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“The Road goes ever on and on

Down from the door where it began.

Now far ahead the Road has gone,

And I must follow, if I can,

Pursuing it with eager feet,

Until it joins some larger way

Where many paths and errands meet.

And whither then? I cannot say.”

J.R.R. Tolkien, The Lord Of The Rings





Summary

The comparative analysis of protein structure data is a central aspect of structural

bioinformatics. Drawing upon structural information allows the inference of function

for unknown proteins even in cases where no apparent homology can be found on the

sequence level.

Regarding the function of an enzyme, the overall fold topology might less impor-

tant than the specific structural conformation of the catalytic site or the surface region

of a protein, where the interaction with other molecules, such as binding partners,

substrates and ligands occurs. Thus, a comparison of these regions is especially inter-

esting for functional inference, since structural constraints imposed by the demands

of the catalyzed biochemical function make them more likely to exhibit structural

similarity. Moreover, the comparative analysis of protein binding sites is of special

interest in pharmaceutical chemistry, in order to predict cross reactivities and gain a

deeper understanding of the catalysis mechanism.

From an algorithmic point of view, the comparison of structured data, or, more

generally, complex objects, can be attempted based on different methodological prin-

ciples. Global methods aim at comparing structures as a whole, while local methods

transfer the problem to multiple comparisons of local substructures. In the context

of protein structure analysis, it is not a priori clear, which strategy is more suitable.

In this thesis, several conceptually different algorithmic approaches have been

developed, based on local, global and semi-global strategies, for the task of comparing

protein structure data, more specifically protein binding pockets. The use of graphs

for the modeling of protein structure data has a long standing tradition in structural

bioinformatics. Recently, graphs have been used to model the geometric constraints

of protein binding sites. The algorithms developed in this thesis are based on this

modeling concept, hence, from a computer scientist’s point of view, they can also be

regarded as global, local and semi-global approaches to graph comparison.

The developed algorithms were mainly designed on the premise to allow for a

more approximate comparison of protein binding sites, in order to account for the

molecular flexibility of the protein structures. A main motivation was to allow for



the detection of more remote similarities, that are not apparent by using more rigid

methods. Subsequently, the developed approaches were applied to different problems

typically encountered in the field of structural bioinformatics in order to assess and

compare their performance and suitability for different problems.

Each of the approaches developed during this work was capable of improving

upon the performance of existing methods in the field. Another major aspect in

the experiments was the question, which methodological concept, local, global or a

combination of both, offers the most benefits for the specific task of protein binding

site comparison, a question that is addressed throughout this thesis.



Zusammenfassung

Die vergleichende Analyse von Protein-Strukturdaten ist ein zentraler Aspekt

der strukturellen Bioinformatik. Das Heranziehen von struktureller Information er-

laubt es, Rückschlüsse auf die Funktion unbekannter Proteine zu ziehen, besonders

in Fällen, wo keine erkennbare Sequenzhomologie zu anderen Proteinen zu finden ist.

Für die Funktion eines Enzyms ist die Faltungsstruktur vermutlich weniger be-

deutsam als die strukturelle Konformation des katalytischen Zentrums oder der Ober-

flächenregionen, an denen die Interaktion mit Bindepartnern, Substraten und Ligan-

den stattfindet. Eine vergleichende Analyse dieser Regionen ist daher besonders inter-

essant um die Funktion eines Proteins zu ermitteln, da strukturelle Einschränkungen

aufgrund der Anforderungen der katalysierten biochemischen Reaktion die Wahr-

scheinlichkeit einer strukturellen Ähnlichkeit erhöhen. Darüber hinaus ist die ver-

gleichende Analyse von Proteinbindetaschen von besonderem Interesse in der phar-

mazeutischen Chemie, um mögliche Kreuzreaktivitäten zu erkennen und ein tieferes

Verständnis für den Katalysemechanismus zu erlangen.

Von einem algorithmischen Standpunkt betrachtet, kann der Vergleich strukturel-

ler Daten, oder allgemeiner, komplexer Objekte, durch unterschiedliche methodische

Prinzipien angegangen werden. Globale Methoden zielen auf einen Vergleich der kom-

pletten Struktur als Ganzes ab, während lokale Methoden das Problem auf den mul-

tiplen Vergleich lokaler Substrukturen verlegen. Vor dem Hintergrund des Vergleichs

von Proteinstrukturen ist nicht a priori bekannt, welche Strategie sinnvoller ist.

In dieser Dissertation wurden mehrere konzeptionell unterschiedliche algorithmi-

sche Ansätze basierend auf lokalen, globalen und semi- globalen Strategien entwi-

ckelt, mit dem Ziel strukturelle Daten, genauer, Proteinbindetaschen zu vergleichen.

Die Verwendung von Graphen zur Modellierung von Proteinstrukturen hat eine lange

Tradition in der strukturellen Bioinformatik. Seit einiger Zeit werden Graphen auch

zur Modellierung von Proteinbindetaschen verwendet. Die Algorithmen, die hier ent-

wickelt wurden, basieren auf diesem Modellierungskonzept, daher kann man diese Me-

thoden vom informatischen Standpunkt aus auch als lokale, globale und semi-globale

Ansätze zum Vergleich von Graphen auffassen.



Die Algorithmen wurden hauptsächlich unter der Prämisse entwickelt, einen mehr

approximativen Vergleich von Proteinbindetaschen zu erlauben um der strukturellen

Dynamik von Proteinstrukturen Rechnung zu tragen. Eine Motivation dafür war es,

unter Umständen weniger offensichtliche Ähnlichkeiten zu finden, die durch rigidere

Methoden übersehen werden können. Die entwickelten Ansätze wurden anschließend

auf verschiedenen typischen Problemen der strukturellen Bioinformatik angewendet

und ihre Performanz zu untersuchen und zu vergleichen.

Jeder der entwickelten Ansätze war in der Lage, Verbesserungen gegenüber be-

stehende Methoden basierend auf den gleichen Prinzipien zu erzielen. Ein weiterer

wichtiger Aspekt dieser Arbeit war es, herauszufinden, welches methodische Konzept

am besten geeignet ist für den Vergleich von Proteinbindetaschen. Dieser Frage wird

im Rahmen dieser Dissertation nachgegangen.
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1
Introduction

The advent of more and more advanced sequencing technologies has brought a vast

amount of information detailing genes in a variety of different organisms. With each

year, this data is expanding rapidly, producing novel sequences for which no functional

annotation exists.

While the acquisition of protein structure data is far behind that rate, the Protein

Data Bank (PDB) (Berman et al., 2000) is nevertheless growing exponentially with

each passing year (Klebe, 2009), thanks to advances in the field of nuclear magnetic

resonance spectroscopy (Pellecchia et al., 2002) and high-throughput crystallography

(Blundell et al., 2002). Several structural genomics projects across the globe aim at

closing the gap between sequence and structure knowledge by experimentally deter-

mining the structure of a large number of proteins by high-throughput approaches as

fast and as accurate as possible. While all of these projects have their own agenda,

this ultimately serves to increase the coverage of protein structure space significantly,

yielding a large number of structures for which no functional annotation is available

(Chandonia and Brenner, 2006; David et al., 2011).

This is in contrast to the classical approach to protein structure analysis which

typically involves starting with a protein of interest, collecting functional information

by conducting biochemical experiments and then turn to the protein structure to

rationalize the function (Thornton et al., 2000). As a result, the need for robust au-

tomated prediction methods that are capable of deriving a prediction of function for
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unknown proteins is as great as ever. Moreover, the possibility to draw upon struc-

tural information to infer protein function for proteins without functional annotation

is becoming increasingly viable, thanks to the continuing growth of the PDB.

The steady improvement of structure prediction tools (Ben-David et al., 2009;

Qian et al., 2007; Wang et al., 2010) based on sequence information offers another

promising source for structure information. For many cases, sophisticated modeling

approaches can already generate very accurate structure predictions, although the de

novo prediction of structures is still an open problem (Kryshtafovych et al., 2009).

Given this increase in available data, it is hardly surprising that structural bio-

informatics has gained increasing attention in the past years (Andreeva and Murzin,

2010; Berman et al., 2000, 2009; Pérot et al., 2010), the major field of application

being the inference and analysis of protein function. The inference of function of

unknown proteins plays a central role in life sciences in general and pharmaceutical

chemistry in particular. In this regard, the comparison of proteins is a central task.

Generally speaking, prediction of protein function is either done on the sequence

level or the structure level. Sequence-based comparison is usually the first method of

choice, owing to the observation that proteins with an amino acid sequence similarity

above 40 % tend to have similar functions (Todd et al., 2001). For this task, a large

variety of different algorithmic approaches are available and widely used (Altschul

et al., 1997; Edgar, 2004; Hannenhalli and Russell, 2000; Jensen et al., 2003; Larkin

et al., 2007; Notredame et al., 2000; Pearson, 1991; Sjölander, 2004).

Below this threshold however, protein function is much less conserved (Whisstock

and Lesk, 2004). As a result, prediction accuracy declines for proteins whose sequence

identity falls below a certain percentage (Lee et al., 2007; Rost, 2002; Tian and Skol-

nick, 2003). Where sequence-based methods fail to provide a functional prediction,

for example in case of orphan proteins, structure-based approaches can allow us to

gain further insights.

Structural similarity can still exist even if the corresponding sequences show low

similarity. This is not as surprising as one might think. While it is true that protein

structure is determined by the amino acid sequence, it has been shown that only a

small fraction of amino acids are crucial to stabilizing a certain three-dimensional fold

(Guo et al., 2004; Russ et al., 2005). One also has to mention that the number of
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viable protein folds is much smaller as sequence variability would suggest. Some low

estimates assume merely 1,000 (Leonov et al., 2003; Wang, 1998) folds, while other,

more realistic numbers range between 4,000 to 10,000 (Govindarajan et al., 1999;

Grant et al., 2004; Liu et al., 2004) folds. Thus, it is save to say that a high sequence

similarity indicates functional similarity, but the opposite is not necessarily true.

In the field of pharmaceutical chemistry, the structural analysis of proteins is also

of special interest. Beyond the inference of protein function, one is typically interested

in a more detailed analysis of the protein active site in order to gain a better under-

standing of the mechanisms governing enzyme activity and the interaction between

protein and ligand or substrate.

As sequence-based approaches can hardly be used to pinpoint the spatial position-

ing of functionally important residues, the use of structure-based approaches might

again provide further insights into these problems. Moreover, subtle differences in the

structural composition of active sites can cause differences in enzyme activity, affinity

to a certain substrate or ligand and even alter the catalyzed biochemical reaction (Jost

et al., 2010; Zou et al., 2010). Thus, it is questionable whether sequence-based ap-

proaches alone are always sufficient to gain an understanding of these mechanisms, as

the protein structure carries potentially much more direct information than sequence

alone.

1.1 Aspects of protein structure comparison

A major task in structural bioinformatics is the comparison of protein structures.

While protein structure data is much less abundant than protein sequence informa-

tion, the comparison of structures has nevertheless been attempted with great vigor

and effort in the structural bioinformatics community. Unsurprisingly, a huge num-

ber of different algorithms have been proposed during the last 15 years that employ

fundamentally different principles.

These approaches can be divided into two major categories, much in analogy to

sequence comparison methods. In sequence comparison, DNA and amino acid se-

quences are mostly compared in terms of global alignments (Needleman and Wunsch,

1970), which align every amino acid or nucleotide in the sequences of interest, or
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local alignments (Smith and Waterman, 1981), whose goal is to find and align similar

common subsequences. The former strategy is most useful for evolutionary related

sequences of roughly equal length, while the latter approach is usually chosen for

sequences that are dissimilar but suspected to contain similar subsequences, corre-

sponding to common motifs or functional domains. Hybrid methods have also been

proposed (Brudno et al., 2003).

This distinction is also valid for protein structure comparison. One group of ap-

proaches generally aims at comparing complete protein structures, which is usually

referred to as global structure comparison. Other approaches specifically focus on

certain regions of interest, for example protein active sites, catalytic triads, protein-

protein interfaces or protein binding sites. This latter group of approaches is conse-

quently described as local structure comparison (Watson et al., 2009).

Global structure comparison methods compare the complete tertiary structure

of proteins in terms of their fold, using geometric approaches as well as algorithms

based on derived representations, such as secondary structure elements. An overview

of these approaches will be given in Chapter 2. The rationale behind these approaches

is the assumption, that the so-called fold space, the set of all existent tertiary folds

(Scheeff and Fink, 2009), is much smaller than the diversity of sequences implies

(Govindarajan et al., 1999; Grant et al., 2004; Leonov et al., 2003; Liu et al., 2004;

Wang, 1998).

Local structure comparison instead focuses on functionally relevant substructures

of the complete proteins. Among these methods are so-called template-based and

surface-based approaches, which will be discussed in the next chapter. The motivation

here is the assumption, that the overall fold is less important for a specific function,

than the local region, where the catalytic center is located. Indeed, examples are

known in which similar folds catalyze different biochemical reactions (Copley et al.,

2004; Nagano et al., 2002; Orengo et al., 1999).

Both principles have their merits. While global structure comparison can in many

cases successfully identify functional similarities and uncover important functional

domains (Thornton, 2001), they mostly consider a much lower level of detail, as

usually only protein backbones are compared. Local structure comparison instead
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trades the overall picture for a more detailed view of the substructures, as usually

side chain positions are considered as well (Watson et al., 2009).

In pharmaceutical chemistry, especially local structure comparison is of interest,

as a major goal is the design of usually small molecules as drug candidates that are

able to interact and modulate the function of certain target proteins. To this end, a

more detailed representation of the targets is obviously necessary.

In this work, the focus will be on the comparison of protein binding sites, a special

case of local protein structure comparison, hence the approaches and experiments

presented in this thesis can be considered as local protein comparison approaches,

although the developed algorithms are not limited to this kind of application and

might be interesting for other tasks as well.

1.2 Protein structure comparison in pharmaceuti-

cal chemistry

In pharmaceutical chemistry, the analysis and comparison of structures is a useful

methodology in knowledge-based drug design, especially in the context of computer-

assisted drug design (CADD). CADD offers a great arsenal of methods that helps to

design new drug candidates and assess their potential activity. Combinatorial chem-

istry allows for the computerized design of potential agents by combining libraries

of chemical groups (Corbett et al., 2006). Molecular dynamics deals with the pre-

diction of conformations and conformational changes of molecules using statistical

simulations (Karplus and McCammon, 2002). Knowledge-based drug design utilizes

structure information of ligands and proteins.

Roughly speaking, knowledge-based drug design can be divided in two major

categories: Ligand-based drug design and receptor-based drug design (Schneider and

Fechner, 2005). Ligand-based drug design exploits knowledge of existing ligand struc-

tures that are known to bind to a protein of interest in the development of new drug

candidates. Methods in this category include for example the construction of phar-

macophore models (Langer and Hoffmann, 2006) or quantitative structure-activity

relationships (QSAR) (Dudek et al., 2006). Receptor-based drug design instead uti-

lizes knowledge of the target structure. This involves database searches and virtual
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screening (to find potential ligands for a given target), docking techniques (to predict

the binding affinity of a specific drug candidate to its target) (Morris et al., 1998) or

structure-based de novo ligand design (Böhm, 1992; Zhu et al., 2001). The compari-

son of protein structures and protein binding sites also belongs into this category and

is useful for several different tasks.

One primary objective in modern drug development is the identification of new

druggable targets, that are related to a certain disease. In this context, the term

druggable refers to targets whose function can be modulated by small chemical com-

pounds that can be used as therapeutic agents. In most cases, these biological targets

are proteins, such as enzymes, ion channels, hormone receptors, transport proteins

and others, but also nucleic acids can be targets (Chen et al., 2002; Zhu et al., 2010).

The characterization and prediction of protein function is an important aspect of the

search of potential new drug targets, especially, if one is interested in a high selectivity

towards pathogens, in which case one would typically select targets that are charac-

teristic of the pathogen. This can be attempted using either sequence or structure

comparison.

The ultimate goal in knowledge-based drug design is the development of com-

pounds that are likely to interfere with a given target. Typically, these molecules act

as ligands that bind to the target structures and modulate their function, i.e. by act-

ing as agonists, inverse agonists or antagonists for receptors, or as enzyme inhibitors

and allosteric effectors (Klebe, 2009). In the case of protein targets, these interactions

between ligand and protein typically occur in clefts on the protein surface referred to

as protein binding sites (Laskowski et al., 1996; Peters et al., 1996). The binding of

a certain ligand in a protein binding site occurs in a very specific way, which is often

described by a key-lock analogy, a metaphor that traces back to the German chemist

and Nobel laureate Emil Fischer in 1894. More precisely, the ligand possesses a suit-

able size and form to fit optimally in the spatial confinement of the binding site and

exhibits complementary chemical properties to the surface properties of the binding

site.

Ideally, a novel candidate should be “druglike”, i.e. exhibit characteristics such as

high efficacy, potency and bioavailability, minimal side effects and a high metabolic

stability. Different rules and scoring functions exist to appraise the druglikeness of
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a compound, such as the Lipinski rule-of-five (Lipinski et al., 1997) or the lipophilic

efficiency (Ryckmans et al., 2009). Other desirable properties are a high specificity

and affinity to the target structure as well as a high selectivity, though also highly

promiscuous therapeutic agents exist that interfere with multiple targets, so-called

“dirty drugs” (Klebe, 2009). Especially for these latter properties, the analysis of

protein binding sites and ligand-protein interactions plays an important role, as such

analyses are vital for the understanding of the governing principles that are responsi-

ble for the addressability of a target. For this reason, many surface-based databases

of protein binding sites have been developed (Binkowski et al., 2003b; Kinoshita and

Nakamura, 2003; Schmitt et al., 2002; Shulman-Peleg et al., 2004). The analysis and

comparison of such binding sites is instrumental for understanding the chemical basis

of the protein-ligand interaction and the mode of action that determines the protein

function.

In recent years, the characterization of protein families has become more and

more important in this regard, based on the assumption that related proteins bind

similar ligands (Naumann and Matter, 2002). Such so-called chemogenomics aim at

the identification of the structural and physicochemical properties of a protein that

influence selectivity and specificity by ascertaining the commonalities and differences

of related proteins (Bredel and Jacoby, 2004; Mestres, 2004). A comparison of protein

binding sites in this context is a reasonable strategy, since it focuses on the region of

interest instead of comparing complete proteins on sequence or fold level.

Another important aspect in knowledge-based drug design is the identification

and prediction of cross-reactivities. In a study of 2006, the cost of bringing a new

therapeutic agent to market was estimated around 500 million to two billion US dollar,

depending on developing company and therapy (Adams and Brantner, 2006). The

prediction of proteins that are likely to interact with a certain new drug candidate can

help to identify potential cross reactivities long before expensive experimental studies

are conducted, thus helping to filter out potentially harmful agents and lowering

production cost.

Finally, it should be stated that the comparison of molecular structures is not

only of interest for proteins. For example, in ligand-based drug design, a comparison

of ligand structures can be used to ascertain the minimal structural characteristics a
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drug candidate must exhibit in order to interact with the target. This information is

typically used to built a pharmacophore model which in turn is used to design new

candidates fulfilling the necessary requirements (Langer and Hoffmann, 2006).

1.3 Graph theory and structure comparison

This thesis focuses on the comparative analysis of protein binding sites as a special

case of molecular structure data. This obviously raises the question, how molecu-

lar structure data should be modeled in order to make it amenable to algorithmic

methods. In the realm of structural bioinformatics, many modeling concepts have

been used, the most common among them being secondary structure elements, direct

geometrical data, distance matrices and graphs (Marti-Renom et al., 2009; Watson

et al., 2009).

As will be outlined in Chapter 2, graphs represent a versatile and powerful frame-

work for the modeling of structured data. Graphs have been widely used in chemo-

informatics for the modeling of chemical compounds (Balaban et al., 1976; Bunke and

Jiang, 2000) as well as for the modeling of protein structure data in bioinformatics

(Artymiuk et al., 1994; Kinoshita and Nakamura, 2003).

In the context of this work, protein binding sites will be modeled using undirected

edge-weighted and node-labeled graphs. Thus, the comparison of protein binding

sites translates to a comparison of graphs and the algorithms presented in this thesis

basically constitute conceptually different approaches to graph comparison.

From a machine learning point of view, real-world objects are most commonly

described by a set of attributes or features. Hardly surprising, many algorithms

have been developed that build on this type of representation (Bishop, 2006). In the

case of structured data, this can become problematic. While it is always possible to

devise a function that maps structured objects to a set of structural descriptors, this

usually incurs a loss of information, i.e. the global structure is lost and cannot be

recovered from the descriptors. While this might not be a problem per se, it can lead

to suboptimal results in cases where the overall structure itself is important. In this

regard, graphs are more convenient for this work, since this data structure allows to
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model the dependencies between the constituents of an object without decomposing

the global structure.

This is even more important, since the derivation of meaningful attributes is a

problem of its own. Especially for protein binding sites, it is not possible yet to de-

termine the functionally important regions of a binding site automatically in advance,

based solely on protein structure information.

Graphs are used in a much wider context than the representation of molecular

structures. For example, graphs play a major role as modeling concepts for biolog-

ical networks, such as interaction networks (Berg and Lässig, 2004) or metabolomic

networks (Kanehisa et al., 2004). Moreover, they are used beyond the realm of life

science, for example to model social networks (Wasserman and Faust, 1994), HTML

documents (Page et al., 1998) or the Internet itself (Borgwardt, 2007).

From this point of view, focusing on graph-based methods is interesting as well,

as the approaches developed during this work could in principle be extended to other

graph-based problems as well and the general ideas behind the approaches might be

of interest for other fields of applications.

Particularly in the field of computer vision and pattern recognition, the presented

methods might be of some interest, since the problem of comparing structured ob-

jects is commonly encountered and addressed in this field. A plethora of different

approaches have been developed in this field as well, some also utilizing graph-based

models (Conte et al., 2004).

1.4 Goals

The main goal of this thesis is the development and validation of new algorithms

for the comparative analysis of protein binding sites or binding pockets. As outlined

above, protein binding pockets play an important role in pharmaceutical chemistry.

But the comparison of protein binding sites carries also some benefits for structural

bioinformatics in general. By comparing protein binding sites rather than complete

protein structures or sequences, one arguably focuses on the essential part of the struc-

ture that is responsible for its function. This reasoning is based on the assumption
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that the spatial composition of the binding site determines the capability of a pro-

tein to bind and interact with its substrates and ligands. Hence, important catalytic

residues are oriented towards such a cavity.

In principle, the comparison of these binding pockets can be used to approach

several different tasks, both in structural biology and knowledge-based drug design:

• Prediction of protein function: The biological function of a protein is largely

influenced by the spatial structure of the active center and the architecture of

their substrate binding site. Thus, retrieving similar binding pockets could in

principle be used to predict the function of unknown proteins, in cases where

sequence similarity or the overall fold might not yield a conclusive result (e.g.

orphan structures).

• Prediction of cross-reactivities: Given a new drug candidate that binds to a

certain target structure, it is important to identify potential cross-reactivities

early in the developmental stage. By searching for similar binding sites in a

database of cavities, potential cross-reactivities can be identified before expen-

sive experimental studies are conducted.

• Identifying new target structures: When searching for new potential drug tar-

gets in a specific pathogen, a comparative analysis of protein binding sites could

reveal structures that are sufficiently dissimilar from their human counterpart

to allow the development of highly selective drug candidates.

• Uncovering distant evolution: The comparison of protein binding sites could

in principle be used to uncover more distantly related proteins in the so-called

“twilight zone” of proteins, where sequence similarity is too low to infer a com-

mon ancestor reliably. This, however, must be viewed critically, as it carries the

risk of confusing a real hereditary relationship with convergent evolution.

• Characterizing protein families: Comparing protein binding sites can help to

characterize protein families on a functional level in the context of chemoge-

nomics.
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As mentioned previously, protein binding sites will be modeled as graphs, more

precisely edge-weighted and node-labeled graphs, building on the binding site re-

presentation used in CavBase (Kuhn et al., 2006; Schmitt et al., 2002), a database

developed for the of storage and analysis of putative binding pockets. These are

extracted by the LigSite algorithm (Hendlich et al., 1997) as clefts on the protein

surface in experimentally determined protein structures derived from the PDB. This

is illustrated in Fig. 1.1.

6 

protein structure  binding site extraction (LigSite) graph model G = (V, E, l, w) 

Figure 1.1: The modeling concept used in this work for the representation of protein
binding sites. Binding sites are extracted from PDB structures using the LigSite
algorithm and subsequently modeled as node-labeled and edge-weighted graphs.

In a previous work, such graph models have already been used to compare binding

pockets using a greedy heuristic (Weskamp, 2007). One motivation for this work

was to expand upon this representation and to improve the previously introduced

approach. Thus, the comparison of protein binding sites translates to a comparison

of graphs.

As outlined above, the comparison of DNA or amino acid sequence as well as the

comparison of protein structure share some analogy, as both tasks are approached

simultaneously on a local or a global scale. The comparison of protein binding pockets

in the sense of protein structure comparison is regarded as a local comparison problem.

But by regarding the protein binding sites as the actual entities to be compared, the

dualism of global and local comparison can be carried one step further.

So far, binding sites as such have largely been compared using global strategies, i.e.

by regarding complete binding sites as a whole. The heuristic approach by Weskamp
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(2007) is no exception, as it derives a global correspondence between binding sites

in the form of a structural alignment, by comparing the graphs corresponding to

these binding sites as a whole. But is this the only reasonable way to approach this

problem?

In analogy to sequence comparison as well as protein structure comparison, one

can alternatively approach the task of comparing protein binding sites by using a local

graph comparison method, thus deriving a measure of similarity for binding pockets

by comparing local properties of the corresponding graph models.

At this point, to avoid any terminological confusion, it should be stated that in

this context, the terms local and global refer to the way in which the corresponding

graphs are compared, regardless of whether a graph represents a whole molecular

structure or only a part thereof. In other words, these terms are used in a purely

methodological sense. This is in contrast to the way these terms are usually perceived

in the field of structural bioinformatics, where a global comparison typically refers to

comparing complete molecular structures and a local comparison to a comparison of

substructures, such as domains of active sites.

Global approaches aim at detecting the largest common substructure of two or

more binding sites sharing the same function. The rationale behind this is the notion

that this must be the essential part for the interaction with the substrate or ligand. If

this is the case, commonalities would be accurately detected by performing a global

comparison.

On the other hand, a local strategy might be more useful, at least in some cases.

Ligands in general are flexible molecules that might be bound in different confor-

mations. Thus it is imaginable that parts of the ligand are addressed by different

subpockets that might not necessarily be arranged in the same constellation. More-

over, determining the borders of a cavity is difficult and the functionally relevant

part of a binding site might be just a fraction of the extracted cavity, if the cavity

corresponds to a binding site at all.

Also, protein structures themselves are flexible and subjected to conformational

changes and even mutations that do not necessarily cause a loss of function. Given

that also structural data itself is noisy, due to measurement errors and resolution

issues, it is obvious, that some tolerance towards structural variation is necessary.
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While local approaches will be less affected by such variation, it might be possible to

combine this robustness with the benefits of a global algorithm, yielding a semi-global

algorithm.

All these ideas have some merit and it remains to be tested, which kind of approach

would have the greater benefit: Is a global method the only viable strategy or is a

local approach perhaps more suitable for the task? How would a combination of both

principles, a semi-global (or semi-local) method perform?

In order to shed some light on these questions, one purpose of this thesis is to

develop different algorithms based on these three principles, i.e., global, local and

semi-global methods, and to validate and analyze their performance in a comparative

study to convey an idea of the benefits and problems associated with these principles.
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2
Related Work

As outlined above, the comparative analysis of proteins is a central task in life science

in general. Hence it is not surprising, that a plethora of algorithms exist, that aim at a

comparison of proteins on one level or another. Moreover, approaches in this field can

either be viewed from an application point of view, focusing on the different aspects

of protein comparison, or a methodological one, assessing the different algorithmic

strategies involved.

The interdisciplinary nature of this study necessarily demands a consideration of

both aspects and thus touches a variety of different research areas, from the field of

pharmaceutical chemistry to structural genomics and computational biology. A dis-

cussion of relevant methods will necessarily remain incomplete, given the huge amount

of activity in these fields. However, in the following, the most important methods are

discussed briefly to place this thesis in the wider view of structure comparison.

2.1 Sequence-based approaches to protein compar-

ison

Generally speaking, protein comparison is either done on the sequence level or the

structure level. Sequence-based comparisons are widely used due to the nearly endless

availability of sequence information (UniProt-Consortium, 2009). Significant similar-

ities in sequence can usually provide a strong indication of functional and structural
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similarity, especially for highly similar sequences (Chothia and Lesk, 1986; Hark Gan

et al., 2002; Wilson et al., 2000; Wood and Pearson, 1999).

Sequence comparison typically boils down to calculating sequence alignments.

Among the first and most basic algorithms for pairwise sequence alignments are

the Needleman-Wunsch (Needleman and Wunsch, 1970) and the Smith-Watermann

(Smith and Waterman, 1981) algorithm. Both algorithms generate exact alignments

with respect to a certain scoring function using dynamic programming. While the

former generates a globally optimal alignment, that is, a global correspondence of the

complete sequences, the latter calculates local alignments and thus identifies common

subsequences in the amino acid composition.

For inference of function, these algorithms are of limited use due to their relatively

high complexity. Given the large amount of available data, sequence alignments are

more often approached by heuristics. Among the most widely used approaches are

the well-known BLAST (Altschul et al., 1990), Psi-BLAST (Altschul et al., 1997) and

FASTA (Pearson, 1991). While these methods cannot guarantee to find an optimal

solution, they are typically very fast and provide good results.

For lower sequence identity it becomes difficult to detect relationships among

proteins. More advanced pairwise methods that utilize sequence profiles (Gribskov

et al., 1987), Hidden Markov Models (Eddy, 1996; Krogh and Brown, 1994) or a

combination of both (Eddy, 1998) are more sensitive for lower sequence identities

(Watson et al., 2009).

The use of multiple alignment techniques also helps to alleviate this problem to a

certain degree (Park et al., 1998) and further improves the inference of function from

sequence, as a multiple alignment also offers the possibility of detecting conserved

and thus highly important residues in homologue proteins. The most prominent

approaches also use HMM profiles, like ClustalW2 (Larkin et al., 2007). T-Coffee

(Notredame et al., 2000), MAFFT (Katoh et al., 2002) or MUSCLE (Edgar, 2004)

expand pairwise to multiple alignments by using the progressive approach, basically a

greedy strategy following some sort of guiding information (e.g. phylogenetic distance,

kmer distance).

Still, sequence comparison cannot be used to analyze the spatial location of func-

tionally important residues, which is of great interest when assessing the biochemical
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function of a protein. Moreover, sequence alignments cannot always uncover the func-

tion of a protein correctly. While it has been shown that proteins with a sequence

identity above 40 % tend to share similar function (Todd et al., 2001), the results

of sequence comparison become more and more uncertain below that threshold (Lee

et al., 2007; Rost, 2002; Tian and Skolnick, 2003; Whisstock and Lesk, 2004).

As was mentioned in the previous chapter, structural similarity can still exist

while the sequence similarity is low, since only a small fraction of amino acids ac-

tually stabilize a certain fold and the greater part of the sequence is more or less

irrelevant for the tertiary structure (Guo et al., 2004; Russ et al., 2005). Given that

the number of viable protein folds is much smaller than sequence variation would

suggest (Govindarajan et al., 1999; Grant et al., 2004; Leonov et al., 2003; Liu et al.,

2004; Wang, 1998), structure comparison can provide further insights and uncover

more remote similarities in these cases (Thornton, 2001; Zarembinski et al., 1998).

Some advanced HMM profile-based approaches use structure information as well, e.g.,

to define protein families and detect homologues (Gene3D (Yeats et al., 2006)).

2.2 Protein structure comparison

In analogy to sequence comparison, approaches to protein structure comparison can

roughly be divided into local and global methods. Global methods typically aim at

deriving a structural correspondence between structures as a whole, while local meth-

ods usually focus on the comparison of functionally relevant parts of the molecules.

Such a comparison usually involves the calculation of structural alignments, similar

to sequence alignments.

Among the global methods are fold-based and geometric approaches, while local

methods typically refers to template-based and surface-based approaches. As each

group focuses on a different aspect of similarity, different strategies have been devel-

oped for the comparison and alignment of molecular data.

2.2.1 Fold-based and geometric structure comparison

Fold-based approaches typically compare the overall structure of proteins in terms

of fold geometry and can thus be considered global approaches. The function of
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unknown proteins is inferred from the closest match in fold databases like CATH

(Orengo et al., 1997), SCOP (Murzin et al., 1995), FSSP (Holm and Sander, 1996)

or SUPERFAMILY (Gough and Chothia, 2002).

These approaches focus on different levels of detail and calculate different types

of alignments. Geometric approaches represent protein structures on the level of

atom coordinates and typically produce alignments of Cα atoms of residues, whereas

other approaches use a higher level of abstraction, e.g. secondary structure elements

(SSE). As the calculation of optimal alignments for complete protein structures is NP-

complete (Lathrop, 1994), this task is usually tackled by heuristics. In the following,

some of these approaches are discussed briefly.

Most prominent among the fold-based approaches is the FSSP-associated DALI

method, which essentially uses contact maps of inter-residue distances derived from

corresponding Cα-atoms. Alignments of structurally equivalent residues are gener-

ated from so-called contact patterns, equivalent regions in the matrices, by means

of a Monte Carlo-approach (Holm and Park, 2000; Holm and Sander, 1995). SSAP

compares inter-atomic distance vectors to derive a similarity measure for residues and

calculates alignments using double dynamic programming (Orengo and Taylor, 1996;

Taylor et al., 1994). Another algorithm called Structal instead focuses on pairwise

residue distances and utilizes iterative dynamic programming (Gerstein and Levitt,

1996, 1998).

Among the methods build on SSE representations are VAST (Gibrat et al., 1996;

Madej et al., 1995) which calculates vector alignments of secondary structures, MSD-

Fold/SSM (Krissinel and Henrick, 2004a) and CATHEDRAL (Redfern et al., 2007).

All three methods rely on graph theory to find a correspondence between folds by

modeling the secondary structure in terms of graphs (SSEs are represented as graph

nodes) and performing graph comparison. CATHEDRAL includes the GRATH al-

gorithm as a component, while VAST uses PROTEP (Grindley et al., 1993), both of

which are based on clique-enumeration approach (Bron and Kerbosch, 1973), while

SSM utilizes its own subgraph isomorphism algorithm (Krissinel and Henrick, 2004b).

The MASS algorithm (Dror et al., 2003) calculates multiple alignments based on

SSEs utilizing geometric hashing (Nussinov and Wolfson, 1991). The more recent

GANGSTA+ (Guerler and Knapp, 2008) approach uses a combinatorial algorithm
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based on SSE contact maps to generate non-sequential secondary structure alignments

while its predecessor employed a genetic algorithm (Kolbeck et al., 2006).

The combinatorial extension approach (CE) (Shindyalov and Bourne, 1998, 2001)

breaks the structures into series of domain fragments and derives optimal assignments

of fragments called aligned fragment pairs (AFP) by means of rigid superposition.

The solution is subsequently expanded by combinatorial extension to derive a global

alignment of the structures. Its successor, CE-MC, uses the original CE approach to

derive seed alignments that are subsequently expanded using Monte Carlo optimiza-

tion (Guda et al., 2001, 2004).

Alignments based on SSEs can generally be expanded by using finer representa-

tions (e.g. atomic coordinates) in a second alignment step, subsequent to the SSE

alignment. This hierarchical alignment strategy virtually combines fold-based and

geometric strategies and is used in a number of different approaches (Alexandrov

and Fischer, 1996; Singh and Brutlag, 1997), the most prominent ones being VAST.

Matras (MArkov TRAnsition of protein Structure evolution) uses Markov transition

models to evaluate the alignments generated by a hierarchical alignment strategy that

employs dynamic programming (Kawabata and Nishikawa, 2000).

MAMMOTH (MAMMOTH-mult) similarly decomposes the proteins into hep-

tapeptides but uses dynamic programming to generate global alignments (Ortiz et al.,

2002). More recent approaches are SABERTOOTH (Teichert et al., 2007), MIS-

TRAL (Micheletti and Orland, 2009) and Fr-TM-Align (Pandit and Skolnick, 2008).

SABERTOOTH condenses residue connectivity to structure profiles in vectorial form

and calculates alignments using Dijkstra’s shortest path algorithm (Dijkstra, 1959).

MISTRAL calculates alignments by minimizing an energy function using simulated

annealing and Fr-TM-Align expands a seed solution of aligned fragment pairs with

respect to the TM-metric (Zhang and Skolnick, 2004) by using dynamic programming.

MUSTA (Leibowitz et al., 2001) and MultiProt (Shatsky et al., 2002b) are both

geometric approaches to multiple structure comparison from the Nussinov-Wolfson

group. MUSTA calculates multiple superpositions of complete proteins. It is more

akin to template-based methods since it relies on detecting conserved patterns of

amino acids (see Section 2.2.2). Multiprot calculates multiple structure alignments by

precomputing sets of congruent fragments and subsequently derives local alignments

19



2. RELATED WORK

of Cα atoms by means of a heuristic. The local alignments are then combined into

a global solution. In this respect, Multiprot is special, as it essentially constitutes a

semi-global approach.

Most of these approaches constrain themselves by relying on the sequential order-

ing of residues. The few non-sequential approaches include GANGSTA+, MISTRAL,

MUSTA and Multiprot, although the latter strongly benefits from including sequen-

tial information.

Many global structure comparison methods, especially early approaches, rely on

rigid structure comparison. Hence the most prominent evaluation criterion for struc-

tural alignments is the RMSD (Root Mean Squared Deviation) which is a measure of

geometric deviation between superimposed alignments. The problem of calculating

a structural alignment can thus be formulated as a minimization problem (minimiz-

ing the RMSD), a strategy realized by WHAT IF (Vriend and Sander, 1991). Other

approaches aim to find the best superposition of two proteins by minimizing the sur-

face between virtual protein backbones (Falicov and Cohen, 1996). However, these

approaches typically do not account for molecular flexibility.

Until now, only few approaches exist that take molecular dynamics into account,

such as Flexprot (Shatsky et al., 2002a, 2004), FATCAT (Ye and Godzik, 2003),

TOPS++FATCAT (Veeramalai et al., 2008) and ALADYN (Potestio et al., 2010).

These approaches typically account for flexibility by generating alignments consist-

ing of rigidly aligned fragment pairs (AFP) interspersed with non-matching hinge

regions. FATCAT and its successor TOPS++FATCAT use dynamic programming to

derive complete alignments from sets of AFPs, the latter with a tremendous speed-

up by pruning the search space of FATCAT using alignments of extended TOPS+

representations (Topology Of Protein Structures) (Veeramalai and Gilbert, 2008).

From a methodological point of view, many strategies are used to tackle the

problem of structural alignments. Dynamic programming (Kawabata and Nishikawa,

2000; Ortiz et al., 2002; Pandit and Skolnick, 2008; Singh and Brutlag, 1997), dou-

ble dynamic programing (Orengo and Taylor, 1996; Russell and Barton, 1992; Taylor

et al., 1994) or iterative dynamic programming (Gerstein and Levitt, 1996, 1998)

is often employed, but also graph-theoretic approaches are common (Gibrat et al.,

1996; Krissinel and Henrick, 2004a; Madej et al., 1995; Redfern et al., 2007; Teichert
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et al., 2007), as well as geometric hashing (Dror et al., 2003; Leibowitz et al., 2001),

genetic algorithms (Kolbeck et al., 2006), combinatorial optimization (Guda et al.,

2004; Micheletti and Orland, 2009), three-dimensional clustering (Mizuguchi and Go,

1995) and other methods.

Global structure comparison can in principle recover evolutionary conservation

that is not apparent at the sequence level. However, while often successful (Sánchez

and Šali, 1997; Thornton, 2001; Zarembinski et al., 1998), similarity on the fold level

does not always correspond to functional similarity, as cases are known where proteins

with similar folds carry out different functions (Copley et al., 2004; Nagano et al.,

2002; Orengo et al., 1999) as well as cases where the same function is carried out

by proteins with different fold geometries (Polacco and Babbitt, 2006; Russell et al.,

1998; Thornton et al., 1999; Wang and Samudrala, 2005). Moreover, surprising struc-

tural similarities can be missed when focusing on secondary structure elements alone

(Jaroszewski et al., 2000). Another drawback of global protein comparison is the rela-

tively huge computational cost associated, especially for higher levels of detail, which

renders them less suited for large-scale analyses. As functional annotation cannot

reliably be transferred based on global protein comparison (Rost, 2002; Todd et al.,

2001; Wilson et al., 2000), local approaches can provide a more accurate view on

functional similarity. Among these, one can in principle distinguish template-based

from surface-based approaches.

2.2.2 Template-based structure comparison

The active sites of proteins are often more conserved than the overall fold, espe-

cially the three-dimensional arrangement of enzyme active site residues. The clas-

sic example is the catalytic triad of serine proteases, consisting of highly conserved

apartate/glutamate, histidine, and serine residues. Hence, template-based meth-

ods focus on identifying conserved spatial arrangements of functionally important

residues, such as catalytic dyads, triads or other catalytic centers. The detection of

such structural motifs can be used to identify local functional similarities among pro-

teins of different folds. Most of these approaches scan user-defined or automatically

generated templates against a database of structures to detect frequent patterns.
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One of the first approaches in this field is the ASSAM (Amino Acids Search for

Substructures And Motifs) algorithm (Artymiuk et al., 1994; Spriggs et al., 2003),

which employs graph theory to recover residue templates in the form of amino acid

side chain patterns. Similarity of conserved patterns is established based on inter-

atomic distances between the side chain atoms. Another graph-based approach which

extracts templates purely based on the geometric information is DRESPAT (Wangikar

et al., 2003). DRESPAT uses a clique-detection approach (Bron and Kerbosch, 1973)

to derive pattern candidates and subsequently extracts conserved patterns from a

set of proteins, using Cα and Cβ atoms. SuMo (Jambon et al., 2003, 2005) simi-

larly employs graph theory but uses triangles of stereochemical groups instead of the

more widespread Cα representation and focuses on the similarity of physicochemical

property.

Another commonly applied methodology for the detection of residue template is

geometric hashing, which originates from the field of computer vision (Lamdan and

Wolfson, 1988; Lamdan et al., 1988). The Nussinov-Wolfson group first employed the

geometric hashing paradigm on protein data (Bachar et al., 1993; Fischer et al., 1994;

Nussinov and Wolfson, 1991). In contrary to the ASSAM approach, their algorithm

utilized a geometric model of proteins based on Cα atom representation. TESS also

employs geometric hashing (TEmplate Search and Superposition) (Wallace et al.,

1997), aiming at recovering similar substructures to a user-defined query template

from a hash table compiled from the PDB (Berman et al., 2000). TESS was su-

perseded by the more rapid JESS algorithm, which employs dynamic programming

(Barker and Thornton, 2003). This approach is associated with the Catalytic Site

Atlas (Porter et al., 2004), a database containing templates that are either experimen-

tally determined or derived from homologues by PSI-BLAST, which can be queried

directly using JESS.

These early approaches have the drawback of being relatively restrictive concern-

ing the matching of similar substructures, at best permitting for some distance vari-

ance by allowing inter-atomic distances to deviate within a certain range. More

tolerant approaches are the SPASM (SPatial Arrangement of Side chains and Main

chain) algorithm (Kleywegt, 1999) and FFF (Fuzzy Functional Forms1) (Fetrow and

1The term fuzzy is applied here in a general sense referring to a priori unclear descriptors. The
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Skolnick, 1998). The former approach uses Cα atom coordinates as well as side chain

pseudoatoms (essentially the center of mass of a side chain) in a recursive, depth-first

tree search, whereas the latter only considers Cα atoms and essentially relies on a

literature mining approach to derive a set of structural constraints for the putative

catalytic sites.

PINTS (Patterns In Non-homologous Tertiary Structures) (Stark and Russell,

2003) simply calculates the largest common three-dimensional arrangement of residues

by using a recursive depth-first search algorithm based on string matching (Russell,

1998), but unlike other approaches derives a statistical measure of significance for the

obtained patterns which allows to judge the results more carefully. MASH (Match

Augmentation with Statistical Hypothesis testing) (Chen et al., 2007) again uses a

graph-theoretic approach to retrieve seeds of matching patterns in a structure with

respect to a search template. These seeds are subsequently refined using the so-called

geometric sieve algorithm. Similar to PINTS, MASH optimizes template matching

by minimizing the RMSD of matched atoms and calculates a statistical estimate of

significance. LabelHASH is the successor of MASH and additionally incorporates

geometric hashing as a preprocessing step (Moll and Kavraki, 2008).

