

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

The Design and Implementation of an
Interactive Proof Editor

Brian Ritchie

Ph. D.

University of Edinburgh
1987

Abstract

This thesis describes the design and implementation of the IPE, an interac-

tive proof editor for first-order intuitionistic predicate calculus, developed at the

University of Edinburgh during 1983-1986, by the author together with John

Cartmell and Tatsuya Hagino. The IPE uses an attribute grammar to main-

tain the state of its proof tree as a context-sensitive structure. The interface

allows free movement through the proof structure, and encourages a "proof-by-

experimentation" approach, since no proof step is irrevocable.

We describe how the IPE's proof rules can be derived from natural deduction

rules for first-order intuitionistic logic, how these proof rules are encoded as an

attribute grammar, and how the interface is constructed on top of the grammar.

Further facilities for the manipulation of the IPE's proof structures are presented,

including a notion of IPE-tactic for their automatic construction.

We also describe an extension of the IPE to enable the construction and

use of simply-structured collections of axioms and results, the main provision

here being an interactive "theory browser" which looks for facts which match a

selected problem.

At the age of fourteen my father was forced to leave school and "go down the

mines" to support his family. Despite a promising scholastic performance, short-

term needs outweighed the long-term academic investment. His later attempts

to obtain qualifications were made difficult by having to study in addition to

long hours of heavy physical labour. Though commended on his work, the strain

became too great and his studies were abandoned. Nonetheless he retained an

interest in scientific developments and provided a stimulating environment for

his children. My mother and he determined that their children would be free

to achieve their potential, at a time when the destiny of most miners' sons was

to work alongside their fathers. Therefore it is only right (and I don't care how

outre it is) that I should dedicate this thesis to my parents.

Table of Contents

1. Introduction 1

1.1 General Description . 1

1.2 Acknowledgements . 2

1.3 Overview . 3

1.4 Machine-Assisted Proof Systems 3

1.5 A Demonstration . 8

2. The Generation of Basic Tactics for Interactive Proof 24

2.1 Introduction 24

2.2 Inference Rules of the IPE 26

2.3 Derivation of Basic Tactics . 29

2.3.1 Tactic Schemata . 29

2.3.2 Basic Tactics for the IPE 31

2.4 General Principles . 37

3. Attribute Grammars As A Basis For Context-Sensitive Struc-

ture Editing 40

3.1 Attribute Grammars . 41

3.2 Derivation Trees . 44

1

Table of Contents ii

3.3 Semantic Trees . 46

3.4 Dependency Graphs . 48

3.5 Completing Productions . 49

3.6 Obtaining Semantic Trees from Attribute Grammars 50

3.7 Incremental Reevaluation . 51

3.7.1 Jalili's Incremental Reevaluation Algorithm 53

3.7.2 Evaluation on Demand . 55

3.8 The Attribute Grammar for the IPE 57

3.8.1 The Context-Free Grammar 57

3.8.2 The Major Attribute Systems 59

3.8.3 Some Example Rules . 60

3.8.4 Interface Considerations 64

3.9 Some Suggested Improvements of the Proof Grammar 67

3.9.1 Choosing Terms for All Elimination and Exists Introduction 67

3.9.2 Determining Appropriate Premises in Re-Applied Proof

Structures . 71

4. The User Interface 74

4.1 Display Formats for Structured Objects 75

4.1.1 A Display Format for Sequents 77

4.1.2 Display Formats for Proof Nodes 77

4.2 The Level 1 Proof Machine . 79

4.3 The Level 2 Proof Machine 82

4.4 The Level 3 Proof Machine . 82

4.5 The Command Interpreter .. 83

4.5.1 Operation of IPE Commands 86

Table of Contents iii

5. Facilities for the Manipulation of Proof Structures 90

5.1 Multiple Buffers 90

5.2 Automatic Proof Construction 93

5.2.1 IPE-Tactics 94

5.2.2 Uses of IPE-Tactics and Extensions to Them 101

5.3 Storing Proof Structures . 104

5.4 Printing Proofs . 105

6. A Theory Database 107

6.1 Introduction . 107

6.2 IPE Theories 110

6.3 Using Facts in a Proof . 114

6.3.1 The Facts Browser 115

6.4 Generating Lemmas . 129

6.5 Remarks . 131

7. Future Work and Conclusions 136

7.1 Recent Work . 136

7.1.1 Rewrite Rules . 136

7.1.2 The XIPE 137

7.2 Future Work 138

7.3 Concluding Remarks . 140

A. The Proof Grammar 146

A.1 The Syntax of C-SEC 146

A.2 The C-SEC Definition of the Proof Grammar 149

Table of Contents iv

B. The IPE User Manual 175

Chapter 1

Introduction

1.1 General Description

There is a large body of research concerned with improving the power of automated
reasoning systems to construct formal proofs. However, it is still the case that the
most imaginative theorem prover is the human mind. The principal aim in the
design of the Interactive Proof Editor was to build a proof assistant which makes
it easy for people to construct and experiment with proofs, but which insists upon
formality of argument, thus combining the user's intuition with the machine's
rigorous proof-checking capability.

The Interactive Proof Editor (or IPE in acronym) enables the development and
maintenance of machine-checked proofs of statements in an untyped first-order
intuitionistic predicate calculus. The encouraged style of proof is goal-directed:
after supplying an initial conjecture, proof proceeds by decomposition of a current
goal into hopefully simpler subgoals The applicability of each step in the proof,
and the validity of the goal at each point are incrementally maintained, providing
instant feedback to user actions, such as completion of a proof, which have an
effect upon distant parts of the proof. Proofs can be edited at any point; users
can return to any stage of a proof and alter the decision made there.

A structured theory database can be built up to provide a library of new axioms
and facts proven from them, and an interactive browser can be used to interrogate
this database.

The IPE combines the use of attribute grammars (as in the Reps-Alpern
work [Reps-Alpern 84]) with lemma-matching techniques inspired by the `B' tool
[Abrial 86b] and concepts from LCF [GMW 79], making consistent use of a "proof-
by-pointing" interface (see §1.5); this results in an easy-to-use proof assistant with
the emphasis upon navigability and ease of alteration of proofs.

The IPE is written as a hierarchy of some 100 modules in a variant of Luca
Cardelli's "ML Under UNIX" [Cardelli 83], which includes low-level user interface
modules written in C. The version of the IPE described here runs on Sun worksta-
tions under UNIXI; earlier versions will also run on VAX/UNIX. The first version
of the IPE appeared in early 1985; the theory database and browsing facilities

1UNIX is a trademark of AT&T Technologies, Inc.

1

Chapter 1. Introduction 2

were added in 1986. In this thesis we concentrate upon "Version 5", which makes

use of the SunView environment for Sun workstations2; however, there is a later

version (which we briefly describe) that utilises the X window system3.

The IPE has been demonstrated widely at exhibitions and to visitors to the Com-

puter Science Department. In September 1987, the Laboratory for Foundations

of Computer Science ran a three-day course on "Interactive Proof Editing" us-

ing the X windows version ofAIPE ([BTJ 87]). The author has made several

presentations on the IPE, including [Ritchie 87].

1.2 Acknowledgements

I am indebted to the following for their help:

Professor Rod Burstall provided able supervision, advice and encouragement.

Tatsuya Hagino developed and maintained a window environment within ML

Under UNIX and handled all the nitty-gritty details of window management

and portability. John Cartmell provided much ground-work code in ML in the

form of a vast library of reusable modules.

Claire Jones deserves mention (as does Tatsuya) for further developments to

the IPE since the author's departure from Edinburgh in July 1986.

Staff and students of the Computer Science Department provided valuable
4e

feedback on the various versions offIPE, as did many who saw or used it during

visits and exhibitions.

I am also indebted to colleagues at the Rutherford Appleton Laboratory and

at the University of Manchester, for giving me the time, patience and encour-

agement to complete this thesis.

2Sun Workstation and SunView are trademarks of Sun Microsystems Inc.

'The X Window System is a trademark of MIT.

Chapter 1. Introduction 3

Numerous friends have been instrumental in keeping me afloat whenever my

spirits were low (and indeed at any other time). Keith Refson has proven partic-

ularly good at ensuring a high content of spirits for many years. Phoebe Kemp

was a tremendous support, and I remain forever in her debt.

The author's work on the IPE was funded by an SERC Award.

1.3 Overview

The remainder of this chapter presents a brief overview of some proof construc-

tion systems, and a "walk-through" demonstration of a simple proof in the IPE.

Chapter 2 describes the underlying logic. Chapter 3 introduces attribute gram-

mars and shows how they can be used in the development of structure editors.

The attribute grammar used in the IPE is also described here. Chapter 4 presents

the layers of interface between the kernel generated from the attribute grammar

and the user. In Chapter 5, we extend the description of the IPE to include mul-

tiple buffers, built-in tactics and the storage and printing of proofs. Chapter 6

concerns the design of a database of simple, structured "theory units", and tools

for its use in IPE proofs. Chapter 7 describes later extensions to the IPE, and

some suggestions for future work.

1.4 Machine-Assisted Proof Systems

In order to convince commercial and industrial software developers that the

use of formal methods forms a sound, effective and practical framework upon

which to base software engineering, it is important to develop tools which are

at once easy to use and also powerful enough to be of practical help. The IPE

has concentrated upon demonstrating that it is possible to develop good user

interfaces to theorem provers; the initial aim was to develop a system which had

a sufficiently low learning threshold to be used to teach the principles of formal

proof to people who have little or no experience in the area.

Chapter 1. Introduction 4

Fully-automatic theorem provers (the most celebrated being the Boyer-Moore

theorem prover [Boyer-Moore 79]) rely upon an optimism that their built-in

strategies will work first time. The creative and intuitive abilities of the user

are then relegated to determining how to recover when a proof attempt fails (or

worse, to detecting that the attempt is non-terminating). In the Boyer-Moore

system, this may involve determining why the prover reached such a state, i.e ,

1"e sunning the prover's actions by hand. If the user still believes that the original

conjecture should be true, the next step is to build and prove a lemma which

the user imagines will be useful in the original proof attempt. Having done this,

it is now necessary to re-run the first attempt in its entirety. Nonetheless, the

heuristics employed in Boyer-Moore are powerful, and the prover prints out a

wordy description of its strategy when tackling a particular problem.

From its initial version at Stanford in the early seventies, LCF (from

"Logic for Computable Functions") has become the name for a family of sys-

tems for "goal-directed validated proof". Instances of LCF are described in

[GMW 7,[Paulson 85b],[Petersson 82] and [Gordon 85]. The notion of tactics

has been widely used(including in the IPE, though here they are hidden from

view.) In LCF-style systems, user-constructed tactics and tacticals are the main

proving tools; thus the user has greater control over the direction of a proof than

in a fully-automated prover. Furthermore, even if a tactic does not completely

reduce a goal (to an empty set of subgoals), it will still return a validation func-

tion, which acts as a partial proof of the goal. If the subgoals are later proven,

then the validation function can be applied to the resultant theorems, to yield

a statement of the original goal as a theorem. This assumes that the tactics

generate the correct validation functions; a common remark about LCF is that

a tactic will always prove something - but it might not be what was intended.

The interface to LCF is simply that of an interactive ML session, i.e. a "glass

teletype" interface. Proofs (and the details of their construction) are not visible

to the user.

In Larry Paulson's Isabelle [Paulson 85a], the user derives new inference rules

by "composing" inference rules (matching a hypothesis of one rule against the

Chapter I. Introduction 5

conclusion of another). Thus to prove a goal G, one first constructs the rule

G
G

, then applies matching inference rules to the hypothesis or conclusion, until

a rule of the form c is constructed. (In fact, since the result at each point is

a valid inference rule, we can stop whenever we consider the rule to be useful).

Higher-order matching is used; this enables the construction and use of powerful

and general inference rules.

As yet, the interface to Isabelle is of the same "ML interface" level as LCF;

however, at the time of writing, Paulson is working with Brian Monahan on the

design of a better user interface.

The PRL system [Bates-Constable 83] appears to be the earliest example of

a theorem- proving tool which uses structure editor techniques to maintain and

display a proof-in-progress. The use of a constructive logic makes it possible

to "extract" functions from proofs. The system presents several windows to

the user: a proof window, a library window, and a command window. The

library window contains a list of defined objects (functions, definitions, theorems

and functions extracted from theorems). The definitions mechanism allows the

construction of parameterised templates with the same freedom of expression as

available in C macros - there is no insistence that a definition should expand to

a syntactic unit. Thus the visual syntax of formulae is completely controllable;

the price paid is that PRL must expand the definition in order to manipulate

it, and must also determine whether the application of a rule to the formula

destroys the internal shape of the definition.

Each step of a proof consists of the reduction of a goal formula (under a set

of hypotheses) to a list of subgoals (each with possible extra hypotheses). Such

a step can be performed either by use of a refinement rule or a refinement tactic;

the latter can be constructed by the user, in an LCF-like fashion.

Unfortunately, the interface to the structure editor (which controls both the

proof and library windows) is awkward and ungainly. There is no mapping from

points on the screen to points in the proof or library structures, and all movement

commands are in terms of the internal structures.

Chapter 1. Introduction 6

Work on PRL continues in the NuPRL system [PRL 86], in which the library

of tactics has been greatly extended. NuPRL also provides "transformation

tactics" which have access not only to goals but also entire proof trees, for

example allowing "proofs by analogy".

The initial inspiration for the IPE came from a simple proof editor for propo-

sitional calculus [Reps-Alpern 84], which was produced using the Cornell Syn-

thesizer Generator [Reps-Teitelbaum 85]. The interface inherited from the CSG

is very much that of a syntax-directed structure editor for programs: positioned

at a Proof "placeholder", the user is presented with a list of all of the production

rules for the "symbol" Proof. When a production rule is applied to a Proof, the

original production is replaced by the new one, and if the rule is applicable to

the goal, the goals of the subproofs are determined. As in PRL, movement was

made through the shape of the syntax tree rather than the display form.

After [Reps-Alpern 84], Tim Griffin has been using the CSG to implement

several prototype proof editors along the lines of NuPRL. The author was un-

aware of this work until Griffin visited Edinburgh in late 1986 to implement

an editor for the Edinburgh Logical Framework [HHP 87]. In [Griffin 87], Tim

Griffin describes an "Environment for Formal Systems" (EFS). In EFS, one can

define the syntax and "refinement rules" for a wide variety of logics, building on

top of either the Edinburgh Logical Framework or the Calculus of Constructions

[Coquand-Huet 85]. New logical connectives and inference rules are defined as

constants; definitions akin to those of PRL can be used to hide their internal

representation. Refinement rules can then be defined which justify themselves

in terms of the inference rules; these refinement rules can then be used as steps

in larger refinements (proofs). Constants, refinement rules and refinements are

all stored in chapters. A chapter can import the contents of other chapters,

providing a simple means of structuring information.

It would appear that of all currently available proof construction tools, the

EFS provides the best blend of descriptive power and usability. However, EFS

lacks user-programmable tactics (other than user-defined refinement rules), and

Chapter 1. Introduction 7

Griffin is uncertain that EFS would be capable of supporting the scale of infor-

mation that NuPRL has handled. (These cnflc'c is Gl0 app(J 7b -tie IPE)

The "B" proof editor ([Abrial 86a], [Abrial 86b]) is interesting in that whilst

being essentially interactive in nature, it searches through a database of rules

to find those rules which can apply to the current goal, and presents these in

turn to the user for selection. (It can also proceed by itself). A simple tactics-

like language allows the user to determine the order in which B's "theories" are

searched, including repetitive searching.

(The author was informed of this feature of B in 1986; this led directly to the

development of the theory database of the IPE. However, upon finally seeing B

in 1987, it transpired that the manner in which searching is used in B is very

different from that used in the IPE. A theory in B is simply a collection of axioms

and results, searched in a "last in-first out" basis; B's theories do not refer to

other theories, so that the only theory structuring is that provided by the tactics

defined by the user)

B's major drawback is its primitive user interface (commands are chosen

by number from a menu which only appears when help is requested; the menu

then replaces any other information on the screen). It is difficult to navigate

through a proof, other than by undoing steps. Defining tactics in B appears to be

something of a black art; however, an expert can use B impressively. The author

witnessed Jean-Raymond Abrial use B to perform program transformation and

"compilation" upon small programs.

Another recent development is the Muffin proof editor, built at Manchester

University ([Moore 86b]). Initially specified in VDi`I by Richard Moore and Cliff

Jones ([Moore 86a]), the editor was built over the course of a few months in early

1987 using the Smalltalk object-oriented environment ([Goldberg-Robson 83],

[Goldberg 84]). Muffin serves to show that Smalltalk-80 can be used for the

rapid construction of formal reasoning tools with state-of-the-art user interfaces

([Jones,K 87]). Each stage of a Muffin proof is presented as a list of knowns

and a list of goals. Proof proceeds by the user selecting a known or goal and

asking Muffin to list all rules which "match" the selected formula. This causes an

Chapter 1. Introduction 8

exhaustive search of the database; similarly to B, there is no distinction between

built-in rules and user-constructed rules (which are generated from completed

Muffin proofs). As in B, proof navigation is difficult; however, the presentation

of each stage of a proof is pleasant - for example, it is easy to hide unwanted

knowns. Muffin is restricted to propositional logic, but the developers feel that

the extension to predicate logic would not present significant problems. Work on

Muffin was carried out as an experiment in user interface design for the Alvey

IPSE 2.5 project [Atvey 8 Slmpsovt 87].

1.5 A Demonstration

In this section we shall run through a demonstration of the IPE. This demonstra-

tion aims to show the basic features of IPE, in particular the "proof by pointing"

interface style. (Descriptions of the use of automatic proof construction, multi-

ple buffers and retrieval of information from the theory database will be deferred

until later chapters).

Once the title screen is dispensed with, we are presented with a "blank proof"

(Figure 1-1). This shows the shape of our proof (trivial at the moment). The
SU/W title line at the bottom of thegives some information that need not concern us

at the moment. The "empty" box on the bottom right is an indicator window:

when the IPE is busy, or when some "subtool" such as the text editor is being

used, a message will appear in here.

The statement of the initial conjecture appears within angled brackets. This

indicates that it is a text-edit point which the user may change as desired. To

do this, we point the mouse anywhere between the brackets and click the middle

mouse button. This invokes the text-editor upon the current statement of the

formula (Figure 1-2). The new window is labelled "Formula" as an indication of

the kind of object we should supply. We can type ordinary text here (and use a

few simple editing commands), but when we tell the IPE to accept what we have

typed, it will be parsed as a formula. If it does not parse correctly, then the IPE

Chapter 1. Introduction

cm j ec t U r

.
Attempted Proof

IKIT1'iI * 7,II L

jBuffer: Main Root: I ieorem

9

Figure 1-1: A blank proof

Chapter 1. Introduction

Conjecture

At

sh

of 1 er: M1aiin Rug, l: Theorem

10

Figure 1-2: Editing the initial conjecture

Chapter 1. Introduction 11

will leave the cursor on the line below the text at the point where parsing failed.

We must either re-edit until we have a parsable formula, or abort the edit.

Suppose that we intend to prove that existential quantification distributes

over disjunction. In the IPE's notation, one statement of this result is shown

in Figure 1-3 (Here, "?" represents the quantifier "a", "1" represents "or" and
InLoracLivo Proof Editor

Conjecture

At

sh

.x P X IQ(x)) -> ('xP(x) I ?xQ(x))_

uffer: Slain Runt: Theorem

Figure 1-3: Distribution of existential quantification over disjunction

"-" represents "implies").

Satisfied that this is the formula we want, we select the "exit" option from

the right-button menu. IPE has no complaints about the syntax of the formula,

and so the "formula slot" is updated. This information feeds through to the

proof, giving Figure 1-4

Now we can begin the proof. As many steps of a proof as possible will be

displayed on the screen, each step appearing as a rule name, a list of premises

(possibly empty, as above) and a conclusion. "use rule-name,,show..." indicates

that the subproof of this step has not been completed yet. To alter any step in

Chapter 1. Introduction

Interactive Proof Editor

Conjecture

Attempted Proof

show ?x(P(x)IQ(x))->(?xP(x)l?xQ(x))

uf(er: Main hoot: Theorem

12

1

Figure 1-4: The new problem

Chapter 1 Introduction 13

the proof, we select one of its premises or the conclusion and click the middle

mouse button over it The IPE will choose the proof rule appropriate to that

premise or conclusion, and "expand" the proof at that point accordingly. (74/S

is w4at we weak by '' pnxiF 6y-prnntrhg '')
Here there is only one formula - the conclusion - so to proceed we click on

it4. Figure 1-5 shows the result. In the new subproof we have assumed the left-

Intcractirc Proof Editor

Conjecture

<'x(P(x)IQ(x))->(?xP(x))?xQ(x))>
Attempted Proof

snge
use Imp ies Introduction
and

I Root: Theorem

Figure 1-5: The first step of the proof

hand side of the implication, and it now remains to show that the right-hand

subformula can be derived from this.

Now we have to choose which formula to attempt to simplify first. It is

not too important which formula we choose, because even if the choice turns

out to be incorrect, the IPE will allow us to return to the same point in the

2x(P(x) Q(x))->('xP(x)I')xQ(x))

'It is possible to make IPE perform such really trivial steps on its own, as we shall

see in §5.2.

Chapter 1. Introduction 14

proof and change our minds. In this case, suppose that we choose to simplify

the conclusion. Selecting it in the same manner as above leads to Figure 1-6.

The resulting Or Introduction rule now presents us with two subproofs. Each

Conjecture

----- <?x(P(x)IQ(x))->(?xP(x)I'XQ(x))>
Attempted Proof

show ?x(P(x)IQ(x))->('xP(x)I'xQ(x))
use Im lies Introduction
and 'x(P(x) Q(x)) entails ?xP(x)I?xQ(x)

ufferMin Rootr Theorem

Figure 1-6: Deciding to perform Or Introduction

subproof has the same premise, but their conclusions are drawn from the left-

and right-hand parts of the original conclusion. Note that the initial goal of the

proof step will be considered proven whenever we complete the proof of either

subgoal.

For our next step, we choose to simplify the premise of the first new subgoal,

giving Figure 1-7. The existential quantifier has been "stripped off" in the

premise of the subgoal. We know that "P(x)" holds for some "x", and all that

has happened here is that we have said, "Let "x" be such that "P(x)" holds."

Notice that there is an "x" on the rule-name line which is enclosed in angle

brackets. This indicates that we are permitted to edit it, in the same manner as

for the initial formula. In this case, the "x" is an identifier, with the important

Chapter 1. Introduction

lntaractive Proof Editor

Conjecture

-----<'x(P(x)IQ(x))->('xP(x)I'xQ(x))>
Attempted Proof

show 'x(P(x)Q(x))->('xP(x)J'xQ(x))
use Implies Introduction
and show 'x(P(x)IQ(x)) entails 'xP(x)I?xQ(x)

use Or Introduction
and 'x(P(x)IQ(x)) entails ?xP(x)

> on p
s low tx)

or show 'x(P(x)I Q
Q(x) entails 7xP(z)
x)) entails 'xQ(x)

,luffer: Main Root: 1heoren

remise 1

15

Figure 1-7: After Exists Elimination upon the premise

Chapter 1. Introduction 16

restriction that it should not occur freely in any other formula in the goal. We

may change its name, but the new name should also satisfy the restriction. Here,

although the conclusion also mentions "x", it is bound by a quantifier, so that

the IPE is happy to use "x" as the name of the "witness".

Now if we simplify the conclusion in this new goal, we get Figure 1-8. Again,

Interactive Proof Editor

Conjecture

-----<?x(P(x)IQ(x))->('xP(x)]?xQ(x))>
Attempted Proof ---------------
show 7x(P(x)IQ(x))->(?xP(x)I?xQ(x))
use Implies Introduction
and show 'x(P(x)IQ(x)) entails ?xP(x)l?xQ(x)

use Or Introduction
and show ?x(P(x)IQ(x)) entails ?xP(x)

use Exists Elimination with <x> on premise 1

and UMP(x)IQ(x) entails ?.\P(x) fixii',TTti .T RCfCrS7TEFM 1
show P(x)1Q(x) entails P(1E1L1)

or show (x)IQ(x)) entails 'xQ(x)

Figure 1-8: Exists Introduction

the quantifier has been stripped off in the subgoal. This time however the variable

has been replaced by the name "TERM-1". This indicates that we can replace

occurrences of the bound variable with some term. Intuitively, we are trying to

show that "P(x)" holds for some "x", and we proceed by choosing some "value"

for "x" for which we believe we can show that "P(x)" is true. We have to supply

this value by hand; IPE will not attempt to do this for us. However, the IPE

does not force us to decide "once and for all" what this value should be before we

look further into the proof. Thus, even if we make a stupid choice initially, when

Chapter 1. Introduction 17

this becomes obvious later in the proof, we can return to this point and supply

a different value, without losing the work we have performed in the meantime.

In this case, the "new" value that we want for "x" is simply "x" itself.

(Though the names are the same, what we are doing is forcing the identifi-

cation of two distinct variables which were bound in different ways). Therefore

we want to "undo" the IPE's choice of value. Clicking the middle button over

the "TERM-1" in angled brackets cats up a text-edit window (entitled "Term"

to show us that the result will be parsed as a term) with "TERM-1" in it.

Suppose that we have changed "TERM-1" to "x". Then the only action that

remains in this branch of the proof is to simplify the premise (Figure 1-9). We

Int.ractir. Proof Editor

Conjecture

-----<')x(P(x)IQ(x))->(?xP(x)I?xQ(x))>
Attempted Proof

show ?x(P(x)IQ(x))->(?xP(x)J?xQ(x))
use Implies Introduction
and show ?x(P(x)IQ(x)) entails 7xP(x)17xQ(x)

use Or Introduction
and show ?x(P(x)JQ(x)) entails ?xP(x)

use Exists Elimination with <x> on premise 1.

and show P(x)IQ(x) entails ?xP(x)
use Exists Introduction with <-x>
and P(x)IQ(x) entails P(x)

se-Or Elimination on premise
and

is immediate
x) entails P(x)

. show Q(x) entails P(x)
or show ?x(P x Q(x)) entails ?xQ(x)

offer: Main Root: Theorem

Figure 1-9: After Or Elimination

l

know that one of "P(x)" and "Q(x)" holds, but don't know which. However, if
we can prove our conclusion by assuming "P(x)" alone and also assuming "Q(x)"

alone, then the conclusion must follow from their disjunction.

Chapter 1. Introduction 18

Now, one of our subgoals is trivially true: "P(x)" occurs on both sides. (No-

tice how there is no "show" prefacing the goal). Unfortunately, Or Elimination

requires that both subgoals be completed, and that is not the case here. More-

over, the second subgoal obviously cannot be completed. There is no relationship

between "P(x)" and "Q(x)" that we can uses. We have to conclude that we went

wrong somewhere. Either our problem is unsolvable in intuitionistic logic, or we

took a wrong turning in our proof.

In this case, it is not too hard to see that we used the Or Introduction rule

too soon. What we must do now is change the decision made at that point. All

we have to do is click the middle button over the premise of the goal of that rule

(Figure 1-10) The original proof has disappeared. In this case, there is little

use that we could have made of it, but there are cases where it would be useful

to be able to re-use it. (This is indeed possible, as we shall see in §5.1).

Now we select the premise, to perform Or Elimination, which gives us two

subproofs, each with the same conclusion as before. In the first subproof we select

this conclusion, performing Or Introduction. Performing Exists Introduction on

the result gives us Figure 1-11. We now text-edit on "TERM-2", replacing it

with "x". The resultant subgoal is trivial. Furthermore, we have now completed

the first subproof of the Or Elimination step, and the display alters accordingly

(Figure 1-12).

Now we might notice that the same sequence of steps will also prove the

second subgoal. As we shall see in §5.1, we could "squirrel away" a copy of the

first subproof and then re-apply it to the second, in preference to repeating the

steps by hand. Whichever way we proceed, the completed proof is shown in

Figure 1-13.

5In §6 we shall see how we can build up libraries of information (as axioms and

derived results) that can be brought into proofs when needed.

Chapter 1. Introduction

Intsractive Proof Editor

Conjecture

-°---<''x(P(x)IQ(x))->(7xP(x)I'xQ(x))>
Attempted Proof

show ''x(P(x)IQ(x))->(7xP(x)I'xQ(x))
use Implies Introduction
and .. 7x(P(x)IQ(x)) entails 7xP(x)

and

uffer: Main Root: Theorem

'xQ(x)
on premise 1

xQ (x

19

Figure 1-10: Changing direction at the second step

Chapter 1. Introduction

Interactive Proof Editor

Conjecture

<7x(P(x)IQ(x))->(?xP(x)17xQ(x))>
Attempted Proof

show 7x(P(x)IQ(x))->(7xP(x)17xQ(x))
use Implies Introduction
and show 7x(P(x)IQ(x)) entails 7xP(x)17xQ(x)

use Exists Elimination with <x> on premise 1
and show P(x)IQ(x) entails 7xP(x)I'xQ(x)

use Or Elimination on premise 1
and show P(x) entails xP(x)17xQ(x)

use Or Introduction
and gijP(x) entails 7xP(x)

show P(x) entails
or slow P(x) entails 7xQ(x)

and show Q(x) entails 7xP(x)17xQ(x)

uifer: Main Root:

ERNL21

Figure 1-11: After several proof steps

7

20

a

Chapter 1. Introduction

"Intaractiv. Proof Editor

Conjecture
-----<1%(P(x)IQ(x))->('2xP(x)l?xQ(x))>
Attempted Proof ---------------
show '2x(P(x)IQ(x))->('xP(x)l?xQ(x))
use Implies Introduction
and show ?x(P(x)IQ(x)) entails 'xP(x)[2xQ(x)

use Exists Elimination with <x> on premise 1
and show P(x)IQ(x) entails 'xP(x)I'xQ(x)

use Or Elimination on premise 1
and P(x) entails 'xP(x)I'xQ(x)

by Or Introduction
and P(x) entails '?xP(x)

by Exists Introduction with <113>

and P(x) entails P(x)
is immediate

and show Q(x) entails 7xP(x)I?xQ(x)

utter: Main Koot:.iheorem

21

Figure 1-12: Upon completion of one subproof

Chapter 1. Introduction

Interactive Proof Editor

x(P(x)IQ(x))->('xP(x)I 'xQ(x))C

.x PCx)IQ(x))->('xP(x)I?xQ(x))
by Implies Introduction
and ?x(P(x)IQ(x)) entails 7xP(x)I'xQ(x)

by Exists Elimination with as on premise 1
and P(x)IQ(x) entails 'xP(x)I'xQ(x)

by Or Elimination on premise 1
and P(x) entails 2xP(x)17xQ(x)

by Or Introduction
and P(x) entails 'xP(x)

by Exists Introduction with <x>
and P(x) entails P(x)

is immediate
and Q(x) entails ?xP(x)l?xQ(x)

by Or Introduction
and Q(x) entails 7xQ(x)

by Exists Introduction with a>
and Q(x) entails Q(x)

is immediate
QED

uffer: Main Root: Theorem

22

Figure 1-13: The completed proof

Chapter 1. Introduction 23

The IPE intentionally represents the "opposite extreme" from fully-

automated provers of the Boyer-Moore category. The user has full control over

the construction of the proof, changing an earlier step in the proof is almost as

easy as making the next step, and changes made to earlier stages of a proof filter

through the rest of the proof.

The cost of this concentration of effort upon the user interface is in proving

power. As we shall see in §5.2, IPE has only a rudimentary means of automated

proof construction. Furthermore, the IPE works best upon small proofs, though

in §6 we describe a means of making and storing lemmas used in the construction

of "larger" results. To the best of the author's knowledge, the largest problems

tackled (and completed) using the IPE were the proof of a small parser (a prob-

lem described in [Cohn-Milner 82]) and the proof of termination of a program

in a simple language. Both of these proofs were performed by Claire Jones.

Indeed the parser proof was Claire's first attempt at using the IPE, and took

about a week to construct. Much of this time involved setting up the relevant

descriptions in the IPE's theory database, rather than constructing the proof

itself.

Chapter 2

The Generation of Basic Tactics for

Interactive Proof

2.1 Introduction

The logical framework within which the Interactive Proof Editor operates is that

of untyped intuitionistic first-order predicate calculus, excluding equivalence of

predicates (which can be modelled as (A-+B) & (B-*A)). The basic proof steps

of the IPE take the form of tactics (akin to those in the LCF system) which

are used to construct proofs in a top-down fashion, by reducing an initial goal

to a set of subgoals, where each subgoal is hopefully simpler to solve. The

goals are represented as sequents ({tvci Gentzen, as in [Kleene 64]), where a

sequent consists of a list of antecedent formulae (premises) paired with a succedent

formula (conclusion). By ensuring the validity of the proof steps with respect to

the original inference rules of the logic, we can ensure that valid proofs of the

subgoals, or of a subset of the subgoals, produced by a proof step can be used

to construct a valid proof of the original goal.

The presentation in this chapter was strongly influenced by Schmidt's ap-

proach in [Schmidt 83]. We derive the IPE's basic tactics from a set of natural

deduction inference rules. Such a presentation was chosen to suggest means by

which we could construct a general method of deriving the basic tactics for a

proof editor starting from natural deduction inference rules. In fact, the IPE's

basic tactics can be drawn more directly from Gentzen's intuitionistic formal

system G3a as presented on page 481 of [Kleene 64].

24

Chapter 2. The Generation of Basic Tactics for Interactive Proof 25

The logical connectives used in the IPE, and their intuitive meanings are as

follows: (where P,Q and R denote arbitrary formulae, and where P(x) denotes a

formula P possibly containing a free variable x)

P&Q - P and Q

PIQ -PorQ
P--+Q - P implies Q

"P -not P

VxP(x) - for all x, P(x)

3xP(x) - there exists x such that P(x)

IPE Version 5 is restricted to the ASCII character set; therefore the characters

V and 3 are not available'. Thus in the screen display of formulae, IPE version 5

uses "!xP(x)" for "VxP(x)", and "?xP(x)" for "3xP(x)". This representation

is also used in this thesis.

The syntax for predicate calculus formulae in IPE is given by the follow-

ing:

<formula> ::= <formula> & <formula> I <formula>
I
<formula>

<formula> --+ <formula> I "<formula>

V<var><formula> I 3<var><formula>

<predicate> I N rwgla>)

<predicate> <ident>

<term> <ident>

<ident>(<termlist>)

<var> I <ident>(<termlist>)

An <ident> is any sequence of upper- or lower-case letters and numerals beginning

with a letter, and possibly ending with one or more primes ('). A <var> is similar

but excluding a change from lower to upper case in the sequence (this allows us

'However, V and 3 are used in the display of formulae in the X windows IPE.

