
Pilklngton Library

I • Lo~;~ghb_orough
• UniVersity

Author/Filing Title ~.~:?.:?..~ .. f..!.~~-:!:)7 '?..:!.:

' Accession/Copy No.

Vol. No

2 6 JUN 1998

2 5 JUN 1999

-2 MAY 2000

1 s JUrJ zccn

Class Mark

The Integration of Hazard Evaluation Procedures and
Requirements Engineering for Safety-Critical Embedded

Systems

by

Eamon J. Broomfield

A Doctoral Thesis

Submitted in partial fulfilment of the requirements for the award of

Doctor of Philosophy of Loughborough University

1997

©by Eamon J. Broomfield, 1997

~ ~ : J1..::, '17 ii
··~-=-~···"·····"--=~~~·=,;

! C:x>!! ~
~ ..
~~-:::n:J....,..,._,_.._'-~=;:;;=~·.::::o:<e:>~~r: r.-.. ~

i r:;~ cr-+o I 'f7 (6 Z... ~
..... -... ,-.-.· . .:., ··-·.-:- . . ' .. -~·.,_ ..

Abstract

Although much work has been done on assessing safety requirements in

programmable systems, one very important aspect, the integration of hazard

evaluation procedures and requirements engineering, has been somewhat neglected.

This thesis describes the derivation and application of a methodology, HAZAPS

(HAZard Assessment in Programmable Systems). The methodology assists at the

requirements stage in the development of safety-critical embedded systems. The

objectives are to identify hazards in programmable systems, construct and model the

associated safety requirements, and, finally, to assess these requirements. HAZAPS

integrates safety engineering and software modelling techniques. The analysis of

more than 300 computer related incidents provided the criteria used to identify, select

and modify safety engineering techniques.

There are four stages in the HAZAPS process: a) safety-critical subsystems are

identified using domain analysis; b) Fault Tree Analysis (FTA) is used to identify the

contributors to the hazards and to specify safety requirements; c) task synthesis and

a new modelling technique (the Event Time Diagram or ETD) are then used to

understand and analyse operational tasks associated with the safety requirements;

and, d) the principles of HAZard and Operability Studies (HAZOP) and Failure Mode

and Effects Analysis (FMEA) are used to assess the safety requirements. A HAZAPS

tool has been developed for the Windows environment using an expert system shell.

The HAZAPS tool can be used to record all information generated during the

HAZAPS process.

This thesis makes a novel contribution to the field of re-use of incident data to permit

feedback into the design of safety-critical software. It represents a novel synthesis of

hazard evaluation procedures with requirements engineering. The methodology

conceived and developed in this study has been tested on industrial systems and

proved to be effective.

This thesis is dedicated to my wife, Siobain, who gave me continuous support

and encouragement without which this thesis would

never have been written.

Acknowledgements

I am grateful to the DTI/EPSRC who funded this work as part of the Safety Critical Systems

Research Programme initiative.

Thanks also to Dr. Paul Chung and other members of the Safe Plant Design Group at

Loughborough University. Special thanks to Professor F.P. Lees for his rare but invaluable

comments.

I am indebted to the different cnmpanies that provided raw incident data and design details,

and tested the methodology.

AIChemE

DAF

DFDs

ESA

ES-FMEA

ES-HAZOP

ETD

FMEA

FMECA

FMES

FPTN

PTA

GAC

HAZAPS

HAZOP

HFTA

HID

HRA

HSE

IEC

INPO

MIL-STD

MoD

MORT

O&SHA

OOA

OOD

OOP

PAISLey

PHA

REVs

RGS

RLP

RSL

SADT

SFTA

SHA

SRS

SSHA

Glossary of Terms

American Institute of Chemical Engineers

Dissolved Air Flotation

Data Flow Diagrams

European Space Agency

Embedded-System-FMEA

Embedded-System-HAZOP

Event Time Diagram

Failure Modes and Effects Analysis

Failure Modes & Effects Criticality Analysis

Failure Modes and Effects Summary

Failure Propagation and Transformation Notation

Fault Tree Analysis

Granular Activated Carbon

HAZard Assessment in Programmable Systems

HAZard and OPerability Study

Highlevel Fault Tree Analysis

Human Input Device

Human Reliability Analysis

Health & Safety Executive, UK

International Electrotechnical Commission

Institute of Nuclear Power Operations

Military Standard, USA

Ministry of Defense, UK

Management Oversight & Risk Tree

Operating and Support Hazard Analysis

Object Oriented Analysis

Object Oriented Design

Object Oriented Programming

Process-oriented Applicative and Interpretable Specification Language

Preliminary Hazard Analysis

Requirements Engineering Validation System

Rapid Gravity Sand filters

Requirements Language Processor

Requirements Statement Language

Structured Analysis Design Technique

Software Fault Tree Analysis

System Hazard Analysis

Software Requirements Specification

Subsystem Hazard Analysis

Table of Contents

CHAPTER 1 : Introduction 1

1.1 System safety and software 1

1.2 Problems and proposed solutions 2

1.2.1 Conception .. 3

1.2.2 Specification . 3

1.2.3 Testing .. 4

1.3 Structure of the thesis 4

CHAPTER 2 : Hazard Evaluation Procedures and

Requirements Engineering 6

2.1 Strategies for building safety-critical

programmable systems 6

2.1.1 Fault Avoidance 6

2.1.2 Fault Forecasting 8

2.1.3 Fault Tolerance 8

2.1.4 Fault Removal 9

2.1.5 Selecting a strategy 9

2.2 Requirements engineering 10

2.2.1 Multi-disciplinary perspective 12

2.2.2 Modelling . 13

2.2.2.1 Participative Methods . 13

2.2.2.2 Structured Methods . 14

2.2.23 Object Oriented Methods . 16

2.2.2.4 Fonnal Methods . 18

2.2.3 Specifying external system behaviour 19

2.2.3 .1 Requirements Language Processor (RLP) 20

2.2.3 .2 Statecharts . 20

2.2.3 3 Requirements Engineering Validation

System (REVs) 21

2.2.3 .4 Process-oriented Applicative and Interpretable

Specification Language (PAISLey) 21

Page i

2.3 Integration of hazard evaluation procedures and
software development 22

2.3.1 Hazard evaluation procedures 23

23 .1.1 Checklists . 23

2.3.1.2 Fault Tree Analysis (FfA) 23

2.3.13 HAZard and OPerability Study (HAZOP) 24

2.3.1.4 Failure Modes and Effects Analysis (FMEA) 25

2.3.15 What-If 26

2.3.2 Selecting a hazard evaluation procedure 26

2.3.3 Approaches to integrating hazard evaluation

procedures in the development of safety-critical

programmable systems 29

2.3.3.1 FfA .. 29

2.3.3.2 HAZOP 31

2.3.33 FMEA 32

2.3.3.4 FfA & HAZOP 33

2.335 FfA & FMEA 34

2.3.3.6 HAZOP & FMEA 35

2.3.3.7 FfA, HAZOP, FMEA 35

2.4 Conclusions ... 35

2.4.1 Requirements engineering and

safety-critical systems 36

2.4.2 Limitations of present approaches to integrating

hazard evaluation procedures and requirements

engineering 36

2.4.2.1 Ambiguity of hazard evaluation procedures•.... 36

2.4.2.2 Inconsistency of modelling techniques 37

2.4.23 Incompleteness of approaches 37

CHAPTER 3 : Using Incident Analysis to Construct a
Methodology .. 38

3.1 Major benefits of incident data 39

3.1.1 Incidents are representative of the 'real world' 39

3.1.2 Incidents provide insight into when, why, how failures
occurred . 40

Page ii

3.1.3 Incidents provide an invaluable source of experiential

knowledge 40

3.2 Strategy used to derive a framework based on

computer-related incidents 40

3 .3 Modelling of incidents 42

3.3.1 Generic events in embedded systems 43

3.3.2 Event Time Diagram (ETD) for modelling events
.. 44

3.4 Use of Method Study for incident analysis 46

3.4.1 Modifications to Method Study 47

3.4.2 Benefits of applying Method Study 49

3.5 Analysis of incidents 50

3.5.1 Procedure used to analyse incidents 51

3.5.2 Analysis of sample incidents 52

3.6 Construction of the framework 55

3.6.1 Traditional classification 55

3.6.2 Classification by Clustering 55

3.6.3 Choice of Classes 56

3.7 Conclusions ... 61

CHAPTER 4 : The HAZAPS Methodology 63

4.1 Safety requirements 65

4.2 HAZAPS system model 67

4.2.1 Derivation of the system model 67

4.2.2 Application of the system model 69

4.3 Stage 1: Identifying safety-critical

subsystems . 69

4.3.1 Preliminary Hazard Analysis (PHA) 70

4.3.2 Object Oriented Analysis (OOA) 71

4.3.3 Procedure for identifying safety-critical

subsystems 72

Page iii

4.4 Stage 2 :Constructing safety

requirements n
4.4.1 Fault tree construction 73

4.4.2 Fault tree analysis 74

4.4.3 Procedure for constructing safety requirements ... 75

4.5 Stage 3: Transforming safety requirements into

operational tasks 77

4.5.1 Transforming safety requirements 77

4.5 .1.1 Task analysis . 78

4.5 .1.2 Requirements parsing . 78

4.5.2 Modelling safety requirements . 80

4.5.3 Procedure for transforming and modelling safety

requirements . 81

4.6 Stage 4: Assessing safety requirements 82

4.6.1 Scenario analysis 82

4.6.2 Using ES-HAZOP and ES-FMEA to assess safety

requirements . 83

4.6.3 Procedure for assessing safety requirements 84

4. 7 Con cl us ions . 85

CHAPTER 5 : HAZAPS TOOL 87

5.1 Design .. 90

5.1.1 Slots ... 93

5.1.2 Operations 93

5.2 Implementation 94

5.3 Operation . 97

5.3.1 System Level 99

5.3.2 Requirement Level . 100

5.3.3 Event Time Diagram (ETD) Editor 102

5.3.4 Task Level . 103

5.3.5 Graphics Viewer 105

5.3.6 Library Editor 106

Pageiv

5.3.7 Report Generator 107

5.4 Conclusions .. 109

CHAPTER 6 : Applications of HAZAPS 110

6.1 Modelling and assessing an avionics safety

requirement . 110

6.1.1 Modelling the safety requirement 111

6.1.2 Assessing the safety requirement 112

6.2 Case Study 1 -Print Machine 112

6.2.1 Identification of safety-critical subsystems 114

6.2.1.1 Major hazards . 115

6.2.1.2 System Components . 115

6.2.2 Construction of safety requirements for

print station . 117

6.2.3 Modelling and assessing safety requirements

for print station . 119

6.2.3.1 Requirement No. 1- Print station 119

6.2.3.2 Requirement No. 2- Print station•........ 122

6.2.3.3 Requirement No. 3- Print station 125

6.2.4 Summary of assessment of print station 128

6.3 Case Study 2- Water treatment plant 130

6.3.1 Identification of safety-critical subsystems 130

6.3.1.1 Major hazards 130

6.3.1.2 System Components 132

6.3.2 Construction of safety requirements for disinfection

system . 134

6.3.3 Modelling and assessing safety requirements for

disinfection system . 137

6.3.3.1 Requirement No. 1- Disinfection system 137

6.3.3.2 Requirement No. 2- Disinfection system 140

6.3.4 Summary of assessment of disinfection system 143

6.4 Conclusions .. 145

Pagev

CHAPTER 7 : Conclusions and further work 146

7.1 Novelty and benefits of HAZAPS 146

7.1.1 Generic tasks allow a system-wide approach 146

7.1.2 The system model integrates software and safety

engineering methods 147

7.1.3 An operational approach is used 147

7.1.4 The assessment framework is generic 148

7.1.5 The usefulness of HAZAPS has been

demonstrated . 148

7.2 Limitations of HAZAPS 149

7.2.1 Domain analysis is difficult 149

7.2.2 The assessment framework has not been proved

complete . 149

7.3 Further work . 150

References . 152

Appendix 1 : Assessment Framework . 163

Appendix 2 : HAZAPS Help File m

Appendix 3 :Related Publications 178

Page vi

CHAPTER!:

Introduction

Despite the widespread use of 'embedded systems' (real time control systems used for

automated production lines, weapon systems, antilock braking systems, medical systems,

etc.), the most efficient and effective way of designing, building, testing and maintaining

safety-critical systems is by no means obvious. Our understanding of the methods and

procedures used in the development of safety-critical systems is rapidly improving through

research [Redmill, 1993; Malcolm, 1994] and the establishment of standards and guidelines

[MoD 00-55, 1991; MoD 00-56, 1993; MoD 00-58, 1995; IEC Standard, 1995; MIL-STD-

882C, 1993; RTCA D0-178B, 1992]. However, many of the methods proposed for

requirements capture and specification have their origins in traditional software engineering

rather than the safety aspects of systems engineering; and the techniques proposed for hazard

evaluation are not proven for software systems. There is also a false perception that, if

enough effort and money are used in the building of a safety-critical system, the system will

be safe. Yih et al. [1995] discuss three nuclear power plant projects (the P20 project of

Chooz B, France; the shutdown system of the Darlington plant, Canada; and the primary

protection system of Sizewell B, UK) all of which had high verification costs and yet still

faced doubts about their potential safety performance.

1.1 System safety and software

The safety of a system can be defined as the likelihood that the system will not lead to a state

in which human life or the environment is endangered [lEE Report, 1992]. The subjective

nature of this definition introduces the first problem when building safety-critical systems,

that is, how to recognise that the system has safety implications in the first place. For

example, in the case of the London Ambulance incident [Arthur, 1992], the safety

implications were not recognized (or, if they were, the project managers did not know how

to deal with them). On the other hand, recognizing a system as 'safety-critical' is no

guarantee that a safe system will be built, as is illustrated by the two cases [Boming, 1987]

where well-established, well-understood ballistic missile early warning systems alerted

operators to imaginary attacks. lEE [1989] emphasises the subjective nature of safety

Page 1

Safety is a concept which is not fixed in either time or space. Attitudes to safety, and

tolerance of danger, are subjective and variable over time and circumstance.

Industries have attempted to address this problem by identification of more objective

aspects of safety, with particular definitions of words such as 'hazard' and

'situation'.

When assessing the safety of a system, it is usual to use the word 'hazard' because this

allows us to focus on situations in which there is an actual or potential danger. A 'hazard'

is defined as

... a physical situation with a potential for human injury, damage to property,

damage to the environment or some combination of these [Jones, 1992]

Although a computer does not in itself contain hazards, it controls (or fails to control)

equipment that can contribute to a hazardous situation. This stresses the significance of the

software system interface. The internal behaviour of the software (i.e. internal states and

state transitions) results in changes in the external behaviour of the system via the interface

and this may result in a hazardous situation. Safety-critical software is defined in MoD 00-

55 standard as software used to implement a safety-critical function i.e. as a property of the

use of the software, not as an intrinsic property of the software [Ravn et al., 1990]. Safety

is a property of the total system, not the sum of the safety properties of the individual parts.

1.2 Problems and proposed solutions

The Ariane V rocket was exploded after take-off in June 1996 because there was a major

software design fault introduced during the conception of the system and the software had

not been tested in relevant conditions [Abbott, 1996; Amelan, 1996]. The director of the

European Space Agency stated

There have been errors of conception, of specification and of verification in testing

[Irwin, 1996].

Problems associated with programmable safety-critical embedded systems can be described

Page2

in terms ofthe three areas mentioned in the above quotation (i.e. conception, specification

and testing). The following three sections outline these problem areas and describe the

approach used in this thesis to solve these problems.

1.2.1 Conception

Problems arise at the conception of a system because the expertise required is often

partitioned into different disciplines (e.g. pneumatics, electrical engineering, mechanical

engineering, medical instrumentation, software engineering etc.).It is difficult to integrate

the different views and there is a tendency to view the total system from one perspective

only.

In this thesis a novel methodology is proposed which will unify disparate expertise into

models, methods and procedures that can relate the needs of all users in an integrated

fashion. The methodology is based on the generification of tasks and a new graphical

technique. This methodology permits special consideration to be given to interfaces at which

the different disciplines interact because this is where problems are likely to occur.

1.2.2 Specification

A major difficulty in developing safety-critical systems is in determining how to specify

safety requirements. The safety requirements must express constraints on both the target

system and the embedded system in a coherent manner.

It is desirable to interrelate hazards in the environment to programmable states in the

embedded system. There are several approaches to identifying hazards in embedded

systems, for example (a) starting with a top level hazard and using a deductive technique to

identify programmable events that are related to this top level hazard, or (b) starting with a

programmable event and using an inductive technique to identify top level hazards

associated with this programmable event. Neither (a) nor (b) is feasible because the search

would become intractable.

Page 3

In this thesis a new system model is proposed which will use a combination of inductive and

deductive techniques and integrates hazard evaluation procedures and requirement

engineering techniques. Existing safety and software engineering techniques will be

customised so that results can be logically and systematically passed from one technique to

another.

1.2.3 Testing

Testing of safety-critical systems presents an even greater challenge than testing of non

safety-critical systems because it is not sufficient to test only software and hardware but the

environment and human interactions with the system must also be considered. Traditional

testing techniques used for testing programmable systems are not adequate for safety-critical

systems. For a safety-critical system one must identify what should not happen as well as

what should happen.

In this thesis patterns will be abstracted from incidents and a generic framework constructed.

This framework will subsequently be embedded in a methodology that can be used by

developers when building new systems. The framework will be accessed by adopting an

operational approach which will consider the software, hardware and human interaction

associated with the system.

1.3 Structure of the thesis

The structure of the thesis is as follows:

Chapter 2: Hazard evaluation procedures and requirements engineering. This chapter is

related to sections 1.2.1. and 1.2.2 above. The purpose of this chapter is to review how

people identify and specify requirements for programmable systems. Different strategies for

developing safety-critical systems are described. Various requirements and software

engineering techniques are investigated to analyse their suitability for safety-critical systems.

Ways of integrating hazard evaluation procedures and software engineering techniques are

compared and contrasted with the objective of identifying the limitations of current

approaches.

Page4

Chapter 3: Using incident analysis to construct a methodology. This chapter is related to

section 123 above. The purpose ofthis chapter is to demonstrate how the knowledge gained

from analysing incidents can be reused when developing and testing safety-critical

programmable systems. The benefits of incident analysis are described. The derivation of

a model for analysing the sequence of events associated with an incident is demonstrated and

discussed. It is shown how analysis of incidents can be used to construct a generic

framework which can later be incorporated into a methodology for assessing the safety of

programmable systems.

Chapter 4: The HAZAPS methodology. This chapter is related to sections 1.2.1, 1.2.2 and

1.2.3. The purpose of this chapter is to define the underlying principles of the HAZAPS

methodology .It describes the development and application of the models and methods used

in the methodology, including the derivation of a system model used to interrelate safety

engineering and software engineering techniques. It outlines the procedures used for each

stage of the HAZAPS methodology.

Chapter 5: The HAZAPS tool. The tool developed to support the HAZAPS methodology

is discussed. The requirements, design, implementation and operation of the HAZAPS tool

are described.

Chapter 6: Applications of HAZAPS. The purpose of this chapter is to evaluate the

HAZAPS methodology using an illustrative example and two case studies; one carried out

on a rotary screen line printing press and the other on a water treatment plant. The

objectives of applying HAZAPS were to a) show typical results, b) demonstrate the benefits,

c) identify any major difficulties, and d) show how HAZAPS can be applied to different

application domains. The results of the assessments are discussed.

Chapter 7: Conclusions and further work. This chapter describes what has been achieved.

It discusses the novelty and limitations of the methodology and also shows how the

methodology can be refined and extended.

PageS

CHAPTER2:

Hazard Evaluation Procedures and

Requirements Engineering

The addition of software to a system increases the complexity of the system and makes it

more difficult to evaluate the safety of the system. Table 2.1 details the advantages and

disadvantages of using programmable systems. To benefit from the advantages of using

software in safety systems, strategies must be developed to overcome the problems outlined

in Table 2.1 and thus ensure a safe system.

2.1 Strategies for building safety-critical programmable

systems

The literature reveals a number of different approaches to building safety-critical systems;

authors tend to select an approach which best relates to their particular specialist

knowledge/expertise. These can be classified under the headings fault avoidance, fault

forecasting ,fault removal and fault tolerance.

2.1.1 Fault Avoidance

Fault Avoidance has been defined as:

The use of design techniques and implementation methods which aim to prevent, by

CONSTRUCTION, fault occurrence or introduction.[Schoitsch et al. 1990]

Techniques that can be used for fault avoidance include structured methods, prototyping,

formal methods, quality control measures and use of computer tools. De Panfilis [1991]

Page6

Table 2.1: Advantages and disadvantages of using programmable
systems

Advantages Disadvantages
[Parnas et at, 1990; Barlow & Smith, 1990; [Jooes, 1991; Pamas et al, 1990; Smith & Wood, 1989;

Prosser, 1993) Younl, 1985]

Flexibility Requirements often poorly thought out
and planned

Fewer devices/functions, thus saving No satisfactory procedures yet
on space, weight and power established for validation of software

Improved performance Increases uncertainty and makes it
difficult to predict failure modes

Easier to modify and reconfigure in the Trivial errors can have major
field consequences

Lower costs Makes it difficult to impose standard
approach to design

Allows self-test and early warning Difficult to control software changes
diagnostics

Provides more information to operators Exhaustive testing almost impossible,
since number of possible paths through
the software is usually very high

Susceptible to common mode failures
whereby a single failure defeats
redundancy

Data and programs can be corrupted by
interference

proposes prototyping as a fault avoidance technique. The advantages of prototyping are that

it supports a better understanding of user requirements and allows refinement of high level

requirements in an iterative and incremental manner, thus minimising design errors. Bowen

& Stavridou [1993] suggest there is an enormous gap between what can be achieved by fault

tolerance and fault removal and what is required to build ultra-high dependability systems.

They suggest that fault avoidance using formal methods in conjunction with other

Page 7

techniques may help close this gap. Although there are many procedures and methods that

can be used for fault avoidance, in practice, no technique can guarantee avoidance of all

errors. Nevertheless, facilities can be built into these techniques to make it easier to forecast,

tolerate and remove faults at a later stage.

2.1.2 Fault Forecasting

Fault forecasting has been defined as:

The use of techniques to estimate, by EVALUATION, the presence, creation and

consequences of faults. [Schoitsch et al., 1990].

Fault avoidance, fault removal and fault tolerance are often discussed, whereas fault

forecasting tends to be overlooked. This is partly because fault forecasting is usually

classified with fault avoidance. Fault forecasting techniques include FfA, HAZOP and

FMEA. The advantage of fault forecasting is that safety can be considered explicitly and

consequences that must be avoided can be investigated without the need to focus on all

requirements [Rushby, 1994]. In other words, fault forecasting emphasises safety analysis

and hazard control rather than focusing on correctness [Leveson, 1991]. Integrating fault

avoidance and fault forecasting techniques provides a very powerful combination to aid in

the development of safety-critical systems.

2.1.3 Fault Tolerance

Fault Tolerance can be described as:

The built-in capability of a system to provide continued correct services by

REDUNDANCY despite of a limited number of faults (hardware or software)

[Schoitsch et al., 1990; Bowen & Stavridou, 1993].

Yount [1985] describes several techniques that have been used to implement fault tolerance:

basic (similar) redundancy, software fault tolerance techniques, dissimilar processor

PageS

hardware, and dissimilar backup systems. He believes that it is better to use a fault-tolerance,

rather than a fault avoidance approach to safety-critical systems development. He also

maintains that fault-tolerant architectures are more cost effective than fault avoidance

architectures because of the increasing cost of verification and validation in the latter. Others

[Laprie, 1993; Prorok et al., 1992] claim that fault tolerance techniques can increase the

complexity of a system and thus decrease dependability. Bowen & Stavridou [1993]

maintain that the (supposed) benefits of using a fault-tolerance approach are contentious, and

that the overall gain in using this approach may not be significant. In practice, both fault

avoidance and fault tolerance approaches are used when building safety-critical systems.

2.1.4 Fault Removal

Fault Removal has been defined as:

The use of techniques to minimize the presence of faults by VERIFICATION

throughout the development phases [Schoitsch et al., 1990].

Prorok et al. [1992] maintain that we should not depend on fault avoidance or fault tolerance

techniques to ensure a safe system, but that safety-critical software should be rigorously

tested before release. They emphasize the importance of a testing framework which allows

progressive testing throughout the development of the product. Schoitsch et al. [1990]

describe fault removal techniques including testing on several system levels as part of the

overall design strategy. The testing procedures are white box testing (module testing),

blackbox testing (functional testing) and safety tests (functional tests with respect to safety).

Test cases are derived from the user requirements specification and by simulation.

2.1.5 Selecting a strategy

At present, there is no way of ensuring a fault-free programmable system, nevertheless, by

careful application of relevant techniques, the overall risk can be reduced. The best strategy

seems to lie in selecting a combination of techniques and trying to ensure that the

disadvantages of one technique are overcome by the use of another technique. Before

selecting a combination of techniques, therefore, it is essential to identify the strengths and

weaknesses of each technique and to establish at which stage in the lifecycle the technique

Page9

can be most effectively applied. Rushby [1994] claims that, since faults in the requirements

specification are the primary source of catastrophic failures in critical systems, in order to

make a major advance in the development of safety-critical systems, we should focus on

techniques that can be used early in the lifecycle. This is not surprising as the percentage

of software errors reported in the requirements phase varies from 44% to 66%; it is also

worth noting that estimated costs for correcting such errors at a later stage vary from 200 to

1000 times the original cost (Bowen & Stavridou, 1993; Reifer, 1979; HSE, 1995; Jaffe et

al., 1991). It is important to adopt a system-wide multidisciplinary approach to cope with

the continual increase in complexity of embedded systems. If, for example, the original

specification is incomplete or incorrect, then, even the use of formal proofs and/or fault

tolerant techniques based on that specification will not ensure the delivery of a safe system.

Improved requirements elicitation methods and specification techniques (fault avoidance

approach) should be integrated with traditional safety engineering techniques (fault

forecasting approach) to minimise the risk of errors being introduced later in the product

lifecycle. The next section examines requirements engineering techniques and their

applicability to safety, and the following section discusses hazard evaluation procedures and

their integration into software development.

2.2 Requirements engineering

There are a number of requirements engineering techniques that one can use. The choice of

technique depends on the particular phase of the requirements process and on the specific

application. Wallace & Ippolito [1993] state:-

The major objectives of the software requirements process are to fulfil the system

and software objectives, develop software requirements based on and traceable back

to the system requirements and to provide complete, consistent, testable and

understandable information from which the software may be designed.

The first step in fulfilling these objectives is to 'identify' the system requirements. Jirotka

& Goguen [1994] discuss terms used to describe this process, namely to capture,specify,

Page 10

elicit or construct requirements. The term elicit implies that the requirements are to be found

amongst the managers, users etc. Specifying and constructing are terms taken from other

engineering disciplines, the first implying that someone with the necessary technical skills

can produce the requirements more or less as a matter of routine, and the second implying

that the requirements do not exist but must be synthesized from the engineering process.

Finally,capturing implies that requirements are elusive but are waiting to be caught. From

the safety perspective specifying and constructing are important because they relate to

interaction with other disciplines; capture refers to those difficult to define requirements

related to the interface between the software and the system. All these terms are used for

requirements engineering because all of these activities are part of the requirements

engineering process and moreover these activities are closely coupled together in a process

which is concurrent and iterative. Some requirements engineering techniques are better

suited than others to particular activities.

Different frameworks have been used to evaluate requirements engineering techniques.

Yadav et al. [1988] developed a framework to compare Structured Analysis Design

Technique (SAD1) and Data Flow Diagrams (DFDs) based on four dimensions: syntactic,

semantic, communicating ability and usability. Evaluation criteria are associated with both

the syntactic and semantic dimensions. These evaluation criteria are related to levels of

abstraction, viewpoint, complexity, completeness and correctness. Lindland et al. [1994] use

similar dimensions (i.e syntactic, semantic) for their framework but subsume communicating

ability and usability into a single dimension pragmatics which relates the model to audience

participation by considering, not only the syntax and semantics dimensions, but how the

audience will interpret them. A model is a global term to describe what is used to analyse

the problem, and audience refers to anyone involved in modelling. The framework of

Lindland et al. [1994] was proposed as a means of determining the quality of the

requirements engineering process. Each dimension has a goal and means, where means has

associated model properties and modelling activities. For example, syntactic quality has goal

(correctness) and associated means has model property (formal syntax) and model activity

(syntax checking). The author considers that the following dimensions are important in the

requirements process for safety-critical systems:

Page 11

Multi-disciplinary dimension - stressing the importance of cooperation

between participants of different disciplines,

+ Modelling dimension - signifying the importance of capturing and

understanding the safety requirements,

+ Specification of external system behaviour - highlighting the importance of

the software system interface.

2.2.1 Multi-disciplinary perspective

Ross [1977] stated that :-

Our efforts have for too long been misplaced towards the system end of the scale.

The real solution lies toward the human end of the scale where the real needs must

be recognised and channelled into strengthened machinery for system building.

Today our efforts are still focused on trying to achieve this objective, the emphasis has

shifted from a technology centred view to a user centred view; in effect, for complex

systems, the emphasis is on eliciting rather than specifying requirements. Kedzierski [1988]

analysed the time spent on different activities during the development of complex software

and found that over half the time is spent gathering all the necessary information and solving

problems that arise from unsatisfactory information and communication. This is supported

by results [Herbsleb et al., 1995] indicating that the major sources of designers' uncertainties

are in obtaining sufficiently detailed knowledge of the application domain and how the

software will function. For safety-critical systems, since the knowledge and expertise is

distributed among people of different disciplines and since requirements elicited are

important for subsequent safety analysis, effective communication during the requirements

process is paramount. Ill-conceived requirements, often arising from uncertainties, are a

recipe for disaster.

For simple systems, the software analyst can elicit requirements from the user and specify

Page 12

them in a model (using graphical or mathematical notation), without regard to whether other

participants in the project can understand or interpret the specification method. This

approach is not acceptable for safety-critical systems, as a software analyst may be 'naive'

about safety principles and, in practice, cannot be expected to have specialist knowledge of

a complex system of which the software is only a subsystem. It is vital that those responsible

for identifying safety concerns can both understand and interpret the external behaviour

described in the requirements specification. The problem lies in identifying models suitable

for specifying safety-critical systems that are also amenable to interpretation by other

participants. For ill-defined problems, Martin [1980] suggests that the optimal strategy

would be to choose a set of projections that are 'orthogonal' to or 'different' from one

another in many separate senses, so that they each represent a very different 'slice' through

both the problem situation and the user's body of experience. From the safety perspective

one 'slice' should allow all participants to analyse the external interfaces and their associated

safety implications.

2.2.2 Modelling

Models are invariably used in the design and building of systems. Since the only perfect

model of a system is the system itself, models are necessarily idealized and do not perfectly

match the real world situation. No amount of mathematical analysis will reveal discrepancies

between the model being used and the real situation [Pamas et a!, 1990]. Also, models may

be perfectly adequate for one purpose but woefully inadequate for another. For example,

for a given application, a model may prove very useful for data analysis, but completely

inadequate for safety analysis. The general approach is to abstract pertinent features from

the model so that we can focus on relevant issues; this may involve successive model

building using analytic or synthetic methods. Different approaches to modelling include

participative, structured, object oriented and formal methods.

2.2.2.1 Participative Methods: The participative approach [Benyon & Skidmore, 1987]

ranges from highly socially-oriented methods to the more technically-oriented traditional

prototyping methods. At the social end of the scale, we have ethnography which is a method

of capturing the social activity (e.g. procedures, practices) of the users of a proposed or

Page 13

existing system and involves the ethnographer spending several months observing the users.

Sommerville et al. [1993] discuss the requirements for a user interface to a flight database

which is used to provide real-time information to air traffic controllers and describes how

sociologists can contribute to requirements engineering using ethnography. They state

Ethnography is distinct from traditional systems analysis in that it focuses on the

participants and their interactions in a system rather than the data, its structure and its

processing. Ethnography could be useful for the development of safety-critical systems as

it provides a means of capturing interdisciplinary knowledge. The problem is converting this

knowledge into structured information. The Viewpoint technique provides a possible means

of solving this problem. It takes Viewpoints of different participants (agents) involved in a

project where Viewpoints are partial or incomplete descriptions which arise because of the

different responsibilities or roles assigned to the agents and the analysis of Viewpoints

embraces the relations between views, between views and agents, and between agents

[Finkelstein & Sommerville, 1996]. Although the Viewpoint technique is very flexible, this

flexibility may give rise to problems when integrating the different Viewpoints at the end

of the process. The proposed methodology of Jarke et al. [1993] is similar to Viewpoints

in that it is based on organising requirements knowledge according to four related 'worlds'

(system, subject, usage and development). The methodology focuses on the embedding of

systems in their environment rather than on systems functionality and structure. The system

world is related to the subject, usage and development world via representation, interface

and process. The development world is related to the usage world via participation (e.g.

prototyping).

