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Abstract 

Although much work has been done on assessing safety requirements in 

programmable systems, one very important aspect, the integration of hazard 

evaluation procedures and requirements engineering, has been somewhat neglected. 

This thesis describes the derivation and application of a methodology, HAZAPS 

(HAZard Assessment in Programmable Systems). The methodology assists at the 

requirements stage in the development of safety-critical embedded systems. The 

objectives are to identify hazards in programmable systems, construct and model the 

associated safety requirements, and, finally, to assess these requirements. HAZAPS 

integrates safety engineering and software modelling techniques. The analysis of 

more than 300 computer related incidents provided the criteria used to identify, select 

and modify safety engineering techniques. 

There are four stages in the HAZAPS process: a) safety-critical subsystems are 

identified using domain analysis; b) Fault Tree Analysis (FTA) is used to identify the 

contributors to the hazards and to specify safety requirements; c) task synthesis and 

a new modelling technique (the Event Time Diagram or ETD) are then used to 

understand and analyse operational tasks associated with the safety requirements; 

and, d) the principles of HAZard and Operability Studies (HAZOP) and Failure Mode 

and Effects Analysis (FMEA) are used to assess the safety requirements. A HAZAPS 

tool has been developed for the Windows environment using an expert system shell. 

The HAZAPS tool can be used to record all information generated during the 

HAZAPS process. 

This thesis makes a novel contribution to the field of re-use of incident data to permit 

feedback into the design of safety-critical software. It represents a novel synthesis of 

hazard evaluation procedures with requirements engineering. The methodology 

conceived and developed in this study has been tested on industrial systems and 

proved to be effective. 
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CHAPTER!: 

Introduction 

Despite the widespread use of 'embedded systems' (real time control systems used for 

automated production lines, weapon systems, antilock braking systems, medical systems, 

etc.), the most efficient and effective way of designing, building, testing and maintaining 

safety-critical systems is by no means obvious. Our understanding of the methods and 

procedures used in the development of safety-critical systems is rapidly improving through 

research [Redmill, 1993; Malcolm, 1994] and the establishment of standards and guidelines 

[MoD 00-55, 1991; MoD 00-56, 1993; MoD 00-58, 1995; IEC Standard, 1995; MIL-STD-

882C, 1993; RTCA D0-178B, 1992]. However, many of the methods proposed for 

requirements capture and specification have their origins in traditional software engineering 

rather than the safety aspects of systems engineering; and the techniques proposed for hazard 

evaluation are not proven for software systems. There is also a false perception that, if 

enough effort and money are used in the building of a safety-critical system, the system will 

be safe. Yih et al. [1995] discuss three nuclear power plant projects (the P20 project of 

Chooz B, France; the shutdown system of the Darlington plant, Canada; and the primary 

protection system of Sizewell B, UK) all of which had high verification costs and yet still 

faced doubts about their potential safety performance. 

1.1 System safety and software 

The safety of a system can be defined as the likelihood that the system will not lead to a state 

in which human life or the environment is endangered [lEE Report, 1992]. The subjective 

nature of this definition introduces the first problem when building safety-critical systems, 

that is, how to recognise that the system has safety implications in the first place. For 

example, in the case of the London Ambulance incident [Arthur, 1992], the safety 

implications were not recognized (or, if they were, the project managers did not know how 

to deal with them). On the other hand, recognizing a system as 'safety-critical' is no 

guarantee that a safe system will be built, as is illustrated by the two cases [Boming, 1987] 

where well-established, well-understood ballistic missile early warning systems alerted 

operators to imaginary attacks. lEE [1989] emphasises the subjective nature of safety 
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Safety is a concept which is not fixed in either time or space. Attitudes to safety, and 

tolerance of danger, are subjective and variable over time and circumstance. 

Industries have attempted to address this problem by identification of more objective 

aspects of safety, with particular definitions of words such as 'hazard' and 

'situation'. 

When assessing the safety of a system, it is usual to use the word 'hazard' because this 

allows us to focus on situations in which there is an actual or potential danger. A 'hazard' 

is defined as 

... a physical situation with a potential for human injury, damage to property, 

damage to the environment or some combination of these [Jones, 1992] 

Although a computer does not in itself contain hazards, it controls (or fails to control) 

equipment that can contribute to a hazardous situation. This stresses the significance of the 

software system interface. The internal behaviour of the software (i.e. internal states and 

state transitions) results in changes in the external behaviour of the system via the interface 

and this may result in a hazardous situation. Safety-critical software is defined in MoD 00-

55 standard as software used to implement a safety-critical function i.e. as a property of the 

use of the software, not as an intrinsic property of the software [Ravn et al., 1990]. Safety 

is a property of the total system, not the sum of the safety properties of the individual parts. 

1.2 Problems and proposed solutions 

The Ariane V rocket was exploded after take-off in June 1996 because there was a major 

software design fault introduced during the conception of the system and the software had 

not been tested in relevant conditions [Abbott, 1996; Amelan, 1996]. The director of the 

European Space Agency stated 

There have been errors of conception, of specification and of verification in testing 

[Irwin, 1996]. 

Problems associated with programmable safety-critical embedded systems can be described 
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in terms ofthe three areas mentioned in the above quotation (i.e. conception, specification 

and testing). The following three sections outline these problem areas and describe the 

approach used in this thesis to solve these problems. 

1.2.1 Conception 

Problems arise at the conception of a system because the expertise required is often 

partitioned into different disciplines (e.g. pneumatics, electrical engineering, mechanical 

engineering, medical instrumentation, software engineering etc.).It is difficult to integrate 

the different views and there is a tendency to view the total system from one perspective 

only. 

In this thesis a novel methodology is proposed which will unify disparate expertise into 

models, methods and procedures that can relate the needs of all users in an integrated 

fashion. The methodology is based on the generification of tasks and a new graphical 

technique. This methodology permits special consideration to be given to interfaces at which 

the different disciplines interact because this is where problems are likely to occur. 

1.2.2 Specification 

A major difficulty in developing safety-critical systems is in determining how to specify 

safety requirements. The safety requirements must express constraints on both the target 

system and the embedded system in a coherent manner. 

It is desirable to interrelate hazards in the environment to programmable states in the 

embedded system. There are several approaches to identifying hazards in embedded 

systems, for example (a) starting with a top level hazard and using a deductive technique to 

identify programmable events that are related to this top level hazard, or (b) starting with a 

programmable event and using an inductive technique to identify top level hazards 

associated with this programmable event. Neither (a) nor (b) is feasible because the search 

would become intractable. 
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In this thesis a new system model is proposed which will use a combination of inductive and 

deductive techniques and integrates hazard evaluation procedures and requirement 

engineering techniques. Existing safety and software engineering techniques will be 

customised so that results can be logically and systematically passed from one technique to 

another. 

1.2.3 Testing 

Testing of safety-critical systems presents an even greater challenge than testing of non

safety-critical systems because it is not sufficient to test only software and hardware but the 

environment and human interactions with the system must also be considered. Traditional 

testing techniques used for testing programmable systems are not adequate for safety-critical 

systems. For a safety-critical system one must identify what should not happen as well as 

what should happen. 

In this thesis patterns will be abstracted from incidents and a generic framework constructed. 

This framework will subsequently be embedded in a methodology that can be used by 

developers when building new systems. The framework will be accessed by adopting an 

operational approach which will consider the software, hardware and human interaction 

associated with the system. 

1.3 Structure of the thesis 

The structure of the thesis is as follows: 

Chapter 2: Hazard evaluation procedures and requirements engineering. This chapter is 

related to sections 1.2.1. and 1.2.2 above. The purpose of this chapter is to review how 

people identify and specify requirements for programmable systems. Different strategies for 

developing safety-critical systems are described. Various requirements and software 

engineering techniques are investigated to analyse their suitability for safety-critical systems. 

Ways of integrating hazard evaluation procedures and software engineering techniques are 

compared and contrasted with the objective of identifying the limitations of current 

approaches. 
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Chapter 3: Using incident analysis to construct a methodology. This chapter is related to 

section 123 above. The purpose ofthis chapter is to demonstrate how the knowledge gained 

from analysing incidents can be reused when developing and testing safety-critical 

programmable systems. The benefits of incident analysis are described. The derivation of 

a model for analysing the sequence of events associated with an incident is demonstrated and 

discussed. It is shown how analysis of incidents can be used to construct a generic 

framework which can later be incorporated into a methodology for assessing the safety of 

programmable systems. 

Chapter 4: The HAZAPS methodology. This chapter is related to sections 1.2.1, 1.2.2 and 

1.2.3. The purpose of this chapter is to define the underlying principles of the HAZAPS 

methodology .It describes the development and application of the models and methods used 

in the methodology, including the derivation of a system model used to interrelate safety 

engineering and software engineering techniques. It outlines the procedures used for each 

stage of the HAZAPS methodology. 

Chapter 5: The HAZAPS tool. The tool developed to support the HAZAPS methodology 

is discussed. The requirements, design, implementation and operation of the HAZAPS tool 

are described. 

Chapter 6: Applications of HAZAPS. The purpose of this chapter is to evaluate the 

HAZAPS methodology using an illustrative example and two case studies; one carried out 

on a rotary screen line printing press and the other on a water treatment plant. The 

objectives of applying HAZAPS were to a) show typical results, b) demonstrate the benefits, 

c) identify any major difficulties, and d) show how HAZAPS can be applied to different 

application domains. The results of the assessments are discussed. 

Chapter 7: Conclusions and further work. This chapter describes what has been achieved. 

It discusses the novelty and limitations of the methodology and also shows how the 

methodology can be refined and extended. 
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CHAPTER2: 

Hazard Evaluation Procedures and 

Requirements Engineering 

The addition of software to a system increases the complexity of the system and makes it 

more difficult to evaluate the safety of the system. Table 2.1 details the advantages and 

disadvantages of using programmable systems. To benefit from the advantages of using 

software in safety systems, strategies must be developed to overcome the problems outlined 

in Table 2.1 and thus ensure a safe system. 

2.1 Strategies for building safety-critical programmable 

systems 

The literature reveals a number of different approaches to building safety-critical systems; 

authors tend to select an approach which best relates to their particular specialist 

knowledge/expertise. These can be classified under the headings fault avoidance, fault 

forecasting ,fault removal and fault tolerance. 

2.1.1 Fault Avoidance 

Fault Avoidance has been defined as: 

The use of design techniques and implementation methods which aim to prevent, by 

CONSTRUCTION, fault occurrence or introduction.[Schoitsch et al. 1990] 

Techniques that can be used for fault avoidance include structured methods, prototyping, 

formal methods, quality control measures and use of computer tools. De Panfilis [1991] 
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Table 2.1: Advantages and disadvantages of using programmable 
systems 

Advantages Disadvantages 
[Parnas et at, 1990; Barlow & Smith, 1990; [Jooes, 1991; Pamas et al, 1990; Smith & Wood, 1989; 

Prosser, 1993) Younl, 1985] 

Flexibility Requirements often poorly thought out 
and planned 

Fewer devices/functions, thus saving No satisfactory procedures yet 
on space, weight and power established for validation of software 

Improved performance Increases uncertainty and makes it 
difficult to predict failure modes 

Easier to modify and reconfigure in the Trivial errors can have major 
field consequences 

Lower costs Makes it difficult to impose standard 
approach to design 

Allows self-test and early warning Difficult to control software changes 
diagnostics 

Provides more information to operators Exhaustive testing almost impossible, 
since number of possible paths through 
the software is usually very high 

Susceptible to common mode failures 
whereby a single failure defeats 
redundancy 

Data and programs can be corrupted by 
interference 

proposes prototyping as a fault avoidance technique. The advantages of prototyping are that 

it supports a better understanding of user requirements and allows refinement of high level 

requirements in an iterative and incremental manner, thus minimising design errors. Bowen 

& Stavridou [1993] suggest there is an enormous gap between what can be achieved by fault 

tolerance and fault removal and what is required to build ultra-high dependability systems. 

They suggest that fault avoidance using formal methods in conjunction with other 
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techniques may help close this gap. Although there are many procedures and methods that 

can be used for fault avoidance, in practice, no technique can guarantee avoidance of all 

errors. Nevertheless, facilities can be built into these techniques to make it easier to forecast, 

tolerate and remove faults at a later stage. 

2.1.2 Fault Forecasting 

Fault forecasting has been defined as: 

The use of techniques to estimate, by EVALUATION, the presence, creation and 

consequences of faults. [Schoitsch et al., 1990]. 

Fault avoidance, fault removal and fault tolerance are often discussed, whereas fault 

forecasting tends to be overlooked. This is partly because fault forecasting is usually 

classified with fault avoidance. Fault forecasting techniques include FfA, HAZOP and 

FMEA. The advantage of fault forecasting is that safety can be considered explicitly and 

consequences that must be avoided can be investigated without the need to focus on all 

requirements [Rushby, 1994]. In other words, fault forecasting emphasises safety analysis 

and hazard control rather than focusing on correctness [Leveson, 1991]. Integrating fault 

avoidance and fault forecasting techniques provides a very powerful combination to aid in 

the development of safety-critical systems. 

2.1.3 Fault Tolerance 

Fault Tolerance can be described as: 

The built-in capability of a system to provide continued correct services by 

REDUNDANCY despite of a limited number of faults (hardware or software) 

[Schoitsch et al., 1990; Bowen & Stavridou, 1993]. 

Yount [1985] describes several techniques that have been used to implement fault tolerance: 

basic (similar) redundancy, software fault tolerance techniques, dissimilar processor 
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hardware, and dissimilar backup systems. He believes that it is better to use a fault-tolerance, 

rather than a fault avoidance approach to safety-critical systems development. He also 

maintains that fault-tolerant architectures are more cost effective than fault avoidance 

architectures because of the increasing cost of verification and validation in the latter. Others 

[Laprie, 1993; Prorok et al., 1992] claim that fault tolerance techniques can increase the 

complexity of a system and thus decrease dependability. Bowen & Stavridou [1993] 

maintain that the (supposed) benefits of using a fault-tolerance approach are contentious, and 

that the overall gain in using this approach may not be significant. In practice, both fault 

avoidance and fault tolerance approaches are used when building safety-critical systems. 

2.1.4 Fault Removal 

Fault Removal has been defined as: 

The use of techniques to minimize the presence of faults by VERIFICATION 

throughout the development phases [Schoitsch et al., 1990]. 

Prorok et al. [1992] maintain that we should not depend on fault avoidance or fault tolerance 

techniques to ensure a safe system, but that safety-critical software should be rigorously 

tested before release. They emphasize the importance of a testing framework which allows 

progressive testing throughout the development of the product. Schoitsch et al. [1990] 

describe fault removal techniques including testing on several system levels as part of the 

overall design strategy. The testing procedures are white box testing (module testing), 

blackbox testing (functional testing) and safety tests (functional tests with respect to safety). 

Test cases are derived from the user requirements specification and by simulation. 

2.1.5 Selecting a strategy 

At present, there is no way of ensuring a fault-free programmable system, nevertheless, by 

careful application of relevant techniques, the overall risk can be reduced. The best strategy 

seems to lie in selecting a combination of techniques and trying to ensure that the 

disadvantages of one technique are overcome by the use of another technique. Before 

selecting a combination of techniques, therefore, it is essential to identify the strengths and 

weaknesses of each technique and to establish at which stage in the lifecycle the technique 

Page9 



can be most effectively applied. Rushby [1994] claims that, since faults in the requirements 

specification are the primary source of catastrophic failures in critical systems, in order to 

make a major advance in the development of safety-critical systems, we should focus on 

techniques that can be used early in the lifecycle. This is not surprising as the percentage 

of software errors reported in the requirements phase varies from 44% to 66%; it is also 

worth noting that estimated costs for correcting such errors at a later stage vary from 200 to 

1000 times the original cost (Bowen & Stavridou, 1993; Reifer, 1979; HSE, 1995; Jaffe et 

al., 1991). It is important to adopt a system-wide multidisciplinary approach to cope with 

the continual increase in complexity of embedded systems. If, for example, the original 

specification is incomplete or incorrect, then, even the use of formal proofs and/or fault 

tolerant techniques based on that specification will not ensure the delivery of a safe system. 

Improved requirements elicitation methods and specification techniques (fault avoidance 

approach) should be integrated with traditional safety engineering techniques (fault 

forecasting approach) to minimise the risk of errors being introduced later in the product 

lifecycle. The next section examines requirements engineering techniques and their 

applicability to safety, and the following section discusses hazard evaluation procedures and 

their integration into software development. 

2.2 Requirements engineering 

There are a number of requirements engineering techniques that one can use. The choice of 

technique depends on the particular phase of the requirements process and on the specific 

application. Wallace & Ippolito [1993] state:-

The major objectives of the software requirements process are to fulfil the system 

and software objectives, develop software requirements based on and traceable back 

to the system requirements and to provide complete, consistent, testable and 

understandable information from which the software may be designed. 

The first step in fulfilling these objectives is to 'identify' the system requirements. Jirotka 

& Goguen [1994] discuss terms used to describe this process, namely to capture,specify, 
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elicit or construct requirements. The term elicit implies that the requirements are to be found 

amongst the managers, users etc. Specifying and constructing are terms taken from other 

engineering disciplines, the first implying that someone with the necessary technical skills 

can produce the requirements more or less as a matter of routine, and the second implying 

that the requirements do not exist but must be synthesized from the engineering process. 

Finally,capturing implies that requirements are elusive but are waiting to be caught. From 

the safety perspective specifying and constructing are important because they relate to 

interaction with other disciplines; capture refers to those difficult to define requirements 

related to the interface between the software and the system. All these terms are used for 

requirements engineering because all of these activities are part of the requirements 

engineering process and moreover these activities are closely coupled together in a process 

which is concurrent and iterative. Some requirements engineering techniques are better 

suited than others to particular activities. 

Different frameworks have been used to evaluate requirements engineering techniques. 

Yadav et al. [1988] developed a framework to compare Structured Analysis Design 

Technique (SAD1) and Data Flow Diagrams (DFDs) based on four dimensions: syntactic, 

semantic, communicating ability and usability. Evaluation criteria are associated with both 

the syntactic and semantic dimensions. These evaluation criteria are related to levels of 

abstraction, viewpoint, complexity, completeness and correctness. Lindland et al. [1994] use 

similar dimensions (i.e syntactic, semantic) for their framework but subsume communicating 

ability and usability into a single dimension pragmatics which relates the model to audience 

participation by considering, not only the syntax and semantics dimensions, but how the 

audience will interpret them. A model is a global term to describe what is used to analyse 

the problem, and audience refers to anyone involved in modelling. The framework of 

Lindland et al. [1994] was proposed as a means of determining the quality of the 

requirements engineering process. Each dimension has a goal and means, where means has 

associated model properties and modelling activities. For example, syntactic quality has goal 

(correctness) and associated means has model property (formal syntax) and model activity 

(syntax checking). The author considers that the following dimensions are important in the 

requirements process for safety-critical systems: 
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Multi-disciplinary dimension - stressing the importance of cooperation 

between participants of different disciplines, 

+ Modelling dimension - signifying the importance of capturing and 

understanding the safety requirements, 

+ Specification of external system behaviour - highlighting the importance of 

the software system interface. 

2.2.1 Multi-disciplinary perspective 

Ross [1977] stated that :-

Our efforts have for too long been misplaced towards the system end of the scale. 

The real solution lies toward the human end of the scale where the real needs must 

be recognised and channelled into strengthened machinery for system building. 

Today our efforts are still focused on trying to achieve this objective, the emphasis has 

shifted from a technology centred view to a user centred view; in effect, for complex 

systems, the emphasis is on eliciting rather than specifying requirements. Kedzierski [1988] 

analysed the time spent on different activities during the development of complex software 

and found that over half the time is spent gathering all the necessary information and solving 

problems that arise from unsatisfactory information and communication. This is supported 

by results [Herbsleb et al., 1995] indicating that the major sources of designers' uncertainties 

are in obtaining sufficiently detailed knowledge of the application domain and how the 

software will function. For safety-critical systems, since the knowledge and expertise is 

distributed among people of different disciplines and since requirements elicited are 

important for subsequent safety analysis, effective communication during the requirements 

process is paramount. Ill-conceived requirements, often arising from uncertainties, are a 

recipe for disaster. 

For simple systems, the software analyst can elicit requirements from the user and specify 
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them in a model (using graphical or mathematical notation), without regard to whether other 

participants in the project can understand or interpret the specification method. This 

approach is not acceptable for safety-critical systems, as a software analyst may be 'naive' 

about safety principles and, in practice, cannot be expected to have specialist knowledge of 

a complex system of which the software is only a subsystem. It is vital that those responsible 

for identifying safety concerns can both understand and interpret the external behaviour 

described in the requirements specification. The problem lies in identifying models suitable 

for specifying safety-critical systems that are also amenable to interpretation by other 

participants. For ill-defined problems, Martin [1980] suggests that .... the optimal strategy 

would be to choose a set of projections that are 'orthogonal' to or 'different' from one 

another in many separate senses, so that they each represent a very different 'slice' through 

both the problem situation and the user's body of experience. From the safety perspective 

one 'slice' should allow all participants to analyse the external interfaces and their associated 

safety implications. 

2.2.2 Modelling 

Models are invariably used in the design and building of systems. Since the only perfect 

model of a system is the system itself, models are necessarily idealized and do not perfectly 

match the real world situation. No amount of mathematical analysis will reveal discrepancies 

between the model being used and the real situation [Pamas et a!, 1990]. Also, models may 

be perfectly adequate for one purpose but woefully inadequate for another. For example, 

for a given application, a model may prove very useful for data analysis, but completely 

inadequate for safety analysis. The general approach is to abstract pertinent features from 

the model so that we can focus on relevant issues; this may involve successive model 

building using analytic or synthetic methods. Different approaches to modelling include 

participative, structured, object oriented and formal methods. 

2.2.2.1 Participative Methods: The participative approach [Benyon & Skidmore, 1987] 

ranges from highly socially-oriented methods to the more technically-oriented traditional 

prototyping methods. At the social end of the scale, we have ethnography which is a method 

of capturing the social activity (e.g. procedures, practices) of the users of a proposed or 
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existing system and involves the ethnographer spending several months observing the users. 

Sommerville et al. [1993] discuss the requirements for a user interface to a flight database 

which is used to provide real-time information to air traffic controllers and describes how 

sociologists can contribute to requirements engineering using ethnography. They state 

Ethnography is distinct from traditional systems analysis in that it focuses on the 

participants and their interactions in a system rather than the data, its structure and its 

processing. Ethnography could be useful for the development of safety-critical systems as 

it provides a means of capturing interdisciplinary knowledge. The problem is converting this 

knowledge into structured information. The Viewpoint technique provides a possible means 

of solving this problem. It takes Viewpoints of different participants (agents) involved in a 

project where Viewpoints are partial or incomplete descriptions which arise because of the 

different responsibilities or roles assigned to the agents and the analysis of Viewpoints 

embraces the relations between views, between views and agents, and between agents 

[Finkelstein & Sommerville, 1996]. Although the Viewpoint technique is very flexible, this 

flexibility may give rise to problems when integrating the different Viewpoints at the end 

of the process. The proposed methodology of Jarke et al. [1993] is similar to Viewpoints 

in that it is based on organising requirements knowledge according to four related 'worlds' 

(system, subject, usage and development). The methodology focuses on the embedding of 

systems in their environment rather than on systems functionality and structure. The system 

world is related to the subject, usage and development world via representation, interface 

and process. The development world is related to the usage world via participation (e.g. 

prototyping). 

The classical prototyping approach involves the following iterative cycle [Pressman, 1994] 

(a) quick design, (b) building prototype, (c) customer evaluation of prototype, (d) refining 

prototype. This approach can be very useful for safety-critical systems where one is often 

dealing with uncertainty and complexity, however, Jaffe et al. [1991] point out that 

prototyping has the same limitations as testing in that behaviour can only be guaranteed for 

certain inputs, not for all inputs. 

2.2.2.2 Structured Methods: In the early 1970's Structured Methods were developed as a 

means of defining the behaviour of a system independently of the means of implementation. 
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It was introduced as a technique for partitioning, structuring and expressing ideas and relies 

heavily on graphics to indicate structure and relationships. Ross [1977], the originator of 

Structured Analysis Design Technique (SADT), makes a number of salient points relevant 

to structured analysis in general:-

+ SADT is based on structured decomposition, and enables structured 

synthesis to achieve a given end; 

SADT incorporates any other language; its scope is universal and 

unrestricted; 

+ The structured decomposition may be carried out to any required degree of 

depth, breadth, and scope; 

+ The universality of SADT makes it particularly effective for requirements 

definition for arbitrary systems problems. 

Data Flow Diagrams (DFDs) are the basic entity in many structured methods (excluding 

SADT). A DFD models the processes that transform data in a system and the interfaces 

between those processes by emphasising data flowing, being stored, and being transformed. 

The components of a DFD are data flows, transformation processes and data stores (Fig. 

2.1). Data flows represent an imaginary route along which data passes. The details of each 

data flow is defined in a data dictionary. Each data transformation process in the DFD has 

inputs and outputs. The data flows that enter are processed and a new or modified data flow 

leaves the process. A data store is a store for various items of data in the system. Data stores 

hold data transferred or received via data flows, and represent accumulations of data within 

the system. DFDs may be partitioned into levels that represent increasing functional detail. 

The top level DFD is usually referred to as the context diagram. The bottom levels represent 

processes that are sufficiently simple to be implemented from the specification alone. 

Extensions to DFD notation have been proposed to model real-time systems [Pressman, 

1994]. The extensions proposed by Ward [1986] (known as the Ward & Melior' approach) 

are also shown in Fig. 2.1. These extensions are: a control transformation process, 

continuous data flows, event flows and buffers. Finite State Machines [Mealy, 1955] can be 

used to define a control transformation. The continuous data flow is introduced to deal with 

real time data (e.g. the data from a sensor which is continuously monitoring the state of a 
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plant). Event flows are used to represent flow of control data. The buffer stores control 

information. The Ward & Melior approach appears to be an appropriate technique for 

modelling safety-critical systems as it contains all the basic modelling primitives that are 

needed (i.e. events, time, control and data flows). 
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Fig. 2.1: Standard and extended DFD notation [after Ward, 1986] 

2.2.2.3 Object Oriented Methods: There are many object oriented methods such as OMT 

[Rumbaugh et a!, 1991], BOOCH [Booch, 1991], and COAD/YOURDON [Coad & 

Yourdon, 1991]. The fundamentals of the object oriented approach are that:-

(i) each object has associated with it data and operations; 

(ii) groups of similar objects can be defined in terms of a common class where 

these classes may be arranged in a hierarchy; 

(iii) objects communicate by sending messages to each other whereby the 

receiving object uses one of its operations to respond to a message. 

Advantages of taking an object oriented approach rather than using the structured methods 

discussed above, include: reusability, easier maintenance, the models are closer to reality, 

and there is smoother transformation from the analysis model to the implementation model. 

Rurnbaugh et al. [1991] points out that structured methods and object oriented approaches 

are similar because they both support three different models of the system (object, dynamic 
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and functional). The difference between the two approaches is that the object oriented 

approach emphasises the object model whereas structured methods emphasise the functional 

model. This has important consequences when identifying safety concerns because 

structured methods favour a top down decomposition and the object oriented approach 

favours a bottom up method (this feature makes reuse possible). For safety-critical systems, 

the dynamic model is paramount. It is difficult to determine whether an object oriented 

approach or a structured methods approach produces more suitable dynamic models for 

safety-critical systems because there are so many different dynamic models used in the 

various object oriented approaches and, in some cases, the same dynamic models are used 

in both structured methods and the object oriented approach. 

The object oriented lifecycle consists of object oriented analysis (OOA), object oriented 

design (OOD) and object oriented programming (OOP). Cuthill [1993] states:-

The OOD properties of encapsulation, abstraction, inheritance and refinement 

reinforce the safety-critical design features of modularity, functional diversity and 

traceability. 

