26 research outputs found

    A Possible and Necessary Consistency Proof

    Get PDF
    After Gödel's incompleteness theorems and the collapse of Hilbert's programme Gerhard Gentzen continued the quest for consistency proofs of Peano arithmetic. He considered a finitistic or constructive proof still possible and necessary for the foundations of mathematics. For a proof to be meaningful, the principles relied on should be considered more reliable than the doubtful elements of the theory concerned. He worked out a total of four proofs between 1934 and 1939. This thesis examines the consistency proofs for arithmetic by Gentzen from different angles. The consistency of Heyting arithmetic is shown both in a sequent calculus notation and in natural deduction. The former proof includes a cut elimination theorem for the calculus and a syntactical study of the purely arithmetical part of the system. The latter consistency proof in standard natural deduction has been an open problem since the publication of Gentzen's proofs. The solution to this problem for an intuitionistic calculus is based on a normalization proof by Howard. The proof is performed in the manner of Gentzen, by giving a reduction procedure for derivations of falsity. In contrast to Gentzen's proof, the procedure contains a vector assignment. The reduction reduces the first component of the vector and this component can be interpreted as an ordinal less than epsilon_0, thus ordering the derivations by complexity and proving termination of the process.De begränsningar av formella system som uppdagades av Gödels ofullständighetsteorem år 1931 innebär att Peanoaritmetikens konsistens endast kan bevisas med hjälp av fundamentala principer som inte kan formaliseras inom systemet. Trots att Hilberts finitistiska metoder inte kunde producera ett konsistensbevis, så fortsatte sökandet efter ett bevis med konstruktiva metoder. För att ett bevis skall vara meningsfullt borde principerna som används vara mera pålitliga än de element som betvivlas inom teorin. Avhandlingens titel hänvisar till ett citat av Gentzen då han motiverar behovet av konsistensbevis för första ordningens aritmetik. Gentzen själv producerade fyra konsistensbevis och analyserade hur väl dessa stämde överens med Hilberts program. Gentzen använde konstruktiva metoder i sina bevis, men det debatteras huruvida dessa metoder kan anses vara finitistiska. Det tredje och mest kända beviset presenterar en reduktion av härledningar av kontradiktioner. Med hjälp av transfinit induktion visas att reduktionsprocessen terminerar i en enkel härledning som konstateras vara omöjlig. Därför kan det inte finnas någon härledning av en kontradiktion. Avhandlingen undersöker och jämför Gentzens bevis från olika aspekter. Konsistensen av intuitionistisk Heytingaritmetik bevisas både i sekvenskalkyl och i naturlig deduktion. Det tidigare beviset är i Gentzens anda och innehåller ett snittelimineringsbevis för kalkylen och en syntaktisk studie av den aritmetiska delen av systemet. Det senare beviset påminner om ett normaliseringsbevis och visar terminering med hjälp av en vektortilldelning.Gödelin vuonna 1931 jullkaisemista epätäydellisyyslauseista seurausi rajoituksia formaalisille järjestelmille: Niiden mukaan Peano-aritmetiikan ristiriidattomuus voidaan todistaa ainoastaan periaatteilla, jotka eivät ole formalisoitavissa järjestelmän itsensä sisällä. Vaikka Hilbertin finitistisillä menetelmillä ei siksi pystytty tuottamaan konsistenssitodistusta, todistuksen etsiminen jatkui konstruktiivisillä menetelmillä. Jotta todistus olisi mielekäs, siinä käytettyjen periaatteiden oli oltava luotettavampia kuin teorian itsensä sisältämät periaatteet. Väitöskirjan otsikko viittaa Gentzenin kirjoitukseen, jossa hän perustelee ensimmäisen kertaluvun aritmetiikan konsistenssitodistuksen tarvetta. Gentzen itse laati neljä sellaista konsistenssitodistusta ja analysoi, missä määrin ne olivat yhdenmukaisia Hilbertin ohjelman kanssa. Gentzen käytti konstruktiivisia menetelmiä todistuksissaan ja on paljon väitelty kysymys, voidaanko näitä menetelmiä pitää finitistisinä. Kolmannessa ja tunnetuimassa Gentzenin todistuksessa esitetään ristiriitaisuuksien päättelyn reduktiomenetelmä. Transfiniittistä induktiota käyttämällä osoitetaan, että reduktioprosessi päättyy yksinkertaiseen päättelyyn, jollainen on erikseen todettu mahdottomaksi. Tämän vuoksi ristiriitaa ei voida päätellä. Väitöskirjassa selvitetään ja vertaillaan Gentzenin todistuksia eri näkökulmista. Intuitionistisen Heyting-aritmetiikan ristiriidattomuus osoitetaan sekä sekvenssikalkyylissä että luonnollisessa päättelyssä. Ensimmäinen todistus seuraa Gentzenin henkeä ja siinä sovelletaan ns. leikkaussäänön eliminointitodistusta sekä syntaktista analyysia järjestelmän aritmeettisesta osasta. Jälkimmäinen todistus muistuttaa luonnollisen päättelyn normalisointitodistusta ja näyttää reduktion päättymisen vektorimäärityksen avulla