Chapter 2. The Generation of Basic Tactics for Interactive Proof 26

to juxtapose variables and identifiers, as in !xP(x)). A <termlist> consists of one

or more <term>s separated by commas.

In the formula parser of IPE Version 5, there is no precedence between

the binary connectives, and formula expressions are left-associative. This is

sometimes counter-intuitive; for example, "A-*B&C" is "(A-*B)&C" and not

"A-->(B&C)".

2.2 Inference Rules of the IPE

A semantics for describing the construction of valid formulae using the above

logical connectives is given by a set of natural deduction inference rules in the

style of [Prawitz 65], where each is of the form

<premise> ... <premise>

<formula>

where <premise> is <formula> or
[<formula>]

. For example,
<formula>

[Q]
P

Q,

R

means "given P, and that we can infer Q' from Q, then we can infer R".

In this characterisation of intuitionistic 1st-order predicate calculus there are
of

two kinds,,inference rules for each connective. The first antroduces the connec-

tive, by defining the conditions under which a formula can be derived with that

connective as its major connective; these are called introduction rules and are

denoted by "connectivel" (e.g. "&I"). The second kind defines the conditions for

eliminating the connective from a formula and exposing some of the substructure

Chapter 2. The Generation of Basic Tactics for Interactive Proof 27

of the formula; these are known as elzmznatzon rules, denoted by "connectiveE"

(e.g., "bE"). Where there is more than one introduction or elimination rule for a

connective (as is the case for elimination of &), the individual rules are identified

by appending "r" or "1" to the rule name, as in "&Er".

The inference rules from which we shall derive the IPE's basic tactics are

given below:

A B A&B A&B
&I &Er &E1

A&B A B

[A] [B]

Ir A III B IE AFB C C

AFB AFB C

-+E
A A-+B

A-+B B

We introduce a special predicate false, and the rule

false

A

(i.e. everything can be derived from false) and define A as A-false.

VI
P(x)

VE
VxP(x)

`dxP(x) P(t)

The VI rule has a side-condition: it can only be used when x does not occur free

in any assumptions upon which P(x) depends (where x occurs free in a formula

P if there is an occurrence of x which does not lie within the scope of a Vx or

3x).

[P(x)]

P(t) 3xP(x) Q 3I 3E
3xP(x) Q

Chapter 2. The Generation of Basic Tactics for Interactive Proof 28

As with VI, 2E has the side condition that x should not occur free in Q, or in

any assumptions upon which Q depends (other than P(x)).

These rules can be used to construct proofs directly: starting from a set of

assumptions A1,. .. , A,, as our initial premises, we can apply both introduction

and elimination rules (when their preconditions are satisfied) to examine cur-

rent premises or construct new ones. For example, the following is a proof of

A&B&C -> (A&C):

&Er
[A&B&C]

&Er
A&B

8El
[A&B&C]

A C
&I

A&C
->I

A&B&C-> (A&C)

However, such bottom-up methods of proof construction do not yield good

mechanisms for interactive proof construction. A method such as this requires

that we constantly look ahead; we need to know the overall shape and direction

of the proof before we begin its construction. A better paradigm for interactive

proof is that of top-down or goal-dzrected proof, where we commence by stating

our final aim (or goal) and attempt to reduce it to smaller, more manageable

subproblems (or subgoals), and analyse these similarly until either the subgoals

become trivial or obviously unprovable. If we choose our tools for goal reduction

with care, then we should be able to construct a formal proof (as in the previous

section) of the initial goal by performing some composition operation upon the

proofs of the subgoals. In goal-directed proof construction, we begin with a goal

of the form show P1,. .. , P, entails Q and apply information derived from the

inference rules to some of P, , Q to produce a set of hopefully simpler goals, to

which the process can be repeated until either trivial goals (i.e. goals of the form

show P,... entails P) or obviously unprovable goals are arrived at.

As an example of information derived from an inference rule to yield a goal-

directed rule, consider the &I rule. In its constructive use this says that if we

already have both P and Q, then we can construct P&Q. In a goal-directed proof,

Chapter 2. The Generation of Basic Tactics for Interactive Proof 29

we want to turn this around so that it says that to show P&Q we must show

both P and Q separately. This can then be used to reduce a goal of the form

show R1,. .. , R,, entails P&Q to the two subgoals show R1,.. . , R" entails P

and show R1, . . . , R.,, entails Q. These subgoals are simpler, in the sense that

at least one formula in each contains less structure than in the original goal (and

no formula has become more complex).

The &E rules on the other hand can be used more or less directly. If we

combine them, they say that from P&Q we can infer both P and Q; this rule

can then be used in a top-down system to simplify premises, taking goals of the

form show P&Q,... entails R to show P,Q,... entails R.

2.3 Derivation of Basic Tactics

We require a formal framework for re-phrasing the inference rules in forms more

suitable for goal-directed proof. To do this, we look at David Schmidt's work on

deriving tactics from inference rules ([Schmidt 83]).

2.3.1 Tactic Schemata

In the following, we use the notation if F C to represent a goal with premises if

and conclusion C. I- is used to show that we have not yet shown that C can be

derived from A. In the application of tactics to goals, we will allow permutation

of the premises. We will also allow multiple instances of a premise. Thus the

premises should be thought of as a bag of formulae rather than as a set or a

list. This corresponds to Kleene's definition that two sequents are cognate when

their premise "bags" contain the same formulae and their conclusions are also

the same. The difference between Gentzen's sequents and our goals are that

sequents may contain a list of conclusions; however, in the intuitionistic GSa,

for all derivable sequents the list of conclusions consists of at most one formula.

Here we have used false in place of an empty conclusion. We will use A - C (and

Chapter 2. The Generation of Basic Tactics for Interactive Proof 30

equivalently, A entails C) to represent a proven goal. A goal 0 F C is considered

zmmedzate or immediately proven if C occurs in A; thus we are adopting G9a's

axiom schema. This is encoded in the IPE's "Immediate" tactic, which succeeds

if its goal is immediate and fails otherwise.

The action of a tactic upon a goal will be described in general as:

A,FC --> (A') F- C'; ...

where A, A', C and C' are formulae, and A and A' are (possibly empty) bags

of formulae, and that A, A is a bag containing at least one instance of A. This

states that the tactic acts on a goal of the form A, 0 F C and produces the

subgoals contained in (...). The tactic will fail if applied to a goal that does not

correspond to the given form.

We shall distinguish between the introduction and elimination rules of infer-

ence and the Introduction and Elimination rules we are deriving for the IPE by

capitalising the latter. The inference rules of G3a will be referred to as premise

and conclusion rules (e.g. implies-conclusion) according to whether the associ-

ated connective is introduced in the premises or in the conclusion as a result of

applying the inference rule.

In [Schmidt 83], David Schmidt reasons that schemes for deriving tactics

from inference rules could be used to develop a set of tactics which adhere to the

logic. He describes two tactic schemes for deriving tactics from inference rules.

Given a rule

[Al] ... [Ak]

Bl ... Bk Bk+l ... Bm
r

C

(meaning, "if we can derive Bl,... , Bk from A1,.. . , Ak, and if we have

Bk.l, ... , Bm, then we can infer C"), the tactic schemes are

(F r): when applied to a goal of the form A f C, this applies the rule

r "backwards" to C, producing the subgoal list

(A, Al I- B1 ; ... ; A, Ak I- Bk; 0 I- Bk+1 ; ... ; 0 B.)

Chapter 2. The Generation of Basic Tactics for Interactive Proof 31

(r F-): when applied to a goal of the form B1, ... , B,,,, 0 F- D, this ap-

plies the rule r "forwards" to B1, ... , B,,,, producing the subgoal

list

(B1,...,Bm,C,AF-D)

There is also a validation function associated with each tactic which, given

a validation of each of the subgoals constr//uctsa validation of the original goal,

using the original inference rule. (These dkiemj,Gfwf10l2ca ' tot asen' ui 12

Schmidt proceeds to suggest ways in which these derived tactics could be

used to write general "try-everything" tactics for goal-directed proof in the logic

defined by a set of inference rules. However, the same schemes can be used as a

first step in deriving the basic tactics used in the IPE.

2.3.2 Basic Tactics for the IPE

Schmidt's tactic schemes give two tactics per inference rule. As we shall see, not

all of the tactics generated from the inference rules for a connective are useful in

goal-directed proof strategy, and some require further modification (for example

to take account of their applicability to certain situations).

We consider the tactics generated by Schmidt's method for each connective

in turn.

For &, we obtain the tactics

(F-&I): O F P&Q H (O F
P;A

H Q)

9 Tj Q,
(&IF): P,Q,0F=R H (P&Q,, FR)

(F-&Er): 0 I P 4 (0 F P&Q)
9 7

(&Er P&Q, O F R H (P, P&Q, 0 I R)

F- Q (0 F P&Q)

(&El F): P&Q, 0 F R (Q, P&Q, O F R)

Chapter 2. The Generation of Basic Tactics for Interactive Proof 32

Of the above, only F-&I, &Er F- and &El F- perform "goal refinement" in the sense

of simplifying at least one formula in the goal without introducing other connec-

tives. &I I-, F- &Er and F- &E! make the goal more complicated. Furthermore,

to perform I- &Er interactively, the user would have to supply a new formula

Q (and then demonstrate it); to perform &I H, the user would have to select

the two premises to be &-ed. Apart from the increased effort imposed upon the

user, by increasing the complexity of the goal there is the risk of infinite chains of

tactic applications (allowing the user to become stuck in a "problem loop"). The

omission of the other tactics does not change the set of conjectures which

can be proven.

Thus, we may adopt F- &I as the IPE rule And-Introduction. In order to

present a single elimination rule for &, we combine &Er F- and &El I-, producing

a tactic which places both P and Q in the subgoal. The new tactic can be

thought of as application of M1- to the same premise in either order.

Uses of F-&I can be justified by the and-conclusion of G3a: given justifications

for the goals 0 I- P and 0 I- Q we can infer 0 I- P& Q.

Note that in both &El F- and &Er F-, the original "argument" P&Q is left

in the premises of the subgoal. In practice, this quickly leads to a large and

cumbersome premise-set to be presented to the user at each stage of the proof.

Normally, having "extracted" P and Q from P&Q, the latter premise is no longer

needed, and so we choose to omit it in the subgoal. Thus the operation of the

And Elimination rule is:

P&Q, 0 F R H (P, Q, A F- R)

We extend this behaviour (of omitting the "argument" from the subgoal) to

all of the IPE's Elimination rules. However, we add a Duplication rule which

enables us to add an extra copy of a premise to the premise-list, so that this

removal of a premise can be undone by duplicating it prior to the application of

the appropriate Elimination rule. Similarly, in the remainder of this section we

omit arguments to r F- tactics from their subgoals.

Uses of And-Elimination can be justified by the and-premise rule of GSa.

Chapter 2. The Generation of Basic Tactics for Interactive Proof 33

The tactics for disjunction (A I B) are

(F-III): A AI B H (A B)

(F-11r): A A I B H (A F A)

(IIIF-): Q,AFR H (PIQ,AFR)

(11r F-): P,AF- R H (PIQ,AFR)

(IEF-): PIQ,R,AF-S H (R,AF S)

(F-IE): A C H 1 - 1 C C

Clearly, Fjll and I-JIr are useful. In order to maintain the single-Introduction-

rule-per-connective pragma, we combine these two rules in the IPE, producing a

tactic which generates both subgoals (show A, show B), but which will consider

its goal to be proven when either subgoal is demonstrated. If we can derive either

subgoal, then the or-conclusion rule of G3a will allow us to derive the original

goal.

As with &I F-, IIl F- and IIr F+ are of no real use in the formula-decomposition

proof style.

Deriving Or-Elimination is slightly harder. I E F- in its strictest form will

not suffice, for it does not reveal any more information. Instead consider F-IE.

Applying this to a goal of the form

A,AIBF C

gives the three subgoals

(A,AIB,AFC; A,AIB,BFC; A,AIBFAIB)

The third goal is clearly immediate, and the result is simply a "proof-by-case-

analysis" tactic. If we restrict the applicability of HE to goals of this form, then

we can omit the third subgoal. This is how Or-Elimination is implemented in

the IPE; it is triggered by pointing at a premise which is a disjunction, and will

Chapter 2. The Generation of Basic Tactics for Interactive Proof 34

fail if an attempt is made to apply it to a goal which is not of the above form.

Use of Or_Elimination is justified by G3a's or-premise rule.

The tactics for implication (A--+ B) are

(F-->I): A F A--'B -- (A, A H B)

(->IF): A,BFC --.' (A,A-->BHC)

(F-->E): AFB F-- (OVA-->B; OVA)

E A, A , H C F--.' (A,B C)

The IPE rule Implies Introduction is simply F--> I, whose use is justified by

G3a's implies-conclusion rule. Implies Elimination is almost -> E H, except that

we do not demand that A be a premise in the goal; instead we generate a second

subgoal to show that A can be derived from A:

Implies Elimination: A, A --> B H C i--> (A F A; A, B F C)

Use of this rule is justified by the implies-premise rule of G3a.

In the IPE, `A is treated as A-+ false, so that A H `A is really A F A --> false

and so on. As a result, Not Introduction in the IPE is

0 A (- O F- A -> false) H (A, A F IV),
i.e., we use Implies Introduction. Intuitively, we attempt to prove A by assuming

A and trying to reach a contradiction. For Not Elimination, we have a similar

situation:

A, AHB (- A,A --> fake HB) H (AFA; A, false FB),

using Implies Elimination. In this case, the second subgoal is trivial (since the

assumption of falsity renders everything provable), and can therefore be omitted.

Intuitively: to prove B when we know "A, we attempt to prove A from our other

assumptions, thus achieving a contradiction.

If we consider false to represent an empty conclusion, then these two rules

are justified by the not-conclusion and not-premise inference rules of G3a respec-

tively.

Chapter 2. The Generation of Basic Tactics for Interactive Proof 35

In the inference rules for the quantifiers V and 3, we have extra side-conditions

concerned with the handling of free variables.

VI insists that the variable we bind should not occur free in any assumptions

upon which the inner formula depends. This carries across into the basic tactics:

(E-`dI): 0 F VxP(x) -* (0 }L P(y))

provided that the variable y does not occur free in 0 or P

0,P(y) }Z A i--, (A,VxP(x) [-A)

provided that the variable y does not occur free in 0 or P

(1-VE): 0 }L P(t) - (0 1 VxP(x))

(VE}-): 0, VxP(x) }- A H (0, P(t) F- A)

I- VI leads to the IPE's All Introduction rule; the rule is designed so that when

it is used, the IPE will choose a variable name which does not occur free in the

goal at that point. However, the user has the ability to change the name of the

variable (for example, to a more mnemonic name); the IPE will always check

that the chosen variable is indeed "new". 2

VEI- becomes the IPE's All Elimination rule. Here, since we know that P(x)

holds for all x, we can assume P(t) for any term t 3. In All Elimination, the IPE

allows the user to supply any term to substitute for x in P.

The other tactics are rejected on the grounds that they increase the complex-

ity of the goal, and that their omission does not effect the completeness of the

IPE's rules.

2Another case where the user must change the variable name is when an instance of

the All Introduction rule is passed a new goal in which the chosen variable is no longer

suitable.

'Recall that the IPE's logic is untyped; in a typed logic, we would additionally be

forced to show that the type attached to x is non-empty.

Chapter 2. The Generation of Basic Tactics for Interactive Proof 36

The conditions on the 3E rule also carry across into the tactics:

3I): A F 2xP(x) '--r (AI- P(t))

7 ?

(2I F-): A, P(t) F- A F-+ (A, 3xP(x) F A)

2E): A H Q '--, (A H 2xP(x) ; A, P(y) I` Q)

provided that the variable y does not occur free in A or Q

(2E 1-): A, 3xP(x), Q F R i-+ (A, Q F R)

provided that the variable y does not occur free in A, Q or R

Exists Introduction is simply H 31: to show that P holds for some x, we allow

the user to supply any term t to substitute for x in the subgoal, hoping that this

can be demonstrated later '. In a similar fashion to the choice of I-IE for Or

Elimination, we choose H 3E for Exists Elimination Restricting its applicability

to goals of the form 3xP(x), 0 H Q renders the first subgoal immediate. Just

as Exists Introduction is the counterpart to All Elimination, choosing H 3E for

Exists Elimination makes it the counterpart of All Introduction: the IPE chooses

a "new" variable y to substitute for x in the subgoal; the user is free to change

this so long as the chosen variable does not occur free in the other formulae in

the goal.

As before, if we succeed in deriving the subgoals resulting from the application

of any of the quantifier Introduction and Elimination rules, then the correspond-

ing quantifier-conclusion and -elimination inference rules of Gad can be used to

derive the original goal.

Two further tactics are provided, mainly for pragmatic reasons. The first,

called Remove Antecedent, removes a selected premise from a goal; in practice

4In many proofs, the choice of t will not be obvious until further work has been

performed upon the subgoal; however, as we shall see later, the IPE user is free to

change the choice of t at any stage in proof construction.

Chapter 2. The Generation of Basic Tactics for Interactive Proof 37

this is used to remove premises which are not needed in the subproof (and hence
to reduce visual clutter). This relies upon the monotonicity of intuitionistic logic.
Duplicate Antecedent adds a copy of a selected premise to the subgoal. The reason
this is required is that the implementations of the Elimination tactics all remove
the premise they acted upon, to avoid clutter in the subproofs. Unfortunately,
some proofs require two rule-applications to the same premise, so Duplicate An-
tecedent is supplied as a means of "doubling up" such a premise prior to its
removal. (It should be noted that the use of Duplicate Antecedent could allow
"problem loops" of the form discussed previously; thus it is important that this
rule be used judiciously in practice).

Table 2-1 summarises the basic tactics of the IPE.

The IPE's Introduction and Elimination tactics are goal-directed implemen-
tations of the corresponding rules of the intuitionistic G3a. The goal of a C-
Introduction tactic for any connective C in the IPE can be constructed by an
application to the subgoals of the rule in G3a which introduces the connective C
into the succedent. The case is similar for a C-Elimination tactic and the G3a rule
which introduces C into the antecedent, except that in the IPE the relevant an-
tecedent is removed from the subgoals; this latter effect can be undone by a prior
use of Duplicate-Antecedent. Thus the rules of G3a act as (implicit) validation
functions (in the LCF sense) for the IPE's basic tactics. All of the rules of G3a are
relied upon, and completeness of the IPE's tactics follows from the completeness
of G3a.

2.4 General Principles

The IPE is built upon a fixed set of basic tactics derived "by hand" from a
set of rules for first-order intuitionistic predicate calculus, using Schmidt's tac-
tic schemas. Not all of the possible tactic schemas have been used; some have
been discarded on the grounds that they increase the complexity of formulae in
the goal, which competes with the overall aims of proof by decomposition.

Though this process of basic tactics generation has been performed on paper
rather than by mechanical means, it is worthwhile to consider whether or not it
could be generalised and mechanised for any logic expressed via inference rules.

It seems clear that we can generate a set of basic tactics from any set of in-
ference rules using Schmidt's scheme. The problem lies in "thinning out" this set
by removing "superfluous" tactics: how can we decide which tactics are super-
fluous? The essence of the problem is to obtain a set of tactics which preserve
completeness and consistency with respect to the original inference rules (the set
of statements provable by compositions of the basic tactics should be identical
to that set provable from the original inference rules), whilst additionally en-

Chapter 2. The Generation of Basic Tactics for Interactive Proof 38

Table 2-1: Basic Tactics of the IPE

Name derived from function

And-Introduction F-&I 0 F A&B H (0 F A; 0 F B)

And-Elimination &E F- P&Q, 0 F R H (P, Q, O F R)

Or-Introduction F-JIl, F-JIr 0 F- A (B H (0 F B) OR (0 F- B)

Or-Elimination HE 0, A B F- C H (Al A F- C ; 0, B I C)

Implies-Introduction F-->I 0 F- A ---> B H (A, A F- B)

Implies-Elimination -> E F- 0, A -> B F- C H (AF= A; 0, B F= C)

Not-Introduction F--> I A F A H (0, A F- e)

Not-Elimination -> E F- 0, `A F- B H (0 F A)

All-Introduction F-VI 0 F- VxP(x) H (0 F- P(y))

All-Ehmination VEF- 0,VxP(x) }- A H (0, P(t) F A)

Exists-Introduction 1-3I 0 F- 2xP(x) H (0 F P(t))

Exists-Elimination F- 3E 0, 2xP(x) F A H (0, P(y) F A)

Remove-Antecedent monotonicity 0, A F- B H (0 F B)

Duplicate-Antecedent A, A F- B '--p (0, A, A F- B)

A,B and C are arbitrary predicates; P(x) is an arbitrary predicate possibly

containing instances of a variable x; t is an arbitrary term; y is an identifier

which should not occur free in the other formulae of the goal. The reader is

referred to the text of this chapter for further details.

couraging top-down decomposition. At first guess, a simple criterion would be

to discard those tactics which increase the complexity of goal formulae.

A second problem is that some basic tactics which have to be used do not

lend themselves directly to our style of proof construction, but require some

further treatment first. (For example, F-JE in the previous section). In the IPE

these alterations relied on insights into the realm of applicability of the tactic; it

seems improbable that such insights can easily be mechanised; perhaps increased

experience of translation-by-hand will reveal some guidelines.

Chapter 2 The Generation of Basic Tactics for Interactive Proof 39

It is probably impossible in general to maintain the "proof-by-pointing" prin-

ciple of the IPE (viz , having a single decomposition rule for each connective when

it occurs as the top connective in a premise or in the conclusion of a goal). In

practice, although this principle is useful initially, in that it reduces the amount

of effort that the user has to put into the proof, it becomes necessary as proofs of

larger conjectures are sought to allow some form of compound rules which may

break the "proof-by-pointing" principle. (See Section 6 for the solution adopted

in the IPE). For example, adding the fact

VxVyP(x, y) -+VyVxP(x, y)

can be thought of as adding a new derived inference rule

VxVyP(x, Y)

VyVxP(x, Y)

Clearly whenever the Schmidt-tactics derived from this rule are applicable to a

goal formula, then one of the rules All Introduction and All Elimination will also

be applicable.

It may not be possible to preserve the principle even for the basic inference

rules of a logic; for example, in cases where two inference rules refer to the

same top-level connective but possibly require different substructures or different

semantic constraints.

Chapter 3

Attribute Grammars As A Basis For
Context-Sensitive Structure Editing

The kernel of the Interactive Proof Editor consists of a context-sensitive structure

editor operating within an attribute grammar framework. The use of attribute

grammars here was inspired by a paper from the Cornell Synthesizer Generator

project [Reps-Alpern 84] which contained the basic idea of using an attribute

grammar to define a structure editor for proofs. This paper demonstrated cer-

tain desirable properties of the resultant editor. that the validity of the proof

could be maintained by the attribute grammar, that alterations to any point of

the proof produced instant feedback, and that proof errors introduced by the

user could be indicated at the point of occurrence. We decided to experiment

further with the notion of `editable proofs', and to try and develop a system

which was exclusively tailored to proof editing (unlike the Cornell system which

uses a standardised interface for all its structure editors). We had already devel-

oped a smaller version of the Synthesizer Generator, informally titled `C-SEC'

(for Context-Sensitive Editor Creator), written in the language ML (with a pre-

processor in C generated by the YACC program [Johnson 78]), and we chose to

use this to generate a set of kernel functions for the IPE. In this section, we

look at the means by which attribute grammars can be used to form a general

framework for context-sensitive structure editors, with particular reference to

the C-SEC system. Firstly, the notions of attribute grammar, derivation tree,

semantic tree and dependency graph are introduced. We then describe a method

40

Chapter 3. Attribute Grammars As A Basis For Context-Sensitive Structure Editing4l

for generating editors from attribute grammars and methods for maintaining

consistency of the structures generated with respect to an attribute grammar.

3.1 Attribute Grammars

An attribute grammar [Knuth 68] is a context-free grammar cfG extended by

Each symbol S, in c f G has an associated set of attributes A(S,), parti-

tioned into a set of inherited attributes A,nh(S,) and synthesised attributes

Asyn(S,).

Each production in the c f G of the form

S1 ..= op(S2 ... Sn)

(where op is the production name) has an associated set of semantic

equations; each equation defines an attribute of a symbol of the production

(S1i ... , Sn) in terms of a semantic function applied to other attributes

(called the arguments of the equation) in the production. There is precisely

one equation for each synthesised attribute of the left-side nonterminal Sl

and for each inherited attribute of each right-side symbol S2, ... , S.

The attributes and semantic equations extend the context-free grammar to a

context-sensitive grammar. When we later describe derivation trees and seman-

tic trees, we shall see that attributes act as storage slots for information that is

passed between different points of a tree. Inherited attributes store information

determined from the root of the tree, whilst synthesised attributes hold infor-

mation derived from the subtrees. Both kinds of attributes may also use local

information, i.e., values of other attributes of the same instance of a symbol.

The grammar is said to be in normal (canonical) form if the arguments of each

semantic equation in a production are inherited attributes of the left-side symbol

or synthesised attributes of right-side symbols.

Chapter3 Attribute Grammars As A Basis For Context-Sensitive Structure Editing42

In the notation used in this chapter, each production of the grammar has

a unique name, and the productions of a nonterminal are grouped together.

The semantic equations of a production follow it in list brackets (`[' and `]').

Comments are enclosed in braces(`{' and `}'). This notation is similar to the

notation used by C-SEC; a syntax for the C-SEC attribute grammar definition

language can be found in Appendix A. In C-SEC, the semantic language is

ML: the attributes are typed objects in ML, and the semantic equations are ML

expressions. The first major operation of C-SEC is to take an attribute grammar

in the description language and `compile' it into ML code which implements it as

an ML object of type attribute-grammar. The choice of ML as the semantic

base has proven particularly useful in the implementation of the IPE.

The following fragment of an attribute grammar for an integer expression ed-

itor gives an example. The nonterminal `Expr' has two attributes; a synthesised

`value' and an inherited set of `declarations'. The intuitive meaning of the value

of an expression is that it is calculated from the values of any sub-expressions,

and the set of declarations of an expression is that of its parent expression plus

any local declarations. These intuitive meanings are enforced by the semantic

equations of each production. `Sym$n.attr' denotes the attribute named `attr' of

the nth occurrence of the symbol `Sym' in the production (numbered from the

left). `VY1' def Gdts to `$Z' whei't cqu .

Chapter 3. Attribute Grammars As A Basis For Context-Sensitive Structure Editing43

Expr ::= Sum (Expr Expr)

[Expr$1.value = Expr$2.value + Expr$3.value;

Expr$ 2. declarations = Expr$ 1. declarations;

Expr$ 3. declarations = Expr$ 1.declarations;

Difference (Expr Expr)

[Expr$1.value = Expr$2.value - Expr$3.value;

(etc)

UseVar (Var)

[Expr$1.value = lookup(Var$l.value, Expr$ 1. declarations

Bind (Var Expr Expr)

{ `let Var = Expr$2 in Expr$3 end' }

[Expr$1.value = Expr$9.value;

Expr$2.declarations = Expr$ 1.declarations;

Expr$3.declarations

= add-binding(Var.name,Expr$2.value,

Expr$ l .declarat ions);

... (other productions of Expr).. .

);

An attribute grammar can be viewed as a discipline which a context-sensitive

structure editor must follow. The following sections describe structures which

can be used by such an editor to create objects which remain consistent with a

particular attribute grammar.

Chapter3. Attribute Grammars As A Basis For Context-Sensitive Structure Editing44

3.2 Derivation Trees

For an object 0 constructed in accordance with an attribute grammar Ag, the

derivation tree of 0, DT(O), shows how 0 was constructed using the produc-

tions of Ag. (If the grammar Ag is ambiguous, 0 may have more than one

possible derivation tree).

Each node of DT(O) is labelled by a symbol of Ag and the name of a

production rule of that symbol. For a production

So ::= op (Sl ... Sri)

the derivation tree will consist of a node labelled (So,op) and child nodes labelled

with the symbols Sl,... , S,, and the names of whatever production rules they

have been expanded by.

For example, if we have

Expr ..= Const (Integer)

Sum (Expr Expr)

(ignoring semantic equations for the moment, and using a crude set of rules

for Integer), then the following is a possible derivation tree for the expression

3 + 4 + 5:

Chapter 3. Attribute Grammars As A Basis For Context-Sensitive Structure Editing45

(Expr,Sum)

I

I I

(Expr,Const) (Expr,Sum)

I I

I

I I I

(Integer,Three) (Expr,Const) (Expr,Const)

I I

I I

(Integer,Four) (Integer,Five)

Usually, the concrete syntax of a language (how its structures are represented

textually) differs from its abstract syntax and the derivation tree is then referred

to as an abstract syntax tree. For our purposes, however, the term `derivation

tree' will suffice.

The derivation tree of an object can be used to represent its structure, and

in fact is used for this purpose in many structure editors, although the tree

structure may be hidden from the user to varying extents.

To construct a structure editor based upon derivation trees, we must extend

the idea of derivation trees to incorporate a notion of `current position', for

example as follows:

A posztzonal derivation tree is a derivation tree with two distinguished nodes,

the root node and the current node. The current node is the node affected by

most editing operations. We may expect motion operations such as 'to-parent',

'to-child-n' and 'to-root', which make the new current node the parent and nth

child of the old current node, and the root of the derivation tree respectively.

The most basic alteration operation would be 'expand-by-rule', which expands

the current node in accordance with the chosen production rule (which must

be a production of that node's symbol), replacing any existing expansion of the

Chapter 3. Attribute Grammars As A Basis For Context-Sensitive Structure Editing46

current node. This combination of motion and subtree replacement operations gives

us a simple structure editor, and, given a suitably general definition of expand-by-

rule, one which is grammar-independent.

However, the derivation tree is not sufficient in itself to represent context-

dependent information; although our structure editor restricts the class of con-

structible objects to those which satisfy the constraints of the context-free gram-

mar (i.e., the syntactic restrictions of the attribute grammar), it is still possible to

build objects which break the context-dependencies of the attribute grammar (for

example, to construct an Expr which refers to an undeclared variable). In order

to build context-dependency into our editable structures, we now introduce the

notions of semantic tree and dependency graph.

3.3 Semantic Trees

The semantic tree of an object combines both the structure of its derivation tree

(facilitating "ordinary" structure editing operations) with context-dependent in-

formation derived from the semantic equations of an attribute grammar.

A semantic tree ST(O) of an object 0 constructed under an attribute grammar

Ag is a derivation tree DT(O) with each node additionally labelled by the attribute

instances of the symbol which labels that node, where each attribute instance of

a symbol is the value of an attribute associated with that symbol. Attribute in-
at

stances of the same symbol,but,different nodes,of the semantic tree are distinct.

The values of attribute instances of a node of the semantic tree can be determined

by applying the appropriate semantic functions to their intended arguments, which

can be attribute instances of the same node, its parent or its children. The seman-

tic function for an inherited attribute of a node is determined by the production

rule of the parent; for a synthesised attribute it is the production rule of the node

itself. To see this more clearly, consider extending the previous example by asso-

ciating a synthesised attribute 'Val' with the nonterminals Expr and Integer, and

semantic equations as follows:

Chapter 3. Attribute Grammars As A Basis For Context-Sensitive Structure Editing47

Expr ..= Const (Integer)

[Expr.Val = Integer.Val;]

Sum (Expr Expr)

[Expr$1. Vat = Expr$2.Val + Expr$3. Vat;]

Integer ::= One () [Integer.Val = 1;]

I Two () [Integer.Val = 2;]

(etc)

and consider the following semantic tree for (3 + 4 + 5):

(Expr,Sum)

[Va1=12]

I

I I

(Expr,Const) (Expr,Sum)

[Val = 3] [Va1= 9]

I

I I I

(Integer,Three) (Expr,Const) (Expr,Const)

[Val = 3] [Val = 4] [Val = 5]

I I

I I

(Integer,Four) (Integer,Five)

[Val = 4] [Val = 5]

The values of the attribute instances of Val for the Integer nodes come

directly by evaluating the semantic functions for Integer.Val in the production

rules for Integer named `Three', `Four' and `Five', as these functions are con-

Chapter 3. Attribute Grammars As A Basis For Context-Sensitive Structure Editing48

stants (with no attribute arguments). The values of Val in the immediate parent

nodes (labelled (Expr,Const)) are copies of the values of the child attributes,

in accordance with the semantic equation for Expr.Val in the Const production.

Similarly, the attribute instance at each Sum node is the sum of the values of

the attribute instances of the two children of the node. The final value of the

overall expression has been calculated from the values of its subexpressions in

a structured fashion. Such a semantic tree, where the value of every attribute

instance is the same as the value calculated by applying its semantic function

to its arguments, is called consistent. An editing operation such as "expand-by-

rule" can destroy the consistency of a semantic tree, and thus it is important to

be able to restore the semantic tree to a consistent state after such an operation.

3.4 Dependency Graphs

It is important to note that a semantic tree does not contain any information as

to where the arguments for a semantic function may be found; in other words

the semantic tree lacks the dependency relationship between attribute instances.

This information is contained in the dependency graph of the semantic tree.

An attribute instance a is said to depend directly upon an attribute instance

b if b is an argument of the semantic function for calculating the value of a.

The nodes of the dependency graph DG(St) of a semantic tree St are labelled

by the attribute instances of St; for nodes labelled by instances a and b there is

a directed edge (a,b) if a depends directly on b.

A dependency graph is said to be circular if it contains a cycle; in this case,

none of the attribute instances in the cycle can be properly evaluated according

to their semantic functions. An attribute grammar is similarly said to be circular

whenever it is possible to construct a semantic tree under the grammar whose

dependency graph is circular.

The information in the dependency graph can be used to evaluate a semantic

tree in an efficient way. When a semantic tree is altered during the course

Chapter3. Attribute Grammars As A Basis For Context-Sensitive Structure Editing49

of editing, it is possible to determine and follow the altered dependencies in

an efficient manner which ensures that no attribute instance is evaluated more

than once after each alteration, and that no instance is needlessly re-evaluated

if its argument instances do not change. This is a useful feature in context-

sensitive structure editing, as a desired fast response to the user competes with

the complexity of the context dependencies. The possible direct dependents of

each attribute in a node are restricted to the attributes of that node, its parent

and its children Therefore, when an operation such as "expand-by-rule" is

performed it is easy to determine which attributes have been directly affected.

3.5 Completing Productions

During an editing session, the syntax trees built by the user are often incom-

plete (from the user's point of view at least), with one or more nonterminal

nodes unexpended. Whilst it is certainly possible to construct derivation trees,

semantic trees and dependency graphs corresponding to such structures, there

are problems in evaluating attribute instances in such cases. The essential ques-

tion is, `What should be the values of attribute instances of an unexpanded

nonterminal?'.

