITECTURE MODELING

This section provides special guidelines with respect to architecture modeling.

The emphasis is on the special needs for an architecture model to support automatic

design space exploration. It structures the landscape and identifies regions of related

topics for later sections of this dissertation.

4.2.1. System Design Set. Alfaris [13] formalizes the tasks in architecture

modeling as a design set. According to [13], the system design set S includes related

components (Sc) and a structure (Ss). The structure (Ss) allows components to interact

with each other through interfaces (Si). Together, Sc, Ss and Si comprise the system’s form

(Sf). This form executes certain system Behaviors (Bs). These behaviors include both

anticipated behaviors (Ba) and emergent behaviors (Be) that should enable system’s

functions (Fs). The combination of Sf and Ba defines the system's architecture (Sa). In the

context of working with a set of architecture alternatives, as in the search-based

29

architecture development framework, an additional component (constraints C) needs to

be identified. Constraints are conditions, or restrictions, attached to the constrained

elements for the purpose of declaring some additional, semantic information. A constraint

is an assertion that indicates what restrictions must be satisfied by a correct design [28].

As such, constraints can be represented as Boolean expressions. They can specify the

range of possible values for any design elements and, therefore, can be used to define

design options. Both the elements in a design set and their relationships are depicted in

Figure 4.3 using OPD.

Figure 4.3. System Design Set ([13])

The design set Figure 4.3 summarizes the components in a system architecture. A

system architecture, however, has three major aspects that are more relevant to system

analysis or architecture reasoning. These aspects are structure, dynamics, and behavior.

A brief survey defining each is provided in the following discussion.

30

Structure in UML [33] refers to “a composition of interconnected elements,

representing run-time instances collaborating over communications links to achieve some

common objectives describes the assembly of components within a system”. Dori [37]

defines structure as “pertaining to the relatively fixed, non-transient, long-term relationship

that exists among components or parts of the system”. When explicit considering time in

the definition, structure has also been viewed as a snapshot [37]. Note that, in Alfaris’

[13] definition of the system design set, the concept of structure is used somewhat

narrowly. It refers only to the composition of system components without including

those components and their interfaces. The concept of structure, in many system

modeling contexts, is referred as the collection of composition, components, and

interfaces, which is defined as form in [13]. In this dissertation, the term, structure, is

used broadly and it is equivalent to the form defined in Alfaris [13].

Dynamic aspects describe the changes of a system along time during operation,

together with the causes and effects of these changes. The concepts of both states and

transitions are often used to describe the dynamic aspects of a system. A state is defined

as “a situation of position at which the object can exist for a period of time” in [37].

According to UML [33], “a state models a situation during which some (usually implicit)

invariant condition holds”. A transition, on the other hand, describes the switch between

states. It describes the transit aspect of a system in contrast with the static aspect. A

transition is, therefore, often associated with action or process that transforms system.

System model without dynamic aspects cannot precisely describe the state of a system at

a particular point of time, or can only provide a snapshot of the system at a particular

point of time but cannot describe how and why the system changes over time.

Behavior of a system can be viewed as the collective effects (or consequences,

outcomes) of the actions and interactions of system components [33]. This view

emphasizes behavior’s association with objects. On the other hand, “A behavior describes

how the states of these objects, as reflected by their structural features, change over time”

according to UML [33]. As such, the system dynamics discussed above provides a way to

describe the behavior of a system. The aim of a system design is to achieve both the

desired behaviors that are outputs of functions and certain desired properties while both

predicting and limiting undesired behaviors [13]. Both anticipated and emergent

31

behaviors need to be estimated and constrained during system design in order to prevent

undesired behaviors.

In summary, a system architecture is “the overall system’s structure-behavior

combination, which enables it to attain its function while embodying the architect’s

concept” [37].

4.2.2. Object-Oriented Abstraction and Metamodel. All information needed

by the analysis models discussed in Section 4.1.2 should be captured in the architecture

model and/or its associated constraints. An effective way to do so is by using abstraction

appropriately to extract the needed information. Abstraction captures only those details

about an object that are relevant to the current perspective [70]. Abstraction applies to

every aspect of modeling. Abstraction is defined as “a concept or idea not associated with

any specific instance” in [71]. Therefore, the results of abstraction are concepts. The

easiest, most natural way to describe a concept is to list its properties [3]. According to

Czarnecki’ study [3], concepts can be regarded as natural modeling elements. Therefore,

concepts are directly related to classes in object-orientation (especially the classical

object model). The concept of object is such a fundamental abstraction that it can cover

virtually any entities. As a result, it is a more natural way to represent things.

Class in OOM is a construct for defining objects. In UML, class (in MOF level) is

a universal way to define any entities, including objects, procedures (actions), and

relationships, except for atomic attributes. With such capabilities, the abstract syntax of

UML diagrams can be defined by UML itself. In another word, the metamodel of UML is

itself a UML class diagram, together with OCL-constraints. It defines the context-free as

well as context-sensitive syntax of all UML diagram types [35]. Figure 4.4 illustrates the

metamodeling concepts used in UML [28]. A model that is instantiated from a

metamodel can, in turn, be used as a metamodel for a lower level model in a recursive

manner. A model typically contains model elements. These are created by instantiating

model elements from a metamodel (i.e., metamodel elements). MOF level class is a

metaclass known as Element in [28]. It is an abstract metaclass with no superclass used

as the common superclass for all metaclasses. MOF defines all metamodel (UML)

constructs using a quad-fold Element {attributes, associations, constraints, and

operations}, along with textual semantics defined for each element within the quad-fold.

32

Figure 4.4. An Example of the Four-Layer Metamodel Hierarchy [28]

Abstraction can hide implementation details. Consequently, a system can have

multiple layers of abstraction. Each relatively abstract, higher level builds on a relatively

concrete, lower level, resulting in an increasing design resolution, or granularity. Each

level represents a different model of the same system. Different set of objects and

compositions are involved in these models [72]. A system abstraction at a relative

concrete level is usually subject to more constraints than that at a relative abstract level.

Hence design space shrinks as design resolution increase.

Abstraction can create and use concepts that are purely theoretical entities (i.e.,

without physical embodiment). They, therefore, cannot be instanced. The use of abstract

concepts can simplify a system description. For example, software engineering uses an

abstract data type, which is defined indirectly, only by the operations that may be

performed on it and by mathematical constraints on the effects (and possibly cost) of

Class

aVideo

+title: String

Video

Attribute Class Instance

title = “Avatar”

: Video

«instanceOf»

M3 (MOF)

classifier

«instanceOf» «instanceOf»

«instanceOf» «instanceOf»

M2 (UML)

M0 (Run-time instances)

M1 (User model)

«instanceOf»

«snapshot»

«instanceOf»

«instanceOf»

33

those operations [73]. Components implementing an abstract concept can take a variety

of forms. For example, the interface of a component (object) can be specified by both the

input/output and the service provided by the component during its interaction with other

system components. Such an interface can be implemented by objects in a variety of

ways. Such type of abstraction is so useful that design pattern in software engineering

advocates the practice of “program to interface” [74].

Since abstraction provides less detailed definition of a concept than its real-word

embodiment, the use of abstraction often implies approximation. Abstractions, though not

necessarily exact, should be sound [70]. Some considerations in using abstraction are

summarized below:

 Simplicity vs. Completeness: Architectural abstraction has to maintain

information completeness while applying the KISS (Keep it simple, stupid)

principle.

 Precision/Fidelity: Architectural abstraction must keep the approximation

error within a reasonable range.

 Multiple Aspects/Angles and Consistency: Consistent definition of a system or

its component must be maintained while abstracting the same subject from

different aspects or angles.

 Levels/ Resolution of Abstractions: abstraction has to be detailed enough to be

useful.

 Understandability: Abstraction should yield meaningful results that are human

comprehensible, or interpretable. Therefore, human experts must be involved

in developing abstraction.

 Formality/ Representation: Abstraction can be represented using textual or

graphical format depending on the domain to be abstracted. Operations can

then be defined on such representation to either support analyses or automate

such analyses. Examples are mathematical operators on equations, graph

theory on graphic representation, and regular expression programming on text.

4.2.3. Modeling Process. Modeling process, in this context, refers to a systematic

way of developing a system model in terms of identifying both its forms and behaviors as

well as being aware of possible design options. It also includes the rational to derive such

34

information. This section discusses both the modeling process and related techniques that

support the identification and modeling of a collection of systems. The modeling

elements created in a modeling process are instances of the design set implemented by

the chosen modeling language. For example, when using OPM as the modeling

languages, the modeling elements include objects, processes, states, and links.

The modeling process is strongly influenced by modeling paradigms. Popular

modeling paradigms include functional programming, object-oriented programming, and

model driven architecture. As discussed in Section 4.2.2, object-oriented modeling is

preferred for modeling most systems. As a result, the discussion here focuses on the

object-oriented paradigm. Several object-oriented modeling processes and development

methods have been proposed. Prominent examples include the Unified Process [75], the

Catalysis approach [76], and the approach for real-time applications [77].

Typical object-oriented modeling consists of two steps: Object-Oriented Analysis

(OOA) and Object-Oriented Design (OOD). OOA applies object-modeling techniques

when analyzing the functional requirements for a system. Object-oriented design (OOD)

elaborates the analysis models to produce implementation specifications. OOA is part of

the design formulation (as discussed in Section 4.1.1). It focuses on what the system

does. The result of OOA is the function breakdown (as discussed in Section 4.1.1). OOD

focuses on how the system does it. The result of OOD is derived system behavior (as

discussed in Section 4.2.1).

Traditional OOA/D methods [29], such as OOSE [78], OMT [79], and Rational

Unified Process [80], [81], focus on developing single systems only [3]. Such methods

are inadequate in search-based architecture development, which requires explicit

modeling of large design alternatives rather than single systems. As identified in [3], a

general problem associated with the existing modeling techniques used in OOA/D

methods is an inadequate modeling of variability. Their variability modeling capabilities

are limited to variability of certain objects over time or creation of different variants of an

object (e.g., inheritance and parameterization in object diagrams). These OOA/D methods

do not include the abstraction and modeling of commonality, variability, and

dependencies [3].

35

In software engineering, domain engineering, also known as product line

engineering, is the systematic activity of using domain knowledge and reusable assets in

the production of new software systems. The key aspects of domain engineering are

variability and dependency modeling. Many of the techniques developed for domain

engineering can be used in the variability and dependency modeling of systems in

general. The application of feature modeling, a major technique in domain engineering,

to search-based architecture development will be further discussed in Section 5.1.3.1. The

engineering process of using domain engineering in the design space modeling of the

search-based architecture development process is discussed here. Domain engineering

encompasses three main process components: domain analysis, domain design, and

domain implementation [3].

Domain analysis is used to define the domain (identifying domains and their

boundaries), collect relevant domain information, and produce a domain model [82]. A

domain model is an explicit representation of both the common and the variable

properties of the systems in a domain, as well as the dependencies between the variable

properties [3]. In general, a domain model consists of the following components: domain

definition, domain lexicon, concept models, and feature models [3].

Domain design uses the domain model produced during the domain analysis

phase to produce a generic architecture to which all systems within the domain can

conform [17]. Such a generic architecture is an architectural pattern that can solve a

problem common across the systems within the domain [18]. Domain implementation

involves applying appropriate technologies to implement components, automatic

component assembly, reuse infrastructure, and application production process [3] .

Domain engineering methods aim at supporting the development of models for

classes of systems. OOA/D methods, however, concentrate on single systems [3].

Domain engineering supports both a multi-system-scope engineering process and

adequate variability modeling techniques. OOA/D methods provide effective system

modeling techniques [3]. Thus, the integration of domain engineering methods with

OOA/D methods can provide the full engineering process support to the search-based

architecture development process. Such an integration can take four forms [3]:

 Upgrading older domain engineering methods,

36

 Specializing customizable domain engineering methods,

 Extending existing OOA/D methods, and

 Integrating two or more methods developed for above.

Many of the techniques developed for these methods are designed specially for

software engineering. Some of the principles, however, can be applied to non-software

systems. The integration of domain engineering and OOA/D methods for general system

development, particularly in the context of search-based architecture development, are

discussed next. Such an integration can encompass the following two steps.

Step 1. Augment OOA with context analysis: “The purpose of context analysis is

to define the boundaries and contents of the system to be analyzed” [3]. Variability

should be analyzed along with establishing the relationships between the domain of focus

and other domains or entities [3].

Step 2. Augment OOD with domain modeling: The purpose is to identify and

model the commonalities, variabilities, and their dependencies in a domain model [3].

This phase can involve the following activities:

(1) Entity Analysis: The main purpose here is to capture both major system

entities and the relationships between them [3].

(2) State and Process Analysis: The main purpose here is to capture the major

states that the system needs to go through to achieve certain functions. Then

identify the processes that enable the achievement of these states or the

transitions between then.

(3) Operational Analysis: Operational analysis identifies how the system operates

by capturing the relationships between the objects, object state, and processes

in the system. It also maps processes to objects.

(4) Domain and Constraint Analysis: Domain and Constraints Analysis identifies

the attributes to describe the class of the object identified in the Entity

Analysis step, along with the domain and its boundary of each attribute. It also

identifies the implementation constraints for the identified object, processes,

and states.

(5) Commonalty, Variability, and Dependency Analysis. This step involves

analyzing system functionalities, contexts, interfaces, and both similarities and

37

variations between entities, activities, events, relationships, structures, etc.

The purpose is to identify the common elements, variable elements, and the

dependencies and constraints between these elements. The design options, or

variants, can be identified in a variety of ways. For example,

 Alternative and optional functionality [83]. For example, in responsibility-

driven design, design variants can be defined around a responsibility and

the input/output that it exchanged.

 Varying constraints and business rules [83]. Such constraints include

constraints imposed by the chosen alternative, implementation constraints,

and any non-functional constraints (technological or environmental).

 Varying user or system interfaces [83].

 Performance and scalability differences [83].

 Varying functional and behaviors mapping. Functions and behaviors may

be mapped to either different physical elements or different internal

interactions between those elements.

Although the search-based architecting approach intends to be an automatic

process, designers must be actively involved in both the model synthesis phase and the

validation phase. During model synthesis phase, designers should assist in the

identification of design options as computers do not have the knowledge and data to do

so. Similarly, in the validation phase, designers need examine the behavior produced by

the system model and ensure it satisfies the requirements.

A system design process is a hierarchy reduction of ambiguity. Levels of system

ambiguity can refer to both different levels of design details (or design resolution) and

different levels of abstraction types. The former is associated with design decomposition

activities. The purpose is to achieve more detailed and refined system designs as the

design progresses. The latter refers to the nature of design models at various design

phases, such as the functional architecture design, the system architecture design, and the

physical architecture design. The system design completed at a certain level also

establishes requirements for the next level. As a result, requirements flow down as the

design progresses [13]. Furthermore, additional implementation constraints can be

identified as more detailed information is available in each refined design level.

38

Therefore, as the design proceeds in such a process, the constraints increase (e.g., a

physical model is subject to more constraints than a relative abstract model), the design

complexity increases (as design resolution increases), the design space shrinks, and the

ambiguity reduces.

4.3. ARCHITECTURE ASSESSMENT

This architecture assessment in general includes three subtopics, analysis,

selection, and optimization. The following discussions, therefore, are divided according

to these three subtopics.

4.3.1. Architecture Analysis. The architecture analysis involves using analysis

models or simulations to assess system performance. Architecture analysis is domain

dependent and problem specific as the performance metrics, the extraction of raw data,

and the problem formulation are all highly problem specific. Nevertheless, the analysis

and simulation methods share some commonality. This section highlights some of these

methods that can be used in architecture analysis, along with the discussion of some

possible issues and concerns in applying these methods.

In order to distinguish the roles that simulation plays in architecture analysis, the

architecture analysis methods discussed here are first roughly grouped into two

categories: the evaluation based methods and emulation based (or reasoning about system

interactions) methods. Parunak [84] used such classification in comparing agent-based

modeling and equation-based modeling. Some of his conclusions apply largely to most of

the evaluation based methods and emulation based methods discussed here. For example,

both families recognize a system comprised of two kinds of entities: individuals and

observables, each of which may have a temporal aspect [84]. “Individuals are bounded

active regions of a domain while observables are measurable characteristics of interest”

[84]. Evaluation based methods focus on numerical relationships, or mapping, between

observables while emulation based methods focus on the causal relationships among

entities or the behaviors resulting from individuals interacting with each other [84].

However such distinction is a tendency rather than hard rules. The two methods can be

combined [85]. These two types of methods are further discussed in the next two

sections.

39

4.3.1.1 Evaluation-based approaches. Here, analysis models for calculating

performance measures are discussed in general followed by the discussion of some of

those methods developed specially for architecture assessment. The search-based

architecture development also poses additional challenges in architecture assessment such

as ambiguity, error propagation and evaluation of large number of alternatives.

Alfaris provides an extensive review of analysis models for computing

performance measures in his dissertation [13]. Generally speaking, analysis models differ

in the nature of the metrics (qualitative or quantitative models), the way that the model is

derived (deductive, inductive, or floating models), the fidelity or resolution of the

solution produced (exact or approximation), the way that solutions are obtained

(analytical or numerical), and the speed that solutions can be obtained. The designers

have to make trade-offs sometimes between these aspects in choosing an appropriate

analysis model for the system of interest.

A strong mathematical analysis usually requires a precise model, well-defined

abstraction, and accurate data. Alternatively, when such details are not available, the

architecture analysis can be performed by domain experts. Metrics may give very good

values to individual observables but as a whole the architecture may not be at all suitable

for the system in question [86]. Metrics, therefore, cannot replace the assessment of

experts completely in some cases. Some popular system assessment methods that

incorporate subjective information are Architecture Tradeoff Analysis Method (ATAM)

[87], Quality Function Decomposition (QFD) [88], [89], Analytic Hierarchy Process

(AHP) [90], Analytical Network Process (ANP) [91], Technique for Ordered Preference

based on Similarity to Ideal Solution (TOPSIS) [92], elimination and choice expressing

reality (ELECTRE) [93], preference ranking organization method for enrichment,

evaluation (PROMETHEE) [94], Joint Probability Distribution Method (JPDM) [95],

fuzzy logic based approach [96–98], Architecture value map (AVM) [66], and the

canonical decomposition fuzzy comparative methodology [86].

The advantage to include subject matter expert’s assessment and heuristics into

the architecture assessment process is that they can address ambiguity, uncertainty and

risks easily and the assessment can scale well to even complex systems [86]. The

disadvantage is that these methods are low-resolution, subjective and unrepeatable [86].

40

Some of these methods places a heavy cognitive load on the decision maker and therefore

are very difficult to be incorporated into automated search process [66], For example, the

QFD, as one of the most used system assessment method in the system engineering field,

requires the subject matter experts to be actively involved in the assessment process.

QFD is a “method to transform user demands into design quality, to deploy the functions

forming quality, and to deploy methods for achieving the design quality into subsystems

and component parts, and ultimately to specific elements of the manufacturing process”

[99]. One of the most used techniques to implement QFD is the house of quality. A house

of quality contains a relationship matrix that links customer’s requirements with the

technical performance measures of the system with varying strengths. Both setting values

for this relationship matrix and setting the rating and weight values for various

dimensions involved in this house of quality require the active involvement of subject

matter experts. Another example is the ATAM method, which is one of the most widely

used and known method for the architecture assessment in software engineering. “The

main points of ATAM are to elicit and refine a precise statement of the key quality

attribute requirements concerning the architecture, to elicit and refine precise designing

decisions for the architecture, and based on the two previous goals, to evaluate the

architectural design decisions to determine if they fulfill the quality attribute

requirements satisfactorily” [87]. The ATAM uses scenarios to analyze whether the

architecture fulfills all the necessary requirements and to see risks involved in the

architecture. The ATAM proceeds in nine steps: presenting the method for the group of

experts, presenting business drivers, presenting the architecture, identifying architecture

approaches, generating quality attribute utility tree, analyzing architecture approaches,

brainstorming and prioritizing scenarios, again analyzing architecture approaches, and

finally presenting the results [87].

4.3.1.2 Emulation-based approaches and reasoning about system interactions.

System properties resulting from the interactions of system components, action sequences

and procedural specifications usually need to be captured and reasoned with the aids of

modeling languages that are capable of capturing the causal relations between system

components. Such properties can then be obtained through either analysis or simulation.

Some related methods of this category are discussed and compared below.

41

Probabilistic Graphical Models [100], such as Bayesian Belief Networks (BBNs)

[101–104] and Markov networks [105], use graph-based representations to encode the

conditional independence structure among a set of random variables. BBNs use directed

graph while Markov networks use undirected graph. “Both families provide the duality of

independences and factorization, but they differ in the set of independences they can

encode and the factorization of the distribution that they induce” [100].

Bayesian Belief Networks describes the relationships between causes and effects

in a probabilistic sense (i.e., via conditional probabilities) and thus allow modeling and

reasoning about uncertainty. Both associative and causal types of relationships can

effectively be modeled and processed in a BBN [103]. The main use of BBNs is

statistical inference. Given some observations, values of all the other probabilities in the

BBN can be computed using propagation algorithms. Explicit modeling of causal

relationships in a BNN not only allows to represent and respond to changing

configurations but also “facilitates the analysis of action sequences, their consequences,

their interaction with observations, and their expected utilities, and hence the synthesis of

plans and strategies under uncertainty” [106]. BNN in conjunction with Bayesian

statistical techniques also facilitates the combination of domain knowledge and data

[104].

A Markov network is an undirected graph comprised of a set of random variables

having a Markov property [100]. It represents the joint probability distribution over the

variables. It is also possible to convert between a BBN and a Markov network [107].

Markov chains [108] are often used as statistical models of real-world processes.

A discrete-time Markov chain is a state-transition system where transitions between

states are specified by probabilities. The set of all states and transition probabilities

completely characterizes a Markov chain.

Petri nets are a discrete-event-driven system modeling and simulation language as

discussed in Section 3.2.3. Their core execution semantics is based on conditions, events

and effects. The outcome of such causal relationships can be characterized by a state-

transition system in a global sense and therefore can be described by a Markov chain. The

state space of a Petri net is determined by the initial tokens and the conditions-events-

effects-based execution semantics. Such a state space can be described using graphical

42

representation, which allows the user to actually observe the stochastic processes during a

simulation. The major strength of Petri nets is that it combines a well-defined

mathematical foundation, an interactive graphical representation, and the capability to

carry out simulations and formal verifications. With a concise mathematical definition

and a small set of model primitives, Petri nets allow a large number of formal analysis

methods to be developed. A Markov chain expresses global states and transitions, the

size of which grows quickly as the number of variables and their values increase and is,

therefore, subject to explosion, like the state space explosion of Petri nets. A Petri net, in

comparison, is somewhat an iterative state space generator because it focuses on

expressing the states and events showing just one global state in each simulation step.

Therefore, the model size of a Petri net is easier to manage than that of a Markov chain,

irrespective of the number of tokens present or the domain size of token colors.

System Dynamics [109–111] is “a computer-aided approach to policy analysis

and design” [112]. In system dynamics modeling, dynamic behavior is thought to arise

due to the principle of accumulation [113]. The basic building blocks of a system

dynamics model are stocks (or accumulations, state variables) and flows. A Stock

represents an entity or variable that changes in a system. A flow is the rate of change in a

stock. The dynamics of a system is caused or generated by loops of internal feedback and

circular causality as well as time delays [112]. There are two types of feedback loops:

positive loops and negative loops. Positive (or self-reinforcing) loops tend to reinforce or

amplify the initial action while negative (or self-correcting, balancing) loops counteract

and oppose the initial action [109]. Combined, positive and negative circular causal

feedback processes can generate all manner of dynamic patterns [112].

Mathematically, the basic structure of a system dynamics simulation model is a

system of coupled, nonlinear, first-order differential (or integral) equations [112]. The

simulation is, however, achieved through numeric integration instead of solving

differential equations analytically.

The system dynamics considers behavior as a consequence of system structure

[112]. It models interdependencies among variables using structures. Unlike the event-

oriented, reactionary approach of Petri nets, the system dynamics advocates the

continuous view of structure and dynamics. Such view focuses not on events or discrete

43

decisions but on the policy structure underlying decisions [112]. Events and decisions are

merely surface phenomena result from underlying system structure and behavior [112].

System dynamics also takes endogenous point of view of system behavior, i.e., the causes

are contained within the structure of the system itself [112]. Therefore, most system

dynamics models are time invariant. However, as identified in [1], using numeric values

and arithmetic equations to specify the behavior of a system has difficulties to achieve

change of model structure given certain triggering event.

Agent Based Modeling and Simulation (ABMS) [114–116] studies the actions

and local interactions of constituent entities (agents) and their impacts on the system as a

whole. In an Agent Based Model (ABM), a system is modeled as “a collection of

autonomous decision-making entities called agents, each of which individually assesses

its situation and makes decisions on the basis of a set of rules” [85]. Applications of

ABMS span a broad range of areas and disciplines. ABM is “most appropriate for

domains characterized by a high degree of localization and distribution, dominated

by discrete decisions” [84] and there is potential for emergent phenomena. Bonabeau

summarizes [85] the benefits of ABM over other modeling techniques as: (1) “ABM

captures emergent phenomena from the bottom up” (i.e., by modeling and simulating the

behavior of the agents and their interactions) (2) “ABM provides a natural description of

a system” (i.e., from the perspective of its constituent units’ activities); and (3) “ABM is

flexible” (e.g., adding agents, tuning the complexity of the agents, change levels of

description and aggregation). The emphasis on modeling the heterogeneity of agents and

the emergence of self-organization distinguish ABMS from other simulation techniques

such as discrete-event simulation (Petri nets) and system dynamics [115].

4.3.2. Architecture Selection. As discussed in Section 4.1.2, multi-objective

optimizations need an selection process to choose good designs that constitute a

compromise of several different objectives. Such selection processes are supported by

decision models. This section focuses on the decision models used in an optimization

while the next section will focus on the search process of an optimization.

Depending on when the preference for each objective is expressed, multi-

objective optimization methods can be broadly classified into two categories: decision

making before search methods (also known as scalarization approaches), and search

44

before decision making methods (also known as Pareto approaches). As summarized in

[13], [69], [117], examples of scalarization approaches include weighted sum approach,

multi-attribute utility analysis, ϵ-constraint methods, compromise programming (non-

linear-combinations), physical programming, goal programming, lexicographic

approaches, acceptability functions, and fuzzy logic; examples of Pareto approaches

include exploration and Pareto filtering, multi-objective genetic algorithms, adaptive

weighted sum method, normal boundary intersection, and multi-objective simulated

annealing.

There are other classifications of optimization algorithms according to various

considerations. Cohon [62] classified them into the following two types based on whether

Pareto-optimal solutions are generated or not:

 Generating methods. In such methods, a set of non-dominated solutions are

generated for the decision maker without a priori knowledge of relative

importance of each objective. The solutions obtained are then present to the

decision maker for selection.

 Preference-based methods. In such methods, some known preference for each

objective is used in the optimization process.

Hwang and Masud [63] and later Mittinen [64] fine-tuned Cohon’s classification

into the following four classes of methods:

 No preference methods are generating methods that do not assume any

information about the relative importance of each objective. Instead, a

heuristic is used to find a single optimal solution. It is worth noting that these

methods do not make any attempt to find multiple Pareto-optimal solutions

[69].

 A priori methods are preference-based methods that use information about the

preferences of objectives A priori and usually find one preferred Pareto-

optimal solution.

 A Posteriori methods are generating methods where preference is used a

posteriori. A set of Pareto-optimal solutions are produced by the algorithm.

The decision maker then selects the most preferred one according to some

further considerations.

45

 Interactive methods are preference-based methods that use the preference

information progressively during the optimization process. It requires the

interaction with the decision maker.

Some selected a priori, a posteriori and interactive methods are further discussed

and compared below.

4.3.2.1 A priori approaches. In the decision making before search approaches,

the designer decides how to aggregate different objectives into a single objective function

(also known as fix-up) before the actual search is performed [117]. Such approaches

require a priori knowledge to make rational aggregation. Several scalarization methods

have been developed. A few of them are briefly reviewed here.

In the weighted sum approach, the “scalar substitute objective is obtained by

assigning subjective weights to each objective and summing up all objectives multiplied

by their corresponding weight” [118]. Optimization of this composite objective (scalar

substitute objective) results in the optimization of individual objectives, which should not

be related [119]. The weights reflect the trade-off (or preference) among the objectives.

Hence, the outcome of such methods is highly affected by the chosen weights. The

weighted sum approach can also be utilized to find the Pareto-front. This is achieved by

varying the weights along the curve of a convex area. Such usage, however, does not

apply to non-convex Pareto-fronts since not all points on the Pareto-front can be

determined [69].

Utility approaches are based on the general formulations of utility theory. Most

scalarization approaches can somehow be represented via the utility function approach

[120]. An individual utility function is defined for each objective to represent the relative

importance of the objective. “The overall utility function is an amalgamation of the

individual utility functions and is a mathematical expression that attempts to model the

decision-maker’s preferences.” [121]

ϵ-constraint methods choose one of the objective functions and treat the rest of the

objectives as constraints by limiting each of them within certain pre-defined limits.

Unfortunately, “the outcome of single-objective constrained optimization results in a

solution which depends on the chosen constraint limits.” [69]

46

Goal programming methods [122–124] attempt to find solutions which attain a

predefined target for one or more objectives. If no such solution can be found for all

objective functions, the task is then to find solutions which minimize deviations from the

targets. Note that, this task is somehow similar to that in satisfying decision-making and

the obtained solution is a satisfying solution, which can be different from an optimal [69].

4.3.2.2 A posteriori approaches. In the search before decision making approaches,

the search for optimal solutions is performed with multiple objectives being evaluated

simultaneously, typically using the concept of “dominance” to rank solutions.

Particularly, a solution x1 dominates another solution x2 if (1) x1 is no worse than x2 in all

objectives and (2) x1 is strictly better than x2 in at least one objective [69]. This means a

dominant solution is at least better in one objective while being at least the same in all

other objectives. Strong (strict) dominance, however, requires x1 to be better in all

objectives than x2. The Pareto-optimal set is the entire set of non-dominated solutions

among the search space, where the rest of the solutions are called dominated solutions

[125]. Most Pareto-methods are concentrated on the approximation of the Pareto set

[125]. They try to find a set of solutions as close as possible to the Pareto-front while

keep the solutions diverse.

“All elements in the Pareto-optimal set define reasonable solutions and are subject

to further decision factors in order to choose a design for a given problem” [117]. In this

manner an unbiased search can be performed. Moreover, Pareto methods also allow a

single search to serve several problem-specific decisions without the need to repeat the

search [117]. This feature gives Pareto methods an advantage over single objective

methods because the designers are provided with a wide range of non-dominated

solutions from which one or more solutions can be chosen. This post-search selection can

be supported by further analyses using domain knowledge, additional problem

information, or decision criteria, which are not necessarily formulated in the design task.

4.3.2.3 Interactive methods. Interactive methods require minimum knowledge

a priori but need the involvement of the decision maker occasionally during the

optimization process. When some Pareto-optimal solutions are found, their locations and

interactions are analyzed. The decision maker then provides some information about the

search direction, weight vector, reference points, and other factors [69]. These

47

preferences are then incorporated in formulating and solving the optimization in the next

iteration. Some of the most popular interactive methods include: interactive surrogate

worth trade-off method [126], step method [127], guess method [128], non-differentiable

interactive multi-objective bundle-based optimization system approach [129], reference

point method [130], and light beam search [131].

No decision model is superior to others under all circumstances. The designer

needs to select appropriate ones based on both the problem to be solved and the

optimization algorithm employed. For example, the interactive methods require the

involvement of the decision maker during the optimization. Hence it is only a semi-

automatic process and, therefore, cannot handle large design space. Pure a priori methods

are not flexible enough since the change of preference will affect the optimality of the

obtained solution. A posteriori methods allow the designer to re-evaluate the obtained

solutions after the optimization process. Deb [69] compared many decision models used

in the multi-objective optimization. Here, the weaknesses of some of the widely used

decision models are discussed based on Deb’s study [69].

Disadvantages of weighted sum methods: Such methods require a precise weight

value for each objective. As discussed in [69], since the mapping between the distribution

of weight vectors and the Pareto-optimal solutions is usually unknown, it becomes

difficult to set the weight vectors to obtain a Pareto-optimal solution in a desired region

of the objective space. Similarly, different weight vectors do not necessarily lead to

different Pareto-optimal solutions. Furthermore, most single-objective optimization

algorithms are designed to find a solution that only satisfies the first-order optimality

criterion but not necessarily be a global optimum. In addition, “if the chosen single-

objective optimization algorithm cannot find all optimum solutions for a weight vector,

some Pareto-optimal solutions cannot be found” [69].

Disadvantages of ϵ-constraint methods: In such methods, the solution largely

depends on the chosen ϵ vector, which must lie within the minimum and maximum

values of the individual objective function. “As the number of objectives increase, there

exist more elements in the ϵ vector, thereby requiring more information from the user.”

[69] Such methods also suffer the issue of non-uniformity in obtained Pareto-optimal

solutions as the weighted sum methods do.

48

Disadvantages of utility methods: Such methods require designers to specify a

utility function which is globally applicable over the entire search space. Such a utility

function might be over-simplified. Moreover, the obtained solution entirely depends on

the chosen value function.

Disadvantages of fuzzy logic methods: Such methods rely heavily on subjective

judgment, which not only is subject to the limitation of human expertise but may also not

always be available or may not be possible to be integrated into an automated

computational process. The aggregation rules might also be subjective and often lack

sound justification. The fuzzy rules try to establish a nonlinear mapping between design

properties and the objectives. It is often either impractical or impossible to find an exact

set of rules for a specific situation. Such methods also rely on converting a multi-

objective optimization into a single-objective optimization and therefore suffer the same

problems as other scalarization approaches.

4.3.3. Optimization. The architecture optimization in general is a constrained

(e.g., by design requirements and restrictions), multi-objective optimization on a discrete

design space. Optimization models used in the architecture search enable “moving from

one configuration to the other in an ongoing search for better solutions, but more

importantly it is established with the aim of control and guidance” [13]. In general, more

than one acceptable design may exist. The multi-objective optimization requires a

selection process to handle the trade-off among conflicting goals as discussed in last

section.