The classical prototyping approach involves the following iterative cycle [Pressman, 1994]

(a) quick design, (b) building prototype, (c) customer evaluation of prototype, (d) refining

prototype. This approach can be very useful for safety-critical systems where one is often

dealing with uncertainty and complexity, however, Jaffe et al. [1991] point out that

prototyping has the same limitations as testing in that behaviour can only be guaranteed for

certain inputs, not for all inputs.

2.2.2.2 Structured Methods: In the early 1970's Structured Methods were developed as a

means of defining the behaviour of a system independently of the means of implementation.

Page 14

It was introduced as a technique for partitioning, structuring and expressing ideas and relies

heavily on graphics to indicate structure and relationships. Ross [1977], the originator of

Structured Analysis Design Technique (SADT), makes a number of salient points relevant

to structured analysis in general:-

+ SADT is based on structured decomposition, and enables structured

synthesis to achieve a given end;

SADT incorporates any other language; its scope is universal and

unrestricted;

+ The structured decomposition may be carried out to any required degree of

depth, breadth, and scope;

+ The universality of SADT makes it particularly effective for requirements

definition for arbitrary systems problems.

Data Flow Diagrams (DFDs) are the basic entity in many structured methods (excluding

SADT). A DFD models the processes that transform data in a system and the interfaces

between those processes by emphasising data flowing, being stored, and being transformed.

The components of a DFD are data flows, transformation processes and data stores (Fig.

2.1). Data flows represent an imaginary route along which data passes. The details of each

data flow is defined in a data dictionary. Each data transformation process in the DFD has

inputs and outputs. The data flows that enter are processed and a new or modified data flow

leaves the process. A data store is a store for various items of data in the system. Data stores

hold data transferred or received via data flows, and represent accumulations of data within

the system. DFDs may be partitioned into levels that represent increasing functional detail.

The top level DFD is usually referred to as the context diagram. The bottom levels represent

processes that are sufficiently simple to be implemented from the specification alone.

Extensions to DFD notation have been proposed to model real-time systems [Pressman,

1994]. The extensions proposed by Ward [1986] (known as the Ward & Melior' approach)

are also shown in Fig. 2.1. These extensions are: a control transformation process,

continuous data flows, event flows and buffers. Finite State Machines [Mealy, 1955] can be

used to define a control transformation. The continuous data flow is introduced to deal with

real time data (e.g. the data from a sensor which is continuously monitoring the state of a

Page 15

plant). Event flows are used to represent flow of control data. The buffer stores control

information. The Ward & Melior approach appears to be an appropriate technique for

modelling safety-critical systems as it contains all the basic modelling primitives that are

needed (i.e. events, time, control and data flows).

Ul
c
0
Ul
c
.s
>< w

...)
discrete data

....-4.
continuous data

data
store

buffer ------

Fig. 2.1: Standard and extended DFD notation [after Ward, 1986]

2.2.2.3 Object Oriented Methods: There are many object oriented methods such as OMT

[Rumbaugh et a!, 1991], BOOCH [Booch, 1991], and COAD/YOURDON [Coad &

Yourdon, 1991]. The fundamentals of the object oriented approach are that:-

(i) each object has associated with it data and operations;

(ii) groups of similar objects can be defined in terms of a common class where

these classes may be arranged in a hierarchy;

(iii) objects communicate by sending messages to each other whereby the

receiving object uses one of its operations to respond to a message.

Advantages of taking an object oriented approach rather than using the structured methods

discussed above, include: reusability, easier maintenance, the models are closer to reality,

and there is smoother transformation from the analysis model to the implementation model.

Rurnbaugh et al. [1991] points out that structured methods and object oriented approaches

are similar because they both support three different models of the system (object, dynamic

Page 16

and functional). The difference between the two approaches is that the object oriented

approach emphasises the object model whereas structured methods emphasise the functional

model. This has important consequences when identifying safety concerns because

structured methods favour a top down decomposition and the object oriented approach

favours a bottom up method (this feature makes reuse possible). For safety-critical systems,

the dynamic model is paramount. It is difficult to determine whether an object oriented

approach or a structured methods approach produces more suitable dynamic models for

safety-critical systems because there are so many different dynamic models used in the

various object oriented approaches and, in some cases, the same dynamic models are used

in both structured methods and the object oriented approach.

The object oriented lifecycle consists of object oriented analysis (OOA), object oriented

design (OOD) and object oriented programming (OOP). Cuthill [1993] states:-

The OOD properties of encapsulation, abstraction, inheritance and refinement

reinforce the safety-critical design features of modularity, functional diversity and

traceability.

However, one of the major difficulties of all requirements techniques is in establishing how

to capture the requirements in the first place. Although many object oriented approaches

provide excellent detail on OOD and OOP, they provide very little help on OOA. As

Embley et al. [1995] pointed out in their survey of various approaches (including OMT,

BOOCH and COAD/YOURDON), all approaches adopt a design perspective rather than

providing real analytical support. Jacobson et al. [1993] propose both a requirements and

an analysis model, the requirements model being constructed using use cases which model

the interaction between the user and the system. Use cases have been adopted in the

proposed amalgamation of OMT and BOOCH methods [Rumbaugh, 1996]. Another

approach to aid requirements capture is concept maps [Umphress & March, 1991]. A

concept map is a graphical representation of ideas that we have about objects and links

between these ideas (e.g. nouns are concepts, and verbs are links). If we are to use an object

oriented approach for safety-critical systems, we must have an understandable and precise

method of relating safety concerns and the requirements model.

Page 17

2.2.2.4 Formal Methods: Bowen & Stavridou [1993] carried out a survey on the use of

formal methods in different industries (aviation, railway, nuclear power plants, medical and

ammunition control). They discuss the use of formal methods in a number of safety-critical

standards. Although the standards RTCA D0·178B, IEC and MoD 00-55 have a formal

methods content, formal methods are only mandatory in MoD 00-55. It is interesting to note

that MIL-STD-882C does not even mention formal methods. It is often claimed that the use

of formal methods leads to concise, unambiguous and exact specifications without

explaining why this is true. Rushby [1995] describes why formal methods are useful and,

in particular, discusses their relevance to safety-critical systems. He points out that the major

difficulties with software are complexity and discontinuity of behaviour. All possible

behaviours must be considered under all circumstances and the discontinuous nature of the

input/output relationship (i.e. a small change in input can result in a large change in output,

or, local actions can have nonlocal consequences) must be modelled. Rushby [1995] states

that formal methods provide us with a means of ... identifying and grouping "essentially

similar" pieces of behaviour together so that all members of a group can be dealt with at

a single shot By composing small pieces of behaviour together to yield larger and larger

parts of the complete behavior, we eventually cover all possible end-to-end behaviors

without having to enumerate them explicitly.

Some disadvantages of formal methods are:-

+ A formal specification does not ensure completeness. It may be proved to be

correct, but this does not guarantee that all system requirements have been

addressed.

Formal methods are not understandable to the non-computer specialist. In

describing formal specifications, McHugh [1993] writes, While precise and

supporting analyses based on theorem proving, the formal specification

languages of the computer scientist often fail to satisfy the communications

role that is the primary concern of IEC880 and similar standards.

+ A formal mathematical proof is time consuming and only suitable for very

small programs, a few thousand.Jines at most [Jesty et al, 1991].

+ Formal methods do not model 'real world' entities, instead they focus chiefly

on syntax and semantics of the language in question [Jackson & Zave, 1993].

Page 18

Formal methods have been recommended and criticised for the wrong reasons, most of this

controversy arises because of incorrect suggestions as to why they should be used and when

they should be used. Formal methods are very useful for requirements analysis but not for

requirements capture. At present, a reasonable approach to requirements engineering for

safety-critical systems might involve the application of an informal technique, followed by

a semi-formal (possibly scenario-driven) method, and finally, a formal method with the

ability to model timing behaviour.

2.23 Specifying external system behaviour

We can associate the difficulties of specifying the behaviour of embedded systems with

those of real time systems, namely:-

+ How to handle complexity;

+ How to model static and dynamic relationships;

+ How to specify behaviour in order to facilitate testing .

This might suggest that it is worth investigating real-time specification methodologies,

however, the question is not simply one of semantics and syntax, but of how real world

behaviour can be specified. The ideal situation would be to model the environment

explicitly. In discussing embedded systems, Zave & Yeh [1986] state ... the best way to

derive the requirements for a system is to model its environment (probably bottom-up,

synthesizing many views and diverse pieces of information), and then work 'outside-in' to

the specification of requirements for an appropriate system. This is followed by top-down

design and implementation of a system to meet the requirements. Synthesizing, in this

context could be interpreted as elicitation (using, for example, the Viewpoint approach

discussed above). Outside-in emphasises the importance of specifying an operational or

external behaviour.

Davis [1988] compared a number of techniques for the specification of external system

behaviour: Natural Language; Finite State Machines; Decision Tables and Decision Trees;

Program Design Language; Structured Analysis/Real-Time (e.g Ward & Mellor);

Page 19

Statecharts; Requirements Engineering Validation System (REVs); Requirements Language

Processor (RLP); Specification and Description Language; Process-oriented Applicative and

Interpretable Specification Language (PAISLey). Davis's criteria included:-

+ The technique should encourage users to think and write in terms of external

product behaviour in preference to internal product components.

+ The resultant software requirements specification (SRS) should be helpful

and understandable to non-software specialists.

+ The resultant SRS should serve effectively as the basis for design and

testing.

Davis [1988] scores each of these criteria on a scale from 0 (poor) to 10 (excellent). Adding

up the respective values, shows the highest scoring techniques (using all criteria, not just the

three quoted above) were RLP (SO),Statecharts (48), REVs (45) and PAISLey (42).

2.2.3.1 Requirements Language Processor (RLP): RLP [Davis, 1988] uses as the

organisational unit of the SRS, a stimulus response sequence which is a trace of a two-way

dialogue between the system under specification and its environment. Typical dialogues are

based on scenario generation, and correspond to user-oriented, user-known, external system

features. The language used is dependent on the particular application (e.g. Ballistic Missile

Defence; Patient Monitoring). Once the language has been defined, RLP can check the

requirements for correct syntax and semantics. Davis [1988] pointed out that the choice

between RLP and REVs (see below) should be based on the questions a customer might ask.

For example, if the questions are about features rather than particular stimuli, RLP should

be chosen.

2.2.3.2 Statecharts: Statecharts [Hare!, 1987] are extensions to Finite State Machines.

These extensions permit hierarchical decomposition of states, and the specification of

transitions dependent on global conditions. The addition of these extensions make Finite

State Machines more suitable for the specification of external behaviour of real-time

systems. Statecharts have been used in a modified form to specify the safety properties for

a traffic alert and collision avoidance system [Craigen et al., 1994]. The statecharts were

Page 20

changed to emphasize transition logic by incorporating a tabular representation of predicate

calculus. The resultant SRS was found to be more reviewable and tractable than the pseudo

code version which had been created previously.

2.2.3.3 Requirements Engineering Validation System (REVs): The original motivation

for REVs was based on a US Department of Defense directive which emphasized the need

for early software visibility, risk reduction, through software requirements analysis prior

to the second Defense System Acquisition Review Council review of a weapon system

(DSARC //) and greater 'front end' development [Alford, 1977]. REVs has three main

components (a) a translator for the Requirements Statement Language (RSL); (b) a

centralized data base; (c) a set of automated tools for processing the information in the data

base. Requirement Statement Language (RSL) has an associated graphical notation, R-nets

[Bell et al., 1977]. R-nets are an extension to Finite State Machines and are used as the basic

unit to represent the system's external behaviour; the fundamental entity being a stimulus.

The R-net can be viewed as a column of a state transition matrix [Davis, 1988].

2.2.3.4 Process-oriented Applicative and Interpretable Specification Language

(PAISLey): PAISLey, an executable specification language for embedded systems, includes

specification methods and analysis techniques, and takes an operational view of the

proposed system [Zave, 1991].The specification language is founded on the principles of

asynchronous processes and functional programming; it predicts by simulation the

performance of complex behaviour which would be difficult to determine analytically.

PAISLey representation emphasizes the cyclic nature of the behaviour of components and

its notation integrates data, processing and control in a unified whole. This is in contrast to

RSL (see above) which emphasizes sequences and does not integrate data, processing and

control [Zave, 1986]. Another functional programming language, Haskell has been used on

a safety-critical project and it has been claimed that functional programming can be used as

the key technology in the development of complex systems of significant size [Chudleigh

et al., 1996].

The following conclusions can be drawn from Davis's data. RLP got the highest overall

score (50) because if provided the best automatic test generation facility whereas PAISLey

Page 21

scored the lowest (42) because it is difficult to understand. On ability to represent external

behaviour, RLP once more scored the highest (8),just ahead of REVs (7). These methods

got a higher score than Statecharts (5) because Statecharts require specification of explicit

external signals for an entity before defining the entity's internal structure. PAISLey scored

3. RLP, Statecharts, REVs and PAISLey facilitate an operational approach to requirements

specification.

2.3 Integration of hazard evaluation procedures and

software development

Although many hazard evaluation procedures are available to the safety engineer, it is

difficult to determine which of these are appropriate for systems containing embedded

software. Even in traditional safety engineering, the selection of a technique is by no means

obvious as no single hazard evaluation procedure is suitable for all purposes. Safety-critical

software standards recommend that hazard analysis be applied throughout the lifecycle,

therefore, it is necessary to select technique(s) suitable for varying levels of detail depending

on the associated objectives. The results from different phases of the lifecycle must be

integrated so that software faults that contribute to hazards can be identified. In his

discussion on hazard identification for chemical plants, Ozog [1985] states:-

Hazard assessment should be a continuous process throughout the life of a facility.

There are optimum times to conduct studies - during conceptual design, design

freeze, and pre-startup periods, as well as while the plant is being operated.

The purpose of any hazard evaluation procedure is to identify hazards and either eliminate

them or reduce the associated risk to a tolerable level; for programmable systems this

includes identifying in the design process all errors that may lead to hazardous conditions

in the system in which the software is embedded. Also, if hazard evaluation procedures are

initiated early in the software lifecycle, it is easier to modify the system, thus saving time

and reducing costs. As discussed above, the ideal way to achieve a safe system would be

through fault avoidance, however, as this is not feasible, we look at what fault forecasting

Page22

techniques might be suitable to complement fault avoidance techniques. A problem with

many hazard evaluation techniques is in determining how to incorporate them into the

software development lifecycle; this problem is further exacerbated by the imprecise

semantics of traditional hazard evaluation procedures. We must identify the hazardous

characteristics of the proposed system, and consider these in relation to the requirements

engineering process. In the next section we look at hazard evaluation procedures and

describe how they have been incorporated in software development.

2.3.1 Hazard evaluation procedures

2.3.1.1 Checklists: The Checklist approach is popular, easy to use and can be applied at all

stages of the project. It can simply consist of a list of potential hazards with the onus being

on the safety analyst to associate the ·list with the proposed system and environment.

Checklists can be generic, application specific or sector specific. Sources of Checklists are

reported in Leveson [1995], Wells & Wardman [1994] and Hammer [1980]. Checklists can

be compiled for the complete development of programmable systems or for particular stages

in the development. The Health and Safety Executive [1987] provides guidelines- including

Checklists for safety requirements specification, hardware, software, installation, testing,

operations and maintenance modification. It should be noted that only a multidisciplinary

expert team familiar with all these aspects can respond to all items on the Checklist. Lutz

[1993] compihid a safety Checklist for use in the analysis of software requirements.lt was

derived from common safety-related errors discovered during system testing. The focus was

on inadequate interface requirements and discrepancies between the documented

requirements and the requirements actually needed for correct functioning of the system.

Kolb & Ross [1980] consider Checklists to be 'hard to compile, easy to misuse'. No matter

how much effort is expended on creating a Checklist, there is no guarantee that it is

complete.

2.3.1.2 Fault Tree Analysis (FfA): FrA analysis is a top-down approach that focuses on

a top event (e.g. accident) and then analyses the system to determine what single event or

combinations of events could have led to the top event. The underlying logic of FrA is not

difficult to understand, however, the construction of a meaningful Fault Tree requires in

Page23

depth understanding of the system and expertise in the associated domain. Taylor [1994A]

suggests a series of steps for constructing a Fault Tree:-

+ choose top event [this could be selected, for example, from a serious

consequence identified in a What-If study or a Failure Modes and Effects

Analysis (FMEA)];

+ identify possible causes in general terms (using case histories or

morphological searches);

+ localise hazards to specific places in the plant;

+ identify various chains of disturbances, searching for individual component

failure modes;

identify individual causes of component failures.

Once the Fault Tree has been constructed, the major contributors to hazards can be identified

and the Fault Tree used to eliminate hazards or reduce the risk to a tolerable level. It is

important that the level of detail is not so complex as to make the evaluation of hazards

intractable. Fussell et al. [1974] point out that PTA is of major value in:-

+ directing the analyst to ferret out failures deductively;

+ pointing out the aspects of the system which are important with respect to the

failure of interest;

+ providing a graphical aid to those in system management who are remote

from the system design changes;

+ providing options for qualitative or quantitative system reliability analysis

+ allowing the analysis to concentrate on one particular system failure at a

time;

+ providing the analyst with genuine insight into system behaviour.

2.3.1.3 HAZard and OPerability Study (HAZOP): HAWP is the most popular technique

used for chemical process plant, and is also used in many other systems (e.g. mechanical,

electrical and transport) [Robinson, 1995]. The aim ofHAZOP is to generate credible causes

of deviations from design intention and to identify consequences [Wells & Wardman, 1994].

The general HAZOP approach involves using triggers or guidewords and applying them to

a model of the system. This approach can be used from the conceptual design stage of a

Page 24

project, right through to the commissioning stage.lt is systematic, employs a team approach,

and allows an exploratory approach to the identification of hazards. A HAZOP study results

in a number of recommendations for design, equipment or operating philosophy

improvements [A!ChemE, 1985]. There are different types ofHAZOP. Standard HAZOP

uses the guidewords NO, MORE, LESS, AS WELL AS, PART OF, REVERSE, OTHER

THAN that can be applied to different process parameters (e.g flow [CIA, 1977]). The

A!ChemE [1993] guidelines describe two variations of HAZOP, Knowledge-Based HAZOP

and Creative Checklist HAZOP. In Knowledge-Based HAZOP the guidewords are replaced

by the team leader's knowledge and specific checklists. Creative Checklist HAZO P is very

similar to Preliminary Hazard Analysis. At an early stage in the project only materials and

block layouts of plant are known and consequently only 'block' hazards can be identified;

a hazards checklist (e.g. fire, toxicity) is used. Another variation, Human HAZOP, has been

proposed to analyse human interaction with the process where standard guidewords are

interpreted in terms of human error (e.g. NO is interpreted as NOT DONE, and REVERSE

is interpreted as LATER THAN or MISORDERED [Whalley, 1988]).

It should be noted that HAZOP is a time consuming process, it identifies many more

OPerability problems than HAZards, and combinatorial explosion results if process

deviations are analyzed in conjunction with input/output states of computer hardware.

Taylor [1989] points out weaknesses of HAZOP when applied to process systems. For the

more curious and rare modes, the analysis depends on expertise. HAZOP's process does not

get down to the deep causes of some types of accident. Taylor [1989] suggests bolstering

the HAZOP process with past histories in the form of generalised Fault Trees.

2.3.1.4 Failure Modes and Effects Analysis (FMEA): FMEA (originally designed for

reliability studies) is a methodical study of component failures. The process involves

recording component failures on a data tabulation sheet and analyzing them individually so

that the consequences of the failures can be identified. A criticality ranking can be assigned

for each failure mode (Failure Modes & Effects Criticality Analysis; FMECA) which helps

to focus on those areas of the design considered to be the most dangerous. FMEA helps to

determine areas of a design where redundancy should be implemented, and to identify

compensating features for those single point failures where elimination is impractical

Page 25

[Reifer, 1979]. It is a bottom up approach that can be very thorough if all failure modes can

be identified, however, it is very time consuming. AIChemE [1993] guidelines emphasise

the importance of selecting the level of resolution, as this determines the detail to be

included in the FMECA tables; the guidelines mention a plant level (e.g feed system) and

a system level (e.g feed pump). Also, since all failures are not safety-related, FMEA is not

an effective method of hazard identification, unless one can target safety-related

components. Taylor [1994A] states:-

The success of Failure Modes and Effects Analysis depends on the analyst having

a good understanding of what failure modes can occur within a process plant, and

what modes it is necessary to distinguish to ensure a reasonably complete analysis.

2.3.1.5 What-If: What-If [Nolan, 1994; AIChemE, 1993] is similar to HAZOP (described

above) in that it is a safety review based on team effort and it uses an exploratory approach.

The difference is that, in What-If, instead of selecting a process parameter (e.g. temperature)

and applying a guideword (e.g. NO), a more application specific What-If question is posed

(e.g. What-If MOTOR MS1 stops during startup?). It is not systematic. A What-If review

is usually combined with a Checklist and is useful for identifying possible accident

scenarios. Nolan [1994]1ists the following advantages of What-If:-

+ It can be accomplished with a relatively low skill level.

+ It is fast to implement, compared to other qualitative techniques.

+ It can analyze a combination of failures.

+ It is flexible.

2.3.2 Selecting a hazard evaluation procedure

The underlying principles of the techniques described above are not complicated, the

difficulty lies in determining which technique to use, when to apply that technique, and how

to integrate that technique into the software lifecycle. Montague [1990] states that, for the

chemical industry, the choice of technique is dependent on a number of factors, namely:-

the objectives of the study, the complexity of the chemical process, the age of the plant or process,

the data requirements of the study, the resources available for the study, the level of expertise

required in the use of the technique, and the potential consequences of accidents.

Page26

Important considerations based on these factors include:-

+ objectives may demand quantitative and/or qualitative techniques;

+ level of detail may indicate a coarse or fine screening technique;

+ the complexity of the system determines how sophisticated the technique

should be;

+ if a new system is being built, the technique must be particularly suited to

Preliminary Hazard Analysis (PHA);

+ regulations and standards may dictate the choice of technique;

+ available expertise may limit the choice of technique;

+ the consequences of potential accidents determine how much in-depth

analysis is required.

Hazard evaluation techniques are often combined. For example, Rushton [1994] carried out

a survey on the use of HAZOP in the offshore industry, and found that the majority of

correspondents selectively use FTA and FMEA in conjunction with HAZOP. This is not

surprising as the completeness of individual methods has been shown to be very poor.

Suokas & Rouhiainen [1989] carried out HAZOP studies on storing and loading/unloading

of sulphur dioxide and ammonia. HAZOP identified a total of 77 accident contributors, two

further techniques (Action Error Analysis and Work Safety Analysis) discovered 23 further

contributors.

The choice of technique is dependent on the part of the lifecycle at which it is to be applied.

There are various suggestions as to which techniques are appropriate for different phases in

the chemical industry. Nolan [1994] proposes the Checklist approach for the

Concept/Exploratory phase, followed by What-If for the pre-design stage, and finally

HAZOP for the detailed design stage. FMEA has been suggested for both the pre-design and

design stage and FTA for the detailed design stage [AlChemE, 1985] (Fig.2.2). In the

standards (MIL-STD-882C and MoD 00-55), different types of hazard analysis and their

associated phases have been described (Fig. 2.2). These include [MIL-STD-882C]:

Preliminary Hazard Analysis (PHA): To identify safety-critical areas, to provide an initial

assessment of hazards, and to identify a strategy for controlling these hazards.

Page 27

Subsystem Hazard Analysis (SSHA): To verify subsystem compliance with safety

requirements contained in subsystem specifications and other applicable documents.

To identify hazards and to recommend a strategy for dealing with hazards and risks.

Concept
Exploration

Checklist

Pre-Design

What-if

.FMEA

: ,; ' : =

Detailed
Design

HAZOP

FTA

:·,:,' : :: ;J

Product
Deployment

Operation

jL........c.;..;'-'=...;;.;.;'-'-'---'j =technique used at this stage only if modifications made to product after detailed design

Fig. 2.2: Hazard evaluation procedures and associated types of hazard analysis

(based on information from Nolan, 1994; A!ChemE, 1995; MIL-STD-882C, 1993)

I

System Hazard Analysis (SHA): To verify system compliance with safety requirements

contained in system specifications and other applicable documents, to identify

hazards and risks associated with subsystem interfaces and system functional faults,

to recommend actions necessary to eliminate hazards or reduce the risk to an

acceptable level.

Operating and Support Hazard Analysis (O&SHA): To evaluate activities for hazards or

risks introduced into the system by operational and support procedures and to

evaluate the strategy for dealing with these hazards or risks.

Page 28

The MoD standard 00-56 subsumes SSHA and O&SHA, into SHA. The difficulty is in

correlating the different hazard evaluation procedures with the different types of analysis.

MIL-STD-882C does not specify any hazard evaluation techniques to be used. The MoD

standard [00-56] suggests using HAZOP at the PHA stage. Note that Wells & Wardman

[1994] distinguish between PHA and HAZOP. They suggest that PHA starts at the point of

a dangerous disturbance rather than a process deviation. The IEC standard states that FTA,

HAZOP and FMEA are highly recommended for systems with high integrity levels,

however, it does not state how they should be applied. Using infonnation from the

traditional application of hazard evaluation techniques, one might propose the matching

shown in Fig.2.2. However, looking at previous workers' methods of assessing hazards in

programmable systems (fable 2.2), shows there is no definitive matching of techniques and

phases in the software lifecycle. Checklist and What If procedures are not included in Table

2.2 as they are not commonly used when integrating hazard evaluation procedures and

software modelling techniques.

2.3.3 Approaches to integrating hazard evaluation procedures in the

development of safety-critical programmable systems

An analysis of how hazard evaluation procedures have been integrated into software

development (fable 2.2) shows that:-

all combinations and a number of pennutations of FT A, HAZOP and FMEA

have been used ;

+ the same hazard evaluation procedures have been used for evaluation of

different stages of the system lifecycle;

+ different software engineering modelling techniques have been used with the

same hazard evaluation procedure.

2.3.3.1 FTA: FTA has been used at the system level, sub-system level and code level. FTA

has also been used in conjunction with the 'Viewpoint' technique [Seward et al.,1995].

Page 29

Table 2.2: Different approaches to integrating hazard evaluation
procedures and software modelling techniques

Author(s) Hazard Evaluation
Procedure

HAZOP FMEA

Software Modelling
Technique

Seward et al. (1995) Viewpoints

Mojdehbakhsh et a! (1994). DFD

Shebalin et al. (1988)

Leveson & Stolzy (1983)

Reunanen & Heikilli (1991)

Chudleigh & Oare (1993)

MoD 00-58 (1995)

Bums & Pitblado (1993)

Reifer (1979)

Klein & Lali (1990)

Canning (1990)

Saeed et al. (1995)

Maier (1995)

ESA (1991)

Fenelon et al. (1995)

Hobley & Jesty (1995)

Pink et al. (1993)

Taylor (1994B)

= procedure used

Page30

Ward/Melior

DFD

DFD or Object-Oriented

Object-Oriented

Ward/Melior

DFD or Object-Oriented

Goal Approach

Passport Cross

Hazards are associated with Viewpoints and, subsequently, possible contributors to these

hazards are identified using FrA. Mojdehbakhsh et al. [1994] identify both system and

software safety faults using FrA, and use DFDs to help identify top events for FrA and

determine the software safety faults that might contribute to hazards. They point out two

limitations of FrA, namely, its informality and the lack of a method of specifying temporal

relationships. Shebalin et al. [1988] suggest an FrA approach for safety analysis for

distributed systems. Their approach involves identifying undesired system events and then

constructing a system fault tree for each of the events. The resultant fault tree nodes which

represent hazardous action taken by a component are analysed by associating with them

different generic failure modes (inappropriate command transmission; command failure;

and, incorrect data sent). These failure modes form the top events for subsequent fault tree

analysis. Leveson & Stolzy [1983] use fault trees to analyse the logic of software (SFrA)

and to determine safety violations. To achieve this, they present fault tree templates for some

basic ADA constructs (e.g. if-Then-Else Statement, While Statement). McDermid [1996]

has made some salient points regarding this approach namely:-

+ SFrA should be applied top down;

+ using the OR gate to represent the sequential composition of statements as

specified in Leveson & Stolzy's templates is incorrect;

+ SFrA based on the template-approach can be an effective analysis technique.

The major challenge of using FrA from system level down to software code level is to find

an effective method of transferring the results at each level of abstraction.

2.3.3.2 HAZOP: Most attempts at integrating HAZOP into the software development

process have included a software modelling technique. This is not surprising as, unlike FrA,

traditional HAZOP has no associated logical representation, but is focused on piping and

instrumentation or engineering line diagrams. The differences between the approaches to

using HAZOP focus on how the deviation from design intention is represented. For instance,

Reunanen & HeikiHi [1991], using the Ward & Melior approach (see above) analyse the

deviations of flows on a state transition diagram, and Chudleigh & Oare [1993] using DFDs

(see above) focus on deviations of the modelling entities (e.g. the entity process has

Page 31

associated deviations: FAILURE, ERROR, WRONG PROCESS, INTERRUPTED; and the

entity data flow has associated deviations CORRUPTED, NONE, WRONG

SOURCE/SINK). Problems arise because of the difficulty of applying traditional HAZOP

to programmable electronic systems. The MoD 00-58 standard proposes new guidewords

and suggests the approach is valid for functional or object-oriented representations. Bums

& Pitblado [1993] also recognise the need for new guidewords, emphasise the significance

of human error in computer controlled plants, and mention a number of incidents in which

human error played a significant part. They propose new parameters and guidewords for

'Human' HAZOP, namely, INFORMATION (associated guidewords NO, MORE, LESS)

and ACTION (associated guidewords NO and WRONG).

It is important to remember that HAZOP has its origins in Method Study [Elliott & Owen,

1968]. The first three stages of Method Study [Currie, 1972] are:-

+ select - the work to be studied;

+ record- all the relevant facts of the present (or proposed) method;

+ examine - those facts critically and in sequence.

It is significant that the purpose of examination in Method Study was to determine

alternatives not deviations, the assumption being that the method under examination could

be clearly defined. The problems that arise with present approaches to software HAZOP

appear to be due to the focus on this third stage examine (e.g. addition and refinement of

guidewords) without the necessary attention to the select and record stages. Transferring

these stages to software, select could be interpreted as 'determine the right level of

abstraction' and record could be interpreted as inodel effectively'.

2.3.3.3 FMEA: FMEA approaches are generally based on functional failure rather than

component failure. Reifer [1979] proposed that the software requirements specification be

analysed to identify mission-essential requirements and failure-critical factors, where failure

factors are defined as software errors that are serious enough to cause the program, when

aecuted, to either abort or degrade before the mission objective is realized. Both mission

essential requirements and failure-critical factors are determined using checklists derived by

Page32

analyzing previous projects. The requirements are refined until detailed FMEAs are

produced and then each failure mode is evaluated and the corresponding effect at the

software level determined. Klein & Lali [1990] propose that FMEA be performed for the

functional modes of each system, subsystem or component. They claim FMEA, PHA and

O&SHA are very similar but point out that, with FMEA, it is difficult to identify safety

related failure modes that are not caused by equipment failures. They refine the FMEA

method by incorporating:-

+ lack of proper safeguards in the design;

+ lack of operator training to follow procedures;

+ lack of human engineering causing operator error.

Canning [1990] states that, for complex computer systems, FMEA may not be tractable for

individual components. She suggests that FMEA be carried out at a functional level and

states that this has an added advantage as it ensures that the assessment is independent of the

means of implementation

For FMEA to be effective, it is essential to create generic failure modes, regardless of the

'view' (subsystem, functional, component) selected. The biggest drawback of FMEA

appears to be its lack of ability to interrelate failures of interacting entities.

2.3.3.4 FfA & HAZOP: Saeed et al. [1995] suggest HAZOP as a means of identifying

safety related failure modes in the requirements phase. The guidewords are based on an error

classification scheme and vary depending on the applicable domain. Two domains are

described, a value domain and a time domain: guidewords for the value domain are

ARBITRARY and DETECfABLE and guidewords for the time domain are LATE, EARLY

and INFINITELY LATE. Having identified the failure modes, FTA is then used to

determine those circumstances that can lead to the postulated failure modes. The graphical

notation of Rumbaugh et al.[1991] is used and the principal modelling abstraction is the

interactor which corresponds to a class in object oriented terminology. The interactor has

slots: a name, a collection of components, declarations of constants and variables, and a

behaviour specification.