The simplest solution would be to assume such instances to have a certain

default value, null, distinct from all other values they might take. However, we

follow the Cornell Synthesizer Generator in the view that such an approach is

too limited and that unexpanded nodes should be capable of `responding to' or

`bouncing back' contextual information in a similar fashion to production rules

whose right-hand side is empty. Linked with this is the idea that the semantic

tree should be maintained consistent by the system after each alteration.

The role of unexpanded nonterminals in editing is catered for in the notion

of a completing production. C-SEC insists that each symbol has a completing

production which represents the `default' production for that symbol, and is

grafted on to represent an unexpanded instance of that symbol. The completing

Chapter 3. Attribute Grammars As A Basis For Context-Sensitive Structure Editing5O

production must have no right-side symbols, and allows the definition of values

for the synthesised attributes of the symbol, perhaps in terms of inherited at-

tributes. Thus the user can receive context-dependent feedback throughout the

editing session.

3.6 Obtaining Semantic Trees from Attribute
Grammars

It is now possible to describe the process by which a context-sensitive editor can

be generated from an attribute grammar which includes a completing produc-

tion for each nonterminal. (The method of maintaining consistency of context-

dependent information is not described in this section but comes under Section

3.7). The resultant structure editors will at the lowest level construct semantic

trees on a rule-by-rule basis; that is, the producticn rules of the grammar will

provide the basic building blocks for the editor, and these elementary semantic

trees can then be grafted onto a main semantic tree at the `current position'.

The completing rule for each symbol S yields an elementary semantic tree

consisting of a single node labelled by S and a set of instances of the attributes

of S. (This is called the completing tree of S).

A production rule of the form

So ::= op(Si ... Sn)

translates to an elementary semantic tree whose node is labelled (So, op) (to-

gether with a set of instances of attributes of So) and whose children are the

completing trees of Si, ... , S.

In this fashion, an attribute grammar can be processed to produce a set of

elementary semantic trees, each labelled by the appropriate production name,

which can then be handled by a general tree manipulation package to provide

the kernel of a structure editor. This is the second major operation of the C-

SEC system: given an attribute grammar as an ML object, C-SEC will process

Chapter 3. Attribute Grammars As A Basis For Context-Sensitive Structure Editing5l

it to produce a set of ML functions for the construction of semantic trees and

dependency graphs under the grammar. These can then be used as the kernel

for a structure editor. (C-SEC provides no interactive user interface; this must

be built from the tree-construction functions, and possibly `hooks' inside the

particular attribute grammar, such as attributes for display text generation).

3.7 Incremental Reevaluation

There are two main problems associated with semantic trees; the attribute in-

stances consume large amounts of storage, and the calculation of their values is

often costly. C-SEC leaves problems of space-saving to the attribute grammar

designer rather than attempt general solutions such as having attribute instances

share space when they c(sbitcwts CCDt,mc*? 5tA74uc t'Gl reS1

This section describes attempts to alleviate the second problem.

In any interactive editing system it is necessary to keep the usersup to date

with the state of the structure that they are editing. In a context-sensitive ed-

itor, this means that the semantic tree must always be consistent, at least to

the extent required by the user2. It may be essential to reevaluate certain at-

tribute instances after each grafting operation, upon demand for information by

the user or even after every movement operation. For example, after grafting

a new semantic tree onto the main tree at the current position, the resulting

semantic tree is almost certainly inconsistent with the attribute grammar. Per-

haps the only inconsistent attribute instances are amongst those of the `current

node'; however, in most cases the value of other instances in the semantic tree

will be dependent upon the `current attribute instances', and will also require

reevaluation. (In fact, those instances which may require reevaluation are the

'Reps' thesis ([Reps 82]) describes some methods for reducing the storage problem.

2See Section 3.7.2 for an explanation of this qualification.

Chapter3. Attribute Grammars As A Basis For Context-Sensitive Structure Editing52

set of instances in the dependency graph of the new semantic tree which are

reachable from the current instances). The process of maintaining a semantic

tree by the reevaluation of attribute instances after each update of the tree is

known as incremental reevaluatzon.

The essential problem of incremental reevaluation is that local changes to a

semantic tree may produce non-local changes in attribute instance values, and

it is not possible to predict precisely which instances will require reevaluation.

Furthermore, the order in which the values of instances are re-calculated is im-

portant; if care is not taken, it is possible that some attribute instances will be

evaluated more than once. As an example, suppose that attribute instance a

depends upon instance b, but a is reevaluated first. Then a's new value is calcu-

lated using b's old value. If at some later point in the reevaluation process b is

reevaluated and changes value, then a will have to be evaluated a second time,

since it depends upon b. Thus the first evaluation was wasteful (and costly if a's

semantic function is complicated) and should have been avoided. The informa-

tion contained in the dependency graph can be used to avoid such unnecessary

computations; by following paths of dependencies, an algorithm can determine

the order in which they should be reevaluated to ensure that when an instance

is evaluated, all of its arguments are up-to-date. In addition, should none of the

arguments of an instance change value during reevaluation (because either they

did not require reevaluation, or their reevaluation did not change their value)

then that instance need not be reevaluated; this is easily detected (provided

there exists a suitable equality function for the attribute value types). Ideally,

the number of reevaluations should be as small as possible; also, the number

of instances accessed should be as small as possible (however this condition be-

comes secondary if we assume that the cost of accessing an instance is lower than

the cost of instance evaluation).

The two main approaches to attribute evaluation are known as "change prop-

agation" and "pebbling". (These terms are used in Reps' thesis). As the name

suggests, change propagation assumes that the entire semantic tree was previ-

ously consistent, but now some attribute instances have changed value. Given

Chapter 3. Attribute Grammars As A Basis For Context-Sensitive Structure Editing53

this set of changed instances, a change propagation algorithm works by deter-

mining whether or not their dependants' values change as a result, and then

recursively propagating the changes as far as is necessary through the semantic

tree. In pebbling, the value of a chosen attribute instance is determined by sim-

ilarly determining the values of its arguments. This leads to a "demand-driven"

approach, where we demand the value of a particular attribute instance, rather

than attempt to restore consistency of the entire semantic tree.

The algorithm chosen in C-SEC uses the pebbling approach, together with the

"time-stamping" of attribute instances to determine whether or not an instance

could have changed value.

3.7.1 Jalili's Incremental Reevaluation Algorithm

The incremental reevaluator used in C-SEC is derived from an algorithm pre-

sented by Jalili in [Jalili 83] which ensures that attribute instances are evaluated

in the correct sequence. This algorithm will perform correctly for any attribute

grammar ., including circular grammars in the sense

that it can detect and report a circularity in a dependency graph.

In its `strict form' (as presented in [Jalili 83]) the algorithm assumes that

the aim is to maintain consistency of the synthesised attributes of the root of

the semantic tree, and it begins by trying to validate their values. To validate

an instance, the algorithm first tries to recursively validate (and reevaluate if

necessary) the argument instances of the semantic equation for that instance.

The validation of an instance depends upon a notion of `global time' and `time

of last update' for that instance.

Other than the semantic tree, the algorithm requires three extra sets of in-

formation:

1. The `global time' status integer (called increment by Jalili). This is as-

sociated with the semantic tree. Initially zero, it is incremented after each

Chapter 3 Attribute Grammars As A Basis For Context-Sensitive Structure Editing54

tree alteration This gives a notion of time against which the status of each

attribute instance can be compared.

2. The local status of each attribute instance. status reflects the validity

of the attribute with respect to the current time. The possible settings of

status are:

(a) never-evaluated. This means that the attribute instance has never

been computed from its semantic equation and arguments, and is the

initial setting of status for every instance.

(b) visited. This is a temporary setting, used during reevaluation to

check for circularity. When it is required to validate an instance,

its status is set to visited until it is validated; if at any point in

the process an instance is found whose status is visited, then this

instance must depend upon itself; i.e., a circularity has been detected.

(c) up_to_date (time (t)). This records that the instance has been vali-

dated up to time t; if t is the present value of increment, then the

instance is validated.

3. The `last update time' status integers, called time. Associated with each

attribute instance, time records the last time the instance's value changed

upon reevaluation, as the value of increment at the time of change. time

is initially zero for all instances, indicating that they have never been eval-

uated.

The algorithm works by `pebbling' the dependency graph. Given an initial

attribute instance to be validated, the reevaluator must first recursively vali-

date its arguments (ie those instances upon which the initial instance depends

directly); then it determines from the values of the arguments of'each instance

whether or not the instance need be reevaluated. Clearly, if no argument to

an instance has changed value since that instance was last validated, then the

instance need not be reevaluated. The reevaluator is a short ML function which

Chapter 3. Attribute Grammars As A Basis For Context-Sensitive Structure Editing55

is grammar-independent (The author is here indebted to Oliver Schoett for an

efficient re-implementation of his original code). Figure 3-1 lists the code

val rec evaluate(time(now))(a : 'a attr_inst)
{ time(now) is the current time,

a is the instance to be validated I
= case !(status of a) of

visited . escape "Circularity"
(a depends upon itself)

never-evaluated . f evaluate a for the first time }
(status of a visited; f to check for circularity I

it_tuple(evaluate(time(now)))(args_of a);
{ validate a's arguments

(bring them up to date) }
value a := eval_inst a; f evaluate a from its args

and semantic function I
time_of a := time(now); f record time a changed at I
status_of a := up_to_date(time (now)) f a validated I

up_toj ate (time (t))
if t = now then () f a already validated)
else(f a validated in the past, but must re-validate now)

status-of a := visited;
it_tuple(evaluate(time(now)))(args_of a); f as above J
if some_arg_has_changed_later(a, args_of a)
then f must recalculate a's value I

let val new-value = eval_inst a
In -

if not(new value = !(value a))
then (f a has changed, so record time)

value a :- new-value;
time of a := time(now)

else () f a has not changed value - do nothing J
else (); f none of a's args have changed more recently

than a, so no need to recalculate a
status of a := upLW_d ate (time (now))

Figure 3-1: ML code for Jalili's incremental reevaluation algorithm

3.7.2 Evaluation on Demand

The major drawback of Jalili's algorithm is that it reevaluates only those at-

tribute instances which are required to evaluate one or more of the initially-

supplied instances, ie., those instances reachable in the dependency graph from

Chapter 3. Attribute Grammars As A Basis For Context-Sensitive Structure Editing5G

the initial instances. Thus, in the strict version, any attribute instances upon

which the root synthesised instances do not depend will not be properly updated

after alterations to the semantic tree. In other words, the strict version of Jalili's

algorithm only guarantees to maintain full consistency of a semantic tree when

the root synthesised instances are dependent upon every instance in the tree

(excepting themselves). In editing, where the current tree is as important as the

main tree, it is imaginable that there may be attribute instances whose values

co not affect those of the root; in such cases, Jalili's algorithm must be used

with care.

On the other hand, this feature of Jalili's algorithm is often a boon, for

it is a form of demand evaluation; only the initially-given instance (and the

instances it depends upon) will be reevaluated. This method is useful when

certain attributes need only be evaluated after certain changes, or upon demand

by the user. For example, in a scope-checking editor for a programming language

the user may only want to check his variable declarations infrequently; by not

evaluating the relevant attribute instances until requested by the user, a great

deal of computation may be avoided during normal editing operations, where

speed of response may be crucial'. Of course, it is possible to supply non-root

instances to the reevaluator, but it is then important to remember that any

instances depending upon these will not be reevaluated. In the IPE, we are

more often interested in some subset of the synthesised attributes of the current

node (of the semantic tree) than in those of the root, so demand evaluation

allows us to avoid a great deal of unnecessary reevaluation.

One disadvantage of the Jalili algorithm is that although the process of val-

idation minimises the amount of reevaluation required to validate an attribute

instance, all of the instances upon which that instance depends must be at least

visitel. The incremental reevaluator used in the Cornell Synthesizer Generator

30f course, it may happen that other instances depend upon the `demand instance',

in which case the latter will be evaluated after all. However, a well-designed attribute

grammar should keep attributes used for different purposes as independent as possible.

Chapter 3. Attribute Grammars As A Basis For Context-Sensitive Structure Editing57

in a sense works in the opposite direction to Jalili's algorithm, being a change

propagatzon algorithm. Starting from the instances at the point of change (usu-

ally the current node), the reevaluator follows the dependency graph to find all

instances dependent upon these instances, and works out an `optimal order' in

which they should be evaluated, called a model. The model restricts the depen-

dency graph to the attributes of the chosen node (so that it shows any transitive

dependencies amongst them). By remembering the model of each node in two

parts - one for the parent of the current tree, another for the children, and by

restricting to normal form attribute grammars, it is easy to determine whether

or not some tree alteration has invalidated a part-model. The advantages of this

method over Jalili's algorithm are that it ensures consistency of the entire seman-

tic tree, and that it avoids the `visitation problem' described above. However,

this approach is best suited to maintaining consistency of an entire semantic tree.

When demand attributes are incorporated in Reps' reevaluation algorithm, they

are evaluated using the same pebbling fashion as in the Jalili algorithm. We are

often more interested in attribute instances local to the current node than in full

consistency, and so we chose Jalili's method.

3.8 The Attribute Grammar for the IPE

In this section we develop the attribute grammar (hereafter referred to as the Proof

Grammar) from which the kernel of the Interactive Proof Editor is constructed.

We describe the context-free part and the major attribute systems in general terms.

Then we give some example rules, including special cases. Finally we describe how

"hooks" to the user interface of the IPE are built into the attribute systems.

3.8.1 The Context-Free Grammar

In the IPE, we present a language for proving fopc ("first-order predicate cal-

culus") formulae in a similar fashion to programming languages: just as pro-

grams in a normal programming language are constructed from a set of basic

statement-forms (egs. assignments, conditionals, loop constructs), IPE proofs

Chapter 3. Attribute Grammars As A Basis For Context-Sensitive Structure Editing-58

are constructed from a set of basic proof steps The bulk of the grammar con-

sists of productions of the form-

Proof::= SomeRule(Proof Proof ...)

for the distinguished grammar symbol Proof. Typically, "SomeRule" involves the

application of one of the IPE's basic tactics (see Section 2) to the goal-sequent

of the left-hand instance of Proof.

Certain proof operations (such as quantifier introduction and elimination)

require extra information such as a term or identifier to be substituted for the

bound variable throughout a goal. In the context-free part, the symbols Term

and Var are used to represent these:

Proof ::= Existslntro(Term Proof)

Although the IPE uses sequent-calculus notation within proofs, goals are

introduced as fopc formulae. The root symbol of the Proof Grammar, called

Theorem, is used to pass a Formula (represented by another grammar symbol)

to a Proof as its initial goal:

Theorem ::= Theorem(Formula Proof)

When this rule is applied to an instance of the Theorem symbol, the intention

is that the instance of Proof should be considered as an attempt to prove the

formula associated with the instance of Formula.

In the context-free part of the Proof Grammar, formulae and terms are con-

sidered as terminal objects, their structure being contained in their attribute

values. It was expected that formulae and terms would always be parsed when

input, whilst proofs would always be built by structure editing. The raw result of

processing an attribute grammar in C-SEC provides rudimentary tools for struc-

ture editing, but none for parsing; this guided the decision to split the grammar

at this point. (It must be pointed out that the more sophisticated Cornell Syn-

thesizer Generator supports the generation of attributed trees from parsed input,

with parsing schemes presented as part of the grammar description).

Chapter 3. Attribute Grammars As A Basis For Context-Sensitive StructureEditing59

3.8.2 The Major Attribute Systems

At any point in a top-down structured proof, there are two main pieces of infor-

mation:

the current goal, which will have been derived from goals of ancestor points

in the proof;

the proven/unproven status of the goal, which depends upon the status

of goals of subproofs, and also upon validity checks upon the application

of the current proof rule to the goal (for example, it is not valid to apply

And-Introduction to show A --> B).

Correspondingly, in the Proof Grammar the symbol Proof has two attributes

(amongst others):

an inherited goal (called sequent), whose value is determined from the

value of the goal of the parent Proof node and possibly other rule-specific

information;

a synthesised boolean proven, whose value depends upon the same at-

tribute of Proof children, and also upon local applicability conditions.

The goal-sequents are ML objects of type "sequent". This type was defined

for the IPE, together with functions corresponding to the "basic tactics" of

Chapter 2. Much of the original code for this type was implemented by John

Cartmell.

A third synthesised boolean attribute, appropriate is used to record the

applicability of a proof step, primarily because this may be required in several

semantic equations. Similarly an attribute subgoals is used to record all of the

subgoals produced by a basic tactic.

Chapter 3. Attribute Grammars As A Basis For Context-Sensitive Structure Editing60

3.8.3 Some Example Rules

A typical production in the Proof Grammar is that corresponding to the basic

tactic Andlntroduction:

Proof ::= Andlntro (Proof Proof)

[Proof$ 1. appropriate = is.And(succedent Proof$1.sequent);

Proof$1.proven = Proof$ 1. appropriate

& (Proof$2.proven & P.roof$3.proven);

Proof$1.subgoals = if Proof$1.appropriate

then And-intro Proof$Lsequent

else [empty..sequent; empty..sequent];

Proof$2. sequent = hd Proof$ 1. subgoals;

Proof$3.sequent = hd(tl Proof$1.subgoals);

]

Thus:

an application of Andlntro to an instance of Proof is only considered

appropriate when the sequent of that instance has a conclusion of the

form A&B (for any formulae A and B);

the (sequent/goal attributing the) Proof instance expanded by And-Intro

is considered proven whenever the rule is appropriate and both subproofs

are considered proven;

the subgoals of the rule are those generated by applying the basic tactic

AndJntro to the sequent of the Proof instance being expanded; note that

if the rule is not considered appropriate then the tactic is not applied, the

subgoals being set to "empty sequents" instead (where an empty sequent

is F- False, which cannot be proven);

each subproof inherits one of the above subgoals.

In productions corresponding to Elimination rules, another attribute se-

lected is used to record to which premise the rule is intended to be applied.

Chapter 3 Attribute Grammars As A Basis For Context-Sensitive Structure Editing6l

selected simply records the position of the premise in the sequent as an integer

index; for example:

Proof ::= And_Elim (Proof)

I

Proof$1.subgoals = And_Elim(Proof$1.sequent,

Proof$ 1. selected

I

As selected is a synthesised attribute, we have to give a semantic equation

for it in each Elimination production. This equation always sets selected to

the constant 1. In practice, this equation is ignored, because we want to have

selected record the position of the premise which was chosen by the user. The

means by which this is achieved will be shown later. (See 93.8.4-).

Quantifier Rules

When a rule generates a subgoal from a goal by removing a quantifier from

a formula, the interface (and hence the grammar) must cater for the substi-

tution of some term for the bound variable. When Alllntroduction and Ex-

ists.Elimination are applied to a goal, the substituted term must be an identifier

that does not already occur free in any formula in the original goal; in the case

of All-Elimination and Exists -Introduction, the choice of term is not thus re-

stricted. The Proof Grammar has to cater for both situations.

An early design decision for IPE was that though IPE could make an initial

choice of "new identifier" for the first rules, the user should be able to change

41n fact, every production for Proof in the Proof Grammar has to include a semantic

equation for selected; this is a shortcoming of C-SEC. The CSG allows a production to

have local attributes (for example to record or report errors which are specific to that

production).

Chapter3. Attribute Grammars As A Basis For Context-Sensitive Structure Editingi2

this. This permits the choice of a more meaningful name. A symbol Var of the

Proof Grammar is used to represent identifiers; it has an attribute self which

is a synthesised string containing an identifier name. The user can change the

name of the identifier via the same mechanism which allows editing of the initial

conjecture. The grammar must always check that the identifier does not occur

free in the goal: this is done using an ML function, "is-unique-identifier".

Proof ::= AlLIntro (Var Proof)

[Proof$ 1. appropriate = is-ForAll(succedent Proof$1.sequent)

& is-unique-identifier

(Proof$l.sequent, Var.self);

Proof$1.proven = Proof$ 1. appropriate & Proof$2.proven;

Proof$2.sequent = if Proof$ 1. appropriate

then hd(Allintro(Proof$1.sequent, Var. self))

else empty..sequent;

I

The ML function "is-unique-identifier" takes a sequent and an identifier

name, and returns true if the identifier does not occur free in any formula in

the sequent. Whenever the identifier is changed, the reevaluation process de-

scribed earlier will check the appropriateness of the production rule with the

new identifier.

All-Elim and Exists-Intro are slightly simpler, in that there is no restriction

upon the substitution term; thus the appropriacy check is of the usual form,

ie, "is the selected formula of the form VxP(x) (or 3xP(x))?". As with Var, a

symbol Term is used to represent the substitution term. Its self attribute is set

to a default value in the grammar (a new identifier of form "TERM. n" for some

integer n), but the intention is that the user should change this to something

more useful.

In 3.9.1 we discuss a possible attribute-grammar-based technique by which

interactive proof editors could attempt to choose suitable terms for substitution.

Chapter3. Attribute Grammars As A Basis For Context-Sensitive Structure Editing63

The Or-Intro Rule

The OrJntro rule is another rule of particular note. In order to prove that AFB

follows from a set of premises, it suffices to show that either of A, B follows from

the same set. However, we need not know in advance which conclusion is the

better to attempt to prove. The IPE allows the postponement of this decision by

presenting both subgoals and allowing the user to continue work upon either, or

indeed to expand both subproofs until the choice becomes clearer. The OrJntro

rule expands a Proof (whose goal-conclusion must have the form AJB) into two

subproofs, one of which inherits A as goal-conclusion, the other inheriting B

similarly. The rule considers the parental Proof proven when either subproof is

completed.

The Duplication Rule

All of the Elimination production rules in the grammar produce a subgoal from

which the chosen premise has been omitted. This has been done to reduce

"clutter" in the presentation of IPE proof steps to the user. However, there are

cases where the same premise may be required more than once in the same line

of proof (ie as opposed to branching subproofs).

The solution presented in IPE is unfortunately rather crude: the Proof Gram-

mar includes a Duplication rule which duplicates the chosen premise in its sub-

goal. Upon discovering that a deleted premise is required again, the user must

look back up the proof tree until a node containing the premise is found, and

then insert a Duplication rule at that point in the proof. This will generate a

subgoal which contains two copies of the selected premise, so that when one is

removed by the application of a suitable Elimination rule, the other will remain.

In the IOTA system [Nakajima et al. 83], premises are hidden from the user

after they have been used, but can be recalled if required. A method such as this

would be more useful: this might be performed by retaining all premises in a

goal, but marking certain of them as "hidden", and modifying the displaying of

Chapter3. Attribute Grammars As A Basis For Context-Sensitive Structure Editing64

goals accordingly. Now the question becomes that of how to organise "hidden"

premises and present them to a user who wishes to use some of them again.

3.8.4 Interface Considerations

The result of applying the C-SEC attribute grammar processor to the Proof

Grammar is a set of ML modules which implement the Proof Grammar as an

instance of the type attribute-,grammar in ML. This polymorphic type has

associated functions which can be used to build semantic trees conforming to an

attribute grammar, and to perform incremental reevaluation upon them. How-

ever, no other interface is provided as part of the polymorphic package; there is

no general pretty-printer for example.The interface to the Proof Grammar was

"hand-built" on top of the basic semantic-tree constructors.

Interactive Attributes

As stated previously, there are points in the Proof Grammar which require in-

formation from the user: which premise to select, which term to substitute for

a bound variable, and which formula to take as initial conjecture. The solution

chosen was to provide "hooks" in the grammar which allow a restricted form of

outside interference. These take the form of attributes whose values are supplied

by some outside operator.

For example, the synthesised attribute self of the symbol Formula is used in

the Theorem production to act as the initial conjecture of a proof. In the Proof

Grammar, its semantic equation is

Formula.self = atomic("FORMULA" ,nil)

Since this equation contains no arguments, it defines self as a constant formula

(the atomic predicate "FORMULA" with no arguments). However if we allow

the value of (an instance of) this attribute to be changed from outside, and

ensure that subsequent reevaluation of dependent attributes will use the new

Chapter 3. Attribute Grammars As A Basis For Context-Sensitive Structure Editing65

value, then we have the ability to update the value of a formula supplied to a

proof and see the effect it has upon the proof.

We refer to attributes whose values are intended to be supplied from outside

the attribute grammar as znteractzve attributes. The semantic equation for an

interactive attribute defines an initial default value for the attribute. This equa-

tion shoulu have no argument attributes; otherwise if one of the arguments were

to change, then the interactive argument could have its default value unexpect-

edly re-invoked. Interactive attributes in the Proof Grammar include the self

attributes of the symbols Formula, Term and Var (for supplying the user's substi-

tutions), the selected attribute used in Elim productions and attributes which

are used to control the display of the proof tree and depend upon a "current

position".

The next level of ML code above the Proof Grammar contains functions

which can be used to "plug" new values into interactive attribute instances.

These replace the semantic function given in the grammar with a new func-

tion which returns the new value, sets the status of the attribute instance to

never-evaluated and its "last update time" to zero. Thus, whenever a de-

pendent attribute instance is reevaluated, the interactive attribute instance is

evaluated as if for the first time; its new value is set and used in the calculation

of the dependent.

Such a system is open to abuse; a fuller implementation of C-SEC might

include the declaration of interactive attributes, check that their semantic equa-

tions do not contain argument attributes, and generate functions of the above

form which ensure that they are properly altered. An early version of C-SEC

had "interactive symbols", which had only one attribute and one production rule

(which set the single attribute to a default value). The intention was to cater

for symbols corresponding to "lexical classes" (such as "integer" pr "string" or,

in the case of the Proof Grammar, "Formula"). This was not used in the Proof

Grammar, because the "lexical" symbols Formula, Term and Var all require more

than one attribute.

Chapter 3. Attribute Grammars As A Basis For Context-Sensitive Structure Editing6G

Attributes for Display Control

As an IPE proof structure grows in size, it becomes impossible to display all

of it upon a single screen. It is possible to present the entire structure and

allow the user to scroll through it, but this is both expensive to produce and

cumbersome to use in large proof structures. Therefore we aim to display an

area of the proof structure which lies around the user's current position in the

proof. Normally, the intention is that the amount displayed should be roughly

a screenfull; however, the user should have control over the amount displayed.

The display control is organised around the depth of the proof structure. At

any time, the user will see no more than some fixed number of levels above and

below the current position in the structure. As the current position moves down

the tree, the upper levels of the structure will disappear from the display; the

same applies to lower levels when the current position moves upwards.

In section 3.2 we described a positional derivation tree as a derivation tree

with a root node and a current node. In the IPE's proof structures there is a third

distinguished node, the display root. This is the node from which the display

of the proof structure is generated. Initially the display root is the same as the

root node; however the display root is constrained to stay within a fixed (but

user-alterable) number of tree levels above the current node. Thus the display

root follows the current node. At the same time, only a certain number of tree

levels below the current node are to be displayed. We shall refer to the number

of levels to be displayed above and below the current node"display-above" and

"display-below" respectively.

Each symbol of the Proof Grammar has an attribute print_tree_depth

which is used to determine how far the node is below the display root. (In

fact, it records to what depth its subtrees should be printed). Normally, this

attribute inherits its value as one less than its parent instance. However, at

the display root it must be set to the sum of display-above and display-below.

This is done by using a separate interactive attribute, set_ptd. This has default

value -1; however, when a node is made the display root, set ptd is set to

Chapter 3 Attribute Grammars As A Basis For Context-Sensitive Structure Editing67

display-above+display-below. The semantic equation for print-tree -depth is

in fact

Symbol$2.print_tree_depth =

if Symbol$2.set_ptd > -1
then Symbol$2.set_ptd

else Symbol$l.print_tree_depth -1

(where Symbol$1 is the left-side symbol in the production and Symbol$2 is any

right-side symbol). It is now vital to ensure that the value of set_ptd is reset to

-1 when the display root is moved elsewhere in the proof structure. This would

ensure that print-tree-depth is correctly set for all nodes below the display

root.

3.9 Some Suggested Improvements of the Proof

Grammar

3.9.1 Choosing Terms for All Elimination and Exists In-

troduction

There is much room for improvement here concerning the choice of suitable

terms for All_Elim and Exists-Intro. Rather than expecting the user to choose
(ac ss -* we tft -fkc IPE at pt it)

the term, the IPE could expend some effort in determining a "good" choice. For

example, if we had a point in a proof with the goal

show CannotSpel(Brian),... entails ?x CannotSpel(x)

then it might seem reasonable to expect that applying Exists-Intro to this would

produce

Cannot Spel(Brian),... entails ?x CannotSpel(x)

by Exists Introduction with <Brian> for x

Chapter 3. Attribute Grammars As A Basis For Context-Sensitive Structure EditingGS

and CannotSpel(Bi ian),... entails CannotSpel(Brian)

is immediate

This is a very special case, which can be solved simply by matching the inner

formula of the quantification against each premise in turn. In general, it need

not be obvious what the substitution should be, without further expansion of

the proof. For example it would be more difficult to handle the following goal:

show P(TERM_1) -+ Q(TERM_1), P(x) entails ?xQ(x)

(where TERM-1 is a substitution for a variable bound by a universal quantifier).

This could be handled by building information about implication elimination into

the production for Exists-Intro; however, this would be an untidy solution as it

involves encoding knowledge of other proof rules into a single rule.

As another solution we could utilise the attribute grammar mechanism and

use information synthesised from subproofs to guide the choice of the substitu-

tion. A proof node could inherit the set of "substitutable variables" generated

by ancestral All-Elim and Exists-Intro steps, and receive (synthesise) sets of pos-

sible substitutions from subproofs. The latter sets of substitutions could then be

analysed to determine whether or not a suitable substitution can be found. For

example, one possible expansion in a proof including the above goal might be:

show !x(P(x) -+ Q(x)), P(x) entails ?xQ(x)

use Exists-Introduction with < TERM-1 >

andshow !x(P(x) -+ Q(x)),P(x) entails Q(TERM1)

use All-Elimination with < TERM-2 > on premise 1

andshow P(TERM2) -+ Q(TERM2), P(x) entails Q(TERM_1)

use Implies Elimination on premise 1

andshow P(x) entails P(TERM9.)

andshow Q(TERM2), P(x) entails Q(TERM_1)

The first unexpanded leaf could indicate that substituting x for TERM-2

would prove its goal; the second could indicate that the substitutions for

Chapter3. Attribute Grammars As A Basis For Context-Sensitive Structure Editing ,69

TERM-1 and TERM -2 would have to be the same. The parent node (expanded

by the Implies-Elim rule) must then combine these requirements to generate the

requirement that both TERM-1 and TERM2 should be substituted by x.

In general, a proof node could generate sets of alternative substitution-sets

for term variables in its goal, each set describing a set of substitutions for term

variables which would complete the proof. We shall refer to the set of alternatives

as the requzrements of a node, and to each element of the same as an alternative.

If the first leaf node above had an additional premise P(y), then the node

would produce the following set of alternative requirements:

{{TERM2 H x}, {TERM2 H y}}

The substitution-sets may record a need to unify two term variables, as in the

second leaf node above. Here will use a # prefix to denote unification variables.

The second leaf could produce:

{{TERM-1 H #v,TERM2 H #v}}

This will be satisfied by any substitution-set in which the two term variables can

have the same substitution.

Proof productions which produce a single subproof and do not introduce any

term variables can simply pass the requirement of the subproof to the parent

node (ie, the semantic function is the identity function).

Proof productions which are "conjunctive" (in the sense that they produce

two (or more) subproofs, and where all subproofs must be proven before the proof

can be completed) must unify the requirements of the subproofs to determine

a single requirement. This can be done by considering all pairs of alternatives

(Al, A2) such that Al is from the first requirement and A2 is from the second. We

discard all pairs which contain inconsistent substitutions for some -term variable,

and form the new requirement as the set containing Al U A2 for each remaining

pair. When an alternative-pair does not contain any unification variables, then

checking for inconsistent substitutions involves checking that if a term variable

Chapter3 Attribute Grammars As A Basis For Context-Sensitive Structure Editing7O

is mapped in both alternatives, then it is mapped to the same term. If one

subproof's requirement is

{{TERM-1 I--.' x,TERM2 F--> y}, {TERM-1 --.' y,TERM2 i-a x}}

and another has requirement

{{TERM-1 --> y,TERM_3 H g(z)}, {TERM_1 H z}}

then the resultant requirement is

{{TERM_1 H y, TERM2 H x, TERM-3 I--.' g(z)},

{TERllM_1 I--.' x, TERM-2 --.' y}}.

When an alternative A, maps a term variable TERM-1 to a unification

variable #v, then in comparing this alternative with another A2 from the other

requirement, #v must be unified with the mapping (if any) for TERM-1 in

A2. Then consistency can be checked as above. In the partial proof above, the

Implies Elim node would have to unify the requirements of its two subproofs,

these being

{{TERM-2 I--* x}}

and

{ {TERM-1 I--.' #v, TERM2 i-a #v}} -

Each requirement has only one alternative. Comparing these, we note that both

define substitutions for TERM2, and that these are compatible if we identify

#v with x. The new requirement is constructed by forming the union of the

substitutions in both alternatives under this identification, giving

{{TERM-1 H x,TERM2 H x}}.

Proof nodes which introduce term variables (All-Elim and Exists_Intro) must

pass these down to the subproofs, to distinguish them from ordinary identifiers

in formulae. These nodes must also act (or attempt to act) on the requirement

synthesised from the subproof, by setting the introduced term variable to a term

Chapter 3 Attribute Grammars As A Basis For Context-Sensitive Structure Editing7l

chosen from some alternative in the requirement. This can affect the requirement

passed to the parent node.

When the above requirement is passed up to the AlLElim node, this must

then set TERM2 to x, and pass the new requirement

{{TERM_1 -+ x}}

upwards, to be handled by the node which introduces TERM-1.
,4 m c choice of -te" Gras vtot hct. Wpkmeltteq' «1te IT E.

3.9.2 Determining Appropriate Premises in Re-Applied

Proof Structures

As explained above, an attribute selected is used to record the user's choice of

premise to which an elimination rule is to be applied, and this simply records

the position of the premise in the premise-list. As a result of this mechanism,

elimination rules in the Proof Grammar are sensitive to the position of a premise.

Unfortunately, this can weaken the ability of a semantic tree to react to changes

to the goal supplied to its root. Suppose for example that at some point in a proof

structure, And_Elimination is applied to premise 5. The position is recorded in

the selected attribute at that point in the proof. This means that when the

same structure is applied to a different goal, the new premise which plays an

analogous role to the original premise should appear in position 5, otherwise the

subproofs generated may not be as intended, or the rule application might be

inappropriate, and fail. Clearly this is an unfortunate restriction. The crucial

question here is, how might the "analogous premise" be determined?

In this section we consider one way of improving the selection of premises in

the IPE. (It should be noted that this method has not been implemented).