Most template-based methods have the drawback of requiring a great deal of

expert knowledge about the structures in question, as templates either have to be

manually pre-defined, or are derived from literature mining and annotated informa-

tion. The PDBSiteScan approach for example uses annotated information stored in

the PDB Site entries to generate residue templates (Ivanisenko et al., 2004). However,

some approaches can recover conserved residue templates automatically, for example

the above-mentioned DRESPAT algorithm.

2.2.3 Surface-based structure comparison

Surface-based and template-based methods are closely related since both groups fo-

cus on finding common substructures in different proteins. The main difference is

that template-based approaches are usually limited to small residue patterns, such as

catalytic triads, whereas surface-based approaches consider much larger areas, such

method itself does not utilize fuzzy logic.
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as complete ligand binding sites. Moreover, the above-mentioned template-based ap-

proaches usually consider the complete protein structure to identify shared patterns,

surface-based methods are focused on residues exposed to the surface of the protein.

Another benefit of surface-based approaches is that they typically make no assump-

tions on the location, number or orientation of functionally important residues, nor

do they require prior knowledge of catalytic residue templates and are in general

sequence- and fold-independent.

Surface-based methods usually seek to extract and compare protein binding sites,

clefts on the surface of proteins where ligands and substrates can be bound, based on

the notion that functionally important sites are usually located in such clefts. Clefts

provide an increased surface to interact with the ligand and solvent may be excluded

from the binding site, which increases the probability of forming hydrogen-bonds and

hydrophobic interactions with small ligands. The active site of a protein is usually

located in the largest cleft on the surface (Laskowski et al., 1996; Peters et al., 1996).

Approaches to surface-based protein analysis usually consist of three interrelated

components: A method to detect and extract a binding site, a model to represent

these sites and a method to compare them and score their similarity.

2.2.3.1 Extracting putative protein binding sites

For the extraction and modeling of binding sites, a few basic strategies can be dis-

tinguished. SURFNET (Laskowski, 1995) identifies binding sites by fitting spheres

of different sizes between protein atoms to detect crevices within the protein. Three-

dimensional surfaces are then calculated based on an electron density function. This

is similar to the POCKET approach (Levitt and Banaszak, 1992) with the difference,

that SURFNET places spheres between each pair of atoms, whereas POCKET places

spheres on a regular lattice of grid points. PASS is another sphere filling approach

(Brady and Stouten, 2000). SURFNET was later superseded by SURFNET-ConSurf

(Glaser et al., 2006), which combines the original SURFNET approach with ConSurf-

HSSP. ConSurf identifies functionally important residues by estimating phylogenetic

conservation of residues and mapping it back to the surface regions of a protein

(Armon et al., 2001). This was later coupled with the HSSP (Homology-Derived Sec-

ondary Structure of Proteins) database (Glaser et al., 2005). ConSurf-HSSP is used
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in a second filtering step after SURFNET to remove spheres that are too distant from

evolutionary conserved residues.

Silberstein et al. (2003) computationally distribute organic solvent molecules (e.g.

t-butanol, acetone, etc) on the protein surface to perform an in silico solvent mapping.

The interaction energies between the molecules and the enzyme are optimized using

a molecular mechanics function. Q-SiteFinder uses a van der Waals probe (methyl

group) to calculate interaction energy between the probe and protein sites in order to

find energetically favorable binding sites (Laurie and Jackson, 2005). PocketFinder2

similarly employs a van der Waals probe but uses an aliphatic carbon as probe instead

of a methyl group (An et al., 2005).

Grid-based approaches like LigSite (Hendlich et al., 1997) or PocketPicker (Weisel

et al., 2007), embed proteins into a regular-spaced Cartesian grid. Grid points are

assigned a degree of “burial” and binding pockets are identified as clusters of highly

buried grid points. The surface of a binding pocket is usually approximated by the

closest grid points outside the van der Waals radii of protein atoms. Especially LigSite

has been used in a variety of applications including docking (Rarey et al., 1995), de

novo drug design (Verdonk et al., 2001) and to detect putative protein binding sites

for the CavBase database (Schmitt et al., 2002).

Another approach developed by Edelsbrunner et al. uses weighted Delaunay tri-

angulation to calculate α-shapes and extracts pockets and voids3 from them (Edels-

brunner et al., 1998; Liang et al., 1998a,b). Extracted pockets and voids must at

least be large enough to contain a water molecule (Binkowski et al., 2003a) and are

stored in the CASTp database (Binkowski et al., 2003b). A related approach that

also utilizes alpha shapes detects functionally sites by searching for so-called “split

pockets”, binding sites that are split by a cognate ligand (Tseng and Li, 2009).

The recently published ConCavity algorithm of Capra et al. (2009) combines evo-

lutionary conservation with structural methods to predict the binding sites of small

ligands. ConCavity combines the output of purely structural algorithms (e.g. LigSite,

2This algorithm is not to be confused with Pocket-Finder, which is basically an implementation
of LigSite.

3Pockets correspond to cavities and thus have access to the solvent, whereas voids are completely
enclosed within the protein

25



2. RELATED WORK

SURFNET, PocketFinder) and combines them with a weighting scheme based on

residue conservation (Capra and Singh, 2007).

A major problem of these approaches, is their inaccuracy in determining the bor-

ders of the cavity, leading to different binding site representations even for the same

protein. However, the extraction of protein binding sites is only the first step in

surface-based structure analysis. The more important issue for this thesis is the com-

parison of binding sites. This is, of course, closely related to the way, how binding

sites are represented.

2.2.3.2 Binding site representation and comparison

FEATURE (Bagley and Altman, 1995), another early approach, creates descriptions

of the 3D microenvironment based on a variety of physicochemical properties, such

as charge, hydrophobicity or certain chemical groups (e.g. amide groups, hydroxyl

groups). In this case, sites have to be specified manually. While this is clearly a draw-

back, FEATURE represents one of the first approaches that aim to model important

functional sites by physicochemical properties rather than the amino acid compo-

sition alone. The FEATURE representation is used by S-BLEST (Structure-Based

Local Environment Search Tool) (Mooney et al., 2005), an algorithm that enables

rapid database searches by comparing feature vectors of physicochemical attributes.

Another more recent feature-based approach aims at the characterization of protein

binding sites in terms of structural and physicochemical properties (i.e. size, shape,

polarity, charge, electrostatics, flexibility, secondary structure, and hydrogen bond-

ing capabilities, etc.). Overall, 408 features were used, thus representing the most

exhaustive feature-based approach to protein binding site analysis so far. Principle

Component Analysis (PCA) was used to extract the most discriminative features and

the Euclidean distance of cavities in the PCA was used for clustering similar pockets

(Andersson et al., 2010).

Mason et al. (2004) dissected binding pockets into smaller binding volumes that

are represented by sets of contiguous cubic cells associated with physico-chemical

descriptors via their QSCD (Quantized Surface Complementarity Diversity) method.

These binding volumes are then mapped back to potential binding partners, which

are modeled in the same reference frame.
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The EF-site database contains information about the Connolly surface (solvent

accessible surface area) (Connolly, 1983) of binding sites along with the electrostat-

ical potential derived from Poisson-Boltzmann equations based on a precise contin-

uum model (Nakamura and Nishida, 1987). Binding sites are represented as triangle

meshes, with the vertices of each triangle labeled with electrostatic potential and

curvature (Kinoshita and Nakamura, 2003, 2005). The comparison is done using a

maximum clique detection approach (Bron and Kerbosch, 1973).

CavBase is a database for the automated detection, extraction and comparison

of protein binding sites (Schmitt et al., 2001, 2002). Binding sites are extracted

using the LIGSITE algorithm and represented using physico-chemical descriptors.

As this thesis is based on the CavBase representation, a more detailed description is

given in Chapter 4. A similar representation is used by SiteEngine (Shulman-Peleg

et al., 2004), although both approaches employ different rules for the assignment of

these properties. SiteEngine employs geometric hashing for the comparison of protein

binding sites, whereas CavBase again utilizes graph theory.

The pvSOAR approach of Binkowski et al. (2003a) is built on the CASTp database

and combines sequence information with spatial positioning of pocket-flanking residues.

After detecting cavities using α-shapes, pocket-flanking residues are concatenated in

sequence order and compared using dynamic programming. This comes at the price

of being sensitive to the sequence order of residues, in other words, similar cavities

with a different sequence order will not yield a high similarity score. Additionally, the

shape similarity of the detected pockets is assessed by calculating the RMSD from a

unit vector transformation based on a structural alignment (Umeyama, 1991). The

pvSOAR approach was later expanded (pevoSOAR (Tseng et al., 2009)) by using

individually derived evolutionary substitution matrices for searching similar patterns

in CASTp instead of standard scoring matrices like BLOSUM50, which was used in

the original approach. Of course, this requires the knowledge of different evolutionary

related structures.

SiteBase uses an all atom representation of known ligand binding sites along with

a pre-calculated similarity scores (Gold and Jackson, 2006). Binding site atoms are

defined as atoms being within a certain cutoff range from co-crystallized ligands.

Comparison is done using a geometric hashing approach (Brakoulias and Jackson,
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2004) and similarity is measured by the number of matching atoms, but also sequence

similarity. SOIPPA represents functional sites by Delaunay tessellations of Cα-atoms

of the corresponding protein structures (Xie and Bourne, 2008). Each Cα-atom is

labeled with a geometric potential, a measure based on the atoms distance to the

protein surface and neighboring Cα-atoms (Xie and Bourne, 2007). Two protein sites

are represented as graphs (based on the delaunay triangulation) and subsequently

aligned by solving a maximum-weight common subgraph problem using a clique-

detection approach (Österg̊ard, 1999).

Najmanovich et al. (2007) used the SURFNET algorithm to extract protein bind-

ing sites and represent them in the form of graphs using Cα coordinates as nodes.

Similarity is assessed both on the sequence level, using Hidden Markov Models (Eddy,

1998) and on the structural level, using a two-step graph matching procedure based

on maximum clique-detection (Bron and Kerbosch, 1973). Structural similarity is

measured by a local Tanimoto score which is basically the normalized size of the

largest common subgraph.

The SURFACE database, a database containing annotated and compared surface

regions from a large scale surface comparison study, similarly employs the SURFNET

algorithm for the detection of largest clefts on the protein surface (Ferre et al.,

2004). Cleft-flanking residues are subsequently selected and functional annotation

is retrieved from the PROSITE database, which contains informations on protein do-

mains, families and functional sites as well as associated patterns and profiles (Hulo

et al., 2006). The comparison of these functional sites is done by finding and ex-

panding seeds of similar residues with respect to evolutionary conservation based on

Dayhoff substitution matrices (Dayhoff et al., 1978) and RMSD value.

Apparently, the matching of similar sites is mostly approached by graph theory

and geometric hashing. Another interesting method called MultiBind comes from the

field of computational geometry (Shatsky et al., 2006). This approach is build on the

SiteEngine representation of binding sites (Shulman-Peleg et al., 2004) and computes

multiple alignments of binding sites by solving a k-partite 3D matching problem. To

this end they utilize geometric hashing combined with a subsequent greedy heuristic

to calculate alignments with respect to a pivot structure.
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SURF’s UP is a surface-based approach that compares complete protein surfaces.

In that respect, it is quite special and the only global surface-based approach to pro-

tein comparison. Comparing the complete surface of proteins is not easily done since

they tend to be very diverse, especially in non-functional regions. SURF’S UP circum-

vents this problem by projecting amino acid properties (acidic, basic, hydrophobic

and polar) onto a regular sphere (Sasin et al., 2007). A similar approach has also been

applied to binding sites alone. SiteAlign represents binding sites by projecting certain

physico-chemical and topological properties onto a sphere (Schalon et al., 2008).

Another group of approaches focus on the comparison of the volumetric shapes

formed by protein binding pockets (Peters et al., 1996). Binkowski and Joachimiak

(2008) compared the shapes formed by cavity residues using the Kolmogorov-Smirnov

distance on probability distributions based on interatomic distances. The recent

VASP approach uses a volumetric representation of binding sites and compares the

shapes via constructive solid geometry (Chen and Honig, 2010).

2.3 Graph theory in bio- and chemoinformatics

As outlined above, graph theory plays a role in some of the above-mentioned ap-

proaches to protein structure comparison exist, though graph theory itself is of course

not limited to protein structure comparison. In fact, graphs have been widely used

in chemoinformatics for the comparison of chemical compounds as well. In a wider

sense, graph theory offers a convenient framework for molecular structure comparison

in general. In life sciences as well as chemistry, graph theory is especially appealing,

since graphs represent a powerful data structure to model structured objects in a

formal way. More precisely, graphs naturally support the modeling of geometric and

topological information contained in data of molecular structures. A major advantage

is the fact that by using graph representations, geometric information is transformed

into a relational representation, thereby putting all structures in the same reference

frame.

The modeling of molecular structure data by means of graphs has a long-standing

tradition in chemoinformatics (Balaban et al., 1976), but also increasingly in bioinfor-

matics for the modeling of protein structure data, regardless whether one is interested
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in a (global) fold detection (Borgwardt et al., 2005; Grindley et al., 1993), the de-

tection of spatially conserved templates (Artymiuk et al., 1994; Jambon et al., 2003;

Spriggs et al., 2003) or the comparison of binding pockets (Kinoshita and Nakamura,

2003, 2005; Schmitt et al., 2002). Moreover, even when graphs are not directly used

to model protein geometry, they are often used in underlying comparison algorithms,

for example in the SOIPPA approach (Xie and Bourne, 2008).

Hence, the comparison of graphs is an important task that relates to these fields

of application. As will be seen in the following section, a large number of different ap-

proaches to the comparison of graphs exist and have been applied to protein structure

comparison. Among these are methods based on exact graph matching (Alexandrov

and Fischer, 1996; Artymiuk et al., 1994; Kinoshita and Nakamura, 2003, 2005; Madej

et al., 1995; Schmitt et al., 2002; Spriggs et al., 2003; Xie and Bourne, 2008), inexact

matching (Tian and Patel, 2008; Tian et al., 2007; Weskamp, 2007) and feature-based

approaches (Borgwardt et al., 2005; Vishwanathan et al., 2010).

Another important field utilizing graph theory is systems biology. In systems

biology, graphs are routinely used for the modeling of biological networks, such as

protein interaction and signaling networks (Berg and Lässig, 2004; Xenarios et al.,

2002), metabolomic networks (Kanehisa et al., 2004), phylogenetic networks (Huson

and Bryant, 2006) or gene regulatory networks (Davidson et al., 2002). Again, the

comparison of graphs plays an important role for the analysis of these networks,

to compare complete networks, but more often to detect common subgraphs. This

is relevant, for example, to identify shared biochemical pathway from metabolomic

networks (Kanehisa et al., 2004).

In principle, the same mechanisms that are applied in graph-based structure com-

parison can be employed in this context. Since this can potentially involve querying

large graphs, several approaches originating from the field of database research com-

bine graph comparison with indexing strategies to reduce the search space prior to

graph comparison. Again, some of them focus on exact matching (Shasha et al.,

2002; Yan et al., 2004; Zhang et al., 2007) and more recently also on error-tolerant

graph matching (Yan et al., 2005, 2006), though one has to mention that these earlier

methods are not as flexible as the more recent SAGA (Tian et al., 2007) and TALE

(Tian and Patel, 2008) approaches.
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Finally, in chemistry, graph comparison is an important technique to compare

chemical compounds, which are routinely modeled as graphs (Bunke, 2000; Bunke

and Jiang, 2000). Here, exact methods usually involve the detection of common sub-

graphs, either the maximum common subgraph between two or more graphs (Bunke

and Jiang, 2000; Raymond et al., 2002) or even a set of frequent common subgraphs,

which leads to the related problem of frequent subgraph mining (Borgelt and Fiedler,

2008; Kuramochi and Karypis, 2007; Yan and Han, 2003). As with the fields above,

also approximate methods (Bunke, 1999; Justice and Hero, 2006) and feature-based

methods (Neuhaus and Bunke, 2006a; Ralaivola et al., 2005) are applied.

Graph comparison is a vital part in all these applications, especially protein struc-

ture comparison, which is the main application considered in this thesis. Therefore,

an overview over methods for graph comparison is given in the following section.

2.4 Graph comparison

In this thesis, the problem of comparing protein structures in general and protein

binding sites in particular is formalized as a graph comparison problem. At least,

the comparison of graphs in general requires a distance or similarity measure. Graph

matching can be viewed as a special case of graph comparison. In particular, graph

matching tries to derive a correspondences between graphs in terms of an alignment

of nodes of two or more graphs. This gives rise to a similarity measure as well. In

this section, an overview of approaches to the comparison of graphs is given.

The problem of graph comparison has originated from the field of pattern recog-

nition but has since then spread to other fields of research, including data mining,

(kernel-based) machine learning, (structural) bioinformatics, and many others. Graph

comparison and, more specifically, graph matching usually depends on the concept of

similarity that is employed. Roughly, graph comparison approaches can be divided

into a few main categories that give rise to different classes of algorithms:

– Exact graph matching is characterized by being edge-preserving, that is, nodes

that are connected by an edge in one graph must also be connected in the other

graph to be considered for matching. In this scenario, graphs are considered

similar if they are isomorphic or fulfill the subgraph isomorphism property (cf.
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Chapter 3). This is closely related to the concept of the maximum common

subgraph and related methods and especially relevant in the field of chemo-

informatics (cf. Section 2.4.1).

– Depending on the application, graphs can be subjected to deformations thus

rendering the first principle inadequate as it imposes too stringent constraints

on the graph matching process. This is especially the case in bioinformatics

when modeling molecular structure data. Thus, the matching process must be

tolerant which is realized in inexact graph matching. Here, the edge-preserving

property is not necessarily satisfied by matching nodes, although violations are

usually penalized. Among other strategies, this category includes approaches

based on the generic concept of an edit distance. According to this principle,

two graphs are similar if a few modifications (edit operations) are sufficient to

make the first one isomorphic to the second one.

– Feature-based comparison avoids the problem of deriving a correspondence be-

tween the graphs themselves at all by converting them into a feature repre-

sentation. Similarity is then calculated based on these feature representations.

While this allows for the application of a plethora of methods from the field

of machine learning, the question arises how to derive a suitable feature re-

presentation, since this strategy inevitably leads to a loss of information (cf.

Section 2.4.3).

Subsequently, a brief overview of algorithms to exact graph comparison is given (cf.

Section 2.4.1), followed by a discussion of approximate graph matching strategies (cf.

Section 2.4.2). For a more exhaustive review on graph matching, see (Conte et al.,

2004). While the former principle has often been applied for molecular structure

comparison, especially but not exclusively in chemoinformatics, the latter principle is

intuitively well-suited for inherently noisy biological data. In addition, some recent

feature-based approaches are discussed (cf. Section 2.4.3).

2.4.1 Exact graph matching

Exact graph matching typically employs the concepts of graph isomorphism and sub-

graph isomorphism (cf. Chapter 3) to determine the similarity of graphs, for which
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algorithms have been known for a long time (Read and Corneil, 1977). Closely re-

lated to subgraph isomorphism is the principle of detecting common subgraphs. On

the one hand, this can involve detecting a number of different common subgraphs of

two or more graphs, which is the basic idea behind frequent subgraph mining. This

is realized by several different approaches designed to mine large graph databases of

chemical compounds such as GSpan (Yan and Han, 2002), ClosedGraph (Yan and

Han, 2003), MOSS (Borgelt et al., 2005), FFSM (Huan et al., 2003) or gFSG (Ku-

ramochi and Karypis, 2007). On the other hand, the maximum common subgraph

(MCS) between two graphs is usually of great interest, as it cannot only be used

to obtain a measure of similarity of the graphs, but moreover identifies the region

with the greatest correspondence. This strategy is of particular interest, since it is

widely used for molecular structure comparison in the context of chemoinformatics,

more precisely the comparison of chemical compounds (Bunke and Jiang, 2000). A

related concept, the maximum common supergraph has also been applied in this field

(Bunke et al., 2000). Many distance measures for graphs in the context of exact graph

matching in fact utilize the size of the MCS (Bunke and Shearer, 1998; Wallis et al.,

2001).

The MCS itself is not uniquely defined as the maximality of the subgraphs is

either referring to the number of nodes or, alternatively, the number of edges is

maximized. The former variant is known as maximum common induced subgraph

(MCIS) and the latter as maximum common edge subgraph (MCES). Both have been

used separately (Bunke and Shearer, 1998) as well as combined in a single distance

measure (Fernández and Valiente, 2001). Moreover, some algorithms consider only

connected subgraphs, while others allow for a disconnected MCS. An excellent review

on the field of MCS algorithms employed in chemoinformatics is given by (Raymond

and Willett, 2002).

Matching problems based on the concepts above are NP-complete (Garey and

Johnson, 1979), except for the graph isomorphism problem, for which it is still un-

known whether it belongs to NP (Köbler et al., 1994). Thus, exact graph matching

techniques usually have exponential time complexity in the worst case. Polynomial

algorithms are only known for special variants of graphs, e.g. trees (Aho et al., 1974)

or planar graphs (Hopcroft and Wong, 1974).
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Most algorithms that approach the graph and subgraph isomorphism problem are

based on tree search strategies in conjunction with some sort of pruning procedure.

For example, one of the first important algorithms to address the problem of graph

and subgraph isomorphism uses depth-first search with backtracking, followed by a

look-ahead procedure evaluating a matrix of possible future matches (Ullmann, 1976).

Despite its age, this approach is still widely used, also in structural bioinformatics

as the main algorithm behind ASSAM (Artymiuk et al., 1994; Spriggs et al., 2003).

Another recent tree-based approach to both graph and subgraph isomorphism uses

a heuristic considering the set of neighboring nodes to the ones already considered

in a partial matching (Cordella et al., 2004). The nRF+ algorithm reformulates the

subgraph isomorphism problem as a constraint satisfaction problem (CSP) and uses

heuristics to obtain a solution (Larrosa and Valiente, 2002).

Finding the maximum common subgraph is the most prominent approach in the

context of graph-based structure comparison. The MCS problem can be reformulated

as a clique-detection problem, that is, finding the largest complete (fully connected)

subgraph in a product graph (or alternatively association graph) (cf. Section 3) derived

from the factor graphs4. While the Ullmann algorithm (Ullmann, 1976) can be used

to solve the MCS problem as well by employing clique detection, other approaches

are more efficient.

One of the first and the most widely used clique detection approaches is the Bron-

Kerbosch algorithm (Bron and Kerbosch, 1973) which also employs a tree-search in

combination with a backtracking strategy. More precisely, it constitutes a clique

enumeration algorithm employing again a depth-first search. Despite its age, the

Bron-Kerbosch approach is still the core algorithm of many structural comparison

approaches, including the above-mentioned SOIPPA (Xie and Bourne, 2008), EF-

site (Kinoshita and Nakamura, 2005) and CavBase (Schmitt et al., 2002). A similar

approach uses a heuristic based on graph coloring to explore the product graph (Balas

and Yu, 1986). Later approaches tried to speed up the clique enumeration process,

e.g., by using information from the factor graphs (Bessonov, 1985) while others focus

on connected MCS only5 (Koch, 2001; Tonnelier et al., 1990).

4The input graphs being compared.
5The previous approaches allow for disconnected cliques.
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Other algorithms solve the MCS problem directly without converting it to a

clique-detection problem, employing again backtracking (McGregor, 1982; Schmidt

and Druffel, 1976). However, due to the advance in computer technology, these ap-

proaches are rendered less efficient than clique-detection approaches today. The algo-

rithm of Akutsu solves the MCS problem via dynamic programming (Akutsu, 1993).

Another group of algorithms utilize preprocessing of the graphs to allow for a faster

comparison. For example, some algorithms pre-compute a canonical labeling to allow

for the application of hashing methods (McKay, 1981; Messmer and Bunke, 2002).

However, the former algorithm, Nauty, only deals with graph isomorphism, limiting

its use for structure comparison. Messmer and Bunke approached the isomorphism

and subgraph isomorphism problem using a decomposition approach (Messmer and

Bunke, 2002).

Also precomputed decision trees are employed, either to compute the matching di-

rectly for the isomorphism and subgraph isomorphism problem (Bunke and Messmer,

1997; Messmer and Bunke, 1999), the MCS problem (Shearer et al., 2001) or to use

it as a quick pre-filtering step in combination with a complete matching procedure

(Irniger and Bunke, 2001; Lazarescu et al., 2000).

A problem of exact matching algorithms is the high runtime complexity. One

possible strategy to mitigate this problem is to employ heuristics in order to calcu-

late solutions within tolerable time complexity. This obviously comes at the price

of possibly suboptimal solutions that might not even be close to the global opti-

mum. Especially the MCS problem has been approached in this manner by casting

the MCS problem to a continuous optimization and applying different optimization

techniques, such as greedy optimization (Funabiki and Kitamichi, 1999), evolution-

ary optimization (Brown et al., 1994; Wagener and Gasteiger, 1994; Wang and Zhou,

1997), simulated annealing (Barakat and Dean, 1991) and neural networks (Schädler

and Wysotzki, 1997). Heuristics based on graph walking procedures have been em-

ployed as well (Bayada et al., 1992; Hagadone, 1992). Alternatively, the complexity

problem can be mitigated by parallel computing (Pardalos et al., 1998; Shinano et al.,

2002).

Another major drawback of exact graph matching is the relative stringent def-

inition of similarity, rendering them less suited for the application on noisy data,
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including real geometric protein structure data. The use of approximate or inexact

graph matching techniques might help to alleviate this problem.

2.4.2 Inexact graph matching

As mentioned above, when modeling noisy real data, one has to account for a certain

variability, either by employing a suitable model or by using an inexact comparison

approach. In the latter case, one cannot always expect exact matches, especially for

experimentally determined molecular structure data. Moreover, even when capturing

this noise on the model level, there might still be an underlying variability in the

patterns one is interested in. Hence, approximate or error-tolerant graph matching

techniques are required.

For approximate graph matching approaches, the edge preservation property does

not necessarily hold for all matched nodes. For this, typically a penalty is used, e.g.

in the context of a scoring scheme. Approaches that derive a scoring scheme on an

explicit error model are usually referred to as error-tolerant or error-correcting graph

matching. An alternative way to obtain a cost function is to allow certain types of

edit operations (typically insertions, deletions, substitutions or label/weight changes

of nodes/edges) to which a certain cost is assigned. The graph edit distance is then

given by the minimal sequence of edit operations needed to transform one graph into

the other. The graph edit distance can be regarded as a distance function on graphs

and a first definition was published by (Sanfeliu and Fu, 1983), although it could be

shown that their distance function is not a metric (Shapiro and Haralick, 2009).

Using the graph edit distance to derive a graph matching is is a more gen-

eral approach than the above-mentioned exact approaches. It could be shown that

(sub)graph isomorphism and especially the MCS problem are special instances of the

graph edit computations (Bunke, 1999). Moreover, the GED can be used to evaluate

matchings derived by different means. Wang and Wang (2000) used the GED to

evaluate approximate matchings of chemical compounds derived by the well-known

geometric hashing paradigm (Lamdan and Wolfson, 1988).

So basically, inexact graph matching corresponds to an optimization problem with

respect to a certain cost function. While a variety of different algorithms exist to

approach this sort of problem, many fall into one of two major categories:

36



2.4 Graph comparison

• Tree-based approaches, as utilized for the exact matching problem, are also

widely used for the inexact case. Typically, cost functions are used to guide the

tree search.

• A large group of algorithms translates the inexact matching problem, which is

basically a discrete optimization problem, into a continuous problem.

Many of the first inexact graph matching algorithms utilize tree search guided

by the costs incurred by assigned mappings. The first approach only considered

node/edge substitutions (Tsai and Fu, 1979), while a later expansion allowed also for

the matching of graphs with differing topology by include insertions and deletions

(Tsai and Fu, 1983). An error-correcting algorithm for hypergraphs was proposed by

Shapiro and Haralick (1981), other approaches utilize the A* algorithm to compute a

graph distance (Berretti et al., 2002; Dumay et al., 1992; Gregory and Kittler, 2002).

Continuous methods transfer the discrete optimization problem into a continuous

optimization problem, thus making it amenable to a large number of methods from

continuous optimization. A first group of continuous optimization approaches employ

relaxation labeling in a probabilistic framework (Kittler and Hancock, 1989). A later

approach based on this framework allowed the use of node/edge attributes in the

labeling update process (Christmas et al., 1995). To obtain a distance measure, the

probabilistic framework of the Hancock group was expanded by the definition of a

Bayesian consistency measure (Huet and Hancock, 1999; Wilson and Hancock, 1997).

Myers et al. later introduced the definition of a Bayesian graph edit distance based

on this framework (Myers et al., 2000).

Another group of algorithms focus on the weighted graph matching problem.

Given two graphs with weights on edges, the weighted graph matching problem

searches for an optimal permutation of nodes of one graph so that the difference

between the edge weights is minimized. This problem has been approached using the

simplex algorithm (Almohamad and Duffuaa, 1993), Lagrangian relaxation networks

(Rangarajan and Mjolsness, 2002) and graduated assignment (Gold and Rangarajan,

1996). A simplified version of the problem has also been approached using fuzzy logic

(Medasani et al., 2002). However, the problem of these methods is the fact that they

are not applicable to node labeled graphs.
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A general disadvantage of these continuous methods is that they do not guarantee

to find an optimal solution. Moreover, the solution for the continuous problem must

be converted back to a discrete case, which introduces another source of approxima-

tion. Hence, performance can vary, depending on the graphs and the application at

hand and for specific problems they might produce relatively poor results.

Beyond these categories, still more algorithms exist. Messmer and Bunke (1998)

extended their decomposition approach to (sub)graph isomorphism mentioned above

to the inexact case as well, combining the GED with enumeration techniques and

indexing methods. Other algorithms employ genetic algorithms (Cross et al., 1996;

Wang et al., 1997), simulated annealing (Jagota et al., 2000; Xu and Oja, 1990), tabu

search (Williams et al., 1999) or neural networks (Suganthan, 2002; Suganthan and

Yan, 1998). A recent approach combines exact matching, namely the Bron-Kerbosch

algorithm to clique detection, with a greedy heuristic to expand the original solution

(Weskamp, 2007). Another more recent approach uses binary linear programming to

calculate graph matchings based on graph edit distances (Justice and Hero, 2006).

While inexact graph comparison might offer some benefits for the analysis of noisy

data and the search for variable patterns, one has to note that the performance of such

methods strongly depend on the parameterization of the cost function (Bunke, 1999).

The learning of a cost function is a problem on its own, that has been approached using

for example the expectation maximization (EM) algorithm (Neuhaus and Bunke,

2004) or self-organizing maps (Günter and Bunke, 2002; Neuhaus and Bunke, 2005).

As another downside, these algorithms suffer from the danger to get stuck in local

optima, as they do not guarantee to find a global minimum of the matching cost.

Also, one has to keep in mind that many of the above-mentioned approaches are

only suitable for certain types of graphs and data. Most of the above-mentioned

approaches only deal with unlabeled graphs or are even restricted to special kinds of

graphs (e.g. planar graphs, trees, directed acyclic graphs, etc.). Another problem is

again the time complexity, despite the application of parallel computing for inexact

graph matching to speed up computations (Allen et al., 2002).
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2.4.3 Feature based approaches to graph comparison

In principle, it is always possible to derive a feature representation of a graph and re-

duce the problem of comparing graphs to a feature comparison problem (Papadopou-

los and Manolopoulos, 1999). While this makes them amenable to a huge number of

machine learning methods, one has to keep in mind that this inevitably leads to a

loss of information. For example, in its most simple case, one could represent graphs

by a few key attributes, such as the cardinality of the node/edge set or the number

of connected components. Obviously, in doing so, one would loose any information

about the topology of the graph, the comparison, however, would be much simplified.

Instead of using such general descriptors, a feature representation can be derived

by using local features of a graph, hence approaches of that kind are termed local

approaches in a methodological sense.

Local approaches to graph comparison generally look for the compliance of prop-

erties that refer to substructures or local components of a graph, such as subgraphs,

paths or walks. In contrast to subgraph isomorphism approaches, local methods typ-

ically exploit sets of characteristic common substructures for a given group of graphs

to derive a similarity measure, rather than a single maximum common subgraph. Re-

ducing the graph comparison to the comparison of local features thus leads to a local

similarity measure, in contrast to similarity measures based on graph isomorphism,

subgraph isomorphism or MCS which are classical global similarity measures.

Main contributions to graph comparison based on this principle have recently been

made on the field of kernel-based machine learning (Shawe-Taylor and Cristianini,

2004). A kernel is a function defined on a set of complex objects satisfying certain

mathematical properties which makes them appealing both from a mathematical and

an algorithmic point of view (cf. Chapter 3). To put it simply, besides other benefits,

kernel functions can also be regarded as similarity functions on complex objects, such

as graphs.

Several different kernel functions on graphs have already been introduced in the

context of the R-convolution framework which is based on the idea that the com-

parison of two complex objects can be reduced to an all-to-all comparison of their

constituents (cf. Chapter 4). Basically, these kernel functions constitute local simi-

larity measures as they focus on (local) subpatterns within a graph structure, such
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as walks or paths. These can be used for graph comparison, e.g., in classification

scenarios. Kernels have initially been defined on subparts of a graph, e.g., node ker-

nels such as the diffusion kernels (Kondor and Lafferty, 2002; Lafferty and Lebanon,

2003; Smola and Kondor, 2003) or kernels on paths within a graph (Takimoto and

Warmuth, 2003). Among the first graph kernels defined between graphs were kernels

based on random walks (Gärtner, 2003; Kashima et al., 2003). The basic idea is that,

the more similar two graphs are, the more often a randomly generated walk from one

graph will also be present in the other.

Originally, the kernels of Gärtner were only defined on node-labeled graphs. While

the geometric kernel only considers node labels of the first and the last node of a walk

(Gärtner, 2002), the random walk kernel compares node labels of the complete walk

(Gärtner, 2003). This was later expanded to edge labeled graphs as well (Borgwardt

et al., 2005).

Kashima et al. proposed to apply the concept of marginalized kernels (Tsuda

et al., 2002) to graph kernels as well (Kashima et al., 2003, 2004), again focusing on

random walks but representing them in terms of a sequence of node and edge labels.

This was later extended by a relabeling of node labels to include further information

about the local graph topology (Mahé et al., 2004). A problem of random walk kernels

is the fact that the number of possible random walks can become quite large. Thus,

as an alternative, shortest path kernels were proposed that utilize only the shortest

path between nodes (Borgwardt and Kriegel, 2005).

Another possibility is to combine graph matching concepts with the definition of

kernel functions. Neuhaus and Bunke used the graph edit distance defined above to

derive a random walk kernel (Neuhaus and Bunke, 2006b) and a convolution kernel

(Neuhaus and Bunke, 2006a) based on the GED. The former is basically an extension

of the original random walk kernel (Gärtner, 2003), enhanced by restricting the ran-

dom walks to those that satisfy certain global matching constraints as defined by an

edit path. The latter is a convolution kernel comparing graph decompositions that

can be transformed into each other by a valid graph edit path.

Recently, a function based on the pointwise inner product (Schur-Hadamard) was

employed in a graph-based classification scenario, although this function does not

fulfill all kernel properties (Jain et al., 2005). In the field of chemoinformatics, the

40



2.4 Graph comparison

optimal assignment kernel has recently been introduced that represents an alternative

to the R-convolution framework. Given a kernel function defined on subcomponents

of a graph, the optimal assignment kernel searches for an assignment of subcompo-

nents by maximizing the sum over all mutually assigned components (Fröhlich et al.,

2005). As with the Schur-Hadamard kernel, the optimal assignment kernel is math-

ematically not a real kernel (Vert, 2008). However, a variant of this method was

recently proposed that provably fulfilled the kernel properties (Vishwanathan et al.,

2010).

More kernels introduced for the comparison of chemical compounds were intro-

duced in (Ralaivola et al., 2005). Those resemble certain concepts of molecular fin-

gerprints of chemical compounds, namely the Tanimoto kernel, the min-max kernel

and the hybrid kernel. An advantage of kernel functions is the fact that they can be

computed relatively efficiently in general. Moreover, since they fulfill certain math-

ematical properties, they can be used to make graphs amenable to certain machine

learning algorithms, such as support vector machines.

Aside from kernel-based approaches, alternatives exit that build upon different

decomposition techniques. One major line of work focuses on spectral methods. Spec-

tral methods are based on the notion that the eigenvalues and eigenvectors of a graph

are invariant to the node ordering. Therefore, isomorphic graphs will have identical

eigenvalues and eigenvectors, although the opposite is not true. Originally suggested

by (Umeyama, 1988), some approaches try to exploit this principle for graph match-

ing, using for example gradient descent (Xu and King, 2001) or clustering (Kosinov

and Caelli, 2009). Another approach used spectral serialization to compute the graph

edit distance (Robles-Kelly and Hancock, 2005). Recently, Kondor and Borgwardt

introduced a set of invariant matrices derived from graphs by Fourier transformation

called the skew spectrum (Kondor and Borgwardt, 2008). It could be shown that it

could compete with state-of-the-art graph kernels. As the computation of eigenvalues

is a well-studied problem, this idea is relatively popular, although these approaches

are only of limited use, as they cannot use any node or edge label information.

Feature-based approaches offer in principle the possibility to reduce the complexity

of the graph comparison problem, thus promising a much higher runtime efficiency.

The downside of course is the loss of information inevitably incurred. As long as
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one can catch the important properties of a graph, this is not necessarily a problem.

However, this is not easily done, especially since one main reason to use the more

expressive graphs instead of a feature representation is the lack of a concrete set of

discriminating features.
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Preliminaries

The algorithms presented in Chapter 4 essentially constitute different approaches to

graph comparison and as such focus on graph-based representations of protein bind-

ing sites. Thus, it is necessary to introduce some important key graph-theoretical

concepts that apply to all of these methods. The CavBase database will provide the

data basis for the upcoming experiments as well as the basic binding site representa-

tion that will be the background for the derived graph models. Again, this serves as

the foundation for all presented methods.

In the experimental part, it will be necessary to obtain a measure of confidence

for obtained similarity scores to interpret the results. This will also be addressed

below. In the following, the stage will be set for the understanding of the subsequent

chapters by briefly introducing these general aspects prior to the actual introduction

of the developed methods.

3.1 Graph-theoretic foundations

In the following section, some graph-theoretic prerequisites and notations used through-

out this thesis will be formally introduced.
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3.1.1 An introduction to basic graph concepts

In the context of this work, protein structure comparison, or more precisely, protein

binding site comparison, is reformulated as a graph comparison problem. More specif-

ically, graphs are used to model structure data to make them amenable to graph-based

algorithms. Mathematically, a graph can be defined as a tuple G = (V,E), with V

denoting a set of vertices, or nodes, and E ⊆ V ×V denoting a set of edges connecting

these nodes.

Definition 1 (Graph)

A graph is a tuple G = (V,E), with V representing a finite set of vertices, or nodes,

and E ⊆ V × V denoting a set of edges. Two nodes v ∈ V and u ∈ V are connected

by an edge if (v, u) ∈ E. The cardinality of the graph is given by |V |.

A graph in general can include loops, that is, edges connecting one node with itself

or even multiple edges between two nodes. In the latter case, the graph is also called

a multigraph. A generalization of this concept, a hypergraph, can even contain edges

between more than two vertices. However, throughout this thesis, the term graph is

used with the implicit understanding that only simple graphs are considered.

Definition 2 (Simple graph)

A graph G = (V,E) is called a simple graph, if the following conditions hold:

• ∀vi ∈ V : (vi, vi) /∈ E (no loops are present)

• ∀vi, vj ∈ V : |{(vi, vj)|(vi, vj) ∈ E}| ≤ 1 (no multiple edges occur)

In the context of this work, the terms graph and simple graph are used synony-

mously.

For the modeling of molecular structure data, this standard definition of a graph

is insufficient as the graph model should also encode certain properties of nodes and

edges defined by the underlying components of the structure. For example, suppose

a node represents an amino acid within a protein structure. In that case, the amino

acid type may be encoded in terms of a node label. Moreover, since the graphs will
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be used to represent geometric data, it will be necessary to include information about

the distances between nodes, respectively structure components. Thus, undirected

node-labeled and edge-weighted graphs will be used.

Definition 3 (Node-labeled edge-weighted graph)

Let Σ be a set of node labels. A node-labeled and edge-weighted graph G is a 4-

tuple G = (V,E, l, w), with V denoting a set of nodes and E ⊆ V × V denoting a

set of edges. Additionally, a labeling function l : V → Σ and a weighting function

w : E → R+ is defined. l is a labeling function that assigns to each node v ∈ V a

label in Σ and w is a weighting function, that assigns a non-negative weight to an

edge (v, u) ∈ E1.

Based on this definition, molecular structures can be modeled and compared using

graph comparison techniques, including exact graph matching, inexact graph match-

ing and feature-based approaches (cf. Chapter 2). It should be noted, that such a

graph model is not necessarily restricted to the modeling of binding sites. In principle,

any molecular structure can be modeled, accordingly.

As mentioned previously, a characteristic trait of exact graph matching techniques

is the requirement to derive an edge-preserving matching in the sense that two nodes

connected by an edge in the first graph may only be mapped to nodes in the second

graph, if they are connected by an edge as well. In its most stringent form, this leads

to the graph isomorphism concept. For undirected node-labeled and edge-weighted

graphs, this is defined in the following way:

Definition 4 (Graph isomorphism)

Let G1 = (V1, E1, l1, w1) and G2 = (V2, E2, l2, w2) be undirected node-labeled and edge-

weighted graphs. A graph isomorphism is a bijection f : V1 → V2 that satisfies the

following criteria:

1. (u, v) ∈ E1 ⇐⇒ (f(u), f(v)) ∈ E2 ,

1Since the graphs in this thesis are undirected, it would be more correct to use a subset notation
instead of a tuple notation. For convenience, the widely used tuple notation will be used, with the
implicit understanding that (v, u) ∈ E ⇐⇒ (u, v) ∈ E and w(u, v) = w(v, u)
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2. l1(v) = l2(f(v)) ∀v ∈ V1 ,

3. w1(u, v) = w2(f(v), f(u)) ∀(u, v) ∈ E1.

G1 and G2 are called isomorphic, denoted by G1
∼= G2, if such a bijection exists.

For graph isomorphism, the edge-preserving condition must hold in both directions

and a mapping of two graphs must be bijective, establishing a one-to-one correspon-

dence between each node of the first and each node of the second graph.

As the graph-theoretical approaches introduced in this work will be applied to

node-labeled and edge-weighted graphs derived from protein structure data, a more

relaxed isomorphism concept will also be needed to account for a certain degree of

variation among the edge weights. As will become clear later, the edge weights of

the graph models represent the Euclidean distance between certain points within the

modeled molecular structures (e.g., atoms or pseudocenters, see Section 3.2). Edge

weights are derived from atom coordinates of experimentally determined structures

and hence subjected to inaccuracies due to measurement errors, molecular flexibility

and low resolution of the crystal structures. Thus, a certain tolerance with respect to

edge weight deviations is required. To this end, the isomorphism concept introduced

above will be altered to allow edge weights to deviate up to a certain threshold ε.

Definition 5 (ε-Isomorphism)

Let G1 = (V1, E1, l1, w1) and G2 = (V2, E2, l2, w2) be undirected node-labeled and edge-

weighted graphs. An ε-isomorphism is a bijection f : V1 → V2 that satisfies the

following criteria:

1. (u, v) ∈ E1 ⇐⇒ (f(u), f(v)) ∈ E2 ,

2. l1(v) = l2(f(v)) ∀v ∈ V1 ,

3. |w1(u, v)− w2(f(v), f(u))| ≤ ε ∀(u, v) ∈ E1.
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G1 and G2 are called ε-isomorphic, denoted by G1
∼=ε G2, if such a bijection exists.

A weaker concept than graph isomorphism is subgraph isomorphism, for which

the isomorphism must only hold between one graph and a node-induced subgraph of

another.

Definition 6 (Subgraph)

Let G = (V,E, l, w) be a graph, then Gsub = (Vsub, Esub, l, w) is a subgraph of G if

Vsub ⊆ V and Esub ⊆ E ∩ (Vsub × Vsub). If, in addition Esub = E ∩ (Vsub × Vsub), then

Gsub is called an induced subgraph.