Optimization methods have reached a high degree of sophistication, especially

with the rapid advancement of computer technology. There are many optimization

algorithms developed, some of which are presented in Figure 4.5. From the searching

process perspective, optimization algorithms can be classified into either deterministic or

stochastic (or heuristic) methods. Deterministic methods can be classified into gradient

based methods and derivative-free methods [132].

Gradient-based algorithms can find local optima with high reliability and, in many

cases, with high efficiency but might be trapped by local optima. Heuristic based

algorithms can escape local optima and are stochastic in nature. They cannot guarantee

the optimality of the solutions obtained and often yield different set of solutions each

49

Figure 4.5. A Simple Taxonomy of Optimization Algorithms ([13])

time they are run. No existing optimization technique is guaranteed to find the global

optimum of a nonlinear, non-convex problem [133], [134]

 No single optimization technique is applicable in general to all types of problems.

The most effective way, however, to solve a given problem will always be dependent on

the specifics and details of that unique problem [135]. A hybrid method that combines

optimization methods in a complementary way may ideally both benefit from the relative

strengths of each individual method and restrain its weaknesses.

In the case of architecture development, the design space could be exceptionally

large thus precluding the use of brute force algorithms. On the other hand, deterministic

algorithms that would be fast enough either might not exist or would be too complicated

to define. Hence the heuristic based search algorithms are more appropriate in such

application, as they can find good enough solutions from a large design space within a

reasonable amount of time with little or no reliance on the knowledge of the search space.

Some heuristic based optimization algorithms that can possibly be applied to the search-

based architecture development process are briefly discussed below. All these algorithms

are good at handling problems with discrete solution space.

Optimization
Algorithms

Sequentia

l Quadrati

c Programmin

g

Penalty
Method

Quasi -
Newton Conjugate Newton Steepest

Descent

Genetic
Programming

Genetic
Algorithm

s

Evolutionary
Strategies

Evolutionary
Programming

Integer
Programming

Simplex
Method

Swam
Intelligenc

e
Tabu Search Evolutionary

Algorithms
Simulated
Annealing

Gradient Based
Algorithms

Derivative - Free
Algorithms

Heuristic
Algorithms

Deterministic
Algorithms

50

Hill Climbing (HC) [136] is an iterative algorithm that starts with an arbitrary

initial candidate solution, then attempts to find a better solution by examining the set of

“near neighbors” to the current solution. If a near neighbor can be found with a better

fitness value, a move to the new solution is made. Such “walk up the hill” process is

repeated until no further improvement can be found. The “near neighbors” are defined on

the solution space. What constitutes a “near neighbors” is problem specific. Two types of

strategies exist regarding the move to a better neighbor solution: (1) in the next ascent

HC, the move is made to the first neighbor with an improved fitness; (2) in the steepest

ascent HC, the move is made to the neighbor that gives the greatest increase in fitness

after the entire neighborhood is examined [136].

Such HCs are only guaranteed to find local optima. Near-global optima can be

reached by using restarts (known as multiple-restart hill climbing), or more complex

schemes based on iterations (e.g., iterated local search), on memory, (e.g., reactive search

optimization and tabu search), on memory-less stochastic modifications (e.g., simulated

annealing) [137]. HC algorithms are memory efficient since they do not maintain a search

tree. They consider only the current state and immediate future states [138]. A HC is easy

to implement but surprisingly effective in many SBSE problems as discussed in [19],

[139], [140].

Simulated Annealing (SA) [141], [142] is inspired by, and derives its name from,

the annealing process in metallurgy. SA is another local search algorithm exploiting

neighborhood concepts. It avoids the local optima (maxima) problem of HC by

permitting moves to less fit solutions. At each iteration of the search process, SA attempts

to replace the current solution with a random solution chosen according to a candidate

distribution, which is often sampled from the neighborhood of the current solution. The

new solution may be accepted with a probability that is a function of both the drop in

fitness and a global parameter T (called the temperature). T is gradually reduced during

the search process. Thus, with this T parameter, the SA can avoids local optima to a

certain extent by giving more chances to less fit solutions in the earlier exploration stages

but increasingly choosing the better solutions in the latter converging stages. The SA has

been applied to several SBSE problems as discussed in [139], [140], [143–145].

51

Tabu search [146], [147] is another meta-heuristic local search algorithm that

proceeds by setting barriers or restrictions to guide the search process. Tabu search uses a

local search procedure to iteratively move from one potential solution to an improved one

in its neighborhood until some stopping criteria are met. It avoids being stuck at local

optima by using memory structures (known as the tabu list) which are a set of rules and

banned solutions used to filter which solutions will be admitted to the neighborhood to be

explored [146]. Such rules are applied to the neighborhood of the current solution

resulting in the set of available moves, from which the best move is selected. Both the

tabu rules and the ways of defining neighborhood vary greatly depending on the problem

or the application. The memory structures used in tabu search can be divided into three

categories [148]: short-term, intermediate-term, and long-term. Short-term memory

prevents revisiting solutions recently considered. Intermediate-term rules bias the search

towards promising areas of the search space. Long-term rules promote diversity in the

search process (e.g., resets when the search gets stuck). The application of tabu search in

architecture related problems can be found at [149], [150]

 Genetic Algorithm (GA) [151] is one of the most used Evolutionary Algorithms

(EAs). In GA, solutions (known as candidates, individuals or phenotypes) are encoded in

a string form known as chromosomes (or genotypes of the genome). GA uses an iterative

evolution process starting from a population of randomly generated candidates. In each

generation, multiple candidates are stochastically selected from the current population

based on their fitness. These candidates are then modified (by applying mutations,

crossovers, or other reproduction operators) to form the offspring. The new population

for the next iteration of the algorithm is produced from the offspring and the original

population using a selection process. The GA terminates when certain pre-determined

termination criteria (e.g. the maximum number of generations exceeded, satisfactory

fitness level reached, etc.) are met. Many variants of this overall process exist, but the

key ingredients i.e., recombination and selection guided by fitness functions, remain the

same.

There is a variety form of EAs besides GAs, for example, evolution strategies,

genetic programming, and evolutionary programming. Evolution strategies [152], [153]

use primarily mutation and selection as search operators and use vectors of real numbers

52

as representations of solutions. In genetic programming, computer programs, rather than

function parameters, are optimized and a tree-based chromosome is often used [154].

Evolutionary programming is similar to genetic programming, but the structure of the

program is fixed and its numerical parameters are allowed to evolve [155]. It uses

mutation as the main variation operator.

EAs, as popular search techniques, have many applications in architecture related

problems, for example, the architecture design [6], [15], formulation of predictive models

of software projects [156], [157], and testing [158], [159].

The multi-objective evolutional algorithm (MOEA) is a popular Pareto-based

optimization approach. Deb [69] suggested the following principle for an ideal multi-

objective optimization procedure:

Step 1: Find multiple trade-off optimal solutions with a wide range of values for

objectives.

Step 2: Choose one of the obtained solutions using higher-level information.

There are a number of advantages with ideal multi-objective optimization

procedure as noted in [69].

 In such procedure, the decision-making becomes easier and less subjective. In

Step 1, no preferences for the objectives need to be specified. The task is to

find as many well-distributed, good solutions as possible. In Step 2, problem

information, domain knowledge, or even subject experts can be used to

conduct more detailed analyses before a final solution is chosen.

 The output of the algorithm is a population of solutions. If multiple optimal

solutions are expected, such algorithm can yield multiple optimal solutions in

its final population. On the other hand, if a single optimum is expected, all

population members can be expected to converge to it as the algorithm runs.

 Such procedure also “eliminates the fix-up and can, in principle, find a set of

optimal solutions corresponding to different weight and ϵ-vectors” [69].

 “The avoidance of multiple simulation runs, no artificial fix-ups, availability

of efficient population-based optimization algorithms, and above all, the

concept of dominance helps to overcome some of the difficulties and give a

user the practical means to handle multiple objectives”[69].

53

In summary, the MOEA is well suited for the search-based architecture

development process. In addition, EAs “require little knowledge about the problem being

solved, and they are easy to implement, robust, and inherently parallel” [160]. Deb [69]

also summarized a number of deficiencies (especially when multiple Pareto-optimal

solutions are expected) of many classical multi-objective optimization algorithms

comparing to MOEA. Deb [69] noted that:

(1) Only one Pareto-optimal solution can be expected to be found in one

simulation run

(2) Not all Pareto-optimal solutions can be found by some algorithms in

nonconvex multi-objective optimizations

(3) All algorithms require some problem knowledge, such as suitable

weights or ϵ or target values.

Moreover, another problem with the methods that solve multi-objective

optimizations by converting multi-objective optimization into single-objective

optimization is that the solution obtained from solving single objective optimization is

specific to the parameters used in the conversion process. In order to find a different

Pareto-optimal solution, the parameters must be changed and the resulting new single-

objective optimization problem has to be solved again [69]. Thus in order to find N

different Pareto-optimal solution, at least N different single-objective optimization

problems need to be formed and solved. Even doing so, some algorithms do not

guarantee finding solutions in the entire Pareto-optimal region [69].

This section presented the search-based architecture development framework and

its implementation guidelines, along with the discussions of some applicable techniques

for each of its components. The implementation of such a framework entails a system

model that can capture all the information needed for architecture specification and

analyses, as well as a way to define the design space. Such kind of model cannot be

readily developed using existing modeling techniques. Therefore, a holistic modeling

approach is developed and presented in the next section.

54

5. HOLISTIC MODELING APPROACH

This section presents the development of a holistic modeling approach. It starts

with a definition of the holistic modeling approach. Then the landscape of drawbacks and

open issues of current modeling languages and paradigms is investigated. The purpose is

to find the road to a solution that can address the specific needs of the search-based

architecture development process. Follows the discussion, the characteristics of an ideal

holistic modeling language are summarized. In order to achieve such holistic modeling,

an integration of some existing modeling languages is proposed. Accordingly, an

architecture alternative generation mechanism based on the proposed modeling approach

is developed.

5.1. DEVELOPING A HOLISTIC MODELING APPROACH

In the search-based architecture development process, the design space is

comprised of architecture models, which are actively involved in the assessment and

search process. Hence, an integrated architecture model that contains all aspects of

information needed for both design and analysis is preferred. Moreover, such an

architecture development process also requires both a generative class model to represent

the design space and a set of instance models to participate in the computation. Thus

there is a need for holistic modeling. Particularly, the concept of a holistic modeling

approach in this context is fivefold:

 One integrated model for system specification instead of multiple disjoint

diagrams,

 Capture structural, behavioral, and dynamic aspects of the system of interest

 Capture design space (or constraints)

 Can be used as both static presentation and dynamic simulation.

 Support system analysis.

5.1.1. Strengths and Weaknesses of Some Existing Modeling Languages.

Jorgensen [161] conducted an extensive study on modeling languages for active process

modeling. The languages studied include UML, System Dynamics, Petri nets, and BPML

(Business Process Modeling Language) as well as other textual, informal, and semi-

55

formal process languages. Jogensen’s studies shows that these languages share some

common weaknesses as far as the interactive process modeling is concerned. Such

weaknesses also apply when more general system modeling is concerned. Hence it is

cited here. Particularly, during these studies, Jorgensen [161] notated the following:

1. Many languages are complex, containing numerous types and views not

integrated in a systematic manner. This is especially the case for UML.

2. In many cases mathematical, logical or technical concepts are applied

instead of user or domain oriented (needs). Petri nets and constraint-

based languages exemplify this.

3. The languages that are precise and formal enough for automatic

execution offer few opportunities for human contributions to

interactive activation. The languages do not handle process models

with varying degrees of specificity.

4. The semantics of language elements is generally static and not easily

adopted to local context or multiple perspectives.

As the literature review suggests, existing modeling languages emphasize and

excel at only certain aspects of system modeling. The search-based architecting is still in

need of a holistic modeling language. This section focuses on three major languages,

UML/SysML, OPM, and Petri net, which are more relevant to the needs of search-based

architecting. Table 5.1 summarizes the performance of these languages in some major

aspects of comparison. The detailed discussion will be followed.

Although UML and SysML are the de facto object-oriented modeling languages

for software engineering and systems engineering respectively, they have some

drawbacks as far as the search-based system architecture development is concerned. Such

drawbacks can be summarized as complexity, multiplicity, inconsistency and insufficient

support of system analysis. The details are discussed as follows:

UML/SysML is intended to be a comprehensive modeling language capable of

providing as much details as needed for building a product. Such intension inevitably

results in its complex in terms of both language structure and entity definition. For

example, UML contains more than 200 different graphical primitives and 13 diagram

types [20], many of which involve advanced but convoluted concepts. Mastering and

correctly using such languages requires highly skilled professionals and the language

itself might be even more complicated than the problem to be solved. On the other hand,

such complexity is not necessary for use in conceptual designs or architecture designs but

56

Table 5.1. Comparison of UML/SysML, OPM, and Petri Nets

Aspects UML/SysML OPM Petri Nets

Model

format

Graphic O O O

Text X O X

Mathematics X X O

Model Singularity X O O

Model

Coverage

Structure O O X

Behavior O O O

Dynamic X X O

Mathematics O

(OCL)

X By

programming

Model

Capability

Presentation Good Excellent Poor

Specification Excellent Good Excellent

Communication Excellent Excellent Poor

Simulation Poor By extension Excellent

Analysis Poor Poor Excellent

Model

Notation

Compactness Poor Good Excellent

Usability and

convenience

Poor Excellent Poor

Advanced expression Excellent Good Poor

Note: The dimensions within the notation category are adopted from [162]. Their

definitions are as follows:

 Compactness: the number of (1) different symbols required to fully model the

system, and (s) distinct diagram types.

 Usability and convenience: the time required to model the system, including

necessary rework, number of entities in a single diagram, and the level of support for

complexity management from a tool independent stand point.

 Advanced expression: the ability of the methodology to represent specific types of

model components such as object, states, logical conditions, message sequencing,

deployment or physical views, and packaging or encapsulation.

57

will complicate the design task correctly using such languages requires highly skilled

professionals and the language itself might be even more complicated than the problem to

be solved. On the other hand,such complexity is not necessary for use in conceptual

designs or architecture designs but will complicate the design task.

A complete UML/SysML model specifying a system usually consists of multiple

views such as use case view, structure view, behavior view, and implementation view.

Each of these views may employ multiple diagrams. The UML/SysML specifications

have not explicitly identified the necessary, direct, one-to-one, semantic mapping

between related entities from different UML/SysML diagrams. For example, the

definition of state in UML is arbitrary. According to UML [33], “a state models a

situation during which some (usually implicit) invariant condition holds”. “The invariant

may represent a static situation such as an object waiting for some external event to

occur. However, it can also model dynamic conditions such as the process of performing

some behavior (i.e., the model element under consideration enters the state when the

behavior commences and leaves it as soon as the behavior is completed)”. It is not clear

how such so-called dynamic conditions can be mapped to the actions or activities in the

activity diagrams. A composite state either contains one region or is decomposed into

two or more orthogonal regions. Each region has a set of mutually exclusive disjoint

subvertices and a set of transitions [33]. However, it is not clear how such orthogonal

regions can be reflected in the activity diagrams. A state can have such associations as

doActivity, entry, and exit. These are defined as behavior but not necessarily

reflected in the activity diagrams. A state can either be explicitly associated with an

object identified in the class diagrams or implicitly with a set of objects. State transitions

are triggered by events. Such events could be but may not be explicitly identified in other

diagrams. Many other diagrammatic languages with multiplicity features suffer the same

inconsistency issues as UML/SysML. Although venders of UML/SysML modeling tools

may choose to implement, more or less, such consistency constraints in their products

(such as Artisan Studio), integrating multiple graphical representation and maintaining

full consistency are still challenging.

On the other hand, these diagrams are intended to be illustrations of design

concepts; they are not inherently computable graph structures [1]. Automatic analyses

58

and simulation using UML/SysML models requires precise execution semantics. Hence,

the Semantics of a Foundational Subset for Executable UML Models (FUML) Standard

[163] is recently developed. With such a semantic supplement, UML execution models

can be executed, independent of target implementation, by means of a virtual machine.

Since graphical modeling notations are not appropriate for detailed programming a

standard textual action language conforming to FUML semantics was also developed

called Action Language for Foundational UML (ALF) [164]. Recently, a reference

implementation of FUML activity models was also developed using Java [165]. This

implementation is capable of accepting as its input an XMI file from a conformant UML

model. Additionally it provides an execution trace of the selected activity model(s) as its

output. This reference implementation, however, provides simulation capabilities only.

No time events or constraints are implemented. Support for formal analysis, such as

construction of occurrence graphs (representing all reachable states), has yet to be

developed [166]. Its ability to analyze, verify, and validate system requirements and

design is, therefore, limited. Since these standards have just been published on 2011,

their vender supports are rare.

On the other hand, comparison studies [37], [39], [162], [167], [168] show that

OPM have some advantages over UML in both software systems design and system

modeling and design in general. Firstly, OPM is able to avoid the model-multiplicity

issues of UML [168]. While UML is a multiple-view, object-oriented modeling language,

OPM supports a single unifying, structure-behavior view [168] (i.e. both object and

process oriented). UML/SysML uses several views to separate concerns, while OPM

handles complexity by gradual refinement/abstraction of information and smooth

transition across lifecycle phases [162]. Secondly, OPM is geared towards modeling

systems in general [37]. OPM provides a much smaller set of modeling primitives and

notations that are easy to comprehend while still maintaining good specification quality

[168]. Over complicated modeling formalisms, on the other hand, will jeopardize both

comprehensiveness and specification quality. Furthermore, OPM has not only adopted

and extended many object-oriented concepts and ideas but also incorporated a number of

fundamental ideas that go beyond object-oriented principles, for example, the definition

of processes independently of objects and the way objects interact with each other via

59

processes [37]. Such feature further enhances the flexibility of modeling a system which

in turn also increases user's comprehension and processing capability. In addition, it is

easy to extend OPM or map OPM to other modeling formalisms, for example, the UML

[39] and SysML [169].

However an OPM model usually cannot capture as much details as UML/SyML

can [162]. Nevertheless, the granularity of an OPM model is high enough for general

system modeling and even for detail-demanding tasks like code generation [30], [152]. A

major drawback of OPM is that it does not have a formal mathematical definition, does

not have well-documented execution semantics, and does not specify a formal

computational model for either discrete or continuous event systems [1]. It cannot capture

the dynamic aspects of a system either, i.e., an OPM model cannot describe the state of a

system at a particular point of time. OPM as a visual modeling language provides a

limited set of rules to specify the precedence of process execution order [1] and does not

supported advanced features such as nested state either. The animation of OPM model

supported by OPCAT provides the capabilities to check logic correctness of the modeled

behavior only. Such animation is not formal enough to support strong analysis.

Furthermore, a standard OPM (without extension) does not have numeric concepts and

time concepts. Nevertheless, its flexible definition of object and process can be mapped

onto operands and operators, respectively, of a wide range of formal computational

models [1] and thus allows enhanced, formal definition of its modeling primitives. As a

matter of fact, the OPCAT has already incorporated some numeric and time concepts.

Unlike UML and OPM, Petri nets have well-defined execution semantics and

rigorous mathematical representation [70], which contains very few, but powerful,

primitives. Such concise mathematical definition is a dominating strength of Petri net

because it not only allows extending the basic Petri nets to achieve more enhanced

functionalities but also makes it easy to develop many formal analysis methods and tools.

Because Petri net has well-defined execution semantics, it can easily be implemented by

programming language. Moreover, there exists a large collection of analysis methods and

tools developed for various types of Petri nets, making Petri nets a very powerful tool for

modeling, simulating, and analyzing discrete event systems. As discussed in Section

3.2.3, with the use of tokens, Petri nets can describe the dynamic aspects of a system

60

which neither UML nor OPM can. CPNs extend the vocabulary of basic Petri nets by

allowing tokens to have an associated attribute. CPNs also support hierarchical Petri nets

making it easier to scale to large system modeling. The incorporation of high-level

programming languages also provides CPNs with the primitives for definition of data

types and manipulation of their data values [170]. Therefore complex information can be

represented in the token values and inscriptions of a CPN model [171], making CPNs

capable of modeling complicated behavior with great flexibility. Jensen [170] provides an

in-depth discussion of the advantages of CPN.

Although the reference implementation of FUML provides convenient simulation

capability by allowing direct execution of a SysML activity model, CPN provides

capabilities beyond those of which reference implementation and many other executable

formalisms are capable of. A detailed comparison of the simulation capabilities between

CPN and FUML can be found in [166]. Hence only the key points are highlighted here.

First, CPNs combine a rigorous mathematical definition, an interactive graphical

representation, and capabilities to carry out simulations and formal verifications into a

concise modeling formalism. The FUML reference implementation only provides textual

execution trace. Secondly, it is possible to use the same (or at least very similar) models

to check both the logical and functional accuracy of a system and to analyze performance

[172]. Third, CPNs are very flexible in token definition and manipulation making CPN

modeling even more flexible. Finally, CPNs can be extended with a time concept that has

not yet been implemented in FUML.

However, Petri nets are weak in defining the structural aspects of a system. For

example they cannot represent long-term relationships between system objects. CPNs are

not object-oriented. Additionally, they do not have the facilities to support either model

reuse or scalability like the classification-instance, inheritance, and polymorphism

supported by most object-oriented formalisms. Various versions of object-oriented Petri

nets have been proposed in literature, such as [173–179]. These object-oriented Petri nets

extend the basic Petri net, or CPN, with object-oriented concepts and constructs. They

also support various degrees of object-oriented concepts or ideas, such as inheritance and

polymorphism. Although they can capture persisting objects, they still cannot capture

61

long term relationships between objects. Thus, these object-oriented Petri nets still have

difficulty to capture full structural aspects of the system.

5.1.2. Characteristics of an Ideal Holistic Modeling Language. Based on the

needs of the search-based architecture development process, an ideal holistic modeling

language as defined in the beginning of Section 5.1 should have the following characters:

 It must be domain independent;

 It must be universal and support generic object-oriented concepts;

 It must be capable of modeling the structural, behavioral, and dynamic aspects

of a system;

 It should support both graphical and textual syntax;

 It must be precise, mathematically rigorous, and executable;

 It must support system analysis;

 It must capture design space or constraints;

 It must support hierarchical abstractions;

 It should consist of a relative small set of modeling constructs and notations.

 It should be easy to understand and use. i.e., the modeling constructs and

notations should be intuitive to architect;

 It should facilitate data exchange for sharing models and communicating with

other computer programs and database;

 It should facilitate the communication between stakeholders and architects

from different knowledge domains;

 It must be easy to implement using programming language;

 It should encourage the use of one integrated representation instead of

multiple disjoint diagrams.

5.1.3. Combining UML/SysML, OPM, Petri Nets, and Feature Models. Based

on literature review conducted, a holistic modeling language as identified in Section 5.1.2

has yet to be designed. Each of the modeling languages studied has only been able to

partially fulfill these needs. Defining and implementing a fully-fledged modeling

language not only is a very challenging task but also has the disadvantage of lacking

supports and acceptance. Therefore, instead of developing a new modeling language from

scratch, this research proposes the integration and combinational usage of existing

62

modeling languages, i.e., the OPM, CPN and feature model. This approach not only

allows user to benefit from the advantage of these individual modeling language but also

allows the existing software tools and analysis methods developed for them to be reused.

The way that these languages can be integrated is illustrated in Figure 5.1:

Figure 5.1. Combining Existing Modeling Languages to Achieve Holistic Modeling

The integration works like this: The formal system model is to be specified by

OPM which serves as the hub of integrating other modeling formalisms. The reason that

OPM is selected to play the integrator’s role is that it is the closest to holistic modeling

among those languages investigated. Additionally, it contains a very small set of

language primitives which make it easy to extend OPM’s definition to include new

capabilities. A UML (or SysML) model with multiple diagrams can be generated by

either using the generation capability provided by OPCAT [42] or following some other

proposed mapping schemes [39], [169]. UML (or SysML) models are expected because

they are usually considered as more standard way for illustration or communication. A

standard OPM model, however, still lacks the ability to capture dynamic aspects of

system behavior, certain numeric properties (e.g., time), and constraints. Additionally, it

lacks well-documented execution semantics. This research proposes utilizing CPN to

formally define the execution semantics of OPM such that the simulation capability and

analysis methods developed for CPN can be utilized. Moreover, OPM models are not

Behavior & Dynamic, Design Space

Structure & Behavior

UML/SysML OPM (OPD/OPL)

CPN Feature model

Mapping

Generative class

model and instance

models

Mapping

Presentation

Specification

Communication &

Analysis

Simulation &

Analysis

Extension

63

intended to capture design space. Thus, this research propose incorporating feature model

concepts and domain engineering into OPM modeling so that OPM can be used to

develop a class model that represents a collection of instance models.

The mapping between these modeling languages must be developed. This

dissertation employs the existing work to map OPM to UML [39] or SysML [169]. This

dissertation proposes extending OPM with feature model concepts. Such extension will

be introduced in Section 5.1.3.1. This dissertation also proposes the mapping between

OPM to CPN as a way to supplement OPM with well-defined execution semantics. Such

mapping will be introduced in Section 5.1.3.2.

The holistic modeling approach proposed here uses OPM as the formal language

for specifying a system. Thus, the OPM model should provide extended information to

incorporate the concepts of the feature model for design space specification and to

support the generation of CPN model. Such an extension can be achieved by defining the

metamodel of the OPM/H using the object-oriented paradigm such as the MOF of UML

[33]. In doing so, the extended information can be incorporated into the metamodel of

the extended OPM in the form of properties added to related metaclass. A formal

definition of the extended OPM is given in Section 5.1.3.1 below. There are a few other

extensions to OPM in literature. For example, Mor Peleg and Dov Dori [180] proposed

OPM/T. This is an extension of OPM for the specification of reactive and real-time

systems. This extension (provided in OPM/T) includes triggering events, guarding

conditions, temporal constraints, and timing exceptions. This research adopted some of

Mor Peleg and Dov Dori’s ideas [181] in developing the extended OPM.

5.1.3.1 Formal definition of the extended OPM. The metamodel of an extended

OPM for holistic modeling (known as OPM/H hereafter) can be defined, using an object-

oriented paradigm, as follows: (Optional properties are enclosed in “<” and “>.”)

 { }

where

1. = OPM/H model of the system.

2. = a set of objects in the system. That is,

 { },

where

64

 = the object i in the system. It is defined by an 11-tuple property set, (Name,

Type, <Value>, <Constraint>, Essence, Affiliation, <States>, <multiplicity>,

<Description>, <URL>, <Dynamic>). The property sets can be extended with additional

fields if necessary.

 = the total number of objects in the system.

1. = state set defined for each object in the system, i.e., an elaboration of the

state property of the object class. That is,

 { },

where

 = { } is the set of states in object .

 = the total number of states in object .

2. = a set of processes in the system. That is,

 { },

where

 = the process i in the system. It is defined by an 8-tuple property set, (Name,

Essence, Affiliation, <Guard condition>, <Code segment>, <Time delay>,

<Description>, <URL>). The property sets can be extended with additional fields (e.g.,

adding a Body field).

 = the total number of processes in the system.

5. = a set of links among distinct things (objects or process) in the system. That

is,

 { },

where

 = the link i in the system. It is defined by a 3-tuple property set, (Source,

Destination, <TypeProperties>). Among them, the TypeProperties is a set of properties,

the value of which depends on the type of the link as summarized in Table 5.2. The

property sets can be extended with additional fields if necessary.

The “XOR” and “OR” relations are special types of links. An XOR (or OR)

relation connects one entity (object, process, or state) at its singularity end (source or

destination) to a set of links (other than XOR or OR) at the other, multiplicity, end

(destination or source). An XOR relation applies the XOR operation to the set of links

65

Table 5.2. Properties of OPM Links

Category Links Properties

Structural

Relations

Aggregation-Participation Participation constraint

Exhibition-Characterization

Generalization-Specialization

Classification-Instantiation

Unidirectional Relation Tag, Source participation constraint,

Destination participation constraint

Bidirectional Relation Forward Tag, Backward, Tag, Source

participation constraint, Destination

participation constraint

XOR/OR N/A

Procedure

Links

Agent Link Condition, Path, Description

Instrument Link

Result/Consumption Link

Effect Link Condition, Path, Resource, Description

Instrument Event Link Condition, Path, Reaction Time,

Description

Consumption Event Link Condition, Path, Reaction Time,

Description

Condition Link Condition, Path, Description

Exception Link Condition, Path, Reaction Time,

Description

Invocation Link Condition, Path, Reaction Time,

Description

that it connects before those links are connect to the entity at the other end of the XOR

relation. An OR relation works the same way as the XOR relation, except that it applies

OR operation to the set of links that it connects to.

66

 = the total number of links in the system.

6. = (,) = the set of initial markings of an OPM/H

where,

 = marking of all objects in the system. That is,

 ∑

 , where is the initial marking of object , i.e., the initial

value of object .

 = marking of state of all objects in the system. That is

 ∑

 , where is the initial active state of object .

Note: The possible values for property Essence (in object or process) is either

physical or informatical; the possible values for property Affiliation (in object or process)

is either environmental or systemic (Refer to the OPM manual [182] for definitions of

the values of these properties.)

5.1.3.2 Extend OPM with feature model concepts to capture design space.

In software engineering, domain analysis and feature models are used to define product

line. Such concepts can be incorporated into OPM modeling to define the architectural

design space. For example, the concept of features (as in a feature model) can be applied

to any model element in an OPM model because features are higher level concepts. Such

usage of feature concept can be justified by the definition of features as introduced in

[183], i.e., a feature is a prominent or distinctive user visible aspect, quality, or

characteristic of a software system or system. Appling the feature concept to OPM model

elements is more straightforward than applying it to other modeling languages, such as

UML/SysML. Object-orientation makes more specific assumptions about objects, i.e.,

they have state and behavior and collaborate through interactions [3] while an object

concept in OPM is broken down into its constituent object, state, and processes, which all

have an explicit appearance in the OPM model.

A design space [30] is “a multidimensional space representing both requirements

and design choices. It is spanned by a set of dimensions identifying relevant criteria for

characterizing artifacts in a specific domain – components, subsystems, or complete

systems”. Design spaces may comprise two types of dimensions: discrete dimensions

(enumerate possible alternatives) and continuous dimensions (take values in a range, such

as real values).

67

Following the concepts of the feature model, design elements in an architectural

model can be categorized as either common or variable elements. Common elements are

always part of a system and, therefore, can be modeled as mandatory elements using

feature model concepts. Variable elements are part of only some systems and, therefore,

can be modeled as either optional, alternative, or OR-relationship elements using feature

model concepts. Common elements are not relevant to the decision making process.

Variable elements span the design space, the dimensions of which is constituted by three

types of entities, an optional element, a set of alternative elements, and a set of OR-

relationship elements. Therefore, variable elements are the design variables, the value of

which need to be determined in the system design process. Additionally, each variable

element might be described by a set of attributes. Again these attributes can be

categorized as either common attributes or variable attributes using the above feature

model concepts. These variable attributes constitute the sub-dimensions of the variable

element. It is the cross product of these variable attributes that determines the domain of

the variable element. The total effective dimensions of the design space of a system are,

therefore, the sum of sub-dimensions from all of the main dimensions computed

recursively until to the top elements. Extended with the concepts of the feature model,

OPM can be used to develop the generative class model.

Before presenting the rules to extend OPM with the feature model concepts, a

cardinality concept needs to be defined first:

Cardinality is an interval denoted as [min..max] applied to an OPM element,

where min is the lower bound and max is the upper bound. Two types of cardinality exist:

participation cardinality (corresponding to the feature cardinality in the feature model)

and group cardinality (corresponding to the group cardinality in the feature model).

An OPM can be extended with the feature model concepts by following the rules

below:

1. A set of alternative things can be grouped and represented by one OPM object

(or process, whichever applicable). Fill the value field of this object (process) with a

Boolean expression, which is constructed by connecting the values representing

alternatives with “XOR”. For example, the expression “(a) XOR (b) XOR (c)”

means exactly one alternative out of the set {a, b, c} can be present. Such a Boolean

68

expression can be replaced with a notation that represents a generative function to be

implemented if too many alternatives exist. The “Initial Value” field of the OPCAT can

be used to contain such Boolean expressions.

In addition to representing the set of alternatives using a Boolean expression,

OPM objects (processes) representing the alternatives can be created and then connected

with the parent object (process) using the classification-instantiation link of OPM. Such

mechanism is known as “expand” here. To expand is necessary if any of the alternatives

needs to connect to other OPM things.

2. Similarly, a set of things with the “OR” relationship can be modeled by the

same mechanism described above. However, the “OR” operator should be used to

connect the set of values representing the OR-relationship things. If child objects

(processes) are to be created, they can be connected to their parent object (processes) by

any applicable OPM structural links.

3. The group cardinality of a feature can be captured by adding a multiplicity

attribute to each OPM thing. Therefore, if a thing represents a set of alternatives, its

multiplicity will be [1, 1]. If a thing represents a set of OR-relationship things, its

multiplicity will be [1, N], where N is the number of end nodes in the relationship. If a

thing represents a set of things that are related by compound relationship with both XOR

and OR operators in the Boolean expression, set the value of the multiplicity attribute

accordingly. Otherwise, if a thing has no child connected to it with OPM structural link,

its multicity value is [1, 1] by default. The Number of instances attribute of a thing in

OPCAT can be used as the multiplicity attribute to model such group cardinality.

4. The mandatory and optional relationships of a feature model can be represented

by participation cardinalities in an OPM. Particularly, add a participation constraint

attribute to the structural links of OPM. Then apply the above defined cardinality concept

to each terminal end of the link. It is known as participation cardinality here. Participation

cardinality is a generalization of the mandatory ([1, 1]) and optional ([0, 1]) concepts of

the feature model. The OPCAT provides such a participation constraint attribute.

5. The “requires” relationship of a feature model can be expressed by various

OPM procedure links or OPM tagged structural links depending on the relationships

between these entities in OPM semantics.

69

6. Other cross-tree constraints between things are represented by OPM tagged

structural links.

7. The “OR” and “XOR” relationships between OPM procedure links can be

expressed directly using the “OR” or “XOR” notations of OPM.

8. A root node representing the entire system is optional if all of its children nodes

have a participant cardinality of [1, 1].

9. Other extended features and constraints can be added to corresponding OPM

elements as feature attributes.