For the purposes of the following discussion, we will say that a goal G1 is

analogous to a goal G2 with respect to a proof structure P if when G1 is supplied

to P there is some permutation of the premises at each point in P such that

the resultant goals at the leaves of P are analogous to the original leaf goals

with respect to any proof structure. A special case of this occurs when the proof

Chapter 3. Attribute Grammars As A Basis For Context-Sensitive Structure Editing72

structure proves the original goal (ie there are no unproven leaves): then the

analogous goals are those which can be proven by the same proof structure but

perhaps requiring different selections of premises for elimination rule steps. The

ideal would be to make the applicability of an IPE proof structure to different

goals independent of the order of the premises in these goals.

A slightly better approximation to an "analogous" premise than "occurs in

the same position" would be to search through the premises for one which satisfies

the applicability condition of the elimination rule (for example, AndElim would

seek out a premise of the form A&B) This would not be hard to do, but it is not

a great improvement, as there remains the problem of what to do when more

than one premise is appropriate.

Improving on this, during initial construction (or perhaps once initial con-

struction is complete) we could attempt to note the ways in which premises se-

lected by the user are used in later stages of the proof. For example, if AndElim

upon some premise produces two new premises in the subgoal, to the first of

which ImpliesElim is applied at some point further down in the proof, then

when the structure is reapplied, the AndElim expansion should seek a premise

of the form (A - B)&C. Thus for each application of an elimination production

rule we build up an expression template which describes the shape of the desired

premise at any point in the structure.

In branches of the structure which lead to completed subproofs under the

original goal, it should be possible to determine relationships between the for-

mulae in a goal. If in the example above our original proof proved that "bid"

is a valid conclusion from "(a - b)&c" (plus other premises), then we could tag

the And-.Slim expansion with the goal-pattern

(A -* B)&C,... I- BID

which shows that a subformula of the desired premise should match a subformula

of the conclusion. (Note that it would also be necessary to indicate which premise

in the pattern is the one of interest).

Supporting such a method within the Proof Grammar would require

Chapter3. Attribute Grammars As A Basis For Context-Sensitive Structure Editing73

another attribute system for generating goal-patterns as synthesised at-

tributes; this could be generated during proof construction;

the ability to determine how a formula in a goal was derived from the goal

of the parent Proof node - either by direct copying or as the result of the

parental proof step's effect on some formula;

that the premise selection method in the grammar could be switched from

its present interactive form to the pattern-matching form.

In building a proof, a user might want to make pattern-matching the default

action for each proof step after the initial selection, whilst still constructing the

subproof. Unfortunately, this would lead to a cycle in the attribute system: the

premise selection depends upon the goal-pattern, which depends upon the leaf

goals, which in turn depend upon the premise selection. When the goal changes,

we want to consider the pattern as constant; but when the leaf goals change, we

want the pattern to change.

Perhaps, then, we must admit that a proof structure that is being constructed

interactively must differ in some respects from one that is applied entzer to a new

goal. In the first case, premise-positions supplied by the user are paramount; in

the second, a "clever" automatic choice is preferred. This would mean that there

would have to be some process of conversion between the two. For example, we

could have two separate attribute systems for handling premise-choosing, which

are mutually exclusive: the present system supporting choice by the user, and

another system implementing one of the above methods. When a proof structure

is re-applied (either by editing the supplied formula, or by re-grafting it onto

another proof), the user-chosen premises could be used as a guide by the second

attribute system in determining what the analogous premises are.

Chapter 4

The User Interface

In this section we describe those layers of the code for the IPE which lie between

the dependency graph manipulator generated from the Proof Grammar and the

user. These layers account for approximately half of the IPE's code.

The basic kernel provides three main operations:

expand a node of the derivation tree in accordance with some rule in the

Proof Grammar;

graft a derivation tree (and its dependency graph) onto the current node;

incrementally evaluate a specific attribute instance in the dependency

graph.

The value of any attribute instance can be accessed (or even altered, as

described in the previous section).

74

Chapter 4. The User Interface

4.1 Display Formats for Structured Objects

75

In this section we show how a semantic tree generated under the Proof Grammar

can be presented on a display in a fashion which permits interactive access to

its components.
bculd (43 SG g((4(erarc fies

A general techniqueefor describing displays of tree-structured objects was

developed in ML by John Cartmell, and was specialised by him (and later by

the author) to provide a description of the displays of IPE proofs.

The ML type shell is defined as a string list list. Each string represents a

line of displayed text, and the spaces between the string lists represent "holes"

into which other shells may be slotted. Such subshells inherit the indentation of

the parent shell: for example if the shell

shell(["this is shell 2";

"it has two lines and no holes"]]

is slotted into the hole in the shell

shell(["this is shell 1";
" {))].

"shell 1 has a hole which is indented";

"and enclosed in braces"]]

then when displayed, this would look like

this is shell 1

{ this is shell 2

it has two lines and no holes}

shell 1 has a hole which is indented

and enclosed in braces

Chapter 4. The User Interface 76

Note that the contents of the hole fit on at the end of the last line of text of the

preceding string list, and that the first line of the next list is attached to the end

of the last line of the hole. This permits list-like shells such as

shell([["one: "];[" two: "];[" three:

which can be used to produce a line like

one: 1 two: 2 three: 3

when filled in appropriately.

A shell can be used to describe the display format for a single node of a tree

structure, with holes for the displays of the subtrees.

The result of filling in the holes of a shell is an object called a box, which is

a list of lines of text. The dimensions of a box are the lengths of its first and

last lines, its width (ie the length of its longest line) and the number of lines.

This information allows us to determine (for example) when a mouse cursor is

pointing within a particular box on the display.

A she111iierarchy is a tree of shells, where each node with N children (N> 0)

has a shell with N holes (ie N+1 string lists). The intention is that the tree

structure of the shell hierarchy should correspond to the tree structure of the

object being displayed. Each node also contains the dimensions of the box that

would result from filling in the shell with the boxes produced by recursively

filling in the subshells.

A path is a list of integers describing a path down a shell hierarchy from the

root. This is used to indicate a particular node in the shell hierarchy.

The function find.shell_with_given_coordinates takes a shell hierarchy

and a point, and returns the path through the shell hierarchy to the lowest shell

whose box contains the point. Hence, if we construct a shell hierarchy from an

object such that the tree structures are isomorphic, then given any point on a

display showing the shell hierarchy, we can derive a path which can be used to

determine the corresponding substructure of the object.

Chapter 4. The User Interface 77

In the case of the IPE, the structure of the shell hierarchy is not isomorphic

to the derivation tree. This is because the display structure has to go into more

detail in order to permit the proof-by-pointing interface. Not only must the

derivation tree structure be selectable by the user (to perform grafting opera-

tions upon it, and to supply formulae and terms to the relevant nodes), but the

structure of the sequent of each Proof node must be displayed as well, to permit

the selection of a premise or the conclusion by indicating a point on the display.

Fortunately, this does not present any serious problems.

4.1.1 A Display Format for Sequents

The ML function format.sequent takes a sequent and an integer representing

the maximum number of columns available for its display, and produces a shell

hierarchy which describes the structure of the sequent and will display it within

that number of columns, splitting the sequent across lines if necessary. The hier-

archy consists of a premise-list hierarchy and a conclusion leaf hierarchy, where

the premise-list hierarchy has one child for each premise. Thus for example,

given sufficient width, a sequent might be formatted as

C B&C entails (A&B)--+ C

where the nested boxes indicate the shell hierarchy structure.

4.1.2 Display Formats for Proof Nodes

Each production rule in the Proof Grammar has a corresponding display format

generating function, written in ML. The display generated depends upon both

the available display width and upon the values of attributes of the node such

as sequent,proven and appropriate.

In preference to describing each formatting function in detail, we will consider

the case of a single production rule, and describe notable points in other rules.

Chapter 4. The User Interface 78

The formatting function for an instance of the And-Intro production is typ-

ical. There are four possible "top-level" shells. (We use boxes to delineate

subshells in the formats):

show sequent

use And Introduction

and

and

subproof 1's format

Isubproof 2's format

is used when the left-side Proof's proven attribute is false. If proven is true,

the generated format is:

sequent

by And Introduction

and subproof 1's format

and Isubproof 2's format

Recall that the displays of the subproofs inherit the indentation of their starting

point.

However, as we wish to view only that section of the proof around the current

node, we also require formats which elide the display of the subproofs when they

occur more than some fixed number of tree levels below the current node; these

are:

sequent

qv

and

show

qv

sequent

In quantifier rules, the format of the term or identifier is included in the line

of the rule name, for example

Chapter 4 The User Interface

show sequent

use All Elimination < term format

and I subproof format

79

The formatting of Or-Intro is interesting in that should either subproof be

proven, then the other subproof will be omitted from the display. If this were

to be done by constructing different top-level shells, then this could lead to

problems when paths through the Orlntro node are interpreted. What actually

happens is that the top-level shell has holes for the formats of both subproofs,

but when one subproof is proven the other is filled in with a "blank" box.

Shell hierarchies can be utilised in attribute grammars: each symbol could

have a format attribute, which is appropriately defined in each production rule

as a shell hierarchy describing the display format of that node in terms of the shell

hierarchies of its children, as well as local information. Incremental reevaluation

would ensure that the format of a node was kept up to date. In fact, such a

system was used initially in the IPE. However, it was decided that the cost of

keeping a shell hierarchy at each node in the semantic tree was not justified, as

only a small portion of the tree was ever displayed at any time, and the display

attribute system was replaced by a "tree-walking" algorithm which calculates

the display anew each time.

4.2 The Level 1 Proof Machine

The first layer of code packages the general kernel facilities into functions for

editing and interrogating Proof Grammar semantic trees as proof structures. A

type proof-machine is defined, consisting of

a root node - a pointer to the root of a semantic tree;

a current node - a pointer to some node in the semantic tree. This is the

position of the semantic tree to which most editing operations are applied;

Chapter 4. The User Interface 80

a print node - this is the display root referred to previously;

a global time counter, used by the reevaluation mechanism.

These components are all instances of ML "ref" objects; thus, a proof-machine

is a state-object describing the state of a semantic tree. Operations upon

proof-machines alter the state of its tree. The major operations provided by

this layer are

create-machine : unit -> proof-machine. This creates a semantic tree for the pro-

duction Theorem, with no subproof and the initial conjecture set to the

atomic formula "FORMULA". The current and print nodes are both set

to root.

accept-formula : proof-machine * formula -> unit. If the current position of the

proof-machine is a Formula node, then its self attribute is set to the sup-

plied value. If the current position is not a Formula node then an escape is

generated. (The function will-accept-formula can be used to check ap-

propriacy). Similar functions are provided to handle user-supplied terms

and identifiers for the quantifier productions. Note that the strong typing

of ML insists that a valid formula be given at this level.

introduce : proof-machine --> unit

eliminate : proof-machine * int --> unit. These implement the lowest level of the

"proof-by-pointing" interface. Introduce expands the current node of the

proof-machine by the Proof Grammar rule which is appropriate to the

succedent of the (current) value of the sequent attribute of the current

node. This replaces the entire subtree of the current node. For example,

when applied to a proof-machine whose current node has a sequent at-

tribute with conclusion A --> B, the production applied is Implies-Intro.

Subsequent alterations to the sequent will not change the production rule

used. Eliminate works similarly; the int parameter being the position of

the selected antecedent. However, if the current node's old production rule

would still apply to the newly-selected antecedent, then the subtree is not

Chapter 4. The User Interface 81

replaced by a new production, but only the value of the selected attribute

is changed. This simplifies recovery in situations where the order of the

antecedents changes for some reason.

duplicate-antecedent : proof-machine * int -+ unit. This adds a copy of the se-

lected antecedent to the antecedents of the subproof. This should be

used when a subsequent application of eliminate will delete an antecedent

which will be required later in the proof

remove-antecedent : proof-machine * int -+ unit. The selected antecedent is re-

moved from the sequent in the subproof. The main use of this is to remove

antecedents which are not needed in the subproof and thus reduce display

clutter.

basic navigation operations. These are operations which permit the current node

to be moved through the semantic tree; the current node pointer can be

moved to its parent or a child node, or it can be resited at the root.

bring-up-to-date. This is the main reevaluation operation, which calls the upon

reevaluator to reevaluate some attribute instance of the print node which

will ensure that every attribute used in the display generation will be up to

date. For Proof and Theorem nodes this is the proven attribute: reeval-

uating this checks the proven instances of all descendants, and hence in

turn the sequents. Other reevaluation operations reevalute particular at-

tribute instances at the root,current or print node.

display : proof-machine * int * int -+ shell hierarchy.

This returns the shell-hierarchy which constitutes the display form for the

proof-machine, generated from the print node. The two integers give the

display width and the maximum tree depth below the print node which is

to be displayed.

Chapter 4. The User Interface 82

Other operations are provided at this level to inspect the values of various at-

tributes of the root, current and print nodes.

4.3 The Level 2 Proof Machine

The main purpose of the "middle" proof machine level is to extend the first level

machine with a path component. This records the path from the root node

of the machine to the current node. The navigation functions of the first level

are extended to maintain the path; other operations of the first level are passed

through this level unaltered. The most important new function provided at this

level is position-to, which takes a proof-machine and a path, and performs a

sequence of "single-step" movements to place the current node at the position

indicated by the path. In practice, the path supplied to this function is generated

when the user selects a point on the display of the proof tree.

4.4 The Level 3 Proof Machine

The level 2 machine maintains and interprets paths which describe positions in

the derivation tree of a proof. The level 3 machine further interprets paths to

derive information about further detail indicated by a path derived from the

display. We shall refer to the detail of a path (with respect to a proof structure)

as that part of the path which describes a position within the display structure

of an individual node in the proof structure. (Recall from §4.1.2 that the shell

hierarchy records the structure of a Proof's sequent, as given in §4.1.1).

In this level's implementation of position-to, the detail of the sup-

plied path is recorded. This is subsequently used in the operation ap-

ply ppropriate_proofsule. This uses the detail to determine which part

of a proof node's sequent is indicated by the path, and then invokes introduce

Chapter 4. The User Interface 83

or eliminate as appropriate. Similar operations are provided to duplicate or
remove selected antecedents.

This level provides an interface which allows navigation and manipulation of

the proof tree using only path descriptions derived from the display format of

the proof. In the IPE as described in the Introduction, this is the outermost

level of proof machine'. The final level of interface is the command interpreter.

4.5 The Command Interpreter

The command interpreter forms the outermost part of the IPE's interface. A

main loop awaits input from the user (in the form of individual key presses, mouse

button clicks or mouse menu selections) and performs appropriate operations

upon a proof machine and a "display state".

The "display state" consists of several windows and state variables. The

windows are:

the main window, in which the hierarchical display of the proof structure is

maintained;

the title window. This window spans the width of the display screen. It shows

the name of the current proof on display, and the name of the symbol of

its root node.

the indicator window, which is used to display a brief description of which

task the IPE is currently performing;

'The addition of multiple-buffer capability (as described in §5.1) requires an addi-

tional layer which supports multiple instances of proof machines and operations between

them.

Chapter 4. The User Interface 84

the error window, which is used to display error messages. This window is

normally hidden behind the main window, and is popped to the top when-

ever an error occurs;

the help window. This window is toggled by a "Help On/Off" mouse menu

item, and displays a brief synopsis of the commands available.

Further temporary windows are created for some operations, typically to receive

further input from the user. In the basic IPE, the accept-data operation uses

the accept-formula, accept-term and acceptJdentifier operations defined

in the level 1 proof machine to set interactive attributes with user-provided at-

tributes. accept-data calls a text-editing function, which creates a window on

the display into which the user can type ordinary text. When the user signals

completion, this text is parsed to yield an object of the appropriate form (for-

mula, t arm or identifier). If the parsing fails then an error message is displayed

in the error window. The user must then either (attempt to) correct the text,

or abandon the attempt to change that attribute instance.

The text-editing function is a general function developed by John Cartmell. It
has its own command interpreter, has little access to its surrounding environment

and when called assumes complete control of the keyboard and mouse. Thus it

is not possible to perform other IPE operations whilst editing text. This makes

it impossible to use "cut and paste" operations to pick up arbitrary pieces of

text from the display and copy them into the edit window. In order to permit

this, we would have to re-implement window-based tools such as the text editor

in a "client-server" framework, whereby each tool maintains a local state and

communicates with the user via a central server. The server reacts to input from

the user and decides which tool should receive the input. Output requests from

tools would also be passed through the handler. A tool such as the text editor

would no longer be an ML function but an object with a state and a handler

which is invoked by the server to change the state of the object and possibly

generate output requests.

Chapter 4 The User Interface 85

This would require a complete redesign of much of the interface code used

in the IPE, but would probably be a worthwhile task. Indeed, Paul Taylor at

Edinburgh is using "SMLX" to develop tools which incorporate their own event

handlers which receive events from a central server. The handler of any kind

of object can be replaced by another which (for example) extends the set of

events to which the object will respond; this can be used to write tools in an

"object-oriented" fashion.

The state variables of the interpreter include a repetition count for the next

command, and the settings of "display-above" and "display-below" which are

used to limit the amount of proof structure displayed. Indeed, the proof machine

itself can be regarded as one of the state variables.

Early versions of IPE ran on VT100-type terminals. Thus the original inter-

face was designed for a character-based terminal without a mouse or separate

windows. Though many changes were made when IPE was ported to Sun work-

stations, the display and much of the command interface still belies its ancestry.

The display is still character-based rather than bitmap-based; this extends to

the presentation of windows, whose borders are still constructed from charac-

ters. Though some effort was spent upon trying to allow the use of IPE on

character-based and mouseless terminals, with the development of "choosers"

(see later chapters) the use of IPE without a mouse became too awkward to

make it worthwhile continuing support for VT100's. The dependence of the ear-

lier version upon the keyboard and function keys is still obvious in later versions,

although many of the functions attached to the function keys are also available

via the mouse buttons2.

The lack of a mouse on VT100 terminals enforced the use of arrow keys as a

pointing device; though still functional, these have been superceded by the Sun

mouse.

2This does not apply to the X windows IPE, where commands tied to keys in IPE

Version 5 can now be invoked using the mouse.

Chapter 4 The User Interface 86

Excepting points where formulae, terms and identifiers have to be provided, it

is possible to construct proofs largely by pointing with the mouse, or by selecting

items from the mouse menu. Further commands are invoked by single keystrokes.

4.5.1 Operation of IPE Commands

Here we describe the commands relevant to the basic IPE, and how the inter-

preter performs them.

The left mouse button acts as a selection pointer. When the button is clicked

over a point on the screen, the corresponding path through the proof display

is determined, and the proof machine repositioned accordingly. This enables

selection of a point in the proof structure (or a formula in some goal) for future

application of some other operation (egs printing that subproof into a file, or

deleting the selected premise).

The middle mouse button also repositions the proof machine when clicked.

However, it also performs some operation upon the resultant proof machine,

depending upon the symbol of the selected node in the proof structure:

If we are now positioned at a Proof node, then

applyppropriate_proof-rule is applied to the proof machine;

If we are positioned at a "text-edit point" (ie a Formula, Term or Var

node), then accept-data is invoked to change the value of the interactive

attribute instance of that node;

If the current node is none of the above, then the default action is to "zoom

in" to the selected point: it is made the new centre of the display and the

display is regenerated around it. (This does not happen when a selection

is made using the left button).

When pressed (rather than clicked), the right mouse button presents a menu

containing further commands. Those commands which apply to the IPE as

described so far are:

Chapter 4 The User Interface 87

Help On/Off This toggles the display of the help window which contains a

brief description of the IPE's commands; this display itself can be tog-

gled between displaying the functions of the mouse buttons and the keyed

commands;

Zoom In (to current) This makes the currently-selected node of the proof

machine the focus of the display; selecting with the left button then choos-

ing this option is equivalent to clicking the middle mouse button on the

same spot (unless the selected spot is appropriate for entering data or

applying a proof step).

Zoom Out(n) This moves the display focus to the nth ancestor of the selected

node, where n is a repeat-count. For example to refocus the display upon a

node which is 5 tree levels above the current node, the user would type `5'

at the keyboard and then select this option. This gives a simple method of

moving upwards through a proof tree to levels which are no longer visible

on the display;

Zoom to Root This moves the current position (and hence the display focus)

to the root of the proof machine;

Scroll Up and Scroll Down These options can be used when the display text

is longer than the available screen height. Scroll Down moves n lines down

the display text, and Scroll Up similarly, where n is a repeat-count (de-

faulting to 10). This affects only the display; the proof machine's current

position etc are not affected;

Weaken (remove premise) To use this, the user should first select a premise

of a Proof node (using the left button). This replaces the expansion (and

all subtrees) of the current node with a Remove-Antecedent production.

The intention is to remove premises which will not be needed in the sub-

proof. The name "weaken" is somewhat misleading, as it applies to the

corresponding sequent-calculus rule which adds a premise to a sequent:

thus the IPE operation performs the "backwards tactic". If the selected

Chapter 4 The User Interface 88

object is not a premise, then the display flashes and an appropriate message

appears in the error window;

Duplicate Premise This is used similarly to the Weaken option, this time

creating a second copy of the selected premise in the subgoal;

Exit IPE This creates a "confirmer" window which asks if the user really in-

tends to quit the proof session. If the user affirms this, then IPE terminates,

and all work since the last save or print is lost.

(The remaining menu options will be discussed as further features of the IPE

are introduced in later chapters). Many of the above commands can also be

activated by function keys; this is a remnant of the IPE's mouseless beginnings.

The single-letter commands relevant to the basic IPE are:

H This switches the help display between a description of the mouse button

operations and a description of the keyed commands;

d,W These perform the Duplicate and Weaken operations which are also avail-

able on the mouse menu;

< sets the value of the display variable "display-below" and regenerates the

display accordingly. If preceded by an argument count, display-below is

set to that value, otherwise the present value is incremented;

> sets the value of "display-above";

Control-R redraws the display, should it be affected by outside interference;

Control-P appends the text of the current proof display to the file

IPE.proofrecord. This provides a crude means of printing proofs; a better

method will be presented later.

As stated earlier, the arrow keys and function keys can also be used, but their

functions are duplicated by the mouse functions. However, this does allow the

use of the IPE on ordinary terminals.

Chapter 4. The User Interface 89

This completes the description of the basic IPE, which first appeared on

VT100's in early 1985. Subsequent chapters describe the ways in which the IPE

was developed over the following 11 years.

Chapter 5

Facilities for the Manipulation of
Proof Structures

In this chapter we cover a variety of operations which act upon the IPE's proof

structures themselves, ranging from tree-grafting operations to the automatic

generation of proof structures to satisfy (or at least reduce) goals.

5.1 Multiple Buffers

The representation of an IPE proof as a tree of basic rules attributed by goals

in an attribute grammar framework gives the IPE's proof structures a high de-

gree of goal-independence As we have already seen, changing the goal sup-

plied to an IPE proof structure does not alter the structure itself, although its

proven/unproven status may change, and some points of the proof may fail if
their rule applications are inappropriate to their new goals.

Thus far, the only means of altering an IPE proof structure is by expansion of

a node by the production rule appropriate to the decomposition of some formula

in its (present) goal. (Recall from §3 that this is effectively a subtree replacement

operation, where the new subtree is one of the `basic templates' of the Proof

Grammar). It is in fact perfectly feasible to perform subtree replacement with

a compound proof structure. Previously, we have talked of supplying proof

Chapter 5. Facilities for the Manipulation of Proof Structures 91

structures with a new goal; now we can turn this around and talk of applying a

proof structure to a goal.

An example of where we might take advantage of this re-usability of proof

structures would be a symmetrical proof; having constructed one half of the

proof, we could then apply this structure to the other subgoal, instead of ex-

panding the proof step-by-step. Even if the proof were not fully symmetrical,

this could still reduce repetitive work on behalf of the user. If the structure is

not fully applicable to the goal, or if any of its leaves are unproven, the points

of failure can be edited by the user as normal.'

The IPE takes advantage of the goal-independence of proof structures via its

multiple-buffer facility. Each buffer in the IPE is a distinct proof structure, with

its own root and current position. A buffer can be rooted on any symbol of the

Proof Grammar, so that we can have Theorem, Formula and Term buffers as

well as Proof buffers. When the IPE is initialised there is only one buffer, called

Main, which is rooted on Theorem. The user can create new buffers, either as

blank Theorem buffers or by copying the current subtree of the current buffer to

a new buffer. Proof structures can be re-used by applying the current subtree of

one buffer to the current position in another.

The buffer operations available in the IPE are:

change_to_buffer Given the name a buffer, makes it the current buffer. If it

already exists then its current position is restored, otherwise it is created

as a buffer rooted on Theorem and positioned at the root

copy_to_buffer Grafts a copy of the current subtree of the current buffer onto

the current position of the named buffer, or, if the named buffer does

'Although the above discussion concentrates upon proof structures, attribute-

independence is a property of semantic trees in general: there is no reason for not

being able to graft Theorem, Formula, Term, (etc) structures onto others of the same

kind; however the uses in such cases are limited.

Chapter 5. Facilities for the Manipulation of Proof Structures 92

not exist, creates it rooted on the current subtree and positioned at root.

This is the means by which a useful proof structure can be saved for re-

application.

apply_buffer Grafts the current subtree of the named buffer onto the current

position of the current buffer.

(For a fuller description of these commands and their user interfaces, see Ap-

pendix 2).

Thus for example to perform the 'symmetrical-proof' re-application, the user

would move to the root of the structure to be re-applied, copy it to another

buffer, move to the other (symmetrical) subgoal and apply that same buffer.

Related to the buffer operations is the notion of yanking. Since it is possible

that the user may wish to undo a subtree replacement (if for example they have

replaced the wrong tree), the last (non-trivial) subtree deleted by any replace-

ment operation is saved in a special Yank buffer. The yank command will graft

this tree onto the current position (which need not be the same place from which

it was saved). The tree deleted by yanking is not saved in the Yank buffer, so

that the same tree can be yanked more than once.

Multiple buffers can also prove useful in the production of sub-lemmas (see

Section 6.4): if some subgoal of the current problem would be best handled as a

lemma, then work on the main problem can be left pending in that buffer whilst

the lemma is worked on in a new buffer. It is possible to work upon multiple

attempts to prove the same conjecture (or of the same subproof) by copying the

proof or subproof to one or more buffers.

Chapter 5. Facilities for the Manipulation of Proof Structures 93

5.2 Automatic Proof Construction

We can think of the application of compound proof structures (as described in

Section 5.1) as a form of automatic proof expansion, where the proof strategy

is completely inflexible. In fact, IPE proof structures are akin to LCF tactics

constructed without using the tacticals ORELSE or REPEAT; the major dis-

tinctions being that IPE structures are interactively editable, stand as their own

validation, and have a notion of "positional partial success" (ie., failures are pin-

pointed visually). However, this is a rather limited notion of `automated proof',

since these structures must first be constructed by hand by the user in response

to some particular problem before they can be applied to other problems. A bet-

ter method of automatic proof would generate proof structures with a minimum

of user intervention.

Although one of the initial aims of the IPE project was to concentrate upon

interactive, user-directed proof, there is no escaping the fact that with the pos-

sible exception of novice users, many people find the `trivial' details of proofs

tedious to perform by hand. It was decided that the IPE should contain some

form of proof automation, if only to elide the donkey-work. This eventually

evolved into the notion of]PE-tactic.

In order to remove at least some of the aforementioned 'donkey-work', we

chose to extend the IPE's command-set by an `autoprove' mode switch, the idea

being that when autoprove was turned on, the IPE would perform some rather

simple autoproving techniques to the proof structure after each alteration by the

user. It was considered important that the interactive aspects of the IPE should

not be buried under a mountain of automated-proof technology. For this reason,

two major restrictions were imposed upon the IPE's `autoproof' mechanism:

Firstly, it should not make decisions which could later turn out to be wrong,

in the sense that a proof is directed into a dead end when other successful direc-

tions exist. This would force the user to backtrack through the automatically-

generated proof to search for the bad decision, or even worse, over-zealous faith

Chapter 5. Facilities for the Manipulation of Proof Structures 94

in computers might lead the user to believe that his problem is intrinsically in-

soluble. The autoprove mechanism should ideally make all of the unimportant

decisions (or'non-decisions') in the proof, but leave all of the important decisions

to the user.

Secondly, autoprove should perform no hidden, `magical' steps, but should

express its performance in terms of ordinary IPE proof structures, so that the

user can see the strategy chosen, and alter it if desired. In other words, autoprove

should be able to justify itself to the user.

The first autoprove strategy used in the IPE was nick-named 'prove-by-

boredom' on account of its sheer simplicity. It satisfied both requirements, but

interpreted the phrase 'non-decisions' above extremely literally. A proof node

was expanded only when there was only one possible expansion, ie when only

one formula in the goal was compound. (As an example of its limitations, it

would not proceed with show A,B&C entails A&C because the goal has two

&-formulae). Not surprisingly, this proved to be excessively limited in its appli-

cation. Something more powerful was required.

5.2.1 IPE-Tactics

To allow some freedom in the choice of our new autoprove algorithm, first we

implemented a means of describing proof strategies, which we named IPE-tactics.

IPE-tactics are defined in ML, and have to be incorporated into the ML code of

the IPE. There is no facility which allows users to define IPE-tactics within an

IPE session.

An IPE-tactic is a function which takes a goal as its argument and returns

both a list of (unproven) subgoals and a description of an IPE proof structure

which when applied to the initial goal will have the returned subgoals at its

leaves.

The proof structure description returned by an IPE-tactic is a tree whose

nodes consist of the names of basic tactics and possibly a "selected premise"

number. A special node nilTree is used to indicate an unexpanded proof node.

Chapter 5. Facilities for the Manipulation of Proof Structures 95

By forcing an IPE-tactic to return a (description of a) proof structure we

ensure that the `visible justification' criterion can be satisfied. When a (top-level)

call of an IPE-tactic returns, the IPE builds the proof structure corresponding

to the returned description and grafts it onto the current position in the main

structure.

The proof description also plays a similar part to the validation functions

returned by tactics in LCF. An IPE-tactic can use any form of heuristics to

generate its subgoals, but it must be capable of providing an IPE proof structure

which achieves the same effect. In other words, the proof structure returned need

not reflect the actual process involved in determining the subgoals.

In IPE at present, there is only one IPE-tactic available to the user: the

improved version of "autoprove". When "autoprove" mode is selected, the au-

toprove tactic is applied to the goal of each unproven leaf or failure point in

the proof structure. The resultant proof structure description is used to build a

proof structure which is then grafted onto the appropriate node.

Thus IPE-tactics represent a `middle ground' between the tactics of LCF

(which operate solely upon goals) and the transformation tactics of NUPRL

which operate upon proof trees.

Clearly, the application of an IPE-tactic to a goal can have one of three

possible outcomes:

1. The IPE-tactic can succeed, returning no subgoals and a (descriptor for)

a proof structure which completely proves the goal;

2. It can fail, by making no advance upon the goal, in which case the same

goal is returned together with a null descriptor; or

3. It can partially succeed, returning a non-empty set of (hopefully simpler)

subgoals and a non-null structure descriptor.

The implementation of IPE-tacticals, analogous to LCF's tacticals, is fairly

straightforward. The subgoals from one tactic are supplied as arguments to other

Chapter 5. Facilities for the Manipulation of Proof Structures 96

tactics as in LCF, whilst the composition of validation functions is replaced by

tree-appending the structure descriptors returned.

(Given a proof structure descriptor P and a list of proof structure descriptors

L, then tree-appending L to P involves scanning P in a depth-first manner and

replacing occurrences of nilTree in P with successive structure descriptors in

L.)

When "THEN(tacl,tac2)" is applied to some goal, tacl is applied to the

goal, giving a list of subgoals SC and a structure descriptor SD; then tac2 is

applied to each go 11 in SG. Each application of tac2 produces a new subgoal list

SG' and descriptor SD'; THEN tree-appends SD' to the appropriate point of SD

(i.e., it expands the appropriate leaf of SD by SD'), and returns the entire (new)

descriptor and all of the subgoal sets SG'.

For example, if we imagine that the tactics AndlntroTac and ImplntroTac

simply (attempt to) perform the IPE rules And-Intro and Implies_Intro upon

their goals, then the tactic application:

THEN(AndlntroTac, ImplntroTac)(show (A--+ B)&(CID))

will produce the subgoals:

show A entails B

show CID

and produce a descriptor for the IPE proof structure:

show (A--+ B)&(CID)

use And Introduction

and show A--+ B

use Implies Introduction

and show A entails B

and show CID

Chapter 5. Facilities for the Manipulation of Proof Structures 97

Note that ImplntroTac failed when applied to the subgoal show CID; how-

ever the whole application partially succeeded, for it did manage to produce new

subgoals.

"THENL(tac,tac-list)(goal)" is similar to THEN, except that each IPE-tactic

in tac-list is applied to the corresponding goal in the subgoals produced by (tac

goal). It is an error for the number of subgoals and the length of tac-list to differ,

so it is safest only to use THENL when tac is guaranteed always to produce the

same number of subgoals.

As an example,

THENL(AndlntroTac, [OrlntroTac; NotlntroTac))

(show (AFB)&("C))

produces the subgoals

show A

show B

show C entails contradiction

and the IPE proof structure

show (AFB)&("C)

use And Introduction

and show AFB

use Or Introduction

and show A

or show B

and show C entails contradiction

In "REPEAT(tac)(goal)", tac is repeatedly applied to the results of its earlier

application, until an application either succeeds or fails. Thus the safest use of

REPEAT is with tactics which are guaranteed to 'bottom-out' at some point

in the repetition process (for example, any tactic which performs Duplication

Chapter 5. Facilities for the Manipulation of Proof Structures 98

would be suspect, for by increasing the number of premises upon which successive

application can work, infinite chains of applications may be possible).

Example: if AndElimTac performs a single And_Elimination upon the first

suitable premise it finds in its goal, then

REPEAT(AndElimTac)(show A&B&C entails A&C)

will produce the subgoal

show A,B,C entails A&C

and the IPE proof structure

show A&B&C entails A&C

use And Elimination on premise 1

and show A&B,C entails A&C

use And Elimination on premise 1

and show A,B,C entails A&C

The idea of ORELSE(tacl,tac2) (goal) is that it should return the `best' proof

structure and set of subgoals for the goal. Choosing the best proof is easy if either

tacl or tac2 succeeds or fails, but the notion of partial success complicates the

issue. If both tacl and tac2 partially succeed, then some decision must be made

as to which is better. In the present implementation, the choice is crude: the

results produced by tacl are returned. This is dangerous, since it is possible

for tacl's subgoals to be unprovable whilst those of tact are provable; which

is to say that we are at risk of breaking our first criterion, that the automatic

prover should not leave the user with a dead-end proof so long as a valid proof

is possible. However, with judicious construction, tactics can still be made to

satisfy this constraint, the solution being to restrict application of ORELSE

to pairs of tactics (tacl,tac2) where given any goal only one of tacl or tac2

can partially succeed. (In fact, we do this by ensuring that tacl and tac2 are

mutually exclusive, so that in any situation at least one will fail).

