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Abstract 

This thesis describes the design and implementation of the IPE, an interac- 

tive proof editor for first-order intuitionistic predicate calculus, developed at the 

University of Edinburgh during 1983-1986, by the author together with John 

Cartmell and Tatsuya Hagino. The IPE uses an attribute grammar to main- 

tain the state of its proof tree as a context-sensitive structure. The interface 

allows free movement through the proof structure, and encourages a "proof-by- 

experimentation" approach, since no proof step is irrevocable. 

We describe how the IPE's proof rules can be derived from natural deduction 

rules for first-order intuitionistic logic, how these proof rules are encoded as an 

attribute grammar, and how the interface is constructed on top of the grammar. 

Further facilities for the manipulation of the IPE's proof structures are presented, 

including a notion of IPE-tactic for their automatic construction. 

We also describe an extension of the IPE to enable the construction and 

use of simply-structured collections of axioms and results, the main provision 

here being an interactive "theory browser" which looks for facts which match a 

selected problem. 



At the age of fourteen my father was forced to leave school and "go down the 

mines" to support his family. Despite a promising scholastic performance, short- 

term needs outweighed the long-term academic investment. His later attempts 

to obtain qualifications were made difficult by having to study in addition to 

long hours of heavy physical labour. Though commended on his work, the strain 

became too great and his studies were abandoned. Nonetheless he retained an 

interest in scientific developments and provided a stimulating environment for 

his children. My mother and he determined that their children would be free 

to achieve their potential, at a time when the destiny of most miners' sons was 

to work alongside their fathers. Therefore it is only right (and I don't care how 

outre it is) that I should dedicate this thesis to my parents. 
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Chapter 1 

Introduction 

1.1 General Description 

There is a large body of research concerned with improving the power of automated 
reasoning systems to construct formal proofs. However, it is still the case that the 
most imaginative theorem prover is the human mind. The principal aim in the 
design of the Interactive Proof Editor was to build a proof assistant which makes 
it easy for people to construct and experiment with proofs, but which insists upon 
formality of argument, thus combining the user's intuition with the machine's 
rigorous proof-checking capability. 

The Interactive Proof Editor (or IPE in acronym) enables the development and 
maintenance of machine-checked proofs of statements in an untyped first-order 
intuitionistic predicate calculus. The encouraged style of proof is goal-directed: 
after supplying an initial conjecture, proof proceeds by decomposition of a current 
goal into hopefully simpler subgoals The applicability of each step in the proof, 
and the validity of the goal at each point are incrementally maintained, providing 
instant feedback to user actions, such as completion of a proof, which have an 
effect upon distant parts of the proof. Proofs can be edited at any point; users 
can return to any stage of a proof and alter the decision made there. 

A structured theory database can be built up to provide a library of new axioms 
and facts proven from them, and an interactive browser can be used to interrogate 
this database. 

The IPE combines the use of attribute grammars (as in the Reps-Alpern 
work [Reps-Alpern 84]) with lemma-matching techniques inspired by the `B' tool 
[Abrial 86b] and concepts from LCF [GMW 79], making consistent use of a "proof- 
by-pointing" interface (see §1.5); this results in an easy-to-use proof assistant with 
the emphasis upon navigability and ease of alteration of proofs. 

The IPE is written as a hierarchy of some 100 modules in a variant of Luca 
Cardelli's "ML Under UNIX" [Cardelli 83], which includes low-level user interface 
modules written in C. The version of the IPE described here runs on Sun worksta- 
tions under UNIXI; earlier versions will also run on VAX/UNIX. The first version 
of the IPE appeared in early 1985; the theory database and browsing facilities 

1UNIX is a trademark of AT&T Technologies, Inc. 
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Chapter 1. Introduction 2 

were added in 1986. In this thesis we concentrate upon "Version 5", which makes 

use of the SunView environment for Sun workstations2; however, there is a later 

version (which we briefly describe) that utilises the X window system3. 

The IPE has been demonstrated widely at exhibitions and to visitors to the Com- 

puter Science Department. In September 1987, the Laboratory for Foundations 

of Computer Science ran a three-day course on "Interactive Proof Editing" us- 

ing the X windows version ofAIPE ([BTJ 87]). The author has made several 

presentations on the IPE, including [Ritchie 87]. 

1.2 Acknowledgements 

I am indebted to the following for their help: 

Professor Rod Burstall provided able supervision, advice and encouragement. 

Tatsuya Hagino developed and maintained a window environment within ML 

Under UNIX and handled all the nitty-gritty details of window management 

and portability. John Cartmell provided much ground-work code in ML in the 

form of a vast library of reusable modules. 

Claire Jones deserves mention (as does Tatsuya) for further developments to 

the IPE since the author's departure from Edinburgh in July 1986. 

Staff and students of the Computer Science Department provided valuable 
4e 

feedback on the various versions offIPE, as did many who saw or used it during 

visits and exhibitions. 

I am also indebted to colleagues at the Rutherford Appleton Laboratory and 

at the University of Manchester, for giving me the time, patience and encour- 

agement to complete this thesis. 

2Sun Workstation and SunView are trademarks of Sun Microsystems Inc. 

'The X Window System is a trademark of MIT. 
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Numerous friends have been instrumental in keeping me afloat whenever my 

spirits were low (and indeed at any other time). Keith Refson has proven partic- 

ularly good at ensuring a high content of spirits for many years. Phoebe Kemp 

was a tremendous support, and I remain forever in her debt. 

The author's work on the IPE was funded by an SERC Award. 

1.3 Overview 

The remainder of this chapter presents a brief overview of some proof construc- 

tion systems, and a "walk-through" demonstration of a simple proof in the IPE. 

Chapter 2 describes the underlying logic. Chapter 3 introduces attribute gram- 

mars and shows how they can be used in the development of structure editors. 

The attribute grammar used in the IPE is also described here. Chapter 4 presents 

the layers of interface between the kernel generated from the attribute grammar 

and the user. In Chapter 5, we extend the description of the IPE to include mul- 

tiple buffers, built-in tactics and the storage and printing of proofs. Chapter 6 

concerns the design of a database of simple, structured "theory units", and tools 

for its use in IPE proofs. Chapter 7 describes later extensions to the IPE, and 

some suggestions for future work. 

1.4 Machine-Assisted Proof Systems 

In order to convince commercial and industrial software developers that the 

use of formal methods forms a sound, effective and practical framework upon 

which to base software engineering, it is important to develop tools which are 

at once easy to use and also powerful enough to be of practical help. The IPE 

has concentrated upon demonstrating that it is possible to develop good user 

interfaces to theorem provers; the initial aim was to develop a system which had 

a sufficiently low learning threshold to be used to teach the principles of formal 

proof to people who have little or no experience in the area. 
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Fully-automatic theorem provers (the most celebrated being the Boyer-Moore 

theorem prover [Boyer-Moore 79]) rely upon an optimism that their built-in 

strategies will work first time. The creative and intuitive abilities of the user 

are then relegated to determining how to recover when a proof attempt fails (or 

worse, to detecting that the attempt is non-terminating). In the Boyer-Moore 

system, this may involve determining why the prover reached such a state, i.e , 

1"e sunning the prover's actions by hand. If the user still believes that the original 

conjecture should be true, the next step is to build and prove a lemma which 

the user imagines will be useful in the original proof attempt. Having done this, 

it is now necessary to re-run the first attempt in its entirety. Nonetheless, the 

heuristics employed in Boyer-Moore are powerful, and the prover prints out a 

wordy description of its strategy when tackling a particular problem. 

From its initial version at Stanford in the early seventies, LCF (from 

"Logic for Computable Functions") has become the name for a family of sys- 

tems for "goal-directed validated proof". Instances of LCF are described in 

[GMW 7,[Paulson 85b],[Petersson 82] and [Gordon 85]. The notion of tactics 

has been widely used(including in the IPE, though here they are hidden from 

view.) In LCF-style systems, user-constructed tactics and tacticals are the main 

proving tools; thus the user has greater control over the direction of a proof than 

in a fully-automated prover. Furthermore, even if a tactic does not completely 

reduce a goal (to an empty set of subgoals), it will still return a validation func- 

tion, which acts as a partial proof of the goal. If the subgoals are later proven, 

then the validation function can be applied to the resultant theorems, to yield 

a statement of the original goal as a theorem. This assumes that the tactics 

generate the correct validation functions; a common remark about LCF is that 

a tactic will always prove something - but it might not be what was intended. 

The interface to LCF is simply that of an interactive ML session, i.e. a "glass 

teletype" interface. Proofs (and the details of their construction) are not visible 

to the user. 

In Larry Paulson's Isabelle [Paulson 85a], the user derives new inference rules 

by "composing" inference rules (matching a hypothesis of one rule against the 
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conclusion of another). Thus to prove a goal G, one first constructs the rule 

G 
G 

, then applies matching inference rules to the hypothesis or conclusion, until 

a rule of the form c is constructed. (In fact, since the result at each point is 

a valid inference rule, we can stop whenever we consider the rule to be useful). 

Higher-order matching is used; this enables the construction and use of powerful 

and general inference rules. 

As yet, the interface to Isabelle is of the same "ML interface" level as LCF; 

however, at the time of writing, Paulson is working with Brian Monahan on the 

design of a better user interface. 

The PRL system [Bates-Constable 83] appears to be the earliest example of 

a theorem- proving tool which uses structure editor techniques to maintain and 

display a proof-in-progress. The use of a constructive logic makes it possible 

to "extract" functions from proofs. The system presents several windows to 

the user: a proof window, a library window, and a command window. The 

library window contains a list of defined objects (functions, definitions, theorems 

and functions extracted from theorems). The definitions mechanism allows the 

construction of parameterised templates with the same freedom of expression as 

available in C macros - there is no insistence that a definition should expand to 

a syntactic unit. Thus the visual syntax of formulae is completely controllable; 

the price paid is that PRL must expand the definition in order to manipulate 

it, and must also determine whether the application of a rule to the formula 

destroys the internal shape of the definition. 

Each step of a proof consists of the reduction of a goal formula (under a set 

of hypotheses) to a list of subgoals (each with possible extra hypotheses). Such 

a step can be performed either by use of a refinement rule or a refinement tactic; 

the latter can be constructed by the user, in an LCF-like fashion. 

Unfortunately, the interface to the structure editor (which controls both the 

proof and library windows) is awkward and ungainly. There is no mapping from 

points on the screen to points in the proof or library structures, and all movement 

commands are in terms of the internal structures. 
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Work on PRL continues in the NuPRL system [PRL 86], in which the library 

of tactics has been greatly extended. NuPRL also provides "transformation 

tactics" which have access not only to goals but also entire proof trees, for 

example allowing "proofs by analogy". 

The initial inspiration for the IPE came from a simple proof editor for propo- 

sitional calculus [Reps-Alpern 84], which was produced using the Cornell Syn- 

thesizer Generator [Reps-Teitelbaum 85]. The interface inherited from the CSG 

is very much that of a syntax-directed structure editor for programs: positioned 

at a Proof "placeholder", the user is presented with a list of all of the production 

rules for the "symbol" Proof. When a production rule is applied to a Proof, the 

original production is replaced by the new one, and if the rule is applicable to 

the goal, the goals of the subproofs are determined. As in PRL, movement was 

made through the shape of the syntax tree rather than the display form. 

After [Reps-Alpern 84], Tim Griffin has been using the CSG to implement 

several prototype proof editors along the lines of NuPRL. The author was un- 

aware of this work until Griffin visited Edinburgh in late 1986 to implement 

an editor for the Edinburgh Logical Framework [HHP 87]. In [Griffin 87], Tim 

Griffin describes an "Environment for Formal Systems" (EFS). In EFS, one can 

define the syntax and "refinement rules" for a wide variety of logics, building on 

top of either the Edinburgh Logical Framework or the Calculus of Constructions 

[Coquand-Huet 85]. New logical connectives and inference rules are defined as 

constants; definitions akin to those of PRL can be used to hide their internal 

representation. Refinement rules can then be defined which justify themselves 

in terms of the inference rules; these refinement rules can then be used as steps 

in larger refinements (proofs). Constants, refinement rules and refinements are 

all stored in chapters. A chapter can import the contents of other chapters, 

providing a simple means of structuring information. 

It would appear that of all currently available proof construction tools, the 

EFS provides the best blend of descriptive power and usability. However, EFS 

lacks user-programmable tactics (other than user-defined refinement rules), and 
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Griffin is uncertain that EFS would be capable of supporting the scale of infor- 

mation that NuPRL has handled. (These cnflc'c is Gl0 app(J 7b -tie IPE ) 

The "B" proof editor ([Abrial 86a], [Abrial 86b]) is interesting in that whilst 

being essentially interactive in nature, it searches through a database of rules 

to find those rules which can apply to the current goal, and presents these in 

turn to the user for selection. (It can also proceed by itself). A simple tactics- 

like language allows the user to determine the order in which B's "theories" are 

searched, including repetitive searching. 

(The author was informed of this feature of B in 1986; this led directly to the 

development of the theory database of the IPE. However, upon finally seeing B 

in 1987, it transpired that the manner in which searching is used in B is very 

different from that used in the IPE. A theory in B is simply a collection of axioms 

and results, searched in a "last in-first out" basis; B's theories do not refer to 

other theories, so that the only theory structuring is that provided by the tactics 

defined by the user ) 

B's major drawback is its primitive user interface (commands are chosen 

by number from a menu which only appears when help is requested; the menu 

then replaces any other information on the screen). It is difficult to navigate 

through a proof, other than by undoing steps. Defining tactics in B appears to be 

something of a black art; however, an expert can use B impressively. The author 

witnessed Jean-Raymond Abrial use B to perform program transformation and 

"compilation" upon small programs. 

Another recent development is the Muffin proof editor, built at Manchester 

University ([Moore 86b]). Initially specified in VDi`I by Richard Moore and Cliff 

Jones ([Moore 86a]), the editor was built over the course of a few months in early 

1987 using the Smalltalk object-oriented environment ([Goldberg-Robson 83], 

[Goldberg 84]). Muffin serves to show that Smalltalk-80 can be used for the 

rapid construction of formal reasoning tools with state-of-the-art user interfaces 

([Jones,K 87]). Each stage of a Muffin proof is presented as a list of knowns 

and a list of goals. Proof proceeds by the user selecting a known or goal and 

asking Muffin to list all rules which "match" the selected formula. This causes an 
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exhaustive search of the database; similarly to B, there is no distinction between 

built-in rules and user-constructed rules (which are generated from completed 

Muffin proofs). As in B, proof navigation is difficult; however, the presentation 

of each stage of a proof is pleasant - for example, it is easy to hide unwanted 

knowns. Muffin is restricted to propositional logic, but the developers feel that 

the extension to predicate logic would not present significant problems. Work on 

Muffin was carried out as an experiment in user interface design for the Alvey 

IPSE 2.5 project [Atvey 8 Slmpsovt 87]. 

1.5 A Demonstration 

In this section we shall run through a demonstration of the IPE. This demonstra- 

tion aims to show the basic features of IPE, in particular the "proof by pointing" 

interface style. (Descriptions of the use of automatic proof construction, multi- 

ple buffers and retrieval of information from the theory database will be deferred 

until later chapters). 

Once the title screen is dispensed with, we are presented with a "blank proof" 

(Figure 1-1). This shows the shape of our proof (trivial at the moment). The 
SU/W title line at the bottom of thegives some information that need not concern us 

at the moment. The "empty" box on the bottom right is an indicator window: 

when the IPE is busy, or when some "subtool" such as the text editor is being 

used, a message will appear in here. 

The statement of the initial conjecture appears within angled brackets. This 

indicates that it is a text-edit point which the user may change as desired. To 

do this, we point the mouse anywhere between the brackets and click the middle 

mouse button. This invokes the text-editor upon the current statement of the 

formula (Figure 1-2). The new window is labelled "Formula" as an indication of 

the kind of object we should supply. We can type ordinary text here (and use a 

few simple editing commands), but when we tell the IPE to accept what we have 

typed, it will be parsed as a formula. If it does not parse correctly, then the IPE 
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cm j ec t U r 

. 
Attempted Proof 
--------------- 
IKIT1'iI * 7,II L 

jBuffer: Main Root: I ieorem 

9 

Figure 1-1: A blank proof 
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Conjecture 

At 

sh 

of 1 er: M1aiin Rug, l: Theorem 

10 

Figure 1-2: Editing the initial conjecture 
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will leave the cursor on the line below the text at the point where parsing failed. 

We must either re-edit until we have a parsable formula, or abort the edit. 

Suppose that we intend to prove that existential quantification distributes 

over disjunction. In the IPE's notation, one statement of this result is shown 

in Figure 1-3 (Here, "?" represents the quantifier "a", "1" represents "or" and 
InLoracLivo Proof Editor 

Conjecture 

At 

sh 

.x P X IQ(x)) -> ( 'xP(x) I ?xQ(x) )_ 

uffer: Slain Runt: Theorem 

Figure 1-3: Distribution of existential quantification over disjunction 

"-" represents "implies"). 

Satisfied that this is the formula we want, we select the "exit" option from 

the right-button menu. IPE has no complaints about the syntax of the formula, 

and so the "formula slot" is updated. This information feeds through to the 

proof, giving Figure 1-4 

Now we can begin the proof. As many steps of a proof as possible will be 

displayed on the screen, each step appearing as a rule name, a list of premises 

(possibly empty, as above) and a conclusion. "use rule-name,,show..." indicates 

that the subproof of this step has not been completed yet. To alter any step in 
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Interactive Proof Editor 

Conjecture 

Attempted Proof 
--------------- 
show ?x(P(x)IQ(x))->(?xP(x)l?xQ(x)) 

uf(er: Main hoot: Theorem 

12 

1 

Figure 1-4: The new problem 
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the proof, we select one of its premises or the conclusion and click the middle 

mouse button over it The IPE will choose the proof rule appropriate to that 

premise or conclusion, and "expand" the proof at that point accordingly. (74/S 

is w4at we weak by '' pnxiF 6y-prnntrhg '' ) 
Here there is only one formula - the conclusion - so to proceed we click on 

it4. Figure 1-5 shows the result. In the new subproof we have assumed the left- 

Intcractirc Proof Editor 

Conjecture 

<'x(P(x)IQ(x))->(?xP(x))?xQ(x))> 
Attempted Proof 

snge 
use Imp ies Introduction 
and 

I Root: Theorem 

Figure 1-5: The first step of the proof 

hand side of the implication, and it now remains to show that the right-hand 

subformula can be derived from this. 

Now we have to choose which formula to attempt to simplify first. It is 

not too important which formula we choose, because even if the choice turns 

out to be incorrect, the IPE will allow us to return to the same point in the 

2x(P(x) Q(x))->('xP(x)I')xQ(x)) 

'It is possible to make IPE perform such really trivial steps on its own, as we shall 

see in §5.2. 
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proof and change our minds. In this case, suppose that we choose to simplify 

the conclusion. Selecting it in the same manner as above leads to Figure 1-6. 

The resulting Or Introduction rule now presents us with two subproofs. Each 

Conjecture 

----- <?x(P(x)IQ(x))->(?xP(x)I'XQ(x))> 
Attempted Proof 

show ?x(P(x)IQ(x))->('xP(x)I'xQ(x)) 
use Im lies Introduction 
and 'x(P(x) Q(x)) entails ?xP(x)I?xQ(x) 

ufferMin Rootr Theorem 

Figure 1-6: Deciding to perform Or Introduction 

subproof has the same premise, but their conclusions are drawn from the left- 

and right-hand parts of the original conclusion. Note that the initial goal of the 

proof step will be considered proven whenever we complete the proof of either 

subgoal. 

For our next step, we choose to simplify the premise of the first new subgoal, 

giving Figure 1-7. The existential quantifier has been "stripped off" in the 

premise of the subgoal. We know that "P(x)" holds for some "x", and all that 

has happened here is that we have said, "Let "x" be such that "P(x)" holds." 

Notice that there is an "x" on the rule-name line which is enclosed in angle 

brackets. This indicates that we are permitted to edit it, in the same manner as 

for the initial formula. In this case, the "x" is an identifier, with the important 
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lntaractive Proof Editor 

Conjecture 

-----<'x(P(x)IQ(x))->('xP(x)I'xQ(x))> 
Attempted Proof 
--------------- 
show 'x(P(x)Q(x))->('xP(x)J'xQ(x)) 
use Implies Introduction 
and show 'x(P(x)IQ(x)) entails 'xP(x)I?xQ(x) 

use Or Introduction 
and 'x(P(x)IQ(x)) entails ?xP(x) 

> on p 
s low tx) 

or show 'x(P(x)I Q 
Q(x) entails 7xP(z) 
x)) entails 'xQ(x) 

,luffer: Main Root: 1heoren 

remise 1 

15 

Figure 1-7: After Exists Elimination upon the premise 
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restriction that it should not occur freely in any other formula in the goal. We 

may change its name, but the new name should also satisfy the restriction. Here, 

although the conclusion also mentions "x", it is bound by a quantifier, so that 

the IPE is happy to use "x" as the name of the "witness". 

Now if we simplify the conclusion in this new goal, we get Figure 1-8. Again, 

Interactive Proof Editor 

Conjecture 

-----<?x(P(x)IQ(x))->('xP(x)]?xQ(x))> 
Attempted Proof --------------- 
show 7x(P(x)IQ(x))->(?xP(x)I?xQ(x)) 
use Implies Introduction 
and show 'x(P(x)IQ(x)) entails ?xP(x)l?xQ(x) 

use Or Introduction 
and show ?x(P(x)IQ(x)) entails ?xP(x) 

use Exists Elimination with <x> on premise 1 

and UMP(x)IQ(x) entails ?.\P(x) fixii',TTti .T RCfCrS7TEFM 1 
show P(x)1Q(x) entails P(1E1L1) 

or show (x)IQ(x)) entails 'xQ(x) 

Figure 1-8: Exists Introduction 

the quantifier has been stripped off in the subgoal. This time however the variable 

has been replaced by the name "TERM-1". This indicates that we can replace 

occurrences of the bound variable with some term. Intuitively, we are trying to 

show that "P(x)" holds for some "x", and we proceed by choosing some "value" 

for "x" for which we believe we can show that "P(x)" is true. We have to supply 

this value by hand; IPE will not attempt to do this for us. However, the IPE 

does not force us to decide "once and for all" what this value should be before we 

look further into the proof. Thus, even if we make a stupid choice initially, when 
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this becomes obvious later in the proof, we can return to this point and supply 

a different value, without losing the work we have performed in the meantime. 

In this case, the "new" value that we want for "x" is simply "x" itself. 

(Though the names are the same, what we are doing is forcing the identifi- 

cation of two distinct variables which were bound in different ways). Therefore 

we want to "undo" the IPE's choice of value. Clicking the middle button over 

the "TERM-1" in angled brackets cats up a text-edit window (entitled "Term" 

to show us that the result will be parsed as a term) with "TERM-1" in it. 

Suppose that we have changed "TERM-1" to "x". Then the only action that 

remains in this branch of the proof is to simplify the premise (Figure 1-9). We 

Int.ractir. Proof Editor 

Conjecture 

-----<')x(P(x)IQ(x))->(?xP(x)I?xQ(x))> 
Attempted Proof 
--------------- 
show ?x(P(x)IQ(x))->(?xP(x)J?xQ(x)) 
use Implies Introduction 
and show ?x(P(x)IQ(x)) entails 7xP(x)17xQ(x) 

use Or Introduction 
and show ?x(P(x)JQ(x)) entails ?xP(x) 

use Exists Elimination with <x> on premise 1. 

and show P(x)IQ(x) entails ?xP(x) 
use Exists Introduction with <-x> 
and P(x)IQ(x) entails P(x) 

se-Or Elimination on premise 
and 

is immediate 
x) entails P(x) 

. show Q(x) entails P(x) 
or show ?x(P x Q(x)) entails ?xQ(x) 

offer: Main Root: Theorem 

Figure 1-9: After Or Elimination 

l 

know that one of "P(x)" and "Q(x)" holds, but don't know which. However, if 
we can prove our conclusion by assuming "P(x)" alone and also assuming "Q(x)" 

alone, then the conclusion must follow from their disjunction. 
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Now, one of our subgoals is trivially true: "P(x)" occurs on both sides. (No- 

tice how there is no "show" prefacing the goal). Unfortunately, Or Elimination 

requires that both subgoals be completed, and that is not the case here. More- 

over, the second subgoal obviously cannot be completed. There is no relationship 

between "P(x)" and "Q(x)" that we can uses. We have to conclude that we went 

wrong somewhere. Either our problem is unsolvable in intuitionistic logic, or we 

took a wrong turning in our proof. 

In this case, it is not too hard to see that we used the Or Introduction rule 

too soon. What we must do now is change the decision made at that point. All 

we have to do is click the middle button over the premise of the goal of that rule 

(Figure 1-10) The original proof has disappeared. In this case, there is little 

use that we could have made of it, but there are cases where it would be useful 

to be able to re-use it. (This is indeed possible, as we shall see in §5.1). 

Now we select the premise, to perform Or Elimination, which gives us two 

subproofs, each with the same conclusion as before. In the first subproof we select 

this conclusion, performing Or Introduction. Performing Exists Introduction on 

the result gives us Figure 1-11. We now text-edit on "TERM-2", replacing it 

with "x". The resultant subgoal is trivial. Furthermore, we have now completed 

the first subproof of the Or Elimination step, and the display alters accordingly 

(Figure 1-12). 

Now we might notice that the same sequence of steps will also prove the 

second subgoal. As we shall see in §5.1, we could "squirrel away" a copy of the 

first subproof and then re-apply it to the second, in preference to repeating the 

steps by hand. Whichever way we proceed, the completed proof is shown in 

Figure 1-13. 