Note that the XOR operators, the OR operators, and the tag values in the OPM

tagged structural links representing cross-tree relationships appeared in the above rules

are for illustration purpose only. They can be replaced by other syntax entailed by the

implementation. For example, the OR-relationship can be expressed, using PL notations,

as f1∨f2∨...fn , with fi | i ∈[1...n] being the set of children participating in the OR

relationship [184].

From the rules introduced above it can be seen that the current expressiveness of

the OPCAT is capable of modeling these feature model concepts with little extension

required. Hence it can be used to specify the design space of an OPM model. In order to

illustrate using OPM notations and feature model concepts to define a design space, an

example is give here. Figure 5.2 shows a sample feature model for the mobile phone,

adopted from [14]. The corresponding OPM model, extended with the feature model

concepts, is presented in Figure 5.3 (a). Both the mandatory elements (Calls and

Screen) and the optional elements (GPS and Media) were captured by the

participation cardinality of the aggregation-participation link. The alternative

relationships (between Basic, Color, and High resolution) were captured both

by the group cardinality applied to the Screen (default value 1 is not shown in the

figure) and the Initial Value field of the Screen object as illustrated in Figure 5.3

(b). OPM objects were created for those alternatives because two of them (Basic and

High resolution) were connected to other OPM things. OR relationship (between

Camera and MP3) were captured both by the group cardinality applied to the Media

(value “2” inside the box representing the Media object, which is the upper bound of the

group cardinality) and the Initial Value field of the Media object as illustrated in Figure

70

5.3 (c). OPM objects were created for those alternatives because two of them (Basic

and High resolution) were connected to other OPM things. Both requires

constraints and the excludes constraints were captured by the tagged structural links of

OPM.

Figure 5.2. A Sample Feature Model ([14])

 (a)

Figure 5.3. An OPM Model (Created by OPCAT) Extended With Feature Model

Concepts to Capture Design Space

Mobile

Phone

Calls Screen

Color Basic High resolution Camera MP3

Mandatory

GPS Media

Optional Excludes

Alternative Requires

Or

71

 (b)

 (c)

Figure 5.3. An OPM Model (Created by OPCAT) Extended with Feature Model

Concepts to Capture Design Space (cont.)

The number of dimensions for the design space of this system was 3. These

dimensions, along with their domains, were as follows: (1) GPS: {True, False}, (2)

Screen: {Basic, Color, High resolution}, (3) Media: {Camera, MP3,

Camera AND MP3, False}.

5.1.3.3 Supplementing execution semantics of OPM with CPN. An OPM/H

model also contains extended information to support the construction of a CPN model.

Such additional information can be viewed as annotations added to a regular OPM model.

Such information includes link conditions, guard conditions, code segments, time delays,

and markings. These types of information should be defined according to the need of the

CPN model to be generated. Their semantics is pure CPN semantics. The details of these

types of extended information are as follows:

The link condition, corresponding to the CPN arc inscription [170], [185], [186]

or arc annotation [187], is an annotation to the procedure link of OPM. A link condition

can include values, variables and expressions used alone or organized in a tuple. An

instance of value allows consuming or producing a known value. A variable requires

72

binding of values to variable. Expressions yield new values through computation.

Functions are also allowed in expressions. Functions used in link conditions allow

complicated computations that are defined elsewhere. An Expression instance is only

used in output procedure links. For more advanced topics regarding defanging link

conditions, refer to arc inscription in CPN [185]. A link condition can be added to the

“Condition” field of a procedure link. The syntax of the link conditions depends on the

programming language chosen for implementing the CPN.

The guard condition, corresponding to the CPN guard [170], [186], [188], is a

Boolean expression that evaluates to true or false. A guard condition can be added to the

“Guard condition” field of a process (or, if using OPCAT, add to the description field

using the format “[Guard: (expression)]”, where expression is to be

replaced with the intended guard condition). The syntax of the guard conditions depends

on the programming language chosen for implementing the CPN. Guards are used for

testing variables in input link conditions (enabling restrictions) or restricting values of

output link conditions variables. For more advanced topics regarding defining guard

conditions, refer to guard in CPN [188].

The code segment, corresponding to the CPN code segment [170], [186], [189], is

a piece of code executed when the hosting transition (corresponding to the OPM/H

process) fires. A code segment can be added to the “code segment” field of a process (or,

if using OPCAT, add to the description field using the format “[Code:

(expression)]”, where expression is to be replaced with the intended code segment).

The syntax of the code segments depends on the programming language chosen for

implementing the CPN. For more advanced topics regarding defining code segments,

refer to code segments in CPN [188].

A time delay is an expression evaluated to integer. A time delay can be applied

both to a process and to an output procedure link from a process. When applied to a

process, a time delay corresponds to the transition delay of the CPN. Such time delay can

be added to the “Time Delay” field of a process (or, if using OPCAT, add to the

description field using the format “[Time: (expression)]”, where expression

is to be replaced with the time delay expression). When applied to a procedure link, a

time delay corresponds to the arc delay of the CPN. Such time delay can be attached to

73

the end of the corresponding link conditions, using @+ as a separator. The syntax of the

time delay expression depends on the programming language chosen for implementing

the CPN.

Setting the initial marking of the OPM/H involves two operations: (1) Setting the

initial values for related objects by giving a value expression to the “Value” field of each

object. This operation will result in creating object instances for those objects. The value

expression can be a single value, a set of values or a generative function defined

elsewhere. The syntax of the value expression depends on the programming language

chosen for implementing the CPN. (2) Selecting the initial state for objects with states.

In addition, there may be some OPM objects that have no impact on the dynamic

of a CPN model. These objects should be identified and left out from mapping to CPN to

avoid creating redundant information in the CPN model. For example, in a manufacturing

system, the cost attributes of machine objects have no impact on the operation of the

manufacturing system. Therefore, the OPM/H object representing the cost attributes can

be left out from mapping to a CPN. To left out an OPM/H object from mapping to a

CPN, mark the object by setting its “Dynamic” properties to false or add “[nd]” to the

description field of the object if using OPCAT.

With such extensions, an OPM/H model can be transformed to a CPN model. As

both OPM and CPN have graphical syntax, their mapping can be illustrated using graphs

as well. Table 5.3 summarizes the mapping between OPM (where the syntax and

semantics of OPM is extracted from [190]) and CPN. The basic idea is as follows. Map

OPM processes to CPN transitions. Map OPM attribute objects (objects connected to

their parent object using exhibition-characterization link) to CPN color sets. Such color

set thus defines the set of class attributes for the OPM object being connected by those

attribute objects. Map non-attribute objects that have no states and object states of OPM

to CPN places. Map the value(s) of an OPM object to CPN token(s). One or a set of

tokens on a CPN place represents either the existence of an object or an object being at

the state represented by that place. The former corresponds to the cast that the place is

mapped from an OPM object with no state and the token(s) on that place represent

alternative objects. The latter corresponds to the case that the place is mapped from an

OPM state. As discussed in Section 3.1.1, an object in the object-oriented modeling is

74

defined by three parts, states, attributes and services. By following the mapping scheme

discussed above, a CPN token can capture the attribute and state part of an object

definition. The service (or method, function or process) part of an object definition can be

inferred if the CPN model created from the OPM follows certain naming convention. For

example, an object’s service can be modeled as an OPM process connected to the

corresponding OPM object using an exhibition- characterization link. When such process

is mapped to a CPN transition, the transition can be named by prefixing the

corresponding OPM process name with the corresponding OPM object name. In doing

so, the ownership relation between the object and the process can then be inferred. OPM

structural links that have no effect on the system dynamics are not mapped to CPN. The

details of the procedure for mapping an OPM/H model to a CPN model are as follows.

Step 1. Create a CPN transition for each OPM process (except for zoomed-in

process). Name the transition with the format of “O_T,” where “O” represents the name

of the OPM object connected to the process with an exhibition-characterization link and

“T” represents the name of the process.

Step 2. Create a place for each OPM state. Name the place with the format of

“O_S,” where “O” represents the name of the OPM object corresponding to that state and

“S” represents the name of the state.

Step 3. Create a place for each OPM object connected to an OPM process with

either an enabling / transforming procedural link or event / condition procedural link.

a. If an OPM object with states is itself connected to an OPM process with such

links, do not create a place for this object. Instead, create a set of arcs, each of

which connects to a place created for a state of the object using the procedure

in Step 8 below treating the relationship between these arcs as an OR.

Step 4. Objects that are not connected to any processes do not need to be mapped

to CPN places.

Step 5. Create a color set declaration for each OPM object that is a child object in

the exhibition-characterization link (except for those objects that are marked as “[nd]”

in their description field). Name the color set with the name of the OPM object using

uppercase letters. Type the color set with the type attribute in the description field of the

extended OPM.

75

a. Create a product color set declaration for each OPM object connected by more

than one child via exhibition-characterization links.

b. Start with the lowest level (leave nodes) of exhibition-characterization links.

Move upward when there are multiple levels of parent-children relations with

exhibition-characterization links.

Step 6. Type each place with the color set declared for the corresponding object in

Step 5.

Step 7. Declare a variable for each color set identified in Step 5. Name the

variable with the corresponding color set’s name using lowercase letters.

Step 8. Create an arc for each enabling / transforming procedural link or event/

condition procedural link connected with the process being mapped in Step 1 according

to the mapping scheme presented in Table 5.3.

Step 9. Add arc inscription to each link identified in Step 8 according to the color

set of the place the arc is connected to.

a. The expression in the condition field of the link can override the arc

inscription defined above. Replace the variable name (corresponding to the

OPM object name) in the expression with the corresponding variable name

defined in Step 7.

Step 10. Create a guard condition, code segment, or time delay for each transition

identified in Step 1 using the respective expression in the description field of the

corresponding OPM process. Replace the object names within the expressions with the

corresponding variable names defined in Step 7.

Step 11. Assign tokens to places with the initial values of the corresponding OPM

object

Step 12. When an Exclusive relationship connecting two OPM process exists, add

a CPN state between the corresponding CPN transitions. Name the place with the name

of the end process (both if bidirectional) proceeded with “EXL”. Type the place with a

unit-like type. (Such typing depends on the language implementing the CPN.)

Step 13. Create a double arrow arc for each effect link that connects an object

with no state.

76

Table 5.3. Syntax and Semantics of OPM and its Mapping to CPN
ENTITIES

Name Symbol OPL CPN

Thing

Object

B is physical.(shaded

rectangle)

C is physical and

environmental.(s

haded dashed

rectangle)

E is physical.(shaded

ellipse)

F is physical and

environmental. (shaded

dashed ellipse)

Process

Definition An object is a thing that exists.

A process is a thing that transforms at least one

object.

Transformation is object generation or

consumption, or effect—a change in the state of an

object.

For a simple OPM object, the

corresponding CPN place is class and a

token on that place represents the

existence of an instance of that class.

No distinction of physical/informatical or

environmental/systemic in CPN.

State

A is s1.

B can be s1 or s2.

C can be s1, s2, or s3.

s1 is initial.

s3 is final.

Definition A state is situation an object can be at or a value

it can assume.

States are always within an object. States can be

initial or final.

Places are identified as states. Tokens are

identified with objects.

The color set correspond to the state

place identify the set of objects that can

visit those places, i.e., the set of objects

owning those states. The tokens on a state

place identify what objects are in that

state

Object A

Process D

A_s1

C

F

B_s2

B

E

B_s1

Token

C_s3

C_s2

C_s1

1

1

1’ A

1’ A

C

1’ B

77

Table 5.3. Syntax and Semantics of OPM and its Mapping to CPN (cont.)
Structural Links

Name Symbol OPL CPN

Fundamental Structural Relations

Aggregation-

Participation

A consists of B

and C.

A consists of B

and C.

Definition A is the whole, B and C are parts. No CPN mapping of aggregation

relationships between OPM objects.

Use substitute Transition plus sub-net to

map aggregation relationships between

OPM processes if hierarchical CPN is to

be used.

No need to create transition for process A

in non-hierarchical CPN

Exhibition-

Characterization

A exhibits B, as well

as C.

A exhibits B, as well

as C.

Definition Object B is an attribute of A and

process C is its operation (method).

A can be an object or a process.

Exhibited OPM objects are mapped to the

color set definition of the OPM exhibiting

object. Multiple exhibited objects are

mapped to product color set.

No mapping of exhibition relations for

OPM processes in CPN.

A

Process A

I

A

C

C

C

B

B

B

CA

C

Token

E

colset CA = B;

O I

O I

78

Table 5.3. Syntax and Semantics of OPM and its Mapping to CPN (cont.)
Structural Links

Name Symbol OPL CPN

Fundamental Structural Relations

Generalization-

Specialization

B is an A.

C is an A.

B is A.

C is A.

Definition A specializes into B and C.

A, B, and C can be either all objects or all

processes.

No explicit map of Generalization-

Specialization relations.

Map children objects/processes only.

Classification-

Instantiation

B is an instance of

A.

C is an instance of A.

Definition Object A is the class, for which B and C are

instances. Applicable to processes too.

Unidirectional

&

bidirectional

tagged

structural links

A relates to B.

(for unidirectional)

A and C are

related.

(for bidirectional)

Definition A user-defined textual tag describes any

structural relation between two objects or

between two processes.

No mapping of tagged structural links.

Link Relations

XOR Relation

C1 consumes either B1

or A1.

Definition Guard will determine the XOR

relation.

B

B

A

B

A

C

C

2

For process:

B

1’B++

1’C

A

C

For object:

C

colset CA = B;

C : A

79

Table 5.3. Syntax and Semantics of OPM and its Mapping to CPN (cont.)
Name Symbol OPL CPN

XOR Relation

C2 yields either B2 or

A2.

Definition Arc inscription will determine whether it

is OR, AND or XOR

OR Relation

C5 consumes A5 or

B5.

Definition Guard will determine the OR relation.

OR Relation

C6 yields B6 or A6..

Definition Arc inscription will determine whether it

is OR, AND or XOR

Complexity Management

In-zooming

A exhibits C.

A consists of B. A

zooms into B, as

well as C.

Sub-net.

Definition Zooming into process A, B is its part and C

is its attribute.

Same as the mapping for aggregation-

participation link with parent thing being

process.

Expose subnet structure, i.e., no

substitution for non-hierarchical CPN.

A exhibits C.

A consists of B. A

zooms into B, as well

as C.

N/A

Definition Zooming into object A, B is its part and C is its

operation.

Same as the mapping for aggregation-

participation link with parent thing being

object.

A

C B

file:///F:/UMR/Research/Dissertation/dx.doi.org/10.1016/j.is.2008.02.002
file:///F:/UMR/Research/Dissertation/dx.doi.org/10.1016/j.is.2008.02.002

80

Table 5.3. Syntax and Semantics of OPM and its Mapping to CPN (cont.)

Enabling and Transforming Procedural Links

Name Symbol OPL CPN(A) CPN (B)

Enabling links

Agent Link

A handles B.

Definition Denotes that the object is a human

operator.

Instrument

Link

B requires A.

Definition "Wait until" semantics: Process B

cannot happen if object A does not

exist.

Place A: class A (existence).

A token on A: an instance of A.

Color set colA: set of possible instance values of

class A (e.g. suppose A represents message, which

can carry diffrent values. therefore color set/token

corresponds to object attributes/values).

Arc variable os: the color set to be bound.

State-

Specified

Instrument

Link

B requires s1

A.

 "Wait until" semantics: Process B

cannot happen if object A is not at

state s1.

Place A_s1: the s1 state of object A.

Token on A_s1: existence of object A in state s1.

Color set colA: set of possible instance values of

class A.

Arc variable os: the color set to be bound.

Transforming links

Consumption

Link

B consumes A.

colset COLA = unit;
var oe: COLA;
val cr = 5;

colset COLA = unit;
var oe: COLA;
val cr = 5;
var amt: AMT;
closet AMT = INT;
colset AxAMT = product
COLA * AMT;

colset colA = unit;
var os: colA;

colset colA = unit;
var os: colA;

81

Table 5.3. Syntax and Semantics of OPM and its Mapping to CPN (cont.)

Enabling and Transforming Procedural Links

Name Symbol OPL CPN(A) CPN (B)

Definition Process B consumes Object A Place A1: class A1

(existence).

A token on A1: an

instance of A1.

Number of tokens:

number of instances of

A1.

Color set COLA: set of

possible instance values

of class A1.

Arc variable oe: the

colorset to be bound.

Variable: cr:

Consumtion rate.

Place A: class A.

A token on A: an instance

of A with amount

attribute.

Support consuming more

than one unit of object A

at a time.

Compound colorset with

one dimension (AMT)

identify the amount of

object A.

Color set AxAMT: set of

possible instance values

of class A.

Expression "amt-cr":

amount consumed.

Only one token

representing A is needed.

State-

Specified

Consumption

Link

B consumes

s1of A.

Definition Process B consumes Object A when it

is at State s1.

Same as the above

consumption link except

the following:

Place A_s1: the s1 state

of class A.

A token on A_s1: an

instance of class A (i.e.,

object A) at state s1

Same as the above

consumption link except

the following:

Place A_s0: the s0 state

of class A.

A token on A_s0: the

instance of class A (i.e.,

object A) at state s with

amount attribute.

colset COLA = unit;
var oe: COLA;
val cr = 5;

colset COLA = unit;
var oe: COLA;
val cr = 5;
var amt: AMT;
closet AMT = INT;
colset AxAMT = product
COLA * AMT;

82

Table 5.3. Syntax and Semantics of OPM and its Mapping to CPN (cont.)

Enabling and Transforming Procedural Links

Name Symbol OPL CPN(A) CPN (B)

Result Link

B yields A.

Definition Process B creates Object A. Same as the

consumption link except

that the direction of the

arc is reversed.

Same as the consumption

link except that the

direction of the arc is

reversed.

State-

Specified

Result Link

B yields s1 A.

Definition Process B creates Object A at State

s1.

Same as the state-

specified consumption

link except that the

direction of the arc is

reversed.

Same as the state-

specified consumption

link except that the

direction of the arc is

reversed.

Input-Output

Link Pair

B changes A

from s1 to s2.

Definition Process B changes the state of

Object A from State s1 to State s2.

Same as the state-specified consumption link

except the following:

Place A_s1: the s1 state of class A.

Place A_s2: the s2 state of class A.

A token on A_s1 (or A_s2) : an instance of class A

(i.e., object A) at state s1 (or s2).

Effect Link

B affects A. Same as the input-output link pair.

colset colA = unit;
var oe: colA;
val cr = 5;

colset colA = unit;
var oe: colA;
val cr = 5;
var amt: AMT;
closet AMT = INT;
colset AxAMT = product
COLA * AMT;

colset COLA = unit;
var oe: COLA;
val cr = 5;

colset COLA = unit;
var oe: COLA;
val cr = 5;
var amt: AMT;
closet AMT = INT;
colset AxAMT = product
COLA * AMT;

colset COLA = unit;
var oe: COLA;

83

Table 5.3. Syntax and Semantics of OPM and its Mapping to CPN (cont.)

Enabling and Transforming Procedural Links

Name Symbol OPL CPN(A) CPN (B)

Definition Process B changes the state of Object

A; the details of the effect may be

added at a lower level.

It will always be replaced with input-output link

pair after the hierarchical decomposition of place in

CPN.

Event, Condition, And Invocation Procedural Links

Instrument

Event Link

A triggers B.

B requires

A.

Definition Existence or generation of object A

will attempt to trigger process B once.

Execution will proceed if the

triggering failed.

Place A: class A (existence).

A token on A: an instance of A.

Color set COLA: set of possible instance values of

class A.

Arc variable oe: the color set to be bound.

State-

Specified

Instrument

Event

Link

A triggers B.

when it

enters s1. B

requires s1

A.

Definition Entering state s1 will attempt to

trigger the process once. Execution

will proceed if the triggering failed.

Place A_s1: the s1 state of class A.

A token on A_s1: an instance of class A (i.e., object

A) at state s1

Color set COLA: set of possible instance values of

class A.

Arc variable os: the color set to be bound.

Consumption

Event Link

A triggers B.

B consumes

A.

Definition Existence or generation of object A

will attempt to trigger process B

once. If B is triggered, it will

consume A. Execution will proceed

if the triggering failed.

Same as consumption link. Same as consumption

link.

colset COLA = unit;
var oe: COLA;

colset COLA = unit;
var oe: COLA;

colset COLA = unit;
var oe: COLA;
var cr = 5;

colset COLA = unit;
var oe: COLA;
val cr = 5;
var amt: AMT;
closet AMT = INT;
colset AxAMT = product
COLA * AMT;

84

Table 5.3. Syntax and Semantics of OPM and its Mapping to CPN (cont.)

Event, Condition, And Invocation Procedural Links

Name Symbol OPL CPN(A) CPN (B)

State-

Specified

Consumption

Event Link

A triggers B

when it enters

s2.

B consumes

s2A.

Definition Entering state s2 will attempt to

trigger the process once. If B is

triggered, it will consume A.

Execution will proceed if the

triggering failed.

Same as the mapping for

state-specified

consumption link.

Same as the mapping

for state-specified

consumption link.

Condition

Link

B occurs if A

exists.

Definition Existence of object A is a condition to

the execution of B.If object A does

not exist, then process B is skipped

and regular system flow continues.

Same as the mapping for instrument event link

State-

Specified

Condition

Link

B occurs if A

is s1.

Definition Existence of object A at state s2 is a

condition to the execution of B.

If object A does not exist, then

process B is skipped and regular

system flow continues.

Same as the mapping for state-specified instrument

event link

Invocation

Link

B

invokes

C.

Definition Execution will proceed if the

triggering failed (due to failure to

fulfill one or more of the conditions in

the precondition set).

Add place Completion_Triger_Event between

transition B and C to signal the end of the former

and the triggering of the later.

Color set EVENT: a class of system level message

object.

colset COLA = unit;
var oe: COLA;
val cr = 5;

colset COLA = unit;
var oe: COLA;
val cr = 5;
var amt: AMT;
closet AMT = INT;
colset AxAMT = product
COLA * AMT ;

colset COLA = unit;
var oe: COLA;

colset COLA = unit;
var os: COLA;

85

As an executable language, CPN is much more restrictive than OPM in terms of

expressing execution semantics. For the execution semantics of the enhanced OPM

model to be effectively captured by CPN, some styling rules should be applied when

developing the OPM model. Before introducing the styling rules, a theorem regarding the

equivalence of state and attribute needs to be established first.

Theorem: An attribute and a set of states can be inter-exchanged when modeling.

The set of states of an object can be modeled as an attribute known as a state attribute

here. In doing so, the set of states becomes the set of possible values for the attribute and

vice versa.

Based on this theorem, the following styling rules for developing the OPM/H can

be applied:

1. The developer can model a thing either as a state or as an attribute according to

the needs of expressing the execution semantics. For example,

 (1) If an object with states needs to connect to a process with a procedural link, it

is better to model the set of states as a state attribute. Furthermore, if these set of states

being replaced by the state attribute were connected to other process(es) using procedural

link(s), These links will be redirected to the newly created state attribute. Accordingly,

appropriate link conditions should be set so that these links are only active upon a

particular value (corresponding to the state that the link originally connected to) of this

newly created state attribute.

(2) An attribute object with states is not recommended. Such objects is usually

created when an object has more than one set of overlapping states (i.e., the object can

simultaneously be at more than one state, each of which come from a state set). In such

case, the normal solution would be to group these states into groups and creating an

attribute object to contain each group of states. However, such attribute object will have

problem mapping to CPN because a token representing the object cannot be at more than

one places (corresponding to the overlapped states) simultaneously. Therefore, the

recommended solution is to keep only one group of states and model the other groups of

states as attributes in the same way as the one presented in example 1 above.

Alternatively, the designer can redefine these states and create a new set of states what is

the cross product the states from each group.

86

2. Each enabling / transforming procedural link or event / condition procedural

link connected to a zoomed-in OPM process must also connect to an OPM process

enclosed in the zoomed OPM process.

3. It is highly recommended to take advantage of the flexibility of token definition

in CPN. For example, it is highly recommended to identify alternative components only

by a set of attributes (so as to model alternatives using tokens) rather than identify them

by a group of elements organized in a certain structure. It is easy much easier to create

an alternative object by changing the values of its attributes than creating a group of

elements with a different structure.

5.1.4. The Roles of CPN in Architecture Modeling and Analyses. As discussed

in Section 5.1.3., in the holistic modeling approach proposed here, the formal system

model is specified by OPM and the mapping to CPN is conducted only when needed.

However, CPN is very useful in many cases. A significant advantage of CPN is that the

same model for system modeling can also be used to check the logical or functional

correctness of a system and for performance analysis. There are a large number of

analysis methods and software tools developed for Petri net models [191], [49], [192].

These methods share a lot in common but may differ in the type of Petri net supported.

The discussion here focuses on the analysis methods for CPN. Many algorithms and their

software implementations are developed for analyzing CPN. Such facilities include

support for collecting data during simulations, for generating different kinds of

performance-related output, and for running multiple simulation replications [171]. Note

that there is a distinction between modeling the behavior of a system and monitoring the

behavior of a model. Therefore, for model analysis purpose, auxiliary CPN constructs are

allowed to be added to the original CPN model without affecting the behavior of the

model. The roles that CPN plays in architecture modeling and analysis in the search-

based architecture development framework include simulation, performance analysis, and

system verification and validation. The details are discussed as follows:

Simulation of a CPN model allows user to examine the enabling of transitions and

flow of tokens step wise or fully automatically. Such token flow information can be used

to examine the behavior of the model, e.g., check whether the system behavior as

modeled is expected, or derive performance related information. With the aid of software

87

tools it is also possible record the simulation process in the form of trace history

(sequence of fired transitions and their bindings) and state history. For example, the

simulation report [170] of the CPN Tools provides such information.

Since stochasticity is almost always involved in a CPN model and one simulation

run can only generate one occurrence sequence out of many possible ones, the result

obtained from one simulation run is usually not enough to reflect the true performance

measures. Therefore, many of the software tools for simulating Petri net model support

batch simulation, i.e., running multiple independent simulations automatically. Data can

be automatically collected and saved during each simulation. A proper formulated

simulation scheme allows conducting experiments on the system behavior as modeled

give certain test cases of scenarios. Such experiments can be used for example to evaluate

and estimate the performance measures, to compare different system configurations, to

choose appropriate values for parameters of certain system components, to derive certain

system properties for performance analysis purpose, or to obtain confidence intervals

[193].

CPN models and their simulations contain detailed quantitative information about

the performance of a system, such as throughput, processing time, queue lengths, and

resource utilization, which can be extracted to support the investigation and discovery of

structural and dynamic system properties [171]. The size, complexity, and time concept

for CPN prohibit the generation and solution of analytical models from CPN models

[171]. Therefore, performance analysis using CPN must rely on extracting from

simulation the information needed for deriving performance measures of the system

being modeled. The major source of such information is contained in the token values

and number of tokens at some particular places of the model, the state of the system as

marked by the entire set of tokens as well as from the events that occur (fired transitions

and their bindings) during simulations [171]. There are a variety of ways to extract such

information from the simulation of a CPN model. A simple way to do so is to add report

places [170] to the CPN model. Such places collect historical information about the

simulation runs without influencing the simulation [170]. Software tools like the CPN

tools also support an advanced way for collecting data called monitors. A monitor is a

mechanism that is used to observe, inspect, control or modify a simulation of a CPN

88

without having to modify the model [171]. A monitor can examine both the states of the

model and the events that occur during a simulation [171]. The CPN tools provides a set

of stand monitors such as simulation breakpoint monitor (place contents monitor and

transition enabled monitor), data collector monitor, count transition occurrences monitor,

list length monitor, and write-in-file monitor. It also supports user-defined monitors.

Details regarding these monitors can be found at [171], [172]. Advanced CPN software

like the CPN Tools also supports the generation of various kinds of simulation output

such as log files, statistical reports, and scripts for plotting data values [194].

In another hand, certain attributes can be included in token values to encode

required information for deriving performance metrics. For example, time attributes can

be included in token values to record time-related information such as the cumulated time

that a token spent at a certain place. CPN can be viewed as information processing

system with operands being tokens, the value of which can be changed by expressions

specified by arc inscriptions or code segments associated with transitions. Therefore, very

rich information can be encoded in token values.

With data extracted, various performance measures can then be computed. What

information to be extracted from the simulation and how to compute performance

measures is problem dependent.

In some cases, simulation may not be the only way to compute certain

performance measures; other methods, such mathematical equations, may also be used.

However, it is possible that developing such a mathematical model might be much more

difficult than constructing a CPN model and then deriving the performance metric using

simulation. In such cases, simulation might be a better alternative for performance

analysis, especially when creating and simulating a CPN model add no additional efforts

(if they are also needed for computing other performance measures) while developing a

mathematical model does. Furthermore, simulation based performance analysis is more

robust. Changes in a CPN model directly result in changes in behavior and thereby

changes in the simulation result. On the other hand, if a CPN model is changed, the

mathematical model developed before might not be valid anymore and thus need to be

redeveloped.

89

Another branch of formal analysis methods for Petri is concerned using

generating and solving analytical models, such as continuous-time Markov chains, for

performance analysis [192]. Although analytical models can provide exact solutions

regarding the performance of a model they are subject to the state explosion problem

[171].

Rigorous validation and verification of system specifications requires executable

models. The use of CPN model and simulation adds an additional level of verification

and validation. The rational is that an architecture will not be fully operational until all

components and their interconnections are properly specified and all terminology,

definition, and data exchange syntax are consistent. Therefore, by generating a CPN

model from the OPM model and simulating it, the developed system model can be

verified in the architecture development phase. Consequently, the designers might go

back and force several times between OPM and CPN when developing the architecture

model. Some available techniques for model verification and validation are discussed

briefly as follows:

Validation can be achieved in many cases by simply observing the simulation

result and check, for example, whether the CPN terminates at the desired state (for

terminating systems [194]), reaches the right steady-state (for non-terminating systems

[194]), gets the expected tokes at certain places. The logic correctness can be examined

by testing each step of the simulation to ensure that the model follows the desired logic.

The behavior of the system such as precedence relations amongst events, concurrent

operations, appropriate synchronization, freedom from deadlock, repetitive activities, and

mutual exclusion of shared resources [195] can be observed directly from the simulation.

However, it is often beyond the capability of human beings to observe the details of a

simulation by watching the enabled transitions and markings at each simulation step. The

information extraction techniques mentioned in the performance analysis can be used to

examine the behavior more efficiently. More information and details regarding these

techniques can be found at [170–172], [186], [196], [197]. Particularly, when all

conditions and events of a system are specified correctly in a CPN model, the simulation

of the model should proceed with an expected sequence of state transitions. The system

design can thus be verified by comparing the behavior as modeled with the desired

90

behavior. If the comparison shows a match, the model can be verified and validated. If

the match is insufficient, then either the architecture model must be modified to better

represent the system, or the system architecture must be reconfigured to better satisfy the

requirements.

On the other hand, model behavior validation also leads to result validation,

thereby result in increased confidence in the performance measured obtained. This is

another advantage of using simulation to calculate performance measures over

mathematical equations because mathematical equations developed for calculate

performances measures also need to be validated.

Furthermore, dynamic properties characterize the behavior of a CPN and are often

rather difficult to verify. Some most used dynamic properties are introeduced in [186].

For example boundedness properties (the number of tokens can exist at a particular

place), home properties (markings or sets of markings to which it is always possible to

return), liveness properties (a set of binding elements X remains active), and fairness

properties (how often the different binding elements occur), to name a few. More details

about these properties can be found at [186]. A much more complete set of dynamic

properties of a CPN can be found in Chap. 4 of [197]. More formal analysis methods that

can be used to prove dynamic properties include state space analysis (or occurrence

graphs, which illustrate all reachable markings) and place invariants (to construct

equations which are satisfied for all reachable marking) [186], [197].

Simulations can only cover a finite number of execution sequences of a CPN

model out of potentially many possibilities. Formal verification of system behavior

requires examining all possible states. The state space analysis provides such capability.

A full state space can be expressed by a directed graph with a node for each reachable

marking and an arc for each occurring binding element [186]. However, such graph can

be too large to construct even for a small CPN. This is a major drawback of the state

space analysis called state space explosion [170] and it make state space analysis of

limited usage in some cases. A number of methods have been developed to alleviate the

state explosion problem as indicated in [170], [198], [199].

CPN model and its simulation can also help in identifying missing specifications

and requirements during the architecture development phase because an incomplete

91

model is not executable. Missing requirements, in this context, are functions or

capabilities not yet specified but needed, without which, the system cannot generate the

expected behavior or performance.

Note that not all of these techniques discussed above need to be applied during the

architecture search process when using the search-based architecture development

framework. It is more appropriate to carry out some detailed analyses after limited

number of near-optimum solutions are obtained by the search process and when designer

need to choose one final solution out of those alternatives.

5.2. ARCHITECTURE GENERATION

By following the methods described in Section 5.1.3, a generative class model for

the system of interest can be developed. Such generative class model describes a

collection of models rather than a single instance. Accordingly, an architecture alternative

generation mechanism is needed. Such mechanism should support the generation of all

instance models that coverer the entire design space as defined by the generative class

model. The architecture generation mechanism proposed here includes both a set of

architecture alternative generation operations that apply to various levels of model

constructs and an automatic generation mechanism that enumerate all possible instances

covered by the design space.

5.2.1. Architecture Alternative Generation Operations. The generation of

architecture alternative is guided by the design space as specified by the generative class

model. Elements in an architecture model can be divided into variable part and common

part. The common part is shared by all architecture alternatives. The variable part differs

from architecture to architecture. The architecture alternative generation is only

concerned with generating variable part so it is also known as architecture variant

generation. Each set of generated variable elements is then combined with the constant

part to form a complete architecture alternative. Architecture alternative generation

operations (or variant generation operations in short hereafter) work on three levels. The

most fundamental level operation applies to a single element. Structural generation

operations work on a set of related elements with different types. The system level

92

operation forms a complete variable part based on the generated variable elements and

eventually combined with the common part to form a complete architecture alternative.

5.2.1.1 Generate element instances. The most fundamental variant generation

operation is concerned with a single model element that can be abstract as an object from

the object-oriented sense. An element can be any OPM/H construct (i.e., elements in Sysk

as defined in Section 5.1.3.1) since every OPM construct is an instance of the

corresponding class in the metamodel of OPM/H. This operation is fundamental because

it is used in all other variant generation operations proposed here. There are two steps of

the operation:

Step 1: generate all possible instances of an element (class) according to the

constraints of its properties. Particularly, generate all possible values of a property for an

element according to the constraints of that property. Then generate the whole set of

instances for the element using the cross product of the generated property values but

eliminating those invalid combinations according to the constraints.