However, one of the major difficulties of all requirements techniques is in establishing how 

to capture the requirements in the first place. Although many object oriented approaches 

provide excellent detail on OOD and OOP, they provide very little help on OOA. As 

Embley et al. [1995] pointed out in their survey of various approaches (including OMT, 

BOOCH and COAD/YOURDON), all approaches adopt a design perspective rather than 

providing real analytical support. Jacobson et al. [1993] propose both a requirements and 

an analysis model, the requirements model being constructed using use cases which model 

the interaction between the user and the system. Use cases have been adopted in the 

proposed amalgamation of OMT and BOOCH methods [Rumbaugh, 1996]. Another 

approach to aid requirements capture is concept maps [Umphress & March, 1991]. A 

concept map is a graphical representation of ideas that we have about objects and links 

between these ideas (e.g. nouns are concepts, and verbs are links). If we are to use an object 

oriented approach for safety-critical systems, we must have an understandable and precise 

method of relating safety concerns and the requirements model. 
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2.2.2.4 Formal Methods: Bowen & Stavridou [1993] carried out a survey on the use of 

formal methods in different industries (aviation, railway, nuclear power plants, medical and 

ammunition control). They discuss the use of formal methods in a number of safety-critical 

standards. Although the standards RTCA D0·178B, IEC and MoD 00-55 have a formal 

methods content, formal methods are only mandatory in MoD 00-55. It is interesting to note 

that MIL-STD-882C does not even mention formal methods. It is often claimed that the use 

of formal methods leads to concise, unambiguous and exact specifications without 

explaining why this is true. Rushby [1995] describes why formal methods are useful and, 

in particular, discusses their relevance to safety-critical systems. He points out that the major 

difficulties with software are complexity and discontinuity of behaviour. All possible 

behaviours must be considered under all circumstances and the discontinuous nature of the 

input/output relationship (i.e. a small change in input can result in a large change in output, 

or, local actions can have nonlocal consequences) must be modelled. Rushby [1995] states 

that formal methods provide us with a means of ... identifying and grouping "essentially 

similar" pieces of behaviour together so that all members of a group can be dealt with at 

a single shot . .... By composing small pieces of behaviour together to yield larger and larger 

parts of the complete behavior, we eventually cover all possible end-to-end behaviors 

without having to enumerate them explicitly. 

Some disadvantages of formal methods are:-

+ A formal specification does not ensure completeness. It may be proved to be 

correct, but this does not guarantee that all system requirements have been 

addressed. 

Formal methods are not understandable to the non-computer specialist. In 

describing formal specifications, McHugh [1993] writes, While precise and 

supporting analyses based on theorem proving, the formal specification 

languages of the computer scientist often fail to satisfy the communications 

role that is the primary concern of IEC880 and similar standards. 

+ A formal mathematical proof is time consuming and only suitable for very 

small programs, a few thousand.Jines at most [Jesty et al, 1991]. 

+ Formal methods do not model 'real world' entities, instead they focus chiefly 

on syntax and semantics of the language in question [Jackson & Zave, 1993]. 
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Formal methods have been recommended and criticised for the wrong reasons, most of this 

controversy arises because of incorrect suggestions as to why they should be used and when 

they should be used. Formal methods are very useful for requirements analysis but not for 

requirements capture. At present, a reasonable approach to requirements engineering for 

safety-critical systems might involve the application of an informal technique, followed by 

a semi-formal (possibly scenario-driven) method, and finally, a formal method with the 

ability to model timing behaviour. 

2.23 Specifying external system behaviour 

We can associate the difficulties of specifying the behaviour of embedded systems with 

those of real time systems, namely:-

+ How to handle complexity; 

+ How to model static and dynamic relationships; 

+ How to specify behaviour in order to facilitate testing . 

This might suggest that it is worth investigating real-time specification methodologies, 

however, the question is not simply one of semantics and syntax, but of how real world 

behaviour can be specified. The ideal situation would be to model the environment 

explicitly. In discussing embedded systems, Zave & Yeh [1986] state ... the best way to 

derive the requirements for a system is to model its environment (probably bottom-up, 

synthesizing many views and diverse pieces of information), and then work 'outside-in' to 

the specification of requirements for an appropriate system. This is followed by top-down 

design and implementation of a system to meet the requirements. Synthesizing, in this 

context could be interpreted as elicitation (using, for example, the Viewpoint approach 

discussed above). Outside-in emphasises the importance of specifying an operational or 

external behaviour. 

Davis [1988] compared a number of techniques for the specification of external system 

behaviour: Natural Language; Finite State Machines; Decision Tables and Decision Trees; 

Program Design Language; Structured Analysis/Real-Time (e.g Ward & Mellor); 
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Statecharts; Requirements Engineering Validation System (REVs); Requirements Language 

Processor (RLP); Specification and Description Language; Process-oriented Applicative and 

Interpretable Specification Language (PAISLey). Davis's criteria included:-

+ The technique should encourage users to think and write in terms of external 

product behaviour in preference to internal product components. 

+ The resultant software requirements specification (SRS) should be helpful 

and understandable to non-software specialists. 

+ The resultant SRS should serve effectively as the basis for design and 

testing. 

Davis [1988] scores each of these criteria on a scale from 0 (poor) to 10 (excellent). Adding 

up the respective values, shows the highest scoring techniques (using all criteria, not just the 

three quoted above) were RLP (SO),Statecharts (48), REVs (45) and PAISLey (42). 

2.2.3.1 Requirements Language Processor (RLP): RLP [Davis, 1988] uses as the 

organisational unit of the SRS, a stimulus response sequence which is a trace of a two-way 

dialogue between the system under specification and its environment. Typical dialogues are 

based on scenario generation, and correspond to user-oriented, user-known, external system 

features. The language used is dependent on the particular application (e.g. Ballistic Missile 

Defence; Patient Monitoring). Once the language has been defined, RLP can check the 

requirements for correct syntax and semantics. Davis [1988] pointed out that the choice 

between RLP and REVs (see below) should be based on the questions a customer might ask. 

For example, if the questions are about features rather than particular stimuli, RLP should 

be chosen. 

2.2.3.2 Statecharts: Statecharts [Hare!, 1987] are extensions to Finite State Machines. 

These extensions permit hierarchical decomposition of states, and the specification of 

transitions dependent on global conditions. The addition of these extensions make Finite 

State Machines more suitable for the specification of external behaviour of real-time 

systems. Statecharts have been used in a modified form to specify the safety properties for 

a traffic alert and collision avoidance system [Craigen et al., 1994]. The statecharts were 
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changed to emphasize transition logic by incorporating a tabular representation of predicate 

calculus. The resultant SRS was found to be more reviewable and tractable than the pseudo

code version which had been created previously. 

2.2.3.3 Requirements Engineering Validation System (REVs): The original motivation 

for REVs was based on a US Department of Defense directive which emphasized the need 

for early software visibility, risk reduction, through software requirements analysis prior 

to the second Defense System Acquisition Review Council review of a weapon system 

(DSARC //) and greater 'front end' development [Alford, 1977]. REVs has three main 

components (a) a translator for the Requirements Statement Language (RSL); (b) a 

centralized data base; (c) a set of automated tools for processing the information in the data 

base. Requirement Statement Language (RSL) has an associated graphical notation, R-nets 

[Bell et al., 1977]. R-nets are an extension to Finite State Machines and are used as the basic 

unit to represent the system's external behaviour; the fundamental entity being a stimulus. 

The R-net can be viewed as a column of a state transition matrix [Davis, 1988]. 

2.2.3.4 Process-oriented Applicative and Interpretable Specification Language 

(PAISLey): PAISLey, an executable specification language for embedded systems, includes 

specification methods and analysis techniques, and takes an operational view of the 

proposed system [Zave, 1991].The specification language is founded on the principles of 

asynchronous processes and functional programming; it predicts by simulation the 

performance of complex behaviour which would be difficult to determine analytically. 

PAISLey representation emphasizes the cyclic nature of the behaviour of components and 

its notation integrates data, processing and control in a unified whole. This is in contrast to 

RSL (see above) which emphasizes sequences and does not integrate data, processing and 

control [Zave, 1986]. Another functional programming language, Haskell has been used on 

a safety-critical project and it has been claimed that functional programming can be used as 

the key technology in the development of complex systems of significant size [Chudleigh 

et al., 1996]. 

The following conclusions can be drawn from Davis's data. RLP got the highest overall 

score (50) because if provided the best automatic test generation facility whereas PAISLey 
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scored the lowest (42) because it is difficult to understand. On ability to represent external 

behaviour, RLP once more scored the highest (8),just ahead of REVs (7). These methods 

got a higher score than Statecharts (5) because Statecharts require specification of explicit 

external signals for an entity before defining the entity's internal structure. PAISLey scored 

3. RLP, Statecharts, REVs and PAISLey facilitate an operational approach to requirements 

specification. 

2.3 Integration of hazard evaluation procedures and 

software development 

Although many hazard evaluation procedures are available to the safety engineer, it is 

difficult to determine which of these are appropriate for systems containing embedded 

software. Even in traditional safety engineering, the selection of a technique is by no means 

obvious as no single hazard evaluation procedure is suitable for all purposes. Safety-critical 

software standards recommend that hazard analysis be applied throughout the lifecycle, 

therefore, it is necessary to select technique(s) suitable for varying levels of detail depending 

on the associated objectives. The results from different phases of the lifecycle must be 

integrated so that software faults that contribute to hazards can be identified. In his 

discussion on hazard identification for chemical plants, Ozog [1985] states:-

Hazard assessment should be a continuous process throughout the life of a facility. 

There are optimum times to conduct studies - during conceptual design, design 

freeze, and pre-startup periods, as well as while the plant is being operated. 

The purpose of any hazard evaluation procedure is to identify hazards and either eliminate 

them or reduce the associated risk to a tolerable level; for programmable systems this 

includes identifying in the design process all errors that may lead to hazardous conditions 

in the system in which the software is embedded. Also, if hazard evaluation procedures are 

initiated early in the software lifecycle, it is easier to modify the system, thus saving time 

and reducing costs. As discussed above, the ideal way to achieve a safe system would be 

through fault avoidance, however, as this is not feasible, we look at what fault forecasting 
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techniques might be suitable to complement fault avoidance techniques. A problem with 

many hazard evaluation techniques is in determining how to incorporate them into the 

software development lifecycle; this problem is further exacerbated by the imprecise 

semantics of traditional hazard evaluation procedures. We must identify the hazardous 

characteristics of the proposed system, and consider these in relation to the requirements 

engineering process. In the next section we look at hazard evaluation procedures and 

describe how they have been incorporated in software development. 

2.3.1 Hazard evaluation procedures 

2.3.1.1 Checklists: The Checklist approach is popular, easy to use and can be applied at all 

stages of the project. It can simply consist of a list of potential hazards with the onus being 

on the safety analyst to associate the ·list with the proposed system and environment. 

Checklists can be generic, application specific or sector specific. Sources of Checklists are 

reported in Leveson [1995], Wells & Wardman [1994] and Hammer [1980]. Checklists can 

be compiled for the complete development of programmable systems or for particular stages 

in the development. The Health and Safety Executive [1987] provides guidelines- including 

Checklists for safety requirements specification, hardware, software, installation, testing, 

operations and maintenance modification. It should be noted that only a multidisciplinary 

expert team familiar with all these aspects can respond to all items on the Checklist. Lutz 

[1993] compihid a safety Checklist for use in the analysis of software requirements.lt was 

derived from common safety-related errors discovered during system testing. The focus was 

on inadequate interface requirements and discrepancies between the documented 

requirements and the requirements actually needed for correct functioning of the system. 

Kolb & Ross [1980] consider Checklists to be 'hard to compile, easy to misuse'. No matter 

how much effort is expended on creating a Checklist, there is no guarantee that it is 

complete. 

2.3.1.2 Fault Tree Analysis (FfA): FrA analysis is a top-down approach that focuses on 

a top event (e.g. accident) and then analyses the system to determine what single event or 

combinations of events could have led to the top event. The underlying logic of FrA is not 

difficult to understand, however, the construction of a meaningful Fault Tree requires in 
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depth understanding of the system and expertise in the associated domain. Taylor [1994A] 

suggests a series of steps for constructing a Fault Tree:-

+ choose top event [this could be selected, for example, from a serious 

consequence identified in a What-If study or a Failure Modes and Effects 

Analysis (FMEA)]; 

+ identify possible causes in general terms (using case histories or 

morphological searches); 

+ localise hazards to specific places in the plant; 

+ identify various chains of disturbances, searching for individual component 

failure modes; 

identify individual causes of component failures. 

Once the Fault Tree has been constructed, the major contributors to hazards can be identified 

and the Fault Tree used to eliminate hazards or reduce the risk to a tolerable level. It is 

important that the level of detail is not so complex as to make the evaluation of hazards 

intractable. Fussell et al. [1974] point out that PTA is of major value in:-

+ directing the analyst to ferret out failures deductively; 

+ pointing out the aspects of the system which are important with respect to the 

failure of interest; 

+ providing a graphical aid to those in system management who are remote 

from the system design changes; 

+ providing options for qualitative or quantitative system reliability analysis 

+ allowing the analysis to concentrate on one particular system failure at a 

time; 

+ providing the analyst with genuine insight into system behaviour. 

2.3.1.3 HAZard and OPerability Study (HAZOP): HAWP is the most popular technique 

used for chemical process plant, and is also used in many other systems (e.g. mechanical, 

electrical and transport) [Robinson, 1995]. The aim ofHAZOP is to generate credible causes 

of deviations from design intention and to identify consequences [Wells & Wardman, 1994]. 

The general HAZOP approach involves using triggers or guidewords and applying them to 

a model of the system. This approach can be used from the conceptual design stage of a 
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project, right through to the commissioning stage.lt is systematic, employs a team approach, 

and allows an exploratory approach to the identification of hazards. A HAZOP study results 

in a number of recommendations for design, equipment or operating philosophy 

improvements [A!ChemE, 1985]. There are different types ofHAZOP. Standard HAZOP 

uses the guidewords NO, MORE, LESS, AS WELL AS, PART OF, REVERSE, OTHER 

THAN that can be applied to different process parameters (e.g flow [CIA, 1977]). The 

A!ChemE [1993] guidelines describe two variations of HAZOP, Knowledge-Based HAZOP 

and Creative Checklist HAZOP. In Knowledge-Based HAZOP the guidewords are replaced 

by the team leader's knowledge and specific checklists. Creative Checklist HAZO P is very 

similar to Preliminary Hazard Analysis. At an early stage in the project only materials and 

block layouts of plant are known and consequently only 'block' hazards can be identified; 

a hazards checklist (e.g. fire, toxicity) is used. Another variation, Human HAZOP, has been 

proposed to analyse human interaction with the process where standard guidewords are 

interpreted in terms of human error (e.g. NO is interpreted as NOT DONE, and REVERSE 

is interpreted as LATER THAN or MISORDERED [Whalley, 1988]). 

It should be noted that HAZOP is a time consuming process, it identifies many more 

OPerability problems than HAZards, and combinatorial explosion results if process 

deviations are analyzed in conjunction with input/output states of computer hardware. 

Taylor [1989] points out weaknesses of HAZOP when applied to process systems. For the 

more curious and rare modes, the analysis depends on expertise. HAZOP's process does not 

get down to the deep causes of some types of accident. Taylor [1989] suggests bolstering 

the HAZOP process with past histories in the form of generalised Fault Trees. 

2.3.1.4 Failure Modes and Effects Analysis (FMEA): FMEA (originally designed for 

reliability studies) is a methodical study of component failures. The process involves 

recording component failures on a data tabulation sheet and analyzing them individually so 

that the consequences of the failures can be identified. A criticality ranking can be assigned 

for each failure mode (Failure Modes & Effects Criticality Analysis; FMECA) which helps 

to focus on those areas of the design considered to be the most dangerous. FMEA helps to 

determine areas of a design where redundancy should be implemented, and to identify 

compensating features for those single point failures where elimination is impractical 
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[Reifer, 1979]. It is a bottom up approach that can be very thorough if all failure modes can 

be identified, however, it is very time consuming. AIChemE [1993] guidelines emphasise 

the importance of selecting the level of resolution, as this determines the detail to be 

included in the FMECA tables; the guidelines mention a plant level (e.g feed system) and 

a system level (e.g feed pump). Also, since all failures are not safety-related, FMEA is not 

an effective method of hazard identification, unless one can target safety-related 

components. Taylor [1994A] states:-

The success of Failure Modes and Effects Analysis depends on the analyst having 

a good understanding of what failure modes can occur within a process plant, and 

what modes it is necessary to distinguish to ensure a reasonably complete analysis. 

2.3.1.5 What-If: What-If [Nolan, 1994; AIChemE, 1993] is similar to HAZOP (described 

above) in that it is a safety review based on team effort and it uses an exploratory approach. 

The difference is that, in What-If, instead of selecting a process parameter (e.g. temperature) 

and applying a guideword (e.g. NO), a more application specific What-If question is posed 

(e.g. What-If MOTOR MS1 stops during startup?). It is not systematic. A What-If review 

is usually combined with a Checklist and is useful for identifying possible accident 

scenarios. Nolan [1994]1ists the following advantages of What-If:-

+ It can be accomplished with a relatively low skill level. 

+ It is fast to implement, compared to other qualitative techniques. 

+ It can analyze a combination of failures. 

+ It is flexible. 

2.3.2 Selecting a hazard evaluation procedure 

The underlying principles of the techniques described above are not complicated, the 

difficulty lies in determining which technique to use, when to apply that technique, and how 

to integrate that technique into the software lifecycle. Montague [1990] states that, for the 

chemical industry, the choice of technique is dependent on a number of factors, namely:-

the objectives of the study, the complexity of the chemical process, the age of the plant or process, 

the data requirements of the study, the resources available for the study, the level of expertise 

required in the use of the technique, and the potential consequences of accidents. 
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Important considerations based on these factors include:-

+ objectives may demand quantitative and/or qualitative techniques; 

+ level of detail may indicate a coarse or fine screening technique; 

+ the complexity of the system determines how sophisticated the technique 

should be; 

+ if a new system is being built, the technique must be particularly suited to 

Preliminary Hazard Analysis (PHA); 

+ regulations and standards may dictate the choice of technique; 

+ available expertise may limit the choice of technique; 

+ the consequences of potential accidents determine how much in-depth 

analysis is required. 

Hazard evaluation techniques are often combined. For example, Rushton [1994] carried out 

a survey on the use of HAZOP in the offshore industry, and found that the majority of 

correspondents selectively use FTA and FMEA in conjunction with HAZOP. This is not 

surprising as the completeness of individual methods has been shown to be very poor. 

Suokas & Rouhiainen [1989] carried out HAZOP studies on storing and loading/unloading 

of sulphur dioxide and ammonia. HAZOP identified a total of 77 accident contributors, two 

further techniques (Action Error Analysis and Work Safety Analysis) discovered 23 further 

contributors. 

The choice of technique is dependent on the part of the lifecycle at which it is to be applied. 

There are various suggestions as to which techniques are appropriate for different phases in 

the chemical industry. Nolan [1994] proposes the Checklist approach for the 

Concept/Exploratory phase, followed by What-If for the pre-design stage, and finally 

HAZOP for the detailed design stage. FMEA has been suggested for both the pre-design and 

design stage and FTA for the detailed design stage [AlChemE, 1985] (Fig.2.2). In the 

standards (MIL-STD-882C and MoD 00-55), different types of hazard analysis and their 

associated phases have been described (Fig. 2.2). These include [MIL-STD-882C]: 

Preliminary Hazard Analysis (PHA): To identify safety-critical areas, to provide an initial 

assessment of hazards, and to identify a strategy for controlling these hazards. 

Page 27 



Subsystem Hazard Analysis (SSHA): To verify subsystem compliance with safety 

requirements contained in subsystem specifications and other applicable documents. 

To identify hazards and to recommend a strategy for dealing with hazards and risks. 

Concept 
Exploration 

Checklist 

Pre-Design 

What-if 

.FMEA 

: ,; ' : = 

Detailed 
Design 

HAZOP 

FTA 

:·,:,' : :: ;J 

Product 
Deployment 

Operation 

jL........c.;..;'-'=...;;.;.;'-'-'---'j =technique used at this stage only if modifications made to product after detailed design 

Fig. 2.2: Hazard evaluation procedures and associated types of hazard analysis 

(based on information from Nolan, 1994; A!ChemE, 1995; MIL-STD-882C, 1993) 

I 

System Hazard Analysis (SHA): To verify system compliance with safety requirements 

contained in system specifications and other applicable documents, to identify 

hazards and risks associated with subsystem interfaces and system functional faults, 

to recommend actions necessary to eliminate hazards or reduce the risk to an 

acceptable level. 

Operating and Support Hazard Analysis (O&SHA): To evaluate activities for hazards or 

risks introduced into the system by operational and support procedures and to 

evaluate the strategy for dealing with these hazards or risks. 
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The MoD standard 00-56 subsumes SSHA and O&SHA, into SHA. The difficulty is in 

correlating the different hazard evaluation procedures with the different types of analysis. 

MIL-STD-882C does not specify any hazard evaluation techniques to be used. The MoD 

standard [00-56] suggests using HAZOP at the PHA stage. Note that Wells & Wardman 

[1994] distinguish between PHA and HAZOP. They suggest that PHA starts at the point of 

a dangerous disturbance rather than a process deviation. The IEC standard states that FTA, 

HAZOP and FMEA are highly recommended for systems with high integrity levels, 

however, it does not state how they should be applied. Using infonnation from the 

traditional application of hazard evaluation techniques, one might propose the matching 

shown in Fig.2.2. However, looking at previous workers' methods of assessing hazards in 

programmable systems (fable 2.2), shows there is no definitive matching of techniques and 

phases in the software lifecycle. Checklist and What If procedures are not included in Table 

2.2 as they are not commonly used when integrating hazard evaluation procedures and 

software modelling techniques. 

2.3.3 Approaches to integrating hazard evaluation procedures in the 

development of safety-critical programmable systems 

An analysis of how hazard evaluation procedures have been integrated into software 

development (fable 2.2) shows that:-

all combinations and a number of pennutations of FT A, HAZOP and FMEA 

have been used ; 

+ the same hazard evaluation procedures have been used for evaluation of 

different stages of the system lifecycle; 

+ different software engineering modelling techniques have been used with the 

same hazard evaluation procedure. 

2.3.3.1 FTA: FTA has been used at the system level, sub-system level and code level. FTA 

has also been used in conjunction with the 'Viewpoint' technique [Seward et al.,1995]. 
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Table 2.2: Different approaches to integrating hazard evaluation 
procedures and software modelling techniques 

Author(s) Hazard Evaluation 
Procedure 

HAZOP FMEA 

Software Modelling 
Technique 

Seward et al. (1995) Viewpoints 

Mojdehbakhsh et a! (1994). DFD 

Shebalin et al. (1988) 

Leveson & Stolzy (1983) 

Reunanen & Heikilli (1991) 

Chudleigh & Oare (1993) 

MoD 00-58 (1995) 

Bums & Pitblado (1993) 

Reifer (1979) 

Klein & Lali (1990) 

Canning (1990) 

Saeed et al. (1995) 

Maier (1995) 

ESA (1991) 

Fenelon et al. (1995) 

Hobley & Jesty (1995) 

Pink et al. (1993) 

Taylor (1994B) 

= procedure used 
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Ward/Melior 

DFD 

DFD or Object-Oriented 

Object-Oriented 

Ward/Melior 

DFD or Object-Oriented 

Goal Approach 

Passport Cross 



Hazards are associated with Viewpoints and, subsequently, possible contributors to these 

hazards are identified using FrA. Mojdehbakhsh et al. [1994] identify both system and 

software safety faults using FrA, and use DFDs to help identify top events for FrA and 

determine the software safety faults that might contribute to hazards. They point out two 

limitations of FrA, namely, its informality and the lack of a method of specifying temporal 

relationships. Shebalin et al. [1988] suggest an FrA approach for safety analysis for 

distributed systems. Their approach involves identifying undesired system events and then 

constructing a system fault tree for each of the events. The resultant fault tree nodes which 

represent hazardous action taken by a component are analysed by associating with them 

different generic failure modes (inappropriate command transmission; command failure; 

and, incorrect data sent). These failure modes form the top events for subsequent fault tree 

analysis. Leveson & Stolzy [1983] use fault trees to analyse the logic of software (SFrA) 

and to determine safety violations. To achieve this, they present fault tree templates for some 

basic ADA constructs (e.g. if-Then-Else Statement, While Statement). McDermid [1996] 

has made some salient points regarding this approach namely:-

+ SFrA should be applied top down; 

+ using the OR gate to represent the sequential composition of statements as 

specified in Leveson & Stolzy's templates is incorrect; 

+ SFrA based on the template-approach can be an effective analysis technique. 

The major challenge of using FrA from system level down to software code level is to find 

an effective method of transferring the results at each level of abstraction. 

2.3.3.2 HAZOP: Most attempts at integrating HAZOP into the software development 

process have included a software modelling technique. This is not surprising as, unlike FrA, 

traditional HAZOP has no associated logical representation, but is focused on piping and 

instrumentation or engineering line diagrams. The differences between the approaches to 

using HAZOP focus on how the deviation from design intention is represented. For instance, 

Reunanen & HeikiHi [1991], using the Ward & Melior approach (see above) analyse the 

deviations of flows on a state transition diagram, and Chudleigh & Oare [1993] using DFDs 

(see above) focus on deviations of the modelling entities (e.g. the entity process has 
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associated deviations: FAILURE, ERROR, WRONG PROCESS, INTERRUPTED; and the 

entity data flow has associated deviations CORRUPTED, NONE, WRONG 

SOURCE/SINK). Problems arise because of the difficulty of applying traditional HAZOP 

to programmable electronic systems. The MoD 00-58 standard proposes new guidewords 

and suggests the approach is valid for functional or object-oriented representations. Bums 

& Pitblado [1993] also recognise the need for new guidewords, emphasise the significance 

of human error in computer controlled plants, and mention a number of incidents in which 

human error played a significant part. They propose new parameters and guidewords for 

'Human' HAZOP, namely, INFORMATION (associated guidewords NO, MORE, LESS) 

and ACTION (associated guidewords NO and WRONG). 

It is important to remember that HAZOP has its origins in Method Study [Elliott & Owen, 

1968]. The first three stages of Method Study [Currie, 1972] are:-

+ select - the work to be studied; 

+ record- all the relevant facts of the present (or proposed) method; 

+ examine - those facts critically and in sequence. 

It is significant that the purpose of examination in Method Study was to determine 

alternatives not deviations, the assumption being that the method under examination could 

be clearly defined. The problems that arise with present approaches to software HAZOP 

appear to be due to the focus on this third stage examine (e.g. addition and refinement of 

guidewords) without the necessary attention to the select and record stages. Transferring 

these stages to software, select could be interpreted as 'determine the right level of 

abstraction' and record could be interpreted as inodel effectively'. 

2.3.3.3 FMEA: FMEA approaches are generally based on functional failure rather than 

component failure. Reifer [1979] proposed that the software requirements specification be 

analysed to identify mission-essential requirements and failure-critical factors, where failure 

factors are defined as software errors that are serious enough to cause the program, when 

aecuted, to either abort or degrade before the mission objective is realized. Both mission

essential requirements and failure-critical factors are determined using checklists derived by 
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analyzing previous projects. The requirements are refined until detailed FMEAs are 

produced and then each failure mode is evaluated and the corresponding effect at the 

software level determined. Klein & Lali [1990] propose that FMEA be performed for the 

functional modes of each system, subsystem or component. They claim FMEA, PHA and 

O&SHA are very similar but point out that, with FMEA, it is difficult to identify safety 

related failure modes that are not caused by equipment failures. They refine the FMEA 

method by incorporating:-

+ lack of proper safeguards in the design; 

+ lack of operator training to follow procedures; 

+ lack of human engineering causing operator error. 

Canning [1990] states that, for complex computer systems, FMEA may not be tractable for 

individual components. She suggests that FMEA be carried out at a functional level and 

states that this has an added advantage as it ensures that the assessment is independent of the 

means of implementation 

For FMEA to be effective, it is essential to create generic failure modes, regardless of the 

'view' (subsystem, functional, component) selected. The biggest drawback of FMEA 

appears to be its lack of ability to interrelate failures of interacting entities. 