Examples:

Chapter 5. Facilities for the Manipulation of Proof Structures 99

ORELSE(AndlntroTac,ImplntroTac)(show A-+ B)

will perform as for ImplntroTac,

ORELSE(AndlntroTac,AndElimTac)(show A&B entails A&D)

will perform as for AndIntroTac.

At present, IPE-tactics are solely used to implement the fixed strategy 'au-

toprove'; no further IPE-tactics are available to the user. Further applications

of IPE-tactics and extensions of their idea are given in the following subsection.

We are now ready to present the version of autoprove currently available in

the IPE. We assume that certain sequences of proof steps commute, in that the

order in which they are performed is irrelevant to the final result of the proof,

and that certain proof steps can always be performed without prejudicing the

outcome of a proof. A set of guide rules were drawn up, along the lines of , "it is

always safe to perform And_Introduction", or , "performing Implies-Elin-li nation

too soon can lead to a dead end". Those proof steps which are always safe were

encoded as tactics "AndIntroTac", "AndORExistsElimTac"2 , etc, and used as

the basic building blocks of the first stage of autoprove (together with ImmedTac,

which simply checks for immediacy in the same fashion as the IPE rule):

val AutolntroTac = ORELSE(ImmedTac,

ORELSE(AndIntroTac,

ORELSE(ImplntroTac,

ORELSE(NotlntroTac,

AlllntroTac))));

(The use of ORELSE here does not run the risk of breaking the "no dead

ends" restriction, as the -IntroTacs are all mutually exclusive (only one can

2iAndORExistsElimTac" looks through the premises of a goal until a conjunction

or existential premise is found; it then performs the appropriate elimination rule. The

tactic fails if no such premises are found.

Chapter 5. Facilities for the Manipulation of Proof Structures 100

succeed or partially succeed), whilst ImmedTac can never partially succeed).

AutoElimTac is similar although shorter:

val AutoElimTac = ORELSE(ImmedTac,

AndORExistsElimTac);

The intention for AutoproveTac is that it should alternate between attempt-

ing introductions and eliminations, and only halt when both AutolntroTac and

AutoElimTac fail (or when some combination succeeds). We define a new tactical

AlternateTac as

val AlternateTac(tl,t2)

= REPEAT(ORELSE(THEN(tl,t2), t2));

(This will repeatedly attempt to perform tl and tl alternately, even if one

or the other should fail). We can now define AutoproveTac as

val AutoproveTac

= AlternateTac(AutolntroTac, AutoElimTac);

Now we build in the old autoprove, encoded as a tactic BoredomTac (ie., the

latter will generate a new subgoal when the goal contains precisely one formula

that can be further decomposed):

val FullAutoproveTac

= AlternateTac(BoredomTac, AutoproveTac);

The resultant version of autoprove is considerably more powerful than the

previous version. In practice it is still somewhat restricted in its applicability,

often stopping at points where the user feels that the next step is too obvious: for

example, it will not alter show !xP(x) entails ?xP(x); this is because to do so

might result in a plethora of machine-chosen instantiation terms, all with names

of the form TERM_n, which could be unsightly and confusing (furthermore,

another decision taken about autoprove was that it should not travel too far

past an All_Introduction or Exists-Elimination node, so that the user would not

have to backtrack far to change the instantiation).

Chapter 5. Facilities for the Manipulation of Proof Structures 101

As a final footnote to autoprove, it must be pointed out that in fact we have

not completely satisfied the first criterion (of avoiding leading the user into dead

ends), due to the need for the duplication (or non-removal) of premises in certain

proofs (see §3.8.3). In such cases, it is possible that autoprove will lead to a dead

end, and the user must backtrack to the point where a duplication was required

and perform it by hand.

5.2.2 Uses of IPE-Tactics and Extensions to Them

Let us return to the problem of "difficult" decisions in the ORELSE IPE-tactical.

One possible solution would be to alter the definition of IPE-tactical (and by

extrapolation, that of IPE-tactic) to return lists of alternative solutions. Faced

with two partially-successful strategies, ORELSE could simply return both par-

tial solutions, leaving the decision to some higher authority. Each IPE-tactical

could then perform its usual operations on each alternative: if any succeeds,

then it alone can be returned, otherwise all alternative partial solutions could

be returned.

Whilst being thorough, this technique could lead to an exponential explosion

of alternative partial solutions, unless some "smart" heuristics were incorporated

within the IPE-tacticals Furthermore, the top-level call upon an IPE-tactic may

return a set of alternatives, which must then be chosen between by some other

process, eg user intervention. It could prove too confusing to ask the user to

choose from a bewildering array of alternative subgoals and proof structures.

However there is a method that, while not avoiding the combinatorial explo-

sion, will permit the user to keep his option open as regards the choices between

alternative proofs. The method is simply to add an "alternative-proof" construct

to the basic productions of the Proof Grammar:

Chapter 5. Facilities for the Manipulation of Proof Structures 102

Proof ::= ALT (Proof Proof)

[Proof$2.sequent = Proof$1.sequent;

Proof$3.sequent = Proof$1.sequent;

Proof$1.proven = Proof$2.proven or Proof$3.proven;

(etc)

Each subproof inherits the same goal as the parent, and the parent is con-

sidered proven when either subproof is proven. This allows two different proof

structures to be applied to the same goal at the same position, so that the user

can work on either subproof (or both) until a choice can be made between them.

ALT could be formatted in a similar fashion to Or-Intro, so that when one sub-

proof is proven, the other is hidden from view. The definitions of IPE-tactic

and IPE-tacticals would be the same as at present, except that upon finding

that both substrategies are partially successful, ORELSE would wrap up the

alternatives in an ALT node, leaving the final decision for the user to make at

leisure.

As mentioned above, IPE-tactics at present are very under-utilised; their

primary use thus far has been to experiment with different `flavours' of essentially

the same autoprove IPE-tactic, before settling upon a final choice.

The first obvious step would be to build up an internal library of useful

IPE-tactics which could be made available to the user (who may either set one

up as the default `autoprove', or call one specifically to solve a single goal).

This would not be too hard to do, as the work for autoprove has involved

producing basic IPE-tactics corresponding to many of the IPE's proof steps.

We could relax the first restriction for some of these tactics and allow greater

proving power at the cost of "dead-end risk". Useful tactics to add might in-

clude 'semi-smart' tactics capable for example of choosing suitable terms for

All-Ell mination/ Exists_Introduction (although this may mean some reworking

of the definition of IPE-tactics, allowing them to return substitution sets as

well).

Chapter 5. Facilities for the Manipulation of Proof Structures 103

Next, we might give users the ability to define their own IPE-tactics, using a

definition language consisting of certain basic IPE-tactics and the IPE-tacticals

(thus preventing the user from writing any "dirty" IPE-tactics which cheat).

This again would not be too hard to implement.

If we were prepared to forego our second criterion (that the tactic should

justify itself visibly to the user), and implement an "apply-tactic" rule in the

Proof Grammar, we could then use LCF-style tactics to solve (or partially solve)

goals without a visible justification. The advantages here would be that little

storage would be required to represent each tactic application (a single Proof

node instead of many), and that these tactics need not be restricted to the rules

of the IPE in their operation (dangerous as this suggestion may sound, there

are situations where we may want this; for example, when we chose to work

within a particular theory (see §6), we could load up a library of theory-specific

tactics which perform operations which are not available as basic IPE proof

steps). Another advantage would be that the tactic would be re-invoked should

the goal change. (With IPE-tactics at present, the fact that a tactic was invoked

at a certain point is not recorded in the proof tree. The proof tree might fail

whereas the tactic may have chosen a new; more successful, proof tree if it were

re-invoked). The disadvantages would be that the tactic would operate "as if by

magic", with little to show how its subgoals (if any) were arrived at, and that the

inner workings would not be editable by the user (the tactic application would

be acting as a hard-wired function rather than as an editable structure).

It is debatable as to whether or not tactics should be lucid, and the answer

probably depends upon the application: for teaching purposes, it would seem

better that all of the available built-in tactics should have a simple and easily-

visible relationship between their goals and subgoals, whilst in a specific practical

application the power of tactics may be more important than clarity of operation.

Chapter 5. Facilities for the Manipulation of Proof Structures 104

5.3 Storing Proof Structures

Though it might be claimed that the major aim of a proof editor is to create

new lemmas and extend the knowledge of some theory (see Section 5), the proofs

themselves are important objects. This is especially true in the IPE, where a

single proof structure may be applied to different goals. It is desirable to have the

ability to save proofs in a re-usable form between proving sessions, thus allowing

the construction of a library of "proof fragments" as well as permitting users to

save partial proofs and thus complete them over several sessions.

The IPE permits the saving of proof structures on file in a concise, goal-

independent format. Proof structures are written to files using a very simple

description language. Each production in the proof grammar is assigned a one-

or two-letter identifier. A proof node is written as its code followed by any

special attribute settings, such as the value of the selected-premise indicator.

Proof nodes involving substitutions (i.e., those with Term or Var sons) have

the unparsed text of the substitution appended; the initial conjecture below a

Theorem is similarly handled. The entire description is preceded by a single letter

denoting the root symbol of the tree. Thus for example, the

A&B&C entails A&C

by And Elimination on premise 1

and A&B, C entails A&C

by And Introduction on conclusion

and A&B, C entails A

by And Elimination on premise 1

and A,B,C entails A

is immediate

and A&B, C entails C

is immediate

proof structure

is saved as

Chapter 5. Facilities for the Manipulation of Proof Structures 105

This allows large proof structures to be saved using very little storage. The

price is that it is now a costly process to re-build a tree from its description.

In practice, the main use of the proof-saving facility has been to save in-

complete proofs between sessions, or to record solutions for tutorial purposes,

rather than to build up a library of reusable structures. This is because of the

fact that one major disadvantage of the IPE's proof structures is that they are

very large objects; it is not unknown to use several megabytes of run-time store

upon a moderately-sized proof.This makes it inadvisable to build proofs solely

by applying the proofs of earlier-proven goals in situ; then even a simple proof

would rapidly explode in size. As new facts are proven, ideally we would like to

be able to use these facts without regard to their proof. In some sense, we would

like to be able to regard lemmas and theorems as extensions to our basic set of

proof rules. The IPE's solution to this is given in §6. However, the ability to

save reusable proofs on-file is still useful in those cases where we might want to

take an existing proof which partially proves a goal, and then edit it to complete

the proof.

5.4 Printing Proofs

The on-screen display of proofs in the IPE is geared towards navigability and

editability. To facilitate the "proof-by-pointing" style, proofs are .goal-directed,

and the current premises are all displayed at each point in the proof display.

When we want a more permanent record of a proof however, the considerations

are different. We no longer need redundant repetition of premises, nor need we

Chapter 5. Facilities for the Manipulation of Proof Structures 106

print the proof in a top-down fashion. The IPE's printed proofs are radically

different from those displayed on-screen. (It is worth noting at this point that

the "proofs" displayed by the IPE are not really proofs but displays of "goal

achievement state"; the real proofs lie in the composition of the justifications for

the tactics which comprise the IPE's basic rules).

Proofs are printed in a bottom-up fashion, with attempts to reduce the re-

dundancy of premises. Several screenfuls of IPE display can collapse to a single

page of proof in this style. For example, consider our proof of A&B&C->A&C;

this prints as

Theorem: A&B&C->A&C

Proof:

1 assume A&B&C

1.1 A&B E(1)

1.2 C &E(1)

1.3 A &E(1.1)

1.4 B &E(1.1)

1.5 A&C &I(1.3,1.2)

2 A&B&C->A&C -+1(1,1.5)

QED

Incomplete proofs can also be printed, although they are rarely useful as a

guide in completing the corresponding IPE proof. Printed proofs are gener-

ated from IPE proof structures in a similar manner to the generation of saved

proof structures. Each rule in the proof grammar has an associated printout

style. Rules which extend the set of premises print the new premise (unless it

is already visible as the result of some previously printed step) and then print

the subproofs, whilst those Introduction rules which decompose the conclusion

print the subproofs first and then use the original inference rule to generate the

conclusion. The printing function makes a single top-down pass of the proof

structure; a multi-pass algorithm could additionally flag which premises actually

contribute to the proof and omit those that don't from the final printout.

Chapter 6

A Theory Database

6.1 Introduction

An important facility in any proof maintenance system is the ability to use the

results of one proof in another. We have already seen (in §5.1) that the IPE's

multiple buffers can be used to apply one proof structure to another, providing

one possible method. However, such a method becomes infeasible as we build up

a "hierarchy" of proofs. With each proof being expanded in full, the physical size

of proofs becomes very large indeed (it is not unknown for IPE sessions to require

several megabytes of run-time store), resulting in a very slow response time or

even system overflow errors. What is really needed is the ability to encode the

result of a proof in a "shorthand" form which requires little space; for example, a

form which allows one proof to refer to the result of another in a single step. This

should produce a similar result to that obtained by simply applying the original

proof, but consume much less space. The cost of this function would be the loss

of the ability to edit the proof should the original turn out to be not quite what

was wanted. The ability to use the result of one proof as a lemma in another in

the above fashion corresponds to normal practice in the construction of proofs, in

that it breaks a large problem into smaller and easier-to-manage parts, and also

in that previous results are not normally considered mutable (excepting perhaps

"by analogy with ..." or using the vague transformation "similarly,..." in which

107

Chapter 6. A Theory Database 108

cases the IPE's proof editing facilities can be used). Naturally, we would like

to be able to keep these lemmas on-file between IPE sessions, if possible in a

structured fashion which represents their dependencies.

In the following, we work towards a description of the result of an IPE proof

that encapsulates some of the proof structure's generality.

Defn. A formula schema is a formula F paired with a set of terms and a set

of formulae which occur in F. These subterms and subformulae are designated

as generic. A formula schema thus represents the set of all formulae obtained by

replacing the generic formulae and terms in the original by some other formulae

and terms. A formula thus constructed is known as an instance of the formula

schema, and the subformulae or terms used to replace the generics are known as

the generic substitutes.

For example, the formula schema

(P&Q-->R(x,y), {x},{P,Q})

represents the set of all formulae of the form P&Q-->R(x,y), where P and Q are

any formulae, and x is any term. (Note that the predicate R and the term y are

fixed). The formula (AJB)&C(z)-->R(f(y),y) is an instance of this, in which P

has been replaced by AFB, Q by C(z) and x by f(y).

The generic formulae and terms may be higher-order, in that they can contain

parameter terms. For example, we might define a formula schema for induction

over the natural numbers:

(phi(O) & !x (phi(x)-->phi(S(x))) -a !x phi(x), {},{phi(x)})

(where 0 and S(x) are the constant zero and successor functions respectively).

The meaning of the formula part is, "if we can show that phi holds for 0, and that

if for any x phi holding for x implies that it also holds for S(x), then we have that

phi holds for any x". By making phi(x) generic, we are then able to construct

induction formulae for any phi in x. For example, choosing x+x=S(S(0)).x for

phi(x), we obtain the instance

Chapter 6. A Theory Database 109

0+0=s(s(0)).0 & !x(x+x=s(s(0)).x --> s(x)+s(x)=s(s(0)).s(x))

--> !x x+x=s(s(0)).x

Each instance of the generic formula phi(x) has been replaced by the generic

substitute, and each instance of the generic parameter x as it appears in the

substitute has been replaced by the parameter of phi as it appears in the original

formula at that point.

The motivation behind the above definition is to arrive at a means of de-

scribing the result of an IPE proof as a descriptor of those formulae which the

proof structure would prove without alteration. For example, a proof structure

which proves A&B&C-+(A&C) will also prove P&Q&R-+(P&R), so we describe

the set of formulae this structure can prove by

(A&B&C-->(A&C), {},{A,B,C}).

A lemma in the IPE system is a formula schema constructed from the root

formula of an IPE proof. The generic formulae and terms are automatically

determined from the root formula as those predicates and terms which are wholly

uninterpreted in the proof, which is to say that they have no special properties

which were used in the proof. (For example, if a proof of x+y=y+x uses any

properties of + not shared by every term expression (as seems likely), then the

function + should not be genericised; on the other hand, the terms x and y will

be genericised, to yield a commutativity lemma on + for any x and y).

As described so far, all predicates and terms in an IPE proof are uninter-

preted, so that when we write x+y, the + symbol has no special meaning but is

just another (infix) function. In order to extend the IPE from a logic of uninter-

preted predicates and terms to one where we can reason about special symbols

and prove properties thereof, we need some means of defining these symbols and

giving them meanings which distinguish them from other symbols.

Chapter 6. A Theory Database

6.2 IPE Theories

110

In the previous section it was stated that all symbols in the IPE are uninter-

preted, so that symbols such as + and S(_) have no special significance. However,

consider the formula schema

(x+y=y+x, {x,y}, {})

Here, x and y are generic, but + and = are not. This means that although we

may substitute any term for x and y, + and = cannot be substituted. Thus,

this formula schema gives a property of addition (and equality) that cannot be

extended to any other symbols. When an instance of this formula schema is used,

the act of its use distinguishes the symbols + and = from any other symbols.

This use of formula schemata forms the basis of the IPE's mechanism for

extending the "realm of discourse": IPE-theories.

Defn. An IPE-theory consists of

A set P of predicate symbols, each with an arity (> 0) denoting the number

of its arguments

A set F of function symbols, each with an arity (>- 0) as for P

A set C of constant symbols

A set GF of name-labelled formula schemata, partitioned into

- A set A of axioms

- A set L of lemmas

The intention is that P,F and C declare symbols which are special within the

IPE-theory, the set A defines the special properties of these symbols, and the set

L contains IPE-generated lemmas of new properties proven using axioms from

Chapter 6. A Theory Database 111

A. (We shall see in the next section how axioms and lemmas can be used in IPE

proofs). The set GF is known as the facts of the theory.

Before giving examples of IPE-theories, we introduce some "pretty-printing"

notation to make the examples more readable.

Notation. An axiom

(Name,(F,{gt1,...,gtm},{O-1,...,O-ri}))

(where "Name" is the label of the axiom) is written as

axiom Name is

F

generic terms gt1

and ...
and gta

generic formulae gf1

and ...

and gf,,

We format lemmas similarly by replacing the word "axiom" by "lemma".

Notation We shall also intermingle the sets P,F and C of an IPE-theory as

a linear list of items of the forms

predicate Q(x,y,z) for a 3-place predicate symbol Q

function f(x) for a 1-place function symbol f
constant c for a constant c

For example, to construct a theory of natural numbers, presupposing rules

for equality, the sets P,F and C would be set up by the declarations

constant 0 for zero

function S(x) the successor function

function x+y infix addition

function x.y infix multiplication

Chapter 6. A Theory Database 112

and we would add axioms such as

axiom PlusO is

x+O = x

generic terms x

axiom PlusS is

x+S(y) = S(x+y)
generic terms x

and y

We would also want to add the induction formula schema of the previous

section as an axiom. Let us call this IPE-theory "Peano".

It must be pointed out that since the logic of the IPE is untyped, we have not

defined the naturals as a type, but merely provided new axioms from which we

can derive properties about expressions of particular forms. If we later define a

theory of lists, including a new constant "nil" (intended to represent the empty

list), then when we combine this with the Peano theory above, there is noth-

ing to prevent us from proving (for example) that x+S(nil)=S(x+nil). Strictly

speaking, we should have added another predicate, "IsNat", and the axioms

axiom IsNatZero is

IsNat(O)

axiom IsNatS is

IsNat(x) -IsNat(S(x))

axiom IsNatPlus is

IsNat(x) &IsNat(y) --IsNat(x+y)

generic terms x

and y

axiom PlusS is

Chapter 6. A Theory Database 113

IsNat(x) &IsNat(y) -->x+S(y)=S(x+y)

generic terms x

and y

and so forth. Though this would increase the security of results, it was felt that

it would make proofs extremely tedious; thus it was decided to omit such type-

guarding, and rely upon the proof-builder to perform type-checking. (Of course,

it is still possible to redefine the present set of IPE theories using guards).

The purpose in declaring symbols is to inform the IPE of symbols which

cannot be made generic in lemmas constructed in an IPE-theory. However,

at present it is the theory-designer's responsibility to ensure that axioms are

correctly stated; in particular, care must be taken to ensure that a declared

symbol is not stated as a generic in an axiom. (For example, the effect of making

"0" generic in PlusO would enable the collapsing of every expression of the form

"x+y" to "y") As we shall see later, it is not possible to make a declared symbol

into a generic in an IPE-generated lemma.

Pragmatically, IPE-theories are stored on file as UNIX directories; the sym-

bol declarations reside in a file called ".environment", and each fact (axioms

and lemmas alike) occupies a file of the same name as the label of the fact.

Some organisation is imposed via an optional "includes" header at the top of

the environment file. This allows IPE-theories to be built up from other IPE-

theories; IPE-theory inclusion involves the unions of all of the corresponding

subcomponents of the theories.

An IPE-theory is used in the IPE by loading it: this activates the symbol

declarations (so that all instances of those symbols are recognised as "special"

in future), and renders all of the facts in the theory visible for use in proofs.

Chapter 6 A Theory Database 114

6.3 Using Facts in a Proof

The simplest means by which facts can be used in the IPE is to view them as

schemata for "invisible" premises. A special rule can then be used to invoke

a single instance of a fact as a "new" premise. This was the method used in

the first theory-extended version of the IPE. The instantiation of the fact (by

substituting for each generic term or formula) had to be performed entirely by

the user.

For example, suppose that the following goal arose in a proof:

show x+0 = x, x = 0+x entails x+0 = 0+x

Obviously, the transitivity of equality would be of use here. In the IPE, this

property of equality is not assumed, but can be found as a lemma in the theory

of equality:

lemma EqualTransitive is

x=y&(y=z)--mix=z

generic terms y

and x

and z

To use this, we select the Proof node with the above goal and choose a "Recall

Fact" option on the right mouse button menu. This expands the Proof node

with a general "recall fact" template:

show x+0 = x, x = 0+x entails x+0 = 0+x

use <FACT-NAME>

and show x+0 = x, x = 0+x entails x+0 = 0+x

Now we edit the text at "FACT-NAME", replacing it with "EqualTransitive".

This gives us:

Chapter 6. A Theory Database 115

show x+O = x, x = (O+x) entails x+O = (O+x)

use lemma <EqualTransitive>

with <y> for y

and <x> for x

and <z> for z

and show x=y&(y=z)-+x=z, x+O = x, x = (O+x)

entails x+0 = (O+x)

The lemma has been instantiated to variables of the same name as its generic

terms, and added as a new premise in the subgoal. We can replace any or all

of the substitutions by a series of text-edits, so that after editing each of the

substitutions for x,y and z we get:

show x+0 = x, x = (O+x) entails x+O = (O+x)

use lemma <EqualTransitive>

with <x> for y

and <x+O> for x

and <O+x> for z

and show x+O=x&(x=O+x)-+x+0=(O+x), x+0 = x, x = (O+x)

entails x+O = (O+x)

Finally, we perform Implies Elimination and And Introduction to prove the orig-

inal goal. (Note that these latter steps could have been applied before the final

substitutions for the generic terms were chosen; this ability can be useful when

the lemma is a large complicated formula).

Needless to say, this style of interaction made any proof involving more than

several fact instantiations tedious.

6.3.1 The Facts Browser

To reduce the tedium of using facts, it was decided to use one-way matching

to perform partial instantiation of facts, by matching a formula schema against

Chapter 6. A Theory Database 116

some formula in a goal. The initial inspiration for this derives from the matching

facilities used in the B tool [Abrial 86a]. To facilitate this, although facts are

still filed as formula schemata, they are used as sequent schemata.

Facts as Sequents

Defn. A sequent schema is the sequent analogy of formula schema, consisting

of a sequent paired with sets of generic formulae and terms. For example:

(x=y,y=zf x=z,{},{x,y, z})

Conversion of the formula part of a formula schema into a sequent is per-

formed by a simple tactic called "Factic". This converts any formula into a single

sequent by repeated application of the IPE rules Implies_IntroAnd_Elim

(The application of any other rules would result in more than one

sequent (eg by And_Intro) or loss of information (eg All_Elim)).

The aim of this conversion is to reduce the formula to a form which might be

matched more usefully in a goal-directed proof. For example, consider the Equal-

Transitive lemma. A common case where it is required is when the conclusion is

of the form A=C and some B is required such that the proofs of A=B and B=C

are more obvious to the user. Then ideally we wish to replace the conclusion

A=C with the two conclusions A=B and B=C and an appeal to EqualTransi-

tive. If the matcher sought a goal-conclusion which matched the EqualTransitive

formula-schema, then it would not consider the lemma applicable in this case.

However, if the lemma is converted into a sequent, then the conclusions would

match, and tht hypotheses of the partially-instantiated lemma would become

A=<y> and <y>=C. Note that we can also match a premise of the form A=B

against either hypothesis of EqualTransitive.

However, such an approach is not without its disadvantages. By only match-

ing against the sequent form of a fact, we render the matcher incapable of match-

ing EqualTransitive against a conclusion of the same shape as the original state-

ment of the lemma. This does not occur often in practice for this lemma, but

Chapter 6. A Theory Database 117

for some other facts the conversion goes too far. The result is that sometimes

the goal has to be decomposed further (ie beyond the "natural" matching point)

before the fact will be matched. A simple solution would be to match against the

original formula and the sequent produced at each stage of the conversion, and

present any matches resulting. Whilst being more thorough, this has the dis-

advantage of being more costly, and of producing large numbers of irrelevant or

redundant matches.

The New Recall-Fact Production

The form of the new Recall-'act rule is different, taking advantage of the pre-

sentation of facts as sequents. Given a goal:

show Premise-1,....Premise-n entails Conclusion

and a fact-sequent which has been matched against it:

Hypothesis-1,... ,Hypothesis-m entails Result

Recall-'act generates the two subgoals:

show Premise-1,...,Premise-n

entails Hypothesis-1&... &Hypothesis-m

and

show Result, Premise-1,...,Premise-n entails Conclusion

That is, in order to use an instantiation of a fact-sequent, we must prove that

its hypotheses are derivable from the current premises, and that the addition of

the result to the premises can lead to a proof of the current conclusion.

Since the instantiations of generic variables in a fact-sequent are arrived at by

matching a single formula of the sequent against a formula of a goal, it is possible

that some generic variables (those not mentioned in the matched formula) will

remain uninstantiated. Thus the Recall-'act rule must still permit the user to

instantiate these.

Chapter 6. A Theory Database 118

The Fact-Matching Algorithm

The matching algorithm used is a simple one-way matcher. Given a formula

(chosen from a goal by the user) and a formula containing generic term or for-

mula variables (from the sequent form of a fact), the matcher determines whether

or not some instantiation of the generic variables could identify the fact-formula

with the goal-formula, and what the instantiation should be. It does this by

comparing the two formulae structurally, moving through the tree-form of the

formula in a depth-first fashion. The the topmost operators are compared ini-

tially, then their corresponding arguments if the operators match Whenever the

matching process arrives «t a generic variable in the fact-formula, then the vari-

able is set locally to the corresponding formula or term in the goal-formula; this

is considered to be a locally successful match. Matching fails if either formula

differs in structure (other than at generic points on the fact-formula), or if two

locally-successful matches give different substitutions for the same generic term.

This latter check is performed at each branch in the syntax trees of the formulae.

For example, suppose that "x" were a generic variable in the formula

"x+0=x". Then to matching against the goal-formula "S(O)+O=S(O)", the

matcher would compare the "=" symbols, then the "+" symbols. Next it would

match the leftmost instance of "x" against the leftmost instance of "S(O)"; since

"x" is a generic variable, it would be locally set to "S(O)". The "O"'s would be

matched next, and since there is only one substitution for "x", the term "x+0"

would be deemed to locally match "S(O)+O". Then the rightmost "x" would

also be locally set to "S(O)", and since this does not conflict with the setting for

the left-hand side of the equation, the entire fact-formula would be considered

to have matched the goal-formula under the instantiation of "x" to "S(O)".

However, "S(0)+0=0+S(0)" would not be matched, since the two occurrences

of "x" would require different substitutions.

One important point that should be made about the matching algorithm is

that it cannot deal with second-order generic variables. This means that goal-

formulae will not be matched against fact-formulae which contain a second-order

I Chapter 6. A Theory Database 119

generic. This has the consequence that the naturals induction rule will not be

matched against any problem expressed as a formula, for example, if we have the

problem "!m !n m+n=n+m", and the induction rule is expressed as a sequent

schema:

(phi(0), !x (phi(x) --'!x phi(S(x))) f- phi(x), {}, {phi(x)}),

then the "!x phi(x)" succedent will not be matched against the problem, because

"phi(x)" is a second-order generic formula.

It is still possible to match against facts which contain second-order generics,

so long as the formula matched within the fact-sequent does not contain a second-

order generic. In the case of the Substitution lemma:

lemma Substitution is

x=y --4 (f(x)=f(y))

generic terms x

and y

and f(x),

the lemma can still be matched against a goal-premise which is an equality, for

example:

show m+O=m entails n+(m+O)=(n+m)

use lemma <Substitution> on premise 1

with m+0 for x

and m for y

and <1(x)> for f(x)

and show m+O=m

and show m+0=m, f(m+0)=f(m) entails n+(m+0)=(n+m)

The user now has to replace "f(x)" in the edit-place with "n+x"; this will com-

plete the second subproof.

The decision to avoid handling second-order matching was made out of expe-

diency. As we are only performing "one-way" matching (in the sense that when

Chapter 6 A Theory Database 120

matching, only one formula contains generic variables), and since the IPE's ex-

pression syntax does not include lambda-expressions, then there should be a

finite number of matches.

The Theory Database Browser

The third component of our new means of applying facts to goals is a browser

for the IPE's theory database. This extracts facts from the database one at a

time and presents them to the matcher. The most-recently-loaded IPE-theory

is searched first, followed by the IPE-theories it includes, and so on. (Thus

the visible theory structure is searched in a breadth-first fashion). The hope is

that those facts most specific to the problem will be found early in the search.

Unfortunately this places the onus upon the user to conduct a proof of a problem

in the relevant theory, though what often happens in practice is that the contents

of irrelevant theories are "glossed over" by the matcher.

Due to a limitation in the ML interface to Unix, the only way in which the

IPE can learn which facts are present in a theory is by reading a file in that

theory (called facts) which lists them. This file defines the order in which facts

are extracted from the theory, typically, the axioms are extracted first, followed

by the lemmas in order of generation.

As a simple heuristic, new lemmas created during an IPE session are pre-

sented to the matcher before the theory structure is searched. If a user suspends

one proof in an IPE session whilst proving a new lemma to be used in the main

proof, then the new lemma will be matched first when it is required (provided

that it does match the problem in the original proof).

We are now ready to describe how these tools are combined in the "facts

chooser".

Using the Facts Chooser

The user selects a formula from a goal, choosing the formula that looks most

likely to yield a good match. (Knowing what makes a good choice comes with

Chapter 6. A Theory Database 121

experience; however the IPE's navigability and flexibility to change encourages

experimentation). If this formula is the conclusion of the goal then the matcher

will match the conclusion of each fact (produced by the store searcher) against

it, otherwise each premise of each fact is matched against it.

Suppose we are working within Peano number theory, and have the goal:

show S(O)+S(O)=S(S(O))

and chose to search for facts which match the boxed formula.

A "facts chooser" window appears on the screen, containing the following

subwindows:

A window displaying the current goal, with the selected formula high-

lighted;

A window in which matched facts are displayed;

A panel of buttons, presenting options available to the user.

The browser receives facts from the matcher, one at a time. Each fact is

converted into a sequent, and the relevant match is performed. If any match

succeeds, then the result of the match is shown to the user.

Any match instances on the display can be selected by pointing with the

mouse and pressing the left or middle mouse buttons. Selecting a match high-

lights it, and de-selects any previous selection.

The button panel comprises:

an "Accept" button, which exits the facts chooser and uses the selected

match in the proof;

"Prey" and "Next" buttons; these are used to scroll the facts-display when

there are too many matches to fit onto the window;

Chapter 6. A Theory Database 122

a "More" button, which directs the browser to find another matching fact

from the theory database and add the match(es) derived from it to the

facts-display;

a "Cancel" button, to exit the chooser and leave the proof unchanged.

Each button is only visible when it can be applied; for example, the "Accept"

button will only appear once some match has been selected, "P rev" only appears

when some matches disappear off the top of the window, and "More" disappears

when there are no more facts in the database which match with the selected

formula of the goal.

(The idea of "hiding" inapplicable buttons was inspired by the Apple Mac-

intosh style of "greying-out" options which do not apply, and rendering them

unselectable. The easiest way of mimicking this in our ML window interface was

to simply hide the button windows underneath the background).

The right button menu presents the same options which are available on the

buttons (but without any form of hiding); this is solely for consistency with the

IPE's main interface and the interface of its other subtools.

In our example, the first matching fact is the axiom S2; this is shown in

Figure 6-1 In other words, if we can show that "S(lhs)=S(rhs)", then the axiom

S2 will give us "lhs=rhs". However, intuition suggests that this new subproblem

is no easier than the old one; so we tell the browser to continue searching for

more matches.

After several more inappropriate matches, the display appears as in Figure 6-

2. Note in particular the matching of EqualTransitive. This is the result of

matching the generic terms "x" and "z" in the original statement of the lemma to

"S(0)+S(0)" and "S(S(O))" respectively. (Note that "y" has been left unmatched:

unfortunately, this is not made completely obvious in the display).

Suppose that we decide to accept this match. We click the left button over

the lines of "EqualTransitive"; this results in the match being highlighted, and

the "Accept" button appears (Figure 6-3). . When we click in the "Accept"

Chapter 6. A Theory Database 123

12:
S(S(O)+S(O))=S(S(S(O))) entails (S(O)+S(O))=S(S(O))

More

Cancel

Figure 6-1: Upon entering the Facts-Chooser

Chapter 6. A Theory Database

Interactive Proof Editor

Conjecture

A

s

Fact Matcher

124

S2:
S(S(O)+S(O))=S(S(S(O))) entails (S(0)+S(0))=S(S(0))

EqualOnTheLeft:
x=(S(0)+S(0)),x=S(S(0)) entails (S(O)+S(0))=S(S(0))

EqualOnTheRigght:
(S(0)+S(0))=y,S(S(0))=y entails (S(0)+S(0))=S(S(0))

EqualSymmetryy
S(S(0))=(S(0)+S(0)) entails (S(0)+S(0))=S(S(0))

EqualTransitive: c
(S(O)+S(O))=y,y=S(S(O)) entails (S(0)+S(0))-S(S(0))

More

Cancel

Figure 6-2: Display of several matched facts

Chapter 6. A Theory Database

Interactive Proof Editor

Conjecture

A

S

slloli (S(0)+S(0))=S(S(O))

I

Fact Matcher

Current Goa

S2: Accept
S(S(O)+S(O))=S(S(S(O))) entails (S(O)+S(O))=S(S(O))

EqualOnTheLeft:
x=(S(O)+S(O)l,x=S(S(O)) entails (S(O)+S(O))=S(S(O))

EqualOnTheRigght:
(S(0)+S(O))=y,S(S(O))=y entails (S(0)+S(O))=S(S(O))

Equal Symmetry:
(O)) (O))) (0) ()) l (S(S()) +S = S(S =(S +S 0 entai s S(0 O

IM-407

More

Cancel

125

Figure 6-3: Selecting the EqualTransitive match

Chapter 6. A Theory Database 126

button, the chooser exits, and the proof at the point where we invoked the facts

chooser is updated as shown in Figure 6-4.