Step 2: generate a set of such element instances (i.e., duplicate the generated

instances) according to the participation cardinality constraints.

5.2.1.2 Generate structural variants. The second level variant generation

operations include a set of primary operations, side-effect handling, and advanced group

operations. There are two primary operations. One adds/removes/modifies links between

distinct entities (objects, processes, or states) in the system model (Operation 1). The

other changes the set of entities (objects, processes, or states) in the system by either

adding entities to or removing entities from the system (Operation 2). These operations

can be applied, in turn, with Operation 1 proceeding Operation 2 in each cycle if both

changes are needed to create a variant. The procedures of these two operations are as

follows:

5.2.1.2.1 Add/remove/modify links – operation 1. The following conditions

are given:

(1) The system is currently specified by

 { }

where the subscript k indicates the configuration of the model is after its k
th

 change.

(2) The set of links to be removed from the system is

93

(3) The set of links to be added to the system is

After the (k+1)
th

 change, the system will be specified by

 { }

such that:

(1)

This equation shows the changes of the links in the system when some links are

added and/or removed. Modifying a link is equivalent to removing a link and then adding

a link with the same Source and Destination properties but different values for other

properties. Note that a link is an instance of the link class from the metamodel of OPM/H

as defined in Section 5.1.3.1. Therefore, along with adding a link, both the properties of

the link and their associated constraints should also be specified at the same time.

Similarly, removing a link also removes the properties, along with their constraints, from

the link.

(2)

where { } is an entity (object, process, or state) and
 is a subset of

entities that are isolated from the system because all of their links with other entities

(
 ,) are removed during the change.

 is the subset of isolated entities to be

reconnected to the system. The
 can be expressed as:

 [(Source)
 (Destinaiton)

]

where, (Source) and (Destination) are the values of the Source property and

Destination property of link , respectively.

(3)

where { } is the number of either objects, processes or states in the

system and
 is the number of isolated entities and

 is the number of entities to be

reconnected to (i.e., kept in) the system.

(4)

 , where
 is the marking on the isolated

objects or states (i.e.,
 or

) and
 is the marking on the objects or states to be

reconnect to (i.e., kept in) the system (i.e.,
 or

).

5.2.1.2.2 Add/remove/modify entities - operation 2. Here entities include object

processes, and states. The following conditions are given:

94

(1) The system is currently specified by

 { }

(2) The subset of entities (objects, processes, and states) to be removed from the

system is

 (

)

where { } is an entity (object, process, or state) and
 is the i

th
 entity to be

removed and
 is the total number of entities to be removed. Accordingly, the links

with entities in
 as either Source or Destination should also be removed. These links

to be removed can be expressed as follows:

 (

 , (Source)
 (Destinaiton)

)

(3) The subset of entities to be added to the system is

 (

)

Where { } is an entity (object, process, or state) and
 is the i

th
 entity to be

added and
 is the total number of entities to be added. Along with adding entities, links

connecting these entities to either the existing entities or the newly added entities can be

added as well. These links are denoted as
 .

After the (k + 1)
th

 change, the system will be specified by

 { }

such that:

(1)

This equation shows the effects of both removing and adding entities. Modifying

an entity is equivalent to removing an entity and then adding an entity with the same

values for the “Name” property but different values for other properties. Note that an

entity (object, process, or state) is an instance of the corresponding class from the

metamodel of OPM/H as defined in Section 5.1.3.1. Therefore, along with adding an

entity, both the properties of the entity and their associated constraints should also be

specified. Similarly, removing an entity also removes the properties, along with their

constraints, of the entity.

(2)

95

where
 is the marking of either objects or states to be removed from the system (i.e.,

 or

) and
 is the marking of the objects to be added to the system (i.e.,

 or

).

(3)

where
 and

 are the numbers of entities to be removed and added, respectively.

(4)

This equation shows the effects of both removing the links with entities in
 as

either Source or Destination values and adding links along with adding entities.

5.2.1.2.3 Side effects handling. The variant generation operations introduced

above indicate that the order of implementing the operations defined in Operation 1 and

 Operation 2 matters. Both isolated objects and dangling links need to be cleaned up to

prevent side effects. Additional rules also apply when removing objects connected by

structural relations. The related scenarios are handled by applying Operation 1 and

Operation 2 in an appropriate order. These rules, and the methods to handle related

scenarios, are summarized as follows.

(1) Removing the source (or root, parent) object also removes its destination (or

leaf, child) objects for an object connected with a group of objects using aggregation-

participation links, exhibition-characterization links, or classification-instantiation links.

Therefore, if any of the child objects are to be preserved, their corresponding links with

the parent object must be removed before the parent object is removed.

(2) Removing a source (or root, parent) object also removes the attributes,

structure, procedure, and state inheritance [37] of all destination (or leaf, child objects for

objects connected to it by generalization-specialization links.

5.2.1.2.4 Advanced operations. Some advanced variant generation operations

operations can be constructed using the primary operation (i.e., Operation 1 and 2)

defined above. With the primary operation, the system can be expanded or shrunk

horizontally by adding or removing entities or links. In contrast, the advanced operations

are concerned with connecting things to a root thing to achieve vertical scalability (i.e.,

either refinement or its reverse, aggregation). Such advanced operations are summarized

as follows:

96

(1) Object decomposition. Object decomposition is achieved by adding a group of

entities (possibly linked) and connecting them with the chosen root object using

aggregation-participation links. Additionally, appropriate links between these new

entities and the existing ones can be added. This is the scenario for adding a sub-system.

(2) Process decomposition. Process decomposition is achieved by adding a group

of entities (possibly linked) and connecting them with the process to be decomposed

using exhibition-characterization links. Then redirect (via remove and add) the existing

links from connecting the process to connecting appropriate entities just added.

(3) Aggregation. Aggregation is achieved by adding a new thing (as root, parent

or source) and connecting it with related things in the system using aggregation-

participation links. This is the scenario for grouping existing system components to create

a new subsystem.

(4) De-Aggregation. De-Aggregation is the reverse process to the Aggregation

operation. It is achieved by first removing the aggregation-participation links between the

root (or source, parent) object and its leaf (or destination, child) objects. The root (or

source, parent) object is then removed.

(5) Breakout, i.e., replacing a single thing with a set of things. Breakout is

achieved by both removing and adding things. Additionally these newly added things can

be connected to the existing entities using appropriate links. This is the scenario for using

a set of components to achieve the same functionality as the one achieved by a single

component.

(6) Merge, i.e., replacing a set of things with a single thing. This is the reverse

process to the Breakout operation. It is also achieved by both removing and adding things

and possibly followed by adding links. This is the scenario for using one component to

achieve the same functionality as the one achieved by a set of components.

5.2.1.3 Generate full architecture alternative. In order to generate the entire

variable part of an architecture alternative, the above defined variant generation

operations should be applied to each applicable dimension of the design space as

specified by the generative class model. The entire variable part of an architecture

alternative can then be generated by applying the step 1 of the fundamental variant

generation operation defined in Section 5.2.2.1 to the entire variable part. In this case the

97

entire variable part can be viewed as a class. Accordingly, the dimensions of the design

space can be viewed as the properties of the class. Finally, the generated variable part is

combined with the common part to form a complete architecture alternative.

5.2.2. Automatic Generation of All Architecture Alternatives. An automatic

mechanism that can enumerate an entire set of architecture alternatives, in a systematic

way, is always desired, especially when the design space is either very large or very

complicated. In the research of automated analysis of feature model, several operations of

analysis on feature models have been proposed. These operations can be utilized for both

generating architecture alternatives and analyzing a generative class model since an

OPM/H model contains feature model information. Among these operations, there is one

known as “all products” (or “all valid configurations”, “list of products”), which is

defined for generating all variants of a feature model. Particularly, this operation takes a

feature model as input and returns all of the products represented by the feature model.

The “product” in this context is the complete set of features to be selected [14]. Various

implementations of these feature model analysis operations based on a variety of

paradigms have been proposed as summarized in [14]. However, tool support of these

analysis operations is still inadequate. The work presented in [184] is the only one, found

so far, that supports the analysis of extended feature models (i.e. including feature

attributes). In [184], feature model analysis operations are implemented by translating a

feature model into a Constraint Satisfaction Problem using a set of mapping rules. An

implementation framework known as FAMA (FeAture Model Analyser) is presented in

[200]. FAMA integrates some of the most commonly used logic representations and

solvers proposed in the literature into one comprehensive tool suite. It is claimed to be the

first tool integrating different solvers for the automated analyses of feature models. The

extended feature model, however, supported by FAMA implementation includes feature

attributes only (i.e., no support for complex constraints among attributes or features). For

example FAMA struggles to address the input link to a feature decorated by either XOR

or OR join. If such links are connected to a subfeature, a duplicated feature violation will

result. If such links are “requires” links, it is not supported by the implementation. Due to

the complexity of architecture modeling, an extended feature model with both feature

attributes and constraints (among attributes or features) are, in many cases, needed.

98

Alternatively, various ad-hoc approaches for automatic generation of all

architecture alternatives can be developed using CPN. Such approaches can be based on

the idea that tokens of CPN can be used to record the trace of states or transition along

the path that tokens travel during execution. One of such approach is proposed here. The

purpose of this approach is to explore process related alternatives, for example, exploring

alternative execution paths or determining whether to use an optional object according to

the processes to be included in the system. The details of this method are as follows:

 The OPM processes, objects, or states are mapped to CPN transitions or

places the same way as the mapping methods presented in Section 5.1.3.2.

 Execution path and required objects can be recorded in token values, which

are set as list types. For each transition a token travels through, add values of

all input tokens and the name of the transition to the tokens sending out from

the transition. A token stops traveling at a place with no outgoing arcs.

 The “requires” or “excludes” constraints are encoded in the guard of related

CPN transitions. The expression of a transition’s guard can be used to check

the existence of certain values in the input tokens of the transition. For

example if a process needs to exclude something, the guard can be set to false

given that the input token of the transition contains a value corresponding to

the thing to be excluded.

Such an approach requires the identification of an initial CPN place, where all

variations originate or equivalent to the root node of the corresponding feature model.

Additionally, there must also be a limited set of end places with no outgoing arcs

(corresponding to leaf nodes of the tree-structured feature model). All of the generated

alternatives (represented by tokens) can be collected at these end places after a simulation

run of the CPN model. The collection of these tokens represents the alternatives

discovered. Case study 2 provides an example of applying the above suggested approach.

This section identified the need of the holistic modeling and proposed combining

OPM, CPN and feature model to achieve such holistic modeling. The architecture

alternative generation mechanism was also developed based on the proposed modeling

approaches. The search-based architecture development process requires automating the

alternative generation, architecture evaluation, and optimization process. Therefore, a

99

software implementation of the proposed approaches is needed. Such implementation

should integrate the development of holistic system models, the generation of architecture

alternatives, the calculation of performance metrics, and the search for optimum solutions

into one coherent process. Such implementation is presented in next section.

100

6. GENERIC IMPLEMENTATION

This section presents the software implementation of the proposed approaches.

This implementation covers the holistic system model development, part of the

alternative generation, the model simulation, the performance analysis, and the

optimization process. The overall architecture of the programs developed is first

presented, followed by a summary of the workflow of related activities. This workflow

integrates the programs developed and related activities into one coherent problem

solving process. The design rationale and implementation strategies of some major code

modules are also provided.

The entire implementation of the proposed approaches and their application in

solving the first sample problem, the design of reconfigurable manufacturing system, is

written in Python 2.7.3. Python is chosen as the programming language because there are

a huge number of open source libraries available in Python. This implementation uses

two of them: the SNAKES package [187], for its CPN support, and the Inspyred package

[201], for its GA support. SNAKES is a general Petri net library implemented in Python.

It provides the necessary components to create, edit, and execute many sorts of Petri nets.

It also supports state-space construction. The Inspyred library contains a set of modulus

for implementing various types of evolutionary computations and swarm intelligence.

The library separates problem-specific computation from algorithm-specific computation

thus making it easy for users to integrate GA computation into their own code.

Nevertheless, extensive modifications to these libraries are made to achieve the

capabilities required for the implementation in this research.

6.1. PACKAGE ARCHITECTURE

The overall program implementation strategy can be visualized as a layered

architecture as shown in Figure 6.1. The top layer is the user interface. Modules in this

layer allow user to specify the input information (such as part, machine and processing

information for the RMS problem), system models, analysis models, control parameters

of the genetic algorithms and the overall process, and output processing and archiving.

The bottom layer contains the components for alternative generation, chromosome

101

encoding, candidate simulation and evaluation. The middle layer calls the services

provided by the facilities in the bottom layer and organize them into a coherence search

process in searching for good alternatives. Note that, in Figure 6.1, the lighter shaded

blocks at the bottom layer are from the external libraries. However, amount them, the

components denoted in bold text are heavily modified for this research. The rest are

developed from scratch for this research.

 User Interface

 Problem specific

input

(e.g., Part, machine

and processing

information)

Parameter settings

for overall process,

GA, and output

processing &

Archiving

Analysis

model

building

CPN model specification

in ABCD language

Search Process

Alternative generation

and chromosome

encoding (e.g., RMS

configurations)

GA computation Objective

functions

OPM

Core

ABCD Parser,

simulator, PN

markup language

translator, visualizer

Variation operator

(crossover and

mutation) and other

components CPN Core

Figure 6.1. Components of the Software Implementation

The snakes.nets module as the core element implementing the Petri net in the

SNAKES library only provides the capability to execute a one-step firing of a selected

transition with a selected binding. The full simulation capability is provided by the

ABCD simulator in the abcd plugin which also provides a simple Graphical User

Interface (GUI). The graphical ABCD simulator requires specifying a Petri net model

102

using the ABCD (Asynchronous Box Calculus with Data) language whose semantics is

given in terms of CPN. The syntax of ABCD is a mix between Python and a process

algebra. The abcd utility provides the parser to create a computational model of Petri net

using the snakes.nets module from the textual Petri net model specified in ABCD.

However, there is very little or no documentation regarding this ABCD language. The

semantics and syntax of ABCD can only be inferred from two files used by the ABCD

parser: snakes/lang/abcd/abcd.pgen, which contains the concrete grammar, and

snakes/lang/abcd/abcd.asdl, which provides the abstract syntax. Due to the limited

information and knowledge regarding the ABCD language, the code to transform an

OPM/H model to a CPN model has not been developed yet.

Based on the search-based architecture development framework introduced in

Section 4.1, using the multi-objective genetic algorithm as the optimization model, the

workflow among various modules of the program implementation and activities of the

designer is illustrated in Figure 6.2 using OPM notations. Such workflow is a concrete

implementation of the search-based architecture development framework presented in

Section 4.1.2 with GA as the search algorithms. The designer needs to involve in this

problem-solving process through five activities as represented by the five blue shaded

OPM processes in Figure 6.2. These activities are (1) developing a problem-specific data

preprocessing module to handle input data according to the need of the system model

developed for the system of interest, (2) developing the system model, (3) developing

analysis models to compute various performance measures needed to assess the models,

(4) developing the optimization model to conduct the search for optimum solutions, and

(5) developing a decision model to choose one final solution out of a set of non-dominant

solutions obtained from the optimization model. These activities are carried out according

to the design requirements. A preprocessing process is needed to transform raw data into

a format that the system model can use. Such pre-processing is problem specific. As

indicated in Figure 6.2, each of these activities results in certain kind of models. Once

these models and parameters are set, the search process can proceed in an automated way.

The developed OPM/H class model also contains the specification to build a CPN model

and the specification of design space in the form of feature model. A set of OPM instance

models, along with the mapped CPN models, can then generated by the alternative

103

generation process. Such instance models are transformed to chromosome representations

according to the encoding scheme developed in the process of developing the

optimization model. Then the GA-based search process can proceed. The calculation of

performance metrics needs to invoke the analysis models, which may involve the

simulation of the corresponding CPN models. The search process stops when a user

specified termination criterion is met. A set of non-dominant solutions can be obtained

after the search process. Selected results can be saved to files besides displaying on the

screen. The user can then use the developed decision model to select a final solution. This

selection process can optionally be supported by more detailed analyses.

Figure 6.2. Workflow of the Implementation of the Search-Based Architecture

Development Framework

104

6.2. MODULES

The program implementation consists of a set of Python modules. Some of them

are developed from scratch; others are modified based on existing open-source libraries.

Some major modules, along with their design rationale and implementation strategies, are

summarized as follows (the italics in the parentheses following each module is the name

of the corresponding Python module in the program package):

OPM/H module (e_opm): This module provides the classes for both building and

editing an OPM/H model. The class functions for adding, deleting, and modifying basic

OPM/H constructs are also used to achieve the basic architecture generation operations.

CPN module (snakes.nets): This is the main Petri net module provided by

the SNAKE library. However it is heavily modified to achieve the capabilities required in

this research. The major modifications include:

(1) Support for timed CPN. The time semantics of the Petri net adopted here is the

same as the one used in the CPN Tools [202]. Such semantics utilizes timed token and

simulated clock to implement the time concepts in CPN. A timed token is a regular token

attached with a number, called the time stamp. The simulated clock is a counter (globally

available within an executing model) whose current value is the current abstract

simulation time. A timed token is not available for any purpose unless the clock time is

greater than or equal to the token's time stamp. When there are no enabled transitions, but

there would be if the clock had a greater value, the simulator increments the clock by the

minimum amount necessary to enable at least one transition. Therefore, the time stamp

of a token can be interpreted as the time since when (in terms of simulated time) the

token is available. The units of simulated time do not inherently represent any particular

absolute time unit but can be interpreted as real time according to the subject being

modeled [202]. Simulated time is sometimes referred to as model time [202].

Particularly, the timed token here is implemented as a Python tuple with the last

element in the tuple being the time stamp. Such time stamp is a string type constructed by

proceeding an integer representing the time with an “@”. For example, a regular token

“10” with a time stamp of value “5” become “(10, ′@5′)” when represented as a

timed token. An interpreter is inserted into the sankes.nets module to translate such

notations. The time information contained in the time stamp will be extracted.

105

In order to evaluate a time delay expression, a “sys_time” keyword is allowed

to be used in an ABCD model. This keyword will be interpreted as the current simulated

time within the snakes.nets module (particularly, within function binding of class

Expression of the nets module).

(2) Allowing a transition to send empty tokens (i.e., do nothing,) to its output

places. Therefore, the keyword “None”, which is a special Python data type frequently

used to represent the absence of a value, is allowed in an expression of an ABCD model.

Such capability makes it much easier to develop arc annotations (or arch inscriptions) in

some cases.

ABCD simulator module (simulngui replacing snakes.utils.abcd.si-

mul). The ABCD simulator provided by the SNAKES library only supports simulating

the firing a single selected transition with a selected enabled binding using the ABCD

simulator GUI (Figure 6.3). Details regarding this simulation GUI can be found at [203].

The optimization process in the search-based architecture development may invoke the

simulation and require the simulation to proceed automatically until desired results are

returned. Therefore, several enhancements are made to the original ABCD simulator and

a new module called simulngui is created to replace the one. These enhancements and

modifications to the original module are briefly summarized as follows:

(1) Adding an option to disable GUI. The users are given the option to disable

ABCD simulator GUI to save computational time. The simulation is invocated

automatically by the optimization model when a candidate needs to be evaluated. The

simulation will be conducted numerous times in the entire search process conducted by

GA. Therefore there is no need to show the GUI for each simulation in such case.

(2) Adding an option to do multi-step automatic simulation. The user can specify

the maximum number of steps a simulation is to be executed. The simulator randomly

chooses an enabled binding from a randomly chosen enabled transition and fires that

transition. The simulation will stop when either there is no enabled transition or the

maximum number of simulation steps has been reached. Such enhancement does not

impair the original functionalities of the simulator. The user can still chose a binding

from the list of enabled ones to fire a transition and observe the change of system state

after firing that transition if the ABCD simulator GUI is turned on.

106

Figure 6.3. Illustration of the GUI of the ABCD Simulator

(3) Adding resuming capability. The Resume simulation button of the ABCD

simulator GUI is redefined to include the multi-step simulation capability. Particularly, if

after running an N-step automatic simulation, there is still enabled transitions, click this

button will run another N-step automatic simulation.

(4) Storing state and trace histories. The marking of each simulation step can be

stored in the state history, which is written in an out file named

filenameStatHistory.txt, where “filename” is the file name of the ABCD

model. The fired transition and its associated fired binding of each simulation step can

also be stored in the trace history, which is written in an out file named

filenameTraceHistory.txt, where “filename” is the file name of the ABCD

model too. The state and trace history can also optionally be shown on screen during the

simulation.

107

(5) Retrieving the simulation result. A function is added to the Simulator class

of the simulngui module so that the simulation result can be retrieved in the form of

final markings be external programs.

Complier and simulation control module (abcd_build_simu replacing

snakes.utils.abcd.main): The original main module of the abcd utility

provided by the SNAKES library is designed to take a command line input, which

contains the file name of a ABCD model, a set of options and parameters for those

options, and to provide services according to the options. Such services include

simulating a Petri net model, drawing a Petri net model and saving it as .PNG file using

the Graphviz plugin [204] for Python, saving a Petri net model into one represented by

the Petri net markup language, etc. All these services need to first have the input ABCD

model compiled using the parser module. The result is a computational model of the

Petri net model created using the snakes.nets module. The modification was made

on the original snakes.utils.abcd.main module and saved as a new module

named abcd_build_simul. This new module takes function arguments as input

instead of from the command line. The simulation result, in the form of final markings,

can also be returned as an augment return. Such modifications make it possible for other

Python functions to call the services provided in this module within a Python thread

instead of through command lines.

Variation operator module of the Inspyred library (inspired.ec.variato-

rs.mutators and inspired.ec.variators.crossovers). Candidates

generated by any crossover (or mutation) operator provided in the crossovers (or

mutators) module of the Inspyred library are subject to a validity check. Such check

is added to the decorating functions of both crossover operators and mutations operators.

If a candidate generated by the crossover operator is not valid, then redo the crossover

operation (using a different pair of parents) until the validity check is passed. Similar

procedure is gone through for the mutation operation too. The actual validity is checked

by a function in an external module, i.e., problem-specific module. The result is then

returned to the decorating functions of either crossover operators or mutation operators.

This repairing mechanism makes sure that only valid candidates are evaluated and kept in

108

the population. This is necessary because evaluating a candidate might cost a lot of

computation time and resources, especially when simulation is used.

Main module. The main module is the top level module through which the user

controls the problem solving process. It, therefore, is highly customized. The major

functionalities provided by this module include loading input data and base CPN model,

choosing the optimization algorithm to be used and setting related parameters and

options, executing the search process, showing and plotting results, and saving results to

archive files.

Problem specific modules. The tasks needed to solve a problem various from

problem to problem. The most common functionalities to be supported include: (1) data

preprocessing function that transforms raw data into the format required by the system

model, (2) chromosome encoding (create chromosomes from the system models) and

decoding (convert chromosomes into machine/human interpretable format for recreating

system models) function, (3) candidate (chromosome) generation function, (4) analysis

model development and candidate assessment function, (5) validity check function for

generated candidates. Note that alternative generation is usually associated with

candidate (chromosome) generation through chromosome encoding and decoding

process.

This section presented the software implementation of the proposed approach.

Such implementation is generic except for the data pre-processing part which must be

problem-specific. Such implementation is applied to the design of RMS to demonstrate

the usage of the proposed approach in solving real-world architecture design problem.

The implementation details and test results are presented in the next section. As

suggested in the workflow depicted in Figure 6.2, for solving a different problem, the

user needs to develop a problem-specific data preprocessing module and also needs to

develop the system model, the analysis models, the decision model and the optimization

model according to the problem to be solved. The user then can control all the activities

using the main module by setting options and parameter values.

The Python code developed for this implementation is enclosed in the attached

CD. The contents of the files included are listed in Table C1.

109

7. APPLICATION DEMONSTRATIONS

This section uses two examples to demonstrate the application of the proposed

approach and the developed software implementation. These sample projects are the

configuration of RMS and the architecture design of a manned lunar landing system for

the Apollo program (retrospective).

A full implementation of the proposed approaches is presented on the first

example problem along with the test results. Such implementation is generic meaning

that the code is capable of solving similar RMS configuration problem. Only some of the

assignment expressions in the data input module needs to be updated according to the

new raw input data. In the second example problem, the focuses are architectural model

development and alternative generation. No optimization is actually conducted due to

lack of data.

7.1. RECONFIGURABLE MANUFACTURING SYSTEM

The operation life of an RMS consists of more than one DP, each of which would

have a specific duration and a corresponding demand scenario. The RMS is configuraed

according to each demand scenario. The demand scenario under consideration here is

characterized by multiple products with mid-to-large production volumes. For this

scenario, the flow-line configuration proposed in [205] and used in [55], [206] is adopted

here. Such an RMS is comprised of a set of stages each of which contains multiple

identical stations/machines arranged in parallel with identical operation assignments.

Generally, the number of feasible configurations for a given DP is significantly

large in an RMS. Therefore, a method is needed to find RMS configurations that are not

only capable of meeting functional and capacity requirements of each DP but also have

low cost, good performance and desired “ilities”. Therefore the RMS configuration is a

constrained, multi-objective optimization problem. In addition, unlike conventional flow-

line optimization that pursues the optimal solution, for RMSs, the goal is to find a set of

solutions which include the optimal solution and near optimal solutions [55]. One reason

is that the optimal configuration for the current DP may not be the best one considering

the cost of reconfiguring previous configuration to the current one. Another reason is that

110

other system objectives and criteria (e.g., quality, convertibility, scalability) besides cost

should also be considered in the selection of the best configuration [207], [208]. For the

example problem to be solved here, only one DP and two quantitative objects, cost and

production rate, are considered. The goal is to find a set of near-optimal solutions to be

used in more in-depth analyses.

7.1.1. Problem Definition. In order to facilitate the benchmark comparison

this dissertation adopted the case study used in [55]. The same problem definition is used

except that multi-objective optimization is assumed in this dissertation. A second

objective, maximizing production rate (or equivalently minimizing unit production time),

is added in addition to the minimizing capital cost objective. This dissertation only

provides a brief summary of the problem and some key data for clarity whereas some

addition and modifications to the problem definition are described in detail. Readers are

encouraged to refer to the original paper [55] for detailed problem definitions and data

structures used to describe the problem. Related input data for designing the

configuration the RMS are also extracted and presented in Appendix A.

Youssef and H. ElMaraghy [55] define the following core concepts to be used in

describing an RMS:

An operation cluster setup (OS) is a set of one or more operation clusters

(OCs) that can be performed together on a specific machine with a specific

configuration. An operation cluster (OC) is a set of operations (OPs),

which are always machined together with a specific order due to different

types of constraints such as logical or datum tolerance constraints. MCij

stands for machine configuration j corresponding to machine/station i.

Only one feasible machine configuration (MC) can be assigned to a

machine/station (M) in a selected configuration.

Figure 7.1 shows an example of a selected configuration in a specific

configuration period capable of producing two different types of parts within a part

family. In Figure 7.1, there are two rows of OSs each representing the OS assignments to

different stages for one of the two part types to be produced and the zeros mean that the

stage is not used for that specific part type [55].

The input parameters and information assumed to be available include:

(1) Demand scenario, which specify the types of product to be produced by the

RMS and their demand rates along with the configuration period [55].

111

Figure 7.1. Example of a Selected RMS Configuration ([55])

(2) Parts processing information (OPs, OCs, OSs and PGs). OPs must be

accompanied by operations precedence graphs (PGs) that define sequential constraints

between the different OPs and subsequently between different OCs [55].

(3) Machines/stations (Ms) information: types of machine/station available for

use in the system, each of which may have a set of machine configurations (MCs) and

cost [55].

(4) Feasibility and operation time for each M–MC–OS combination.

Output and decision variables: A solution of the architecture design includes

determining the following decision variables: Number of stages (NS) to be used in the

system, Machine types (Ms), their configurations (MCs), and numbers of parallel

machines for each stage, and the OS assigned to the machines in each stage for each part.

Objective functions: Two objectives are considered here. The details are as

follows:

1) Minimize the capital cost of the configuration (the computation of present

value as did in the original paper is omitted in this paper for simplicity)

M: Machine/Station

MC: Machine Configuration

OS: Operation Clusters Setup

S: Stage

S1

OS1

OS2

MC1
3

 M1

S2

OS15

OS14

MC1
4

M1

S3

OS5

OS5

MC1
5

M1

S4

0

OS13

MC1
2

M1

S5

0

OS9

MC1
5

M1

S6

OS6'

0

MC2
3

M2

S7

0

OS6

MC2
3

M2

S8

0

OS12

MC1
3

M1

M1

M1

M1

M1

M1 M2

112

2) Minimize the average unit production time (equivalent to maximize production

rate)

Constraints: The constraints for this problem include:

(1) Space limitations. The space allocated to the flow-line is constrained by the

length and width available. Such constraints are simply expressed as the maximum

number of stage locations (NSL), which reflects the length, and the maximum number of

parallel machines/stations allowed within a stage (MMS), which reflects the width. For

other shapes of floor layout, a mapping function can be developed to transform the NSL

and MMS into space related features. Therefore, the basic idea introduced here is still

applicable.

(2) Investment limitation: The total initial investment in the configuration cannot

exceed the maximum allowable values [55].

(3) Precedence and non-overlap constraints. This provides the full information

that

(4) Capacity constraint: the configuration should have sufficient capacity to

satisfy the required demand rate for all parts [55].

The description of other implicit constraints such as functionality constraints and

decision variable domain constraints are omitted here.

As in [55], the parts to be produced in such an RMS are the ANC-101 and ANC-

90, which belong to the same products family. Figure 7.2 illustrates these two parts and

their features. The detailed input information, including machining processing

information, operation data, operation precedence graph, operation cluster definition for

each part, available machine information, and time and production rate information, is

provided in Appendix B, which is extracted from Appendix A of [55].

During a configuration period, the production rate requirement for this RMS is

120 parts/hour for ANC-90 (Part A) and 180 parts/hour for ANC-101 (Part B),

respectively. Both parts are to be produced simultaneously on the RMS. The maximum

number of stages allowed is 10. The maximum number of parallel machines per stage is

5. The maximum allowable budget for initial investment is 30 million US Dollars. All

these settings are the same as that in [55].

113

Figure 7.2. Part to be Produced by the RMS ([56])

7.1.2. Building a Holistic System Model for the RMS. Following the proposed

holistic modeling approach, a generative class model is first developed using OPM/H as

shown in Figures 7.3 and 7.4. Figure 7.3 shows a high-level overview of the RMS while

Figure 7.4 shows the zoomed-in manufacturing process. The execution semantics of this

OPM/H model can be precisely specified using CPN as shown in Figure.7.5, which is

developed using CPN Tools (Shorthand notations of the OPM constructs are used). The

same CPN model specified the by the ABCD language is shown in Figure 7.6. Since all

stages of the RMS share the same structure, only one representation is needed in such a

generative class model. Information regarding the configuration of each particular stage

is reflected in the instance values (or token values) of both Machine object and Part

object, which are the only variable elements in this system. These variable elements are

alternatives from a feature model perspective. Note that the variable elements in this

particular model only involve objects, no processes or links. An OPM/H model with only

objects as variable elements makes it much easier to generate architecture alternatives.

Modeling a system in such a way is encouraged when applying the search-based

architecture development proposed in this research. The reason will be explained later.

A Machine object is described by 10 attributes as illustrated in Figure 7.4. Their

details are explained in Table 7.1. The number of machines in each stage is reflected by

the number of machine instances created for each stage. Note that attributes 7 to 10 are

attributes describing the dynamic aspects of the Machine object, which would not

normally present in a model with static information only. Attribute 6, cost, has no

impact on the dynamic of the RMS system and is, therefore, not mapped to CPN.

114

Figure 7.3. OPM/H Model for a RMS - Overview

Figure 7.4. OPM/H Model for a RMS – Zoom-in into Manufacturing Process

A Part object is described by 8 attributes as shown in Figure 7.4. Their details

are explained in Table 7.2. Again, attributes 2 to 8 are dynamic attributes, the values of

which keep changing along with the change of the dynamic of the system.

Allowable alternatives for variable elements are specified in the initial value filed

of the respective element in the OPM/H model, which are added through the property

115

sheet of the respective element using the OPCAT tool. As shown in Figure 7.7 (a), a

function denoted by “@M_IDLE_INIT@” is used to specify the initial value of the

machine object. Such function will be implemented by the alternative generation module

of the Python program to generate appropriate instance values as the search process

proceeds. A set of initial instances for objects in the RMS model is visible on the mapped

CPN model in the form of initial markings on the place P_ready and M_idle,

respectively. The extended information contained in the OPM/H model for specifying the

CPN is also set at the property sheet. Such information includes arc annotation (or

inscription) (Figure 7.7 (b)) and guard conditions (Figure 7.7 (c)). The added attributes

for design space specification is not obvious on Figure 7.3 or 7.4 either. An example that

shows the specification of the range of the stage_assignment(stg) attribute is

shown in Figure 7.7 (d). Nevertheless most of these types of information are visible or

inferable from the corresponding CPN (Figure 7.5) model though.