5In §6 we shall see how we can build up libraries of information (as axioms and 

derived results) that can be brought into proofs when needed. 
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Intsractive Proof Editor 

Conjecture 

-°---<''x(P(x)IQ(x))->(7xP(x)I'xQ(x))> 
Attempted Proof 
--------------- 
show ''x(P(x)IQ(x))->(7xP(x)I'xQ(x)) 
use Implies Introduction 
and .. 7x(P(x)IQ(x)) entails 7xP(x) 

and 

uffer: Main Root: Theorem 

'xQ(x) 
on premise 1 

xQ (x 

19 

Figure 1-10: Changing direction at the second step 
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Interactive Proof Editor 

Conjecture 

<7x(P(x)IQ(x))->(?xP(x)17xQ(x))> 
Attempted Proof 

show 7x(P(x)IQ(x))->(7xP(x)17xQ(x)) 
use Implies Introduction 
and show 7x(P(x)IQ(x)) entails 7xP(x)17xQ(x) 

use Exists Elimination with <x> on premise 1 
and show P(x)IQ(x) entails 7xP(x)I'xQ(x) 

use Or Elimination on premise 1 
and show P(x) entails xP(x)17xQ(x) 

use Or Introduction 
and gijP(x) entails 7xP(x) 

show P(x) entails 
or slow P(x) entails 7xQ(x) 

and show Q(x) entails 7xP(x)17xQ(x) 

uifer: Main Root: 

ERNL21 

Figure 1-11: After several proof steps 

7 

20 

a 
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"Intaractiv. Proof Editor 

Conjecture 
-----<1%(P(x)IQ(x))->('2xP(x)l?xQ(x))> 
Attempted Proof --------------- 
show '2x(P(x)IQ(x))->('xP(x)l?xQ(x)) 
use Implies Introduction 
and show ?x(P(x)IQ(x)) entails 'xP(x)[2xQ(x) 

use Exists Elimination with <x> on premise 1 
and show P(x)IQ(x) entails 'xP(x)I'xQ(x) 

use Or Elimination on premise 1 
and P(x) entails 'xP(x)I'xQ(x) 

by Or Introduction 
and P(x) entails '?xP(x) 

by Exists Introduction with <113> 

and P(x) entails P(x) 
is immediate 

and show Q(x) entails 7xP(x)I?xQ(x) 

utter: Main Koot:.iheorem 

21 

Figure 1-12: Upon completion of one subproof 
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Interactive Proof Editor 

x(P(x)IQ(x))->('xP(x)I 'xQ(x))C 

.x PCx)IQ(x))->('xP(x)I?xQ(x)) 
by Implies Introduction 
and ?x(P(x)IQ(x)) entails 7xP(x)I'xQ(x) 

by Exists Elimination with as on premise 1 
and P(x)IQ(x) entails 'xP(x)I'xQ(x) 

by Or Elimination on premise 1 
and P(x) entails 2xP(x)17xQ(x) 

by Or Introduction 
and P(x) entails 'xP(x) 

by Exists Introduction with <x> 
and P(x) entails P(x) 

is immediate 
and Q(x) entails ?xP(x)l?xQ(x) 

by Or Introduction 
and Q(x) entails 7xQ(x) 

by Exists Introduction with a> 
and Q(x) entails Q(x) 

is immediate 
QED 

uffer: Main Root: Theorem 

22 

Figure 1-13: The completed proof 
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The IPE intentionally represents the "opposite extreme" from fully- 

automated provers of the Boyer-Moore category. The user has full control over 

the construction of the proof, changing an earlier step in the proof is almost as 

easy as making the next step, and changes made to earlier stages of a proof filter 

through the rest of the proof. 

The cost of this concentration of effort upon the user interface is in proving 

power. As we shall see in §5.2, IPE has only a rudimentary means of automated 

proof construction. Furthermore, the IPE works best upon small proofs, though 

in §6 we describe a means of making and storing lemmas used in the construction 

of "larger" results. To the best of the author's knowledge, the largest problems 

tackled (and completed) using the IPE were the proof of a small parser (a prob- 

lem described in [Cohn-Milner 82]) and the proof of termination of a program 

in a simple language. Both of these proofs were performed by Claire Jones. 

Indeed the parser proof was Claire's first attempt at using the IPE, and took 

about a week to construct. Much of this time involved setting up the relevant 

descriptions in the IPE's theory database, rather than constructing the proof 

itself. 



Chapter 2 

The Generation of Basic Tactics for 

Interactive Proof 

2.1 Introduction 

The logical framework within which the Interactive Proof Editor operates is that 

of untyped intuitionistic first-order predicate calculus, excluding equivalence of 

predicates (which can be modelled as (A-+B) & (B-*A)). The basic proof steps 

of the IPE take the form of tactics (akin to those in the LCF system) which 

are used to construct proofs in a top-down fashion, by reducing an initial goal 

to a set of subgoals, where each subgoal is hopefully simpler to solve. The 

goals are represented as sequents ({tvci Gentzen, as in [Kleene 64]), where a 

sequent consists of a list of antecedent formulae (premises) paired with a succedent 

formula (conclusion). By ensuring the validity of the proof steps with respect to 

the original inference rules of the logic, we can ensure that valid proofs of the 

subgoals, or of a subset of the subgoals, produced by a proof step can be used 

to construct a valid proof of the original goal. 

The presentation in this chapter was strongly influenced by Schmidt's ap- 

proach in [Schmidt 83]. We derive the IPE's basic tactics from a set of natural 

deduction inference rules. Such a presentation was chosen to suggest means by 

which we could construct a general method of deriving the basic tactics for a 

proof editor starting from natural deduction inference rules. In fact, the IPE's 

basic tactics can be drawn more directly from Gentzen's intuitionistic formal 

system G3a as presented on page 481 of [Kleene 64]. 

24 
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The logical connectives used in the IPE, and their intuitive meanings are as 

follows: (where P,Q and R denote arbitrary formulae, and where P(x) denotes a 

formula P possibly containing a free variable x) 

P&Q - P and Q 

PIQ -PorQ 
P--+Q - P implies Q 

"P -not P 

VxP(x) - for all x, P(x) 

3xP(x) - there exists x such that P(x) 

IPE Version 5 is restricted to the ASCII character set; therefore the characters 

V and 3 are not available'. Thus in the screen display of formulae, IPE version 5 

uses "!xP(x)" for "VxP(x)", and "?xP(x)" for "3xP(x)". This representation 

is also used in this thesis. 

The syntax for predicate calculus formulae in IPE is given by the follow- 

ing: 

<formula> ::= <formula> & <formula> I <formula> 
I 
<formula> 

<formula> --+ <formula> I "<formula> 

V<var><formula> I 3<var><formula> 

<predicate> I N rwgla>) 

<predicate> <ident> 

<term> <ident> 

<ident>(<termlist>) 

<var> I <ident>(<termlist>) 

An <ident> is any sequence of upper- or lower-case letters and numerals beginning 

with a letter, and possibly ending with one or more primes ('). A <var> is similar 

but excluding a change from lower to upper case in the sequence (this allows us 

'However, V and 3 are used in the display of formulae in the X windows IPE. 
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to juxtapose variables and identifiers, as in !xP(x)). A <termlist> consists of one 

or more <term>s separated by commas. 

In the formula parser of IPE Version 5, there is no precedence between 

the binary connectives, and formula expressions are left-associative. This is 

sometimes counter-intuitive; for example, "A-*B&C" is "(A-*B)&C" and not 

"A-->(B&C)". 

2.2 Inference Rules of the IPE 

A semantics for describing the construction of valid formulae using the above 

logical connectives is given by a set of natural deduction inference rules in the 

style of [Prawitz 65], where each is of the form 

<premise> ... <premise> 

<formula> 

where <premise> is <formula> or 
[<formula>] 

. For example, 
<formula> 

[Q] 
P 

Q, 

R 

means "given P, and that we can infer Q' from Q, then we can infer R". 

In this characterisation of intuitionistic 1st-order predicate calculus there are 
of 

two kinds,,inference rules for each connective. The first antroduces the connec- 

tive, by defining the conditions under which a formula can be derived with that 

connective as its major connective; these are called introduction rules and are 

denoted by "connectivel" (e.g. "&I"). The second kind defines the conditions for 

eliminating the connective from a formula and exposing some of the substructure 
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of the formula; these are known as elzmznatzon rules, denoted by "connectiveE" 

(e.g., "bE"). Where there is more than one introduction or elimination rule for a 

connective (as is the case for elimination of &), the individual rules are identified 

by appending "r" or "1" to the rule name, as in "&Er". 

The inference rules from which we shall derive the IPE's basic tactics are 

given below: 

A B A&B A&B 
&I &Er &E1 

A&B A B 

[A] [B] 

Ir A III B IE AFB C C 

AFB AFB C 

-+E 
A A-+B 

A-+B B 

We introduce a special predicate false, and the rule 

false 

A 

(i.e. everything can be derived from false) and define A as A-false. 

VI 
P(x) 

VE 
VxP(x) 

`dxP(x) P(t) 

The VI rule has a side-condition: it can only be used when x does not occur free 

in any assumptions upon which P(x) depends (where x occurs free in a formula 

P if there is an occurrence of x which does not lie within the scope of a Vx or 

3x). 

[P(x)] 

P(t) 3xP(x) Q 3I 3E 
3xP(x) Q 
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As with VI, 2E has the side condition that x should not occur free in Q, or in 

any assumptions upon which Q depends (other than P(x)). 

These rules can be used to construct proofs directly: starting from a set of 

assumptions A1,. .. , A,, as our initial premises, we can apply both introduction 

and elimination rules (when their preconditions are satisfied) to examine cur- 

rent premises or construct new ones. For example, the following is a proof of 

A&B&C -> (A&C): 

&Er 
[A&B&C] 

&Er 
A&B 

8El 
[A&B&C] 

A C 
&I 

A&C 
->I 

A&B&C-> (A&C) 

However, such bottom-up methods of proof construction do not yield good 

mechanisms for interactive proof construction. A method such as this requires 

that we constantly look ahead; we need to know the overall shape and direction 

of the proof before we begin its construction. A better paradigm for interactive 

proof is that of top-down or goal-dzrected proof, where we commence by stating 

our final aim (or goal) and attempt to reduce it to smaller, more manageable 

subproblems (or subgoals), and analyse these similarly until either the subgoals 

become trivial or obviously unprovable. If we choose our tools for goal reduction 

with care, then we should be able to construct a formal proof (as in the previous 

section) of the initial goal by performing some composition operation upon the 

proofs of the subgoals. In goal-directed proof construction, we begin with a goal 

of the form show P1,. .. , P, entails Q and apply information derived from the 

inference rules to some of P, , Q to produce a set of hopefully simpler goals, to 

which the process can be repeated until either trivial goals (i.e. goals of the form 

show P,... entails P) or obviously unprovable goals are arrived at. 

As an example of information derived from an inference rule to yield a goal- 

directed rule, consider the &I rule. In its constructive use this says that if we 

already have both P and Q, then we can construct P&Q. In a goal-directed proof, 
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we want to turn this around so that it says that to show P&Q we must show 

both P and Q separately. This can then be used to reduce a goal of the form 

show R1,. .. , R,, entails P&Q to the two subgoals show R1,.. . , R" entails P 

and show R1, . . . , R.,, entails Q. These subgoals are simpler, in the sense that 

at least one formula in each contains less structure than in the original goal (and 

no formula has become more complex). 

The &E rules on the other hand can be used more or less directly. If we 

combine them, they say that from P&Q we can infer both P and Q; this rule 

can then be used in a top-down system to simplify premises, taking goals of the 

form show P&Q,... entails R to show P,Q,... entails R. 

2.3 Derivation of Basic Tactics 

We require a formal framework for re-phrasing the inference rules in forms more 

suitable for goal-directed proof. To do this, we look at David Schmidt's work on 

deriving tactics from inference rules ([Schmidt 83]). 

2.3.1 Tactic Schemata 

In the following, we use the notation if F C to represent a goal with premises if 

and conclusion C. I- is used to show that we have not yet shown that C can be 

derived from A. In the application of tactics to goals, we will allow permutation 

of the premises. We will also allow multiple instances of a premise. Thus the 

premises should be thought of as a bag of formulae rather than as a set or a 

list. This corresponds to Kleene's definition that two sequents are cognate when 

their premise "bags" contain the same formulae and their conclusions are also 

the same. The difference between Gentzen's sequents and our goals are that 

sequents may contain a list of conclusions; however, in the intuitionistic GSa, 

for all derivable sequents the list of conclusions consists of at most one formula. 

Here we have used false in place of an empty conclusion. We will use A - C (and 
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equivalently, A entails C) to represent a proven goal. A goal 0 F C is considered 

zmmedzate or immediately proven if C occurs in A; thus we are adopting G9a's 

axiom schema. This is encoded in the IPE's "Immediate" tactic, which succeeds 

if its goal is immediate and fails otherwise. 

The action of a tactic upon a goal will be described in general as: 

A,FC --> (A') F- C'; ... 

where A, A', C and C' are formulae, and A and A' are (possibly empty) bags 

of formulae, and that A, A is a bag containing at least one instance of A. This 

states that the tactic acts on a goal of the form A, 0 F C and produces the 

subgoals contained in (...). The tactic will fail if applied to a goal that does not 

correspond to the given form. 

We shall distinguish between the introduction and elimination rules of infer- 

ence and the Introduction and Elimination rules we are deriving for the IPE by 

capitalising the latter. The inference rules of G3a will be referred to as premise 

and conclusion rules (e.g. implies-conclusion) according to whether the associ- 

ated connective is introduced in the premises or in the conclusion as a result of 

applying the inference rule. 

In [Schmidt 83], David Schmidt reasons that schemes for deriving tactics 

from inference rules could be used to develop a set of tactics which adhere to the 

logic. He describes two tactic schemes for deriving tactics from inference rules. 

Given a rule 

[Al] ... [Ak] 

Bl ... Bk Bk+l ... Bm 
r 

C 

(meaning, "if we can derive Bl,... , Bk from A1,.. . , Ak, and if we have 

Bk.l, ... , Bm, then we can infer C"), the tactic schemes are 

(F r): when applied to a goal of the form A f C, this applies the rule 

r "backwards" to C, producing the subgoal list 

(A, Al I- B1 ; ... ; A, Ak I- Bk; 0 I- Bk+1 ; ... ; 0 B.) 
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(r F-): when applied to a goal of the form B1, ... , B,,,, 0 F- D, this ap- 

plies the rule r "forwards" to B1, ... , B,,,, producing the subgoal 

list 

(B1,...,Bm,C,AF-D) 

There is also a validation function associated with each tactic which, given 

a validation of each of the subgoals constr//uctsa validation of the original goal, 

using the original inference rule. (These dkiemj,Gfwf10l2ca ' tot asen' ui 12 

Schmidt proceeds to suggest ways in which these derived tactics could be 

used to write general "try-everything" tactics for goal-directed proof in the logic 

defined by a set of inference rules. However, the same schemes can be used as a 

first step in deriving the basic tactics used in the IPE. 

2.3.2 Basic Tactics for the IPE 

Schmidt's tactic schemes give two tactics per inference rule. As we shall see, not 

all of the tactics generated from the inference rules for a connective are useful in 

goal-directed proof strategy, and some require further modification (for example 

to take account of their applicability to certain situations). 

We consider the tactics generated by Schmidt's method for each connective 

in turn. 

For &, we obtain the tactics 

(F-&I): O F P&Q H (O F 
P;A 

H Q) 

9 Tj Q, 
(&IF): P,Q,0F=R H (P&Q,, FR) 

(F-&Er): 0 I P 4 (0 F P&Q) 
9 7 

(&Er P&Q, O F R H (P, P&Q, 0 I R) 

F- Q (0 F P&Q) 

(&El F ): P&Q, 0 F R (Q, P&Q, O F R) 
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Of the above, only F-&I, &Er F- and &El F- perform "goal refinement" in the sense 

of simplifying at least one formula in the goal without introducing other connec- 

tives. &I I-, F- &Er and F- &E! make the goal more complicated. Furthermore, 

to perform I- &Er interactively, the user would have to supply a new formula 

Q (and then demonstrate it); to perform &I H, the user would have to select 

the two premises to be &-ed. Apart from the increased effort imposed upon the 

user, by increasing the complexity of the goal there is the risk of infinite chains of 

tactic applications (allowing the user to become stuck in a "problem loop"). The 

omission of the other tactics does not change the set of conjectures which 

can be proven. 

Thus, we may adopt F- &I as the IPE rule And-Introduction. In order to 

present a single elimination rule for &, we combine &Er F- and &El I-, producing 

a tactic which places both P and Q in the subgoal. The new tactic can be 

thought of as application of M1- to the same premise in either order. 

Uses of F-&I can be justified by the and-conclusion of G3a: given justifications 

for the goals 0 I- P and 0 I- Q we can infer 0 I- P& Q. 

Note that in both &El F- and &Er F-, the original "argument" P&Q is left 

in the premises of the subgoal. In practice, this quickly leads to a large and 

cumbersome premise-set to be presented to the user at each stage of the proof. 

Normally, having "extracted" P and Q from P&Q, the latter premise is no longer 

needed, and so we choose to omit it in the subgoal. Thus the operation of the 

And Elimination rule is: 

P&Q, 0 F R H (P, Q, A F- R) 

We extend this behaviour (of omitting the "argument" from the subgoal) to 

all of the IPE's Elimination rules. However, we add a Duplication rule which 

enables us to add an extra copy of a premise to the premise-list, so that this 

removal of a premise can be undone by duplicating it prior to the application of 

the appropriate Elimination rule. Similarly, in the remainder of this section we 

omit arguments to r F- tactics from their subgoals. 

Uses of And-Elimination can be justified by the and-premise rule of GSa. 



Chapter 2. The Generation of Basic Tactics for Interactive Proof 33 

The tactics for disjunction (A I B) are 

(F-III): A AI B H (A B) 

(F-11r): A A I B H (A F A) 

(IIIF-): Q,AFR H (PIQ,AFR) 

(11r F-): P,AF- R H (PIQ,AFR) 

(IEF-): PIQ,R,AF-S H (R,AF S) 

(F-IE): A C H 1 - 1 C C 

Clearly, Fjll and I-JIr are useful. In order to maintain the single-Introduction- 

rule-per-connective pragma, we combine these two rules in the IPE, producing a 

tactic which generates both subgoals (show A, show B), but which will consider 

its goal to be proven when either subgoal is demonstrated. If we can derive either 

subgoal, then the or-conclusion rule of G3a will allow us to derive the original 

goal. 

As with &I F-, IIl F- and IIr F+ are of no real use in the formula-decomposition 

proof style. 

Deriving Or-Elimination is slightly harder. I E F- in its strictest form will 

not suffice, for it does not reveal any more information. Instead consider F-IE. 

Applying this to a goal of the form 

A,AIBF C 

gives the three subgoals 

(A,AIB,AFC; A,AIB,BFC; A,AIBFAIB) 

The third goal is clearly immediate, and the result is simply a "proof-by-case- 

analysis" tactic. If we restrict the applicability of HE to goals of this form, then 

we can omit the third subgoal. This is how Or-Elimination is implemented in 

the IPE; it is triggered by pointing at a premise which is a disjunction, and will 
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fail if an attempt is made to apply it to a goal which is not of the above form. 

Use of Or_Elimination is justified by G3a's or-premise rule. 

The tactics for implication (A--+ B) are 

(F-->I): A F A--'B -- (A, A H B) 

(->IF): A,BFC --.' (A,A-->BHC) 

(F-->E): AFB F-- (OVA-->B; OVA) 

E A, A , H C F--.' (A,B C) 

The IPE rule Implies Introduction is simply F--> I, whose use is justified by 

G3a's implies-conclusion rule. Implies Elimination is almost -> E H, except that 

we do not demand that A be a premise in the goal; instead we generate a second 

subgoal to show that A can be derived from A: 

Implies Elimination: A, A --> B H C i--> (A F A; A, B F C) 

Use of this rule is justified by the implies-premise rule of G3a. 

In the IPE, `A is treated as A-+ false, so that A H `A is really A F A --> false 

and so on. As a result, Not Introduction in the IPE is 

0 A (- O F- A -> false) H (A, A F IV), 
i.e., we use Implies Introduction. Intuitively, we attempt to prove A by assuming 

A and trying to reach a contradiction. For Not Elimination, we have a similar 

situation: 

A, AHB (- A,A --> fake HB) H (AFA; A, false FB), 

using Implies Elimination. In this case, the second subgoal is trivial (since the 

assumption of falsity renders everything provable), and can therefore be omitted. 

Intuitively: to prove B when we know "A, we attempt to prove A from our other 

assumptions, thus achieving a contradiction. 

If we consider false to represent an empty conclusion, then these two rules 

are justified by the not-conclusion and not-premise inference rules of G3a respec- 

tively. 
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In the inference rules for the quantifiers V and 3, we have extra side-conditions 

concerned with the handling of free variables. 

VI insists that the variable we bind should not occur free in any assumptions 

upon which the inner formula depends. This carries across into the basic tactics: 

(E-`dI): 0 F VxP(x) -* (0 }L P(y)) 

provided that the variable y does not occur free in 0 or P 

0,P(y) }Z A i--, (A,VxP(x) [-A) 

provided that the variable y does not occur free in 0 or P 

(1-VE): 0 }L P(t) - (0 1 VxP(x)) 

(VE}-): 0, VxP(x) }- A H (0, P(t) F- A) 

I- VI leads to the IPE's All Introduction rule; the rule is designed so that when 

it is used, the IPE will choose a variable name which does not occur free in the 

goal at that point. However, the user has the ability to change the name of the 

variable (for example, to a more mnemonic name); the IPE will always check 

that the chosen variable is indeed "new". 2 

VEI- becomes the IPE's All Elimination rule. Here, since we know that P(x) 

holds for all x, we can assume P(t) for any term t 3. In All Elimination, the IPE 

allows the user to supply any term to substitute for x in P. 

The other tactics are rejected on the grounds that they increase the complex- 

ity of the goal, and that their omission does not effect the completeness of the 

IPE's rules. 

2Another case where the user must change the variable name is when an instance of 

the All Introduction rule is passed a new goal in which the chosen variable is no longer 

suitable. 

'Recall that the IPE's logic is untyped; in a typed logic, we would additionally be 

forced to show that the type attached to x is non-empty. 
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The conditions on the 3E rule also carry across into the tactics: 

3I): A F 2xP(x) '--r (AI- P(t)) 

7 ? 

(2I F-): A, P(t) F- A F-+ (A, 3xP(x) F A) 

2E): A H Q '--, (A H 2xP(x) ; A, P(y) I` Q) 

provided that the variable y does not occur free in A or Q 

(2E 1-): A, 3xP(x), Q F R i-+ (A, Q F R) 

provided that the variable y does not occur free in A, Q or R 

Exists Introduction is simply H 31: to show that P holds for some x, we allow 

the user to supply any term t to substitute for x in the subgoal, hoping that this 

can be demonstrated later '. In a similar fashion to the choice of I-IE for Or 

Elimination, we choose H 3E for Exists Elimination Restricting its applicability 

to goals of the form 3xP(x), 0 H Q renders the first subgoal immediate. Just 

as Exists Introduction is the counterpart to All Elimination, choosing H 3E for 

Exists Elimination makes it the counterpart of All Introduction: the IPE chooses 

a "new" variable y to substitute for x in the subgoal; the user is free to change 

this so long as the chosen variable does not occur free in the other formulae in 

the goal. 

As before, if we succeed in deriving the subgoals resulting from the application 

of any of the quantifier Introduction and Elimination rules, then the correspond- 

ing quantifier-conclusion and -elimination inference rules of Gad can be used to 

derive the original goal. 

Two further tactics are provided, mainly for pragmatic reasons. The first, 

called Remove Antecedent, removes a selected premise from a goal; in practice 

4In many proofs, the choice of t will not be obvious until further work has been 

performed upon the subgoal; however, as we shall see later, the IPE user is free to 

change the choice of t at any stage in proof construction. 
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this is used to remove premises which are not needed in the subproof (and hence 
to reduce visual clutter). This relies upon the monotonicity of intuitionistic logic. 
Duplicate Antecedent adds a copy of a selected premise to the subgoal. The reason 
this is required is that the implementations of the Elimination tactics all remove 
the premise they acted upon, to avoid clutter in the subproofs. Unfortunately, 
some proofs require two rule-applications to the same premise, so Duplicate An- 
tecedent is supplied as a means of "doubling up" such a premise prior to its 
removal. (It should be noted that the use of Duplicate Antecedent could allow 
"problem loops" of the form discussed previously; thus it is important that this 
rule be used judiciously in practice). 

Table 2-1 summarises the basic tactics of the IPE. 

The IPE's Introduction and Elimination tactics are goal-directed implemen- 
tations of the corresponding rules of the intuitionistic G3a. The goal of a C- 
Introduction tactic for any connective C in the IPE can be constructed by an 
application to the subgoals of the rule in G3a which introduces the connective C 
into the succedent. The case is similar for a C-Elimination tactic and the G3a rule 
which introduces C into the antecedent, except that in the IPE the relevant an- 
tecedent is removed from the subgoals; this latter effect can be undone by a prior 
use of Duplicate-Antecedent. Thus the rules of G3a act as (implicit) validation 
functions (in the LCF sense) for the IPE's basic tactics. All of the rules of G3a are 
relied upon, and completeness of the IPE's tactics follows from the completeness 
of G3a. 

2.4 General Principles 

The IPE is built upon a fixed set of basic tactics derived "by hand" from a 
set of rules for first-order intuitionistic predicate calculus, using Schmidt's tac- 
tic schemas. Not all of the possible tactic schemas have been used; some have 
been discarded on the grounds that they increase the complexity of formulae in 
the goal, which competes with the overall aims of proof by decomposition. 