Conjecture

<(S(0)+S(0))=S(S(0))>
Attempted Proof

(S(0)+S(0))=S(S(0))
F uaITransit1

an
and

and <}> for y
show (5(0)+S(D))=yy&(y=S(S(0)))
(S(0)+S(0))=S(S(0)) entails (S(O)+S(O))=S(S(O))
is immediate

Figure 6-4: After accepting the EqualTransitive match

The format of the Recall-Fact rule shows us that the generic terms "x" and

"z" have been instantiated by the match, and are fixed, but that we are free

to choose some term for "y". Since the result of the fact was matched against

the conclusion of the goal, the second subproof is trivial; thus we have used

EqualTransitive in a goal-directed fashion.

Now we must look at our new subproblems, and use our intuition to guide

our choice for "y"; there are no heuristics in the IPE to do this for us. A little

thought (and perhaps a look at the Peano axioms) will suggest that "S(S(O)+O)"

would be a good choice for "y" (Figure 6-5. With this choice, the two subgoals

(following And Introduction) are:

show S(o)+S(O)=S(S(O)+o)

Chapter 6. A Theory Database

Interactive Proof Editor

Conjecture

At

sh
us

r920 %--
(0) + 0)

and <y> for yy
and show ((0)+S(0))=y&(y=S(S(0)))

use And Introduction
and show (S(O)+S(O))=y
and show y=S(S(O))

and (S(O)+S(O))=S(S(O)) entails (S(0)+S(0))=S(S(0))
is immediate

offer: Main hoot: 1hcorem

127

Figure 6-5: Making the substitution for "y"

Chapter 6. A Theory Database

and

show S(S(O)+O)=S(S(O))

128

Applying the facts chooser to the first subgoal shows that it is an instance of

the Peano axiom "x+S(y)=S(x+y)". The second problem can be proven using

the lemma "(x=y)---*(S(x)=S(y))" and the Peano axiom "x+0=0". Figure 6-6

shows the completed proof.

Interactive Proof Editor

S(0)+S(0))=S(S(0))0

Y+S(0))=S(S(0))
by lemma <EqualTransitive> on conclusion

with S(S(O)) for z
and S(O)+S(O) for x
and <S(S(O)+O)> for yy

and (S(0)+S(0))=S(S(0)+0)&(S(S(0)+0)=S(S(0)))
by And Introduction
and (S(O)+S(O))=S(S(O)+O)

by axiom <P1usS> on conclusion
with 0 for y
and S(0) for x

and (S(0)+S(0))=S(S(0)+0) entails (S(0)+S(0))=S(S(0)+0)
is immediate

and S(S(0)+0)=S(S(0))
by lemma <S2rev> on conclusion

with S(0) for y
and S(0)+0 for x

and (S(0)+0)=S(0)
by axiom <P1usZero> on conclusion

with S(0) for x
and (S(0)+0)=S(0) entails (S(0)+0)=S(0)

is immediate
and S(S(0)+0)=S(S(0)) entails S(S(0)+0)=S(S(0))

is immediate
and (S(0)+S(0))=S(S(0)) entails (S(0)+S(0))=S(S(0))

is immediate
F1

utter: Main Root: theorem

Figure 6-6: The completed proof

Other Browsers For IPE-theories

The above implementation of the facts chooser has greatly reduced the effort in

constructing proofs in user-defined theories. However, there are occasions when

other forms of browsing are required. The other forms of obtaining facts from

the database which are available in the IPE are:

Chapter 6. A Theory Database 129

from a selection of named facts. This is a different "front end" to the

chooser, which presents a scrollable list of the names of every fact visible

from the currently loaded IPE-theories. The user can select any number of

these names; upon acceptance, the chooser is entered, matching only the

chosen facts against the selected goal-formula. Facts are displayed even

if they fail to match the goal; this allows us to browse facts which fail to

match because they contain second-order generic variables.

from all facts. In this version, every fact found is shown, whether or not a

match was obtained against the selected goal. This acts as a full browser

for the database.

by name. This is similar to the earlier form of using facts, except that the

list of fact names is presented. When one fact is chosen and accepted, the

Recall-'act rule is applied as if no generic variables had been matched.

In practice, the first variant is the most useful, once the user has acquired some

knowledge of the structure and content of the theory database.

It would also be useful to be able to see and make use of the relationships

between the various IPE-theories in the database. At present, when (say) Peano

is loaded, it is not obvious that it includes Equality, until the user starts to browse

for facts. Even then, the only distinction between Peano facts and Equality facts

is that the Peano facts are matched (or are displayed) first.

6.4 Generating Lemmas

Generating a lemma from an IPE proof is a simple task for the user. The "make-

lemma" command (invoked by the "L" key) checks that the current proof is

complete; if so, it then asks the user for the name of the theory in which the new

lemma will be placed, and a name for the new lemma. If the theory exists, and

if it doesn't already contain a lemma with that name, then the lemma is added

to the contents of the theory (together with the printed version of its proof).

Chapter 6 A Theory Database 130

It would be more secure to insist that lemmas be stored within the topmost

currently-loaded IPE-theory. However, once a theory is loaded in IPE, it cannot

be unloaded'; furthermore, theory-loading is global rather than buffer-specific.

Choosing the theory by name makes it possible to store a lemma in its most

general IPE-theory. For example, if whilst working on a proof in Peano we

discovered that we required a result from Equality which has not yet been proven,

we can start a proof of it in a new buffer; once complete, we can add it to Equality

as a lemma, then return to our original proof.

When converting the theorem of an IPE proof into a lemma, the IPE uses

information from the currently-loaded theories to determine the generic variables

of the lemma. Any term or predicate symbol used in the theorem which has not

been declared in the loaded IPE-theories is recorded as a generic variable. This

ensures the validity of the lemma with respect to the topmost loaded theory,

as it is impossible to "genericise" a predicate or term in a theorem whose proof

relies on properties of that symbol defined by the axioms of some loaded theory.

Unfortunately, there is also the risk that some symbol used by the user will

coincide unintentionally with a symbol declared in the theory, and will not be

made generic even if no special properties of the declared symbol were used in

the proof.

The generic formula produced from a theorem is stored in the database in

the same format as axioms, viz:

lemma Lemma-Name is

formula

generic terms ...
generic formulae ...

As an example, suppose that working in Peano we had proven the formula:

S(x)+S(Y)=S(S(x+Y))

'The ability to unload theories was added by Claire Jones in 1986.

Chapter 6. A Theory Database 131

Now if we decide to add it to Peano as a lemma called "DoubleS", we select the

"make-lemma" command and supply the theory and lemma names appropriately.

The symbols "S" and "+" are declared in Peano, and "=" is declared in Equality

(which Peano includes), therefore these symbols are not made generic in the

resultant lemma. However, "x" and "y" are not declared, so IPE makes them

generic. The resultant lemma is:

lemma DoubleS is

S(x)+S(y)=S(S(x+y))

generic terms x

and y

6.5 Remarks

It must be admitted that the IPE's theory database is not secure; the intention

in its design and implementation was to investigate how the IPE could be used

in conjunction with a database of results, rather than to construct a full system

for building theories. This is an area where much improvement could be made.

There are no tools to help with the construction of IPE-theories. The user

must create the theory as an ordinary UNIX directory under the "theories"

directory, and add its name to the .theories file in that directory. (The latter file

is used by the load-theory command to obtain the names of all available theories).

The.environment and facts files, and even the axiom files, must be created using

an ordinary text editor. This makes it all too possible to introduce syntactic

errors in constructing a theory. (In fact, some effort was made to build a version

of a UNIX directory browser (written in ML by John Cartmell) which could be

used to build theories. In this, users would construct the environment file and

axiom files textually, but as for text-edit points in the IPE, these would be parse-

checked before acceptance. The facts file would be automatically maintained.

However, this work was superceded by the construction of the facts chooser, and

was never completed.)

Chapter 6. A Theory Database 132

The "inclusion" method of putting IPE-theories together in the simplest

possible way is too limited: often one would like to be able to use other the-

ory constructions, for example, using ideas from the LARCH Shared Language

([GHW 85]):

renaming The ability to construct a new IPE-theory by renaming some or all of

the declared predicates, functions or constants would allow greater reuse of

IPE-theories. For example, we could build an IPE-theory "Group" which

states the basic group axioms in terms of a constant "0" and functions

"x.y" and "inv(x)", then rename these to obtain particular instances of

groups;

assumption An IPE-theory "T" might make assumptions about its defined

symbols, for example that a particular binary function is commutative.

This could be done by defining an IPE-theory "Commutative" and then

assuming this theory with the function suitably renamed. Now any theory

"T2" which refers to "T" must discharge the assumption, by showing that

the axioms of the (renamed version of) Commutative can be proven in T2;

implication Saying that one IPE-theory implies another would allow users of

the first IPE-theory to access results in the second. An IPE-theory for

integer arithmetic might imply "Group" (with a suitable renaming). Note

however that we would have to show that the implication was valid; this

could be done by proving that the axioms of the implied theory hold in the

implier.

Catering for such constructions would require a major redesign of the the-

ory database and the browser. Any tool for constructing theories would have to

maintain the proof obligations arising from implication and assumption. Renam-

ing causes special problems when browsing: when browsing a theory A which

includes a renaming of a theory B, then facts in B must be renamed before being

presented either to the facts-matcher or to the user. This could be an expensive

process where a large number of facts are involved. In special cases where the

Chapter 6. A Theory Database 133

renaming is invertible, it might prove more efficient to apply the inverse renam-

ing to a problem, perform matching in B's "own language", and then rename

the successful matches.

The method of "genericising" theorems to produce lemmas is over-strict. For

example, suppose that whilst working in Peano, we proved that

(x+0=x) &(x=0+x) ->(x+0=0+x)

using only results from equality, and realised that we had just proven transitivity

of equality. When we try to save this as a lemma in Equality, the result would

be

lemma EqualTransitive is

(x+0=x) &',(x=0+x) ->(x+0=0+x)

generic terms x

which is not what was intended. A similar situation occurs when subformulae

are not decomposed in a proof: it is possible to prove that:

(AFB) &C -IC

without using Or-Elimination on A IB; however, the resulting lemma would be

lemma AndElimLeft is

(AFB) &C -IC

generic formulae A

and B

and C

when we would prefer

lemma AndElimLeft is

A&C -'C
generic formulae A

and C

Chapter 6. A Theory Database 134

Ideally, the process of generating a lemma from a theorem should genericise:

all subformulae whose structure was not used in the proof;

all subterms t where no axiomatically-defined property of any symbol in t

was used in the proof;

all predicates P such that no defined properties of P were used in the proof.

At present, the lemma generator does not use any information from the proof

of the lemma, only of the currently-loaded IPE-theories. To proceed as above,

the generator would have to able to extract from a proof the set of axioms it

depends upon. It would be easy to extract the set of axioms and lemmas used

directly in a proof; to determine which axioms have been used to prove the

lemmas would require storing this information with the lemma (or analysing the

proof of each lemma similarly). It would also be necessary to determine the set

of symbols whose properties are defined by a particular axiom. A simpler but

overstrict solution (though less so than the present method) would be to assume

that whenever a lemma from a particular IPE-theory is used in a proof, then

no predicates or terms declared in that IPE-theory can be genericised. This

assumes that every lemma has been stored in the appropriate IPE-theory, but

would not be difficult to implement.

It would also be desirable to be able to determine the most general IPE-

theory in which a lemma could be placed. Determining this given a particular

proof of the lemma would involve finding the most general theory containing

all of the facts and declared symbols used in the proof. Were lemmas to be

automatically placed in this manner, there would be the risk that users might

be surprised when lemmas disappear from the theory chosen by the user. In

the current presentation of facts in the IPE, this would simply mean that the

lemma might not appear in the list of matched or viewed facts until later than

expected; however, if theory-structured browsing were realised, this will become

a more serious issue.

Chapter 6. A Theory Database 135

The user-directed storage of lemmas is certainly dangerous at present. No

checks are made to ensure that the lemma could genuinely be proven within the

theory chosen by the user. The ability to analyse proofs as above could be used

to restrict the user's choice. Such proof analysis could even be used to decide the

most general IPE-theory automatically. However, it could be confusing when a

result is generalised in ways unexpected by the user, producing an unrecognisable

lemma stored in a different theory from the expected position.

As stated earlier, it would be preferable if different buffers could be "opened

upon" different IPE-theories. This could be used to improve the storage of

lemmas. Suppose that a user working upon a Peano proof, discovers the need

for a new Equality lemma; it would be possible to create a buffer upon Equality

in which the lemma could be stated and proved. "Store-lemma" might insist

that the lemma be stored in the theory associated with the buffer. If such a

system were adopted, then copying of information between buffers would be

more complicated: it should only be possible to copy from buffer A into buffer

B when the theory associated with buffer A is already loaded in buffer B.

Chapter 7

Future Work and Conclusions

7.1 Recent Work

As stated in the Introduction, this thesis has concentrated upon describing the

IPE as far as Version 5, thus covering the main part of the author's contribution

to the work. However, the IPE has been developed further since the author's

involvement. This section briefly describes some of the ways in which the IPE

has been extended.

7.1.1 Rewrite Rules

In mid-1986, Claire Jones extended the IPE to include rewrite rules. Each IPE-

theory can have a list of rewrite rules (stored as a list of facts in a file ".rules").

When an IPE-theory is loaded, its rewrite rules are added to the set of loaded

rules. Any proven formula of the form x = y (where x and y are terms) can be

used as a rewrite rule for rewriting instances of x to the corresponding instances

of y (recalling that the rule may have generic subterms). Once the proof of such

a formula is completed, it can be added to the set of rewrite rules in a (user-

selected) IPE-theory. Claire has extended the Proof Grammar with a new Proof

production "Rewrite", which applies the loaded rewrite rules to the selected

premise or conclusion. Rewriting is performed repeatedly, rewriting terms "from

the outside in", until none of the rewriting rules apply.

The addition of rewrite rules has greatly improved the usability of the IPE; a

small number of rewrite rules can achieve a great deal in a single step. (A crude

136

Chapter 7. Future Work and Conclusions 137

example is that the proof in §6.3.1 could now be performed in a single step, with

only the axioms PlusS and PlusZero as rewrite rules. However, the rewrite rules

must be chosen carefully. Should the user inadvertently add "t2 = tl" as a rule

when "tl = t2" is already present, then later attempts to perform rewriting will

fail to terminate whenever one of these rules applies. Furthermore, changes to

the set of rewrite rules may cause earlier rewrites to produce different results

upon reevaluation.

7.1.2 The XIPE

In 1986, the Laboratory for Foundations of Computer Science decided to adopt

the X windows system in preference to SunView. Furthermore, the differences

between the new and old versions of SunView were such that Tatsuya Hagino's

ML window system would require extensive redesign to work under the new Sun-

View environment (indeed, Tatsuya tried and failed). To continue development

of the IPE, Tatsuya built an ML window system which used X but provided the

same interface as the old system, thus enabling the same IPE code to run under

X. Tatsuya has since proceeded to extend and improve IPE's user interface in

a variety of ways, including the "proper" display of the quantifiers "Y' and "3"

and redesign of the formula and term parser to accept a more standard syntax.

More recently, the use of the keyboard for numerous "single-stroke" commands

has been superceded by mouse menus.

Chapter 7. Future Work and Conclusions 138

7.2 Future Work

In this section we consider ways in which the Interactive Proof Editor could

be extended. Many of these involve incorporating features from other theorem

proving systems into the IPE to increase its practical applicability, rather than

areas for novel research.

An obvious extension would be to provide a typed predicate calculus, which

would increase confidence in our theorems, preventing us from proving results

such as

nil+O =nil.

One could go further and provide an implementation of a "logical frame" (as

done in the EFS). At present, the syntax of formulae and terms in the IPE is

extremely rigid. The ability to give a syntax (or just a presentation, as in PRL)

would enhance the readability of formulae. Similarly, the ability to define new

logical connectives (even if only defined in terms of the existing set of connectives)

would be useful.

The uses of IPE-tactics have not been fully developed in IPE. An immediate

extension of IPE would be to build up an internal library of IPE-tactics and allow

the user to choose from these. Slightly more long-term would be the provision of

a language in which users could construct IPE-tactics from a set of basic tactics

plus "IPE-tacticals".

Much could be done to improve the theory database. In particular, a secure

method of constructing theories is required. It would be very useful to be able to

change an IPE-theory and have the effects of the change propagate through the

rest of the database. Following from her experiences in proving a simple parser

using IPE, Claire Jones added an "Unload theory" command to the IPE as one

method of allowing the declarations of symbols and definitions of axioms in an

IPE-theory to change during a session. Unfortunately, proofs built using the

Chapter 7. Future Work and Conclusions 139

old version of the theory are not automatically forgotten! A proper dependency

structure of lemmas upon the facts used in their proofs would be the first step

(after a secure database editor) towards a change-sensitive IPE.

Claire Jones' work in adding rewrite rules to the IPE could be developed more

fully, for example taking advantage of existing work in organising sets of rewrite

rules, for example using the Knuth-Bendix algorithm to derive a confluent and

terminating set of rewrite rules (see [Dick 84]). Another possible approach would

be "user-directed" rewriting, where the user could select a subterm and ask the

store searcher to find possible (single-step) rewrites for the term. Though slower,

this would have the advantage that the user would be aware of each step made,

and that no checks need be made upon the set of rewrite rules other than that

they be proven lemmas or intended axioms.

Further experimentation upon improvements to the reusability of IPE struc-

tures is required, for example by further developing some of the ideas in §3.9.2.

Later extensions to the IPE's user interface (in particular the "chooser" in-

terface style used in the facts-matcher and for most buffer operations) suffered

from restrictions imposed by low-level details of the user interface. (For example,

unless a menu is bound to a mouse button, then no distinction is made between

pressing a button (holding it down) and clicking it. It would be interesting to

reconstruct the IPE using a more versatile set of I/O primitives; work in Edin-

burgh upon providing an interface to the X window system in Standard ML is

of interest here.

For a system which is intended to be easy to learn, the IPE's help system

is severely deficient. Some form of introductory help is required, even if only in

the form of a step-by-step guide through the development of several proofs.

Chapter 7. Future Work and Conclusions 140

7.3 Concluding Remarks

Many people have used the Interactive Proof Editor, covering a wide range from
novices to experienced practitioners of formal proof. User response to the IPE has
generally been favourable. The IPE demonstrates that proof navigability and ease

of alteration are valuable properties for proof assistants. This is particularly true
when - as is often the case - the full statement of a problem is only determined
during the process of attempting its proof.

The proof-by-pointing paradigm makes it easy to use the IPE's basic rules. It
would be worthwhile to consider how this could be extended beyond the IPE's
single-rule-per-connective restriction. For example, mouse-clicks could be used to
invoke theory-specific transformations, depending upon the shape of the selected
formula. Ideally, where the user frequently performs some operation upon formulae
of a particular pattern, it should be possible to have this operation invoked by
mouse-clicks upon formulae matching the pattern. Proof-by-pointing should be
capable of adaptation to the circumstances. That it is not so in the IPE is one of
the IPE's main shortcomings.

The present need to display all of the premises and the conclusion at each step
of the proof leads to a somewhat cluttered display. It would be better to allow the
possibility of hiding this information, at the cost of an extra "expose" operation.
There is much scope for experimentation with alternative proof displays which are
more succinct without sacrificing navigability.

When work began upon the Interactive Proof Editor, in order to perform
machine-assisted proof, one had to be an expert in the use of a particular theorem-
proving tool. Today, it seems to be the case that the learning threshold for such
systems is falling. The ideal interactive theorem proving system would be per-
fectly transparent, in the sense that users could concentrate upon the essence of
constructing proofs, rather than upon learning, or fighting with, a poor or intran-
sigent user interface. It was not intended that the Interactive Proof Editor should
be all things to all men, and it cannot be claimed that it has achieved the ideal.
For example it seems unlikely that the IPE in its present form will be useful in
tackling problems of the scale that arise in "real" formal software development.
On the other hand, systems which have been used to tackle "large but dull" the-
orems (as produced by verification condition generators) have been criticised for
the crudity of their man-machine interfaces, and for the incomprehensibility of
their machinations. There still remains a gap between the two. Nonetheless, the
IPE has provided an interface to a theorem prover which is simple to learn, and
generally "forgiving" in operation.

The IPE has also demonstrated that ML can be used to build large systems
with "proper" user interfaces, though the standard I/O mechanism requires sup-
plementary window-management primitives.

Bibliography

[Abrial 86a] Abrial, J.R., An Informal Introduction to B, Oxford Uni-

versity Program Research Group internal report, 1986.

[Abrial 86b] Abrial, J.R., B User Manual, Oxford University Program

Research Group internal report, 1986.

[Alvey 87] Alvey Programme: Annual Report 1987 Poster Supple-

ment.

[Bates-Constable 83] Bates, J.L. and Constable, R.L., Proof As Programs, Cor-

nell University Department of Computer Science report

TR 82-530, 1983.

[Boyer-Moore 79] Boyer, R.S. and Moore, J.S., A Computational Logic, Aca-

demic Press, New York, 1979.

[BTJ 87] Burstall, R.M., Taylor, P. and Jones, C., Interactive

Proof Editing using the Edinburgh Interactive Proof Ed-

itor, course organised by the Laboratory for Founda-

tions of Computer Science, University of Edinburgh, 14-

16 September 1987.

[Cardelli 83] Cardelli, L., ML Under UNIX, in Polymorphism, 1.3,

1983.

[Cohn-Milner 82] Cohn, A. and Milner, R., On Using Edinburgh LCF to

Prove the Correctness of a Parsing Algorithm, University

141

Bibliography

[Coquand-Huet 85]

142

of Edinburgh Computer Science Department Internal Re-

port CSR-113-82.

Coquand, T. and Huet, G., Constructions: A Higher-

Order Proof System for Mechanising Mathematics, Lec-

ture Notes in Computer Science 203 pps. 151-184, 1985.

[Dick 84] Dick, A.J.J., Equational Reasoning and the Knuth-Bendix

Algorithm - an Informal Introduction, Imperial College

Technical Report DOC 84/21, 1984.

[Goldberg-Robson 83] Goldberg, A. and Robson, D., Smalltalk-80: The Lan-

guage and Its Implementation, Addison-Wesley, 1983.

[Goldberg 84] Goldberg, A., Smalltalk-80- The Interactive Programming

Environment, Addison-Wesley, 1984.

[Gordon 85] Gordon, M.J., HOL: a machine oriented formulation of

higher order logic, University of Cambridge Technical Re-

port 68, 1985.

[GMW 79] Gordon, M.J., Milner, A.J. and Wadsworth, C.P. Edin-

burgh LCF, Lecture Notes in Computer Science 78, 1979.

[Griffin 87] Griffin, T.G., An Environment for Formal Systems, Cor-

nell University Computer Science Department, technical

report TR 87-846, 1987.

[GHW 85] Guttag, J.V., Horning, J.J. and Wing, J.M., LARCH in

Five Easy Pieces, DEC SRI, 1985.

[HHP 87] Harper, R., Honsell, F. and Plotkin, G., A Framework for

Defining Logics, Proceedings of the Second Symposium on

Logic in Computer Science, 1987.

Bibliography 143

[Jalili 83] Jalili, F., A General Linear-Time Evaluator for Attribute

Grammars, SIGPLAN Notices, Vol. 18, No. 9, 1983.

[Johnson 78] Johnson, S.C., Yacc: Yet Another Compiler-Compiler,

Bell Laboratories, Murray Hill, N.J. 07974, 1978.

[Jones,K 87] Jones, K.D., The Muffin Prototype: Experiences

with Smallialk-80, Alvey Software Engineering Report

060/00065, 1987.

[Kleene 64] Kleene, S.C., Introduction to Metamaihematics, North-

Holland, 1964.

[Knuth 68] Knuth, D.E., Semantics of Context-Free Languages, Math.

Syst. Theory 2, 2, pps. 127-145, 1968.

[Moore 86a] Moore, R., The Muffin Database, Alvey Software Engi-

neering Report 060/00060, 1987.

[Moore 86b] Moore, R., The Muffin Prototype, Alvey Software Engi-

neering Report 060/00066, 1987.

[Nakajima et. al. 83] Nakajima, R., Yuasa, T., Hagino, T., Honda, M.,

Koga, A., Kojima, K. and Shibayama, E., The IOTA

Programming System, Lecture Notes in Computer Science

160, Springer-Verlag, 1983.

[Paulson 85a] Paulson, L.C., Natural Deduction Theorem Proving via

Higher-Order Resolution, University of Cambridge Com-

puter Laboratory, Technical Report No. 67, 1985.

[Paulson 85b] Paulson, L.C., Interactive theorem proving with Cam-

bridge LCF: a user's manual, University of Cambridge

Computer Laboratory technical report no. 80, 1985.

Bibliography 144

[Paulson 86] Paulson, L.C., A proposal for theories in Isabelle, draft

report, 1986.

[Petersson 82] Petersson, K.P., A programming system for type the-

ory, University of Gbteborg Laboratory for Programming

Methodology memo no. 21, 1982.

[Prawitz 65] Prawitz, D., Natural Deduction, Almqvist and Wiskell

1965.

[PRL 86] The PRL Group (Constable et.al.), Implementing Math-

ematics with the Nuprl Proof Development System,

Prentice-Hall, New Jersey, 1986.

[Proofrock 83] Proofrock, J.A., PRL Programmer's Manual, Cornell Uni-

versity Department of Computer Science, 1983.

[Reps-Alpern 84]

[Reps 82]

Reps, T. and Alpern, B., Interactive Proof Checking,

ACM Symposium on Principles of Programming Lan-

guages, Salt Lake City, 1984.

Reps, T., Generating Language-Based Environments,

Ph.D. thesis, Cornell University Computer Science De-

partment, 1982.

[Reps et.al. 83] Reps, T., Teitelbaum, T. and Demers, A., Incremental

Context-Dependent Analysis for Language-Based Editors,

ACM TOPLAS 5, No. 3, 1983.

[Reps-Teitelbaum 85] Reps, T. and Teitelbaum, T., The Synthesiser Genera-

tor Reference Manual, Cornell University Department of

Computer Science, 1985.

[Ritchie 87] Ritchie, B., Interactive Proof Construction, in IEE Collo-

quium on "Theorem Provers in Theory and in Practice,

Bibliography 145

Institution of Electrical Engineers Digest No. 1987/39,

1987.

[Schmidt 83] Schmidt, D., A Programming Notation for Tactical Rea-

soning, in Proceedings of the Seventh International Con-

ference on Automated Deduction, Lecture Notes in Com-

puter Science 170, pp. 445-459, Springer-Verlag, 1984.

[Simpson 87] Simpson, D., Some Formal Methods Work, in Alvey News,

Issue No. 23, 1987.

Appendix A

The Proof Grammar

A.1 The Syntax of C-SEC

This section gives a brief description of the syntax used in C-SEC to describe

attribute grammars.

Keywords are placed in bold font; words in normal font are nonterminals.

An attribute grammar in C-SEC is described in several sections:

a title line of the form, "attribute grammar Name";

an optional "include" keyword followed by a space-separated list of names

of ML modules. These modules are then made visible throughout the

attribute grammar;

a types section, which defines the types of all the attributes used;

the declaration of the root symbol of the grammar;

a list of definitions of all symbols in the grammar;

a list of the productions of the grammar.

The type definitions are separated by semicolons and enclosed in "types

end" delimiters. Each type definition has the following form:

type-name = ML-type-expression;;

(equality ML-code;;)

146

Appendix A. The Proof Grammar 147

where "type-name" must be a single word, ML-type-expression any type expres-

sion in ML which makes sense with respect to any modules included earlier, and

ML-code defines an equality function over the given ML type (e.g. if the given

type is "int", then the function should have type "int * int -> bool"). (The

double semicolon is used as a terminator for all sections of ML code.) The "=

ML-type-expression" can be omitted when "type-name" coincides with the name

of the intended ML type.

The symbol definitions are enclosed in "symbols ... end" delimiters and

separated by semicolons. Each symbol definition has the following form:

symbol-name (attribute-defl; attribute-deft; ...)

where symbol-name is a single word, and each attribute-def is of the form

"synthesised type-name attribute-name" or "inherited type-name attribute-

name", thus declaring the named attribute as a synthesised or inherited attribute

of the symbol, which will be used to hold ML values of the corresponding type.

Grammar productions for the same symbol are grouped together, each group

being separated by a semicolon. The first production of each group is considered

to be the completing production of the symbol (and should therefore have no

right-side symbols). Each production-group is of the form:

symbol-namel ::= rule-name (symbol-name2 symbol-name3 ...)
[semantic-equationl

semantic-equation2

I

rule-name2 ...

(There is also an optional "inML... end" section prior to the semantic equa-

tions section, which can be used to load any ML code required by a particular

production).

Each semantic equation has the form:

Appendix A. The Proof Grammar 148

symbol-name$n.attribute-name = semantic-function;;

which indicates that it is defining the semantic function for the named attribute

of the nth symbol of that name in the production (numbering symbols from the

left-side of the production, and starting with 1). The semantic function can be

any ML expression whose type matches the type of the selected attribute. The

semantic-function can also have embedded references to other attributes in the

production, of the form:

%symbol-name$n.attribute-name

(the leading "%" is required to distinguish it from the ML code). If the "$n" is

omitted from an attribute reference, it defaults to the first symbol of that name

in the production.

As in ML Under Unix, comments in C-SEC are delimited with braces.

Appendix A. The Proof Grammar 149

A.2 The C-SEC Definition of the Proof Gram-

mar

attribute grammar Proof-Grammar

{ An attribute grammar for the core of the Interactive Proof Editor.
}

include Proof-Formatting

Facts-Matching

Recall-Prelims

types sequent (equality fun(m,n).m=n;;);

{ sequent ==

list of premise formulae * conclusion formula }

seqlist = sequent list;; (equality fun(m,n).m=n;;);

term (equality fun(m,n).m=n;;);

{ term = variable(string)

I expression(op:string,term list) }

formula (equality fun(m,n).m=n;;);

{ see -/jwc/Formulae for the definition }

int (equality fun(m,n).m=n;;);

bool (equality fun(m,n).m=n;;);

string (equality fun(s1,s2).s1=s2;;);

factinfo (equality eqfactinfo;;);

{ the tuple returned by recall-fact

-- see -/gforms/Recall_Prelims }

formlist = formula list;; (equality fun(f,g).f=g;;);

termlist = term list;; (equality fun(t1,t2).t1=t2;;);

subst_set = subst list option;; (equality fun(a,b).a=b;;);

subst_list = subst list;; (equality fun(a,b).a=b;;)

{ subst == term_subst(terml,term2)

I form_subst(forml,form2) }

end

Appendix A. The Proof Grammar 150

root Theorem

symbols Theorem { The root symbol of the grammar, with only one

effective production linking a conjecture formula to

its attempted proof
}

(synthesised bool proven;

{ true if the underlying proof is proven }
synthesised int print-tree-depth;

{ the number of tree levels below that are to be

displayed }
synthesised int set_ptd;

{ The user-changeable version of print-tree-depth;
This will always have no arguments in semantic

equations

}

synthesised int no-of-columns;

{ Width of display left to the current node, after
indentation }

synthesised int set_noc

{ Is to no-of-columns what set_ptd is to

print-tree-depth I
);

Proof { The main symbol in this grammar, representing each

step of a proof }
(synthesised bool proven;

{ true if the given rule is appropriate and if some

function of the validity of its subproofs is also

true }
synthesised bool appropriate;

{ true if local conditions for the given proof rule
are met }

synthesised int selected;

Appendix A. The Proof Grammar 151

{ The index of the premise to which the rule
applies (not relevent to introduction rules) }

inherited sequent sequent;

{ The goal supplied to the Proof }
synthesised seqlist subgoals;

{ The subgoals generated from applying the

operations of the proof rule to the given goal }
inherited int print-tree-depth;
synthesised int set_ptd;

inherited int no-of-columns;

synthesised int set_noc);

Term { A single term; this allows user editing of terms }
(synthesised term self;

{ The value of the term associated with this node }
inherited int no-of-columns;

synthesised int set_noc);

Formula { Similar to Term }
(synthesised formula self;
inherited int no-of-columns;

synthesised int set_noc);

Var { similar to Term }
(synthesised string self;
inherited int no-of-columns;

synthesised int set_noc);

Fact { Represents a fact from the theory database used in a

Recall proof step; unlike other user-editable points,

this has more information associated - the name of the

fact, whether it is an axiom or a lemma, its generic

parameters, and IPE-chosen substitutions for them.

}
(synthesised string name;

Appendix A. The Proof Grammar 152

{ The name-label of a fact (eg EqualTransitive) }
synthesised factinfo recall;

{ The bundle of info that comes from
"recall-fact (name)" }

synthesised bool valid;
{ True if the named fact actually exists }

synthesised formula fact;
{ The fact as a single formula }

inherited formlist gents;

{ The generic formulae of a fact, renamed to avoid

coincidence of generic parameter names with

variables in the goal, ie generic phi(x) becomes

generic phi(x') if x occurs at all in the goal

}

inherited termlist gents;

{ Similar to gents }
inherited subst_set autosubsts;

{ Those substitutions for generics which are

automatically decided by the IPE }
synthesised sequent sequent;

{ The fact expressed as a single sequent, eg

x=y&y=z->x=z I==> x=y,y=z entails x=z }
synthesised int selected

{ If formula-matching is carried out between a

premise of the goal and a premise of the

fact-sequent, this holds the index of the chosen

fact-premise }
);

GenFormList { This node allows the user to provide substitutions
for those generic formulae not substituted for by

the IPE }

(synthesised subst_list substs;

{ The substitutions provided by the user, plus

any others neither automatically nor user

Appendix A. The Proof Grammar 153

chosen. This is necessary because the set of
system-chosen substitutions is likely to

change when the goal changes.