2.3.3.4 FfA & HAZOP: Saeed et al. [1995] suggest HAZOP as a means of identifying 

safety related failure modes in the requirements phase. The guidewords are based on an error 

classification scheme and vary depending on the applicable domain. Two domains are 

described, a value domain and a time domain: guidewords for the value domain are 

ARBITRARY and DETECfABLE and guidewords for the time domain are LATE, EARLY 

and INFINITELY LATE. Having identified the failure modes, FTA is then used to 

determine those circumstances that can lead to the postulated failure modes. The graphical 

notation of Rumbaugh et al.[1991] is used and the principal modelling abstraction is the 

interactor which corresponds to a class in object oriented terminology. The interactor has 

slots: a name, a collection of components, declarations of constants and variables, and a 

behaviour specification. 
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2.3.3.5 FTA & FMEA: The most popular approach appears to be combining FfA and 

FMEA with a modelling technique. Maier [1995] suggests using FfA or Highlevel Fault 

Tree Analysis (HFfA) to derive safety requirements, followed by application of FMECA 

to the user requirements specification. Finally, FMEA and FfA are used to review the 

software requirements document. FMEA is applied to nodes i.e. data stores and processes 

which have been constructed using the Ward & Melior approach (see above). Generic failure 

modes associated with nodes are:-

+ the failure to send a message, consequently, the message is missing at the 

following node; 

+ the untimely (too early or too late) release of message; 

+ the sending of a wrong (undesired release) or faulty message. 

The resultant failure modes are used to construct the fault tree for the final analysis where 

the top events are base events from the earlier HFfA. The ESA [1991] approach is similar 

to Maier [1995] but also makes provision for an object oriented approach. This approach is 

based on a thread analysis, where FMEA and FfA are applied depending on the level of 

detail. FMEA is supported with a Checklist of generic failure modes for both functional 

analysis and an object-oriented analysis. For functional analysis, generic failure modes are 

given for the following element types: transducer, process, store, channel, controller, 

documentation and training. For object oriented analysis, generic failure modes are given 

for the following element types: objects, operations, relationships (e.g. USE relationships), 

specific objects (e.g. an object which represents the provided interface of another object used 

by the system to be designed, but which is not part of the design process). Fenelon et al. 

[1995] use a goal structured approach to guide the construction of a safety case, where a 

'goal' represents an objective to be achieved and each of the goals can be represented in a 

hierarchical tree structure. Each goal has an associated context, strategy and solution. They 

propose a new technique, Failure Propagation and Transformation Notation (FPTN) to test 

whether the goals are satisfied. The objective of FPTN is to allow both a top-down mode 

(FfA) and a bottom-up mode (FMECA) analysis. The basis of the approach is the FPTN 

module which is a functional analog of Failure Modes and Effects Summary (FMES). Each 

FPTN module has an associated set of equations and these equations are representations of 
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fault tree cutsets which define how the output failure modes are related to the input failure 

modes of the module. The failure modes are based on an error classification scheme. The 

types used are: omission, commission, subtle (e.g. incorrect value), coarse (e.g. inconsistent 

value), early and late. Hobley & Jesty [1995] base their approach on a modelling technique, 

PASSPORT Cross, derived from the Business Systems Planning system developed by 

[IBM]. The PASS PORT Cross consists of four matrices sharing common axes. The axes are 

labelled: information sets, communication facilities, functional elements and architectural 

elements. They propose using FMEA on all sensitive elements in the matrices and FT A for 

each hazard identified. The PASSPORT Cross model assists the FTA process by providing 

information on the inter-connections between various elements. 

2.3.3.6 HAZOP & FMEA: Pink et al. [1993] propose combining FMEA and HAZOP. The 

failure modes and guidewords used were not generic but created specifically for the 

application in question. Their main conclusions were that HAZOP is useful for considering 

complex and interrelated procedures, but FMEA is more systematic and appropriate for 

considering single components. 

2.3.3.7 FTA, HAZOP, FMEA: Taylor [1994B] suggests an integrated approach which 

considers the interaction between hardware, software and operator. He proposes functional 

analysis for the system specification; HAZOP, FMEA, simulation and sneak analysis for the 

system model; and Human Reliability Analysis (HRA) for operating procedures. This is a 

very comprehensive approach, however, the method of integrating the techniques is not 

described. 

2.4 Conclusions 

Different strategies for building safety-critical systems have been described. The emphasis 

has been on fault avoidance and fault forecasting, rather than fault tolerance and removal. 

In order to facilitate a fault avoidance approach, properties of requirements engineering 

techniques which are particularly suited to safety-critical systems have been identified. To 

investigate the feasibility of a fault forecasting approach, different hazard evaluation 
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procedures and their integration into the software development life cycle have been 

discussed. 

2.4.1 Requirements engineering and safety-critical systems 

Three important dimensions of the requirements process have been identified for developing 

safety-critical systems: a multi-disciplinary dimension, a modelling dimension and the 

specification of external behaviour. The key to tackling the difficulty of requirements 

engineering for safety-critical systems is the modelling technique (i.e. the modelling 

technique must lend itself to multi-disciplinary participation and facilitate the specification 

of constraints on external behaviour). Despite the problem of identifying candidate object 

classes in the first place, object oriented modelling has been promoted as the ideal method 

for multi-disciplinary participation. However, safety objectives are usually expressed as 

requirements and this implies a functional approach. This apparent difficulty can be 

overcome if the choice of modelling technique is viewed as being dependent on the level of 

abstraction. It is possible to take the benefits of both an object oriented and a functional 

approach if they are used at different levels of abstraction. Whatever modelling technique 

is used, it must be possible to specify safety constraints. Different techniques for specifying 

external system behaviour have been briefly discussed. Although some of these specification 

techniques have been used in the development of safety-critical systems, none of them deals 

explicitly with safety constraints. 

2.4.2 Limitations of present approaches to integrating hawrd evaluation 

procedures and requirements engineering 

Major concerns about the approaches described above include ambiguity of hazard 

evaluation procedures, inconsistency of modelling techniques and incompleteness. 

2.4.2.1 Ambiguity of hazard evaluation procedures: For FMEA there is no clear 

definition of what failure is applied to, it can be applied to a requirement, a component, a 

data store or an object. For HAZOP the design deviation has different meanings depending 
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on whether it is based on DFDs, state transition diagrams, or time and value domains. For 

IT A, a top event is used to identify an accident in the real world or is based on a failure 

mode in the software. Before a standard methodology for integrating hazard evaluation 

techniques and software development can be derived, precise meanings for the concepts 

associated with ITA, HAZOP and FMEA must be defined. 

2.4.2.2 Inconsistency of modelling techniques: The same basic components of modelling 

techniques have been used for analysis but in conjunction with different hazard evaluation 

procedures (e.g. Chudleigh & Oare [1993] and ESA [1991] used DFDs but the former used 

HAZOP for flows and the latter used FMEA for the data stores and processes). In some 

cases, the choice of software modelling technique was dictated by the design rather than the 

usefulness of the particular technique for hazard evaluation. When techniques were used in 

combination, nearly all used some software modelling to allow the transfer of results from 

one level of abstraction to the next. On a superficial level, a functional approach can be 

associated with ITA & HAZOP and an object oriented approach with FMEA. However, a 

closer look at the different approaches shows that FMEA is often used to take a functional 

view, and ITA & HAZOP can be applied to objects that have a specified behaviour. 

2.4.2.3 Incompleteness of approaches: At present, there is no ideal way of combining 

hazard evaluation procedures to ensure completeness and the problem is further exacerbated 

by the addition of software. There is no optimal sequence for applying the different hazard 

evaluation procedures to the development of software. ITA, HAZOP and FMEA have been 

used for PHA, SSHA and SHA, however, it is noticeable that there is an absence of 

techoiques for O&SHA. Only the approach of Pink et al. [1993] specifically addresses this 

problem, but even this approach is application-specific. 
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CHAPTER3: 

Using Incident Analysis to Construct a 

Methodology 

Various approaches can be used to try to identify reasons for the failure of safety-critical 

systems. Many of these are based on the categorisation of faults. Kershaw [1993], for 

example, categorised faults according to type (random failures of components; systematic 

errors in design; errors in the interface to the outside world; maintenance errors; common 

mode errors). Grady [1993] categorised faults according to where they occur in the 

development of a system (at the requirements stage, design phase, in the coding etc.) and 

further subdivided these into type (e.g. design phase faults were subdivided into hardware 

interface, software interface, user interface and functional description). 

The approach taken for this study, however, was to analyse 'incidents' or' ... all accidents 

and all near-miss events that did or could cause injury, or loss of, or damage to property 

or the environment' [AIChemE, 1992] and to use this analysis as a basis for a generic safety 

assessment methodology, HAZAPS (HAZard Assessment in Programmable Systems). The 

objective of this analysis was to determine, not simply the immediate causes of incidents, 

but the root causes, such as fundamental human error, failure of the technology, and 

inadequate development processes for the system. Examination of the root causes of 

incidents can be used to help prevent the occurrence of other similar incidents [AIChemE, 

1989]. 

Data on computer-related incidents are available in many forms from various sources. Raw 

incident data from the avionics sector can be obtained from the Royal Air Force [RAF, 

1989] and the US National Transportation Safety Board [NTSB]. Kletz [1995] described a 

number of computer-related incidents in the process industry. Neumann [1995] analyses 

incidents across many different industries where programmable systems are used. Incident 

data may be used to construct a methodology that can be applied in the development of 
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safety-critical systems. Raw incident data are very useful, however, in order to benefit from 

raw data, it is necessary to become familiar with the domain concepts of the source industry. 

Classified data (i.e. incidents that have been mapped into categories) are not as useful 

because the classification scheme by definition necessitates a specific and, in some cases, 

biased interpretation of the incidents. Another problem with classification schemes is that 

they are difficult to reuse. However, classified data can be useful in identifying where the 

effort needs to be focused. For example, Lutz' [1993] analysis showed that the two most 

common causes of safety-related software errors are:-

+ inadequate interface requirements; 

+ discrepancies between the documented requirements and the requirements 

actually needed for correct functioning of the system. 

The knowledge gained from incident analysis is useful for the development of any system. 

It is particularly important for the development of safety-critical programmable systems 

because these systems are highly complex and, the more complex the system, the more 

difficult it is to determine what might go wrong (complexity is related to uncertainty and all 

risk arises from uncertainty). 

3.1 Major benefits of incident data 

3.1.1 Incidents are representative of the 'real world' 

Incident data are representative of the 'real world'. The crash of the British Midland aircraft 

in 1989 (where both engines were shut down at the same time during flight) is illustrative 

of this point. The chances of simultaneous failure of both engines are commonly estimated 

at somewhere between one in 10 million and one in a million [Neumann, 1995]. Another 

example is the crash of the Eastern Airlines lr 1011 near Miami because all three members 

of the flight crew were preoccupied with a blown 'gear-down' indicator light. This blown 

indicator light would not inhibit safe landing [Jentsch, 1993]. Incident data are based on the 

software operating in real situations with real users and real hardware. 

Page 39 



3.1.2 Incidents provide insight into when, why, how failures occurred 

Incident data give insight into when, why and how failures occurred and, in particular, how 

they propagate in a system on both a macro and micro scale. Often there are many different 

causal factors in an accident. By investigating incidents we can analyse the interrelationships 

between different contributors to accidents. ~!~dley_ [1995] analysed a number of 

catastrophes including Bhopal, Challenger, Chemobyl, Piper Alpha, Three Mile Island and 

several DC-10 accidents. He used a classific:a!iQ!l..SCheme.._to identify contributors to 

accidents. This scheme includes errors in five areas: design, failure of equipment with no 

directly attributable human error, management, operation, and repair. For each accident, a 

disaster sequence was identified based on these contributing factors. All accident sequences 

included two or more of the five contributing factors, and one (the DC 10 incident in 

Chicago, 1979 where an engine fell off on takeoff) included all five. A single failure does 

not, in general, result in a catastrophe, this is usually due to a combination of different 

failures which occur in sequence. It is difficult to hypothesize about what faults might lead 

to failures and result in incidents, however, by working backwards from incidents, causal 

sequences can be readily identified. 

3.1.3 Incidents provide an invaluable source of experiential knowledge 

The experiential knowledge gained from a study of incidents can be used to construct a 

methodology for assessing safety before a system is put into operation. It is useful to identify 

and categorise contributing factors to incidents but, ultimately this knowledge must be 

embedded in a framework for use by the developer of safety-critical systems. This 

framework must be effective, efficient and easy to use. In the next section, the strategy used 

to derive a framework based on computer-related incidents is described. 

3.2 Strategy used to derive a framework based on 

computer-related incidents 

When building new systems, one way of using incidents is to store them in a database or 

hazard log. However, the disadvantage of doing this is that, for every new system, it would 
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be necessary to (a) search the database for all relevant incidents, (b) match them with the 

subsystems or components, and, (c) understand and analyse the sequence of each selected 

incident to see if it could occur on the new system. This would be difficult even if used for 

rebuilding a similar system within the same industry and would not be feasible for use in a 

different industry. The strategy used for utilising incident data in this work is shown in Fig. 

3 .1. In summary, patterns were abstracted from incidents and a generic framework was 
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Fig. 3.1 Illustration of the strategy used to develop the hazard assessment methodology 
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constructed. This framework was subsequently embedded in a methodology that can be used 

by developers when building new systems. 

Although hazards are environment dependant, the way in which the embedded 

programmable system contributes to hazards can be generalised. For example, the behaviour 

of an actuator is similar whether it is located in a chemical plant or on an aircraft. The 

strategy was to focus on the causal behaviour of an embedded system that can result in an 

incident. This involved:-

+ recognising common properties and entities within an embedded system, irrespective 

of the application domain; 

+ modelling these entities; 

+ identifying causes of incidents; 

+ isolating the causes; 

+ constructing a framework which provides a systematic means of identifying the way 

in which an embedded control system can interact with its target environment (such 

a framework is very useful because captured knowledge, based on analysis of 

incidents, can be presented in a structured fashion and made accessible for future 

projects). 

Chapter 4 describes how this framework can be embedded in a methodology which assists 

developers during requirements capture and analysis. The embedded framework provides 

a generic approach to identifying and assessing hazards in the system. This chapter describes 

the construction of the framework. In the next section, the modelling of incident events is 

described. 

3.3 Modelling of incidents 

The initial objective was to derive a modelling technique for embedded systems that 
< . 

represents the sequence of events involved in an incident. This modelling technique had to 

meet the following criteria:-
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(a) be suitable for all incidents independent of the application domain; 

(b) provide a means of understanding and interpreting incidents; 

(c) facilitate the creation of a framework in which the knowledge gained could be 

embedded. 

A number of possible options were available. Finite State Machines [Mealy, 1955] were 

considered, however, for each incident, it would have been necessary to have an in-depth 

knowledge of the system and also it was not obvious how a generic framework could be 

created from the analysis. Another possibility was to d~"-~lop_ a techni~~ased on 

customising Management Oversight & Risk Tree (MORT) [Johnson, 1980]. MORT itself 

is not specific enough for analysing incidents in_ terms of computer events. A MORT 

technique would result in a logical representation of the causes of incidents, however, it 

would be difficult to correlate the occurrence of different computer events and the number 

of resultant causes would be very large. Consequently, the resultant framework would be 

unsuitable for a developer building a new system. There are many other incident 

investigation techniques [AIChemE, 1992]but none of these fulfil the three criteria (a) to 

(c) above. 

3.3.1 Generic events in embedded systems 

To model an incident, it is essential to be able to represent discrete events. However, 

different domains have an infinite number of discrete events. To overcome this problem, 

events can be \yped ', so that any given incident can be associated with a number of generic 

events. As a means of identifying generic events, the following components which are 

generic to all embedded system architectures were selected: 

+ processor; 

+ communications link; 

+ sensor; 

+ human input device (IDD); 

+ display; 

+ actuator; 

+ operator. 
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The inclusion of 'operator' in the above list might be questioned, however, the importance 

of considering the man-machine interface is borne out by a survey carried out by the 

Institute of Nuclear Power Operations (INPO). INPO analysed 180 significant incidents and 

identified a total of 387 root causes [INPO, 1985]. More than half of these were due to 

human performanc.;e_pmhkm~ This human performance category was further subdivided 

and included: d~ci~t procedures or documentati~-;.;-(13%), Iack()!_~c:l~~~Eg~or training 

(18%) and gj]!!!'e-to follow procedure (16%). 

3.3.2 Event Time Diagram (ETD)for modelling events 

Any interaction within an embedded system involves one or more of the basic components 

above, therefore, events can be characterised by these components, and then used to analyse 

incidents. Each component can be associated with a functional behaviour (e.g. the operator's 

function is to intervene). A model (Fig. 3.2) was proposed to relate the basic components 

and their associated functional levels. The functional levels were subdivided into categories. 

For example, the input/output (I/0) level was divided into Display, Actuator, Sensor, and 

Human Input Device (HID). There is a hierarchy of the functional levels and these functional 

levels are interdependent. All components associated with the intervention level that interact 

with the computer, must use a component at the I/0 level. Similarly, all components 

associated with the I/0 level that interact with the computer, must involve a component at 

the communication level. The model can be used to establish 'what if' scenarios. For 

example, if an operator inputs incorrect data, what happens if the error propagates through 

to the inner levels? In the worst case, the operator error causes a failure at the control and 

processing level. This model can be used to represent incident behaviour by placing nodes 

and vectors on functional levels as shown in Fig 3.3. 

The Event Time Diagram (ETD) is a populated functional model which models behaviour 

in terms of events, time, control and data flow, entities and associated functional levels. It 

may be viewed as a polar diagram where the angle represents time, the distance from the 

centre gives the functional level, and the arrows give direction of flow of information (either 

control or data). A node within an ETD may be described by two coordinates (c, r) where 

c represents the angle (entity), and r represents the radius (functional level). 
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Fig. 3.3: Example of a populated Event Time Diagram 
(ETD) 
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The ETD modelling technique fulfils the criteria (a) to (c) above:-

+ The ETD can be used to model any incident irrespective of the application. 

It is based on identifying external events and classifying these events in 

terms of generic components. It allows the system to be viewed from the 

'outside-in', working back from observable phenomena to programmed 

events. 

+ The ETD allows the generation of scenarios which assist in understanding 

and interpreting the causal behaviour associated with incidents. It allows 

analysis both of individual events and of the interaction between events. A 

picture of what happened can be built up in an incremental and iterative 

fashion. 

+ The ETD is based on instantiating generic events rather than specific events, 

hence it is possible to construct a framework based on the knowledge 

acquired about these generic events and their associated safety properties. 

In the next section, the use of Method Study for analysing incident events is described. 

3.4 Use of Method Study for incident analysis 

Having modelled the incident using the ETD, the next step was to understand and reason 

about the events. The approach taken was to identify why and how events within the 

embedded system together with other events in the environment led to the hazardous 

situation which preceded the incident. The objectives were to identify root causes and to 

incorporate these causes in a framework. This framework provided a means of assessing 

safety in future systems. The root causes were divided into three main categories:-

+ Specification: failure to understand what the system is required to do (e.g. 

ambiguous objectives, wrong timing, inadequate control). 
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+ Implementation: failure in the implementation plan (e.g. wrong devices, 

insufficient testing, inadequate consideration of environment). 

+ Protection: failure to identify, control or recover from hazardous situations 

(e.g. inadequate failure detection and recovery procedures). 

The technique used for identifying root causes was Method Study, a popular problem

solving technique developed in the 1960's. Method Study was introduced as a management 

technique to improve methods of production so that more effective use could be made of 

materials, plant and equipment, and manpower. It has five stages [Currie, 1972]:-

Select - the work to be studied. 

Record- all the relevant facts of the present (or proposed) method. 

Examine - those facts critically and in sequence. 

Develop - the most practical, economic and effective method, having due regard to 

all contingent circumstances. 

Install- that method as standard practice. 

Maintain - that standard practice by regular routine checks. 

The power of the Method Study process lies in its third stage Examine which is sometimes 

referred to as Critical Examination. Table 3.1 shows a Critical Examination Sheet from 

Method Study. The examination is carried out by using two sets of questions, the first 

relating to the 'present facts' and the second to 'altemat~ves'. These questions are divided 

into five categories (Purpose, Place, Sequence, Person, Means). 

3.4.1 Modifications to Method Study 

In applying Method Study to analysis of incidents, the first four stages of the Method Study 

process are used in principle. The Select stage essentially involved the choice of an incident 

for analysis. The Record stage involved modelling the incident using the ETD. The Critical 

Examination stage identifies root causes and the Develop stage maps to embedding the root 

causes in a framework. The last two stages, Install and Maintain, are management 

responsibilities and therefore are not relevant for this analysis. 

Page47 



The Present Facts Alternatives 

Purpose WHAT is achieved? IS IT NECESSARY? If What ELSE could be done? What should be done? 
YES, Why? 

NOTE: What is ACHIEVED not what or how it Reason given may not be Can the achievement be ELIMINATED? Helpful to divide into short-term and 
is DONE. valid. True reason must be Can the achievement be MODIFIED? long-term. Under long-term can go 

uncovered. All alternatives to the purpose should be stated including suggestions for future research and 
those which may require long~term investigation. The development 
answer to this section is never "nothing"; there is always 
an alternative even if only the non-achievement 

Place WHERE is it done? WHY THERE? Where ELSE could it be done? Where should it be done? 

The location with reference to The reason for siting the Consider alternatives under each heading. Can working Where appears to be most suitable 
(a) Geographical position operation there. areas be combined or distances reduced? situation with present knowledge? 
(b) Position within the factory, plant or area Answer may be in relation to some other 
(c) Detailed position under (b) operation. Consider limitations of 
When appropriate, give reference to location and building design and services (steam, air) 
distance from preceding and succeeding etc. 
activities. 

Sequence WHEN is it done? WHY THEN? When ELSE could it be done? When should it be done? 

What are the previous and subsequent The reason for the present Can it be done either earlier or later in the process? As soon as possible in the process or 
significant activities and what are the time sequence and time factor in If the sequence is fixed, can it be moved back to the immediately after the previous activity. 
factors involved? the present process. previous operation? For example "Immediately after". 

Person WHO does it WHY THAT PERSON? Who ELSE could do it? Who should do it? 

(a) Grade, e.g. unskilled worker Reasons for choice under each All alternatives under each heading. It may not be possible to select the 
(b) Employment, e.g. day worker heading. individual without Work Measurement. 
(c) Name(s) 

Means HOW is it done? WHY THAT WAY? How ELSE could it be done? How should it be done? 

All relevant details are required of Material, The reason should be Investigate all alternatives for each main heading. Decide the alternative for each item 
Equipment and Operator engaged in the investigated for each of the separately and knit together at 
operation. Infonnation should be tabulated as tabulated items under each development stage. 
simply as possible, under the headings: (a) main heading. Consider safety. 
Materials employed, (b) Equipment employed, Consider posture and environment 
(c) Operator's method ooerator. 

Table3.1: Guide to the use of the Critical Examination Sheet (adapted from Currie, 1972) 



In applying Critical Examination to analysis of incidents (Table 3.1), 'present facts' were 

related to what was obseJVed from the raw incident data, with 'alternatives' being viewed 

as strategies for identifying, eliminating and controlling hazards. The Purpose, Sequence and 

Means categories were applied to events associated with an embedded system. Although the 

application of the categories Place and Person is not so obvious, Place questions are useful, 

for instance, for Displays, Sensors, Utilities, and Person questions could be used for 

assessing training of personnel, and possible requirements for automation. 

3.4.2 Benefits of applying Method Study 

Other workers have proposed approaches to incident analysis based on the questions What? 

Why? Where? When? How? The author believes that, without an underlying causal model, 

these questions are not sufficient to investigate the complex behaviour of embedded systems. 

Elliott & Owen [1968] analysed chemical plant design using Method Study. They applied 

it to the stages of the overall process selection. They stated ... critical examination 

techniques can assist designers to produce cheaper, safer and more reliable plants .... Their 

first approach was to cover acres of paper with questions and answers relating to the 

operation of the plant [Kletz, 1992]. Although this identified many potential hazards and 

operating problems, it was too detailed to be practical. However, after many refinements and 

modifications it evolved into the well-established HAZOP technique used worldwide by the 

chemical industry. Method Study provides a powerful analytical approach to incident 

analysis, in that it is focused, structured and provides a logical plan to highlight safety 

concerns and show where possible improvements can be made in the development of safety 

critical systems. The results from Method Study are very useful, however, it is a time 

consuming and laborious process, and, as Randall [1969] states ..... it can reveal things 

invisible to the naked eye, [but] it can only focus on a small area at a time. One of the major 

problems with Method Study is the amount and complexity of the information that can be 

generated. In this work, in order to limit complexity, Method Study was constrained by:-

+ working backwards from incidents; 

+ generating general rather than specific questions related to specification, 

implementation plan and protective measures. 
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In the next section, the analysis of incidents using the ETD technique, in conjunction with 

Method Study, is described. 

3.5 Analysis of incidents 

The objective of the incident analysis was to detennine why an incident occurred and what 

could have been done to prevent it. For a given incident, the approach was to represent the 

events associated with the incident and to derive a set of questions based on the underlying 

principles of Critical Examination, the focus being on why an incident occurred and what 

questions could have been asked in the first place to prevent it (i.e. what questions would 

have prompted the developers of the system to consider the occurrence of such an incident). 

These questions were generalised and used to build a framework which could be used by a 

developer and thereby prevent the recurrence of the same or similar incidents. The value of 

such a framework depends on:-

+ how representative the incidents are; 

+ the methods used in deriving and generalising questions to build the 

framework; 

+ the effective incorporation of the framework into a development 

methodology. 

Although industries record incidents, there is no established method of using these incidents 

to identify hazards at a generic level in re-engineering old systems or developing new 

systems, i.e. each incident is dealt with individually following its occurrence. More than 300 

incidents were provided by two major organisations, one involved in the process industry, 

the other in avionics. The reason why two different application domains were used was to 

try to ensure that abstractions of safety properties were domain-independent. The fonnat of 

the infonnation received is shown in Tables 3.2 and 3.3. No user requirements, functional 

specifications, architecture diagrams or software code were provided for any of the 

incidents. This might first appear to be a disadvantage, however, it forces one to take a 'real 

world' view of a system and to decompose the system in a general manner thereby 

preventing the methods developed from becoming application-specific. 
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Table 3.2: An example incident from the AVIONICS INDUSTRY 

A/CType Flight Location Date Occnum Permpub 

Phase 

BXXXXXX CRUISE LXXXXX XX XXX XX XXXXXXXF p 

FMS malfunction in cruise at FL350 A/C nosed over lost 600ft in Ssec ---- departing 

altitude due to the loss of air data reference power caused by a faulty one amp circuit 

breaker 

Key: FMS =Flight Management System: FL =Flight Level: A/C =Aircraft 

Table 3.3: An example incident from the PROCESS INDUSTRY 

OBSERVED 

EFFECT 

SEQ. STARTED 

PREMATURELY 

ROOT 

CAUSE 

SEQ. PERMISSIVE$ 

INCOMPLETE 

CAUSE 

CATEGORY 

APP.S/W 

Key: SEQ = sequence; APP .S/W = application software 

3.5.1 Procedure used to analyse incidents 

The following procedure was used to analyse incidents:-

1. Study the text of the incident to determine whether it is useful (i.e. does it contain 

sufficient information and can it be understood without an in-depth knowledge of 

system). 

2. List set of instantiated generic events and model on ETD. The intention is to identify 

the original purpose of the design, the components involved, the control and data 

flows, and any associated constraints. 
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3. Analyse the ETD, in order to understand the interactions and sequence of events. 

Iterate between scenarios in an attempt to identify where problems might occur. It 

may be necessary to make assumptions. The procedure is driven by the need to 

hypothesize on what did happen, what should not have happened and what could 

happen in a different situation. It is important to identify as many causes as possible 

to prevent similar incidents from recurring in the future. 

4. Identify critical events and generate questions. Questions should be general rather 

than specific (i.e. should ignore environmental data and should abstract generic 

information). 