Though this process of basic tactics generation has been performed on paper 
rather than by mechanical means, it is worthwhile to consider whether or not it 
could be generalised and mechanised for any logic expressed via inference rules. 

It seems clear that we can generate a set of basic tactics from any set of in- 
ference rules using Schmidt's scheme. The problem lies in "thinning out" this set 
by removing "superfluous" tactics: how can we decide which tactics are super- 
fluous? The essence of the problem is to obtain a set of tactics which preserve 
completeness and consistency with respect to the original inference rules (the set 
of statements provable by compositions of the basic tactics should be identical 
to that set provable from the original inference rules), whilst additionally en- 
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Table 2-1: Basic Tactics of the IPE 

Name derived from function 

And-Introduction F-&I 0 F A&B H (0 F A; 0 F B) 

And-Elimination &E F- P&Q, 0 F R H (P, Q, O F R) 

Or-Introduction F-JIl, F-JIr 0 F- A (B H (0 F B) OR (0 F- B) 

Or-Elimination HE 0, A B F- C H (Al A F- C ; 0, B I C) 

Implies-Introduction F-->I 0 F- A ---> B H (A, A F- B) 

Implies-Elimination -> E F- 0, A -> B F- C H (AF= A; 0, B F= C) 

Not-Introduction F--> I A F A H (0, A F- e) 

Not-Elimination -> E F- 0, `A F- B H (0 F A) 

All-Introduction F-VI 0 F- VxP(x) H (0 F- P(y)) 

All-Ehmination VEF- 0,VxP(x) }- A H (0, P(t) F A) 

Exists-Introduction 1-3I 0 F- 2xP(x) H (0 F P(t)) 

Exists-Elimination F- 3E 0, 2xP(x) F A H (0, P(y) F A) 

Remove-Antecedent monotonicity 0, A F- B H (0 F B) 

Duplicate-Antecedent A, A F- B '--p (0, A, A F- B) 

A,B and C are arbitrary predicates; P(x) is an arbitrary predicate possibly 

containing instances of a variable x; t is an arbitrary term; y is an identifier 

which should not occur free in the other formulae of the goal. The reader is 

referred to the text of this chapter for further details. 

couraging top-down decomposition. At first guess, a simple criterion would be 

to discard those tactics which increase the complexity of goal formulae. 

A second problem is that some basic tactics which have to be used do not 

lend themselves directly to our style of proof construction, but require some 

further treatment first. (For example, F-JE in the previous section). In the IPE 

these alterations relied on insights into the realm of applicability of the tactic; it 

seems improbable that such insights can easily be mechanised; perhaps increased 

experience of translation-by-hand will reveal some guidelines. 
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It is probably impossible in general to maintain the "proof-by-pointing" prin- 

ciple of the IPE (viz , having a single decomposition rule for each connective when 

it occurs as the top connective in a premise or in the conclusion of a goal). In 

practice, although this principle is useful initially, in that it reduces the amount 

of effort that the user has to put into the proof, it becomes necessary as proofs of 

larger conjectures are sought to allow some form of compound rules which may 

break the "proof-by-pointing" principle. (See Section 6 for the solution adopted 

in the IPE). For example, adding the fact 

VxVyP(x, y) -+VyVxP(x, y) 

can be thought of as adding a new derived inference rule 

VxVyP(x, Y) 

VyVxP(x, Y) 

Clearly whenever the Schmidt-tactics derived from this rule are applicable to a 

goal formula, then one of the rules All Introduction and All Elimination will also 

be applicable. 

It may not be possible to preserve the principle even for the basic inference 

rules of a logic; for example, in cases where two inference rules refer to the 

same top-level connective but possibly require different substructures or different 

semantic constraints. 



Chapter 3 

Attribute Grammars As A Basis For 
Context-Sensitive Structure Editing 

The kernel of the Interactive Proof Editor consists of a context-sensitive structure 

editor operating within an attribute grammar framework. The use of attribute 

grammars here was inspired by a paper from the Cornell Synthesizer Generator 

project [Reps-Alpern 84] which contained the basic idea of using an attribute 

grammar to define a structure editor for proofs. This paper demonstrated cer- 

tain desirable properties of the resultant editor. that the validity of the proof 

could be maintained by the attribute grammar, that alterations to any point of 

the proof produced instant feedback, and that proof errors introduced by the 

user could be indicated at the point of occurrence. We decided to experiment 

further with the notion of `editable proofs', and to try and develop a system 

which was exclusively tailored to proof editing (unlike the Cornell system which 

uses a standardised interface for all its structure editors). We had already devel- 

oped a smaller version of the Synthesizer Generator, informally titled `C-SEC' 

(for Context-Sensitive Editor Creator), written in the language ML (with a pre- 

processor in C generated by the YACC program [Johnson 78]), and we chose to 

use this to generate a set of kernel functions for the IPE. In this section, we 

look at the means by which attribute grammars can be used to form a general 

framework for context-sensitive structure editors, with particular reference to 

the C-SEC system. Firstly, the notions of attribute grammar, derivation tree, 

semantic tree and dependency graph are introduced. We then describe a method 

40 
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for generating editors from attribute grammars and methods for maintaining 

consistency of the structures generated with respect to an attribute grammar. 

3.1 Attribute Grammars 

An attribute grammar [Knuth 68] is a context-free grammar cfG extended by 

Each symbol S, in c f G has an associated set of attributes A(S,), parti- 

tioned into a set of inherited attributes A,nh(S,) and synthesised attributes 

Asyn(S,). 

Each production in the c f G of the form 

S1 ..= op(S2 ... Sn) 

( where op is the production name ) has an associated set of semantic 

equations; each equation defines an attribute of a symbol of the production 

(S1i ... , Sn) in terms of a semantic function applied to other attributes 

(called the arguments of the equation) in the production. There is precisely 

one equation for each synthesised attribute of the left-side nonterminal Sl 

and for each inherited attribute of each right-side symbol S2, ... , S. 

The attributes and semantic equations extend the context-free grammar to a 

context-sensitive grammar. When we later describe derivation trees and seman- 

tic trees, we shall see that attributes act as storage slots for information that is 

passed between different points of a tree. Inherited attributes store information 

determined from the root of the tree, whilst synthesised attributes hold infor- 

mation derived from the subtrees. Both kinds of attributes may also use local 

information, i.e., values of other attributes of the same instance of a symbol. 

The grammar is said to be in normal (canonical) form if the arguments of each 

semantic equation in a production are inherited attributes of the left-side symbol 

or synthesised attributes of right-side symbols. 



Chapter3 Attribute Grammars As A Basis For Context-Sensitive Structure Editing42 

In the notation used in this chapter, each production of the grammar has 

a unique name, and the productions of a nonterminal are grouped together. 

The semantic equations of a production follow it in list brackets (`[' and `]'). 

Comments are enclosed in braces(`{' and `}'). This notation is similar to the 

notation used by C-SEC; a syntax for the C-SEC attribute grammar definition 

language can be found in Appendix A. In C-SEC, the semantic language is 

ML: the attributes are typed objects in ML, and the semantic equations are ML 

expressions. The first major operation of C-SEC is to take an attribute grammar 

in the description language and `compile' it into ML code which implements it as 

an ML object of type attribute-grammar. The choice of ML as the semantic 

base has proven particularly useful in the implementation of the IPE. 

The following fragment of an attribute grammar for an integer expression ed- 

itor gives an example. The nonterminal `Expr' has two attributes; a synthesised 

`value' and an inherited set of `declarations'. The intuitive meaning of the value 

of an expression is that it is calculated from the values of any sub-expressions, 

and the set of declarations of an expression is that of its parent expression plus 

any local declarations. These intuitive meanings are enforced by the semantic 

equations of each production. `Sym$n.attr' denotes the attribute named `attr' of 

the nth occurrence of the symbol `Sym' in the production (numbered from the 

left). `VY1' def Gdts to `$Z' whei't cqu . 
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Expr ::= Sum ( Expr Expr ) 

[ Expr$1.value = Expr$2.value + Expr$3.value; 

Expr$ 2. declarations = Expr$ 1. declarations; 

Expr$ 3. declarations = Expr$ 1.declarations; 

Difference ( Expr Expr ) 

[ Expr$1.value = Expr$2.value - Expr$3.value; 

(etc) 

UseVar ( Var) 

[ Expr$1.value = lookup( Var$l.value, Expr$ 1. declarations 

Bind ( Var Expr Expr ) 

{ `let Var = Expr$2 in Expr$3 end' } 

[ Expr$1.value = Expr$9.value; 

Expr$2.declarations = Expr$ 1.declarations; 

Expr$3.declarations 

= add-binding(Var.name,Expr$2.value, 

Expr$ l .declarat ions); 

... (other productions of Expr).. . 

); 

An attribute grammar can be viewed as a discipline which a context-sensitive 

structure editor must follow. The following sections describe structures which 

can be used by such an editor to create objects which remain consistent with a 

particular attribute grammar. 
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3.2 Derivation Trees 

For an object 0 constructed in accordance with an attribute grammar Ag, the 

derivation tree of 0, DT(O), shows how 0 was constructed using the produc- 

tions of Ag. (If the grammar Ag is ambiguous, 0 may have more than one 

possible derivation tree). 

Each node of DT(O) is labelled by a symbol of Ag and the name of a 

production rule of that symbol. For a production 

So ::= op (Sl ... Sri) 

the derivation tree will consist of a node labelled (So,op) and child nodes labelled 

with the symbols Sl,... , S,, and the names of whatever production rules they 

have been expanded by. 

For example, if we have 

Expr ..= Const ( Integer ) 

Sum ( Expr Expr ) 

(ignoring semantic equations for the moment, and using a crude set of rules 

for Integer), then the following is a possible derivation tree for the expression 

3 + 4 + 5: 
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(Expr,Sum) 

I 

I I 

(Expr,Const) (Expr,Sum) 

I I 

I 

I I I 

(Integer,Three) (Expr,Const) (Expr,Const) 

I I 

I I 

(Integer,Four) (Integer,Five) 

Usually, the concrete syntax of a language (how its structures are represented 

textually) differs from its abstract syntax and the derivation tree is then referred 

to as an abstract syntax tree. For our purposes, however, the term `derivation 

tree' will suffice. 

The derivation tree of an object can be used to represent its structure, and 

in fact is used for this purpose in many structure editors, although the tree 

structure may be hidden from the user to varying extents. 

To construct a structure editor based upon derivation trees, we must extend 

the idea of derivation trees to incorporate a notion of `current position', for 

example as follows: 

A posztzonal derivation tree is a derivation tree with two distinguished nodes, 

the root node and the current node. The current node is the node affected by 

most editing operations. We may expect motion operations such as 'to-parent', 

'to-child-n' and 'to-root', which make the new current node the parent and nth 

child of the old current node, and the root of the derivation tree respectively. 

The most basic alteration operation would be 'expand-by-rule', which expands 

the current node in accordance with the chosen production rule (which must 

be a production of that node's symbol), replacing any existing expansion of the 
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current node. This combination of motion and subtree replacement operations gives 

us a simple structure editor, and, given a suitably general definition of expand-by- 

rule, one which is grammar-independent. 

However, the derivation tree is not sufficient in itself to represent context- 

dependent information; although our structure editor restricts the class of con- 

structible objects to those which satisfy the constraints of the context-free gram- 

mar (i.e., the syntactic restrictions of the attribute grammar), it is still possible to 

build objects which break the context-dependencies of the attribute grammar (for 

example, to construct an Expr which refers to an undeclared variable). In order 

to build context-dependency into our editable structures, we now introduce the 

notions of semantic tree and dependency graph. 

3.3 Semantic Trees 

The semantic tree of an object combines both the structure of its derivation tree 

(facilitating "ordinary" structure editing operations) with context-dependent in- 

formation derived from the semantic equations of an attribute grammar. 

A semantic tree ST(O) of an object 0 constructed under an attribute grammar 

Ag is a derivation tree DT(O) with each node additionally labelled by the attribute 

instances of the symbol which labels that node, where each attribute instance of 

a symbol is the value of an attribute associated with that symbol. Attribute in- 
at 

stances of the same symbol,but,different nodes,of the semantic tree are distinct. 

The values of attribute instances of a node of the semantic tree can be determined 

by applying the appropriate semantic functions to their intended arguments, which 

can be attribute instances of the same node, its parent or its children. The seman- 

tic function for an inherited attribute of a node is determined by the production 

rule of the parent; for a synthesised attribute it is the production rule of the node 

itself. To see this more clearly, consider extending the previous example by asso- 

ciating a synthesised attribute 'Val' with the nonterminals Expr and Integer, and 

semantic equations as follows: 
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Expr ..= Const ( Integer ) 

[ Expr.Val = Integer.Val; ] 

Sum ( Expr Expr ) 

[ Expr$1. Vat = Expr$2.Val + Expr$3. Vat; ] 

Integer ::= One () [ Integer.Val = 1; ] 

I Two () [ Integer.Val = 2; ] 

(etc) 

and consider the following semantic tree for (3 + 4 + 5): 

(Expr,Sum) 

[Va1=12] 

I 

I I 

(Expr,Const) (Expr,Sum) 

[Val = 3] [Va1= 9] 

I 

I I I 

(Integer,Three) (Expr,Const) (Expr,Const) 

[Val = 3] [Val = 4] [Val = 5] 

I I 

I I 

(Integer,Four) (Integer,Five) 

[Val = 4] [Val = 5] 

The values of the attribute instances of Val for the Integer nodes come 

directly by evaluating the semantic functions for Integer.Val in the production 

rules for Integer named `Three', `Four' and `Five', as these functions are con- 
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stants (with no attribute arguments). The values of Val in the immediate parent 

nodes (labelled (Expr,Const)) are copies of the values of the child attributes, 

in accordance with the semantic equation for Expr.Val in the Const production. 

Similarly, the attribute instance at each Sum node is the sum of the values of 

the attribute instances of the two children of the node. The final value of the 

overall expression has been calculated from the values of its subexpressions in 

a structured fashion. Such a semantic tree, where the value of every attribute 

instance is the same as the value calculated by applying its semantic function 

to its arguments, is called consistent. An editing operation such as "expand-by- 

rule" can destroy the consistency of a semantic tree, and thus it is important to 

be able to restore the semantic tree to a consistent state after such an operation. 

3.4 Dependency Graphs 

It is important to note that a semantic tree does not contain any information as 

to where the arguments for a semantic function may be found; in other words 

the semantic tree lacks the dependency relationship between attribute instances. 

This information is contained in the dependency graph of the semantic tree. 

An attribute instance a is said to depend directly upon an attribute instance 

b if b is an argument of the semantic function for calculating the value of a. 

The nodes of the dependency graph DG(St) of a semantic tree St are labelled 

by the attribute instances of St; for nodes labelled by instances a and b there is 

a directed edge (a,b) if a depends directly on b. 

A dependency graph is said to be circular if it contains a cycle; in this case, 

none of the attribute instances in the cycle can be properly evaluated according 

to their semantic functions. An attribute grammar is similarly said to be circular 

whenever it is possible to construct a semantic tree under the grammar whose 

dependency graph is circular. 

The information in the dependency graph can be used to evaluate a semantic 

tree in an efficient way. When a semantic tree is altered during the course 
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of editing, it is possible to determine and follow the altered dependencies in 

an efficient manner which ensures that no attribute instance is evaluated more 

than once after each alteration, and that no instance is needlessly re-evaluated 

if its argument instances do not change. This is a useful feature in context- 

sensitive structure editing, as a desired fast response to the user competes with 

the complexity of the context dependencies. The possible direct dependents of 

each attribute in a node are restricted to the attributes of that node, its parent 

and its children Therefore, when an operation such as "expand-by-rule" is 

performed it is easy to determine which attributes have been directly affected. 

3.5 Completing Productions 

During an editing session, the syntax trees built by the user are often incom- 

plete (from the user's point of view at least), with one or more nonterminal 

nodes unexpended. Whilst it is certainly possible to construct derivation trees, 

semantic trees and dependency graphs corresponding to such structures, there 

are problems in evaluating attribute instances in such cases. The essential ques- 

tion is, `What should be the values of attribute instances of an unexpanded 

nonterminal?'. 

The simplest solution would be to assume such instances to have a certain 

default value, null, distinct from all other values they might take. However, we 

follow the Cornell Synthesizer Generator in the view that such an approach is 

too limited and that unexpanded nodes should be capable of `responding to' or 

`bouncing back' contextual information in a similar fashion to production rules 

whose right-hand side is empty. Linked with this is the idea that the semantic 

tree should be maintained consistent by the system after each alteration. 

The role of unexpanded nonterminals in editing is catered for in the notion 

of a completing production. C-SEC insists that each symbol has a completing 

production which represents the `default' production for that symbol, and is 

grafted on to represent an unexpanded instance of that symbol. The completing 
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production must have no right-side symbols, and allows the definition of values 

for the synthesised attributes of the symbol, perhaps in terms of inherited at- 

tributes. Thus the user can receive context-dependent feedback throughout the 

editing session. 

3.6 Obtaining Semantic Trees from Attribute 
Grammars 

It is now possible to describe the process by which a context-sensitive editor can 

be generated from an attribute grammar which includes a completing produc- 

tion for each nonterminal. (The method of maintaining consistency of context- 

dependent information is not described in this section but comes under Section 

3.7). The resultant structure editors will at the lowest level construct semantic 

trees on a rule-by-rule basis; that is, the producticn rules of the grammar will 

provide the basic building blocks for the editor, and these elementary semantic 

trees can then be grafted onto a main semantic tree at the `current position'. 

The completing rule for each symbol S yields an elementary semantic tree 

consisting of a single node labelled by S and a set of instances of the attributes 

of S. (This is called the completing tree of S). 

A production rule of the form 

So ::= op(Si ... Sn) 

translates to an elementary semantic tree whose node is labelled (So, op) (to- 

gether with a set of instances of attributes of So) and whose children are the 

completing trees of Si, ... , S. 

In this fashion, an attribute grammar can be processed to produce a set of 

elementary semantic trees, each labelled by the appropriate production name, 

which can then be handled by a general tree manipulation package to provide 

the kernel of a structure editor. This is the second major operation of the C- 

SEC system: given an attribute grammar as an ML object, C-SEC will process 



Chapter 3. Attribute Grammars As A Basis For Context-Sensitive Structure Editing5l 

it to produce a set of ML functions for the construction of semantic trees and 

dependency graphs under the grammar. These can then be used as the kernel 

for a structure editor. (C-SEC provides no interactive user interface; this must 

be built from the tree-construction functions, and possibly `hooks' inside the 

particular attribute grammar, such as attributes for display text generation). 

3.7 Incremental Reevaluation 

There are two main problems associated with semantic trees; the attribute in- 

stances consume large amounts of storage, and the calculation of their values is 

often costly. C-SEC leaves problems of space-saving to the attribute grammar 

designer rather than attempt general solutions such as having attribute instances 

share space when they c(sbitcwts CCDt,mc*? 5tA74uc t'Gl reS1 

This section describes attempts to alleviate the second problem. 

In any interactive editing system it is necessary to keep the usersup to date 

with the state of the structure that they are editing. In a context-sensitive ed- 

itor, this means that the semantic tree must always be consistent, at least to 

the extent required by the user2. It may be essential to reevaluate certain at- 

tribute instances after each grafting operation, upon demand for information by 

the user or even after every movement operation. For example, after grafting 

a new semantic tree onto the main tree at the current position, the resulting 

semantic tree is almost certainly inconsistent with the attribute grammar. Per- 

haps the only inconsistent attribute instances are amongst those of the `current 

node'; however, in most cases the value of other instances in the semantic tree 

will be dependent upon the `current attribute instances', and will also require 

reevaluation. (In fact, those instances which may require reevaluation are the 

'Reps' thesis ([Reps 82]) describes some methods for reducing the storage problem. 

2See Section 3.7.2 for an explanation of this qualification. 
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set of instances in the dependency graph of the new semantic tree which are 

reachable from the current instances). The process of maintaining a semantic 

tree by the reevaluation of attribute instances after each update of the tree is 

known as incremental reevaluatzon. 

The essential problem of incremental reevaluation is that local changes to a 

semantic tree may produce non-local changes in attribute instance values, and 

it is not possible to predict precisely which instances will require reevaluation. 

Furthermore, the order in which the values of instances are re-calculated is im- 

portant; if care is not taken, it is possible that some attribute instances will be 

evaluated more than once. As an example, suppose that attribute instance a 

depends upon instance b, but a is reevaluated first. Then a's new value is calcu- 

lated using b's old value. If at some later point in the reevaluation process b is 

reevaluated and changes value, then a will have to be evaluated a second time, 

since it depends upon b. Thus the first evaluation was wasteful (and costly if a's 

semantic function is complicated) and should have been avoided. The informa- 

tion contained in the dependency graph can be used to avoid such unnecessary 

computations; by following paths of dependencies, an algorithm can determine 

the order in which they should be reevaluated to ensure that when an instance 

is evaluated, all of its arguments are up-to-date. In addition, should none of the 

arguments of an instance change value during reevaluation (because either they 

did not require reevaluation, or their reevaluation did not change their value) 

then that instance need not be reevaluated; this is easily detected (provided 

there exists a suitable equality function for the attribute value types). Ideally, 

the number of reevaluations should be as small as possible; also, the number 

of instances accessed should be as small as possible (however this condition be- 

comes secondary if we assume that the cost of accessing an instance is lower than 

the cost of instance evaluation). 

The two main approaches to attribute evaluation are known as "change prop- 

agation" and "pebbling". (These terms are used in Reps' thesis). As the name 

suggests, change propagation assumes that the entire semantic tree was previ- 

ously consistent, but now some attribute instances have changed value. Given 
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this set of changed instances, a change propagation algorithm works by deter- 

mining whether or not their dependants' values change as a result, and then 

recursively propagating the changes as far as is necessary through the semantic 

tree. In pebbling, the value of a chosen attribute instance is determined by sim- 

ilarly determining the values of its arguments. This leads to a "demand-driven" 

approach, where we demand the value of a particular attribute instance, rather 

than attempt to restore consistency of the entire semantic tree. 

The algorithm chosen in C-SEC uses the pebbling approach, together with the 

"time-stamping" of attribute instances to determine whether or not an instance 

could have changed value. 

3.7.1 Jalili's Incremental Reevaluation Algorithm 

The incremental reevaluator used in C-SEC is derived from an algorithm pre- 

sented by Jalili in [Jalili 83] which ensures that attribute instances are evaluated 

in the correct sequence. This algorithm will perform correctly for any attribute 

grammar ., including circular grammars in the sense 

that it can detect and report a circularity in a dependency graph. 

In its `strict form' (as presented in [Jalili 83]) the algorithm assumes that 

the aim is to maintain consistency of the synthesised attributes of the root of 

the semantic tree, and it begins by trying to validate their values. To validate 

an instance, the algorithm first tries to recursively validate (and reevaluate if 

necessary) the argument instances of the semantic equation for that instance. 

The validation of an instance depends upon a notion of `global time' and `time 

of last update' for that instance. 

Other than the semantic tree, the algorithm requires three extra sets of in- 

formation: 

1. The `global time' status integer (called increment by Jalili). This is as- 

sociated with the semantic tree. Initially zero, it is incremented after each 
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tree alteration This gives a notion of time against which the status of each 

attribute instance can be compared. 

2. The local status of each attribute instance. status reflects the validity 

of the attribute with respect to the current time. The possible settings of 

status are: 

(a) never-evaluated. This means that the attribute instance has never 

been computed from its semantic equation and arguments, and is the 

initial setting of status for every instance. 

(b) visited. This is a temporary setting, used during reevaluation to 

check for circularity. When it is required to validate an instance, 

its status is set to visited until it is validated; if at any point in 

the process an instance is found whose status is visited, then this 

instance must depend upon itself; i.e., a circularity has been detected. 

(c) up_to_date (time (t)). This records that the instance has been vali- 

dated up to time t; if t is the present value of increment, then the 

instance is validated. 

3. The `last update time' status integers, called time. Associated with each 

attribute instance, time records the last time the instance's value changed 

upon reevaluation, as the value of increment at the time of change. time 

is initially zero for all instances, indicating that they have never been eval- 

uated. 

The algorithm works by `pebbling' the dependency graph. Given an initial 

attribute instance to be validated, the reevaluator must first recursively vali- 

date its arguments (ie those instances upon which the initial instance depends 

directly); then it determines from the values of the arguments of'each instance 

whether or not the instance need be reevaluated. Clearly, if no argument to 

an instance has changed value since that instance was last validated, then the 

instance need not be reevaluated. The reevaluator is a short ML function which 
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is grammar-independent (The author is here indebted to Oliver Schoett for an 

efficient re-implementation of his original code). Figure 3-1 lists the code 

val rec evaluate( time(now) )( a : 'a attr_inst ) 
{ time(now) is the current time, 

a is the instance to be validated I 
= case !(status of a) of 

visited . escape "Circularity" 
( a depends upon itself) 

never-evaluated . f evaluate a for the first time } 
( status of a visited; f to check for circularity I 

it_tuple( evaluate( time(now) ))( args_of a ); 
{ validate a's arguments 

(bring them up to date) } 
value a := eval_inst a; f evaluate a from its args 

and semantic function I 
time_of a := time(now); f record time a changed at I 
status_of a := up_to_date(time (now)) f a validated I 

up_toj ate (time (t)) 
if t = now then () f a already validated ) 
else( f a validated in the past, but must re-validate now ) 

status-of a := visited; 
it_tuple( evaluate( time(now) ))( args_of a ); f as above J 
if some_arg_has_changed_later( a, args_of a ) 
then f must recalculate a's value I 

let val new-value = eval_inst a 
In - 

if not( new value = !(value a) ) 
then ( f a has changed, so record time ) 

value a :- new-value; 
time of a := time(now) 

else () f a has not changed value - do nothing J 
else (); f none of a's args have changed more recently 

than a, so no need to recalculate a 
status of a := upLW_d ate (time (now)) 

Figure 3-1: ML code for Jalili's incremental reevaluation algorithm 

3.7.2 Evaluation on Demand 

The major drawback of Jalili's algorithm is that it reevaluates only those at- 

tribute instances which are required to evaluate one or more of the initially- 

supplied instances, ie., those instances reachable in the dependency graph from 
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the initial instances. Thus, in the strict version, any attribute instances upon 

which the root synthesised instances do not depend will not be properly updated 

after alterations to the semantic tree. In other words, the strict version of Jalili's 

algorithm only guarantees to maintain full consistency of a semantic tree when 

the root synthesised instances are dependent upon every instance in the tree 

(excepting themselves). In editing, where the current tree is as important as the 

main tree, it is imaginable that there may be attribute instances whose values 

co not affect those of the root; in such cases, Jalili's algorithm must be used 

with care. 