Definition 7 (Subgraph isomorphism)

A subgraph isomorphism between two graphs G1 and G2 exists, if Gsub is a subgraph

of G1 and Gsub
∼= G2 (or vice versa).

Closely related to the concept of subgraph isomorphism is the common subgraph,

especially the maximum common subgraph (MCS). As outlined in Chapter 2, this

is one of the most widely used concepts in exact graph matching when comparing

molecular structure data, including the comparison of protein binding sites as used in

the CavBase database. However, the MCS is not uniquely defined, as maximality can

refer to the number of nodes as well as the number of edges. The former variant, which

is more precisely termed “maximum common induced subgraph” (MCIS) is more

frequently used and referred to as MCS, the latter is known as maximum common

edge subgraph (MCES).

Definition 8 (Maximum common induced subgraph)

Let G1 and G2 be two graphs. GCS is a common induced subgraph, if induced subgraphs

G1
sub of G1 and G2

sub of G2 exist with G1
sub
∼= G2

sub
∼= GCS.

Again, to account for some edge weight tolerance, ε-isomorphism is used instead of

the isomorphism criterion to define the MCS for the purpose of comparing molecular

structures in this work:

Definition 9 (Maximum common induced ε-subgraph)

Let G1 and G2 be two graphs. GCS is a common induced ε-subgraph, if induced

subgraphs G1
sub of G1 and G2

sub of G2 exist with G1
sub
∼=ε GCS and G2

sub
∼=ε GCS.
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In the remainder of this thesis, the term maximum common subgraph (MCS) is

used synonymously with the maximum common induced ε-subgraph for convenience,

as this is the only variant that will be used. The cardinality of a graph will always

refer to the number of nodes, e.g., |G| = |V |.
As mentioned in Chapter 2, the MCS problem can be solved by reformulating it

as a clique-detection problem. A clique is defined as follows:

Definition 10 (Clique)

Given a graph G = (V,E), a clique Gq = (Vq, Eq) is a complete induced subgraph of

G, so that (u, v) ∈ Eq for all u, v ∈ Vq. A graph is called complete, if each node is

connected to every other node, i.e. the degree of each node is equal to the cardinality

of the node set V minus 1: ∀vi ∈ V : deg(vi) = |V | − 1.

The degree of a node v is the number of nodes vj ∈ V that are adjacent to v, in

other words, that are connected to v via an edge:

deg(vi) = |{(vi, vj)|vi, vj ∈ V, (vi, vj) ∈ E}| (3.1)

If each node of a graph has the same degree it is also called a regular graph. The

maximal clique is simply the clique with the highest cardinality:

Definition 11 (Maximal clique) Let Gq denote the set of all cliques of G, then

Gmax ∈ Gq with |Gmax| ≥ |Gq| for all Gq ∈ Gq is a maximal clique.

Obviously, every complete graph is identical to its own maximal clique.

To calculate the MCS, the product graph (or association graph) of two graphs is

constructed and used as input for clique detection algorithms. Keeping the relaxation

of the stringent isomorphism criterion in mind, the product graph in this work will

be defined as follows:

Definition 12 (Product graph, association graph)

Given two graphs G1 = (V1, E1, l1, w1) and G2 = (V2, E2, l2, w2), the product graph

G× = (V×, E×) is defined by its set of nodes V× ⊆ V1 × V 2 and its set of edges

E× ⊆ V× × V× satisfying
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1. V× = {(v1, v2)|v1 ∈ V1, v2 ∈ V2, l1(v1) = l2(v2)}

2. E× = {((v1, v2), (v′1, v′2)) | (v1, v2) ∈ V×, (v′1, v′2) ∈ V×, |w1(v1, v
′
1)− w2(v2, v

′
2)| ≤

ε ∨ ((v1, v
′
1) /∈ E1 ∧ (v2, v

′
2) /∈ E2)}

The nodes of a product graph consist of pairs of nodes from the two original

input graphs, termed product nodes, connecting edges are respectively called product

edges. A product edge exists, if either the difference between both factor edges are

lower than ε, or if in both graphs the edges do not exist. The maximal clique of the

product graph then corresponds to the MCS of the two original graphs (Levi, 1973).

This notion is the basis for the Bron-Kerbosch algorithm.

Clique detection is a core component of the previously proposed algorithm by

Weskamp (2007), as well as the internal comparison approach of CavBase (Schmitt

et al., 2002). In the next chapter, it will be seen that this concept plays a major role

in some of the introduced approaches in this thesis as well.

Furthermore, two other concepts from graph theory will be needed, the concept

of walks and paths. In graph theory, a walk is defined as follows:

Definition 13 (Walk)

A walk w in a graph G = {V,E} is a sequence of nodes w = v1, ..., vn+1 such that

(vi, vi+1) ∈ E for all 1 ≤ i ≤ n + 1. The length of a walk is given by the number of

edges n.

Obviously, a walk represents an arbitrary sequence of egde-connected nodes, which

means that nodes can occur multiple times in a walk. This is in contrast to a (simple)

path, which is defined as follows:

Definition 14 (Path, simple path)

A path p in a graph G = {V,E} is a sequence of nodes p = v1, ..., vn+1 such that

(vi, vi+1) ∈ E for all 1 ≤ i ≤ n+ 1 and vi 6= vj for all vi, vj ∈ p.

In other words, a path is a walk were no two nodes are identical. In the literature,

this is also referred to as simple path.
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3.1.2 The concept of graph alignments

Several approaches presented in this thesis will be designed to derive an overall cor-

respondence between graphs, respectively the modeled protein binding pockets. This

is realized in terms of graph alignments, which can be viewed as the graph-based

counterpart to the concept of sequence alignment.

In case of graph alignments, a one-to-one correspondence of constituents naturally

translates to a mutual assignment of nodes of the compared graphs. This idea has

already been successfully applied in the context of structural bioinformatics, e.g., to

derive common residue patterns in the ASSAM approach (Artymiuk et al., 1994) or

the comparison of protein binding sites derived from CavBase (Weskamp, 2007). In

the context of this work, the definition of a graph alignment is adopted from the latter

work. There, the concept was defined for the more general multiple case, which will

be also introduced here, though for the remainder of this work, the focus will be on

the pairwise case.

Similar to sequences, protein structures vary in size and are subjected to mutations

that result in insertions, deletions or alterations of amino acids. Molecular structures

in general vary in size, which implies that in order to compare such structures by

means of alignments, one has to account for the possibility of gaps, simply as nodes

in one graph might not have a correspondence in another. Thus, the possibility of

matching a node to a gap is introduced, with ⊥ denoting gaps in the alignment.

Formally, a multiple graph alignment can now be defined as follows:

Definition 15 (Multiple Graph Alignment)

Let G = {G1(V1, E1), . . . , Gm(Vm, Em)} be a set of edge-weighted node-labeled graphs

and let ⊥ denote a gap in the alignment. Then

A ⊆ (V1 ∪ {⊥}) × · · · × (Vm, {⊥}) is an alignment of the graphs in G if and only if

the following two criteria hold:

1. For all i = 1, · · · ,m and for each v ∈ Vi exists exactly one a = (a1, . . . , am) ∈ A
such that v = ai.

2. For each a = (a1, . . . am) ∈ A : |{ai|ai 6=⊥}| ≥ 1.
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1 1 

2 2 

3 3 

4 4 

a) b) 

Figure 3.1: a) A valid multiple graph alignment for three distinct graphs. The node
label is indicated by the coloring of the nodes, dashed lines indicate the assignment
of nodes and the square denotes a gap. b) An overlay of the aligned graphs.

Each a ∈ A represents a vector within the alignment that contains all mutually

assigned nodes of the graphs G1, . . . , Gm. Note that by deriving a mutual assignment

of nodes, edges are also implicitly assigned to each other. Hence the above definition

completely defines a valid graph alignment.

The first condition enforces that each node v of any graph Gi ∈ G occurs exactly

once in the alignment, ensuring that no node is mapped to more than one node in

another graph. The second condition excludes vectors that consist exclusively of gap

positions. An example of a valid graph alignment is depicted in Fig. 3.1.

While this general definition addresses the alignment of multiple graphs, the main

focus in this work will be on the pairwise case. However, for those approaches able

to generate a pairwise graph alignment, this is not a limitation per se, since pairwise

graph alignments can easily be aggregated to a multiple graph alignment. In fact, this

has also been done in the original publication, where initially only pairwise alignments

were calculated and subsequently combined to a multiple one (Weskamp, 2007).

Viable aggregation strategies can again be adopted from the realm of sequence

alignments, e.g., in the form of star alignment (Gusfield, 1993). The star align-

ment strategy known from multiple sequence comparison (Böckenhauer and Bongartz,

2007) constructs a multiple sequence alignment from pairwise alignments by choosing

one sequence as a pivot element and aligning all other sequences relative to the pivot

element.

The same strategy can also be applied to graph alignments. By selecting one

graph as a pivot graph, one can align the nodes of all other graphs based on pairwise
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graph alignments with the pivot graph. More precisely, assume that without loss

of generality a graph G1 is selected as a pivot graph from a set of graphs G =

{G1, . . . , Gm} to be aligned. If a node v1 ∈ V1 is mapped independently to nodes

v2 ∈ V2, v3 ∈ V3, . . . , vm ∈ Vm in separate pairwise alignments, these nodes are also

be mapped onto each other in a multiple alignment. Hence, a tuple containing these

nodes should be part of the alignment: (v1, v2, . . . , vm) ∈ A. Gaps are included in the

multiple alignment accordingly.

The quality of such a graph alignment will obviously depend on the choice of the

pivot graph. Therefore, every graph is typically used as pivot structure and the best

result is selected, provided that a quality measure for graph alignments is known.

This adaption to the case of graph alignments has already been successfully used by

Weskamp (2007).

Alternatively, other strategies from sequence alignments can be used, such as

tree alignments (Böckenhauer and Bongartz, 2007), where multiple alignments are

generated incrementally according to a guiding tree, e.g., realized in the form of the

UPGMA algorithm in the ClustalW approach (Larkin et al., 2007). However, since

the main purpose of the experimental validation in Chapter 5 is the comparison of

the different algorithms, it should suffice to restrict to the pairwise case. This will

make the interpretation of the results more comprehensible and keep the calculation

times in a reasonable scale. Moreover, for some experiments, multiple alignments

would not make much sense as will become apparent later on.

3.2 Derivation of graph models

The methods presented in this thesis are mainly designed for the structural compari-

son of protein binding sites, which are modeled in terms of graphs. Graphs represent a

powerful and expressive data structure for the modeling of structured objects. Graph

theory is a well-studied field in which many different algorithmic solutions to several

graph-based problems have already been developed (Gross and Yellen, 2006).

The use of graph models for the purpose of modeling molecular structure data is

especially appealing, since they offer a framework to represent the complete informa-

tion inherently present in molecular structure data, without the need to invest prior
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knowledge. Of course, this could also be achieved otherwise, for example by using

geometric models, which has also been done quite successfully (Fober et al., 2011;

Shatsky et al., 2006).

However, another advantage of graph structures is the fact that they can transfer

the coordinate-based information of geometric data into a relational form by using

inter-component distances as edge weights. Thereby, each modeled entity is auto-

matically set in the same frame of reference, superseding the need for translation and

rotation prior to a comparison of the modeled objects.

In this thesis, graph representations of protein binding sites are based upon the

CavBase database. The CavBase model represents a binding site model independent

of sequence order or exact amino acid composition solely based on functional char-

acteristics, physicochemical properties of amino acids that are capable of interacting

with the corresponding ligands and substrates. This is achieved by introducing 3D

descriptors of physico-chemical properties derived from surface-exposed amino acids.

The motivation behind this is to analyze protein-ligand interactions by focusing

on the protein rather than the ligand itself and compare protein binding sites without

utilizing ligand information. Since ligands can typically adopt multiple conformations,

the question whether a specific protein can interact with a certain ligand is sometimes

hard to answer when focusing on the ligand. Thus, this approach can be viewed as

part of receptor-based drug design.

3.2.1 Extraction of protein binding sites

As outlined in Chapter 2, many strategies are known to extract protein binding sites.

While the automated detection of protein binding sites is not a trivial task itself, the

focus of this thesis is on the comparison of binding sites. All binding sites are thus

derived from the CavBase database. CavBase uses the LigSite algorithm (Hendlich

et al., 1997) to extract cavities on the surface of proteins. In LigSite, protein crystal

structures derived from the PDB are embedded into a Cartesian grid with a 0.5 Å

grid spacing. The surface of the protein is approximated by these grid points in the

following way.

Initially, grid points are represented by 1.5 Å probe spheres and all spheres that

intersect with the van der Waals radius of protein atoms are removed, since they
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are deemed solvent-inaccessible. For the remaining grid points the degree of burial

b is estimated by counting the grid axes (the three Euclidean axes plus four cubic

diagonals) that intersect with the protein structure. The more axes intersect, the

higher the grid point is buried. Subsequently, grid points are clustered according to

their degree of burial and clusters of highly buried grid points (with b ≥ 4) are merged

to form continuous cavities.

If no such cavities can be detected, the constraints are relaxed to search for more

shallow cavities, more precisely, b is lowered. Each cluster of highly buried grid

points must at least consist of 320 points, which roughly corresponds to a volume

of 40 Å
3
. This volume threshold guarantees that at least one water molecule can be

accommodated.

The surface of a binding site is approximated by the grid points that are directly

in contact with the protein atoms, non-buried grid points that are oriented toward

the solvent are discarded. Additionally, cavity flanking amino acids are defined as

residues, that are within a 1.1 Å range to a surface grid point. Surface grid points

and cavity-flanking residues are subsequently stored in CavBase to represent infor-

mation about the geometric shape of the binding sites. For the residues of the pocket,

physicochemical descriptors are derived to model the binding site in terms of func-

tional properties.

3.2.2 Modeling protein binding sites using physicochemical

descriptors

The recognition of ligands and substrates is mediated through physicochemical inter-

actions between the cavity-flanking residues and the ligand atoms, including hydrogen

bonds, van der Waals interaction, metal/ion coordination and others (Bruno et al.,

1997; McDonald and Thornton, 1994). Moreover, the solvent can mediate interac-

tions between the binding site residues and ligand atoms and also covalent bonds are

possible (Klebe, 2009).

On the one hand, one has to derive a model that is powerful enough to represent

the interaction capabilities of the binding sites to make them amenable to algorithmic

comparison and analysis. In other words, information about the spatial positioning

and orientation of cavity flanking amino acids must be modeled to derive a meaningful
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representation for the inference of biochemical function. On the other hand, the

model must be as compact and concise as possible to allow for an efficient algorithmic

comparison.

As CavBase is built upon protein structure information derived from the PDB,

much information about the protein binding sites is potentially available, including

positioning of individual atoms. Obviously, the highest level of information would

be achieved by deriving a full atom model of the binding site. However, in most

cases a full atom representation of proteins is simply too complex to be of much use,

especially in the context of database applications. This is also true for the comparison

of protein binding sites.

A widely used alternative to model protein structure data is a Cα-representation,

which common in structural bioinformatics (cf. Chapter 2). In this case, the spatial

positioning of amino acids is represented by the coordinate of their Cα-atoms, thereby

discarding any additional atom information. While this results in more compact

models, such a representation seriously limits the information contained in the model:

A standard Cα-representation of cavity-flanking residues would completely neglect

the type of interactions these residues can participate in or at least obscure any

information about the directionality of possible interactions or the conformational

orientation and multiplicity of a side chain.

Thus, the CavBase model represents the geometric structure of the binding site

with respect to the interactions the cavity-flanking residues can actually perform

rather than a standard amino acid representation. As mentioned in Chapter 2, this

is achieved by an abstraction of the pure structure data based on the cavity-flanking

residues in terms of 3D descriptors, called pseudocenters.

Pseudocenters are three-dimensional physicochemical descriptors that represent

certain types of molecular interaction an amino acid can participate in. Pseudocenters

are assigned to certain groups of atoms of the cavity-flanking amino acids according

to a fixed set of rules (Kuhn et al., 2006; Schmitt et al., 2002), thus creating a

concise representation of binding sites in terms of their most important characteristics:

geometric structure and the physicochemical properties.

The rationale behind this is the notion that the actual composition of an amino

acid is not as relevant as the chemical property it provides. For example, if a ligand
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forms a hydrogen bond with a hydroxyl group of an amino acid side chain, it does

not matter whether this group belongs to a tyrosine, serine or threonine side chain,

as long as it is located at the right spatial position. Hence, a comparison based on

these descriptors is theoretically more relevant.

Currently, CavBase distinguishes between seven types of pseudocenters:

1. hydrogen donor centers donate a polar proton to the formation of hydrogen

bonds.

2. hydrogen acceptor centers represent corresponding acceptor positions for a hy-

drogen bond.

3. mixed donor/acceptor (doneptor) centers can contribute either a polar proton

or an acceptor group for a hydrogen bond, for example in the case of hydroxyl

groups.

4. pi centers represent the ability to form π-interactions perpendicular to the plane

of aromatic rings and between carboxamide, carboxylate and guanidine groups.

5. aromatic centers have been introduced to account for the fact that aromatic

rings can also form edge-to-face interactions (Kuhn et al., 2006). Hence, for

aromatic residues a higher cutoff angle is considered compared to pi centers

when filtering out pseudocenters with an unfavorable surface exposure (see be-

low).

6. aliphatic centers represent the ability of non-polar side chain atoms (carbon and

sulfur) to form hydrophobic interactions.

7. metal centers model the influence of coordinatively bound metal ions.

This model offers two benefits for the subsequent comparison of modeled binding

sites. Firstly, representing the binding site geometry by more general physicochemical

descriptors rather than the amino acids themselves, renders the representation much

more tolerant towards mutations of the binding site if the positioning of important

functional groups is conserved. Secondly, the model leads to a reduction of the number

of 3D points that represent the cavity without abstracting too much, simplifying the
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Figure 3.2: Summary of the assignment of pseudocenters according to the CavBase
rules. Depicted are donor (red), acceptor (blue), mixed donor-acceptor (purple), pi
(green), aromatic (cyan) and aliphatic (orange) pseudocenters. a) basic amino acids,
b) acidic amino acids, c) polar uncharged amino acids, d) non-polar amino acids (for
metal centers, no graphical example is displayed).

algorithmic comparison of binding sites, since a smaller number of coordinates has

to be considered. This is indeed an important issue as a comparison based on more

complex representations (e.g., full atom representations) might be infeasible.

Fig. 3.2 summarizes the CavBase rules for assigning pseudocenters to protein

binding sites as suggested by Schmitt et al. (2002) and later expanded by Kuhn et al.

(2006). Subsequently, the pseudocenters are analyzed with respect to their surface

exposure to remove pseudocenters that cannot possibly form an interaction with the

ligand due to an unfavorable positioning. This is especially important for directional

interactions such as hydrogen bonds.
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Figure 3.3: The angle between the vectors ~r and ~v is used as a filter criterion for
pseudocenters.

This filtering is realized by measuring the angle between two vectors ~v and ~r as

illustrated in Fig. 3.3. The vector ~v represents the mean orientation along which an

interaction is most likely to be formed and ~r represents a normalized summation vector

of all vectors from the pseudocenter to a neighboring surface point2, respectively. The

angle between these vectors is used as a cutoff angle to discard pseudocenters that

are not likely to contribute to an interaction.

A typical cavity as modeled by CavBase is depicted in Fig. 3.4. Note that this

representation is independent of sequence order or fold information.

A set of pseudocenters constitutes an approximation of the spatial arrangement

of physicochemical properties present in the binding pocket. As each pseudocenter

is attributed to a point in three-dimensional space, it can be converted to a graph

representation of the binding site by representing pseudocenters as nodes connected

via edges labeled with the Euclidean distance between the pseudocenters.

A protein binding site is then modeled as a node-labeled and edge-weighted graph

G = {V,E, l, w} as defined above, with

• V denoting a set of nodes v corresponding to pseudocenters,

2A neighboring surface point is defined as surface point within a 3 Å radius of the pseudocenter
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3.2 Derivation of graph models

Figure 3.4: CavBase representation of a protein binding site. Bordering amino acids
are shown in light blue, the semi-transparent surface indicates the Connolly surface.
Pseudocenters are depicted as spheres (donor = red, acceptor = blue, donor/acceptor
= purple, pi = gray, aromatic = green, aliphatic = cyan, metal = orange).

• E ⊆ V × V denoting a set of undirected edges connecting the nodes,

• l : V → Σ, a label function, assigning the type of the corresponding pseudo-

center to each node from the set of possible pseudocenter labels Σ = {acceptor,

donor, doneptor, pi, aliphatic, aromatic, metal}

• w : E → R+
0 , a weighting function assigning the Euclidean distance between

two pseudocenters to the edge connecting the corresponding nodes.

Note that the resulting graph model is a model independent of rotation and trans-

lation, superseding the need to find optimal coordinate transformations prior to the

actual comparison, which would be necessary for geometrical models.

The theoretical downside of this representation is the fact that such a graph model

is not an unambiguous geometrical model any more. In some cases it is possible for
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Figure 3.5: Two geometrically different constellations of pseudocenters, in fact mirror
images of one another. Edge weights are depicted and node labels are represented by
different colors. Note that it is not possible to transform one geometric structure into
the other via transformation and rotation, hence these two bodies are not congruent.
Yet, both would give rise to the same graph model.

geometrically different constellations of points to give rise to identical graph repre-

sentations, especially in case of mirror images of geometrical structures. An example

is visualized in Fig. 3.5.

However, these cases are rather artificial compared to graphs derived from biolog-

ical entities such as protein structures. Practically, as the graphs constructed from

protein binding sites tend to be larger and more irregular in terms of geometry, it

is assumed that this does not represent a serious limitation and in fact such graph

models have already been applied successfully (Weskamp, 2007).

For the remainder of this work, the above defined graph model will be used to

model protein binding sites derived from CavBase. It should be mentioned that in the

original CavBase approach, the domain of edge weights was limited to a maximum

weight of 12 Å to focus on low to mid-range distances, as inaccuracies increase for

pseudocenters that are more distant (Schmitt et al., 2002). Moreover, pseudocenters
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3.3 The CavBase approach and its implications

in close proximity to each other are more likely to constitute a meaningful pattern, as

interactions between the protein and a functional group of the ligand (e.g., an adenine

moiety) will obviously occur in locally confined constellations. This constraint will

be kept for the methods described in the next chapter with one exception. If an edge

weight would exceeds this limit, the edge is omitted.

3.3 The CavBase approach and its implications

With the definition of the graph-theoretic concepts and the description of the graph

models, it is now possible to take a closer look on the methods used so far in the

CavBase scenario. As outlined in Chapter 2, the standard approach build into

CavBase is a clique-based approach utilizing the well-known Bron-Kerbosch algo-

rithm (Bron and Kerbosch, 1973).

More precisely, the clique approach is based on the assumption that two function-

ally related binding pockets accommodating the same binding partner will exhibit a

similar spatial arrangement of properties, a similar motif that is necessary to establish

the interaction with the binding partner.

This common motif can be detected by constructing a product graph as defined

above and using the clique-enumeration approach of Bron and Kerbosch (1973) to

detect cliques in the product graph. The maximum clique in the product graph then

corresponds to the maximum common subgraph of both input graphs.

Given the specifics of the binding site model, the construction of the product graph

has to be adjusted to account for the fact that mixed donor/acceptor pseudocenters

can in principle provide an H-Donor group as well as an H-acceptor group. Hence,

the matching criterion of two nodes must be weakened to allow for nodes with mixed

donor/acceptor labels to be assigned to acceptor and donor pseudocenters as well.

Hence, the definition of the product graph is altered to account for these specifics.

With Σ = {acceptor, donor, doneptor, pi, aliphatic, aromatic, metal} and the node

labeling function l : V → Σ, the first condition in Definition 12 that a product node

(v1, v2) ∈ V× has to satisfy is changed from l1(v1) = l2(v2) to
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l1(v1) ∈ {acceptor, doneptor} ∧ l2(v2) ∈ {acceptor, doneptor}∨

l1(v1) ∈ {donor, doneptor} ∧ l2(v2) ∈ {donor, doneptor}∨

l1(v1) = l2(v2).

Consequently, this relaxation will be kept for the approaches developed in this

thesis.

The largest common motive of pseudocenter arrangements derived via clique-

detection is of much interest for a functional analysis of the protein binding sites

and can for example be recovered in the form of a graph alignment, in which the

corresponding nodes of the common subgraph are mutually aligned. Moreover, for

the purpose of a similarity search, the size of the MCS naturally gives rise to a

similarity measure that can be exploited by similarity search procedures, for example

in the context of a k-nearest neighbor search.

Let G1 = (V1, E1, l1, w1) and G2 = (V2, E2, l2, w2) be two graphs to be compared

and GMCS = (VMCS, EMCS, lMCS, wMCS) be the maximum common subgraph of G1

and G2, the similarity measure can be defined by

simMCS(G1, G2) =
|VMCS|

max (|V1|, |V2|)
(3.2)

In the experimental part, this measure will serve as one of the baseline approaches

for the validation.

The algorithm used internally in the CavBase database instead retrieves the

largest 100 cliques using the Bron-Kerbosch algorithm and selects the best solution

according to a surface-based scoring scheme3. This is done to exclude clique solutions

with divergent corresponding surface regions4 (Schmitt et al., 2002).

3This value was empirically determined to be the best compromise between efficiency and coverage
of possible solutions (Schmitt et al., 2002)

4For example, cases can occur, where similar pseudocenter constellations are associated to either
convex or concave surface patches.
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3.4 Extreme value distributions

3.4 Extreme value distributions

In the experimental section, the similarity of protein binding sites will be assessed

using scores produced by the algorithm presented in the next chapter. Any score used

to compare proteins or protein substructures must be judged against the likelihood

that a given score could arise by chance. Therefore, it is necessary to obtain a measure

of confidence. To this end, an empirical approach was chosen by calculating pairwise

comparisons of randomly drawn cavities to derive a distribution of random scores and

subsequently fitting a probability function to the obtained score distributions.

Significance for database searches can generally be assessed by extreme value dis-

tributions (EVD) (Stark and Russell, 2003) for the following reason: in the context of

database searches, finding the most similar item to a query usually involves maximiz-

ing over all similarity scores between the query and the database items. Interpreting

these scores as random variables, the maximum score can be viewed as an extreme

value based on the score distribution. One can distinguish between three different

types of EDV: The Gumbel family (type I)

fµ,σ(x) =
1

σ
exp

(
x− µ
σ

)
exp

(
− exp

(
−x− µ

σ

))
, (3.3)

which is defined by the location parameter µ and the scale parameter σ, the (Fréchet)

family (type II)

fµ,σ,ξ(x) =
ξ

σ

(
σ

x− µ

)ξ+1

exp

(
−
(

σ

x− µ

)ξ)
, (3.4)

and the Weibull family (type III)

fµ,σ,ξ(x) =
ξ

σ

(
x− µ
σ

)ξ−1
exp

(
−
(
x− µ
σ

)ξ)
, (3.5)

both of which have an additional scale parameter ξ.

Since the type of the EVD that should ideally be fitted to the score distributions

obtained by the various methods was not known in advance, the scores were used to
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estimate the parameters of a generalized EVD

fµ,δ,ξ(x) =
1

σ

[
1 + ξ

(
x− µ
σ

)]−1− 1
ξ

exp

(
−
[
1 + ξ

(
x− µ
σ

)]− 1
ξ

)
(3.6)

by maximum likelihood estimation. The GEVD transforms into the Gumbel distribu-

tion if ξ = 0. For ξ > 0 and ξ < 0, the GEVD yields the Fréchet family, respectively

the Weibull family.

Subsequently, the corresponding cumulative distribution

Fµ,σ,ξ(x) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]− 1
ξ

}
(3.7)

was used to calculate p-values for the comparison scores.
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The comparison of protein binding sites has mainly been approached in a global man-

ner using global comparison approaches (Binkowski and Joachimiak, 2008; Binkowski

et al., 2003a; Kinoshita and Nakamura, 2005; Schmitt et al., 2002; Shulman-Peleg

et al., 2004), which, from a methodological point of view, means that each approach

tries to find a correspondence between protein binding sites by comparing them as a

whole. Since protein binding sites can readily be modeled as graph structures, this

translates into global graph comparison.

The main advantage of global graph-based approaches is the fact that, a mutual

correspondences between components of the graphs can be derived by taking the whole

graph topology into account. From this, a correspondence between basic structural

units of the modeled structure can be established. The price for such a high yield

of information is typically a high computational complexity, as finding an optimal

correspondence comes down to solving a hard (combinatorial) optimization problem

that is typically approached by means of heuristic methods. For example, the clique

enumeration problem as well as the subgraph isomorphism problem are known to be

NP-complete (Garey and Johnson, 1979; Karp, 2010). By extension, also the graph

alignment problem is NP-complete, as it can be viewed as a generalization of the

subgraph isomorphism problem (Weskamp, 2007).

Moreover, structure comparison in general has to deal with inaccuracies that in-

evitably arise when dealing with molecular data. These are due to measurement

errors, crystallization artifacts, resolution issues, the uncertainty of amino acid side
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chain positions. Moreover, the dynamic flexibility of the molecules in vivo needs to be

considered. This is especially a problem for global methods, which have to perform a

balancing act between a certain degree of tolerance towards structural variation and

the requirement to be specific and strict enough to recover meaningful similarities.

Thus, instead of focusing only on a global strategy, the idea of this work is to

explore other options as well, capitalizing on the dualism between local and global

concepts known from sequence comparison1. Given that protein binding sites are the

entities to be compared, is a global comparison of protein binding sites more useful

for the detection of shared biochemical or biological function or would it be advisable

to use a local or semi-global strategy? All these principles certainly have merit.

In this chapter, several approaches to graph comparison are introduced utilizing

conceptually different strategies, each one focusing on a different aspect of similarity.

In Section 4.1, global graph comparison approaches are introduced, deriving a global

graph alignment by comparing two or more graphs as a whole. Section 4.2 instead

introduces approaches motivated from the field of kernel-based learning that derive

a measure of similarity between graphs by comparing local substructures. Finally,

both principles are combined to create a semi-global approach to graph comparison,

which is presented in Section 4.3.

4.1 Global graph comparison

When modeling biological data, graph comparison has to account for structural vari-

ation, either on the model level, by defining an appropriate graph model, or on the

methodological level, by developing comparison methods that exhibit a certain level

of tolerance. In the context of CavBase, the latter alternative is considered by em-

ploying ε-isomorphism, as defined in the previous chapter, to tolerate certain edge

weight differences resulting from inaccuracies on the protein structure level.

However, this cannot account for larger differences due to dynamic flexibility or

a different arrangement of subpockets accommodating the same ligand in different

conformation. Moreover, edge weight tolerance cannot account for mutations reflected

1Keep in mind that the terms “local” and “global” are used in a methodological sense, i.e.,
referring to the way in which graphs are compared. Thus, the correspondence to sequence-based
methods is not exactly an analogy but rather an inspiring principle.
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by a change in node labels. A single mutation would not necessarily affect protein

function, especially if the mutated pseudocenters do not play a major role in the

interaction between protein and substrate or ligand. This is even more an issue

for proteins that share a common function but lack a close hereditary relationship.

Still, it would be desirable to use a comparison method that is capable of detecting

similarities despite such variance in order to uncover more remote similarities.

In the previous chapter, the modeling concept behind the CavBase database has

been introduced. So far, the comparison of CavBase structures is realized using

clique enumeration (Bron and Kerbosch, 1973) on an ε-tolerant product graph. While

clique-detection offers a relatively fast approach to detect commonalities among pro-

tein binding sites, it also suffers from several drawbacks. Firstly, as it relies on the

construction of a product graph, it suffers from a space complexity of O(m2
1m

2
2), with

m1 and m2 denoting the number of nodes of two graphs. As some of the graphs

derived from protein binding sites can reach a size of several hundred nodes, this

renders the clique approach unable to calculate the MCS for larger input structures

efficiently, simply due to memory limitations of current computers. This is especially

problematic, since it has been shown that the active site of a protein is usually located

in the largest cleft on the surface (Laskowski et al., 1996; Peters et al., 1996).

Another problem is the relative intolerance towards variation. By its very defini-

tion, the product graph discards nodes with different labels and varying coordinates

are only tolerated as long as the distance relative to other centers is lower than ε.

If pseudocenters deviate just a fraction of an Ångström beyond this threshold they

will not be part of the solution. On the other hand, setting the ε tolerance too high

obviously invokes the risk of becoming too unspecific.

Yet, as the main goal of this approach is the detection of a mutual correspondence

between binding sites in the form of an alignment of pseudocenters, it might be ad-

visable to allow for mismatches resulting from mutations in order to find an optimal

overall correspondence, in analogy to mismatches in sequence alignments. In addi-

tion, given the different sources of inaccuracy when dealing with protein structures,

tolerance towards structural deviation is mandatory.

The approach of Weskamp (2007) alleviates this second drawback by using the

result of the clique-detection just as a “seed solution” to be extended by a greedy
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extension strategy. Still, the problem of space complexity remains, as this approach

still depends on the solution of the clique-detection. Moreover, a greedy heuristic is

a myopic optimization strategy, hence extending the clique solution greedily does not

necessarily result in an optimal solution.

In the following, an alternative to the greedy strategy is presented that utilizes

evolutionary optimization in order to alleviate the myopic nature of the greedy ap-

proach and sidesteps the requirement of a product graph, thereby making it more

useful for the comparison of large binding pockets.

4.1.1 GAVEO - Global Graph Alignment Via Evolutionary

Optimization

In the approach of Weskamp, the expansion of the seed solution is realized formulated

as an optimization problem by using a graph edit distance as objective function. As

outlined above, two graphs modeling the spatial topology of different binding sites

cannot be expected to be isomorphic as some variation will inevitably exist even

between closely related proteins.

To capture the difference between these graphs, a graph edit distance as mentioned

in Chapter 3 can be used. The graph edit distance can be defined as the minimum

number of edit operations necessary to convert a graph G1 into another graph G2

(Sanfeliu and Fu, 1983) (cf. chapter 2).

Here, three types of graph edit operations are considered to convert an arbitrary

graph G1 into another graph G2:

1. Insertion: A node / edge is inserted into G1.

2. Deletion: A node / edge is deleted from G1.

3. Substitution: The label of a node or the weight of an edge in G1 is altered.

By assigning different costs to the edit operations, Weskamp defined a scoring

scheme that can be used to quantify the difference between graphs and fulfills the

properties of a metric (Weskamp, 2007). To model the deletion of nodes, Weskamp

introduced so-called dummy nodes, placeholders for the deleted nodes which will cor-

respond to gaps in the context of graph alignments. The resulting function represents
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a quality measure for alignments and is used as objective function to be maximized

by a greedy heuristic that expands upon the seed solution. A multiple graph align-

ment is subsequently constructed by employing the star alignment merging technique

described in Chapter 3.

The Weskamp approach still suffers from several drawbacks. Firstly, the problem

of space complexity remains, since a vital part of the approach consists of finding

the maximal clique in a product graph. Secondly, greedy heuristics in general suffer

from the drawback of being short-sighted. So-called myopic optimization strategies

carry a high risk of getting stuck in a local optimum. This is due to the fact that

backtracking is impossible, hence a decision once made cannot be undone, even if it

would lead to a better solution. Likewise, look-ahead strategies are not employed.

In the following, an alternative algorithm based on evolutionary optimization

called GAVEO (Global Alignment Via Evolutionary Optimization) is introduced

that circumvents both problems. Evolutionary algorithms represent a number of

metaheuristic optimization strategies inspired by the biological concept of evolution.

Realizing a (non-myopic) EA, the GAVEO algorithm offers the potential to yield

a significant improvement in terms of alignment quality by avoiding local optima.

Moreover, GAVEO eliminates the need to generate seed solutions. This effectively

allows to omit the clique-detection step, thereby circumventing the space complexity

problem.

4.1.1.1 An evolutionary strategy for the calculation of graph alignments

As outlined above, the problem of finding an optimal graph alignment can be formu-

lated as an optimization problem. An evolutionary algorithm (EA) offers the benefit

that each point in the search space can be reached which allows for a more thorough

exploration of the search space. Moreover, evolutionary algorithms have proven to

be relatively versatile, leading to (near-)optimal solutions for a variety of different

optimization problems (Spears et al., 1993). However, while EAs in principle are

capable of finding an optimal solution in finite time, they cannot guarantee to find it

in a reasonable amount of time and in fact high runtime requirements are the major

downsides of EAs (Ashlock, 2006).
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Evolutionary algorithms use computational models of evolutionary processes in-

spired by Nature to solve optimization problems. As a result, the terminology of

evolutionary computation draws heavily on terms used in biology in the context of

evolution. EAs typically maintain a set of possible candidate solutions for a given

problem called individuals that are iteratively refined by applying a reproduction

and selection regime (Bäck et al., 1997, 2000; Spears et al., 1993). In each iteration,

individuals are perturbed by applying search operators typically referred to as mu-

tation and recombination that serve as exploration heuristics to explore the search

space. Subsequently, individuals are subjected to selection, by evaluating the per-

ceived performance of the individuals measured by a fitness function and selecting

certain individuals according to a specified selection scheme as offspring for the next

iteration. The set of individuals is referred to as population and an iteration, in

accordance with the evolution symbolism, is also called generation.

The GAVEO algorithm builds upon the framework of (Weskamp, 2007). More

precisely, GAVEO calculates a global graph alignment as defined in Chapter 3 by

maximizing a global scoring function s that serves as a fitness function. However,

instead of starting from precalculated seed solutions, GAVEO offers the possibility to

calculate graph alignments “from scratch” starting from randomly generated align-

ments.

Given a set of graphs G = {G1, ..., Gm}, a graph alignment A is calculated that

maximizes the optimization function s(A). The objective function used by GAVEO

is identical to the one used by Weskamp and represents a quality measure based on a

sum-of-pairs scheme, generalized for the case of multiple graph alignments. The score

of a multiple alignment A = (a1, . . . , an) is calculated by summing over the scores of

all induced pairwise alignments:

s(A) =
n∑
i=1

ns(ai) +
∑

1≤i<j≤n

es(ai, aj) . (4.1)

The function consists of two parts, considering nodes and edges separately. The

node score ns evaluates the correspondence of all mutually assigned nodes within

a column ai of the alignment A, which is summed up over the length of the align-

ment. Matching node labels are rewarded by a positive score nsm, mismatches or the
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assignment of gaps are penalized by negative values nsmm and nsgap, respectively:

ns


ai1
...

aim

 =
∑

1≤j<k≤m



nsm

nsmm

nsgap

nsgap

`(aij) = `(aik)

`(aij) 6= `(aik)

aij =⊥, aik 6=⊥

aij 6=⊥, aik =⊥

(4.2)

The function es evaluates the assignment of edges. Tolerance towards edge weights

deviation is again realized by ε tolerance. Thus, the assignment of two edges e1 and

e2 is considered a match, if the respective weights deviate by ε at most, otherwise

mismatch is presumed:

es




ai1
...

aim

 ,


aj1
...

ajm


 =

∑
1≤k<l≤m



esmm

esmm

esm

esmm

(aik, a
j
k) ∈ Ek, (ail, a

j
l ) /∈ El

(aik, a
j
k) /∈ Ek, (ail, a

j
l ) ∈ El

dijkl ≤ ε

dijkl > ε

,

(4.3)

where dijkl =
∣∣w(aik, a

j
k)− w(ail, a

j
l )
∣∣. The parameters (i.e., nsm, nsmm, nsdummy, esm,

esmm) are constants used to reward or penalize matches, mismatches and dummies,

respectively2.

Having defined the fitness function, an evolutionary algorithm is employed to

find a globally optimal alignment. More precisely, the GAVEO approach consists of

an iterative process according to Beyer and Schwefel (2002). Initially, a population

consisting of µ individuals is generated randomly, with µ denoting the population

size. Each individual represents a graph alignment as candidate solution. Then, the

following iterative loop is performed until a certain stopping criterion is met:

1. At the beginning of each generation, λ = ν · µ new offspring individuals are

2In the experimental part, the scoring parameters and ε will be initialized accoring to Weskamp
(2007).
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generated. This is achieved by selecting ρ parent individuals from the ini-

tial population by means of a mating-selection operator, which in the case of

GAVEO is simply realized as a random selection according to a uniform distri-

bution. The parent individuals are then recombined to yield a new individual.

This is realized by means of a recombination operator.

2. Each individual is subjected to a mutation operator, that (slightly) alters the

individual.

3. The offspring individuals are subsequently evaluated using the fitness function

4.1 and a temporary population T is formed as union of the initial population

and the newly generated offspring. A selection operator is then applied to select

the fittest µ individuals that form the population off the next iteration.

As possible stopping criteria, the elapsed runtime, the number of generations, stall

time or stall generations (the amount of time, respectively the number of generations,

with no improvement of the fitness value) or a fixed fitness value could be used. The

complete GAVEO algorithm is summarized in Algorithm 1.

Algorithm 1 The GAVEO algorithm

Require: G set of graphs, µ population size, λ number of offspring, ρ number of
parents, s fitness function
stop = false
P = initialize population(G, µ)
while stop = false do
O = recombine offspring(P, λ)
O = mutate offspring(O)
evaluate population(O ∪ P )
P = select best(O ∪ P, µ)
if stop criterion is met then
stop = true

return individual A ∈ P , with A = arg maxA∈P s(A)

The optimization process can start from arbitrary alignments which allows to

reduce the memory requirements compared to the greedy approach, as mentioned

above. However, since the search space is relatively large, starting from a random
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alignment might not be the best choice. Thus, in case of smaller graphs where the

calculation of a maximum clique is unlikely to cause problems, the greedy solution

can be calculated as starting point first and included in the initial population.

In principle, any number of graphs can be aligned in this manner directly, which

is an additional benefit of the GAVEO approach. The greedy approach instead can

only be used to calculate pairwise alignments that are subsequently combined into

a multiple graph alignment via star alignment. This, however, introduces another

source of inaccuracy, as two heuristics are used in combination instead of one single

procedure, as is the case for the GAVEO approach.

One the other hand, the search space of the multiple graph alignment problem

grows exponentially with the number of graphs. This, is of course problematic from

an optimization point of view, as an efficient exploration of the search space becomes

more and more difficult. Thus, decomposing the multiple graph alignment problem

into several pairwise ones and resorting to subsequent merging might allow to trade

quality for speed.

In doing so, one would achieve a reduction of the search space by simplifying

the problem, although bought with the potential loss of quality incurred by the sub-

optimal merging of the pairwise alignments. It is difficult to judge which effect would

be of greater impact in advance and it might be more advisable to avoid the risk of

getting astray in a huge search space. However, as the focus of this thesis is on the

pairwise case, this is of minor importance here.

4.1.1.2 Initialization and representation of individuals

In many cases, evolutionary algorithms, especially evolutionary strategies (Rechen-

berg and Eigen, 1973), utilize a problem-specific representation of individuals. Here,

a graph alignment is represented by using a m × l matrix that holds the indices of

mutually assigned nodes, with m denoting the number of graphs to be aligned and

l the length of the alignment. More precisely, each row corresponds to a graph and

each column to a set of mutually aligned nodes. By introducing an arbitrary but fixed

numbering of nodes for each graph, every number in the matrix uniquely identifies

a certain node in a graph. An example is given in Fig. 4.1. As edges are specified

indirectly as well, this representation uniquely encodes a multiple graph alignment.
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G1: 1 2 - 4 3 5 - 

G2: 3 2 6 1 4 5 - 

G3: 4 3 2 - 1 - - 

G4: - 3 4 - 2 1 - 

Figure 4.1: Matrix representation of an MGA. The first column indicates a mutual
assignment of the first node of graph 1, the third node of graph 2, and the fourth
node of graph 3, while there is no matching partner in graph 4. Gaps are represented
by -. Note that the order of the columns is arbitrary.

The question arises how the length of the alignment is set. Since the definition of

a graph alignment as introduced above only requires that each column must at least

contain one non-gap position, the length of the optimal alignment A can be upper-

bounded by |A| ≥
∑m

i=1 |Vi| but is generally not known in advance. For practical

reasons, setting the second dimension of the matrix to this upper bound is not advis-

able, as this will again result in high storage requirements that might cause problems

similar to the product graph calculation.

Moreover, from an optimization point of view, the potentially huge search space

would make the search process unnecessary excessive under the assumption that the

optimal solution will almost never occupy the whole length. While for efficiency a

smaller alignment length is preferable, setting a lower limit bears the risk of excluding

the optimal solution from the set of possible solutions that can be obtained.