Figure 7.5. CPN Model for the RMS

(mtp, mid, cfg, mbf, bfsz, stg, tsm, it, ot)

(mtp, mid, cfg, mbf, bfsz, stg, tsm, it, ot)

upd_prd@+proctime(ptp, osseq, osdistr, mtp, mid, tsi, at, wt, pt)

if tsi = 0

then (ptp, osseq, osdistr, mtp, mid, intTime(), intTime(), wt, pt)

else (ptp, osseq, osdistr, mtp, mid, intTime(), at, wt, pt)

Transport

M_Unmount

M_Proces

M_Mount

M_Working

MCH

P_ready

PRD

P_Processed

PRD

P_mounted

PRD

M_Idle

MCH

P_Arrived

PRD

input (ptp, osseq, osdistr, mtp, mid, tsi, at, wt, pt);

output (upd_prd, proctime);

action

Proc (ptp, osseq, osdistr, mtp, mid, tsi, at, wt, pt);

(ptp, osseq, osdistr, mtp0, mid0, tsi, at, wt, pt)

[osdistr <>nil andalso (hd osdistr)=stg]

(mtp, mid, cfg, mbf, bfsz, stg, tsm, it, ot)

if mbf >1

then 1`(mtp, mid, cfg, mbf-1, bfsz, stg, tsm, it, ot)

else empty

if mbf <bfsz -1

then 1`(mtp, mid, cfg, mbf+1, bfsz, stg, tsm, it, ot)
else empty

(ptp, osseq, osdistr, mtp, mid, tsi, at, wt, pt)

n_pa`(A, osseqa, osdistra, 1, 0, 0, 0, 0, 0)++

n_pb`(B, osseqb, osdistrb, 1,0, 0, 0, 0, 0)

(ptp, osseq, osdistr, mtp, mid, tsi, at, wt, pt)

(ptp, List.drop(osseq,1), List.drop(osdistr,1), mtp, mid, tsi, at, wt, pt)

1`(1, 1, 3, 3, 3, 1, 0, 0, 0)++

1`(1, 2, 4, 4, 4, 2, 0, 0, 0)++

1`(1, 3, 5, 1, 1, 3, 0, 0, 0)++
1`(1, 4, 5, 1, 1, 3, 0, 0, 0)++

1`(1, 5, 5, 1, 1, 3, 0, 0, 0)++

1`(1, 6, 5, 1, 1, 3, 0, 0, 0)++

1`(1, 7, 5, 1, 1, 3, 0, 0, 0)++

1`(1, 8, 2, 2, 2, 4, 0, 0, 0)++

1`(1, 9, 5, 1, 1, 5, 0, 0, 0)++

1`(1, 10, 5, 1, 1, 5, 0, 0, 0)++
1`(2, 1, 3, 3, 3, 6, 0, 0, 0)++

1`(2, 2, 3, 3, 3, 7, 0, 0, 0)++

1`(2, 3, 3, 3, 3, 7, 0, 0, 0)++

1`(1, 11, 3, 3, 3, 8, 0, 0, 0)

(ptp, osseq, osdistr, mtp, mid, tsi, at, wt, pt)

if mbf = 1

then 1`(mtp, mid, cfg, mbf-1, bfsz, stg, intTime(), it+(intTime()-tsm), ot)

else empty

if mbf = bfsz-1

then 1`(mtp, mid, cfg, mbf+1, bfsz, stg, intTime(), it, ot+(intTime()-tsm))
else empty

116

The last element (type C{str}) of PRD and MCH is time stamp

typedef PRD : int*tuple*tuple*int*int*int*int*str

typedef MCH : int*int*int*int*int*int*int*int*int*str

const p_ready_init = @P_READY_INIT@

const m_idle_init = @M_IDLE_INIT@

const osmachinetime = {1:{1:30 , 2:20 , 3: 30 , 4:20 , 5:60 , 6:120 , 18:90 , 7:18 ,

 8:20 , 9:40 , 10:18 , 11:24 , 12:60 , 13:30 , 14:40 , 15:60 , 16:60 , 17:90},

 2:{3: 30 , 6:120, 18:90}}

buffer P_Arrived : PRD = ()

buffer P_Ready: PRD = p_ready_init

buffer P_Mounted: PRD = ()

buffer P_Processed: PRD = ()

buffer M_Idle: MCH = m_idle_init

buffer M_Working: MCH = ()

net M_Mount () :

 [P_Arrived-((ptp, osseq, osdistr, mtp0, mid0, at, pt, ptstamp)), M_Idle-((mtp,

mid, cfg, mbf, bfsz, stg, tsm, it, ot, mtstamp)), M_Idle+((mtp, mid, cfg, mbf-1,

bfsz, stg, tsm, it, ot, '@'+str(sys_time)) if mbf > 1 else None), P_Mounted+((ptp,

osseq, osdistr, mtp, mid, sys_time, pt, '@'+str(sys_time)) if int(ptstamp[1:]) ==0

else (ptp, osseq, osdistr, mtp, mid, at, pt, '@'+str(sys_time))) , M_Working+((mtp,

mid, cfg, mbf-1, bfsz, stg, sys_time, it + (sys_time - tsm), ot, '@'+str(sys_time))

if mbf==1 else None) if ((osdistr!=()) and ((osdistr[0])==stg))]* [False]

net M_Process () :

[P_Mounted-((ptp, osseq, osdistr, mtp, mid, at, pt, ptstamp)), M_Working?((mtp,

mid, cfg, mbf, bfsz, stg, tsm, it, ot, mtstamp)), P_Processed+((ptp, osseq, osdistr,

mtp, mid, at, pt, '@'+str(sys_time + osmachinetime[mtp][osseq[0]])))] * [False]

net M_Unmount () :

 [P_Processed-((ptp, osseq, osdistr, mtp, mid, at, pt, ptstamp)), M_Working-((mtp,

mid, cfg, mbf, bfsz, stg, tsm, it, ot, mtstamp)), M_Working+((mtp, mid, cfg, mbf+1,

bfsz, stg, tsm, it, ot, '@'+str(sys_time)) if mbf < (bfsz -1) else None),

P_Ready+((ptp, osseq, osdistr, mtp, mid, at, pt + osmachinetime[mtp][osseq[0]],

'@'+str(sys_time))), M_Idle+((mtp, mid, cfg, mbf+1, bfsz, stg, sys_time, it, ot +

(sys_time - tsm), '@'+str(sys_time)) if mbf == (bfsz -1) else None)]* [False]

net Transport () :

 [P_Ready-((ptp, osseq, osdistr, mtp, mid, at, pt, ptstamp)), P_Arrived+((ptp,

osseq[1:], osdistr[1:], mtp, mid, at, pt, '@'+str(sys_time)))] * [False]

main process with one instance of each net

M_Mount() | M_Process() | M_Unmount() | Transport()

Figure 7.6. CPN Model for the RMS Specified in the ABCD Language

117

Table 7.1. Attributes of the Machine Object in the OPM/H Model

No. Attribute Description Value

type

Possible values

1 machine_type(

mtp):

Machine types int 1 or 2

2 machine_id

(mid)

A unique id for each type of

machine

int [1, maximum

number of available

machines for each

machine type)

3 machine_confi

guration(cfg)

Machine configuration id int [1, 5] for machine

type 1,[1, 4] for

machine type 2

4 buffer_size(b

fsz)

Buffer capacity, i.e., the number

of part that can be processed

simultaneously on a machine. It

equals to the number of spindles

of a machine in this particular

example

int [1, 4]

5 stage_assignm

ent(stg)

The stage that the machine is

installed

int [1, 10]

6 cost Cost of the machine int Refer to Table A5

for the set of

possible values

7 avaliable_buff

er_space(mbf)

Buffer space left int [0 to buffer size]

8 accu_idle_tim

e(it) and

Accumulated idle time int [0,)

9 accu_operatio

n_time(op)

Accumulated operation time int [0,)

10 machine_time_

stamp(tsm)

Time stamp of the machine int [0,)

118

Table 7.2. Attributes of the Part Object in the OPM/H Model

No. Attribute Description Value type Possible values

1 part_type(pt

p)

Part type int 7 or 11

2 os_sequence(

osseq)

The sequence of operation

cluster setups to be processed for

the part

int list Computed

according to the

algorithm in [55]

3 os_stage_dis

tribution(os

distr)

The distribution of the sequence

of operation cluster setups

among available stages

int list Computed

according to the

algorithm in [55]

4 Binding_mtyp

e(mtp)

The machine type that the part is

mounted to

int Same as attribute 1

in Table 7.1

5 Binding_mid(

mid)

The machine id that the part is

mounted to

int Same as attribute 2

in Table 7.1

6 arrival_time

(at)

The time that the part is first

mounted

int [0,)

7 accu_process

ing_time(pt)

Accumulated processing time of

the part

int [0,)

8 ptime_stamp(

tsi)

Time stamp of the part int [0,)

The CPN model is worth a closer look. Initially, tokens representing parts are all

at the place P_ready simulating that they are ready to be moved to the next stage

(which may be the first stage) and tokens representing machines are all at the place

M_Idle simulating the fact that all machines are available before production begins. A

token representing a part (or a part token in-short, hereafter) is moved from the place

P_ready to the place P_Arrived when the transition MHE_Transport fires

simulating that the material handling equipment moves a part from a stage where the part

has just been processed to the next stage where the part should be processed according to

119

 (a)

 (b)

 (c)

 (d)

Figure 7.7. Examples of Information Set at the Property Sheet of OPCAT

120

the OS assignment. As indicated in the input and out arc inscriptions of the transition

MHE_Transport, when this transition fires, the input token’s osseq and osdistr

attribute both have their head values of their respective list removed thus having the

information regarding the remaining OSs and their corresponding stage assignments

updated. Within each stage, a part goes through the M_Mount, M_Process,

M_Unount, and MHE_Transport processes and iterates like this for all stages that the

part should be processed. A part is finished when the corresponding part token reaches

the place P_Arrived and when its ossseq, and osdistr list are both empty,

signaling no further processing is needed.

Although there is only one set of transitions in the CPN model, they can still

represent actions of all stages of the RMS, thus allowing the modeling of concurrent

behavior, as long as bindings can be concurrently enabled. For example, the set of tokens

on the place P_mounted represent that multiple parts can simultaneously be at the

mounted state, each of which may belong to a different stage. The transition

M_Process can concurrently enabled for all tokens on the place P_Ready. The firing

of a transition takes no time and there can be at most one transition being fired at each

simulation step according to the CPN semantics. Hence whether transitions fires

sequentially or concurrently makes no difference in the resultant system states. The result

of using multiple M_Process transitions firing sequentially is the same as that of using

just one M_Process transition firing multiple times. Where a part is mounted is

reflected by which machine it is bound to as suggested by the value of the corresponding

part token’s mtp and mid attributes. These attribute values are determined each time the

transition M_Mount is fired.

The transition M_Mount has a guard inscription. Hence it can only fire when the

next stage that a part needs to go (as suggested by the head value of the part token’s

osdistr list attribute) matches the value of the stage attribute (stg) of a machine

token. Each time the transition M_Mount fires, the matching machine token’s available

buffer (represent by mbf) is decreased by 1. A machine token is moved from the place

M_Idle to the place M_Working when its buffer is full simulating the situation that a

machine is fully loaded (thus not available for mounting any more) and begins to process

121

parts. Hence, the bfsz attribute of a machine token simulates the product bunch that a

machine can simultaneously handle. The transition M_Unmount has a reverse effect as

that of the transition M_Mount. Which machine’s buffer is reduced when the transition

M_Unmount fires depends on the value matching of the mtp and mid attributes of a part

token and a machine token.

A time delay is added after the transition M_Process is fired (by function Proc

in the model shown in Figure 7.5 or by output expression in the model shown in Figure

7.5) representing the time needed to process a part. This is the only transition in this CPN

model that changes the time stamp of a token. The time needed for other processes is

omitted to simplify the problem. The idle time (it) and operation time (ot) attributes of

a machine token keep tracking the accumulated idle time and operation time,

respectively, of the machine represented by the token. These attributes, therefore, can be

used to measure the resource utilization. The final value of a part token’s time stamp

minus the arrival time of the token (represented by the value of the token’s at attribute)

represents the total time that the part is in the system. The total machine time needed for

processing a part is fixed for each part type as determined by the sum of the standard

machine time corresponding to the set of OSs assigned for the part. The difference

between a part’s total time in system and its total processing time is the time that a part

spent in waiting. The smaller this time is the more efficient the RMS system is.

The generative class model like the one presented in Figures 7.3 and 7.4 can

simplify the problem representation and alternative generation by grouping a set of

variable elements into one representation. This is achieved by identifying variable

elements as object attributes and encoding structural information into attribute values as

much as possible. The rational of such approach is that, given the proposed architecture

alternative method, it is much easier to create object instances, even with complicated

attributes, than to create a structure (i.e., a set of interconnected objects and, possibly,

processes). For example, the production stage could have been modeled as an object with

machines and OS as its attributes. Accordingly, the alternative way of representing the

RMS is presented in Figure 7.8 through Figure 7.10. The problem with such RMS models

is that there must be a representation for each individual stage in the OPM model.

Consequently, each RMS configuration with a different OS sequence distribution will

122

Figure 7.8. An Alternative Way to Model the RMS - Un-fold RMS

Figure 7.9. An Alternative Way to Model the RMS - Zoom-in into Manufacturing

Process

123

Figure 7.10. An Alternative Way to Model the RMS - Zoom-in into OS1 Process

need a unique structure to be expressed by the OPM model. Generating architecture

alternatives for such kind of system model requires executing a lot of variant generation

operations, making solving the problem rather difficult. Since a production stage is a

virtual concept, by merging stage information to the attributes of machines (mstg) and

parts (osseq and osdistr). Both the problem representation and alternative

generation can be greatly simplified.

From the OPM/H model presented in Figures 7.3 and 7.4, the dimensions of the

design space of the RMS configuration can be expressed explicitly. The main dimensions

of the design space are (Machine × Part). The sub-dimensions of Machine are

(machine_type(mtp) × machine_configuration(cfg) ×

stage_assignment(stg) × number_of_machine). The sub dimensions of

Part is (part_type(ptp) × os_sequence(osseq) ×

os_stage_distribution(osdistr)). Transit (or dynamic) attributes of an

object only make sense when the system is running and therefore should not be counted

124

in the dimensions of the system design space. The transit attributes for the machine object

in the OPM/H model presented in Figure 7.4 include

avaliable_buffer_space(mbf), accu_idle_time(it),

accu_operation_time(op), and machine_time_stamp(tsm). For the part

object, the transit attributes include arrival_time(at), binding_mid(mid) ,

binding_mtype(mtp) , arrival_time(at) ,

accu_processing_time(pt) , and ptime_stamp(tsi).

The constraints between attributes of objects within the OPM/H model presented

in Figures 7.3 and 7.4 have not been captured. For example the information in the

operation precedence graph shown in Figure A1 cannot be captured by such model. In

order to capture such information, the extended (or advanced) feature model [209–213]

concepts must be implemented. Such advanced feature models not only allow features to

have attributes, which can have domain and values, and but can also capture the complex

relationships and constraints among features and feature attributes.

7.1.3. Building Analysis Models. Two quantitative objects are considered here.

One of them is obtained from mathematical equation; the other is derived from

simulation. The details are as follows:

 1) The capital cost of the configuration is computed from the following equation:

 ∑ (())

 (7.1)

where CC is the capital cost of the configuration, is the number of machines in stage s,

 ()is the cost of machine M at stage s when configured at configuration c, and

NS is the number of stages in the system.

2) The average unit production time and production rate is derived from the

information obtained from the simulation of the CPN model and computed according to

the following equations:

PTu = Tsys / NPf (7.2)

PR = 3600 / PTu (7.3)

Where PTu is unit production time (seconds), PR is production rate (parts/hour), Tsys is

the model time of the CPN model when the simulation is end, and NPf is the number of

parts finished, which is the number of tokens at the place P_Arrived with their

ossseq and osdistr list both empty when the simulation is end.

125

7.1.4. Building Optimization Models. As concluded in [214] and referenced in

[55], a special case of this optimization problem with fixed machine configurations, fixed

order of operations and no consideration of capacity requirements was proven to be NP-

hard. Therefore the GA, as a meta-heuristic global optimization algorithm, is good for

solving this problem. Since this problem is a multi-objective optimization problem, the

search algorithm adopted here is the non-dominated sorting genetic algorithm II (NSGA-

II) [215]. NSGA- II is a modified version of the NSGA, a popular non-domination based

genetic algorithm for multi-objective optimization. NSGA- II reduces the computational

complexity of NSGA, incorporates elitism and requires no sharing parameter to be

chosen a priori [215].

As suggested in Section 5.1.3.2, the chromosome encoding of the RMS model

only needs to capture the variable elements of the RMS model. According to the design

space analysis conducted at Section 7.1.2, the information regarding these variable

elements can be summarized as: (1) the OS sequence for each part type, (2) the

distribution of OS sequence over the available production stages, (3) the selected

machine type and its configuration and multiplicity for each stage. A chromosome can be

constructed accordingly as shown in Figure 7.11. Each element of the chromosome can

be a real number representing a selected value of the respective design variables. This

chromosome encoding scheme coincides with the one proposed in [55]. In order to

facilitate the comparison of the proposed approaches in this research with the work done

in [55], the exactly same real encoded (ranging from 0 and 1) chromosome is used in this

dissertation. A more intuitive string representation of a configuration solution can be

developed as suggested in [55] (Figure 7.12). Such string representation starts with one

element representing the number of stage, followed by NS number of segments (i.e.,

groups of elements), each of which represents a configuration of a stage. Within each

segment, there is a list of elements representing the machine, the machine configuration,

the number of machines, and the OS assignment for each part, respectively. Therefore the

total length of each segment is (3 + NP), where NP is the number of part.

7.1.5. Development of Problem-Specific Modules in Python. Three problem-

specific Python modules have been developed for solving the RMS problem. The

RMS_DataPcs module processes the raw input data in order to generate all kinds of

126

Figure 7.11. Chromosome Encoding of the Design Variables for Solving the RMS

Problem ([55])

Figure 7.12. String Representation of a Solution ([55])

data required by both the system model and the alternative generation. It contains an Rms

class along with some other classes and functions needed by the Rms class. The Rms

class contains the data model for the RMS problem and the functions needed to compute

and generate various kinds of data. The RMS_data_provider module is responsible

0.11 0.32 0.35 0.03 0.83 0.42 0.37 0.36 0.74 0.58 0.12 0.22 0.19

NS m1 c1 n1 o1,1 ... o1,NP ... mNS cNS nNS oNS,1 ... oNS,NP

OS Sequence (NP variables)

Stage 1

M-MC Selections (NSL variables)

Stage NS

OS Distributions (NP variables)

NS: Number of stages

m: Machine

c: Machine configuration

n: Number of machines

o: Operation clusters setup

OS: Operation cluster setup

NP: Number of parts

M: Machine

MC: Machine configuration

NSL: Number of stage locations

127

for loading the raw input data for constructing the RMS data mode. It runs on top of the

RMS_DataPcs module and uses the services provided by it to create an rms object of

the Rms class to contain all data regarding the RMS required by other programs. The

RMS_GA_problem module encompasses several functions to support the running of the

main GA program. It contains an Rms_dgn class, which provides the generator (for

generating candidates) and evaluator (for computing objective functions) functions

needed by the main GA program. The Rms_dgn class also contains a function to decode

a chromosome into a string representation of the configuration solution in the format

illustrated in Figure 7.12, which is both human and machine readable. It also contains a

function to construct a CPN model using the decoded chromosome (i.e., string

representation). The simulation of a CPN model is invocated by the evaluator function.

A CPN simulation is end when there are no more enabled binding. The simulation result

is then returned in the form of final markings. The evaluator then use the information

derived from the final marking to compute one of the objectives, the unit production time.

The other objective, system cost, is computed using the machine cost information stored

in the rms object of the Rms class according to the machine information contained in

the decoded chromosome. More objectives can be used by defining more objective

functions within the Rms_dgn class and adding them to the evaluator function. As

suggested in Section 7.1.2, the simulation of a CPN model can provide several

performance metrics, which can also be used to construct objective functions.

The CPN model for the RMS was initialized with 24 tokens for part A and 36

tokens for part B. The ratio between these two numbers is in proportion to the production

rate requirements of these two types of parts. The parameters used in the GA are

summarized in Table 7.3.

7.1.6. Results and Discussion. The results (Pareto-front or population) can be

plotted after the GA finishes running. Figure 7.13 shows the Pareto-front obtained from

an optimization run, which contains 5 non-dominant solutions. The user can select one of

them as the final solution based on more detailed analyses. This research is only intended

to provide such reduced solution space. The string representations of these five solutions

are provided in Figure 7.14. One of them is illustrated graphically on Figure 7.15. Figure

7.16 demonstrates the convergence curve of the GA for the two objectives.

128

Table 7.3. Parameters Used in the GA

Parameter Value

GA algorithm NSGA-II

Population size 80

Number of generations 80

Crossover operator

blend_crossover (blx_alpha: 0.1, blx_points: 1, 2 or 5 to 14),

simulated_binary_crossover (sbx_distribution_index: 5),

heuristic_crossover, arithmetic_crossover

crossover_rate 0.9

Mutation operator gaussian_mutation (gaussian_stdev: 0.3)

nonuniform_mutation

mutation_rate 0.1

selector tournament_selection (tournament_size: 5)

replacer nsga_replacement

terminator generation_termination (max_generations: Number of

generations), evaluation_termination (max_evaluations:

5000), time_termination (max_time: 72,0,0)

archiver best_archiver

observer file_observer

* The key words used in the Inspired package are in italic

For this RMS problem, with 60 (24+60) part tokens initialized, each simulation

run of a CPN model took approximately 1 minutes to finish (by using an Intel CORE i5

computer with 4 Gb RAM). It included both the simulation time and the time it took to

parse the CPN model (Every instance of the CPN model, specified by the ABCD

language, has to be parsed by the ABCD parser and then be built using the modified nets

module in the current implementation). With a CPN initialized with the same number of

part tokens, the CPN Tools took less than 3 seconds to finish the simulation. Therefore,

the current code is not efficient enough and there should be a large space for improvement.

129

Figure 7.13. The Pareto-front of the Solutions Found Using GA for the RMS Problem

Alternative 1 (17.12, 17.33) Alternative 2 (17.46, 17.18)

S 1 2 3 4 5 6 7 S 1 2 3 4 5 6 7

M 1 1 1 1 1 1 2 M 1 1 1 1 1 2 1

MC 2 2 5 5 3 5 3 MC 1 3 5 2 5 4 2

NMS 2 1 3 5 1 2 3 NMS 3 2 3 1 4 3 1

OSA 1 15 0 5 0 0 18 OSA 1 15 0 0 5 18 0

OSB 1 0 16 5 12 9 6 OSB 1 15 5 13 9 6 11

 Alternative 3 (17.72, 15.16) Alternative 4 (18.51, 14.86)

S 1 2 3 4 5 6 7 S 1 2 3 4 5 6 7

M 1 1 1 1 1 1 2 M 1 1 1 1 1 1 2

MC 2 1 5 5 5 3 3 MC 2 1 5 5 5 4 4

NMS 1 1 5 2 5 1 3 NMS 1 1 5 2 5 1 3

OSA 0 1 15 0 5 0 18 OSA 0 1 15 0 5 0 18

OSB 1 0 16 9 5 12 6 OSB 1 0 16 9 5 12 6

Figure 7.14. Near-Optimal Solutions in the Pareto-front

130

Figure 7.15. Illustration of One of the Near-Optimal Solution

 Figure 7.16. Convergence Curve of the NSGA-II in Solving the RMS Configuration

For example, eliminating the need of the ABCD parser can at least save the time to parse

and build the CPN model. Currently it takes approximately 140 hours to run the GA for

80 generations with a population size of 80. Increasing the population size and number of

generations can yield better solutions as implied by the work in [55] where the population

size is 100 and number of generations is 150.

0

5

10

15

20

25

30

35

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

Sys Cost

Unit Production Time

Cost*0.5 + U. P. T.*0.5

Population average

M: Machine/Station

MC: Machine Configuration

OS: Operation Clusters

 Setup

S: Stage

M1

 M1

M1

M1

0

OS1

OS15

OS16

OS1

0

S1 S3 S2

MC1
2
 MC1

5
 MC1

1

M1

M1

 M1

M2

0

OS9

 0

OS12

OS5

OS5

S4

OS12

S6

OS5
S5

MC1
5

MC1
3

MC1
5

M2

w
 M2

 OS18

OS6

S7

 MC2
3

 M

1

M1

 M1

M

C2
3
 M1

M

1

M1

M1

M1

131

There are a number of factors affecting the computation of the performance

metrics. A near-optimal architecture is needed for such analyses in order for the result to

make sense. Hence the optimum solution present in [55] is used to facilitate the

comparison. Its configuration has already been shown in Figure 7.1.

As indicated in equation (7.2) and (7.3), the computation of the unit production

time and the production rate has not eliminated the impact of the ramp-up period. Since

the system is not fully loaded during the ramp-up period, the results computed from

equation (7.2) or (7.3) do not truly reflect the unit production time or the production rate.

Leaving out the first few finished parts from the computation can reduce or remove the

impact of the ramp-up period but will require more part tokens to be used in the CPN

simulation and, therefore, has not been implemented in the result shown above. The

impact of the ramp-up period on the computation of the unit production time or the

production rate can also be reduced by using more part tokens in the CPN simulation.

The more part tokens used, the less impact the ramp-up will have, and the closer the

equation (7.2) and (7.3) will be to the true values. The impact of increasing part tokens on

the computation of the unit production time and the production rate is demonstrated in

Table 7.4. The simulations used the architecture presented in Figure 7.1 (i.e., the optimal

one in [55]) initialized with 60, 90, 300 and 600 part tokens in each simulation run,

respectively.

Using more part tokens in the CPN simulation itself can improve the accuracy of

the computed results because the variance will be reduced as the sample size increase.

Similarly, running the simulation multiple times can also result in better accuracy but the

performance margin is small because the randomness dose not play a big role in this

problem setting. Table 7.5 shows the results obtained from 10 CPN simulation runs using

the same architecture with 60 part tokens in each run. As can be seen that the standard

deviation is really small and therefore the accuracy from one simulation run should be

acceptable. There is another factor that can make the production rate computed from

equation (7.3) lower than it should be. Some machines in the system can handle multiple

parts simultaneously. In the current implementation, such machines require all needed

parts to be mounted before it can begin processing. If the number of part tokens used in

the simulation is too small, it happens that some parts are not able to form complete batch

132

Table 7.4. Impact of the Number of Part Tokens Used in the CPN Model on the

Computation of the Unit Production Time and the Production Rate
finished part 60 84 300 600

Finish time 1290 1630 4730 9050

Unit production time 21.50 19.40 15.77 15.08

Production rate 167.44 185.52 228.33 238.67

Table 7.5. Statistics from 10 CPN Simulations

Exp. # 1 2 3 4 5 6 7 8 9 10 Mean STD
STD

/Mean

Finish time 1270 1230 1290 1230 1310 1210 1310 1290 1310 1270 1272 37.059 0.029

finished part 60 60 60 60 60 60 60 60 60 60 60 0.000 0.000

Unit production

time
21.17 20.5 21.5 20.5 21.83 20.17 21.83 21.5 21.83 21.17 21.2 0.618 0.029

Production rate 170.1 175.6 167.4 175.6 164.9 178.5 164.9 167.4 164.9 170.1 169.9 5.022 0.030

and eventually cannot have all the required OSs processed. Such tokens do consume

some processing time and machine resources but are left out from equation (7.2 and 7.3).

Hence the result obtained from equation (7.3) is lower (or higher in equation (7.2)) than it

should be.

By comparing the solutions obtained using the approach proposed in this research

(Figures 7.13 and 7.14) with the one developed in [55] (as shown in Table 7.5), it can be

seen that the solutions obtained in this research has lower unit production time (i.e.,

higher production rate) but higher cost ($17.12 million obtained here vs. $ 13.92 million

obtained in [55]) than the best solution obtained in [55]. However, the simulation results

presented in Table 7.4 show that the best solution obtained in [55] could not actually

satisfy the production rate requirements, which is 300 (180 + 120) parts per hour. This

conclusion holds even when running the simulation with 600 part tokens, where impact

of the ramp-up period should be very small. A closer examination of the final marking

obtained from the CPN simulation of an RMS configuration can explain why the

calculated production rate is lower than expected. Table 7.6 and 7.7 present summaries

of the final markings, along with some calculations, obtained from a CPN simulation

133

with 60 part tokens using the best configuration obtained in [55] (Figure 7.1). The

resource utilization rate of each machine shown in Table 7.6 suggests that most of the

machines were not fully utilized during the simulation period. Therefore, the production

rate of the entire production line is usually lower than the capacity of any of its stage.

Furthermore, Table 7.7 indicates that the accumulated waiting time of a part is not zero.

Such observation happens to apply to all parts being processed by the RMS as shown in

Table 7.7. The machine time of each stage is usually not the same. The number of

machine in each stage is a discrete number. Therefore, the production rate of each stage

may not match each other exactly. Accordingly a part has to spend some time in waiting

between stages. For such reasons, a design with each stage satisfying the minimum

production rate requirements usually won’t be able to satisfy the production rate

requirements as far as the entire production line is concerned. From this example, it can

be concluded that the scale of the waiting time spent by parts and the effective production

rate of the production line cannot be accurately assessed without using simulations like

the one provided by CPN.

Table 7.6. Final Marking on the Place M_Idle Obtained from One Simulation Run of

the CPN Model for the RMS

 mtp mid cfg mbf bfsz stg tsm it ot Time

stamp

Resource

Utilization

1 1 1 3 3 3 1 600 0 600 600 100%

2 1 2 4 4 4 2 940 60 880 940 94%

3 1 3 5 1 1 3 980 260 720 980 73%

4 1 4 5 1 1 3 920 200 720 920 78%

5 1 5 5 1 1 3 1000 280 720 1000 72%

6 1 6 5 1 1 3 1000 220 780 1000 78%

7 1 7 5 1 1 3 980 320 660 980 67%

8 1 8 2 2 2 4 1010 470 540 1010 53%

9 1 9 5 1 1 5 1070 350 720 1070 67%

10 1 10 5 1 1 5 1070 350 720 1070 67%

11 1 11 3 3 3 8 1270 550 720 1270 57%

12 2 1 3 3 3 6 1090 370 720 1090 66%

13 2 2 3 3 3 7 1190 470 720 1190 61%

14 2 3 3 3 3 7 1150 430 720 1150 63%

134

Table 7.7. Final Marking on the Place P_Arrived Obtained from One Simulation Run

of the CPN Model for the RMS

ptp at pt

finish

time
wt

Time in

System
ptp at pt

finish

time
wt

Time in

System

1 11 0 380 450 70 450

31 7 300 240 700 160 400

2 11 0 380 450 70 450

32 7 300 240 790 250 490

3 11 0 380 450 70 450

33 11 300 380 730 50 430

4 11 30 380 510 100 480

34 7 330 240 700 130 370

5 11 30 380 510 100 480

35 7 330 240 790 220 460

6 11 30 380 510 100 480

36 11 330 380 890 180 560

7 7 60 240 430 130 370

37 7 360 240 610 10 250

8 7 60 240 430 130 370

38 11 360 380 810 70 450

9 11 60 380 570 130 510

39 11 360 380 950 210 590

10 11 90 380 570 100 480

40 7 390 240 1090 460 700

11 11 90 380 570 100 480

41 11 390 380 810 40 420

12 11 90 380 890 420 800

42 11 390 380 1270 500 880

13 7 120 240 520 160 400

43 7 420 240 700 40 280

14 7 120 240 520 160 400

44 11 420 380 950 150 530

15 11 120 380 630 130 510

45 11 420 380 1270 470 850

16 7 150 240 430 40 280

46 7 450 240 910 220 460

17 11 150 380 630 100 480

47 7 450 240 1090 400 640

18 11 150 380 730 200 580

48 11 450 380 1270 440 820

19 7 180 240 1000 580 820

49 11 480 380 950 90 470

20 11 180 380 630 70 450

50 11 480 380 1050 190 570

21 11 180 380 810 250 630

51 11 480 380 1210 350 730

22 7 210 240 610 160 400

52 7 510 240 790 40 280

23 7 210 240 1000 550 790

53 11 510 380 1110 220 600

24 11 210 380 730 140 520

54 11 510 380 1210 320 700

25 7 240 240 520 40 280

55 7 540 240 1000 220 460

26 7 240 240 610 130 370

56 7 540 240 1090 310 550

27 7 240 240 910 430 670

57 11 540 380 1110 190 570

28 7 270 240 910 400 640

58 11 570 380 1050 100 480

29 11 270 380 890 240 620

59 11 570 380 1110 160 540

30 11 270 380 1050 400 780

60 11 570 380 1210 260 640

Mean:

202.5 526.5

Standard deviation

144.6 152.6

135

7.2. THE APOLLO PROGRAM (RETROSPECTIVE)

The Apollo program was a benchmark problem in the discipline of systems

engineering and has been very well studied. To further demonstrate the application of the

proposed approach, a retrospective study of the manned lunar landing system architecture

design for the Apollo program is made here. The actual architecture design for such a

system is very complicated involving many design factors. Since the purpose is

demonstration, only very limited design aspects are considered in this study. Even

though, the information needed to support the architecture reasoning task is not fully

available. Moreover, a solution based on such a scaled down problem, with only limited

aspects considered, may not agree with the one obtained in the real-world scenario.

Therefore, rather than trying to find a design solution, this study focuses on

demonstrating how to use the proposed modeling approach to develop a holistic

architectural model that supports design space specifications and alternative generations

(with structural difference between alternatives).

7.2.1. Problem Definition and Analysis. The primary objective of the Apollo

program is to accomplish the initial manned lunar landing and return of a United States

citizen before the end of the 60s decade. Such objective include three sub-goals: manned

lunar landing, crew return, and a one decade time limit [216–218].

An architecture development can start from analyzing the initial, final, and critical

mission states that the system need to achieve and then find the means to achieve the

transitions between these states. Achieving lunar landing implies conquer the distance

obstacle. Therefore, the positions of the lunar landing system can be modeled as critical

states to be considered in the design process. For the Apollo mission, the initial state of

the lunar landing system is the Earth launching site, the final state is the Earth landing

site, and the critical mission state in between is the moon surface. The trajectory of the

lunar landing system describes the trace of the intermediate states between the initial state

and the critical mission state and between the critical mission state and the final state.

In a continuous space, such trajectories are infinite. For the initial architecture

design phase, a precise trajectory is not necessary. Hence the description of trajectory can

be simplified by identifying it as discrete design space. As stated in [1], Frazolli [219]

developed an approach to quantizes the description of continuous dynamic systems into a

136

set of motion primitives. This approach describes the motion of an object using two

motion primitives. One is repeatable motions, which are motions at constant speeds or

constant accelerations. The other is finite time motions, which are other (non-constant)

motion speeds and accelerations. Using such method, the entire trajectory for the Apollo

mission can be described using Figure 7.17 as suggested in [1]:

 Figure 7.17. Discrete-Space Representation of the Trajectory of the Manned Lunar

Landing System ([1])

Different motion trajectories may require lunar landing system to have different

operation sequences during the journey, which in turn require the support of different set

of equipment and different system configurations. A selection of the trajectory and

operational sequence is called a mode in the Apollo program [216], [217]. The choice of

mode affects not only design requirements for many system elements but also the

schedule and program risks. Therefore the mode selection is regarded as the most import

design factors according to many studies and history records [217], [218], [220].