On the other hand, this feature of Jalili's algorithm is often a boon, for 

it is a form of demand evaluation; only the initially-given instance (and the 

instances it depends upon) will be reevaluated. This method is useful when 

certain attributes need only be evaluated after certain changes, or upon demand 

by the user. For example, in a scope-checking editor for a programming language 

the user may only want to check his variable declarations infrequently; by not 

evaluating the relevant attribute instances until requested by the user, a great 

deal of computation may be avoided during normal editing operations, where 

speed of response may be crucial'. Of course, it is possible to supply non-root 

instances to the reevaluator, but it is then important to remember that any 

instances depending upon these will not be reevaluated. In the IPE, we are 

more often interested in some subset of the synthesised attributes of the current 

node (of the semantic tree) than in those of the root, so demand evaluation 

allows us to avoid a great deal of unnecessary reevaluation. 

One disadvantage of the Jalili algorithm is that although the process of val- 

idation minimises the amount of reevaluation required to validate an attribute 

instance, all of the instances upon which that instance depends must be at least 

visitel. The incremental reevaluator used in the Cornell Synthesizer Generator 

30f course, it may happen that other instances depend upon the `demand instance', 

in which case the latter will be evaluated after all. However, a well-designed attribute 

grammar should keep attributes used for different purposes as independent as possible. 
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in a sense works in the opposite direction to Jalili's algorithm, being a change 

propagatzon algorithm. Starting from the instances at the point of change (usu- 

ally the current node), the reevaluator follows the dependency graph to find all 

instances dependent upon these instances, and works out an `optimal order' in 

which they should be evaluated, called a model. The model restricts the depen- 

dency graph to the attributes of the chosen node (so that it shows any transitive 

dependencies amongst them). By remembering the model of each node in two 

parts - one for the parent of the current tree, another for the children, and by 

restricting to normal form attribute grammars, it is easy to determine whether 

or not some tree alteration has invalidated a part-model. The advantages of this 

method over Jalili's algorithm are that it ensures consistency of the entire seman- 

tic tree, and that it avoids the `visitation problem' described above. However, 

this approach is best suited to maintaining consistency of an entire semantic tree. 

When demand attributes are incorporated in Reps' reevaluation algorithm, they 

are evaluated using the same pebbling fashion as in the Jalili algorithm. We are 

often more interested in attribute instances local to the current node than in full 

consistency, and so we chose Jalili's method. 

3.8 The Attribute Grammar for the IPE 

In this section we develop the attribute grammar (hereafter referred to as the Proof 

Grammar) from which the kernel of the Interactive Proof Editor is constructed. 

We describe the context-free part and the major attribute systems in general terms. 

Then we give some example rules, including special cases. Finally we describe how 

"hooks" to the user interface of the IPE are built into the attribute systems. 

3.8.1 The Context-Free Grammar 

In the IPE, we present a language for proving fopc ("first-order predicate cal- 

culus") formulae in a similar fashion to programming languages: just as pro- 

grams in a normal programming language are constructed from a set of basic 

statement-forms (egs. assignments, conditionals, loop constructs), IPE proofs 
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are constructed from a set of basic proof steps The bulk of the grammar con- 

sists of productions of the form- 

Proof::= SomeRule( Proof Proof ... ) 

for the distinguished grammar symbol Proof. Typically, "SomeRule" involves the 

application of one of the IPE's basic tactics (see Section 2) to the goal-sequent 

of the left-hand instance of Proof. 

Certain proof operations (such as quantifier introduction and elimination) 

require extra information such as a term or identifier to be substituted for the 

bound variable throughout a goal. In the context-free part, the symbols Term 

and Var are used to represent these: 

Proof ::= Existslntro( Term Proof ) 

Although the IPE uses sequent-calculus notation within proofs, goals are 

introduced as fopc formulae. The root symbol of the Proof Grammar, called 

Theorem, is used to pass a Formula (represented by another grammar symbol) 

to a Proof as its initial goal: 

Theorem ::= Theorem( Formula Proof) 

When this rule is applied to an instance of the Theorem symbol, the intention 

is that the instance of Proof should be considered as an attempt to prove the 

formula associated with the instance of Formula. 

In the context-free part of the Proof Grammar, formulae and terms are con- 

sidered as terminal objects, their structure being contained in their attribute 

values. It was expected that formulae and terms would always be parsed when 

input, whilst proofs would always be built by structure editing. The raw result of 

processing an attribute grammar in C-SEC provides rudimentary tools for struc- 

ture editing, but none for parsing; this guided the decision to split the grammar 

at this point. (It must be pointed out that the more sophisticated Cornell Syn- 

thesizer Generator supports the generation of attributed trees from parsed input, 

with parsing schemes presented as part of the grammar description). 
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3.8.2 The Major Attribute Systems 

At any point in a top-down structured proof, there are two main pieces of infor- 

mation: 

the current goal, which will have been derived from goals of ancestor points 

in the proof; 

the proven/unproven status of the goal, which depends upon the status 

of goals of subproofs, and also upon validity checks upon the application 

of the current proof rule to the goal (for example, it is not valid to apply 

And-Introduction to show A --> B). 

Correspondingly, in the Proof Grammar the symbol Proof has two attributes 

(amongst others): 

an inherited goal (called sequent), whose value is determined from the 

value of the goal of the parent Proof node and possibly other rule-specific 

information; 

a synthesised boolean proven, whose value depends upon the same at- 

tribute of Proof children, and also upon local applicability conditions. 

The goal-sequents are ML objects of type "sequent". This type was defined 

for the IPE, together with functions corresponding to the "basic tactics" of 

Chapter 2. Much of the original code for this type was implemented by John 

Cartmell. 

A third synthesised boolean attribute, appropriate is used to record the 

applicability of a proof step, primarily because this may be required in several 

semantic equations. Similarly an attribute subgoals is used to record all of the 

subgoals produced by a basic tactic. 
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3.8.3 Some Example Rules 

A typical production in the Proof Grammar is that corresponding to the basic 

tactic Andlntroduction: 

Proof ::= Andlntro ( Proof Proof ) 

[ Proof$ 1. appropriate = is.And(succedent Proof$1.sequent); 

Proof$1.proven = Proof$ 1. appropriate 

& (Proof$2.proven & P.roof$3.proven); 

Proof$1.subgoals = if Proof$1.appropriate 

then And-intro Proof$Lsequent 

else [empty..sequent; empty..sequent]; 

Proof$2. sequent = hd Proof$ 1. subgoals; 

Proof$3.sequent = hd(tl Proof$1.subgoals); 

] 

Thus: 

an application of Andlntro to an instance of Proof is only considered 

appropriate when the sequent of that instance has a conclusion of the 

form A&B (for any formulae A and B); 

the (sequent/goal attributing the) Proof instance expanded by And-Intro 

is considered proven whenever the rule is appropriate and both subproofs 

are considered proven; 

the subgoals of the rule are those generated by applying the basic tactic 

AndJntro to the sequent of the Proof instance being expanded; note that 

if the rule is not considered appropriate then the tactic is not applied, the 

subgoals being set to "empty sequents" instead (where an empty sequent 

is F- False, which cannot be proven); 

each subproof inherits one of the above subgoals. 

In productions corresponding to Elimination rules, another attribute se- 

lected is used to record to which premise the rule is intended to be applied. 
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selected simply records the position of the premise in the sequent as an integer 

index; for example: 

Proof ::= And_Elim ( Proof) 

I 

Proof$1.subgoals = And_Elim( Proof$1.sequent, 

Proof$ 1. selected 

I 

As selected is a synthesised attribute, we have to give a semantic equation 

for it in each Elimination production. This equation always sets selected to 

the constant 1. In practice, this equation is ignored, because we want to have 

selected record the position of the premise which was chosen by the user. The 

means by which this is achieved will be shown later. (See 93.8.4-). 

Quantifier Rules 

When a rule generates a subgoal from a goal by removing a quantifier from 

a formula, the interface (and hence the grammar) must cater for the substi- 

tution of some term for the bound variable. When Alllntroduction and Ex- 

ists.Elimination are applied to a goal, the substituted term must be an identifier 

that does not already occur free in any formula in the original goal; in the case 

of All-Elimination and Exists -Introduction, the choice of term is not thus re- 

stricted. The Proof Grammar has to cater for both situations. 

An early design decision for IPE was that though IPE could make an initial 

choice of "new identifier" for the first rules, the user should be able to change 

41n fact, every production for Proof in the Proof Grammar has to include a semantic 

equation for selected; this is a shortcoming of C-SEC. The CSG allows a production to 

have local attributes (for example to record or report errors which are specific to that 

production). 
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this. This permits the choice of a more meaningful name. A symbol Var of the 

Proof Grammar is used to represent identifiers; it has an attribute self which 

is a synthesised string containing an identifier name. The user can change the 

name of the identifier via the same mechanism which allows editing of the initial 

conjecture. The grammar must always check that the identifier does not occur 

free in the goal: this is done using an ML function, "is-unique-identifier". 

Proof ::= AlLIntro ( Var Proof ) 

[ Proof$ 1. appropriate = is-ForAll(succedent Proof$1.sequent) 

& is-unique-identifier 

(Proof$l.sequent, Var.self); 

Proof$1.proven = Proof$ 1. appropriate & Proof$2.proven; 

Proof$2.sequent = if Proof$ 1. appropriate 

then hd(Allintro(Proof$1.sequent, Var. self)) 

else empty..sequent; 

I 

The ML function "is-unique-identifier" takes a sequent and an identifier 

name, and returns true if the identifier does not occur free in any formula in 

the sequent. Whenever the identifier is changed, the reevaluation process de- 

scribed earlier will check the appropriateness of the production rule with the 

new identifier. 

All-Elim and Exists-Intro are slightly simpler, in that there is no restriction 

upon the substitution term; thus the appropriacy check is of the usual form, 

ie, "is the selected formula of the form VxP(x) (or 3xP(x))?". As with Var, a 

symbol Term is used to represent the substitution term. Its self attribute is set 

to a default value in the grammar (a new identifier of form "TERM. n" for some 

integer n), but the intention is that the user should change this to something 

more useful. 

In 3.9.1 we discuss a possible attribute-grammar-based technique by which 

interactive proof editors could attempt to choose suitable terms for substitution. 
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The Or-Intro Rule 

The OrJntro rule is another rule of particular note. In order to prove that AFB 

follows from a set of premises, it suffices to show that either of A, B follows from 

the same set. However, we need not know in advance which conclusion is the 

better to attempt to prove. The IPE allows the postponement of this decision by 

presenting both subgoals and allowing the user to continue work upon either, or 

indeed to expand both subproofs until the choice becomes clearer. The OrJntro 

rule expands a Proof (whose goal-conclusion must have the form AJB) into two 

subproofs, one of which inherits A as goal-conclusion, the other inheriting B 

similarly. The rule considers the parental Proof proven when either subproof is 

completed. 

The Duplication Rule 

All of the Elimination production rules in the grammar produce a subgoal from 

which the chosen premise has been omitted. This has been done to reduce 

"clutter" in the presentation of IPE proof steps to the user. However, there are 

cases where the same premise may be required more than once in the same line 

of proof (ie as opposed to branching subproofs). 

The solution presented in IPE is unfortunately rather crude: the Proof Gram- 

mar includes a Duplication rule which duplicates the chosen premise in its sub- 

goal. Upon discovering that a deleted premise is required again, the user must 

look back up the proof tree until a node containing the premise is found, and 

then insert a Duplication rule at that point in the proof. This will generate a 

subgoal which contains two copies of the selected premise, so that when one is 

removed by the application of a suitable Elimination rule, the other will remain. 

In the IOTA system [Nakajima et al. 83], premises are hidden from the user 

after they have been used, but can be recalled if required. A method such as this 

would be more useful: this might be performed by retaining all premises in a 

goal, but marking certain of them as "hidden", and modifying the displaying of 
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goals accordingly. Now the question becomes that of how to organise "hidden" 

premises and present them to a user who wishes to use some of them again. 

3.8.4 Interface Considerations 

The result of applying the C-SEC attribute grammar processor to the Proof 

Grammar is a set of ML modules which implement the Proof Grammar as an 

instance of the type attribute-,grammar in ML. This polymorphic type has 

associated functions which can be used to build semantic trees conforming to an 

attribute grammar, and to perform incremental reevaluation upon them. How- 

ever, no other interface is provided as part of the polymorphic package; there is 

no general pretty-printer for example.The interface to the Proof Grammar was 

"hand-built" on top of the basic semantic-tree constructors. 

Interactive Attributes 

As stated previously, there are points in the Proof Grammar which require in- 

formation from the user: which premise to select, which term to substitute for 

a bound variable, and which formula to take as initial conjecture. The solution 

chosen was to provide "hooks" in the grammar which allow a restricted form of 

outside interference. These take the form of attributes whose values are supplied 

by some outside operator. 

For example, the synthesised attribute self of the symbol Formula is used in 

the Theorem production to act as the initial conjecture of a proof. In the Proof 

Grammar, its semantic equation is 

Formula.self = atomic( "FORMULA" ,nil) 

Since this equation contains no arguments, it defines self as a constant formula 

(the atomic predicate "FORMULA" with no arguments). However if we allow 

the value of (an instance of) this attribute to be changed from outside, and 

ensure that subsequent reevaluation of dependent attributes will use the new 
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value, then we have the ability to update the value of a formula supplied to a 

proof and see the effect it has upon the proof. 

We refer to attributes whose values are intended to be supplied from outside 

the attribute grammar as znteractzve attributes. The semantic equation for an 

interactive attribute defines an initial default value for the attribute. This equa- 

tion shoulu have no argument attributes; otherwise if one of the arguments were 

to change, then the interactive argument could have its default value unexpect- 

edly re-invoked. Interactive attributes in the Proof Grammar include the self 

attributes of the symbols Formula, Term and Var (for supplying the user's substi- 

tutions), the selected attribute used in Elim productions and attributes which 

are used to control the display of the proof tree and depend upon a "current 

position". 

The next level of ML code above the Proof Grammar contains functions 

which can be used to "plug" new values into interactive attribute instances. 

These replace the semantic function given in the grammar with a new func- 

tion which returns the new value, sets the status of the attribute instance to 

never-evaluated and its "last update time" to zero. Thus, whenever a de- 

pendent attribute instance is reevaluated, the interactive attribute instance is 

evaluated as if for the first time; its new value is set and used in the calculation 

of the dependent. 

Such a system is open to abuse; a fuller implementation of C-SEC might 

include the declaration of interactive attributes, check that their semantic equa- 

tions do not contain argument attributes, and generate functions of the above 

form which ensure that they are properly altered. An early version of C-SEC 

had "interactive symbols", which had only one attribute and one production rule 

(which set the single attribute to a default value). The intention was to cater 

for symbols corresponding to "lexical classes" (such as "integer" pr "string" or, 

in the case of the Proof Grammar, "Formula"). This was not used in the Proof 

Grammar, because the "lexical" symbols Formula, Term and Var all require more 

than one attribute. 
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Attributes for Display Control 

As an IPE proof structure grows in size, it becomes impossible to display all 

of it upon a single screen. It is possible to present the entire structure and 

allow the user to scroll through it, but this is both expensive to produce and 

cumbersome to use in large proof structures. Therefore we aim to display an 

area of the proof structure which lies around the user's current position in the 

proof. Normally, the intention is that the amount displayed should be roughly 

a screenfull; however, the user should have control over the amount displayed. 

The display control is organised around the depth of the proof structure. At 

any time, the user will see no more than some fixed number of levels above and 

below the current position in the structure. As the current position moves down 

the tree, the upper levels of the structure will disappear from the display; the 

same applies to lower levels when the current position moves upwards. 

In section 3.2 we described a positional derivation tree as a derivation tree 

with a root node and a current node. In the IPE's proof structures there is a third 

distinguished node, the display root. This is the node from which the display 

of the proof structure is generated. Initially the display root is the same as the 

root node; however the display root is constrained to stay within a fixed (but 

user-alterable) number of tree levels above the current node. Thus the display 

root follows the current node. At the same time, only a certain number of tree 

levels below the current node are to be displayed. We shall refer to the number 

of levels to be displayed above and below the current node"display-above" and 

"display-below" respectively. 

Each symbol of the Proof Grammar has an attribute print_tree_depth 

which is used to determine how far the node is below the display root. (In 

fact, it records to what depth its subtrees should be printed). Normally, this 

attribute inherits its value as one less than its parent instance. However, at 

the display root it must be set to the sum of display-above and display-below. 

This is done by using a separate interactive attribute, set_ptd. This has default 

value -1; however, when a node is made the display root, set ptd is set to 
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display-above+display-below. The semantic equation for print-tree -depth is 

in fact 

Symbol$2.print_tree_depth = 

if Symbol$2.set_ptd > -1 
then Symbol$2.set_ptd 

else Symbol$l.print_tree_depth -1 

(where Symbol$1 is the left-side symbol in the production and Symbol$2 is any 

right-side symbol). It is now vital to ensure that the value of set_ptd is reset to 

-1 when the display root is moved elsewhere in the proof structure. This would 

ensure that print-tree-depth is correctly set for all nodes below the display 

root. 

3.9 Some Suggested Improvements of the Proof 

Grammar 

3.9.1 Choosing Terms for All Elimination and Exists In- 

troduction 

There is much room for improvement here concerning the choice of suitable 

terms for All_Elim and Exists-Intro. Rather than expecting the user to choose 
(ac ss -* we tft -fkc IPE at pt it) 

the term, the IPE could expend some effort in determining a "good" choice. For 

example, if we had a point in a proof with the goal 

show CannotSpel(Brian),... entails ?x CannotSpel(x) 

then it might seem reasonable to expect that applying Exists-Intro to this would 

produce 

Cannot Spel(Brian),... entails ?x CannotSpel(x) 

by Exists Introduction with <Brian> for x 
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and CannotSpel(Bi ian),... entails CannotSpel(Brian) 

is immediate 

This is a very special case, which can be solved simply by matching the inner 

formula of the quantification against each premise in turn. In general, it need 

not be obvious what the substitution should be, without further expansion of 

the proof. For example it would be more difficult to handle the following goal: 

show P(TERM_1) -+ Q(TERM_1), P(x) entails ?xQ(x) 

(where TERM-1 is a substitution for a variable bound by a universal quantifier). 

This could be handled by building information about implication elimination into 

the production for Exists-Intro; however, this would be an untidy solution as it 

involves encoding knowledge of other proof rules into a single rule. 

As another solution we could utilise the attribute grammar mechanism and 

use information synthesised from subproofs to guide the choice of the substitu- 

tion. A proof node could inherit the set of "substitutable variables" generated 

by ancestral All-Elim and Exists-Intro steps, and receive (synthesise) sets of pos- 

sible substitutions from subproofs. The latter sets of substitutions could then be 

analysed to determine whether or not a suitable substitution can be found. For 

example, one possible expansion in a proof including the above goal might be: 

show !x(P(x) -+ Q(x)), P(x) entails ?xQ(x) 

use Exists-Introduction with < TERM-1 > 

andshow !x(P(x) -+ Q(x)),P(x) entails Q(TERM1) 

use All-Elimination with < TERM-2 > on premise 1 

andshow P(TERM2) -+ Q(TERM2), P(x) entails Q(TERM_1) 

use Implies Elimination on premise 1 

andshow P(x) entails P(TERM9.) 

andshow Q(TERM2), P(x) entails Q(TERM_1) 

The first unexpanded leaf could indicate that substituting x for TERM-2 

would prove its goal; the second could indicate that the substitutions for 
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TERM-1 and TERM -2 would have to be the same. The parent node (expanded 

by the Implies-Elim rule) must then combine these requirements to generate the 

requirement that both TERM-1 and TERM2 should be substituted by x. 

In general, a proof node could generate sets of alternative substitution-sets 

for term variables in its goal, each set describing a set of substitutions for term 

variables which would complete the proof. We shall refer to the set of alternatives 

as the requzrements of a node, and to each element of the same as an alternative. 

If the first leaf node above had an additional premise P(y), then the node 

would produce the following set of alternative requirements: 

{{TERM2 H x}, {TERM2 H y}} 

The substitution-sets may record a need to unify two term variables, as in the 

second leaf node above. Here will use a # prefix to denote unification variables. 

The second leaf could produce: 

{{TERM-1 H #v,TERM2 H #v}} 

This will be satisfied by any substitution-set in which the two term variables can 

have the same substitution. 

Proof productions which produce a single subproof and do not introduce any 

term variables can simply pass the requirement of the subproof to the parent 

node (ie, the semantic function is the identity function). 

Proof productions which are "conjunctive" (in the sense that they produce 

two (or more) subproofs, and where all subproofs must be proven before the proof 

can be completed) must unify the requirements of the subproofs to determine 

a single requirement. This can be done by considering all pairs of alternatives 

(Al, A2) such that Al is from the first requirement and A2 is from the second. We 

discard all pairs which contain inconsistent substitutions for some -term variable, 

and form the new requirement as the set containing Al U A2 for each remaining 

pair. When an alternative-pair does not contain any unification variables, then 

checking for inconsistent substitutions involves checking that if a term variable 
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is mapped in both alternatives, then it is mapped to the same term. If one 

subproof's requirement is 

{{TERM-1 I--.' x,TERM2 F--> y}, {TERM-1 --.' y,TERM2 i-a x}} 

and another has requirement 

{{TERM-1 --> y,TERM_3 H g(z)}, {TERM_1 H z}} 

then the resultant requirement is 

{{TERM_1 H y, TERM2 H x, TERM-3 I--.' g(z)}, 

{TERllM_1 I--.' x, TERM-2 --.' y}}. 

When an alternative A, maps a term variable TERM-1 to a unification 

variable #v, then in comparing this alternative with another A2 from the other 

requirement, #v must be unified with the mapping (if any) for TERM-1 in 

A2. Then consistency can be checked as above. In the partial proof above, the 

Implies Elim node would have to unify the requirements of its two subproofs, 

these being 

{{TERM-2 I--* x}} 

and 

{ {TERM-1 I--.' #v, TERM2 i-a #v}} - 

Each requirement has only one alternative. Comparing these, we note that both 

define substitutions for TERM2, and that these are compatible if we identify 

#v with x. The new requirement is constructed by forming the union of the 

substitutions in both alternatives under this identification, giving 

{{TERM-1 H x,TERM2 H x}}. 

Proof nodes which introduce term variables (All-Elim and Exists_Intro) must 

pass these down to the subproofs, to distinguish them from ordinary identifiers 

in formulae. These nodes must also act (or attempt to act) on the requirement 

synthesised from the subproof, by setting the introduced term variable to a term 
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chosen from some alternative in the requirement. This can affect the requirement 

passed to the parent node. 

When the above requirement is passed up to the AlLElim node, this must 

then set TERM2 to x, and pass the new requirement 

{{TERM_1 -+ x}} 

upwards, to be handled by the node which introduces TERM-1. 
,4 m c choice of -te" Gras vtot hct. Wpkmeltteq' «1te IT E. 

3.9.2 Determining Appropriate Premises in Re-Applied 

Proof Structures 

As explained above, an attribute selected is used to record the user's choice of 

premise to which an elimination rule is to be applied, and this simply records 

the position of the premise in the premise-list. As a result of this mechanism, 

elimination rules in the Proof Grammar are sensitive to the position of a premise. 

Unfortunately, this can weaken the ability of a semantic tree to react to changes 

to the goal supplied to its root. Suppose for example that at some point in a proof 

structure, And_Elimination is applied to premise 5. The position is recorded in 

the selected attribute at that point in the proof. This means that when the 

same structure is applied to a different goal, the new premise which plays an 

analogous role to the original premise should appear in position 5, otherwise the 

subproofs generated may not be as intended, or the rule application might be 

inappropriate, and fail. Clearly this is an unfortunate restriction. The crucial 

question here is, how might the "analogous premise" be determined? 

In this section we consider one way of improving the selection of premises in 

the IPE. (It should be noted that this method has not been implemented). 

For the purposes of the following discussion, we will say that a goal G1 is 

analogous to a goal G2 with respect to a proof structure P if when G1 is supplied 

to P there is some permutation of the premises at each point in P such that 

the resultant goals at the leaves of P are analogous to the original leaf goals 

with respect to any proof structure. A special case of this occurs when the proof 
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structure proves the original goal (ie there are no unproven leaves): then the 

analogous goals are those which can be proven by the same proof structure but 

perhaps requiring different selections of premises for elimination rule steps. The 

ideal would be to make the applicability of an IPE proof structure to different 

goals independent of the order of the premises in these goals. 

A slightly better approximation to an "analogous" premise than "occurs in 

the same position" would be to search through the premises for one which satisfies 

the applicability condition of the elimination rule (for example, AndElim would 

seek out a premise of the form A&B) This would not be hard to do, but it is not 

a great improvement, as there remains the problem of what to do when more 

than one premise is appropriate. 