Page 33

2.3.3.5 FTA & FMEA: The most popular approach appears to be combining FfA and

FMEA with a modelling technique. Maier [1995] suggests using FfA or Highlevel Fault

Tree Analysis (HFfA) to derive safety requirements, followed by application of FMECA

to the user requirements specification. Finally, FMEA and FfA are used to review the

software requirements document. FMEA is applied to nodes i.e. data stores and processes

which have been constructed using the Ward & Melior approach (see above). Generic failure

modes associated with nodes are:-

+ the failure to send a message, consequently, the message is missing at the

following node;

+ the untimely (too early or too late) release of message;

+ the sending of a wrong (undesired release) or faulty message.

The resultant failure modes are used to construct the fault tree for the final analysis where

the top events are base events from the earlier HFfA. The ESA [1991] approach is similar

to Maier [1995] but also makes provision for an object oriented approach. This approach is

based on a thread analysis, where FMEA and FfA are applied depending on the level of

detail. FMEA is supported with a Checklist of generic failure modes for both functional

analysis and an object-oriented analysis. For functional analysis, generic failure modes are

given for the following element types: transducer, process, store, channel, controller,

documentation and training. For object oriented analysis, generic failure modes are given

for the following element types: objects, operations, relationships (e.g. USE relationships),

specific objects (e.g. an object which represents the provided interface of another object used

by the system to be designed, but which is not part of the design process). Fenelon et al.

[1995] use a goal structured approach to guide the construction of a safety case, where a

'goal' represents an objective to be achieved and each of the goals can be represented in a

hierarchical tree structure. Each goal has an associated context, strategy and solution. They

propose a new technique, Failure Propagation and Transformation Notation (FPTN) to test

whether the goals are satisfied. The objective of FPTN is to allow both a top-down mode

(FfA) and a bottom-up mode (FMECA) analysis. The basis of the approach is the FPTN

module which is a functional analog of Failure Modes and Effects Summary (FMES). Each

FPTN module has an associated set of equations and these equations are representations of

Page34

fault tree cutsets which define how the output failure modes are related to the input failure

modes of the module. The failure modes are based on an error classification scheme. The

types used are: omission, commission, subtle (e.g. incorrect value), coarse (e.g. inconsistent

value), early and late. Hobley & Jesty [1995] base their approach on a modelling technique,

PASSPORT Cross, derived from the Business Systems Planning system developed by

[IBM]. The PASS PORT Cross consists of four matrices sharing common axes. The axes are

labelled: information sets, communication facilities, functional elements and architectural

elements. They propose using FMEA on all sensitive elements in the matrices and FT A for

each hazard identified. The PASSPORT Cross model assists the FTA process by providing

information on the inter-connections between various elements.

2.3.3.6 HAZOP & FMEA: Pink et al. [1993] propose combining FMEA and HAZOP. The

failure modes and guidewords used were not generic but created specifically for the

application in question. Their main conclusions were that HAZOP is useful for considering

complex and interrelated procedures, but FMEA is more systematic and appropriate for

considering single components.

2.3.3.7 FTA, HAZOP, FMEA: Taylor [1994B] suggests an integrated approach which

considers the interaction between hardware, software and operator. He proposes functional

analysis for the system specification; HAZOP, FMEA, simulation and sneak analysis for the

system model; and Human Reliability Analysis (HRA) for operating procedures. This is a

very comprehensive approach, however, the method of integrating the techniques is not

described.

2.4 Conclusions

Different strategies for building safety-critical systems have been described. The emphasis

has been on fault avoidance and fault forecasting, rather than fault tolerance and removal.

In order to facilitate a fault avoidance approach, properties of requirements engineering

techniques which are particularly suited to safety-critical systems have been identified. To

investigate the feasibility of a fault forecasting approach, different hazard evaluation

Page 35

procedures and their integration into the software development life cycle have been

discussed.

2.4.1 Requirements engineering and safety-critical systems

Three important dimensions of the requirements process have been identified for developing

safety-critical systems: a multi-disciplinary dimension, a modelling dimension and the

specification of external behaviour. The key to tackling the difficulty of requirements

engineering for safety-critical systems is the modelling technique (i.e. the modelling

technique must lend itself to multi-disciplinary participation and facilitate the specification

of constraints on external behaviour). Despite the problem of identifying candidate object

classes in the first place, object oriented modelling has been promoted as the ideal method

for multi-disciplinary participation. However, safety objectives are usually expressed as

requirements and this implies a functional approach. This apparent difficulty can be

overcome if the choice of modelling technique is viewed as being dependent on the level of

abstraction. It is possible to take the benefits of both an object oriented and a functional

approach if they are used at different levels of abstraction. Whatever modelling technique

is used, it must be possible to specify safety constraints. Different techniques for specifying

external system behaviour have been briefly discussed. Although some of these specification

techniques have been used in the development of safety-critical systems, none of them deals

explicitly with safety constraints.

2.4.2 Limitations of present approaches to integrating hawrd evaluation

procedures and requirements engineering

Major concerns about the approaches described above include ambiguity of hazard

evaluation procedures, inconsistency of modelling techniques and incompleteness.

2.4.2.1 Ambiguity of hazard evaluation procedures: For FMEA there is no clear

definition of what failure is applied to, it can be applied to a requirement, a component, a

data store or an object. For HAZOP the design deviation has different meanings depending

Page36

on whether it is based on DFDs, state transition diagrams, or time and value domains. For

IT A, a top event is used to identify an accident in the real world or is based on a failure

mode in the software. Before a standard methodology for integrating hazard evaluation

techniques and software development can be derived, precise meanings for the concepts

associated with ITA, HAZOP and FMEA must be defined.

2.4.2.2 Inconsistency of modelling techniques: The same basic components of modelling

techniques have been used for analysis but in conjunction with different hazard evaluation

procedures (e.g. Chudleigh & Oare [1993] and ESA [1991] used DFDs but the former used

HAZOP for flows and the latter used FMEA for the data stores and processes). In some

cases, the choice of software modelling technique was dictated by the design rather than the

usefulness of the particular technique for hazard evaluation. When techniques were used in

combination, nearly all used some software modelling to allow the transfer of results from

one level of abstraction to the next. On a superficial level, a functional approach can be

associated with ITA & HAZOP and an object oriented approach with FMEA. However, a

closer look at the different approaches shows that FMEA is often used to take a functional

view, and ITA & HAZOP can be applied to objects that have a specified behaviour.

2.4.2.3 Incompleteness of approaches: At present, there is no ideal way of combining

hazard evaluation procedures to ensure completeness and the problem is further exacerbated

by the addition of software. There is no optimal sequence for applying the different hazard

evaluation procedures to the development of software. ITA, HAZOP and FMEA have been

used for PHA, SSHA and SHA, however, it is noticeable that there is an absence of

techoiques for O&SHA. Only the approach of Pink et al. [1993] specifically addresses this

problem, but even this approach is application-specific.

Page 37

CHAPTER3:

Using Incident Analysis to Construct a

Methodology

Various approaches can be used to try to identify reasons for the failure of safety-critical

systems. Many of these are based on the categorisation of faults. Kershaw [1993], for

example, categorised faults according to type (random failures of components; systematic

errors in design; errors in the interface to the outside world; maintenance errors; common

mode errors). Grady [1993] categorised faults according to where they occur in the

development of a system (at the requirements stage, design phase, in the coding etc.) and

further subdivided these into type (e.g. design phase faults were subdivided into hardware

interface, software interface, user interface and functional description).

The approach taken for this study, however, was to analyse 'incidents' or' ... all accidents

and all near-miss events that did or could cause injury, or loss of, or damage to property

or the environment' [AIChemE, 1992] and to use this analysis as a basis for a generic safety

assessment methodology, HAZAPS (HAZard Assessment in Programmable Systems). The

objective of this analysis was to determine, not simply the immediate causes of incidents,

but the root causes, such as fundamental human error, failure of the technology, and

inadequate development processes for the system. Examination of the root causes of

incidents can be used to help prevent the occurrence of other similar incidents [AIChemE,

1989].

Data on computer-related incidents are available in many forms from various sources. Raw

incident data from the avionics sector can be obtained from the Royal Air Force [RAF,

1989] and the US National Transportation Safety Board [NTSB]. Kletz [1995] described a

number of computer-related incidents in the process industry. Neumann [1995] analyses

incidents across many different industries where programmable systems are used. Incident

data may be used to construct a methodology that can be applied in the development of

Page 38

safety-critical systems. Raw incident data are very useful, however, in order to benefit from

raw data, it is necessary to become familiar with the domain concepts of the source industry.

Classified data (i.e. incidents that have been mapped into categories) are not as useful

because the classification scheme by definition necessitates a specific and, in some cases,

biased interpretation of the incidents. Another problem with classification schemes is that

they are difficult to reuse. However, classified data can be useful in identifying where the

effort needs to be focused. For example, Lutz' [1993] analysis showed that the two most

common causes of safety-related software errors are:-

+ inadequate interface requirements;

+ discrepancies between the documented requirements and the requirements

actually needed for correct functioning of the system.

The knowledge gained from incident analysis is useful for the development of any system.

It is particularly important for the development of safety-critical programmable systems

because these systems are highly complex and, the more complex the system, the more

difficult it is to determine what might go wrong (complexity is related to uncertainty and all

risk arises from uncertainty).

3.1 Major benefits of incident data

3.1.1 Incidents are representative of the 'real world'

Incident data are representative of the 'real world'. The crash of the British Midland aircraft

in 1989 (where both engines were shut down at the same time during flight) is illustrative

of this point. The chances of simultaneous failure of both engines are commonly estimated

at somewhere between one in 10 million and one in a million [Neumann, 1995]. Another

example is the crash of the Eastern Airlines lr 1011 near Miami because all three members

of the flight crew were preoccupied with a blown 'gear-down' indicator light. This blown

indicator light would not inhibit safe landing [Jentsch, 1993]. Incident data are based on the

software operating in real situations with real users and real hardware.

Page 39

3.1.2 Incidents provide insight into when, why, how failures occurred

Incident data give insight into when, why and how failures occurred and, in particular, how

they propagate in a system on both a macro and micro scale. Often there are many different

causal factors in an accident. By investigating incidents we can analyse the interrelationships

between different contributors to accidents. ~!~dley_ [1995] analysed a number of

catastrophes including Bhopal, Challenger, Chemobyl, Piper Alpha, Three Mile Island and

several DC-10 accidents. He used a classific:a!iQ!l..SCheme.._to identify contributors to

accidents. This scheme includes errors in five areas: design, failure of equipment with no

directly attributable human error, management, operation, and repair. For each accident, a

disaster sequence was identified based on these contributing factors. All accident sequences

included two or more of the five contributing factors, and one (the DC 10 incident in

Chicago, 1979 where an engine fell off on takeoff) included all five. A single failure does

not, in general, result in a catastrophe, this is usually due to a combination of different

failures which occur in sequence. It is difficult to hypothesize about what faults might lead

to failures and result in incidents, however, by working backwards from incidents, causal

sequences can be readily identified.

3.1.3 Incidents provide an invaluable source of experiential knowledge

The experiential knowledge gained from a study of incidents can be used to construct a

methodology for assessing safety before a system is put into operation. It is useful to identify

and categorise contributing factors to incidents but, ultimately this knowledge must be

embedded in a framework for use by the developer of safety-critical systems. This

framework must be effective, efficient and easy to use. In the next section, the strategy used

to derive a framework based on computer-related incidents is described.

3.2 Strategy used to derive a framework based on

computer-related incidents

When building new systems, one way of using incidents is to store them in a database or

hazard log. However, the disadvantage of doing this is that, for every new system, it would

Page40

be necessary to (a) search the database for all relevant incidents, (b) match them with the

subsystems or components, and, (c) understand and analyse the sequence of each selected

incident to see if it could occur on the new system. This would be difficult even if used for

rebuilding a similar system within the same industry and would not be feasible for use in a

different industry. The strategy used for utilising incident data in this work is shown in Fig.

3 .1. In summary, patterns were abstracted from incidents and a generic framework was

using
'\
~;

Modelling
Technique

I
I

I
I

/ id~~~}!::e~
I

I
I

I \ analysed ,. I
_used ;a

USing

\1

u\ed to
conltruct

~j
Generic

Framework

1mp}ove

I
I ou/(by

I r-=------:--"---,
I Requirements

1 Capture &
1 Analysis

z~
used

d11fing

HAZAPS
Methodology

Fig. 3.1 Illustration of the strategy used to develop the hazard assessment methodology

Page 41 .

constructed. This framework was subsequently embedded in a methodology that can be used

by developers when building new systems.

Although hazards are environment dependant, the way in which the embedded

programmable system contributes to hazards can be generalised. For example, the behaviour

of an actuator is similar whether it is located in a chemical plant or on an aircraft. The

strategy was to focus on the causal behaviour of an embedded system that can result in an

incident. This involved:-

+ recognising common properties and entities within an embedded system, irrespective

of the application domain;

+ modelling these entities;

+ identifying causes of incidents;

+ isolating the causes;

+ constructing a framework which provides a systematic means of identifying the way

in which an embedded control system can interact with its target environment (such

a framework is very useful because captured knowledge, based on analysis of

incidents, can be presented in a structured fashion and made accessible for future

projects).

Chapter 4 describes how this framework can be embedded in a methodology which assists

developers during requirements capture and analysis. The embedded framework provides

a generic approach to identifying and assessing hazards in the system. This chapter describes

the construction of the framework. In the next section, the modelling of incident events is

described.

3.3 Modelling of incidents

The initial objective was to derive a modelling technique for embedded systems that
< .

represents the sequence of events involved in an incident. This modelling technique had to

meet the following criteria:-

Page42

(a) be suitable for all incidents independent of the application domain;

(b) provide a means of understanding and interpreting incidents;

(c) facilitate the creation of a framework in which the knowledge gained could be

embedded.

A number of possible options were available. Finite State Machines [Mealy, 1955] were

considered, however, for each incident, it would have been necessary to have an in-depth

knowledge of the system and also it was not obvious how a generic framework could be

created from the analysis. Another possibility was to d~"-~lop_ a techni~~ased on

customising Management Oversight & Risk Tree (MORT) [Johnson, 1980]. MORT itself

is not specific enough for analysing incidents in_ terms of computer events. A MORT

technique would result in a logical representation of the causes of incidents, however, it

would be difficult to correlate the occurrence of different computer events and the number

of resultant causes would be very large. Consequently, the resultant framework would be

unsuitable for a developer building a new system. There are many other incident

investigation techniques [AIChemE, 1992]but none of these fulfil the three criteria (a) to

(c) above.

3.3.1 Generic events in embedded systems

To model an incident, it is essential to be able to represent discrete events. However,

different domains have an infinite number of discrete events. To overcome this problem,

events can be \yped ', so that any given incident can be associated with a number of generic

events. As a means of identifying generic events, the following components which are

generic to all embedded system architectures were selected:

+ processor;

+ communications link;

+ sensor;

+ human input device (IDD);

+ display;

+ actuator;

+ operator.

Page43

The inclusion of 'operator' in the above list might be questioned, however, the importance

of considering the man-machine interface is borne out by a survey carried out by the

Institute of Nuclear Power Operations (INPO). INPO analysed 180 significant incidents and

identified a total of 387 root causes [INPO, 1985]. More than half of these were due to

human performanc.;e_pmhkm~ This human performance category was further subdivided

and included: d~ci~t procedures or documentati~-;.;-(13%), Iack()!_~c:l~~~Eg~or training

(18%) and gj]!!!'e-to follow procedure (16%).

3.3.2 Event Time Diagram (ETD)for modelling events

Any interaction within an embedded system involves one or more of the basic components

above, therefore, events can be characterised by these components, and then used to analyse

incidents. Each component can be associated with a functional behaviour (e.g. the operator's

function is to intervene). A model (Fig. 3.2) was proposed to relate the basic components

and their associated functional levels. The functional levels were subdivided into categories.

For example, the input/output (I/0) level was divided into Display, Actuator, Sensor, and

Human Input Device (HID). There is a hierarchy of the functional levels and these functional

levels are interdependent. All components associated with the intervention level that interact

with the computer, must use a component at the I/0 level. Similarly, all components

associated with the I/0 level that interact with the computer, must involve a component at

the communication level. The model can be used to establish 'what if' scenarios. For

example, if an operator inputs incorrect data, what happens if the error propagates through

to the inner levels? In the worst case, the operator error causes a failure at the control and

processing level. This model can be used to represent incident behaviour by placing nodes

and vectors on functional levels as shown in Fig 3.3.

The Event Time Diagram (ETD) is a populated functional model which models behaviour

in terms of events, time, control and data flow, entities and associated functional levels. It

may be viewed as a polar diagram where the angle represents time, the distance from the

centre gives the functional level, and the arrows give direction of flow of information (either

control or data). A node within an ETD may be described by two coordinates (c, r) where

c represents the angle (entity), and r represents the radius (functional level).

Page44

INTERVENTION

INPUT/OUTPUT

COMMUNICATION

CONTROL
AND

PROCESSING

COMPUTER

COMM.LINKS

ACTUATOR

OPERATOR

Fig. 3.2: Model showing generic components and
functional levels

Fig. 3.3: Example of a populated Event Time Diagram
(ETD)

Page45

The ETD modelling technique fulfils the criteria (a) to (c) above:-

+ The ETD can be used to model any incident irrespective of the application.

It is based on identifying external events and classifying these events in

terms of generic components. It allows the system to be viewed from the

'outside-in', working back from observable phenomena to programmed

events.

+ The ETD allows the generation of scenarios which assist in understanding

and interpreting the causal behaviour associated with incidents. It allows

analysis both of individual events and of the interaction between events. A

picture of what happened can be built up in an incremental and iterative

fashion.

+ The ETD is based on instantiating generic events rather than specific events,

hence it is possible to construct a framework based on the knowledge

acquired about these generic events and their associated safety properties.

In the next section, the use of Method Study for analysing incident events is described.

3.4 Use of Method Study for incident analysis

Having modelled the incident using the ETD, the next step was to understand and reason

about the events. The approach taken was to identify why and how events within the

embedded system together with other events in the environment led to the hazardous

situation which preceded the incident. The objectives were to identify root causes and to

incorporate these causes in a framework. This framework provided a means of assessing

safety in future systems. The root causes were divided into three main categories:-

+ Specification: failure to understand what the system is required to do (e.g.

ambiguous objectives, wrong timing, inadequate control).

Page 46

+ Implementation: failure in the implementation plan (e.g. wrong devices,

insufficient testing, inadequate consideration of environment).

+ Protection: failure to identify, control or recover from hazardous situations

(e.g. inadequate failure detection and recovery procedures).

The technique used for identifying root causes was Method Study, a popular problem

solving technique developed in the 1960's. Method Study was introduced as a management

technique to improve methods of production so that more effective use could be made of

materials, plant and equipment, and manpower. It has five stages [Currie, 1972]:-

Select - the work to be studied.

Record- all the relevant facts of the present (or proposed) method.

Examine - those facts critically and in sequence.

Develop - the most practical, economic and effective method, having due regard to

all contingent circumstances.

Install- that method as standard practice.

Maintain - that standard practice by regular routine checks.

The power of the Method Study process lies in its third stage Examine which is sometimes

referred to as Critical Examination. Table 3.1 shows a Critical Examination Sheet from

Method Study. The examination is carried out by using two sets of questions, the first

relating to the 'present facts' and the second to 'altemat~ves'. These questions are divided

into five categories (Purpose, Place, Sequence, Person, Means).

3.4.1 Modifications to Method Study

In applying Method Study to analysis of incidents, the first four stages of the Method Study

process are used in principle. The Select stage essentially involved the choice of an incident

for analysis. The Record stage involved modelling the incident using the ETD. The Critical

Examination stage identifies root causes and the Develop stage maps to embedding the root

causes in a framework. The last two stages, Install and Maintain, are management

responsibilities and therefore are not relevant for this analysis.

Page47

The Present Facts Alternatives

Purpose WHAT is achieved? IS IT NECESSARY? If What ELSE could be done? What should be done?
YES, Why?

NOTE: What is ACHIEVED not what or how it Reason given may not be Can the achievement be ELIMINATED? Helpful to divide into short-term and
is DONE. valid. True reason must be Can the achievement be MODIFIED? long-term. Under long-term can go

uncovered. All alternatives to the purpose should be stated including suggestions for future research and
those which may require long~term investigation. The development
answer to this section is never "nothing"; there is always
an alternative even if only the non-achievement

Place WHERE is it done? WHY THERE? Where ELSE could it be done? Where should it be done?

The location with reference to The reason for siting the Consider alternatives under each heading. Can working Where appears to be most suitable
(a) Geographical position operation there. areas be combined or distances reduced? situation with present knowledge?
(b) Position within the factory, plant or area Answer may be in relation to some other
(c) Detailed position under (b) operation. Consider limitations of
When appropriate, give reference to location and building design and services (steam, air)
distance from preceding and succeeding etc.
activities.

Sequence WHEN is it done? WHY THEN? When ELSE could it be done? When should it be done?

What are the previous and subsequent The reason for the present Can it be done either earlier or later in the process? As soon as possible in the process or
significant activities and what are the time sequence and time factor in If the sequence is fixed, can it be moved back to the immediately after the previous activity.
factors involved? the present process. previous operation? For example "Immediately after".

Person WHO does it WHY THAT PERSON? Who ELSE could do it? Who should do it?

(a) Grade, e.g. unskilled worker Reasons for choice under each All alternatives under each heading. It may not be possible to select the
(b) Employment, e.g. day worker heading. individual without Work Measurement.
(c) Name(s)

Means HOW is it done? WHY THAT WAY? How ELSE could it be done? How should it be done?

All relevant details are required of Material, The reason should be Investigate all alternatives for each main heading. Decide the alternative for each item
Equipment and Operator engaged in the investigated for each of the separately and knit together at
operation. Infonnation should be tabulated as tabulated items under each development stage.
simply as possible, under the headings: (a) main heading. Consider safety.
Materials employed, (b) Equipment employed, Consider posture and environment
(c) Operator's method ooerator.

Table3.1: Guide to the use of the Critical Examination Sheet (adapted from Currie, 1972)

In applying Critical Examination to analysis of incidents (Table 3.1), 'present facts' were

related to what was obseJVed from the raw incident data, with 'alternatives' being viewed

as strategies for identifying, eliminating and controlling hazards. The Purpose, Sequence and

Means categories were applied to events associated with an embedded system. Although the

application of the categories Place and Person is not so obvious, Place questions are useful,

for instance, for Displays, Sensors, Utilities, and Person questions could be used for

assessing training of personnel, and possible requirements for automation.

3.4.2 Benefits of applying Method Study

Other workers have proposed approaches to incident analysis based on the questions What?

Why? Where? When? How? The author believes that, without an underlying causal model,

these questions are not sufficient to investigate the complex behaviour of embedded systems.

Elliott & Owen [1968] analysed chemical plant design using Method Study. They applied

it to the stages of the overall process selection. They stated ... critical examination

techniques can assist designers to produce cheaper, safer and more reliable plants Their

first approach was to cover acres of paper with questions and answers relating to the

operation of the plant [Kletz, 1992]. Although this identified many potential hazards and

operating problems, it was too detailed to be practical. However, after many refinements and

modifications it evolved into the well-established HAZOP technique used worldwide by the

chemical industry. Method Study provides a powerful analytical approach to incident

analysis, in that it is focused, structured and provides a logical plan to highlight safety

concerns and show where possible improvements can be made in the development of safety

critical systems. The results from Method Study are very useful, however, it is a time

consuming and laborious process, and, as Randall [1969] states it can reveal things

invisible to the naked eye, [but] it can only focus on a small area at a time. One of the major

problems with Method Study is the amount and complexity of the information that can be

generated. In this work, in order to limit complexity, Method Study was constrained by:-

+ working backwards from incidents;

+ generating general rather than specific questions related to specification,

implementation plan and protective measures.

Page49

In the next section, the analysis of incidents using the ETD technique, in conjunction with

Method Study, is described.

3.5 Analysis of incidents

The objective of the incident analysis was to detennine why an incident occurred and what

could have been done to prevent it. For a given incident, the approach was to represent the

events associated with the incident and to derive a set of questions based on the underlying

principles of Critical Examination, the focus being on why an incident occurred and what

questions could have been asked in the first place to prevent it (i.e. what questions would

have prompted the developers of the system to consider the occurrence of such an incident).

These questions were generalised and used to build a framework which could be used by a

developer and thereby prevent the recurrence of the same or similar incidents. The value of

such a framework depends on:-

+ how representative the incidents are;

+ the methods used in deriving and generalising questions to build the

framework;

+ the effective incorporation of the framework into a development

methodology.

Although industries record incidents, there is no established method of using these incidents

to identify hazards at a generic level in re-engineering old systems or developing new

systems, i.e. each incident is dealt with individually following its occurrence. More than 300

incidents were provided by two major organisations, one involved in the process industry,

the other in avionics. The reason why two different application domains were used was to

try to ensure that abstractions of safety properties were domain-independent. The fonnat of

the infonnation received is shown in Tables 3.2 and 3.3. No user requirements, functional

specifications, architecture diagrams or software code were provided for any of the

incidents. This might first appear to be a disadvantage, however, it forces one to take a 'real

world' view of a system and to decompose the system in a general manner thereby

preventing the methods developed from becoming application-specific.

Page 50

Table 3.2: An example incident from the AVIONICS INDUSTRY

A/CType Flight Location Date Occnum Permpub

Phase

BXXXXXX CRUISE LXXXXX XX XXX XX XXXXXXXF p

FMS malfunction in cruise at FL350 A/C nosed over lost 600ft in Ssec ---- departing

altitude due to the loss of air data reference power caused by a faulty one amp circuit

breaker

Key: FMS =Flight Management System: FL =Flight Level: A/C =Aircraft

Table 3.3: An example incident from the PROCESS INDUSTRY

OBSERVED

EFFECT

SEQ. STARTED

PREMATURELY

ROOT

CAUSE

SEQ. PERMISSIVE$

INCOMPLETE

CAUSE

CATEGORY

APP.S/W

Key: SEQ = sequence; APP .S/W = application software

3.5.1 Procedure used to analyse incidents

The following procedure was used to analyse incidents:-

1. Study the text of the incident to determine whether it is useful (i.e. does it contain

sufficient information and can it be understood without an in-depth knowledge of

system).

2. List set of instantiated generic events and model on ETD. The intention is to identify

the original purpose of the design, the components involved, the control and data

flows, and any associated constraints.

Page 51

3. Analyse the ETD, in order to understand the interactions and sequence of events.

Iterate between scenarios in an attempt to identify where problems might occur. It

may be necessary to make assumptions. The procedure is driven by the need to

hypothesize on what did happen, what should not have happened and what could

happen in a different situation. It is important to identify as many causes as possible

to prevent similar incidents from recurring in the future.

4. Identify critical events and generate questions. Questions should be general rather

than specific (i.e. should ignore environmental data and should abstract generic

information).

3.5.2 Analysis of sample incidents

The ETD shown in Fig. 3.4 is an 'interpretation' of the incident in Table 3.2. Assumptions

were made such as \he computer made a calculation based on erroneous data' (E4). It was

seen that a number of events (El, E2 and E4) led to the final consequence (ES). El is the

root cause, however, any of the events (E2, E3, E4) could be root causes under different

CIRCUIT

Fig. 3.4: ETD for the incident described in Table 3.2

Page 52

circumstances. For example, incorrect computation (E4) may result in ES occurring

irrespectively of El, E2 and E3. In addition, we could prevent E4 by preventing the

computer from acting on erroneous information, however, this would not be sufficient as it

is quite likely that the actuator requires continual updating, therefore, even if the computer

recognizes erroneous data, there must be some recovery mechanism. This indicates the

importance of considering all events. The ETD also allows us to analyse events on an

individual basis. Even if El, E2, E3 and E4 did not occur, E5 could still occur if, for

instance, the communication link between the processor and actuator failed. The ETD

provides a very effective mechanism for analysing incidents because all events are

connected together via the nodes and vectors. We can start with the basic component on the

node associated with the first event and trace all state changes in intermediate components

through to the basic component associated with the final event. Alternatively, the state of

an intermediate component can be selected and one can work backwards to a cause or

forward to a consequence.

Having represented all the events related to the incident, the next step is to pose a series of

questions which, had they been asked in the early in the development, would have prevented

this and similar incidents from occurring. The questions generated are:-

+ What reliability data are available for hardware components?

+ How is failure of power detected?

+ If power fails, how is the system placed in a safe state?

+ How is the sensor to be calibrated?

+ What is the range of the expected input values?

+ Are multiple sensors required?

+ Is a continuous self-test sequence required (e.g. to detect dramatic changes

in input)?

+ Is there any method of verifying or correlating output data to detect out-of

range values?

Page 53

As the number of questions increased, it was found necessary to describe succinctly (by

means of a 'general descriptor~ the failure mechanisms associated with each incident.

Consequently, all failure mechanisms could be classified under a limited number of general

descriptors, the objective being to crosscheck that the main failure mechanisms for all

incidents had been identified. The general descriptor for the above incident was

"erroneous/corrupt operation".

There is very little information in the incident described in Table 33. The root cause in this

case is that the sequence permissives were incomplete and the consequence was that the

sequence started prematurely. However, we can still derive questions:-

+ What are the preconditions for initialisation?

+ How is it ensured that all preconditions have been identified?

+ How is task initialised?

+ How is task prevented from being initialised unintentionally?

The general descriptor is ~ncorrectly initialised'.

Incidents trigger other questions which are not necessarily directly relevant to the incident

under consideration. For example, in the above incident, the task started prematurely, it

could equally happen that the task might end prematurely or might not end at all which leads

to the questions:-

+ What are the sustaining conditions for this task?

+ What are the postconditions for this task?

As more incidents were analysed, more questions were generated until eventually it became

difficult to generate new questions (i.e. the law of diminishing returns applied). Different

problems arise as questions are generated. Some questions, features and appropriate

reactions were:-

+ too specific - generalise question;

+ too complex - decompose into one or more questions;

+ repeated - eliminate question;

Page 54

+ similar - if no significant difference, eliminate, otherwise create new

question.

Subsequently, a framework was constructed to help ensure that the questions could be

applied to a new system in a logical fashion. The construction of the framework is described

in the next section.

3.6 Construction of the framework

The purpose of the framework is to assist the developer (who may not be a software

specialist) to gain a deeper understanding of the system, probe the safety aspects of the

system in a structured and systematic fashion, and thus strive to eliminate common safety

related faults before the design stage.

Two methods of classifying questions were used: traditional classification, based on classes

having predefined properties; and, clustering [Stepp & Michalski, 1986], based on grouping

entities together, formulating conceptual descriptions and consequently identifying classes.

3.6.1 Traditional classification

Predefined classes include superclasses:-

+ Specification: questions related to understanding what is involved.

+ Implementation: questions related to what should be considered in the

implementation plan.

+ Protection: questions related to what protective measures are to be adopted.

+ Failure_Modes: all general descriptors derived from incidents.

3.6.2 Classification by Clustering

The clustering method is used to identify child classes of the superclasses Specification,

Implementation and Protection. Each of these child classes has slots for the generic

Page SS

components: processor, communications, sensor, lllD, display, actuator and operator (see

Fig. 35). The clustering method is not required to identify child classes of the superclass

Failure_Modes as the general descriptors are the child classes. The clustering approach

involved grouping together sets of questions which appeared to have a common concept.

The process involved refining, elaborating and iterating, both within and between different

groups of questions. In some cases, one or more classes were readily identified from a single

group. In other cases, it was necessary to merge groups to form a class or to reorganise

questions into a different group. As the process proceeded, existing classes were replaced,

subdivided, merged, and occasionally, new classes were derived by analysing existing

classes. Finally, one question was derived to show the overall purpose of that particular

class. Table 3.4 shows a superclass, class with associated question, and slots with associated

questions. The superclasses were created so that questions could be applied in a logical

sequence (i.e. Specification, Implementation, Protection and Failure Modes).

Failure _Modes provides a means of cross-checking the results from the other superclasses.

The classes encourage the user to think of other questions which might also be applicable

and to remove any subjective bias in the existing questions.

3.6.3 Choice of Classes

Considerable thought was given to the choice of classes. Useful guidelines have been

proposed [Chillarege et al., 1992; Fleishman & Quintance, 1984] for developing

classification schemes. Important criteria include:-

+ classes should be defined as precisely and objectively as possible;

+ classes should be distinct and mutually exclusive (orthogonality);

+ classes should be simple and easy to understand (to avoid human error and

confusion);

+ there should be some evidence of class validity;

+ the number of classes should be small so that the user can accurately resolve

between them;

+ the complete set of classes should attempt to cover all available data.

Table 3.5 (a to d) shows the superclasses, their classes and associated questions. The

complete framework is given in Appendix 1.

Page 56

Superclasses

Classes

(Determined using clustering method)

Slots

Processor, Communications, Sensor,
HID, Display, Actuator, Operator

r-------------------------------,
: Slot values (all questions generated) :

I I
1

What is the objective,
1

I I
I I
~-------------------------------J

Fig. 3.5: Shows the relationship between the superclasses (Specification, Implementation and

Protection) and associated questions. The classes are determined using the clustering method.