A mode includes both a launch vehicle capability and a required set of maneuvers

[218]. According to the initial Apollo program studies [218], the major modes considered

for the initial manned lunar missions are:

Surface

Orbit Trim

Trajectory

Orbiting Orbiting Departing

Direct

Ascent

Transiting

De-Orbiting

Orbiting Attaining
Direct Decent

Orbiting Entering

137

1. Lunar Orbit Rendezvous (LOR) using the C-5 launch vehicle and the

present Apollo Command Module.

a. 1-day stay-time on the moon with 24-hour contingency

b. 7-day stay-time on the moon

2. Earth Orbit Rendezvous (EOR) using the C-5 launch vehicle and the

present Apollo Command Module.

3. Direct Flight (DF / Liquid Nova) using the Liquid Nova or C-8 launch

vehicle and the present Apollo Command Module.

a. 8 F-1, 9 J-2, 1 J-2 [C-8 (9)]

b. 8 F-1, 5 J-2, 1 J-2 [C-8 (5)]

c. 8 F-1, 2 M-1, 1 J-2 [Nova]

4. Direct Flight (DF/C-5) using the C-5 launch vehicle and a smaller,

modified Command Module.

5. Direct Flight (DF / Solid Nova) using the Solid Nova launch vehicle

and the present Apollo Command Module.

A manned lunar landing system is comprised of a launch vehicle and a spacecraft.

The launch vehicle is responsible for escape the Earth gravity. The spacecraft is

responsible for the moon orbit entering and the remaining flying task plus the landing

mission. The major design factor for selecting launch vehicle is its payload. Depending

on the mission mode, the spacecraft can have different configuration and accordingly

require different propulsion system. The lunar landing module should further consider

parameters such as weights, size, mission duration, crew capacity.

7.2.2. Architecture Modeling. Based on the above analyses, a primary system

architecture can be developed for the manned lunar landing system by identifying the

system elements required by various mission operations. Such an architecture can be

modeled using the OPM/H as shown in Figures 7.16. The overall manned lunar landing

system is modeled as an OPM object, with a set of states corresponding to the progress of

the mission. Among those states, are the initial state, Earth launch site, the final

state, Earth landing site, the critical miss states, Moon landing site and

Moon launching site, and a set of states describing the trajectory of the system in

between. As presented in Section 7.2.1, the repeatable motions of the trajectory are

138

modeled as the states of the Manned lunar landing system object whereas the

finite time motions of the trajectory are modeled as a set of OPM processes that change

the states of the Manned lunar landing system object. Note that some of the

finite time motions, i.e., the midcourse maneuvers and the orbiting maneuvers have been

omitted in the model shown in Figure 7.18 for simplicity of representation. These two

types of maneuvers maintain the state of the manned lunar landing system instead of

making it transit to another state. Hence it is not that important for the problem

considered here. Moreover, the system should have the capability to abort the mission at

any state if necessary. Such aborting maneuvers are omitted too for simplicity. For each

of the maneuver (or operation) modeled as an OPM process, one or more system

elements needed to support it are identified and connected to it using OPM instrument

links. For example, the process MissionPerforming needs either Command Module

(CM) or Lunar Excursion Vehicle (LEV). Therefore, two OPM objects representing them

(CM and LEV) are connected to the process MissionPerforming using OPM

instrument links. These two links are also joined by an OPM XOR representing that

exactly one of them is needed.

In the original design, the EOR and DF modes also use a Lunar Touchdown

Module (LTDM) for executing the midcourse maneuvers and providing the Lunar

Braking Module (LBM) thrust vector control. In this simplified architecture model, the

functionality of the LTDM is combined with that of the LBM and only one

representation, the LBM, is present on the model. The LOR mode can also use a two

stage Service Module (SM) and a LEV, which is composed of a Lunar Excursion Module

(LEM) and two fully-staged propulsion systems. The simplified architecture model

present here makes no distinction between the two stages of the SM and uses a LEV to

represent both the LEM and its propulsion systems.

7.2.3. Design Space Analysis. The architectural model shown in Figure 7.18 is a

generative class model that can capture the design space. All design alternatives can be

generated based on such model. One dimension of the design space is the mode. All

possible maneuvers (modeled as OPM process) and system states are present on the OPM

model (except for those left out intentionally as explained in Section 7.2.2). A possible

mode is a sequence of interconnected maneuvers and system states interleaving each

139

 Figure 7.18. OPM/H Class Model Representing the Architecture of the Manned Lunar

Landing System Represented

other along the sequence. When multiple processes originating from or joining the same

state using the OPM result/consumption links, the relationships between these links

should be specified (the relationship is “AND” by default). For example, there are three

maneuver-state sequences between the state EarthLaunchSite and the state

MidcourseMB. They are (1) (EarthOrbitAttaining – EarthOrbitMB –

EarthRendezvous – Furled – EarthEscape), (2) (EarthDirect-

Ascending) and (3) (EarthOrbitAttaining – EarthOrbitMB –

EarthEscape). Several OPM XOR relations were used to connect related

result/consumption links. Such usage of the OPM XOR relations suggests that exactly

one of these sequences should present in a particular architecture alternative. The above

CM: Command Module

SM: Service Module

LBM: Lunar Braking Module

LEV : Lunar Excursion Vehicle

140

sequence (2) and (3) are mostly equivalent to each other so the sequence 3 is excluded in

the discussions below.

A mode outlines a profile of the Apollo mission and thus will determine a

particular spacecraft configuration. The total weight of the spacecraft, along with the

trajectory, will in turn determine the launch vehicle to be used. The major concerns in

selecting the launch vehicle are the payload and the trajectory requirement. Table 7.8

summarizes three major modes captured by the architecture model and the corresponding

spacecraft configuration. It can be inferred from Table 7.8 that the both CM and SM are

mandatory while both LBM and LEV are optional. Such mandatory/optional features

have been specified using the participation cardinality on the OPM/H architectural model

shown in Figure 7.18. The information in Table 7.8 further proves that the mission mode

is the most critical factor in the architecture design of the lunar landing system as it has a

significant impact on the requirements of other system elements.

For each module within the spacecraft, there are also a set of parameters to be

determined such as the propulsion system (which is related to thrust and mass fraction),

mission duration, crew capacity, weight, and size. Depending on these parameters, there

are a number of alternatives available for each of these modules. With such information,

the dimensions of the design space of the manned lunar landing system and their domains

can be briefly summarized in Table 7.9, where the data is obtained from [218]:

Unlike the architecture model developed for the first application demonstration

(Figures 7.3 and 7.4), The OPM/H architecture model shown in Figure 7.18 contains both

structural variations (modes and system configurations) and object variations (the rest).

Even for this small design space, it is still error-prone for humans to discover all possible

modes (trajectories) and system configurations. Therefore, a CPN model is developed, for

design space exploration, using the approach proposed in Section 5.2.2. Such CPN model

is presented in Figure 7.19 (note that shorthand notations have been used for place names

and transition names on the CPN model to save space). The place A_EarthlauS is the

initial place where all variantions originate and is given one list type initial token,

[A_EarthLauS]. After a simulation run, tokens representing the architecture

alternatives discovered can be collected at the place A_EarthlanS, which is the only

end place in this model. The purpose of this CPN model is to assist the discovery of all

141

Table 7.8. Major Modes of the Manned Lunar Landing System and the Corresponding

Spacecraft Configuration

Mode Sequence of maneuvers Sequence of states Spacecraft

configuration

EOR Earth orbit attaining – Earth

rendezvous – Earth escape –

Moon direct descending –

Mission performing – Moon

direct ascending – Earth direct

descending

Earth launch site – Earth orbit

Moon bound – fueled –

Midcourse Moon bound –

Moon landing site – Moon

launching site – Midcourse

Earth bound – Earth landing

site

LBM,

CM,SM

LOR Earth direct ascending – Moon

orbit entering – Separating

LEM – Moon braking touch

down – Mission performing –

Moon orbit attaining – Moon

rendezvous – Moon escape –

Earth direct descending

Earth launch site – Midcourse

Moon bound – Moon orbit

Moon bound – LEM separated

– Moon landing site – Moon

launching site – Moon orbit

Earth bound – Docked –

Midcourse Earth bound –

Earth landing site

SM, CM

LEV

DF Earth direct ascending – Moon

direct descending – Mission

performing – Moon direct

ascending – Earth direct

descending

Earth launch site – Midcourse

Moon bound – Moon landing

site – Moon launching site –

Midcourse Earth bound –

Earth landing site

LBM,

CM,SM

structural variants so the values of each dimension of the design space are not included in

this CPN model. In another word, this model is only intended to discover all possible

combinations of the OPM processes, objects and links in the OPM/H model shown in

Figure 7.18. The final marking at place A_EarthlanS, i.e., the token values

representing the discovered architecture alternatives are summarized in Table 7.10. In

142

Table 7.9. Dimensions of the Design Space of the Manned Lunar Landing System

Dimension Domain

Mode LOR, EOR, DF

Launch vehicle C-5, C-8, Liquid Nova, Solid Nova

 Extra Tank True, False

LBM (propulsion) Pressured-fed hypergolic, Pressured-fed LOX/LH2, Pump-fed

LOX/LH2

SM (propulsion) Pressured-fed hypergolic, Pressured-fed LOX/LH2, Pump-fed

LOX/LH2

CM

Mission duration 2day, 7day

Crew capacity 2 men, 3 men

Weight

(including SM)

 11,228 lbs (NAA. 154 in.), 9,148 lbs (STL. 154 in.), 8,400 lbs

(STL. 138 in.), 6,728 lbs (AMES. 138 in.)

diameter 138 inch, 154 inch

LEV weight 5,475 lbs (Chance-Vought), 3,143 lbs (Manned S/C Center), 5,330

lbs (Grumman-RCA),5,568 lbs (Martin),

this table, an architecture alternative is shown as state-maneuver sequences along with

the required system components (configuration) to support these maneuverers. The cells

shaded with the same color share the same mode (state-maneuver sequences) but having

different system configurations. An instance model representing a discovered architecture

alternative (corresponding to alternative 12 in Table 7.10) is shown in Figure 7.20, which

is a LOR system configuration.

The system models (including OPM/H models developed using OPCAT and CPN

models developed using CPN Tools) for both the RMS and the Apollo examples, the

Python code developed for the RMS example, and a set of sample output archive files for

the RMS example are presented in the attached CD as summarized in Appendix C. The

statistics obtained from one run of the NSGA-II for the RMS example are also shown in

Appendix B.

143

 Figure 7.19. CPN Model Used for the Design Space Exploration

Table 7.10. Summary of Token Values at the Place A_Earthlans Representing the

Architecture Alternatives Discovered

No. Alternatives

1

1`[SCSM,A_EarthLauS,LV,EOrbitAttn,A_EOrbitMB,LV,T_Earth,PreLaunch,T_EOrbit

,ERendez,A_Fuled,LV,EEscape,A_MidCMB,SCSM,MOrbitEntering,A_MOrbitMB,SC

LBM,Braking,A_MoonLanS,SCCM,MissionPerf,A_MoonLauS,MDirectAsc,A_MidCE

B,SCCM,EDirectDescend,A_EearthLanS]++

2

1`[SCSM,A_EarthLauS,LV,EOrbitAttn,A_EOrbitMB,LV,T_Earth,PreLaunch,T_EOrbit

,ERendez,A_Fuled,LV,EEscape,A_MidCMB,SCLBM,MOrbitEntering,A_MOrbitMB,S

CLBM,Braking,A_MoonLanS,SCCM,MissionPerf,A_MoonLauS,MDirectAsc,A_MidC

EB,SCCM,EDirectDescend,A_EearthLanS]++

3

1`[SCSM,A_EarthLauS,LV,EOrbitAttn,A_EOrbitMB,LV,T_Earth,PreLaunch,T_EOrbit

,ERendez,A_Fuled,LV,EEscape,A_MidCMB,SCLBM,MDirectDescend,A_MoonLanS,

SCCM,MissionPerf,A_MoonLauS,MDirectAsc,A_MidCEB,SCCM,EDirectDescend,A_

EearthLanS]++

archt

archt

archt

archt

archt

archt

archt

archt1

archt1

archt

archt

archt2

archt
archt

archt

archt

archt1

archt

archt1

archt

archt

archt

archt

archt

archt

archt

archt

archt

archt

archt

archt

archt

archt

archt
archt

archt

archt

archt

archtarcht

archt1

archt1

archt

1`[SCLEV]

archt

archt

archt

archt

archt

archt
archt

archt
archtarcht

archt

archt

archt2archt^ [̂PreLaunch]^ [̂T_EOrbit]

archt1

archt1
archt1

archt1

archt1

archt2

archt1

archt1

archt

archt1

archt1

archt^^archt1^ [̂EDirectDescend, A_EearthLanS]

archt

archt^^archt1^ [̂MDirectAsc,A_MidCEB]

archt^^archt1^ [̂MEscape,A_MidCEB]

archt^^archt1^^archt2^ [̂MRendez,A_Docked]

archt^^archt1^ [̂MOrbitAttain,A_MOrbitEB]

archt

archt^^archt1^ [̂MDirectDescend, A_MoonLanS]

archt^^archt1^ [̂Braking, A_MoonLanS]

archt^^archt1^^archt2^ [̂SeperateLEV,A_LEVSep]

archt^^archt1^ [̂MOrbitEntering,A_MOrbitMB]

archt^^archt1^ [̂EdirectAsc, A_MidCMB]

archt^^archt1^ [̂EEscape,A_MidCMB]

archt^^archt1^^archt2^ [̂ERendez, A_Fuled]

archt^^archt1^ [̂EOrbitAttn,A_EOrbitMB]

archt

ORTT1 OR6T2

MOrbitEnt2 OR7T2OR7T1

A4

A2

A1

OR5T2OR5T1

OR4T2

OR4T1

OR3T1

O3T2

OT1T2OR1T1

PreLaunch

EOrbitAttn

ERendez

EDirectDescend

MRendez

(not ((mem archt ERendez) orelse (mem archt MDirectDescend))) andalso ((mem archt SeperateLEV))

MDirectAsc

not (mem archt1 SeperateLEV)

EEscape

Braking

MissionPerf

MOrbitEnt1 SeperateLEV

MDirectDescendEdirectAsc

OR6

ARCHT

AOP6

ARCHT

OR7

ARCHT

A4P2

ARCHT

A4P1

ARCHT

A2P2

ARCHT

A2P1

ARCHT

AO3P

ARCHT

AOP

ARCHT

A1P2

ARCHT

A1P1

ARCHT

OR5

ARCHT

OR4

ARCHT

OR3

ARCHT

A2P3

ARCHT

OR1

ARCHT

A_Fuled A_MidCMB

ARCHT

A_MOrbitMB

ARCHT

A_LEVSep

ARCHT

A_EOrbitMB

ARCHT

A_EarthLauS

1`[A_EarthLauS]

ARCHT

T_Earth

1`[T_Earth]

ARCHT

A_EearthLanS

ARCHT

A_MidCEB

ARCHT

A_Docked

ARCHT

A_MOrbitEB

ARCHT

ARCHT

ARCHT

SCLEV

1`[SCLEV]

ARCHT

SCCM

1`[SCCM]

ARCHT

SCSM

1`[SCSM]

ARCHT

SCLBM

1`[SCLBM]

ARCHT

T_EOrbit

ARCHT

LV

1`[LV]

ARCHT

A_MoonLanS

ARCHT

MOrbitAttain

archt^^archt1^ [̂MOrbitEntering,A_MOrbitMB]

not (mem archt ERendez)

A_MoonLauS
archt^^archt1^ [̂MissionPerf,A_MoonLauS]

((mem archt SeperateLEV) andalso (archt1=[SCLEV])) orelse ((not (mem archt SeperateLEV)) andalso (archt1=[SCCM]))

((mem archt SeperateLEV) andalso archt1=[SCLEV]) orelse ((not (mem archt SeperateLEV)) andalso (archt1=[SCLBM]))

MEscape

((mem archt SeperateLEV) andalso (mem archt MRendez)) orelse (not (mem archt SeperateLEV))

((mem archt SeperateLEV) andalso (archt1 = [SCLEV])) orelse ((not (mem archt SeperateLEV)) andalso (archt1 = [SCSM]))

144

Table 7.10 Summary of Token Values at the Place A_Earthlans Representing the

Architecture Alternatives Discovered (cont.)

No. Alternatives

4

1`[SCSM,A_EarthLauS,LV,EOrbitAttn,A_EOrbitMB,LV,EEscape,A_MidCMB,SCSM,

MOrbitEntering,A_MOrbitMB,SCLBM,Braking,A_MoonLanS,SCCM,MissionPerf,A_

MoonLauS,MDirectAsc,A_MidCEB,SCCM,EDirectDescend,A_EearthLanS]++

5

1`[SCSM,A_EarthLauS,LV,EOrbitAttn,A_EOrbitMB,LV,EEscape,A_MidCMB,SCLB

M,MOrbitEntering,A_MOrbitMB,SCLBM,Braking,A_MoonLanS,SCCM,MissionPerf,

A_MoonLauS,MDirectAsc,A_MidCEB,SCCM,EDirectDescend,A_EearthLanS]++

6

1`[SCSM,A_EarthLauS,LV,EOrbitAttn,A_EOrbitMB,LV,EEscape,A_MidCMB,SCLB

M,MDirectDescend,A_MoonLanS,SCCM,MissionPerf,A_MoonLauS,MDirectAsc,A_M

idCEB,SCCM,EDirectDescend,A_EearthLanS]++

7

1`[SCSM,A_EarthLauS,LV,EdirectAsc,A_MidCMB,SCSM,MOrbitEntering,A_MOrbit

MB,SCLBM,Braking,A_MoonLanS,SCCM,MissionPerf,A_MoonLauS,MDirectAsc,A_

MidCEB,SCCM,EDirectDescend,A_EearthLanS]++

8

1`[SCSM,A_EarthLauS,LV,EdirectAsc,A_MidCMB,SCLBM,MOrbitEntering,A_MOrbi

tMB,SCLBM,Braking,A_MoonLanS,SCCM,MissionPerf,A_MoonLauS,MDirectAsc,A_

MidCEB,SCCM,EDirectDescend,A_EearthLanS]++

9

1`[SCSM,A_EarthLauS,LV,EdirectAsc,A_MidCMB,SCLBM,MDirectDescend,A_Moo

nLanS,SCCM,MissionPerf,A_MoonLauS,MDirectAsc,A_MidCEB,SCCM,EDirectDesc

end,A_EearthLanS]++

l10

1`[A_EarthLauS,LV,EOrbitAttn,A_EOrbitMB,LV,EEscape,A_MidCMB,SCSM,MOrbit

Entering,A_MOrbitMB,SCCM,SCLEV,SeperateLEV,A_LEVSep,SCLEV,Braking,A_M

oonLanS,SCLEV,MissionPerf,A_MoonLauS,SCLEV,MOrbitAttain,A_MOrbitEB,SCC

M,SCLEV,MRendez,A_Docked,SCSM,MEscape,A_MidCEB,SCCM,EDirectDescend,

A_EearthLanS]++

11

1`[A_EarthLauS,LV,EOrbitAttn,A_EOrbitMB,LV,EEscape,A_MidCMB,SCLBM,MOrb

itEntering,A_MOrbitMB,SCCM,SCLEV,SeperateLEV,A_LEVSep,SCLEV,Braking,A_

MoonLanS,SCLEV,MissionPerf,A_MoonLauS,SCLEV,MOrbitAttain,A_MOrbitEB,SC

CM,SCLEV,MRendez,A_Docked,SCSM,MEscape,A_MidCEB,SCCM,EDirectDescend,

A_EearthLanS]++

12

1`[A_EarthLauS,LV,EdirectAsc,A_MidCMB,SCSM,MOrbitEntering,A_MOrbitMB,SC

CM,SCLEV,SeperateLEV,A_LEVSep,SCLEV,Braking,A_MoonLanS,SCLEV,Mission

Perf,A_MoonLauS,SCLEV,MOrbitAttain,A_MOrbitEB,SCCM,SCLEV,MRendez,A_D

ocked,SCSM,MEscape,A_MidCEB,SCCM,EDirectDescend,A_EearthLanS]++

13

1`[A_EarthLauS,LV,EdirectAsc,A_MidCMB,SCLBM,MOrbitEntering,A_MOrbitMB,S

CCM,SCLEV,SeperateLEV,A_LEVSep,SCLEV,Braking,A_MoonLanS,SCLEV,Missio

nPerf,A_MoonLauS,SCLEV,MOrbitAttain,A_MOrbitEB,SCCM,SCLEV,MRendez,A_

Docked,SCSM,MEscape,A_MidCEB,SCCM,EDirectDescend,A_EearthLanS]

14

1`[A_EarthLauS,LV,EOrbitAttn,A_EOrbitMB,LV,T_Earth,PreLaunch,T_EOrbit,ERend

ez,A_Fuled,LV,EEscape,A_MidCMB,SCSM,MOrbitEntering,A_MOrbitMB,SCLBM,B

raking,A_MoonLanS,SCCM,MissionPerf,A_MoonLauS,SCSM,MOrbitAttain,A_MOrbi

tEB,SCSM,MEscape,A_MidCEB,SCCM,EDirectDescend,A_EearthLanS]++

15

1`[A_EarthLauS,LV,EOrbitAttn,A_EOrbitMB,LV,T_Earth,PreLaunch,T_EOrbit,ERend

ez,A_Fuled,LV,EEscape,A_MidCMB,SCLBM,MOrbitEntering,A_MOrbitMB,SCLBM,

Braking,A_MoonLanS,SCCM,MissionPerf,A_MoonLauS,SCSM,MOrbitAttain,A_MOr

bitEB,SCSM,MEscape,A_MidCEB,SCCM,EDirectDescend,A_EearthLanS]++

145

Table 7.10. Summary of Token Values at the Place A_Earthlans Representing the

Architecture Alternatives Discovered (cont.)

No. Alternatives

16

1`[A_EarthLauS,LV,EOrbitAttn,A_EOrbitMB,LV,T_Earth,PreLaunch,T_EOrbit,ERend

ez,A_Fuled,LV,EEscape,A_MidCMB,SCLBM,MDirectDescend,A_MoonLanS,SCCM,

MissionPerf,A_MoonLauS,SCSM,MOrbitAttain,A_MOrbitEB,SCSM,MEscape,A_Mid

CEB,SCCM,EDirectDescend,A_EearthLanS]++

17

1`[A_EarthLauS,LV,EOrbitAttn,A_EOrbitMB,LV,EEscape,A_MidCMB,SCSM,MOrbit

Entering,A_MOrbitMB,SCLBM,Braking,A_MoonLanS,SCCM,MissionPerf,A_MoonLa

uS,SCSM,MOrbitAttain,A_MOrbitEB,SCSM,MEscape,A_MidCEB,SCCM,EDirectDes

cend,A_EearthLanS]++

18

1`[A_EarthLauS,LV,EOrbitAttn,A_EOrbitMB,LV,EEscape,A_MidCMB,SCLBM,MOrb

itEntering,A_MOrbitMB,SCLBM,Braking,A_MoonLanS,SCCM,MissionPerf,A_MoonL

auS,SCSM,MOrbitAttain,A_MOrbitEB,SCSM,MEscape,A_MidCEB,SCCM,EDirectDe

scend,A_EearthLanS]++

19

1`[A_EarthLauS,LV,EOrbitAttn,A_EOrbitMB,LV,EEscape,A_MidCMB,SCLBM,MDir

ectDescend,A_MoonLanS,SCCM,MissionPerf,A_MoonLauS,SCSM,MOrbitAttain,A_M

OrbitEB,SCSM,MEscape,A_MidCEB,SCCM,EDirectDescend,A_EearthLanS]++

20

1`[A_EarthLauS,LV,EdirectAsc,A_MidCMB,SCSM,MOrbitEntering,A_MOrbitMB,SC

LBM,Braking,A_MoonLanS,SCCM,MissionPerf,A_MoonLauS,SCSM,MOrbitAttain,A

_MOrbitEB,SCSM,MEscape,A_MidCEB,SCCM,EDirectDescend,A_EearthLanS]++

21

1`[A_EarthLauS,LV,EdirectAsc,A_MidCMB,SCLBM,MOrbitEntering,A_MOrbitMB,S

CLBM,Braking,A_MoonLanS,SCCM,MissionPerf,A_MoonLauS,SCSM,MOrbitAttain,

A_MOrbitEB,SCSM,MEscape,A_MidCEB,SCCM,EDirectDescend,A_EearthLanS]++

22

1`[A_EarthLauS,LV,EdirectAsc,A_MidCMB,SCLBM,MDirectDescend,A_MoonLanS,

SCCM,MissionPerf,A_MoonLauS,SCSM,MOrbitAttain,A_MOrbitEB,SCSM,MEscape,

A_MidCEB,SCCM,EDirectDescend,A_EearthLanS]

Figure 7.20. An Instance Model Representing an Architecture Alternative (LOR System

Configuration)

146

8. CONCLUSION AND FUTURE WORK

This section first compares the proposed approach with other approaches in

solving similar problems and then discusses the strengths, limitation, implementation

concerns, and scalability of the proposed approach. The conclusions can then safely be

drawn. This section also provides some insights into further development of the proposed

approach and directions for future research.

8.1. DISCUSSION

8.1.1. Comparisons with other Approaches for Solving Similar Problems. For

solving the RMS configuration problem, a number of approaches have been discussed in

Section 3.3. All these approaches developed some problem-specific models particularly

for RMS, which cannot (or are very hard to) be generalized and applied to other systems.

Moreover, all these approaches can only take into account very limited aspects in the

objective space and limited factors and design variables in the design space due to the

lack of a comprehensive (holistic) model. For example, the approaches proposed in [55],

[57] used capital cost as the only objective for optimization. Their modeling approaches

can only capture some static (or structural) aspects of the system and thus cannot support

the assessment of many of the critical performance metrics that are associated with the

behavioral aspects of the system (e.g., production rate, processing time, and resource

utilization). Petri net based approaches [59–62], on the other hand, cannot capture, and

thus cannot be used to assess, pure static (or structural) aspects of the system of interest.

An optimization covering limited dimensions of the objective space while

ignoring other, potentially critical, objectives tends to be biased. This is the common

drawbacks of traditional optimization approaches that use no comprehensive system

model. For example, with capital cost as the only optimization goal, the resulting system

might use more dedicated machines, which, although cheap, may not have good

modularity or convertibility.

Moreover, optima are often obtained at somewhere near the boundaries in an

optimization. Therefore, if there is a change in the boundary or it was poorly estimated,

the optimization results obtained there might be invalid. For example, an optimization

147

towards minimizing capital cost only, may yield solutions that have either too many

stages or too many machines in a stage, yet still satisfying the space constraints. Such

solutions may leave no room for adding machines (e.g., when demand rate is to be

increased) or adding stages (e.g., when a similar type of part with more features are to be

added to the part family of the RMS). For scenarios, such as shorter demand periods,

diversified products to be produced, or frequently changing demand rate, the capital cost

objective is not as important as features such as modularity, convertibility, and

scalability. In such cases, it is very important for the system model to capture more

design information and to support the assessment of more objectives. The simple

problem-specific models proposed in literature are not adequate for such purposes.

When multiple objectives need to be considered, the usual solution is to develop

multiple models for the system of interest, each of which being used to optimize certain

aspect(s) of the system. The problem with such approaches is that multiple designs will

be produced from these optimizations. Each of the design has certain objective(s)

optimized. Integration of these designs into one final design not only needs extra efforts

but also will almost certainly compromise some objective(s). The optimality of the

integrated design is not guaranteed. The system needs to be reevaluated before the

performance of the final design can be known.

The holistic modeling approach, along with the search-based architecture

development framework, proposed in this research allows more information to be

captured in a single holistic model, which also supports CPN-based analyses and

verification/validation. Such a model approach enables multiple performance objectives

to be optimized and maintained using one integrated system model.

8.1.2. Strengths and Weaknesses. In the proposed holistic modeling approach,

the OPM, CPN and feature model are used in a complementary way. Together, they offer

a full-featured system modeling language. The OPM provides both object-oriented and

process-oriented modeling capabilities. Object-oriented modeling is one of the most

popular modeling paradigms that can capture a variety of systems, at various levels of

abstraction, from various types of perspective. Process-oriented modeling adds to the

flexibility of modeling by allowing defining processes independently of objects. This

feature makes it possible to specify a system model that leaves the implementation of

148

some of its processes to be specified by later design cycles. This is particularly useful in

the software architecture design. For example, an interface is often defined as abstract

type with methods defined only. A class having all the methods defined by an interface is

said to implement that interface.

The CPN provides the simulation and model analysis capabilities. The simulation

capability is an indispensable means to derive certain performance metrics and to conduct

behavior analyses. There exists also a large collection of analysis methods and tools

developed for CPN. Such analysis methods and tools not only support detailed

architecture analyses, but can also be used to verify and/or validate the model. Such

integration of a system model with an analysis model not only avoids the loss of fidelity

during model transformation but also eliminate the need to develop a new analysis model

when the system model changes.

A holistic model also provides a common foundation to integrate various design

activities. By using a holistic model, various design aspects and knowledge from multiple

domains can be integrated and represented in one single system model that can be used in

multiple design activities. Such integration thus eliminates both the need to transform

models between design activities and the efforts to maintain model consistency. “Without

a holistic modeling approach, the cost of model construction and the effort required to

integrate various system models may present critical concerns to be reflected in the

resulting system” [1].

However, there are still some limitations in applying the proposed approach.

Some of these limitations and constraints are identified and summaries as follows:

(1) Limitation imposed by the model expressiveness. The standard OPM is not

effective in capturing mathematical relationships between entities. With the extension of

CPN, it is possible to incorporating programming languages, and therefore mathematical

computations, into the modeling. However, many mathematical relations between entities

have to be constructed on the basis of state-transition-based structure, which may not be

intuitive in some applications and may have limited expressiveness.

Zeigler [221] proposed a categorization scheme that distinguishes formal

simulation models into five dimensions i.e., (1) continuous time – discrete time, (2)

continuous state – discrete state, (3) deterministic – non-deterministic , (4) autonomous –

149

non-autonomous, and (5) time invariant – time varying. According to these dimensions,

the proposed modeling approach is not capable of capturing fully continuous time and

continuous state [27], [70], [159], [160].

(2) Limitation imposed by available analysis, evaluation, or optimization models.

Deriving accurate performance measures from architectural model is much more difficult

than that from other well-studied problems due to several reasons, such as ambiguity,

multiple domains, limited information or knowledge, limited resources or capability for

conducting experiments. Heuristic-based optimization cannot guarantee optimum

solutions. Analytical models, although very powerful, come at the expense of limited

applicability, as many real-world systems are too complex for analytical modeling or

evaluation or their solutions are too complex and demand immense computation [222].

(3) Fidelity and computational efficiency. Fidelity issues exist in both architecture

models and analysis models. Low-fidelity models might have adverse impact on the final

results. The degree of fidelity necessary to guarantee good solutions is difficult to

estimate in most cases. The estimation and control of model fidelity are challenging and

are not addressed in this research. High fidelity models often demand more

computational resources. A trade-off between complexity and fidelity has to be made

sometimes.

(4) Accuracy and error control. Errors propagate once generated and it is hard to

control the propagation. Errors must be estimated and controlled within tolerable range.

Otherwise, the analysis results may not be credible or viable. Accuracy and error control

issues are not addressed in this research.

(5) Design space might be incompletely specified. Design options are either

identified explicitly by designers or be specified implicitly by constraints. Due to limited

knowledge and experience of designers, there is the possibility of overlooking some part

of the design space.

In addition, there are some additional concerns to be considered in order to

prevent bias or unfaithful results when applying the proposed approach. The proposed

modeling approach suffers the same risks as most modeling approaches, such as

inappropriate specified requirements, unexpected interactions among the constituent

components of the system, low fidelity of architecture models or analysis models,

150

uncontrolled error propagation, and uncertainty. Many of the limitations identified above

also transform to risks in applying the proposed approach. Since the proposed approach

incorporates optimization process into the architecture development process, it also

suffers the issue of sensitive to boundaries, which is a common issue of most

optimization algorithms. Optimization algorithms in general tend to find optimum

solutions at the boundary of certain constraints. If such constraints are not accurately

specified or subject to uncertainty, the optimum solution obtained might be invalid.

In addition, the architecture generation mechanism currently proposed still

provides only rudimentary functionality. Generation of structural variants that are

specified by complicated constraints may need some additional problem-specific

programming.

8.1.3. Scalability of the Proposed Approaches. The proposed approach consists

of several components. Hence the discussion of scalability won’t be complete without

examine each individual components.

(1) Scalability of the search-based architecture development framework. Such a

framework, as presented in Section 4.1, is domain independent and problem neutral. It

should be able to apply to a broad range of systems at various levels of abstraction.

(2) Scalability of the modeling approach. The scalability of the modeling

approach is determined by the expressiveness of the modeling languages adopted and the

modeling paradigm assumed by the modeling languages. The proposed modeling

approach combines the capabilities of OPM, CPN, and the feature model. It, therefore,

roughly has the expressive power that equals to the sum of the capabilities of these three

individual modeling languages. The modeling units (objects, processes, links, states,

transitions, features, etc.) of these modeling languages are very primitive with little

assumption to the entities being modeled. Therefore they can be applied to a broad range

of abstract concepts. These individual languages have been proved to have the capability

to support the modeling of a huge variety of systems at various levels of abstraction for

many types of architectures (including functional architecture, system architecture, and

physical architecture). For example, in terms of model resolution, the OPM provides

three refinement/abstraction mechanisms as discussed in Section 3.2.2. These

151

mechanisms enable OPM to recursively specify a system to any desired level of detail

without losing legibility and comprehension of the complete system [40].

Object-oriented modeling has been proved to have the capability to model a huge

variety of systems and at a broad level of abstraction. The concepts of class and object

can be used to model any abstract concepts at any level of abstraction as discussed in

Section 3.1 and Section 4.2. The power of the object-oriented paradigm can simply be

demonstrated by the fact that UML can be defined by itself, which has been discussed in

Section 4.2.2.

As discussed in last section, the OPM modeling is also process-oriented.

Specifying a process without identifying the object responsible for it also allows

modeling of functional architecture intuitively. As an example, refer to the RMS model

developed in Section 7.1.2. Figure 7.3 shows a top level abstraction of the RMS. It can be

viewed as a functional architecture that describes the main function of a RMS, i.e., in this

case, transforming a raw work piece into a finished product. Such function can be

achieved through the interactions of the constituent components of the system and their

behaviors. Figure 7.4, elaborating the manufacturing process, can be viewed as a system

architecture.