Improving on this, during initial construction (or perhaps once initial con- 

struction is complete) we could attempt to note the ways in which premises se- 

lected by the user are used in later stages of the proof. For example, if AndElim 

upon some premise produces two new premises in the subgoal, to the first of 

which ImpliesElim is applied at some point further down in the proof, then 

when the structure is reapplied, the AndElim expansion should seek a premise 

of the form (A - B)&C. Thus for each application of an elimination production 

rule we build up an expression template which describes the shape of the desired 

premise at any point in the structure. 

In branches of the structure which lead to completed subproofs under the 

original goal, it should be possible to determine relationships between the for- 

mulae in a goal. If in the example above our original proof proved that "bid" 

is a valid conclusion from "(a - b)&c" (plus other premises), then we could tag 

the And-.Slim expansion with the goal-pattern 

(A -* B)&C,... I- BID 

which shows that a subformula of the desired premise should match a subformula 

of the conclusion. (Note that it would also be necessary to indicate which premise 

in the pattern is the one of interest). 

Supporting such a method within the Proof Grammar would require 
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another attribute system for generating goal-patterns as synthesised at- 

tributes; this could be generated during proof construction; 

the ability to determine how a formula in a goal was derived from the goal 

of the parent Proof node - either by direct copying or as the result of the 

parental proof step's effect on some formula; 

that the premise selection method in the grammar could be switched from 

its present interactive form to the pattern-matching form. 

In building a proof, a user might want to make pattern-matching the default 

action for each proof step after the initial selection, whilst still constructing the 

subproof. Unfortunately, this would lead to a cycle in the attribute system: the 

premise selection depends upon the goal-pattern, which depends upon the leaf 

goals, which in turn depend upon the premise selection. When the goal changes, 

we want to consider the pattern as constant; but when the leaf goals change, we 

want the pattern to change. 

Perhaps, then, we must admit that a proof structure that is being constructed 

interactively must differ in some respects from one that is applied entzer to a new 

goal. In the first case, premise-positions supplied by the user are paramount; in 

the second, a "clever" automatic choice is preferred. This would mean that there 

would have to be some process of conversion between the two. For example, we 

could have two separate attribute systems for handling premise-choosing, which 

are mutually exclusive: the present system supporting choice by the user, and 

another system implementing one of the above methods. When a proof structure 

is re-applied (either by editing the supplied formula, or by re-grafting it onto 

another proof), the user-chosen premises could be used as a guide by the second 

attribute system in determining what the analogous premises are. 



Chapter 4 

The User Interface 

In this section we describe those layers of the code for the IPE which lie between 

the dependency graph manipulator generated from the Proof Grammar and the 

user. These layers account for approximately half of the IPE's code. 

The basic kernel provides three main operations: 

expand a node of the derivation tree in accordance with some rule in the 

Proof Grammar; 

graft a derivation tree (and its dependency graph) onto the current node; 

incrementally evaluate a specific attribute instance in the dependency 

graph. 

The value of any attribute instance can be accessed (or even altered, as 

described in the previous section). 

74 
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4.1 Display Formats for Structured Objects 
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In this section we show how a semantic tree generated under the Proof Grammar 

can be presented on a display in a fashion which permits interactive access to 

its components. 
bculd (43 SG g(( 4(erarc fies 

A general techniqueefor describing displays of tree-structured objects was 

developed in ML by John Cartmell, and was specialised by him (and later by 

the author) to provide a description of the displays of IPE proofs. 

The ML type shell is defined as a string list list. Each string represents a 

line of displayed text, and the spaces between the string lists represent "holes" 

into which other shells may be slotted. Such subshells inherit the indentation of 

the parent shell: for example if the shell 

shell( [ "this is shell 2"; 

"it has two lines and no holes"]] 

is slotted into the hole in the shell 

shell( [ "this is shell 1"; 
" {))]. 

"shell 1 has a hole which is indented"; 

"and enclosed in braces"] ] 

then when displayed, this would look like 

this is shell 1 

{ this is shell 2 

it has two lines and no holes} 

shell 1 has a hole which is indented 

and enclosed in braces 
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Note that the contents of the hole fit on at the end of the last line of text of the 

preceding string list, and that the first line of the next list is attached to the end 

of the last line of the hole. This permits list-like shells such as 

shell( [ ["one: "];[" two: "];[" three: 

which can be used to produce a line like 

one: 1 two: 2 three: 3 

when filled in appropriately. 

A shell can be used to describe the display format for a single node of a tree 

structure, with holes for the displays of the subtrees. 

The result of filling in the holes of a shell is an object called a box, which is 

a list of lines of text. The dimensions of a box are the lengths of its first and 

last lines, its width (ie the length of its longest line) and the number of lines. 

This information allows us to determine (for example) when a mouse cursor is 

pointing within a particular box on the display. 

A she111iierarchy is a tree of shells, where each node with N children (N> 0) 

has a shell with N holes (ie N+1 string lists). The intention is that the tree 

structure of the shell hierarchy should correspond to the tree structure of the 

object being displayed. Each node also contains the dimensions of the box that 

would result from filling in the shell with the boxes produced by recursively 

filling in the subshells. 

A path is a list of integers describing a path down a shell hierarchy from the 

root. This is used to indicate a particular node in the shell hierarchy. 

The function find.shell_with_given_coordinates takes a shell hierarchy 

and a point, and returns the path through the shell hierarchy to the lowest shell 

whose box contains the point. Hence, if we construct a shell hierarchy from an 

object such that the tree structures are isomorphic, then given any point on a 

display showing the shell hierarchy, we can derive a path which can be used to 

determine the corresponding substructure of the object. 
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In the case of the IPE, the structure of the shell hierarchy is not isomorphic 

to the derivation tree. This is because the display structure has to go into more 

detail in order to permit the proof-by-pointing interface. Not only must the 

derivation tree structure be selectable by the user (to perform grafting opera- 

tions upon it, and to supply formulae and terms to the relevant nodes), but the 

structure of the sequent of each Proof node must be displayed as well, to permit 

the selection of a premise or the conclusion by indicating a point on the display. 

Fortunately, this does not present any serious problems. 

4.1.1 A Display Format for Sequents 

The ML function format.sequent takes a sequent and an integer representing 

the maximum number of columns available for its display, and produces a shell 

hierarchy which describes the structure of the sequent and will display it within 

that number of columns, splitting the sequent across lines if necessary. The hier- 

archy consists of a premise-list hierarchy and a conclusion leaf hierarchy, where 

the premise-list hierarchy has one child for each premise. Thus for example, 

given sufficient width, a sequent might be formatted as 

C B&C entails (A&B)--+ C 

where the nested boxes indicate the shell hierarchy structure. 

4.1.2 Display Formats for Proof Nodes 

Each production rule in the Proof Grammar has a corresponding display format 

generating function, written in ML. The display generated depends upon both 

the available display width and upon the values of attributes of the node such 

as sequent,proven and appropriate. 

In preference to describing each formatting function in detail, we will consider 

the case of a single production rule, and describe notable points in other rules. 
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The formatting function for an instance of the And-Intro production is typ- 

ical. There are four possible "top-level" shells. (We use boxes to delineate 

subshells in the formats): 

show sequent 

use And Introduction 

and 

and 

subproof 1's format 

Isubproof 2's format 

is used when the left-side Proof's proven attribute is false. If proven is true, 

the generated format is: 

sequent 

by And Introduction 

and subproof 1's format 

and Isubproof 2's format 

Recall that the displays of the subproofs inherit the indentation of their starting 

point. 

However, as we wish to view only that section of the proof around the current 

node, we also require formats which elide the display of the subproofs when they 

occur more than some fixed number of tree levels below the current node; these 

are: 

sequent 

qv 

and 

show 

qv 

sequent 

In quantifier rules, the format of the term or identifier is included in the line 

of the rule name, for example 
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show sequent 

use All Elimination < term format 

and I subproof format 

79 

The formatting of Or-Intro is interesting in that should either subproof be 

proven, then the other subproof will be omitted from the display. If this were 

to be done by constructing different top-level shells, then this could lead to 

problems when paths through the Orlntro node are interpreted. What actually 

happens is that the top-level shell has holes for the formats of both subproofs, 

but when one subproof is proven the other is filled in with a "blank" box. 

Shell hierarchies can be utilised in attribute grammars: each symbol could 

have a format attribute, which is appropriately defined in each production rule 

as a shell hierarchy describing the display format of that node in terms of the shell 

hierarchies of its children, as well as local information. Incremental reevaluation 

would ensure that the format of a node was kept up to date. In fact, such a 

system was used initially in the IPE. However, it was decided that the cost of 

keeping a shell hierarchy at each node in the semantic tree was not justified, as 

only a small portion of the tree was ever displayed at any time, and the display 

attribute system was replaced by a "tree-walking" algorithm which calculates 

the display anew each time. 

4.2 The Level 1 Proof Machine 

The first layer of code packages the general kernel facilities into functions for 

editing and interrogating Proof Grammar semantic trees as proof structures. A 

type proof-machine is defined, consisting of 

a root node - a pointer to the root of a semantic tree; 

a current node - a pointer to some node in the semantic tree. This is the 

position of the semantic tree to which most editing operations are applied; 
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a print node - this is the display root referred to previously; 

a global time counter, used by the reevaluation mechanism. 

These components are all instances of ML "ref" objects; thus, a proof-machine 

is a state-object describing the state of a semantic tree. Operations upon 

proof-machines alter the state of its tree. The major operations provided by 

this layer are 

create-machine : unit -> proof-machine. This creates a semantic tree for the pro- 

duction Theorem, with no subproof and the initial conjecture set to the 

atomic formula "FORMULA". The current and print nodes are both set 

to root. 

accept-formula : proof-machine * formula -> unit. If the current position of the 

proof-machine is a Formula node, then its self attribute is set to the sup- 

plied value. If the current position is not a Formula node then an escape is 

generated. (The function will-accept-formula can be used to check ap- 

propriacy). Similar functions are provided to handle user-supplied terms 

and identifiers for the quantifier productions. Note that the strong typing 

of ML insists that a valid formula be given at this level. 

introduce : proof-machine --> unit 

eliminate : proof-machine * int --> unit. These implement the lowest level of the 

"proof-by-pointing" interface. Introduce expands the current node of the 

proof-machine by the Proof Grammar rule which is appropriate to the 

succedent of the (current) value of the sequent attribute of the current 

node. This replaces the entire subtree of the current node. For example, 

when applied to a proof-machine whose current node has a sequent at- 

tribute with conclusion A --> B, the production applied is Implies-Intro. 

Subsequent alterations to the sequent will not change the production rule 

used. Eliminate works similarly; the int parameter being the position of 

the selected antecedent. However, if the current node's old production rule 

would still apply to the newly-selected antecedent, then the subtree is not 
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replaced by a new production, but only the value of the selected attribute 

is changed. This simplifies recovery in situations where the order of the 

antecedents changes for some reason. 

duplicate-antecedent : proof-machine * int -+ unit. This adds a copy of the se- 

lected antecedent to the antecedents of the subproof. This should be 

used when a subsequent application of eliminate will delete an antecedent 

which will be required later in the proof 

remove-antecedent : proof-machine * int -+ unit. The selected antecedent is re- 

moved from the sequent in the subproof. The main use of this is to remove 

antecedents which are not needed in the subproof and thus reduce display 

clutter. 

basic navigation operations. These are operations which permit the current node 

to be moved through the semantic tree; the current node pointer can be 

moved to its parent or a child node, or it can be resited at the root. 

bring-up-to-date. This is the main reevaluation operation, which calls the upon 

reevaluator to reevaluate some attribute instance of the print node which 

will ensure that every attribute used in the display generation will be up to 

date. For Proof and Theorem nodes this is the proven attribute: reeval- 

uating this checks the proven instances of all descendants, and hence in 

turn the sequents. Other reevaluation operations reevalute particular at- 

tribute instances at the root,current or print node. 

display : proof-machine * int * int -+ shell hierarchy. 

This returns the shell-hierarchy which constitutes the display form for the 

proof-machine, generated from the print node. The two integers give the 

display width and the maximum tree depth below the print node which is 

to be displayed. 
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Other operations are provided at this level to inspect the values of various at- 

tributes of the root, current and print nodes. 

4.3 The Level 2 Proof Machine 

The main purpose of the "middle" proof machine level is to extend the first level 

machine with a path component. This records the path from the root node 

of the machine to the current node. The navigation functions of the first level 

are extended to maintain the path; other operations of the first level are passed 

through this level unaltered. The most important new function provided at this 

level is position-to, which takes a proof-machine and a path, and performs a 

sequence of "single-step" movements to place the current node at the position 

indicated by the path. In practice, the path supplied to this function is generated 

when the user selects a point on the display of the proof tree. 

4.4 The Level 3 Proof Machine 

The level 2 machine maintains and interprets paths which describe positions in 

the derivation tree of a proof. The level 3 machine further interprets paths to 

derive information about further detail indicated by a path derived from the 

display. We shall refer to the detail of a path (with respect to a proof structure) 

as that part of the path which describes a position within the display structure 

of an individual node in the proof structure. (Recall from §4.1.2 that the shell 

hierarchy records the structure of a Proof's sequent, as given in §4.1.1). 

In this level's implementation of position-to, the detail of the sup- 

plied path is recorded. This is subsequently used in the operation ap- 

ply ppropriate_proofsule. This uses the detail to determine which part 

of a proof node's sequent is indicated by the path, and then invokes introduce 
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or eliminate as appropriate. Similar operations are provided to duplicate or 
remove selected antecedents. 

This level provides an interface which allows navigation and manipulation of 

the proof tree using only path descriptions derived from the display format of 

the proof. In the IPE as described in the Introduction, this is the outermost 

level of proof machine'. The final level of interface is the command interpreter. 

4.5 The Command Interpreter 

The command interpreter forms the outermost part of the IPE's interface. A 

main loop awaits input from the user (in the form of individual key presses, mouse 

button clicks or mouse menu selections) and performs appropriate operations 

upon a proof machine and a "display state". 

The "display state" consists of several windows and state variables. The 

windows are: 

the main window, in which the hierarchical display of the proof structure is 

maintained; 

the title window. This window spans the width of the display screen. It shows 

the name of the current proof on display, and the name of the symbol of 

its root node. 

the indicator window, which is used to display a brief description of which 

task the IPE is currently performing; 

'The addition of multiple-buffer capability (as described in §5.1) requires an addi- 

tional layer which supports multiple instances of proof machines and operations between 

them. 
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the error window, which is used to display error messages. This window is 

normally hidden behind the main window, and is popped to the top when- 

ever an error occurs; 

the help window. This window is toggled by a "Help On/Off" mouse menu 

item, and displays a brief synopsis of the commands available. 

Further temporary windows are created for some operations, typically to receive 

further input from the user. In the basic IPE, the accept-data operation uses 

the accept-formula, accept-term and acceptJdentifier operations defined 

in the level 1 proof machine to set interactive attributes with user-provided at- 

tributes. accept-data calls a text-editing function, which creates a window on 

the display into which the user can type ordinary text. When the user signals 

completion, this text is parsed to yield an object of the appropriate form (for- 

mula, t arm or identifier). If the parsing fails then an error message is displayed 

in the error window. The user must then either (attempt to) correct the text, 

or abandon the attempt to change that attribute instance. 

The text-editing function is a general function developed by John Cartmell. It 
has its own command interpreter, has little access to its surrounding environment 

and when called assumes complete control of the keyboard and mouse. Thus it 

is not possible to perform other IPE operations whilst editing text. This makes 

it impossible to use "cut and paste" operations to pick up arbitrary pieces of 

text from the display and copy them into the edit window. In order to permit 

this, we would have to re-implement window-based tools such as the text editor 

in a "client-server" framework, whereby each tool maintains a local state and 

communicates with the user via a central server. The server reacts to input from 

the user and decides which tool should receive the input. Output requests from 

tools would also be passed through the handler. A tool such as the text editor 

would no longer be an ML function but an object with a state and a handler 

which is invoked by the server to change the state of the object and possibly 

generate output requests. 
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This would require a complete redesign of much of the interface code used 

in the IPE, but would probably be a worthwhile task. Indeed, Paul Taylor at 

Edinburgh is using "SMLX" to develop tools which incorporate their own event 

handlers which receive events from a central server. The handler of any kind 

of object can be replaced by another which (for example) extends the set of 

events to which the object will respond; this can be used to write tools in an 

"object-oriented" fashion. 

The state variables of the interpreter include a repetition count for the next 

command, and the settings of "display-above" and "display-below" which are 

used to limit the amount of proof structure displayed. Indeed, the proof machine 

itself can be regarded as one of the state variables. 

Early versions of IPE ran on VT100-type terminals. Thus the original inter- 

face was designed for a character-based terminal without a mouse or separate 

windows. Though many changes were made when IPE was ported to Sun work- 

stations, the display and much of the command interface still belies its ancestry. 

The display is still character-based rather than bitmap-based; this extends to 

the presentation of windows, whose borders are still constructed from charac- 

ters. Though some effort was spent upon trying to allow the use of IPE on 

character-based and mouseless terminals, with the development of "choosers" 

(see later chapters) the use of IPE without a mouse became too awkward to 

make it worthwhile continuing support for VT100's. The dependence of the ear- 

lier version upon the keyboard and function keys is still obvious in later versions, 

although many of the functions attached to the function keys are also available 

via the mouse buttons2. 

The lack of a mouse on VT100 terminals enforced the use of arrow keys as a 

pointing device; though still functional, these have been superceded by the Sun 

mouse. 

2This does not apply to the X windows IPE, where commands tied to keys in IPE 

Version 5 can now be invoked using the mouse. 
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Excepting points where formulae, terms and identifiers have to be provided, it 

is possible to construct proofs largely by pointing with the mouse, or by selecting 

items from the mouse menu. Further commands are invoked by single keystrokes. 

4.5.1 Operation of IPE Commands 

Here we describe the commands relevant to the basic IPE, and how the inter- 

preter performs them. 

The left mouse button acts as a selection pointer. When the button is clicked 

over a point on the screen, the corresponding path through the proof display 

is determined, and the proof machine repositioned accordingly. This enables 

selection of a point in the proof structure (or a formula in some goal) for future 

application of some other operation (egs printing that subproof into a file, or 

deleting the selected premise). 

The middle mouse button also repositions the proof machine when clicked. 

However, it also performs some operation upon the resultant proof machine, 

depending upon the symbol of the selected node in the proof structure: 

If we are now positioned at a Proof node, then 

applyppropriate_proof-rule is applied to the proof machine; 

If we are positioned at a "text-edit point" (ie a Formula, Term or Var 

node), then accept-data is invoked to change the value of the interactive 

attribute instance of that node; 

If the current node is none of the above, then the default action is to "zoom 

in" to the selected point: it is made the new centre of the display and the 

display is regenerated around it. (This does not happen when a selection 

is made using the left button). 

When pressed (rather than clicked), the right mouse button presents a menu 

containing further commands. Those commands which apply to the IPE as 

described so far are: 
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Help On/Off This toggles the display of the help window which contains a 

brief description of the IPE's commands; this display itself can be tog- 

gled between displaying the functions of the mouse buttons and the keyed 

commands; 

Zoom In (to current) This makes the currently-selected node of the proof 

machine the focus of the display; selecting with the left button then choos- 

ing this option is equivalent to clicking the middle mouse button on the 

same spot (unless the selected spot is appropriate for entering data or 

applying a proof step). 

Zoom Out(n) This moves the display focus to the nth ancestor of the selected 

node, where n is a repeat-count. For example to refocus the display upon a 

node which is 5 tree levels above the current node, the user would type `5' 

at the keyboard and then select this option. This gives a simple method of 

moving upwards through a proof tree to levels which are no longer visible 

on the display; 

Zoom to Root This moves the current position (and hence the display focus) 

to the root of the proof machine; 

Scroll Up and Scroll Down These options can be used when the display text 

is longer than the available screen height. Scroll Down moves n lines down 

the display text, and Scroll Up similarly, where n is a repeat-count (de- 

faulting to 10). This affects only the display; the proof machine's current 

position etc are not affected; 

Weaken (remove premise) To use this, the user should first select a premise 

of a Proof node (using the left button). This replaces the expansion (and 

all subtrees) of the current node with a Remove-Antecedent production. 

The intention is to remove premises which will not be needed in the sub- 

proof. The name "weaken" is somewhat misleading, as it applies to the 

corresponding sequent-calculus rule which adds a premise to a sequent: 

thus the IPE operation performs the "backwards tactic". If the selected 
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object is not a premise, then the display flashes and an appropriate message 

appears in the error window; 

Duplicate Premise This is used similarly to the Weaken option, this time 

creating a second copy of the selected premise in the subgoal; 

Exit IPE This creates a "confirmer" window which asks if the user really in- 

tends to quit the proof session. If the user affirms this, then IPE terminates, 

and all work since the last save or print is lost. 

(The remaining menu options will be discussed as further features of the IPE 

are introduced in later chapters). Many of the above commands can also be 

activated by function keys; this is a remnant of the IPE's mouseless beginnings. 

The single-letter commands relevant to the basic IPE are: 

H This switches the help display between a description of the mouse button 

operations and a description of the keyed commands; 

d,W These perform the Duplicate and Weaken operations which are also avail- 

able on the mouse menu; 

< sets the value of the display variable "display-below" and regenerates the 

display accordingly. If preceded by an argument count, display-below is 

set to that value, otherwise the present value is incremented; 

> sets the value of "display-above"; 

Control-R redraws the display, should it be affected by outside interference; 

Control-P appends the text of the current proof display to the file 

IPE.proofrecord. This provides a crude means of printing proofs; a better 

method will be presented later. 

As stated earlier, the arrow keys and function keys can also be used, but their 

functions are duplicated by the mouse functions. However, this does allow the 

use of the IPE on ordinary terminals. 
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This completes the description of the basic IPE, which first appeared on 

VT100's in early 1985. Subsequent chapters describe the ways in which the IPE 

was developed over the following 11 years. 



Chapter 5 

Facilities for the Manipulation of 
Proof Structures 

In this chapter we cover a variety of operations which act upon the IPE's proof 

structures themselves, ranging from tree-grafting operations to the automatic 

generation of proof structures to satisfy (or at least reduce) goals. 

5.1 Multiple Buffers 

The representation of an IPE proof as a tree of basic rules attributed by goals 

in an attribute grammar framework gives the IPE's proof structures a high de- 

gree of goal-independence As we have already seen, changing the goal sup- 

plied to an IPE proof structure does not alter the structure itself, although its 

proven/unproven status may change, and some points of the proof may fail if 
their rule applications are inappropriate to their new goals. 

Thus far, the only means of altering an IPE proof structure is by expansion of 

a node by the production rule appropriate to the decomposition of some formula 

in its (present) goal. (Recall from §3 that this is effectively a subtree replacement 

operation, where the new subtree is one of the `basic templates' of the Proof 

Grammar). It is in fact perfectly feasible to perform subtree replacement with 

a compound proof structure. Previously, we have talked of supplying proof 
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structures with a new goal; now we can turn this around and talk of applying a 

proof structure to a goal. 

An example of where we might take advantage of this re-usability of proof 

structures would be a symmetrical proof; having constructed one half of the 

proof, we could then apply this structure to the other subgoal, instead of ex- 

panding the proof step-by-step. Even if the proof were not fully symmetrical, 

this could still reduce repetitive work on behalf of the user. If the structure is 

not fully applicable to the goal, or if any of its leaves are unproven, the points 

of failure can be edited by the user as normal.' 

The IPE takes advantage of the goal-independence of proof structures via its 

multiple-buffer facility. Each buffer in the IPE is a distinct proof structure, with 

its own root and current position. A buffer can be rooted on any symbol of the 

Proof Grammar, so that we can have Theorem, Formula and Term buffers as 

well as Proof buffers. When the IPE is initialised there is only one buffer, called 

Main, which is rooted on Theorem. The user can create new buffers, either as 

blank Theorem buffers or by copying the current subtree of the current buffer to 

a new buffer. Proof structures can be re-used by applying the current subtree of 

one buffer to the current position in another. 

The buffer operations available in the IPE are: 

change_to_buffer Given the name a buffer, makes it the current buffer. If it 

already exists then its current position is restored, otherwise it is created 

as a buffer rooted on Theorem and positioned at the root 

copy_to_buffer Grafts a copy of the current subtree of the current buffer onto 

the current position of the named buffer, or, if the named buffer does 

'Although the above discussion concentrates upon proof structures, attribute- 

independence is a property of semantic trees in general: there is no reason for not 

being able to graft Theorem, Formula, Term, (etc) structures onto others of the same 

kind; however the uses in such cases are limited. 
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not exist, creates it rooted on the current subtree and positioned at root. 

This is the means by which a useful proof structure can be saved for re- 

application. 

apply_buffer Grafts the current subtree of the named buffer onto the current 

position of the current buffer. 

(For a fuller description of these commands and their user interfaces, see Ap- 

pendix 2). 

Thus for example to perform the 'symmetrical-proof' re-application, the user 

would move to the root of the structure to be re-applied, copy it to another 

buffer, move to the other (symmetrical) subgoal and apply that same buffer. 

Related to the buffer operations is the notion of yanking. Since it is possible 

that the user may wish to undo a subtree replacement (if for example they have 

replaced the wrong tree), the last (non-trivial) subtree deleted by any replace- 

ment operation is saved in a special Yank buffer. The yank command will graft 

this tree onto the current position (which need not be the same place from which 

it was saved). The tree deleted by yanking is not saved in the Yank buffer, so 

that the same tree can be yanked more than once. 