3.5.2 Analysis of sample incidents 

The ETD shown in Fig. 3.4 is an 'interpretation' of the incident in Table 3.2. Assumptions 

were made such as \he computer made a calculation based on erroneous data' (E4). It was 

seen that a number of events (El, E2 and E4) led to the final consequence (ES). El is the 

root cause, however, any of the events (E2, E3, E4) could be root causes under different 

CIRCUIT 

Fig. 3.4: ETD for the incident described in Table 3.2 
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circumstances. For example, incorrect computation (E4) may result in ES occurring 

irrespectively of El, E2 and E3. In addition, we could prevent E4 by preventing the 

computer from acting on erroneous information, however, this would not be sufficient as it 

is quite likely that the actuator requires continual updating, therefore, even if the computer 

recognizes erroneous data, there must be some recovery mechanism. This indicates the 

importance of considering all events. The ETD also allows us to analyse events on an 

individual basis. Even if El, E2, E3 and E4 did not occur, E5 could still occur if, for 

instance, the communication link between the processor and actuator failed. The ETD 

provides a very effective mechanism for analysing incidents because all events are 

connected together via the nodes and vectors. We can start with the basic component on the 

node associated with the first event and trace all state changes in intermediate components 

through to the basic component associated with the final event. Alternatively, the state of 

an intermediate component can be selected and one can work backwards to a cause or 

forward to a consequence. 

Having represented all the events related to the incident, the next step is to pose a series of 

questions which, had they been asked in the early in the development, would have prevented 

this and similar incidents from occurring. The questions generated are:-

+ What reliability data are available for hardware components? 

+ How is failure of power detected? 

+ If power fails, how is the system placed in a safe state? 

+ How is the sensor to be calibrated? 

+ What is the range of the expected input values? 

+ Are multiple sensors required? 

+ Is a continuous self-test sequence required (e.g. to detect dramatic changes 

in input)? 

+ Is there any method of verifying or correlating output data to detect out-of

range values? 
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As the number of questions increased, it was found necessary to describe succinctly (by 

means of a 'general descriptor~ the failure mechanisms associated with each incident. 

Consequently, all failure mechanisms could be classified under a limited number of general 

descriptors, the objective being to crosscheck that the main failure mechanisms for all 

incidents had been identified. The general descriptor for the above incident was 

"erroneous/corrupt operation". 

There is very little information in the incident described in Table 33. The root cause in this 

case is that the sequence permissives were incomplete and the consequence was that the 

sequence started prematurely. However, we can still derive questions:-

+ What are the preconditions for initialisation? 

+ How is it ensured that all preconditions have been identified? 

+ How is task initialised? 

+ How is task prevented from being initialised unintentionally? 

The general descriptor is ~ncorrectly initialised'. 

Incidents trigger other questions which are not necessarily directly relevant to the incident 

under consideration. For example, in the above incident, the task started prematurely, it 

could equally happen that the task might end prematurely or might not end at all which leads 

to the questions:-

+ What are the sustaining conditions for this task? 

+ What are the postconditions for this task? 

As more incidents were analysed, more questions were generated until eventually it became 

difficult to generate new questions (i.e. the law of diminishing returns applied). Different 

problems arise as questions are generated. Some questions, features and appropriate 

reactions were:-

+ too specific - generalise question; 

+ too complex - decompose into one or more questions; 

+ repeated - eliminate question; 
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+ similar - if no significant difference, eliminate, otherwise create new 

question. 

Subsequently, a framework was constructed to help ensure that the questions could be 

applied to a new system in a logical fashion. The construction of the framework is described 

in the next section. 

3.6 Construction of the framework 

The purpose of the framework is to assist the developer (who may not be a software 

specialist) to gain a deeper understanding of the system, probe the safety aspects of the 

system in a structured and systematic fashion, and thus strive to eliminate common safety

related faults before the design stage. 

Two methods of classifying questions were used: traditional classification, based on classes 

having predefined properties; and, clustering [Stepp & Michalski, 1986], based on grouping 

entities together, formulating conceptual descriptions and consequently identifying classes. 

3.6.1 Traditional classification 

Predefined classes include superclasses:-

+ Specification: questions related to understanding what is involved. 

+ Implementation: questions related to what should be considered in the 

implementation plan. 

+ Protection: questions related to what protective measures are to be adopted. 

+ Failure_Modes: all general descriptors derived from incidents. 

3.6.2 Classification by Clustering 

The clustering method is used to identify child classes of the superclasses Specification, 

Implementation and Protection. Each of these child classes has slots for the generic 
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components: processor, communications, sensor, lllD, display, actuator and operator (see 

Fig. 35). The clustering method is not required to identify child classes of the superclass 

Failure_Modes as the general descriptors are the child classes. The clustering approach 

involved grouping together sets of questions which appeared to have a common concept. 

The process involved refining, elaborating and iterating, both within and between different 

groups of questions. In some cases, one or more classes were readily identified from a single 

group. In other cases, it was necessary to merge groups to form a class or to reorganise 

questions into a different group. As the process proceeded, existing classes were replaced, 

subdivided, merged, and occasionally, new classes were derived by analysing existing 

classes. Finally, one question was derived to show the overall purpose of that particular 

class. Table 3.4 shows a superclass, class with associated question, and slots with associated 

questions. The superclasses were created so that questions could be applied in a logical 

sequence (i.e. Specification, Implementation, Protection and Failure Modes). 

Failure _Modes provides a means of cross-checking the results from the other superclasses. 

The classes encourage the user to think of other questions which might also be applicable 

and to remove any subjective bias in the existing questions. 

3.6.3 Choice of Classes 

Considerable thought was given to the choice of classes. Useful guidelines have been 

proposed [Chillarege et al., 1992; Fleishman & Quintance, 1984] for developing 

classification schemes. Important criteria include:-

+ classes should be defined as precisely and objectively as possible; 

+ classes should be distinct and mutually exclusive (orthogonality); 

+ classes should be simple and easy to understand (to avoid human error and 

confusion); 

+ there should be some evidence of class validity; 

+ the number of classes should be small so that the user can accurately resolve 

between them; 

+ the complete set of classes should attempt to cover all available data. 

Table 3.5 (a to d) shows the superclasses, their classes and associated questions. The 

complete framework is given in Appendix 1. 
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Superclasses 

Classes 

(Determined using clustering method) 

Slots 

Processor, Communications, Sensor, 
HID, Display, Actuator, Operator 

r-------------------------------, 
: Slot values (all questions generated) : 

I I 
1 

What is the objective, ...... 
1 

I I 
I I 
~-------------------------------J 

Fig. 3.5: Shows the relationship between the superclasses (Specification, Implementation and 

Protection) and associated questions. The classes are determined using the clustering method. 
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............ , .... · .. ··:: 

Superclass : Specification 

Class : Definition - What is to be achieved? 

Processor 

Communications 

Sensor 

HID 

Display 

Actuator 

Operator 

What is the task? 

What communication link is required? 

What state is to be monitored? 

What Human Input Device is 
required? 

What is to be displayed? 

What action is required? 

What is the operator intervention? 

Table 3.4: An example of a superclass (Specification) and one of its classes (Definition), 
with associated question, slots and slot values 

Superclass : Specification 

I Class : Definition What is to be achieved? 

I Class : Objective Why is it to be achieved? 

I Class : Options How else could it be achieved? 

I Class : Inputs/outputs What inputs and/or outputs are required? 

Class : Timing/control 
When is it to be achieved and How is it to be 
controlled? 

Class : Operational modes 
What operational models (startup, shutdown, 
automatic, manual etc.) are involved? 

I Class : Programmable Why is this task programmable? 

·'• . , . ... • . 

Table 3.5a: The superclass, Specification, its classes and associated questions 
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·-· 11 -r -r 

I Class : Selection What device/s are required? 

I Class : Installation How will the installation be carried out? 

I Class :Testing How will the implementation be tested? 

I Class : Maintenance What maintenance procedures are required? 

Class : Environment 
What effect will the environment have on this 
task? 

I Class : Utilities What utilities (power, air, etc.) are required? 

Table 3.5b: The superclass, Implementation, its classes and associated questions 

... 

Superclass : Protection 

:: I Class: Failure_Detection :: How will any failures be detected? 
' 

I Class : Interlocks How are hazardous events prevented? 

Class : Trips How will the system be shut down if a hazard 
' 

is identified? 

I Class : Security How will breaches of security be prevented? 

Class : Fault _Recovery 
What fault recovery procedures are 
associated with this task? 

Class : Verification 
How will the Fail Safe/Protection features be 
verified? ' 

·.w.· •• ••···•··•·•··· ····,·~ ·,·,•.,,•,.w...-.·.·,,,,,.,,.,,.,•~w...-.·,•• .. .... ...... . •. ~ .•.•.• .. •.• .. • .. • .. • .... • .... • ........... ~.-... ·· . . ............ ················ ··········' .......... .- .. ·'' . ........ , .. ,., ··,·~·-·: 

Table 3.5c: The superclass, Protection, its classes and associated questions 
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I -' 
/ 

I \ 

Superclass: Failure_Modes 

Class : Not_lnitialized 

Class : lncorrectly_lnitialized 

Class : Incorrectly_ Executed 

Class: Not_ Terminated 

Class : Incorrectly_ Terminated 

Class : Erroneous/corrupt_ Operation 

Class : No Input/output 

Class : Incorrect Input/output 

Class : Lockup 

Class: Too_Fast 

Class: Too_Siow 

Class: Defective_Hardware 

Class : Failure Not Detected 

....... •. • .. •.• .. •.·.·~ 

Table 3.5d: The superclass, Failure_Modes and its classes 
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3.7 Conclusions 

Incident analysis was carried out in order to develop a framework that provided a unified 

and coherent method of analysing possible safety-critical failures. The framework derived 

can be used to drive the process of identifying and assessing safety issues early in the 

development of a system. The construction of the framework involved the following steps:-

1. Identify common characteristics of incidents by introducing generic events. 

2. Develop a modelling technique (the ETD) to represent incident events so that these 

events and their interrelationships can be analysed. 

3. Using the principles of Method Study, derive sets of questions based on the analysis 

of incidents. 

4. Incorporate the resultant questions in a framework thus making use of the 

experiential knowledge gained. 

The ETD modelling technique can be used to unify the causes of incidents and to assist in 

classifying them. Method Study has been modified for safety assessment. The 'Record' stage 

is replaced with the ETD modelling technique. The 'Critical Examination' stage of classical 

Method Study is shown in Table 3.1 and modified Method Study is shown in Table 35 (a

d). Both Methods are similar in that there is still a logical sequence of applying questions 

and moving from the general to the specific. However, the modified Method Study, uses 

more detailed classification with less emphasis on alternatives. 

Parallels can be drawn between classical hazard evaluation procedures (HAZOP & FMEA) 

and the derived framework. Two new terms are introduced Embedded-System-HAZOP (ES

HAZOP) and Embedded-System-FMEA (ES-FMEA). 

+ ES-HAZOP: ES-HAZOP is based on using classes of the superclasses Specification, 
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Implementation and Protection. Using these classes in conjunction with the ETD 

technique is similar to using classical HAZOP and an engineering line diagram. The 

classes are similar to guidewords in HAZOP although they are more general because 

they are used at a higher level of abstraction, i.e. Requirements stage rather than 

Design stage. 

+ ES-FMEA: ES-FMEA is based on the application of the superclass Failure_Modes. 

It is more specific than the use of FMEA because failure modes are specified and 

only investigated for typed events. Also, there is a parallel between the superclass, 

Failure_Modes and Action Error Analysis (AEA) in that failure modes are specified 

for operator actions. 

The framework is generic, therefore, it can be used in the development of embedded systems 

irrespective of the application domain. It focuses on safety issues and is based on 'real world' 

data. 
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CHAPTER4: 

The HAZAPS Methodology 

In order to develop a method for 'assessing' (i.e. identifying those aspects of the system 

related to safety and determining the hazards and contributors to these hazards, with the final 

aim of eliminating or reducing the risks associated with these hazards) safety-critical 

systems, the basic principles underlying the system safety programme must be clear. 

According to MIL-STD-882C [1993] the principal objective of a system safety programme 

... is to make sure safety, consistent with mission requirements, is included in technology 

development and designed into systems, subsystems, equipment, facilities and their 

interfaces and operation. It is important to take an overall view and ensure that all entities 

(human, hardware, software and environmental concerns) are integrated and interact safely. 

In order to construct safety requirements, the environment should be examined and potential 

hazards identified and traced back from the environment, through the system interface, to 

the software. Fig. 4.1 shows the boundary between a generalised embedded system and its 

operational environment. Events can be classed as 'real world' and 'programmable'. Real 

world events in the environment can be hazardous; programmable events in the embedded 

system can contribute to hazards. When developing safety-critical systems, requirements 

elicitation is very complex since it is necessary both to capture the intended behaviour of 

systems and to integrate diverse constraints (requiring expertise from different disciplines) 

based on the intended behaviour. Both a software engineering approach and a safety 

engineering approach should be used at the requirements phase and all participants should 

be involved in analysing potential hazards of the proposed system. 

The underlying strategy of any hazard analysis technique is based on searching for 

hazardous events, their causes and consequences. The efficiency of a search strategy depends 

on how the search is initiated and on how the search mechanism constrains the search space. 

When analysing programmable systems, the search involves both programmable events and 

'real-world' events. 
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There are several approaches to identifying hazards, including:-

+ Starting with a top level hazard and working backwards through all world events, 

and finally down to programmable events. 

+ Starting with a programmable state and working forwards until top level hazards are 

reached. 

Neither of the above approaches is feasible because the search would become intractable, 

therefore, HAZAPS uses a combination of both approaches, working backwards to the 

embedded system boundary to identify safety concerns, and working forward from the 

programmable events to the system boundary. Further division of the searches related to 

programmable events depends on how the intended behaviour of the proposed system is 

specified. Whatever combination of search strategies is used for hazard analysis, it is 

essential that the causes can be traced backwards into the programmable system and that 

consequences can be traced forward from the programmable system into the environment. 

It is important to carry out hazard analysis as early as possible in the requirements phase as 

it targets where future safety efforts should be focused and it is also easier to incorporate 

design changes at this stage. The act of carrying out hazard analysis in itself is useful 

because it gives a different perspective on the system design. The effectiveness of a 

technique depends on the availability of domain expertise. No technique can guarantee 

completeness. 

4.1 Safety requirements 

Once hazards have been identified, it is necessary to construct safety requirements and 

incorporate them into the system design in order to eliminate or reduce the risk of these 

hazards. Safety can be viewed as constraints imposed on the functional requirements of the 

system. Laprie [1993] considers safety (and security) in terms of what should not happen 
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as well as what should happen, this in turn leads to additional functions that the system 

should fulfil in order to reduce the likelihood of what should not happen. However, 

determining these 'additional functions' can be difficult, especially if the potential hazards 

are expressed in a very general way (e.g. \he solvent used in the coating process is 

flammable). Another problem is that the 'additional functions' can conflict with other 

functions. For example, a safety function may be in conflict with a reliability function or a 

cost function. A method is therefore required to refine the 'additional functions' and resolve 

conflicts with other functions. 

Whatever method is used, the potential hazards must be eliminated or reduced in risk by 

constructing implementable safety requirements and these should be as specific and 

unambiguous as possible for the design stage. The objectives of any method must be:-

+ to trace the potential hazards back through to the environment system interface; 

+ to determine the software safety requirements; 

+ to construct strategies which can be used to implement these requirements. 

McDermid [1994] suggests the general approach of a 'goal strategy' for safety cases where 

a 'goal' is an objective to be achieved and each 'goal' can be represented in a hierarchical 

tree structure. Each goal has an associated context, strategy and solution. De Lemos et al. 

[1995] analysed the safety requirements of a process control system. The system was 

partitioned into environment, plant, plant interface, and control system. Safety strategies for 

the plant were produced for each of the identified potential hazards (a safety strategy was 

defined as a scheme to maintain a safety constraint - more specifically, ... a set of conditions 

imposed on controllable factors over the physical process). The safety strategies were firstly 

refined in terms of the plant interface and, secondly in terms of the control system. A safety 

requirements analysis was then produced and this provided the basis for developing the 

software. Both of the above approaches use a system model for safety analysis. This system 

model is based on either a goal strategy or the partitioning of the system into entities. In the 

next section the HAZAPS system model is discussed. 
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4.2 HAZAPS system model 

The objective of HAZAPS is to assist the developer (at the requirements stage of the 

software life cycle) to determine potential hazards and assess these hazards. The HAZAPS 

system model is shown in Fig. 4.2. The methodology can be described as a top-down 

strategy using multiple levels of abstraction. The four levels of the model are:-

Level!: 

Level2: 

Level3: 

Level4: 

partitioning of the system into safety-critical subsystems. 

assigning safety requirements to the subsystem. 

implementing the requirements by expressing requirements in the 

form of generic tasks. 

assessing the system by analysing tasks, using predefined criteria. 

4.2.1 Derivation of the system model 

The derivation of the system model is based on the abstraction and refinement of Level 3 

above. This level is based on generic tasks. When analysing incidents (Chapter 3), generic 

events were used to determine what happened after the system was built. When developing 

a new system the term 'generic task' is used to express the desired operational behaviour. 

The modelling techniques and associated assessment framework (described in Chapter 3) 

developed for generic events is applicable to generic tasks and forms the basis of Levels 3 

and 4. Levels 3 and 4 are based on generic knowledge and hence are application

independent. The generic knowledge is related only to the embedded system and not to its 

target environment. Levels 1 and 2 were introduced as a means of using this generic 

knowledge when developing a safety-critical system for a specific application. A safety 

requirement is viewed as a set of instantiated generic tasks and the safety requirements in 

turn are mapped to a subsystem. In essence, the system model as a whole, allows us to 
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Fig. 4.2: HAZAPS system model and its relationship to safety and software methods 
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assess the safety of the total system by analysing the behaviour of instantiated generic tasks. 

Ideally identified generic safety requirements should be reused, however, because safety 

requirements are so closely interleaved with the system and the environment, this is not 

possible. So instead, generic tasks are used which can be related to the components of 

embedded systems in any application. 

4.2.2 Application of the system model 

The HAZAPS methodology consists of four stages each of which maps to one of the four 

levels above. It is an iterative and incremental process, in that, development at any 

subsequent stage may result in changes in previous stages. A number of software modelling 

and safety engineering methods are used as shown in Fig. 4.2. A case study (described in 

Chapter 6), based on a rotary screen line printing machine is used to illustrate how the 

different software and safety methods are integrated in the HAZAPS methodology. In the 

following sections, the various stages of the HAZAPS methodology are described. 

4.3 Stage 1: Identifying safety-critical subsystems 

The objective of the first stage is to subdivide the system and to identify the subsystems 

which are safety-critical. Requirement specifications together with available design 

schematics are used. Partitioning a system into subsystems is always a difficult problem. 

It is assumed that some partitioning of a system will already have been carried out before 

the HAZAPS methodology is applied. Domain analysis is used to assist in identifying and 

understanding subsystems. Neighbors [1984] defines domain analysis as:-

.... an attempt to identify the objects, operations and relationships between what 

domain experts perceive to be important about the domain. 

This very useful definition indicates the underlying concepts of domain analysis, namely:-

+ an identification technique- in HAZAPS, two identification techniques are used for 

domain analysis, Preliminary Hazard Analysis (PHA) and coarse grain Object 

Oriented Analysis (OOA); 
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+ domain expertise - experts must be used when building safety-critical systems and 

it must be possible for them to communicate this knowledge to partners in the 

system development; 

+ focusing on a particular aspect - the term 'important' can be replaced by 'safety

critical' where the emphasis is on those properties of the system and environment 

related to safety. 

Domain analysis has the following benefits:-

+ it helps to obtain a better understanding of the system and to identify safety 

concerns; 

+ it provides a focus for the rest of the safety analysis; 

+ safety-critical concerns identified in a specific application domain can be reused. 

4.3.1 Preliminary Hazard Analysis (PHA) 

The purpose of PHA is to identify safety-critical concerns and provide an initial assessment 

of the hazards. Ad hoc methods have been proposed by Kirwan [1994], namely:-

+ By determining the various hazards associated with the intended system~ materials 

inventory (e.g. dangerous chemicals, radioactive substances, etc.). 

+ By reviewing previous incident/accident experience to see what types of 

incidental/accidental events have occurred. 

+ By using the judgement of an experienced assessor. 

+ By reviewing hazards identified in other similar plant. 

More structured methods for PHA include:-

+ Different types of Checklists can be used. A general Checklist is given by Hammer 

[1980] which contains classes of hazards (e.g. mechanical, explosive) which are 
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further subdivided into more specific hazards (e.g. rotating equipment, explosive 

gas). AIChemE [1985] describes a number of checklists for use in the chemical 

industry. 

+ Creative Checklist HAZOP (a variant of classical HAZOP) was developed to address 

two needs. Firstly, the need for a study that can be carried out earlier in the design, 

when only a limited amount of information is available and, secondly, the need for 

a study that can examine adverse interactions between units of the plant, and 

between the units of the plant and the environment [AIChemE, 1985]. The 

difference between Creative Checklist HAZOP and classical HAZOP is that, in 

Creative Checklist HAZOP, (i) the accompanying model used for analysis is in 

block format (e.g. a process to be carried out) rather than an engineering line 

diagram or a piping and instrumentation diagram, and (ii) a checklist (e.g. fire, 

toxicity, radioactivity) is used. 

There are other hazard identification techniques, however, the emphasis here is on 

preliminary analysis, in other words, a first cut at the problem. 

4.3.2 Object Oriented Analysis (OOA) 

The purpose of this 'coarse' OOA is to identify classes of objects which are related to 

hazards and hence group them into one or more classes to form a subsystem. Ideally, when 

identifying subsystems, the objectives are loose coupling between subsystems and strong 

coupling within subsystems. This emphasis on coupling is similar to that described by 

Myers [1975] for software modules. 

There are several approaches to Object Oriented analysis, however, the emphasis is 

generally on the analysis of the object model rather than on identifying the objects in the 

first place. Booch [1991] mentions briefly a number of approaches to identifying classes and 

objects. Possible sources of object classes include tangible things, roles, events, interactions, 

structure, devices, locations. Rumbaugh et al. [1991] suggest using the requirement 
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statement from which nouns are abstracted to form tentative classes and subsequently using 

a refinement procedure to eliminate spurious classes. 

4.3.3 Procedure for identifying safety-critical subsystems 

1. Draw top level block diagram showing main processes and avoiding too much detail. 

Briefly describe the processes. 

2. Identify top level hazards using prior histories, domain expertise, checklists, 

regulations, standards, text books. Determine chemical, physical, biological and 

ergonomic hazards. If necessary, the identified safety processes can then be 

modelled using Data Flow Diagrams (DFDs) which have been used by others 

[Edwards, 1993] to model material and energy flows. 

3. Coarse OOA is used to refine and abstract information from processes to identify 

subsystems. Candidate objects are based on devices, materials, events. Scanning the 

requirement specifications and design schematics and highlighting entities is useful. 

In summary, PHA allows us to investigate the safety-related behaviour and OOA allows us 

to associate entities with this behaviour. Combining both techniques provides a clear 

definition of subsystems, their boundaries and associated hazards. The results may identify 

particularly dangerous subsystems and result in their elimination/substitution or in changes 

to the proposed design requirements. In the next section the construction of safety 

requirements for the identified safety-critical subsystems is described. 

4.4 Stage 2 : Constructing safety requirements 

The purpose of this stage is to construct safety requirements for the subsystem based on the 

associated hazards. Each of the hazards is investigated using a fault tree (an example fault 

tree is shown in Fig. 4.3) which is used to determine the combination of failures and 

conditions that could cause the particular hazard to occur. The importance of Fault Tree 

Analysis (FTA) as a method of safety analysis is illustrated by its extensive use in many 

industries (chemical, military, avionics, nuclear). 
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4.4.1 Fault tree construction 

Many workers have described the underlying logic of fault trees and how they can be 

analysed, however, few have described the expertise required to construct fault trees. 

Fussell et al. (1974] give the following reasons why it is extremely difficult to generate high 

quality fault trees:-

Explosion due to solvent-laden vapour 

QGI 

I El r---- ------. r-----
I I I 

Concentration of solvent vapour I 
: Line running : I Burner 

greater than lower explosive limit 
I 

I I I 

~----------1 I ..._ ______ 

.·.~G2 
I I 

Too much Not enough solvent vapour 
solvent added extracted during process 

El E4 I 
QG3 

ES 
r----- -----, 

Pump overfills Cabinet not 
I I 
1 Solvent vapour not : 

print head purged initially : being extracted : 
~----------1 

E2 
I 
I 

on 1 
I 
I ____ I 

Fig: 4.3: Fault tree showing possible causes of an explosion due to solvent-laden vapour 
in a print station. El and E2 are not faults but indicate the state of the subsystem at a 

given time. 

1 The exercise requires a group of analysts who can generate and analyse fault trees. 

2 This group of analysts must 

(a) be intimately familiar with the system being analysed (involving long 
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sessions with designers and operators of the system in order to understand 

the functionality of the system); 

(b) understand the basic physics, chemistry and economics which describe the 

system performance; 

(c) have sufficient time to analyse the system. 

Assuming that the above requirements are fulfilled, the resultant fault tree can provide an 

excellent logical model of the mechanisms by which a system might fail. 

4.4.2 Fault tree analysis 

The 'cut set' algorithm is used to identify safety requirements [Fussell & Vesely, 1972]. A 

'cut set' is ... a set of basic events whose occurrence causes the top event to occur. The basis 

of the algorithm is a matrix which is used to re-express gates and events in terms of sets of 

events. The algorithm starts by the selection of the gate at the top of the tree. OR gates result 

in an increased number of rows and AND gates result in an increased number of elements 

per row. The algorithm terminates when all gates have been expanded. An illustration of 

the algorithm is given using Fig. 4.3 where gates are prefixed by G and basic events are 

prefixed by E. 

Starting at G 1 * 
El E2 G2 

Expanding G2 * 
El E2 E3 
El E2 G3 

Expanding G3 * 
El E2 E3 
El E2 E4 
El E2 E5 

Both El and E2 occur in all cut sets, therefore, in order to eliminate hazards, either El or E2 

may be prevented. However, in this case both El and E2 are normal operating events 
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therefore E3, E4 and E5 must be negated so predicate statements based on this fault tree may 

be expressed as 

El AND E2 AND (NOT) E3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (1) 
El AND E2 AND (NOT) E4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 (2) 
El AND E2 AND (NOT) E5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (3) 

4.4.3 Procedure for constructing safety requirements 

1. Select one of the subsystems identified using domain analysis in the previous stage 

ofHAZAPS. 

2. Choose a top event for the fault tree. 

3. Identify possible causes in general terms (i.e. independent of system component 

characteristics). 

4. Identify functional failures specific to the plant. 

5. Continue to identify sublevels of functional failures until resultant causes can be 

related to the embedded system interface. 

6. Use the cutset algorithm to identify safety requirements. 

Stage 2 in Fig. 4.4 shows one of the safety requirements based on predicate statement (3). 

The more thorough the domain analysis, the easier it is to carry out this procedure. 

Requirement documents and design schematics can also be used as a source of information. 

The objective of the fault tree is not to determine all possible causes but just top level 

hazards so that they can be investigated in terms of intended behaviour of the system. It can 

be viewed as full breadth' search and a 'depth' search which stops when causes are identified 

that can be investigated in terms of the interface between environment and the system. 

There may be conflict between existing functional requirements and the newly created safety 

requirements as a consequence of which the original requirements may have to be changed. 

The results from this stage include a set of safety requirements which must be modelled and 

assessed. This is discussed in the following sections. 
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Stage/ 
Subsystem 

Stage} 
Safety 

Requirement 

Stage] 

Operational 
Tasks 

Stage4 

Assessment 
(partial 
sample) 

Fig. 4.4: SAMPLE OUTPUT FOR HAZAPS 

Print Station 
• Hazard - Explosion 
• Component- Solvent 

If no solvent vapour is being exhausted from the drying cabinet while the line is running and the burner is 
switched on, the machine must be shut down and placed in a safe state. 
This requirement is represented by the dashed boxes in the Fault Tree (Fig. 4.3). 

• Flow sensor indicates no exhaust flow 
• Line sensor detects line is running 
• Burners are switched off 
• Nips are forced to open 
• Line is kept running 
• Alarm is activated 
• Warning is shown on Display (The ETD is shown in Fig. 4.S) 

Specification 
Options: 

Q: What other war could this task he accomplished! 
R: A sensor which directly measures solvent concentration or one which measures airflow 

Timing/Control: 
Q: How often does this state hare to be sGJnned! 
R: Scan time should be less than a second. 