(3) Scalability of the architecture generation mechanism. The architecture

generation mechanism proposed in Section 5.2 is modeling language dependent, not

problem specific. Therefore, its scalability is the same as the modeling languages that the

architecture generation mechanism is based on.

(4) Scalability of the modeling process. The modeling process proposed in

Section 4.2.3 is based on the OOA/D and domain engineering, both of which have been

proved to have the capability to model a huge variety of systems at various levels of

abstractions. Such a modeling process supports hierarchical development and design

cycles where each lower level becomes more detailed and refined as the design

progresses. This modeling process also includes functional and behavioral mapping,

which provides a mechanism to connect models either at different levels of abstraction or

at different design stages, for example mapping functional architecture to system

architecture and mapping system architecture to physical architecture. These two

mechanisms, i.e., mapping models at different design stages and decomposing models

152

within each stage, allows the hierarchal reduction of ambiguity. The hierarchal reduction

of ambiguity has also been addressed in Section 4.2.3. However, the integration of

system models across different design stages has not been well addressed yet. Since

different design stages (or levels) use different levels of abstraction, thus different design

sets and different system models, an explicit mapping between these models should be

further studied and developed.

(5) Scalability of the architecture assessment process. The proposed search-based

architecture development framework identifies three sub processes within the architecture

assessment process (Figure 4.2), i.e., architecture analysis process, architecture selection

process, and architecture optimization process. This research discussed some applicable

techniques to each of these three processes but has not developed any of such techniques.

The claim is that the architect can apply any analysis methods to derive the performance

metrics as needed and the architectural model should provide the necessary input to the

analysis models. The scalability of the architecture assessment process depends primarily

on the chosen analysis methods, along with the available information provided by the

system model and the available knowledge regarding the system of interest. For example,

the state space analysis cannot scale well to large and complex models.

8.2. CONCLUSIONS

The development of a generative class model and the generation of all instance

models enable architectural models to be used as design alternatives in various search

algorithms with the aim of discovering optimum architecture designs. Then the concepts

and knowledge encoded in architectural models can be processed automatically through

computation, thus saving the architect from discovering and evaluating large number of

alternatives. As such, an architecture development problem can be converted to a search

search-based optimization problem. The search-based architecture development

framework implements this idea by integrating architecture modeling, alternative

generation, and architecture assessment into a coherence process. Such an architecture

development process allows vast design space to be explored before commitment to more

detailed design, thus reducing time, cost, and risks of the project and improving design

quality.

153

The proposed modeling approach combines the full features of OPM, CPN and

feature models. Therefore, its expressiveness is the sum of these individual languages.

More specifically, the proposed modeling approach supports both object-oriented and

process-oriented paradigm as provided by OPM. Such OPM is supplemented by CPN for

execution semantics. So it has state-transition-based execution semantics supporting

discrete-event system simulation. The incorporation of CPN into the architecture

modeling also allows the developed system model to be also used as a analysis model. A

large collection of analysis methods and tools developed for CPN can be utilized for

strong model analysis, verification, and validation. Such OPM is also extended to support

the feature model concepts so it can model a collection of systems. In summary, such

modeling approach not only can model a broad range of systems at various levels of

abstraction but also can support the needs of search-based architecture development by

providing both comprehensive information needed for architecture reasoning and the

design space specification needed for architecture alternative generation.

The other components in the proposed approach, including the search-based

architecture development framework, the architecture alternative generation mechanism,

and the suggested implementation architecture assessment, are all domain independent

and problem neutral. Therefore, the entire approach set is generic and should be able

applied to a broad range of systems that can be specified using conceptual models with

either object-oriented or process-oriented paradigm. Still, a large number of case studies

are needed to further examine the capabilities of the proposed approach.

Architectures can arise within a variety of scenarios [223]. These include the

deliberate design of a system from scratch, the evolution of a design from previous

designs, the expansion of smaller systems, or the exploration of form and behavior

requirements. The proposed architecture development approach can facility both

incremental design through hierarchical refinement and adapting an existing architecture

to new or changing design needs.

8.3. FUTURE WORK

The architecture generation mechanism proposed in Section 5.2 need to be further

researched to allow fully automatic generation of all types of architecture alternatives

154

with little or no need of problem-specific programming. One possible way to achieve

such capabilities is to develop a mapping from OPM class model directly to a suitable

logical representation, such as the propositional logic, the constraint programming, and

the description logic. The strengths of logical representations are their support of

computational implementation and their capabilities to process complexity dependencies

between features. With such logical representations, it is possible to use the off-the-self

solvers to generate all possible architecture alternatives and perform other automatic

model analyses. Alternatively, a parser that translates an OPM class model to a feature

model can be developed so that the current tool support and analysis methods of the

feature model can be utilized. Furthermore, since a design space represented by the

feature model is a tree-like structure, generative algorithms in conjunction with tree-

based algorithms might be useful in discovering all possible architecture alternatives. In

addition, algorithms need to be developed to prove the completeness (i.e., covering the

entire design space) of the generated alternatives (closure).

All design variables can be identified through design space analysis using the

feature model information. Algorithms can be developed to conduct automatic design

space analysis. Since a chromosome needs only to capture these design variables. A

unified chromosome representation scheme can be developed to automate the process

from OPM/H class model development to chromosome encoding. With the fully

automated alternative generation and chromosome encoding, a fully automated search-

based architecture development process can be achieved.

In order to capture complex design space, more advanced feature model concepts

should be incorporated and implemented. For example the full support of feature

attribute [209–213] is needed. According to [14], the attribute of a feature should consist

at least of a name, a domain and a value. The example studied in Section 7.1 also reveals

the need for capturing complex relationships and constraints between features and feature

attributes [14], [209], [213].

The ABCD language, as a higher level language for specifying a Petri net, makes

writing a Petri net specification easier by hiding programming implementation details.

However, it also creates an extra level of formality that is not necessary in the search-

based architecture development process since a CPN model should ideally be constructed

155

directly from the OPM/H model. Moreover, using the ABCD language for specifying

CPN models adds another layer of computation between the CPN model specification

and the computational model building. In the case of producing a large number of model

instances, like in the proposed the search-based architecture development process, such a

layer of computation wastes a lot of computation resources in compiling the ABCD

specification. Especially, when model instances share a large portion in common,

rebuilding the entire CPN computational model for each instance of ABCD specification

is not necessary. Therefore the use of ABCD for CPN specification should be removed

from the implementation of the search-based architecture development framework.

In the current implementation of the modeling approach, the simulation of CPN

models depends on the ABCD language layer so the transformation from OPM/H model

to CPN model is not an automatic process yet. A fully automatically transformation can

be developed once the dependency on the ABCD language layer is removed.

Furthermore, a hybrid OPM-CPN modeling language can be developed and

implemented to fully integrate the execution semantics and simulation capability of CPN

into the OPM modeling such that an OPM/H model can be executed directly. In addition,

inclusion of BBN can also be considered in this hybrid modeling language so that

uncertainty can be modeled and managed effectively.

As discussed in Section 8.12. Model fidelity affects the accuracy of the

performance metrics derived from the system model. The estimation and control of

model fidelity should be further studied. Moreover, the error propagation issue and the

uncertainty management should also be studied. Furthermore, since architecture models

are special types of design alternatives, methods need to be developed to support the

sensitivity analysis in the context of optimization algorithms used for architecture

optimization.

In addition, the support of traceability analysis based on the proposed architecture

development framework deserves further study. The estimation of the impact of changes

in architecture to performance metrics can offer several benefits. For example, (1) it

provides designers a better understanding of the system of interest, (2) it provides

designers the insights into the relative importance of certain part of the system to certain

performance metrics, (3) it can point out the direction of possible architecture

156

improvement, (4) it allows incremental development, in which case, only partial update

of the system is desired. The last point is especially important when updating an existing

system where the system architecture is expected to keep relative stable and only partial

improvement is expected (or can be afforded).

Besides the genetic algorithms, other meta-heuristic search algorithms also

deserve a try. As discussed in Section 4.3.3, each of these optimization algorithms has its

own merit. Depending on the problem to be solved and the data available, some

optimization algorithms may perform better than others.

On the other hand, with the incorporation of feature model concepts, the holistic

modeling approach also facilities the management of architecture variants, including the

variants of subsystems and components. This can in turn facilitate the system family

development and management. Such types of application can be further explored.

157

APPENDIX A.

MACHINE PROCESSING INFORMATION FOR THE RMS DESIGN EXAMPLE

158

Table A1. Operations data for part ANC-90 ([55])

Feature Description Operation Op. ID TAD

candidates

Tool

candidates

F1 Planar surface Milling OP1 +Z C6, C7, C8

F2 Planar surface Milling OP2 Z C6, C7, C8

F3
Four holes arranged as

a replicated feature
Drilling OP3 +Z, Z C2

F4 A step Milling OP4 +X, Z C6, C7

F5 A protrusion (rib) Milling OP5 +Y, Z C7, C8

F6 A protrusion Milling OP6 Y, Z C7, C8

F7 A compound hole Drilling OP7 Z C2, C3, C4

Reaming OP8 C9

Boring OP9 C10

F8 Six holes arranged in a

replicated feature

Drilling OP10' Z C1

Tapping OP11' C5

F9 A step Milling OP12 X, Z C6, C7

159

Table A2. Operations Data for Part ANC-101([55])

Feature Description Operation Op. ID TAD

candidates

Tool

candidates

F1 Planar surface Milling OP1 +Z C6, C7, C8

F2 Planar surface Milling OP2 Z C6, C7, C8

F3 Four holes arranged as

a replicated feature

Drilling OP3 +Z, Z C2

F4 A step Milling OP4 +X, Z C6, C7

F5 A protrusion (rib) Milling OP5 +Y, Z C7, C8

F6 A protrusion Milling OP6 Y, Z C7, C8

F7 A compound hole Drilling OP7 Z C2, C3, C4

Reaming OP8 C9

Boring OP9 C10

F8 Nine holes arranged in a

replicated feature

Drilling OP10 Z C1

Tapping OP11 C5

F9 A step Milling OP12 X, Z C6, C7

F10 Two pockets arranged as

a replicated feature

Milling OP13 +X C6, C7. C8

F11 A boss Milling OP14 a C7, C8

F12 A compound hole Drilling OP15 a C2, C3, C4

Reaming OP16 C9

Boring OP17 C10

F13 A pocket Milling OP18 X C7, C8

F14 A compound hole Reaming OP19 +Z C9

Boring OP20 C10

160

Figure A1. Operation Precedence Graph for the Two Parts ([55])

Table A3. Operation Cluster Definitions for Part ANC-90 ([55])

Operation cluster Operations

OC1 [OP1]

OC2 [OP2]

OC3 [OP3]

OC4 [OP4]

OC5 [OP5, OP6, OP7, OP8, OP9]

OC60 [OP10’ , OP11’]

OC7 [OP12]

OP1

OP5

L1)

OP2

)

OP12

3)

OP10

SL5)

OP17

OP18 OP3 OP1

4

OP13

OP15

OP16

OP6

OP7

OP8

OP9
OP9

OP6

OP7

OP5

OP8

OP2

OP19

OP12

OP10

OP4

OP20 OP11

OP1

2

OP4

0

OP11

’

OP3

L

D4 D

L

D D

L

L

D

L

L

Part 7 (ANC-90)

Part 7 (ANC-101)

D: Datum constraints

L: Logical constraints

L
L

OC5

OC18

OC5

OC11 OC6
OC9

161

Table A4. Operation Cluster Definitions for Part ANC-101 ([55])

Operation cluster Operations

OC1 [OP1]

OC2 [OP2]

OC3 [OP3]

OC4 [OP4]

OC5 [OP5, OP6, OP7, OP8, OP9]

OC6 [OP10, OP11]

OC7 [OP12]

OC8 [OP13]

OC9 [OP14, OP15, OP16, OP17]

OC10 [OP18]

OC11 [OP19, OP20]

Table A5. Available/Obtainable Resources Description and Cost ([55])

Machine (M) Machine configuration (MC) Initial cost

(in 1000 USD) Code Description Code Description

M1 Reconfigurable

horizontal

milling machine

 MC11 Three-axis with one spindle 860

 MC12 Three-axis with two spindles 1140

 MC13 Three-axis with three spindles 1420

 MC14 Three-axis with four spindles 1700

 MC15 Four-axis with one spindle 1010

M2 Reconfigurable

drilling press

 MC21 One spindle 385

 MC22 Two spindles 555

 MC23 Three spindles 725

 MC24 Four spindles 895

162

T
ab

le
 A

6
.
 T

im
e

an
d
 P

ro
d
u
ct

io
n
 R

at
e

In
fo

rm
at

io
n

 f
o
r

D
if

fe
re

n
t

M
-M

C
-O

S
 C

o
m

b
in

at
io

n
s

([
5
5
])

 S
ta

n
d
ar

d
 t

im
e

in
 s

ec
o
n
d
s

(p
ro

d
u
ct

io
n
 r

at
e

in
 p

ar
ts

/h
)

M
2

M
C

2
4

X

X

3
0
 (

4
8
0
)

X

X

1
2
0

(1
2
0
)

9
0
 (

1
6
0
)

X

X

X

X

X

X

X

X

X

X

X

M
C

2
3

X

X

3
0

(3
6
0
)

X

X

1
2
0

(9
0
)

9
0

(1
2
0
)

X

X

X

X

X

X

X

X

X

X

X

M
C

2
2

X

X

3
0

(2
4
0
)

X

X

1
2
0

(6
0
)

9
0

(8
0
)

X

X

X

X

X

X

X

X

X

X

X

M
C

2
1

X

X

3
0

(1
2
0
)

X

X

1
2
0

(3
0
)

9
0
 (

4
0
)

X

X

X

X

X

X

X

X

X

X

X

M
1

M
C

1
5

3
0

(1
2
0
)

2
0

(1
8
0
)

3
0

(1
2
0
)

2
0

(1
8
0
)

6
0
 (

6
0
)

1
2
0

(3
0
)

9
0
 (

4
0
)

1
8

(2
0
0
)

2
0

(1
8
0
)

4
0
 (

9
0
)

1
8

(2
0
0
)

2
4

(1
5
0
)

6
0
 (

6
0
)

3
0

(1
2
0
)

4
0
 (

9
0
)

6
0
 (

6
0
)

6
0
 (

6
0
)

9
0
 (

4
0
)

M
C

1
4

3
0
 (

4
8
0
)

2
0
 (

7
2
0
)

3
0
 (

4
8
0
)

2
0
 (

7
2
0
)

X

1
2
0
 (

1
2
0
)

9
0
 (

1
6
0
)

1
8
 (

8
0
0
)

X

X

X

2
4
 (

6
0
0
)

6
0
 (

2
4
0
)

3
0
 (

4
8
0
)

4
0
 (

3
6
0
)

6
0
 (

2
4
0
)

X

X

M
C

1
3

3
0

(3
6
0
)

2
0

(5
4
0
)

3
0

(3
6
0
)

2
0

(5
4
0
)

X

1
2
0

(9
0
)

9
0

(1
2
0
)

1
8

(6
0
0
)

X

X

X

2
4

(4
5
0
)

6
0

(1
8
0
)

3
0

(3
6
0
)

4
0

(2
7
0
)

6
0

(1
8
0
)

X

X

M
C

1
2

3
0

(2
4
0
)

2
0

(3
6
0
)

3
0

(2
4
0
)

2
0

(3
6
0
)

X

1
2
0

(6
0
)

9
0
 (

8
0
)

1
8

(4
0
0
)

X

X

X

2
4

(3
0
0
)

6
0

(1
2
0
)

3
0

(2
4
0
)

4
0

(1
8
0
)

6
0

(1
2
0
)

X

X

M
C

1
1

3
0

(1
2
0
)

2
0

(1
8
0
)

3
0

(1
2
0
)

2
0

(1
8
0
)

X

1
2
0

(3
0
)

9
0
 (

4
0
)

1
8

(2
0
0
)

X

X

X

2
4

(1
5
0
)

6
0
 (

6
0
)

3
0

(1
2
0
)

4
0
 (

9
0
)

6
0
 (

6
0
)

X

X

O
p
er

at
io

n
 c

lu
st

er
 s

et
u
p
 (

O
S

)

O
p
er

at
io

n
 c

lu
st

er
s

(O
C

s)

[O
C

1
]

[O
C

2
]

[O
C

3
]

[O
C

4
]

[O
C

5
]

[O
C

6
]

[O
C

6
0
]

[O
C

7
]

[O
C

8
]

[O
C

9
]

[O
C

1
0
]

[O
C

1
1
]

[O
C

3
,
O

C
1
1
]

[O
C

8
,
O

C
1
0
]

[O
C

2
,
O

C
4
,
O

C
7
]

[O
C

2
,
O

C
3
,
O

C
4
,
O

C
7
]

[O
C

2
,
O

C
4
,
O

C
7
,
O

C
8
,

O
C

1
0
]

[O
C

2
,
O

C
3
,
O

C
4
,
O

C
7
,
O

C
8
,
O

C
1
0
]

C
o
d
e

O
S

1

O
S

2

O
S

3

O
S

4

O
S

5

O
S

6

O
S

1
8

O
S

7

O
S

8

O
S

9

O
S

1
0

O
S

1
1

O
S

1
2

O
S

1
3

O
S

1
4

O
S

1
5

O
S

1
6

O
S

1
7

163

APPENDIX B.

SELECTED RESULTS OF THE RMS DESIGN EXAMPLE

164

Table B1. Statistics of the Results from Running the NSGA-II for the RMS

Configuration Problem

Gen. System Cost

– Best

Individual

Unit Production

Time – Best

Individual

Population

Median

Population

Average

Population

Standard

Deviation

0 27.39 18.04 21.03 27.20 10.27

1 22.62 17.88 21.17 24.98 8.18

2 26.44 17.04 20.70 24.06 7.56

3 26.44 17.04 21.16 23.69 7.22

4 22.19 16.10 20.41 23.58 7.43

5 22.19 16.10 20.41 23.34 7.15

6 22.19 16.10 20.41 22.91 6.81

7 22.19 16.10 20.27 22.89 6.95

8 22.19 16.10 19.01 22.93 7.12

9 22.19 16.10 19.02 22.87 7.14

10 22.19 16.10 19.29 22.76 7.04

11 22.19 16.10 19.01 22.46 6.95

12 22.19 16.10 19.48 22.09 6.69

13 22.19 16.10 19.48 21.81 6.45

14 22.19 16.10 19.33 21.47 6.01

15 22.19 16.10 19.33 21.24 5.82

16 22.19 16.10 19.33 21.31 6.00

17 22.19 16.10 19.33 21.27 6.03

18 22.19 16.10 19.33 20.94 5.66

19 22.19 16.10 19.10 21.04 5.89

20 22.19 16.10 18.64 20.99 5.87

21 22.19 16.10 18.62 20.87 5.78

22 22.19 16.10 18.49 20.85 5.79

23 22.19 16.10 18.40 20.86 5.80

24 22.19 16.10 18.40 20.84 5.81

25 22.19 16.10 18.40 20.69 5.52

26 22.19 16.10 18.40 20.73 5.58

27 22.19 16.10 18.40 20.34 5.09

28 22.19 16.10 18.40 20.33 5.09

29 22.19 16.10 18.40 20.30 5.08

30 22.19 16.10 18.52 20.30 5.08

31 22.19 16.10 18.52 20.26 5.05

32 22.19 16.10 18.15 20.14 4.93

33 22.19 16.10 18.15 20.13 4.94

34 22.19 16.10 18.15 20.14 5.00

35 20.17 16.20 18.19 19.99 4.83

36 20.17 16.20 18.19 19.96 4.81

165

Table B1. Statistics of the Results from Running the NSGA-II for the RMS

Configuration Problem (cont.)

Gen. System Cost

– Best

Individual

Unit Production

Time – Best

Individual

Population

Median

Population

Average

Population

Standard

Deviation

37 20.17 16.20 18.19 19.98 4.84

38 20.17 16.20 18.19 19.94 4.83

39 20.17 16.20 18.19 19.94 4.83

40 20.17 16.20 18.35 19.85 4.71

41 20.17 16.20 18.35 19.72 4.47

42 20.17 16.20 18.35 19.68 4.42

43 20.17 16.20 18.35 19.75 4.54

44 20.17 16.20 18.19 19.68 4.43

45 20.17 16.20 18.17 19.57 4.12

46 20.17 16.20 18.15 19.35 3.56

47 20.17 16.20 18.04 19.39 3.63

48 20.17 16.20 17.94 19.46 3.81

49 20.17 16.20 17.94 19.38 3.65

50 20.17 16.20 17.94 19.32 3.55

51 20.17 16.20 18.14 19.25 3.43

52 20.17 16.20 18.32 19.23 3.41

53 20.17 16.20 18.32 19.20 3.39

54 20.17 16.20 18.24 19.16 3.31

55 20.17 16.20 18.15 19.18 3.36

56 20.17 16.20 18.14 19.17 3.37

57 20.17 16.20 18.13 19.16 3.37

58 20.17 16.20 18.15 19.12 3.34

59 20.17 16.20 18.13 19.12 3.35

60 20.17 16.20 18.13 19.10 3.34

61 20.17 16.20 18.13 18.92 3.01

62 20.17 16.20 18.34 18.89 2.98

63 20.17 16.20 18.42 18.86 2.95

64 20.17 16.20 18.42 18.83 2.92

65 20.17 16.20 18.34 18.80 2.89

66 20.17 16.20 18.34 18.82 2.91

67 20.17 16.20 18.34 18.83 2.92

68 20.17 16.20 18.34 18.82 2.92

69 20.17 16.20 18.34 18.84 2.93

70 20.17 16.20 18.43 18.79 2.89

71 20.17 16.20 18.43 18.71 2.75

72 20.17 16.20 18.43 18.70 2.74

73 20.17 16.20 18.36 18.69 2.75

166

Table B1. Statistics of the Results from Running the NSGA-II for the RMS

Configuration Problem (cont.)

74 20.17 16.20 18.36 18.68 2.74

75 20.17 16.20 18.36 18.66 2.73

76 20.17 16.20 18.43 18.67 2.77

77 20.17 16.20 18.04 18.57 2.63

78 20.17 16.20 18.04 18.57 2.63

79 20.17 16.20 18.04 18.60 2.69

80 20.17 16.20 18.04 18.62 2.71

81 20.17 16.20 18.04 18.65 2.77

82 20.17 16.20 18.04 18.67 2.80

83 20.17 16.20 18.04 18.70 2.84

84 20.17 16.20 18.04 18.66 2.82

85 20.17 16.20 18.00 18.64 2.80

86 20.17 16.20 18.04 18.67 2.84

87 20.17 16.20 18.04 18.77 3.04

88 20.17 16.20 18.04 18.77 3.04

89 20.17 16.20 18.04 18.84 3.19

90 20.17 16.20 18.18 18.81 3.12

167

APPENDIX C.

PYTHON CODE, OUTPUT ARCHIVE FILES,

AND OPM AND CPN MODELS ON CD-ROM

168

INTRODUCTION

Included with this dissertation is a CD-ROM, which contains the PYTHON CODE

for both the generic implementation of the proposed approaches and the problem specific

code for the RMS example (as listed in Table C1), the output archive files after running the

program (as listed Table C2), and the system models developed for both the RMS design and

the Apollo program (as listed Table C3). Each module of the PYTHON CODE has been

developed using PYTHON 2.7.2 for Windows 32 bit. All output archive files are

automatically generated by the program in .csv format. The system models for both example

problems are developed using both OPCAT and CPN Tools. The contents of the CD-ROM

are summarized in Tables C1, C2, and C3.

169

Table C1. List of Developed Python Code, OPM Models, and CPN Models

Module Description

RMS_GA.py Top level module for loading input data and CPN base model,

setting the GA parameters, plotting results, and saving archive files.

RMS_GA_proble

m.py

Module for formulating the problem to be solved by GA (e.g.,

chromosome encoding and decoding, alternative generation,

candidate assessment, etc.).

RMS_DataPcs.py Module for preprocessing input data and generating attribute values

for design alternative.

RMS_data_provid

er.py

Module for specifying part and machine processing data. it creates a

rms object of type Rms that contains the processed data and some

related functions

nets.py Modified Petri net module (to replace the original one located at

Python27\Lib\site-packages\snakes\net.py).

simulngui.py Alternative Petri net simulation engine that suppresses the GUI.

Otherwise it is the same as the simul.py below

simul.py Modified Petri net simulation module (to replace the original one

located at Python27\Lib\site-packages\snakes\utilits\abcd\simul.py).

abcd_build_simul.

py

Build and simulate a Petri net. It is a modified version of the

snakes\utilits\abcd\main.py. it use the simulngui.py as the simulation

engine

main.py Modified main module for organizing the tasks of compiling and

simulating a Petri net (to replace the original one located at

Python27\Lib\site-packages\snakes\utilits\abcd\main.py).

runPN.py A program that allows user to set Petri net simulation parameters

and test run a Petri net simulation

ec.py Modified evolutionary computation module (to replace the original

one located at Python27\Lib\site-packages\inspyred\ec.py).

crossovers.py Modified crossover operator (to replace the original one located at

Python27\Lib\site-packages\inspyred\crossovers.py).

mutators.py Modified mutation operator module (to replace the original one

located at Python27\Lib\site-packages\inspyred\mutators.py).

e_opm.py OPM/H module for creating and editing OPM/H models.

170

Table C2. List of Output Archive Files Generated from Running the Program

File name Description

rms_ec_individuals.csv The entire individuals (the entire population from all generations)

generated and evaluated by one run of the NSGA-II for the RMS

example, along with their objective function values.

rms_ec_statistics.csv Key statistics (worst, best, median, average, and standard

deviation) of each generation obtained from running the NSGA-II

for the RMS example.

RMS_StatHistory.txt State history from one simulation run of a CPN model for the

RMS example.

Table C3. System Models

Models Description

RMS.opz OPM system architecture model of the RMS developed using OPCAT

v3.1.

RMS.cpn CPN model for the RMS developed using CPN Tools v 3.2.2.

RMS.abcd CPN model for the RMS developed using ABCD language.

Apollo.opz OPM system architecture model of the manned lunar landing system for

the Apollo program example developed using OPCAT v3.1.

Apollo.cpn CPN model for generating the design space of the manned lunar landing

system developed using CPN Tools v 3.2.2.

171

BIBLIOGRAPHY

[1] H.-Y., Benjamin Koo, “A Meta-Language for Systems Architecting,”

Massachusetts Institute of Technology, 2005.

[2] J. Clarke, J. J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin, B. Mitchell,

S. Mancoridis, K. Rees, M. Roper, and others, “Reformulating software

engineering as a search problem,” in Software, IEE Proceedings-, 2003, vol. 150,

pp. 161–175.

[3] K. Czarnecki, “Generative Programming: Principles and Techniques of Software

Engineering Based on Automated Configuration and Fragment-Based Component

Models,” Ph.D. Dissertation, Technical University of Ilmenau, 1998.

[4] K. Czarnecki, K. Østerbye, and M. Völter, “Generative Programming,” in Object-

Oriented Technology ECOOP 2002 Workshop Reader, vol. 2548, J. Hernández

and A. Moreira, Eds. Springer Berlin / Heidelberg, 2002, pp. 15–29.

[5] M. Harman, “The Current State and Future of Search Based Software

Engineering,” in 2007 Future of Software Engineering, Washington, DC, USA,

2007, pp. 342–357.

[6] L. Rela, “Evolutionary Computing in Search-Based Software Engineering,”

Master’s Thesis, Lappeenranta University of Technology, Finland, 2004.

[7] M. Harman and B. F. Jones, “Search-Based Software Engineering,” Information

and Software Technology, vol. 43, no. 14, pp. 833–839, 2001.

[8] M. Harman, S. A. Mansouri, and Y. Zhang, Search Based Software Engineering: A

Comprehensive Analysis and Review of Trends Techniques and Applications.

2009.

[9] G. Dos Reis and J. Järvi, “What is Generic Programming?,” Library-Centric

Software Design (LCSD’05), p. 1, 2005.

[10] D. Musser and A. Stepanov, “Generic Programming,” Symbolic and Algebraic

Computation, pp. 13–25, 1989.

[11] J. Dehnert and A. Stepanov, “Fundamentals of Generic Programming,” in Generic

Programming, vol. 1766, M. Jazayeri, R. Loos, and D. Musser, Eds. Springer

Berlin / Heidelberg, 2000, pp. 1–11.

[12] C. H. Dagli, A. Singh, J. Dauby, and R. Wang, “Smart Systems Architecting:

Computational Intelligence Applied to Trade Space Exploration and System

Design,” Systems Research Forum, vol. 3, no. 2, pp. 101–120, Dec. 2009.

172

[13] A. Alfaris, “The Evolutionary Design Model (EDM) for the Design of Complex

Engineered Systems: Masdar City as a Case Study,” Massachusetts Institute of

Technology, 2009.

[14] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated Analysis of Feature

Models 20 Years Later: A Literature Review,” Information Systems, vol. 35, no.

6, pp. 615–636, 2010.

[15] O. Räihä, “Applying Genetic Algorithms in Software Architecture Design,”

University of Tampere, Department of Computer Sciences, 2008.

[16] M. Amoui, S. Mirarab, S. Ansari, and C. Lucas, “A Genetic Algorithm Approach to

Design Evolution Using Design Pattern Transformation,” International Journal of

Information Technology and Intelligent Computing, vol. 1, no. 1, p. 2, 2006.

[17] A. Asllani and A. Lari, “Using Genetic Algorithm for Dynamic and Multiple

Criteria Web-Site Optimizations,” European journal of operational research, vol.

176, no. 3, pp. 1767–1777, 2007.

[18] D. Doval, S. Mancoridis, and B. S. Mitchell, “Automatic Clustering of Software

Systems Using a Genetic Algorithm,” in Software Technology and Engineering

Practice, 1999. STEP’99. Proceedings, 1999, pp. 73–81.

[19] M. Harman, R. M. Hierons, and M. Proctor, “A New Representation And

Crossover Operator For Search-based Optimization Of Software Modularization,”

in GECCO 2002: Proceedings of the Genetic and Evolutionary Computation

Conference, San Francisco, CA, USA, 2002, pp. 1351–1358.

[20] V. Le Hanh, K. Akif, Y. Le Traon, and J. M. Jézéque, “Selecting an Efficient OO

Integration Testing Strategy: an Experimental Comparison of Actual Strategies,”

ECOOP 2001—Object-Oriented Programming, pp. 381–401, 2001.

[21] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring: Improving

the Design of Existing Code, 1st ed. Addison-Wesley Professional, 1999.

[22] W. G. Griswold and D. Notkin, “Automated Assistance for Program

Restructuring,” ACM Transactions on Software Engineering and Methodology

(TOSEM), vol. 2, no. 3, pp. 228–269, 1993.

[23] T. Mens and T. Tourwé, “A Survey of Software Refactoring,” Software

Engineering, IEEE Transactions on, vol. 30, no. 2, pp. 126–139, 2004.

[24] O. Seng, J. Stammel, and D. Burkhart, “Search-based determination of refactorings

for improving the class structure of object-oriented systems,” in Proceedings of

the 8th annual conference on Genetic and evolutionary computation, 2006, pp.

1909–1916.

173

[25] M. Ó. Cinnéide, “Towards Automated Design Improvement Through

Combinatorial Optimisation,” IN PROC. WORKSHOP ON DIRECTIONS IN

SOFTWARE ENGINEERING ENVIRONMENTS, 2004.

[26] E. Visser, “A Survey Of Rewriting Strategies in Program Transformation Systems,”

Electronic Notes in Theoretical Computer Science, vol. 57, pp. 109–143, 2001.

[27] H. Van Vliet, H. Van Vliet, and J. Van Vliet, Software Engineering: Principles and

Practice. Citeseer, 2008.

[28] “OMG Unified Modeling Language (OMG UML), Infrastructure,” Object

Management Group, formal/2011-08-05.

[29] G. Booch, R. A. Maksimchuk, and M. W. Engle, Object-Oriented Analysis and

Design With Applications. Addison-Wesley, 2007.

[30] L. Geyer, “Feature Modeling Using Design Spaces,” in Proceedings of the 1st

German Workshop on Software Product Lines. Kaiserslautern: Fraunhofer IESE,

2000, vol. 3539.

[31] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson, Feature-Oriented Domain

Analysis (FODA) Feasibility Study. 1990.

[32] K. Czarnecki, S. Helsen, and U. Eisenecker, “Formalizing Cardinality-Based

Feature Models and Their Specialization,” in Software Process: Improvement and

Practice, 2005, p. 2005.

[33] “OMG Unified Modeling Language (OMG UML), Superstructure,” Object

Management Group, formal/2011-08-05.

[34] “UML 2.4 Diagrams Overview,” UML 2.4 Diagrams Overview. [Online].

Available: http://www.uml-diagrams.org/uml-24-diagrams.html.

[35] G. Engels and L. Groenewegen, “Object-Oriented Modeling: a Roadmap,” in

Proceedings of the Conference on the Future of Software Engineering, 2000, pp.

103–116.

[36] OMG, “OMG System Modeling Language (OMG SysML) v1.2,” Object

Management Group, Standard formal/2010-06-01, 2010.

[37] D. Dori, Object-Process Methodology, 1st ed. Springer, 2002.

[38] N. R. Soderborg, E. F. Crawley, and D. Dori, “System Function and Architecture:

OPM-Based Definitions and Operational Templates,” Commun. ACM, vol. 46, no.

10, pp. 67–72, 2003.

174

[39] I. Reinhartz-Berger and D. Dori, “Object-Process Methodology (OPM) vs. UML: a

Code Generation Perspective,” in Proceedings of CAiSE’04 Workshops, 2004, pp.

275–286.

[40] D. Dori and I. Reinhartz-Berger, “An OPM-Based Metamodel of System

Development Process,” Conceptual Modeling-ER 2003, pp. 105–117, 2003.

[41] I. Reinhartz-Berger and D. Dori, “A Reflective Metamodel of Object-Process

Methodology: the System Modeling Building Blocks,” Business Systems Analysis

with Ontologies, pp. 130–173, 2005.

[42] D. Dori, I. Reinhartz-Berger, and A. Sturm, “Developing Complex Systems with

Object-Process Methodology using OPCAT,” Conceptual Modeling-ER 2003, pp.