Multiple buffers can also prove useful in the production of sub-lemmas (see 

Section 6.4): if some subgoal of the current problem would be best handled as a 

lemma, then work on the main problem can be left pending in that buffer whilst 

the lemma is worked on in a new buffer. It is possible to work upon multiple 

attempts to prove the same conjecture (or of the same subproof) by copying the 

proof or subproof to one or more buffers. 
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5.2 Automatic Proof Construction 

We can think of the application of compound proof structures (as described in 

Section 5.1) as a form of automatic proof expansion, where the proof strategy 

is completely inflexible. In fact, IPE proof structures are akin to LCF tactics 

constructed without using the tacticals ORELSE or REPEAT; the major dis- 

tinctions being that IPE structures are interactively editable, stand as their own 

validation, and have a notion of "positional partial success" (ie., failures are pin- 

pointed visually). However, this is a rather limited notion of `automated proof', 

since these structures must first be constructed by hand by the user in response 

to some particular problem before they can be applied to other problems. A bet- 

ter method of automatic proof would generate proof structures with a minimum 

of user intervention. 

Although one of the initial aims of the IPE project was to concentrate upon 

interactive, user-directed proof, there is no escaping the fact that with the pos- 

sible exception of novice users, many people find the `trivial' details of proofs 

tedious to perform by hand. It was decided that the IPE should contain some 

form of proof automation, if only to elide the donkey-work. This eventually 

evolved into the notion of ]PE-tactic. 

In order to remove at least some of the aforementioned 'donkey-work', we 

chose to extend the IPE's command-set by an `autoprove' mode switch, the idea 

being that when autoprove was turned on, the IPE would perform some rather 

simple autoproving techniques to the proof structure after each alteration by the 

user. It was considered important that the interactive aspects of the IPE should 

not be buried under a mountain of automated-proof technology. For this reason, 

two major restrictions were imposed upon the IPE's `autoproof' mechanism: 

Firstly, it should not make decisions which could later turn out to be wrong, 

in the sense that a proof is directed into a dead end when other successful direc- 

tions exist. This would force the user to backtrack through the automatically- 

generated proof to search for the bad decision, or even worse, over-zealous faith 
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in computers might lead the user to believe that his problem is intrinsically in- 

soluble. The autoprove mechanism should ideally make all of the unimportant 

decisions (or'non-decisions') in the proof, but leave all of the important decisions 

to the user. 

Secondly, autoprove should perform no hidden, `magical' steps, but should 

express its performance in terms of ordinary IPE proof structures, so that the 

user can see the strategy chosen, and alter it if desired. In other words, autoprove 

should be able to justify itself to the user. 

The first autoprove strategy used in the IPE was nick-named 'prove-by- 

boredom' on account of its sheer simplicity. It satisfied both requirements, but 

interpreted the phrase 'non-decisions' above extremely literally. A proof node 

was expanded only when there was only one possible expansion, ie when only 

one formula in the goal was compound. (As an example of its limitations, it 

would not proceed with show A,B&C entails A&C because the goal has two 

&-formulae). Not surprisingly, this proved to be excessively limited in its appli- 

cation. Something more powerful was required. 

5.2.1 IPE-Tactics 

To allow some freedom in the choice of our new autoprove algorithm, first we 

implemented a means of describing proof strategies, which we named IPE-tactics. 

IPE-tactics are defined in ML, and have to be incorporated into the ML code of 

the IPE. There is no facility which allows users to define IPE-tactics within an 

IPE session. 

An IPE-tactic is a function which takes a goal as its argument and returns 

both a list of (unproven) subgoals and a description of an IPE proof structure 

which when applied to the initial goal will have the returned subgoals at its 

leaves. 

The proof structure description returned by an IPE-tactic is a tree whose 

nodes consist of the names of basic tactics and possibly a "selected premise" 

number. A special node nilTree is used to indicate an unexpanded proof node. 
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By forcing an IPE-tactic to return a (description of a) proof structure we 

ensure that the `visible justification' criterion can be satisfied. When a (top-level) 

call of an IPE-tactic returns, the IPE builds the proof structure corresponding 

to the returned description and grafts it onto the current position in the main 

structure. 

The proof description also plays a similar part to the validation functions 

returned by tactics in LCF. An IPE-tactic can use any form of heuristics to 

generate its subgoals, but it must be capable of providing an IPE proof structure 

which achieves the same effect. In other words, the proof structure returned need 

not reflect the actual process involved in determining the subgoals. 

In IPE at present, there is only one IPE-tactic available to the user: the 

improved version of "autoprove". When "autoprove" mode is selected, the au- 

toprove tactic is applied to the goal of each unproven leaf or failure point in 

the proof structure. The resultant proof structure description is used to build a 

proof structure which is then grafted onto the appropriate node. 

Thus IPE-tactics represent a `middle ground' between the tactics of LCF 

(which operate solely upon goals) and the transformation tactics of NUPRL 

which operate upon proof trees. 

Clearly, the application of an IPE-tactic to a goal can have one of three 

possible outcomes: 

1. The IPE-tactic can succeed, returning no subgoals and a (descriptor for) 

a proof structure which completely proves the goal; 

2. It can fail, by making no advance upon the goal, in which case the same 

goal is returned together with a null descriptor; or 

3. It can partially succeed, returning a non-empty set of (hopefully simpler) 

subgoals and a non-null structure descriptor. 

The implementation of IPE-tacticals, analogous to LCF's tacticals, is fairly 

straightforward. The subgoals from one tactic are supplied as arguments to other 
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tactics as in LCF, whilst the composition of validation functions is replaced by 

tree-appending the structure descriptors returned. 

(Given a proof structure descriptor P and a list of proof structure descriptors 

L, then tree-appending L to P involves scanning P in a depth-first manner and 

replacing occurrences of nilTree in P with successive structure descriptors in 

L.) 

When "THEN(tacl,tac2)" is applied to some goal, tacl is applied to the 

goal, giving a list of subgoals SC and a structure descriptor SD; then tac2 is 

applied to each go 11 in SG. Each application of tac2 produces a new subgoal list 

SG' and descriptor SD'; THEN tree-appends SD' to the appropriate point of SD 

(i.e., it expands the appropriate leaf of SD by SD'), and returns the entire (new) 

descriptor and all of the subgoal sets SG'. 

For example, if we imagine that the tactics AndlntroTac and ImplntroTac 

simply (attempt to) perform the IPE rules And-Intro and Implies_Intro upon 

their goals, then the tactic application: 

THEN( AndlntroTac, ImplntroTac )( show (A--+ B)&(CID) ) 

will produce the subgoals: 

show A entails B 

show CID 

and produce a descriptor for the IPE proof structure: 

show (A--+ B)&(CID) 

use And Introduction 

and show A--+ B 

use Implies Introduction 

and show A entails B 

and show CID 
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Note that ImplntroTac failed when applied to the subgoal show CID; how- 

ever the whole application partially succeeded, for it did manage to produce new 

subgoals. 

"THENL(tac,tac-list)(goal)" is similar to THEN, except that each IPE-tactic 

in tac-list is applied to the corresponding goal in the subgoals produced by (tac 

goal). It is an error for the number of subgoals and the length of tac-list to differ, 

so it is safest only to use THENL when tac is guaranteed always to produce the 

same number of subgoals. 

As an example, 

THENL( AndlntroTac, [OrlntroTac; NotlntroTac) ) 

( show (AFB)&("C) ) 

produces the subgoals 

show A 

show B 

show C entails contradiction 

and the IPE proof structure 

show (AFB)&("C) 

use And Introduction 

and show AFB 

use Or Introduction 

and show A 

or show B 

and show C entails contradiction 

In "REPEAT(tac)(goal)", tac is repeatedly applied to the results of its earlier 

application, until an application either succeeds or fails. Thus the safest use of 

REPEAT is with tactics which are guaranteed to 'bottom-out' at some point 

in the repetition process (for example, any tactic which performs Duplication 
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would be suspect, for by increasing the number of premises upon which successive 

application can work, infinite chains of applications may be possible). 

Example: if AndElimTac performs a single And_Elimination upon the first 

suitable premise it finds in its goal, then 

REPEAT( AndElimTac )( show A&B&C entails A&C ) 

will produce the subgoal 

show A,B,C entails A&C 

and the IPE proof structure 

show A&B&C entails A&C 

use And Elimination on premise 1 

and show A&B,C entails A&C 

use And Elimination on premise 1 

and show A,B,C entails A&C 

The idea of ORELSE(tacl,tac2) (goal) is that it should return the `best' proof 

structure and set of subgoals for the goal. Choosing the best proof is easy if either 

tacl or tac2 succeeds or fails, but the notion of partial success complicates the 

issue. If both tacl and tac2 partially succeed, then some decision must be made 

as to which is better. In the present implementation, the choice is crude: the 

results produced by tacl are returned. This is dangerous, since it is possible 

for tacl's subgoals to be unprovable whilst those of tact are provable; which 

is to say that we are at risk of breaking our first criterion, that the automatic 

prover should not leave the user with a dead-end proof so long as a valid proof 

is possible. However, with judicious construction, tactics can still be made to 

satisfy this constraint, the solution being to restrict application of ORELSE 

to pairs of tactics (tacl,tac2) where given any goal only one of tacl or tac2 

can partially succeed. (In fact, we do this by ensuring that tacl and tac2 are 

mutually exclusive, so that in any situation at least one will fail). 

Examples: 
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ORELSE( AndlntroTac,ImplntroTac )( show A-+ B ) 

will perform as for ImplntroTac, 

ORELSE( AndlntroTac,AndElimTac )(show A&B entails A&D ) 

will perform as for AndIntroTac. 

At present, IPE-tactics are solely used to implement the fixed strategy 'au- 

toprove'; no further IPE-tactics are available to the user. Further applications 

of IPE-tactics and extensions of their idea are given in the following subsection. 

We are now ready to present the version of autoprove currently available in 

the IPE. We assume that certain sequences of proof steps commute, in that the 

order in which they are performed is irrelevant to the final result of the proof, 

and that certain proof steps can always be performed without prejudicing the 

outcome of a proof. A set of guide rules were drawn up, along the lines of , "it is 

always safe to perform And_Introduction", or , "performing Implies-Elin-li nation 

too soon can lead to a dead end". Those proof steps which are always safe were 

encoded as tactics "AndIntroTac", "AndORExistsElimTac"2 , etc, and used as 

the basic building blocks of the first stage of autoprove (together with ImmedTac, 

which simply checks for immediacy in the same fashion as the IPE rule): 

val AutolntroTac = ORELSE( ImmedTac, 

ORELSE( AndIntroTac, 

ORELSE( ImplntroTac, 

ORELSE( NotlntroTac, 

AlllntroTac))) ); 

(The use of ORELSE here does not run the risk of breaking the "no dead 

ends" restriction, as the -IntroTacs are all mutually exclusive (only one can 

2iAndORExistsElimTac" looks through the premises of a goal until a conjunction 

or existential premise is found; it then performs the appropriate elimination rule. The 

tactic fails if no such premises are found. 
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succeed or partially succeed), whilst ImmedTac can never partially succeed). 

AutoElimTac is similar although shorter: 

val AutoElimTac = ORELSE( ImmedTac, 

AndORExistsElimTac); 

The intention for AutoproveTac is that it should alternate between attempt- 

ing introductions and eliminations, and only halt when both AutolntroTac and 

AutoElimTac fail (or when some combination succeeds). We define a new tactical 

AlternateTac as 

val AlternateTac( tl,t2 ) 

= REPEAT( ORELSE( THEN( tl,t2), t2) ); 

(This will repeatedly attempt to perform tl and tl alternately, even if one 

or the other should fail). We can now define AutoproveTac as 

val AutoproveTac 

= AlternateTac( AutolntroTac, AutoElimTac ); 

Now we build in the old autoprove, encoded as a tactic BoredomTac (ie., the 

latter will generate a new subgoal when the goal contains precisely one formula 

that can be further decomposed): 

val FullAutoproveTac 

= AlternateTac( BoredomTac, AutoproveTac ); 

The resultant version of autoprove is considerably more powerful than the 

previous version. In practice it is still somewhat restricted in its applicability, 

often stopping at points where the user feels that the next step is too obvious: for 

example, it will not alter show !xP(x) entails ?xP(x); this is because to do so 

might result in a plethora of machine-chosen instantiation terms, all with names 

of the form TERM_n, which could be unsightly and confusing (furthermore, 

another decision taken about autoprove was that it should not travel too far 

past an All_Introduction or Exists-Elimination node, so that the user would not 

have to backtrack far to change the instantiation). 
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As a final footnote to autoprove, it must be pointed out that in fact we have 

not completely satisfied the first criterion (of avoiding leading the user into dead 

ends), due to the need for the duplication (or non-removal) of premises in certain 

proofs (see §3.8.3). In such cases, it is possible that autoprove will lead to a dead 

end, and the user must backtrack to the point where a duplication was required 

and perform it by hand. 

5.2.2 Uses of IPE-Tactics and Extensions to Them 

Let us return to the problem of "difficult" decisions in the ORELSE IPE-tactical. 

One possible solution would be to alter the definition of IPE-tactical (and by 

extrapolation, that of IPE-tactic) to return lists of alternative solutions. Faced 

with two partially-successful strategies, ORELSE could simply return both par- 

tial solutions, leaving the decision to some higher authority. Each IPE-tactical 

could then perform its usual operations on each alternative: if any succeeds, 

then it alone can be returned, otherwise all alternative partial solutions could 

be returned. 

Whilst being thorough, this technique could lead to an exponential explosion 

of alternative partial solutions, unless some "smart" heuristics were incorporated 

within the IPE-tacticals Furthermore, the top-level call upon an IPE-tactic may 

return a set of alternatives, which must then be chosen between by some other 

process, eg user intervention. It could prove too confusing to ask the user to 

choose from a bewildering array of alternative subgoals and proof structures. 

However there is a method that, while not avoiding the combinatorial explo- 

sion, will permit the user to keep his option open as regards the choices between 

alternative proofs. The method is simply to add an "alternative-proof" construct 

to the basic productions of the Proof Grammar: 
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Proof ::= ALT ( Proof Proof ) 

[ Proof$2.sequent = Proof$1.sequent; 

Proof$3.sequent = Proof$1.sequent; 

Proof$1.proven = Proof$2.proven or Proof$3.proven; 

(etc) 

Each subproof inherits the same goal as the parent, and the parent is con- 

sidered proven when either subproof is proven. This allows two different proof 

structures to be applied to the same goal at the same position, so that the user 

can work on either subproof (or both) until a choice can be made between them. 

ALT could be formatted in a similar fashion to Or-Intro, so that when one sub- 

proof is proven, the other is hidden from view. The definitions of IPE-tactic 

and IPE-tacticals would be the same as at present, except that upon finding 

that both substrategies are partially successful, ORELSE would wrap up the 

alternatives in an ALT node, leaving the final decision for the user to make at 

leisure. 

As mentioned above, IPE-tactics at present are very under-utilised; their 

primary use thus far has been to experiment with different `flavours' of essentially 

the same autoprove IPE-tactic, before settling upon a final choice. 

The first obvious step would be to build up an internal library of useful 

IPE-tactics which could be made available to the user (who may either set one 

up as the default `autoprove', or call one specifically to solve a single goal). 

This would not be too hard to do, as the work for autoprove has involved 

producing basic IPE-tactics corresponding to many of the IPE's proof steps. 

We could relax the first restriction for some of these tactics and allow greater 

proving power at the cost of "dead-end risk". Useful tactics to add might in- 

clude 'semi-smart' tactics capable for example of choosing suitable terms for 

All-Ell mination/ Exists_Introduction (although this may mean some reworking 

of the definition of IPE-tactics, allowing them to return substitution sets as 

well). 
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Next, we might give users the ability to define their own IPE-tactics, using a 

definition language consisting of certain basic IPE-tactics and the IPE-tacticals 

(thus preventing the user from writing any "dirty" IPE-tactics which cheat). 

This again would not be too hard to implement. 

If we were prepared to forego our second criterion (that the tactic should 

justify itself visibly to the user), and implement an "apply-tactic" rule in the 

Proof Grammar, we could then use LCF-style tactics to solve (or partially solve) 

goals without a visible justification. The advantages here would be that little 

storage would be required to represent each tactic application (a single Proof 

node instead of many), and that these tactics need not be restricted to the rules 

of the IPE in their operation (dangerous as this suggestion may sound, there 

are situations where we may want this; for example, when we chose to work 

within a particular theory (see §6), we could load up a library of theory-specific 

tactics which perform operations which are not available as basic IPE proof 

steps). Another advantage would be that the tactic would be re-invoked should 

the goal change. (With IPE-tactics at present, the fact that a tactic was invoked 

at a certain point is not recorded in the proof tree. The proof tree might fail 

whereas the tactic may have chosen a new; more successful, proof tree if it were 

re-invoked). The disadvantages would be that the tactic would operate "as if by 

magic", with little to show how its subgoals (if any) were arrived at, and that the 

inner workings would not be editable by the user (the tactic application would 

be acting as a hard-wired function rather than as an editable structure). 

It is debatable as to whether or not tactics should be lucid, and the answer 

probably depends upon the application: for teaching purposes, it would seem 

better that all of the available built-in tactics should have a simple and easily- 

visible relationship between their goals and subgoals, whilst in a specific practical 

application the power of tactics may be more important than clarity of operation. 
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5.3 Storing Proof Structures 

Though it might be claimed that the major aim of a proof editor is to create 

new lemmas and extend the knowledge of some theory (see Section 5), the proofs 

themselves are important objects. This is especially true in the IPE, where a 

single proof structure may be applied to different goals. It is desirable to have the 

ability to save proofs in a re-usable form between proving sessions, thus allowing 

the construction of a library of "proof fragments" as well as permitting users to 

save partial proofs and thus complete them over several sessions. 

The IPE permits the saving of proof structures on file in a concise, goal- 

independent format. Proof structures are written to files using a very simple 

description language. Each production in the proof grammar is assigned a one- 

or two-letter identifier. A proof node is written as its code followed by any 

special attribute settings, such as the value of the selected-premise indicator. 

Proof nodes involving substitutions (i.e., those with Term or Var sons) have 

the unparsed text of the substitution appended; the initial conjecture below a 

Theorem is similarly handled. The entire description is preceded by a single letter 

denoting the root symbol of the tree. Thus for example, the 

A&B&C entails A&C 

by And Elimination on premise 1 

and A&B, C entails A&C 

by And Introduction on conclusion 

and A&B, C entails A 

by And Elimination on premise 1 

and A,B,C entails A 

is immediate 

and A&B, C entails C 

is immediate 

proof structure 

is saved as 
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This allows large proof structures to be saved using very little storage. The 

price is that it is now a costly process to re-build a tree from its description. 

In practice, the main use of the proof-saving facility has been to save in- 

complete proofs between sessions, or to record solutions for tutorial purposes, 

rather than to build up a library of reusable structures. This is because of the 

fact that one major disadvantage of the IPE's proof structures is that they are 

very large objects; it is not unknown to use several megabytes of run-time store 

upon a moderately-sized proof.This makes it inadvisable to build proofs solely 

by applying the proofs of earlier-proven goals in situ; then even a simple proof 

would rapidly explode in size. As new facts are proven, ideally we would like to 

be able to use these facts without regard to their proof. In some sense, we would 

like to be able to regard lemmas and theorems as extensions to our basic set of 

proof rules. The IPE's solution to this is given in §6. However, the ability to 

save reusable proofs on-file is still useful in those cases where we might want to 

take an existing proof which partially proves a goal, and then edit it to complete 

the proof. 

5.4 Printing Proofs 

The on-screen display of proofs in the IPE is geared towards navigability and 

editability. To facilitate the "proof-by-pointing" style, proofs are .goal-directed, 

and the current premises are all displayed at each point in the proof display. 

When we want a more permanent record of a proof however, the considerations 

are different. We no longer need redundant repetition of premises, nor need we 
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print the proof in a top-down fashion. The IPE's printed proofs are radically 

different from those displayed on-screen. (It is worth noting at this point that 

the "proofs" displayed by the IPE are not really proofs but displays of "goal 

achievement state"; the real proofs lie in the composition of the justifications for 

the tactics which comprise the IPE's basic rules). 

Proofs are printed in a bottom-up fashion, with attempts to reduce the re- 

dundancy of premises. Several screenfuls of IPE display can collapse to a single 

page of proof in this style. For example, consider our proof of A&B&C->A&C; 

this prints as 

Theorem: A&B&C->A&C 

Proof: 

1 assume A&B&C 

1.1 A&B E(1) 

1.2 C &E(1) 

1.3 A &E(1.1) 

1.4 B &E(1.1) 

1.5 A&C &I(1.3,1.2) 

2 A&B&C->A&C -+1(1,1.5) 

QED 

Incomplete proofs can also be printed, although they are rarely useful as a 

guide in completing the corresponding IPE proof. Printed proofs are gener- 

ated from IPE proof structures in a similar manner to the generation of saved 

proof structures. Each rule in the proof grammar has an associated printout 

style. Rules which extend the set of premises print the new premise (unless it 

is already visible as the result of some previously printed step) and then print 

the subproofs, whilst those Introduction rules which decompose the conclusion 

print the subproofs first and then use the original inference rule to generate the 

conclusion. The printing function makes a single top-down pass of the proof 

structure; a multi-pass algorithm could additionally flag which premises actually 

contribute to the proof and omit those that don't from the final printout. 



Chapter 6 

A Theory Database 

6.1 Introduction 

An important facility in any proof maintenance system is the ability to use the 

results of one proof in another. We have already seen (in §5.1) that the IPE's 

multiple buffers can be used to apply one proof structure to another, providing 

one possible method. However, such a method becomes infeasible as we build up 

a "hierarchy" of proofs. With each proof being expanded in full, the physical size 

of proofs becomes very large indeed (it is not unknown for IPE sessions to require 

several megabytes of run-time store), resulting in a very slow response time or 

even system overflow errors. What is really needed is the ability to encode the 

result of a proof in a "shorthand" form which requires little space; for example, a 

form which allows one proof to refer to the result of another in a single step. This 

should produce a similar result to that obtained by simply applying the original 

proof, but consume much less space. The cost of this function would be the loss 

of the ability to edit the proof should the original turn out to be not quite what 

was wanted. The ability to use the result of one proof as a lemma in another in 

the above fashion corresponds to normal practice in the construction of proofs, in 

that it breaks a large problem into smaller and easier-to-manage parts, and also 

in that previous results are not normally considered mutable (excepting perhaps 

"by analogy with ..." or using the vague transformation "similarly,..." in which 

107 
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cases the IPE's proof editing facilities can be used). Naturally, we would like 

to be able to keep these lemmas on-file between IPE sessions, if possible in a 

structured fashion which represents their dependencies. 

In the following, we work towards a description of the result of an IPE proof 

that encapsulates some of the proof structure's generality. 

Defn. A formula schema is a formula F paired with a set of terms and a set 

of formulae which occur in F. These subterms and subformulae are designated 

as generic. A formula schema thus represents the set of all formulae obtained by 

replacing the generic formulae and terms in the original by some other formulae 

and terms. A formula thus constructed is known as an instance of the formula 

schema, and the subformulae or terms used to replace the generics are known as 

the generic substitutes. 

For example, the formula schema 

(P&Q-->R(x,y), {x},{P,Q}) 

represents the set of all formulae of the form P&Q-->R(x,y), where P and Q are 

any formulae, and x is any term. (Note that the predicate R and the term y are 

fixed). The formula (AJB)&C(z)-->R(f(y),y) is an instance of this, in which P 

has been replaced by AFB, Q by C(z) and x by f(y). 

The generic formulae and terms may be higher-order, in that they can contain 

parameter terms. For example, we might define a formula schema for induction 

over the natural numbers: 

(phi(O) & !x (phi(x)-->phi(S(x))) -a !x phi(x), {},{phi(x)}) 

(where 0 and S(x) are the constant zero and successor functions respectively). 

The meaning of the formula part is, "if we can show that phi holds for 0, and that 

if for any x phi holding for x implies that it also holds for S(x), then we have that 

phi holds for any x". By making phi(x) generic, we are then able to construct 

induction formulae for any phi in x. For example, choosing x+x=S(S(0)).x for 

phi(x), we obtain the instance 
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0+0=s(s(0)).0 & !x(x+x=s(s(0)).x --> s(x)+s(x)=s(s(0)).s(x)) 

--> !x x+x=s(s(0)).x 

Each instance of the generic formula phi(x) has been replaced by the generic 

substitute, and each instance of the generic parameter x as it appears in the 

substitute has been replaced by the parameter of phi as it appears in the original 

formula at that point. 

The motivation behind the above definition is to arrive at a means of de- 

scribing the result of an IPE proof as a descriptor of those formulae which the 

proof structure would prove without alteration. For example, a proof structure 

which proves A&B&C-+(A&C) will also prove P&Q&R-+(P&R), so we describe 

the set of formulae this structure can prove by 

(A&B&C-->(A&C), {},{A,B,C}). 

A lemma in the IPE system is a formula schema constructed from the root 

formula of an IPE proof. The generic formulae and terms are automatically 

determined from the root formula as those predicates and terms which are wholly 

uninterpreted in the proof, which is to say that they have no special properties 

which were used in the proof. (For example, if a proof of x+y=y+x uses any 

properties of + not shared by every term expression (as seems likely), then the 

function + should not be genericised; on the other hand, the terms x and y will 

be genericised, to yield a commutativity lemma on + for any x and y). 

As described so far, all predicates and terms in an IPE proof are uninter- 

preted, so that when we write x+y, the + symbol has no special meaning but is 

just another (infix) function. In order to extend the IPE from a logic of uninter- 

preted predicates and terms to one where we can reason about special symbols 

and prove properties thereof, we need some means of defining these symbols and 

giving them meanings which distinguish them from other symbols. 
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6.2 IPE Theories 
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In the previous section it was stated that all symbols in the IPE are uninter- 

preted, so that symbols such as + and S(_) have no special significance. However, 

consider the formula schema 

(x+y=y+x, {x,y}, {}) 

Here, x and y are generic, but + and = are not. This means that although we 

may substitute any term for x and y, + and = cannot be substituted. Thus, 

this formula schema gives a property of addition (and equality) that cannot be 

extended to any other symbols. When an instance of this formula schema is used, 

the act of its use distinguishes the symbols + and = from any other symbols. 