To solve this dilemma, an adaptive representation is used. For each individual, a

single gap column is added to the solution serving as a reservoir of placeholders to be

matched where appropriate. The idea is that, if inserting a gap in the alignment would

be favorable, the gap column will be disrupted by placing one or more placeholders at

a new position within the alignment in exchange with the node that was previously

assigned. Further gap columns will be introduced automatically if that happens, or,

in the opposite case, will be removed if they accumulate. This ensures that always

one such column is present. During optimization, it is ensured that gap columns have

no influence on the fitness of the individual.

Obviously, this will not result in a limitation of the search space, as the maximum
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length alignment can still be achieved. However, this strategy creates a bias towards

shorter solutions which should improve the runtime requirements of GAVEO. As a

result, the second matrix dimension will be set to l = max{|V1|, . . . , |Vm|} + 1 to

accommodate the largest graph and the additional gap column. During initialization,

µ individuals are generated. For each graph Gi ∈ G, a permutation of the nodes in

|Vi| is inserted into the i-th row of the matrix and for each index position j > |Vi| a

placeholder is inserted.

4.1.1.3 Evolutionary operators

As GAVEO uses a problem-specific representation, standard evolutionary operators

known from the field of evolutionary optimization do not apply. Hence, these opera-

tors have to be adapted for GAVEO. In the following, a concrete description of the

operators is given.

Recombination

The recombination operator constructs a new individual from ρ parent individuals

drawn at random from the current population via a uniform distribution. To select

the submatrices to be combined, ρ− 1 random numbers ri, with i = 1, . . . , ρ− 1 are

generated with 1 ≤ r1 < r2 < . . . < rρ−1 < m, specifying the rows to be taken from

the individual parents. To obtain the new offspring, the rows {ri−1 + 1, . . . , ri} from

the i-th parent individual are selected (where r0 = 0 and rρ = m by definition) and

combined.

As the indices in a row are not ordered, simply concatenating the rows as they are

is not reasonable, since this would disrupt the reference frame of the row. This would

be counterintuitive, as it violates the idea behind the recombination step, which is to

combine elements from the parent individuals in order to allow the combination of

(hopefully) favorable assignments from the parent individuals in the offspring.

Therefore, in a merging step i, the ordering of the ri-th row is used as a pivot

row, a reference in order to preserve assignments already present in the parents. The

submatrices derived from the parent individuals as specified by the rows {ri−1 +

1, . . . , ri} are combined columnwise, by joining each subcolumn with the subcolumn

of the next individual that has the same node index entry in the pivot row ri. In case
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the entry in row ri is a gap, which can occur multiple times, the first occurrence of a

gap is chosen from the next individual, marking this column as “used”.

This procedure is illustrated in Fig. 4.2 for the case ρ = 3. Three individuals I1, I2,

and I3 and two rows designated by the integers r1 and r2 with 1 ≤ ri ≤ m are chosen

at random. All individuals are split horizontally at the rows r1 and r2. The resulting

blocks are then merged into a new offspring individual. To preserve the ordering

of the parent individuals, columns are rearranged according to the reference rows r1

and r2, respectively, whose indexes serve as pivot elements. In the illustration, the

first red subcolumn in I1 is transferred to the offspring, with the index of the pivot

row r1 being 2. The column is then expanded by searching for the occurrence of the

index 2 in the pivot row r1 in the next individual and transferring the associated

next subcolumn (red) to the offspring individual. This procedure is repeated for all

individuals and columns.

1 - 3 2 4 

2 1 4 3 5 

1 - - 2 3 

5 3 1 2 4 

2 - 4 3 1 

- - 3 1 2 

4 2 3 1 - 

1 2 3 4 5 

1 2 - - 3 

2 4 3 1 5 

- 2 1 4 3 

- 3 - 2 1 

2 1 - 4 3 

3 4 5 1 2 

- 3 2 1 - 

2 3 5 4 1 

4 - 1 2 3 

- 2 - 1 3 

I1 I2 I3 

r1 

r2 

1 - 3 2 4 

2 1 4 3 5 

2 1 - - 3 

4 2 1 3 5 

2 - 4 1 3 

1 2 - - 3 

Recombined offspring 

Figure 4.2: Recombination of ρ = 3 individuals. r1 and r2 designate the pivot rows
(green), where the parent individuals are split. The red subcolumns are combined
in a new offspring individual, preserving the assignment of nodes from the parent
individuals.
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Mutation

The performance of an EA largely depends on the mutation operator, which is guided

by two contrary principles (Beyer and Schwefel, 2002). On one hand, it needs to allow

for minimal changes to ensure that the exploration of the search space is fine enough

to be able to reach every point, that is, every possible alignment. Moreover, if a near-

optimal solution has already been reached, this ensures that one mutation step will

not deviate much from this solution. On the other hand, larger steps are necessary

to avoid premature stagnation and allow for a more rapid exploration of the search

space. This trade-off is controlled by the mutation strength.

In GAVEO, the mutation operator is realized in a relative simple way, by randomly

selecting a single row r and swapping two randomly chosen entries ri and rj. The

mutation strength is regulated by performing this mutation steps repetitively, with

the number of repetitions corresponding to the mutation strength. Fig. 4.3 illustrates

the mutation operator.

4 2 3 1 - 

1 2 3 4 5 

1 2 - - 3 

2 4 3 1 5 

- 2 1 4 3 

- 3 - 2 1 

3 2 4 1 - 

1 2 3 4 5 

1 2 - - 3 

5 4 3 1 2 

- 4 1 2 3 

- 3 - 2 1 

Figure 4.3: Mutation of an individual with a mutation strength of 3.

This way, an adjustable mutation operator is created that allows for the determi-

nation of the most successful mutation strength by specifying the mutation strength

as a strategy component that can be adjusted instantly using a self-adaptation mech-

anism (Beyer and Schwefel, 2002). This is necessary, since the optimal mutation

strength is not known in advance.
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Adaption of Alignment Length

The adaptation of the alignment length, as described above, occurs at randomly cho-

sen intervals. For a given individual, the algorithm checks with a random probability

pcheck whether an extension of the alignment is necessary. To this end, the presence

of a gap column is checked. Three cases can occur:

1. Exactly one gap column is present. The alignment length does not have to be

adjusted, as there are still placeholders available for every row.

2. Gap columns have accumulated, indicating that a matching of nodes is more

favorable than introducing gaps, which in turn are considered obsolete. The

number of gap columns is reduced to one.

3. No gap column is present, indicating that gaps have been introduced in the

alignment to improve alignment quality. To restore the reservoir of placeholders,

a new gap column is inserted.

Selection

As a selection operator, the deterministic plus-selection was chosen, thus realizing a

(µ + λ) scheme known from evolutionary strategies (Beyer and Schwefel, 2002). In

a (µ + λ) strategy, the µ individuals of the parental generation are chosen to create

additional λ offspring individuals. During the selection process, all individuals are

evaluated according to the fitness function 4.1. The population of the next generation

is then created by selecting the best µ individuals according to their fitness.

For the current problem, this is arguably the most promising strategy, given that

the search space for the multiple graph alignment problem is extremely large with a

size of O(k!m−1) (k denoting the length of the alignment, which is a priori not known

and m the number of graphs). Thus, it would be advisable to regard the parent

individuals as well as the offspring to ensure that no currently best solution is lost. An

(µ, λ) strategy for example, utilizing the comma-selection (Beyer and Schwefel, 2002),

which only considers the offspring, would discard the parent generation, regardless of

their fitness value.
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4.1.1.4 GAVEOc - keeping the clique solution

As mentioned above, calculating a new graph alignment starting from a random

initialization allows for solving the space complexity problem, but on the other hand

bears the risk of increasing the runtime. Therefore, the possibility to use the greedy

solution as a starting point was provided, which apparently also includes the MCS

as derived by clique enumeration. Obviously, the trade-off here is the fact that a

complete greedy solution must be calculated in advance, before the real optimization

starts.

However, since the greedy solution included in the start population is subsequently

subjected to another optimization, one could also skip this step entirely. Calculating

the MCS instead is much more interesting, as the largest common substructure of

the binding pockets might contain important information that should not be lost. In

fact, a large common substructure in the pocket would be highly meaningful. While

the main problem of using the MCS as similarity criterion is its lack of flexibility,

there is no reason to dismiss this information if available, thus it should be part of

the final solution.

Therefore, as an alternative, the above algorithm is altered in the following way:

Prior to the optimization process, the MCS is calculated once via the Bron-Kerbosch

method and included in every individual of the starting population, instead of only

one individual. Moreover, the MCS is kept during the optimization process.

The GAVEO approach allows for a complete exploration of the search space.

That means, theoretically, even if a large common subgraph would exist, it could

be disrupted by the optimization process, if that would lead to an increase of the

objective function. The fitness function mainly operates on the assumption, that

a common substructure, even if containing some mismatches, would still yield an

optimal score if matched accordingly. However, since the sum-of-pairs score considers

all assignments independently, this is not necessarily the case.

Thus, to ensure the intactness of the MCS, the largest obtained clique solution is

fixed and the optimization is limited to the remainder of the alignment. To this end,

the clique solution is set as a “prefix” of the complete alignment, and the mutation

operator of GAVEOc selects row numbers randomly from the interval [0 + c, l], c

denoting the size of the MCS. While this GAVEOc variant might not necessarily lead
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to a globally optimal alignment in terms of the above-defined scoring function, it

might well lead to better results in a biological sense.

4.1.1.5 Alignment scores

As outlined above, the scoring function can be regarded as a similarity measure for

the aligned structures: The higher the number of matches, the higher the score and

the more similar the binding pockets. However, using the fitness value directly as a

similarity measure might be ill-advised.

Hypothetically, consider the case of three binding pockets that all have the same

common core structure and a different number of additional pseudocenters at the rim

of the cavity. In case that the additional nodes and edges can only be assigned as

mismatches, the two smallest graphs, respectively binding pockets, would receive the

highest similarity score. Yet, obviously, it would be more reasonable to score all three

graphs as equally similar, especially since the extraction of cavities is inaccurate at

the borders.

It would be even worse if binding pockets with a smaller common core struc-

ture might receive a higher similarity score than pockets with a larger one, provided

that the number of non-matching nodes and edges in the latter case is large enough

to decrease the score below the value of the first comparison. This is depicted in

Fig. 4.4. An alignment A12 between the graphs 1 and 2 would yield a similarity score

of s(A12) = (2 · nsm + 1 · esm)− (5 · nsgap + 7 · esmm), whereas an alignment between

graphs 2 and 3 would be scored s(A12) = (4 · nsm + 5 · esm)− (8 · nsgap + 17 · esmm).

Assuming, that nsm = 1, nsgap = −1, esm = 0.1 and esmm = −0.1, the former align-

ment would be scored higher (s(A12) = −3.5) as the latter (s(A12) = −5.2), despite

the fact, that graphs 2 and 3 have a larger common subgraph.

Thus, alternatively, the following similarity score will be used:

s′(A) =
n∑
i=1

ns’(ai) +
∑

1≤i<j≤n

es’(ai, aj) , (4.4)

with
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Graph 1 Graph 2 Graph 3 

s(𝐴12) = (2 𝑛𝑠𝑚 + 3 𝑒𝑠𝑚) − (5 nsgap + 8 𝑒𝑠𝑚𝑚) 

s(𝐴12) =(4 𝑛𝑠𝑚 + 5 𝑒𝑠𝑚) − (14 𝑒𝑠𝑚𝑚 + 7 nsgap) 

s(𝐴23) =(4 𝑛𝑠𝑚 + 5 𝑒𝑠𝑚) − (8 nsgap + 17 𝑒𝑠𝑚𝑚) 

Figure 4.4: Example of a counterintuitive similarity degree based on the objective
function of GAVEO. Blue dotted lines indicate the alignment of nodes, thick lines
indicate common subgraphs.

ns’


ai1
...

aim

 =
∑

1≤j<k≤m

 nsm

0

`(aij) = `(aik)

otherwise
(4.5)

es’




ai1
...

aim

 ,


aj1
...

ajm


 =

∑
1≤k<l≤m

 esm

0

dijkl ≤ ε

otherwise
(4.6)

The problem still remains that this similarity score is not normalized, i.e., it will

depend on the size of the graphs. To obtain a size-independent similarity measure,

the above defined score is normalized to the size of the graphs. This gives rise to two

similarity measures, a “conjunctive” and a “disjunctive” one:

ζmax(A) = max{ s
′(A)
|G1| ,

s′(A)
|G2| }, (4.7)

ζmin(A) = min{ s
′(A)
|G1| ,

s′(A)
|G2| }. (4.8)

The measure (4.8) can be seen as a relaxed equality and proceeds from the ex-

pression of set equality (A = B) in terms of two-sided inclusion (A ⊂ B and B ⊂ A).

Thus, it requires that, to be similar, G1 and G2 must be approximately equal in the
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sense of a mutual inclusion: G1 is (approximately) included in G2 and likewise G2

in G1. As opposed to this conjunctive combination of the two degrees of inclusion,

the disjunctive combination (4.7) only requires an inclusion on one side: either G1 is

included in G2 or G2 in G1. Obviously,

ζmin(G1, G2) ≤ ζmax(G1, G2) .

Both measures can be regarded as complementary. The question which of these

two measures, the conjunctive or the disjunctive one, yields more suitable similarity

degrees cannot be answered in general and instead depends on the problem setting,

in particular on the purpose for which the similarity is used (e.g., function prediction)

and the way in which protein binding sites are extracted and modeled (e.g., whether

or not the model may include parts of the protein not belonging to the binding site

itself).

Therefore, to allow for a certain flexibility and account for both possibilities, a

combination of both will be used as ultimate similarity measure:

ζ(G1, G2) = α · ζmax(A) + (1− α) · ζmin(A) . (4.9)

As a remark, it should be noted that, formally, equation (4.9) is a special case of

a so-called OWA (ordered weighted average) aggregation (Yager, 1988), with the

parameter α ∈ [0, 1] controlling the trade-off between the two similarity measures.

4.2 Local graph comparison

In the previous section, the problem of graph comparison was addressed in a global

way. As mentioned above, taking the whole graph topology into account to derive

a mutual correspondence between binding sites comes at the price of a high com-

putational complexity. Moreover, the approaches discussed in the previous chapter

inherently bear the risk of having relatively high runtime requirements, as evolution-

ary optimization is known to be expensive (Ashlock, 2006). As a result, global graph

comparison might not prove efficient enough to be used in the context of large-scale in

82



4.2 Local graph comparison

silico screening, for example, when screening the CavBase for similar binding pock-

ets, given a query protein binding site that represents a new drug target to detect

cross-reactivities.

With these considerations in mind, one might raise the question whether it is

really necessary to derive a global alignment of protein binding sites in a relatively

complex manner, or whether the same task can be performed by much faster and

simpler, although maybe less powerful methods with respect to the information ob-

tained. For the purpose of database searches, for example, a complete assignment of

nodes (respectively pseudocenters) is not really necessary. In fact, the derivation of

a similarity measure would suffice for this type of application.

But the comparison of binding sites in a global manner can also be questioned from

a biological point of view. Firstly, protein structures as such are flexible, subjected

to conformational changes and dynamic behavior. Global approaches considering the

whole graph topology are more easily affected by disturbances in the topology, which

can easily occur as a result of conformational changes and inaccuracies of the modeled

structures. While the issue of flexibility has been approached by several algorithms

to protein comparison (Shatsky et al., 2004; Verbitsky et al., 1999), little has been

done in the field of graph methods beyond the use of tolerance thresholds.

As a result, global methods might fail to detect similarities among related proteins

in different conformations. A simple illustration of this effect is shown in Fig. 4.5.

The two “geometric” graphs depicted are almost identical, except for the variation

of the angle at the red node. Yet, this small modification already affects the whole

graph topology, for example the length of the edges indicated by dashed lines.

Secondly, functionally related structures may only share similar substructures, a

notion that has been supported by recent studies (Najmanovich et al., 2008). This

is also true for protein binding sites. As cleft-detection algorithms (e.g., based on

alpha-shapes or grid scanning) in general suffer from an inaccuracy in determining

the borders of the cavity, different binding site representations can be derived even for

the same protein. Moreover, ligands might occupy only a small portion of a cavity,

hence functionally related binding pockets do not necessarily share the same overall

architecture.
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Graph A Graph B 

a) b) 

Figure 4.5: Two almost identical graphs (a), except for the variation of the angle at
the red node, which influences the length of several edges (dashed). An overlay of the
two graphs (b) shows a change in graph topology.

While it would be desirable to accurately determine the actual part of the binding

pocket that interacts with the ligand in order to exclude irrelevant information, this

is not feasible based on the protein structure alone, given the fact that ligands usually

possess many rotatable bonds leading to a high number of degrees of freedom. Fur-

thermore, using additional ligand information is generally not viable, since for many

proteins such exhaustive information about all possible interacting ligands is simply

not available.

But beside these technical issues, even if the protein binding pockets are reduced to

the relevant interacting part, a global similarity between binding sites interacting with

the same ligand must still not necessarily exist and, by extension, no overall identical

graph topology. As a result of the freely rotatable bonds within a ligand, the ligand

can adopt different conformations. Thus it is plausible that subpockets of a binding

site interacting with certain functional groups of a ligand can be arranged differently

and still accommodate the same ligand, although in a different conformation.

Therefore, an obvious alternative would be to approach the problem of graph

comparison on a local scale, thus transferring the graph similarity problem to the

level of substructures. This way, a similarity measure can be derived by comparing

local graph features, e.g., subgraphs of a specific type. A high degree of similarity is

already obtained by two graphs having similar constituents instead of an isomorphic

global topology. Conceptually, this can be viewed as orthogonal to global graph

comparison.
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Significant contributions in this direction have been made in the form of so-called

graph kernels. Roughly speaking, a kernel can be regarded as a similarity function

on arbitrary complex objects, in this case graphs, fulfilling certain properties. Math-

ematically, a kernel is defined as follows:

Definition 16 (Positive definite kernel)

Let G be a set of objects. A function κ : G × G → R is called kernel if the following

properties hold:

1. κ(x, y) = κ(y, x) for all x, y ∈ G (symmetry),

2.
∑m

i,j=1 cicjκ(xi, xj) ≥ 0, ∀m ∈ N,∀{c1, . . . , cm} ⊆ R and {x1, . . . , xm} ⊆ G
(positive definiteness).

From a machine learning point of view, kernels are especially attractive and inter-

esting tools, as they offer the possibility to employ linear classifiers to solve non-linear

problems. More precisely, every linear classifier that solely depends on a dot product

of the instances can be employed in such a manner, the most prominent example

being support vector machines (SVMs).

SVMs implicitly utilize the concept of a mapping function Φ : X → H to map in-

stances not linearly separable in input space into a higher-dimensional feature space,

the so-called Hilbert space H, where the data becomes linearly separable. Conve-

niently, the mapping does not have to be explicitly calculated. Instead, a kernel can

be plugged into the equation, since the SVMs solely depend on the dot product of the

mappings. This is known as the so-called kernel trick (Aizerman et al., 1964). In-

terestingly, kernels cannot only be defined on feature representations but in principle

on arbitrary complex objects, such as graphs. By defining a suitable kernel func-

tion κ(G1, G2) = 〈Φ(G1),Φ(G2)〉, graphs become amenable to kernel-based machine

learning.

It should be noted that it is also possible to convert the kernel measure into a

distance metric, the so-called kernel distance, via

δ(x, y) =
√
κ(x, x)− 2κ(x, y) + κ(y, y) . (4.10)
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However, since graph kernels can also be regarded as similarity functions on

graphs, this conversion is not really necessary, since they can also be used directly,

for example, in the context of similarity retrieval and clustering tasks.

4.2.1 Extension of existing R-convolution kernels

The question is how to derive a kernel function on structured objects in general and

graphs in particular. Intuitively, when defining a similarity function on arbitrary

structured objects, one could decompose them into simpler substructures with the

implicit assumption that a comparison of the substructures is more easily and effi-

ciently achieved. The similarity measure on the complete objects is then derived by

aggregating the similarities of the constituents in a reasonable way.

This is the rationale behind the R-convolution kernels, representing a generic way

to define kernels for discrete structured objects. Generally, an R-convolution kernel

k : G × G → R can be expressed in the following form:

κ(G,G′) =
∑

g∈R−1(G)

∑
g′∈R−1(G′)

κ(g, g′) , (4.11)

where R−1(G) denotes a decomposition of G into substructures, and κ is a kernel

defined on them. With G = G, this framework can be applied to graphs. In the

following, two specific instances of (4.11) are considered.

Several different kernels have been suggested in the R-convolution framework for

the comparison of graphs (cf. Chapter 2), the most prominent ones being the random

walk kernel (Gärtner, 2003) and the shortest path kernel (Borgwardt et al., 2005),

both of which could be used for the comparison of protein binding sites. However,

to utilize the full information encoded in the graph models used in this thesis, an

adaptation of these kernels is necessary. In the following, these kernels are briefly

introduced and expanded upon.

4.2.1.1 Random walk kernel

The random walk kernel is an R-convolution kernel which decomposes the graphs to

be compared into substructures that represent walks. Random walk kernels were first
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introduced by Gärtner (2003) on unweighted graphs. The main idea is to decompose a

graph into randomly generated walks and then count the number of identical random

walks that can be found in two graphs. To calculate the random walk kernel for

a given pair of graphs, it is not necessary to actually sample the walks randomly.

Instead, Borgwardt et al. (2005) suggested to exploit again the concept of a product

graph, albeit only on discretely labeled graphs. More precisely, one can exploit a

property of the adjacency matrix A× of the product graph G×.

For a given graph G, the number of walks of length n from node i to node j is

given by [An]i,j where An denotes the n-th power of the adjacency matrix A. By

exploiting the product graph as defined in Def. 12, [An×]i,j gives the number of equal

walks of length n from node i to node j that occur in G1 as well as in G2.

Note that node labels as well as real-valued edge weights of the corresponding

walks in G1 and G2 automatically match, as this requirement is implicitly encoded

in the product graph definition by requiring l1(v1) = l2(v2) for product nodes (v1, v2)

and |w1(v1, v
′
1)− w2((v2, v

′
2))| ≤ ε for product edges ((v1, v

′
1), (v2, v

′
2)).

Thus, the random walk kernel is defined as follows:

Definition 17 (Random walk kernel)

Given two graphs G1, G2, with the product graph G× = (V×, E×) and A× denoting the

adjacency matrix of G×. With a sequence of weights λ = λ0, λ1, ... (λi ∈ R, λi ≥ 0 for

all i ∈ N) the random walk kernel κRW is defined by

κRW (G1, G2) =

|V×|∑
i,j=1

[
∞∑
k=0

λk · Ak×

]
, (4.12)

if such a limit exists.

Based on this definition, the random walk kernel kRW (G,G′) can be calculated via

simple matrix operations. The calculation of κRW can be done in different ways, de-

pending on the choice of λ. Two particular choices that present themselves naturally

are the geometric series and the exponential series.

Setting λk = λk leads to the geometric random walk kernel:
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κgeoRW (G1, G2) =

|Vtimes|∑
i,j=1

[
∞∑
k=0

λk · Ak×

]
=

|V×|∑
i,j=1

[
(I − λA×)−1

]
ij
. (4.13)

For the purposes of this thesis, λ is set to λk = λk = 1
a

k
with a ≥ maxv∈V {deg(V×)}.

The calculation of κgeoRW requires the inversion of (I − λA×), which is an M2 ×M2

matrix with M = max{|V1|, |V2|}. Since matrix inversion has a cubic effort in the size

of the matrix, the complexity amounts to O(M6).

Alternatively, the exponential random walk is obtain by setting λk = βk

k!
, thus

exploiting the exponential series:

κexpRW (G1, G2) =

|Vtimes|∑
i,j=1

[
∞∑
k=0

(β · A×)k

k!

]
=

|V×|∑
i,j=1

[
eβ·A×

]
i,j

. (4.14)

Again, the complexity amounts to O(M6), since the calculation of κexpRW involves

the diagonalization of the matrix A×, which is of cubic complexity.

4.2.1.2 Shortest path kernel

The random walk kernel implicitly considers all possible walks by definition. This

might be somewhat problematic, as it introduces a certain redundancy in the simi-

larity measure.

Moreover, the random walk kernel suffers from two problems known as tottering

and halting. Tottering occurs if nodes or edges are visited repeatedly, thus attributing

more weight to these nodes, respectively edges, which might lead to an overestimation

of the similarity. This is especially severe for the graph models used here, as the

protein binding sites are modeled by undirected graphs. As a result, a walk can even

totter between the same two nodes repeatedly.

Halting refers to the phenomenon that the similarity measure is dominated by

shorter walks. Walk kernels suffer from this problem due to the decay factor λ which

down-weights larger walks. Thus, to ensure the convergence of the series, one in-

evitably inherits a bias towards shorter walks.

Another problem is the complexity of the random walk kernel. While a complexity

of O(M6) is of course preferable to solving an NP-complete problem, it is still rather
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high. Thus, as an alternative, Borgwardt and Kriegel (2005) introduced the shortest

path kernel which considers only the shortest paths between any two nodes in order

to reduce the number of considered graph components.

Again, for the purpose of this thesis, the following extension of the shortest path

kernel is proposed, in order to make it applicable for the given graph models: Let

(vφ1 , ..., vφk) denote the shortest path between two nodes vi, vj ∈ G with vi = vφ1 and

vj = vφk . Let the length of the shortest path be defined by lp(vi, vj) with:

lp(vi, vj) =
k−1∑
l=1

w(vφl , vφl+1) . (4.15)

Testing for equality on real-valued edge weights would obviously not be reasonable,

due to the measurement accuracies and uncertainties. Therefore, edge lengths are

discretized into bins of size 1. Now, the shortest path can be represented as a triple

sp(vi, vj) with sp(vi, vj) = (l(vi), l(vj), lp(vi, vj)). Obviously, setting a maximum edge

weight is even necessary in this case, as otherwise the shortest path between two

distinct nodes would always have a length of one.

In other words, the shortest path is defined by the label of the starting node, the

end node and the sum of the discretized edge weights. On the one hand, discretization

introduces some error tolerance in order to deal with the inherent noise associated

with the edge weights. On the other hand, this also introduces another source of

error.

Based on that simple representation, one can use the Dirac kernel to compare two

shortest paths sp(v1i , v
1
j ) and sp(v2i , v

2
j ), with v1i , v

1
j ∈ V1 and v2i , v

2
j ∈ V2:

κpath((v
1
i , v

1
j ), p(v

2
i , v

2
j )) =

1 if sp(v1i , v
1
j ) = sp(v2i , v

2
j )

0 else
.

With this, the generalized shortest paths kernel is defined as follows:

κSP (G1, G2) =
1

C

∑
v1
i ,v

1
j∈V1

∑
v2
i ,v

2
j∈V2

κpath(sp(v
1
i , v

1
j ), sp(v

2
i , v

2
j )) , (4.16)

where C = 1
4
(|V1|2 − |V1|) · (|V2|2 − |V2|) is a normalizing factor that guarantees
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0 ≤ κSP (G1, G2) ≤ 1 and more importantly ensures that κSP is size invariant.

To calculate the shortest path of a graph, several algorithms exist, one of the most

prominent being the Floyd-Warshall algorithm (Floyd, 1962), which will be used in

this case. The Floyd-Warshall algorithm has a cubic complexity. The shortest path

kernels considers all shortest paths in two graphs in a pairwise fashion and compares

them using (4.16), which has a complexity of O(1). Therefore, the calculation of κSP

amounts to O(M4) assuming |V | = |V ′| = M , since M4 comparisons have to be made.

The described kernel avoids the above mentioned tottering problem. Moreover, the

runtime complexity of the shortest path kernel amounts to O(M4) which is more

efficient than the random walk kernel.

Realizing the graph comparison approach as a local method inevitably leads to

loss of information, since one neglects the overall structure of the graph. This is of

course also true for the kernel methods presented above. However, in the case of the

shortest path kernel, the loss of information incurred by reducing the information of

the shortest path to the labels of start and end nodes and the associated path length

might be too drastic. To put it differently, can the performance of the shortest path

kernel be improved by utilizing the information given by the intermediate nodes and

edges as well? Thus, a natural alternative would be to represent the shortest path

simply as the sequence of node and edge labels that constitutes the path, i.e.,

spfull(v1, vk) = (l(v1), bw(v1, v2)c , ..., bw(vk−1, vk)c , l(vk)) . (4.17)

Obviously, using the Dirac kernel to compare two such shortest path sequences would

not be reasonable, as this would result in a relatively crude “all or nothing” evaluation.

Instead, since spfull is a sequence of node labels and edge weights, one could instead

utilize sequence analysis methods to obtain a more fine-grained measure. One pos-

sibility would be to use the Needleman-Wunsch algorithm (Needleman and Wunsch,

1970), which is usually employed for the calculation of pairwise sequence alignments,

to compare two path sequences. This algorithm utilizes a scoring function based

on the Levenshtein distance (Levenshtein, 1966) which can be used as a score that

indicates how well two path sequences are in accordance. If a suitable scoring pa-

rameterization is used (1 for a match, 0 for a gap or mismatch), this scoring function

fulfills the properties of a metric.
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However, to employ the Needleman-Wunsch algorithm, an adaptation is necessary

to avoid that edge weights are matched to node labels and vice versa. This can easily

be realized by setting the score for a node-to-edge mapping to −∞. As an additional

modification, the score for each comparison of two path sequences is normalized by

dividing it by the length of the largest path sequence in the graphs, which leads to

an up-weighting of longer path sequences. The rationale behind this is that longer

path sequences would carry more information, simply since more nodes and edges

are visited and thus more of the overall topology is covered. Thereby a similarity

measure in the interval [0, 1] is obtained which can be used in (4.16) instead of the

Dirac kernel.

The downside of this variant is again an increased runtime. The total complexity

amounts to O(M3) + O(M2 · M2 · M2) = O(M6) since first the Floyd-Warshall

algorithm is used to obtain all shortest paths and the comparison via the adapted

Needleman-Wunsch algorithm (withO(n2)) has to be performed forM2·M2 sequences

(assuming that the number of nodes in both graphs is M).

The shortest path kernel essentially avoids the problem of tottering and, at least

in its simpler form, offers a better runtime behavior than the random walk kernel.

However, by focusing explicitly on shortest paths, the problem of halting is still

an issue, perhaps even more so, as larger paths are not only down-weighted but

completely neglected. Thus, it is impossible to judge in advance, which variant will

be best suited for the comparison of protein binding sites.

Both kernels in their original form have already successfully been applied on the

comparison of whole proteins, although in a different problem setting. More precisely,

both kernels have been used on an SSE-based graph representation of protein folds

(Borgwardt et al., 2005). Whether the above kernels with the introduced extensions

will be equally useful for the comparison of protein binding sites will be investigated

in Chapter 5.
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4.2.2 Fingerprints

The above-described methods basically represent extensions of existing methods. As

outlined above, R-convolution kernels potentially offer some benefits, such as an in-

creased runtime efficiency and presumably a greater tolerance towards structural vari-

ation compared to global approaches. They also suffer from different drawbacks as

well, such as tottering and halting. Moreover, whether the R-convolution framework

itself is suitable for the specific problem of protein binding site comparison remains

debatable.

Instead, since a loss of information is deliberately accepted by using decomposition

techniques, one could also reduce the graph representation to a feature representation

of a fixed length and subsequently compare the feature vectors. For the purpose of

retrieving similar graphs (respectively binding sites) from a database, it is not even

necessary to realize the comparison of the feature vectors as a kernel function. Instead,

a suitable distance metric might suffice.

One possibility to derive such a mapping to feature vectors is to define a set of

patterns whose presence in the graph is checked. A pattern naturally corresponds to

a subgraph in case of graph objects3. Each entry in the feature vector corresponds to

a specific pattern and indicates whether the corresponding pattern is present in the

graph. Therefore, the feature vector serves as a fingerprint of the original graph.

Based on such a fingerprint representation, a plethora of feature-based comparison

methods become available. If the fingerprint comparison is realized by a kernel func-

tion, one can obtain a very simple kernel outside the R-convolution framework. In

the following, such a fingerprint approach is introduced for the comparison of protein

binding sites.

4.2.2.1 Crisp fingerprints

Obviously, the fingerprint representation depends on the predefined set of patterns.

This raises the question, which types of subgraphs should be used, as in principle any

subgraph could be chosen, including walks and paths on which the previous methods

have focused. On the one hand, one would need patterns that are not too complex,

3Alternatively, one could also include other features, e.g., based on general attributes such as
graph size, node density and so on, although these would be global instead of local features.
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since this would increase the possibility that a certain pattern would only be present

in a handful of graphs, if it occurs at all. On the other hand, the patterns need to

be specific enough to be of discriminative value. From a technical point of view, it

would be advisable to keep the patterns simple to limit fingerprint size and keep the

calculations feasible. Since the construction of the fingerprints involves checking for

the presence of each pattern, this means that some kind of isomorphism test needs to

be performed for each entry. Hence, the smaller the patterns, the more efficient the

runtime performance.

Given these considerations, subgraphs of size three were chosen as patterns to

ensure a high runtime efficiency, which is one major motivation to use local methods

in the first place. Obviously, not all possible subgraphs of size three can be considered,

given that the graphs used in this thesis feature real-valued edge weights and thus

an infinite number of possibilities exist. Also, sampling patterns from existing graphs

would not be reasonable, as the result would strongly depend on the graphs chosen

for the sampling. Instead, one can again resort to discretization by considering n

distinct node labels and k distinct edge weights, which gives rise to a finite number

of possible patterns given by:

N(n, k) =

(
n

3

)
· k3 + n(n− 1) · k ·

(
k + 1

2

)
+ n ·

(
k + 2

3

)
(4.18)

This is easily verified since only three cases can occur:

1. The pattern contains three different node labels: There are
(
n
3

)
possibilities to

choose three distinct labels. As this also uniquely identifies the edges, there are

k3 possibilities for the edge labels.

2. The pattern contains two equal node labels that differ from the third: There are

n(n−1) possibilities to choose two distinct labels, one for the identically labeled

nodes and one for the third. In this case a graph with the edges emanating

from the uniquely labeled node swapped would be isomorphic. To account

for this, one can sort these edges according to their weight which would map

isomorphic patterns to the same representation, which leads to k ·
(
k+1
2

)
possible

edge combinations.
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3. The pattern contains only identical node labels: There are n possibilities to

choose the node label. Again, to find a unique representation that accounts

for isomorphism, all edges can be sorted which leads to
(
k+2
3

)
possible edge

combinations.

To test for the presence of a given pattern, an ε-threshold can again be employed

in analogy to the GAVEO approach introduced in Section 4.1.1. A pattern ti is

contained in a graph G, if there is a subgraph in Gs which is ε-isomorphic to ti.

Alternatively, one could use a simple binning strategy, by partitioning the set of

real-valued edge weights into several intervals of the bin size b. In this case, instead

of designating a certain set of discrete edge labels and a tolerance threshold ε, a bin

size b is used to specify the fingerprints. Accordingly, a pattern ti is contained in a

graph G, if there is a subgraph in Gs, whose edge weights fall into the bins specified

by the edge labels ti.

In both cases, a fingerprint is defined in the following way:

Given a graph G, let

fG =
(
G w t1, G w t2, . . . , G w tN(n,k)

)
∈ NN(n,k)

where {t1, . . . , tN(n,k)} is the set of all non-isomorphic patterns of size three defined by

fixed sets of node labels and edge weights, numbered in an arbitrary but fixed order.

The predicate G w ti tests whether ti is contained in G and returns the number of

occurrences. Again, setting an upper limit δ for edge weights is necessary here and

has the effect of limiting the size of the fingerprints, which positively affects runtime

efficiency.

To improve runtime performance during the construction of such fingerprint vec-

tors, one can make use of a hashing function based on canonical forms of the given

patterns, instead of employing a brute-force approach. In this work, the canonical

forms are based on the above distinctions between the types of possible patterns of

size three4:

1. All node labels are identical. In this case, the canonical form is given by the

node label followed by the edge lengths in increasing order.

4Though in principle also other conventions are possible.
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2. Two nodes have an identical label. The canonical form starts with the node

label that appears once in the graph followed by the label that appears twice, the

edge weight between the nodes with the same label, and finally the remaining

two edge weights in increasing order.

3. All nodes have different labels. The canonical form is then defined by the three

occurring labels, sorted in a lexicographic order, the edge length between the

first and the second, the second and the third, and finally the first and the third

node.

All three cases are illustrated by an example in Fig. 4.6. We denote the set of

A

AA

4 3

5

A

BA

4 3

5

C

BA

4 3

5

B A 4   3   5 A B   C   5   3   4A 3   4   5

Figure 4.6: The three possible cases that can occur: all labels identical, two labels
identical and all labels unique.

canonical forms by Γ. The above representation enables the definition of a bijective

function i : Γ → {1, . . . , N(n, k)} ⊂ N assigning a unique number to each form and,

therefore, subgraph of size 3.

Using this mapping, the calculation of the fingerprint vector for a graphG = (V,E)

can be done in a more efficient way by enumerating all subgraphs of size 3 in G.

For each subgraph gi of size 3 in G, the transformation to its canonical form σi is

performed (in time O(1)) and the function i(σi) is evaluated to determine the position

of gi in the fingerprint vector (in time O(1)). Finally the entry at this position in the

vector is incremented by one. Doing this for all
(
M
3

)
= O(M3) subgraphs of size 3

leads to a runtime complexity of O(M3).

Given such a feature representation, the comparison of two graphs G1 and G2 is

transferred to the comparison of their respective fingerprint vectors fG1 and fG2 . For

this purpose, different distance measures can be employed, one of the simplest being

the Hamming distance.
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Hamming fingerprints

If one is merely interested in the presence or absence of a pattern, a simple distance

function can be devised based on the Hamming distance. For each pattern, the

simultaneous absence or presence in both graphs is rewarded and aggregated to the

following similarity measure:

kFPH(G1, G2) =
1

N(n, k)

N(n,k)∑
i=1

kδ([fG1 ]i, [fG2 ]i) , (4.19)

where [fG1 ]i denotes the i-th entry in the vector fG1 , and

kδ(x, y) =

1 (x > 0 ∧ y > 0) ∨ (x = 0 ∧ y = 0)

0 otherwise
. (4.20)

Jaccard Fingerprints

A potential disadvantage of using the Hamming distance is the fact that it does

not only reward the simultaneous presence of a pattern, but also its absence. This

is somewhat counterintuitive, since the absence of a certain pattern can obviously

not hint at a shared functionality of the corresponding binding pockets. Therefore,

an alternative measure from the field of set theory can be employed that avoids this

problem. By utilizing the well-known Jaccard coefficient

J(A,B) =
A ∩B
A ∪B

, (4.21)

an alternative similarity measure can be obtained:

kFPJ(G,G′) =

∑N(n,k)
i=1 min([fG1 ]i, [fG2 ]i)∑N(n,k)
i=1 max([fG1 ]i, [fG2 ]i)

. (4.22)

Of course, a plethora of other possible distance measures could also be used in-

stead, for example cosine similarity, the Minkowski metric, etc. However, for the sake

of brevity, the focus will be on the introduced methods as a proof of concept.
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6.1 5.9 5.1

 
Figure 4.7: Example of a discontinuity problem. Given that edge weights are sep-
arated into the intervals [5, 6[ and [6, 7[, the left and the center graph would be
considered dissimilar, while the center and right graph would correspond to the same
pattern. This is clearly counterintuitive, since the left and center graph show a much
lower difference in edge lengths.

4.2.2.2 Fuzzy fingerprints

The previously introduced approach relies on the discretization of edge weights to

define the distinct patterns. A real-valued edge weight corresponds to the discrete

edge weight of a given pattern, if the difference between these edge weights is within

an ε range or a certain interval. This effectively enforces that each weight actually

encountered in a graph is assigned exclusively to one certain edge label.

Conceptually, this is a potential disadvantage of the proposed method due to the

problem of discontinuity, which might cause a number of problems. For example, cases

can occur where similar subgraphs are considered distinct, (i.e., they are considered

to correspond to different patterns) due to a minor difference in edge weight, whereas

more dissimilar subgraphs are attributed to the same pattern and thus are considered

equal. An illustrating example is given in Fig. 4.7. Moreover, a slight deviation of an

edge weight can lead to the absence of a feature if the ε threshold is exceeded.

One possible way to avoid these issues is to resort to fuzzy discretization. In

fuzzy set theory, a fuzzy partition of a domain X (also called the universe of dis-

course) is defined by a finite family of fuzzy subsets Fi1 , Fi2 , . . . , Fik of X such that∑k
i=1 Fik(x) > 0 for all x ∈ X. Additionally, one often requires that

∑k
i=1 Fi(x) = 1

for all x ∈ X, though this is not a necessity.

Definition 18 (Fuzzy set)

A fuzzy set F is defined by a function µ on the reference domain X to the unit

interval [0, 1]: F := {(x, µ(x))|x ∈ X}. The function µ is called a membership

function.
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F6(5.9) = 0.9 
F5(5.9) = 0.1 

5.9 

0

0.5

1

3 4 5 6 7 8

Figure 4.8: Two fuzzy sets F5 and F6 defined by their membership functions. The
real-valued edge weight 5.9 corresponds to the fuzzy set F5 with a degree of 0.1 and
to the fuzzy set F6 with a degree of 0.1.

For each x ∈ X, µ(x) returns the degree of membership to the fuzzy set F , i.e.,

every x ∈ X belongs to the fuzzy set F to a certain degree specified by µ.

In this work, a fuzzy partition of the domain X = R+
0 is realized by fuzzy sets Fi,

with

Fi(x) = max{0, 1− |x− i
η
|} , (4.23)

thus realizing a triangular membership function, with η denoting a radius around the

label i that specifies the support of the fuzzy set. In fuzzy set theory, the support

represents the set of all points in the universe of discourse with a membership degree

µ > 0. In this case, the support is given by Si = {x|x ∈]i− η, i+ η[}.
Intuitively, the fuzzy set Fi can be interpreted as the fuzzy subsets of numbers that

are “approximately equal to i”. Thus, a real-valued edge weight belongs to several

fuzzy sets up to a certain degree, as illustrated in Fig. 4.8.

To realize a fuzzy fingerprint, the concept of a pattern is altered by replacing the

discrete edge weights by fuzzy sets Fi. As a result, a subgraph g of a graph G with

real-valued edge weights can correspond to multiple patterns t up to a certain degree

of membership which can be interpreted as a “degree of isomorphism”.

This degree of membership is defined in the following way: Let ai denote the label

of the i-th node in g, and xij the weight of the edge connecting the nodes i and j. Let

bi be the label of the i-th node in t, and Fij the fuzzy set representing the weight of

the edge between node i and node j. The degree of isomorphism of t and g, denoted
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[t ∼ g], is then given by

[t ∼ g] = max
π∈S3

{
min{F12(y12), F13(y13), F23(y23)} if M(π)

0 otherwise
(4.24)

where yij = xπ(i),π(j), S3 is the set of all permutations π : {1, 2, 3} → {1, 2, 3}. M(π)

is true if

(a1 = bπ(1)) ∧ (a2 = bπ(2)) ∧ (a3 = bπ(3))

and false otherwise.

The degree to which a pattern t is present in the graph G is derived by taking the

maximum over all subgraphs g of size three:

[G w t] = max
g

[t ∼ g] . (4.25)

This value defines the entry for the pattern t in the fuzzy fingerprint vector fG derived

from G. The resulting feature vector contains entries from the unit interval [0, 1]

instead of a binary value that indicates presence or absence of a pattern. Intuitively,

this is a more intuitive model than a relatively crude all-or-nothing approach that

potentially enhances the discriminative power of the fingerprint approach. Moreover,

it circumvents the problem of discrete boundaries.

From a technical point of view, fingerprint construction occurs in analogy to the

non-fuzzy approach by utilizing a hash map as described in the previous section.

The notable difference is that, instead of incrementing the entry for an encountered

patten, the entry is simply updated according to (4.25).

Having derived an alternative fingerprint representation, the comparison of two

fingerprints fG1 and fG2 is realized by defining a similarity measure based on the

Jaccard coefficient (4.21), with the difference that the logical operators from set theory

are generalized by their counterparts in fuzzy set theory. Thus, union and intersection

are replaced by fuzzy t-norms and t-conorms, respectively, resulting in the following

similarity measure:

kFFP (G1, G2) =

∑N(n,k)
i=1 >([fG1 ]i, [fG2 ]i)∑N(n,k)
i=1 ⊥([fG1 ]i, [fG2 ]i)

.
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In the experiments in Chapter 5, the t-norm will be realized as a maximum op-

erator and the t-conorm as a minimum operator: >(a, b) = min(a, b) and ⊥(a, b) =

max(a, b).