    A Mathematical Model of Quantum Computer by Both Arithmetic and Set Theory

    Get PDF
    A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent Peano arithmetics discussed in Section I. Many modifications of Turing machines cum quantum ones are researched in Section II for the Halting problem and completeness, and the model of two independent Turing machines seems to generalize them. Then, that pair can be postulated as the formal definition of reality therefore being complete unlike any of them standalone, remaining incomplete without its complementary counterpart. Representation is formal defined as a one-to-one mapping between the two Turing machines, and the set of all those mappings can be considered as “language” therefore including metaphors as mappings different than representation. Section III investigates that formal relation of “reality”, “representation”, and “language” modeled by (at least two) Turing machines. The independence of (two) Turing machines is interpreted by means of game theory and especially of the Nash equilibrium in Section IV. Choice and information as the quantity of choices are involved. That approach seems to be equivalent to that based on set theory and the concept of actual infinity in mathematics and allowing of practical implementations

    Representation and Reality by Language: How to make a home quantum computer?

    Get PDF
    A set theory model of reality, representation and language based on the relation of completeness and incompleteness is explored. The problem of completeness of mathematics is linked to its counterpart in quantum mechanics. That model includes two Peano arithmetics or Turing machines independent of each other. The complex Hilbert space underlying quantum mechanics as the base of its mathematical formalism is interpreted as a generalization of Peano arithmetic: It is a doubled infinite set of doubled Peano arithmetics having a remarkable symmetry to the axiom of choice. The quantity of information is interpreted as the number of elementary choices (bits). Quantum information is seen as the generalization of information to infinite sets or series. The equivalence of that model to a quantum computer is demonstrated. The condition for the Turing machines to be independent of each other is reduced to the state of Nash equilibrium between them. Two relative models of language as game in the sense of game theory and as ontology of metaphors (all mappings, which are not one-to-one, i.e. not representations of reality in a formal sense) are deduced

    Aspects of the constructive omega rule within automated deduction

    Get PDF
    In general, cut elimination holds for arithmetical systems with the w -rule, but not for systems with ordinary induction. Hence in the latter, there is the problem of generalisation, since arbitrary formulae can be cut in. This makes automatic theorem -proving very difficult. An important technique for investigating derivability in formal systems of arithmetic has been to embed such systems into semi- formal systems with the w -rule. This thesis describes the implementation of such a system. Moreover, an important application is presented in the form of a new method of generalisation by means of "guiding proofs" in the stronger system, which sometimes succeeds in producing proofs in the original system when other methods fail

    Investigations in Belnap's Logic of Inconsistent and Unknown Information

    Get PDF
    Nuel Belnap schlug 1977 eine vierwertige Logik vor, die -- im Gegensatz zur klassischen Logik -- die Faehigkeit haben sollte, sowohl mit widerspruechlicher als auch mit fehlender Information umzugehen. Diese Logik hat jedoch den Nachteil, dass sie Saetze der Form 'wenn ..., dann ...' nicht ausdruecken kann. Ausgehend von dieser Beobachtung analysieren wir die beiden nichtklassischen Aspekte, Widerspruechlichkeit und fehlende Information, indem wir eine dreiwertige Logik entwickeln, die mit widerspruechlicher Information umgehen kann und eine Modallogik, die mit fehlender Information umgehen kann. Beide Logiken sind nicht monoton. Wir untersuchen Eigenschaften, wie z.B. Kompaktheit, Entscheidbarkeit, Deduktionstheoreme und Berechnungkomplexitaet dieser Logiken. Es stellt sich heraus, dass die dreiwertige Logik, nicht kompakt und ihre Folgerungsmenge im Allgemeinen nicht rekursiv aufzaehlbar ist. Beschraenkt man sich hingegen auf endliche Formelmengen, so ist die Folgerungsmenge rekursiv entscheidbar, liegt in der Klasse Σ2P\Sigma_2^P der polynomiellen Zeithierarchie und ist DIFFP-schwer. Wir geben ein auf semantischen Tableaux basierendes, korrektes und vollstaendiges Berechnungsverfahren fuer endliche Praemissenmengen an. Darueberhinaus untersuchen wir Abschwaechungen der Kompaktheitseigenschaft. Die nichtmonotone auf S5-Modellen basierende Modallogik stellt sich als nicht minder komplex heraus. Auch hier untersuchen wir eine sinnvolle Abschwaechung der Kompaktheitseigenschaft. Desweiteren studieren wir den Zusammenhang zu anderen nichtmonotonen Modallogiken wie Moores autoepistemischer Logik (AEL) und McDermotts NML-2. Wir zeigen, dass unsere Logik zwischen AEL und NML-2 liegt. Schliesslich koppeln wir die entworfene Modallogik mit der dreiwertigen Logik. Die dabei enstehende Logik MKT ist eine Erweiterung des nichtmonotonen Fragments von Belnaps Logik. Wir schliessen unsere Betrachtungen mit einem Vergleich von MKT und verschiedenen informationstheoretischen Logiken, wie z.B. Nelsons N und Heytings intuitionistischer Logik ab