This use of formula schemata forms the basis of the IPE's mechanism for 

extending the "realm of discourse": IPE-theories. 

Defn. An IPE-theory consists of 

A set P of predicate symbols, each with an arity (> 0) denoting the number 

of its arguments 

A set F of function symbols, each with an arity (>- 0) as for P 

A set C of constant symbols 

A set GF of name-labelled formula schemata, partitioned into 

- A set A of axioms 

- A set L of lemmas 

The intention is that P,F and C declare symbols which are special within the 

IPE-theory, the set A defines the special properties of these symbols, and the set 

L contains IPE-generated lemmas of new properties proven using axioms from 
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A. (We shall see in the next section how axioms and lemmas can be used in IPE 

proofs). The set GF is known as the facts of the theory. 

Before giving examples of IPE-theories, we introduce some "pretty-printing" 

notation to make the examples more readable. 

Notation. An axiom 

(Name,(F,{gt1,...,gtm},{O-1,...,O-ri})) 

(where "Name" is the label of the axiom) is written as 

axiom Name is 

F 

generic terms gt1 

and ... 
and gta 

generic formulae gf1 

and ... 

and gf,, 

We format lemmas similarly by replacing the word "axiom" by "lemma". 

Notation We shall also intermingle the sets P,F and C of an IPE-theory as 

a linear list of items of the forms 

predicate Q(x,y,z) for a 3-place predicate symbol Q 

function f(x) for a 1-place function symbol f 
constant c for a constant c 

For example, to construct a theory of natural numbers, presupposing rules 

for equality, the sets P,F and C would be set up by the declarations 

constant 0 for zero 

function S(x) the successor function 

function x+y infix addition 

function x.y infix multiplication 
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and we would add axioms such as 

axiom PlusO is 

x+O = x 

generic terms x 

axiom PlusS is 

x+S(y) = S(x+y) 
generic terms x 

and y 

We would also want to add the induction formula schema of the previous 

section as an axiom. Let us call this IPE-theory "Peano". 

It must be pointed out that since the logic of the IPE is untyped, we have not 

defined the naturals as a type, but merely provided new axioms from which we 

can derive properties about expressions of particular forms. If we later define a 

theory of lists, including a new constant "nil" (intended to represent the empty 

list), then when we combine this with the Peano theory above, there is noth- 

ing to prevent us from proving (for example) that x+S(nil)=S(x+nil). Strictly 

speaking, we should have added another predicate, "IsNat", and the axioms 

axiom IsNatZero is 

IsNat(O) 

axiom IsNatS is 

IsNat(x) -IsNat(S(x)) 

axiom IsNatPlus is 

IsNat(x) &IsNat(y) --IsNat(x+y) 

generic terms x 

and y 

axiom PlusS is 
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IsNat(x) &IsNat(y) -->x+S(y)=S(x+y) 

generic terms x 

and y 

and so forth. Though this would increase the security of results, it was felt that 

it would make proofs extremely tedious; thus it was decided to omit such type- 

guarding, and rely upon the proof-builder to perform type-checking. (Of course, 

it is still possible to redefine the present set of IPE theories using guards). 

The purpose in declaring symbols is to inform the IPE of symbols which 

cannot be made generic in lemmas constructed in an IPE-theory. However, 

at present it is the theory-designer's responsibility to ensure that axioms are 

correctly stated; in particular, care must be taken to ensure that a declared 

symbol is not stated as a generic in an axiom. (For example, the effect of making 

"0" generic in PlusO would enable the collapsing of every expression of the form 

"x+y" to "y") As we shall see later, it is not possible to make a declared symbol 

into a generic in an IPE-generated lemma. 

Pragmatically, IPE-theories are stored on file as UNIX directories; the sym- 

bol declarations reside in a file called ".environment", and each fact (axioms 

and lemmas alike) occupies a file of the same name as the label of the fact. 

Some organisation is imposed via an optional "includes" header at the top of 

the environment file. This allows IPE-theories to be built up from other IPE- 

theories; IPE-theory inclusion involves the unions of all of the corresponding 

subcomponents of the theories. 

An IPE-theory is used in the IPE by loading it: this activates the symbol 

declarations (so that all instances of those symbols are recognised as "special" 

in future), and renders all of the facts in the theory visible for use in proofs. 
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6.3 Using Facts in a Proof 

The simplest means by which facts can be used in the IPE is to view them as 

schemata for "invisible" premises. A special rule can then be used to invoke 

a single instance of a fact as a "new" premise. This was the method used in 

the first theory-extended version of the IPE. The instantiation of the fact (by 

substituting for each generic term or formula) had to be performed entirely by 

the user. 

For example, suppose that the following goal arose in a proof: 

show x+0 = x, x = 0+x entails x+0 = 0+x 

Obviously, the transitivity of equality would be of use here. In the IPE, this 

property of equality is not assumed, but can be found as a lemma in the theory 

of equality: 

lemma EqualTransitive is 

x=y&(y=z)--mix=z 

generic terms y 

and x 

and z 

To use this, we select the Proof node with the above goal and choose a "Recall 

Fact" option on the right mouse button menu. This expands the Proof node 

with a general "recall fact" template: 

show x+0 = x, x = 0+x entails x+0 = 0+x 

use <FACT-NAME> 

and show x+0 = x, x = 0+x entails x+0 = 0+x 

Now we edit the text at "FACT-NAME", replacing it with "EqualTransitive". 

This gives us: 
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show x+O = x, x = (O+x) entails x+O = (O+x) 

use lemma <EqualTransitive> 

with <y> for y 

and <x> for x 

and <z> for z 

and show x=y&(y=z)-+x=z, x+O = x, x = (O+x) 

entails x+0 = (O+x) 

The lemma has been instantiated to variables of the same name as its generic 

terms, and added as a new premise in the subgoal. We can replace any or all 

of the substitutions by a series of text-edits, so that after editing each of the 

substitutions for x,y and z we get: 

show x+0 = x, x = (O+x) entails x+O = (O+x) 

use lemma <EqualTransitive> 

with <x> for y 

and <x+O> for x 

and <O+x> for z 

and show x+O=x&(x=O+x)-+x+0=(O+x), x+0 = x, x = (O+x) 

entails x+O = (O+x) 

Finally, we perform Implies Elimination and And Introduction to prove the orig- 

inal goal. (Note that these latter steps could have been applied before the final 

substitutions for the generic terms were chosen; this ability can be useful when 

the lemma is a large complicated formula). 

Needless to say, this style of interaction made any proof involving more than 

several fact instantiations tedious. 

6.3.1 The Facts Browser 

To reduce the tedium of using facts, it was decided to use one-way matching 

to perform partial instantiation of facts, by matching a formula schema against 
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some formula in a goal. The initial inspiration for this derives from the matching 

facilities used in the B tool [Abrial 86a]. To facilitate this, although facts are 

still filed as formula schemata, they are used as sequent schemata. 

Facts as Sequents 

Defn. A sequent schema is the sequent analogy of formula schema, consisting 

of a sequent paired with sets of generic formulae and terms. For example: 

( x=y,y=zf x=z,{},{x,y, z} ) 

Conversion of the formula part of a formula schema into a sequent is per- 

formed by a simple tactic called "Factic". This converts any formula into a single 

sequent by repeated application of the IPE rules Implies_IntroAnd_Elim 

(The application of any other rules would result in more than one 

sequent (eg by And_Intro) or loss of information (eg All_Elim)). 

The aim of this conversion is to reduce the formula to a form which might be 

matched more usefully in a goal-directed proof. For example, consider the Equal- 

Transitive lemma. A common case where it is required is when the conclusion is 

of the form A=C and some B is required such that the proofs of A=B and B=C 

are more obvious to the user. Then ideally we wish to replace the conclusion 

A=C with the two conclusions A=B and B=C and an appeal to EqualTransi- 

tive. If the matcher sought a goal-conclusion which matched the EqualTransitive 

formula-schema, then it would not consider the lemma applicable in this case. 

However, if the lemma is converted into a sequent, then the conclusions would 

match, and tht hypotheses of the partially-instantiated lemma would become 

A=<y> and <y>=C. Note that we can also match a premise of the form A=B 

against either hypothesis of EqualTransitive. 

However, such an approach is not without its disadvantages. By only match- 

ing against the sequent form of a fact, we render the matcher incapable of match- 

ing EqualTransitive against a conclusion of the same shape as the original state- 

ment of the lemma. This does not occur often in practice for this lemma, but 
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for some other facts the conversion goes too far. The result is that sometimes 

the goal has to be decomposed further (ie beyond the "natural" matching point) 

before the fact will be matched. A simple solution would be to match against the 

original formula and the sequent produced at each stage of the conversion, and 

present any matches resulting. Whilst being more thorough, this has the dis- 

advantage of being more costly, and of producing large numbers of irrelevant or 

redundant matches. 

The New Recall-Fact Production 

The form of the new Recall-'act rule is different, taking advantage of the pre- 

sentation of facts as sequents. Given a goal: 

show Premise-1,....Premise-n entails Conclusion 

and a fact-sequent which has been matched against it: 

Hypothesis-1,... ,Hypothesis-m entails Result 

Recall-'act generates the two subgoals: 

show Premise-1,...,Premise-n 

entails Hypothesis-1&... &Hypothesis-m 

and 

show Result, Premise-1,...,Premise-n entails Conclusion 

That is, in order to use an instantiation of a fact-sequent, we must prove that 

its hypotheses are derivable from the current premises, and that the addition of 

the result to the premises can lead to a proof of the current conclusion. 

Since the instantiations of generic variables in a fact-sequent are arrived at by 

matching a single formula of the sequent against a formula of a goal, it is possible 

that some generic variables (those not mentioned in the matched formula) will 

remain uninstantiated. Thus the Recall-'act rule must still permit the user to 

instantiate these. 
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The Fact-Matching Algorithm 

The matching algorithm used is a simple one-way matcher. Given a formula 

(chosen from a goal by the user) and a formula containing generic term or for- 

mula variables (from the sequent form of a fact), the matcher determines whether 

or not some instantiation of the generic variables could identify the fact-formula 

with the goal-formula, and what the instantiation should be. It does this by 

comparing the two formulae structurally, moving through the tree-form of the 

formula in a depth-first fashion. The the topmost operators are compared ini- 

tially, then their corresponding arguments if the operators match Whenever the 

matching process arrives «t a generic variable in the fact-formula, then the vari- 

able is set locally to the corresponding formula or term in the goal-formula; this 

is considered to be a locally successful match. Matching fails if either formula 

differs in structure (other than at generic points on the fact-formula), or if two 

locally-successful matches give different substitutions for the same generic term. 

This latter check is performed at each branch in the syntax trees of the formulae. 

For example, suppose that "x" were a generic variable in the formula 

"x+0=x". Then to matching against the goal-formula "S(O)+O=S(O)", the 

matcher would compare the "=" symbols, then the "+" symbols. Next it would 

match the leftmost instance of "x" against the leftmost instance of "S(O)"; since 

"x" is a generic variable, it would be locally set to "S(O)". The "O"'s would be 

matched next, and since there is only one substitution for "x", the term "x+0" 

would be deemed to locally match "S(O)+O". Then the rightmost "x" would 

also be locally set to "S(O)", and since this does not conflict with the setting for 

the left-hand side of the equation, the entire fact-formula would be considered 

to have matched the goal-formula under the instantiation of "x" to "S(O)". 

However, "S(0)+0=0+S(0)" would not be matched, since the two occurrences 

of "x" would require different substitutions. 

One important point that should be made about the matching algorithm is 

that it cannot deal with second-order generic variables. This means that goal- 

formulae will not be matched against fact-formulae which contain a second-order 
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generic. This has the consequence that the naturals induction rule will not be 

matched against any problem expressed as a formula, for example, if we have the 

problem "!m !n m+n=n+m", and the induction rule is expressed as a sequent 

schema: 

( phi(0), !x (phi(x) --'!x phi(S(x))) f- phi(x), {}, {phi(x)} ), 

then the "!x phi(x)" succedent will not be matched against the problem, because 

"phi(x)" is a second-order generic formula. 

It is still possible to match against facts which contain second-order generics, 

so long as the formula matched within the fact-sequent does not contain a second- 

order generic. In the case of the Substitution lemma: 

lemma Substitution is 

x=y --4 (f(x)=f(y)) 

generic terms x 

and y 

and f(x), 

the lemma can still be matched against a goal-premise which is an equality, for 

example: 

show m+O=m entails n+(m+O)=(n+m) 

use lemma <Substitution> on premise 1 

with m+0 for x 

and m for y 

and <1(x)> for f(x) 

and show m+O=m 

and show m+0=m, f(m+0)=f(m) entails n+(m+0)=(n+m) 

The user now has to replace "f(x)" in the edit-place with "n+x"; this will com- 

plete the second subproof. 

The decision to avoid handling second-order matching was made out of expe- 

diency. As we are only performing "one-way" matching (in the sense that when 
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matching, only one formula contains generic variables), and since the IPE's ex- 

pression syntax does not include lambda-expressions, then there should be a 

finite number of matches. 

The Theory Database Browser 

The third component of our new means of applying facts to goals is a browser 

for the IPE's theory database. This extracts facts from the database one at a 

time and presents them to the matcher. The most-recently-loaded IPE-theory 

is searched first, followed by the IPE-theories it includes, and so on. (Thus 

the visible theory structure is searched in a breadth-first fashion). The hope is 

that those facts most specific to the problem will be found early in the search. 

Unfortunately this places the onus upon the user to conduct a proof of a problem 

in the relevant theory, though what often happens in practice is that the contents 

of irrelevant theories are "glossed over" by the matcher. 

Due to a limitation in the ML interface to Unix, the only way in which the 

IPE can learn which facts are present in a theory is by reading a file in that 

theory (called facts) which lists them. This file defines the order in which facts 

are extracted from the theory, typically, the axioms are extracted first, followed 

by the lemmas in order of generation. 

As a simple heuristic, new lemmas created during an IPE session are pre- 

sented to the matcher before the theory structure is searched. If a user suspends 

one proof in an IPE session whilst proving a new lemma to be used in the main 

proof, then the new lemma will be matched first when it is required (provided 

that it does match the problem in the original proof). 

We are now ready to describe how these tools are combined in the "facts 

chooser". 

Using the Facts Chooser 

The user selects a formula from a goal, choosing the formula that looks most 

likely to yield a good match. (Knowing what makes a good choice comes with 
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experience; however the IPE's navigability and flexibility to change encourages 

experimentation). If this formula is the conclusion of the goal then the matcher 

will match the conclusion of each fact (produced by the store searcher) against 

it, otherwise each premise of each fact is matched against it. 

Suppose we are working within Peano number theory, and have the goal: 

show S(O)+S(O)=S(S(O)) 

and chose to search for facts which match the boxed formula. 

A "facts chooser" window appears on the screen, containing the following 

subwindows: 

A window displaying the current goal, with the selected formula high- 

lighted; 

A window in which matched facts are displayed; 

A panel of buttons, presenting options available to the user. 

The browser receives facts from the matcher, one at a time. Each fact is 

converted into a sequent, and the relevant match is performed. If any match 

succeeds, then the result of the match is shown to the user. 

Any match instances on the display can be selected by pointing with the 

mouse and pressing the left or middle mouse buttons. Selecting a match high- 

lights it, and de-selects any previous selection. 

The button panel comprises: 

an "Accept" button, which exits the facts chooser and uses the selected 

match in the proof; 

"Prey" and "Next" buttons; these are used to scroll the facts-display when 

there are too many matches to fit onto the window; 
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a "More" button, which directs the browser to find another matching fact 

from the theory database and add the match(es) derived from it to the 

facts-display; 

a "Cancel" button, to exit the chooser and leave the proof unchanged. 

Each button is only visible when it can be applied; for example, the "Accept" 

button will only appear once some match has been selected, "P rev" only appears 

when some matches disappear off the top of the window, and "More" disappears 

when there are no more facts in the database which match with the selected 

formula of the goal. 

(The idea of "hiding" inapplicable buttons was inspired by the Apple Mac- 

intosh style of "greying-out" options which do not apply, and rendering them 

unselectable. The easiest way of mimicking this in our ML window interface was 

to simply hide the button windows underneath the background). 

The right button menu presents the same options which are available on the 

buttons (but without any form of hiding); this is solely for consistency with the 

IPE's main interface and the interface of its other subtools. 

In our example, the first matching fact is the axiom S2; this is shown in 

Figure 6-1 In other words, if we can show that "S(lhs)=S(rhs)", then the axiom 

S2 will give us "lhs=rhs". However, intuition suggests that this new subproblem 

is no easier than the old one; so we tell the browser to continue searching for 

more matches. 

After several more inappropriate matches, the display appears as in Figure 6- 

2. Note in particular the matching of EqualTransitive. This is the result of 

matching the generic terms "x" and "z" in the original statement of the lemma to 

"S(0)+S(0)" and "S(S(O))" respectively. (Note that "y" has been left unmatched: 

unfortunately, this is not made completely obvious in the display). 

Suppose that we decide to accept this match. We click the left button over 

the lines of "EqualTransitive"; this results in the match being highlighted, and 

the "Accept" button appears (Figure 6-3). . When we click in the "Accept" 
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12: 
S(S(O)+S(O))=S(S(S(O))) entails (S(O)+S(O))=S(S(O)) 

More 

Cancel 

Figure 6-1: Upon entering the Facts-Chooser 
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Interactive Proof Editor 

Conjecture 

A 

s 

Fact Matcher 
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S2: 
S(S(O)+S(O))=S(S(S(O))) entails (S(0)+S(0))=S(S(0)) 

EqualOnTheLeft: 
x=(S(0)+S(0)),x=S(S(0)) entails (S(O)+S(0))=S(S(0)) 

EqualOnTheRigght: 
(S(0)+S(0))=y,S(S(0))=y entails (S(0)+S(0))=S(S(0)) 

EqualSymmetryy 
S(S(0))=(S(0)+S(0)) entails (S(0)+S(0))=S(S(0)) 

EqualTransitive: c 
(S(O)+S(O))=y,y=S(S(O)) entails (S(0)+S(0))-S(S(0)) 

More 

Cancel 

Figure 6-2: Display of several matched facts 
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Interactive Proof Editor 

Conjecture 

A 

S 

slloli (S(0)+S(0))=S(S(O)) 

I 

Fact Matcher 

Current Goa 

S2: Accept 
S(S(O)+S(O))=S(S(S(O))) entails (S(O)+S(O))=S(S(O)) 

EqualOnTheLeft: 
x=(S(O)+S(O)l,x=S(S(O)) entails (S(O)+S(O))=S(S(O)) 

EqualOnTheRigght: 
(S(0)+S(O))=y,S(S(O))=y entails (S(0)+S(O))=S(S(O)) 

Equal Symmetry: 
(O)) ( O) )) (0) ( )) l ( S(S( )) +S = S(S =(S +S 0 entai s S( 0 O 

IM-407 

More 

Cancel 
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Figure 6-3: Selecting the EqualTransitive match 
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button, the chooser exits, and the proof at the point where we invoked the facts 

chooser is updated as shown in Figure 6-4. 

Conjecture 

<(S(0)+S(0))=S(S(0))> 
Attempted Proof 

(S(0)+S(0))=S(S(0)) 
F uaITransit1 

an 
and 

and <}> for y 
show (5(0)+S(D))=yy&(y=S(S(0))) 
(S(0)+S(0))=S(S(0)) entails (S(O)+S(O))=S(S(O)) 
is immediate 

Figure 6-4: After accepting the EqualTransitive match 

The format of the Recall-Fact rule shows us that the generic terms "x" and 

"z" have been instantiated by the match, and are fixed, but that we are free 

to choose some term for "y". Since the result of the fact was matched against 

the conclusion of the goal, the second subproof is trivial; thus we have used 

EqualTransitive in a goal-directed fashion. 

Now we must look at our new subproblems, and use our intuition to guide 

our choice for "y"; there are no heuristics in the IPE to do this for us. A little 

thought (and perhaps a look at the Peano axioms) will suggest that "S(S(O)+O)" 

would be a good choice for "y" (Figure 6-5. With this choice, the two subgoals 

(following And Introduction) are: 

show S(o)+S(O)=S(S(O)+o) 
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Interactive Proof Editor 

Conjecture 

At 

sh 
us 

r920 %-- 
(0) + 0 ) 

and <y> for yy 
and show ( (0)+S(0))=y&(y=S(S(0))) 

use And Introduction 
and show (S(O)+S(O))=y 
and show y=S(S(O)) 

and (S(O)+S(O))=S(S(O)) entails (S(0)+S(0))=S(S(0)) 
is immediate 

offer: Main hoot: 1hcorem 
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Figure 6-5: Making the substitution for "y" 
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and 

show S(S(O)+O)=S(S(O)) 

128 

Applying the facts chooser to the first subgoal shows that it is an instance of 

the Peano axiom "x+S(y)=S(x+y)". The second problem can be proven using 

the lemma "(x=y)---*(S(x)=S(y))" and the Peano axiom "x+0=0". Figure 6-6 

shows the completed proof. 

Interactive Proof Editor 

S(0)+S(0))=S(S(0))0 

Y+S(0))=S(S(0)) 
by lemma <EqualTransitive> on conclusion 

with S(S(O)) for z 
and S(O)+S(O) for x 
and <S(S(O)+O)> for yy 

and (S(0)+S(0))=S(S(0)+0)&(S(S(0)+0)=S(S(0))) 
by And Introduction 
and (S(O)+S(O))=S(S(O)+O) 

by axiom <P1usS> on conclusion 
with 0 for y 
and S(0) for x 

and (S(0)+S(0))=S(S(0)+0) entails (S(0)+S(0))=S(S(0)+0) 
is immediate 

and S(S(0)+0)=S(S(0)) 
by lemma <S2rev> on conclusion 

with S(0) for y 
and S(0)+0 for x 

and (S(0)+0)=S(0) 
by axiom <P1usZero> on conclusion 

with S(0) for x 
and (S(0)+0)=S(0) entails (S(0)+0)=S(0) 

is immediate 
and S(S(0)+0)=S(S(0)) entails S(S(0)+0)=S(S(0)) 

is immediate 
and (S(0)+S(0))=S(S(0)) entails (S(0)+S(0))=S(S(0)) 

is immediate 
F1 

utter: Main Root: theorem 

Figure 6-6: The completed proof 

Other Browsers For IPE-theories 

The above implementation of the facts chooser has greatly reduced the effort in 

constructing proofs in user-defined theories. However, there are occasions when 

other forms of browsing are required. The other forms of obtaining facts from 

the database which are available in the IPE are: 



Chapter 6. A Theory Database 129 

from a selection of named facts. This is a different "front end" to the 

chooser, which presents a scrollable list of the names of every fact visible 

from the currently loaded IPE-theories. The user can select any number of 

these names; upon acceptance, the chooser is entered, matching only the 

chosen facts against the selected goal-formula. Facts are displayed even 

if they fail to match the goal; this allows us to browse facts which fail to 

match because they contain second-order generic variables. 

from all facts. In this version, every fact found is shown, whether or not a 

match was obtained against the selected goal. This acts as a full browser 

for the database. 

by name. This is similar to the earlier form of using facts, except that the 

list of fact names is presented. When one fact is chosen and accepted, the 

Recall-'act rule is applied as if no generic variables had been matched. 

In practice, the first variant is the most useful, once the user has acquired some 

knowledge of the structure and content of the theory database. 

It would also be useful to be able to see and make use of the relationships 

between the various IPE-theories in the database. At present, when (say) Peano 

is loaded, it is not obvious that it includes Equality, until the user starts to browse 

for facts. Even then, the only distinction between Peano facts and Equality facts 

is that the Peano facts are matched (or are displayed) first. 

6.4 Generating Lemmas 

Generating a lemma from an IPE proof is a simple task for the user. The "make- 

lemma" command (invoked by the "L" key) checks that the current proof is 

complete; if so, it then asks the user for the name of the theory in which the new 

lemma will be placed, and a name for the new lemma. If the theory exists, and 

if it doesn't already contain a lemma with that name, then the lemma is added 

to the contents of the theory (together with the printed version of its proof). 
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It would be more secure to insist that lemmas be stored within the topmost 

currently-loaded IPE-theory. However, once a theory is loaded in IPE, it cannot 

be unloaded'; furthermore, theory-loading is global rather than buffer-specific. 

Choosing the theory by name makes it possible to store a lemma in its most 

general IPE-theory. For example, if whilst working on a proof in Peano we 

discovered that we required a result from Equality which has not yet been proven, 

we can start a proof of it in a new buffer; once complete, we can add it to Equality 

as a lemma, then return to our original proof. 

When converting the theorem of an IPE proof into a lemma, the IPE uses 

information from the currently-loaded theories to determine the generic variables 

of the lemma. Any term or predicate symbol used in the theorem which has not 

been declared in the loaded IPE-theories is recorded as a generic variable. This 

ensures the validity of the lemma with respect to the topmost loaded theory, 

as it is impossible to "genericise" a predicate or term in a theorem whose proof 

relies on properties of that symbol defined by the axioms of some loaded theory. 

Unfortunately, there is also the risk that some symbol used by the user will 

coincide unintentionally with a symbol declared in the theory, and will not be 

made generic even if no special properties of the declared symbol were used in 

the proof. 

The generic formula produced from a theorem is stored in the database in 

the same format as axioms, viz: 

lemma Lemma-Name is 

formula 

generic terms ... 
generic formulae ... 

As an example, suppose that working in Peano we had proven the formula: 

S(x)+S(Y)=S(S(x+Y)) 

'The ability to unload theories was added by Claire Jones in 1986. 
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Now if we decide to add it to Peano as a lemma called "DoubleS", we select the 

"make-lemma" command and supply the theory and lemma names appropriately. 

