2,327 research outputs found

    Kernel methods in genomics and computational biology

    Full text link
    Support vector machines and kernel methods are increasingly popular in genomics and computational biology, due to their good performance in real-world applications and strong modularity that makes them suitable to a wide range of problems, from the classification of tumors to the automatic annotation of proteins. Their ability to work in high dimension, to process non-vectorial data, and the natural framework they provide to integrate heterogeneous data are particularly relevant to various problems arising in computational biology. In this chapter we survey some of the most prominent applications published so far, highlighting the particular developments in kernel methods triggered by problems in biology, and mention a few promising research directions likely to expand in the future

    Structured, sparse regression with application to HIV drug resistance

    Full text link
    We introduce a new version of forward stepwise regression. Our modification finds solutions to regression problems where the selected predictors appear in a structured pattern, with respect to a predefined distance measure over the candidate predictors. Our method is motivated by the problem of predicting HIV-1 drug resistance from protein sequences. We find that our method improves the interpretability of drug resistance while producing comparable predictive accuracy to standard methods. We also demonstrate our method in a simulation study and present some theoretical results and connections.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS428 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Graph-Based Approaches to Protein StructureComparison - From Local to Global Similarity

    Get PDF
    The comparative analysis of protein structure data is a central aspect of structural bioinformatics. Drawing upon structural information allows the inference of function for unknown proteins even in cases where no apparent homology can be found on the sequence level. Regarding the function of an enzyme, the overall fold topology might less important than the specific structural conformation of the catalytic site or the surface region of a protein, where the interaction with other molecules, such as binding partners, substrates and ligands occurs. Thus, a comparison of these regions is especially interesting for functional inference, since structural constraints imposed by the demands of the catalyzed biochemical function make them more likely to exhibit structural similarity. Moreover, the comparative analysis of protein binding sites is of special interest in pharmaceutical chemistry, in order to predict cross-reactivities and gain a deeper understanding of the catalysis mechanism. From an algorithmic point of view, the comparison of structured data, or, more generally, complex objects, can be attempted based on different methodological principles. Global methods aim at comparing structures as a whole, while local methods transfer the problem to multiple comparisons of local substructures. In the context of protein structure analysis, it is not a priori clear, which strategy is more suitable. In this thesis, several conceptually different algorithmic approaches have been developed, based on local, global and semi-global strategies, for the task of comparing protein structure data, more specifically protein binding pockets. The use of graphs for the modeling of protein structure data has a long standing tradition in structural bioinformatics. Recently, graphs have been used to model the geometric constraints of protein binding sites. The algorithms developed in this thesis are based on this modeling concept, hence, from a computer scientist's point of view, they can also be regarded as global, local and semi-global approaches to graph comparison. The developed algorithms were mainly designed on the premise to allow for a more approximate comparison of protein binding sites, in order to account for the molecular flexibility of the protein structures. A main motivation was to allow for the detection of more remote similarities, which are not apparent by using more rigid methods. Subsequently, the developed approaches were applied to different problems typically encountered in the field of structural bioinformatics in order to assess and compare their performance and suitability for different problems. Each of the approaches developed during this work was capable of improving upon the performance of existing methods in the field. Another major aspect in the experiments was the question, which methodological concept, local, global or a combination of both, offers the most benefits for the specific task of protein binding site comparison, a question that is addressed throughout this thesis

    Improvements to the APBS biomolecular solvation software suite

    Full text link
    The Adaptive Poisson-Boltzmann Solver (APBS) software was developed to solve the equations of continuum electrostatics for large biomolecular assemblages that has provided impact in the study of a broad range of chemical, biological, and biomedical applications. APBS addresses three key technology challenges for understanding solvation and electrostatics in biomedical applications: accurate and efficient models for biomolecular solvation and electrostatics, robust and scalable software for applying those theories to biomolecular systems, and mechanisms for sharing and analyzing biomolecular electrostatics data in the scientific community. To address new research applications and advancing computational capabilities, we have continually updated APBS and its suite of accompanying software since its release in 2001. In this manuscript, we discuss the models and capabilities that have recently been implemented within the APBS software package including: a Poisson-Boltzmann analytical and a semi-analytical solver, an optimized boundary element solver, a geometry-based geometric flow solvation model, a graph theory based algorithm for determining pKaK_a values, and an improved web-based visualization tool for viewing electrostatics

    Geometric, Feature-based and Graph-based Approaches for the Structural Analysis of Protein Binding Sites : Novel Methods and Computational Analysis

    Get PDF
    In this thesis, protein binding sites are considered. To enable the extraction of information from the space of protein binding sites, these binding sites must be mapped onto a mathematical space. This can be done by mapping binding sites onto vectors, graphs or point clouds. To finally enable a structure on the mathematical space, a distance measure is required, which is introduced in this thesis. This distance measure eventually can be used to extract information by means of data mining techniques