Implementation 
Maintenance: 

Q: What maintenance procedures are required for this task! 
R: The condition and operation of the sensor is checked manually on a regular basis because of its 
importance and the corrosive environment in which it is placed. 

Protection 
Failure Detection: 

Q: What alarms are associated with this task! 
R: A siren and alarm message on a display 

Fault_Recovery: 
Q: What fault recorerr procedures are associated with this task! 
R: Manually test operation of exhaust fan and sensor, purge dryer and measure concentration of solvent 
in dryer. 

Failure_ Modes 
Incorrectly_ Terminated: 

Q: What 1/ task is incorrectfr terminated! 
R: If operator presses emergency stop, this would leave coated material in dryer which may ignite. To 
prevent this, the siren should be unique to this task, indicating that no operator intervention is 
required. 

Too Slow: 
Q: What if signal is too slow 
R: If the response of the sensor was too slow, this would cause a build up of solvent vapour in dryer and 
possible subsequent explosion. 
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4.5 Stage 3: Transforming safety requirements into 

operational tasks 

The objective of this stage is to transform safety requirements into operational tasks. The 

basic challenge underlying the development of all software systems is to transform models 

from requirements to source code. The transformations can be classed as operational or 

transformational paradigms. From the Requirements Engineering viewpoint, the major 

difference between the paradigms is the output from the requirements analysis phase; in the 

case of the operational paradigm [Zave, 1984], the output is an operational specification 

rather than a requirements specification. The advantages of using an operational 

specification for embedded software systems are that it can be used:-

+ to examine how the system is supposed to behave at the embedded system boundary; 

+ to determine constraints on functional behaviour; 

+ as the basis of a prototype which allows different disciplines to analyse the system from 

their own perspective; 

+ to formulate test plans. 

As with all requirements engineering techniques, the difficulty in using the operational 

paradigm is in capturing the requirements in the first place. In contrast, with HAZAPS the 

safety requirements are already expressed in a logical format from analysis of the fault tree 

(i.e. output from stage 2 of HAZAPS). Consequently, HAZAPS safety requirements are a 

useful input for an operational specification. These safety requirements must be 

decomposed into operational tasks and modelled. 

4.5.1 Transforming safety requirements 

The safety requirements have to be transformed into operational tasks. Two techniques are 

used: a technique based on the principles of Task Analysis and requirements parsing. 
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4.5.1.1 Task analysis 

Task Analysis was originally used to identify how people could be trained to perform 

particular tasks. Task Analysis has been applied to systems after they have been built; to 

evaluate proposed designs; and, to capture requirements for new systems. Recently, it has 

been used in what appear to be vastly different areas:-

+ the activity of a processor in the development of real time embedded systems [Ward & 

Melior, 1985], the focus being on determining data and timing constraints; 

+ the interaction of the human with the system [Johnson, 1992], the focus being on 

explicitly investigating the activities and cognitive process of the operator(s). 

In HAZAPS both processor activity (i.e. in general terms what the computer must do) and 

human-computer interaction play a vital part in task synthesis (see Section 3.3.1 for the 

reasons why it is important to include the human aspect in safety analysis). 

Useful prompts for synthesizing tasks have been described by Kirwan & Ainsworth [1992], 

these are shown in Table 4.1. Once application-specific tasks have been identified, they can 

be further transformed into sets of generic tasks (processor, communications, sensor, human 

input device, display, actuator, operator). The origin of these generic tasks is described in 

Section 3.3 .1. 

4.5.1.2 Requirements parsing 

The requirements parsing technique involves examining each requirement to ensure that it 

is ... defined unambiguously by a complete set of attributes (e.g. initiation of an action, 

source of an action, the action, the object of the action, constraints) [Peng & Wallace, 

1993]. Requirements parsing is generally used as an error detection mechanism in the 

requirements phase of the life cycle, however, it is useful in HAZAPS as it assists in 

transforming tasks from the safety requirements derived using fault tree logic. 
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Table 4.1: A taxonomy of descriptive decomposition categories which have been used in 

various studies [from Kirwan& Ainsworth, 1992] 

Description of task 

Description 

Type of activity/behaviour 

Task/action verb 

Function/purpose 

Sequence of activity 

Requirements for undertaking task 

Initiating cue/event 

Information 

Skills/training required 

Personnel requirements/manning 

Hardware features 

Location 

Controls used 

Displays used 

Critical values 

Job aids required 

Nature of the task 

Actions required 

Decisions required 

Responses required 

Complexity/task complexity 

Task difficulty 

Task criticality 

Amount of attention required 

Performance of the task . 

Performance 

Time taken/starting time 

Required speed 

Required accuracy 

Criterion of response adequacy 

Other activities 

Subtasks 

Communications 

Co-ordination requirements 

Concurrent tasks 

Outputs from the task 

Output 

Feedback 

Consequences/problems 

Likely/typical errors 

Errors made/problems 

Error consequences 

Adverse conditions/hazards 
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4.5.2 Modelling safety requirements 

Once safety requirements have been expressed in terms of operational tasks, it is necessary 

to model these tasks. Most methodologies for developing software systems depend on 

modelling techniques. These modelling techniques can be classified as 'structured', 

'functional' or 'behavioural' as shown in Table 4.2. 

Table 4.2: Classification of modelling techniques 

Structured Functional Behavioural 

Rumbaugh et al. [1991] Object Function Dynamic 

Ward & Melior [1985] Data Process Dynamic 

Davis [ 1993] Object Function States 

Ideally all three modelling techniques are used and integrated. Although the ETD technique 

(derivation described in Section 33.2) may appear at first glance to model the behavioural 

view only (i.e. it is a representation of operational tasks: an example is shown in Fig. 4.5), 

it is founded on information based on both a structured and a functional view. In Stage 1 

in HAZAPS, both a functional (in terms of processes) and a structured (00 analysis) view 

is used. In Stage 2, the method of applying PTA could be viewed as functional 

decomposition, the major difference being that in PTA the emphasis is on finding failure 

'paths' rather than success 'paths'. The notation of the ETD does integrate these different 

viewpoints:-

+ nodes are based on objects; 

+ the radial dimension reflecting the functional view; 

+ the angular dimension is related to dynamics. 
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Fig. 45: An Event Time Diagram (ETD) for a safety 
requirement 

There is an apparent limitation with the ETD in that the maximum number of tasks that can 

be drawn on the ETD is eight. However, a major objective of the ETD is to permit analysis 

of ALL the tasks associated with a specified safety requirement. Even eight tasks can be 

difficult to interrelate at any one time. Experimental psychologists have suggested that the 

maximum number of tasks an individual can cope with is 'around seven' [Miller, 1956]. In 

SADT (see Section 2.2.2.2), a well-established methodology, the maximum number of 

activities that can be analysed at any one time is six. 

4.5.3 Procedure for transforming and modelling safety requirements 

1. Select one of the safety requirements identified in Stage 2. 

2. Formulate a description of the safety requirement using prompt list shown in Table 4.1, 

and requirements parsing. The objective is to express safety requirements in terms of 

actions, timings, post and pre-conditions, devices and attributes. 
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3. Extract list of generic tasks (processor, communications, sensor, human input device, 

display, actuator, operator) from description of safety requirement. 

4. Model on ETD. This may result in reordering of task list or introduction of new tasks. 

Application of this procedure may result in the creation of new safety requirements. In 

summary, a safety requirement is modelled using the ETD (example shown in Fig. 45) by 

transforming the requirement into a set of generic tasks (see Fig 4.4), i.e. a set of events 

required to fulfil a safety requirement is a set of instantiated generic tasks. 

4.6 Stage 4: Assessing safety requirements 

Having identified and modelled safety requirements, the final step is to assess these 

requirements. The evaluation is driven by scenario analysis using ES-HAZOP and ES

FMEA. 

4.6.1 Scenario analysis 

The importance of scenario analysis has been highlighted in a number of different areas: 

human dependability [Atkins, 1990], task analysis [Kirwan & Ainsworth, 1992] and 

software requirement inspections [Porter et al., 1995]. Scenario analysis has been 

incorporated in OOA by Jacobson et aL [1993] in their methodology, Object Oriented 

Software Engineering (OOSE). The term Use Case is used in OOSE, a scenario can be 

described as an instance of a Use Case. Scenario analysis is becoming accepted as a vital 

part of 'front end' OOA as shown by the introduction of Use Cases into the new unified 

methodology of Rumbaugh and Booch [Rumbaugh, 1996]. Gough et aL [1995] give a clear 

description of the benefits of using scenario analysis during requirement engineering when 

they state:-

/t is not only the requirements engineer, but also the stakeholder, who benefit from 

scenarios, with an improvement in the communication of ideas, especially in the process 

of elicitation and validation of requirements. 
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Scenario analysis is clearly a useful technique but there are problems in applying it. They 

are as follows:-

-+- obtaining in-depth domain knowledge; 

-+- selecting the right level of abstraction; 

-+- identifying underlying concepts; 

-+- generating meaningful scenarios; 

-+- representing the scenarios; 

-+- providing an efficient method of analysing scenarios. 

These difficulties are particularly pertinent to embedded safety-critical systems because of:

• the number of different disciplines involved in the development of a system; 

-+- the distributed nature of embedded systems; 

-+- the vast number of possible scenarios; 

-+- the problem of systematically evaluating each of the scenarios. 

4.6.2 Using ES-HAZOP and ES-FMEA to assess safety requirements 

Having carried out Stages 1, 2 and 3 of the HAZAPS methodology, subsystems and 

associated safety concerns have been clearly identified. The safety concerns have been 

expressed as safety requirements. The safety requirements have subsequently been translated 

into sets of generic tasks (consisting of a single object and action) which are modelled using 

the ETD. The ETD is an ideal basis for scenario analysis, where a scenario is based on 

predicted behaviour of an individual task or the interaction between one or more tasks. It 

provides a common frame of reference for all disciplines and focuses on the operational 

behaviour at the embedded system boundary. It overcomes both general and specific 

difficulties of scenario analysis described above with one exception the ETD does not on its 

own provide a systematic method of evaluating scenarios. However, the ETD technique can 

be combined with ES-HAZOP and ES-FMEA to overcome this difficulty. ES-HAZOP is 
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based on the causal superclasses Specification, Implementation and Protection. Each 

superclass has subclasses, and each subclass has one or more associated questions dependent 

on task type. ES-FMEA is based on one causal superclass, Failure_Modes. Failure_Modes 

has subclasses based on general failure modes derived from incidents. The derivation of ES

HAZOP and ES-FMEA is described in Chapter 3. 

Scenarios are, by definition, context-dependent which makes them difficult to evaluate in 

a generalised fashion. ES-HAZOP and ES-FMEA are context-independent but can be used 

to evaluate application-specific scenarios which are fonnulated in tenns of generic tasks. 

The questions associated with the ES-HAZOP and ES-FMEA procedures can be applied to 

different scenarios. The questions:-

+ are dependent on the type of generic task (processor, communications, sensor, human 

input device, display, actuator, operator); 

+ assist in identifying causal chains in behaviour which otherwise would be extremely 

difficult to identify and analyse; 

+ encourage the developers to probe deeply into the proposed design; 

+ are classified into causal classes; 

+ are arranged in a filter-like fashion (i.e. questions get more specific as the analysis 

progresses); 

+ are based on 'real' incident data. 

(A complete list of questions is given in Appendix 1). 

4.6.3 Procedure for assessing safety requirements 

1. Select safety requirement and associated ETD for evaluation. 

2. Identify critical tasks using ETD. It is useful to focus on significant parameters or 

control of same, e.g. initiating conditions. 
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3. Apply ES-HAZOP by applying in sequence each of the associated questions (based on 

task type). Check if subclass prompts to any other questions that might be relevant. 

Record responses and required actions. Typical actions described include test cases, 

modifications to requirements, new requirements, requests for further information. 

4. Apply ES-FMEA. Follow procedure as for ES-HAZOP. ES-FMEA provides a cross

check of ES-HAZOP and also allows more focused evaluation of the causes and 

consequences of critical tasks. 

A partial assessment is shown in Fig. 4.4. 

4.7 Conclusions 

At the end of applying the methodology, the safety-critical subsystems have been identified 

with their associated safety requirements, hazards, components, operational tasks, ETDs and 

recommendations. Use is made of the requirements specifications at all stages of the process, 

this in itself provides a way of checking the functional requirements related to the safety

critical subsystems. It helps to identify any inconsistencies, incompleteness or ambiguities. 

Fig. 4.6 shows an overall view of the process. 

HAZAPS is based on identifying, specifying and assessing safety requirements. It differs 

from a design or test methodology in that the emphasis is on what should NOT happen 

rather that what should happen. Top level hazards are analysed in terms of low level tasks 

of the embedded system. The major challenge in assessing safety in embedded systems is 

relating real world events that are hazardous to programmable events. The HAZAPS 

approach is to integrate a number of models, techniques and associated procedures. New 

models (System and ETD) and new techniques (ES-HAZOP and ES-FMEA) are introduced. 

Existing techniques (domain, fault tree, task and scenario analyses) have been tailored 

specifically for assessing safety in embedded systems. Overall the objective was to develop 

a holistic approach which:-
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+ captured in a systematic way the different types of knowledge required; 

+ focused on the interface boundary of the embedded system where major problems are 

known to occur; 

+ bridged the gap between the perspectives of different disciplines; 

+ unified different software and safety methods so that the results can be fed smoothly 

from one method to the other. 

I INPUTS I I OUTPUTS I 
+ Requirements specification Stage/ ·· +Hazards 
+ Generic hazards IDENTIFY SAFETY- •.•. + Safety·critical subsystems 
+Design schematics CRITICAL SUBSYSTEMS ••. 

+ Safety-critical subsystems Stagel ·. + Fault trees 
+Hazards CONSTRUCT SAFETY +Safety requirements 
+ Requirements specification REQUIREMENTS +Updated original requirements 
+ Design schematics . 

+ Safety-critical subsystems Stage] + Operational tasks +Safety requirements 
+ Requirements specification TRANSFORM AND MODEL + ETDs 
+ Design schematics SAFETY REQUIREMENTS 

+ Safety-critical subsystems 
+ Requests for further information + Safety requirements Stage4 

+ Requirements specification ASSESS SAFETY +Updated original requirements 
+ Operational tasks REQUIREMENTS 

+New requirements 
+ ETDs +Test plans 
+Questions . • 

Fig. 4.6: Overview of the HAZAPS process 
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CHAPTERS: 

HAZAPSTOOL 

In this chapter the HAZAPS tool is described. It supports some of the key processes 

involved in the HAZAPS methodology, namely, constructing, modelling and assessing 

safety requirements. The requirements of the tool are to: 

Assist in identifying safety requirements by providing facilities to view hazards lists, 

design schematics, fault trees, system and/or software requirements. 

+ Allow browsing and editing of safety requirements so that task synthesis can be 

carried out, the objective being to identify the generic tasks required to fulfil these 

requirements. 

+ Automatically generate Event Time Diagrams (ETDs) based on identified tasks and 

provide facilities for subsequent labelling of the ETDs. 

+ Assist in the assessment of safety-critical tasks by displaying relevant questions for 

a selected task and allowing responses and required actions associated with a 

particular task to be stored. 

+ Provide comprehensive and flexible report generation allowing selection of one or 

more requirements and display any combination of associated tasks, ETDs, required 

actions, etc. Reports can be output to display or printer (Postscript file or ASCII 

text). 

+ Provide facilities for the system administrator to edit/update the question library and 

associated information. 
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Fig. 5.1 shows a conceptual view of the HAZAPS tool. The Knowledge Base contains both 

generic knowledge (keywords/questions library, incident information and hazards) and 

Knowledge Base 
OGeneric 
0 ication S 

HAZAPS 
Kernel 

User 

Fig. 5.1: Conceptual view of the HAZAPS tool 

application specific knowledge (information specifically related to the ongoing project). The 

text editors (Requirements, Tasks and Questions) are provided for editing both the generic 

and the application specific knowledge. Graphics editors are used to model safety 

requirements via the ETD representation and to view design schematics and fault trees. The 

report does not exist as an independent entity but is compiled by the Report Generator each 

time it is invoked from information stored in the Knowledge Base. The HAZAPS Kernel 

controls the flow of information between the editors and the Knowledge Base.It converts 

the information from each of the editors into the relevant format and transfers it to the 

Knowledge Base. The creation and deletion of entities is controlled by the HAZAPS Kernel 

via the text and graphics editors. The Kernel maintains the integrity of the Knowledge Base 

by checking the operations made by the editors. 
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Fig. 5.2: External entities and class diagram for HAZAPS tool 
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5.1 Design 

The strategy used in the development of the HAZAPS tool was based on identifying key 

abstractions. There are two general types of abstraction (see Fig. 5.2). 

1. External file entities, including graphics files (e.g. fault trees and process, 

mechanical and electrical diagrams); system requirements (e.g. customer 

requirements, guidelines and standards); hazard lists (e.g. sector, industrial or 

application-specific lists); and the help file which provides assistance on how to use 

the tool. 

2. Object classes (in doubled bordered box in Fig. 5 .2). The notation used follows the 

new 'Unified Method' of Rumbaugh [1996]. An instance of a safety-critical 

subsystem is referred to as a 'project'; each project has a number of associated 

requirements and ETDs; each requirement has an associated ETD and is 

implemented using a number of tasks; each task is assessed using a number of 

questions. 

The QUESTION class shown in Fig.5.2 is a superclass; its subclasses are shown in Fig. 53. 

Questions associated with generic tasks are instances of the root classes shown in Fig 53. 

This generalisation of classes allows a user, with no programming experience, to add new 

questions associated with a question and a generic task. When the system is initialised, a 

project is selected. Instances of other classes may be created at run-time. At startup, 

instances of the QUESTION class always exist, however, instances of other classes (i.e. 

REQUIREMENT, ETD and TASK) do not exist unless they were already created in a 

previous project and that project is reloaded. Other classes used within the HAZAPS tool 

(e.g. frames, text boxes etc.) are defined within the development environment. Facilities are 

provided to read from or write to the slots of these predefined classes and to use their 

associated methods. 
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Fig. 5.3: The subclasses of the QUESTION class. * = for simplicity, root classes 
not displayed 

The associations between classes REQUIREMENT, ETD, TASK and QUESTION are 

implemented using simple naming conventions and pointers. 

+ The link between a requirement instance and an ETD instance is based on the 

identifying number of the requirement and ETD e.g. Requirement No .X is associated 

with ETD No .X. 

+ The association between a requirement instance and task instances is established by 

mapping every instance of a requirement to a task class, consequently, all instances 

of a TASK class are associated with a particular requirement instance. 

+ The link between a task instance and question instances is implemented by using 

slots within the task instance. These slots contain pointers to associated question 

instances. 
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The templates for each of the classes developed for the HAZAPS tool are shown in Fig. 5.4. 

The notation used follows the new 'Unified Method' of Rumbaugh [1996]. The template 

consists of three compartments: (1) name of class, (2) slots, and (3) operations. 

REQUIREMENT TASK ETD 

description description node label 

CreateRequirement type arrow _label 

Delete Requirement specification_ questions node_coords 

DisplayReqDescription implementation_ questions line_ coords 

UpdateReqDescription protection_ questions arrow_ coords 

specification_ responses flow_ direction 

implementation _responses CreateETD 

QUESTION protection _responses DrawETD 

question_ description specification_actions Display Labels 

question_info implementation_ actions RespondDeleteReq 

CreateQuestion protection_ actions RespondEditTask 

DeleteQuestion Create Task RespondUpdateType 

DisplayQuestionDes DeleteTask 

DisplayQuestionlnfo DisplayTaskDescription 

UpdateQuestionDes DisplayTaskType 

UpdateQuestionlnfo Display AssocQuestions 

Display AssocResponses 

DisplayAssocActions 

UpdateTaskDescription KEY 

UpdateTaskType Name of Class 

UpdateAssocQuestions Slots 

UpdateAssocResponses 

UpdateAssocActions Operations 

RespondDeleteReq 

Fig. 5.4: Templates for each of the classes developed for the HAZAPS tool 
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5.1.1 Slots 

Each class contains slot(s) for free text. The slot for instances of the REQUIREMENT and 

TASK classes contains a description of the requirement or task. The ETD class has slots 

node _label and arrow _label containing strings that correspond to task instances. Each 

instance of a QUESTION class has slots question_description (containing the question 

itself) and question_info (containing information associated with the question). 

The type slot of the TASK class can have one of seven values (Human, Display, Sensor, 

Actuator, IDD, Communication, Processor). This determines how the task will be modelled 

and assessed. Following the type slot, there are nine slots relating a task instance to question 

instances. The first three of these nine slots contain lists of pointers to groups of question 

instances. The next three slots are for responses to questions, and the final three slots are for 

actions associated with the relevant questions. 

The ETD template has slots, node _coords, line _coords and arrow_ coords, containing Real 

numbers which are used to draw the ETD automatically. The flow _direction slot can only 

have a value of 1 (indicating flow to the processor) or 0 (indicating flow from the processor). 

5 .1.2 Operations 

Common operations for all classes include Create, Delete, Display and Update. The Create 

and Delete operations refer to the creation and deletion of instances, the Display and Update 

operations refer to reading from, or writing to, slots. 

The operations UpdateAssocQuestions, UpdateAssocResponses, and UpdateAssocActions 

of the TASK class depend on the value of the type slot and on the group (i.e. specification, 

implementation or protection) selected by the user. If a requirement is deleted, all its 

associated tasks must also be deleted. This is handled by the operation RespondDeleteReq. 
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The operations DrawETD and Display Labels of the ETD class are used for displaying an 

ETD on the screen. The process is as follows:-

+ drawing the node is dependent on the task-identifying number and the task-type 

(using the type slot from the task instance); 

+ drawing a line from the node; 

+ drawing an arrow on the line dependent on flow direction; 

+ labelling the node; 

+ labelling the arrow. 

The last three operations in the ETD template are used to respond to situations where a 

requirement is deleted, a task is deleted/inserted or a task type is changed. These operations 

maintain consistency of the ETD model for both the requirement instance and the task 

instances. For example, if task No X is deleted, all other tasks shown on the ETD whose task 

identifying number is greater than X must be moved back 40°. 

5.2 Implementation 

The tool was developed for a Windows environment using an expert system shell, CLIPS 

[NASA, 1994] and a graphical user interface, wxCLIPS [Smart, 1996]. CLIPS provides 

procedural and object oriented facilities and wxCLIPS supports the creation of window 

frames, menus, text boxes etc. All code written in CLIPS is supported by wxCLIPS. Other 

software used includes HlpMATIC [Ghag, 1994] to generate Windows help files and AZ 

Icon Edit [AZicon, 1994] to create Windows icons. The combination of packages provides 

an excellent prototyping environment. 

The approach used in developing the software was based on the levels of abstraction as 

described by Dijkstra [1968] and expanded by Myers [1976]. The main benefits of layering 

are clarity, and ease of maintenance, testing and consistency checking. For the HAZAPS tool 

the idea of layering was combined with object oriented classes. The module is the basic 
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mechanism for organising the software in the HAZAPS tool. The modules are divided into 

two types- 'declarative' and 'procedural'. The declarative module is used to declare classes 

and contains no procedural statements. The procedural modules contain no class structure 

but control the execution of the program. Fig. 55 is a module-dependency' diagram for the 

HAZAPS tool. The boxes represent modules (boxes representing procedural modules have 

an upper compartment giving the name of the module and a lower compartment showing 

how the module can interact with the different classes). The diagram shows the different 

levels: 

Level! 

Level2 

Level3 

(Base Level) contains the declarative modules associated with the classes 

(Assignment Level) includes modules for the construction, modelling and 

assessment of safety requirements. Level 2 has three Sub-levels: 

+ SYSTEM (for capturing safety requirements) and LIBRARY (for 

editing the question library) modules; 

+ SYNTHESIZER module for synthesising generic tasks; 

+ MODELLER module (for modelling and identifying safety critical 

tasks) and ASSESSMENT module (for assessing the safety of these 

tasks). 

(Query Level) includes the REPORT module and the VIEWER module for 

viewing designs and fault trees. 

A module consists of 

+ Declarations - all variables used in the module; 

+ Functions - simple building blocks and operations e.g. deleting all instances of a 

class; 

+ Specification of frame and associated devices e.g. defining size of windows, where 

text boxes, or menus are placed; 

+ Procedures - all other components associated with the module e.g. responding to 

events such as menu selection, combining functions and interface calls to other 

modules. 
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As the prototype was being developed the following useful guidelines evolved:-

+ Changes in higher level modules should not affect lower level modules; 

+ Deletion of instances should be performed on one level/sub level only; 

+ Creation of instances should be performed on one level/sublevel only (with one 

exception - for practical reasons, creation of requirements instances is allowed both 

in the SYSTEM and SYNTHESIZER modules); 

+ Where possible, avoid the changing of slot values at more than one level/sublevel; 

+ Place no restriction on reading information from slots from any level. 

5.3 Operation 

wxCLIPS [Smart, 1996] provides facilities to create frames, each with an optional menu bar. 

Within a frame, one or more subwindows can be created. Subwindows can be panels, text 

subwindows, or canvasses, where, 

+ Panels contain such items as buttons, choice boxes, list boxes, text boxes; 

+ Text subwindows are used for displaying and editing text files; 

+ Canvasses are used for drawing graphics. 

Seven frames (Figs. 5.6 to 5 .12) facilitate user interaction with the tool. Each frame maps 

to one of the seven procedural modules shown in Fig. 5.5. Calling of the modules is 

controlled by the user via these frames. The four main frames , their associated modules and 

their mapping to the stages of the HAZAPS process, are shown in Table 5 .1. Frame names 

were chosen to be meaningful to the user; module names were chosen to be consistent with 

the overall design and development of the tool. The three ancillary frames do not map 

specifically to any stage in the HAZAPS methodology (see Table 5.2). The Report Generator 

and Graphics Viewer may be used at any stage in the process, and the Library Editor frame 

is for use by the administrator for maintenance purposes only. 
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Table 5.1: Mapping of modules and main frames to HAZAPS stages 

Tool 

Methodology 

Stage 1 + 2: Identification of safety

critical subsystems and construction of 

safety requirements 

Stage 3: Transforming and modelling of 

safety requirements 

Stage 4: Assessment of safety 

requirements 

MODULE 

SYSTEM 

SYNTHESIZER 

MODELLER 

ASSESSMENT 

Frame 

System Level 

Requirement level 

ETD Editor 

Task Level 

Frame design provides a commonality of code for the designer and a clear and simple 

presentation for the user. Most frame menu bars have common features 

.!.evel Allows transfer between frames (e.g. move from Requirement Level to Task Level). 

Iools Includes facilities to call a hazards list (in help file format) or Graphics Viewer. 

Report Provides access to Report Generator. Available on all main frames. 

Help Calls the help file. Available on all main frames. 

Table 5.2: Ancillary frames and their associated modules 

Frame 

Graphics Viewer 

Report Generator 

Library Editor 

Page 98 

MODULE 

VIEWER 

REPORT 

LIBRARY 



5.3.1 System Level 

The System Level Frame, used to identify safety requirements (see Fig. 5 .6), 

consists of two text subwindows: an upper window for loading and displaying 

the Source File (an ASCII text file), and, a lower window for entering safety 

requirements. The procedure is as follows: 

~ 
~ 
System 

Level Icon 

1. If starting a new project load the Source File (options include appending to an 

existing Source File or clearing the Source File subwindow). If an assessment has 

already been carried out then data can be reloaded, edited and saved and both the 

Source File and the safety requirements displayed in their respective subwindows. 

2. Capture and identify safety concerns by scrolling through the Source File. 

Assistance is provided via the Tools menu in the form of a Hazards List and 

Graphics Viewer (to view design schematics or fault trees). 

SPECIFICATION FOR ROTARY PRINT MACHINE 

The rotllry screen printing press consists of a number of print stations. 
Each print station prints a different pattern. Paper passes to a print head 
where Ills coated with plastlsol (a type of paste). ltthen passes through a 
drying cabinet. before passing to the next print station. Three different 

of computer system are used. One computer controls the running of the 
head has a single board to control the 

The requirement is to start/restart the machine safely. One hazard is thllt there 
may be solvent vapour in the dryer at startup. 

