6,044 research outputs found

    kLog: A Language for Logical and Relational Learning with Kernels

    Full text link
    We introduce kLog, a novel approach to statistical relational learning. Unlike standard approaches, kLog does not represent a probability distribution directly. It is rather a language to perform kernel-based learning on expressive logical and relational representations. kLog allows users to specify learning problems declaratively. It builds on simple but powerful concepts: learning from interpretations, entity/relationship data modeling, logic programming, and deductive databases. Access by the kernel to the rich representation is mediated by a technique we call graphicalization: the relational representation is first transformed into a graph --- in particular, a grounded entity/relationship diagram. Subsequently, a choice of graph kernel defines the feature space. kLog supports mixed numerical and symbolic data, as well as background knowledge in the form of Prolog or Datalog programs as in inductive logic programming systems. The kLog framework can be applied to tackle the same range of tasks that has made statistical relational learning so popular, including classification, regression, multitask learning, and collective classification. We also report about empirical comparisons, showing that kLog can be either more accurate, or much faster at the same level of accuracy, than Tilde and Alchemy. kLog is GPLv3 licensed and is available at http://klog.dinfo.unifi.it along with tutorials

    Supervised Typing of Big Graphs using Semantic Embeddings

    Full text link
    We propose a supervised algorithm for generating type embeddings in the same semantic vector space as a given set of entity embeddings. The algorithm is agnostic to the derivation of the underlying entity embeddings. It does not require any manual feature engineering, generalizes well to hundreds of types and achieves near-linear scaling on Big Graphs containing many millions of triples and instances by virtue of an incremental execution. We demonstrate the utility of the embeddings on a type recommendation task, outperforming a non-parametric feature-agnostic baseline while achieving 15x speedup and near-constant memory usage on a full partition of DBpedia. Using state-of-the-art visualization, we illustrate the agreement of our extensionally derived DBpedia type embeddings with the manually curated domain ontology. Finally, we use the embeddings to probabilistically cluster about 4 million DBpedia instances into 415 types in the DBpedia ontology.Comment: 6 pages, to be published in Semantic Big Data Workshop at ACM, SIGMOD 2017; extended version in preparation for Open Journal of Semantic Web (OJSW

    Learning First-Order Definitions of Functions

    Full text link
    First-order learning involves finding a clause-form definition of a relation from examples of the relation and relevant background information. In this paper, a particular first-order learning system is modified to customize it for finding definitions of functional relations. This restriction leads to faster learning times and, in some cases, to definitions that have higher predictive accuracy. Other first-order learning systems might benefit from similar specialization.Comment: See http://www.jair.org/ for any accompanying file

    Learning Tuple Probabilities

    Get PDF
    Learning the parameters of complex probabilistic-relational models from labeled training data is a standard technique in machine learning, which has been intensively studied in the subfield of Statistical Relational Learning (SRL), but---so far---this is still an under-investigated topic in the context of Probabilistic Databases (PDBs). In this paper, we focus on learning the probability values of base tuples in a PDB from labeled lineage formulas. The resulting learning problem can be viewed as the inverse problem to confidence computations in PDBs: given a set of labeled query answers, learn the probability values of the base tuples, such that the marginal probabilities of the query answers again yield in the assigned probability labels. We analyze the learning problem from a theoretical perspective, cast it into an optimization problem, and provide an algorithm based on stochastic gradient descent. Finally, we conclude by an experimental evaluation on three real-world and one synthetic dataset, thus comparing our approach to various techniques from SRL, reasoning in information extraction, and optimization

    Apperceptive patterning: Artefaction, extensional beliefs and cognitive scaffolding

    Get PDF
    In “Psychopower and Ordinary Madness” my ambition, as it relates to Bernard Stiegler’s recent literature, was twofold: 1) critiquing Stiegler’s work on exosomatization and artefactual posthumanism—or, more specifically, nonhumanism—to problematize approaches to media archaeology that rely upon technical exteriorization; 2) challenging how Stiegler engages with Giuseppe Longo and Francis Bailly’s conception of negative entropy. These efforts were directed by a prevalent techno-cultural qualifier: the rise of Synthetic Intelligence (including neural nets, deep learning, predictive processing and Bayesian models of cognition). This paper continues this project but first directs a critical analytic lens at the Derridean practice of the ontologization of grammatization from which Stiegler emerges while also distinguishing how metalanguages operate in relation to object-oriented environmental interaction by way of inferentialism. Stalking continental (Kapp, Simondon, Leroi-Gourhan, etc.) and analytic traditions (e.g., Carnap, Chalmers, Clark, Sutton, Novaes, etc.), we move from artefacts to AI and Predictive Processing so as to link theories related to technicity with philosophy of mind. Simultaneously drawing forth Robert Brandom’s conceptualization of the roles that commitments play in retrospectively reconstructing the social experiences that lead to our endorsement(s) of norms, we compliment this account with Reza Negarestani’s deprivatized account of intelligence while analyzing the equipollent role between language and media (both digital and analog)
    • …
    corecore