Page 57

............ , · .. ··::

Superclass : Specification

Class : Definition - What is to be achieved?

Processor

Communications

Sensor

HID

Display

Actuator

Operator

What is the task?

What communication link is required?

What state is to be monitored?

What Human Input Device is
required?

What is to be displayed?

What action is required?

What is the operator intervention?

Table 3.4: An example of a superclass (Specification) and one of its classes (Definition),
with associated question, slots and slot values

Superclass : Specification

I Class : Definition What is to be achieved?

I Class : Objective Why is it to be achieved?

I Class : Options How else could it be achieved?

I Class : Inputs/outputs What inputs and/or outputs are required?

Class : Timing/control
When is it to be achieved and How is it to be
controlled?

Class : Operational modes
What operational models (startup, shutdown,
automatic, manual etc.) are involved?

I Class : Programmable Why is this task programmable?

·'• . , • .

Table 3.5a: The superclass, Specification, its classes and associated questions

Page 58

·-· 11 -r -r

I Class : Selection What device/s are required?

I Class : Installation How will the installation be carried out?

I Class :Testing How will the implementation be tested?

I Class : Maintenance What maintenance procedures are required?

Class : Environment
What effect will the environment have on this
task?

I Class : Utilities What utilities (power, air, etc.) are required?

Table 3.5b: The superclass, Implementation, its classes and associated questions

...

Superclass : Protection

:: I Class: Failure_Detection :: How will any failures be detected?
'

I Class : Interlocks How are hazardous events prevented?

Class : Trips How will the system be shut down if a hazard
'

is identified?

I Class : Security How will breaches of security be prevented?

Class : Fault _Recovery
What fault recovery procedures are
associated with this task?

Class : Verification
How will the Fail Safe/Protection features be
verified? '

·.w.· •• ••···•··•·•··· ····,·~ ·,·,•.,,•,.w...-.·.·,,,,,.,,.,,.,•~w...-.·,•• •. ~ .•.•.• .. •.• .. • .. • .. • • • ~.-... ·· ················ ··········'- .. ·'' , .. ,., ··,·~·-·:

Table 3.5c: The superclass, Protection, its classes and associated questions

Page 59

I -'
/

I \

Superclass: Failure_Modes

Class : Not_lnitialized

Class : lncorrectly_lnitialized

Class : Incorrectly_ Executed

Class: Not_ Terminated

Class : Incorrectly_ Terminated

Class : Erroneous/corrupt_ Operation

Class : No Input/output

Class : Incorrect Input/output

Class : Lockup

Class: Too_Fast

Class: Too_Siow

Class: Defective_Hardware

Class : Failure Not Detected

....... •. • .. •.• .. •.·.·~

Table 3.5d: The superclass, Failure_Modes and its classes

Page 60

3.7 Conclusions

Incident analysis was carried out in order to develop a framework that provided a unified

and coherent method of analysing possible safety-critical failures. The framework derived

can be used to drive the process of identifying and assessing safety issues early in the

development of a system. The construction of the framework involved the following steps:-

1. Identify common characteristics of incidents by introducing generic events.

2. Develop a modelling technique (the ETD) to represent incident events so that these

events and their interrelationships can be analysed.

3. Using the principles of Method Study, derive sets of questions based on the analysis

of incidents.

4. Incorporate the resultant questions in a framework thus making use of the

experiential knowledge gained.

The ETD modelling technique can be used to unify the causes of incidents and to assist in

classifying them. Method Study has been modified for safety assessment. The 'Record' stage

is replaced with the ETD modelling technique. The 'Critical Examination' stage of classical

Method Study is shown in Table 3.1 and modified Method Study is shown in Table 35 (a

d). Both Methods are similar in that there is still a logical sequence of applying questions

and moving from the general to the specific. However, the modified Method Study, uses

more detailed classification with less emphasis on alternatives.

Parallels can be drawn between classical hazard evaluation procedures (HAZOP & FMEA)

and the derived framework. Two new terms are introduced Embedded-System-HAZOP (ES

HAZOP) and Embedded-System-FMEA (ES-FMEA).

+ ES-HAZOP: ES-HAZOP is based on using classes of the superclasses Specification,

Page 61

Implementation and Protection. Using these classes in conjunction with the ETD

technique is similar to using classical HAZOP and an engineering line diagram. The

classes are similar to guidewords in HAZOP although they are more general because

they are used at a higher level of abstraction, i.e. Requirements stage rather than

Design stage.

+ ES-FMEA: ES-FMEA is based on the application of the superclass Failure_Modes.

It is more specific than the use of FMEA because failure modes are specified and

only investigated for typed events. Also, there is a parallel between the superclass,

Failure_Modes and Action Error Analysis (AEA) in that failure modes are specified

for operator actions.

The framework is generic, therefore, it can be used in the development of embedded systems

irrespective of the application domain. It focuses on safety issues and is based on 'real world'

data.

Page 62

CHAPTER4:

The HAZAPS Methodology

In order to develop a method for 'assessing' (i.e. identifying those aspects of the system

related to safety and determining the hazards and contributors to these hazards, with the final

aim of eliminating or reducing the risks associated with these hazards) safety-critical

systems, the basic principles underlying the system safety programme must be clear.

According to MIL-STD-882C [1993] the principal objective of a system safety programme

... is to make sure safety, consistent with mission requirements, is included in technology

development and designed into systems, subsystems, equipment, facilities and their

interfaces and operation. It is important to take an overall view and ensure that all entities

(human, hardware, software and environmental concerns) are integrated and interact safely.

In order to construct safety requirements, the environment should be examined and potential

hazards identified and traced back from the environment, through the system interface, to

the software. Fig. 4.1 shows the boundary between a generalised embedded system and its

operational environment. Events can be classed as 'real world' and 'programmable'. Real

world events in the environment can be hazardous; programmable events in the embedded

system can contribute to hazards. When developing safety-critical systems, requirements

elicitation is very complex since it is necessary both to capture the intended behaviour of

systems and to integrate diverse constraints (requiring expertise from different disciplines)

based on the intended behaviour. Both a software engineering approach and a safety

engineering approach should be used at the requirements phase and all participants should

be involved in analysing potential hazards of the proposed system.

The underlying strategy of any hazard analysis technique is based on searching for

hazardous events, their causes and consequences. The efficiency of a search strategy depends

on how the search is initiated and on how the search mechanism constrains the search space.

When analysing programmable systems, the search involves both programmable events and

'real-world' events.

Page 63

Fig.41· Th bo •• e undab ry etween a generalised embedd environment ed system and its o . perat10nal

BOUNDARY

Page64

There are several approaches to identifying hazards, including:-

+ Starting with a top level hazard and working backwards through all world events,

and finally down to programmable events.

+ Starting with a programmable state and working forwards until top level hazards are

reached.

Neither of the above approaches is feasible because the search would become intractable,

therefore, HAZAPS uses a combination of both approaches, working backwards to the

embedded system boundary to identify safety concerns, and working forward from the

programmable events to the system boundary. Further division of the searches related to

programmable events depends on how the intended behaviour of the proposed system is

specified. Whatever combination of search strategies is used for hazard analysis, it is

essential that the causes can be traced backwards into the programmable system and that

consequences can be traced forward from the programmable system into the environment.

It is important to carry out hazard analysis as early as possible in the requirements phase as

it targets where future safety efforts should be focused and it is also easier to incorporate

design changes at this stage. The act of carrying out hazard analysis in itself is useful

because it gives a different perspective on the system design. The effectiveness of a

technique depends on the availability of domain expertise. No technique can guarantee

completeness.

4.1 Safety requirements

Once hazards have been identified, it is necessary to construct safety requirements and

incorporate them into the system design in order to eliminate or reduce the risk of these

hazards. Safety can be viewed as constraints imposed on the functional requirements of the

system. Laprie [1993] considers safety (and security) in terms of what should not happen

Page 65

as well as what should happen, this in turn leads to additional functions that the system

should fulfil in order to reduce the likelihood of what should not happen. However,

determining these 'additional functions' can be difficult, especially if the potential hazards

are expressed in a very general way (e.g. \he solvent used in the coating process is

flammable). Another problem is that the 'additional functions' can conflict with other

functions. For example, a safety function may be in conflict with a reliability function or a

cost function. A method is therefore required to refine the 'additional functions' and resolve

conflicts with other functions.

Whatever method is used, the potential hazards must be eliminated or reduced in risk by

constructing implementable safety requirements and these should be as specific and

unambiguous as possible for the design stage. The objectives of any method must be:-

+ to trace the potential hazards back through to the environment system interface;

+ to determine the software safety requirements;

+ to construct strategies which can be used to implement these requirements.

McDermid [1994] suggests the general approach of a 'goal strategy' for safety cases where

a 'goal' is an objective to be achieved and each 'goal' can be represented in a hierarchical

tree structure. Each goal has an associated context, strategy and solution. De Lemos et al.

[1995] analysed the safety requirements of a process control system. The system was

partitioned into environment, plant, plant interface, and control system. Safety strategies for

the plant were produced for each of the identified potential hazards (a safety strategy was

defined as a scheme to maintain a safety constraint - more specifically, ... a set of conditions

imposed on controllable factors over the physical process). The safety strategies were firstly

refined in terms of the plant interface and, secondly in terms of the control system. A safety

requirements analysis was then produced and this provided the basis for developing the

software. Both of the above approaches use a system model for safety analysis. This system

model is based on either a goal strategy or the partitioning of the system into entities. In the

next section the HAZAPS system model is discussed.

Page 66

4.2 HAZAPS system model

The objective of HAZAPS is to assist the developer (at the requirements stage of the

software life cycle) to determine potential hazards and assess these hazards. The HAZAPS

system model is shown in Fig. 4.2. The methodology can be described as a top-down

strategy using multiple levels of abstraction. The four levels of the model are:-

Level!:

Level2:

Level3:

Level4:

partitioning of the system into safety-critical subsystems.

assigning safety requirements to the subsystem.

implementing the requirements by expressing requirements in the

form of generic tasks.

assessing the system by analysing tasks, using predefined criteria.

4.2.1 Derivation of the system model

The derivation of the system model is based on the abstraction and refinement of Level 3

above. This level is based on generic tasks. When analysing incidents (Chapter 3), generic

events were used to determine what happened after the system was built. When developing

a new system the term 'generic task' is used to express the desired operational behaviour.

The modelling techniques and associated assessment framework (described in Chapter 3)

developed for generic events is applicable to generic tasks and forms the basis of Levels 3

and 4. Levels 3 and 4 are based on generic knowledge and hence are application

independent. The generic knowledge is related only to the embedded system and not to its

target environment. Levels 1 and 2 were introduced as a means of using this generic

knowledge when developing a safety-critical system for a specific application. A safety

requirement is viewed as a set of instantiated generic tasks and the safety requirements in

turn are mapped to a subsystem. In essence, the system model as a whole, allows us to

Page 67

Method
Level

Software Safety
System

- partition Functional
Preliminary

...1 Hazard
w into & Analysis
> ~ !t Object Oriented (PHA) w
...1

Subsystems

Subsystem

N

!
Fault Tree

..1 assigned Analysis w
> (FTA)
w
..1

Requirements

Requirement

M
Operational paradigm

...1 Task
w achieved by

&
Analysis Event Time Diagram >

' it
(TA)

UJ (ETD)
..J

Tasks

Task

'<r
assessed by ES-HAZOP

Scenario ...1 & I.!J Analysis
> V

ES-FMEA
w .

...1

Properties

Fig. 4.2: HAZAPS system model and its relationship to safety and software methods

Page 68

assess the safety of the total system by analysing the behaviour of instantiated generic tasks.

Ideally identified generic safety requirements should be reused, however, because safety

requirements are so closely interleaved with the system and the environment, this is not

possible. So instead, generic tasks are used which can be related to the components of

embedded systems in any application.

4.2.2 Application of the system model

The HAZAPS methodology consists of four stages each of which maps to one of the four

levels above. It is an iterative and incremental process, in that, development at any

subsequent stage may result in changes in previous stages. A number of software modelling

and safety engineering methods are used as shown in Fig. 4.2. A case study (described in

Chapter 6), based on a rotary screen line printing machine is used to illustrate how the

different software and safety methods are integrated in the HAZAPS methodology. In the

following sections, the various stages of the HAZAPS methodology are described.

4.3 Stage 1: Identifying safety-critical subsystems

The objective of the first stage is to subdivide the system and to identify the subsystems

which are safety-critical. Requirement specifications together with available design

schematics are used. Partitioning a system into subsystems is always a difficult problem.

It is assumed that some partitioning of a system will already have been carried out before

the HAZAPS methodology is applied. Domain analysis is used to assist in identifying and

understanding subsystems. Neighbors [1984] defines domain analysis as:-

.... an attempt to identify the objects, operations and relationships between what

domain experts perceive to be important about the domain.

This very useful definition indicates the underlying concepts of domain analysis, namely:-

+ an identification technique- in HAZAPS, two identification techniques are used for

domain analysis, Preliminary Hazard Analysis (PHA) and coarse grain Object

Oriented Analysis (OOA);

Page 69

+ domain expertise - experts must be used when building safety-critical systems and

it must be possible for them to communicate this knowledge to partners in the

system development;

+ focusing on a particular aspect - the term 'important' can be replaced by 'safety

critical' where the emphasis is on those properties of the system and environment

related to safety.

Domain analysis has the following benefits:-

+ it helps to obtain a better understanding of the system and to identify safety

concerns;

+ it provides a focus for the rest of the safety analysis;

+ safety-critical concerns identified in a specific application domain can be reused.

4.3.1 Preliminary Hazard Analysis (PHA)

The purpose of PHA is to identify safety-critical concerns and provide an initial assessment

of the hazards. Ad hoc methods have been proposed by Kirwan [1994], namely:-

+ By determining the various hazards associated with the intended system~ materials

inventory (e.g. dangerous chemicals, radioactive substances, etc.).

+ By reviewing previous incident/accident experience to see what types of

incidental/accidental events have occurred.

+ By using the judgement of an experienced assessor.

+ By reviewing hazards identified in other similar plant.

More structured methods for PHA include:-

+ Different types of Checklists can be used. A general Checklist is given by Hammer

[1980] which contains classes of hazards (e.g. mechanical, explosive) which are

Page 70

further subdivided into more specific hazards (e.g. rotating equipment, explosive

gas). AIChemE [1985] describes a number of checklists for use in the chemical

industry.

+ Creative Checklist HAZOP (a variant of classical HAZOP) was developed to address

two needs. Firstly, the need for a study that can be carried out earlier in the design,

when only a limited amount of information is available and, secondly, the need for

a study that can examine adverse interactions between units of the plant, and

between the units of the plant and the environment [AIChemE, 1985]. The

difference between Creative Checklist HAZOP and classical HAZOP is that, in

Creative Checklist HAZOP, (i) the accompanying model used for analysis is in

block format (e.g. a process to be carried out) rather than an engineering line

diagram or a piping and instrumentation diagram, and (ii) a checklist (e.g. fire,

toxicity, radioactivity) is used.

There are other hazard identification techniques, however, the emphasis here is on

preliminary analysis, in other words, a first cut at the problem.

4.3.2 Object Oriented Analysis (OOA)

The purpose of this 'coarse' OOA is to identify classes of objects which are related to

hazards and hence group them into one or more classes to form a subsystem. Ideally, when

identifying subsystems, the objectives are loose coupling between subsystems and strong

coupling within subsystems. This emphasis on coupling is similar to that described by

Myers [1975] for software modules.

There are several approaches to Object Oriented analysis, however, the emphasis is

generally on the analysis of the object model rather than on identifying the objects in the

first place. Booch [1991] mentions briefly a number of approaches to identifying classes and

objects. Possible sources of object classes include tangible things, roles, events, interactions,

structure, devices, locations. Rumbaugh et al. [1991] suggest using the requirement

Page 71

statement from which nouns are abstracted to form tentative classes and subsequently using

a refinement procedure to eliminate spurious classes.

4.3.3 Procedure for identifying safety-critical subsystems

1. Draw top level block diagram showing main processes and avoiding too much detail.

Briefly describe the processes.

2. Identify top level hazards using prior histories, domain expertise, checklists,

regulations, standards, text books. Determine chemical, physical, biological and

ergonomic hazards. If necessary, the identified safety processes can then be

modelled using Data Flow Diagrams (DFDs) which have been used by others

[Edwards, 1993] to model material and energy flows.

3. Coarse OOA is used to refine and abstract information from processes to identify

subsystems. Candidate objects are based on devices, materials, events. Scanning the

requirement specifications and design schematics and highlighting entities is useful.

In summary, PHA allows us to investigate the safety-related behaviour and OOA allows us

to associate entities with this behaviour. Combining both techniques provides a clear

definition of subsystems, their boundaries and associated hazards. The results may identify

particularly dangerous subsystems and result in their elimination/substitution or in changes

to the proposed design requirements. In the next section the construction of safety

requirements for the identified safety-critical subsystems is described.

4.4 Stage 2 : Constructing safety requirements

The purpose of this stage is to construct safety requirements for the subsystem based on the

associated hazards. Each of the hazards is investigated using a fault tree (an example fault

tree is shown in Fig. 4.3) which is used to determine the combination of failures and

conditions that could cause the particular hazard to occur. The importance of Fault Tree

Analysis (FTA) as a method of safety analysis is illustrated by its extensive use in many

industries (chemical, military, avionics, nuclear).

Page 72

4.4.1 Fault tree construction

Many workers have described the underlying logic of fault trees and how they can be

analysed, however, few have described the expertise required to construct fault trees.

Fussell et al. (1974] give the following reasons why it is extremely difficult to generate high

quality fault trees:-

Explosion due to solvent-laden vapour

QGI

I El r---- ------. r-----
I I I

Concentration of solvent vapour I
: Line running : I Burner

greater than lower explosive limit
I

I I I

~----------1 I ..._ ______

.·.~G2
I I

Too much Not enough solvent vapour
solvent added extracted during process

El E4 I
QG3

ES
r----- -----,

Pump overfills Cabinet not
I I
1 Solvent vapour not :

print head purged initially : being extracted :
~----------1

E2
I
I

on 1
I
I ____ I

Fig: 4.3: Fault tree showing possible causes of an explosion due to solvent-laden vapour
in a print station. El and E2 are not faults but indicate the state of the subsystem at a

given time.

1 The exercise requires a group of analysts who can generate and analyse fault trees.

2 This group of analysts must

(a) be intimately familiar with the system being analysed (involving long

Page 73

sessions with designers and operators of the system in order to understand

the functionality of the system);

(b) understand the basic physics, chemistry and economics which describe the

system performance;

(c) have sufficient time to analyse the system.

Assuming that the above requirements are fulfilled, the resultant fault tree can provide an

excellent logical model of the mechanisms by which a system might fail.

4.4.2 Fault tree analysis

The 'cut set' algorithm is used to identify safety requirements [Fussell & Vesely, 1972]. A

'cut set' is ... a set of basic events whose occurrence causes the top event to occur. The basis

of the algorithm is a matrix which is used to re-express gates and events in terms of sets of

events. The algorithm starts by the selection of the gate at the top of the tree. OR gates result

in an increased number of rows and AND gates result in an increased number of elements

per row. The algorithm terminates when all gates have been expanded. An illustration of

the algorithm is given using Fig. 4.3 where gates are prefixed by G and basic events are

prefixed by E.

Starting at G 1 *
El E2 G2

Expanding G2 *
El E2 E3
El E2 G3

Expanding G3 *
El E2 E3
El E2 E4
El E2 E5

Both El and E2 occur in all cut sets, therefore, in order to eliminate hazards, either El or E2

may be prevented. However, in this case both El and E2 are normal operating events

Page 74

therefore E3, E4 and E5 must be negated so predicate statements based on this fault tree may

be expressed as

El AND E2 AND (NOT) E3 0 (1)
El AND E2 AND (NOT) E4 00 (2)
El AND E2 AND (NOT) E5 0 (3)

4.4.3 Procedure for constructing safety requirements

1. Select one of the subsystems identified using domain analysis in the previous stage

ofHAZAPS.

2. Choose a top event for the fault tree.

3. Identify possible causes in general terms (i.e. independent of system component

characteristics).

4. Identify functional failures specific to the plant.

5. Continue to identify sublevels of functional failures until resultant causes can be

related to the embedded system interface.

6. Use the cutset algorithm to identify safety requirements.

Stage 2 in Fig. 4.4 shows one of the safety requirements based on predicate statement (3).

The more thorough the domain analysis, the easier it is to carry out this procedure.

Requirement documents and design schematics can also be used as a source of information.

The objective of the fault tree is not to determine all possible causes but just top level

hazards so that they can be investigated in terms of intended behaviour of the system. It can

be viewed as full breadth' search and a 'depth' search which stops when causes are identified

that can be investigated in terms of the interface between environment and the system.

There may be conflict between existing functional requirements and the newly created safety

requirements as a consequence of which the original requirements may have to be changed.

The results from this stage include a set of safety requirements which must be modelled and

assessed. This is discussed in the following sections.

Page 75

Stage/
Subsystem

Stage}
Safety

Requirement

Stage]

Operational
Tasks

Stage4

Assessment
(partial
sample)

Fig. 4.4: SAMPLE OUTPUT FOR HAZAPS

Print Station
• Hazard - Explosion
• Component- Solvent

If no solvent vapour is being exhausted from the drying cabinet while the line is running and the burner is
switched on, the machine must be shut down and placed in a safe state.
This requirement is represented by the dashed boxes in the Fault Tree (Fig. 4.3).

• Flow sensor indicates no exhaust flow
• Line sensor detects line is running
• Burners are switched off
• Nips are forced to open
• Line is kept running
• Alarm is activated
• Warning is shown on Display (The ETD is shown in Fig. 4.S)

Specification
Options:

Q: What other war could this task he accomplished!
R: A sensor which directly measures solvent concentration or one which measures airflow

Timing/Control:
Q: How often does this state hare to be sGJnned!
R: Scan time should be less than a second.

Implementation
Maintenance:

Q: What maintenance procedures are required for this task!
R: The condition and operation of the sensor is checked manually on a regular basis because of its
importance and the corrosive environment in which it is placed.

Protection
Failure Detection:

Q: What alarms are associated with this task!
R: A siren and alarm message on a display

Fault_Recovery:
Q: What fault recorerr procedures are associated with this task!
R: Manually test operation of exhaust fan and sensor, purge dryer and measure concentration of solvent
in dryer.

Failure_ Modes
Incorrectly_ Terminated:

Q: What 1/ task is incorrectfr terminated!
R: If operator presses emergency stop, this would leave coated material in dryer which may ignite. To
prevent this, the siren should be unique to this task, indicating that no operator intervention is
required.

Too Slow:
Q: What if signal is too slow
R: If the response of the sensor was too slow, this would cause a build up of solvent vapour in dryer and
possible subsequent explosion.

Page 76

4.5 Stage 3: Transforming safety requirements into

operational tasks

The objective of this stage is to transform safety requirements into operational tasks. The

basic challenge underlying the development of all software systems is to transform models

from requirements to source code. The transformations can be classed as operational or

transformational paradigms. From the Requirements Engineering viewpoint, the major

difference between the paradigms is the output from the requirements analysis phase; in the

case of the operational paradigm [Zave, 1984], the output is an operational specification

rather than a requirements specification. The advantages of using an operational

specification for embedded software systems are that it can be used:-

+ to examine how the system is supposed to behave at the embedded system boundary;

+ to determine constraints on functional behaviour;

+ as the basis of a prototype which allows different disciplines to analyse the system from

their own perspective;

+ to formulate test plans.

As with all requirements engineering techniques, the difficulty in using the operational

paradigm is in capturing the requirements in the first place. In contrast, with HAZAPS the

safety requirements are already expressed in a logical format from analysis of the fault tree

(i.e. output from stage 2 of HAZAPS). Consequently, HAZAPS safety requirements are a

useful input for an operational specification. These safety requirements must be

decomposed into operational tasks and modelled.

4.5.1 Transforming safety requirements

The safety requirements have to be transformed into operational tasks. Two techniques are

used: a technique based on the principles of Task Analysis and requirements parsing.

Page 77

4.5.1.1 Task analysis

Task Analysis was originally used to identify how people could be trained to perform

particular tasks. Task Analysis has been applied to systems after they have been built; to

evaluate proposed designs; and, to capture requirements for new systems. Recently, it has

been used in what appear to be vastly different areas:-

+ the activity of a processor in the development of real time embedded systems [Ward &

Melior, 1985], the focus being on determining data and timing constraints;

+ the interaction of the human with the system [Johnson, 1992], the focus being on

explicitly investigating the activities and cognitive process of the operator(s).

In HAZAPS both processor activity (i.e. in general terms what the computer must do) and

human-computer interaction play a vital part in task synthesis (see Section 3.3.1 for the

reasons why it is important to include the human aspect in safety analysis).

Useful prompts for synthesizing tasks have been described by Kirwan & Ainsworth [1992],

these are shown in Table 4.1. Once application-specific tasks have been identified, they can

be further transformed into sets of generic tasks (processor, communications, sensor, human

input device, display, actuator, operator). The origin of these generic tasks is described in

Section 3.3 .1.

4.5.1.2 Requirements parsing

The requirements parsing technique involves examining each requirement to ensure that it

is ... defined unambiguously by a complete set of attributes (e.g. initiation of an action,

source of an action, the action, the object of the action, constraints) [Peng & Wallace,

1993]. Requirements parsing is generally used as an error detection mechanism in the

requirements phase of the life cycle, however, it is useful in HAZAPS as it assists in

transforming tasks from the safety requirements derived using fault tree logic.

Page 78

Table 4.1: A taxonomy of descriptive decomposition categories which have been used in

various studies [from Kirwan& Ainsworth, 1992]

Description of task

Description

Type of activity/behaviour

Task/action verb

Function/purpose

Sequence of activity

Requirements for undertaking task

Initiating cue/event

Information

Skills/training required

Personnel requirements/manning

Hardware features

Location

Controls used

Displays used

Critical values

Job aids required

Nature of the task

Actions required

Decisions required

Responses required

Complexity/task complexity

Task difficulty

Task criticality

Amount of attention required

Performance of the task .

Performance

Time taken/starting time

Required speed

Required accuracy

Criterion of response adequacy

Other activities

Subtasks

Communications

Co-ordination requirements

Concurrent tasks

Outputs from the task

Output

Feedback

Consequences/problems

Likely/typical errors

Errors made/problems

Error consequences

Adverse conditions/hazards

Page 79

4.5.2 Modelling safety requirements

Once safety requirements have been expressed in terms of operational tasks, it is necessary

to model these tasks. Most methodologies for developing software systems depend on

modelling techniques. These modelling techniques can be classified as 'structured',

'functional' or 'behavioural' as shown in Table 4.2.

Table 4.2: Classification of modelling techniques

Structured Functional Behavioural

Rumbaugh et al. [1991] Object Function Dynamic

Ward & Melior [1985] Data Process Dynamic

Davis [1993] Object Function States

Ideally all three modelling techniques are used and integrated. Although the ETD technique

(derivation described in Section 33.2) may appear at first glance to model the behavioural

view only (i.e. it is a representation of operational tasks: an example is shown in Fig. 4.5),

it is founded on information based on both a structured and a functional view. In Stage 1

in HAZAPS, both a functional (in terms of processes) and a structured (00 analysis) view

is used. In Stage 2, the method of applying PTA could be viewed as functional

decomposition, the major difference being that in PTA the emphasis is on finding failure

'paths' rather than success 'paths'. The notation of the ETD does integrate these different

viewpoints:-

+ nodes are based on objects;

+ the radial dimension reflecting the functional view;

+ the angular dimension is related to dynamics.

Page 80

Fig. 45: An Event Time Diagram (ETD) for a safety
requirement

There is an apparent limitation with the ETD in that the maximum number of tasks that can

be drawn on the ETD is eight. However, a major objective of the ETD is to permit analysis

of ALL the tasks associated with a specified safety requirement. Even eight tasks can be

difficult to interrelate at any one time. Experimental psychologists have suggested that the

maximum number of tasks an individual can cope with is 'around seven' [Miller, 1956]. In

SADT (see Section 2.2.2.2), a well-established methodology, the maximum number of

activities that can be analysed at any one time is six.

4.5.3 Procedure for transforming and modelling safety requirements

1. Select one of the safety requirements identified in Stage 2.

2. Formulate a description of the safety requirement using prompt list shown in Table 4.1,

and requirements parsing. The objective is to express safety requirements in terms of

actions, timings, post and pre-conditions, devices and attributes.

Page 81

3. Extract list of generic tasks (processor, communications, sensor, human input device,

display, actuator, operator) from description of safety requirement.

4. Model on ETD. This may result in reordering of task list or introduction of new tasks.

Application of this procedure may result in the creation of new safety requirements. In

summary, a safety requirement is modelled using the ETD (example shown in Fig. 45) by

transforming the requirement into a set of generic tasks (see Fig 4.4), i.e. a set of events

required to fulfil a safety requirement is a set of instantiated generic tasks.

4.6 Stage 4: Assessing safety requirements

Having identified and modelled safety requirements, the final step is to assess these

requirements. The evaluation is driven by scenario analysis using ES-HAZOP and ES

FMEA.

4.6.1 Scenario analysis

The importance of scenario analysis has been highlighted in a number of different areas:

human dependability [Atkins, 1990], task analysis [Kirwan & Ainsworth, 1992] and

software requirement inspections [Porter et al., 1995]. Scenario analysis has been

incorporated in OOA by Jacobson et aL [1993] in their methodology, Object Oriented

Software Engineering (OOSE). The term Use Case is used in OOSE, a scenario can be

described as an instance of a Use Case. Scenario analysis is becoming accepted as a vital

part of 'front end' OOA as shown by the introduction of Use Cases into the new unified

methodology of Rumbaugh and Booch [Rumbaugh, 1996]. Gough et aL [1995] give a clear

description of the benefits of using scenario analysis during requirement engineering when

they state:-

/t is not only the requirements engineer, but also the stakeholder, who benefit from

scenarios, with an improvement in the communication of ideas, especially in the process

of elicitation and validation of requirements.

Page 82

Scenario analysis is clearly a useful technique but there are problems in applying it. They

are as follows:-

-+- obtaining in-depth domain knowledge;

-+- selecting the right level of abstraction;

-+- identifying underlying concepts;

-+- generating meaningful scenarios;

-+- representing the scenarios;

-+- providing an efficient method of analysing scenarios.

These difficulties are particularly pertinent to embedded safety-critical systems because of:

• the number of different disciplines involved in the development of a system;

-+- the distributed nature of embedded systems;

-+- the vast number of possible scenarios;

-+- the problem of systematically evaluating each of the scenarios.

4.6.2 Using ES-HAZOP and ES-FMEA to assess safety requirements

Having carried out Stages 1, 2 and 3 of the HAZAPS methodology, subsystems and

associated safety concerns have been clearly identified. The safety concerns have been

expressed as safety requirements. The safety requirements have subsequently been translated

into sets of generic tasks (consisting of a single object and action) which are modelled using

the ETD. The ETD is an ideal basis for scenario analysis, where a scenario is based on

predicted behaviour of an individual task or the interaction between one or more tasks. It

provides a common frame of reference for all disciplines and focuses on the operational

behaviour at the embedded system boundary. It overcomes both general and specific

difficulties of scenario analysis described above with one exception the ETD does not on its

own provide a systematic method of evaluating scenarios. However, the ETD technique can

be combined with ES-HAZOP and ES-FMEA to overcome this difficulty. ES-HAZOP is

Page 83

based on the causal superclasses Specification, Implementation and Protection. Each

superclass has subclasses, and each subclass has one or more associated questions dependent

on task type. ES-FMEA is based on one causal superclass, Failure_Modes. Failure_Modes

has subclasses based on general failure modes derived from incidents. The derivation of ES

HAZOP and ES-FMEA is described in Chapter 3.

Scenarios are, by definition, context-dependent which makes them difficult to evaluate in

a generalised fashion. ES-HAZOP and ES-FMEA are context-independent but can be used

to evaluate application-specific scenarios which are fonnulated in tenns of generic tasks.

The questions associated with the ES-HAZOP and ES-FMEA procedures can be applied to

different scenarios. The questions:-

+ are dependent on the type of generic task (processor, communications, sensor, human

input device, display, actuator, operator);

+ assist in identifying causal chains in behaviour which otherwise would be extremely

difficult to identify and analyse;

+ encourage the developers to probe deeply into the proposed design;

+ are classified into causal classes;

+ are arranged in a filter-like fashion (i.e. questions get more specific as the analysis

progresses);

+ are based on 'real' incident data.

(A complete list of questions is given in Appendix 1).

4.6.3 Procedure for assessing safety requirements

1. Select safety requirement and associated ETD for evaluation.

2. Identify critical tasks using ETD. It is useful to focus on significant parameters or

control of same, e.g. initiating conditions.