Requirement 2 

The requirement is to pump the correct quantity of plastisol into the print head when 
automatic mode Is chosen. A pump at ellch print station fills the print head at 
intervals. the time between intervals is dependent on the required coat weight. 
If the pump overfills the print helld. the solvent concentraion In the dryer may 

Fig. 5.6 System Level Frame 
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3. Candidate safety requirements are entered into the lower subwindow by typing or 

pasting. The word 'Requirement' must be included as a header to each requirement. 

4. Once all safety requirements have been identified, they can be edited and rearranged 

in a logical order. 

5. Store all Requirements (i.e. create instances of the REQUIREMENTS class) by 

clicking on the File menu and selecting Process. Once Process has been selected, 

Requirements can no longer be edited at this Level but should be edited individually 

at the Requirement Level. 

5.3.2 Requirement Level 

The objective of this frame is to assist in synthesising generic tasks to fulfil the 

safety requirements (see Fig. 5.7). There are three subwindows made up of two [~J 
panels and one text subwindow. One panel displays the description of the Requirement 

selected requirement, the other displays the description of the selected task Level lean 

associated with the chosen requirement. The text subwindow shows a list of tasks associated 

with the chosen requirement. The procedure is as follows. 

1. Select requirement for which tasks need to be constructed. Options are provided to 

a) insert a new requirement at the highlighted requirement position, b) append a new 

requirement to the existing list, c) edit a requirement description, and d) delete a 

requirement (i.e. delete a requirement instance). 

2. Select task and enter description of task in lower left hand panel. Options are 

available to insert, append, edit and delete a task. Other options include a) move 

forward to next task, b) move backward to previous task, c) go to a particular task, 

and d) view all tasks associated with the highlighted requirement. 
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3. Store the task and its description (i.e. create task instance and fill its description slot) 

by pressing the Save button. This pulls up a choice box with seven options (Human, 

Display, Sensor, Actuator, IDD, Communication, Processor). Select an appropriate 

type for the task. 

The requirement Is to start/restart the machine safely. 
One hazard Is that there may be solvent vapour In the 

' dryer at startup. 

Task List 

Task-No. 1 Type: Display 
Activate display 

Task-No. 2 Type: Human 
Press start button 

Type: Sensor 
Sense no emergency stops are pressed 

Task-No. 4 Type: Sensor 
Sense no web break sensors active 

Task-No. 5 Type: Sensor 
Sense air supply ok 

Task-No. 6 Type: Actuator 
Start exhaust fan to purge dryer 

Task-No. 7 
Start machine 

Type: Actuator 

Fig. 5.7 Requirement Level Frame 

4. Repeat steps 2 and 3 until all tasks associated with the chosen requirement have been 

determined. 

5. Repeat steps 1 to 4 until all requirements have analysed. 
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5.3.3 Event Time Diagram (ETD) Editor 

The purpose of the ETD Editor is to model safety requirements (see Fig. 5 .8).1! 

has three subwindows; a canvas for drawing the ETD, a dialog subwindow for 

selection of requirement and labelling entities of associated tasks, and, a text ET~c~~ltor 

subwindow at the bottom of the display for browsing the requirement and tasks 

descriptions. The procedure is as follows: 

1. Select Requirement from Choice Box. Requirement description and associated task 

appear in text subwindow at the bottom of the display. 

to start/restart the 
solvent vapour in the dryer at startup. 

Task-No. 1 Type: Display 

~ 
' "" '· 1 
7~ 
J I~ 

I I I 
/ ; I 

/ ) 
/ 

ijMM@ifil / 
/ 

@Miilllli 
l"f'i!!!lb11 .....,... ____ / 

Is that there may 

Fig. 5.8: ETD Frame (n.b. time increases anti-clockwise) 

2. Select a specific task by clicking on the mouse-sensitive canvas at one of the vertices 

of the ETD template (i.e. select a particular task to be modelled). This action pulls 

up a dialog subwindow on the left of the canvas. 
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3. Provide the requested information in the dialog subwindow. The text subwindow is 

available to browse through relevant task information. When all information has 

been entered, exit the dialog subwindow by clicking OK. Subsequently the task 

vector, node, direction arrow and associated text are displayed on the ETD template. 

4. Repeat Steps 2 & 3 until all tasks are displayed on the ETD template. To maintain 

consistency between task generation and modelling, tasks cannot be deleted at this 

level: this must be done at the Requirement level. Labelling and direction of flow 

may be edited at this level, the display may be tidied up by using the Refresh facility 

which is available via Display on the menu bar. 

5. Repeat Steps 1 to 4 until all requirements have been modelled. 

5.3.4 Task Level 

At the Task Level safety critical tasks associated with requirements are assessed (see Fig. 

5.9). It consists of three choice boxes and four text boxes. The choice boxes are 

used for selection of Requirement, Task and Group. Two text boxes are used to 

display information for the user, one displays the description of the selected task, 
~ 
~ 

the other displays relevant questions associated with the task. Two other text Task Level 
Icon 

boxes are provided for the user to input information, one to respond to questions, 

the other to enable the user to specify further actions (e.g. requests for further information 

and requirement changes). The procedure is as follows. 

1. Select a requirement. This action populates the task Choice Box with tasks 

associated with the highlighted requirement. 

2. Select a task. The task description is displayed in the top right text box and the 

Group Choice Box is initialised. 

Page 103 



3. Select a group (i.e. Specification, Implementation or Protection). The question Text 

Box at the top left hand side displays the number of relevant questions available and 

the first question. Further information can be obtained about the relevant questions 

by pressing the View button. This action invokes the Library Browser which 

displays the list of questions under consideration and associated information. 

4. Enter a response and actions in the two lower text boxes. Save responses and actions 

by pressing the Next button which automatically displays the next question if one 

exists. 

5. Repeat steps 3 and 4 for each Group. 

exhaust flow 

Group 

sensor Indicates no exhaust 11ow 

is worth considering onstream solvent monitoring rather 
than monitoring the exhaust flow 

Fig. 5.9 Task Level Frame 

6. Repeat Steps 2 to 5 for each critical Task associated with the selected Requirement. 

7. Repeat Steps 1 to 6 for all Requirements. 
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5.3.5 Graphics Viewer 

The Graphics Viewer is for viewing design schematics and fault trees (see Fig. 

5.10) It consists of one canvas on which a graphic can be displayed. The 

procedure is as follows:- Graphics 
Viewer Icon 

1. Oick on the Eile menu. Select Load file. A file selector subwindow displays all files 

with .BMP extensions in the default directory. 

2. Choose a file to load. The graphic is displayed on the canvas. 

3. To replace the file displayed with a different file select Qear from the Eile menu and 

repeat steps 1 and 2. 

Fig. 5.10: Graphics Viewer Frame 
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4. To exit the Graphics Viewer and return to previous frame select Quit from the file 

menu. 

5.3.6 Library Editor 

The Library Editor allows customisation of questions and associated information 

used for assessing critical tasks (see Fig. 5 .11). The frame includes a List Box 

and two Text Boxes. The List Box displays existing questions. The two Text 

~. m 
Library 

Boxes are provided for editing questions and associated information. The Editor Icon 

procedure is as follows: 

1. Select Task Type for question. 

2. Select Group (i.e. Specification, Implementation or Protection) to which question 

belongs. As a consequence of this action, Keywords belonging to this Group are 

passed to the Keyword Choice box. 

3. Select Keyword. Existing questions associated with the highlighted Type, Group and 

Keyword are displayed in the List Box. 

4. Select one of 4 options :-

a) highlight a question and delete it ; 

b) edit a question and its associated information by highlighting question in List 

Box and pressing Edit button; 

c) insert a question by highlighting in the List box where a question is to be 

positioned and pressing Insert button. 'Nil' then appears in the List Box 

signifying that a vacant position is available in the List Box (i.e. a new 

question instance has been created), click on this position and enter new 

question; 

d) append to the existing question list by pressing Append button, 'nil' appears 

at the last position in the list, click on this position and enter new question. 
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are these alarm(s) required? 

Fig. 5.11: Library Editor Frame 

5. If necessary, edit the question and associated information in the relevant Text Boxes. 

Store all changes by pressing Save button. 

6. To return to System Level select eXit from menu bar. Under eXit, there is an option 

to permanently overwrite the database file for future projects. 

5.3.7 Report Generator 

The Report Generator is used to view and/or print data at any stage during the 

assessment process (see Fig. 5 .12). The Report is not static but continually 

updates as the user enters information to the system. It has one dialog 

subwindow. The procedure is as follows: 
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1. Select Qptions from the menu bar. Qick on Start and a dialog subwindow is 

displayed. 

2. Select one or more Requirements. 

3. Select the items (Requirement Description, Tasks, ETDs, Questions, Responses and 

Actions or any combination of these options) required for the report. 

4. Select one or more output devices. Options include Screen, Postscript Printer, 

Postscript file, Windows Notepad, or any combination of these options. If the report 

has already been displayed on screen and a printout is subsequently required, a 

postscript file can be obtained via the submenu Print to a postscript file under 

Qptions on the menu bar. 

Fig. 5.12: Report Generator Frame 
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5.4 Conclusions 

The combination of CLIPS and wxCLIPS provided a very powerful environment for 

prototyping the HAZAPS tool. The main difficulty encountered was in identifying the key 

abstractions and their associations (ie. Oass structures and external entities). Combining the 

principles of layering and object oriented classes allowed the tool to evolve in a gradual and 

easily-maintainable fashion. 

The tool has proved very useful in supporting the HAZAPS methodology. The advantages 

being 

+ Automatic generation of ETDs; 

+ Flexibility of the Report Generator; 

+ Ability to customise the questions library and hence build experience into the tool; 

+ Extendability is possible because the tool has been developed in a structured and 

logical fashion. 
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CHAPTER6: 

Applications of HAZAPS 

In this chapter HAZAPS is applied to different systems. The objectives of applying 

HAZAPS are to:-

+ show typical results; 

+ demonstrate the benefits; 

+ identify any major difficulties; 

+ show how HAZAPS can be applied to different application domains. 

Three applications of HAZAPS are described: (i) an illustrative example based on a simple 

aircraft navigation task, (ii) a case study based on a rotary screen line printing press, and (iii) 

a case study based on a water treatment plant. In the case of the aircraft example, modelling 

and assessment (Stages 3 & 4 of HAZAPS) of a single requirement is briefly described. For 

the two case studies, all four stages of HAZAPS were used and several requirements were 

considered in detail. The rotary screen printing press has been tested and is operational. The 

water treatment plant has not yet passed the design stage. The assessment of both these case 

studies was based primarily on infonnation obtained from real functional requirement 

specifications and design drawings. In the following sections the three applications of 

HAZAPS are described. 

6.1 Modelling and assessing an avionics safety 

requirement 

This example of an aircraft navigation requirement illustrates how stages 3 and 4 of the 

HAZAPS process can be used to model and assess safety requirements. The example shows 

the use ofthe ETD technique and the ES-HAZOP and ES-FMEA procedures. 
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6.1.1· Modelling the safety requirement 

The safety requirement is Aircraft shall maintain a safe heading. The following operational 

tasks are associated with this requirement:-

+ Pilot feeds heading into the system; 

+ System determines aircraft's present position via a sensor; 

+ Processor calculates new heading for aircraft; 

+ System issues update to display; 

+ Pilot confirms this update; 

+ Aircraft is steered in correct direction. 

Fig. 6.1 shows how the above tasks are modelled using the ETD technique. There are several 

possible scenarios that might lead to a hazardous situation, including (i) Pilot feeds in wrong 

heading and subsequently accepts the issued update; (ii) Pilot incorrectly confirms bad' 

update and the aircraft is steered off-course. These scenarios initially prompt investigation 

of pilot interventions and updating of the display console. 

Fig. 6.1: ETD for the aircraft navigation requirement 
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6.1.2 Assessing the safety requirement 

The ES-HAZOP and ES-FMEA procedures (cf. Appendix 1) provide the basis for assessing 

requirements. The operational tasks were first categorised in terms of generic tasks and then 

the ES-HAZOP and ES-FMEA procedures were applied. From the above scenarios, the pilot 

interventions and updating of the display were considered important. The pilot 

interventions, 

+ Pilot feeds heading into system 

+ Pilot confirms this update 

are classed as Operator-type tasks, and the updating of the display, 

+ System issues update to display 

is classed as a Display-type task. 

Table 6.1 shows a subset of questions for each of the tasks which can be applied from each 

of the Superclasses. The purpose of the questions is to help clarify safety considerations and 

reduce or eliminate any associated hazards by revising functional requirements or 

implementing safety control strategies. In the following case studies, responses to questions 

are considered and it is shown how they facilitate an in-depth analysis of the design. 

6.2 Case Study 1 - Print Machine 

The first case study is based on a rotary screen line printing machine. The development of 

such a machine requires a multi-disciplinary approach, bringing together expertise in process 

engineering, logic control, variable speed drives and mechanical engineering. Each stage of 

the HAZAPS process is applied in turn. 
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Table 6.1: Subset of assessment questions for each of the tasks 

Superclass Class Slot(fask Question 

When is this intervention 
Operator 

required? 

Specification Timing/control 
How often does this 

Display information need to be 

updated? 

Is this intervention easy to 

Operator perform in a stressful 

situation? 

a... Implementation Environment 
C> 

Where can the display be ~ = Display positioned for most effective • U> 
L1.J 

use by the operator? 

Is it clear what the operator 

Operator has to do in an emergency 

Protection Fault_Recovery situation? 

Display 
What emergency procedures 

are associated with this task? 

Operator 
What if operator fails to carry 

<C out task? ..... 
:::E: Failure_Modes Not_Initialised ...... 

I ...... What if information is not ..... 
Display 

shown on display? 
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6.2.1 Identification of safety-critical subsystems 

The objective of this stage is to understand the processes associated with the printing 

machine, determine underlying concepts and identify subsystems for analysis. The rotary 

screen printing press consists of a number of print stations. Each print station prints a 

different pattern. Material flow through the printing press is shown in Fig. 6.2. Paper is 

automatically unwound from a reeler and passes to a print head where it is coated with 

L---

Paper in 
I 

Reel er 

--- -----
""' ~ -

Coater 

""' .n -
Drying 
Cabinet 

"' , 

--- -----

Cooler 

'~ 
To next 

Print Station 

Plastisol 

Natural gas 

Solvent-laden vapour 

1 - - -I = Subsytem for analysis 
L---

Fig. 6.2: Material flow through rotary screen line printing press 

plastisol. It then passes through a drying cabinet and down to a cooling roller, before 

passing to the next print station. Three different computer systems are used. One computer 

controls the running of the line. Each print head has a single board computer to control the 

printing and each burner in the drying cabinet has an associated proportional, integral and 

derivative controller. 
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6.2.1.1 Major hazards 

Major sources of hazards associated with the printing process include:-

+ solvent-laden vapour which evaporates as the coated material is dried; 

+ large steel rollers rotating at high speed which pull the web (i.e. the material 

passing through the machine) through the printing press; 

+ gas burners in the drying cabinet which are used to dry the coated paper. 

The case study focuses on monitoring and controlling the solvent concentration in the dryer 

(dashed box in Fig. 6.2). 

6.2.1.2 System Components 

Components of the system under consideration (Fig. 6.3) can be divided into 2 object 

classes, Chemicals and Equipment. 

BU NER 

FLOW 
SWITCH 

A 
I \ 

!. ~ 
I \ 

I \ 

WEB SENSOR 

LEVEL 
SENSOR,..--K::J '-.P-LJ 

PAPER IN _.... 

EXHAUST 
FAN 

DRYING 
CABINET 

COATED 
...._PAPER OUT 

Fig. 6.3: One of the print stations in the screen line printing press 
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Chemicals 

+ Plastisol contains a number of organic chemicals including plastiser and 

solvent: the solvent is emitted during the drying process. 

+ Natural gas is used by the burners in the drying cabinet. 

Equipment 

The Equipment class is divided into three subclasses: Process, Sensors and Actuators. 

Process 

+ A print head consisting of a screen (a hollow cylindrical container into 

which the plastisol is pumped) and backing roller. The term nip is used to 

describe the gap between screen and backing roller. 

+ A pump fills the screen with plastisol. 

+ Pneumatic rams press the backing roller against the screen. 

+ A drying cabinet contains a burner which heats and gels paper and plastisol. 

+ A fan removes solvent vapour from the dryer. 

+ A cooling roller cools the coated paper and helps set up the web path for the 

next print station. 

Sensors 

+ The line sensor senses whether the web is moving through the machine. 

+ The level sensor measures the amount of plastisol in the screen. 

+ The air pressure sensor senses whether or not the pneumatic system is 

operational. 

+ The web sensor determines whether the web is continuous. 

+ The nip pressure sensor determines whether the nip is open or closed. 

+ The flow sensor determines whether there is flow through the exhaust. 

The system has other sensors (e.g. encoders, tachometer, load cells and 

thermocouples) but these are not relevant to the present analysis. 
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Actuators 

+ Drive motors are used for backing and cooling rollers; 

+ Solenoids for pneumatic rams; 

+ Relays for exhaust fan, burner and plastisol pump. 

Having identified a subsystem, its components and top level hazards, the next step is to 

construct safety requirements related to this subsystem. 

6.2.2 Construction of safety requirements for print station 

The objective is to construct safety requirements for the print station related to the solvent 

concentration in the dryer. The use and control of flammable solvents in printing inks and 

plastisols is a well known source of hazards in the printing industry. Each drying cabinet in 

the machine has explosion panels, however, the machine user is responsible for ensuring that 

I 
Explosion due to solvent-laden vapour I 

I *GI El I E2 

Concentration of solvent vapour line running Burner on 
greater than lower explosive limit 

6G2 
I ' Too much Not enough solvent vapour 

solvent added extracted during process 

I . 

QG3 
E3 E4 I ES I 

Pump overfills Cabinet not Solvent vapour not 
print head purged initially being extracted 

Fig. 6A Fault tree for Print Station. El and E2 are not faults but indicate the state of the 
subsystem at a given time. 
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flammable solvent levels in the circulating air and exhaust air associated with each cabinet 

are safe as defined in the HSE regulations [HSE, 1981]. The emphasis here is on identifying 

contributors to these hazards when a programmable system is used. The fault tree shown in 

Fig. 6.4 is used (see Section 4.4.2 for derivation of predicate statements). 

The predicate statements were 

El AND E2 AND (NOT)E3 •••• 0 0 • 0 •••••••••••••• 0 0 •••• 0 0 • 1 

El AND E2 AND (NOT) E4 ••••• 0 ••• 0 ••• 0 0 •••••• 0 0 • 2 

El AND E2 AND (NOT) E5 0 • 0 0 0 ••••••••••• 0 0 3 

The following safety requirements were constructed using the above predicate statements. 

Requirement No. 1 (based on predicate statement 1) 

The pump at the print station must not overfill the print head because the 

solvent concentration in the dryer will increase and may increase beyond the 

specified limit. 

Requirement No. 2 (based on predicate statement 2) 

Before the machine is started or restarted, the drying cabinet must be purged 

initially. 

Requirement No. 3 (based on predicate statement 3) 

If no solvent vapour is being exhausted from the drying cabinet while the line 

is running and the burner is switched on, the machine must be shut down and 

placed in a safe state. 

Having constructed safety requirements, the next step is to transform the requirements into 

operational tasks and assess them. 
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6.2.3 Modelling and assessing safety requirements for print station 

The safety requirements are assessed in turn. 

6.2.3.1 Requirement No. 1 - Print station 

Description: The pump at the print station must not overfill the print head because the solvent 

concentration in the dryer will increase and may increase beyond the specified limit. 

Operational tasks: 

+ Operator selects automatic mode for pump operation 

+ Line sensor indicates line is running 

+ Nip sensor indicates that nip is closed 

+ Level sensor indicates low plastisol 

+ Processor determines pump 'on time' t, based on line speed and required coat weight 

+ The pump is switched on for time t 

ETD: The ETD is shown in Fig. 6.5. The pump can operate in automatic or manual mode. Automatic 

mode is only operative when the line is running and the nip is closed. The pump is switched on when 

the level detector detects a low plastisollevel in the print head. The pump fills the print head at intervals, 

the time between intervals is dependent on the required coat weight. 

Critical tasks: The safety aspect of this requirement ultimately depends on the switching on of pump for 

timet. 

Analysis of ACTUATOR task: The pump is switched on for time t. 

Specification 

Definition: 

Q: What action is required? 

R: To turn on pump for a 'set' time 

Objective: 

Q: Why is this action required? 

R: To fill print head with required amount of plastisol 

Options: 

Q: What other way could this task be accomplished? 

R: Rather than using the level sensor to trigger switch on of pump, a detector which directly measures 

coat weight could be used. 
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Action 1: Consider using an on-line coat weight monitor as there would be Immediate feedback 

on excessive coating. This would be useful for safety, from an economic point of view and for 

better consistency In coating. The difficulty of using such a device is that the coat weight profile 

varies across the paper for a given pattern and there are also variations due to Inconsistencies 

In batch production (I.e. continual recalibratlon would be required). 

Inputs/Outputs: 

Q: What are inputs/outputs for this task? 

R: The pump solenoid receives an energise signal from the main system 

Q: What parameters are associated with this task? 

Fig. 65: ETD for Requirement No. 1- Print Station 

R: 'Line speed' and 'pump facto(. 'Pump factor' is set by operator. lt is dependent on coat weight 

required. 

Q: What is the range of this output signal? 

R: On/off only. No associated range. 

Timing/Control: 

Q: How is this task to be initialised? 

R: Level probe senses that the plastisollevel is low 

Action 2: Check calibration of level sensor as the operation of the pump Is dependent on the 

sensitivity of the level sensor. 

Q: How is this task to be terminated? 

R: The task is terminated after a time ~· set by the main programmable system which de-energises the 

pump solenoid. 
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Operational_ Modes: 

Q: What relationship does this task have to manual mode? 

R: In manual mode the pump action is interlocked only to the level sensor, the pump action is indepen

dent of line speed and status of nip. 

Implementation 

Selection: 

Q: What actuator will be used? 

R: A solenoid valve 

Installation: 

Q: How will this device be interfaced to the system 

R: The solenoid valve is energised via a signal from an electromechanical relay. One input of the relay 

is connected to programmable system via a digital output 

Testing: 

Q: How will the implementation be tested? 

R: The switch on time of pump is dependent on coat weights. The coat weight is related to the pattern 

being printed on the paper. 

Action 3: Trials are required to determine maximum and minimum pump on times. 

Q: What reliability data is available on hardware items? 

R: There is no reliability data available at present. 

Action 4: Obtain hardware reliability data on pump and associated devices. 

Protection 

Fallure_Detectlon: 

Q: How will the system know if any of the hardware devices associated with this task have failed? 

R: There are no directly associated detection mechanisms as there is no automated feedback from the 

coating operation. Detection is dependent on the operator 

Trips: 

Q: What trips are associated with this task? 

R: There are no trips associated with this task 

Action 5: Consider implementing trip In case of pump remaining on unintentionally. 

Security: 

Q: What parameters associated with this task can be modified by the operator? 

R: The 'pump factor' can be modified. 

Q: Why can these parameters be modified by the operator? 

R: There are many different coat weights required and there are always inconsistencies within batches. 

Action 6: If operator selects and sets up pump on time, he/she may need training on how to do 

this. 
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Failure_Modes 

Lockup: 

0: What if this task locks up? 

R: This would occur if there was no signal to deactivate pump which would cause the plastisol to overfill 

print head and result in excessive coating. To prevent this, a maximum on time for pump is incorporated 

in the software which, if exceeded, trips power to pump via a totally independent route. 

6.2.3.2 Requirement No. 2 - Print station 

Description: Before the machine is started or restarted, the drying cabinet must be purged initially. 

Operational tasks: 

+ Display is activated 

+ Operator presses start button 

+ Sensors indicate no emergency stops pressed 

+ Web break sensors indicate no web breaks 

+ Air sensor detects air supply OK 

+ Exhaust fan is started to purge dryer 

+ Machine is started 

ETD: The ETD is shown in Fig. 6.6. Emergency stop buttons are located at the print station so that the 

operator can stop the machine at any time. Web break sensors are used to detect any break in the 

material. The air supply is used to open and close nips. The exhaust fan is used to remove solvent 

vapour from the drying cabinet. The digitally controlled drives synchronize the passage of material 

through the print heads. 

Critical tasks: The display task is very important as it allows the operator to monitor the startup condi· 

lions and to intervene if necessary. 

Analysis of DISPLAY task: Display is activated. 

Specification 

Definition: 

0: What is to be displayed? 

R: Information about states on the machine. 

Objective: 

0: Why does information need to be displayed? 

R: To permit operator to monitor startup conditions and to allow manual intervention if necessary. 
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Fig. 6.6: ETD for Requirement No.2 - Print Station 

Inputs/Outputs: 

Q: What are the inputs/outputs for this task? 

R: Status of line (pre-startup, starting, running, normal shutdown, emergency shutdown), emergency 

push buttons, web break sensors, air supply. 

Q: What is the format for displaying information? 

R: Icons for identifiers, states in alphanumerics, any unexpected states to flash in red. 

Timing/Control: 

Q: How often does this information need to be updated? 

R: Every 2 seconds 

Action 7: Check why 2 seconds Is chosen as the update Interval for the display. 

Operatlonai_Modes: 

Q: What relationship does this task have to normal shutdown? 

R: The display is also used in the shutdown sequence to allow the operator to monitor a safe 

shutdown 

Q: What relationship does this task have to an emergency shutdown? 

R: The display (in conjunction with an audible alarm) is also used in the emergency shutdown 

sequence to warn operator and to permit intervention if necessary. 

Implementation 

Selection: 

Q: What type of display will be used? 

R:AVDU 
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Installation: 

Q: If this display is used to show other information, how is information unique to this task distin

guished? 

R: The display format is paged, at startup the default is the startup page, similarly for normal 

shutdown and emergency shutdown. At other times, the page is pre-startup, normal running or the 

operator selects the page with the information required. 

Environment: 

Q: What particular aspects of the environment may affect the operation of this task? 

R: The environment is 'dirty' and hot. The print station will have an industrial type transparent window. 

The air is solvent laden requiring a flame proof enclosure for the VDU. 

Maintenance: 

Q: What maintenance procedures are required for this task? 

R: A software test module will be used to test display and inputs from various sensors. This will also 

prove useful for testing operation of sensors 

Action 8: Find out If this test module can be executed when the machine Is operational. If 1t 

can, how Is 11 ensured that 1t does not Interfere with normal operation. 

Protection 

Failure_Detectlon: 

Q: How will failure of display task be detected 

R: When display is operating correctly a number in the top right hand side of the display will 

continually update. Failure of this number to update will indicate display task has failed. 

Action 9: Test Idea of number In top right hand of display. Normally, the number will be 

continuously updating, however, on the rare occasion that 11 does not update will this be 

obvious to the operator? 

Fault_ Recovery: 

Q: What fault recovery procedures are associated with this task. 

R: Where possible any warnings given on display will have an associated help page which will give 

operator information on what he should do. 

Action 10: Give list of all warnings to be shown on display and describe associated recovery 

procedures. 

Failure_Modes 

Incorrectly _Initialised: 

Q: What if task is incorrectly im1ialised? 

R: This could occur if there are no default displays. To prevent this, if there is power to the VDU, it 

always shows some display i.e. startup, normal shutdown, emergency shutdown or if not in any of 

previous modes then pre-startup, running mode or some page selected by operator. 
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6.2.3.3 Requirement No. 3 - Print station 

Description: If no solvent vapour is being exhausted from the drying cabinet while the line is running 

and the burner is switched on, the machine must be shut down and placed in a safe state. 

Operational tasks: 

+ Flow sensor indicates no exhaust flow 

• Line sensor detects line is running 

• Burners are switched off 

• Nips are forced to open 

• Line is kept running 

• Alarm is activated 

• Warning is shown on Display 

ETD: The ETD is shown in Fig. 6.7. If there is no flow through the exhaust and the line is running then 

the burner is switched off to remove heat source from drying cabinet. The nip is forced open to stop 

coating of paper and the line is kept running to remove paper from the drying cabinet and prevent it 

from igniting. Siren is activated and warning is displayed. 