Generally speaking, it is not clear in advance, which of the described variants will

be more useful in the context of protein binding site comparison, though conceptually

the fuzzy fingerprint approach appears to be more intuitive. This question will be

addressed in the next chapter.

4.3 Semi-global graph comparison

In the previous section, several local graph comparison methods have been introduced

as alternatives to global graph comparison. These approaches derive a similarity mea-

sure of graphs by comparing local graph features, e.g., subgraphs of a specific type.

As outlined above, approaching the graph comparison on a local scale offers some po-

tential benefits, such as an improved runtime efficiency. Moreover, from a conceptual

point of view, local methods based on decomposition techniques will be much less af-

fected by conformational differences and inaccuracies in the measurements, simply as

the overall structure becomes less important and the comparison process is less strict.

As argued above, this can be beneficial, especially if no overall similar graph topology

exists and only subpockets of a binding site show some structural resemblance.

On the other hand, using such approaches inevitably bears the risk of producing

a high similarity for graphs whose overall topology is different, due to the loss of

information caused by decomposing the graph into substructures. In fact, decom-

positions of this type are typically not bijective, i.e., the complete graph cannot be

recovered from the components. A simple illustration is shown in Fig. 4.9. The two

graphs shown there are quite different in terms of their overall topology. Yet, they

are decomposed into the same set of components (subgraphs of size two). Thus, a

local method operating on these components will produce a high degree of similarity.

The question remains, whether this loss of information is critical, i.e., whether the

derived similarity measures are still capable of discriminating different functional pro-

tein classes. Especially in cases where a global structural similarity exists, neglecting

the overall topology of the graphs might limit the usefulness of these approaches.
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Graph A Graph B 

a) b) 

Figure 4.9: Two graphs that are quite different in terms of graph topology (a). Yet,
their decomposition into subgraphs of size two yields the same set of components (b).

Another disadvantage is the lack of interpretability compared to the approaches

presented in Section 4.1. While this is not problematic for retrieving possibly similar

structures from a database, it does become important when studying the functional

mechanisms of a certain protein class. In this case, one is typically interested in

identifying the regions that are present in all or most functionally related structures,

as these regions most likely play a major role for protein function (e.g., catalytic

triads).

Thus, both purely local and purely global graph comparison methods theoretically

have some merits as well as some limitations for the application at hand. In advance

it is hard to tell in which case the benefits outweigh the downsides of the respective

methods, a question that will be further addressed in Chapter 5.

However, another question comes to mind: having recognized the merits and limi-

tations of purely global or purely local graph comparison, is it possible to combine the

advantages of both the global and the local principle while at the same time avoiding

their disadvantages? A possible solution to this conundrum is again inspired by the

realm of sequence alignment. In addition to global and local sequence alignments,

semi-global sequence alignments have also been widely used for different tasks. Thus,

a natural idea is to calculate a graph alignment as introduced in Chapter 3 in a semi-

global manner. In the following, a semi-global approach to the comparison of graphs

called SEGA (SEmi-global Graph Alignment) will be introduced.
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4.3.1 SEGA - SEmi-global Graph Alignment

SEGA represents a semi-global strategy for the calculation of graph alignments as

defined in Chapter 3 in the sense that it shares properties with both local and global

methods. SEGA again establishes a correspondence between nodes, like the global

approaches introduced earlier. However, instead of optimizing the alignment globally,

SEGA assembles it from local comparisons. Since such local comparisons bear the

risk of producing ambiguities, for example when local subgraphs occur several times

in the graph, SEGA resorts to the overall graph topology to resolve these ambiguities.

The rationale behind this idea is that, by resorting to local comparisons, the

approach becomes more tolerant towards structural variation, while at the same time

avoiding the risk of making arbitrary assignments of nodes by resorting to global

information if necessary.

Since the goal is to establish a correspondence between nodes of different graphs,

a measure of similarity between these nodes is needed to determine which nodes are

most similar to each other and thus should be mutually assigned. This is realized

by comparing nodes based on their labels and their immediate surroundings, the

node neighborhood. This neighborhood is defined by the closest neighboring nodes

and the edges connecting them. The local comparison is realized by comparing fully

connected subgraphs of a given size, with the actual nodes of interest as center nodes.

For binding pockets, this corresponds to the comparison of pseudocenters and the

spatial constellation of physicochemical properties in close proximity of these centers.

Contrary to other approaches, SEGA does not aim for the identification of com-

pletely matching substructures. Instead, the goal is to obtain an estimation of the

geometric similarity of two node neighborhoods which is realized by comparing triplets

of pseudocenters that constitute such a neighborhood. More precisely, SEGA consid-

ers all triplets (or triangles) containing the center node and two of the neighborhood

nodes to capture the spatial positioning of the center node relative to its neighbors.

By deriving a mutual assignment of similar triangles and summing up the number of

matches, an intuitive measure of the node similarity is derived that can be used to

construct a local distance matrix.

In a second step, this matrix is used to construct a pairwise graph alignment.

Essentially, this can be formulated as a weighted optimal assignment problem, which
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can be solved by a number of different approaches, most notably the Hungarian

algorithm (Kuhn, 2005). However, in a typical optimal assignment setting, the goal

would be to optimize a cost function, usually the sum of costs associated with the

individual assignments. Here, this cost is given by the entries of the local distance

matrix, i.e., the cost of the local neighborhood similarity.

However, for the application at hand, minimizing the sum of all costs is possibly

not the best choice. In doing so, cases can occur, where highly similar nodes are

not mutually assigned in order to minimize the overall cost. Arguably, this is not

desirable, as the occurrence of a pair of nodes with (nearly) identical neighborhoods

in two different binding sites will rarely be encountered by chance, depending on the

neighborhood size. If such a nearly identical neighborhood is encountered, it is most

likely due to a similar enzymatic mechanism and therefore more meaningful than pairs

with higher distances. Consequently, such occurrences should be considered first.

The SEGA algorithm thus works as follows: In a first step, the local distance

matrix is calculated, based on the neighborhood similarity. In a second step, the

distance matrix is used to derive a mutual assignment of nodes in an incremental

way, starting with the most similar nodes. Conceptually, this can be regarded as

a divide-and-conquer strategy, since the problem of finding the correspondence of

whole graphs is reduced to solving multiple correspondences of subgraphs, i.e., the

neighborhoods, and then combining the solutions to a global one. In the following,

the algorithm is described formally.

4.3.1.1 Neighborhood distance measure

Assume that two input graphs G1 = (V1, E1) and G2 = (V2, E2) with |V1| = n and

|V2| = m are given. Contrary to the other methods introduced above, SEGA uses

complete graphs as input, which ascertains that for each node the closest neighboring

nodes can always be retrieved. In a first step, the local distance matrix

D = (dij)1≤i≤n,1≤j≤m (4.26)

of dimensionality n × m is constructed. The entry dij corresponds to the distance

between the nodes v
(1)
i ∈ V1 and v

(2)
j ∈ V2 (1 ≤ i ≤ n, 1 ≤ j ≤ m), which can be
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Figure 4.10: Decomposition of the neighborhood of node vc with nneigh = 4. The
subgraph defined by the nneigh nearest nodes is decomposed into triangles containing
the center node vc.

interpreted as a degree of dissimilarity that is inversely related to a corresponding

similarity degree

sij = sim(v
(1)
i , v

(2)
j ) . (4.27)

The similarity (4.27) between two nodes v
(1)
i and v

(2)
j is defined in terms of the

similarity of their respective neighborhoods. For a given (center) node vc ∈ V , let

N(vc, nneigh) ⊆ V consist of the closest nneigh nodes in V , i.e., those nodes having

the smallest Euclidean distance from vc. The neighborhood of vc is then defined by

the set N(vc, nneigh) of all triangles {u, vc, w} with u,w ∈ N(vc, nneigh), u 6= w (see

Fig. 4.10).
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4.3 Semi-global graph comparison

Let

t(1) = {v(1)1 , v
(1)
2 , v

(1)
3 } ∈ N(v

(1)
i , nneigh), v

(1)
1 = v

(1)
i ,

t(2) = {v(2)1 , v
(2)
2 , v

(2)
3 } ∈ N(v

(2)
j , nneigh), v

(2)
1 = v

(2)
j ,

be two triangles from the neighborhoods of nodes v
(1)
i ∈ V1 and v

(2)
j ∈ V2, respectively.

Two such triangles are considered a match if a mapping φ : t(1) → t(2) exists with

either

φ(v
(1)
1 ) = v

(2)
1 , φ(v

(1)
2 ) = v

(2)
2 , φ(v

(1)
3 ) = v

(2)
3 ,

or

φ(v
(1)
1 ) = v

(2)
1 , φ(v

(1)
2 ) = v

(2)
3 , φ(v

(1)
3 ) = v

(2)
2 ,

and for which the following conditions hold:

(i) `(v
(1)
2 ) = `(φ(v

(1)
2 )), `(v

(1)
3 ) = `(φ(v

(1)
3 )),

(ii) max


|e(v(1)1 , v

(1)
2 )− e(φ(v

(1)
1 ), φ(v

(1)
2 ))|,

|e(v(1)2 , v
(1)
3 )− e(φ(v

(1)
2 ), φ(v

(1)
3 ))|,

|e(v(1)3 , v
(1)
1 )− e(φ(v

(1)
3 ), φ(v

(1)
1 ))|

 ≤ ε

Again, the parameter ε ≥ 0 is used as tolerance threshold determining the max-

imally allowed deviation of edge lengths. Roughly speaking, two triangles match, if

a superposition preserving node labels and edge weights exists. The only exception

concerns the center nodes v
(1)
i and v

(2)
j : These two nodes are necessarily assigned to

each other, but their labels can be different. This is done to allow for the construction

of approximate graph alignments that may contain mismatches (mutually assigned

nodes with different label), similar to the error-tolerant GAVEO approach introduced

in Section 4.1.1.

As has been stated earlier, the type of a pseudocenter (and accordingly a node

label) can change due to point mutations in the protein binding pocket. By allowing

for mismatches, an altered pseudocenter can still be assigned to its non-mutated

counterpart, provided the corresponding neighborhoods remain roughly the same.
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By applying this approximate matching technique one can account for biological

variation caused by mutations, as well as structural variation affecting the distance

between the pseudocenters.

The similarity (4.27) between two nodes v
(1)
i ∈ V1 and v

(2)
j ∈ V2 is now defined by

the maximal number of matching triangles from N(v
(1)
i , nneigh) and N(v

(2)
j , nneigh) that

can be assigned in a mutually exclusive way. That is, each triangle from N(v
(1)
i , nneigh)

can only be matched with at most one triangle from N(v
(2)
j , nneigh), and vice versa.

Note that

0 ≤ sij ≤ smax =
nneigh(nneigh − 1)

2
. (4.28)

To determine sij, an optimal assignment problem has to be solved. To this end,

the well-known Hungarian algorithm (Kuhn, 2005) is applied to the smax × smax

matrix whose entry at position (k, l) is 0 if the k-th triangle in N(v
(1)
i , nneigh) can

be matched with the l-th triangle in N(v
(2)
j , nneigh); otherwise, the entry is 1. The

Hungarian algorithm is a combinatorial optimization algorithm that solves an optimal

assignment problem based on a cost matrix as input, with a time complexity of

O((smax)
3). This is done by computing the cost of a cost-minimal assignment and

returning smax−sim(v
(1)
i , v

(2)
j ), i.e., the number of triangles that could not be matched.

This value defines the distance between v
(1)
i and v

(2)
j , i.e.,

dij =
(
smax − sim(v

(1)
i , v

(2)
j )
)2

. (4.29)

As a side remark, one should note that this assignment problem need not be solved

by algorithms suitable for weighted optimal assignment problems. Instead, one could

solve this problem more efficiently, for example by using the Hopcroft-Karp algorithm

(Hopcroft and Karp, 1973). However, due to the small values of nneigh, this does not

affect the runtime complexity of the complete algorithm as the calculation with either

algorithm is quite efficient in practice. The Hungarian algorithm will later be needed

again to solve a weighted optimal assignment problem.

As local distance measure, the squared number of non-matching triangles is used

(4.29). As will be seen in the next section, taking the squared number of non-matching

triangles will not affect the calculation of the graph alignment, i.e., one could also use

the difference between smax and sim(v
(1)
i , v

(2)
j ) directly. However, the cost associated
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4.3 Semi-global graph comparison

to a certain assignment of nodes will later be used to derive a quality measure for the

alignment. Squaring the difference (4.29) will serve to increase the influence of node

assignments with a nearly perfect accordance regarding the spatial constellation of

the associated node neighborhoods. Once the distance matrix D is derived, a graph

alignment is calculated in a second step.

4.3.1.2 Deriving a global alignment

The result of the above computation is an n×m distance matrix (4.26). This matrix

is used as an input for the second step of SEGA, which seeks to find an optimal

mutual assignment of nodes from V1 and V2, respectively. Since dij can be considered

as the cost of assigning nodes v
(1)
i and v

(2)
j to each other, this problem can again

be formulated as an optimal assignment problem, finding the assignment with the

minimal sum of costs. As this represents a weighted optimal assignment problem, the

Hungarian algorithm can be used to solve this problem.

However, a solution thus obtained, even if being optimal in the sense of minimizing

the total cost of node assignments, will usually not provide a reasonable alignment

with respect to the overall graph topology. The problem is that the Hungarian algo-

rithm does not take the spatial relationships between the nodes into consideration.

As a result, assignments of nodes with the same associated cost will be treated as

equivalent, regardless whether the nodes are located in corresponding regions of the

compared binding pockets or in completely different regions.

Moreover, such ambiguities will be resolved in an arbitrary way. In fact, due to

the nature of the underlying distance matrix, whose entries are discrete values from

a fixed set of possible costs given by squaring the integers between 0 and (smax), it

is likely that a cost-minimal solution is not unique. The Hungarian algorithm will

simply pick one from the set of all cost-optimal solutions, which is not necessarily in

agreement with the overall topology.

Additionally, even non-ambiguous highly affine nodes might not be assigned to

each other. This can occur if an alternative assignment of such nodes would break up

another, highly expensive assignment of two dissimilar nodes, resulting in a situation,

where two mediocre node assignments are preferred to one high and one low scoring

assignment. Intuitively, this is not desirable, as a highly affine pair of nodes is much
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more likely to represent a conserved and thus functionally important region of the

binding pocket. While this problem is somewhat mitigated by using the squared

number of non-matching triangles as local distance measure, creating a preference for

highly similar neighborhoods, it is nevertheless possible.

A high neighborhood similarity is only achieved if a conserved common substruc-

ture exists. The size of this substructure directly affects the number of highly affine

node pairs and the most similar pairs should always correspond to nodes located in

the center of the associated common subgraph, where a high neighborhood similarity

is most likely. Hence, one should consider such nodes first. Consequently, SEGA will

assemble an assignment by starting with the nodes exhibiting the lowest observed

distance value and then incrementing through the possible distance values (note that

only a fixed number of values are possible), making all possible non-ambiguous as-

signments before advancing to the next level.

If more than one assignment for a given node is possible with the same cost, SEGA

resorts to global information from graph topology to resolve such ambiguities. More

specifically, an initial seed solution is constructed in the form of a partial assignment

of nodes which will serve as a reference frame. To this end, only nodes v
(1)
i ∈ V1 and

v
(2)
j ∈ V2 having a distance of 0 and, hence, being highly affine, are considered. If such

nodes exist and can be mutually assigned without ambiguities, these assignments are

realized. With

fc(v
(1)
i ) = { v(2)j ∈ V2 | dij ≤ c } ,

gc(v
(2)
j ) = { v(1)i ∈ V1 | dij ≤ c } ,

(where e.g., fc(v
(1)
i ) denotes the set of vertices in G2 whose distance to v

(1)
i is not

greater than c) those pairs v
(1)
i and v

(2)
j satisfying f0(v

(1)
i ) = {v(2)j } and g0(v

(2)
j ) =

{v(1)i } are assigned, as they represent unambiguous choices for constructing the seed

solution. Those nodes v
(1)
i with |f0(v(1)i )| > 1 (and v

(2)
j with |g0(v(2)j )| > 1) are not

yet assigned, as for these nodes multiple conflicting assignments are possible. Such

conflicting choices are later resolved by drawing on the seed solution as reference

frame.
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4.3 Semi-global graph comparison

The seed solution thus obtained must satisfy the constraint that the set of mapped

points for each graph contains a basis of R3 to determine the relative position of a

new node in three-dimensional space in an unambiguous way. To ensure this, at least

four pairs of points are needed, provided these points can be used to define a spanning

set of vectors for R3 that are linearly independent. If this condition is not met, a

sufficient number of candidate pairs is collected by relaxing the distance constraint,

i.e., a maximal local distance c > 0 is allowed.

If even the seed solution cannot be constructed unambiguously, the following strat-

egy is employed: Let S1 ⊆ V1 and S2 ⊆ V2 denote the nodes occurring in these

candidates. SEGA then constructs all possible candidate assignments(
(s

(1)
1 , s

(2)
1 ), (s

(1)
2 , s

(2)
2 ), (s

(1)
3 , s

(2)
3 ), (s

(1)
4 , s

(2)
4 )
)
⊆ S1 × S2

of size four that represent a unique three-dimensional geometry and are unambiguous

in the sense that s
(2)
i ∈ fc(s

(1)
i ) and s

(2)
j 6∈ fc(s

(1)
i ) as well as s

(1)
i ∈ gc(s

(2)
i ) and

s
(1)
j 6∈ gc(s

(2)
i ) for all 1 ≤ i 6= j ≤ 4. As final seed solution, the candidate minimizing

the spatial deviation ∑
1<i<j<4

∣∣∣e(s(1)i , s
(1)
j )− e(s(2)i , s

(2)
j )
∣∣∣

is selected to match the candidates that are most similar in terms of geometry.

Now, suppose a current seed in the form of a partial alignment to be given. There

may still be the problem that some nodes could not be assigned unambiguously. To

solve this problem, one can again formulate an optimal assignment problem, this time

augmented by drawing upon global information. In the k-th iteration, nodes having

a distance of at most ck are assigned, where ck is the k-th smallest cost value in the

matrix D. More specifically, let W1 ⊂ V1 (W2 ⊂ V2) denote the set of nodes from V1

(V2) that have already been assigned in a previous iteration. Moreover, let

Uk
1 = {v(1)i ∈ V1 | fck(v

(1)
i ) 6= ∅} \W1 ,

Uk
2 = {v(2)j ∈ V2 | gck(v

(2)
j ) 6= ∅} \W2 .

109



4. METHODS

Then a (partial) assignment of nodes in Uk
1 and Uk

2 is derived by applying the Hun-

garian algorithm to a cost matrix defined as follows. The matrix contains an entry for

each pair of nodes v
(1)
i ∈ Uk

1 and v
(2)
j ∈ Uk

2 . If v
(2)
j 6∈ fck(v

(1)
i ), the corresponding cost

value is set to a sufficiently high constant C (indicating that these two nodes should

not be assigned). Otherwise, the cost value is determined by resorting to information

from the (global) graph structure, by comparing the position of v
(1)
i relative to the

current seed nodes W1 with the position of v
(2)
j relative to W2. More precisely, the

cost is defined by ∑
q=1,2,...,|W1|

∣∣∣ |v(1)i − w(1)
q | − |v

(2)
j − w(2)

q |
∣∣∣ ,

where w
(1)
q and w

(2)
q denote, respectively, the q-th node in W1 and W2 (which are

mutually assigned), and |v(1)i − w
(1)
q | is the Euclidean distance between v

(1)
i and w

(1)
q .

Applying the Hungarian algorithm yields again a cost-minimal assignment. If v
(1)
i

and v
(2)
j participate in this assignment, i.e., have been assigned to each other, v

(1)
i is

added to W1 and v
(2)
j to W2 if v

(2)
j ∈ fck(v

(1)
i ), i.e., if the corresponding cost value is

smaller than C. Intuitively, the main idea behind this step is to choose only those

possible node assignments from all ambiguous choices, for which the corresponding

nodes are roughly oriented in the same manner towards the reference frame given by

the seed solution or at least show the least deviation.

This procedure iterates until all nodes of one graph are assigned, or until a pre-

defined upper cost value cmax has been reached, with remaining nodes assigned to

gaps. If such an upper limit is not set, SEGA calculates a global graph alignment,

considering all nodes in a graph. A limit below cmax can be regarded as a stringency

constraint for the partial alignment that controls the tolerated amount of structural

deviation. From a biological point of view, it might be reasonable to set such an

upper limit and retrieve just a partial alignment, e.g., for two binding sites that share

a similar subpocket while being globally dissimilar. Of course, the choice of a proper

threshold is not clear in advance and should be chosen based on the application at

hand. The complete procedure is summarized in pseudo-code in Algorithm 2.

While theoretically more useful, the question remains whether the above sug-

gested strategy will yield an improvement over simply generating the alignment by
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4.3 Semi-global graph comparison

Algorithm 2 SEGA: Constructs a global alignment A for the graphs G1, G2

Require: distance matrix D, graph G1 = {V1, E1}, Graph G2 = {V2, E2}
S = ∅,W1 = ∅,W2 = ∅
k = 0
while ck ≤ cmax do

for all (v
(1)
i , v

(2)
j ) with dij ≤ ck do

fck(v
(1)
i )← { v(2)j ∈ V2 | dij ≤ ck }

gck(v
(2)
j )← { v(1)i ∈ V1 | dij ≤ ck }

for all (v
(1)
i , v

(2)
j ) do

if fck(v
(1)
i ) = {v(2)j } and gck(v

(2)
j ) = {v(1)i } then

add (v
(1)
i , v

(2)
j ) to A, add v

(1)
i to W1, add v

(2)
j to W2

else
add (v

(1)
i , v

(2)
j ) to S

if |A| > 4 then
if S 6= ∅ then
Uk
1 ← {v

(1)
i ∈ V1 | fck(v

(1)
i ) 6= ∅} \W1

Uk
2 ← {v

(2)
j ∈ V2 | gck(v

(2)
j ) 6= ∅} \W2

M,C ← construct matrix(Uk
1 , U

k
2 , S,D)

AH ← hungarian algorithm(M)

for all (v
(1)
i , v

(2)
j ) ∈ AH ,Mij < C do

add (v
(1)
i , v

(2)
j ) to A, add v

(1)
i to W1, add v

(2)
j to W2

S ← ∅
else
S ← S ∪ A,A← ∅,W1 ← ∅,W2 ← ∅
S4 = {X ⊂ S| |X| = 4}
if S4 6= ∅ then
Smin ← X ⊂ S4, dev(X) ≤ dev(X ′), X ′ ⊂ S4 {select Smin with minimal
spatial deviation dev(Smin)}
for all (v

(1)
i , v

(2)
j ) ∈ Sm do

add (v
(1)
i , v

(2)
j ) to A, add v

(1)
i to W1, add v

(2)
j to W2

k = k + 1
return Alignment A for the graphs G1, G2
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Algorithm 3 construct matrix: Constructs a cost matrix from ambiguous mapping
candidates

Require: S set of candidate mappings of nodes, Uk
1 , U

k
2

C = Max V alue
for all v

(1)
i ∈ Uk

1 do

for all v
(2)
j ∈ Uk

2 do

if (v
(1)
i , v

(2)
j ) /∈ S then

Mij = C
else
Mij =

∑
q=1,2...|W1|

∣∣∣ |v(1)i − w
(1)
q | − |v(2)j − w

(2)
q |
∣∣∣ ,

w
(1)
q ∈ W1, w

(2)
q ∈ W2

return cost matrix M , constant C

solving a weighted optimal assignment problem. Thus, as an alternative, the SE-

GAHA (SEmi-global Graph ALignment - Hungarian Algorithm) variant is proposed

as an alternative, where the incremental assignment of nodes is replaced by the Hun-

garian algorithm (Kuhn, 2005). The question, which of the two approaches will be

more suitable for protein binding site comparison will be addressed in Chapter 5.

4.3.1.3 Defining a distance measure

If not specified otherwise, the above-presented SEGA algorithm produces a global

graph alignment, deriving an assignment between all constituents of a binding site.

Binding sites might share several common subpockets that are not necessarily ar-

ranged in the same manner. Since SEGA ideally will only rarely resort to global

information, such subpockets should still be mutually assigned by the procedure.

However, this means that quality measures based on root mean squared deviation

(RMSD) that are usually applied in more strict procedures, e.g., template-based ap-

proaches (Barker and Thornton, 2003; Stark and Russell, 2003), are not applicable,

except for cases where the binding sites are globally similar. Thus, a more general

quality measure is needed to rate the alignment quality.

To define a more general, size-independent quality measure of the quality of the

alignment A, that can be interpreted as distance between the two structures G1 and

G2, one can proceed from a measure that can be seen as a degree of inclusion of G1
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4.3 Semi-global graph comparison

in G2:

δ(G1, G2) =

∑
(v

(1)
i ,v

(2)
j )∈A dij + cp · (|A| − |G1|)

|G1|
. (4.30)

The constant cp is a penalty that accounts for unmatched nodes which can simply

be set to the highest obtainable distance if no triangles can be matched. A degree of

inclusion of G2 in G1 is defined analogously.

Based on (4.30), two measures of distance between G1 and G2 can be defined,

a “conjunctive” and a “disjunctive” one, in analogy to the scoring scheme for the

GAVEO approach:

∆max(G1, G2) = max{δ(G1, G2), δ(G2, G1)} (4.31)

∆min(G1, G2) = min{δ(G1, G2), δ(G2, G1)} (4.32)

In this case, the measure (4.31) can be seen as a relaxed equality in terms of

two-sided inclusion (A ⊂ B and B ⊂ A), while the disjunctive combination, favoring

a one-sided inclusion, is given by (4.32). Again,

∆min(G1, G2) ≤ ∆max(G1, G2) .

The question which of these two measures, the conjunctive or the disjunctive one,

yields more suitable degrees of similarity cannot be answered in general and instead

depends on the problem setting, in particular on the purpose for which the similarity

is used (e.g., function prediction) and the way in which protein binding sites are

extracted and modeled (e.g., whether or not the model may include parts of the

protein not belonging to the binding site itself).

Again, to account for both possible extremes while allowing for a certain degree

of flexibility, the ultimate distance measure of the SEGA algorithm is defined as a

(linear) combination of (4.31) and (4.32):

∆(G1, G2) = α ·∆max(G1, G2) + (1− α) ·∆min(G1, G2) . (4.33)

This distance is again inversely related to a similarity score.
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Similar to GAVEO, (4.33) is a special case of an OWA (ordered weighted average)

aggregation of the two degrees of inclusion, G1 and G2, and the parameter α ∈ [0, 1]

controls the trade-off between the two extreme aggregation modes: The closer α is to

1, the closer the aggregation is to the minimum, i.e., the more demanding it becomes.

The value α corresponds to the “degree of andness” of the aggregation (4.33), i.e.,

the degree to which this aggregation behaves like a conjunctive combination (Fodor

and Roubens, 1994); likewise, 1− α corresponds to the “degree of orness”.

In principle, choosing a high value of α favors the detection of largely similar

binding sites, thus yielding results more alike to those of global methods. This can

be of interest for proteins belonging to the same protein family or fold. A low value

of α would be beneficial for the detection of more remote similarities, which could be

more useful to detect similarities in proteins of different folds.
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5
Results and Discussion

In the following, the approaches introduced in the previous chapters will be exper-

imentally validated and compared on different datasets as well as different problem

settings. The following algorithms will be used in the experiments:

• BFPH (Bin-FingerPrints Hamming): Crisp fingerprints using a binning of the

edge lengths with bin size b. Fingerprints are compared using the Hamming

distance (4.2.2.1).

• BFPJ (Bin-FingerPrints Jaccard): Crisp fingerprints using a binning of the edge

lengths with bin size b. Fingerprints are compared using the Jaccard distance

(4.2.2.1).

• GAVEO (Graph Alignments Via Evolutionary Optimization): Evolutionary al-

gorithm that optimizes an objective function based on a graph edit distance

(4.1.1).

• GAVEO* : GAVEO in combination with the scoring function originally used

by the greedy heuristic (4.1.1).

• GAVEOc (GAVEO with preserved clique): A variant of GAVEO where the

maximal clique is calculated prior to the optimization and preserved throughout

the calculation (4.1.1.4).
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• FPH (ε-FingerPrints Hamming): Crisp fingerprints using a fixed set of edge

labels l ∈ {1, ..., 12} in conjunction with an ε threshold. Fingerprints are com-

pared using the Hamming distance (4.2.2.1).

• FPJ (ε-FingerPrints Jaccard): Crisp fingerprints using a fixed set of edge labels

l ∈ {1, ..., 12} in conjunction with an ε threshold. Fingerprints are compared

using the Jaccard distance (4.2.2.1).

• FFP (Fuzzy FingerPrints): Fuzzy fingerprints using triangular membership

functions controlled by the radius parameter η. Fingerprints are compared

using a generalization of the Jaccard measure (4.2.2.2).

• SEGA (SEmi-global Graph Alignment): A semi-global approach using local

similarities and global information to construct a global graph alignment from

a distance matrix D (4.3.1).

• SEGAHA (SEGA with Hungarian Algorithm): A variant of SEGA, where the

Hungarian algorithm (Kuhn, 2005) is used to construct a global alignment from

the distance matrix D by calculating a cost-minimal assignment of nodes (4.3.1).

To better judge the performance of the introduced algorithms, some baseline algo-

rithms will be employed, using sequence information as well as structural information

retrieved from CavBase.

• BK (Bron-Kerbosch algorithm): A clique-enumeration algorithm (Bron and

Kerbosch, 1973) commonly used in graph-based protein structure comparison

((Kinoshita and Nakamura, 2005; Redfern et al., 2007; Schmitt et al., 2001),

cf. Chapter 2). The Bron-Kerbosch is used in CavBase to calculate the first

100 cliques instead of a full enumeration which proved already sufficient to cre-

ate meaningful solutions (Schmitt et al., 2002). Therefore, the Bron-Kerbosch

algorithm will be used analogously here.

• CB (CavBase clique algorithm): The original algorithm used in CavBase, which

represents a combination of the Bron-Kerbosch approach with a surface-based

scoring scheme (Schmitt et al., 2001).
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• GH (Greedy Heuristic): A greedy heuristic based on clique detection. This

approach was developed in a previous work and represents the most recent

approach for the comparison of CavBase data (Weskamp, 2007).

• RW (Random Walk kernel): The random walk kernel of Gärtner (2003) with

the extensions introduced in Chapter 4 (4.2.1.1).

• SA (Sequence Alignment): A local sequence alignment using the Smith-Waterman

algorithm (Smith and Waterman, 1981) as implemented in the jaligner tool

(Moustafa, 2005).

• SP (Shortest Path kernel): The shortest path kernel of Borgwardt and Kriegel

(2005) with the extensions introduced in Chapter 4 (4.2.1.2).

• SPSA (SP with Sequence Alignment): The shortest path kernel expansion using

sequence alignment on paths (4.2.1.2).

Although the random walk and the shortest path kernels were expanded during

this thesis to be applicable on the protein binding site model, they were originally sug-

gested elsewhere. Hence it is more appropriate to regard them as baseline approaches

for the local comparison approaches. In the experiments, the kernel measures are

used directly as similarity measures 1.

Note that some of the approaches might fail to calculate comparisons for pairs

of exceedingly large graphs. This especially pertains to the CavBase approach and

the random walk kernel, to a lesser extend also to BK and GH. In these cases, the

corresponding score is set to −∞ in case of similarity scores, respectively to ∞ in

case of distance values.

This chapter is organized as follows: First, an overview of the datasets used in

the experiments is given prior to the actual experimental part. The experimental

part starts with several preliminary experiments aiming at deriving suitable param-

eter settings for the different approaches before more time-consuming studies are

conducted.

1In preliminary experiments (not shown), the use of the kernel distance (4.10) showed no im-
provement of classification results over using the kernel measure directly
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Abbr. Algorithm
BFPH Bin-FingerPrints using the Hamming distance
BFPJ Bin-FingerPrints using the Jaccard coefficient
BK Bron-Kerbosch algorithm
CB CavBase approach

GAVEO Graph Alignment Via Evolutionary Optimization
GAVEO* GAVEO + original similarity measure
GAVEOc GAVEO + preserved clique

GH Greedy Heuristic
FPH ε-FingerPrints using the Hamming distance
FPJ ε-Fingerprints using the Jaccard coefficient
FFP Fuzzy Fingerprints
RW Random Walk kernel
SA Sequence Alignment (Smith-Watermann)

SEGA SEmi-global Graph Alignment
SEGAHA SEGA using the Hungarian Algorithm

SP Shortest Path kernel
SPSA Shortest Path kernel with Sequence Alignment

Table 5.1: Algorithms used during the experiments.

This is followed by an assessment of the algorithmic performance of the different

approaches when confronted with different levels of structural and mutational distor-

tion. Section 5.7 presents a number of classification experiments on different datasets

used to assess the performance and suitability of the presented methods for classifi-

cation tasks, as the main goal of the graph comparison algorithms presented in this

thesis is to discriminate between different classes of protein binding sites. Section 5.6

presents results for another typical application of protein structure comparison tools,

the retrieval of similar structures from a reference dataset.

In Section 5.8, the suitability of the presented algorithms for comparison tasks

beyond experimentally derived structures and protein binding sites is addressed.

5.1 Datasets

The main focus of this thesis is on the comparison of protein binding sites according to

the pseudocenter model introduced in Chapter 3. Therefore, all binding sites where
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retrieved from the CavBase database Schmitt et al. (2002) which is a part of the

ReliBase+ database hosted by the Cambridge Crystallographic Data Center (CCDC)

(Hendlich et al., 2003). Currently, CavBase contains 308,141 cavities extracted from

70,850 PDB entries (June 2011).

From this database, several smaller datasets where constructed to assess the per-

formance of the different algorithms, with different objectives in mind. This was

necessary, since an all-against-all comparison of all these structures is infeasible with-

out the use of high-performance computing facilities.

As one major application for the developed approaches is the classification and

comparison of protein binding sites with respect to the accommodated ligand, an

initial benchmark dataset was constructed by drawing from the two most highly

populated groups of binding sites in the CavBase database. Thus, a two-class clas-

sification dataset was constructed, which contained protein binding sites known to

host either adenosine-5’-triphosphate (ATP) or nicotinamide adenine dinucleotide

(NADH). Both molecules act as cofactors for a plethora of functionally and phylo-

genetically diverse proteins and can bind to the proteins in different conformations.

Hence, two randomly drawn cavities, even if hosting the same ligand, do not necessar-

ily share a common geometric architecture. Therefore, a subset of these two groups

was selected.

The main purpose of this initial dataset was to assess the classification perfor-

mance of the previously introduced approaches, especially the global methods. One

the one hand, this demands a dataset for which binding pockets of the same class

show some structural resemblance, which is obviously not the case for the complete

set of ATP or NADH binding pockets. On the other hand, since all approaches were

developed to tolerate structural variance to a certain extend, the binding pockets

should also not be too similar. Hence, instead of simply selecting proteins based on

sequence similarity, cavities were instead selected by drawing on ligand information.

More precisely, ligands were superimposed using Kabsch’s algorithm (Kabsch,

1976) and then clustered according to the root mean squared deviation (RMSD) of

the superimposed molecules. Subsequently, subsets were selected, for which the dif-

ference in RMSD ranged up to 0.4 Å. Thereby it is assured that the ligands are at

least bound in similar conformation although not necessarily orientation. The RMSD
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difference threshold can be regarded as a compromise between conformational simi-

larity of the ligand and dataset size. At the given threshold, a sufficiently large dataset

(ATP/NADH dataset) for an all against all comparison was obtained, containing 355

protein binding sites in total, 214 NADH binding sites and 141 ATP binding sites. To

keep the runtime requirements low, no further cavities were included, although the

threshold is well below the accepted RMSD difference of a successful docking solution,

which would be 2 Å (Verdonk et al., 2008).

While this first dataset ensures a certain similarity of the ligand conformations by

enriching structurally similar binding sites, it also favors binding sites belonging to

proteins that are related on the sequence and/or fold level. Indeed, the dataset con-

tained only 15 different folds. A main motivation for the development of the presented

approaches was to uncover non-trivial similarities, i.e., similarities not apparent on

the sequence or fold level.

Hence, a more challenging ATP-NADH dataset (subsequently termed 1-fold ATP/

NADH dataset) was created, including only remotely similar binding sites that be-

long to different folds according to the SCOP (Structural Classification Of Proteins)

database (Murzin et al., 1995). Proteins taken from the complete set of ATP and

NADH binding proteins stored in CavBase were filtered to include only one protein

per SCOP fold, creating a non-redundant dataset. The resulting dataset contained

only binding sites of proteins, that do not exhibit similarity on the folding level, al-

though a structural similarity between the binding sites themselves might still exist,

based on the notion that proteins with different folds can still accommodate similar

ligands. The dataset was constructed to assess, whether a comparison of the protein

binding sites alone can still retrieve similarities, even if none are apparent on the

folding level and therefore the global protein structure is different.

To obtain a suitable parameter setting for the subsequent experiments, another

four class dataset was constructed by randomly drawing 50 cavities per class from all

cavities containing either ATP, NADH or FAD (flavin adenine dinucleotide), three of

the most abundant ligands in the CavBase. To include also a more rigid group of

structures, a fourth class corresponding to cavities containing a porphyrine ring as a

ligand was included.
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In the retrieval experiments, a high-resolution subset of the CavBase database was

used to keep the runtime requirements at a manageable level. This was necessary due

to the comparably high runtime requirements of some some of the algorithms. By

including only cavities derived from protein complexes with a minimal resolution of

2.5 Å in the high-resolution subset, the number of necessary comparisons could be

reduced by one-third compared to using the complete set of cavities in CavBase. The

final dataset (HiRes) contained 186,507 cavities but still denoted a representative

subset of the complete CavBase.

As a further external benchmark set, a set of representative proteins constructed

for the evaluation of SiteEngine was included in the experiments. SiteEngine, as

mentioned in Chapter 2, is another surface-based protein comparison approach which

operates on a concept of binding pockets similar to CavBase. This dataset was

originally compiled to include several structurally different classes of proteins, among

them fatty acid-binding proteins, serine proteases, adenine-containing ligands and

others (for a detailed description, see (Shulman-Peleg et al., 2004)). A summary of the

dataset, including the classes defined by Shulman-Peleg et al. and the corresponding

PDB codes can be found in Table A.1. Since the SiteEngine model differs from the

CavBase model in some aspects, especially modeling and extraction of the binding

sites, the PDB codes where used to extract the associated cavities from CavBase to

construct a set of corresponding cavities.

Another externally compiled benchmark dataset used in retrieval and classification

experiments is the Astex Non-native Set (Verdonk et al., 2008), initially constructed

for the assessment of the performance of docking algorithms. The dataset was based

on the Astex Diverse Set Hartshorn et al. (2007), another docking benchmark dataset

containing 85 different high-quality protein-ligand complexes. In this dataset, each li-

gand is represented once. The Astex Non-native Set contains different conformations

of the same protein targets that are addressed by the ligand (i.e., either apo struc-

tures or structures complexed with different ligands), thus being a more realistic and

challenging docking benchmark dataset. The resulting benchmark set allows to assess

the performance of the different methods when confronted with structural variation

mainly due to ligand-induced protein conformation changes. Only structures with a

minimal resolution of 2.5 Å were included. After filtering and visual inspection, the
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Astex Non-native Set contained 1112 non-native structures for 65 of the original 85

ligands.

Additionally, to apply the approaches to a problem beyond the realm of binding

sites, an HIV mutant sequence dataset was used. The objective here was to distinguish

different HIV mutants. The sequence dataset was compiled from the HIV sequence

database at Los Alamos National Laboratory in a previous study by Sander et al.

(2007), which contained 1100 sequences of the HIV glycoprotein 120 (gp120) derived

from clonal samples of 332 patients. By discarding duplicate sequences, a set of

514 mutant variants of the V3 loop of gp120 were derived, a region of the protein

which plays an important role in the cellular adhesion process and the infiltration

of the host cell. Each of the mutant strains are annotated as being either of the

X4, R5/X4 or the R5 phenotype, indicating their capability of interacting with two

different chemokine receptors, CCR5 and CXCR4, thus playing a dominant role in

the progression of the AIDS disease. To obtain a structural representation of the

mutants, the protein structure of the HIV-1 JR-FL gp120 from the PDB (PDB code:

2b4c (Huang et al., 2005)) was used as a template to obtain a structure prediction

with RCSB, a structure prediction algorithm using threading (Canutescu et al., 2003).

Sequences were aligned with MUSCLE (Edgar, 2004) and the V3 loop ranging from

residues 296 to 331 of PDB structure 2b4c was used as a backbone template for the

modeling of the mutant sequences. Of the 514 mutants 82 contained insertions or

deletions compared to the template sequence, which is likely to reduce the quality of

the structure prediction. Hence they where excluded from the dataset, yielding 432

mutually distinct sequences. Subsequently, the predicted structures were transformed

to a pseudocenter representation according to the CavBase rules as introduced in

(Kuhn et al., 2006; Schmitt et al., 2002).

None of these datasets where used as test datasets during the development of the

approaches, with the only exception of the ATP/NADH dataset.
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5.2 Parameter influence on algorithmic performance

5.2.1 Empirical estimation of parameter settings

As all of the approaches presented in Chapter 4 are parameterized, some preliminary

experiments were conducted to assess the parameter influence on the performance of

the developed algorithms and to obtain a suitable parameter setting for further exper-

iments. As each of the approaches is founded on a unique strategy, these experiments

had to be tailored towards the specific needs of the algorithms.

For the GAVEO and GAVEOc approaches, the evolutionary optimization is con-

trolled by several parameters that mainly influence alignment quality and runtime

performance. In these two cases, parameters were estimated using sequential param-

eter optimization. In case of the other approaches, each method is parametrized by a

single parameter. In order to find a suitable setting for this parameter, the four-class

dataset introduced in the previous section will be employed as a test dataset in a

classification scenario.

In the following, the global GAVEO and GAVEOc approaches will be considered

first, followed by the more simple local fingerprint approaches. Finally, the semi-global

SEGA algorithm is addressed.

5.2.1.1 Sequential optimization of GAVEO parameters

As outlined in Chapter 4, the evolutionary optimization of graph alignments via

GAVEO is controlled by several parameters, influencing the evolutionary operators as

well as termination criteria. An unfavorable setting of these parameters might result

in near-random alignments of low quality, hence a reasonable setting of parameters

is vital for the performance of the algorithm. The sequential parameter optimization

toolbox (SPOT) developed by Bartz-Beielstein (2006) presents a convenient tool to

derive such a setting for multiple parameters simultaneously.

Since the GAVEO approach uses the same scoring function as the greedy heuristic,

the scoring parameters controlling mismatch penalties and match rewards originally

suggested by Weskamp (2007) will be used. Instead, the focus of this experiment

will be on the additional parameters unique to GAVEO, namely µ, ν, ρ, pcheck and

self-adaption.
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The result of the evolutionary optimization will strongly depend on the invested

time, yet a low runtime is preferable with respect to efficiency. Therefore, the goal of

this experiment was to obtain a suitable parameter setting for the exogenous param-

eters in order to minimize the runtime needed to arrive at an optimal or near-optimal

solution. Obviously, this means that the optimal solution must be known in advance.

For this reason, only identical binding sites where aligned for which the optimal so-

lution is trivially known.

In the SPOT experiment, 20 binding sites randomly drawn from CavBase where

aligned to themselves, starting at randomly initialized alignments. As the GAVEO

approach will mainly be used for pairwise comparisons, the SPOT experiment is

carried out for the pairwise case. Parameters where automatically adjusted using the

SPOT toolbox. SPOT creates a number of so-called design points in parameter space

used to estimate a setting that minimizes the calculation time necessary to arrive

at the optimal solution. The elapsed runtime was used as a fitness criterion. Since

only correct solutions should be considered, the fitness value was set to infinity, if the

optimal solution was not found.