Page 84

3. Apply ES-HAZOP by applying in sequence each of the associated questions (based on

task type). Check if subclass prompts to any other questions that might be relevant.

Record responses and required actions. Typical actions described include test cases,

modifications to requirements, new requirements, requests for further information.

4. Apply ES-FMEA. Follow procedure as for ES-HAZOP. ES-FMEA provides a cross

check of ES-HAZOP and also allows more focused evaluation of the causes and

consequences of critical tasks.

A partial assessment is shown in Fig. 4.4.

4.7 Conclusions

At the end of applying the methodology, the safety-critical subsystems have been identified

with their associated safety requirements, hazards, components, operational tasks, ETDs and

recommendations. Use is made of the requirements specifications at all stages of the process,

this in itself provides a way of checking the functional requirements related to the safety

critical subsystems. It helps to identify any inconsistencies, incompleteness or ambiguities.

Fig. 4.6 shows an overall view of the process.

HAZAPS is based on identifying, specifying and assessing safety requirements. It differs

from a design or test methodology in that the emphasis is on what should NOT happen

rather that what should happen. Top level hazards are analysed in terms of low level tasks

of the embedded system. The major challenge in assessing safety in embedded systems is

relating real world events that are hazardous to programmable events. The HAZAPS

approach is to integrate a number of models, techniques and associated procedures. New

models (System and ETD) and new techniques (ES-HAZOP and ES-FMEA) are introduced.

Existing techniques (domain, fault tree, task and scenario analyses) have been tailored

specifically for assessing safety in embedded systems. Overall the objective was to develop

a holistic approach which:-

Page 85

+ captured in a systematic way the different types of knowledge required;

+ focused on the interface boundary of the embedded system where major problems are

known to occur;

+ bridged the gap between the perspectives of different disciplines;

+ unified different software and safety methods so that the results can be fed smoothly

from one method to the other.

I INPUTS I I OUTPUTS I
+ Requirements specification Stage/ ·· +Hazards
+ Generic hazards IDENTIFY SAFETY- •.•. + Safety·critical subsystems
+Design schematics CRITICAL SUBSYSTEMS ••.

+ Safety-critical subsystems Stagel ·. + Fault trees
+Hazards CONSTRUCT SAFETY +Safety requirements
+ Requirements specification REQUIREMENTS +Updated original requirements
+ Design schematics .

+ Safety-critical subsystems Stage] + Operational tasks +Safety requirements
+ Requirements specification TRANSFORM AND MODEL + ETDs
+ Design schematics SAFETY REQUIREMENTS

+ Safety-critical subsystems
+ Requests for further information + Safety requirements Stage4

+ Requirements specification ASSESS SAFETY +Updated original requirements
+ Operational tasks REQUIREMENTS

+New requirements
+ ETDs +Test plans
+Questions . •

Fig. 4.6: Overview of the HAZAPS process

Page 86

CHAPTERS:

HAZAPSTOOL

In this chapter the HAZAPS tool is described. It supports some of the key processes

involved in the HAZAPS methodology, namely, constructing, modelling and assessing

safety requirements. The requirements of the tool are to:

Assist in identifying safety requirements by providing facilities to view hazards lists,

design schematics, fault trees, system and/or software requirements.

+ Allow browsing and editing of safety requirements so that task synthesis can be

carried out, the objective being to identify the generic tasks required to fulfil these

requirements.

+ Automatically generate Event Time Diagrams (ETDs) based on identified tasks and

provide facilities for subsequent labelling of the ETDs.

+ Assist in the assessment of safety-critical tasks by displaying relevant questions for

a selected task and allowing responses and required actions associated with a

particular task to be stored.

+ Provide comprehensive and flexible report generation allowing selection of one or

more requirements and display any combination of associated tasks, ETDs, required

actions, etc. Reports can be output to display or printer (Postscript file or ASCII

text).

+ Provide facilities for the system administrator to edit/update the question library and

associated information.

Page 87

Fig. 5.1 shows a conceptual view of the HAZAPS tool. The Knowledge Base contains both

generic knowledge (keywords/questions library, incident information and hazards) and

Knowledge Base
OGeneric
0 ication S

HAZAPS
Kernel

User

Fig. 5.1: Conceptual view of the HAZAPS tool

application specific knowledge (information specifically related to the ongoing project). The

text editors (Requirements, Tasks and Questions) are provided for editing both the generic

and the application specific knowledge. Graphics editors are used to model safety

requirements via the ETD representation and to view design schematics and fault trees. The

report does not exist as an independent entity but is compiled by the Report Generator each

time it is invoked from information stored in the Knowledge Base. The HAZAPS Kernel

controls the flow of information between the editors and the Knowledge Base.It converts

the information from each of the editors into the relevant format and transfers it to the

Knowledge Base. The creation and deletion of entities is controlled by the HAZAPS Kernel

via the text and graphics editors. The Kernel maintains the integrity of the Knowledge Base

by checking the operations made by the editors.

Page 88

implemented 1
using

T

n

annotate

Safety-critical
subs stem

Task

assessed 1
y

Tn

Question

Event Time
Diagram

1

n

+

compile

Fig. 5.2: External entities and class diagram for HAZAPS tool

Page89

5.1 Design

The strategy used in the development of the HAZAPS tool was based on identifying key

abstractions. There are two general types of abstraction (see Fig. 5.2).

1. External file entities, including graphics files (e.g. fault trees and process,

mechanical and electrical diagrams); system requirements (e.g. customer

requirements, guidelines and standards); hazard lists (e.g. sector, industrial or

application-specific lists); and the help file which provides assistance on how to use

the tool.

2. Object classes (in doubled bordered box in Fig. 5 .2). The notation used follows the

new 'Unified Method' of Rumbaugh [1996]. An instance of a safety-critical

subsystem is referred to as a 'project'; each project has a number of associated

requirements and ETDs; each requirement has an associated ETD and is

implemented using a number of tasks; each task is assessed using a number of

questions.

The QUESTION class shown in Fig.5.2 is a superclass; its subclasses are shown in Fig. 53.

Questions associated with generic tasks are instances of the root classes shown in Fig 53.

This generalisation of classes allows a user, with no programming experience, to add new

questions associated with a question and a generic task. When the system is initialised, a

project is selected. Instances of other classes may be created at run-time. At startup,

instances of the QUESTION class always exist, however, instances of other classes (i.e.

REQUIREMENT, ETD and TASK) do not exist unless they were already created in a

previous project and that project is reloaded. Other classes used within the HAZAPS tool

(e.g. frames, text boxes etc.) are defined within the development environment. Facilities are

provided to read from or write to the slots of these predefined classes and to use their

associated methods.

Page90

Fig. 5.3: The subclasses of the QUESTION class. * = for simplicity, root classes
not displayed

The associations between classes REQUIREMENT, ETD, TASK and QUESTION are

implemented using simple naming conventions and pointers.

+ The link between a requirement instance and an ETD instance is based on the

identifying number of the requirement and ETD e.g. Requirement No .X is associated

with ETD No .X.

+ The association between a requirement instance and task instances is established by

mapping every instance of a requirement to a task class, consequently, all instances

of a TASK class are associated with a particular requirement instance.

+ The link between a task instance and question instances is implemented by using

slots within the task instance. These slots contain pointers to associated question

instances.

Page 91

The templates for each of the classes developed for the HAZAPS tool are shown in Fig. 5.4.

The notation used follows the new 'Unified Method' of Rumbaugh [1996]. The template

consists of three compartments: (1) name of class, (2) slots, and (3) operations.

REQUIREMENT TASK ETD

description description node label

CreateRequirement type arrow _label

Delete Requirement specification_ questions node_coords

DisplayReqDescription implementation_ questions line_ coords

UpdateReqDescription protection_ questions arrow_ coords

specification_ responses flow_ direction

implementation _responses CreateETD

QUESTION protection _responses DrawETD

question_ description specification_actions Display Labels

question_info implementation_ actions RespondDeleteReq

CreateQuestion protection_ actions RespondEditTask

DeleteQuestion Create Task RespondUpdateType

DisplayQuestionDes DeleteTask

DisplayQuestionlnfo DisplayTaskDescription

UpdateQuestionDes DisplayTaskType

UpdateQuestionlnfo Display AssocQuestions

Display AssocResponses

DisplayAssocActions

UpdateTaskDescription KEY

UpdateTaskType Name of Class

UpdateAssocQuestions Slots

UpdateAssocResponses

UpdateAssocActions Operations

RespondDeleteReq

Fig. 5.4: Templates for each of the classes developed for the HAZAPS tool

Page 92

5.1.1 Slots

Each class contains slot(s) for free text. The slot for instances of the REQUIREMENT and

TASK classes contains a description of the requirement or task. The ETD class has slots

node _label and arrow _label containing strings that correspond to task instances. Each

instance of a QUESTION class has slots question_description (containing the question

itself) and question_info (containing information associated with the question).

The type slot of the TASK class can have one of seven values (Human, Display, Sensor,

Actuator, IDD, Communication, Processor). This determines how the task will be modelled

and assessed. Following the type slot, there are nine slots relating a task instance to question

instances. The first three of these nine slots contain lists of pointers to groups of question

instances. The next three slots are for responses to questions, and the final three slots are for

actions associated with the relevant questions.

The ETD template has slots, node _coords, line _coords and arrow_ coords, containing Real

numbers which are used to draw the ETD automatically. The flow _direction slot can only

have a value of 1 (indicating flow to the processor) or 0 (indicating flow from the processor).

5 .1.2 Operations

Common operations for all classes include Create, Delete, Display and Update. The Create

and Delete operations refer to the creation and deletion of instances, the Display and Update

operations refer to reading from, or writing to, slots.

The operations UpdateAssocQuestions, UpdateAssocResponses, and UpdateAssocActions

of the TASK class depend on the value of the type slot and on the group (i.e. specification,

implementation or protection) selected by the user. If a requirement is deleted, all its

associated tasks must also be deleted. This is handled by the operation RespondDeleteReq.

Page 93

The operations DrawETD and Display Labels of the ETD class are used for displaying an

ETD on the screen. The process is as follows:-

+ drawing the node is dependent on the task-identifying number and the task-type

(using the type slot from the task instance);

+ drawing a line from the node;

+ drawing an arrow on the line dependent on flow direction;

+ labelling the node;

+ labelling the arrow.

The last three operations in the ETD template are used to respond to situations where a

requirement is deleted, a task is deleted/inserted or a task type is changed. These operations

maintain consistency of the ETD model for both the requirement instance and the task

instances. For example, if task No X is deleted, all other tasks shown on the ETD whose task

identifying number is greater than X must be moved back 40°.

5.2 Implementation

The tool was developed for a Windows environment using an expert system shell, CLIPS

[NASA, 1994] and a graphical user interface, wxCLIPS [Smart, 1996]. CLIPS provides

procedural and object oriented facilities and wxCLIPS supports the creation of window

frames, menus, text boxes etc. All code written in CLIPS is supported by wxCLIPS. Other

software used includes HlpMATIC [Ghag, 1994] to generate Windows help files and AZ

Icon Edit [AZicon, 1994] to create Windows icons. The combination of packages provides

an excellent prototyping environment.

The approach used in developing the software was based on the levels of abstraction as

described by Dijkstra [1968] and expanded by Myers [1976]. The main benefits of layering

are clarity, and ease of maintenance, testing and consistency checking. For the HAZAPS tool

the idea of layering was combined with object oriented classes. The module is the basic

Page 94

mechanism for organising the software in the HAZAPS tool. The modules are divided into

two types- 'declarative' and 'procedural'. The declarative module is used to declare classes

and contains no procedural statements. The procedural modules contain no class structure

but control the execution of the program. Fig. 55 is a module-dependency' diagram for the

HAZAPS tool. The boxes represent modules (boxes representing procedural modules have

an upper compartment giving the name of the module and a lower compartment showing

how the module can interact with the different classes). The diagram shows the different

levels:

Level!

Level2

Level3

(Base Level) contains the declarative modules associated with the classes

(Assignment Level) includes modules for the construction, modelling and

assessment of safety requirements. Level 2 has three Sub-levels:

+ SYSTEM (for capturing safety requirements) and LIBRARY (for

editing the question library) modules;

+ SYNTHESIZER module for synthesising generic tasks;

+ MODELLER module (for modelling and identifying safety critical

tasks) and ASSESSMENT module (for assessing the safety of these

tasks).

(Query Level) includes the REPORT module and the VIEWER module for

viewing designs and fault trees.

A module consists of

+ Declarations - all variables used in the module;

+ Functions - simple building blocks and operations e.g. deleting all instances of a

class;

+ Specification of frame and associated devices e.g. defining size of windows, where

text boxes, or menus are placed;

+ Procedures - all other components associated with the module e.g. responding to

events such as menu selection, combining functions and interface calls to other

modules.

Page 95

-1
q;
a::
::,
Q
Ill
0
0
a::
0..

UJ :::. -...
q;
a::
q;
-1
0
Ill
Q

.-.

...1
w REPORT VIEWER C')>

...1~ R : REQUIREMENT
w>- R:TASK No interaction >o::
~w R:ETD with classes

:::1 R: QUESTION a -
ASSESSMENT MODELLER

W/R:TASK C/W: ETD

R: QUESTION R:TASK
R : REQUIREMENT .-.

...1
w
> -------------------·-w
...1

NI- SYNTHESIZER
...lz

CID lW IR : REQUIREMENT Ww
>:::E CIDIWIR: TASK wz
...1(!) D: ETD

en en -------------------
c(- SYSTEM LIBRARY

C : REQUIREMENT bDIW /R : QUESTION

.-.
...1
w >

..JW
IREQUIREMENTIITASKII ETD 11 QUESTION I W...l

>w
wen
...le(

m -
MODULE NAME

Module interaction
with classes

C : create instance of class
D : delete instance of class
W: modify slot content of instance
R : read slot content of instance

Fig. 5.5: Module dependency diagram

Page 96

As the prototype was being developed the following useful guidelines evolved:-

+ Changes in higher level modules should not affect lower level modules;

+ Deletion of instances should be performed on one level/sub level only;

+ Creation of instances should be performed on one level/sublevel only (with one

exception - for practical reasons, creation of requirements instances is allowed both

in the SYSTEM and SYNTHESIZER modules);

+ Where possible, avoid the changing of slot values at more than one level/sublevel;

+ Place no restriction on reading information from slots from any level.

5.3 Operation

wxCLIPS [Smart, 1996] provides facilities to create frames, each with an optional menu bar.

Within a frame, one or more subwindows can be created. Subwindows can be panels, text

subwindows, or canvasses, where,

+ Panels contain such items as buttons, choice boxes, list boxes, text boxes;

+ Text subwindows are used for displaying and editing text files;

+ Canvasses are used for drawing graphics.

Seven frames (Figs. 5.6 to 5 .12) facilitate user interaction with the tool. Each frame maps

to one of the seven procedural modules shown in Fig. 5.5. Calling of the modules is

controlled by the user via these frames. The four main frames , their associated modules and

their mapping to the stages of the HAZAPS process, are shown in Table 5 .1. Frame names

were chosen to be meaningful to the user; module names were chosen to be consistent with

the overall design and development of the tool. The three ancillary frames do not map

specifically to any stage in the HAZAPS methodology (see Table 5.2). The Report Generator

and Graphics Viewer may be used at any stage in the process, and the Library Editor frame

is for use by the administrator for maintenance purposes only.

Page 97

Table 5.1: Mapping of modules and main frames to HAZAPS stages

Tool

Methodology

Stage 1 + 2: Identification of safety

critical subsystems and construction of

safety requirements

Stage 3: Transforming and modelling of

safety requirements

Stage 4: Assessment of safety

requirements

MODULE

SYSTEM

SYNTHESIZER

MODELLER

ASSESSMENT

Frame

System Level

Requirement level

ETD Editor

Task Level

Frame design provides a commonality of code for the designer and a clear and simple

presentation for the user. Most frame menu bars have common features

.!.evel Allows transfer between frames (e.g. move from Requirement Level to Task Level).

Iools Includes facilities to call a hazards list (in help file format) or Graphics Viewer.

Report Provides access to Report Generator. Available on all main frames.

Help Calls the help file. Available on all main frames.

Table 5.2: Ancillary frames and their associated modules

Frame

Graphics Viewer

Report Generator

Library Editor

Page 98

MODULE

VIEWER

REPORT

LIBRARY

5.3.1 System Level

The System Level Frame, used to identify safety requirements (see Fig. 5 .6),

consists of two text subwindows: an upper window for loading and displaying

the Source File (an ASCII text file), and, a lower window for entering safety

requirements. The procedure is as follows:

~
~
System

Level Icon

1. If starting a new project load the Source File (options include appending to an

existing Source File or clearing the Source File subwindow). If an assessment has

already been carried out then data can be reloaded, edited and saved and both the

Source File and the safety requirements displayed in their respective subwindows.

2. Capture and identify safety concerns by scrolling through the Source File.

Assistance is provided via the Tools menu in the form of a Hazards List and

Graphics Viewer (to view design schematics or fault trees).

SPECIFICATION FOR ROTARY PRINT MACHINE

The rotllry screen printing press consists of a number of print stations.
Each print station prints a different pattern. Paper passes to a print head
where Ills coated with plastlsol (a type of paste). ltthen passes through a
drying cabinet. before passing to the next print station. Three different

of computer system are used. One computer controls the running of the
head has a single board to control the

The requirement is to start/restart the machine safely. One hazard is thllt there
may be solvent vapour in the dryer at startup.

Requirement 2

The requirement is to pump the correct quantity of plastisol into the print head when
automatic mode Is chosen. A pump at ellch print station fills the print head at
intervals. the time between intervals is dependent on the required coat weight.
If the pump overfills the print helld. the solvent concentraion In the dryer may

Fig. 5.6 System Level Frame

Page 99

3. Candidate safety requirements are entered into the lower subwindow by typing or

pasting. The word 'Requirement' must be included as a header to each requirement.

4. Once all safety requirements have been identified, they can be edited and rearranged

in a logical order.

5. Store all Requirements (i.e. create instances of the REQUIREMENTS class) by

clicking on the File menu and selecting Process. Once Process has been selected,

Requirements can no longer be edited at this Level but should be edited individually

at the Requirement Level.

5.3.2 Requirement Level

The objective of this frame is to assist in synthesising generic tasks to fulfil the

safety requirements (see Fig. 5.7). There are three subwindows made up of two [~J
panels and one text subwindow. One panel displays the description of the Requirement

selected requirement, the other displays the description of the selected task Level lean

associated with the chosen requirement. The text subwindow shows a list of tasks associated

with the chosen requirement. The procedure is as follows.

1. Select requirement for which tasks need to be constructed. Options are provided to

a) insert a new requirement at the highlighted requirement position, b) append a new

requirement to the existing list, c) edit a requirement description, and d) delete a

requirement (i.e. delete a requirement instance).

2. Select task and enter description of task in lower left hand panel. Options are

available to insert, append, edit and delete a task. Other options include a) move

forward to next task, b) move backward to previous task, c) go to a particular task,

and d) view all tasks associated with the highlighted requirement.

Page 100

3. Store the task and its description (i.e. create task instance and fill its description slot)

by pressing the Save button. This pulls up a choice box with seven options (Human,

Display, Sensor, Actuator, IDD, Communication, Processor). Select an appropriate

type for the task.

The requirement Is to start/restart the machine safely.
One hazard Is that there may be solvent vapour In the

' dryer at startup.

Task List

Task-No. 1 Type: Display
Activate display

Task-No. 2 Type: Human
Press start button

Type: Sensor
Sense no emergency stops are pressed

Task-No. 4 Type: Sensor
Sense no web break sensors active

Task-No. 5 Type: Sensor
Sense air supply ok

Task-No. 6 Type: Actuator
Start exhaust fan to purge dryer

Task-No. 7
Start machine

Type: Actuator

Fig. 5.7 Requirement Level Frame

4. Repeat steps 2 and 3 until all tasks associated with the chosen requirement have been

determined.

5. Repeat steps 1 to 4 until all requirements have analysed.

Page 101

5.3.3 Event Time Diagram (ETD) Editor

The purpose of the ETD Editor is to model safety requirements (see Fig. 5 .8).1!

has three subwindows; a canvas for drawing the ETD, a dialog subwindow for

selection of requirement and labelling entities of associated tasks, and, a text ET~c~~ltor

subwindow at the bottom of the display for browsing the requirement and tasks

descriptions. The procedure is as follows:

1. Select Requirement from Choice Box. Requirement description and associated task

appear in text subwindow at the bottom of the display.

to start/restart the
solvent vapour in the dryer at startup.

Task-No. 1 Type: Display

~
' "" '· 1
7~
J I~

I I I
/ ; I

/)
/

ijMM@ifil /
/

@Miilllli
l"f'i!!!lb11,... ____ /

Is that there may

Fig. 5.8: ETD Frame (n.b. time increases anti-clockwise)

2. Select a specific task by clicking on the mouse-sensitive canvas at one of the vertices

of the ETD template (i.e. select a particular task to be modelled). This action pulls

up a dialog subwindow on the left of the canvas.

Page 102

3. Provide the requested information in the dialog subwindow. The text subwindow is

available to browse through relevant task information. When all information has

been entered, exit the dialog subwindow by clicking OK. Subsequently the task

vector, node, direction arrow and associated text are displayed on the ETD template.

4. Repeat Steps 2 & 3 until all tasks are displayed on the ETD template. To maintain

consistency between task generation and modelling, tasks cannot be deleted at this

level: this must be done at the Requirement level. Labelling and direction of flow

may be edited at this level, the display may be tidied up by using the Refresh facility

which is available via Display on the menu bar.

5. Repeat Steps 1 to 4 until all requirements have been modelled.

5.3.4 Task Level

At the Task Level safety critical tasks associated with requirements are assessed (see Fig.

5.9). It consists of three choice boxes and four text boxes. The choice boxes are

used for selection of Requirement, Task and Group. Two text boxes are used to

display information for the user, one displays the description of the selected task,
~
~

the other displays relevant questions associated with the task. Two other text Task Level
Icon

boxes are provided for the user to input information, one to respond to questions,

the other to enable the user to specify further actions (e.g. requests for further information

and requirement changes). The procedure is as follows.

1. Select a requirement. This action populates the task Choice Box with tasks

associated with the highlighted requirement.

2. Select a task. The task description is displayed in the top right text box and the

Group Choice Box is initialised.

Page 103

3. Select a group (i.e. Specification, Implementation or Protection). The question Text

Box at the top left hand side displays the number of relevant questions available and

the first question. Further information can be obtained about the relevant questions

by pressing the View button. This action invokes the Library Browser which

displays the list of questions under consideration and associated information.

4. Enter a response and actions in the two lower text boxes. Save responses and actions

by pressing the Next button which automatically displays the next question if one

exists.

5. Repeat steps 3 and 4 for each Group.

exhaust flow

Group

sensor Indicates no exhaust 11ow

is worth considering onstream solvent monitoring rather
than monitoring the exhaust flow

Fig. 5.9 Task Level Frame

6. Repeat Steps 2 to 5 for each critical Task associated with the selected Requirement.

7. Repeat Steps 1 to 6 for all Requirements.

Page 104

5.3.5 Graphics Viewer

The Graphics Viewer is for viewing design schematics and fault trees (see Fig.

5.10) It consists of one canvas on which a graphic can be displayed. The

procedure is as follows:- Graphics
Viewer Icon

1. Oick on the Eile menu. Select Load file. A file selector subwindow displays all files

with .BMP extensions in the default directory.

2. Choose a file to load. The graphic is displayed on the canvas.

3. To replace the file displayed with a different file select Qear from the Eile menu and

repeat steps 1 and 2.

Fig. 5.10: Graphics Viewer Frame

Page 105

4. To exit the Graphics Viewer and return to previous frame select Quit from the file

menu.

5.3.6 Library Editor

The Library Editor allows customisation of questions and associated information

used for assessing critical tasks (see Fig. 5 .11). The frame includes a List Box

and two Text Boxes. The List Box displays existing questions. The two Text

~. m
Library

Boxes are provided for editing questions and associated information. The Editor Icon

procedure is as follows:

1. Select Task Type for question.

2. Select Group (i.e. Specification, Implementation or Protection) to which question

belongs. As a consequence of this action, Keywords belonging to this Group are

passed to the Keyword Choice box.

3. Select Keyword. Existing questions associated with the highlighted Type, Group and

Keyword are displayed in the List Box.

4. Select one of 4 options :-

a) highlight a question and delete it ;

b) edit a question and its associated information by highlighting question in List

Box and pressing Edit button;

c) insert a question by highlighting in the List box where a question is to be

positioned and pressing Insert button. 'Nil' then appears in the List Box

signifying that a vacant position is available in the List Box (i.e. a new

question instance has been created), click on this position and enter new

question;

d) append to the existing question list by pressing Append button, 'nil' appears

at the last position in the list, click on this position and enter new question.

Page 106

are these alarm(s) required?

Fig. 5.11: Library Editor Frame

5. If necessary, edit the question and associated information in the relevant Text Boxes.

Store all changes by pressing Save button.

6. To return to System Level select eXit from menu bar. Under eXit, there is an option

to permanently overwrite the database file for future projects.

5.3.7 Report Generator

The Report Generator is used to view and/or print data at any stage during the

assessment process (see Fig. 5 .12). The Report is not static but continually

updates as the user enters information to the system. It has one dialog

subwindow. The procedure is as follows:

Page 107

Report
Generator

Icon

1. Select Qptions from the menu bar. Qick on Start and a dialog subwindow is

displayed.

2. Select one or more Requirements.

3. Select the items (Requirement Description, Tasks, ETDs, Questions, Responses and

Actions or any combination of these options) required for the report.

4. Select one or more output devices. Options include Screen, Postscript Printer,

Postscript file, Windows Notepad, or any combination of these options. If the report

has already been displayed on screen and a printout is subsequently required, a

postscript file can be obtained via the submenu Print to a postscript file under

Qptions on the menu bar.

Fig. 5.12: Report Generator Frame

Page 108

5.4 Conclusions

The combination of CLIPS and wxCLIPS provided a very powerful environment for

prototyping the HAZAPS tool. The main difficulty encountered was in identifying the key

abstractions and their associations (ie. Oass structures and external entities). Combining the

principles of layering and object oriented classes allowed the tool to evolve in a gradual and

easily-maintainable fashion.

The tool has proved very useful in supporting the HAZAPS methodology. The advantages

being

+ Automatic generation of ETDs;

+ Flexibility of the Report Generator;

+ Ability to customise the questions library and hence build experience into the tool;

+ Extendability is possible because the tool has been developed in a structured and

logical fashion.

Page 109

CHAPTER6:

Applications of HAZAPS

In this chapter HAZAPS is applied to different systems. The objectives of applying

HAZAPS are to:-

+ show typical results;

+ demonstrate the benefits;

+ identify any major difficulties;

+ show how HAZAPS can be applied to different application domains.

Three applications of HAZAPS are described: (i) an illustrative example based on a simple

aircraft navigation task, (ii) a case study based on a rotary screen line printing press, and (iii)

a case study based on a water treatment plant. In the case of the aircraft example, modelling

and assessment (Stages 3 & 4 of HAZAPS) of a single requirement is briefly described. For

the two case studies, all four stages of HAZAPS were used and several requirements were

considered in detail. The rotary screen printing press has been tested and is operational. The

water treatment plant has not yet passed the design stage. The assessment of both these case

studies was based primarily on infonnation obtained from real functional requirement

specifications and design drawings. In the following sections the three applications of

HAZAPS are described.

6.1 Modelling and assessing an avionics safety

requirement

This example of an aircraft navigation requirement illustrates how stages 3 and 4 of the

HAZAPS process can be used to model and assess safety requirements. The example shows

the use ofthe ETD technique and the ES-HAZOP and ES-FMEA procedures.

Page 110

6.1.1· Modelling the safety requirement

The safety requirement is Aircraft shall maintain a safe heading. The following operational

tasks are associated with this requirement:-

+ Pilot feeds heading into the system;

+ System determines aircraft's present position via a sensor;

+ Processor calculates new heading for aircraft;

+ System issues update to display;

+ Pilot confirms this update;

+ Aircraft is steered in correct direction.

Fig. 6.1 shows how the above tasks are modelled using the ETD technique. There are several

possible scenarios that might lead to a hazardous situation, including (i) Pilot feeds in wrong

heading and subsequently accepts the issued update; (ii) Pilot incorrectly confirms bad'

update and the aircraft is steered off-course. These scenarios initially prompt investigation

of pilot interventions and updating of the display console.

Fig. 6.1: ETD for the aircraft navigation requirement

Page 111

6.1.2 Assessing the safety requirement

The ES-HAZOP and ES-FMEA procedures (cf. Appendix 1) provide the basis for assessing

requirements. The operational tasks were first categorised in terms of generic tasks and then

the ES-HAZOP and ES-FMEA procedures were applied. From the above scenarios, the pilot

interventions and updating of the display were considered important. The pilot

interventions,

+ Pilot feeds heading into system

+ Pilot confirms this update

are classed as Operator-type tasks, and the updating of the display,

+ System issues update to display

is classed as a Display-type task.

Table 6.1 shows a subset of questions for each of the tasks which can be applied from each

of the Superclasses. The purpose of the questions is to help clarify safety considerations and

reduce or eliminate any associated hazards by revising functional requirements or

implementing safety control strategies. In the following case studies, responses to questions

are considered and it is shown how they facilitate an in-depth analysis of the design.

6.2 Case Study 1 - Print Machine

The first case study is based on a rotary screen line printing machine. The development of

such a machine requires a multi-disciplinary approach, bringing together expertise in process

engineering, logic control, variable speed drives and mechanical engineering. Each stage of

the HAZAPS process is applied in turn.

Page 112

Table 6.1: Subset of assessment questions for each of the tasks

Superclass Class Slot(fask Question

When is this intervention
Operator

required?

Specification Timing/control
How often does this

Display information need to be

updated?

Is this intervention easy to

Operator perform in a stressful

situation?

a... Implementation Environment
C>

Where can the display be ~ = Display positioned for most effective • U>
L1.J

use by the operator?

Is it clear what the operator

Operator has to do in an emergency

Protection Fault_Recovery situation?

Display
What emergency procedures

are associated with this task?

Operator
What if operator fails to carry

<C out task?
:::E: Failure_Modes Not_Initialised

I What if information is not
Display

shown on display?

Page 113

6.2.1 Identification of safety-critical subsystems

The objective of this stage is to understand the processes associated with the printing

machine, determine underlying concepts and identify subsystems for analysis. The rotary

screen printing press consists of a number of print stations. Each print station prints a

different pattern. Material flow through the printing press is shown in Fig. 6.2. Paper is

automatically unwound from a reeler and passes to a print head where it is coated with

L---

Paper in
I

Reel er

--- -----
""' ~ -

Coater

""' .n -
Drying
Cabinet

"' ,

--- -----

Cooler

'~
To next

Print Station

Plastisol

Natural gas

Solvent-laden vapour

1 - - -I = Subsytem for analysis
L---

Fig. 6.2: Material flow through rotary screen line printing press

plastisol. It then passes through a drying cabinet and down to a cooling roller, before

passing to the next print station. Three different computer systems are used. One computer

controls the running of the line. Each print head has a single board computer to control the

printing and each burner in the drying cabinet has an associated proportional, integral and

derivative controller.

Page 114

6.2.1.1 Major hazards

Major sources of hazards associated with the printing process include:-

+ solvent-laden vapour which evaporates as the coated material is dried;

+ large steel rollers rotating at high speed which pull the web (i.e. the material

passing through the machine) through the printing press;

+ gas burners in the drying cabinet which are used to dry the coated paper.

The case study focuses on monitoring and controlling the solvent concentration in the dryer

(dashed box in Fig. 6.2).

6.2.1.2 System Components

Components of the system under consideration (Fig. 6.3) can be divided into 2 object

classes, Chemicals and Equipment.

BU NER

FLOW
SWITCH

A
I \

!. ~
I \

I \

WEB SENSOR

LEVEL
SENSOR,..--K::J '-.P-LJ

PAPER IN _....

EXHAUST
FAN

DRYING
CABINET

COATED
...._PAPER OUT

Fig. 6.3: One of the print stations in the screen line printing press

Page 115

Chemicals

+ Plastisol contains a number of organic chemicals including plastiser and

solvent: the solvent is emitted during the drying process.

+ Natural gas is used by the burners in the drying cabinet.

Equipment

The Equipment class is divided into three subclasses: Process, Sensors and Actuators.

Process

+ A print head consisting of a screen (a hollow cylindrical container into

which the plastisol is pumped) and backing roller. The term nip is used to

describe the gap between screen and backing roller.

+ A pump fills the screen with plastisol.

+ Pneumatic rams press the backing roller against the screen.

+ A drying cabinet contains a burner which heats and gels paper and plastisol.

+ A fan removes solvent vapour from the dryer.