Fig. 6.7: ETD for Requirement No3- Print Station 
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Critical tasks: The operation of the flow switch is critical. Incorrect operation or logic associated with this 

device could lead to catastrophic events. 

Analysis of SENSOR task: Flow sensor indicates no exhaust flow. 

Specification 

Definition: 

0: What state is to be monitored? 

R: The exhaust flow 

Objective: 

0: Why does this state need to be monitored? 

R: To prevent build up of solvent concentration in drying cabinet 

Options: 

0: What other way could this task be accomplished? 

R: A sensor which directly measures solvent concentration or one which measures airflow. 

Action 11: Consider directly measuring solvent concentration rather than monitoring the 

exhaust flow. Firstly, lt measures the required parameter directly and, secondly, continuous 

feedback from direct monitoring could detect an unpredicted rise In solvent concentration. The 

major disadvantages of this are cost and number of monitors required. 

Inputs/Outputs: 

0: What are the input(s)/output(s)for this task? 

R: Output signal from flow sensor indicating no exhaust flow 

0: Over what range is the signal to be monitored? 

R: Output signal on/off, no associated range 

Timing/Control: 

0: How often does this state have to be scanned? 

R: Scan time should be less than a second. 

Operational_ Modes: 

0: What relationship does this task have to startup? 

R: The flow switch is associated with a purge sequence which must complete before startup. 

Implementation: 

Selection: 

0: What sensor will be used? 

R: An air flow failure detector which has an embedded mercury switch. 

Installation: 

0: How will this device be interfaced to the system 

R: The mercury switch is connected to an electromechanical relay. One output of the relay is 

connected to programmable system via a digital input. 

0: How will this device be calibrated? 
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R: The device is supplied by the manufacturer calibrated, it will be tuned when the machine is being 

commissioned 

Q: Where will this device be positioned? 

R: In the exhaust ducting, not near any disturbances e.g. fresh air dampers. 

Action 12: Need to ensure correct calibration of the airflow switch. 

Environment: 

Q: What particular aspects of the environment may affect the operation of this task? 

R: The environment is hot and laden with plastisol fumes. The device works on the principle of differ

ence in pressure inside and outside the exhaust duct. Clean air outside the duct activates the device. 

Action 13: The dependence on a single device for monitoring exhaust flow Is questionable. 

Check how difficult lt would be to Incorporate another sensor (better If sensor operates on a 

different physical principle). 

Maintenance: 

Q: What maintenance procedures are required for this task? 

R: The condition and operation of the sensor is checked manually on a regular basis because of its 

importance and the corrosive environment in which it is placed. 

Action 14: A good maintenance procedure for the airflow switch Is essential, because of Its 

Importance and the 'dirty' environment. The device should be easily accessible for the same 

reasons. 

Protection 

Fallure_Detection: 

Q: What alarms are associated with this task? 

R: A siren and alarm message on a display 

Q: Why are these alarms required? 

R: To warn operator that the sensor has indicated no flow in the exhaust, and to check that the 

machine is shutdown safely. 

Q: How will the system know if this task has failed? 

R: There will be a test sequence pre-startup which will check the sensor indicates 'off' state with the 

exhaust fan off indicating no exhaust flow and on state with the fan on to indicate there is an exhaust 

flow 

Interlocks: 

Q: Are there any postconditions associated with the completion of this task which can be checked 

to ensure that the task has executed successfully and on time? 

R: Must be checked manually by operator. 

Trips: 

Q: What trips are associated with this task? 

R: Nip is forced off and burner is switched off 

Q: Why are these trips required? 

R: The nip is opened to stop coating, the burner is switched off to remove heat source 
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Fault_Recovery: 

Q: What fault recovery procedures are associated with this task? 

R: Manually test operation of exhaust fan and sensor, purge dryer and measure concentration of 

solvent in dryer. 

Failure_Modes 

Incorrectly_ Terminated: 

Q: What if task is incorrectly terminated? 

R: This would occur if operator presses emergency stop, this would leave coated material in dryer 

which may ignite. To prevent this, the siren should be unique to this task, indicating that no operator 

intervention is required. 

Action 15: Ensure that the alarm siren Is readily Identifiable as being associated with 'danger

ous' level of solvent vapour. 

Too_Siow: 

Q: What if signal is too slow? 

R: If the response of the sensor was too slow, this would cause a build up of solvent vapour in dryer 

and possible subsequent explosion. 

Action 16: Hardware reliability information Is required to make sure the airflow switch Is robust 

enough for the number of operations and environment Verify that the response of sensor Is 

adequate. 

6.2.4 Summary of assessment of print station 

The assessment focuses on one top level hazard (i.e. solvent vapour concentration in the 

dryer). Three safety requirements were identified and only one task associated with each 

requirement was assessed. A small number of all possible questions were used for 

assessment purposes. Sixteen actions are listed as a result of the assessment, these are shown 

in Table 6.2. Actions are related to: (i) requests for further information; (ii) checking of 

design decisions; (iii) suggestions for alternative designs; (iv) maintenance proposals; and, 

(v) test plans. Major concerns are the measurement of critical parameters and the 

environmental conditions. Some critical parameters are measured indirectly; it is proposed 

that these parameters should be measured directly (Actions 1 and 11). Also, the dependence 

on a single device to measure a critical parameter is questioned (Action 13). The 

environmental conditions are particularly nasty and therefore require attention (Actions 4, 

12, 14, and 16). 
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Table 6.2: Actions based on assessment of print station 

Action 1: 

Action 2: 

Action 3: 

Action 4: 

Action 5: 

Action 6: 

Action7: 

Action 8: 

Action9: 

Action 10: 

Action 11: 

Action 12: 

Action 13: 

Action 14: 

Action 15: 

Action 16: 

Consider using an on-line coat weight monitor as there would be immediate 
feedback on excessive coating. This would be useful for safety, from an economic 
point of view and for better consistency in coating. The difficulty of using such a 
device is that the coat weight profile varies across the paper for a given pattern 
and there are also variations due to inconsistencies in batch production (i.e. 
continual recalibration would be required). 

Check calibration of level sensor as the operation of the pump is dependent on 
the sensitivity of the level sensor. 

Trials are required to determine maximum and minimum pump on times. 

Obtain hardware reliability data on pump and associated devices. 

Consider implementing trip in case of pump remaining on unintentionally. 

If operator selects and sets up pump on time, he/she may need training on how 
to do this. 

Check why 2 seconds Is chosen as the update interval for the display. 

Find out if this test module can be executed when the machine Is operational. If 
it can, how is it ensured that it does not interfere with normal operation. 

Test idea of number in top right hand of display. Normally, the number will be 
continuously updating, however, on the rare occasion that it does not update will 
this be obvious to the operator? 

Give list of all warnings to be shown on display and describe associated recovery 
procedures. 

Consider using on-stream solvent monitoring rather than monitoring the exhaust 
flow. Firstly, it measures the required parameter directly and, secondly, 
continuous feedback from on-stream monitoring could detect a unpredicted rise 
in solvent concentration. The major disadvantages of this are cost and number 
required. 

Need to ensure correct calibration of the airflow switch. 

The dependence on a single device for monitoring exhaust flow is questionable. 
Check how difficult it would be to incorporate another sensor (better if sensor 
operates on a different physical principle). 

A good maintenance procedure for the airflow switch is essential, because of its 
importance and the 'dirty' environment. The device should be easily accessible 
for the same reasons. 
Ensure that the alarm siren is readily identifiable as being associated with 
'dangerous' level of solvent vapour. 

Hardware reliability information is required to make sure the airflow switch is 
robust enough for the number of operations and environment. Verify that the 

response of sensor is adequate. 
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6.3 Case Study 2- Water treatment plant 

This case study is based on preliminary design work done on a water treatment plant. In 

addition to water treatment experience, the design requires expertise in chemical 

engineering, instrumentation and software engineering. 

6.3.1 Identification of safety-critical subsystems 

The objective of this stage is to understand the processes associated with the water treatment 

plant, determine underlying concepts and identify subsystems for analysis. Water treatment 

involves several different processes as shown in Fig. 6.8. The first stage, DAF (Dissolved 

Air Flotation) is used to remove finely divided particles such as clays and colouring matter 

that may be held in suspension in the water. FeC13 assists this process and acts as a 

flocculating agent. H2S04 reduces pH and promotes the separating out of fine particles. 0 2 

is added as a prechlorination agent to remove micro-organisms. Once the suspended content 

in the water is reduced to consistent normal proportions, further clarification is effected by 

passing water into the RGS (Rapid Gravity Sand) filters. NaOH is added prior to RGS to 

raise the pH and help remove iron. The GAC (Granular Activated Carbon) removes traces 

of chemicals and dissolved organic substances. In the final stage, disinfection, 0 2 is used 

as the sterilising agent. Following disinfection, a number of chemicals are added: an S02 

solution is used to reduce residual a in the water; NaOH is used adjust the pH; and, NaSi03 

is used to reduce the effects of corrosion in metallic mains pipes. 

6.3.1.1 Major hazards 

Major hazards associated with treated water include the presence of:-

+ micro-organisms; 

+ pesticides; 

+ fertilisers; 

+ metals. 
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The focus of this study is on the disinfection system (Fig. 6.8, dashed box), that is, the 

reduction or removal of micro-organisms. Other processes prior to the disinfection system 

assist in the removal of pesticides, fertilisers and metals. Only those parts of the Cl2 and S02 

dosing systems which interface with the disinfection system are considered in this analysis. 

6.3.1.2 System Components 

Components of the system under consideration (Fig. 6.9) can be divided into 2 object 

classes, Chemicals and Equipment. 

Chemicals 

+ Cl2 is used to remove micro-organisms from the water.lt is highly toxic. 

+ S02 (a colourless gas with a choking penetrating smell) is used to reduce any 

residual Cl in the treated water to a preset level. 

Equipment 

The Equipment class is subdivided into Process, Sensors and Actuators. 

Process 

+ Inlet, outlet and dump valves control water flow in the disinfection system. 

+ Mixers add a Cl2 and S02 solution to the process water. 

+ Chlorinators and sulphonators mix Cl2 and S~ gases respectively with a 

water supply (termed the 'motive water supply' as distinct from the 'process 

water supply' which refers to the water being treated) to form a solution. 

+ The contact tank provides adequate contact time between the Cl2 solution 

and the process water. 

Sensors 

+ The electromagnetic flowmeter measures flow of water into the disinfection 

system. 

The composition sensors determine concentration of residual Cl in process 

water. 

The pressure sensors detect flow of Cl2, S02 and motive water supply. 
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Actuators 

+ Motorised valves are used for inlet, outlet, dump, chlorinators and 

sulphonators. 

Having identified a subsystem, its components and top level hazards, the next step is to 

construct safety requirements related to this subsystem. 

6.3.2 Construction of safety requirements for disinfection system 

The objective is to construct safety requirements related to the disinfection system. The 

addition of 0 2 is vital as not only does it improve odour and taste (provided correct dose is 

added) but it assists in removing micro-organisms. A 0 2 solution is added to process water 

before the contact tank and is subsequently measured three times: before the contact tank, 

after the contact tank and after addition of S02 solution. If the water stream after the contact 

tank contains too much a, it can be attenuated using S02 solution. It is important that the 

final treated water has the correct quantity of Cl present. Too much Cl can facilitate the 

formation of 'nasty' organic compounds and too little can result in growth of micro

organisms as the water passes through the distribution network. The associated fault tree is 

shown in Fig.6.10 where gates are prefixed by G and base events are prefixed by E. 

Identifying cut sets 
El G1 

Expanding G 1 = 
El G2 
El G3 

Expanding G2 = 
El E2 G4 
El G3 

Expanding G4 = 
El E2 E3 
El E2 E4 
El G3 

Expanding G3 = 
El E2 E3 
El E2 E4 
El E5 
El GS 
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Expanding 05 = 
El E2 E3 ................................................. 4 
El E2 E4 ............................................. 5 
El E5 ........................................... 6 
El E6 E7 ............................... 7 

El is common to all cut sets. Under normal operating conditions, El is always true (i.e. 

cannot negate El). The disinfection system must be shut down if any of the following 

predicate statements are true (based on cut sets 4, 5, 6, 7 above) 

E2 ANDE3 ................................................. 8 
E2 ANDE4 ................................................. 9 
E5 ............................................................ 10 
E6 AND E7 ................................................ 11 

These predicate statements can be divided into two sets to form the following safety 

requirements: 

Requirement No.l 

Requirement No.l is based on predicate statements 8, 9 and 10 which are all related to the 

addition of 802 solution.Each predicate includes either E2 (i.e. 802 solution unable to 

reduce 0) or E5 (i.e. too much 802 added). These predicate statements are used to construct 

the Requirement No. 1. 

If, after addition of S02 solution, the measured Cl in the treated water is 

outside set limits, then the disinfection system must be isolated. 

Requirement No. 2 

Requirement No. 2 is based on predicate statement 11 and is dependent on the addition of 

0 2 solution. This predicate statement is used to construct Requirement No.2 

The correct quantity of Cl2 solution must be added as indicated by sensor 

measurements either before or after the contact tank. 
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Having constructed safety requirements, the next step is to convert the requirements to 

operational tasks and assess them. 

6.3.3 Modelling and assessing safety requirements for disinfection system 

The safety requirements are assessed in turn. 

6.3.3.1 Requirement No. 1 -Disinfection system 

Description: If, after addition of S02 solution, the measured Cl in the treated water is outside set limits 

than the disinfection system must be isolated. 

Operational tasks 

+ Sensor measures residual Cl level 

+ Processor determines that the residual Cl level is outside set limits 

+ Inlet valve to the disinfection system is closed 

+ Electromagnetic flowmeter indicates no flow 

+ Outlet valve from disinfection system is closed 

+ Audible alarm is activated 

+ Messages shown on display 

ETD: The ETD is shown in Fig. 6.11. The residual Cl sensor is positioned after the so, mixer and it is 

used to determine the residual Cl in the final treated water. The processor checks if the measured 

residual Cl is within and upper and lower limit. If the residual Cl level is outside set limits then the inlet 

valve is closed preventing further flow of water into the disinfection system. The electromagnetic 

flowmeter is positioned after the inlet valve and indicates the amount of water flowing into the 

disinfection system. When the flowmeter indicates zero flow the outlet valve is closed, preventing water 

from entering the service reservoir. The operator is alerted to the situation by an audible alarm and by 

messages displayed on the control console. 

Critical tasks: The processor task which determines residual Cl level is outside set limits is critical. 

Failure of this task may have very serious consequences. 

Analysis of PROCESSOR task: Processor determines that the residual Cl level is outside set limits. 
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Fig. 6.11: ETD for Requirement No.l- Disinfection system 

Specification 

Definition: 

Q: What is the task? 

R: To determine whether residual Cl is within preset limits 

Objective: 

Q: Why is task required? 

R: To determine whether the disinfection system should be taken off line. 

Inputs/Outputs: 

Q: What calculations and models are required? 

R: The processor receives an analog value from a Cl sensor. This analog value is proportional to the 

residual Cl in the process water. The processor converts the analog value to a digital value which must 

lie between present upper and lower limits. 

Timing/Control: 

Q: How is this task to be initialised? 

R: Sensor value is polled at intervals by the processor which subsequently calculates residual Cl. 

Action 1: Check polling time. 

Operationai_Modes: 

Q: What relationship does this task have to startup? 

R: Task is prohibited during startup of the plant. 

Q: What relationship does this task have to an emergency shutdown? 

R: The task may initiate a shutdown of the disinfection system. 
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Implementation 

Selection: 

Q: What proprietary hardware will be used? 

R: A special purpose residual Cl sensor will be used. 

Installation: 

Q: How will this task be implemented? 

R: Sample water will be pumped from the process stream to the Cl sensor which will transmit results 

to the processor. 

Q: If settings are to be altered on proprietary or customised boards, how will it be ensured that these 

settings are done correctly? 

R: These settings are vital for safe treatment of water. 

Action 2: Obtain full details relating to setting of parameters for Cl sensor. 

Testing: 

Q: How will integrity of proprietary hardware be checked? 

R: Initially, the Cl sensor will be calibrated and checked with an established Cl analyzer in the 

laboratory. Before installation, it will be tested on an existing plant which operates under similar field 

conditions. 

Maintenance: 

Q: What maintenance procedures are required for this task? 

R: None specified. 

Action 3: Samples need to be taken directly from process water by operator, checked in the 

laboratory and compared with those logged by processor. All conditions are logged when/If 

disinfection system shuts down. Patterns need to. be Identified (e.g. Cl2 and S02 Injection rates, 

source of raw water, turbidity, pH). 

Protection 

Failure_Detectlon: 

Q: What alarms are associated with this task? 

R: An audible alarm in control room and display messages 'Treated water Cl level outside permitted 

range' and 'Plant tripped by disinfection system'. 

Q: Why are the alarms required? 

R: Once the disinfection system is shutdown, all water within the disinfection system must be dumped. 

Problems should be sorted as soon as possible otherwise plant has to be shutdown. 

Q: How is it detected if this task fails to receive inputs or updates? 

R: Once task initialised, it continually expects sensor to give non-zero values lying within preset limits. 

If it fails to receive a value, it assumes that the residual Cl level is outside preset limits. 

Trips: 

Q: What trips are associated with this task? 

R: Inlet valve and outlet valve are closed. 
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Q: Why are these trips required? 

R: To isolate the disinfection system from the rest of the plant. 

Fault_ Recovery: 

Q: What fault recovery procedures are associated with this task? 

R: None as yet specified in functional specification. 

Action 4: Instigate fault recovery procedures. 

Failure_Modes 

lncorrectly_lnitlallsed: 

Q: What if task is incorrectly executed? 

R: The task could execute incorrectly if the processor determined falsely that the residual Cl level is 

outside the upper/lower limits, or the processor determines falsely that the residual Cl level is within the 

upper/lower limits. 

Action 5: An algorithm Is required which tracks the variation In the residual Cl level. Perhaps this 

could be based on permutations of Increasing and decreasing Cl2 and 502 injection rates. 

6.3.3.2 Requirement No. 2 - Disinfection system 

Description: The correct quantity of Cl solution must be added as indicated by sensor measurements, 

either before or after the contact tank. 

Operational tasks 

+ Electromagnetic flowmeter measures flow rate 

+ Operator selects chlorinator 

+ Pressure switch indicates motive water supply ok 

+ Pressure switch indicates Cl, supply ok 

+ Sensor pre-contact tank measures level of residual Cl 

+ Cl2 injection rate adjusted 

+ Sensor post-contact tank measures level of residual Cl 

+ Cl2 injection rate is adjusted 

ETD: The ETD is shown in Fig. 6.12. The electromagnetic flowmeter is located at the inlet to the 

disinfection system. Once the flowmeter indicates that water is entering the disinfection system, the 

operator can select one of two chlorinators via a local control panel. The motive water supply is used 

in conjunction with the Cl2 gas injectors to form a Cl solution which is passed to the mixer in the 

disinfection system. The level of residual Cl is measured both before and after the water enters the 

contact tank. The measurements are used to control the Cl, injection rate. 
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Fig. 6.12: ETD for Requirement No. 2- Disinfection system 

Critical tasks: The operator task is chosen for analysis as it is the only operator intervention in the 

sequence and it assists the analysis of the interaction between the disinfection and Cl dosing system. 

Analysts of OPERATOR task: Operator selects chlorinator. 

Specification 

Definition: 

Q: What is the operator intervention? 

R: To initialise Cl dosing system so that Cl2 is injected into process water. 

Objective: 

Q: Why is this operator intervention necessary? 

R: The Cl2 injection system is in itself hazardous and needs to be monitored carefully and only activated 

when necessary. 

Inputs/Outputs: 

Q: What form does this operator input have? 

R: The operator selects one of two chlorinators via a switch unit. 

Timing/Control: 

Q: How are parameters initialized or re-initialised? 

R: Each chlorinator has a metering device which adjusts the rate of Cl2 injection. The injection rate is 

proportional to the flow of process water into the disinfection system. This proportional relationship is 

determined by a preset value. This preset value is trimmed by measurements of residual Cl both before 

and after the contact tank. 
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Operational_ Modes: 

Q: What relationship does this task have to an emergency shutdown? 

R: If the disinfection system is tripped, flow to disinfection system will be stopped and this will 

automatically shut down chlorination dosing system. 

Action 6: Cross check the emergency procedure for shutdown of the Cl, dosing system. 

Implementation 

Selection: 

Q: What proprietary hardware will be used? 

R: Special purpose metering devices for chlorination. 

Installation: 

Q: How will this task be implemented? 

R: A mimic display is provided which shows chlorination streams, motive water supply streams and 

preset injection rate. Local switch panel allows selection of stream. 

Q: Does operator need training? 

R: All personnel involved with Cl, injection system need to be trained. 

Action 7: Set up training plan for users; they have to be aware of the importance of the 

chlorination system and need to know how to monitor and control the process. 

Testing: 

Q: How will the task be checked against the functional specification? 

R: Cl2 injection can be monitored by checking the value obtained from the residual Cl sensor located 

before the contact tank. 

Action 8: Set up test procedure. Under normal operation, selection of a chlorination stream has 

no effect unless the following conditions hold: (i) flowmeter signals non-zero flow Into 

disinfection system (11) motive water supply OK and (iii) Cl2 supply OK. If any of these conditions 

Is false and then no Cl2 Is Injected Into the process stream. 

Environment: 

Q: What particular aspects of the environment may affect the operation of this task? 

R: There are several environmental factors to be considered which may affect the effectiveness of the 

Cl, injection e.g. pH, turbidity of water entering disinfection system, and properties of the raw water 

entering the plant (raw water may be supplied from one of 3 different sources). 

Action 9: Implement plan for micro-organism sampling of treatment water to validate 

effectiveness of Cl2 dosing. 

Maintenance: 

Q. What maintenance procedures are required for this task? 

R: The Cl2 dosing system has two chlorinators. In normal operation, one is in service and the other is 

on stand by. For maintenance purposes, the chlorinator on standby can be taken offline and serviced 

while the system is still operational. 

Q: How will maintenance procedures associated with this task affect normal operation? 
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R: If the chlorinator in service fails and the other chlorinator is offline being serviced, then the 

disinfection system must be shut down (i.e. automatic changeover of chlorinators is not possible). 

Action 10: Incorporate requirement to disable automatic changeover If either chlorinator Is being 

serviced. 

Protection 

Failure_Detection: 

Q: What alarms are associated with this task? 

R: Chlorination System Gas Meter failed. Motive water system failed. 

Q: Why are these alarms required? 

R: To signal that Cl2 dosing system has failed. 

Q: What are the alarm conditions/set values? 

R: Measured pressure outside set limits for gas metering and motive water supply. 

Interlocks: 

Q: Are there any post-conditions associated with the completion of this task which can be checked to 

ensure that the task has executed successfully and on time? 

R: Monitor value from residual Cl sensor located before contact tank. 

Security: 

Q: Can the sequence associated with this task be modified? 

R: If a chlorinator is being serviced, only one chlorinator is available for selection. 

Failure_Modes 

Not_lnitlallsed: 

Q: What if operator fails to cany out task? 

R: If a chlorinator is not selected, no Cl, will be injected into the process water in the disinfection system. 

Action 11: In the disinfection process, the residual Cl level Is measured three times. Check If 

relationship can be established between these three values. 

6.3.4 Summary of assessment of disinfection system 

The assessment focuses on one top level hazard (i.e. residual a in treated water). Two safety 

requirements were identified and only one task associated with each requirement was 

assessed. A small number of all possible questions were used for assessment purposes. 
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Eleven actions were listed as a result of the assessment, these are shown in Table 63. There 

is extensive use of instrumentation to measure critical parameters, however, better use could 

be made of the measurements obtained; in particular, the relationships and interaction 

between different parameters measured should be established (Actions 5 and 11). The 

functional specification is incomplete, this is illustrated by the large number of actions 

related to implementation (Actions 2, 3, 7, 8, 9 and 10). It is vital to crosscheck the 

emergency procedure for the Cl2 dosing system (Action 6). 

Table 6.3: Actions based on assessment of disinfection system 

Action 1: 

Action2: 

Action 3: 

Action 4: 

ActionS: 

Action 6: 

Action 7: 

Action 8: 

Action 9: 

Action 10: 

Action 11: 

Check polling time. 

Obtain full details relating to setting of parameters for Cl sensor. 

Samples need to be taken directly from process water by operator, checked in 

the laboratory and compared with those logged by processor. All conditions are 

logged when/if disinfection system shuts down. Patterns need to be identified 

(e.g. Cl, and so, injection rates, source of raw water, turbidity, pH). 

Instigate fault recovery procedures. 

An algorithm is required which tracks the variation in the residual Cl level. 

Perhaps this could be based on permutations of increasing and decreasing Cl, 

and SO, injection rates. 

Cross check the emergency procedure for shutdown of the Cl dosing system 

Set up training plan for users; they have to be aware of the importance of the 

chlorination system and need to know how to monitor and control the process. 

Set up test procedure. Under normal operation, selection of a chlorination 

stream has no effect unless the following conditions hold: (I) flowmeter signals 

non-zero flow Into disinfection system (ii) motive water supply OK and (iii) Cl, 

supply OK. If any of these conditions is false and then no Cl, is injected into the 

process stream. 

Implement plan for micro-organism sampling of treatment water to validate 

effectiveness of Cl, dosing. 

Incorporate requirement to disable automatic changeover if either chlorinator 

Is being serviced. 

In the disinfection process, the residual Cl level is measured three times. Check 

If relationship can be established between these three values. 
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6.4 Conclusions 

The case studies demonstrate that HAZAPS provides a means of systematically assessing 

the safety aspects of a system, irrespective of the application domain. The application of the 

methodology is relatively straightforward, the major difficulty is in identifying and 

understanding the safety critical subsystems in the first place. There is a definite need for 

effective participation by different disciplines involved in the development of the system. 

Fault tree construction assists in targeting the functions of the system which can contribute 

to top level hazards. Construction of the ETDs provides an effective means of establishing, 

understanding and analysing operational tasks. 

Answering the sets of questions forces the user to consider different safety aspects. The 

actions resulting from an assessment illustrate the \otal system' view of HAZAPS. There are 

actions related to environmental, human, hardware and software aspects of the system. 

Although the primary objective of HAZAPS is to 'assess' (see p.66, first paragraph for 

definition of the term 'assess~ the safety aspects of a system, it also complements and 

enhances the development of a system by identifying ambiguities, inconsistencies and 

incompleteness in the functional specification. 
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CHAPTER 7: 

Conclusions and further work 

HAZAPS, a unique methodology for integrating hazard evaluation procedures and 

requirements engineering, makes a novel contribution to the field of re-use of incident data 

to permit feedback into the design of safety-critical systems. It is unique in that it 

demonstrates how:-

+ non-functional requirements associated with safety can be captured from diverse 

disciplines; 

+ safety requirements can be formulated, logically represented, and analysed; 

+ safety considerations associated with the total system can be assessed. 

To derive the methodology, new concepts, models, methods (and associated procedures) and 

a computer tool have been developed. 

7.1 Novelty and benefits of HAZAPS 

The following sections describe the benefits of HAZAPS and demonstrate its novelty. 

7.1.1 Generic tasks allow a system-wide approach 

A fundamental concept in HAZAPS is the 'generic task' which, applied in a novel way, 

permits the capturing of different types of knowledge and reduces uncertainty associated 

with development of a safety-critical system. A generic task can be defined as 'an activity 

carried out by the operator or any device associated with the target system which controls 

and/or responds to changes in the environment'. The importance of the generification of 
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tasks has been discussed by Johnson et al. [1988] who used generic tasks to analyse data 

based on the observation of people carrying out tasks. HAZAPS uses generic tasks in a 

novel way, as generic tasks permit the integrated analysis of not only the human aspect 

but also the hardware, software and the environmental aspects. 