    Automated proof search in non-classical logics : efficient matrix proof methods for modal and intuitionistic logics

    Get PDF
    In this thesis we develop efficient methods for automated proof search within an important class of mathematical logics. The logics considered are the varying, cumulative and constant domain versions of the first-order modal logics K, K4, D, D4, T, S4 and S5, and first-order intuitionistic logic. The use of these non-classical logics is commonplace within Computing Science and Artificial Intelligence in applications in which efficient machine assisted proof search is essential. Traditional techniques for the design of efficient proof methods for classical logic prove to be of limited use in this context due to their dependence on properties of classical logic not shared by most of the logics under consideration. One major contribution of this thesis is to reformulate and abstract some of these classical techniques to facilitate their application to a wider class of mathematical logics. We begin with Bibel's Connection Calculus: a matrix proof method for classical logic comparable in efficiency with most machine orientated proof methods for that logic. We reformulate this method to support its decomposition into a collection of individual techniques for improving the efficiency of proof search within a standard cut-free sequent calculus for classical logic. Each technique is presented as a means of alleviating a particular form of redundancy manifest within sequent-based proof search. One important result that arises from this anaylsis is an appreciation of the role of unification as a tool for removing certain proof-theoretic complexities of specific sequent rules; in the case of classical logic: the interaction of the quantifier rules. All of the non-classical logics under consideration admit complete sequent calculi. We anaylse the search spaces induced by these sequent proof systems and apply the techniques identified previously to remove specific redundancies found therein. Significantly, our proof-theoretic analysis of the role of unification renders it useful even within the propositional fragments of modal and intuitionistic logic

    Efficient Constraints on Possible Worlds for Reasoning About Necessity

    Get PDF
    Modal logics offer natural, declarative representations for describing both the modular structure of logical specifications and the attitudes and behaviors of agents. The results of this paper further the goal of building practical, efficient reasoning systems using modal logics. The key problem in modal deduction is reasoning about the world in a model (or scope in a proof) at which an inference rule is applied - a potentially hard problem. This paper investigates the use of partial-order mechanisms to maintain constraints on the application of modal rules in proof search in restricted languages. The main result is a simple, incremental polynomial-time algorithm to correctly order rules in proof trees for combinations of K, K4, T and S4 necessity operators governed by a variety of interactions, assuming an encoding of negation using a scoped constant ⊥. This contrasts with previous equational unification methods, which have exponential performance in general because they simply guess among possible intercalations of modal operators. The new, fast algorithm is appropriate for use in a wide variety of applications of modal logic, from planning to logic programming

    Goal-directed proof theory

    Get PDF
    This report is the draft of a book about goal directed proof theoretical formulations of non-classical logics. It evolved from a response to the existence of two camps in the applied logic (computer science/artificial intelligence) community. There are those members who believe that the new non-classical logics are the most important ones for applications and that classical logic itself is now no longer the main workhorse of applied logic, and there are those who maintain that classical logic is the only logic worth considering and that within classical logic the Horn clause fragment is the most important one. The book presents a uniform Prolog-like formulation of the landscape of classical and non-classical logics, done in such away that the distinctions and movements from one logic to another seem simple and natural; and within it classical logic becomes just one among many. This should please the non-classical logic camp. It will also please the classical logic camp since the goal directed formulation makes it all look like an algorithmic extension of Logic Programming. The approach also seems to provide very good compuational complexity bounds across its landscape

    Derivation and structure in categorial grammar

    Get PDF

    The Design and Implementation of an Interactive Proof Editor

    Get PDF
    This thesis describes the design and implementation of the IPE, an interactive proof editor for first-order intuitionistic predicate calculus, developed at the University of Edinburgh during 1983-1986, by the author together with John Cartmell and Tatsuya Hagino. The IPE uses an attribute grammar to maintain the state of its proof tree as a context-sensitive structure. The interface allows free movement through the proof structure, and encourages a "proof-byexperimentation" approach, since no proof step is irrevocable. We describe how the IPE's proof rules can be derived from natural deduction rules for first-order intuitionistic logic, how these proof rules are encoded as an attribute grammar, and how the interface is constructed on top of the grammar. Further facilities for the manipulation of the IPE's proof structures are presented, including a notion of IPE-tactic for their automatic construction. We also describe an extension of the IPE to enable the construction and use of simply-structured collections of axioms and results, the main provision here being an interactive "theory browser" which looks for facts which match a selected problem
    corecore