+ A cooling roller cools the coated paper and helps set up the web path for the

next print station.

Sensors

+ The line sensor senses whether the web is moving through the machine.

+ The level sensor measures the amount of plastisol in the screen.

+ The air pressure sensor senses whether or not the pneumatic system is

operational.

+ The web sensor determines whether the web is continuous.

+ The nip pressure sensor determines whether the nip is open or closed.

+ The flow sensor determines whether there is flow through the exhaust.

The system has other sensors (e.g. encoders, tachometer, load cells and

thermocouples) but these are not relevant to the present analysis.

Page 116

Actuators

+ Drive motors are used for backing and cooling rollers;

+ Solenoids for pneumatic rams;

+ Relays for exhaust fan, burner and plastisol pump.

Having identified a subsystem, its components and top level hazards, the next step is to

construct safety requirements related to this subsystem.

6.2.2 Construction of safety requirements for print station

The objective is to construct safety requirements for the print station related to the solvent

concentration in the dryer. The use and control of flammable solvents in printing inks and

plastisols is a well known source of hazards in the printing industry. Each drying cabinet in

the machine has explosion panels, however, the machine user is responsible for ensuring that

I
Explosion due to solvent-laden vapour I

I *GI El I E2

Concentration of solvent vapour line running Burner on
greater than lower explosive limit

6G2
I ' Too much Not enough solvent vapour

solvent added extracted during process

I .

QG3
E3 E4 I ES I

Pump overfills Cabinet not Solvent vapour not
print head purged initially being extracted

Fig. 6A Fault tree for Print Station. El and E2 are not faults but indicate the state of the
subsystem at a given time.

Page 117

flammable solvent levels in the circulating air and exhaust air associated with each cabinet

are safe as defined in the HSE regulations [HSE, 1981]. The emphasis here is on identifying

contributors to these hazards when a programmable system is used. The fault tree shown in

Fig. 6.4 is used (see Section 4.4.2 for derivation of predicate statements).

The predicate statements were

El AND E2 AND (NOT)E3 •••• 0 0 • 0 •••••••••••••• 0 0 •••• 0 0 • 1

El AND E2 AND (NOT) E4 ••••• 0 ••• 0 ••• 0 0 •••••• 0 0 • 2

El AND E2 AND (NOT) E5 0 • 0 0 0 ••••••••••• 0 0 3

The following safety requirements were constructed using the above predicate statements.

Requirement No. 1 (based on predicate statement 1)

The pump at the print station must not overfill the print head because the

solvent concentration in the dryer will increase and may increase beyond the

specified limit.

Requirement No. 2 (based on predicate statement 2)

Before the machine is started or restarted, the drying cabinet must be purged

initially.

Requirement No. 3 (based on predicate statement 3)

If no solvent vapour is being exhausted from the drying cabinet while the line

is running and the burner is switched on, the machine must be shut down and

placed in a safe state.

Having constructed safety requirements, the next step is to transform the requirements into

operational tasks and assess them.

Page 118

6.2.3 Modelling and assessing safety requirements for print station

The safety requirements are assessed in turn.

6.2.3.1 Requirement No. 1 - Print station

Description: The pump at the print station must not overfill the print head because the solvent

concentration in the dryer will increase and may increase beyond the specified limit.

Operational tasks:

+ Operator selects automatic mode for pump operation

+ Line sensor indicates line is running

+ Nip sensor indicates that nip is closed

+ Level sensor indicates low plastisol

+ Processor determines pump 'on time' t, based on line speed and required coat weight

+ The pump is switched on for time t

ETD: The ETD is shown in Fig. 6.5. The pump can operate in automatic or manual mode. Automatic

mode is only operative when the line is running and the nip is closed. The pump is switched on when

the level detector detects a low plastisollevel in the print head. The pump fills the print head at intervals,

the time between intervals is dependent on the required coat weight.

Critical tasks: The safety aspect of this requirement ultimately depends on the switching on of pump for

timet.

Analysis of ACTUATOR task: The pump is switched on for time t.

Specification

Definition:

Q: What action is required?

R: To turn on pump for a 'set' time

Objective:

Q: Why is this action required?

R: To fill print head with required amount of plastisol

Options:

Q: What other way could this task be accomplished?

R: Rather than using the level sensor to trigger switch on of pump, a detector which directly measures

coat weight could be used.

Page 119

Action 1: Consider using an on-line coat weight monitor as there would be Immediate feedback

on excessive coating. This would be useful for safety, from an economic point of view and for

better consistency In coating. The difficulty of using such a device is that the coat weight profile

varies across the paper for a given pattern and there are also variations due to Inconsistencies

In batch production (I.e. continual recalibratlon would be required).

Inputs/Outputs:

Q: What are inputs/outputs for this task?

R: The pump solenoid receives an energise signal from the main system

Q: What parameters are associated with this task?

Fig. 65: ETD for Requirement No. 1- Print Station

R: 'Line speed' and 'pump facto(. 'Pump factor' is set by operator. lt is dependent on coat weight

required.

Q: What is the range of this output signal?

R: On/off only. No associated range.

Timing/Control:

Q: How is this task to be initialised?

R: Level probe senses that the plastisollevel is low

Action 2: Check calibration of level sensor as the operation of the pump Is dependent on the

sensitivity of the level sensor.

Q: How is this task to be terminated?

R: The task is terminated after a time ~· set by the main programmable system which de-energises the

pump solenoid.

Page 120

Operational_ Modes:

Q: What relationship does this task have to manual mode?

R: In manual mode the pump action is interlocked only to the level sensor, the pump action is indepen

dent of line speed and status of nip.

Implementation

Selection:

Q: What actuator will be used?

R: A solenoid valve

Installation:

Q: How will this device be interfaced to the system

R: The solenoid valve is energised via a signal from an electromechanical relay. One input of the relay

is connected to programmable system via a digital output

Testing:

Q: How will the implementation be tested?

R: The switch on time of pump is dependent on coat weights. The coat weight is related to the pattern

being printed on the paper.

Action 3: Trials are required to determine maximum and minimum pump on times.

Q: What reliability data is available on hardware items?

R: There is no reliability data available at present.

Action 4: Obtain hardware reliability data on pump and associated devices.

Protection

Fallure_Detectlon:

Q: How will the system know if any of the hardware devices associated with this task have failed?

R: There are no directly associated detection mechanisms as there is no automated feedback from the

coating operation. Detection is dependent on the operator

Trips:

Q: What trips are associated with this task?

R: There are no trips associated with this task

Action 5: Consider implementing trip In case of pump remaining on unintentionally.

Security:

Q: What parameters associated with this task can be modified by the operator?

R: The 'pump factor' can be modified.

Q: Why can these parameters be modified by the operator?

R: There are many different coat weights required and there are always inconsistencies within batches.

Action 6: If operator selects and sets up pump on time, he/she may need training on how to do

this.

Page 121

Failure_Modes

Lockup:

0: What if this task locks up?

R: This would occur if there was no signal to deactivate pump which would cause the plastisol to overfill

print head and result in excessive coating. To prevent this, a maximum on time for pump is incorporated

in the software which, if exceeded, trips power to pump via a totally independent route.

6.2.3.2 Requirement No. 2 - Print station

Description: Before the machine is started or restarted, the drying cabinet must be purged initially.

Operational tasks:

+ Display is activated

+ Operator presses start button

+ Sensors indicate no emergency stops pressed

+ Web break sensors indicate no web breaks

+ Air sensor detects air supply OK

+ Exhaust fan is started to purge dryer

+ Machine is started

ETD: The ETD is shown in Fig. 6.6. Emergency stop buttons are located at the print station so that the

operator can stop the machine at any time. Web break sensors are used to detect any break in the

material. The air supply is used to open and close nips. The exhaust fan is used to remove solvent

vapour from the drying cabinet. The digitally controlled drives synchronize the passage of material

through the print heads.

Critical tasks: The display task is very important as it allows the operator to monitor the startup condi·

lions and to intervene if necessary.

Analysis of DISPLAY task: Display is activated.

Specification

Definition:

0: What is to be displayed?

R: Information about states on the machine.

Objective:

0: Why does information need to be displayed?

R: To permit operator to monitor startup conditions and to allow manual intervention if necessary.

Page 122

Fig. 6.6: ETD for Requirement No.2 - Print Station

Inputs/Outputs:

Q: What are the inputs/outputs for this task?

R: Status of line (pre-startup, starting, running, normal shutdown, emergency shutdown), emergency

push buttons, web break sensors, air supply.

Q: What is the format for displaying information?

R: Icons for identifiers, states in alphanumerics, any unexpected states to flash in red.

Timing/Control:

Q: How often does this information need to be updated?

R: Every 2 seconds

Action 7: Check why 2 seconds Is chosen as the update Interval for the display.

Operatlonai_Modes:

Q: What relationship does this task have to normal shutdown?

R: The display is also used in the shutdown sequence to allow the operator to monitor a safe

shutdown

Q: What relationship does this task have to an emergency shutdown?

R: The display (in conjunction with an audible alarm) is also used in the emergency shutdown

sequence to warn operator and to permit intervention if necessary.

Implementation

Selection:

Q: What type of display will be used?

R:AVDU

Page 123

Installation:

Q: If this display is used to show other information, how is information unique to this task distin

guished?

R: The display format is paged, at startup the default is the startup page, similarly for normal

shutdown and emergency shutdown. At other times, the page is pre-startup, normal running or the

operator selects the page with the information required.

Environment:

Q: What particular aspects of the environment may affect the operation of this task?

R: The environment is 'dirty' and hot. The print station will have an industrial type transparent window.

The air is solvent laden requiring a flame proof enclosure for the VDU.

Maintenance:

Q: What maintenance procedures are required for this task?

R: A software test module will be used to test display and inputs from various sensors. This will also

prove useful for testing operation of sensors

Action 8: Find out If this test module can be executed when the machine Is operational. If 1t

can, how Is 11 ensured that 1t does not Interfere with normal operation.

Protection

Failure_Detectlon:

Q: How will failure of display task be detected

R: When display is operating correctly a number in the top right hand side of the display will

continually update. Failure of this number to update will indicate display task has failed.

Action 9: Test Idea of number In top right hand of display. Normally, the number will be

continuously updating, however, on the rare occasion that 11 does not update will this be

obvious to the operator?

Fault_ Recovery:

Q: What fault recovery procedures are associated with this task.

R: Where possible any warnings given on display will have an associated help page which will give

operator information on what he should do.

Action 10: Give list of all warnings to be shown on display and describe associated recovery

procedures.

Failure_Modes

Incorrectly _Initialised:

Q: What if task is incorrectly im1ialised?

R: This could occur if there are no default displays. To prevent this, if there is power to the VDU, it

always shows some display i.e. startup, normal shutdown, emergency shutdown or if not in any of

previous modes then pre-startup, running mode or some page selected by operator.

Page 124

6.2.3.3 Requirement No. 3 - Print station

Description: If no solvent vapour is being exhausted from the drying cabinet while the line is running

and the burner is switched on, the machine must be shut down and placed in a safe state.

Operational tasks:

+ Flow sensor indicates no exhaust flow

• Line sensor detects line is running

• Burners are switched off

• Nips are forced to open

• Line is kept running

• Alarm is activated

• Warning is shown on Display

ETD: The ETD is shown in Fig. 6.7. If there is no flow through the exhaust and the line is running then

the burner is switched off to remove heat source from drying cabinet. The nip is forced open to stop

coating of paper and the line is kept running to remove paper from the drying cabinet and prevent it

from igniting. Siren is activated and warning is displayed.

Fig. 6.7: ETD for Requirement No3- Print Station

Page 125

Critical tasks: The operation of the flow switch is critical. Incorrect operation or logic associated with this

device could lead to catastrophic events.

Analysis of SENSOR task: Flow sensor indicates no exhaust flow.

Specification

Definition:

0: What state is to be monitored?

R: The exhaust flow

Objective:

0: Why does this state need to be monitored?

R: To prevent build up of solvent concentration in drying cabinet

Options:

0: What other way could this task be accomplished?

R: A sensor which directly measures solvent concentration or one which measures airflow.

Action 11: Consider directly measuring solvent concentration rather than monitoring the

exhaust flow. Firstly, lt measures the required parameter directly and, secondly, continuous

feedback from direct monitoring could detect an unpredicted rise In solvent concentration. The

major disadvantages of this are cost and number of monitors required.

Inputs/Outputs:

0: What are the input(s)/output(s)for this task?

R: Output signal from flow sensor indicating no exhaust flow

0: Over what range is the signal to be monitored?

R: Output signal on/off, no associated range

Timing/Control:

0: How often does this state have to be scanned?

R: Scan time should be less than a second.

Operational_ Modes:

0: What relationship does this task have to startup?

R: The flow switch is associated with a purge sequence which must complete before startup.

Implementation:

Selection:

0: What sensor will be used?

R: An air flow failure detector which has an embedded mercury switch.

Installation:

0: How will this device be interfaced to the system

R: The mercury switch is connected to an electromechanical relay. One output of the relay is

connected to programmable system via a digital input.

0: How will this device be calibrated?

Page 126

R: The device is supplied by the manufacturer calibrated, it will be tuned when the machine is being

commissioned

Q: Where will this device be positioned?

R: In the exhaust ducting, not near any disturbances e.g. fresh air dampers.

Action 12: Need to ensure correct calibration of the airflow switch.

Environment:

Q: What particular aspects of the environment may affect the operation of this task?

R: The environment is hot and laden with plastisol fumes. The device works on the principle of differ

ence in pressure inside and outside the exhaust duct. Clean air outside the duct activates the device.

Action 13: The dependence on a single device for monitoring exhaust flow Is questionable.

Check how difficult lt would be to Incorporate another sensor (better If sensor operates on a

different physical principle).

Maintenance:

Q: What maintenance procedures are required for this task?

R: The condition and operation of the sensor is checked manually on a regular basis because of its

importance and the corrosive environment in which it is placed.

Action 14: A good maintenance procedure for the airflow switch Is essential, because of Its

Importance and the 'dirty' environment. The device should be easily accessible for the same

reasons.

Protection

Fallure_Detection:

Q: What alarms are associated with this task?

R: A siren and alarm message on a display

Q: Why are these alarms required?

R: To warn operator that the sensor has indicated no flow in the exhaust, and to check that the

machine is shutdown safely.

Q: How will the system know if this task has failed?

R: There will be a test sequence pre-startup which will check the sensor indicates 'off' state with the

exhaust fan off indicating no exhaust flow and on state with the fan on to indicate there is an exhaust

flow

Interlocks:

Q: Are there any postconditions associated with the completion of this task which can be checked

to ensure that the task has executed successfully and on time?

R: Must be checked manually by operator.

Trips:

Q: What trips are associated with this task?

R: Nip is forced off and burner is switched off

Q: Why are these trips required?

R: The nip is opened to stop coating, the burner is switched off to remove heat source

Page 127

Fault_Recovery:

Q: What fault recovery procedures are associated with this task?

R: Manually test operation of exhaust fan and sensor, purge dryer and measure concentration of

solvent in dryer.

Failure_Modes

Incorrectly_ Terminated:

Q: What if task is incorrectly terminated?

R: This would occur if operator presses emergency stop, this would leave coated material in dryer

which may ignite. To prevent this, the siren should be unique to this task, indicating that no operator

intervention is required.

Action 15: Ensure that the alarm siren Is readily Identifiable as being associated with 'danger

ous' level of solvent vapour.

Too_Siow:

Q: What if signal is too slow?

R: If the response of the sensor was too slow, this would cause a build up of solvent vapour in dryer

and possible subsequent explosion.

Action 16: Hardware reliability information Is required to make sure the airflow switch Is robust

enough for the number of operations and environment Verify that the response of sensor Is

adequate.

6.2.4 Summary of assessment of print station

The assessment focuses on one top level hazard (i.e. solvent vapour concentration in the

dryer). Three safety requirements were identified and only one task associated with each

requirement was assessed. A small number of all possible questions were used for

assessment purposes. Sixteen actions are listed as a result of the assessment, these are shown

in Table 6.2. Actions are related to: (i) requests for further information; (ii) checking of

design decisions; (iii) suggestions for alternative designs; (iv) maintenance proposals; and,

(v) test plans. Major concerns are the measurement of critical parameters and the

environmental conditions. Some critical parameters are measured indirectly; it is proposed

that these parameters should be measured directly (Actions 1 and 11). Also, the dependence

on a single device to measure a critical parameter is questioned (Action 13). The

environmental conditions are particularly nasty and therefore require attention (Actions 4,

12, 14, and 16).

Page 128

Table 6.2: Actions based on assessment of print station

Action 1:

Action 2:

Action 3:

Action 4:

Action 5:

Action 6:

Action7:

Action 8:

Action9:

Action 10:

Action 11:

Action 12:

Action 13:

Action 14:

Action 15:

Action 16:

Consider using an on-line coat weight monitor as there would be immediate
feedback on excessive coating. This would be useful for safety, from an economic
point of view and for better consistency in coating. The difficulty of using such a
device is that the coat weight profile varies across the paper for a given pattern
and there are also variations due to inconsistencies in batch production (i.e.
continual recalibration would be required).

Check calibration of level sensor as the operation of the pump is dependent on
the sensitivity of the level sensor.

Trials are required to determine maximum and minimum pump on times.

Obtain hardware reliability data on pump and associated devices.

Consider implementing trip in case of pump remaining on unintentionally.

If operator selects and sets up pump on time, he/she may need training on how
to do this.

Check why 2 seconds Is chosen as the update interval for the display.

Find out if this test module can be executed when the machine Is operational. If
it can, how is it ensured that it does not interfere with normal operation.

Test idea of number in top right hand of display. Normally, the number will be
continuously updating, however, on the rare occasion that it does not update will
this be obvious to the operator?

Give list of all warnings to be shown on display and describe associated recovery
procedures.

Consider using on-stream solvent monitoring rather than monitoring the exhaust
flow. Firstly, it measures the required parameter directly and, secondly,
continuous feedback from on-stream monitoring could detect a unpredicted rise
in solvent concentration. The major disadvantages of this are cost and number
required.

Need to ensure correct calibration of the airflow switch.

The dependence on a single device for monitoring exhaust flow is questionable.
Check how difficult it would be to incorporate another sensor (better if sensor
operates on a different physical principle).

A good maintenance procedure for the airflow switch is essential, because of its
importance and the 'dirty' environment. The device should be easily accessible
for the same reasons.
Ensure that the alarm siren is readily identifiable as being associated with
'dangerous' level of solvent vapour.

Hardware reliability information is required to make sure the airflow switch is
robust enough for the number of operations and environment. Verify that the

response of sensor is adequate.

Page 129

6.3 Case Study 2- Water treatment plant

This case study is based on preliminary design work done on a water treatment plant. In

addition to water treatment experience, the design requires expertise in chemical

engineering, instrumentation and software engineering.

6.3.1 Identification of safety-critical subsystems

The objective of this stage is to understand the processes associated with the water treatment

plant, determine underlying concepts and identify subsystems for analysis. Water treatment

involves several different processes as shown in Fig. 6.8. The first stage, DAF (Dissolved

Air Flotation) is used to remove finely divided particles such as clays and colouring matter

that may be held in suspension in the water. FeC13 assists this process and acts as a

flocculating agent. H2S04 reduces pH and promotes the separating out of fine particles. 0 2

is added as a prechlorination agent to remove micro-organisms. Once the suspended content

in the water is reduced to consistent normal proportions, further clarification is effected by

passing water into the RGS (Rapid Gravity Sand) filters. NaOH is added prior to RGS to

raise the pH and help remove iron. The GAC (Granular Activated Carbon) removes traces

of chemicals and dissolved organic substances. In the final stage, disinfection, 0 2 is used

as the sterilising agent. Following disinfection, a number of chemicals are added: an S02

solution is used to reduce residual a in the water; NaOH is used adjust the pH; and, NaSi03

is used to reduce the effects of corrosion in metallic mains pipes.

6.3.1.1 Major hazards

Major hazards associated with treated water include the presence of:-

+ micro-organisms;

+ pesticides;

+ fertilisers;

+ metals.

Page 130

r--

L--

Raw water

.n

.n

-
Dissolved Air

Flotation
(DAF)

I ~ .()

I
Rapid Gravity
Sand Filters

(RGS)

Granular
Activated

Carbon (GAC)

--- ------
Disinfection

--- -----

-

Service
Reservoir

"

"

Chlorine (q)
Sulphuric acid (H2S04)

Ferric chloride (FeCI3)

Caustic soda (NaOH)

------------1
Chlorine (CI2)

Sulphur dioxide (S02) 1

------------..J
Caustic soda (NaOH)

Sodium silicate (NaSi03)

~-----1 .
1 _ _ _ _ _ 1 = subsystem for analys1s

Note: Figure simplified by omission of
dump streams and backwash systems

Fig. 6.8: Material flow through water treatment plant

Page 131

The focus of this study is on the disinfection system (Fig. 6.8, dashed box), that is, the

reduction or removal of micro-organisms. Other processes prior to the disinfection system

assist in the removal of pesticides, fertilisers and metals. Only those parts of the Cl2 and S02

dosing systems which interface with the disinfection system are considered in this analysis.

6.3.1.2 System Components

Components of the system under consideration (Fig. 6.9) can be divided into 2 object

classes, Chemicals and Equipment.

Chemicals

+ Cl2 is used to remove micro-organisms from the water.lt is highly toxic.

+ S02 (a colourless gas with a choking penetrating smell) is used to reduce any

residual Cl in the treated water to a preset level.

Equipment

The Equipment class is subdivided into Process, Sensors and Actuators.

Process

+ Inlet, outlet and dump valves control water flow in the disinfection system.

+ Mixers add a Cl2 and S02 solution to the process water.

+ Chlorinators and sulphonators mix Cl2 and S~ gases respectively with a

water supply (termed the 'motive water supply' as distinct from the 'process

water supply' which refers to the water being treated) to form a solution.

+ The contact tank provides adequate contact time between the Cl2 solution

and the process water.

Sensors

+ The electromagnetic flowmeter measures flow of water into the disinfection

system.

The composition sensors determine concentration of residual Cl in process

water.

The pressure sensors detect flow of Cl2, S02 and motive water supply.

Page 132

Water from
GAC

Inlet valve

Electromagnetic flowmeter

ol(0 Chlorine solution from chlorinators

... --~~ Sample to Chlorine Sensor

Contact Tank
(0.4 Ml)

... --~~Sample to Chlorine Sensor

1
.... ,._ _ _,0 Sulphur dioxide solution from

Sulphonators

._--~~Sample to Chlorine Sensor

11(0 Sodium silicate solution

11(0 Caustic soda solution

Dump valve

DJ--o Outlet valve

Service
Reservoir 0 Mixer Z Valve

Fig 6.9: Disinfection system in water treatment plant

Page 133

Actuators

+ Motorised valves are used for inlet, outlet, dump, chlorinators and

sulphonators.

Having identified a subsystem, its components and top level hazards, the next step is to

construct safety requirements related to this subsystem.

6.3.2 Construction of safety requirements for disinfection system

The objective is to construct safety requirements related to the disinfection system. The

addition of 0 2 is vital as not only does it improve odour and taste (provided correct dose is

added) but it assists in removing micro-organisms. A 0 2 solution is added to process water

before the contact tank and is subsequently measured three times: before the contact tank,

after the contact tank and after addition of S02 solution. If the water stream after the contact

tank contains too much a, it can be attenuated using S02 solution. It is important that the

final treated water has the correct quantity of Cl present. Too much Cl can facilitate the

formation of 'nasty' organic compounds and too little can result in growth of micro

organisms as the water passes through the distribution network. The associated fault tree is

shown in Fig.6.10 where gates are prefixed by G and base events are prefixed by E.

Identifying cut sets
El G1

Expanding G 1 =
El G2
El G3

Expanding G2 =
El E2 G4
El G3

Expanding G4 =
El E2 E3
El E2 E4
El G3

Expanding G3 =
El E2 E3
El E2 E4
El E5
El GS

Page 134

.

I
Contaminated water due to

I malfunction of disinfection system

Q El I
Residual Cl level in treated System not shutdown

water incorrect

0GI
I

Residual Cl too high Residual Cl too low

QG2 QG3
ES El I I I I

Too much Cl SO, unable to reduce Cl
Too little Cl Too much SO,

added to acceptable level
added added

QG4
E6

QGs
E7 El I I E4 I I

Measured demand Measured demand Measured demand Measured demand
(pre contact tank) (post contact tank) (pre contact tank) (post contact tank)

too large too large too small too small

Fig. 6.10: Fault tree for disinfection system.El is not a fault condition but indicates the condition of the subsystem a given time.

Expanding 05 =
El E2 E3 ... 4
El E2 E4 ... 5
El E5 ... 6
El E6 E7 7

El is common to all cut sets. Under normal operating conditions, El is always true (i.e.

cannot negate El). The disinfection system must be shut down if any of the following

predicate statements are true (based on cut sets 4, 5, 6, 7 above)

E2 ANDE3 ... 8
E2 ANDE4 ... 9
E5 .. 10
E6 AND E7 .. 11

These predicate statements can be divided into two sets to form the following safety

requirements:

Requirement No.l

Requirement No.l is based on predicate statements 8, 9 and 10 which are all related to the

addition of 802 solution.Each predicate includes either E2 (i.e. 802 solution unable to

reduce 0) or E5 (i.e. too much 802 added). These predicate statements are used to construct

the Requirement No. 1.

If, after addition of S02 solution, the measured Cl in the treated water is

outside set limits, then the disinfection system must be isolated.

Requirement No. 2

Requirement No. 2 is based on predicate statement 11 and is dependent on the addition of

0 2 solution. This predicate statement is used to construct Requirement No.2

The correct quantity of Cl2 solution must be added as indicated by sensor

measurements either before or after the contact tank.

Page 136

Having constructed safety requirements, the next step is to convert the requirements to

operational tasks and assess them.

6.3.3 Modelling and assessing safety requirements for disinfection system

The safety requirements are assessed in turn.

6.3.3.1 Requirement No. 1 -Disinfection system

Description: If, after addition of S02 solution, the measured Cl in the treated water is outside set limits

than the disinfection system must be isolated.

Operational tasks

+ Sensor measures residual Cl level

+ Processor determines that the residual Cl level is outside set limits

+ Inlet valve to the disinfection system is closed

+ Electromagnetic flowmeter indicates no flow

+ Outlet valve from disinfection system is closed

+ Audible alarm is activated

+ Messages shown on display

ETD: The ETD is shown in Fig. 6.11. The residual Cl sensor is positioned after the so, mixer and it is

used to determine the residual Cl in the final treated water. The processor checks if the measured

residual Cl is within and upper and lower limit. If the residual Cl level is outside set limits then the inlet

valve is closed preventing further flow of water into the disinfection system. The electromagnetic

flowmeter is positioned after the inlet valve and indicates the amount of water flowing into the

disinfection system. When the flowmeter indicates zero flow the outlet valve is closed, preventing water

from entering the service reservoir. The operator is alerted to the situation by an audible alarm and by

messages displayed on the control console.

Critical tasks: The processor task which determines residual Cl level is outside set limits is critical.

Failure of this task may have very serious consequences.

Analysis of PROCESSOR task: Processor determines that the residual Cl level is outside set limits.

Page 137

Fig. 6.11: ETD for Requirement No.l- Disinfection system

Specification

Definition:

Q: What is the task?

R: To determine whether residual Cl is within preset limits

Objective:

Q: Why is task required?

R: To determine whether the disinfection system should be taken off line.

Inputs/Outputs:

Q: What calculations and models are required?

R: The processor receives an analog value from a Cl sensor. This analog value is proportional to the

residual Cl in the process water. The processor converts the analog value to a digital value which must

lie between present upper and lower limits.

Timing/Control:

Q: How is this task to be initialised?

R: Sensor value is polled at intervals by the processor which subsequently calculates residual Cl.

Action 1: Check polling time.

Operationai_Modes:

Q: What relationship does this task have to startup?

R: Task is prohibited during startup of the plant.

Q: What relationship does this task have to an emergency shutdown?

R: The task may initiate a shutdown of the disinfection system.

Page 138

Implementation

Selection:

Q: What proprietary hardware will be used?

R: A special purpose residual Cl sensor will be used.

Installation:

Q: How will this task be implemented?

R: Sample water will be pumped from the process stream to the Cl sensor which will transmit results

to the processor.

Q: If settings are to be altered on proprietary or customised boards, how will it be ensured that these

settings are done correctly?

R: These settings are vital for safe treatment of water.

Action 2: Obtain full details relating to setting of parameters for Cl sensor.

Testing:

Q: How will integrity of proprietary hardware be checked?

R: Initially, the Cl sensor will be calibrated and checked with an established Cl analyzer in the

laboratory. Before installation, it will be tested on an existing plant which operates under similar field

conditions.

Maintenance:

Q: What maintenance procedures are required for this task?

R: None specified.

Action 3: Samples need to be taken directly from process water by operator, checked in the

laboratory and compared with those logged by processor. All conditions are logged when/If

disinfection system shuts down. Patterns need to. be Identified (e.g. Cl2 and S02 Injection rates,

source of raw water, turbidity, pH).

Protection

Failure_Detectlon:

Q: What alarms are associated with this task?

R: An audible alarm in control room and display messages 'Treated water Cl level outside permitted

range' and 'Plant tripped by disinfection system'.

Q: Why are the alarms required?

R: Once the disinfection system is shutdown, all water within the disinfection system must be dumped.

Problems should be sorted as soon as possible otherwise plant has to be shutdown.

Q: How is it detected if this task fails to receive inputs or updates?

R: Once task initialised, it continually expects sensor to give non-zero values lying within preset limits.

If it fails to receive a value, it assumes that the residual Cl level is outside preset limits.

Trips:

Q: What trips are associated with this task?

R: Inlet valve and outlet valve are closed.

Page 139

Q: Why are these trips required?

R: To isolate the disinfection system from the rest of the plant.

Fault_ Recovery:

Q: What fault recovery procedures are associated with this task?

R: None as yet specified in functional specification.

Action 4: Instigate fault recovery procedures.

Failure_Modes

lncorrectly_lnitlallsed:

Q: What if task is incorrectly executed?

R: The task could execute incorrectly if the processor determined falsely that the residual Cl level is

outside the upper/lower limits, or the processor determines falsely that the residual Cl level is within the

upper/lower limits.

Action 5: An algorithm Is required which tracks the variation In the residual Cl level. Perhaps this

could be based on permutations of Increasing and decreasing Cl2 and 502 injection rates.

6.3.3.2 Requirement No. 2 - Disinfection system

Description: The correct quantity of Cl solution must be added as indicated by sensor measurements,

either before or after the contact tank.

Operational tasks

+ Electromagnetic flowmeter measures flow rate

+ Operator selects chlorinator

+ Pressure switch indicates motive water supply ok

+ Pressure switch indicates Cl, supply ok

+ Sensor pre-contact tank measures level of residual Cl

+ Cl2 injection rate adjusted

+ Sensor post-contact tank measures level of residual Cl

+ Cl2 injection rate is adjusted

ETD: The ETD is shown in Fig. 6.12. The electromagnetic flowmeter is located at the inlet to the

disinfection system. Once the flowmeter indicates that water is entering the disinfection system, the

operator can select one of two chlorinators via a local control panel. The motive water supply is used

in conjunction with the Cl2 gas injectors to form a Cl solution which is passed to the mixer in the

disinfection system. The level of residual Cl is measured both before and after the water enters the

contact tank. The measurements are used to control the Cl, injection rate.

Page 140

Fig. 6.12: ETD for Requirement No. 2- Disinfection system

Critical tasks: The operator task is chosen for analysis as it is the only operator intervention in the

sequence and it assists the analysis of the interaction between the disinfection and Cl dosing system.

Analysts of OPERATOR task: Operator selects chlorinator.

Specification

Definition:

Q: What is the operator intervention?

R: To initialise Cl dosing system so that Cl2 is injected into process water.

Objective:

Q: Why is this operator intervention necessary?

R: The Cl2 injection system is in itself hazardous and needs to be monitored carefully and only activated

when necessary.

Inputs/Outputs:

Q: What form does this operator input have?

R: The operator selects one of two chlorinators via a switch unit.

Timing/Control:

Q: How are parameters initialized or re-initialised?

R: Each chlorinator has a metering device which adjusts the rate of Cl2 injection. The injection rate is

proportional to the flow of process water into the disinfection system. This proportional relationship is

determined by a preset value. This preset value is trimmed by measurements of residual Cl both before

and after the contact tank.

Page 141

Operational_ Modes:

Q: What relationship does this task have to an emergency shutdown?

R: If the disinfection system is tripped, flow to disinfection system will be stopped and this will

automatically shut down chlorination dosing system.

Action 6: Cross check the emergency procedure for shutdown of the Cl, dosing system.

Implementation

Selection:

Q: What proprietary hardware will be used?

R: Special purpose metering devices for chlorination.

Installation:

Q: How will this task be implemented?