In addition to the exogenous parameters, the termination criterion is crucial for

the quality of the results. In order to achieve a possibly high quality of the results,

it is important to avoid limiting the algorithm too much by setting too stringent

termination conditions. Therefore, only the number of stall generations was used

as termination criterion. On the other hand, a low runtime investment is preferred,

hence, the number of stall generations should be set as small as possible. To obtain

an estimate on the minimum number of stall generations required to achieve at a high

quality solution, stall generations where also included as a parameter in the SPOT

experiment. Again, the fitness value was set to ∞, if the optimal solution was not

obtained.

In total, 6 parameters where investigated: the population size µ, the selective pres-

sure ν, the recombination parameter ρ, the check probability for gap columns pcheck,

the number of stall generations and the self adaption of the mutation step size (which

can be switched on or off). The obtained parameter setting is given in Table 5.2.

Fig. 5.1 shows the fitness landscapes for pairwise combinations of parameters.
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Figure 5.1: Fitness landscapes for different parameter combinations in the SPOT
experiment. A higher function value corresponds to higher runtimes.
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parameter µ ν ρ pcheck self-adaption stall generations
range [1, 20]N [0.1, 30] [1, 2]N [0, 1] [0, 1]N [10, 500]N

estimate 4 6 2 0.5 0 200

Table 5.2: Parameter setting for the GAVEO and GAVEOc approach

As can be seen in Fig. 5.1d and Fig. 5.1e (ρ = 2), allowing recombination is

preferable, even in the pairwise case. Self-adaption instead is set to 0, indicating that

an adaption of the mutation strength is counterproductive. The check probability

pcheck should be high, while the population parameters ν and µ can apparently be set

to relatively low values. An interesting result is the estimation of the stall generations.

As can be seen in Fig. 5.1c, GAVEO is able to find the optimal solution with less

than 200 stall generations. The number of stall generations was estimated to 200 by

SPOT, increasing this number had no further benefit. In the following experiments,

the parameters will be set as indicated in Table 5.2.

One might argue, that this experiment is a bit extreme, given that only a global

optimal solution is accepted. For the purpose of classification, a near-optimal solution

might suffice, which could be derived with fewer stall generations. Yet, it is hard to

judge at which point the solution is sufficiently optimized. Since the main goal of

this experiment is to find a reasonable parameter setting, it is arguably better to play

safe than to risk a diminished performance due to a premature termination of the

optimization. Moreover, for interpreting the alignments, an optimal solution should

be preferred.

For the GAVEOc variant, repeating the SPOT experiment would be meaningless,

since the precalculated maximal clique solution should already retrieve the correct

solution without any need for optimization. However, since the evolutionary opti-

mization process is identical to the standard GAVEO approach, the same settings

will be employed for all experiments conducted with GAVEOc.

5.2.1.2 Influence of tolerance parameters on fingerprints performance

Regardless of the used fingerprint variant, the algorithmic performance will obviously

depend on the defined patterns and therefore be influenced by the parametrization

used to construct the fingerprint vectors. For each of the fingerprint approaches, this
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relates to the way edge length tolerance is realized. In each case this is controlled by

a single parameter.

In the case of using crisp fingerprints, the fingerprint construction mainly depends

on either a tolerance threshold ε or the bin size b, if a binning strategy is employed. For

the fuzzy fingerprints, this is controlled by the parameter η, that controls the support

of the triangular fuzzy sets used to model the fuzzy edge labels of the patterns.

The experimental setup of the GAVEO approach is useless here, as the comparison

of identical binding sites will always yield the highest possible score, regardless of the

parametrization. Instead, the influence of the parameter setting on the performance

will be assessed in a classification scenario. More precisely, classification experiments

were conducted on the four class test dataset described in Section 5.1, consisting

of four classes of protein binding sites, as defined by the ligand co-crystallized with

the protein structure: ATP, NADH, FAD and a porphyrine ring. The first three

classes represent three of the most highly populated ligand classes in the CavBase.

Additionally, since these ligands are relatively flexible and bound by many diverse

proteins, another group containing a more rigid ligand in the form of heme and related

porphyrine ring structures.

Algorithmic performance was assessed in terms of misclassification rate of the four-

class problem, using ten-fold stratified cross validation in conjunction with k-nearest

neighbor classification.

Crisp fingerprints with tolerance threshold

When realizing crisps fingerprints with a tolerance threshold ε, two edge weights

will be considered matching, if their absolute difference is equal to or lower than ε.

Hence, the higher ε, the more tolerant the matching becomes, allowing for structural

variation, but also increasing the risk of becoming less discriminative. It is difficult

to estimate in advance, how this trade-off between tolerance and specificity should be

realized.

Thus, classification experiments where performed for different settings of ε on

the above mentioned four-class problem. Algorithmic performance was assessed in

terms of classification accuracy. Fig. 5.2 depicts the obtained results for k = 1, which
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generally yielded the best performance, regardless of ε. The complete results can be

found in Table B.2 in Appendix B.
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Figure 5.2: Results of a ten-fold stratified cross-validation using a 1-nearest neighbor
classification based on the FP approach. Classification accuracy on the four-class
dataset is plotted for different threshold values ε.

Setting ε too low obviously has a detrimental effect, regardless of the comparison

measure, which is not surprising, since some tolerance is needed to account for minor

structural differences that even exist in different crystal structures of identical pro-

teins. For 0.5 ≤ ε ≤ 1.5, performance changes only marginally, indicating that the

exact choice of epsilon is not crucial here. At this point, it should be mention that

a tolerance of up to 2 Å is not unusual for structural comparison tools and many

approaches are known to tolerate such differences (Orengo and Taylor, 1996; Schmitt

et al., 2002), thus the parameter range is still in a reasonable. For ε > 1.5, the

performance starts to decrease again, indicating the loss of geometric information by

becoming too error-tolerant.

The best performance is obtained for ε = 0.5, although this might vary for different

datasets, especially since there is not much difference to higher values of ε. However, it

seems clear that ε should not be set below 0.5. At this threshold, the crisp fingerprints

also achieve a complete coverage of the domain of edge weights up to the upper limit

of 12 Å gaps, whereas for lower values some edge lengths will be lost. Increasing
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ε beyond that 0.5 Å would mean that edge weights would be assigned to different

integer labels simultaneously. Hence, in further experiments, ε will be set to 0.5.

Crisp fingerprints with binning

If a binning strategy is used, the bin size b will control which edge weights are con-

sidered matches, respectively mismatches. The smaller b is set, the more fine-grained

the separation will become, similar to setting a low ε-threshold. Yet it would not be

entirely correct to regard b as a tolerance parameter, since edge weights that differ

by a fraction of b might still be considered as mismatches.

Again, the classification accuracy was obtained for different settings of b by ten-

fold stratified cross validation. Fig. 5.3 depicts the obtained results. The complete

results can be found in Table B.1 in Appendix B.
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Figure 5.3: Results of a ten-fold stratified cross-validation using a 1-nearest neighbor
classification based on the BFP approach. Classification accuracy on the four-class
dataset is plotted for different bin sizes b.

Similar to the results obtained for the ε-based approach, setting b too low should

be avoided. For higher values (b > 5), the accuracy is decreasing rapidly, where the

difference seems again to be marginal for medium b. The best results are obtained

for b = 2.5 in case of the Hamming distance. For the Jaccard coefficient, b = 3 yields

slightly better results. Again, given the small differences in accuracy, this might be

different for other data sets. However, the choice of b appears to be less critical
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Figure 5.4: Results of a ten-fold stratified cross-validation using a k-nearest neigh-
bor classification based on the FFP approach. Classification accuracy is plotted for
different η.

as expected. In further experiments, the parameterization b = 2.5 will be realized.

This might seem large at first, but as mentioned above, a tolerance of 2 Å is not

uncommon.

Influence of fingerprint construction on classification performance

Finally, the performance of the fuzzy fingerprints will depend on the choice of member-

ship functions used to construct the fingerprints. The fuzzy fingerprints as introduced

in Chapter 4 are restricted to triangular membership functions, whose support (or

more intuitively, the width of the triangles) is controlled by η.

Similar to ε, η can be regarded as a tolerance parameter: the larger the support

of a membership function, the more strongly can an edge weight deviate from the

core of the fuzzy set and still contribute to the fuzzy label. To get an impression

of the influence of η on the algorithmic performance, classification experiments were

once again conducted via ten-fold stratified cross validation. The results for k = 1

are displayed in Fig. 5.4.

As was the case in the previous experiments, setting the parameter too low, and

thus becoming to stringent, should be avoided. In this case, the results show that

η should not be below 0.3 Å. The best results are obtained for η = 1, although the

130



5.2 Parameter influence on algorithmic performance

performance does not change as dramatically for 0.3 ≤ η ≤ 3, similar to the other

fingerprint variants. for η > 3, performance starts to deteriorate again. In further

experiments, η will be set to 1.

These three experiments also allow a first comparison of the different fingerprint

approaches. Table 5.3 shows the classification accuracy for the different fingerprint

variants.

Although all fingerprint methods show comparable performance, using fingerprints

based on a binning strategy outperforms both fuzzy fingerprints and fingerprints using

an ε threshold, regardless of the similarity measure, at least on the four-class problem.

Further experiments will reveal whether this is a random effect or a genuine superiority

of the binning variant.

Moreover, the Jaccard measure generally yields better results than the Hamming

distance. Again, whether this holds true for other problems as well remains to be ex-

amined. Note that the parameter setting has no influence on the runtime complexity:

regardless of the number of patterns, each subgraph of size three has to be considered

once. This is different for the SEGA algorithm.

k BFPH BFPJ FPH FPJ FFP
1 77.5 80.0 72.0 76.0 73.0
3 75.5 73.0 69.0 67.5 63.5
5 68.5 71.0 60.0 60.0 59.5
7 66.0 69.5 56.0 58.5 57.0
9 68.0 68.5 51.5 53.5 56.5

Table 5.3: Classification accuracy for the different fingerprint approaches derived by
10-fold stratified cross validation using a k-nearest neighbor classifier.

5.2.1.3 Influence of the neighborhood parameter on the performance of

SEGA

The performance of the SEGA algorithm will obviously depend on the choice of

the neighborhood size, i.e., the neighborhood parameter nneigh. Choosing a suitable

setting for nneigh is not trivial in advance. On the one hand, the higher nneigh, the

more information of the immediate surrounding of a pseudocenter is considered, thus

it could be argued that the neighborhood parameter should be set to a high value.
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Figure 5.5: Performance of 1-nearest neighbor classification in a ten-fold stratified
cross validation on the four class dataset. The misclassification rate is plotted for
different values of nneigh.

On the other hand, with increasing neighborhood SEGA will compare substructures

of increasing size, up to an extreme where the whole graph will be considered. Thus,

the SEGA method “converges” to a global method with increasing size, loosing the

merits of a semi-global approach, such as flexibility. Moreover, runtime requirements

will increase with the nneigh, thus a low neighborhood size is desirable.

To estimate the optimal setting for nneigh, classification experiments were again

conducted as above, realizing a ten-fold stratified cross validation. Classification was

done with a k-nearest neighbor classifier based on the distance score produced by the

SEGA method. The results were used to assess the influence of nneigh on prediction

accuracy and runtime requirements. Note, that unlike the fingerprint approaches, the

neighborhood parameter will directly influence the runtime requirements of SEGA,

as larger neighborhood graphs will be more time-consuming to compare.

Fig. 5.5 depicts the classification results for different values of nneigh with a fixed

α. Results are depicted for k = 1.

As outlined in Chapter 4, the scoring functions of both the global GAVEO ap-

proach and the semi-global SEGA algorithm are realized as a combination of a con-

junctive measure, favoring a mutual inclusion of graphs for a high similarity score and
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a disjunctive measure, focusing on one-sided inclusion. The trade-off between both

extremes is controlled by the parameter α 2.

The results for α = 0 and α = 1 are shown again for different k in Fig. 5.6a and

Fig. 5.6b. Again, the complete results can be found in the Appendix B, Table B.4.

In each case, the classification accuracy increases with nneigh, as was to be ex-

pected, since increasing nneigh means considering more neighborhood information.

Accuracy remains comparably stable, once a certain neighborhood size is reached,

increasing only slightly for nneigh > 8. This might simply be due to the increase

in neighborhood information, but could also be a random effect. However, the point

where a neighborhood increase might become detrimental has apparently not yet been

reached.

As runtime efficiency is also affected by nneigh, runtimes were calculated for 1,000

comparisons of randomly drawn cavities. Fig. 5.7 shows Box-Whisker plots for elapsed

calculation times obtained with different nneigh, the mean runtime is shown in Ta-

ble 5.4. Not surprisingly, runtime increases with nneigh, favoring a low setting in order

to maximize runtime efficiency. Perhaps more unexpected is the observation that run-

time requirements at first decrease until nneigh = 5. The most likely explanation is

that for very low nneigh, the neighborhood size is too small to derive a meaningful lo-

cal similarity measure. As a result, many ambiguities arise, which have to be resolved

by drawing upon global information, which is more expensive than simply realizing

unambiguous assignments.

Since the difference in accuracy is not large for nneigh > 8 but runtime increases

with nneigh, nneigh will be set to 10 for the remaining experiments, as a good com-

promise between runtime efficiency and accuracy. The same setting was used for

SEGAHA to ensure that both variants use the same information.

5.2.2 Influence of the scoring parameter

As mentioned earlier, it is unclear which measure is more suitable for the task of

comparing protein binding sites. To get an idea of the influence of α on the predictive

performance of both the global as well as the semi-global approaches, the predictive

performance of both algorithms were examined with respect to different α.

2In case of SEGA, a high α emphasizes mutual inclusion.
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Figure 5.6: Performance of k-nearest neighbor classification in a ten-fold stratified
cross validation on the four class dataset for α = 1 and α = 0. The misclassification
rate is plotted for different values of nneigh.

To this end, pairwise classification were carried out on the four-class dataset used

in the previous experiment, this time with a fixed parameter setting but variable α.

Each pair of classes of this dataset was analyzed separately, comparing each class

with every other. This was done to assess whether one specific setting of α proves

superior on different problems.

Intuitively, one would assume that a conjunctive measure would perform better for
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Figure 5.7: Runtimes obtained for 1000 random comparisons for different values of
nneigh

nneigh
2 3 4 5 6 7 8

µ 3.6269 1.4160 0.5749 0.3172 0.2814 0.3656 0.5529
σ 2.2753 0.6996 0.2196 0.0925 0.0650 0.0776 0.1139

nneigh
9 10 11 12 13 14 15 16

µ 0.8179 1.2414 1.7499 2.4743 3.3990 4.5653 5.8799 7.0440
σ 0.1653 0.2460 0.3484 0.4900 0.6717 0.9020 1.1534 1.3680

Table 5.4: Runtime requirements [s] of SEGA on the test dataset for different values
of nneigh.

groups of globally similar binding sites with a high degree of structural conservation,

whereas the disjunctive measure should be more suitable if only a fraction of the

binding sites correspond to each other. In the latter case, the non-matching part of

the larger cavity will have less influence on the similarity score.

In this respect, solving all two-class problems separately might be particularly

interesting, since three classes consist of binding sites that interact with rather flexible

ligands (ATP, NAD, FAD), whereas the fourth group consists of binding sites with

rigid porphyrine rings. Hence, it is more likely for the first three classes to show

structural diversity, since the ligands can be bound in different conformations. The

fourth class, on the other hand, should be more homogeneous, as the porphyrines will
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Figure 5.8: Mean MCR on different two-class problems for different α derived from
10-fold stratified cross validation using SEGA (nneigh = 10, k = 1).

not vary in conformation and thus are more likely to enforce a certain topology of

the binding site. Of course, whether this is actually the case strongly depends on the

directional interactions between the ligands and the cavities.

5.2.2.1 Influence of the scoring parameter on the performance of SEGA

Classification experiments were again carried out for each two-class problem using

SEGA with nneigh = 10. Results were obtained by 10-fold stratified cross validation

using a k-nearest neighbor classifier and compared with respect to different α. Per-

formance was assessed in terms of classification accuracy. Fig. 5.8 shows the mean

accuracy for different values of α, depicted are the results for k = 1.

In this case, no single α value is preferable. In some cases, α apparently has no

great influence on the classification performance, while in the case of the ATP/FAD

and the NADH/FAD problem, a high α appears to be detrimental, thus favoring

one-sided inclusion. This might indicate the proteins of these classes are more het-

erogeneous in structure, which is not unreasonable, given that FAD, ATP and NADH

binding proteins carry out a variety of different functions and exhibit different folds.

In case of pairwise classification involving heme, a tendency towards mutual in-

clusion can be observed, although the effect is minimal. This might be explained

by the porphyrine-containing pockets being more homogeneous in size and structure,
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Figure 5.9: Mean MCR on different two-class problems for different α derived from
10-fold stratified cross validation.

thus a mutual inclusion is more likely to occur in this class. Apparently, α is a

problem-specific parameter.

5.2.2.2 Influence of the scoring parameter on the performance of GAVEO

Similar experiments were carried out for the GAVEO and GAVEOc approach, since

the corresponding similarity measure (4.9) is again a conjunction of two extremes

controlled by a trade-off parameter α. The algorithms were parametrized according

to the parameter setting obtained previously. Classification results were obtained

from 10-fold stratified cross validations using k-nearest neighbor classification. The

results are given in Fig. 5.9 and Fig. 5.10.

As expected, both GAVEO variants yield similar results, in both cases indicating

a slight preference for low α values. In general, however, the influence of α appears to

be low. Note that the measure used here is a similarity measure instead of a distance

measure, as was the case in the previous section. Thus, a low value of α here indicates

a preference for the conjunctive measure.

Apparently, in case of the GAVEO approach, the performance does not vary

largely for different two-class problems, as opposed to SEGA. While this seems to be at

odds with the previous results, one has to be aware of the fact that GAVEO measures

a global alignment of graphs, i.e., the similarity of the graphs as a whole, whereas the

137



5. RESULTS AND DISCUSSION

0 0.2 0.4 0.6 0.8 1
0.7

0.75

0.8

0.85

0.9

0.95

1

α

A
cc

ur
ac

y

 

 

ATP−FAD
ATP−Heme
ATP−NADH
FAD−Heme
NADH−FAD
NADH−Heme

Figure 5.10: Mean MCR on different two-class problems for different α derived from
10-fold stratified cross validation.

SEGA measure quantifies the aggregated distances between local subgraphs. Thus,

the results here are not really comparable to the results of the previous section, since

both measures are based on two different concepts of similarity.

5.3 Statistical significance

A typical application of the methods presented here is the retrieval of similar binding

sites from a database, given a query structure as reference. Similarity scores obtained

by comparing the query to all structures in the database can be used to construct a

ranking of similar binding sites, starting with the most similar structures. In such

retrieval settings, one is typically interested only in the top x ranks, e.g., in the case

of web searches, where one usually focuses on the first retrieved pages.

However, if one is interested in recovering unexpected similarities, e.g., in order

to predict cross reactivities for a certain drug, these top results are arguably less

interesting than lower ranks. The first ranks will most likely contain structures derived

from the same target, but an unrelated protein that is nevertheless similar enough

to be addressed by the same ligand as the query might occupy a lower rank with a

smaller similarity score.
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As mentioned in Chapter 3.4, any score used to compare proteins or protein sub-

structures must be judged against the likelihood that a given score arises by chance,

hence a measure of significance is necessary to interpret the results from such a rank-

ing. Given such a confidence measure, one can decide up to which rank the obtained

similarity score is still significant enough to be considered, allowing for a more thor-

ough exploration of the retrieved results.

To obtain a significance measure for the similarity scores produced by the different

methods, an empirical approach was chosen. For each method, 10,000 randomly

drawn comparisons were calculated and the obtained scores were used to derive a

score distribution, to which a generalized extreme value distribution (GEVD) was

fitted.

As outlined in Chapter 3, one can distinguish three different types of extreme

value distributions (EVD): The Gumbel family (type I), the (Frechét) family (type

II) and the Weibull family (type III). Since the type of the EVD that should ideally

be fitted to the score distributions obtained the various methods was not known in

advance, the scores were used to estimate the parameters of a GEVD by maximum

likelihood estimation. Subsequently, the corresponding cumulative distribution was

used to calculate p-values for the comparison scores.

5.3.1 Statistical significance of the GAVEO score

Fitting a generalized extreme value distribution requires the estimation of three pa-

rameters: the shape parameter ξ, the location parameter µ and the scale parameter σ.

Thus, 10,000 comparisons should provide a sufficiently large base for the estimation.

Table 5.5 shows parameter estimates for GAVEO and GAVEOc obtained by fitting

a GEVD to the score distribution, along with the corresponding confidence intervals.

A parameter lies within the corresponding confidence interval with a probability of

0.95. The probability density function corresponding to the fit of GAVEOc is shown

in Fig.5.11a. For reason of comparison, a histogram of the score distribution is shown

as well. To convey an impression of the goodness-of-fit of the estimated EDV, the

empirical cumulative distribution (green) and the estimated cumulative distribution

(blue), from which p-values will be obtained, is also shown in Fig. 5.11b. Similar

results were obtained for GAVEO scores, but were omitted here for the sake of brevity.
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ξ σ µ
estimate -0.220 0.295 0.515

confidence interval [-0.225, -0.216] [0.291, 0.300] [0.509, 0.521]

(a) GAVEO

ξ σ µ
estimate -0.303 0.298 0.520

confidence interval [-0.310, -0.296] [0.293, 0.302] [0.513, 0.526]

(b) GAVEOc

Table 5.5: GEVD parameter estimates for the score distributions of 10,000 random
comparisons using GAVEO and GAVEOc (α = 0).

Since the obtained score distribution obviously depends on the parameter α, EVDs

were fitted individually for different values of α and the p-values obtained from the

estimated cumulative density functions will be used as measure of significance where

appropriate. Table 5.5 shows the estimates for α = 0, the complete set of parameter

estimates for all α can be found in Appendix B, Table B.6 and Table B.7.

In each case, a type III (Weibull) distribution was obtained, regardless of the

choice of α for both GAVEO and GAVEOc. The small confidence intervals and the

high similarity between empirical and estimated distribution indicate a reasonably

good model of the real score distribution. This is supported by Fig. 5.11b, which

shows a nearly perfect fit between the empirical and the estimated cumulative density

function. As can be seen in Fig.5.11a, the score distribution is well approximated

by the estimated probability distribution. For the following experiments, p-values

calculated by the obtained cumulative density functions for the different α settings

were used as a measure of significance for the obtained similarity scores where needed.

5.3.2 Statistical significance of the local approaches

Similarly, GEVD parameter were estimated for the local approaches, again based on

10,000 comparisons of randomly drawn cavities. The estimated probability density

function for BFPJ is shown along with the underlying score distribution in Fig. 5.12a.

Again, the empirical cumulative density function is plotted together with the esti-

mated CDF in Fig 5.12b. For the sake of brevity, results are only shown for BFPJ,
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(a) The estimated probability density function.
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(b) The estimated and empirical cumulative density functions.

Figure 5.11: Visualization of the estimated GEVD for the GAVEOc approach (α = 0).

however, fitting the GEVD for the other fingerprint approaches yielded similarly good

estimates.

The obtained parameter estimates for the BFPJ fingerprints are given in Table 5.6,

estimates for the other fingerprint approaches can be found in the Table B.5.

As can be seen, the obtained models approximate the underlying score distribution

reasonably well, as indicated by the small confidence intervals and the graphical eval-

uation. For BFPJ, BFPH and FPH, estimating the GEVD yielded type III (Weibull)

distributions while for FPJ and FFP type II (Frechét) EVDs were fitted. For the
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(b) The estimated and empirical cumulative density functions.

Figure 5.12: Visualization of the estimated GEVD for the BFPJ approach.

ξ σ µ
estimate -0.018 109.838 171.267

confidence interval [-0.033, -0.003] [108.074, 111.631] [168.826, 173.708]

Table 5.6: GEVD parameter estimates for the score distributions of 10,000 random
comparisons using the BFPJ fingerprint approach.
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ξ σ µ
estimate 0.000 0.784 1.841

confidence interval [-0.032,0.032] [0.756,0.812] [1.802,1.879]

(a) SEGA

ξ σ µ
estimate -0.024 0.832 1.289

confidence interval [-0.035,-0.012] [0.819,0.845] [1.271,1.307]

(b) SEGAHA

Table 5.7: GEVD parameter estimates for the score distributions of 10,000 random
comparisons using SEGA and SEGAHA(α = 0).

following experiments, p-values calculated by the obtained cumulative density func-

tions were used as a measure of significance for the obtained similarity scores where

needed.

5.3.3 Statistical significance of the SEGA score

Finally, GEDVs were estimated for the semi-global approaches SEGA and SEGAHA.

Since also the SEGA and SEGAHA scores will depend on the choice of α, the size,

scale and location parameters were fitted individually for different values of α. Ta-

ble 5.7 shows the results of the parameter estimation for α = 1, the complete set of

estimates for other α can be found in Table B.9 and Table B.8, Appendix B.

Regardless of the choice of α, each estimate yielded a type III (Weibull) EVD for

the SEGA approach, with the exception of α = 0, where a type I (Gumbel) EVD

was obtained. As an example, Fig. 5.13a shows a histogram of the scores obtained

for α = 1, together with the estimated type II EVD (blue). The empirical (blue) and

the estimated (green) cumulative density function is plotted in Fig. 5.13b.

In case of the SEGAHA approach, the obtained EVD were of the Weibull family,

except for lower values of α (α = 0, 0.1), where type II (Frechét) EVD were obtained.

Again, the low confidence intervals indicate a nearly perfect fit, which can be

observed in Fig. 5.13. For the following experiments, p-values calculated by the

obtained cumulative density functions (based on the choice of α) were used as a

measure of significance where necessary.
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Figure 5.13: Visualization of the estimated GEVD for the SEGA approach (α = 0).

5.4 Runtime comparison

Since protein structure comparison can potentially be applied in the context of

database retrieval, an important aspect of algorithmic performance is the runtime be-

havior of the different approaches. While the complexity of the different approaches

has already been discussed in the method section, an empirical comparison of runtime

behavior remains to be done.

To this end, the runtimes were calculated for the different approaches based on a
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BFPH/BFPJ BK FPH/FPJ FFP GAVEO GAVEOc
µ 0.0189 0.0134 0.0205 0.179 5.8410 5.9842
σ 0.0321 0.0497 0.0366 0.663 21.9902 23.3276

GH RW SEGA SEGAHA SP SPSA
µ 0.655 0.2811 0.0185 0.0423 0.0980 5.7440
σ 0.891 0.1288 0.0227 0.0553 0.9780 40.8970

Table 5.8: Mean µ and standard deviation σ for the runtime performance of the
different algorithms based on 1,000 comparisons in seconds.

set of 1,000 randomly drawn pairwise comparisons3. The resulting times are shown

in Table 5.8.

In terms of runtime behavior, the crisp fingerprint approaches as well as BK and

SEGA show the best performance. GAVEO and GAVEOc have by far the highest

runtime, which is not surprising, since evolutionary optimization is known to be

expensive. However, the clique-based BK and GH have the drawback of a space

complexity of O(n4) (n = number of nodes), which is problematic for calculating

alignments for large graphs on current machines. The other approaches only have

a space complexity of O(n2). Moreover, given that the clique-enumeration problem

is NP-complete, the good runtime performance of BK is somewhat deceiving, being

mainly the result of small cliques and the above-mentioned limitation to the first one

hundred cliques.

Among the kernel functions, the shortest path kernel in combination with sequence

alignment has a prohibitively high runtime, in magnitude comparable to the evolu-

tionary optimization approaches. Since the main argument for using local methods

instead of more complex global algorithms is a potentially efficient runtime behav-

ior, it is obvious that the approach is not useful in the context of protein structure

comparison. Hence, it will be excluded from further experiments, with one exception

(cf. Section 5.7) serving as a proof-of-principle to compare its performance with the

unmodified shortest path kernel.

The other kernels along with the fingerprint approaches are again comparably fast,

the random walk kernel being the slowest local approach with an average runtime

3Results were obtained on an Intel Core 2 Duo 2.4 GHz, 2 GB memory, Windows XP SP 2
operating system.
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that is roughly 30 times longer than SEGA. This is not surprising, given its runtime

complexity of O(n6).

5.5 Tolerance towards structural variation

As outlined in the previous chapter, one motivation for the development of non-

global approaches was to derive an algorithm which allows for a greater tolerance

towards structural variation when dealing with protein structure data. Of these, only

the semi-global SEGA additionally yields a mutual correspondence of pseudocenters.

With SEGA, a greater tolerance should be achieved by assembling the alignment from

local comparisons, thus theoretically allowing to ignore larger structural variations,

as long as the node neighborhood remains largely conserved. However, practically,

this remains to be assessed.

The purpose of the following experiment is to compare the performance of the

different algorithms with respect to alignment quality when confronted with different

types and levels of structural variation. This requires a closer look at the obtained

alignments to judge whether the correct correspondences have been recovered. For

this reason, the local approaches where excluded from this experiment, as they only

produce a degree of similarity rather than an interpretable structural alignment.

5.5.1 Semi-synthetic experiment

To study the effects of variation on the alignment quality in a systematic way, it

would be necessary to control the degree of variation distinguishing two binding sites

from one another while the correct alignment is still known in advance. As this is

hardly possible for real data, a semi-synthetic approach was adopted to compare the

robustness of the different approaches towards such inaccuracies. To this end, 100

protein binding pockets co-crystallized with a ligand were randomly selected from

CavBase. These pockets have the benefit of being relatively large which is beneficial

to generate non-trivial deformations. Based on each binding pocket, ten structurally

diverse synthetic pockets where generated by subjecting the original pocket to struc-

tural perturbance.
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More precisely, two types of variation where considered: mutational variation, af-

fecting pseudocenter labels due to mutations on the amino acid level, and structural

variation, affecting the position of pseudocenters. Structural noise was introduced

by translating each center by a randomly directed vector with normally distributed

length controlled by a deviation parameter pdev ∈ [0, 1] (standard deviation of the

vector length normal distribution). To introduce mutations, all pseudocenters where

subjected to label mutation controlled by a mutation parameter pmut ∈ [0, 1] (mu-

tation probability). The generated binding sites were then aligned to the unaltered

template, with the identity alignment (an alignment of each node onto the corre-

sponding node with the same index) assumed as correct.

Pairwise alignments of the binding pockets were subsequently calculated using

SEGA, SEGHA and GAVEO4, as well as BK and GH as baseline approaches. The

percentage of correctly matched pseudocenters of the core pocket was determined

for different values of pdev and pmut. Fig. 5.14 shows the mean percentage of cor-

rectly mapped centers for different algorithms under structural noise (5.14a), muta-

tion (5.14b) and a combination of both (5.14c). Runtime requirements of the ap-

proaches are summarized in Table 5.8.

Apparently, SEGA shows the most stable performance, rivaled only by GAVEO,

although the runtime requirements of GAVEO are much higher. Yet, when com-

bining both sources of variation, the performance of the evolutionary optimization

declines after a certain level of noise, which indicates that the objective function now

favors alternative alignments. This is not surprising, since both node labels and edge

distances are now affected by alteration. However, an increased number of stall gen-

erations might alleviate this effect, assuming that the optimization process has not

yet reached a (near-) optimal solution.

The neighbor-based SEGA approach instead is less affected. Interestingly, the

quality of the SEGAHA alignments also deteriorates, suggesting that the added sta-

bility of SEGA can be attributed to the additional usage of a global structural ref-

erence frame for resolving ambiguous assignments, the main difference between the

two approaches.

4GAVEOc was omitted, since the evolutionary optimization that allows for tolerance towards
structural variation is identical to GAVEO.
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Figure 5.14: Relative frequency f of correctly mapped pseudocenters (y-axis) for
different types (a) distortion, b) mutation, c) both) and levels of variation
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The results indicate that SEGA represents the best compromise between runtime

efficiency and robustness, as can be seen in Fig. 5.8. While GAVEO also proves

relatively stable when confronted with noise, the runtime requirements for the opti-

mization are much higher. Yet, the more faster approaches are generally also more

intolerant towards noise, with the notable exception of the semi-global SEGA.

While the results convey a realistic picture on the tolerance of the different ap-

proaches when confronted with increasing levels of noise, one could argue that a

semi-synthetic approach might not be relevant for real data, since the level of struc-

tural distortion might be much less there. Therefore, another experiment was carried

out on a real dataset as well, the Astex non-native dataset. Since this study was

carried out as a retrieval experiment, it will be presented in the next section, along

with other retrieval experiments.

5.6 Similarity retrieval

One major goal of this work was the development of algorithms capable of retrieving

similar protein structures or binding sites from a database, given a query of interest.

This allows for the identification of functionally related proteins, even if no significant

similarity on the sequence level exists, for example when searching for analogous

proteins that have developed independently but converged to a similar function. In

the context of knowledge-based drug design, this is an important application, since it

allows in principle for the identification of potential cross-reactivities, especially when

focusing on protein binding sites instead of whole protein structures.

The purpose of the following experiments is to assess the capability of the in-

troduced algorithms to perform this task, i.e., to retrieve similar binding sites in a

retrieval scenario. In the first set of experiments, the algorithms were applied on

an independent benchmark dataset compiled by the Nussinov-Wolfson group for the

evaluation of the SiteEngine approach (Shulman-Peleg et al., 2004). Subsequently,

this is taken one step further by using the algorithms in retrieval experiments covering

the whole CavBase.
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5.6.1 Similarity retrieval on a benchmark dataset

Conducting the first set of retrieval experiments on the predefined SiteEngine bench-

mark set offers three benefits. Firstly, as was shown in the preliminary experiments,

some of the algorithms have relatively high runtime requirements. Conducting initial

retrieval experiments on a smaller benchmark set allows one to gain first impressions

on the retrieval performance of the algorithms without excessive runtime investment.

Secondly, assessing the performance of the introduced algorithms in a retrieval

experiment is not as trivial a task as it appears. Given that each of the algorithms

allow for some degree of structural variation, some more than others, the question

arises how the results should be interpreted. For example, SEGA and SEGAHA were

developed to allow for a greater structural tolerance than provided by a simple clique

search, allowing for the detection of more remote similarities. With that idea in mind,

it becomes obvious that classical methods to assess structural similarity, such as the

RMSD value, would be too stringent for this purpose. Also, simply looking for the

same target is too restrictive for the purpose of identifying potential cross reactivities.

However, for the benchmark set, the classes were already defined in a previous study

(Shulman-Peleg et al., 2004).

A third advantage is the fact that the benchmark dataset allows for a more in-

depth analysis of the results, as the dataset is small enough to allow a manual inspec-

tion and interpretation of the results. As query structures, the same proteins were

selected that were also used in the original SiteEngine retrieval experiments to calcu-

late similarity rankings: the adipocyte lipid-binding protein from M. musculus (PDB

code: 1lib), a CAMP-dependent protein kinase from M. Musculus (PDB code: 1atp),

the hypothetical protein MJ0577 from the genome of M. jannaschii, which contains

an ATP binding site (PDB code: 1mjh) and the human sex hormone-binding globulin

(SHBG) complexed with the steroid estradiol (PDB code: 1lhu). Additionally, two

other proteins from the group of estradiol binding proteins were selected as queries:

the human estrogen receptor (PDB code: 1ere) and a mutant human nuclear estrogen

receptor (PDB code: 1qkt).

Retrieval experiments were carried out by comparing the main pocket of each

protein to each query binding site, deriving a ranking based on the obtained similarity
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Figure 5.15: 11-point precision-recall curves on the SiteEngine dataset for the query
proteins 1atp and 1mjh.

scores. For each ranking, 11-point interpolated precision-recall curves5, commonly

used for the assessment of retrieval systems (Manning et al., 2008), were derived,

depicted in Fig. 5.15 to Fig. 5.17.

Among the local approaches, BFPJ and FFP achieve the best results, with BFPJ

showing superior performance on four of the six queries while FFP yields a better

ranking for two of the queries: 1lhu and 1ere. Interestingly, in these two cases, none

of the other local approaches is able to achieve reasonably good results, suggesting

511-point precision-recall curves depict the observed precision at fixed recall levels in steps of 0.1
and interpolate the intervals in between.
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Figure 5.16: 11-point precision-recall curves on the SiteEngine dataset for the query
protein 1lib and 1lhu.

that the problem of discontinuity might indeed have a strong effect in some cases.

Especially for 1lhu, the other approaches, global and local, seem to be unable

to achieve a good result, suggesting that there might be no recognizable structural

resemblance between the query structure and other estradiol binding pockets in the

dataset. This was not the case in the original SiteEngine experiment (Shulman-Peleg

et al., 2004), which could be attributed to the differences in pocket extraction and

representation between CavBase and SiteEngine. For this reason, two other estradiol

binding query structures (1ere, 1qkt) were included, to assess whether a meaningful
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Figure 5.17: 11-point precision-recall curves on the SiteEngine dataset for the query
protein 1ere.

ranking can be obtained within this class at all. Apparently, this is possible, since

the results for the other queries are quite good.

In most cases, the Jaccard measure tends to yield better results than the Hamming

distance, regardless of the fingerprint model, similar to the observation made on the

four-class classification dataset in Section 5.2.1.2.

Among the global and semi-global approaches, the SEGA algorithm generally

shows the best performance, with one notable exception for the query structure 1lib.

While SEGA’s performance is still strikingly good, the CB approach is capable of
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Rank PDB Function Score P-value
1 1lib Adipocyte lipid-BP 90.00 < 10−10

2 1lie Adipocyte lipid-BP 41.04 < 10−10

3 1lid Adipocyte lipid-BP 40.16 < 10−10

4 1hms Heart muscle fatty acid-BP 20.72 3.96 · 10−10

5 1b56 Epidermal fatty acid-BP 10.14 2.79 · 10−5

6 1pmp Myelin P2 10.09 2.94 · 10−5

7 1ftp Locus muscle fatty acid-BP 9.13 8.88 · 10−5

8 1opb Cellular retinol BP II 8.61 21.61 · 10−4

9 1cbs Cellular retinoic acid BP II 8.19 2.61 · 10−4

10 2cbr Cellular retinoic acid BP II 7.30 7.17 · 10−4

11 1opa Cellular retinol BP II 7.00 1.06 · 10−3

12 1kqw Cellular retinol BP 6.60 1.70 · 10−3

13 1mdc Insect fatty acid BP 5.97 3.65 · 10−3

Table 5.9: Ranking of comparisons between the fatty acid binding protein 1lib and
the SiteEngine benchmark set (α = 1).

retrieving an even better result, although it fails to outperform SEGA on the other

queries. However, the difference is not large: SEGA was able to retrieve 13 of the 15

fatty acid-binding proteins present in the dataset exclusively on the top ranks with

significant p-values, while CB retrieved one more structure.

Nevertheless, it is interesting to observe that both algorithms, as well as GAVEO

are able to retrieve such good results, since some of these structures were not retrieved

in the original SiteEngine experiment (Shulman-Peleg et al., 2004). SiteEngine re-

trieved proteins from other classes among the top ten results (ketosteroid isomerase,

HIV protease and others), which are not present in the top ranks here and achieve

non-significant scores for SEGA and GAVEO. Yet, this is not a fair comparison, since

SiteEngine is based on a slightly different modeling concept, which is why this ap-

proach was not used as a baseline here. As an example, the ranking obtained by

SEGA is shown in Table 5.9.

While SEGA generally shows the best performance, GAVEO is not much worse in

most cases, although the results are obtained with a much higher runtime expenditure.

It is also notable, that both global approaches (GAVEO and GAVEOc) as well as both

semi-global approaches (SEGA and SEGAHA) are able to improve upon the baseline

algorithms. The only real competitor approach appears to be the original CavBase
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5.6 Similarity retrieval

approach (CB), which nevertheless fails to surpass the best global and semi-global

algorithms with the one exception mentioned above.

The results indicate that on average, the global and semi-global methodologies

retrieve more relevant structures than the local methods, although exceptions exist,

e.g., for the query 1mjh, where GAVEO does not retrieve relevant structures on the

first ranks. For this query, GAVEOc shows a much better performance, although in

general GAVEO is more successful. This suggests that preserving the clique solution

during the optimization process can sometimes lead to better results although the

majority of cases indicate the opposite.

5.6.2 Tolerance toward structural variation and retrieval per-

formance on real data

The semi-synthetic experiment outlined above has demonstrated the robustness of

SEGA and, to a lesser extend, GAVEO towards structural noise and mutational vari-

ation. However, one could argue that this increased tolerance might not be relevant

when working on real data, as the structural variation present in related binding sites

might be far less pronounced.

Moreover, so far, it is not clear how well the local approaches will perform when

confronted with structural variation. On the one hand, these approaches should be

much less affected by structural changes, on the other hand, as outlined in Chapter 4,

local approaches might suffer from a large false positive rate, which would again lead

to deteriorated results.

To shed some light on these issues, the Astex non-native dataset was used in

addition, which contains contains roughly 1,000 structures in total representing dif-

ferent conformations of the 65 different protein targets (apo structures and complexes

with other ligands). Thus, this dataset presents a representative selection of typical

variation observed in real structures, albeit for identical targets.

Again, retrieval experiments were carried out, with each of the 65 target structures

as queries. More precisely, the main pockets containing the co-crystallized ligands

were retrieved from CavBase and used as queries against the complete set of cavities

belonging to the non-native structures. The similarity of two protein structures is
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Figure 5.18: Averaged 11-point precision/recall curves for the different algorithms
and competitor approaches on the Astex non-native dataset.

given by the similarity between the query cavity and the most similar cavity with a

different conformation.

This is a valid strategy also common in other bioinformatic applications, e.g., local

sequence alignment, where the similarity score corresponds to the similarity between

the two most similar subsequences. Thus, there is no need for preselecting the true

protein binding site for all query proteins. While this might still be possible on the

Astex dataset, it would not be feasible for a retrieval on the complete CavBase.

For each of the approaches, rankings were calculated based on the associated

similarity/distance measure and subsequently filtered to contain only one cavity per

structure (keeping the most similar ones). The derived rankings for all 65 queries

were then used to calculate average 11-point precision-recall curves, averaging over

all queries, a procedure commonly used for the comparison of retrieval systems over

multiple queries (Bustos et al., 2004; Manning et al., 2008). The results are shown in

Fig. 5.18.

The results nicely demonstrate that dealing with structural differences is not a
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5.6 Similarity retrieval

trivial problem, even for the same target protein, since none of the approaches is able

to retrieve all similar structures in all cases. The highest performance is achieved

by GAVEO, SEGA and SEGAHA, which are able to outperform all competitor ap-

proaches as well as the local methods. SEGA arguably shows the best performance, as

all relevant structures are placed among the top ranks, indicated by the slow declining

tail of the curve. On the other hand, the GAVEO approach seems to be slightly more

successful at medium recall levels, indicating that SEGA retrieves slightly more false

positives here. However, the difference is minimal.

The fingerprint approaches along with GAVEOc and the best competitors CB

and BK show medium performance, with a much more stable performance than the

remaining competitors (GH, SP and RW). Again, it can be observed that preserving

the clique solution during evolutionary optimization by GAVEOc does not have a

beneficial effect and can even be detrimental. Still, GAVEOc as well as the fingerprint

methods are capable of outperforming all competitors, even the original CavBase

algorithm (CB) for low to medium recall levels. Unfortunately, the curves decline

more strongly at high recall levels, indicating that some relevant structures are ranked

relatively low. For comparison, CB places the last relevant structure on a much higher

rank.

Unfortunately, the fingerprint approaches fail to attain similarly strong results as

the global GAVEO and the semi-global SEGA and SEGAHA, the stronger decline of

precision indicating a larger number of false positives, confirming the apprehensions

raised earlier. Among the local approaches, the best performance for low to medium

recall levels is achieved by BFPH and BFPJ, which is in accordance with the results

obtained earlier. However, for higher recall levels, performance deteriorates more

strongly than for the ε-based fingerprints (FPH and FPJ). The most stable of the

fingerprint approaches is the fuzzy fingerprint approach.

To condense the comparison of the approaches to a few single values, four different

performance measure were calculated, commonly encountered in the field of retrieval

systems. The P10 measure is given by the precision of the approaches after ten

retrieved items (Manning et al., 2008). This measure is typically used under the

premise that users of retrieval systems expect to find the relevant item among the

top ten results, and thus correlates well with user satisfaction. While it is easy to
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5. RESULTS AND DISCUSSION

interpret, it averages poorly over different queries due to the fixed rank and has a

larger margin of error.

As alternative measure, the R measure (Manning et al., 2008) and the MAP

measure (Manning et al., 2008) were also used, both having a lower margin of error

than P10 (Buckley and Voorhees, 2000). The R measure corresponds to precision

after retrieved r items, r being the number of relevant items in the dataset. MAP

(Mean Average Precision) is given by the average of precision values after each relevant

item is retrieved. MAP uses more information than the P10 or R and is more stable

with an even lower margin of error than R (Buckley and Voorhees, 2000), yet it is

not easily interpreted, since a low MAP score can arise from several reasons.