}

synthesised subst_list user_substs;

{ The set of substitutions provided

by the user }
inherited formlist still_genfs;

{ Those generic formulae not chosen

by the system }
inherited int print-depth;

inherited int no-of-columns;

synthesised int set_noc);

GenTermList { Similar to GenFormList }
(synthesised subst_list substs;

synthesised subst_list user_substs;

inherited termlist still-gents;
inherited int print-depth;
inherited int no-of-columns;

synthesised int set_noc)

end

productions

Theorem :.= Carte-Blanche () { Completing production for Theorem

-- never used!! }
[Theorem.proven = false;;

Theorem.print_tree_depth = 100;; { These values are }
Theorem.no_of_columns = 79;; { quite arbitrary! }
Theorem.set_ptd = "1;;
Theorem.set_noc = "1;;

I

I Theorem (Formula Proof)

[Theorem.proven = %Proof.proven;;

Appendix A. The Proof Grammar 154

Theorem.print_tree_depth = if %Theorem.set_ptd > 0

then /.Theorem.set_ptd

else 10;;

Theorem.set_ptd = "1;;
{ set_ptd is altered by a higher level in the

IPE: whenever this node is the current node,

set_ptd is set to the current print tree

depth value (eg 5). This value is then

passed to Theorem.print_tree_depth, and thus

to the chain of print-tree-depth attributes
below the current node. When we move away

from this node, set_ptd is made negative so

that print-tree-depth inherits its value

from above (or as in this case, is set to

a default value, since there is no "above")

}

Theorem.no_of_columns = if %Theorem.set_noc > 0

then %Theorem.set_noc

else 0;;
Theorem.set_noc = "1;;
Proof.sequent = make_sequent([],'/Formula.self);;

{ The initial goal is "show Formula" }

Proof. print_tree_depth =

if '/Proof.set_ptd > "1

then '/.Proof. set_ptd

else %Theorem.print_tree_depth - 1;;

{ See the note under Theorem.print_tree_depth }

Proof.no_of_columns =

if '/Proof.set_noc > "1

then %Proof.set_noc

else subproof_width %Theorem.no_of_columns;;

Formula.no_of_columns =

if '/Formula.set_noc > -1

then '/.Formula.set_noc

else %Theorem.no_of_columns - 5;;

Appendix A. The Proof Grammar 155

];

Proof ::= Still-To-Prove 0
{ The completing (or default) production for

Proof, this is similar to the immediate rule,
except that it won't complain if the goal is
not immediate

}
[Proof. appropriate = true;;

{ Always applicable }
Proof.proven = is-immediate %Proof.sequent;;

Proof.selected = 1;;

Proof.subgoals = nil;;
Proof.set_ptd = "1;;

Proof.set_noc = "1;;

I

I Immediate ()

[Proof. appropriate = is-immediate %Proof.sequent;;

Proof.proven = %Proof.appropriate;;

Proof.selected = 1;;

Proof.subgoals = nil;;

Proof.set_ptd = "1;;

Proof.set_noc = "1;;

And-Intro (Proof Proof)

{ show A&B I==> [show A;show B] }
[Proof$1.appropriate =

is-And(succedent %Proof$1.sequent);;
Proof$1.proven = %Proof$1.appropriate &

%Proof$2.proven & %Proof$3.proven;;

Proof$1.subgoals =

if %Proof$1.appropriate

then And-intro %Proof$1.sequent

else [empty_sequent;empty_sequent];;

Appendix A. The Proof Grammar 156

Proof$2.sequent = hd %Proof$l.subgoals;;

Proof$3.sequent = hd (tl %Proof$1.subgoals);;

Proof$2.print_tree_depth =

if %Proof$2.set_ptd > "1

then %Proof$2.set_ptd

else %Proof$1.print_tree_depth-1;;

Proof$2.no_of_columns =

if %Proof$2.set_noc > -1

then %Proof$2.set_noc

else subproof_width %Proof$l.no_of_columns;;

Proof$3.print_tree_depth =

if %Proof$3.set_ptd > "1

then %Proof$3.set_ptd

else %Proof$1.print_tree_depth-1;;

Proof$3.no_of_columns =

if %Proof$2.set_noc > -1

then %Proof$2.set_noc

else subproof_width %Proof$1.no_of_columns;;

Proof$1.selected = 1;;

Proof.set_ptd = "1;;
Proof.set_noc = "1;;

Or_Intro (Proof Proof)

{ show AFB =_> either show A or show B }
[Proof$1.appropriate =

is_Or(succedent %Proof$l.sequent);;

Proof$1.proven = %Proof$l.appropriate &

(%Proof$2.proven or %Proof$3.proven);;

Proof$1.subgoals =

if %Proof$l.appropriate

then Or_intro %Proof$1.sequent

else [empty_sequent;empty_sequent];;

Proof$2.sequent = hd(%Proof$l.subgoals);;

Proof$3.sequent = hd(tl(%Proof$l.subgoals));;

Appendix A. The Proof Grammar 157

Proof$2.print_tree_depth =

if %Proof$2.set_ptd > "1

then %Proof$2. set_ptd

else %Proof$1.print_tree_depth-1;;

Proof$3.print_tree_depth =

if %Proof$3.set_ptd > -1

then '%,Proof$3. set_ptd

else '' /,Proof$1.print_tree_depth-1;;

Proof$2.no_of_columns =

if %Proof$2.set_noc > -1

then %Proof$2. set_noc

else subproof_width '' /,Proof$l.no_of_columns;;

Proof$3.no_of_columns =

if %Proof$3.set_noc > -1

then %Proof$3.set_noc

else subproof_width %Proof$1.no_of_columns;;

Proof$1.selected = 1;;

Proof.set_ptd = -1;;
Proof.set_noc = -1;;

I

Imp_Intro (Proof)

{ show A->B =_> show A entails B }
[Proof$1.appropriate =

is_Implies(succedent %Proof$1.sequent);;

Proof$1.proven =

%Proof$1.appropriate & %Proof$2.proven;;

Proof$2.sequent =

if '/,Proof$l.appropriate

then hd(Implies_intro %Proof$1.sequent)

else empty_sequent;;

Proof$2.print_tree_depth =

if %Proof$2.set_ptd > -1

then %Proof$2.set_ptd

else %Proof$1.print_tree_depth-1;;

Appendix A. The Proof Grammar 158

Proof$2.no_of_columns =

if %Proof$2.set_noc > "1

then %Proof$2.set_noc

else subproof_width %Proof$1.no_of_columns;;

Proof$1.selected = 1;;

Proof.subgoals = nil;;
Proof.set_ptd = "1;;
Proof.set_noc = "1;;

I

I Not_Intro (Proof)

{ show -A =_> show A entails contradiction }
[Proof$1.appropriate =

is_Not(succedent %Proof$l.sequent);;

Proof$1.proven =

%Proof$1.appropriate & '/.Proof$2.proven;;

Proof$2.sequent = if %Proof$l.appropriate

then hd(Not_intro '/.Proof$l.sequent)

else empty_sequent;;

Proof$2.print_tree_depth =

if %Proof$2.set_ptd > "1

then %Proof$2.set_ptd

else %Proof$1.print_tree_depth-1;;

Proof$2.no_of_columns =

if '' /.Proof$2.set_noc > "1

then %Proof$2.set_noc

else subproof_width %Proof$l.no_of_columns;;

Proof$1.selected = 1;;

Proof.subgoals = nil;;
Proof.set_ptd = "1;;
Proof.set_noc = "1;;

I

All_Intro (Var Proof)

{ show !xP(x) ==> show P(Var)

Appendix A. The Proof Grammar 159

+ Var not free in goal }
inML

import Symbol_Table;;

end

[Proof$1.appropriate =

is_ForAll(succedent %Proof$1.sequent)

& is_unique_identifier(%Proof$1. sequent,%Var.self)

& not(is_global_constant %Var.self);;

Proof$1.proven =

%Proof$1.appropriate & %Proof$2.proven;;

Proof$2.sequent =

if %Proof$1.appropriate

& is-unique-identifier(%Proof$1.sequent,

%Var.self)

then hd(All_intro (%Proof$1.sequent, %Var.self))

else empty_sequent;;

Proof$2.print_tree_depth =

if %Proof$2.set_ptd > -1

then %Proof$2.set_ptd

else %Proof$1.print_tree_depth-1;;

Proof$2.no_of_columns =

if %Proof$2.set_noc > -1

then %Proof$2. set_noc

else subproof_width %Proof$l.no_of_columns;;

Proof$1.selected = 1;;

Proof.subgoals = nil;;

Proof.set_ptd = -1;;

Proof.set_noc = -1;;

Var.no_of_columns = if %Var.set_noc > -1

then ''/,Var.set_noc

else %Proof$1.no_of_columns - 5

- (size "All Introduction");;

I

I Exists_Intro (Term Proof)

Appendix A. The Proof Grammar 160

{ show ?xP(x) ==> show P(Term) for any Term }
[Proof$1.appropriate =

is_ThereExists(succedent %Proof$1.sequent);;

Proof$1.proven =

%Proof$l.appropriate & %Proof$2.proven;;

Proof$2.sequent =

if %Proof$1.appropriate

then hd(Exists_intro (%Proof$l.sequent,

%Term.self))

else empty_sequent;;

Proof$2.print_tree_depth =

if %Proof$2.set_ptd > "1

then %Proof$2.set_ptd

else %Proof$1.print_tree_depth-1;;

Proof$2.no_of_columns =

if %Proof$2.set_noc > "1

then 'Proof$2.set_noc

else subproof_width %Proof$1.no_of_columns;;

Term.no_of_columns =

if %Term.set_noc > "1

then %Term.set_noc

else %Proof$1.no_of_columns - 5

- (size "Exists Introduction");;

Proof$1.selected = 1;;

Proof.subgoals = nil;;
Proof.set_ptd = "1;;

Proof.set_noc = "1;;

I And_Elim (Proof)

{ show A&B entails C ==> show A,B entails C }
[Proof$1.selected = 1;;

Proof$1.appropriate =

is_And(antecedent (%Proof$l.sequent,

%Proof$1.selected))

Appendix A. The Proof Grammar 161

?? ["antecedent"] false;;
Proof$1.proven =

%Proof$l.appropriate & %Proof$2.proven;;

Proof$2.sequent = if %Proof$1.appropriate

then hd(And_elim(%Proof$1.sequent,

%Proof$1.selected))
else empty_sequent;;

Proof$2.print_tree_depth =

if %Proof$2.set_ptd > "1

then %Proof$2.set_ptd

else %Proof$1.print_tree_depth-1;;

Proof$2.no_of_columns =

if %Proof$2.set_noc > "1

then %Proof$2. set_noc

else subproof_width %Proof$1.no_of_columns;;

Proof.subgoals = nil;;
Proof.set_ptd = "1;;
Proof.set_noc = "1;;

]

Or_Elim (Proof Proof)

{ show AFB entails C

__> [show A entails C; show B entails C] }
[Proof$1.selected = 1;;

Proof$1.appropriate =

is_Or(antecedent (%Proof$1.sequent,

%Proof$1.selected))

?? ["antecedent"] false;;
Proof$1.proven = %Proof$1.appropriate

& %Proof$2.proven & %Proof$3.proven;;

Proof$1.subgoals =

if %Proof$1.appropriate

then Or_elim (%Proof$l.sequent,

%Proof$1.selected)

else [empty_sequent;empty_sequent];;

Appendix A. The Proof Grammar

Proof$2.sequent = hd(%Proof$i.subgoals);;

Proof$3.sequent = hd(tl %Proof$i.subgoals);;

Proof$2.print_tree_depth =

if %Proof$2.set_ptd > -1

then %Proof$2.set_ptd

else %Proof$1.print_tree_depth-1;;

Proof$3.print_tree_depth =

if %Proof$3.set_ptd > -1

then %Proof$3.set_ptd

else %Proof$1.print_tree_depth-1;;

Proof$2.no_of_columns =

if %Proof$2.set_noc > -1

then %Proof$2.set_noc

else subproof_width %Proof$1.no_of_columns;;

Proof$3.no_of_columns =

if %Proof $3.set_noc > -1

then %Proof $3 . s et_noc

else subproof_width %Proof$1.no_of_columns;;

Proof.set_ptd = "1;;
Proof.set_noc = -1;;

162

I Imp_Elim (Proof Proof)

{ show A->B entails C

=_> [show A; show B entails C] }
Proof$1.selected = 1;;

Proof$1.appropriate =

is_Implies(antecedent (%Proof$i.sequent,

%Proof$1.selected))

?? ["antecedent"] false;;
Proof $1. proven = '/.Proof $ i .appropriate

& %Proof$2.proven & %Proof$3.proven;;

Proof$1.subgoals =

if %Proof$i.appropriate

then Implies_elim (%Proof$1.sequent,

Appendix A. The Proof Grammar 163

else

'/.Proof$1. selected)

[empty_sequent;empty_sequent];;

Proof$2.sequent = hd('/,Proof$l.subgoals);;

Proof$3.sequent = hd(tl %Proof$1.subgoals);;

Proof$2.print_tree_depth =

if '/.Proof$2. set_ptd > "1

then '' /.Proof$2. set_ptd

else %Proof$1.print_tree_depth-1;;

Proof$3.print_tree_depth =

if '' /.Proof$3. set_ptd > "1

then %Proof$3.set_ptd

else '' /.Proof$l.print_tree_depth-1;;

Proof$2.no_of_columns =

if '/,Proof$2.set_noc > "1

then '/,Proof$2. set_noc

else subproof_width %Proof$l.no_of_columns;;

Proof$3.no_of_columns =

if %Proof$3.set_noc > "1

then %Proof$3.set_noc

else subproof_width '' /,Proof$l.no_of_columns;;

Proof.set_ptd = -1;;

Proof.set_noc = "1;;

Not_Elim (Proof)

{ show -A entails B ==> show A }
[Proof$1.selected = 1;;

Proof$1.appropriate =

is_Not(antecedent ('/,Proof$1.sequent,

%,Proof$l.selected))

?? ["antecedent"] false;;
Proof$1.proven =

''/,Proof$l.appropriate & '/,Proof$2. proven; ;

Proof$2.sequent =

if %Proof$l.appropriate

Appendix A. The Proof Grammar 164

then hd(Not_elim (%Proof$l.sequent,

%Proof$1.selected))

else empty_sequent;;

Proof$2.print_tree_depth =

if %Proof$2.set_ptd > "1

then %Proof$2.set_ptd

else %Proof$1.print_tree_depth-1;;

Proof$2.no_of_columns =

if %Proof$2.set_noc > "1

then %Proof$2.set_noc

else subproof_width %Proof$1.no_of_columns;;

Proof.subgoals = nil;;
Proof.set_ptd = "1;;
Proof.set_noc = "1;;

I

I All_Elim (Term Proof)

{ show !xP(x) entails C

==> show P(Term) entails C for any Term

Proof$1.selected = 1;;

Proof$1.appropriate =

is_ForAll(antecedent (%Proof$l.sequent,

%Proof$l.selected))

?? ["antecedent"] false;;
Proof$1.proven =

%Proof$l.appropriate & %Proof$2.proven;;

Proof$2.sequent =

if %Proof$l.appropriate

then hd(Al1_elim (%Proof$1.sequent,

%Proof$1.selected,

%Term.self))

else empty_sequent;;

Proof$2.print_tree_depth =

if %Proof$2.set_ptd > "1

then %Proof$2.set_ptd

}

Appendix A. The Proof Grammar

I

else %Proof$l.print_tree_depth-1;;

Proof$2.no_of_columns =

if %Proof$2.set_noc > "1

then %Proof$2.set_noc

else subproof_width %Proof$1.no_of_columns;;

Term.no_of_columns =

if %Term.set_noc > -1

then %Term.set_noc

else %Proof$1.no_of_columns - 5

- (size "All Elimination");;
Proof.subgoals = nil;;
Proof.set_ptd = "1;;
Proof.set_noc = °1;;

Exists_Elim (Var Proof)

{ show ?xP(x) entails A

show P(Var) entails A

+ Var not free in goal }
inML

import Symbol_Table;;

end

165

Proof$1.selected = 1;;

Proof$1.appropriate =

is_unique_identifier(%Proof$1.sequent,

%Var.self)

& (not (is-global-constant %Var.self))

& (is_ThereExists(antecedent(''%Proof$1.sequent,

%Proof$1.selected))

?? ["antecedent"] false);;

I.

Proof$1.proven =

%Proof$1.appropriate & %Proof$2.proven;;

Proof$2.sequent =

if %Proof$1.appropriate

& is_unique_identifier(%Proof$l.sequent,

Appendix A. The Proof Grammar 166

'/.Var. self)
then hd(Exists_elim (%Proof$1.sequent,

%Proof$1. selected,

%Var.self))

else empty_sequent;;

Proof$2.print_tree_depth =

if %Proof$2.set_ptd > "1

then 7..Proof$2. set_ptd

else %Proof$1.print_tree_depth-1;;

Proof$2.no_of_columns =

if %Proof$2.set_noc > "1

then %Proof$2. set_noc

else subproof_width %Proof$1.no_of_columns;;

Var.no_of_columns =

if %Var.set_noc > "1

then %Var.set_noc

else %Proof$1.no_of_columns - 5

- (size "Exists Elimination");;
Proof.subgoals = nil;;
Proof.set_ptd = "1;;
Proof.set_noc = "1;;

Remove_Antecedent (Proof)

{ show A entails B =_>

show B (for tidying up!) }
[Proof$1.selected = 1;;

Proof$1.appropriate =

let val test=antecedent(''%Proof$1.sequent,

%Proof$1.selected)

in
true

end

?? ["antecedent"] false;;
Proof$1.proven = %Proof$2.proven;;

Appendix A. The Proof Grammar 167

Proof$2.sequent =

if %Proof$1.appropriate

then remove-antecedent (%Proof$l.sequent,

%Proof$1.selected)

else empty_sequent;;

Proof$2.print_tree_depth =

if %Proof$2.set_ptd > "1

then %Proof$2.set_ptd

else %Proof$1.print_tree_depth-1;;

Proof$2.no_of_columns =

if '/.Proof$2.set_noc > "1

then %Proof$2.set_noc

else subproof_width %Proof$l.no_of_columns;;

Proof.subgoals = nil;;
Proof.set_ptd

Proof.set_noc

I

Recall (Fact GenTermList GenFormList Proof Proof)

{ Match the named fact against the current

goal. See "/gforms/Facts_Matching.ml for
details }

inML

import Generic_Formulae;

{ Now we need to import Recall_Prelims again, in
order to make the desired definition of snd

visible
}

import Recall-Prelims;;

end

[Proof$1.subgoals

= let val substs

= give-priority-to(%Fact.autosubsts,

{over} (some(%GenTermList.substs

@ %GenFormList.substs)));

Appendix A. The Proof Grammar 168

val (GF,GT) = unzip_substs substs

{ give-priority-to Si S2 will remove

those substitutions in S2 which occur

in Si

}
in

fact_subgoals(Instantiate_Generics(%Fact.sequent,

GF,GT),

%Proof$i.sequent)

end {of let..in};;
{ the subgoals will be

show premises,fact-conclusion entails conclusion

show premises entails AND(Fact-premises)

The latter goal comes second so that we can easily

omit it from the display if the fact has no

premises.

}

Proof$2.sequent = hd %Proof$i.subgoals;;

Proof$3.sequent = hd(tl %Proof$i.subgoals);;

GenTermList.still_gents =

undetermined-terms %Fact.gents %Fact.autosubsts ;;
GenFormList.still_genfs =

;; undetermined-formulae %Fact.genfs %Fact.autosubsts

Fact.autosubsts =

if %Proof$i.selected < "1

then none

else if %Proof$i.selected = "i
then match_formulae(%Fact.genfs,'/.Fact.gents)

(succedent(%Fact.sequent),

succedent(%Proof$i.sequent))

else match_formulae('/.Fact.genfs,%Fact.gents)

(antecedent(%Fact.sequent,

%Fact.selected),

antecedent(%Proof$i.sequent,

%Proof$i. selected))

Appendix A. The Proof Grammar 169

??["antecedent"] none;;

{ Thus we match the conclusion of the fact
against the goal conclusion, unless otherwise

informed, in which case we match a particular
premise in the goal to a particular fact-
premise: both of these are determined outside

the grammar.

NOTE: We should still allow old-fashioned

facts matching, where we don't want to perform

any auto-substitution. We will probably

represent this by setting Fact.selected to -2.

NOTE 2: autosubsts is set to none should

either call of antecedent (goal or fact) fail.
}

Fact.genfs = map (avoid-parameter-clash-in-formula

(all_vars_of_sequent %Proof$l.sequent))

(snd '/.Fact. recall) ; ;

{ Thus for example, a generic phi(x) becomes

phi(x') if the variable x occurs in the goal }

Fact.gents = map (avoid-parameter-clash-in-term

(all_vars_of_sequent '/.Proof$l.sequent))

(third %Fact.recall);;

Proof$1.selected = -2;;

{ This setting ensures that Autosubsts is none

by default.

}

Proof$1.appropriate = '/.Fact.valid;;

{ I suppose we should also check that if we are

matching premises, then both selected premises

should actually exist.

}

Proof$1.proven = %Proof$l.appropriate

& '/.Proof$2.proven

& Proof$3.proven;;

GenTermList.print_depth =

Appendix A. The Proof Grammar 170

%Proof$l.print_tree_depth - 1;;
GenFormList.print_depth =

%Proof$l.print_tree_depth - 1;;
GenTermList.no_of_columns =

if Y.GenTermList.set_noc > "1

then %GenTermList.set_noc

else %Proof$l.no-of-columns;;

GenFormList.no_of_columns =

if %GenFormList.set_noc > "1

then %GenFormList.set_noc

else %Proof$l.no-of-columns;;

Proof$1.set_ptd = "1;;

Proof$1.set_noc = -1;;
Proof$2.print_tree_depth =

if %Proof$2.set_ptd > "1

then %Proof $2 . s et_ptd

else %Proof$1.print_tree_depth-1;;

Proof$2.no_of_columns =

if %Proof$2.set_noc > -1

then %Proof$2. set_noc

else subproof_width %Proof$l.no-of-columns;;

Proof$3.print_tree_depth =

if %Proof$3.set_ptd > "1

then %Proof$3. set_ptd

else %Proof$1.print_tree_depth-1;;

Proof$3.no_of_columns =

if %Proof$3.set_noc > "1

then %Proof$3.set_noc

else subproof_width %Proof$l.no-of-columns;;

I

Duplicate_Antecedent (Proof)

{ show A entails B ==> show A,A entails B }

[Proof$1.selected = 1;;

Proof$1.appropriate =

Appendix A. The Proof Grammar 171

let val test=antecedent('%Proof$1.sequent,

%Proof$1.selected)

in true end

?? ["antecedent"] false;;
Proof$1.proven = %Proof$2.proven;;

Proof$2.sequent =

if ''/.Proof$1.appropriate

then duplicate-antecedent (%Proof$i.sequent,

%Proof$1.selected)

else empty_sequent;;

Proof$2.print_tree_depth =

if %Proof$2.set_ptd > "1

then %Proof$2.set_ptd

else %Proof$1.print_tree_depth-1;;

Proof$2.no_of_columns =

if %Proof$2.set_noc > "1

then '/.Proof$2. set_noc

else subproof_width %Proof$1.no_of_columns;;

Proof.subgoals = nil;;
Proof.set_ptd = "1;;

Proof.set_noc = "1;;

];

Term ::= Term()

[Term.self = variable(NewTermName());;

{ Initially "TERM-n", this can be

altered by the user }

Term.set_noc = "1;;

];

Formula :.= Formula()

[Formula.self = atomic("FORMULA",);;
Formula.set_noc = "1;;

];

Appendix A. The Proof Grammar 172

Var ..= Var()

[Var.self = "VAR";;

Var.set_noc = "1;;
];

Fact A_Fact ()

inML

import Factic;

{ A version of tactics especially implemented to

allow the function Factic without dependency

upon the Proof_Grammar!

}
import Recall_Prelims;;

end

[Fact.name = "FACT-NAME";;

{ Altered by the user, either directly, or by

choosing from a menu of facts }
Fact.recall =

if '/.Fact.name = "FACT-NAME"

then dummy-recall-option

else let val (f,fl,tl,aorl)

= recall '/.Fact .name

?? ["unknown fact"] dummy-recall

in
case f of

atomic(fname,nil)

if fname = "dummy-fact"

then factinfo(f,nil,nil,none,
"dummy-fact")

{ no such fact }
else factinfo(f,fl,tl,some(aorl),

%Fact.name)

_ factinfo(f,fl,tl,some(aorl),

Appendix A. The Proof Grammar

%Fact.name)

end {of let..in};;
Fact.sequent = (Factic (fst(%Fact.recall)));;

{ The sequent corresponding to the fact,
eg x=y&y=z->x=z ==> x=y,y=z entails x=z }

Fact.selected = -1;;
{ Which premise of the fact is to be used in

the matching (-1 === conclusion)}

Fact.valid = (fifth %Fact.recall) <> "dummy-fact";;

Fact.fact = fst %Fact.recall;;

173

GenFormList :.= A_GenFormList ()

{ Those generic formulae which the user

has to supply }
[GenFormList.substs

= let val new_subst f
= form_subst(f,f);

{ turns a term into a subst }
val new_substs

{ Those generic formulae for which the

user has not supplied a

substitution }

= map new_subst

(undetermined-formulae

%GenFormList.still_genfs

(some %GenFormList.user_substs))

in
new_substs ® (%GenFormList.user_substs)

end {of let..in};;
GenFormList.user_substs = nil;;

{ user_substs will change as the user supllies new

formula substitutions.
}

Appendix A. The Proof Grammar 174

GenFormList.set_noc = "1;;
];

GenTermList A_GenTermList ()

[GenTermList.substs

= let val new_subst f
= term_subst(f,f);

{ turns a term into a subst }

val new_substs

{ Those generic terms for which the

user has not supplied a

substitution }

= map new_subst

(undetermined-terms

%GenTermList.still_gents

(some %GenTermList.user_substs))

in
new_substs @ (%GenTermList.user_substs)

end {of let..in};;
GenTermList.user_substs = nil;;

{ user_substs will change as the user supllies new

term substitutions.
}

GenTermList.set_noc = "1;;

end

Appendix B

The IPE User Manual

This appendix consists of a copy of the user manual assembled by the author
for distribution with IPE Version 5. The only constraint used in formatting the
manual was to fit it into 80 character columns, enabling it to be scanned through
on a standard tty. Thus the contents page expresses the positions of sections as a
percentage of the whole text. (There is a aTEXversion, created at Edinburgh by
Claire Jones, describing the XIPE, which draws upon material included here).

175

Appendix B. The IPE User Manual 176

Interactive Proof Editor -- Brief User Guide

Contents

-------- (approx.%)

Starting Off ... 0

Some Notation ..7

The Sun Mouse .. 18

The Keypad ...21
Keyboard Commands ..29
Mouse Menu Commands ..50
The Text Editor ..55
Using the Choosers ...60
Using Facts ..70

The Theory Database ..80
Syntax of Formulae ...95
Bugs ... 100

Starting Off (on the Sun console)

Read the file IPE.README for info on termcaps, etc.

IF using the Sun console:

Within the "suntools" window system, start a new shell window.

Stretch it so that it covers almost the entire screen (this MUST

be done before entering the IPE, as it cannot cope with

changes in window size within a session).

END_IF

Ensure that the environment variable IPE_THEORIES is set to the

path of the theories directory (or the desired

theories directory, if there are more than one).

Make this directory the current directory.

Appendix B. The IPE User Manual 177

IF using Sun console

Type "BIGipe5"

ELSE

Type "ipe5"

ENDIF

Some Notation

This document is quite free with its notation. Some terms that will

remain more or less fixed are:

"goal/premise/conclusion/conjecture":

A goal is the immediate objective of a proof, consisting

of a list of premises and a conclusion (all of which

are 1st-order predicate calculus formulae in the IPE).

The idea of top-down goal-directed proof is to take

a goal and do something to it to break it into a set

of (hopefully simpler) subgoals. Rather than look

deep into each formula in a goal and work magic, the

IPE relies on good-old-fashioned structural decomposition;

ie the formulae in the subgoals differ from those of the

parent goal only by the loss of their outermost logical
connective. An IPE goal looks like this:

"show premises entails conclusion"

(the show being omitted once the goal has been proven).

On the other hand, by a conjecture here we will mean

the initial formula that we are trying to prove. The

idea is that, being the nouns in the language of proof,

goals should not be available outside that realm.

(Besides which, it makes some things easier). Hence,

the ultimate purpose of any IPE proof is to justify a

single formula, which we can then turn into a lemma

(meaning an IPE-lemma rather than a proof in itself).

Appendix B. The IPE User Manual 178

"proof structure":
The IPE's internal representation of a proof. This is
actually a dependency-labelled attributed derivation

tree for an attribute grammar (just thought you might

like to know!), and as goals are attributes the tree

shape is independent of the goals, which is why it is
often called a proof structure rather than just a proof.

(But it does get called a proof sometimes too).

"pointed region/area/selection":

the node in the proof structure corresponding to the cursor

position on the display. Also pointed premise/proof/node.

Note that this is distinct from the notion of current

selection.

"selected region/current selection":
The position of the IPE's internal "tree cursor"; ie the

current node in the proof structure. In the active buffer
this is normally highlit. Note that when a formula in a

goal is highlit the current selection is actually the proof

node whose goal holds the premise, but the IPE remembers

that an individual premise is selected as well. Thus

any operation that applies to a proof node will still
apply whenever a formula of its goal is selected.

"active buffer":
The IE is a multi-buffer system, but only one buffer can

be displayed and worked on at one time; this is called

the active buffer. Most of the IPE's commands operate

solely on the current buffer, some operate between the

active buffer and one other, and only one operates on

all the buffers at once (it lists them) - not counting

Exit, of course.

Appendix B. The IPE User Manual 179

The SUN Mouse (only available on Sun workstation console)

Left button: PICKs the region being pointed at by the mouse (PICK

simply changes the currently selected region).

Middle button: IF pointing at a premise or conclusion in a goal,

performs the appropriate PROOF STEP;

IF pointing at a text-edit position (eg initial
conjecture, term/var in quantifier rule), performs

an ENTER DATA (text edit of that object)

Otherwise, Zooms In on the pointed area (this will
make it the "centre" for display generation)

Right button: Presents a menu of further commands.

The Keypad

If your terminal has a numeric keypad, then hopefully within the IPE

it will be bound to the following functions:

IPE Keypad

I ' I I I

IHome I I I

I ie Home is Home

(aka Zoom to Root)

(Zoom (Zoom IScrlll

lout I In I Up I

lEnterlPick IPrintl
(Data I I I

I IProoflScrlll

Scroll Up is keypad 9

Zoom In is keypad 8

Zoom Out is keypad 7

Print is keypad 6

Pick is keypad 5

Enter Data is keypad 4

Scroll Down is keypad 3

Proof Step is keypad 2

Appendix B. The IPE User Manual 180

(Help IStep IDown I I Help is keypad 1

----- ----- ----- I

I Exit I I I Exit is keypad 0

If this does not seem to be the case, try any other function keys;

if that doesn't work, then typing ESC then n instead of keypad n should

work!

On the Sun console, four of the keypad keys are used as arrow keys,

there is no Home key and no keypad zero. Furthermore, the keypad is
upside-down with respect to the above! As a result, some of the keypad

commands are not available as such on the console; however they are all
implemented either in the mouse menu or as an individual mouse button,

so this is no great loss.

Proof Step is the main operation of the IPE. By pointing to a

premise or conjecture in a goal and hitting the Proof Step button (or

just by pointing with the mouse and clicking the middle button), the

user can expand the proof at that point by a rule appropriate to the

"active" operator of the formula. (For example, Proof Stepping on A&C

in "show AIB,C entails A&C" will expand the proof at that point by an

And Introduction rule, producing

show (AIB),C entails A&C

use And Introduction

and show (AIB),C entails A

and AIB,C entails C

is immediate

(ie, generating two subproofs, one of which follows immediately). If
Proof Step is applied by pointing to the "entails" part of the goal

display, then an Immediate rule is applied. This differs from the

(default) rule RTP? in that it is an error for the goal not to be

immediate.

Enter Data is used when the user wishes to change a text-edit

Appendix B. The IPE User Manual 181

point, that is, an area on the screen enclosed in angle brackets

("<...>"). Hitting this button whilst pointing within such an area

(or pointing with the mouse and pressing the middle button) will place

the user in a text editor (described below). Once editing is complete,

an appropriate parser for the class of object (Formula, Term,

Identifier) is applied to test the text; the editor is not exited until

the user supplies a parseable expression or aborts the edit.

The Pick command is used to make the pointed region the current

selection; this corresponds to the left mouse button. Although

commands such as Proof Step and Enter Data automatically perform a Pick

before acting, others do not (the buffer application/copying commands,

read from file, weaken/duplicate) and require an explicit Pick

beforehand. (On the Sun console, this problem vanishes because of the

mouse).

Scroll Up and Scroll Down move the screen-sized window over the

entire proof display; when preceded by a number they scroll by that

many lines, defaulting to 10 lines. Zoom In makes the pointed area the

current region and forces a regeneration of the display (this can be

useful in some buggy situations), whilst Zoom Out makes the nth parent

of the pointed node the current region, where n is typed beforehand and

defaults to 1. This command is useful for moving back up the tree to

parts no longer on display.

Print appends a printout of the current proof to the file IPE.out.

The style of printed output is very different; the proof is presented

in bottom-up fashion using a compact notation whereby the original

introduction and elimination derivation rules are used to construct

premises from assumptions, axioms, lemmas and premises derived earlier.

Unlike the interactive display style this method attempts to minimise

the repetition of premises within the same scope in a proof.

Unfortunately, the proof printing is still incorrect, in that correct

proofs are sometimes printed wrongly and marked as unproven.

Keyboard commands

Appendix B. The IPE User Manual 182

These commands are simply typed on the keyboard; all are single-
letter commands (no RETURN required), although some may make use of a

prefixed argument count.

The actions of the following will only be described briefly here; a

better idea of their operation might be had from the demonstration

scripts.

A - Apply Buffer. Asks for buffer name and applies current

selection of that buffer to the current selection of the

active buffer. As in all proof expansion operations,

the original subtree in the active buffer is lost, although

it can normally be yanked back.

B - Change to Buffer. Asks for the name of a buffer and makes

it the active buffer, creating it as a buffer rooted on

Theorem if it does not exist. The current position of

the newly-active buffer is restored, although autoprove

and automove may change this if in effect.
C - Copy to Buffer. Asks for a buffer name and copies the

the current selection of the active buffer to that of the

named buffer. If the named buffer's current selection is
its root and the types of the two selections do not match

(eg Proof vs Theorem) then the contents of the buffer are

completely overwritten (normally a mismatch causes an

error). If the named buffer does not exist then it is
created with the active selection as its root.

d - Duplicate a premise. Makes a second copy of the pointed

premise in a goal. This is necessary for some proofs as

elimination rules always remove their arguments from the

premise list. This is a proof expansion operation, so

that any current subproof is lost. Normally, it can be

restored using Yank, but it is safer to copy the subproof

to another buffer before Duplicating.