R: A mimic display is provided which shows chlorination streams, motive water supply streams and

preset injection rate. Local switch panel allows selection of stream.

Q: Does operator need training?

R: All personnel involved with Cl, injection system need to be trained.

Action 7: Set up training plan for users; they have to be aware of the importance of the

chlorination system and need to know how to monitor and control the process.

Testing:

Q: How will the task be checked against the functional specification?

R: Cl2 injection can be monitored by checking the value obtained from the residual Cl sensor located

before the contact tank.

Action 8: Set up test procedure. Under normal operation, selection of a chlorination stream has

no effect unless the following conditions hold: (i) flowmeter signals non-zero flow Into

disinfection system (11) motive water supply OK and (iii) Cl2 supply OK. If any of these conditions

Is false and then no Cl2 Is Injected Into the process stream.

Environment:

Q: What particular aspects of the environment may affect the operation of this task?

R: There are several environmental factors to be considered which may affect the effectiveness of the

Cl, injection e.g. pH, turbidity of water entering disinfection system, and properties of the raw water

entering the plant (raw water may be supplied from one of 3 different sources).

Action 9: Implement plan for micro-organism sampling of treatment water to validate

effectiveness of Cl2 dosing.

Maintenance:

Q. What maintenance procedures are required for this task?

R: The Cl2 dosing system has two chlorinators. In normal operation, one is in service and the other is

on stand by. For maintenance purposes, the chlorinator on standby can be taken offline and serviced

while the system is still operational.

Q: How will maintenance procedures associated with this task affect normal operation?

Page 142

R: If the chlorinator in service fails and the other chlorinator is offline being serviced, then the

disinfection system must be shut down (i.e. automatic changeover of chlorinators is not possible).

Action 10: Incorporate requirement to disable automatic changeover If either chlorinator Is being

serviced.

Protection

Failure_Detection:

Q: What alarms are associated with this task?

R: Chlorination System Gas Meter failed. Motive water system failed.

Q: Why are these alarms required?

R: To signal that Cl2 dosing system has failed.

Q: What are the alarm conditions/set values?

R: Measured pressure outside set limits for gas metering and motive water supply.

Interlocks:

Q: Are there any post-conditions associated with the completion of this task which can be checked to

ensure that the task has executed successfully and on time?

R: Monitor value from residual Cl sensor located before contact tank.

Security:

Q: Can the sequence associated with this task be modified?

R: If a chlorinator is being serviced, only one chlorinator is available for selection.

Failure_Modes

Not_lnitlallsed:

Q: What if operator fails to cany out task?

R: If a chlorinator is not selected, no Cl, will be injected into the process water in the disinfection system.

Action 11: In the disinfection process, the residual Cl level Is measured three times. Check If

relationship can be established between these three values.

6.3.4 Summary of assessment of disinfection system

The assessment focuses on one top level hazard (i.e. residual a in treated water). Two safety

requirements were identified and only one task associated with each requirement was

assessed. A small number of all possible questions were used for assessment purposes.

Page 143

Eleven actions were listed as a result of the assessment, these are shown in Table 63. There

is extensive use of instrumentation to measure critical parameters, however, better use could

be made of the measurements obtained; in particular, the relationships and interaction

between different parameters measured should be established (Actions 5 and 11). The

functional specification is incomplete, this is illustrated by the large number of actions

related to implementation (Actions 2, 3, 7, 8, 9 and 10). It is vital to crosscheck the

emergency procedure for the Cl2 dosing system (Action 6).

Table 6.3: Actions based on assessment of disinfection system

Action 1:

Action2:

Action 3:

Action 4:

ActionS:

Action 6:

Action 7:

Action 8:

Action 9:

Action 10:

Action 11:

Check polling time.

Obtain full details relating to setting of parameters for Cl sensor.

Samples need to be taken directly from process water by operator, checked in

the laboratory and compared with those logged by processor. All conditions are

logged when/if disinfection system shuts down. Patterns need to be identified

(e.g. Cl, and so, injection rates, source of raw water, turbidity, pH).

Instigate fault recovery procedures.

An algorithm is required which tracks the variation in the residual Cl level.

Perhaps this could be based on permutations of increasing and decreasing Cl,

and SO, injection rates.

Cross check the emergency procedure for shutdown of the Cl dosing system

Set up training plan for users; they have to be aware of the importance of the

chlorination system and need to know how to monitor and control the process.

Set up test procedure. Under normal operation, selection of a chlorination

stream has no effect unless the following conditions hold: (I) flowmeter signals

non-zero flow Into disinfection system (ii) motive water supply OK and (iii) Cl,

supply OK. If any of these conditions is false and then no Cl, is injected into the

process stream.

Implement plan for micro-organism sampling of treatment water to validate

effectiveness of Cl, dosing.

Incorporate requirement to disable automatic changeover if either chlorinator

Is being serviced.

In the disinfection process, the residual Cl level is measured three times. Check

If relationship can be established between these three values.

Page 144

6.4 Conclusions

The case studies demonstrate that HAZAPS provides a means of systematically assessing

the safety aspects of a system, irrespective of the application domain. The application of the

methodology is relatively straightforward, the major difficulty is in identifying and

understanding the safety critical subsystems in the first place. There is a definite need for

effective participation by different disciplines involved in the development of the system.

Fault tree construction assists in targeting the functions of the system which can contribute

to top level hazards. Construction of the ETDs provides an effective means of establishing,

understanding and analysing operational tasks.

Answering the sets of questions forces the user to consider different safety aspects. The

actions resulting from an assessment illustrate the \otal system' view of HAZAPS. There are

actions related to environmental, human, hardware and software aspects of the system.

Although the primary objective of HAZAPS is to 'assess' (see p.66, first paragraph for

definition of the term 'assess~ the safety aspects of a system, it also complements and

enhances the development of a system by identifying ambiguities, inconsistencies and

incompleteness in the functional specification.

Page 145

CHAPTER 7:

Conclusions and further work

HAZAPS, a unique methodology for integrating hazard evaluation procedures and

requirements engineering, makes a novel contribution to the field of re-use of incident data

to permit feedback into the design of safety-critical systems. It is unique in that it

demonstrates how:-

+ non-functional requirements associated with safety can be captured from diverse

disciplines;

+ safety requirements can be formulated, logically represented, and analysed;

+ safety considerations associated with the total system can be assessed.

To derive the methodology, new concepts, models, methods (and associated procedures) and

a computer tool have been developed.

7.1 Novelty and benefits of HAZAPS

The following sections describe the benefits of HAZAPS and demonstrate its novelty.

7.1.1 Generic tasks allow a system-wide approach

A fundamental concept in HAZAPS is the 'generic task' which, applied in a novel way,

permits the capturing of different types of knowledge and reduces uncertainty associated

with development of a safety-critical system. A generic task can be defined as 'an activity

carried out by the operator or any device associated with the target system which controls

and/or responds to changes in the environment'. The importance of the generification of

Page 146

tasks has been discussed by Johnson et al. [1988] who used generic tasks to analyse data

based on the observation of people carrying out tasks. HAZAPS uses generic tasks in a

novel way, as generic tasks permit the integrated analysis of not only the human aspect

but also the hardware, software and the environmental aspects.

7.1.2 The system model integrates software and safety engi'!eering

methods

A major problem in assessing the safety of programmable systems is in integrating safety

engineering and software engineering methods. In HAZAPS, the system model (p.71) has

been developed for this purpose. The system model effectively consolidates safety

engineering and software engineering methods. Of the various approaches to integrating

software engineering and safety engineering methods discussed in Section 233, only a few

included a general system model (most had either no system model or an application

specific system model). In those that did have a general system model it was difficult to

determine where to start/stop applying a particular technique or how the output from one

technique fed to another technique. The HAZAPS system model (p.71) is novel in that it

permits different techniques to be used at different levels of abstraction and combines

the strength of both deductive and inductive safety techniques (i.e. it allows one to work

backwards to the embedded system boundary to identify safety concerns, and work forwards

from the programmable events to the system boundary). FTA permits tracing of the causes

of hazards back to the embedded system boundary, and the ES-HAZOP and ES-FMEA

procedures facilitate the identification of programmable events which may lead to hazardous

states at the embedded system boundary.

7.1.3 An operational approach is used

An operational view is required to understand how failure in a system may lead to hazardous

states. The approach in HAZAPS differs from the operational specification methods

discussed in Section 2.23. HAZAPS is novel in that it uses a combination of FTA and

Task Analysis to synthesise operational tasks, and has an associated model, the ETD

Page 147

which provides an effective way of establishing, understanding and analysing tasks

related to the high level fault tree representation of hazards.

7.1.4 The assessment framework is generic

The framework (Appendix 1) which is the basis of the ES-HAZOP and ES-FMEA

procedures, provides a unique method of analysing safety requirements in a systematic and

exploratory manner. Although using sets of questions for assessing the safety of a system

is common practice, combining models of causation and sets of questions based on incident

analysis, is rare. Hurst & Radcliffe [1994] developed an audit technique based on an

incident classification scheme to investigate major hazards on offshore plant. However, no

sample questions or answers were provided. It can only be assumed that the technique

proved useful. Their assessment technique is for management use, considerations include:

system climate, organisation and management, and communication and feedback. HAZAPS

is novel in that the sets of questions which are applicable to any embedded

programming system, can be used for analysing low level tasks in conjunction with the

ETD. In combination with the HAZAPS tool, the framework provides a novel and very

effective method not only for assessing the system under consideration, but for accumulating

safety strategies for future systems.

7.1.5 The usefulness of HAZAPS has been demonstrated

Two case studies have demonstrated that HAZAPS is effective at assessing the safety of an

embedded system. HAZAPS has been tested by two companies which subsequently

provided reports (one written, one verbal). The reports made general comments regarding

improving and adding features to the tool (e.g. addition of a designer's sketch pad). Both

companies regarded HAZAPS as a sound methodology for safety-critical systems and one

suggested that it would also be a useful tool for the development of non-safety-critical

systems. HAZAPS is novel in that no competing methodology exists.

Fault tree construction assists in targeting the functions of the system which can contribute

to top level hazards. Construction of the ETDs provides an effective means of establishing,

Page 148

understanding and analysing operational tasks. Answering the sets of questions forces the

user to consider different safety aspects. The actions resulting from the application of the

methodology illustrate the ~otal system' view of HAZAPS. There are actions related to

environmental, human, hardware and software aspects of the system. HAZAPS also

complements and enhances the development of a system by identifying ambiguities,

inconsistencies and incompleteness in the functional specification.

7.2 Limitations of HAZAPS

7.2.1 Domain analysis is difficult

Domain analysis is always difficult but this is particularly true in the case of safety-critical

embedded systems. Lessons were learnt from the case studies. The author had in-depth

experience of the rotary printing press but none of the water treatment plant. For the water

treatment plant case study, three people were interviewed: the software programme manager

responsible for the design of the automatic control system of the water treatment plant; a

chemical engineer with limited experience of water treatment; and, a microbiologist with

experience of testing water quality. What was surprising was how little knowledge each had

of the others' expertise. The requirements engineer has to be flexible to reconcile the

different viewpoints and understand the basic principles involved in the What and Why of

the system. Also, the procedure for Stage 1 of HAZAPS requires a top level diagram and

associated description, and this information could not be abstracted from the documentation

provided for either case study. Further work is required on the domain analysis.

7.2.2 The assessment framework has not been proved complete

Completeness was discussed in Sections 2.3.2 and 2.4.2.3 in relation to both safety

engineering methods (where it was mentioned how different techniques were needed to

support each other) and the integration of safety and software engineering techniques. The

term 'completeness' has been described formally as ... the degree to which full

implementation of required function has been achieved [Pressman, 1994]. Here the term

Page 149

'completeness' is used in relation to the framework; the assumption is that, if all hazards have

been identified in the environment, then, for the framework to be complete, it must identify

all possible contributions to the hazards associated with the embedded system. Arguments

for claiming that the framework is complete include: the framework is based on a large

number of incidents; there is in built redundancy in that ES-FMEA procedure cross checks

the ES-HAZOP procedure; and, the framework has proved effective in two case studies.

Counter arguments include: analysis of a large number of incidents and two case studies

cannot prove completeness; the derivation of questions based on incidents could itself be

flawed; and, the effectiveness of ES-FMEA in cross checking ES-HAZOP has not been

verified.

Applying HAZAPS retrospectively to computer-related incidents which have occurred

would not be sufficient to prove completeness because of the exploratory nature of the

framework (i.e. after an incident it can always be assumed incorrectly that a particular

question would have readily identified one of the events in the sequence which led to the

incident). To validate the framework, HAZAPS should be applied to several more systems

and these systems should be monitored throughout their lifecycle.

7.3 Further work

Recommendations for further work to extend and refine HAZAPS include:

Indirect knowledge elicitation methods, such as card sort and ladder grid, could be

tailored specifically for embedded systems and used to improve the domain

analysis technique.

+ It would be useful to carry out more case studies across different application

domains and within the same application domain with the objectives of (a)

customising HAZAPS and establishing generic safety requirements for particular

application domains; (b) validating the question framework; and, (c) empirically

identifying general strategies to reduce or eliminate risk (specific strategies have

Page 150

already emerged from the two case studies carried out which could be useful for

future assessments of embedded systems: see p.133, Table 6.2 and p.148, Table

6.3).

+ Formalisation and simulation of the ETD technique would be advantageous.

HAZAPS allows abstraction of safety concerns in a systematic and effective way.

The addition of a formal method (e.g. Finite State Machines, temporal logic) would

complement HAZAPS by assisting in the detailed design and checking of the final

specification.It is important that this formal method should be transparent to all but

the software engineers on the project, in other words, all non-software specialists

should be able to participate in the assessment of a system without having to

acquire expertise in a formal mathematical method. Simulation of the ETD would

enrich the notation in that scenarios could be executed and interpreted by different

participants involved in system development.

+ HAZAPS already has overlap with MIL-STD882C and it is essential to the future

of HAZAPS to investigate how it could be linked to safety critical standards and

used to support these standards. Information gleaned from standards could be used

to strengthen HAZAPS and make it an even more powerful tool.

Page 151

References

AB BOTT, A.: 'Cluster relaunch looks to minisatellites'.Nature, 1996,382, (6587), pp.102.

AlChemE: 'Guidelines for hazard evaluation procedures' (Center for Chemical Process Safety of the

American Institute of Chemical Engineers, 1985)

AIChemE: 'Guidelines for investigating chemical process incidents' (Center for Chemical Process Safety

of the American Institute of Chemical Engineers, 1992).

AIChemE: 'Guidelines for safe automation of chemical processes' (Center for Chemical Process Safety of

the American Institute of Chemical Engineers, 1993).

A!ChemE: 'Guidelines for technical management of chemical process safety' (Center for Chemical Process

Safety of the American Institute of Chemical Engineers, 1989).

ALFORD, M.W.: 'A requirements engineering methodology for real-time processing requirements',/£££

Trans. Soft. Eng., 1977, SE-3, (1), pp.60

AMELAN, R.: 'Software testing blamed for Ariane failure'. Nature, 1996,382, (6590), pp386.

ANDRIOLE, SJ. and FREEMAN, PA.: 'Software systems engineering: the case for a new discipline'.

Softw. Eng. J., 1993,5, pp.l65-179.

ARTHUR, C.: 'Ambulance computer system was too complicated'. New Scientist, November 14, 1992,

pp.7.

A TKINS, R.K.: 'Human dependability requirements, scope and implementation at the European Space

Agency'. Proc. Annual Reliability and Maintainability Symposium, 1990 (IEEE, 1990) pp.85-89.

AZ!con: 'AZ!con Editor' (AZ Computer Innovations, Glendale, Arizona, USA, 1994).

BARLOW, P.R. and SMITH, DJ: 'Programmable safety related systems in the gas industry' in 'Computers

and Safety', lEE Conference 8-10 Nov., 1990, Cardiff, UK, pp.28-29.

BELL, T.E., BIXLER, D.C. and DYER, M.E.: 'An extendable approach to computer-aided software

requirements engineering'./£££ Trans. Soft. En g., 1977, SE-3, (1), pp.49

BENYON, D. and SKIDMORE, S.: Towards a tool kit for the systems analyst'. The Computer Journal,
1987,30, (1), pp.2-7.

BOOCH, G.: 'Objected oriented design with applications' (The Benjamin/Cummings Publishing Co., !ne,

Redwood, CA, USA, 1991).

BORNING, A.: 'Computer systems reliability and nuclear war'. Commun. ACM, 1987,30, (2), pp.112-131.

Page 152

BOWEN, J. and STA VRIDOU, V.: Safety-critical systems, fonnal methods and standards'. Softw. Eng. J.,

1993,7, pp.189-209.

BRADLEY, E.A.: Detennination of human error patterns: the use of published results of official enquiries

into system failures'. Qual. & Reliab. Engng. Int., 1995, 11, pp.411-427.

BURNS, DJ., and PITBLADO, R.M.: 'A modified Hazop methodology for safety-critical system

assessment' in RED MILL, F. and ANDERSON, T. (Eds.): Directions in Safety-critical Systems'

(Springer-Verlag, 1993), pp.232-245.

CANNING, A.A.: The assessment of PES's in safety related applications: an update' in 'Computers and

Safety', lEE Conference Publication No314, 1990, pp.67-69.

CHILLAREGE, R., BHANDARI, I.S., CHAAR, J.K., HALLIDAY, MJ. MOEBUS, D.S., RAY, B.K. and

WONG, M-Y.: 'Orthogonal defect classification- a concept for in-process measurements'. IEEE Trans.

Softw. Eng. 1992, 18, (11), pp.943-955.

CHUDLEIGH, M., BERRIDGE, C., BUTLER, J., MAY, R. and POOLE, 1.: SADLI: functional

programming in a safety-critical application'. in RED MILL, F. and ANDERSON, T.: Safety-critical

systems: the convergence of high tech and human factors', Proc. 4th Safety-critical Systems Symposium,

Leeds, UK, 6-8 February 1996 (Springer Verlag, 1996), pp.223-242.

CHUDLEIGH, M.F. and CLARE. J .N.: The benefits of SUS!: safety analysis of user system interaction'

in G6RSKI, J. (Ed.): Safety, security and reliability of computer based systems', 1993 (SAFECOMP93)

Symp., Poznan-Kiekrz, Poland, 27-29 October 1993, (Springer-Verlag, 1993), pp.124-132.

CIA: 'A guide to hazard and operability studies'. (Chemical Industry Safety and Health Council of the

Chemical Industries Association, 1977).

COAD, P. and YOURDON, E.: 'Object-oriented analysis' (Prentice-Hall, Englewood Cliffs, NJ., 1991).

CRAIGEN, D., GERHART, S. and RALSTON, T.: 'Case study: traffic alert and collision- avoidance

system'. IEEE Soft., 1994, pp.35-39.

CURRIE, R.M. (revised by FARADAY, J.E.): Work Study'. (British Institute of Management, 3rd. ed.,

1972).

CUTHILL, B.B.: 'Applicability of object-oriented design methods and C++ to safety-critical systems' in

'Proceedings of the Digital Systems Reliability and Nuclear Safety Workshop' (NUREG/CP-0136) NIST

Special publication 500-216, 1993, pp 163-191.

DAVIS, A.M.: 'A comparison of techniques for the specification of external system behavior'. Commun.

ACM, 1988,31,(9), 1098-1115.

DAVIS, A.M.: Software requirements, objects functions and states' (Prentice-Halllntemational,

Englewood Cliffs, New Jersey, 1993).

Page 153

DE PANFILIS, S.: 'Fault avoidance through a development environment adopting prototyping' in

LINDBERG, J .F.: 'Safety of computer control systems 1991 (SAFECOMP91)' Safety, Security and

Reliability of Computer Based Systems, Proc. IFAC Symp., Trondheim, Norway, 30 Oct -1 Nov. 1991,

(Pergamon Press, 1991), pp.125-130.

DIJKSTRA, E.W.: 'The structure of the THE-multiprogramming system'. Commun. ACM, 1968, 11, (5),

pp341-346.

EDWARDS, K.: 'Real-time structured methods: systems analysis' (Wiley series in Software engineering

practice, John Wiley & Sons, Chichester, England, 1993).

ELLIOTT, D.M. and OWEN, J.M.: 'Critical examination in process design'. The Chemical Engineer,

November 1968,377-383.

EMBLEY, D.W., JACKSON, R.B. and WOODFIELD, S.N.: 00 systems analysis: is it or isn~ it?'. IEEE

Software, July 1995, p.19-33.

ESA: Software reliability modelling study: quantitative and qualitative reliability analyses of systems

including software' (Aerosystems International Ltd., 1991).

FENEWN, P. KELL Y, T.P. and MCDERMID, J A.: 'Safety cases for software application reuse' in

RABE, G. (Ed.): 'Computer safety, reliability and security 1995' (SAFECOMP95) Symp., Belgirate, Italy,

11-13 October 1995, (Springer-Verlag, 1995), pp.419-436.

FINK, R., OPPERT, S., COLLISON, P., COOKE, G., DHANJAL, S., LESAN, H. and SHAW, R.: Data

management in clinical laboratory information systems' in RED MILL, F. and ANDERSON, T. (Eds.):

Directions in safety-critical systems' (Springer-Verlag, 1993), pp.84-95.

FINKELSTEIN, A. and SOMMERVILLE, 1.: 'Viewpoints in requirements engineering'. Soft. Eng. J.,

1996, 11, (1), pp2-4.

FLEISHMAN, E.A. & QUINT ANCE, M.K.: Taxonomies of Human Performance' (Academic Press,

Florida, USA, 1984).

FUSSELL, J.B. and VESELY, W.E.: 'A new methodology for obtaining cut sets'.American Nuclear Soc.

Trans., 1972, 15, (1), pp.262-263.

FUSSELL,J.B., POWERS, GJ. and BENNETTS, R.G.: 'Fault trees- a state of the art discussion'. IEEE

Trans. Reliab., 1974, R-23, (1), pp 51-55.

GHAG, H.S.: 'HlpMATIC' (H.S. Ghag, Wolverhampton, West Midlands, WV10 OTE, 1994)

GORSKI, J.: 'Extending safety analysis techniques with formal semantics' in RED MILL, F. and

ANDERSON, T. (Eds.): Proc. 2nd Safety-critical Systems Symposium, Birmingham, UK, 8-10 February

1994. (Springer-Verlag, 1994), pp.147-163.

GOUGH, P.A., FODEMSKI, F.T., HIGGINS, S.A. and RAY, SJ.: 'Scenarios- an industrial case study

and hypermedia enhancements'./CRE 95, 1995, pp.10-17.

Page 154

GRADY R: 'Practical results from measuring software quality'. Commun. ACM, 1993,36, pp.62-68.

HAMMER, W .: 'Product safety management and engineering' in FABRYCKY, W J. and MIZE, J .H.:

Prentice Halllntemational Series in Industrial and Systems Engineering (Prentice Hall, 1980).

HAREL, D: 'Statecharts: a visual formalisation for complex systems', Science of Computer Programming,
1987,8,pp231-274.

HERBSLEB, J.D., KLEIN, H., OLSON, G.M., BURNNER, H., OLSON, J.S. and HARDING, J.: Object

oriented analysis and design in software project teams'. Human-Computer Interaction, 1995,10, pp.249-

292.

HOBLEY, K.M. and JESTY, P.H.: 'Analysis and assessment of advanced road transport telematic systems'

in RABE, G. (Ed.): 'Computer safety, reliability and security 1995' (SAFECOMP'95) Symp., Belgirate,

Italy, 11-13 October 1995, (Springer-Verlag, 1995), pp.252-266.

HSE: 'Evaporating and other ovens' (Her Majesty's Stationery Office, London, 1981).

HSE: HSE guidelines for programmable electronic systems: generic aspects. Part 2: General technical

guidelines' (Health & Safety Executive/Her Majesty's Stationery Office, London, 1987).

HSE: Out of control: why control systems go wrong and how to prevent failure' (Health & Safety

Executive/Her Majesty's Stationery Office, 1995).

HURST, N.W. and RADCLIFFE, K.: 'Development and application of a structured audit technique for the

assessment of safety management systems (STATAS)' in Hazards XII, European Advances in Process

Safety. Voi.IChemE Symposium Series No.134. (IChemE, 1994), pp315-339.

IBM: 'Business systems planning- information systems planning guide'. GE20-0527-1. I.B.M. Technical

Publications.

IEC: 'Functional safety :safety related systems'.lntemational Electrotechnical Commission, Commission,

65, IEC Draft Standard 1508,1995.

lEE: 'Software in safety-related systems: a report prepared by a joint project team', Institution of Electrical

Engineers and the British Computer Society, London, 1989.

lEE: 'Safety-related systems: a professional brief for the engineer' lEE Report, September 1992 (Institution

of Electrical Engineers, London, 1992).

INPO: 'An analysis of root causes in 1983-84 significant event reports' (INPO - Institute of Nuclear Power

Operations, Atlanta, Georgia, 1985).

IRWIN, A.: 'Cluster scientists set to sue'. Times Higher Education Supplement, 26 July 1996.

JACKSON, M. and ZA VE, P.: 'Domain descriptions' in Proc.IEEElntemational Symposium on

Requirements Engineering, San Diego, USA, 4-6 January 1993 (IEEE, 1993), pp56.

Page 155

JACOBSON, 1., CHRISTERSON, M., JONSSON, P. and OVERGAARD, G.: 'Object-oriented software

engineering: a Use Case driven approach' (Addison-Wesley Publishing Co., Wokingham, England, 1993).

JAFFE, M.S., LEVESON, N.G., HEIMDAHL, M.P.E. and MELHART, B.E.: Software requirements

analysis for real-time process-control systems'. IEEE Trans. Softw. Eng., 1991, 17, (3), 241-258.

JARKE, M. BUBENKO, J., ROLLAND, C., SUTCLIFFE, A. and VASSILIOU, Y .: 'Theories underlying

requirements engineering: an overview of nature at genesis in Proc. IEEE International Symposium on

Requirements Engineering, San Diego, USA, 4-6 January 1993 (1993), pp.19-31.

JENTSCH, F.G.: 'Problems of systematic safety assessment: lessons learned from aircraft accidents' in
WISE, JA., HOPKIN, V.D. and STAGER, P.: 'Verification and validation of complex systems: human

factors issues' Procs. NATO Advanced Study Institute on Verification and Validation of Complex and

Integrated Human-Machine Systems (Springer-Verlag, Berlin, Germany, 1993), pp251-259.

JESTY, P.H., LAMB, D.A., BUCKLEY, T.F. and WEST, M.M.: 'Choice of design methodologies for

demanding high integrity industrial control systems in Proc. 3rd International Conference on Software

Engineering for Real Time Systems, Cirencester, UK, 16-18 September 1991 (lEE, 1991), pp.16-21.

JIROTKA, M. and GOGUEN, J.: 1ntroduction' in JIROTKA, M. and GOGUEN, J. (Eds.): Requirements

Engineering: Social and Technical Issues (Academic Press, 1994), pp.l-13.

JOHNSON, P.: Human-computer interaction: psychology task analysis and software engineering'

(McGraw-Hill International (UK) Ud., 1992).

JOHNSON, P.,JOHNSON, H., WADDINGTON, R. and SHOULS, A.: Task-related knowledge

structures: analysis, modelling and application'. in JONES, D.M. and WINDER, R. (Eds.): Proceedings of

the Fourth Conference of the British Computer Society Human-Computer Interaction Specials Group,

University of Manchester, 5-9 Sept 1988. People and computers IV. 1988, pp.35-62.

JOHNSON, W.G.: 'MORT safety assurance systems'. (Marcel Dekker Inc., New York, 1980).

JONES, P.G.: 'Computers in chemical plant- a need for safety awareness' in GIBSON, N. (Ed.): Hazards

XI: New Directions in Process Safety. Vol. IChernE Symposium Series No.124. (IChernE, 1991), pp289-

297.

JONES, D: 'Nomenclature for hazard and risk assessment in the process industries. 2nd ed. IChemE, 1992.

p3.

KEDZIERSKI, B.: 'Communication and management support in system development environments' in
GREIF, I. (Ed.): Computer-Supported Cooperative Work (Morgan Kaufman, 1988).

KERSHA W J: 'The special problems of military systems'. Microprocessors and Microsystems, 1993, 17,

pp25-30.

KIRWAN, B. and AINSWORTH, L.K. (Eds.): 'A guide to task analysis' (Taylor & Francis Ltd., London,

1992).

Page 156

KIRWAN, B.: 'A guide to practical human reliability assessment' (faylor & Francis Ud., London, 1994).

KLEIN, W.E. and LALI, V.R.: 'Modei-OA wind turbine generator: failure modes & effects analysis' in

Proc. Annual Reliability and Maintainability Symposium, 1990.

KLETZ, T .A.: 'HAZOP and HAZAN- Identifying and assessing process industry hazards'. 3rd edition

(Institution of Chemical Engineers, Rugby, UK, 1992).

KLETZ, T.A.: 'Some incidents that have occurred, mainly in computer-controlled process plants' in

KLETZ, T., CHUNG, P.W.H, BROOMFIELD, EJ. and SHEN-ORR, C.: 'Computer control and human

error'(IChemE, Rugby, UK, 1995), pp3-44.

KOLB, J. and ROSS, S.S. (Eds.): Product Safety and Liability: a Desk Reference (McGraw Hill, 1980).

LAPRIE, J-C.: 'Dependability: from concepts to limits' in G6RSKI, J. (Ed.): Safety, Security and

Reliability of Computer Based Systems, 1993 (SAFECOMP'93) Symp., Poznan-Kiekrz, Poland, 27-29

October 1993, (Springer-Verlag, 1993), pp.157-168.

LEMOS, R. de, SAEED, A. and ANDERSON, T.: 'Analyzing safety requirements for process-control

systems'./£££ Software, 1995, (5), pp.42-53.

LEVESON, N.G. and STOLZY, J.L.: 'Safety analysis of Ada programs using fault trees'.IEEE Trans.

Reliab., 1983, R-32, (5), pp.479-484.

LEVESON, N.G.: 'Safeware: system safety and computers' (Addison-Wesley, 1995).

LEVESON, N.G.: 'Software safety in embedded computer systems'. Commun. ACM, 1991, 34, (2), pp34-

26.

LINDLAND, O.D., SINDRE, G. and SOLVBERG, A.: Understanding quality in conceptual modelling'.

IEEE Softw. March 1994, pp.42-50.

LUTZ, R.R.: Targeting safety-related errors during software requirements analysis'. SJGSOFT Softw. Eng.

Notes, 1993,18, (5), pp.99-106.

MAIER, T.: 'FMEA and FfA to support safe design of embedded software in safety-critical systems' in

Proc. 12th Annual CSR Workshop/1st Annual Encress Conference on Safety and Reliability of Software

Based Systems, 1995.

MALCOLM, B.:The UK safety critical systems research programme'. Reliab. En g. Syst. Saf, 1994,43,

pp233-244.

MARTIN, J.N .T.: 'On mapping real systems'.J. Appl. Sys. Anal., 7, April, 1980, pp.151-156.

McDERMID, J .A.: 'Support for safety cases and safety arguments using SAM'. Reliab. Engng. Sys. Saf,

1994,43, pp.lll-127.

McDERMID, J.A.: 'Software hazard and safety analysis: opportunities and challenges. in REDMILL, F.

and ANDERSON, T.: Safety-critical systems: the convergence of high tech and human factors. Proc. 4th

Safety-critical Systems Symposium, Leeds, UK, 6-8 February 1996 (Springer Verlag, 1996), pp.209-222.

Page 157

McHUGH, J .: The role of formal specifications' in Proc. Digital Systems Reliability and Nuclear Safety

Workshop (NUREG/CP-0136)' NlST Special Publication 500-216, Computer Systems Laboratory,

National Institute of Standards and Technology, Gaithersburg, Maryland, 1993, pp.139·147.

MEALY, G.H.: 'A method for synthesizing sequential circuits'. Bell System Tech. Journal, 1955,34,

pp.1045-1079.

MILLER, G.: The magical number seven, plus or minus two: some limits on our capatcity for processing

information'. The Psychological Review, 1956,63, (2), pp.S6.

MIL-STD-SS2C 'Military standard: system safety program requirements'. MIL-STD-SS2C, Department of

Defense, Washington DC 20301, USA, 19 January 1993.

MoD 00-55: The procurement of safety-critical software in defence equipment'. Interim Defence

Standard 00-55, Issue 2, Ministry of Defence, Directorate of Standardisation, Kentigem House, 65 Brown

Street, Glasgow G2 SEX, UK, 5 April1991.

MoD 00-56:'Safety management requirements for defence systems containing programmable electronics'

Draft Defence Standard 00-56, Ministry of Defence, Directorate of Standardisation, Kentigem House, 65
Brown Street, Glasgow G2 SEX, UK, February 1993.