As a fourth measure, BPref is used, which is more stable for cases where the

relevance judgment is incomplete or erroneous, i.e., cases where relevant items are

judged as irrelevant (Buckley and Voorhees, 2004). This is an important advantage

for judging the performance of similarity retrieval of protein binding sites, since, as

was already stated above, unexpected similarities might arise, which are not easily

interpreted. This is more relevant in the next section, where retrieval experiment on

the complete CavBase were performed. The four evaluation criteria for the Astex

retrieval experiments are given in Table 5.10.

The results confirm the impression conveyed by Fig. 5.18, all four measures show-

ing a similar picture. The best results are achieved by GAVEO, SEGA, SEGAHA

and, to a lesser extend the fuzzy fingerprint approach, while the greedy heuristic, as

well as the random walk and shortest path kernel perform extremely weak.

It can also be observed that the P10 measure, as argued above, is less discriminant,

showing for example no difference between CB and the other fingerprint approaches,

while the other, more stable measures show a better performance of the competitor

approach of CavBase, which is in good agreement with the average precision-recall

curves.

Despite the more stable precision-recall curve of SEGA, GAVEO yields slightly

higher performance values, reflecting the better performance for medium recall levels,

since this difference is also apparent for the P10 measure. This is at odds with

the synthetic experiment above suggesting a slightly higher tolerance of the SEGA
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Algorithm P10 R MAP BPref

BFPH 0.56 0.60 0.62 0.60
BFPJ 0.55 0.60 0.61 0.60
BK 0.56 0.65 0.66 0.65
CB 0.56 0.70 0.71 0.70
FFP 0.60 0.74 0.75 0.74
FPH 0.58 0.69 0.70 0.69
FPJ 0.56 0.68 0.69 0.68

GAVEO 0.65 0.81 0.81 0.81
GAVEOc 0.59 0.67 0.68 0.67

GH 0.30 0.34 0.36 0.34
RW 0.15 0.19 0.20 0.18

SEGA 0.63 0.80 0.79 0.79
SEGAHA 0.63 0.80 0.79 0.79

SP 0.13 0.21 0.23 0.20

Table 5.10: Performance of the different approaches in terms of P10, R, MAP and
BPref . Good performances are in bold face.

approach towards structural differences compared to GAVEO. Thus, a closer look at

the results was taken to find the reason for this slight discrepancy.

Upon inspection, SEGA shows decreased precision levels in only four cases, or,

more appropriate two pairs: The two query structures 1v0p and 1ke5 as well as 1s3v

and 1ia1. In each case, members of the former class are ranked high in the latter

and vice versa, with significant scores, as shown in Table 5.11. This oddity raises

the question whether there is some actually resemblance between these targets or

whether these are simply false positives. Indeed, 1v0p is a crystal structure of the P.

falciparum protein kinase 5 (PfPK5), which is complexed with purvalanol B, while

1ke5 represents the human cyclin-dependent kinase 2(CDK2). Purvalanol B, however

is a potent inhibitor of protein kinases, which is known to inhibit both PfPK5 and

human CDK2 (Villerbu et al., 2002).

In case of the second pair, 1s3v corresponds to human dihydrofolate reductase

(DHFR) while 1ia1 is a crystal structure of DHFR from Candida albicans. Both

queries are complexed with different but chemically related tetrahydroquinazoline an-

tifolates ((2R,6S)-6- [methyl(3,4,5-trimethoxyphenyl)amino]methyl-1,2,5,6,7,8- hexa-

hydroquinazoline-2,4-diamine and 5-phenylsulfanyl -2,4-quinazolinediamine).
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Rank PDB Function Score P-value
1 1oiu CDK2 H. sapiens 15.63 3.8 · 10−8

2 1v0b PfPK P.falciparum 14.68 1.3 · 10−7

3 1oi9 CDK2 H. sapiens 13.60 4.8 · 10−7

4 1h1r CDK2 H.sapiens 13.24 7.6 · 10−7

(a) 1v0p

Rank PDB Function Score P-value
1 1ke6 CDK2 H. sapiens 31.56 1.1 · 10−16

49 1ob3 PfPK P.falciparum 6.82 1.6 · 10−10

51 1v0o PfPK P.falciparum 6.52 2.4 · 10−10

58 1v0b PfPK P.falciparum 5.68 7.4 · 10−10

(b) 1ke5

Rank PDB Function Score P-value
1 1mvt DHFR (H. sapiens) 45.73 < 10−16

2 1mvs DHFR (H. sapiens) 24.12 1.2 · 10−12

3 1aoe DHFR (C. albicans) 19.28 4.2 · 10−10

5 1ia2 DHFR (C. albicans) 18.50 1.2 · 10−9

(c) 1s3v

Rank PDB Function Score P-value
1 1m78 DHFR (C. albicans) 67.49 < 10−16

1 1m78 DHFR (C. albicans) 62.50 < 10−16

6 1mvt DHFR (H. sapiens) 14.17 7.5 · 10−7

7 1mvs DHFR (H. sapiens) 14.05 8.7 · 10−7

(d) 1ia1

Table 5.11: Examples of retrieved proteins for the queries 1v0p, 1ke5, 1ia1 and 1s3v
using the SEGA approach.

Apart from the fact that both queries represent the same enzyme from different

species and, as dihydrofolate reductases, use NADPH as a substrate, both enzymes

can be inhibited by similar inhibitors. For example, a potent non-selective inhibitor of

both targets is 6-substituted-5-(4-tert-butylphenyl)thiol-2,4-diaminoquinazol (Chan

et al., 1995). Yet, differences in the binding site geometries also exist and selective

inhibitors of DHFR from C. albicans are known (Chan et al., 1995).
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Algorithm P10 R MAP BPref

BFPH 0.567 0.598 0.612 0.597
BFPJ 0.552 0.601 0.608 0.597
BK 0.570 0.651 0.664 0.649
CB 0.567 0.703 0.714 0.707
FFP 0.611 0.738 0.749 0.737
FPH 0.583 0.693 0.701 0.690
FPJ 0.564 0.682 0.694 0.679

GAVEO 0.659 0.814 0.821 0.816
GAVEOc 0.602 0.664 0.670 0.663

GH 0.288 0.329 0.313 0.303
RW 0.148 0.193 0.201 0.180

SEGA 0.661 0.824 0.834 0.830
SEGAHA 0.658 0.814 0.825 0.819

SP 0.125 0.212 0.230 0.202

Table 5.12: Corrected performance of the different approaches in terms of P10, R,
MAP and BPref .

Given that the ultimate goal of both approaches is the discovery of proteins af-

fected by the same inhibitor or interacting with the same molecules, the results ob-

tained by SEGA cannot be considered unreasonable, since it recognizes the similarities

that obviously exist for each of the pairs. Having established this relationship, a more

natural interpretation of the results would be to treat these cases as true positives

as well, thus correcting the relevance judgment accordingly. A corrected evaluation

yields the results shown in Table 5.12.

As one can see, performance values increase for each approach, indicating that the

cavities associated with the similar queries indeed do achieve a relatively high rank.

After taking these similarities into account, SEGA yields slightly better results than

GAVEO, now performing best, closely followed by GAVEO and SEGAHA.

Upon closer inspection of the results it becomes apparent, that the CavBase ap-

proach is unable to calculate pairwise comparisons for several large cavities, due to an

exhaustion of runtime memory. This is also true for the RW kernel, which might partly

explain its exceedingly weak performance. This might raise the question whether the

GAVEO and SEGA approach only show a better performance due to the inability of

the CB approach to compare larger binding sites.
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Figure 5.19: Averaged 11-point precision/recall curves for the different algorithms
and competitor approaches. The evaluation was limited to those queries, for which
CB could calculate all pairwise comparisons.

Therefore, another set of average precision-recall curves are shown in Fig. 5.19,

this time limited to those queries where CB could calculate scores for all pairwise

comparisons. In total, 51 out of 65 queries were left for the analysis. The results

show that indeed, the performance of CB is better in these cases, being comparable

to the SEGAHA approach, though both GAVEO and SEGA still yield better results.

5.6.3 Retrieval of similar binding sites from CavBase

Having compared the approaches on a real benchmark dataset, the methods were

employed in a broader context as a next step. This was again realized by retrieval ex-

periments of similar binding sites from CavBase, this time covering the whole “cavity

space”, i.e., the space of all putative protein binding sites. Since performing retrieval

experiments on the whole CavBase will be computationally expensive, at least for

some of the approaches, these experiments were limited to the high-resolution subset
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5.6 Similarity retrieval

of CavBase mentioned in Section 5.1, containing all cavities with a minimal resolution

of 2.5 Å.

Initially, four exemplary proteins where selected of which the main cavity was

used as query: A human carbonic anhydrase II (PDB code: 2eu2), candidapepsin 2

(PDB code: 1eag), an aspartic protase (SAP2) from C. albicans, DESC1, a human

type II transmembrane serine protease (PDB code: 2oq5) and human MAP kinase

14 (PDB code: 3hec).

The queries were selected to include two large protein groups from the PDB (serine

proteases and serine/threonine kinases) as well as members of two smaller groups

within the PDB (carbonic anhydrases and aspartic proteases) (Berman et al., 2000).

The group of aspartic proteases can be divided into 16 families or 5 clans according

to the MEROPS database (Rawlings et al., 2010). Nearly all aspartic proteases are

inhibited by pepstatin (Umezawa et al., 1970), which justifies the assumption, that the

active sites of these enzymes share some degree of similarity. Moreover, all aspartic

protease share a common binding mode where a protein substrate is bound in a tunnel

spanning the whole protein with two aspartates flanking each other in the catalytic

center (Klebe, 2009). Thus, this group might be more homogeneous with respect to

protein structure.

Serine proteases, on the other hand, are separated into 45 families and 13 clans, the

dominant group being chymotrypsin-like peptidases (Rawlings et al., 2010). Serine

proteases are known to exhibit different folds but nevertheless share the same function,

justifying the assumption, that this group is more heterogeneous. In fact, the classic

examples of proteins with different folds carrying out the same function, trypsin and

subtilisin, are serine proteases (Schmitt et al., 2002). α-Carbonic anhydrases are

largely similar in structure, yet different from other carbonic anhydrases, whereas

MAP kinases, or serine/threonine kinases in general exhibit largely the same fold.

Additionally, some of the queries from the SiteEngine dataset were employed

again: human adipocyte lipid binding protein (PDB code: 1lib), which was used

as an example for fatty-acid binding proteins, and a structure of the human sex-

hormon binding protein (PDB code: 1lhu) complexed with estradiol, as an example

for a steroid-hormone binding protein. Moreover, thermolysin was selected as query,

representing the highly populated group of metalloproteases (PDB code: 1tmn), for
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which extensive inhibitor studies have been performed, and a structure of the HIV-1

protease (PDB code: 2r38), another aspartic protease representing a prominent drug

target for HIV treatment for which a large number of crystal structures are available

(Berman et al., 2000).

As mentioned in the previous section, judging the relevance of retrieved results is

not a trivial task, given that each of the algorithms allows for some degree of structural

variation. As argued above, using RMSD-based evaluation is too restrictive for this

purpose. The same holds true for judging only structures of the same target as

relevant, since this will obviously never cover cross reactivities.

Another possibility would be to judge the similarity of binding sites according to

functional or structural annotation of the corresponding proteins, for example based

on the EC nomenclature or the SCOP or CATH classification. While this represents

a viable alternative, assessing similarity in this manner means inherently resorting

to a different concept of similarity. For example, it is plausible that proteins sharing

the same EC class and/or fold could bind identical ligands, while the opposite is not

necessarily true. In other words, a structure might belong to a different fold and

enzyme class and still be relevant, since it can be affected by the same drug-like

molecule.

Thus, with the purpose of this thesis in mind, the obvious alternative would be

to consider two structures as similar if they bind the same ligand, as this is the

actual property one wants to predict. Unfortunately, this information is not always

available for an arbitrary CavBase structure, otherwise there would be no need for

the comparison of binding sites in the first place. As each possibility is a viable

but incomplete option, results will be evaluated according to the following rule: two

proteins will be considered similar if

• the proteins belong to the same SCOP family,

• the proteins are annotated with the same EC number,

• or the proteins are known to bind the same ligand.

The first two conditions are easily verified by consulting the SCOP (Murzin et al.,

1995) and the E.C. database (Webb, 1992). The third condition can be verified
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by consulting the PDB Berman et al. (2000) and PDBbind databases (Wang et al.,

2004). The former criteria are still rather conservative, since fold and enzyme class will

capture only closely related structures. The third criterion is more useful for judging

retrieved proteins with respect to occurring cross reactivities, even for proteins that

are not functionally related. However, this obviously requires such information to be

available.

At this point, it should be stated, that the above criteria are not sufficient to proof

a real structural resemblance of the protein binding sites. As outlined in Chapter 1,

cases are known where proteins with the same fold carry out different functions and

vice versa. Moreover, the binding of the same ligand is not necessarily due to a

similar binding site topology, as ligands can be bound in different conformation and

orientation, with proteins binding to different parts of the ligands.

Thus, it might be possible for a structure with no resemblance to the query to

meet one of these criteria. Yet, since the methods presented here do measure graph

similarity, encountering a high ranking graph that meets one or more of these crite-

ria is a strong indication that the graph similarity is reflecting an actual structural

similarity.

Rankings were calculated for each algorithm, including the competitor methods,

based on the underlying distance/similarity measures. Retrieved items were judged

relevant according the above defined rule and an averaged 11-point precision-recall

plot was derived to compare the different approaches, which is shown in Fig. 5.20.

Apparently, the best results are achieved with either the SEGA approach or the

CavBase competitor. Unfortunately, the other approaches perform less efficient on

average, although the GAVEO approach shows comparably good results in the previ-

ous sections and SEGAHA is not far behind. However, all approaches, even the local

fingerprints, are again able to achieve clear improvements over the baselines GH, RW

and SP.

Additionally, the four evaluation criteria for retrieval systems used in the previous

section (P10, R, MAP and BPref ) were calculated, given in Table 5.13.

The performance measures largely confirm the impression given by Fig. 5.20, show-

ing that the best performance is reached by SEGA and CB, followed by GAVEO. The

higher P10 value of SEGA indicates that SEGA yields more consistent results on the
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Figure 5.20: Averaged 11-point precision-recall curves for the different approaches
based on rankings of all eight query structures.

top ranks, whereas CB has a slight advantage at higher recall levels. This is sup-

ported by the fact that the difference apparent for P10 and R is less pronounced for

the MAP measure, which uses more information over the complete rankings. The

Bpref measure, being more stable in case of incomplete rankings, shows no difference

at all.

Apparently, the local approaches perform relatively weak. While they are still

capable of outperforming the baselines SP and RW as well as the greedy approach,

they fail to reach results comparable to those of SEGA or CB. Among the global

approaches, GAVEO is more powerful in this scenario than GAVEOc, showing no

benefit for keeping the clique solution.

Judging the results based on the above-defined rule might be incomplete or er-

roneous to a certain degree. As stated above, meeting these criteria is not sufficient

proof for a real structural resemblance. On the other hand, if a structure has not yet
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Algorithm P10 R MAP BPref

BFPH 0.738 0.375 0.385 0.359
BFPJ 0.913 0.392 0.393 0.369
BK 0.838 0.398 0.411 0.386
CB 0.975 0.526 0.549 0.519
FFP 0.850 0.389 0.390 0.371
FPH 0.725 0.336 0.339 0.317
FPJ 0.713 0.319 0.318 0.297

GAVEO 0.913 0.481 0.494 0.469
GAVEOc 0.900 0.422 0.427 0.394

GH 0.625 0.214 0.212 0.192
RW 0.188 0.145 0.146 0.115

SEGA 0.988 0.528 0.551 0.519
SEGAHA 0.813 0.481 0.490 0.465

SP 0.125 0.158 0.160 0.131

Table 5.13: Performance of the different approaches in terms of P10, R, MAP and
BPref .

been crystallized with a certain ligand, this is no indication that the ligand would

be incapable of affecting the protein. In fact, the number of crystallized proteins is

minimal, eclipsed by the complete set of known protein sequences. Hence, a judg-

ment of the retrieved proteins (or items, in the context of database retrieval) might

still be incomplete and most likely underestimate the percentage of items with a real

similarity to the query. Therefore, the top ranks of each algorithm are also evaluated

manually.

One could argue that the impression given by the precision-recall curves understate

the discriminative power of the similarity measures, since the true number of relevant

items is not known in advance. Assuming that unexpected similarities might be

recovered, which are not known in advance, the first 100 ranks were also compared

directly, adopting a simple strategy: The number of retrieved items is plotted against

the number of relevant items. Thus, a perfect performance (meaning only relevant

items were retrieved) will be indicated by the diagonal, whereas a suboptimal ranking

will be below the diagonal.

In information retrieval, evaluation is typically restricted to the top ten or 25

ranks. However, for the above argument that interesting unexpected similarities are

167



5. RESULTS AND DISCUSSION

more likely to show up at lower ranks, the top one hundred6 results are investigated

manually, to allow for a broader view on the results. Fig. 5.21, Fig. 5.22 and Fig. 5.23

shows the results for the top 100 rankings.

The results obtained for the individual queries confirm the impression above, show-

ing that in most cases the optimal performance is reached by CB and SEGA, while the

other approaches show comparably good performance only for some of the queries.

For the first query shown in Fig. 5.21a, candidapepsin 2 from C. albicans (1eag),

the optimal performance is achieved by SEGA, GAVEO and CB, followed by GAVEOc

and SEGAHA, which show a few false positives. Unfortunately, the other approaches

fail to produce similarly strong results, reaching a stagnation early on, where mostly

false positives are retrieved.

The global GAVEO and GAVEOc methods are able to recover more relevant

structures than the local methods, especially GAVEO, which is again superior to

GAVEOc here. Among the local approaches, the best results are achieved by the

fuzzy fingerprints, although the performance is not comparable to CB or SEGA. All

of the obtained proteins that were judged relevant belong to the family of aspartic

protease, which was to be expected.

Table 5.14 shows some of the obtained results for SEGA, GAVEO and CB. All

three approaches retrieve similar proteins, candidapepsin being the most abundant

among the top ranks. This indicates that all three are capable of retrieving relevant

similarities, e.g., human β-secretase, a membrane-bound aspartic protease that cleaves

the amyloid precursor protein concentrated in synapses and nerve cells in the human

brain, and other aspartic proteases.

While retrieving similar proteins, the rankings produced by the CB, GAVEO and

SEGA show individual differences, especially when regarding the retrieved cavities.

The alignments produced by the global and semi-global approaches allow a more

detailed assessment of such cases.

Fig. 5.24 shows the cavity of a human β-secretase (3ind) which was retrieved

among the top 100 ranks by GAVEO but not by CB and SEGA, where it was found

at ranks below 200.

6This value is still somewhat arbitrary, representing a compromise between feasibility and thor-
oughness.
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Figure 5.21: First 100 ranks retrieved by the different similarity measures. The
number of retrieved proteins is plotted against the number of relevant retrieved items.
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Figure 5.22: First 100 ranks retrieved by the different similarity measures. The
number of retrieved proteins is plotted against the number of relevant retrieved items.
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Figure 5.23: First 100 ranks retrieved by the different similarity measures. The
number of retrieved proteins is plotted against the number of relevant retrieved items.

It can be observed that GAVEO manages to assign the pseudocenters of catalytic

residues7 correctly to each other, as well as those of some surrounding residues. The

red regions indicate similar parts of the cavities that are indeed assigned to one

another. It should be noted, that SEGA manages a similar alignment, although this

was rated with a lower, yet still significant score with the SEGA distance measure.

Likewise, SEGA retrieved some cavities, that were absent in the top 100 ranks for

the other approaches. Fig. 5.25 shows another cavity of human β-secretase, which

was ranked well below 100 for CB and GAVEO, in the latter case even below 8000.

7For each example, catalytic residues were identified according to the Catalytic Site Atlas (Porter
et al., 2004).
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(a) Candidapepsin 2 (1eag) (b) β-Secretase (3ind)

Figure 5.24: Comparison of the main pockets of candidapepsin 2 (green) and human
β-secretase 1 (cyan) as calculated by GAVEO. The red regions are assigned to each
other in the corresponding graph alignment. Catalytic residues are shown in sticks
representation.

(a) Candidapepsin 2 (1eag) (b) β-Secretase (2zdz)

Figure 5.25: Comparison of the main pockets of candidapepsin 2 (green) and human
β-secretase 1 (blue) as calculated by SEGA. The red regions are assigned to each
other in the corresponding graph alignment. Catalytic residues are shown in sticks
representation (thick lines).
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Rank PDB Function Score P-value
6 4er4 Endothiapepsin 30.2 n.a.
7 1e82 Endothiapepsin 30.0 n.a.
8 1e82 Endothiapepsin 29.7 n.a.
10 1e5o Endothiapepsin 29.4 n.a.
11 1epo Endothiapepsin 29.3 n.a.
12 1od1 Endothiapepsin 28.0 n.a.
17 1pso Pepsin 27.2 n.a.
20 1lyb Cathepsin D 26.5 n.a.
23 2hiz β-Secretase 26.5 n.a.

(a) CB

Rank PDB Function Score P-value
1 1zap Candidapepsin 2.760 < 10−12

4 1ym4 β-Secretase 1.743 1.3 · 10−5

5 1e80 Endothiapepsin 1.688 7.9 · 10−5

7 3c9x Aspartic protease T.resei 1.653 1.9 · 10−4

13 1od1 Endothiapepsin 1.627 3.2 · 10−4

35 1uh7 Rhizopepsin 1.568 9.2 · 10−4

(b) GAVEO

Rank PDB Function Score P-value
6 2er6 Endothiapepsin 8.35 1.4 · 10−4

8 5er2 Endothiapepsin 8.35 1.4 · 10−4

9 3ixj β-Secretase 8.03 2.1 · 10−4

10 1od1 Endothiapepsin 7.83 2.7 · 10−4

19 2jjj β-Secretase 7.24 6.0 · 10−4

20 1psn Pepsin 7.22 6.2 · 10−4

(c) SEGA

Table 5.14: Examples of retrieved proteins for the query 1eag (secreted aspartic
protease).

As can be seen, also SEGA manages to assign the pseudocenters belonging to cat-

alytic residues successfully to one another, along with pseudocenters of some neigh-

boring residues. The fact that GAVEO cannot retrieve this cavity at a reasonable

high rank is somewhat astounding and might be due to premature termination of the

optimization process. In both examples, it can be observed that the matched part is

indeed structurally very similar.
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For the serine protease query DESC1 (2oq5, Fig 5.21b), several approaches show a

good performance, including SEGA, SEGAHA, GAVEO, GAVEOc and the baseline

CB, but also the Bron-Kerbosch approach alone and one fingerprint method, BFPJ.

Here, it can be observed, that the global and semi-global methods proposed in this

thesis proved most successful, yielding 100 true positives on the first 100 ranks, which

is only achieved by the CB baseline. All other baselines not augmented by additional

surface information yield less relevant hits. Among the local methods, the BFPJ

variant is most successful, though less so than the global and semi-global approaches.

Regardless of the approach, the relevant structures retrieved contained exclu-

sively serine proteases exhibiting a trypsin-like fold (belonging to he superfamily of

trypsin-like proteases according to SCOP), some of them being transmembrane serine

proteases. Some examples are shown in Table 5.15. These included mainly trypsin,

coagulation factor XI, hepsin, tryptase, thrombin, kallikrein and urokinase-type plas-

minogen activator.

CB additionally showed factor I and tryptase. The latter was also found in the

GAVEO top 100 ranks. Interestingly, in case of SEGA, tryptase was only found at

ranks below 100, but instead contained factor VII and X among the top ranks. Factor

VII was also found among the top 100 ranks with BFPJ. Nevertheless, SEGA is able

to correctly detect commonalities between tryptase and DESC 1 with a significantly

high score, as can be observed in Fig. 5.26. The overlay nicely demonstrates that

SEGA is able to detect a common subpocket, even so the larger part of the pockets

is different.

Subtilisin was not detected at the first 100 ranks, but instead was found around

rank 1,000 for the best-performing methods. Here, it should be mentioned that for

CB, GAVEO, GAVEOc, SEGA and SEGAHA, the top 900 ranks almost exclusively

showed serine proteases, apart from occasional false positives. With an increase in

false positives, the first subtilisin-like proteases emerge.

Fig. 5.27 shows an example of a structure that was ranked high for both GAVEO

and SEGA, but reached only rank 369 for CB. As can be seen, both cavities show a

similar pseudocenter distribution in the pocket center, which can be correctly assigned

by GAVEO. The third residue of the catalytic triad, ASP-102 was absent in case of

1lpg, hence it could not be assigned. Likewise, the second doneptor center of HIS-57
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Rank PDB Function Score P-value
2 1qsf Hepsin 43.9 n.a.
3 1zsl Factor XI 43.9 n.a.
5 1o5b u-Plasminogen activator 42.6 n.a.
6 2zdn Trypsin 42.3 n.a.
9 2fpz Tryptase 42.1 n.a.
15 1anw Kallikrein 41.0 n.a.
18 1sgi Thrombin 41.0 n.a.

(a) CB

Rank PDB Function Score P-value
2 1zrk Factor XI 2.545 1.2 · 10−9

1 2ayw Trypsin 2.446 4.3 · 10−9

14 2f9p Tryptase 2.223 9.4 · 10−8

43 1o5e Hepsin 2.151 2.6 · 10−7

44 2any Kallikrein 1.627 8.1 · 10−4

66 1lpg Factor X 1.568 2.1 · 10−3

(b) GAVEO

Rank PDB Function Score P-value
2 1zrk Factor XI 24.83 3.1 · 10−13

3 1lpg Factor X 23.79 9.8 · 10−13

5 1z8g Hepsin 22.92 2.6 · 10−12

6 2d8w Trypsin 22.91 2.6 · 10−12

32 2zlw Factor VII 20.44 4.3 · 10−11

74 1o5a u-Plasminogen activator 18.24 5.7 · 10−10

(c) SEGA

Rank PDB Function Score P-value
2 1fn8 Trypsin 851.4 1.4 · 10−4

5 1gi9 u-Plasminogen activator 827.3 1.4 · 10−4

11 2bz6 Factor VII 818.3 2.7 · 10−4

(d) BFPJ

Table 5.15: Examples of retrieved proteins for the query 1eag (secreted aspartic
protease).

175



5. RESULTS AND DISCUSSION

(a) DESC 1 (2oq5) (b) Tryptase (2fpz)

(c) Surface overlay

Figure 5.26: Comparison of the main pockets of DESC 1 (green) and human tryptase
(cyan) as calculated by SEGA. The red regions are assigned to each other in the
corresponding graph alignment. Catalytic residues are shown in sticks representation.

was not present in 1lpg, due to a slightly different positioning of the imidazol ring.

Yet, the remaining centers of the two catalytic residues are still assigned correctly.

In the group of carbonic anhydrases (Fig. 5.21c), none of the approaches appear

to have any difficulties, nearly all retrieving exclusively carbonic anhydrases on the

top 100 ranks. The notable exception are the random walk and shortest path kernels,

which fail to retrieve any meaningful result. When taking a closer look at the obtained

rankings, one can find carbonic anhydrases scattered over the whole range of ranks,
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(a) DESC 1 (2oq5) (b) Factor X (1lpg)

(c) Surface overlay

Figure 5.27: Comparison of the main pockets of DESC 1 (green) and human factor
X (blue) as calculated by GAVEO. The red regions are assigned to each other in the
corresponding graph alignment. Catalytic residues are shown in sticks representation.
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Method Rank PDB Function Score P-value
BFPH 32 3mdz Carbonic anhydrase VII 0.916 0.13
BFPJ 77 1jd0 Carbonic anhydrase XII 832.1 1.7 · 10−4

BK 85 1bzm Carbonic anhydrase I 15 n.a.
CB 184 3mdz Carbonic anhydrase VII 33.01 n.a.

FPH 104 1dmy Carbonic anhydrase V 0.911 0.15
FPJ 101 3mdz Carbonic anhydrase VII 4382.1 0.07
FFP 101 3mdz Carbonic anhydrase VII 0.325 0.07

GAVEO 184 3mdz Carbonic anhydrase VII 2.040 1.0 · 10−8

GAVEOc 150 3mdz Carbonic anhydrase VII 2.041 1.8 · 10−8

GH 86 2ibg Hedgehog protein -435.6 n.a.
RW 1 1g20 Nitrogenase 1.84 · 10−4 n.a.

SEGA 150 3mdz Carbonic anhydrase VII 24.07 2.7 · 10−9

SEGAHA 114 3mdz Carbonic anhydrase VII 17.51 1.0 · 10−9

SP 1 3gvk Endo-N-acetylneuraminidas 0.047 n.a.

Table 5.16: First occurrence of a protein other than carbonic anhydrase I for each
approach.

demonstrating that the kernel functions are not suitable as a similarity measure on

protein binding sites, despite the fact that they performed well for the classification

of protein structures (Borgwardt et al., 2005; Gärtner, 2003).

The greedy heuristic appears to be less powerful than the other methods, as it

starts to decline earlier. This is in good agreement with the results obtained in the

previous sections. Apart from this, only the FPJ approach shows one false positive

at rank 94. In all other cases, carbonic anhydrases (CA II) were correctly retrieved

on the top ranks. In Table 5.16, the first occurrence of a protein other than carbonic

anhydrase II is shown.

Generally, all of these carbonic anhydrase binding sites are globally similar in

structure, an example is given in Fig. 5.28. Here, the matched region between the

query and carbonic anhydrase VII is shown, as aligned by GAVEO. Not surprising,

almost the complete cavity is mapped correctly to the corresponding counterpart of

the query structure.

For the MAP kinase query (3hec, Fig. 5.22a), several approaches achieve optimal

results (CB, GAVEO, SEGA and SEGAHA), while GAVEOc and BK show only

one false positive structure. Again, it can be observed that the difference between
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(a) Carbonic anhydrase II (2eu2) (b) Carbonic anhydrase VII (3mdz)

(c) Surface overlay

Figure 5.28: Comparison of the main pockets of carbonic anhydrase II (green) and
carbonic anhydrase VII (yellow) as calculated by GAVEO. The red regions are as-
signed to each other in the corresponding graph alignment. Catalytic residues are
shown in sticks representation.

GAVEO and GAVEOc is minimal. Unfortunately, the local methods are again less

successful, showing increased false positive rates, although all of them, including the

kernel methods, do retrieve some relevant structures. The fuzzy fingerprints again

show the best performance of the local methods.

For this query, SEGA retrieves an ephrine receptor (2qoc) with significant score.

Interestingly, this structure was ranked below 1,000 by both GAVEO and CB. As can

179



5. RESULTS AND DISCUSSION

Rank PDB Function Score P-value
2 3ctq MAP kinase p38 71.4 n.a.
54 3cs9 Tyrosine kinase ABL1 38.7 n.a.
94 3be2 Tyrosine kinase VEGFR2 42.6 n.a.

(a) CB

Rank PDB Function Score P-value
2 3hv7 MAP kinase p38 2.690 < 10−12

62 2ezb Tyrosine kinase ABL1 1.820 1.3 · 10−5

(b) GAVEO

Rank PDB Function Score P-value
2 3hv6 MAP kinase p38 20.25 1.4 · 10−4

3 3mss Tyrosine kinase ABL1 9.57 1.4 · 10−4

60 3be2 Tyrosine kinase VEGFR2 8.62 2.1 · 10−4

(c) SEGA

Table 5.17: Examples of retrieved proteins for the query 3hec (MAP kinase).

be seen, both cavities are globally dissimilar, with only a small similar subpocket,

which might explain why the global methods rank this pocket rather low. The cat-

alytic residues ASP-150 and ASP-746 are not assigned, yet, the similar subpocket

around the lysine residue is mapped correctly. However, CSA indicates for this struc-

ture that the identification of the catalytic residue might be erroneous. The lysine

instead is associated with ATP binding according to Uniprot (UniProt-Consortium,

2009), indicating that the matched subpocket is indeed functionally important for

ATP binding.

In case of the adipocyte lipid binding protein (1lib, Fig. 5.22b), the GAVEO

approach performs best, followed by CB, while SEGA and SEGAHA yield fewer

relevant hits. This is in contrast to the other queries, where SEGA showed comparable

or better performance than CB. In this case, the results of SEGA are even slightly

worse than SEGAHA, which did not occur anywhere else.

Upon inspection of the rankings, it was noticeable, that most of the false positives

corresponded to proteins associated with switchable fluorescent proteins, which also

achieved significantly high scores as shown in Table 5.18. These structures where

absent in other rankings, e.g., in case of the local methods or GAVEO but some of
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(a) MAPK 14 (3hec) (b) EphA3 (2qoc)

(c) Surface overlay

Figure 5.29: Comparison of the main pockets of MAPK 14 (green) and ephrine re-
ceptor EphA3 (blue) as calculated by SEGA. The red regions are assigned to each
other in the corresponding graph alignment. Catalytic residues are shown in sticks
representation.

them also appeared later in the CavBase ranking.

The accumulation of these proteins in the top rank in combination with significant

scores suggests that an underlying similarity exists between the query structure and

the fluorescence proteins. Thus, the structures of these proteins were inspected. As

it turns out, both the query structure as well as the fluorescence proteins possess
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Rank PDB Function Score P-value
28 3lsa fluorescent protein Padron0.9 (dark) 10.88 1.2 · 10−5

30 3ls3 fluorescent protein Padron0.9 (bright) 10.56 1.7 · 10−5

32 2pox fluorescent protein Dronpa (dark) 10.27 2.4 · 10−5

33 2iov fluorescent protein Dronpa (bright) 10.19 2.6 · 10−5

37 2gx2 fluorescent protein Dronpa 10.07 3.0 · 10−5

38 2ddc photoswitchable fluorescent protein 10.07 3.0 · 10−5

39 2ie2 fluorescent protein Dronpa 9.93 3.6 · 10−5

Table 5.18: Examples of retrieved proteins for the query 1lib (human adipocyte lipid
binding protein).

(a) adipocyte lipid binding protein(1lib) (b) Padron0.9 (3lsa)

Figure 5.30: Tertiary structures of the adipocyte lipid binding protein query (1lib)
and the photoswitchable fluorescent protein Padron0.9 (3lsa).

a strikingly similar fold structure, consisting of a beta-sheet barrel flanked by an

alpha helix. Fig. 5.30 shows the query structure compared to the first fluorescence

protein (3lwa). The barrel structure is present in both cases, though with an inversed

direction of the beta-strands. The cavities are obtained from the interior of the barrel.

Thus, a similarity obviously does exist, which was discovered by the SEGA approach.

In case of CB, similar proteins also appear, albeit on lower ranks.
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5.6 Similarity retrieval

Rank PDB Function Score P-value
30 2qxs nuclear estradiol receptor 0.202 0.29
33 2ayr nuclear estradiol receptor 0.201 0.30
45 2gpu nuclear estradiol receptor 0.200 0.30
91 2p15 nuclear estradiol receptor 0.198 0.31

(a) FFP

Rank PDB Function Score P-value
12783 2gpu nuclear estradiol receptor 5.83 n.a.
13633 2qxs nuclear estradiol receptor 5.76 n.a.
16064 2ayr nuclear estradiol receptor 5.54 n.a.
18330 1v0b nuclear estradiol receptor 5.28 n.a.

(b) CB

Rank PDB Function Score P-value
14309 2qxs nuclear estradiol receptor 4.60 0.15
24154 2ayr nuclear estradiol receptor 3.92 0.27
19857 2P15 nuclear estradiol receptor 4.21 0.21
30462 2gpu nuclear estradiol receptor 3.50 0.39

(c) SEGA

Table 5.19: Examples of retrieved proteins for the estradiol binding protein query
(1lhu).

The estradiol-binding site of (1lhu) has apparently only few structurally simi-

lar binding sites, indicated by the early stagnation exhibited by almost all of the

approaches. BFPJ, GAVEO, GAVEOc and SEGAHA miss one or two of these struc-

tures on the top ranks (before the first false positive), though they are still retrieved

among the first hundred. In total, the same nine structures where retrieved by most

of the algorithms among the top ranks.

Interestingly, only the local fuzzy fingerprint approach is able to retrieve additional

structures, shown in Table 5.19. These received insignificant scores from SEGA and

were also ranked low by the CB. Unfortunately, despite the high rank, the scores were

not significant (assuming a significance level of 0.05).

On the thermolysin query (1tmn, Fig. 5.23a), SEGA again performed best, fol-

lowed by CB and GAVEO, which proves again superior to GAVEOc. The local ap-

proaches again produce a much higher false positive rate, with the fuzzy fingerprints

183



5. RESULTS AND DISCUSSION

showing the worst behavior.

Among the first one hundred ranks, SEGA retrieved several other metalloproteases

besides thermolysin, some of them were also found by CavBase and GAVEO, although

partly on ranks below 100. These are nevertheless related, as they can be affected by

the same inhibitor. For example, elastase B from P. aeroginosa (pseudolysin), MMP-

1 matrix metalloprotease and TACE (tumor necrosis factor-α-converting enzyme) can

all be inhibited by galardin (Grobelny et al., 1992; Moss and Rasmussen, 2007), human

neutral endopeptidase (neprilysin), endothelial-converting enzyme 1 and MMP-1 are

both affected by thiorphan (Benchetrit et al., 1987; Roques et al., 1980; Thomas et al.,

2005), both being also thermolysin inhibitors.

Fig. 5.31 shows another high ranking example obtained with SEGA. Despite the

fact that the corresponding counterpart is small, SEGA manages to align this part

correctly, demonstrating its capability to find also small correspondences. For com-

parison, this cavity was ranked below 200 by the global CB.

Finally, on the last query (2r38, Fig. 5.23b), a structure of HIV-1 protease, the

performance of SEGA and CB is rivaled by both GAVEO variants as well as SEGAHA

and the fuzzy fingerprint method. All relevant retrieved structures were crystal struc-

tures of HIV-1 protease (different mutants), regardless of the method.

In total, SEGA showed the most stable performance followed closely by the

CavBase approach, while GAVEO and the fuzzy fingerprints are competitive in some

of the cases. Other approaches only showed a comparable high performance in the

two cases where globally similar structures could be found (2eu2 and 2r38).

Regardless of the query, each of the approaches perform considerably better than

the kernel methods and the greedy heuristic, which showed the worst performances

in all cases. Also noteworthy is the fact that GAVEO in all cases equals or surpasses

the performance of the GAVEOc approach.

An example is again given in Fig. 5.32. In this case, SEGA matched two separate

corresponding regions, demonstrating that SEGA in principle can assign multiple

similar regions, even if the rest of the cavities are different.
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Rank PDB Function Score P-value
64 1z9g thermolysin 28.1 n.a.
65 1bqb aureolysin 26.7 n.a.
66 1r1h neutral endopeptidase 25.9 n.a.
69 3dbk pseudolysin 25.3 n.a.

(a) CB

Rank PDB Function Score P-value
64 1fjo thermolysin 13.74 9.5 · 10−5

65 1ezm pseudolysin 13.53 1.1 · 10−4

78 2qpj neprilysin 9.52 3.0 · 10−4

84 3dwb Endothelin-converting enzyme 9.23 3.6 · 10−3

87 3i7i MMP-1 matrix metalloprotease 8.41 9.4 · 10−3

90 2I47 TACE 8.02 0.01

(b) SEGA

Rank PDB Function Score P-value
64 3fxs thermolysin 1.797 6.7 · 10−7

65 3dbk pseudolysin 1.780 2.1 · 10−6

70 3dwb Endothelin-converting enzyme 1.585 7.0 · 10−4

(c) GAVEO

Rank PDB Function Score P-value
63 1fjw thermolysin 0.274 0.13
64 3dbk pseudolysin 0.262 0.15
78 2qpj pseudolysin 0.255 0.16

(d) FFP

Table 5.20: Examples of retrieved proteins for the queries 1tmn.

5.7 Classification

The algorithms presented in this thesis were mainly designed to classify protein bind-

ing sites with respect to the ligand they can accommodate. Finally, the performance

of the different methods for this task will be assessed. This presents yet another,

more indirect way of comparing the similarity or distance measures produced by the

different approaches in terms of classification accuracy, following the notion that, the
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5. RESULTS AND DISCUSSION

(a) Thermolysin (1tmn) (b) TACE (3g42)

Figure 5.31: Comparison of the main pockets of thermolysin (green) and TNF-alpha
converting enzyme TACE (cyan) as calculated by SEGA. The red regions are assigned
to each other in the corresponding graph alignment. Catalytic residues are shown in
sticks representation.

more powerful a similarity measure is, the more accurate a similarity-based classi-

fier should be when using these measures. Here, this was realized by using again a

k-nearest neighbor classifier in conjunction with the different similarity scores.

In addition to the algorithms employed so far, GAVEO will also be used in con-

junction with the original similarity score, in order to allow for a direct comparison

with the greedy heuristic. For the sake of brevity, this was excluded in the previous

retrieval experiments.

5.7.1 Classification of structurally similar ATP and NADH

binding sites

In Section 5.1, a first two-class dataset containing 255 proteins (15 folds) was con-

structed, including structures from the two most highly populated ligand groups in
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5.7 Classification

(a) HIV protease (2r38) (b) HIV protease (1nnp)

Figure 5.32: Comparison of the main pockets of two HIV protease structures by
SEGA. The red and yellow regions are assigned to each other in the corresponding
graph alignment. Catalytic residues are shown in sticks representation.

the CavBase: ATP and NADH. This first dataset was specifically constructed by en-

riching putative structurally similar binding sites within the two classes by drawing

upon the spatial structure of the corresponding ligand. Hence, it is most likely to

contain several largely similar binding sites.

Classification accuracy was obtained for each method from leave-one-out cross

validations. As a sequence-based baseline approach, amino acid sequence alignments

were calculated via the Smith-Waterman algorithm (SA). Additionally, the shortest

path kernel in conjunction with sequence alignment (SPSA) is employed as a proof-of-

principle. Due to its prohibitively high runtime requirement, this method is excluded

from the other experiments. The obtained results are presented in Table 5.21.

When comparing the local approaches, one can see that all of the fingerprint

variants are capable of considerably improving classification accuracy compared to

the random walk and shortest path kernels. The most successful local method is

again BFPJ, similar to the results obtained in Section 5.2.1.2. Likewise, the Jaccard
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k BK CB GH SA GAVEO GAVEO* GAVEOc SEGA SEGAHA
1 76.1 81.7 76.6 89.8 89.0 78.9 87.0 91.6 89.2
3 76.3 83.1 71.8 86.8 86.5 76.6 86.5 92.4 87.9
5 77.4 83.1 72.4 86.5 86.2 78.0 86.2 91.3 85.9
7 75.7 81.1 71.8 83.7 85.4 78.6 85.6 91.6 86.8
9 76.9 79.4 76.6 82.0 85.1 76.6 85.4 92.4 84.2

(a) Global, semi-global and sequence-based approaches.

k RW SP SPSA FPJ FPH BFPJ BFPH FFP
1 59.7 60.6 62.0 87.9 80.6 89.0 87.9 83.9
3 59.7 60.6 55.2 86.5 80.3 86.2 86.8 81.7
5 59.7 63.4 55.2 84.5 77.5 84.5 85.9 79.4
7 60.8 62.5 57.2 83.6 75.8 84.2 85.4 76.6
9 60.8 63.4 57.2 80.9 73.5 83.1 84.2 75.8

(b) Local approaches.

Table 5.21: Results of k-nearest neighbor classification (percentage of correct predic-
tions) with leave-one-out cross-validation of the original ATP/NADH dataset (α = 1).

measure appears to be more successful than the Hamming distance. Compared to

the global approaches, one can see that all fingerprint approaches can outperform the

BK baseline as well as the greedy heuristic, although only the best result, obtained

by BFPJ, yields a classification accuracy that rivals the results of GAVEO and the

sequence alignment baseline. The SPSA method in general appears to perform even

worse than the simple SP, although for k = 1, the accuracy is slightly better. After

all, the results do not justify the considerably larger runtime investment.

Among the global approaches, GAVEO performs slightly better than GAVEOc,

indicating that a preservation of the clique solution during the optimization might

not be necessary or even be detrimental, although the minor difference for k = 1

might simply be owed to the heuristic nature of the approaches. Both methods show

results comparable to the SA baseline and outperform the greedy heuristic and the

Bron-Kerbosch approach considerably. GAVEO* still achieves a higher performance

than the greedy heuristic, indicating the benefit of the evolutionary optimization.