D - Delete Buffer. The Chooser lists all buffers other than the

current buffer. More than one may be selected for deletion;

Appendix B. The IPE User Manual 183

upon acceptance all selected buffers are deleted. As

buffers take up quite a lot of storage this is a useful

operation.

H - Show other help. Toggles between the two IPE help windows.

This can sometimes get out of step, particularly after
text-edit operations, so that it occasionally has to be hit
twice before it works.

L - Save Lemma. Zooms to the top of the proof (the active

buffer must be rooted on Theorem), checks it and if it is
proven attempts to construct a lemma from it. The name of

the theory in which it is to be stored, and a name for the

lemma are asked for. The theory must exist (as a

subdirectory of the current theories-directory), but must

not contain a file with the same name as the lemma.

BEWARE: lemma names must be valid IPE identifiers, but this
is not checked by Save Lemma, which will accept any valid
file name! The lemma is written to the named theory

directory; however due to a discrepancy the proof is
printed to lemma-name.proof not in the theory directory,
but in the current directory.

M - Toggle automove mode. In this mode, after each proof-

altering operation the IPE moves the current selection to

the nearest proof node requiring work, where "nearest" is
in a depth-first sense and nodes "requiring work" are

either unexpanded or inappropriate rule applications.

Setting automove mode resets autoprove mode.

P - Toggle autoprove mode. In this mode the IPE will repeatedly

expand proofs after each alteration, so long as the goal

of a proof has only one possible operator-expansion (ie
so long as only one formula in the goal is non-atomic).

Autoprove uses automove to repeatedly find nodes requiring

work (see above). If the node is amenable, it is auto-

expanded, otherwise the current selection is left there

for the user to expand.

Appendix B. The IPE User Manual 184

R - Read a proof structure from a file and replace the current

subtree with it. A one-line edit window appears to allow

the user to enter a file name, which is interpreted relative
to the current directory. (For example, select the

Conjecture/Theorem part of a buffer then type R followed by

Examplel (note the case) and Return. This will load the

first example into the buffer. Solutionl can be similarly
read).

S - Save the proof structure of the current buffer in a file.
Together with Read from File, this can be used to store

partial proofs between IPE sessions.

T - Load a Theory. Asks for the name of a theory, and loads it.
This means that the theory's environment file is processed

(included theories are recursively loaded, symbol

declarations are instantiated), and that all the facts

(axioms and lemmas) in the theory are now visible. The

named theory must exist as a subdirectory of the current

theories-directory. More than one theory may be loaded at

top-level, but duplicate symbol declarations will cause

loading to fail and corrupt the loaded declarations.

Theories are searched for facts in a depth-first fashion

through the tree of recursive loads; where more than one

theory has been loaded at top-level the most recently

loaded has precedence.

W - Weaken (remove a premise). Removes the pointed premise of

a goal. The main use of this is simply to tidy up goals by

removing premises not needed in the subproof. As with

Duplicate, this is a proof expansion.

Y - Yank. Whenever a structure other than a blank Theorem or

unexpanded proof is overwritten (by Proof Step, Apply

Buffer, Recall, Duplicate or Weaken), it is stored in the

Yank tree, and can be applied to the pointed selection.

The yank tree is not buffer-specific: there is only one.

It is not recommended that Yank be relied on, as the yank

Appendix B. The IPE User Manual 185

tree is liable to change with great frequency; with

forethought, saving trees in buffers should be used. The

tree replaced by Yank is lost for good.

-C Break out of the IPE by generating an interrupt it cannot

ignore, though actually it has been known to sometimes!

Be careful: this doesn't ask for permission before

terminating the entire session.

-L List Buffers. Presents a list of all the buffers in the

present session, showing the types of their roots and

current selections. Input following -L deletes the buffer
list window and returns to command level.

-P Dump the display text of the current selection to the file
IPE.out in the current directory.

-R Redraw the screen. Useful for blotting out system messages

and the like
-Z Suspend the IPE and return to UNIX. This is not possible on

the Sun console-with-mouse version, which is why the latter
should be run inside suntools.

0-9 Build up an argument count for a command. Relevant to Zoom

Out, Scroll Up/Down, >,< and the arrow keys. The argument

should precede the command, eg 25 then left arrow moves

left 25 characters.

> - Display-above controller. On its own, increments the

current value of display-above (the maximum number of nodes

to be displayed above the current selection); preceded by

an argument, sets display-above to that value. For example

0> indicates that none of the structure above the current

selection is to be displayed. The change is effected

immediately (ie display recalculation is forced).
< - Display-below controller. Similar to >, but there is a

lower limit of 2 on its value, so that the sons of the

current selection will always be visible.

Mouse Menu Commands (on Sun)

Appendix B. The IPE User Manual 186

On the Sun workstation, the right mouse button presents a list of

further commands. Most of these are duplicates of commands listed
above; however the fact-using commmnds are not duplicated elsewhere.

(Thus it is not possible to use facts on a mouseless terminal). The

facts commands presented on the menu are:

Use Fact

Choose Matching Facts

Choose from Named Facts

Choose from All Facts

Choose Fact by Name

These are described in the "Using Facts" section.

A Demonstration

Let's suppose that we approach IPE wanting to prove the formula

if for all x, P(x) implies Q(x),

and for some y P(y) holds

then for some z Q(z) holds

An intuitive proof of this is not too hard: let y be such that P(y)

holds (as allowed by "for some y, P(y) holds"), then by the first
statement we have that Q(y) holds, and so therefore Q(z) holds for some

z (namely z=y). However, we want to use IPE to construct a machine-

checked formal proof of this. Re-expressed in the IPE's syntax for
logical expressions, the above becomes

!x (P(x) -> Q(x)) & (?y P(y)) -> (?z Q(z))

where "!x" is used for "for all x", "?y" is used for "for some y", "&"

is "and" and "->" is "implies". (See the "Syntax of Formulae" section

Appendix B. The IPE User Manual 187

towards the end). Once the IPE's title page has been dispensed with,
the screen looks something like this:

Conjecture

<FORMULA>

Attempted Proof

show FORMULA

plus some other information at the bottom of the screen which we shall
ignore for the moment. What we are looking at is the top of an IPE

proof tree, which states our initial goal, and the (attempted) proof

constructed thus far. This is the display of a tree structure; we can

point at and select areas on the screen which correspond to nodes in

the tree, so that when we select an area on the display and perform

some action upon it, it is really the underlying tree structure that is
being affected. Selecting a part of the tree is easy; using the mouse,

simply point at its corresponding display (ie move the mouse until the

mouse arrow lies over that region of the screen), and click (press then

release) the LEFT button. The area on the screen representing that
node of the tree will be highlit. For example, pressing the left
button when the mouse arrow is anywhere on the word "Attempted" will
cause the phrases, "Conjecture" and "Attempted Proof" to be highlit,
together with their underlines. This shows us that we have selected

the root node of the structure.

At the moment, we've not built up any proof at all, so the proof is
just a single "unexpanded" leaf, "show FORMULA". What we have to do

first of all is to replace FORMULA with our own formula, as given

above. We position the mouse cursor over the copy of FORMULA which

appears within the angle brackets (points on the display between angle

brackets are known as "text-edit" points -- places where the user can

alter information fed into the IPE) and this time press the MIDDLE

mouse button (the "action" button). This causes the appearance of a

Appendix B. The IPE User Manual 188

window with the text "FORMULA" in it. This is a simple text editor
which we can use to manipulate pieces of text. (A full list of the

operations available is given below). However, the header "Formula"

informs us that whatever we type will be parsed as a formula when we

quit the editor; if the parsing fails then we will have to re-edit the

text until it succeeds or we abort the edit. For the moment, we will
simply type Control-K (Control together with K) to delete the word

"FORMULA" and type in our own formula as shown above. We then quit the

editor by pressing (NOT clicking) the RIGHT mouse button (the "menu"

button) and selecting the appropriate entry by dragging the cursor to

it then releasing the button. Assuming we've typed the formula

correctly, the display updates to

Conjecture

<!x(P(x)->Q(x))&?yP(y)->?zQ(z)>

Attempted Proof

show !x(P(x)->Q(x))&?yP(y)->?zQ(z)

Our new formula has been accepted, and passed down to the proof. Now

we can start constructing the proof...

In the IPE, we build proofs in a goal-directed fashion: we take a

problem and attempt to reduce it to one or more simpler problems by the

application of some appropriate rule. A "goal" in the IPE has the

general form

show premise-formula,... entails conclusion-formula

In the case above, there are no premises, so a shorter form is
displayed.

There are a small set of built-in rules for "simplifying" goals,

with two rules for each logical connective. One rule applies when the

connective is the "topmost" connective in the conclusion, and the other

Appendix B. The IPE User Manual 189

when it occurs similarly in a premise. To invoke a rule, we simply

have to point at the formula we wish to "make use of" in simplifying
our goal, and click the action button. (Note that it is important

which instance of the formula we select on the display, as different
instances will (usually) "belong to" different goals). Here we only

have one goal, and only one formula instance which we can use to

simplify the goal, so we point at it and press the Action button. The

IPE notes that the topmost connective of the formula is an implication,

and since it is the conclusion, IPE applies its "Implies Introduction"

rule, updating the proof and the display to

Conjecture

<!x(P(x)->Q(x))&?yP(y)->?zQ(z)>

Attempted Proof

show !x(P(x)->Q(x))&?yP(y)->?zQ(z)

use Implies Introduction

and show !x(P(x)->Q(x))&?yP(y) entails ?zQ(z)

(with the Implies Introduction text highlit). Thus we now have a

simpler subgoal whereby we've assumed the LHS of the implication and

have to demonstrate the RHS. Here we have a choice of actions: we

could simplify the conclusion or the premise; we shall choose the

premise. "Actioning" on this gives us

Conjecture

<!x(P(x)->Q(x))&?yP(y)->?zQ(z)>

Attempted Proof

show !x(P(x)->Q(x))&?yP(y)->?zQ(z)

use Implies Introduction

and show !x(P(x)->Q(x))&?yP(y) entails ?zQ(z)

Appendix B. The IPE User Manual 190

use And Elimination on premise 1

and show !x(P(x)->Q(x)),?yP(y) entails ?zQ(z)

This gives us two "smaller" premises, bringing further connectives "to
the surface" for application of IPE rules. Suppose that we decide to

work upon the "!x" premise: this gives us

Conjecture

<!x(P(x)->Q(x))&?yP(y)->?zQ(z)>

Attempted Proof

show !x(P(x)->Q(x))&?yP(y)->?zQ(z)

use Implies Introduction
and show !x(P(x)->Q(x))&?yP(y) entails ?zQ(z)

use And Elimination on premise 1

and show !x(P(x)->Q(x)),?yP(y) entails ?zQ(z)

use All Elimination on premise 1 with <TERM_1>

and show P(TERM_1)->Q(TERM_1),?yP(y) entails ?zQ(z)

The All Elimination rule chooses TERM-1 as a single instance of x, so

that we can now assume P(TERM_1)->Q(TERM_1). Since TERM-1 appears in

angle brackets (like the initial conjecture), we can change it to

something else (after all, if we have "for all x P(x)" then we should

be able to assume P holding for any term we like in place of x). So

we can point at the TERM-1 in angle brackets and press the action

button to get a text-edit window which we can use to supply a new term.

(This time the window header informs us that a Term is expected).

Here, if we simply replace TERM-1 by "a", the display resumes as

Conjecture

<!x(P(x)->Q(x))&?yP(y)->?zQ(z)>

Attempted Proof

Appendix B. The IPE User Manual 191

show !x(P(x)->Q(x))&?yP(y)->?zQ(z)

use Implies Introduction

and show !x(P(x)->Q(x))&?yP(y) entails ?zQ(z)

use And Elimination on premise 1

and show !x(P(x)->Q(x)),?yP(y) entails ?zQ(z)

use All Elimination on premise 1 with <a>

and show P(a)->Q(a),?yP(y) entails ?zQ(z)

with our new instance of the universally quantified premise in place.

If we now choose to simplify this goal using ?yP(y), we get

Conjecture

<!x(P(x)->Q(x))&?yP(y)->?zQ(z)>

Attempted Proof

show !x(P(x)->Q(x))&?yP(y)->?zQ(z)

use Implies Introduction

and show !x(P(x)->Q(x))&?yP(y) entails ?zQ(z)

use And Elimination on premise 1

and show !x(P(x)->Q(x)),?yP(y) entails ?zQ(z)

use All Elimination on premise 1 with <a>

and show P(a)->Q(a),?yP(y) entails ?zQ(z)

use Exists Elimination on premise 2 with <y>

and show P(a)->Q(a),P(y) entails ?zQ(z)

Again, the IPE has chosen a name for us; here it simply used the name

that was already there when it stripped of the existential quantifier.
However, "y" is not what we wanted, so we edit it to "a":

Conjecture

<!x(P(x)->Q(x))&?yP(y)->?zQ(z)>

Appendix B. The IPE User Manual 192

Attempted Proof

show !x(P(x)->Q(x))&?yP(y)->?zQ(z)

use Implies Introduction

and show !x(P(x)->Q(x))&?yP(y) entails ?zQ(z)

use And Elimination on premise 1

and show !x(P(x)->Q(x)),?yP(y) entails ?zQ(z)

use All Elimination on premise 1 with <a>

and show P(a)->Q(a),?yP(y) entails ?zQ(z)

use Exists Elimination on premise 2 with <a>

-- non-unique identifier!

We have made a mistake! When we know that P(y) holds for some y, we do

not know for which y it does hold; we cannot assume that P holds for
any of the variables or terms already occurring in the goal. The IPE

"eliminates" the existential quantifier by first choosing some variable

name which doesn't occur free (ie ignoring variables which are "bound"

by some quantification) in the goal. The user is free to change the

name to something that looks more meaningful or prettier, but the IPE

will check that no variable of that name appears freely in the goal.

Referring back to our earlier informal proof, we see that our mistake

was to eliminate the universal quantifier too soon; the existential
quantifier should have been dealt with first.

This is not difficult to remedy in IPE, because we are not committed

to a proof step when we make it. We can go back to any point in the

proof and perform any alternative (applicable) rule. Here, we need to

replace the All Elimination step with an Exists Elimination: we do this
by pointing at the instance of ?yP(y) in that goal and pressing the

action button, giving

Conjecture

<!x(P(x)->Q(x))&?yP(y)->?zQ(z)>

Attempted Proof

Appendix B. The IPE User Manual 193

show !x(P(x)->Q(x))&?yP(y)->?zQ(z)

use Implies Introduction

and show !x(P(x)->Q(x))&?yP(y) entails ?zQ(z)

use And Elimination on premise 1

and show !x(P(x)->Q(x)),?yP(y) entails ?zQ(z)

use Exists Elimination on premise 2 with <y>

and show !x(P(x)->Q(x)),P(y) entails ?zQ(z)

The two steps below the And Elimination have been replaced by this
single step. (Note: the original two steps have not been lost forever

(yet); they are squirreled away but can be brought back and applied to

any point in the proof, or saved in another buffer, or applied to a

different proof in another buffer. However, that's getting a little
ahead of things...)

This time we can safely replace "y" by "a", as "a" doesn't occur

freely (or even at all) in the goal. We don't have to do this, since

"y" will do quite well, but maybe we believe that "a" is a better name.

Again we Action on the "y" in <y> and text-edit it to an "a"...

Conjecture

<!x(P(x)->Q(x))&?yP(y)->?zQ(z)>

Attempted Proof

show !x(P(x)->Q(x))&?yP(y)->?zQ(z)

use Implies Introduction

and show !x(P(x)->Q(x))&?yP(y) entails ?zQ(z)

use And Elimination on premise 1

and show !x(P(x)->Q(x)),?yP(y) entails ?zQ(z)

use Exists Elimination on premise 2 with <a>

and show !x(P(x)->Q(x)),P(a) entails ?zQ(z)

Now we can instantiate the universal formula as previously; Action

Appendix B. The IPE User Manual 194

on !x(P(x)->Q(x)), then editing <TERM-2> to <a> yields

Conjecture

<!x(P(x)->Q(x))&?yP(y)->?zQ(z)>

Attempted Proof

show !x(P(x)->Q(x))&?yP(y)->?zQ(z)

use Implies Introduction

and show !x(P(x)->Q(x))&?yP(y) entails ?zQ(z)

use And Elimination on premise 1

and show !x(P(x)->Q(x)),?yP(y) entails ?zQ(z)

use Exists Elimination on premise 2 with <a>

and show !x(P(x)->Q(x)),P(a) entails ?zQ(z)

use All Elimination on premise 1 with <a>

and show P(a)->Q(a),P(a) entails ?zQ(z)

Let's work on the implication; Action on it gives

Conjecture

<!x(P(x)->Q(x))&?yP(y)->?zQ(z)>

Attempted Proof

show !x(P(x)->Q(x))&?yP(y)->?zQ(z)

use Implies Introduction

and show !x(P(x)->Q(x))&?yP(y) entails ?zQ(z)

use And Elimination on premise 1

and show !x(P(x)->Q(x)),?yP(y) entails ?zQ(z)

use Exists Elimination on premise 2 with <a>

and show !x(P(x)->Q(x)),P(a) entails ?zQ(z)

use All Elimination on premise 1 with <a>

and show P(a)->Q(a),P(a) entails ?zQ(z)

use Implies Elimination on premise 1

Appendix B. The IPE User Manual 195

and P(a) entails P(a)

is immediate

and show Q(a),P(a) entails ?zQ(z)

If the Implies Elimination rule looks a little confusing, then it
might help to see it used on an unprovable goal,

"show A->B,C entails D":

show A->B,C entails D

use Implies Elimination on premise i
and show C entails A

and show B,C entails D

The two subgoals of Implies Elimination are:

1) Show that the left-hand side of the implication (A) can be

derived from the other premises (C);

2) Assume the right-hand side (B) as a new premise,

and we have to prove both before Implies Elimination is satisfied; in
other words, we can only assume B if we can derive A from the other

premises.

In our example, the left-hand side, P(a), already occurs as a

premise; as a result, the first subgoal is immediate, since the

conclusion also occurs as a premise. Thus we have completed a

subproof, for the first time. Note that the word "show" vanishes,

since the goal has now been shown.

It is still required of us to demonstrate the second goal. Action

on the conclusion gives

Conjecture

<!x(P(x)->Q(x))&?yP(y)->?zQ(z)>

Attempted Proof

Appendix B. The IPE User Manual

show !x(P(x)->Q(x))&?yP(y)->?zQ(z)

use Implies Introduction
and show !x(P(x)->Q(x))&?yP(y) entails ?zQ(z)

use And Elimination on premise 1

and show !x(P(x)->Q(x)),?yP(y) entails ?zQ(z)

use Exists Elimination on premise 2 with <a>

and show !x(P(x)->Q(x)),P(a) entails ?zQ(z)

use All Elimination on premise 1 with <a>

and show P(a)->Q(a),P(a) entails ?zQ(z)

use Implies Elimination on premise 1

and P(a) entails P(a)

is immediate

and show Q(a),P(a) entails ?zQ(z)

use Exists Introduction with <TERM_3>

and show Q(a),P(a) entails Q(TERM_3)

Exists Introduction is very similar to All Elimination: in the

latter we choose any term as an instance of the quantified variable;
in the former we can choose any term "t" for which we believe that we

can demonstrate Q(t). In this case, the obvious choice is "a".

Editing TERM_3 to "a" gives

Theorem

<!x(P(x)->Q(x))&?yP(y)->?zQ(z)>

Proof

!x(P(x)->Q(x))&?yP(y)->?zQ(z)

by Implies Introduction

and !x(P(x)->Q(x))&?yP(y) entails ?zQ(z)

by And Elimination on premise 1

and !x(P(x)->Q(x)),?yP(y) entails ?zQ(z)

by Exists Elimination on premise 2 with <a>

196

Appendix B. The IPE User Manual

and !x(P(x)->Q(x)),P(a) entails ?zQ(z)

by All Elimination on premise 1 with <a>

and P(a)->Q(a),P(a) entails ?zQ(z)

by Implies Elimination on premise 1

and P(a) entails P(a)

is immediate

and Q(a),P(a) entails ?zQ(z)

by Exists Introduction with <a>

and Q(a),P(a) entails Q(a)

QED

197

Since Q(a) appears on both sides, we have produced a trivial (and

hence proven) goal. The Exists Elimination rule recognises that this
means that its goal (Q(a),P(a) entails ?zQ(z)) has also been proven;

the Implies Elimination sees that both its subgoals are now proven,...

and so on upwards until it transpires that our original goal and thus

our original conjecture has been proven. When each rule realises that

its goal has been demonstrated, its display alters so that it now says,

"goal by me and subgoals" instead of, "show goal using me and

subgoals"; and the root of the proof now displays the initial formula

as a "Theorem" and the proof as a "Proof" rather than as a "Conjecture"

and an "Attempted Proof".. .plus a throwaway "QED".

So we have completed our first proof using the IPE. This

demonstrates most of the basic operations IPE provides for proving

theorems of "bare" first-order intuitionistic predicate calculus.

The Text Editor

This is used to edit formulae, terms, identifiers and some user

responses. Text can be entered as expected, and is used by the IPE

only when the editor is exited (using the appropriate selection from

Appendix B. The IPE User Manual 198

the mouse menu/keypad).

In this mode, the left & middle mouse buttons move the text cursor

(as do the arrow keys), whilst the right button again presents a menu

of commands (including EXIT). As in the main IPE, keypad 1 toggles a

help display showing what else is available on the keypad.

Further text-edit commands are:

Ctrl-A : beginning of line
Ctrl-E : end of line
Ctrl-P : previous line
Ctrl-N : next line
Ctrl-F : forwards 1 character

Ctrl-B : backwards "" ""

Ctrl-D : delete next character

Ctrl-K : delete to end of line
Ctrl-C : abort text edit (asks for confirmation)

A single-line version of this editor is used to read user input in

some commands: in this case, hitting the RETURN key is equivalent to

EXIT.

Using the Choosers

Certain commands of the IPE involve the use of an interaction
package called a Chooser. In the IPE, three similar sorts are used:

the plain Chooser, the MiniChooser and the EditOrChooser. Essentially

each of these presents a window with a list of options; the user can

then point at these options to select them, usually by clicking a mouse

button when pointing at an item. What happens next depends upon the

sort of Chooser.

The plain Chooser presents an options window plus several buttons.

The left and middle mouse buttons can be used to select an item in

the options window, by pointing and clicking (which highlights the

Appendix B. The IPE User Manual 199

item). If only one item can be chosen at a time, then selecting an item

deselects any other selection; otherwise the item is additionally
selected (and can be unselected by clicking it again).

The right mouse button presents a menu of options as follows:

Accept Accept the current selection(s) and exit the Chooser

This is only applicable when there is a selection.

Prev Show the previous page of items.

This only applies when there is a previous page

Next Show the next page of items (similar to Prev)

More Add a new item to the list of items.

This is mainly used whenever it would be very

expensive to generate the entire list of items prior
to the user making a choice (eg in Facts-Matching).

It only applies when more items can be generated.

Cancel Exit the chooser without accepting any selection

To the right of the options window is a stack of "button windows"

corresponding to the menu options; however whenever a command is not

applicable, its button is invisible.
A command may be invoked either by selecting the appropriate entry

from the mouse menu or by clicking with the left or middle buttons on

the relevant button.

The MiniChooser presents an options window. The only possible

operations are the acceptance of a single item (exiting the

MiniChooser) or cancellation. Clicking any mouse button on an item

selects that item and leaves the MiniChooser; clicking outside the

options window cancels the MiniChooser. This is used when the number

of items is small and fixed, eg in command menus or when an operation

involves a buffer that must exist.

Appendix B. The IPE User Manual 200

The EditOrChooser is similar to the plain Chooser except that it
also offers an edit window within which the user can enter an option of

their own. To enter the edit window, click the left or middle button

on it; this turns off any current selection in the options window, and

any text subsequently typed goes into the edit window and is considered

the current selection. Leaving the edit window (by clicking the mouse

elsewhere) delselects it. The EditOrChooser is mainly used in buffer
operations to allow the user to create a new buffer for the operation

or to simply use an old one.

If there are no current objects to choose from, then a one-line edit
window is presented instead.

Using Facts

The IPE is designed to work with a database of axiomatic theories.
Each theory contains a number of facts (axioms and lemmas) which can

be used in IPE proofs. An IPE proof can be converted into a lemma which

is then stored in a particular theory for later use. A theory may also

declare certain symbols as `special', so that they have some particular
meaning within that theory and all of its dependent theories.

Commands :

Load Theory

This presents a list of possible theories to load, using the

MiniChooser. When a theory is selected, its axioms and lemmas are

rendered visible to the IPE, and its special declarations are

activated. Any theories upon which the named theory depends are

loaded first.

Recall Template

Expands the current tree position (which must be a Proof node

or a goal therein) by the blank "Recall fact" template. The user

can then Text-Edit the "FACT-NAME" component to the name of some

Appendix B. The IPE User Manual 201

existing fact. (In practice, the command Choose Fact By Name is
probably better).

Choose From Matching Facts

Expects the current position to be a formula within a goal.

Given this formula, it is matched against facts in the theory

database. Each fact which matches with a valid substitution of its
free variables is displayed in a Chooser window. (The search is
only performed when requested by the user via More to generate new

items). When a paritcular match is chosen, the current proof node

is expanded by a Recall Fact rule with the appropriate

substitutions (if any) automatically performed by the IPE.

Note that as the matcher is only operating on a single formula

it may not necessarily perform all the subsitutions needed to

instantiate the axiom; the remainder will then have to be supplied

by the user, by Enter Data (or middle mouse button) on the

text-edit points corresponding to the unsubstituted terms/formulae.

Also, as the matching algorithm only handles first-order cases,

higher order generics will not be matched.

Choose From All Facts

is very similar to the above, except that it also shows those

facts for which no successful match with the selected formula was

obtained. This allows the use of higher-order facts.

Choose from Named Facts

first presents a Chooser list of all the visible facts. The

user can select one or more of these; matching is then performed

only upon the chosen facts. This is useful when the user knows

roughly which facts will be useful for the current goal, and avoids

trudging through lots of irrelevant facts and their matchings.

Choose Fact By Name

Presents a Chooser list of all the visible fact names; upon

Appendix B. The IPE User Manual 202

selection of a fact, no automatic substitution is performed.

The Theory Database

This section describes the innards of the database and how to make

your own theories. (Please note the addenda at the end of this section).

The IPE theory database allows the extension of what is essentially

an editor aimed at purely propositional proofs with uninterpreted

symbols into a system allowing the construction of hierarchies of

axiomatic theories. The theories present are Equality, Peano, List and

ListOps, each containing a small number of axioms and a growing number

of IPE-generated lemmas.

An IPE theory is a UNIX directory containing a environment file
plus axiom and lemma files (possibly with proof printouts for the

lemma files). A single collection of theories consists of a directory
containing theories. No theory in a collection may refer to a theory

elsewhere (although setting a soft link of the same name in the

theories-directory would work).

The environment file tells the IPE which other theories this
theory depends upon, and contains declarations of special predicate,

function and constant symbols. As an example, the environment of the

theory List is

includes Equality

predicate null(x)
constant nil
function cons(a,l)

This shows that List depends upon Equality, and declares the symbol

null to be a unary predicate, nil to be a constant term and cons to be a

2-place function (term expression).

Any included theories in an environment must precede any symbol

declarations; the latter must each appear on a seperate line, although

Appendix B. The IPE User Manual 203

more than one theory may be mentioned in a single includes (which may

spread over several lines). The environment may be empty, but it must

exist.
When the IPE loads a theory, it begins by processing the

.environment. Any included theories are recursively loaded first (it is
possible for a theory to include itself, but the IPE avoids loading the

same theory twice and marks a theory as loaded before processing the

environment). Then each symbol declaration is processed. The

motivation behind symbol declarations follows.

In making a lemma from a theorem such as A&B&C->(A&C), the IPE tries

to generalise it as much as possible, attempting to capture some of the

"reusability" of the original proof structure. Here for example, it is

clear that the proof structure would also prove E&F&G->(E&G) or even

(!xP(x)) & (alb) & (c->d) -> ((!xP(x)) & (c->d)): in short, we could

replace A,B and C by any formula and the proof structure would still

work. So when the IPE saves such a lemma, it saves it as a formula

schema with substitutable parameters (called generics). When the lemma

is used, the user is allowed to substitute any formula for these

generics (generic terms are also possible) to create a lemma instance.

If the lemma created from the above theorem were called Example,

then it would look like this:

lemma Example is
A&B&C->(A&C)

generic formulae A

and B

and C

and would exist as a file to itself in some IPE theory directory. When

the FACT-NAME in a Recall Fact rule is changed, the IPE searches

through its loaded theories (in depth first order of loading, includer

before the included) until it finds a file of that name. Upon finding
it, it reads it in and converts the information above into an "editable
premise" in the proof.

Appendix B. The IPE User Manual 204

IPE axioms are simply lemmas that are taken for granted, and have

not been proven using the IPE. The sole difference in appearance is in
the word "axiom" replacing the word "lemma". The IPE does not care

whether or not a fact is an axiom or lemma, and the user needn't know

either.
As an example of the use of axioms, consider the "definition" of the

length of a list (from ListOps):

axiom Lengthl is
length(nil)=O

axiom Length2 is
length(cons(a,L))=(S(O) + length(L))

generic terms a

and L

Induction is also defined axiomatically:

axiom Listlnduction is
phi(nil) & (!L(phi(L)->!a phi(cons(a,L)))) -> !L phi(L)

generic formulae phi(L)

The main problem with axioms is that they are user-created. Not

only is it possible to create inconsistent theories, it is also

possible to construct axioms with bad syntax. At present, the IPE only

remembers that a symbol has been declared; it does not check the arity
of further occurences. So for example, the "cons" in "cons(nil)" will
be considered valid and special even although in reality it should be

on or the other but not both. Once the full power of declared-symbol

checking is put into operation, such cases will be checked and sent one

way or the other.

Suppose we construct a proof of "length(cons(a,nil))=S(0)". When we

come to make a lemma from it, it is important that the IPE should know

which symbols can be substituted for without destroying the essential

Appendix B. The IPE User Manual 205

meaning. Having used axioms which define properties for the special

symbols "length", "cons","nil","S" and "0", it would not be correct to

allow these symbols to be replaced by other terms to whom these

properties do not apply! By informing the IPE that these symbols are

special, we avoid this problem altogether. However, we now introduce

the problem of accidentally giving some arbitrary symbol in a

conjecture the same name as a declared symbol, proving it without using

any properties of the symbol and then saving it only to discover that
the saved lemma is too restrictive. Far worse would be the case when

an axiom is similarly over-restricted. Enforcing the naming of the

generics in axioms solves the latter problem; to solve the former

requires keeping a tally of all the facts used in a proof and what

symbols they define properties for, which the IPE does not do at

present.

To sum up: to create your own theory you need:

1) a file environment, whose most general form is

includes Theoryl Theory2

Theory3

constant blah

function f(placel,place2,...,place_n)

predicate s(placel,...,place_n)

function g(x)

predicate C

Notes: the file may be empty, but must exist; blah,f,s,place_i,g,x

and C can be any valid IPE identifier, but blah,f,s,g and C

must not be already declared when this theory is loaded (or

occur more than once in the evironement, including as place

markers).

2) A set of axiom files; each file must have the same name as the

Appendix B. The IPE User Manual

axiom and have the following general structure:

axiom AxiomName is
FORMULA

generic terms ti
and t2(x,y,z)

generic formulae phi(x)

and A

206

Notes:

AxiomName must be a valid IPE identifier;
FORMULA must be a valid IPE formula;

no more than one generic to a line; use repetition with and as

above; the generic terms (if any) must precede the generic

formulae (if any); the generics must make sense with respect to

the formula! (ie, if G is a generic then it must have the same

arity throughout the formula, and should ideally not occur as

anything else (eg as a predicate instead of/as well as a term).

To create your own theories directory as a subdirectory of some_dir:

(in CShell)

cd some_dir # move to desired parent dir.
mkdir my-theories # make a new subdirectory

cd my-theories # move to new directory
mkdir My-Very-Own-Theory # Creating new theories

...(etc)...
In -s $IPE_THEORIES/Peano Peano # Links to existing theories

...(etc)...
setenv IPE_THEORIES some_dir/my_theories

so the IPE looks here

Now fill My-Very-Own-Theory with environment and axioms.

Appendix B. The IPE User Manual 207

ADDENDA: The above was written prior to the construction of IPE5

with facts-matching. Now each theory requires an additional file,
".facts", which will contain the names of all of the facts in that

theory. Normally, the IPE will add new lemmas to this file, but the

axioms must be put there by the creator of the theory. As with

.environment, this file must exist and contain no blank lines.
Secondly, the theories directory itself requires a file ".theories",

which lists the names of all the theories therein.

Syntax of Formulae - some examples

The syntax for IPE formulae is a little strange, in that there is no

precedence of infix operators; instead, all expressions associate to the

left. Thus "A&B&C->A&C" means "(A&B&C->A)&C", and not "A&B&C->(A&C)" as

one might expect.

"A 8t B" means A and B

"A I B" means A or B

"A -> B" means A implies B

"A" means not A

"!x p(x)II means for all x p(x)

"?x p(x)" means there exists x such that p(x)

Examples:

(A->B)&(B->C)->(A->C)

!x(P(x)->Q(x)) & ?x P(x) -> ?x Q(x)

length(cons(a,nil))=S(0)

BUGGINESS

Appendix B. The IPE User Manual 208

There are several bugs; some have semi-known causes and will be

fixed "soon"; others occur in ill-determined circumstances or refuse to

occur twice under (seemingly) the same conditions. All ML-generated

escapes not handled within the IPE will be trapped at the very top and

generate an "Oops" message. Some of these are benign, in that they can
be ignored and will not destroy anything. Others are more serious -

errors during attribute reevaluation can leave the proof structure in a

half-evaluated state, so that further operations generate

"Oops: circularity" messages. (This means that the dependency tree

reevaluator believes that it has detected a semantic loop). In this

case nothing more can be done than to abandon the proof and start again

in a new buffer. If the text editor crashes for some reason it can

leave its window on-screen permanently, in which case the entire

session has to be abandoned through illegibility.

Quite a serious (and recently noticed) bug is that when the screen

is scrolled, the positioning by mouse still acts as though the screen

was at the top of the display.

Generally, the best thing to do if an error message comes up is to

try and carry on, perhaps by doing something else (this is where Zoom

In can be useful), and only give up when a message repeats itself or

things look completely crazy.

	PhD coversheet April 2012
	EDI-INF-PHD-88-019.pdf