7.1.2 The system model integrates software and safety engi'!eering 

methods 

A major problem in assessing the safety of programmable systems is in integrating safety 

engineering and software engineering methods. In HAZAPS, the system model (p.71) has 

been developed for this purpose. The system model effectively consolidates safety 

engineering and software engineering methods. Of the various approaches to integrating 

software engineering and safety engineering methods discussed in Section 233, only a few 

included a general system model (most had either no system model or an application

specific system model). In those that did have a general system model it was difficult to 

determine where to start/stop applying a particular technique or how the output from one 

technique fed to another technique. The HAZAPS system model (p.71) is novel in that it 

permits different techniques to be used at different levels of abstraction and combines 

the strength of both deductive and inductive safety techniques (i.e. it allows one to work 

backwards to the embedded system boundary to identify safety concerns, and work forwards 

from the programmable events to the system boundary). FTA permits tracing of the causes 

of hazards back to the embedded system boundary, and the ES-HAZOP and ES-FMEA 

procedures facilitate the identification of programmable events which may lead to hazardous 

states at the embedded system boundary. 

7.1.3 An operational approach is used 

An operational view is required to understand how failure in a system may lead to hazardous 

states. The approach in HAZAPS differs from the operational specification methods 

discussed in Section 2.23. HAZAPS is novel in that it uses a combination of FTA and 

Task Analysis to synthesise operational tasks, and has an associated model, the ETD 
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which provides an effective way of establishing, understanding and analysing tasks 

related to the high level fault tree representation of hazards. 

7.1.4 The assessment framework is generic 

The framework (Appendix 1) which is the basis of the ES-HAZOP and ES-FMEA 

procedures, provides a unique method of analysing safety requirements in a systematic and 

exploratory manner. Although using sets of questions for assessing the safety of a system 

is common practice, combining models of causation and sets of questions based on incident 

analysis, is rare. Hurst & Radcliffe [1994] developed an audit technique based on an 

incident classification scheme to investigate major hazards on offshore plant. However, no 

sample questions or answers were provided. It can only be assumed that the technique 

proved useful. Their assessment technique is for management use, considerations include: 

system climate, organisation and management, and communication and feedback. HAZAPS 

is novel in that the sets of questions which are applicable to any embedded 

programming system, can be used for analysing low level tasks in conjunction with the 

ETD. In combination with the HAZAPS tool, the framework provides a novel and very 

effective method not only for assessing the system under consideration, but for accumulating 

safety strategies for future systems. 

7.1.5 The usefulness of HAZAPS has been demonstrated 

Two case studies have demonstrated that HAZAPS is effective at assessing the safety of an 

embedded system. HAZAPS has been tested by two companies which subsequently 

provided reports (one written, one verbal). The reports made general comments regarding 

improving and adding features to the tool (e.g. addition of a designer's sketch pad). Both 

companies regarded HAZAPS as a sound methodology for safety-critical systems and one 

suggested that it would also be a useful tool for the development of non-safety-critical 

systems. HAZAPS is novel in that no competing methodology exists. 

Fault tree construction assists in targeting the functions of the system which can contribute 

to top level hazards. Construction of the ETDs provides an effective means of establishing, 
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understanding and analysing operational tasks. Answering the sets of questions forces the 

user to consider different safety aspects. The actions resulting from the application of the 

methodology illustrate the ~otal system' view of HAZAPS. There are actions related to 

environmental, human, hardware and software aspects of the system. HAZAPS also 

complements and enhances the development of a system by identifying ambiguities, 

inconsistencies and incompleteness in the functional specification. 

7.2 Limitations of HAZAPS 

7.2.1 Domain analysis is difficult 

Domain analysis is always difficult but this is particularly true in the case of safety-critical 

embedded systems. Lessons were learnt from the case studies. The author had in-depth 

experience of the rotary printing press but none of the water treatment plant. For the water 

treatment plant case study, three people were interviewed: the software programme manager 

responsible for the design of the automatic control system of the water treatment plant; a 

chemical engineer with limited experience of water treatment; and, a microbiologist with 

experience of testing water quality. What was surprising was how little knowledge each had 

of the others' expertise. The requirements engineer has to be flexible to reconcile the 

different viewpoints and understand the basic principles involved in the What and Why of 

the system. Also, the procedure for Stage 1 of HAZAPS requires a top level diagram and 

associated description, and this information could not be abstracted from the documentation 

provided for either case study. Further work is required on the domain analysis. 

7.2.2 The assessment framework has not been proved complete 

Completeness was discussed in Sections 2.3.2 and 2.4.2.3 in relation to both safety 

engineering methods (where it was mentioned how different techniques were needed to 

support each other) and the integration of safety and software engineering techniques. The 

term 'completeness' has been described formally as ... the degree to which full 

implementation of required function has been achieved [Pressman, 1994]. Here the term 
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'completeness' is used in relation to the framework; the assumption is that, if all hazards have 

been identified in the environment, then, for the framework to be complete, it must identify 

all possible contributions to the hazards associated with the embedded system. Arguments 

for claiming that the framework is complete include: the framework is based on a large 

number of incidents; there is in built redundancy in that ES-FMEA procedure cross checks 

the ES-HAZOP procedure; and, the framework has proved effective in two case studies. 

Counter arguments include: analysis of a large number of incidents and two case studies 

cannot prove completeness; the derivation of questions based on incidents could itself be 

flawed; and, the effectiveness of ES-FMEA in cross checking ES-HAZOP has not been 

verified. 

Applying HAZAPS retrospectively to computer-related incidents which have occurred 

would not be sufficient to prove completeness because of the exploratory nature of the 

framework (i.e. after an incident it can always be assumed incorrectly that a particular 

question would have readily identified one of the events in the sequence which led to the 

incident). To validate the framework, HAZAPS should be applied to several more systems 

and these systems should be monitored throughout their lifecycle. 

7.3 Further work 

Recommendations for further work to extend and refine HAZAPS include: 

Indirect knowledge elicitation methods, such as card sort and ladder grid, could be 

tailored specifically for embedded systems and used to improve the domain 

analysis technique. 

+ It would be useful to carry out more case studies across different application 

domains and within the same application domain with the objectives of (a) 

customising HAZAPS and establishing generic safety requirements for particular 

application domains; (b) validating the question framework; and, (c) empirically 

identifying general strategies to reduce or eliminate risk (specific strategies have 

Page 150 



already emerged from the two case studies carried out which could be useful for 

future assessments of embedded systems: see p.133, Table 6.2 and p.148, Table 

6.3). 

+ Formalisation and simulation of the ETD technique would be advantageous. 

HAZAPS allows abstraction of safety concerns in a systematic and effective way. 

The addition of a formal method (e.g. Finite State Machines, temporal logic) would 

complement HAZAPS by assisting in the detailed design and checking of the final 

specification.It is important that this formal method should be transparent to all but 

the software engineers on the project, in other words, all non-software specialists 

should be able to participate in the assessment of a system without having to 

acquire expertise in a formal mathematical method. Simulation of the ETD would 

enrich the notation in that scenarios could be executed and interpreted by different 

participants involved in system development. 

+ HAZAPS already has overlap with MIL-STD882C and it is essential to the future 

of HAZAPS to investigate how it could be linked to safety critical standards and 

used to support these standards. Information gleaned from standards could be used 

to strengthen HAZAPS and make it an even more powerful tool. 
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Appendix 1 
Assessment Framework 

Superclass : Specification 

Oass: Definition- What is to be achieved? 

Slots Yalues 
Processor What is the task! 
CommJ What communication link is required! 
fenJor What state is to be monitored! 
HID What Human Input Device is required! 
Di1play What is to be displayed! 
Aduator What action is required! 
Operator What is the operator intervention! 

Oass: Objedive- Why is it to be achieved? 

Slots Ya/ues 
Processor Why is this task required! 
CommJ Why is this communication link required! 
Jensor Why does this state need to be monitored! 
HID Why is this Human Input Device required! 
Di1play Why does this information need to be displayed! 
Aduator Why is this action required! 
Operator Why is this operator intervention necessary! 

Oass: Options - How else could it be achieved? 

Slots Yalues 
Processor What other way could this task be accomplished! 
CommJ What type/s of communication protocols would be suitable! 
fensor What alternative states, methods would be suitable! 
HID What types of HIOwould be suitable! 
Di1play What would be the best way of actracting the operator's attention! 
Aduator What type/s of transducers would be suitable! 
Operator What would be the best way of allowing the operator to intervene! 

Oass: Inputs/outputs - What inputs and/or outputs are required? 

Slots Yalues 
Processor What are the inputs/outputs for this task! 
Processor What calculations and models are required and how will these be verified! 
Processor What parameters are associated with this task! 
Processor Are there any transfers of data to files! 
Processor Are there any P .. M/. AM transfers! 
CommJ What is the approximate distance between the two communicating devices! 
CommJ What is the format of the information to be transmitted on this communication link! 
fenJOr . ver what range is the signal to be monitored! 
HID What ranges are associated with this input device! 
Display Is it status or control information~ 
Display What is the format for displaying information! 
Aduator What is the range of this output signal! 
Operator What form does this operator input have! 
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Superclass : Specification ContJ •••• 

Class: Timing/control- When is it to be achieved and How is it to be controlled? 

Slots Yalues 
Processor How is this task to be initialized! 
Processor How will data be transferred to/lrom tasks! 
Processor How are parameters initialized or reinitialized! 
ffO(eSSOr How is this task to be terminated! 
Processor What are the preconditions for termination! 
ProceiSor What are the preconditions for initialization! 
Comms Is asynchronous or asynchronous protocol required and, if so, why! 
Comms How is this communication link controlled! 
Comms Is this a bidirectional communication link! 
Comms What response time is required! 
Comms How fast does the data need to be transmitted! 
Comms What terminates communication on this link? 
Comms What initiates communication on this link? 
Sensor When does this state have to be measured! 
Sensor How often does this state have to be scanned! 
Sensor If multiple sensors are to be used to monitor a state, what strategy will be adopted! What variations are due to 

the positioning of these devices! Will these variations remain constant with time! 
Sensor How fast does the response have to be! 
HID How often will this input facility be used! 
HID When will this input facility be used! 
DisplaJ How often does this information need to be updated! 
Actuator What response time is required! 
Actuator How will the system know that this action is required! 
Actuator If multiple actuators are required for a given task, what strategy is used to ensure that actuators work together! 
Actuator How frequently will this output be used! 
Actuator When is this action required! 
Operator When is this intervention required? 

Class: OperationaL Hotfes -What operational models (startup, shutdown, automatic, manual etc.) are involved? 

Slots Yalues 
Processor What relationship does this task have to startup! 
Processor What relationship does this task have to normal shutdown! 
Processor What relationship does this task have to emergency shutdown! 
Processor What relationship does this task have to automatic mode! 
Processor What relationship does this task have to manual mode! 
Operator How will a smooth changeover from manual to automatic be achieved! 

Class: Programmable - Why is this task programmable? 

Slots Yalues 
Pr«essor Should this task be programmable or can it be hardwired! 
Sensor Should access to this state be programmable or can it be hardwired! 
HID Should this input be programmable or can it be hardwired! 
DisplaJ Is a programmable display required! 
Actuator Should this output be programmable or can it be hardwired! 
Operator Should this intervention be carried out by the programmable system or by hardwiring! 
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Superclass : Implementation 

Class: Je/ection - What device/s are required! 

Slots Yalues 
Processor What customized boards will be used? 
Processor What proprietary hardware will be used? 
Processor What storage requirements are necessary? 
Comms What communications protocol will be used? 
Comms What interface will be used {e.g. Rllll, Current loop)? 
Jen<or What sensor will be used? 
HID What type of HID will be used! 
Display What type of display will be used? 
Actuator What actuator will be used? 

Class: Installation - How will the installation be carried out! 

Slots Yalues 
Processor How will this task be implemented? 
Processor If settings need to be altered on proprietary or customized boards, how will it be ensured that these settings are 

done correctly? 
Comms What status indications are required? 
Comms Is provision required for modification or expansion at a later stage? 
Jensot/ HI Of DisplaJActuator How will this device be installed? 
Jensot/ HI Of Displaj Actuator How will this device be interfaced to the system? 
Jensot/ HI Of Displaj Actuator How will this device be calibrated? 
Jensot/ HI Of Display Where will this device be positioned? 
Sensor Is position representative of state being measured? 
HID If other devices are to be used in conjunction with this device, what is the best logical layout? 
HID Is the purpose of this device clear to the operator? 
Display If this display is used to show other information how is information unique to this task distinguished? 
Operator Does operator need training? 

Class: Testing - How will the implementation be tested! 

Slots Yalues 
ProceiSor How will the implementation be tested? 
Processor How do you know if these requirements are sufficient? 
Processor How will customized boards be tested? 
Processor How will the integrity of proprietary hardware be checked? 
Processor For hardwired connections, how is the logic to be tested? 
Processor How will the task be checked against the functional specification! 
Processor What reliability data are available on hardware items? 
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Superclass : Implementation Cont/ .... 

Class: Environment - What effect will the environment have on this task! 

Slots Yalues 
PfO(mor What particular aspects of the environment may affect the operation of this task? 
Comms Is the environment noisy requiring screened or fibre optic cable? 
Sensor/ HID! Displa)i Actuator Is this device robust enough for environment and number of operations? 
Sensor/ HID! Displa)i Actuator Is electromagnetic protection required for this device? 
Sensor/HID/Actuator Is noise filtering/rejection required for this device? 
Sensor/ HIOI Displa)i Actuator What particular aspects of the environment may affect the operation of this task? 
Display Where can this display be placed for most effective use by the operator? 
Operator Is this intervention easy to perform even in a stressful situation? 

Class: Maintenance - What maintenance procedures are required! 

Slots Yalues 
Processor What maintenance procedures are required for this task? 
Processor How will maintenance procedures associated with this task affect normal operation? 

Class: Utilities - What utilities (power, air, etc.) are required! 

Slots Yalues 
ProceJsor What utilities are required for this task? 

Superclass : Protection 

Class: Failure_ Detection - How will any failures be detected! 

Slots Yalues 
Processor What alarm(s) are associated with this task? 
PfO(essor Why are these alarm(s) required? 
Processor What are the alarm conditions/set values? 
ProceiSor How does the system know if this task has failed? 
PfO(essor How are erroneous(invalid inputs or updates to this task detected? 
PfO(essor How are erroneous/invalid outputs or updates from this task detected? 
Processor How is it detected if this task fails to receive inputs or updates? 
Processor How is it detected if this task fails to transmit outputs or updates? 
Processor How is it detected if an associated task fails to execute or executes incorrectly? 
Comms What error indications are associated with this communication link? 
Comms Is error detection required? 
Sensor Is a continuous self-test sequence required? 
Actuator Is there any method of verifying orcorrelating output data to detect out of range values? 
Sensor/ HID/Actuator How will the system know if any of the hardware devices associated with this task have failed? 
HID How will the system know if the HIDhas given an invalid or erroneous signal? 
Display How will failure of display task be detected? 
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Superclass : Protection ContJ ..... 

C!Jss: Interlocks - How are hazardous events prevented? 

Slots Yalues 
Processor How is it ensured that all preconditions haw been identified! 
Pr«essor Do the preconditions hold only wflen task is required to execute! If not, how is unintended initialization of this 

task prewnted! 
Processor Do the preconditions hold only wflen task is required to terminate! If not, how is unintended termination of this 

task prmnted! 
Processor Are there any sustaining conditions associated with this task! 
Processor Are there any postconditions associated with the completion of this task which can be checked to ensure that the 

task has executed successfully and on time! 
HID If this input facility is only to be used when the machine is in a certain state, how is iu use prevented in other 

states~ 
Operator Is the operator intervention only available at certain times during the process, if so, how can the operator be 

prevented from intervening at other times! 
Operator What prevents the operator from ignoring displays/alarms etc! 

Class: Trips • How will the system be shut down if a hazard is identified? 

Slots Yalues 
Processor What trips are associated with this task! 
Processor Why are these trips required! 
Processor What are the associated trip conditions/values! 
ffO(eJJor How are these trips implemented! 
Processor What trip recovery procedures are associated with this task! 
Operator What trips are associated with this intervention! 
Sensor/ H/0/ Actuator What trips are associated with this task! 
Sensor/ H/0/ Actuator What values are trips set at! 

C!m: Security • How will breaches of security be prevented? 

Slots Yalues 
Processor What security measures are required with this task! 
Processor Can the sequence associated with this task be modified! 
ffO{essor What parameters associated with this task can be modified by the operator! 
Processor Why can these parameters be modified by the operator! 
Processor Can the hardware or hardware settings associated with this task be modified, if so why is this necessary! 
Pt()(tJJOf Can associated alarms be disabled, and if so why! 
Protessor How can operator be prevented from illegally modifying software! 
Processor How can the operator be prevented from illegally modifying hardware! 

Class: fault_ Recorery • What fault recovery procedures are associated with this task? 

Slots Yalues 
Processor What fault recowry procedures are associated with this task! 
Processor What emergency procedures are associated with this task! 
ProtesJor What error correction mechanisms are requiredl 
Processor What procedures are followed if parameters haw to be reinitialized during processes! 
D1splay If alarm under wflat conditions information, can it be made clear to operator wflat action is required, what has 

Operator 
gone wrong! 
Is it clear what the operator has to do in emergency situations! 
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Superclass : Protection Cont./ .... 

Class: Verification - How will the Fail Safe/Protection features be verified? 

Slots Ya/ues 
Processor How will failure detection mechanisms be verified? 
Processor How will interlock mechanisms be verified? 
Processor How will trips be verified? 
Processor How will security measures be verified? 
Processor How will fault recovery emergency procedures be verified? 

Superclass : Failure_ Modes 

Class: Not Initialized 

Slots Yalues 
Processor Task not initialized 
Operator Operator fails to carry out tasks 
Display What if information is not shown on display? 

Class: Incorrectly_ Initialized 

Slots Yalues 
Processor Task incorrectly initialized 
fensot/ HID/ Displaj{ Actuator No default settings 
fensot/ HID/ Displaj{ Actuator Uncalibrated 
Operator Operator interferes at wrong time in process 
Operator Operator thinks there is a failure when there is none 

Class: Incorrectly_ Executed 

Slots Yalues 
Processor Task incorrectly executed 
fen sot/ HID/ Displaj{ Actuator Incorrect value 
fen sot/ HID/ Displaj{Actuator Hunting 
Display Too complex or too much information 
Operator Operator carries out task wrongly 

Class: Not Terminated 

Slots Yalues 
ProaJsor Task not terminated 

Class: Incorrectly_ Terminated 

Slots Yalues 
Processor Task incorrectly terminated 
Operator Operator stops task at wrong time 
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Superclass : Failure_Modes Cont) .... 

Class: Erroneous/corrupt_ Opemion 

Slots 'Yalues 
Procmor Erroneous or corrupt operation 
Jensot{ HID! D1iplap Actuator Invalid or corrupt signal 
Jensotf HID/ DisplaJIActuator Noisy signal 
Display Incompatible 
Display Inconsistent 
Operator Erroneous input by operator 

Class: No_lnput/output 

Slots 'Yalues 
Processor No input/output to task 
Comms Communication device does not receive/transmit signal 
JensotfHID Device does not transmit signal 
DisplaJI Actuator Device does not receive signal 

Class: Incorrect_ Input/output . 

Slots 'Yalues 
Processor lncorre<t input/output to task 
Jensotf HID/Actuator Signal too high 
Jensotf HIO!Actuator Signal too low 

Class: Lockup 

Slots 'Ya/ues 
Processor Task locks up 
Comms Communications link lock up 
Comms Communications link time out 
Jensotf HID/Actuator Frozen{Jammed 
Display Display not updated 

Class: Too Fast -
Slots 'Yalues 
Processor Task operates too fast 
Jensotf HID/ Actuator Signal too fast 
Display Display updated too fast 
Operator Operator action too fast 

Class: Too flow 

Slots 'Yalues 
Processor Task operates too slow 
Jensotf HID/Actuator Signal too slow 
Display Display updated too slow 
Operator Operator action too slow 
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Superclass : Failure_Modes ContJ •... 

C/ass: Defective Hardware 

Slots Values 
ProcesJor Processor 
Processor Storage devices 
Processor Wrong cards 
Processor Digital/analogue 1/0/communication/counter timer/other cards 
Processor Defective device/s 
Processor Physically detached link/s 

Class: failure Not Detected 

Slots Values 
Processor Failure to detect failure 
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Appendix 2 

~ HAZAPS Overview '11 GraQhics Viewer 

t!J Level 1 (System Level) lrl Report Generator 

00 • Leve12 (Requirement LeveD ill Library Editor 

00 Leve13 CI'ask LeveD ;I Librarv Browser 

ll ETD Editor & Potential Hazards List 

HAZAPS Overview 

HAZAPS is a tool to aid the developer in assessing hazards in programmable systems. It 
has three main levels 

2. Requirement Level 

3. Task Level 

HAZAPS also incorporates a new graphical technique, the Event Time Diagram (ETD) 
to aid the developer in understanding and analyzing tasks and their interaction. 

Various tools are provided - a Rep~[t Generator, Gra~thi!:s View_e_r, l.iJ;u:ar)'_E~it.QJ:, 
Po_teotia!Jiazar_dd1£t. 
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HAZAPS System Level 
System 

Level Icon 

DESCRIPTION 

Purpose 
At the System Level safety requirements are constructed using the software requirements 
specification, a Potential Hazards List and available design schematics. 

Layout 
The System Level has two windows, the upper one for the specification So!!J.<:e_.f_ile, the 
lower for Safety Requirements. 

Tools 
A number of tools (e.g. Potential Hazards List, Graphics Yiewer,Library Editor) and 
cut and paste facilities are provided. 

Actions 
At this Level, a So!!rce File can be retrieved, edited, saved and cleared; assessments can 
be loaded, saved and cleared; requirements are processed (i.e. loaded into system). 

PROCEDURE 

1 Retrieve the So.!!rce.JI!e into the upper window and, using the Gr!!phics.Yie:w:er 
and __ P_ote.nt.i!!LH.U:!!rds_List, construct safety requirements and place in lower 
window. Use the lower window to decompose the specification into a number of 
requirements. 

2 Enter the requirements in the lower window. Format note: the word 
'Requirement' must be included as a header to each requirement. 

3 Process the Safety Requirements (i.e. load into system). 

Requirement 
Level Icon 

DESCRIPTION 

Purpose 

HAZAPS Requirement Level 

At the Requirement Level, Requirements are decomposed into Tasks and Tasks are 
classified according to T~J< Tyjle~ 
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Layout 
There are three panels: top left to select Requirement for decomposition; bottom left to 
add Tasks and RHS to view all Tasks associated with a particular Requirement. 

Tools 
An ETD Editor (useful for understanding and analyzing Tasks and their interaction, and 
in identifying critical tasks) is provided at this Level. Access to the Graphics Viewer and 
Potential Hazards List is also provided. 

Actions 
Requirements and Tasks can be inserted, appended, saved and deleted at this Level. 

PROCEDURE 

1 Select a Requirement (top left panel). 

2 Enter a Task (bottom left panel) 

3 Save the Task - when a Task is saved, the developer is prompted to select a Iask 
Iyp~. 

4 Continue until all Requirements have been decomposed into Tasks. At any stage 
it is possible to scroll through Tasks and view list of Tasks associated with a 
particular Requirement (RHS). 

5 Move to ETD Editor. 

~ 
~ 

Task level 
Icon 

DESCRIPTION 

Purpose 

HAZAPS Task Level 

At the Task Level, Tasks are assessed by posing a number of questions to the developer. 
The developer responds to the questions and enters any actions required. 

Layout 
The Task Level has three choice boxes (to select Requirement, Task and Group) and four 
panels. The top left panel displays the questions, top right displays the Task Description, 
bottom left is for entry of Response to question, and bottom right for optional entry of 
Actions. 

Tools 
Tools available at this Level include the Library Browser, Report Generator, Grcaphics 
Viewer and ETD Editor. 
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Actions 
The developer answers questions and can input actions associated with each question. 
These can be edited and saved at this Level. 

PROCEDURE 

1 Select a Requirement, an associated Task and an assessment Group 

2 The system will return a number of questions based on the Task Type which was 
selected for this Task at Level 2, the Task description is also displayed. The 
Library Browser can be used for viewing all associated questions. 

3 Respond to the sequence of questions and enter any necessary actions saving 
each in turn. 

4 If output is required, go to the Report Generator. 

HAZAPS ETD Editor 

ETD Editor 
Icon 

DESCRIPTION 

Purpose 
The EIQ is a new graphical technique to help the developer analyse Tasks and their 
interaction and to identify Critical Tasks.lt models behaviour in terms of events, time, 
control and data flow, entities and associated functional levels. It may be viewed as a 
polar diagram where the angle respresents time, the distance from the centre gives the 
functional level, and the arrows give direction of flow of information (either control or 
data). 

Layout 
There are two windows, the top main window displays the ETQ and the bottom window 
is a browser displaying Requirement and Tasks descriptions. 

Actions 
The Safety Requirement is modelled and analysed. 

PROCEDURE 

1. Select Requirement from Choice Box 

2. Oick on .ETQ template at one of the vertices. 

3. A form is displayed on the left- fill in form and press 'OK'. Task appears on ETD 
template. 

4. Repeat for all tasks 

5. Move to Ia$kJ.eyel 
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HAZAPS Graphics Viewer 

Graphics 
VIewer Icon 

The Graphics Viewer allows any figure (e.g. design schematics) with .BMP fonnat to be 
viewed within the system. 

HAZAPS Report Generator 
Report 

Generator 
Icon 

DESCRIPTION 

Purpose 
The Report Generator is accessible at all Levels and can be used to view progress at any 
stage. It is not static but continually updates as the user enters infonnation to the system. 
The user can select various options for a Report from the system, including a full report, 
and reports on sections/sub-sections of the work. 

Layout 
The Report Generator has one window. Options for the type of Report required are 
available from the menu bar 'Options'. A Dialog Window offers a selection of items that 
can be included in the Report and output options (see below). 

Actions 
The developer selects Requirement(s) and chooses item(s) to be included in the Report 
and selects output device(s). 

PROCEDURE 

1 Oick on 'Options', then 'Start'· a Dialog Box will be displayed 

2 Select Requirement(s) (top of Choice Box) 

3 Select the items required for the report. Choices include 

Requirement Descriptions 
Tasks 
ETDs 
Questions 
Responses 
Actions 

4 Select desired output device(s) 

Output displayed on Screen 
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Output to Postscript Printer 
Output to Postscript (.ps) file 
Output to Windows 'Notepad' 

5 There is an option to print the Report after it has already been output to the 
Screen. This option is available via 'Options' on Menu Bar. 

Library 
Editor Icon 

DESCRIPTION 

Purpose 

HAZAPS Library Editor 

The Library Editor allows customisation of the Questions which are used for assessing 
Tasks at the l<t$k_Le_y_eJ, 

Layout 
The Library Editor has three choice boxes (to select Iypg, Group and Keyword) and 
three 
windows. The top window displays existing Questions, the middle window is for 
entering or editing Questions, and the bottom window is for entering or editing 
information associated with Questions. 

Actions 
The Library Editor allows the user to edit questions and associated information. 

PROCEDURE 

1 Select a Task Type, a Group and an associated Keyword 

2 Depress the appropriate button on the RHS (Insert, Append, Delete, Edit). 

3. For 'Insert' or 'Append' the word 'nil' appears in the top window at the position 
where the question will be added. Highlight 'nil' and then depress the Edit button. 
For 'Edit', highlight the relevant question and depress Edit button. The question 
appears in the middle window. 

3 Type the new question or edit existing question in the middle window. Type 
additional information in the bottom window. 

4 When operation complete, press 'Save' button on RHS 

Note: There is an option on the menu bar under 'Exit' to permanently change the generic 
library for all future assessments. 
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Library 
Browser 

Icon 

DESCRIPTION 

Purpose 

HAZAPS Library Browser 

The Library Browser allows the user to view questions and associated information 
directly from the Task Level. 

Layout 
The Library Browser has two windows, the upper one for Questions and the lower for 
Associated Information. 

PROCEDURE 

At the Task Level depress the View button at the bottom of the screen. To exit Browser, 
depress 'OK' button. 

Potential 
Hazards 

Icon 

Potential Hazards List 

To provide assistance for identifying top level hazards, the Potential Hazards List has 
been adopted from W. Hammer Product safety management and engineering, Prentice 
Hall, NJ., 1980. 

An important feature of this facility is that it can be customised by the user. 
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