Yet, the accuracy is well below the performance of GAVEO, indicating the added

benefit of the modified similarity measure.

The semi-global SEGA approach can again improve upon the best local and global
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results as well as the sequence-based approach, while SEGAHA is comparable to

those. This again indicates the benefit of drawing upon a global reference frame for

resolving ambiguous matching possibilities, rather than doing so arbitrarily.

The comparably low performance of CB, as well as the inferior results of RW can

partly be attributed to the fact that some comparisons could not be calculated by

these approaches due to an exhaustion of runtime memory.

5.7.2 Classification of structurally diverse ATP and NADH

binding sites

During the development of each algorithm, a main consideration was to account

for the structural inaccuracies and variations present in structured data. Especially

SEGA was developed to uncover more remote similarities than might be possible

with more rigid methods. Hence, one can argue that the above used dataset is too

unrealistic a test problem, since structurally similar binding sites are most likely

enriched.

For this reason, the second ATP/NADH dataset described above was compiled,

which includes binding sites of proteins from different SCOP folds. More precisely,

each fold was represented exactly once, as described in Section 5.1, thereby creating

a rather challenging classification problem. Again, leave-one-out cross validation was

performed on this two-class problem, the results are shown in Table 5.22.

As expected, all algorithms perform considerably worse on this second dataset.

When comparing the local approaches, it becomes apparent that the improvement

achieved by the fingerprint approaches is less obvious in this case. The best results for

the local approaches are once again achieved by BFPJ. As before, the Jaccard measure

proves superior to the Hamming distance. Compared to the global approaches, BFPJ

performs comparable to GAVEO and GAVEOc, although the BFPJ results were

achieved with a much lower runtime investment, and vastly outperforms the greedy

heuristic, which performs extraordinarily weak.

Unfortunately, several competitors achieve better results than both BFPJ and

GAVEO. Both the sequence-based approach as well as BK, which simply uses the

size of the maximal clique as similarity measure, show a slightly better performance,

and CB is even more successful. Yet, the comparably high performance of BK and
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k BK CB GH SA GAVEO GAVEO* GAVEOc SEGA SH
1 70.8 74.8 33.9 70.0 65.4 54.3 65.4 91.3 88.2
3 64.5 75.6 51.9 67.7 61.4 57.5 56.7 89.0 88.2
5 62.2 75.6 39.4 70.0 62.2 63.8 57.5 87.4 85.0
7 62.9 73.2 39.4 68.5 58.3 63.8 59.8 83.5 82.7
9 64.5 74.0 39.4 67.7 57.5 63.8 56.7 80.5 79.5

(a) Global, local and semi-global approaches.

k RW SP FPJ FPH BFPJ BFH FFP
1 50.4 56.7 59.8 55.9 66.1 58.3 65.4
3 56.7 55.9 66.1 55.9 62.2 62.2 61.4
5 66.1 56.7 61.4 62.2 66.9 65.4 59.1
7 63.0 57.9 63.8 61.4 69.3 59.8 55.1
9 56.7 58.3 62.3 62.2 70.9 61.4 59.1

(b) Global, local and semi-global approaches.

Table 5.22: Results of k-nearest neighbor classification (percentage of correct pre-
dictions) with leave-one-out cross-validation for the one-fold ATP/NADH dataset
(α = 0.1).

CB indicates that even though proteins from different folds are used, there is still

some similarity among the binding sites.

However, all of these approaches are outperformed by SEGA as well as SEGAHA,

which seems in good agreement to the results obtained from the synthetic experi-

ment, indicating that SEGA in general is more resilient towards structural differences.

Again, resorting to global information seems to have a benefit, as SEGA performs

better than SEGAHA.

The weak performance of the greedy heuristic is astounding at first, since BK

performs much better and the Bron-Kerbosch algorithm is used to generate the seed

solutions for the greedy heuristic. However, note that the BK approach uses the size

of the maximal clique as a similarity measure, while the greedy heuristic uses the score

of the optimization function. This supports the assumption raised in Chapter 4, that

the scoring function of the greedy heuristic is not suitable as a similarity measure for

protein binding sites. Still, since GAVEO* also outperforms the greedy approach,

the scoring function can only partially explain the results, indicating that also the

myopic nature of the heuristic plays a role.
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k BK CB GH SA GAVEO GAVEO* GAVEOc SEGA SH
1 61.7 74.8 45.4 72.2 62.1 59.1 56.0 79.8 77.0
3 54.1 69.9 33.3 68.3 58.2 55.2 53.3 76.0 72.7
5 49.2 65.0 31.7 65.9 56.0 53.6 50.0 70.5 69.4
7 44.8 61.7 30.6 65.1 54.4 54.1 50.0 68.3 69.4
9 40.4 60.1 31.1 63.4 55.5 54.6 48.4 64.5 69.4

(a) Global and semi-global approaches.

k RW SP FPJ FPH BFPJ BFPH FFP
1 18.0 8.7 54.4 52.9 61.7 59.8 60.4
3 25.7 20.2 47.5 52.0 57.4 54.4 57.9
5 25.1 16.4 45.6 47.7 52.0 51.8 51.4
7 24.6 13.7 43.7 44.3 49.5 50.5 48.4
9 25.1 14.8 45.0 42.6 46.5 48.8 46.2

(b) Local approaches.

Table 5.23: Results of k-nearest neighbor classification (percentage of correct predic-
tions) with leave-one-out cross-validation for the SiteEngine dataset (α = 1).

5.7.3 Classification of the multi-class SiteEngine dataset

To test the algorithms on an independently compiled dataset, the SiteEngine dataset

(cf. Section 5.1) was used again as another classification dataset. This allows the

evaluation of the algorithms on a more diverse, multi-class problem setting. In total,

twelve different classes are represented in the dataset. As before, leave-one-out cross

validation was performed, the results are summarized in Table 5.23.

As before, the most successful local approach is BFPJ, rivaled perhaps by the fuzzy

fingerprints, which seem to be more successful when confronted with more diversity

in terms of different classes. Again the Jaccard coefficient generally performs better

than the Hamming distance. The competitor approaches RW and SP again perform

rather weak.

GAVEO and GAVEOc perform worse than BFPJ, although much better than

the greedy heuristic, which again might be attributed mainly to the differing scoring

functions. This is supported by the relatively strong performance of BK compared to

GH. As was the case above, GAVEO* performs again better than GH, showing the

benefit of the evolutionary optimization.
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k BK CB GH GAVEO GAVEO* GAVEOc SEGA SEGAHA
1-NN 61.9 82.4 39.3 85.3 84.5 84.4 91.5 89.9

(a) Global and semi-global approaches.

k BFPH BFPJ FFP FPH FPJ RW SP
1-NN 49.2 49.4 66.9 34.8 57.3 21.7 25.5

(b) Local approaches.

Table 5.24: Classification results on the Astex non-native dataset. Performance is
measured in terms of classification accuracy.

Apparently, both the sequence alignment and the CavBase approach achieve su-

perior performance compared to most algorithms. Only the semi-global approaches

SEGA and SEGAHA show an even better performance, arguing again in favor of a

semi-global strategy. As before, SEGA improves upon the SEGAHA method.

5.7.4 Classification of non-native conformations on the Astex

non-native dataset

Finally, to include another realistic real dataset in the analysis, the Astex non-native

dataset is again utilized, this time in a classification scenario. However, unlike the

previous experiments, performing an all-against-all comparison on this dataset is

time-consuming and tedious, if not outright infeasible, at least without the use of

high-performance computing facilities.

Therefore, instead of an all-against-all classification, the structures from the As-

tex diverse dataset are used as training data in order to classify the corresponding

structures of the Astex non-native dataset, which serves as test dataset. The results

are given in Table 5.24. Obviously, since the training set consists of only one instance

per class, using a k > 1 would be pointless.

Again, SEGA performs best, followed closely by SEGAHA, while the GAVEO

variants also achieve a high performance, outperforming all baseline approaches. Un-

fortunately, the fingerprint approaches prove less successful here, yielding a much

lower classification accuracy. Among the local approaches, the best performance is

achieved by the fuzzy fingerprints, which so far proved the most stable of the finger-

print approaches.
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As can be seen, the relatively high performance of GAVEO is not at all a result of

the altered scoring function, as also GAVEO* (representing GAVEO in combination

with the original scoring function as similarity measure) performs equally well, while

GH again performs much worse.

5.8 Virus mutants

Modeling a near-native structure solely based on sequence information is currently

still an open problem, at least in the case of ab initio modeling, though less so for the

case of homology-based methods (Kryshtafovych et al., 2009). Yet, steady improve-

ments are being made in the field of structure prediction. As argued in Chapter 1,

the advancement of such modeling techniques potentially offer applications for com-

parative structure and graph analysis beyond the comparison of three-dimensional

protein structures and putative protein binding sites.

The purpose of the following experiment was to show, as a proof-of-principle, that

this is not just a moot point but that comparative structure analysis can indeed offer

real benefits for other problems as well, that are typically approached by sequence-

based methods.

To this end, an HIV mutant sequence dataset compiled from the HIV Sequence

Database at Los Alamos National Laboratory was used, which contained 514 mutant

variants of the V3 loop of the HIV glycoprotein 120 (gp120). The dataset was used

in a previous study by Sander et al. (2007) as a test dataset constituting a two-class

classification problem. As mentioned in Section 5.1, each mutant strain belongs to

either of the X4, R5/X4 or the R5 phenotype, indicating their capability of interact-

ing with two different chemokine receptors. The classification problem posed in the

original study was to discriminate the mutants capable of interacting with CXCR4

(X4, R5/X4) from those only capable of interacting with CCR5 (R5).

Typically, viral strains depending on CRC5 interaction to infiltrate the host cells

are dominant in newly infected patients, whereas CXCR4 capable strains emerge

typically in later stages of the disease, thus a co-receptor switch is assumed to be a

determinant of a progression of the disease (Regoes and Bonhoeffer, 2005). Antag-

onists of both receptor types promise to be efficient antiviral therapeutics, though
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the use of CRC5 antagonists raised concerns that this might result in selective pres-

sure towards a co-receptor switch (Westby et al., 2006). This concern along with

the association of co-receptor specificity with disease progression necessitates a close

monitoring of viral phenotypes.

While this can be achieved via phenotypic assays, they are relatively expensive

and time-consuming. Hence, cheaper and faster methods based e.g., on sequencing

techniques are desirable. A baseline for phenotype prediction based on sequence

information is the 11/25 rule, which predicts a mutant to be X4-capable, if a charged

amino acid can be found at position 11 or 25 of the V3 loop (De Jong et al., 1992).

This method has been improved upon by various machine learning methods (e.g.,

support vector machines, neural nets, etc.), among the most successful being the

indicator algorithm, which uses support vector classification in combination with a

linear kernel (Sing et al., 2004).

So far, the only methods also using structural descriptors have been proposed by

Sander et al. (2007). V 3SDCβ, which approximates side chains by Cβ atoms and

V 3SDSCWRL, which uses a more complex representation based on structure predic-

tions using the crystal structure of 2b4c as template. Additionally, they combined

structural and sequence-based features by using structural features from V 3SDSCWRL

and sequence-based features from indicator. In each case, an SVM with a Gaussian

kernel was used for classification.

These methods were included here as baseline approaches, along with GH, RW

and SP, which were also used in the previous experiments. To be amenable to the

structure-based methods presented here, a structure model was calculated for each

sequence using SCWRL with 2b4c as template structure. Sequences containing in-

sertions or deletions were discarded. The derived structures were converted to pseu-

docenter representation by applying the rules of Kuhn (2005), thereby replicating the

experimental setup used by Sander et al. (2007), who also employed the CavBase

rules.

The algorithms used in this work so far were pitted against these baselines along

with the baseline approaches used in the previous experiments, with the exception

of CB and the local sequence alignment. In the former case, no stand-alone version

was available that could be applied to arbitrary three-dimensional data, while the
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k BFPH BFPJ FFP FPH FPJ
1 91.0 92.3 92.8 92.6 91.2
3 91.7 92.1 91.7 91.7 91.7
5 88.9 89.3 90.1 90.0 90.9
7 89.1 89.6 88.9 88.9 89.6
9 88.2 88.4 88.4 88.7 89.1

(a) local

k GH RW SP
1 91.0 66.7 36.5
3 91.0 72.9 72.1
5 90.3 72.0 76.6
7 89.3 74.8 79.9
9 88.7 74.1 85.7

(b) competitor algorithms

k GAVEO GAVEO* GAVEOc SEGA SEGAHA
1 92.4 87.5 90.1 92.6 91.9
3 91.0 88.9 90.7 90.7 90.7
5 92.1 88.9 91.2 90.3 90.0
7 90.5 87.7 89.4 90.0 90.3
9 90.7 88.0 89.6 89.1 89.8

(c) global and semi-global

Table 5.25: Results of k-nearest neighbor classification (percentage of correct predic-
tions) with leave-one-out cross-validation for the HIV mutants dataset.

algorithm 11/25 rule Indicator
accuracy 87.3 90.0

(a) sequence-based

algorithm V 3SDCβ V 3SDSCWRL V 3SDSCWRL + indicator
accuracy 89.3 91.3 91.6

(b) structure-based

Table 5.26: Results of k-nearest neighbor classification (percentage of correct predic-
tions) with leave-one-out cross-validation for the HIV mutants dataset. These are in
accordance with Sander et al. (2007).

latter case was omitted, since the 11/25 rule already proved more useful. As a per-

formance measure, the classification accuracy was again used, derived by performing

ten replicates of ten-fold stratified cross-validation.

The results obtained are shown in Table 5.25 and Table 5.26.

As becomes apparent, each of the structural approaches developed in this work is

capable of improving upon the sequence-based classification of Indicator and the 11/25

rule. Interestingly, the best performance is achieved by the fingerprint approaches,
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Figure 5.33: Example of 2 predicted 3D structures of the V3 loop for two different
mutant strains.

notably the fuzzy fingerprint variant, though also the BFPJ and FPH variants reach

high accuracies.

The semi-global SEGA and SEGAHA variants also show a high performance, with

SEGAHA performing better here. Interestingly, the purely global approaches perform

slightly worse than the local and semi-global approaches.

One can argue that this is in good agreement with the fact that SEGA yields a

slightly lower accuracy than SEGAHA, as it indicates that global information is less

important here. Indeed, the structures obtained by the threading approach are glob-

ally rather similar, with only local differences in pseudocenter position. An example

is given in Fig. 5.33. Apparently, in such cases, local methods are more useful.

Yet, each approach, including the baseline GH algorithm, yields better results

than the purely sequence-based competitors, and also the more simpler V 3SDCβ.

Only the RW and SP kernels perform again much weaker, indicating their limited

usefulness for such specialized problems. The fingerprint approaches (BFPJ, FPH,

FFP) as well as SEGA and SEGAHA, all of them purely structural methods, moreover

yield an improvement over the structural descriptors of Sander et al. (2007) and even

the combination of both structural and sequence-based features as realized by the

combination of V 3SDSCWRL + Indicator, although admittedly, the difference is not

large.
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Conclusion

In this thesis, several methodically different approaches to graph comparison have

been introduced for the comparative analysis of protein structure data, in particular

protein binding sites. To this end, the CavBase representation was adopted. Gener-

ally speaking, the different methods can be divided into global approaches, comparing

binding sites as a whole, local approaches, comparing only parts thereof, and semi-

global approaches, which represent a combination of both principles.

Based on the experimental results presented in the previous chapter, one can

draw some conclusions regarding the performance of the different approaches and

their usefulness for the problems stated in the introduction.

6.1 Improvement of global binding site compari-

son

So far, the most recent global approach to protein binding site comparison was the

greedy heuristic introduced by Weskamp (2007). The greedy heuristic makes use of

a scoring function to evaluate the quality of a calculated graph alignment, which can

intuitively be interpreted as a similarity measure on graphs and as such be used for

the purpose of classifying protein binding sites and perform similarity retrieval on

larger datasets given a query structure of interest.

As could be shown in the experimental chapter, this similarity measure is not well

197



6. CONCLUSION

suited for the comparison of protein binding sites, since the GAVEO approach, which

utilizes a modified version of this measure, produces considerably better results and

supports the claim made in Chapter 4, that penalizing non-matching parts of the

graph alignments will have a detrimental effect on performance.

However, as the experiments demonstrated, this increased performance is not

simply a consequence of the modified similarity measure. When used in conjunction

with the original scoring function, GAVEO still yielded better results than the greedy

approach on average, which demonstrates the benefit of using an evolutionary strategy

instead of a myopic greedy heuristic, which, in principle, allows a more thorough

exploration of the search space.

Thus, one can conclude that the observed improvements can partly be attributed

to a more powerful search strategy as well as to a more reasonable similarity measure.

While the GAVEO approach offers the additional benefit of not being limited to

graphs below a certain size, however, this comes at the price of a largely increased

runtime, compared to the greedy approach.

The question whether the clique-solution should be calculated and preserved dur-

ing the optimization, which was done in case of the GAVEOc variant, can generally be

answered negatively, although the heuristic nature of evolutionary algorithms makes

a direct comparison of the results somewhat difficult. One has to be aware of the fact

that the non-deterministic approach might yield different results even for repeated

runs of the same algorithm. Still, the performance difference between the variants

are clear enough to be conclusive.

For the classification or retrieval experiments, the GAVEO approach showed on

average a better performance than the GAVEOc variant. The main difference between

the two variants is the fact that GAVEO is unrestricted in the exploration of the

search space, while GAVEOc is forced to keep the clique intact. Hence, the standard

GAVEO offers a bit more flexibility for the construction of alignments. Yet, GAVEOc

could also yield slightly better results in some cases.

For the benchmark problems used in this work, the added flexibility might provide

some advantage, as the benchmark datasets contain mostly structures with a certain

degree of structural difference, in order to avoid non-trivial problems. When applied
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6.1 Improvement of global binding site comparison

to a representative part of the complete CavBase, GAVEO also showed the most

stable performance.

Yet, when retrieving structures from the complete CavBase or a sizable part

thereof, the approach is confronted with a large selection of structures, increasing

the chance to recover false positives. For globally more similar structures, keeping

the clique solution might help to reduce the likelihood to find false positives. However,

the minor differences observed in the cases, where GAVEOc yielded better results do

not justify the potential further increase in runtime incurred by precalculating the

clique solution. Moreover, this can only be applied if the graphs are not too large. On

the other hand, starting from a good approximation of the optimal solution will in

return improve the likelihood of arriving at the global optimum in fewer optimization

steps.

Unfortunately, as the retrieval experiments on the high resolution set have demon-

strated, the internal CavBase approach still produces better results in some scenarios,

though to some extend, this might be due to a premature termination of the opti-

mization process, which in turn might have led to unreasonable alignments. One

also has to note that the CavBase approach additionally adjusts the solutions of the

obtained alignments based on additional surface properties in order to remove false

positives. This was not employed for the GAVEO approach, mainly with the purpose

of relaxing the comparison in order to search for more remotely similar binding sites.

Therefore, a rigorous filtering seemed inappropriate. As could be seen upon manu-

ally inspection, the alignments produced by GAVEO are still reasonable, mapping

structurally similar regions onto each other, yet, it might be possible that using the

surface information additionally might provide an edge in some cases.

Given the experimental results, which yielded a relatively high number of false

positives for some queries, one can argue that including additional surface information

would be beneficial for the approach, either in the form of filter approaches or directly

incorporated into the optimization process. This should reduce the false positive rate

for GAVEO and would also make for a more equitable comparison, still without

additionally comparing surface regions. Still, the relatively high runtime demands

are the most serious drawback of the GAVEO method, which precludes extensive

usage on a large database.
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A possible solution to this problem would be to employ faster and probably more

inaccurate filtering steps in order to arrive at smaller datasets, which can then again

be analyzed more thoroughly using GAVEO. Such filtering methods could in principle

be realized in the form of the local fingerprint approaches introduced here. Yet, given

that the local methods here are comparable in runtime requirements to SEGA, this

will most likely not suffice to make GAVEO comparable to SEGA in terms of runtime.

6.2 Local methods - fast but inaccurate

Regarding the local methods, the experimental evaluation showed that the fingerprint

approaches achieve a considerable improvement over the tested local kernel methods,

the shortest path and the random walk kernel. These proved to be inadequate for

the comparison of protein binding sites, both in terms of runtime requirements and

quality of the results. As could be seen, in many cases these methods were not able

to produce any meaningful result.

The astonishingly weak performance of the random walk and shortest path kernel

can most likely be attributed to the principle of R-convolution kernels itself. For

graphs derived from protein binding sites, the all-against-all comparison of subcom-

ponents of structured objects appears to be unsuitable for graphs derived from protein

binding pockets. Possibly, this is due to an averaging effect when comparing large

graphs, or, more generally, structured objects with many components. With an in-

creasing number of substructures, it becomes more and more likely that commonalities

arise by chance.

In general, it could be observed that using the Jaccard index is in most cases

superior to the Hamming distance. This is no surprise, since the Hamming distance

will reward not only the presence but also the simultaneous absence of a certain

pattern, which is not the case for the Jaccard measure. As argued in Chapter 4, the

absence of a pattern in both structures obviously carries no information, hence the

Jaccard measure would be the more appropriate measure in theory, which has proven

true in the experiments.

As another observation, using a binning approach instead of ε thresholding ap-

peared to achieve slightly better results in most cases. Especially for the classification
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problems, the BFPJ variant reached higher accuracies than the other variants.

Unfortunately, the fingerprint approaches could not compete with the more com-

plex global methods, in terms of classification accuracy and retrieval performance,

thus confirming the potential drawbacks of local methods raised in Section 4. By

decomposing the structures into local patterns and thereby reducing the global com-

parison problem to a multitude of local comparisons, a loss of information is in-

evitably incurred. This results in a relaxation of the similarity criterion, which allows

also remotely similar structures to be considered similar. On the other hand, this

also increases the chance for false positives to achieve a equally high similarity as a

functionally related structure.

In some cases, this inherent relaxation of the similarity criterion might even be

useful. This was, for example, the case for the steroid-hormone binding globulin, for

which the fuzzy fingerprints could retrieve related estradiol binding sites which other,

more stringent methods could not. Yet, in most of the retrieval experiments, the

number of false positives was simply too large to discern the truly related structures

from similarities arising by chance, which is especially problematic for analyzing large

databases.

Also the relatively weak performance on the more challenging SiteEngine and 1-

fold ATP/NADH dataset can be attributed to their sensitivity to false positives, since

these datasets contained much more diverse structures that the original ATP/NADH

dataset. In this latter case, the fingerprint methods were much more effective.

As could be seen, this problem is even more complicated than the problem of

discontinuity resulting from the harsh binning, or, respectively the ε thresholding.

This is supported by the observation that the fuzzy fingerprints usually achieved the

best performance in the retrieval experiments, demonstrating a real benefit of using

the fuzzification to mitigate the problem of discontinuity.

However, a large number of false positives is hardly unexpected, given the local

and relaxed nature of the approach. In fact, this potential drawback was already

mentioned in Chapter 4. As has been stated previously, the main motivation to use

local methods in the first place was to obtain a more efficient approach in terms of

runtime performance. In this respect, the fingerprint approaches proved to be among

the fastest methods employed in this work.
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Why would this be important? As was stated in the previous section, the most

severe problem of more complex methods, such as the GAVEO approach, are high

runtime requirements, rendering them unsuitable for parsing a complete structural

database. Instead, a fast, if maybe less accurate method can be used as a prepro-

cessing or filtering step, limiting the number of necessary comparisons that have to

be made by more time-consuming approaches. This, however, requires that the fast

approach is capable of discovering real similarities among the structures to be com-

pared.

As could be shown, this is true for the fingerprint approaches: all fingerprint vari-

ants were capable of finding related binding sites for each query structure, demon-

strating that they indeed produce a measure of structural similarity. Thus, while

the high false positive rates precludes a usage of the fingerprints alone for querying

structural databases, they should nevertheless be useful in combination with more

complex methods to speed up the retrieval process.

Moreover, the classification experiments on the modeled V3 loops of the mutant

HIV-proteases showed that the fingerprint methods are more powerful on locally

defined problems, where they can even yield the best performance and, more impor-

tantly, outperform the best sequence-based approaches, although this holds true for

all of the structure-based methods. This experiment also indicates the potential use-

fulness of the fingerprint concept beyond the field of protein binding site comparison.

6.3 Combining local and global concepts

As could be seen, both global and local strategies have drawbacks as well as benefits.

Thus, in order to avoid the drawbacks of both while still preserving their advantages,

a semi-global methodology was suggested in this thesis, combining both concepts into

a single approach. Indeed, the most versatile and efficient method appeared to be the

semi-global SEGA algorithm. In most cases, SEGA indeed yielded the best results,

rivaling the CavBase algorithm and sometimes outperforming it.

The only two exceptions concerned the classification of ATP and NADH binding

sites on the first ATP/NADH dataset and the retrieval experiments for the adipocyte

lipid binding protein. In the case of the ATP/NADH classification, the reason for
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the strong performance of CB can be found again in the nature of the dataset. Since

both classes were constructed by deliberately enriching structures with ligands bound

in similar conformation, the dataset was likely to contain structurally similar binding

sites. This is obviously an advantage for the more stringent CavBase method, which,

in addition to the pseudocenter representation, uses surface-based scoring schemes,

in order to discard alignments where the corresponding surface patches do not show

enough resemblance.

As for the adipocyte lipid binding protein, the reason for a decreased performance

can be found in the structural similarity between the query and the structure of the

false-positively classified fluorescent proteins. As could be shown, both structures

exhibit a β-barrel, flanked by a small α helix. When limiting the comparison to the

largest cavity which would correspond to the inside of the barrel, both structures are

sufficiently similar to yield a statistically significant similarity score.

Compared to the other approaches, SEGA represents the best compromise be-

tween runtime efficiency and robustness. While GAVEO also proves relatively stable

when confronted with noise, the runtime requirements for the evolutionary optimiza-

tion are much higher, by several orders of magnitude. Yet, faster approaches are

generally more intolerant towards noise and therefore more prone to return false pos-

itives, which became strikingly apparent for the fingerprint methods.

In contrast, SEGA proved much more robust towards structural variation and yet

is still tolerant enough to detect similarities among related structures, even among

proteins of different folds, e.g., in the case of the 1-fold ATP/NADH classification.

Thus, SEGA indeed avoided the main problems of both local and global methods and

instead combined their strengths.

When compared to the SEGAHA variant, representing a simpler cost-minimization

approach that ignores global information, SEGA usually performs clearly better than

SEGAHA. This nicely demonstrates the beneficial effect of using additional global

information when constructing graph alignments instead of relying solely on local

comparisons. Thus, in a sense, the SEGA approach can be considered less myopic

than the purely local methods.

203



6. CONCLUSION

6.4 Global, local or semi-global?

In the context of this thesis, several conceptually and technically very different ap-

proaches to the graph alignment problem have been developed and evaluated on

different problem settings. Having explored all three methodological concepts, i.e.

local, global and semi-global strategies, one question remains: Which of the three

principles is most suitable for the prediction of cross-reactivities and the comparison

of protein binding sites?

Of course, a fundamental answer to this question that is valid across-the-board

cannot be given. Instead, an answer can only be based on the premises of this work,

that is, for the approaches developed here.

The experiments have shown, that each approach was based on a usable concept

of similarity, since all approaches retrieved similar structures in retrieval experiments

and showed classification accuracies well above random guessing, except for the R-

convolution kernels. All methods were capable of identifying protein structures that

can interact with or be affected by the same molecules, up to a certain degree.

The most successful method appeared to be the semi-global strategy in the form

of SEGA. On the one hand, SEGA was one of the fastest and efficient approaches, on

the other hand, it was also the most robust approach, being the least affected by false

positive results, despite the fact that no additional surface information was used. Yet,

as could be seen upon visual inspection of the cavities, the resulting alignments where

nevertheless reasonable with functionally important pseudocenters mapped onto each

other. Thus, in a sense, a semi-global strategy was the most appropriate in the context

of this thesis. For large scale studies, the SEGA approach clearly appears to be the

best choice, given its high runtime performance and the fact that it mostly showed

the best results during the experiments.

Still, it would be wrong to assume that purely global or local strategies cannot

be successful. In fact, the CavBase approach itself is a quite efficient global method.

Despite their apparent drawbacks, the introduced global GAVEO and local fingerprint

methods both have their merits and both were able to retrieve meaningful results.

Still, both are also hampered by certain problems, as became apparent in the previous

chapter. One possible way of alleviating these problems was already suggested above,

by using the faster, but less accurate local fingerprints to perform a preselection of
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possibly relevant structures followed by a more thorough, albeit more time consuming

comparison using a global strategy, such as GAVEO.

Such a pipeline would again, in a sense, constitute a combination of global and

local methodology, thus again represent a semi-global (or semi-local) approach.
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Appendix A
Data

A.1 SiteEngine dataset

Class No. Folds PDB codes
Adenine-binding proteins 34 18 1a49,1a82,1ads,1atp,1ayl,1b4v,1b8a,1bx4,

1byq,1csc,1csn,1e2q,1e8x,1f9a,1fmw,1g5t,
1gn8,1hck,1hpl,1j7k,1jjv,1kay,1kp2,1kpf,

1mjh,1mmg,1nhk,1nsf,1phk,1qmm,1yag,1zin,
2src, 9ldt48

Serine proteases 24 4 1abi,1acb,1arb,1cho,1cse,1ela,1elc,1hah,
1hne,1pek,1ppf,1sbn,1sga,1sgc,1tgs,1whs,

1ysc,2alp,2lpr,3prk,3sga,3tec,4sgb,4tgl
Fatty acid-binding 15 1 1b56,1cbs,1ftp,1hms,1ifc,1kqw,1lib,1lid,

1lie,1mdc,1opa,1opb,1pmp,2cbr,2ifb
Estradiol-binding 11 4 1a27,1a52,1e6w,1ere,1err,1fds,1jgl,1l2i,

1lhu,1qkt,3ert
Chorismate mutases 7 1 1com,1csm,1dbf,1ecm,1fnj,1fnk,4csm2
Retinoic acid-binding 6 3 1fby,1fem,1g5y,1gx9,1tyr,2lbd

Anhydrases 6 1 1azm,1flj,1jd0,1keq,1kop,1znc
Antibiotics 6 1 1alq,1bt5,1dcs,1exm,1ghp,1rxf

HIV-1 protease 6 1 1b60,1hsg,1hsh,1hwr,1kzk,1pro
HIV-1/HIV-2 4 1 1har,1mml,1mu2,1vrt

Viral proteinase 4 1 1cqq,1lvo,1mbm,1q2w
Equilin binding proteins 3 3 1equ,1oh0,1qjg

Table A.1: SiteEngine dataset as published by (Shulman-Peleg et al., 2004)
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Appendix B
Complete Results

B.1 Results from the parameter studies

b

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

k

1 0.535 0.705 0.715 0.75 0.77 0.73 0.73 0.69 0.72 0.7

3 0.565 0.66 0.685 0.75 0.745 0.765 0.705 0.69 0.695 0.67

5 0.51 0.605 0.655 0.685 0.685 0.67 0.7 0.675 0.66 0.635

7 0.52 0.565 0.615 0.625 0.68 0.65 0.71 0.645 0.625 0.64

9 0.48 0.53 0.61 0.64 0.665 0.615 0.695 0.625 0.665 0.605

(a) Hamming distance.

b

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

k

1 0.655 0.74 0.77 0.785 0.765 0.795 0.78 0.775 0.72 0.77

3 0.6 0.645 0.735 0.75 0.75 0.74 0.72 0.725 0.705 0.71

5 0.545 0.565 0.625 0.705 0.695 0.7 0.695 0.705 0.665 0.69

7 0.5 0.575 0.635 0.68 0.665 0.695 0.69 0.675 0.675 0.645

9 0.475 0.505 0.605 0.67 0.66 0.675 0.645 0.675 0.675 0.635

(b) Jaccard coefficient.

Table B.1: Misclassification rate of a k-nearest neighbor classification using the BFP
approach for different bin sizes b.
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ε

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

k

1 0.29 0.42 0.575 0.7 0.72 0.705 0.705 0.695 0.71

3 0.245 0.465 0.595 0.68 0.675 0.65 0.67 0.675 0.655

5 0.26 0.415 0.57 0.595 0.585 0.59 0.59 0.565 0.595

7 0.25 0.38 0.535 0.545 0.545 0.575 0.545 0.54 0.545

9 0.25 0.37 0.5 0.54 0.5 0.535 0.525 0.54 0.53

ε

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

k

1 0.71 0.725 0.735 0.745 0.735 0.705 0.685 0.685 0.72

3 0.645 0.65 0.66 0.675 0.665 0.65 0.63 0.63 0.65

5 0.555 0.57 0.59 0.61 0.59 0.54 0.55 0.56 0.58

7 0.56 0.54 0.555 0.56 0.525 0.535 0.505 0.525 0.545

9 0.515 0.5 0.51 0.515 0.495 0.515 0.52 0.52 0.515

(b) Hamming distance.

ε

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

k

1 0.445 0.505 0.685 0.72 0.76 0.755 0.765 0.76 0.74

3 0.43 0.485 0.65 0.68 0.68 0.69 0.7 0.665 0.65

5 0.405 0.51 0.56 0.615 0.58 0.58 0.585 0.585 0.575

7 0.41 0.52 0.53 0.535 0.545 0.55 0.57 0.56 0.565

9 0.49 0.475 0.51 0.525 0.535 0.55 0.53 0.52 0.55

ε

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

k

1 0.77 0.75 0.77 0.77 0.77 0.765 0.745 0.76 0.74

3 0.695 0.675 0.68 0.68 0.65 0.69 0.665 0.67 0.69

5 0.57 0.56 0.565 0.57 0.555 0.58 0.605 0.59 0.58

7 0.55 0.56 0.56 0.56 0.575 0.575 0.57 0.575 0.57

9 0.54 0.51 0.53 0.525 0.525 0.535 0.54 0.545 0.525

(d) Jaccard coefficient.

Table B.2: Misclassification rate of a k-nearest neighbor classification using the FP
approach for different values of ε.
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η

0 0.5 1 1.5 2 2.5 3 3.5 4

k

1 0.25 0.685 0.76 0.81 0.81 0.81 0.79 0.825 0.805

3 0.25 0.675 0.765 0.77 0.76 0.785 0.755 0.79 0.76

5 0.25 0.67 0.675 0.72 0.71 0.73 0.725 0.75 0.735

7 0.25 0.67 0.66 0.705 0.71 0.72 0.695 0.72 0.73

9 0.25 0.63 0.645 0.69 0.675 0.7 0.675 0.715 0.67

b

4.5 5 5.5 6

k

1 0.805 0.785 0.78 0.8

3 0.765 0.765 0.775 0.77

5 0.725 0.695 0.72 0.71

7 0.695 0.7 0.685 0.68

9 0.665 0.7 0.65 0.66

Table B.3: Misclassification rate of a k-nearest neighbor classification using the FFP
approach for different η.
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α = 0 α = 0.5

nneigh 1 3 5 7 9 1 3 5 7 9

2 76.5 74.0 68.5 70.0 67.5 75.0 76.5 73.0 72.0 68.0

3 77.0 76.5 75.5 72.5 71.5 78.0 76.0 77.0 75.0 70.0

4 80.0 80.5 78.5 78.0 79.5 82.0 79.5 76.5 77.0 74.5

5 82.5 80.5 78.5 79.0 78.0 81.5 81.0 77.0 75.5 73.5

6 83.5 84.0 82.0 79.5 78.5 83.5 83.0 83.0 79.0 79.5

7 84.0 83.5 79.5 80.0 80.0 85.0 82.5 81.0 79.0 80.5

8 85.5 83.0 80.0 79.0 78.5 84.0 79.5 79.5 81.0 80.0

9 85.0 82.0 83.5 79.5 77.5 86.0 81.0 81.0 77.5 78.5

10 84.5 82.0 81.5 81.0 78.0 85.5 83.0 81.5 79.0 79.0

11 85.5 82.5 82.5 81.5 76.5 85.0 82.5 81.0 78.0 80.0

12 86.0 84.5 80.0 80.5 79.0 85.5 82.5 84.0 78.5 80.5

13 86.5 84.5 82.0 80.0 78.0 85.5 83.5 82.5 82.0 80.5

14 86.0 84.0 81.5 80.0 76.5 87.5 84.0 82.5 80.0 80.0

15 87.0 84.0 81.0 81.0 77.5 87.0 83.0 83.5 82.0 80.0

16 87.5 85.0 82.5 78.5 77.5 87.5 84.5 82.0 81.5 82.0

α = 1

nneigh 1 3 5 7 9

2 63.5 60.5 58.0 56.5 55.0

3 64.5 63.5 56.5 58.0 62.0

4 68.5 64.0 61.5 62.5 59.0

5 72.5 69.0 67.5 65.0 65.5

6 74.0 73.5 70.0 69.0 69.0

7 77.0 74.5 73.0 72.0 72.5

8 77.0 75.0 72.0 72.5 73.0

9 77.0 75.0 73.5 72.0 72.5

10 77.5 74.5 73.5 75.5 73.5

11 77.5 74.5 74.5 75.5 75.0

12 77.0 75.0 75.0 74.0 76.0

13 77.5 76.0 76.0 75.0 76.0

14 78.0 75.5 75.5 74.5 76.0

15 79.0 76.5 74.5 74.0 76.5

16 79.0 75.5 75.5 75.0 75.0

Table B.4: Classification accuracy of SEGA on the four-class dataset for different
values of nneigh and α.
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B.2 GEDV estimates for the different approaches

ξ σ µ

estimate -0.003 0.042 0.122

confidence interval [-0.017,0.010] [0.041,0.043] [0.121,0.123]

(a) BFPH

ξ σ µ

estimate 0.342 780.010 973.182

confidence interval [0.322,0.362] [764.697,795.629] [955.352,991.011]

(b) FPJ

ξ σ µ

estimate -0.003 0.042 0.122

confidence interval [-0.017,0.010] [0.041,0.043] [0.121,0.123]

(c) FPH

ξ σ µ

estimate 0.041 0.074 0.122

confidence interval [0.026,0.057] [0.073,0.076] [0.121,0.124]

(d) FFP

Table B.5: GEDV parameter estimates for the score distributions of 10,000 random
comparisons using the fingerprint approaches.
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α µ σ ξ

0.0 -0.220 0.295 0.515

0.1 -0.201 0.264 0.581

0.2 -0.182 0.233 0.647

0.3 -0.162 0.203 0.714

0.4 -0.141 0.174 0.781

0.5 -0.120 0.146 0.849

0.6 -0.098 0.120 0.916

0.7 -0.077 0.098 0.982

0.8 -0.070 0.085 1.045

0.9 -0.078 0.087 1.104

1.0 -0.091 0.099 1.157

(a) estimates

α µ σ ξ

0.0 [-0.225,-0.216] [0.291,0.300] [0.509,0.521]

0.1 [-0.205,-0.197] [0.260,0.268] [0.575,0.586]

0.2 [-0.185,-0.178] [0.230,0.237] [0.642,0.652]

0.3 [-0.165,-0.158] [0.200,0.206] [0.710,0.718]

0.4 [-0.145,-0.138] [0.171,0.176] [0.778,0.785]

0.5 [-0.124,-0.116] [0.144,0.148] [0.846,0.852]

0.6 [-0.102,-0.094] [0.118,0.121] [0.913,0.918]

0.7 [-0.082,-0.072] [0.096,0.099] [0.980,0.984]

0.8 [-0.074,-0.066] [0.084,0.086] [1.044,1.047]

0.9 [-0.080,-0.075] [0.086,0.088] [1.102,1.106]

1.0 [-0.094,-0.089] [0.098,0.100] [1.155,1.159]

(b) confidence intervals

Table B.6: GEDV parameter estimates for different values of α using the GAVEO
approach.

α µ σ ξ

0.0 -0.303 0.298 0.520

0.1 -0.283 0.265 0.584

0.2 -0.261 0.234 0.650

0.3 -0.238 0.203 0.715

0.4 -0.214 0.174 0.781

0.5 -0.187 0.146 0.847

0.6 -0.158 0.120 0.913

0.7 -0.128 0.097 0.978

0.8 -0.115 0.083 1.042

0.9 -0.125 0.082 1.101

1.0 -0.146 0.093 1.156

(a) estimates

α µ σ ξ

0.0 [-0.310,-0.296] [0.293,0.302] [0.513,0.526]

0.1 [-0.289,-0.277] [0.261,0.269] [0.579,0.590]

0.2 [-0.267,-0.255] [0.231,0.237] [0.645,0.654]

0.3 [-0.243,-0.233] [0.201,0.206] [0.711,0.719]

0.4 [-0.219,-0.208] [0.171,0.177] [0.777,0.785]

0.5 [-0.193,-0.182] [0.144,0.148] [0.844,0.850]

0.6 [-0.165,-0.151] [0.118,0.121] [0.910,0.915]

0.7 [-0.135,-0.121] [0.096,0.099] [0.976,0.980]

0.8 [-0.120,-0.109] [0.082,0.084] [1.040,1.044]

0.9 [-0.129,-0.122] [0.081,0.083] [1.100,1.103]

1.0 [-0.149,-0.143] [0.092,0.094] [1.154,1.157]

(b) confidence intervals

Table B.7: GEDV parameter estimates for different values of α using the GAVEOc
approach.
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B.2 GEDV estimates for the different approaches

α µ σ ξ

0.0 -0.024 0.832 1.289

0.1 -0.001 0.811 1.468

0.2 0.016 0.815 1.639

0.3 0.026 0.836 1.801

0.4 0.034 0.867 1.955

0.5 0.041 0.905 2.103

0.6 0.048 0.947 2.244

0.7 0.055 0.994 2.379

0.8 0.063 1.043 2.510

0.9 0.070 1.095 2.637

1.0 0.079 1.149 2.761

(a) estimates

α µ σ ξ

0.0 [-0.035,-0.012] [0.819,0.845] [1.271,1.307]

0.1 [-0.011,0.009] [0.798,0.823] [1.451,1.486]

0.2 [0.007, 0.024] [0.803,0.828] [1.621,1.656]

0.3 [0.018, 0.033] [0.824,0.849] [1.783,1.819]

0.4 [0.027, 0.041] [0.854,0.880] [1.937,1.974]

0.5 [0.034, 0.048] [0.891,0.918] [2.084,2.122]

0.6 [0.041, 0.055] [0.933,0.961] [2.224,2.264]

0.7 [0.048, 0.062] [0.979,1.008] [2.358,2.400]

0.8 [0.055, 0.070] [1.028,1.059] [2.488,2.532]

0.9 [0.063, 0.078] [1.079,1.112] [2.614,2.660]

1.0 [0.070, 0.087] [1.132,1.167] [2.736,2.785]

(b) confidence intervals

Table B.8: GEDV parameter estimates for different values of α using the SEGAHA
approach.

α µ σ ξ

0.0 0.008 1.206 3.282

0.1 0.005 1.117 3.136

0.2 0.004 1.032 2.987

0.3 0.003 0.952 2.834

0.4 0.002 0.877 2.674

0.5 0.003 0.811 2.508

0.6 0.004 0.754 2.332

0.7 0.006 0.711 2.142

0.8 0.010 0.690 1.935

0.9 0.015 0.706 1.708

1.0 0.013 0.774 1.464

(a) estimates

α µ σ ξ

0.0 [0.007, 0.018] [0.764, 0.785] [1.449, 1.478]

0.1 [0.001, 0.010] [1.102, 1.132] [3.115, 3.157]

0.2 [0.000, 0.008] [1.019, 1.046] [2.968, 3.007]

0.3 [0.000, 0.006] [0.939, 0.964] [2.816, 2.851]

0.4 [0.000, 0.005] [0.866, 0.889] [2.658, 2.691]

0.5 [0.000, 0.006] [0.800, 0.821] [2.493, 2.523]

0.6 [0.001, 0.007] [0.744, 0.764] [2.318, 2.346]

0.7 [0.003, 0.009] [0.702, 0.720] [2.129, 2.155]

0.8 [0.006, 0.014] [0.681, 0.699] [1.922, 1.948]

0.9 [0.009, 0.020] [0.696, 0.715] [1.695, 1.721]

1.0 [0.007, 0.018] [0.764, 0.785] [1.449, 1.478]

(b) confidence intervals

Table B.9: GEDV parameter estimates for different values of α using the SEGA
approach.
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