570–572, 2003.

[43] D. Dori, I. Reinhartz-Berger, and A. Sturm, “OPCAT-a bimodal CASE tool for

object-process based system development,” in 5th International Conference on

Enterprise Information Systems (ICEIS 2003), 2003, pp. 286–291.

[44] D. Wikarski, Petri Net Tools: a Comparative Study. Technische Universität Berlin,

Fachbereich 13, Informatik, 1997.

[45] J. L. Peterson, Petri Net Theory and the Modeling of Systems. Prentice Hall, 1981.

[46] S. Carlsen, “Conceptual modeling and composition of flexible workflow models,”

Citeseer, 1997.

[47] C. A. Petri, “Kommunikation mit Automaten,” PhD, University of Bonn, West

Germany, 1962.

[48] J. L. Peterson, “Petri Net Theory and the Modeling of Systems.,” PRENTICE-

HALL, INC., ENGLEWOOD CLIFFS, NJ 07632, 1981, 290, 1981.

[49] K. Jensen, Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical

Use - Volume 1, 2, & 3, Second Edition, 3 VOLUME SET. Springer Verlag,

1996.

[50] Y. Koren, U. Heisel, F. Jovane, T. Moriwaki, G. Pritschow, G. Ulsoy, and H. Van

Brussel, “Reconfigurable Manufacturing Systems,” CIRP Annals-Manufacturing

Technology, vol. 48, no. 2, pp. 527–540, 1999.

[51] R. Hill, “File:RMS schematic.gif - Wikipedia, the free encyclopedia,”

Reconfigurable Manufacturing System, 1999. [Online]. Available:

http://en.wikipedia.org/wiki/File:RMS_schematic.gif. [Accessed: 10-Dec-2011].

[52] M. G. Mehrabi, A. G. Ulsoy, and Y. Koren, “Reconfigurable Manufacturing

Systems: Key to Future Manufacturing,” Journal of Intelligent Manufacturing,

vol. 11, no. 4, pp. 403–419, 2000.

175

[53] H. A. ElMaraghy, “Flexible and Reconfigurable Manufacturing Systems

Paradigms,” International journal of flexible manufacturing systems, vol. 17, no.

4, pp. 261–276, 2005.

[54] M. Shpitalni and Y. Koren, “Design of Reconfigurable Manufacturing Systems,”

Journal of Manufacturing Systems, vol. 29, no. 4, pp. 130–141, Oct. 2010.

[55] A. Youssef and H. A. ElMaraghy, “Modelling and Optimization of Multiple-Aspect

RMS Configurations,” International journal of production research, vol. 44, no.

22, pp. 4929–4958, 2006.

[56] A. M. A. Youssef and H. A. ElMaraghy, “Optimal Configuration Selection for

Reconfigurable Manufacturing Systems,” International Journal of Flexible

Manufacturing Systems, vol. 19, no. 2, pp. 67–106, 2007.

[57] J. Dou, X. Dai, and Z. Meng, “Graph Theory-Based Approach to Optimize Single-

Product Flow-Line Configurations of RMS,” The International Journal of

Advanced Manufacturing Technology, vol. 41, no. 9, pp. 916–931, 2009.

[58] L. Tang, Y. Koren, D. M. Yip-Hoi, and W. Wang, “Computer-Aided

Reconfiguration Planning: An Artificial Intelligence-Based Approach,” J.

Comput. Inf. Sci. Eng., vol. 6, no. 3, pp. 230–240, 2006.

[59] Z. Cai and X. Yan, “Case Study on Reconfiguration Algorithm for Reconfigurable

Manufacturing System [J],” Journal of Computer Aided Design & Computer

Graphics, vol. 2, 2003.

[60] Z. Meng, J. Li, and X. Dai, “Hierarchical Petri net modelling of reconfigurable

manufacturing systems with improved net rewriting systems,” International

Journal of Computer Integrated Manufacturing, vol. 22, no. 2, pp. 158–177, Feb.

2009.

[61] L. Zhang and B. Rodrigues, “Modelling Reconfigurable Manufacturing Systems

with Coloured Timed Petri Nets,” International Journal of Production Research,

vol. 47, no. 16, pp. 4569–4591, Aug. 2009.

[62] L. C. Wang and S. Y. Wu, “Modeling with Colored Timed Object-Oriented Petri

Nets for Automated Manufacturing Systems,” Computers & industrial

engineering, vol. 34, no. 2, pp. 463–480, 1998.

[63] X. Dai, Z. Meng, and J. Li, “Improved Net Rewriting System-Based Approach to

Model Reconfiguration of Reconfigurable Manufacturing Systems,” The

International Journal of Advanced Manufacturing Technology, vol. 37, no. 11,

pp. 1168–1189, Jul. 2008.

[64] D. M. Buede, The Engineering Design of Systems: Models and Methods, 2nd ed.

Wiley, 2009.

176

[65] W. L. Chapman, A. T. Bahill, and A. W. Wymore, Engineering Modeling and

Design. CRC Press, 1992.

[66] A. Singh, “Architecture Value Mapping: Using Fuzzy Cognitive Maps as a

Reasoning Mechanism for Multi-criteria Conceptual Design Evaluation,” Ph.D.

Dissertation, Missouri University of Science and Technology, 2011.

[67] Wikipedia contributors, “Software Design Pattern,” Wikipedia, the free

encyclopedia. Wikimedia Foundation, Inc., 05-Sep-2012.

[68] E. Zitzler and L. Thiele, “Multiobjective Optimization Using Evolutionary

Algorithms—a Comparative Case Study,” in Parallel Problem Solving from

Nature—PPSN V, 1998, pp. 292–301.

[69] K. Deb, Multi-objective Optimization using Evolutionary Algorithms, vol. 16.

Wiley, 2001.

[70] Wikipedia contributors, “Abstraction (computer science),” Wikipedia, the free

encyclopedia. Wikimedia Foundation, Inc., 02-Aug-2012.

[71] “WordNet Search - 3.1.” [Online]. Available:

http://wordnetweb.princeton.edu/perl/webwn?s=abstraction. [Accessed: 07-Sep-

2012].

[72] L. Floridi and T. M. O. Abstraction, Levellism and the Method of Abstraction.

[73] B. Liskov and S. Zilles, “Programming with Abstract Data Types,” SIGPLAN Not.,

vol. 9, no. 4, pp. 50–59, Mar. 1974.

[74] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software, 1st ed. Addison-Wesley Professional, 1994.

[75] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Development

Process, 1st ed. Addison-Wesley Professional, 1999.

[76] D. F. D’Souza and A. C. Wills, Objects, Components, and Frameworks with UML:

The Catalysis(SM) Approach, 1st ed. Addison-Wesley Professional, 1998.

[77] B. P. Douglass, Doing Hard Time: Developing Real-Time Systems with UML,

Objects, Frameworks, and Patterns. Addison-Wesley Professional, 1999.

[78] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard, Object-Oriented

Software Engineering: a Use Case Driven Approach. Addison-Wesley, 1992.

[79] J. Rumbaugh, Object-Oriented Analysis and Design With Applications. Prentice

Hall, 1991.

177

[80] P. Kruchten, The Rational Unified Process: An Introduction. Addison-Wesley

Professional, 2004.

[81] P. Kroll and P. Kruchten, The Rational Unified Process Made Easy: A

Practitioner’s Guide to the RUP. Addison-Wesley Professional, 2003.

[82] K. Czarnecki, “Generative Programming: Methods, Techniques, and Applications

Tutorial Abstract,” in Software Reuse: Methods, Techniques, and Tools, vol.

2319, C. Gacek, Ed. Springer Berlin / Heidelberg, 2002, pp. 477–503.

[83] I. Jacobson, M. Griss, and P. Jonsson, Software Reuse: Architecture, Process and

Organization for Business Success. Addison-Wesley Professional, 1997.

[84] H. Van Dyke Parunak, R. Savit, and R. Riolo, “Agent-Based Modeling vs.

Equation-Based Modeling: A Case Study and Users’ Guide,” in Multi-Agent

Systems and Agent-Based Simulation, 1998, pp. 277–283.

[85] P. Fishwick, Simulation Model Design and Execution: Building Digital Worlds, 1st

ed. Prentice Hall, 1995.

[86] J. P. Dauby, “Assessing System Architectures: the Canonical Decomposition Fuzzy

Comparative Methodology,” Ph.D. Dissertation, Missouri University of Science

and Technology, Rolla, MO, USA, 2011.

[87] R. Kazman, M. Klein, and P. Clements, ATAM: Method for Architecture

Evaluation. Citeseer, 2000.

[88] Y. Akao, Quality Function Deployment: Integrating Customer Requirements into

Product Design. Productivity Pr, 2004.

[89] J. B. ReVelle, J. W. Moran, and C. A. Cox, The QFD Handbook, 1st ed. Wiley,

1998.

[90] T. L. Saaty, Analytical Hierarchy Process. Wiley Online Library, 1980.

[91] T. L. Saaty, The Analytic Network Process: Decision Making With Dependence and

Feedback, 2nd ed. Rws Pubns, 2001.

[92] K. P. Yoon and C.-L. Hwang, Multiple Attribute Decision Making: An

Introduction. SAGE, 1995.

[93] J. Figueira, S. Greco, and M. Ehrgott, Multiple Criteria Decision Analysis: State of

The Art Surveys, vol. 78. Springer Verlag, 2005.

[94] J. P. Brans and P. Vincke, “A Preference Ranking Organisation Method:(the

PROMETHEE Method for Multiple Criteria Decision-Making),” Management

science, pp. 647–656, 1985.

178

[95] S. Brandt, Data Analysis: Statistical and Computational Methods for Scientists and

Engineers, 3rd ed. Springer, 1998.

[96] C. Kahraman, Fuzzy Multi-Criteria Decision Making: Theory and Applications

with Recent Developments. Springer, 2008.

[97] T. J. Ross, Fuzzy Logic with Engineering Applications, 2nd ed. Wiley, 2004.

[98] R. M. Axelrod, The Structure of Decision: The Cognitive Maps of Political Elites;

Written Under the Auspices of the Institute of International Studies, University of

California (Berkeley) and the Institute of Public Policy Studies, the University of

Michigan. Books on Demand.

[99] S. Mizuno, Y. Akao, and K. Ishihara, QFD, the Customer-Driven Approach to

Quality Planning and Deployment. Asian Productivity Organization, 1994.

[100] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and

Techniques, 1st ed. The MIT Press, 2009.

[101] J. Pearl, Causality: Models, Reasoning, and Inference, vol. 47. Cambridge Univ

Press, 2000.

[102] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann, 1988.

[103] J. Pearl, “Decision Making Under Uncertainty,” ACM Computing Surveys

(CSUR), vol. 28, no. 1, pp. 89–92, 1996.

[104] D. Heckerman and others, “A Tutorial on Learning with Bayesian Networks,”

Nato Asi Series D Behavioural And Social Sciences, vol. 89, pp. 301–354, 1998.

[105] R. Kindermann, J. L. Snell, and A. M. Society, Markov Random Fields and Their

Applications. American Mathematical Society Providence, RI, 1980.

[106] J. Pearl, “From Conditional Oughts to Qualitative Decision Theory,” in

Proceedings of the Ninth international conference on Uncertainty in artificial

intelligence, 1993, pp. 12–20.

[107] Y. Weiss and W. T. Freeman, “On The Optimality of Solutions of the Max-

Product Belief-Propagation Algorithm in Arbitrary Graphs,” IEEE Transactions

on Information Theory, vol. 47, no. 2, pp. 736 –744, Feb. 2001.

[108] S. P. Meyn, R. L. Tweedie, and P. W. Glynn, Markov Chains and Stochastic

Stability, vol. 2. Cambridge University Press Cambridge, 2009.

[109] J. D. Sterman, “System Dynamics Modeling: Tools for Learning in a Complex

World,” California management review, vol. 43, no. 4, p. 8, 2001.

179

[110] E. O. Doebelin, System Dynamics: Modeling, Analysis, Simulation, Design. CRC,

1998.

[111] J. Sterman and J. D. Sterman, Business Dynamics: Systems Thinking and

Modeling for a Complex World with CD-ROM. McGraw-Hill/Irwin, 2000.

[112] “What is system dynamics?” [Online]. Available:

http://www.systemdynamics.org/what_is_system_dynamics.html. [Accessed: 16-

Aug-2012].

[113] M. J. Radzicki and R. A. Taylor, U.S. Department of Energy’s Introduction to

System Dynamics: A Systems Approach to Understanding Complex Policy Issues,

1.0 ed. U.S. Department of Energy, 1997.

[114] R. Axelrod, The Complexity of Cooperation: Agent-Based Models of Competition

and Collaboration. Princeton University Press, 1997.

[115] C. M. Macal and M. J. North, “Tutorial on Agent-Based Modelling and

Simulation,” Journal of Simulation, vol. 4, no. 3, pp. 151–162, 2010.

[116] C. M. Macal and M. J. North, “Tutorial on Agent-Based Modeling and

Simulation PART 2: How to Model with Agents,” in Simulation Conference,

2006. WSC 06. Proceedings of the Winter, 2006, pp. 73 –83.

[117] M. Gries, “Methods for Evaluating and Covering the Design Space during Early

Design Development,” Integration, the VLSI Journal, vol. 38, no. 2, pp. 131–183,

2004.

[118] P. Y. Papalambros and D. J. Wilde, Principles of Optimal Design: Modeling and

Computation. Cambridge Univ Pr, 2000.

[119] F. Kockler, “Systems Engineering Management Guide,” DTIC Document, 1990.

[120] O. De Weck, “Multiobjective Optimization : History and Promise,” The Third

China-Japan-Korea Joint Symposium on Optimization of Structural and

Mechanical Systems, Oct. 2004.

[121] R. T. Marler and J. S. Arora, “Survey of Multi-Objective Optimization Methods

for Engineering,” Structural and multidisciplinary optimization, vol. 26, no. 6, pp.

369–395, 2004.

[122] S. M. Lee, Goal Programming for Decision Analysis, 1st ed. Auerbach

Publishers, 1972.

[123] M. Schniederjans, Goal Programming: Methodology and Applications, 1st ed.

Springer, 1995.

[124] D. Jones and M. Tamiz, Practical Goal Programming. Springer, 2010.

180

[125] A. Abraham and L. Jain, “Evolutionary Multiobjective Optimization,”

Evolutionary Multiobjective Optimization, pp. 1–6, 2005.

[126] C. Vira and Y. Y. Haimes, Multiobjective Decision Making: Theory and

Methodology. North-Holland, 1983.

[127] R. Benayoun, J. De Montgolfier, J. Tergny, and O. Laritchev, “Linear

Programming with Multiple Objective Functions: Step Method (STEM),”

Mathematical programming, vol. 1, no. 1, pp. 366–375, 1971.

[128] J. T. Buchanan, “A Naive Approach for Solving MCDM Problems: The GUESS

Method,” Journal of the Operational Research Society, vol. 48, no. 2, pp. 202–

206, 1997.

[129] K. Miettinen and M. M. Mäkelä, “Interactive Bundle-Based Method for

Nondifferentiable Multiobjeective Optimization: NIMBUS,” Optimization, vol.

34, no. 3, pp. 231–246, 1995.

[130] A. Wierzbicki, “The Use of Reference Objectives in Multiobjective

Optimization-Theoretical Implications and Practical Experiences,” Int. Inst.

Applied System Analysis, Laxenburg, Austria, Working Paper WP-79-66, 1979.

[131] A. Jaszkiewicz and R. Słowiński, “The ‘Light Beam Search’approach–an

overview of methodology applications,” European Journal of Operational

Research, vol. 113, no. 2, pp. 300–314, 1999.

[132] L. M. Rios and N. V. Sahinidis, “Derivative-Free Optimization: A Review of

Algorithms and Comparison of Software Implementations,” Advances in

Optimization II”(AIChE 2009), 2009.

[133] S. P. Bradley, A. C. Hax, and T. L. Magnanti, Applied Mathematical

Programming. Addison-Wesley, 1977.

[134] T. G. W. Epperly, Global Optimization of Nonconvex Nonlinear Programs Using

Parallel Branch and Bound. 1995.

[135] P. N. Koch, J. P. Evans, and D. Powell, “Interdigitation for Effective Design

Space Exploration Using iSIGHT,” Structural and Multidisciplinary

Optimization, vol. 23, no. 2, pp. 111–126, 2002.

[136] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed.

Prentice Hall, 2009.

[137] Wikipedia contributors, “Hill Climbing,” Wikipedia, the free encyclopedia.

Wikimedia Foundation, Inc., 05-Aug-2012.

181

[138] “Artificial Intelligence/Search/Iterative Improvement/Hill Climbing - Wikibooks,

open books for an open world.” [Online]. Available:

http://en.wikibooks.org/wiki/Artificial_Intelligence/Search/Iterative_Improvemen

t/Hill_Climbing. [Accessed: 09-Aug-2012].

[139] M. Harman, S. A. Mansouri, and Y. Zhang, “Search Based Software

Engineering: A Comprehensive Analysis and Review of Trends Techniques and

Applications,” Department of Computer Science, King’s College London, Tech.

Rep. TR-09-03, 2009.

[140] B. S. Mitchell and S. Mancoridis, “Using Heuristic Search Techniques To Extract

Design Abstractions From Source Code,” in Proceedings of the Genetic and

Evolutionary Computation Conference, San Francisco, CA, USA, 2002, pp.

1375–1382.

[141] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, “Optimization by Simulated

Annealing,” science, vol. 220, no. 4598, pp. 671–680, 1983.

[142] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, “Equation

of State Calculations by Fast Computing Machines,” The Journal of Chemical

Physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[143] N. Tracey, J. Clark, and K. Mander, “Automated Program Flaw Finding Using

Simulated Annealing,” in Proceedings of the 1998 ACM SIGSOFT international

symposium on Software testing and analysis, New York, NY, USA, 1998, pp. 73–

81.

[144] S. Bouktif, H. Sahraoui, and G. Antoniol, “Simulated Annealing for Improving

Software Quality Prediction,” in Proceedings of the 8th annual conference on

Genetic and evolutionary computation, New York, NY, USA, 2006, pp. 1893–

1900.

[145] P. Baker, M. Harman, K. Steinhofel, and A. Skaliotis, “Search Based Approaches

to Component Selection and Prioritization for the Next Release Problem,” in

Proceedings of the 22nd IEEE International Conference on Software

Maintenance, Washington, DC, USA, 2006, pp. 176–185.

[146] F. Glover, “Tabu Search—Part I,” ORSA Journal on Computing, vol. 1, no. 3, pp.

190–206, Jun. 1989.

[147] F. Glover, “Tabu Search—Part II,” ORSA Journal on Computing, vol. 2, no. 1,

pp. 4–32, Dec. 1990.

[148] F. Glover, “Tabu Search: A Tutorial,” Interfaces, vol. 20, no. 4, pp. 74–94, Jul.

1990.

182

[149] E. Díaz, J. Tuya, R. Blanco, and J. Javier Dolado, “A Tabu Search Algorithm for

Structural Software Testing,” Computers & Operations Research, vol. 35, no. 10,

pp. 3052–3072, Oct. 2008.

[150] E. Diaz, J. Tuya, and R. Blanco, “Automated Software Testing Using a

Metaheuristic Technique Based on Tabu Search,” in in: Proceedings of the 18th

IEEE International Conference on Automated Software Engineering (ASE’03,

2003, pp. 310–313.

[151] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine

Learning. Addison-Wesley, 1989.

[152] H.-P. Schwefel and T. Bäck, Artificial Evolution: how and why? 1997.

[153] H. G. Beyer, The theory of evolution strategies. Springer-Verlag New York Inc,

2001.

[154] J. R. Koza, Genetic Programming: On the Programming of Computers by Means

of Natural Selection, 1st ed. A Bradford Book, 1992.

[155] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing. Springer,

2010.

[156] J. J. Dolado, “A Validation of the Component-Based Method for Software Size

Estimation,” IEEE Transactions on Software Engineering, vol. 26, no. 10, pp.

1006 –1021, Oct. 2000.

[157] J. . Dolado, “On The Problem of the Software Cost Function,” Information and

Software Technology, vol. 43, no. 1, pp. 61–72, Jan. 2001.

[158] S. Wappler, “Automatic Generation of Object-Oriented Unit Tests Using Genetic

Programming,” Universitätsbibliothek der Technischen Universität Berlin, 2007.

[159] S. Wappler and J. Wegener, “Evolutionary Unit Testing of Object-Oriented

Software Using Strongly-Typed Genetic Programming,” in Proceedings of the 8th

annual conference on Genetic and evolutionary computation, 2006, pp. 1925–

1932.

[160] I. F. Sbalzarini, S. Müller, and P. Koumoutsakos, “Multiobjective Optimization

Using Evolutionary Algorithms,” in Proceedings of the Summer Program, 2000,

vol. 2000.

[161] H. D. Jørgensen, “Interactive Process Models,” Department of Information and

Computer, 2004.

[162] S. Cohen and A. Soffer, “Scrutinizing UML and OPM Modeling Capabilities

with Respect to Systems Engineering,” in International Conference on Systems

Engineering and Modeling, 2007. ICSEM ’07, 2007, pp. 93 –101.

183

[163] “Semantics Of A Foundational Subset For Executable UML Models (FUML),

Version 1.0.” OMG, Feb-2011.

[164] “Concrete Syntax For UML Action Language (Action Language For

Foundational UML - ALF),” Concrete Syntax For UML Action Language.

[Online]. Available: http://www.omg.org/spec/ALF/. [Accessed: 24-Aug-2012].

[165] “Foundational UML Reference Implementation | ModelDriven.org.” [Online].

Available: http://portal.modeldriven.org/project/foundationalUML. [Accessed:

23-Jul-2012].

[166] R. Wang and C. H. Dagli, “Executable system architecting using systems

modeling language in conjunction with colored Petri nets in a model-driven

systems development process,” Systems Engineering, vol. 14, no. 4, pp. 383–409,

2011.

[167] I. Reinhartz-Berger and D. Dori, “OPM vs. UML–Experimenting with

Comprehension and Construction of Web Application Models,” Empirical

Software Engineering, vol. 10, no. 1, pp. 57–80, 2005.

[168] M. Peleg and D. Dori, “The Model Multiplicity Problem: Experimenting With

Real-Time Specification Methods,” Software Engineering, IEEE Transactions on,

vol. 26, no. 8, pp. 742–759, 2000.

[169] Y. Grobshtein and D. Dori, “Creating SysML Vews from an OPM Model,” in

Model-Based Systems Engineering, 2009. MBSE’09. International Conference on,

2009, pp. 36–45.

[170] K. Jensen, “An Introduction to the Practical Use of Coloured Petri Nets,”

Lectures on Petri Nets II: Applications, pp. 237–292, 1998.

[171] L. Wells, “Performance Analysis Using CPN Tools,” in Proceedings of the 1st

international conference on Performance evaluation methodolgies and tools,

2006, p. 59.

[172] L. Wells, “Performance Analysis Using Coloured Petri nets,” in 10th IEEE

International Symposium on Modeling, Analysis and Simulation of Computer and

Telecommunications Systems, 2002. MASCOTS 2002. Proceedings, 2002, pp. 217

– 221.

[173] C. Lakos, “Object Oriented Modelling with Object Petri Nets,” Concurrent

object-oriented programming and petri nets, pp. 1–37, 2001.

[174] T. Miyamoto and S. Kumagai, “A Survey of Object-Oriented Petri Nets and

Analysis Methods,” IEICE TRANSACTIONS ON FUNDAMENTALS OF

ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES E SERIES

A, vol. 88, no. 11, p. 2964, 2005.

184

[175] R. Kocef and V. Janousek, “System Design with Object Oriented Petri Nets

Formalism,” in Software Engineering Advances, 2008. ICSEA’08. The Third

International Conference on, pp. 421–426.

[176] J. Saldhana and S. M. Shatz, “UML Diagrams to Object Petri Net Models: An

Approach for Modeling and Analysis,” in International Conference on Software

Engineering and Knowledge Engineering, 2000.

[177] B. Farwer and I. Lomazova, “A Systematic Approach towards Object-Based Petri

Net Formalisms,” in Perspectives of System Informatics, 2001, pp. 255–267.

[178] C. Lakos, “From coloured Petri nets to object Petri nets,” Application and Theory

of Petri Nets 1995, pp. 278–297, 1995.

[179] C. Maier and D. Moldt, “Object Coloured Petri Nets-A Formal Technique for

Object Oriented Modelling,” Concurrent object-oriented programming and petri

nets, pp. 406–427, 2001.

[180] M. Peleg and D. Dori, “Extending the Object-Process Methodology to Handle

Real-Time Systems,” ournal of Object-Oriented Programming (JOOP), vol. 11,

no. 8, pp. 53–58, 1999.

[181] L. Zhou, E. A. Rundensteiner, and K. G. Shin, “Schema Evolution of an Object-

Oriented Real-Time Database System for Manufacturing Automation,” IEEE

Transactions on Knowledge and Data Engineering, vol. 9, no. 6, pp. 956–977,

Dec. 1997.

[182] DStudio, “Opcat Systems.” [Online]. Available: http://www.opcat.com/.

[Accessed: 25-Dec-2011].

[183] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson, “Feature-

Oriented Domain Analysis (FODA) Feasibility Study,” Nov. 1990.

[184] P. Trinidad, “Abductive Reasoning and Automated Analysis of Feature Models:

How are they connected?” 2009.

[185] “Arc inscriptions << CPN Tools Homepage.” [Online]. Available:

http://cpntools.org/documentation/concepts/colors/inscriptions/arc_inscriptions.

[Accessed: 27-Aug-2012].

[186] K. Jensen, “An Introduction to the Theoretical Aspects of Coloured Petri Nets,”

A decade of Concurrency Reflections and Perspectives, pp. 230–272, 1994.

[187] “python-snakes - SNAKES is the net algebra kit for editors and simulators,”

python-snakes. [Online]. Available: http://code.google.com/p/python-snakes/.

[Accessed: 27-Aug-2012].

185

[188] “Guards << CPN Tools Homepage.” [Online]. Available:

http://cpntools.org/documentation/concepts/colors/inscriptions/guards. [Accessed:

27-Aug-2012].

[189] “Code segments << CPN Tools Homepage.” [Online]. Available:

http://cpntools.org/documentation/concepts/colors/inscriptions/code_segments.

[Accessed: 27-Aug-2012].

[190] D. Dori, R. Feldman, and A. Sturm, “From conceptual models to schemata: An

object-process-based data warehouse construction method,” Information Systems,

vol. 33, pp. 567–593, Sep. 2008.

[191] “Petri Nets Tool Database.” [Online]. Available: http://www.informatik.uni-

hamburg.de/TGI/PetriNets/tools/db.html. [Accessed: 18-Aug-2012].

[192] E. Brinksma, H. Hermanns, and J.-P. Katoen, Lectures on Formal Methods and

Performance Analysis: First EEF/Euro Summer School on Trends in Computer

Science Berg en Dal, The Netherlands, July 3-7, 2000. Revised Lectures.

Springer, 2001.

[193] A. Law and W. D. Kelton, Simulation Modeling and Analysis, 3rd ed. McGraw-

Hill Science/Engineering/Math, 1999.

[194] K. Jensen, L. M. Kristensen, and L. Wells, “Coloured Petri Nets and CPN Tools

for modelling and validation of concurrent systems,” International Journal on

Software Tools for Technology Transfer, vol. 9, no. 3–4, pp. 213–254, Mar. 2007.

[195] A. Iglesias, “Pure Petri Nets for Software Verification and Validation of

Semantic Web Services in Graphical Worlds,” International Journal of Future

Generation Communication and Networking, vol. 3, no. 1, pp. 33–46, 2010.

[196] L. W. Wagenhals, S. Haider, and A. H. Levis, “Synthesizing Executable Models

of Object Oriented Architectures,” in Proceedings of the conference on

Application and theory of petri nets: formal methods in software engineering and

defence systems-Volume 12, 2002, pp. 85–93.

[197] K. Jensen, Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical

Use. Volume 1, 2nd ed. Springer, 2003.

[198] P. Buchholz, J. P. Katoen, P. Kemper, and C. Tepper, “Model-Checking Large

Structured Markov Chains,” Journal of Logic and Algebraic Programming, vol.

56, no. 1, pp. 69–97, 2003.

[199] S. Naguleswaran and L. B. White, “Planning Without State Space Explosion:

Petri Net to Markov Decision Process,” International Transactions in Operational

Research, vol. 16, no. 2, pp. 243–255, 2009.

186

[200] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés, “FAMA: Tooling a

Framework for the Automated Analysis of Feature Models,” in Proceeding of the

First International Workshop on Variability Modelling of Software-intensive

Systems (VAMOS), 2007, pp. 129–134.

[201] “inspyred: Bio-inspired Algorithms in Python — inspyred 1.0 documentation.”

[Online]. Available: http://inspyred.github.com/. [Accessed: 27-Aug-2012].

[202] “Timed Nets << CPN Tools Homepage.” [Online]. Available:

http://cpntools.org/documentation/concepts/time/start. [Accessed: 31-Jul-2012].

[203] “Franck Pommereau: Nets in nets with SNAKES.” [Online]. Available:

http://pommereau.blogspot.com/2010/01/nets-in-nets-with-snakes.html.

[Accessed: 03-Sep-2012].

[204] “Resources | Graphviz - Graph Visualization Software.” [Online]. Available:

http://www.graphviz.org/Resources.php. [Accessed: 03-Sep-2012].

[205] S.-Y. Son, “Design Principles and Methodologies for Reconfigurable Machining

Systems,” Ph.D. Dissertation, 2000.

[206] L. Tang, “Design and Reconfiguration of RMS for Part Family,” University of

Michigan, 2006.

[207] V. Maier-Speredelozzi, S. J. Hu, and others, “Selecting Manufacturing System

Configurations Based on Performance Using AHP,” Technical Paper Society of

Manufacturing Engineers MS, no. MS02–179, pp. 1–8, 2002.

[208] A. Youssef and H. ElMaraghy, “A New Approach for RMS Configuration

Selection,” in Proceedings of the CIRP 3rd International Conference on

Reconfigurable Manufacturing, 2005, pp. 10–12.

[209] D. Batory, D. Benavides, and A. Ruiz-Cortes, “Automated Analysis of Feature

Models: Challenges Ahead,” Communications of the ACM, vol. 49, no. 12, pp.

45–47, 2006.

[210] D. Benavides, P. Trinidad, and A. Ruiz-Cortés, “Automated Reasoning on

Feature Models,” in Advanced Information Systems Engineering, 2005, pp. 381–

390.

[211] D. Batory, “Feature models, grammars, and propositional formulas,” Software

Product Lines, pp. 7–20, 2005.

[212] D. Benavides, P. Trinidad, and A. Ruiz-Cortés, “Using Constraint Programming

to Reason on Feature Models,” in IN THE SEVENTEENTH INTERNATIONAL

CONFERENCE ON SOFTWARE ENGINEERING AND KNOWLEDGE

ENGINEERING, 2005.

187

[213] D. Streitferdt, M. Riebisch, and K. Philippow, “Details of Formalized Relations

in Feature Models Using OCL,” in Engineering of Computer-Based Systems,

2003. Proceedings. 10th IEEE International Conference and Workshop on the,

2003, pp. 297–304.

[214] A. Kimms, “Minimal Investment Budgets for Flow Line Configuration,” Iie

Transactions, vol. 32, no. 4, pp. 287–298, 2000.

[215] K. Deb, A. Pratap, S. Agrawal, and T. Meyarivan, “A Fast Elitist Non-

Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-

II,” in Parallel Problem Solving from Nature PPSN VI, 2000, pp. 849–858.

[216] “Manned Lunar Landing Program Mode Comparison,” NASA, NASA-TM-X-

66764, Jul. 1962.

[217] “Manned Lunar Landing Mode Comparison,” NASA, NASA-TM-X-66763.

[218] “Apollo 11 Mission Reports,” NASA, Houston, Texas, MSC-00171, Nov. 1969.

[219] E. Frazzoli, M. A. Dahleh, and E. Feron, “Robust Hybrid Control for

Autonomous Vehicle Motion Planning,” in Decision and Control, 2000.

Proceedings of the 39th IEEE Conference on, 2000, vol. 1, pp. 821–826.

[220] D. M. Reeves, M. D. Scher, A. W. Wilhite, and D. O. Stanley, “The Apollo

Lunar Orbit Rendezvous Architecture Decision Revisited,” 2005.

[221] B. P. Zeigler, H. Praehofer, and T. G. Kim, Theory of Modeling and Simulation,

Second Edition, 2nd ed. Academic Press, 2000.

[222] N. A. Gershenfeld, The Nature of Mathematical Modeling. Cambridge University

Press, 1999.

[223] E. F. Crawley, O. L. de Weck, S. D. Eppinger, C. L. Magee, J. Moses, W.

Seering, J. Schindall, D. Wallace, and D. Whitney, “The Influence of Architecture

in Engineering Systems,” 2004.

188

VITA

Renzhong Wang received his B.E. with Honors in Automobile and Tractor

Engineering from the Jilin University of Technology, China in July 1998 and the M.S.

degree in Systems Engineering from the University of Missouri-Rolla (now Missouri

University of Science and Technology) in 2007. Between earning these two degrees, he

had over six years work experience in the automotive industry, including working in the

field of automobile testing and technical standards at the China Automotive Technology

& Research Center (CATARC) and assisting in the administration of the domestic

automotive industry at the State Administration of Machinery Industry, the State

Economic & Trade Commission, and the National Development and Reform

Commission, consecutively. He received his Doctor of Philosophy Degree in Systems

Engineering from the Missouri University of Science and Technology, Rolla, Missouri,

USA in 2012.

Renzhong Wang has been a member of the International Council on Systems

Engineering (INCOSE), the Institute of Electrical and Electronics Engineers (IEEE), and

the Society of Automobile Engineers (SAE International), as well as the Tau Beta Pi

Honor Societies. His research on the optimum system architecture development using

computational intelligence won the INCOSE Foundation/Stevens Institute Doctoral

Award for Promising Research in Systems Engineering and Integration for 2008. His

research interest includes system modeling and analysis, executable system architecting,

data mining and knowledge discovery, and computational intelligence. He is currently

employed as a research engineer and is working on developing cyber security solutions.

	Search-based system architecture development using a holistic modeling approach
	Recommended Citation

	II