    Improved Microarray-Based Decision Support with Graph Encoded Interactome Data

    Get PDF
    In the past, microarray studies have been criticized due to noise and the limited overlap between gene signatures. Prior biological knowledge should therefore be incorporated as side information in models based on gene expression data to improve the accuracy of diagnosis and prognosis in cancer. As prior knowledge, we investigated interaction and pathway information from the human interactome on different aspects of biological systems. By exploiting the properties of kernel methods, relations between genes with similar functions but active in alternative pathways could be incorporated in a support vector machine classifier based on spectral graph theory. Using 10 microarray data sets, we first reduced the number of data sources relevant for multiple cancer types and outcomes. Three sources on metabolic pathway information (KEGG), protein-protein interactions (OPHID) and miRNA-gene targeting (microRNA.org) outperformed the other sources with regard to the considered class of models. Both fixed and adaptive approaches were subsequently considered to combine the three corresponding classifiers. Averaging the predictions of these classifiers performed best and was significantly better than the model based on microarray data only. These results were confirmed on 6 validation microarray sets, with a significantly improved performance in 4 of them. Integrating interactome data thus improves classification of cancer outcome for the investigated microarray technologies and cancer types. Moreover, this strategy can be incorporated in any kernel method or non-linear version of a non-kernel method

    Kern-basierte Lernverfahren für das virtuelle Screening

    Get PDF
    We investigate the utility of modern kernel-based machine learning methods for ligand-based virtual screening. In particular, we introduce a new graph kernel based on iterative graph similarity and optimal assignments, apply kernel principle component analysis to projection error-based novelty detection, and discover a new selective agonist of the peroxisome proliferator-activated receptor gamma using Gaussian process regression. Virtual screening, the computational ranking of compounds with respect to a predicted property, is a cheminformatics problem relevant to the hit generation phase of drug development. Its ligand-based variant relies on the similarity principle, which states that (structurally) similar compounds tend to have similar properties. We describe the kernel-based machine learning approach to ligand-based virtual screening; in this, we stress the role of molecular representations, including the (dis)similarity measures defined on them, investigate effects in high-dimensional chemical descriptor spaces and their consequences for similarity-based approaches, review literature recommendations on retrospective virtual screening, and present an example workflow. Graph kernels are formal similarity measures that are defined directly on graphs, such as the annotated molecular structure graph, and correspond to inner products. We review graph kernels, in particular those based on random walks, subgraphs, and optimal vertex assignments. Combining the latter with an iterative graph similarity scheme, we develop the iterative similarity optimal assignment graph kernel, give an iterative algorithm for its computation, prove convergence of the algorithm and the uniqueness of the solution, and provide an upper bound on the number of iterations necessary to achieve a desired precision. In a retrospective virtual screening study, our kernel consistently improved performance over chemical descriptors as well as other optimal assignment graph kernels. Chemical data sets often lie on manifolds of lower dimensionality than the embedding chemical descriptor space. Dimensionality reduction methods try to identify these manifolds, effectively providing descriptive models of the data. For spectral methods based on kernel principle component analysis, the projection error is a quantitative measure of how well new samples are described by such models. This can be used for the identification of compounds structurally dissimilar to the training samples, leading to projection error-based novelty detection for virtual screening using only positive samples. We provide proof of principle by using principle component analysis to learn the concept of fatty acids. The peroxisome proliferator-activated receptor (PPAR) is a nuclear transcription factor that regulates lipid and glucose metabolism, playing a crucial role in the development of type 2 diabetes and dyslipidemia. We establish a Gaussian process regression model for PPAR gamma agonists using a combination of chemical descriptors and the iterative similarity optimal assignment kernel via multiple kernel learning. Screening of a vendor library and subsequent testing of 15 selected compounds in a cell-based transactivation assay resulted in 4 active compounds. One compound, a natural product with cyclobutane scaffold, is a full selective PPAR gamma agonist (EC50 = 10 +/- 0.2 muM, inactive on PPAR alpha and PPAR beta/delta at 10 muM). The