MoD 00-5S: Draft interim DEF-STAN 00-5S. 'A Guideline for HAZOP Studies on Systems which include

a Programmable Electronic System'. U.K. Ministry of Defence 1995.

MOJDEHBAKHSH, R., TSAI, W-T. and KlRANI, S.: 'Retrofitting software safety in an implantable

medical device'.IEEE Softw., 1994, Jan., pp.41·50.

MONT AGUE, D.F.: 'Process risk evaluation· what method to use?'. Re/iab. En g. Syst. Saf., 1990,29,

pp.27·53.

MYERS, GJ.: 'Reliable software through composite design' (Mason/Charter Publishers Inc., 1975).

MYERS, GJ .: 'Software reliability' (John Wiley & Sons, New York, 1976).

NASA: 'CLIPS' (Software Technology Branch, NASA, Lyndon B. Johnson Space Center, USA, 1994)

NEIGHBORS, J .: The Draco approach to constructing software from reusable components '.IEEE Trans.

Soft. Eng., 19S4, SE-10, (9), pp564-573

NEUMANN, P.G.: 'Computer related risks' (ACM Press, New York, 1995).

NOLAN, D.P.: 'Application of HAZOP and What-If safety reviews to the petroleum, petrochemical and

chemical industries' (Noyes Publications, 1994).

NTSB: Reports of the National Transportation Safety Board (distributors: National Technical Information

Service (NTIS), Springfield VA 22151, USA).

OZOG, H.: 'Hazard identification, analysis and control'. Chem. En g., Feb. 19S5, pp.l61-170.

Page 158

P ARNAS, D .L., SCHO UWEN, J. V AN and KW AN, S .P .: 'Evaluation of safety-critical software'.

Commun. ACM, 1990,33, (6), pp. 636-648.

PENG, W.W. and WALLACE, D.R.: 'Software error analysis'. NIST Special Publication 500-209,

Computer Systems Technology, National Institute of Standards and Technology, Gaithersburg, Maryland,

1993.

PORTER, AA., VOTT A, L.G., and BASIL!, V .R.: 'Comparing detection methods for software

requirements inspections: a replicated experiment'. IEEE Trans. Soft. En g., 1995,21, (6), pp563-575.

PRESSMAN, R.S.: 'Software Engineering: A Practitioners Approach'. European Edition. (McGraw Hill,

1994).

PROROK, J., BUHRER, K. AMMANN, U. and VIT, K.: 'Design and planning in the development of

safety-critical software with ADA' in FREY, H.H. (Ed.): 'Safety of computer control systems 1992'

(SAFECOMP'92), Computer Systems in Safety-critical Applications, Proc. IFAC Symp., Ziirich,

Switzerland, 28-30 October 1992 (Pergamon Press, 1992) pp.75-80.

PROSSER, J.: 'Airbus A320' in 1n-flight magazine for Excalibur Airways', Summer 1993 edition. (Dennis

Fairey & Assocs. Ltd., 1993), pp.24-26.

RAF: 'Critical Human Factors Incident Reporting Programme (CHIRP)' Sponsored by the CAA (RAF

Institute of Aviation Medicine: Farnborough, Hants., UK, 1989)

RAND ALL, P .E.: 1ntroduction to work study and organization and methods' (Butterworths, 1969) pp.140.

RA VN, A.P., RISHCEL, J. and STAVRIDOU, V.: 'Provably correct safety-critical software' in DANIELS,

B.K. (Ed.): 'Safety, security and reliability related computers for the 1990s' (SAFECOMP'90), Proc. IFAC

Symp., Gatwick, UK, 30 October-2 November 1990, (Pergamon Press, 1990), pp.13-18.

REDMILL, F.: 'Software in safety-critical applications- a review of current issues' in REDMILL, F. and

ANDERSON, T. (Eds.): 'Safety-critical systems' (Chapman & Hall, 1993) pp.3-15.

RElFER, DJ.: 'Software failure modes and effects analysis'. IEEE Trans. Reliab., 1979, R-28, (3), pp.247-
249.

REUNANEN, M. and HEIKILA, J.: 'A method for considering safety and reliability in automation design'

in LINDBERG, J.F. (Ed.): 'Safety of computer control systems 1991' (SAFECOMP'91), Safety, Security

and Reliability of Computer Based Systems, Proc. IFAC Symp., Trondheim, Norway, 30 Oct- 1 Nov

1991, (Pergamon Press, 1991), pp.107-112.

ROBINSON, B.W .: 'Application of Hazard and Operability Studies to a wide range of industries and

activities'. Qual. & Reliab. Engng. Int., 1995,11, pp.399-402.

ROSNESS, R.: 'Limits to analysis and verification' in WISE, JA., HOPKIN, V.D. and STAGER, P.

(Eds.): Proc. NATO Advanced Study Institute on Verification and Validation of Complex and Integrated

Human-Machine Systems, Vimeiro, Portugal, 6-17 July 1992 (Springer-Verlag, 1993), pp.181-191.

Page 159

ROSS, D.T.: 'Structured analysis (SA): a language for communicating ideas'. IEEE Trans. Softw. Engng.,

1977, SE-3, (1), 16-28.

RTCA D0-178B: 'Software considerations in airborne systems and equipment certification'. D0-178B,

RTCA Inc., Suite 1020, 1140 Connecticut Avenue NW, Washington CD 20036, USA, 1 Dec 1992.

RUMBAUGH, J., BLAHA, M., PREMERLANI, W., EDDY, F. and LORENSON, W.: Object-oriented

modelling and design' (Prentice-Hall, 1991).

RUMBAUGH, J.: To form a more perfect union: unifying the OMT and Booch methods'. J. Object

Oriented Programming, Jan 1996, p.14-18.

RUSHBY, J.: 'Critical system properties: survey and taxonomy'. Reliab. Eng. Syst. Saf, 1994,43, pp.189-

219.

RUSHBY, J.: 'Formal methods and their role in the certification of critical systems' in Proc.12th Annual

CSR Workshop/1st Annual Encress Conference on Safety and Reliability of Software Based Systems,

1995.

RUSHTON, A.G.: Hazard and operability study of offshore installations- a survey of variations in

practice' in Hazards XII, European Advances in Process Safety. Vol. IChemE Symposium Series No.134.

(IChemE, 1994), pp341-350.

SAEED, A., DE LEMOS, R. and ANDERSON, T.: 'Safety analysis for requirements specifications:

methods and techniques' in RABE, G. (Ed.): 'Computer safety, reliability and security 1995'

(SAFECOMP'95) Symp., Belgirate, Italy, 11-13 October 1995, (Springer-Verlag, 1995), pp.27-41.

SCHOITSCH, E., DITTRICH, S., GRAS EGG ER, D., KROPFITSCH, D., ERB, A., FRITZ, P. and KOPP,

H.: The Elektra testbed: architecture of a real-time test environment for high safety and reliability

requirements' in DANIELS, B.K. (Ed.): 'Safety, security and reliability related computers for the 1990s'

(SAFECOMP'90), Proc. IFAC Symp., Gatwick, UK, 30 October-2 November 1990, (Pergamon Press,

1990), pp59-65.

SEWARD, D.W., MARGRA VE, F.W., SOMMERVILLE, I. and KOTONYA, G.: 'Safe systems for

mobile robots: the Safe-SAM project' in RED MILL, F. and ANDERSON, T.: 'Achievement and assurance

of safety', Proc. Safety-critical Systems Symposium, Brighton, UK, 7-9 February 1995, (Springer-Verlag,

1995), pp.153-170.

SHEBALIN, P.V., SON, S.H. and CHANG, S-Y.: 'An approach to software safety analysis in a distributed

real-time system' in COMPASS '88. (IEEE,l988) pp.29-43.

SMART, J.: \vxCLIPS' (Artificial Intelligence Applications Institute, University of Edinburgh, Edinburgh,

1996).

SMITH, DJ. and WOOD, K.B.: 'Engineering quality software' (Elsevier Applied Science, 2nd ed., 1989).

SOMMERVILLE, 1., RODDEN, T., SAWYER, P., BENTLEY, R. and TWIDALE, M.: 1ntegrating

ethnography into the requirements engineering process' in Proc. IEEE International Symposium on

Requirements Engineering, San Diego, USA, 4-6 January 1993 (1993), pp.165-173.

Page 160

STEPP, R. and MICHALSKI, R.: 'Conceptual clustering of structured objects: a goal-oriented approach'.

Artificial Intelligence,1986, 28, pp 53.

SUOKAS, J. and ROUHIAINEN, V.: Quality control in safety and risk analyses'.J. Loss Prev. Process

Ind., 2, April1989, 67-77.

TA YLOR, J .R.: 'Use of "lessons learned" for in-depth hazards analysis'. J. Loss Prev. Proc. Ind., 1989,

112, pp.15-17.

TA YLOR, J.R.: 'Hazard identification' Chapter 3, 'Risk Analysis for Process Plant, Pipelines and

Transport' (E & FN Spon,l994A).

TA YLOR, J .R.: 'Developing safety cases for command and control systems' in RED MILL, F. and

ANDERSON, T. (Eds.): Technology and assessment of safety-critical systems'. Proc. 2nd Safety-critical

Systems Symposium, Birmingham, UK, 8-10 February 1994 (Springer-Verlag,l994B), pp.69-78.

UMPHRESS, DA. and MARCH, S.G.: 'Object-oriented requirements analysis'.J. of Object-Oriented

Programming, 1991, pp.35-40.

WALLACE, D.R. and IPPOLITO, L.M.: 'A framework for the development and assurance of high

integrity software', NIST Special Publication 500-223, December 1994, Computer Systems Laboratory,

National Institute of Standards and Technology, Gaithersburg, Maryland,1993.

WARD, P.T.: The transformation schema: an extension of the data flow diagram to represent control and

timing'. IEEE Trans. Softw. Eng.,1986, SE-12 (2), 198-210.

WARD, P.T. and MELLOR, SJ.: 'Structured development for real-time systems: Vols.l-3:

Implementation modelling techniques' (Y ourdon Computing Series, Yourdon Press, Englewood Cliffs,

New Jersey, 1985).

WELLS, G. and WARDMAN, M.: 'Risk and safety reviews' in RED MILL, F. and ANDERSON, T. (Eds.):

Proc. 2nd Safety-critical Systems Symposium, Birmingham, UK, 8-10 February 1994. (Springer-Verlag,

1994), pp.l28-146.

WHALLEY, S.P.: Minimising the cause of human error' in LIBBERTON, G.P. (Ed.): Proc. lOth

Advances in Reliability Technology Symposium, Bradford, UK, 6-8 April1988 (Elsevier,l988), pp.114-

128.

YADA V, S.B., BRA VOCO, R.R., CHATFIELD, A.T. and RAJUKMAR, T.M.: 'Comparison of analysis

techniques for information requirements determination'. Commun. ACM, 1988,31, (9), pp.1090-1097.

YIH, S, CHIN-FENG, F .. and, SHIRAZI, B.: 'Anatomy of safety-critical computing problems'. Reliab.

Eng. Syst. Saf, 1995,50, (1), pp.69-78.

YOUNT, LJ.: 'Generic fault-tolerance techniques for critical avionics systems' in Proc. of AIAA Guidance

and Control Conference, Snowmass, C0,1985, pp.l-5.

Page 161

ZA VE, P. & YEH, R.T: 'Executable requirements for embedded systems' in GEHANI, N. and

McGETTRICK, A.D.: 'Software specification techniques (Addison-Wesley, 1986), pp341-360.

ZA VE, P.: 'An insider's evaluation of PAlSLey'.JEEE Trans. Soft. Eng., 1991, 17, (3), pp.212-216.

ZA VE, P.: 'An operational approach to requirements specification for embedded systems' in GEHANI, N.

and McGETTRICK, A.D.: 'Software specification techniques' (Addison-Wesley, 1986), pp.131-169.

ZA VE, P .: The operational versus the conventional approach to software development'. Commun. ACM,
1984, 27, (2), pp.104-118.

Page 162

Appendix 1
Assessment Framework

Superclass : Specification

Oass: Definition- What is to be achieved?

Slots Yalues
Processor What is the task!
CommJ What communication link is required!
fenJor What state is to be monitored!
HID What Human Input Device is required!
Di1play What is to be displayed!
Aduator What action is required!
Operator What is the operator intervention!

Oass: Objedive- Why is it to be achieved?

Slots Ya/ues
Processor Why is this task required!
CommJ Why is this communication link required!
Jensor Why does this state need to be monitored!
HID Why is this Human Input Device required!
Di1play Why does this information need to be displayed!
Aduator Why is this action required!
Operator Why is this operator intervention necessary!

Oass: Options - How else could it be achieved?

Slots Yalues
Processor What other way could this task be accomplished!
CommJ What type/s of communication protocols would be suitable!
fensor What alternative states, methods would be suitable!
HID What types of HIOwould be suitable!
Di1play What would be the best way of actracting the operator's attention!
Aduator What type/s of transducers would be suitable!
Operator What would be the best way of allowing the operator to intervene!

Oass: Inputs/outputs - What inputs and/or outputs are required?

Slots Yalues
Processor What are the inputs/outputs for this task!
Processor What calculations and models are required and how will these be verified!
Processor What parameters are associated with this task!
Processor Are there any transfers of data to files!
Processor Are there any P .. M/. AM transfers!
CommJ What is the approximate distance between the two communicating devices!
CommJ What is the format of the information to be transmitted on this communication link!
fenJOr . ver what range is the signal to be monitored!
HID What ranges are associated with this input device!
Display Is it status or control information~
Display What is the format for displaying information!
Aduator What is the range of this output signal!
Operator What form does this operator input have!

Page 163

'

Superclass : Specification ContJ ••••

Class: Timing/control- When is it to be achieved and How is it to be controlled?

Slots Yalues
Processor How is this task to be initialized!
Processor How will data be transferred to/lrom tasks!
Processor How are parameters initialized or reinitialized!
ffO(eSSOr How is this task to be terminated!
Processor What are the preconditions for termination!
ProceiSor What are the preconditions for initialization!
Comms Is asynchronous or asynchronous protocol required and, if so, why!
Comms How is this communication link controlled!
Comms Is this a bidirectional communication link!
Comms What response time is required!
Comms How fast does the data need to be transmitted!
Comms What terminates communication on this link?
Comms What initiates communication on this link?
Sensor When does this state have to be measured!
Sensor How often does this state have to be scanned!
Sensor If multiple sensors are to be used to monitor a state, what strategy will be adopted! What variations are due to

the positioning of these devices! Will these variations remain constant with time!
Sensor How fast does the response have to be!
HID How often will this input facility be used!
HID When will this input facility be used!
DisplaJ How often does this information need to be updated!
Actuator What response time is required!
Actuator How will the system know that this action is required!
Actuator If multiple actuators are required for a given task, what strategy is used to ensure that actuators work together!
Actuator How frequently will this output be used!
Actuator When is this action required!
Operator When is this intervention required?

Class: OperationaL Hotfes -What operational models (startup, shutdown, automatic, manual etc.) are involved?

Slots Yalues
Processor What relationship does this task have to startup!
Processor What relationship does this task have to normal shutdown!
Processor What relationship does this task have to emergency shutdown!
Processor What relationship does this task have to automatic mode!
Processor What relationship does this task have to manual mode!
Operator How will a smooth changeover from manual to automatic be achieved!

Class: Programmable - Why is this task programmable?

Slots Yalues
Pr«essor Should this task be programmable or can it be hardwired!
Sensor Should access to this state be programmable or can it be hardwired!
HID Should this input be programmable or can it be hardwired!
DisplaJ Is a programmable display required!
Actuator Should this output be programmable or can it be hardwired!
Operator Should this intervention be carried out by the programmable system or by hardwiring!

Page 164

Superclass : Implementation

Class: Je/ection - What device/s are required!

Slots Yalues
Processor What customized boards will be used?
Processor What proprietary hardware will be used?
Processor What storage requirements are necessary?
Comms What communications protocol will be used?
Comms What interface will be used {e.g. Rllll, Current loop)?
Jen<or What sensor will be used?
HID What type of HID will be used!
Display What type of display will be used?
Actuator What actuator will be used?

Class: Installation - How will the installation be carried out!

Slots Yalues
Processor How will this task be implemented?
Processor If settings need to be altered on proprietary or customized boards, how will it be ensured that these settings are

done correctly?
Comms What status indications are required?
Comms Is provision required for modification or expansion at a later stage?
Jensot/ HI Of DisplaJActuator How will this device be installed?
Jensot/ HI Of Displaj Actuator How will this device be interfaced to the system?
Jensot/ HI Of Displaj Actuator How will this device be calibrated?
Jensot/ HI Of Display Where will this device be positioned?
Sensor Is position representative of state being measured?
HID If other devices are to be used in conjunction with this device, what is the best logical layout?
HID Is the purpose of this device clear to the operator?
Display If this display is used to show other information how is information unique to this task distinguished?
Operator Does operator need training?

Class: Testing - How will the implementation be tested!

Slots Yalues
ProceiSor How will the implementation be tested?
Processor How do you know if these requirements are sufficient?
Processor How will customized boards be tested?
Processor How will the integrity of proprietary hardware be checked?
Processor For hardwired connections, how is the logic to be tested?
Processor How will the task be checked against the functional specification!
Processor What reliability data are available on hardware items?

Page 165

Superclass : Implementation Cont/

Class: Environment - What effect will the environment have on this task!

Slots Yalues
PfO(mor What particular aspects of the environment may affect the operation of this task?
Comms Is the environment noisy requiring screened or fibre optic cable?
Sensor/ HID! Displa)i Actuator Is this device robust enough for environment and number of operations?
Sensor/ HID! Displa)i Actuator Is electromagnetic protection required for this device?
Sensor/HID/Actuator Is noise filtering/rejection required for this device?
Sensor/ HIOI Displa)i Actuator What particular aspects of the environment may affect the operation of this task?
Display Where can this display be placed for most effective use by the operator?
Operator Is this intervention easy to perform even in a stressful situation?

Class: Maintenance - What maintenance procedures are required!

Slots Yalues
Processor What maintenance procedures are required for this task?
Processor How will maintenance procedures associated with this task affect normal operation?

Class: Utilities - What utilities (power, air, etc.) are required!

Slots Yalues
ProceJsor What utilities are required for this task?

Superclass : Protection

Class: Failure_ Detection - How will any failures be detected!

Slots Yalues
Processor What alarm(s) are associated with this task?
PfO(essor Why are these alarm(s) required?
Processor What are the alarm conditions/set values?
ProceiSor How does the system know if this task has failed?
PfO(essor How are erroneous(invalid inputs or updates to this task detected?
PfO(essor How are erroneous/invalid outputs or updates from this task detected?
Processor How is it detected if this task fails to receive inputs or updates?
Processor How is it detected if this task fails to transmit outputs or updates?
Processor How is it detected if an associated task fails to execute or executes incorrectly?
Comms What error indications are associated with this communication link?
Comms Is error detection required?
Sensor Is a continuous self-test sequence required?
Actuator Is there any method of verifying orcorrelating output data to detect out of range values?
Sensor/ HID/Actuator How will the system know if any of the hardware devices associated with this task have failed?
HID How will the system know if the HIDhas given an invalid or erroneous signal?
Display How will failure of display task be detected?

Page 166

Superclass : Protection ContJ

C!Jss: Interlocks - How are hazardous events prevented?

Slots Yalues
Processor How is it ensured that all preconditions haw been identified!
Pr«essor Do the preconditions hold only wflen task is required to execute! If not, how is unintended initialization of this

task prewnted!
Processor Do the preconditions hold only wflen task is required to terminate! If not, how is unintended termination of this

task prmnted!
Processor Are there any sustaining conditions associated with this task!
Processor Are there any postconditions associated with the completion of this task which can be checked to ensure that the

task has executed successfully and on time!
HID If this input facility is only to be used when the machine is in a certain state, how is iu use prevented in other

states~
Operator Is the operator intervention only available at certain times during the process, if so, how can the operator be

prevented from intervening at other times!
Operator What prevents the operator from ignoring displays/alarms etc!

Class: Trips • How will the system be shut down if a hazard is identified?

Slots Yalues
Processor What trips are associated with this task!
Processor Why are these trips required!
Processor What are the associated trip conditions/values!
ffO(eJJor How are these trips implemented!
Processor What trip recovery procedures are associated with this task!
Operator What trips are associated with this intervention!
Sensor/ H/0/ Actuator What trips are associated with this task!
Sensor/ H/0/ Actuator What values are trips set at!

C!m: Security • How will breaches of security be prevented?

Slots Yalues
Processor What security measures are required with this task!
Processor Can the sequence associated with this task be modified!
ffO{essor What parameters associated with this task can be modified by the operator!
Processor Why can these parameters be modified by the operator!
Processor Can the hardware or hardware settings associated with this task be modified, if so why is this necessary!
Pt()(tJJOf Can associated alarms be disabled, and if so why!
Protessor How can operator be prevented from illegally modifying software!
Processor How can the operator be prevented from illegally modifying hardware!

Class: fault_ Recorery • What fault recovery procedures are associated with this task?

Slots Yalues
Processor What fault recowry procedures are associated with this task!
Processor What emergency procedures are associated with this task!
ProtesJor What error correction mechanisms are requiredl
Processor What procedures are followed if parameters haw to be reinitialized during processes!
D1splay If alarm under wflat conditions information, can it be made clear to operator wflat action is required, what has

Operator
gone wrong!
Is it clear what the operator has to do in emergency situations!

Page 167

Superclass : Protection Cont./

Class: Verification - How will the Fail Safe/Protection features be verified?

Slots Ya/ues
Processor How will failure detection mechanisms be verified?
Processor How will interlock mechanisms be verified?
Processor How will trips be verified?
Processor How will security measures be verified?
Processor How will fault recovery emergency procedures be verified?

Superclass : Failure_ Modes

Class: Not Initialized

Slots Yalues
Processor Task not initialized
Operator Operator fails to carry out tasks
Display What if information is not shown on display?

Class: Incorrectly_ Initialized

Slots Yalues
Processor Task incorrectly initialized
fensot/ HID/ Displaj{ Actuator No default settings
fensot/ HID/ Displaj{ Actuator Uncalibrated
Operator Operator interferes at wrong time in process
Operator Operator thinks there is a failure when there is none

Class: Incorrectly_ Executed

Slots Yalues
Processor Task incorrectly executed
fen sot/ HID/ Displaj{ Actuator Incorrect value
fen sot/ HID/ Displaj{Actuator Hunting
Display Too complex or too much information
Operator Operator carries out task wrongly

Class: Not Terminated

Slots Yalues
ProaJsor Task not terminated

Class: Incorrectly_ Terminated

Slots Yalues
Processor Task incorrectly terminated
Operator Operator stops task at wrong time

Page 168

Superclass : Failure_Modes Cont)

Class: Erroneous/corrupt_ Opemion

Slots 'Yalues
Procmor Erroneous or corrupt operation
Jensot{ HID! D1iplap Actuator Invalid or corrupt signal
Jensotf HID/ DisplaJIActuator Noisy signal
Display Incompatible
Display Inconsistent
Operator Erroneous input by operator

Class: No_lnput/output

Slots 'Yalues
Processor No input/output to task
Comms Communication device does not receive/transmit signal
JensotfHID Device does not transmit signal
DisplaJI Actuator Device does not receive signal

Class: Incorrect_ Input/output .

Slots 'Yalues
Processor lncorre<t input/output to task
Jensotf HID/Actuator Signal too high
Jensotf HIO!Actuator Signal too low

Class: Lockup

Slots 'Ya/ues
Processor Task locks up
Comms Communications link lock up
Comms Communications link time out
Jensotf HID/Actuator Frozen{Jammed
Display Display not updated

Class: Too Fast -
Slots 'Yalues
Processor Task operates too fast
Jensotf HID/ Actuator Signal too fast
Display Display updated too fast
Operator Operator action too fast

Class: Too flow

Slots 'Yalues
Processor Task operates too slow
Jensotf HID/Actuator Signal too slow
Display Display updated too slow
Operator Operator action too slow

Page 169

Superclass : Failure_Modes ContJ •...

C/ass: Defective Hardware

Slots Values
ProcesJor Processor
Processor Storage devices
Processor Wrong cards
Processor Digital/analogue 1/0/communication/counter timer/other cards
Processor Defective device/s
Processor Physically detached link/s

Class: failure Not Detected

Slots Values
Processor Failure to detect failure

Page 170

Appendix 2

~ HAZAPS Overview '11 GraQhics Viewer

t!J Level 1 (System Level) lrl Report Generator

00 • Leve12 (Requirement LeveD ill Library Editor

00 Leve13 CI'ask LeveD ;I Librarv Browser

ll ETD Editor & Potential Hazards List

HAZAPS Overview

HAZAPS is a tool to aid the developer in assessing hazards in programmable systems. It
has three main levels

2. Requirement Level

3. Task Level

HAZAPS also incorporates a new graphical technique, the Event Time Diagram (ETD)
to aid the developer in understanding and analyzing tasks and their interaction.

Various tools are provided - a Rep~[t Generator, Gra~thi!:s View_e_r, l.iJ;u:ar)'_E~it.QJ:,
Po_teotia!Jiazar_dd1£t.

Page 171

HAZAPS System Level
System

Level Icon

DESCRIPTION

Purpose
At the System Level safety requirements are constructed using the software requirements
specification, a Potential Hazards List and available design schematics.

Layout
The System Level has two windows, the upper one for the specification So!!J.<:e_.f_ile, the
lower for Safety Requirements.

Tools
A number of tools (e.g. Potential Hazards List, Graphics Yiewer,Library Editor) and
cut and paste facilities are provided.

Actions
At this Level, a So!!rce File can be retrieved, edited, saved and cleared; assessments can
be loaded, saved and cleared; requirements are processed (i.e. loaded into system).

PROCEDURE

1 Retrieve the So.!!rce.JI!e into the upper window and, using the Gr!!phics.Yie:w:er
and __ P_ote.nt.i!!LH.U:!!rds_List, construct safety requirements and place in lower
window. Use the lower window to decompose the specification into a number of
requirements.

2 Enter the requirements in the lower window. Format note: the word
'Requirement' must be included as a header to each requirement.

3 Process the Safety Requirements (i.e. load into system).

Requirement
Level Icon

DESCRIPTION

Purpose

HAZAPS Requirement Level

At the Requirement Level, Requirements are decomposed into Tasks and Tasks are
classified according to T~J< Tyjle~

Page 172

Layout
There are three panels: top left to select Requirement for decomposition; bottom left to
add Tasks and RHS to view all Tasks associated with a particular Requirement.

Tools
An ETD Editor (useful for understanding and analyzing Tasks and their interaction, and
in identifying critical tasks) is provided at this Level. Access to the Graphics Viewer and
Potential Hazards List is also provided.

Actions
Requirements and Tasks can be inserted, appended, saved and deleted at this Level.

PROCEDURE

1 Select a Requirement (top left panel).

2 Enter a Task (bottom left panel)

3 Save the Task - when a Task is saved, the developer is prompted to select a Iask
Iyp~.

4 Continue until all Requirements have been decomposed into Tasks. At any stage
it is possible to scroll through Tasks and view list of Tasks associated with a
particular Requirement (RHS).

5 Move to ETD Editor.

~
~

Task level
Icon

DESCRIPTION

Purpose

HAZAPS Task Level

At the Task Level, Tasks are assessed by posing a number of questions to the developer.
The developer responds to the questions and enters any actions required.

Layout
The Task Level has three choice boxes (to select Requirement, Task and Group) and four
panels. The top left panel displays the questions, top right displays the Task Description,
bottom left is for entry of Response to question, and bottom right for optional entry of
Actions.

Tools
Tools available at this Level include the Library Browser, Report Generator, Grcaphics
Viewer and ETD Editor.

Page 173

Actions
The developer answers questions and can input actions associated with each question.
These can be edited and saved at this Level.

PROCEDURE

1 Select a Requirement, an associated Task and an assessment Group

2 The system will return a number of questions based on the Task Type which was
selected for this Task at Level 2, the Task description is also displayed. The
Library Browser can be used for viewing all associated questions.

3 Respond to the sequence of questions and enter any necessary actions saving
each in turn.

4 If output is required, go to the Report Generator.

HAZAPS ETD Editor

ETD Editor
Icon

DESCRIPTION

Purpose
The EIQ is a new graphical technique to help the developer analyse Tasks and their
interaction and to identify Critical Tasks.lt models behaviour in terms of events, time,
control and data flow, entities and associated functional levels. It may be viewed as a
polar diagram where the angle respresents time, the distance from the centre gives the
functional level, and the arrows give direction of flow of information (either control or
data).

Layout
There are two windows, the top main window displays the ETQ and the bottom window
is a browser displaying Requirement and Tasks descriptions.

Actions
The Safety Requirement is modelled and analysed.

PROCEDURE

1. Select Requirement from Choice Box

2. Oick on .ETQ template at one of the vertices.

3. A form is displayed on the left- fill in form and press 'OK'. Task appears on ETD
template.

4. Repeat for all tasks

5. Move to Ia$kJ.eyel

Page 174

HAZAPS Graphics Viewer

Graphics
VIewer Icon

The Graphics Viewer allows any figure (e.g. design schematics) with .BMP fonnat to be
viewed within the system.

HAZAPS Report Generator
Report

Generator
Icon

DESCRIPTION

Purpose
The Report Generator is accessible at all Levels and can be used to view progress at any
stage. It is not static but continually updates as the user enters infonnation to the system.
The user can select various options for a Report from the system, including a full report,
and reports on sections/sub-sections of the work.

Layout
The Report Generator has one window. Options for the type of Report required are
available from the menu bar 'Options'. A Dialog Window offers a selection of items that
can be included in the Report and output options (see below).

Actions
The developer selects Requirement(s) and chooses item(s) to be included in the Report
and selects output device(s).

PROCEDURE

1 Oick on 'Options', then 'Start'· a Dialog Box will be displayed

2 Select Requirement(s) (top of Choice Box)

3 Select the items required for the report. Choices include

Requirement Descriptions
Tasks
ETDs
Questions
Responses
Actions

4 Select desired output device(s)

Output displayed on Screen

Page 175

Output to Postscript Printer
Output to Postscript (.ps) file
Output to Windows 'Notepad'

5 There is an option to print the Report after it has already been output to the
Screen. This option is available via 'Options' on Menu Bar.

Library
Editor Icon

DESCRIPTION

Purpose

HAZAPS Library Editor

The Library Editor allows customisation of the Questions which are used for assessing
Tasks at the l<t$k_Le_y_eJ,

Layout
The Library Editor has three choice boxes (to select Iypg, Group and Keyword) and
three
windows. The top window displays existing Questions, the middle window is for
entering or editing Questions, and the bottom window is for entering or editing
information associated with Questions.

Actions
The Library Editor allows the user to edit questions and associated information.

PROCEDURE

1 Select a Task Type, a Group and an associated Keyword

2 Depress the appropriate button on the RHS (Insert, Append, Delete, Edit).

3. For 'Insert' or 'Append' the word 'nil' appears in the top window at the position
where the question will be added. Highlight 'nil' and then depress the Edit button.
For 'Edit', highlight the relevant question and depress Edit button. The question
appears in the middle window.

3 Type the new question or edit existing question in the middle window. Type
additional information in the bottom window.

4 When operation complete, press 'Save' button on RHS

Note: There is an option on the menu bar under 'Exit' to permanently change the generic
library for all future assessments.

Page 176

Library
Browser

Icon

DESCRIPTION

Purpose

HAZAPS Library Browser

The Library Browser allows the user to view questions and associated information
directly from the Task Level.

Layout
The Library Browser has two windows, the upper one for Questions and the lower for
Associated Information.

PROCEDURE

At the Task Level depress the View button at the bottom of the screen. To exit Browser,
depress 'OK' button.

Potential
Hazards

Icon

Potential Hazards List

To provide assistance for identifying top level hazards, the Potential Hazards List has
been adopted from W. Hammer Product safety management and engineering, Prentice
Hall, NJ., 1980.

An important feature of this facility is that it can be customised by the user.

Page 177

Appendix3
Related Publications

Broomfield EJ, Chung PWH (1994) "A hazard identification methodology for

programmable systems". In: "Risk Management and Critical Protective Systems", Safety

& Reliability Conference, Altrincham, Cheshire, 12-13 October 1994. SaRS Ltd.

Broomfield EJ, Chung PWH (1994) "Hazard identification in programmable systems

A methodology and case study". Applied Computing Review 2:7-14.

Broomfield EJ, Chung PWH (1995) "Using incident analysis to derive a methodology

for assessing safety in programmable systems". In: Proceedings of the Safety-critical

Systems Symposium: Achievement and Assurance of Safety, Brighton, pp.223-239.

Kletz T, Chung PWH, Broomfield EJ, Shen-Orr, C (1995) "Computer control and

human error". IChemE, Rugby, UK.

Broomfield EJ, Chung PWH (1997) "Safety assessment and the software requirements

specification". Reliability Engineering and System Safety 55 :295-309.

Page 178