study delivered a novel PPAR gamma agonist, de-orphanized a natural bioactive product, and, hints at the natural product origins of pharmacophore patterns in synthetic ligands.Wir untersuchen moderne Kern-basierte maschinelle Lernverfahren für das Liganden-basierte virtuelle Screening. Insbesondere entwickeln wir einen neuen Graphkern auf Basis iterativer Graphähnlichkeit und optimaler Knotenzuordnungen, setzen die Kernhauptkomponentenanalyse für Projektionsfehler-basiertes Novelty Detection ein, und beschreiben die Entdeckung eines neuen selektiven Agonisten des Peroxisom-Proliferator-aktivierten Rezeptors gamma mit Hilfe von Gauß-Prozess-Regression. Virtuelles Screening ist die rechnergestützte Priorisierung von Molekülen bezüglich einer vorhergesagten Eigenschaft. Es handelt sich um ein Problem der Chemieinformatik, das in der Trefferfindungsphase der Medikamentenentwicklung auftritt. Seine Liganden-basierte Variante beruht auf dem Ähnlichkeitsprinzip, nach dem (strukturell) ähnliche Moleküle tendenziell ähnliche Eigenschaften haben. In unserer Beschreibung des Lösungsansatzes mit Kern-basierten Lernverfahren betonen wir die Bedeutung molekularer Repräsentationen, einschließlich der auf ihnen definierten (Un)ähnlichkeitsmaße. Wir untersuchen Effekte in hochdimensionalen chemischen Deskriptorräumen, ihre Auswirkungen auf Ähnlichkeits-basierte Verfahren und geben einen Literaturüberblick zu Empfehlungen zur retrospektiven Validierung, einschließlich eines Beispiel-Workflows. Graphkerne sind formale Ähnlichkeitsmaße, die inneren Produkten entsprechen und direkt auf Graphen, z.B. annotierten molekularen Strukturgraphen, definiert werden. Wir geben einen Literaturüberblick über Graphkerne, insbesondere solche, die auf zufälligen Irrfahrten, Subgraphen und optimalen Knotenzuordnungen beruhen. Indem wir letztere mit einem Ansatz zur iterativen Graphähnlichkeit kombinieren, entwickeln wir den iterative similarity optimal assignment Graphkern. Wir beschreiben einen iterativen Algorithmus, zeigen dessen Konvergenz sowie die Eindeutigkeit der Lösung, und geben eine obere Schranke für die Anzahl der benötigten Iterationen an. In einer retrospektiven Studie zeigte unser Graphkern konsistent bessere Ergebnisse als chemische Deskriptoren und andere, auf optimalen Knotenzuordnungen basierende Graphkerne. Chemische Datensätze liegen oft auf Mannigfaltigkeiten niedrigerer Dimensionalität als der umgebende chemische Deskriptorraum. Dimensionsreduktionsmethoden erlauben die Identifikation dieser Mannigfaltigkeiten und stellen dadurch deskriptive Modelle der Daten zur Verfügung. Für spektrale Methoden auf Basis der Kern-Hauptkomponentenanalyse ist der Projektionsfehler ein quantitatives Maß dafür, wie gut neue Daten von solchen Modellen beschrieben werden. Dies kann zur Identifikation von Molekülen verwendet werden, die strukturell unähnlich zu den Trainingsdaten sind, und erlaubt so Projektionsfehler-basiertes Novelty Detection für virtuelles Screening mit ausschließlich positiven Beispielen. Wir führen eine Machbarkeitsstudie zur Lernbarkeit des Konzepts von Fettsäuren durch die Hauptkomponentenanalyse durch. Der Peroxisom-Proliferator-aktivierte Rezeptor (PPAR) ist ein im Zellkern vorkommender Rezeptor, der den Fett- und Zuckerstoffwechsel reguliert. Er spielt eine wichtige Rolle in der Entwicklung von Krankheiten wie Typ-2-Diabetes und Dyslipidämie. Wir etablieren ein Gauß-Prozess-Regressionsmodell für PPAR gamma-Agonisten mit chemischen Deskriptoren und unserem Graphkern durch gleichzeitiges Lernen mehrerer Kerne. Das Screening einer kommerziellen Substanzbibliothek und die anschließende Testung 15 ausgewählter Substanzen in einem Zell-basierten Transaktivierungsassay ergab vier aktive Substanzen. Eine davon, ein Naturstoff mit Cyclobutan-Grundgerüst, ist ein voller selektiver PPAR gamma-Agonist (EC50 = 10 +/- 0,2 muM, inaktiv auf PPAR alpha und PPAR beta/delta bei 10 muM). Unsere Studie liefert einen neuen PPAR gamma-Agonisten, legt den Wirkmechanismus eines bioaktiven Naturstoffs offen, und erlaubt Rückschlüsse auf die Naturstoffursprünge von Pharmakophormustern in synthetischen Liganden

    Thermodynamic driving forces in protein regulation studied by molecular dynamics simulations.

    No full text

    Active search in intensionally specified structured spaces

    Get PDF
    We consider an active search problem in intensionally specified structured spaces. The ultimate goal in this setting is to discover structures from structurally different partitions of a fixed but unknown target class. An example of such a process is that of computer-aided de novo drug design. In the past 20 years several Monte Carlo search heuristics have been developed for this process. Motivated by these hand-crafted search heuristics, we devise a Metropolis--Hastings sampling scheme where the acceptance probability is given by a probabilistic surrogate of the target property, modeled with a max entropy conditional model. The surrogate model is updated in each iteration upon the evaluation of a selected structure. The proposed approach is consistent and the empirical evidence indicates that it achieves a large structural variety of discovered targets
    corecore