The symbols "S" and "+" are declared in Peano, and "=" is declared in Equality 

(which Peano includes), therefore these symbols are not made generic in the 

resultant lemma. However, "x" and "y" are not declared, so IPE makes them 

generic. The resultant lemma is: 

lemma DoubleS is 

S(x)+S(y)=S(S(x+y)) 

generic terms x 

and y 

6.5 Remarks 

It must be admitted that the IPE's theory database is not secure; the intention 

in its design and implementation was to investigate how the IPE could be used 

in conjunction with a database of results, rather than to construct a full system 

for building theories. This is an area where much improvement could be made. 

There are no tools to help with the construction of IPE-theories. The user 

must create the theory as an ordinary UNIX directory under the "theories" 

directory, and add its name to the .theories file in that directory. (The latter file 

is used by the load-theory command to obtain the names of all available theories). 

The.environment and facts files, and even the axiom files, must be created using 

an ordinary text editor. This makes it all too possible to introduce syntactic 

errors in constructing a theory. (In fact, some effort was made to build a version 

of a UNIX directory browser (written in ML by John Cartmell) which could be 

used to build theories. In this, users would construct the environment file and 

axiom files textually, but as for text-edit points in the IPE, these would be parse- 

checked before acceptance. The facts file would be automatically maintained. 

However, this work was superceded by the construction of the facts chooser, and 

was never completed.) 
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The "inclusion" method of putting IPE-theories together in the simplest 

possible way is too limited: often one would like to be able to use other the- 

ory constructions, for example, using ideas from the LARCH Shared Language 

([GHW 85]): 

renaming The ability to construct a new IPE-theory by renaming some or all of 

the declared predicates, functions or constants would allow greater reuse of 

IPE-theories. For example, we could build an IPE-theory "Group" which 

states the basic group axioms in terms of a constant "0" and functions 

"x.y" and "inv(x)", then rename these to obtain particular instances of 

groups; 

assumption An IPE-theory "T" might make assumptions about its defined 

symbols, for example that a particular binary function is commutative. 

This could be done by defining an IPE-theory "Commutative" and then 

assuming this theory with the function suitably renamed. Now any theory 

"T2" which refers to "T" must discharge the assumption, by showing that 

the axioms of the (renamed version of) Commutative can be proven in T2; 

implication Saying that one IPE-theory implies another would allow users of 

the first IPE-theory to access results in the second. An IPE-theory for 

integer arithmetic might imply "Group" (with a suitable renaming). Note 

however that we would have to show that the implication was valid; this 

could be done by proving that the axioms of the implied theory hold in the 

implier. 

Catering for such constructions would require a major redesign of the the- 

ory database and the browser. Any tool for constructing theories would have to 

maintain the proof obligations arising from implication and assumption. Renam- 

ing causes special problems when browsing: when browsing a theory A which 

includes a renaming of a theory B, then facts in B must be renamed before being 

presented either to the facts-matcher or to the user. This could be an expensive 

process where a large number of facts are involved. In special cases where the 
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renaming is invertible, it might prove more efficient to apply the inverse renam- 

ing to a problem, perform matching in B's "own language", and then rename 

the successful matches. 

The method of "genericising" theorems to produce lemmas is over-strict. For 

example, suppose that whilst working in Peano, we proved that 

(x+0=x) &(x=0+x) ->(x+0=0+x) 

using only results from equality, and realised that we had just proven transitivity 

of equality. When we try to save this as a lemma in Equality, the result would 

be 

lemma EqualTransitive is 

(x+0=x) &',(x=0+x) ->(x+0=0+x) 

generic terms x 

which is not what was intended. A similar situation occurs when subformulae 

are not decomposed in a proof: it is possible to prove that: 

(AFB) &C -IC 

without using Or-Elimination on A IB; however, the resulting lemma would be 

lemma AndElimLeft is 

(AFB) &C -IC 

generic formulae A 

and B 

and C 

when we would prefer 

lemma AndElimLeft is 

A&C -'C 
generic formulae A 

and C 
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Ideally, the process of generating a lemma from a theorem should genericise: 

all subformulae whose structure was not used in the proof; 

all subterms t where no axiomatically-defined property of any symbol in t 

was used in the proof; 

all predicates P such that no defined properties of P were used in the proof. 

At present, the lemma generator does not use any information from the proof 

of the lemma, only of the currently-loaded IPE-theories. To proceed as above, 

the generator would have to able to extract from a proof the set of axioms it 

depends upon. It would be easy to extract the set of axioms and lemmas used 

directly in a proof; to determine which axioms have been used to prove the 

lemmas would require storing this information with the lemma (or analysing the 

proof of each lemma similarly). It would also be necessary to determine the set 

of symbols whose properties are defined by a particular axiom. A simpler but 

overstrict solution (though less so than the present method) would be to assume 

that whenever a lemma from a particular IPE-theory is used in a proof, then 

no predicates or terms declared in that IPE-theory can be genericised. This 

assumes that every lemma has been stored in the appropriate IPE-theory, but 

would not be difficult to implement. 

It would also be desirable to be able to determine the most general IPE- 

theory in which a lemma could be placed. Determining this given a particular 

proof of the lemma would involve finding the most general theory containing 

all of the facts and declared symbols used in the proof. Were lemmas to be 

automatically placed in this manner, there would be the risk that users might 

be surprised when lemmas disappear from the theory chosen by the user. In 

the current presentation of facts in the IPE, this would simply mean that the 

lemma might not appear in the list of matched or viewed facts until later than 

expected; however, if theory-structured browsing were realised, this will become 

a more serious issue. 
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The user-directed storage of lemmas is certainly dangerous at present. No 

checks are made to ensure that the lemma could genuinely be proven within the 

theory chosen by the user. The ability to analyse proofs as above could be used 

to restrict the user's choice. Such proof analysis could even be used to decide the 

most general IPE-theory automatically. However, it could be confusing when a 

result is generalised in ways unexpected by the user, producing an unrecognisable 

lemma stored in a different theory from the expected position. 

As stated earlier, it would be preferable if different buffers could be "opened 

upon" different IPE-theories. This could be used to improve the storage of 

lemmas. Suppose that a user working upon a Peano proof, discovers the need 

for a new Equality lemma; it would be possible to create a buffer upon Equality 

in which the lemma could be stated and proved. "Store-lemma" might insist 

that the lemma be stored in the theory associated with the buffer. If such a 

system were adopted, then copying of information between buffers would be 

more complicated: it should only be possible to copy from buffer A into buffer 

B when the theory associated with buffer A is already loaded in buffer B. 



Chapter 7 

Future Work and Conclusions 

7.1 Recent Work 

As stated in the Introduction, this thesis has concentrated upon describing the 

IPE as far as Version 5, thus covering the main part of the author's contribution 

to the work. However, the IPE has been developed further since the author's 

involvement. This section briefly describes some of the ways in which the IPE 

has been extended. 

7.1.1 Rewrite Rules 

In mid-1986, Claire Jones extended the IPE to include rewrite rules. Each IPE- 

theory can have a list of rewrite rules (stored as a list of facts in a file ".rules"). 

When an IPE-theory is loaded, its rewrite rules are added to the set of loaded 

rules. Any proven formula of the form x = y (where x and y are terms) can be 

used as a rewrite rule for rewriting instances of x to the corresponding instances 

of y (recalling that the rule may have generic subterms). Once the proof of such 

a formula is completed, it can be added to the set of rewrite rules in a (user- 

selected) IPE-theory. Claire has extended the Proof Grammar with a new Proof 

production "Rewrite", which applies the loaded rewrite rules to the selected 

premise or conclusion. Rewriting is performed repeatedly, rewriting terms "from 

the outside in", until none of the rewriting rules apply. 

The addition of rewrite rules has greatly improved the usability of the IPE; a 

small number of rewrite rules can achieve a great deal in a single step. (A crude 

136 
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example is that the proof in §6.3.1 could now be performed in a single step, with 

only the axioms PlusS and PlusZero as rewrite rules. However, the rewrite rules 

must be chosen carefully. Should the user inadvertently add "t2 = tl" as a rule 

when "tl = t2" is already present, then later attempts to perform rewriting will 

fail to terminate whenever one of these rules applies. Furthermore, changes to 

the set of rewrite rules may cause earlier rewrites to produce different results 

upon reevaluation. 

7.1.2 The XIPE 

In 1986, the Laboratory for Foundations of Computer Science decided to adopt 

the X windows system in preference to SunView. Furthermore, the differences 

between the new and old versions of SunView were such that Tatsuya Hagino's 

ML window system would require extensive redesign to work under the new Sun- 

View environment (indeed, Tatsuya tried and failed). To continue development 

of the IPE, Tatsuya built an ML window system which used X but provided the 

same interface as the old system, thus enabling the same IPE code to run under 

X. Tatsuya has since proceeded to extend and improve IPE's user interface in 

a variety of ways, including the "proper" display of the quantifiers "Y' and "3" 

and redesign of the formula and term parser to accept a more standard syntax. 

More recently, the use of the keyboard for numerous "single-stroke" commands 

has been superceded by mouse menus. 
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7.2 Future Work 

In this section we consider ways in which the Interactive Proof Editor could 

be extended. Many of these involve incorporating features from other theorem 

proving systems into the IPE to increase its practical applicability, rather than 

areas for novel research. 

An obvious extension would be to provide a typed predicate calculus, which 

would increase confidence in our theorems, preventing us from proving results 

such as 

nil+O =nil. 

One could go further and provide an implementation of a "logical frame" (as 

done in the EFS). At present, the syntax of formulae and terms in the IPE is 

extremely rigid. The ability to give a syntax (or just a presentation, as in PRL) 

would enhance the readability of formulae. Similarly, the ability to define new 

logical connectives (even if only defined in terms of the existing set of connectives) 

would be useful. 

The uses of IPE-tactics have not been fully developed in IPE. An immediate 

extension of IPE would be to build up an internal library of IPE-tactics and allow 

the user to choose from these. Slightly more long-term would be the provision of 

a language in which users could construct IPE-tactics from a set of basic tactics 

plus "IPE-tacticals". 

Much could be done to improve the theory database. In particular, a secure 

method of constructing theories is required. It would be very useful to be able to 

change an IPE-theory and have the effects of the change propagate through the 

rest of the database. Following from her experiences in proving a simple parser 

using IPE, Claire Jones added an "Unload theory" command to the IPE as one 

method of allowing the declarations of symbols and definitions of axioms in an 

IPE-theory to change during a session. Unfortunately, proofs built using the 
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old version of the theory are not automatically forgotten! A proper dependency 

structure of lemmas upon the facts used in their proofs would be the first step 

(after a secure database editor) towards a change-sensitive IPE. 

Claire Jones' work in adding rewrite rules to the IPE could be developed more 

fully, for example taking advantage of existing work in organising sets of rewrite 

rules, for example using the Knuth-Bendix algorithm to derive a confluent and 

terminating set of rewrite rules (see [Dick 84]). Another possible approach would 

be "user-directed" rewriting, where the user could select a subterm and ask the 

store searcher to find possible (single-step) rewrites for the term. Though slower, 

this would have the advantage that the user would be aware of each step made, 

and that no checks need be made upon the set of rewrite rules other than that 

they be proven lemmas or intended axioms. 

Further experimentation upon improvements to the reusability of IPE struc- 

tures is required, for example by further developing some of the ideas in §3.9.2. 

Later extensions to the IPE's user interface (in particular the "chooser" in- 

terface style used in the facts-matcher and for most buffer operations) suffered 

from restrictions imposed by low-level details of the user interface. (For example, 

unless a menu is bound to a mouse button, then no distinction is made between 

pressing a button (holding it down) and clicking it. It would be interesting to 

reconstruct the IPE using a more versatile set of I/O primitives; work in Edin- 

burgh upon providing an interface to the X window system in Standard ML is 

of interest here. 

For a system which is intended to be easy to learn, the IPE's help system 

is severely deficient. Some form of introductory help is required, even if only in 

the form of a step-by-step guide through the development of several proofs. 
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7.3 Concluding Remarks 

Many people have used the Interactive Proof Editor, covering a wide range from 
novices to experienced practitioners of formal proof. User response to the IPE has 
generally been favourable. The IPE demonstrates that proof navigability and ease 

of alteration are valuable properties for proof assistants. This is particularly true 
when - as is often the case - the full statement of a problem is only determined 
during the process of attempting its proof. 

The proof-by-pointing paradigm makes it easy to use the IPE's basic rules. It 
would be worthwhile to consider how this could be extended beyond the IPE's 
single-rule-per-connective restriction. For example, mouse-clicks could be used to 
invoke theory-specific transformations, depending upon the shape of the selected 
formula. Ideally, where the user frequently performs some operation upon formulae 
of a particular pattern, it should be possible to have this operation invoked by 
mouse-clicks upon formulae matching the pattern. Proof-by-pointing should be 
capable of adaptation to the circumstances. That it is not so in the IPE is one of 
the IPE's main shortcomings. 

The present need to display all of the premises and the conclusion at each step 
of the proof leads to a somewhat cluttered display. It would be better to allow the 
possibility of hiding this information, at the cost of an extra "expose" operation. 
There is much scope for experimentation with alternative proof displays which are 
more succinct without sacrificing navigability. 

When work began upon the Interactive Proof Editor, in order to perform 
machine-assisted proof, one had to be an expert in the use of a particular theorem- 
proving tool. Today, it seems to be the case that the learning threshold for such 
systems is falling. The ideal interactive theorem proving system would be per- 
fectly transparent, in the sense that users could concentrate upon the essence of 
constructing proofs, rather than upon learning, or fighting with, a poor or intran- 
sigent user interface. It was not intended that the Interactive Proof Editor should 
be all things to all men, and it cannot be claimed that it has achieved the ideal. 
For example it seems unlikely that the IPE in its present form will be useful in 
tackling problems of the scale that arise in "real" formal software development. 
On the other hand, systems which have been used to tackle "large but dull" the- 
orems (as produced by verification condition generators) have been criticised for 
the crudity of their man-machine interfaces, and for the incomprehensibility of 
their machinations. There still remains a gap between the two. Nonetheless, the 
IPE has provided an interface to a theorem prover which is simple to learn, and 
generally "forgiving" in operation. 

The IPE has also demonstrated that ML can be used to build large systems 
with "proper" user interfaces, though the standard I/O mechanism requires sup- 
plementary window-management primitives. 
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Appendix A 

The Proof Grammar 

A.1 The Syntax of C-SEC 

This section gives a brief description of the syntax used in C-SEC to describe 

attribute grammars. 

Keywords are placed in bold font; words in normal font are nonterminals. 

An attribute grammar in C-SEC is described in several sections: 

a title line of the form, "attribute grammar Name"; 

an optional "include" keyword followed by a space-separated list of names 

of ML modules. These modules are then made visible throughout the 

attribute grammar; 

a types section, which defines the types of all the attributes used; 

the declaration of the root symbol of the grammar; 

a list of definitions of all symbols in the grammar; 

a list of the productions of the grammar. 

The type definitions are separated by semicolons and enclosed in "types 

end" delimiters. Each type definition has the following form: 

type-name = ML-type-expression;; 

(equality ML-code;;) 

146 
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where "type-name" must be a single word, ML-type-expression any type expres- 

sion in ML which makes sense with respect to any modules included earlier, and 

ML-code defines an equality function over the given ML type (e.g. if the given 

type is "int", then the function should have type "int * int -> bool"). (The 

double semicolon is used as a terminator for all sections of ML code.) The "= 

ML-type-expression" can be omitted when "type-name" coincides with the name 

of the intended ML type. 

The symbol definitions are enclosed in "symbols ... end" delimiters and 

separated by semicolons. Each symbol definition has the following form: 

symbol-name ( attribute-defl; attribute-deft; ... ) 

where symbol-name is a single word, and each attribute-def is of the form 

"synthesised type-name attribute-name" or "inherited type-name attribute- 

name", thus declaring the named attribute as a synthesised or inherited attribute 

of the symbol, which will be used to hold ML values of the corresponding type. 

Grammar productions for the same symbol are grouped together, each group 

being separated by a semicolon. The first production of each group is considered 

to be the completing production of the symbol (and should therefore have no 

right-side symbols). Each production-group is of the form: 

symbol-namel ::= rule-name ( symbol-name2 symbol-name3 ... ) 
[ semantic-equationl 

semantic-equation2 

I 

rule-name2 ... 

(There is also an optional "inML... end" section prior to the semantic equa- 

tions section, which can be used to load any ML code required by a particular 

production). 

Each semantic equation has the form: 
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symbol-name$n.attribute-name = semantic-function;; 

which indicates that it is defining the semantic function for the named attribute 

of the nth symbol of that name in the production (numbering symbols from the 

left-side of the production, and starting with 1). The semantic function can be 

any ML expression whose type matches the type of the selected attribute. The 

semantic-function can also have embedded references to other attributes in the 

production, of the form: 

%symbol-name$n.attribute-name 

(the leading "%" is required to distinguish it from the ML code). If the "$n" is 

omitted from an attribute reference, it defaults to the first symbol of that name 

in the production. 

As in ML Under Unix, comments in C-SEC are delimited with braces. 
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A.2 The C-SEC Definition of the Proof Gram- 

mar 

attribute grammar Proof-Grammar 

{ An attribute grammar for the core of the Interactive Proof Editor. 
} 

include Proof-Formatting 

Facts-Matching 

Recall-Prelims 

types sequent (equality fun(m,n).m=n;;); 

{ sequent == 

list of premise formulae * conclusion formula } 

seqlist = sequent list;; (equality fun(m,n).m=n;;); 

term (equality fun(m,n).m=n;;); 

{ term = variable(string) 

I expression(op:string,term list) } 

formula (equality fun(m,n).m=n;;); 

{ see -/jwc/Formulae for the definition } 

int (equality fun(m,n).m=n;;); 

bool (equality fun(m,n).m=n;;); 

string (equality fun(s1,s2).s1=s2;;); 

factinfo (equality eqfactinfo;;); 

{ the tuple returned by recall-fact 

-- see -/gforms/Recall_Prelims } 

formlist = formula list;; (equality fun(f,g).f=g;;); 

termlist = term list;; (equality fun(t1,t2).t1=t2;;); 

subst_set = subst list option;; (equality fun(a,b).a=b;;); 

subst_list = subst list;; (equality fun(a,b).a=b;;) 

{ subst == term_subst(terml,term2) 

I form_subst(forml,form2) } 

end 
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root Theorem 

symbols Theorem { The root symbol of the grammar, with only one 

effective production linking a conjecture formula to 

its attempted proof 
} 

(synthesised bool proven; 

{ true if the underlying proof is proven } 
synthesised int print-tree-depth; 

{ the number of tree levels below that are to be 

displayed } 
synthesised int set_ptd; 

{ The user-changeable version of print-tree-depth; 
This will always have no arguments in semantic 

equations 

} 

synthesised int no-of-columns; 

{ Width of display left to the current node, after 
indentation } 

synthesised int set_noc 

{ Is to no-of-columns what set_ptd is to 

print-tree-depth I 
); 

Proof { The main symbol in this grammar, representing each 

step of a proof } 
(synthesised bool proven; 

{ true if the given rule is appropriate and if some 

function of the validity of its subproofs is also 

true } 
synthesised bool appropriate; 

{ true if local conditions for the given proof rule 
are met } 

synthesised int selected; 
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{ The index of the premise to which the rule 
applies (not relevent to introduction rules) } 

inherited sequent sequent; 

{ The goal supplied to the Proof } 
synthesised seqlist subgoals; 

{ The subgoals generated from applying the 

operations of the proof rule to the given goal } 
inherited int print-tree-depth; 
synthesised int set_ptd; 

inherited int no-of-columns; 

synthesised int set_noc); 

Term { A single term; this allows user editing of terms } 
(synthesised term self; 

{ The value of the term associated with this node } 
inherited int no-of-columns; 

synthesised int set_noc); 

Formula { Similar to Term } 
(synthesised formula self; 
inherited int no-of-columns; 

synthesised int set_noc); 

Var { similar to Term } 
(synthesised string self; 
inherited int no-of-columns; 

synthesised int set_noc); 

Fact { Represents a fact from the theory database used in a 

Recall proof step; unlike other user-editable points, 

this has more information associated - the name of the 

fact, whether it is an axiom or a lemma, its generic 

parameters, and IPE-chosen substitutions for them. 

} 
(synthesised string name; 
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{ The name-label of a fact (eg EqualTransitive) } 
synthesised factinfo recall; 

{ The bundle of info that comes from 
"recall-fact (name)" } 

synthesised bool valid; 
{ True if the named fact actually exists } 

synthesised formula fact; 
{ The fact as a single formula } 

inherited formlist gents; 

{ The generic formulae of a fact, renamed to avoid 

coincidence of generic parameter names with 

variables in the goal, ie generic phi(x) becomes 

generic phi(x') if x occurs at all in the goal 

} 

inherited termlist gents; 

{ Similar to gents } 
inherited subst_set autosubsts; 

{ Those substitutions for generics which are 

automatically decided by the IPE } 
synthesised sequent sequent; 

{ The fact expressed as a single sequent, eg 

x=y&y=z->x=z I==> x=y,y=z entails x=z } 
synthesised int selected 

{ If formula-matching is carried out between a 

premise of the goal and a premise of the 

fact-sequent, this holds the index of the chosen 

fact-premise } 
); 

GenFormList { This node allows the user to provide substitutions 
for those generic formulae not substituted for by 

the IPE } 

(synthesised subst_list substs; 

{ The substitutions provided by the user, plus 

any others neither automatically nor user 
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chosen. This is necessary because the set of 
system-chosen substitutions is likely to 

change when the goal changes. 

} 

synthesised subst_list user_substs; 

{ The set of substitutions provided 

by the user } 
inherited formlist still_genfs; 

{ Those generic formulae not chosen 

by the system } 
inherited int print-depth; 

inherited int no-of-columns; 

synthesised int set_noc); 

GenTermList { Similar to GenFormList } 
(synthesised subst_list substs; 

synthesised subst_list user_substs; 

inherited termlist still-gents; 
inherited int print-depth; 
inherited int no-of-columns; 

synthesised int set_noc) 

end 

productions 

Theorem :.= Carte-Blanche () { Completing production for Theorem 

-- never used!! } 
[ Theorem.proven = false;; 

Theorem.print_tree_depth = 100;; { These values are } 
Theorem.no_of_columns = 79;; { quite arbitrary! } 
Theorem.set_ptd = "1;; 
Theorem.set_noc = "1;; 

I 

I Theorem ( Formula Proof ) 

[ Theorem.proven = %Proof.proven;; 
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Theorem.print_tree_depth = if %Theorem.set_ptd > 0 

then /.Theorem.set_ptd 

else 10;; 

Theorem.set_ptd = "1;; 
{ set_ptd is altered by a higher level in the 

IPE: whenever this node is the current node, 

set_ptd is set to the current print tree 

depth value (eg 5). This value is then 

passed to Theorem.print_tree_depth, and thus 

to the chain of print-tree-depth attributes 
below the current node. When we move away 

from this node, set_ptd is made negative so 

that print-tree-depth inherits its value 

from above (or as in this case, is set to 

a default value, since there is no "above") 

} 

Theorem.no_of_columns = if %Theorem.set_noc > 0 

then %Theorem.set_noc 

else 0;; 
Theorem.set_noc = "1;; 
Proof.sequent = make_sequent([],'/Formula.self);; 

{ The initial goal is "show Formula" } 

Proof. print_tree_depth = 

if '/Proof.set_ptd > "1 

then '/.Proof. set_ptd 

else %Theorem.print_tree_depth - 1;; 

{ See the note under Theorem.print_tree_depth } 

Proof.no_of_columns = 

if '/Proof.set_noc > "1 

then %Proof.set_noc 

else subproof_width %Theorem.no_of_columns;; 

Formula.no_of_columns = 

if '/Formula.set_noc > -1 

then '/.Formula.set_noc 

else %Theorem.no_of_columns - 5;; 
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]; 

Proof ::= Still-To-Prove 0 
{ The completing (or default) production for 

Proof, this is similar to the immediate rule, 
except that it won't complain if the goal is 
not immediate 

} 
[ Proof. appropriate = true;; 

{ Always applicable } 
Proof.proven = is-immediate %Proof.sequent;; 

Proof.selected = 1;; 

Proof.subgoals = nil;; 
Proof.set_ptd = "1;; 

Proof.set_noc = "1;; 

I 

I Immediate () 

[ Proof. appropriate = is-immediate %Proof.sequent;; 

Proof.proven = %Proof.appropriate;; 

Proof.selected = 1;; 

Proof.subgoals = nil;; 

Proof.set_ptd = "1;; 

Proof.set_noc = "1;; 

And-Intro ( Proof Proof ) 

{ show A&B I==> [show A;show B] } 
[ Proof$1.appropriate = 

is-And( succedent %Proof$1.sequent );; 
Proof$1.proven = %Proof$1.appropriate & 

%Proof$2.proven & %Proof$3.proven;; 

Proof$1.subgoals = 

if %Proof$1.appropriate 

then And-intro %Proof$1.sequent 

else [empty_sequent;empty_sequent];; 
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Proof$2.sequent = hd %Proof$l.subgoals;; 

Proof$3.sequent = hd (tl %Proof$1.subgoals);; 

Proof$2.print_tree_depth = 

if %Proof$2.set_ptd > "1 

then %Proof$2.set_ptd 

else %Proof$1.print_tree_depth-1;; 

Proof$2.no_of_columns = 

if %Proof$2.set_noc > -1 

then %Proof$2.set_noc 

else subproof_width %Proof$l.no_of_columns;; 

Proof$3.print_tree_depth = 

if %Proof$3.set_ptd > "1 

then %Proof$3.set_ptd 

else %Proof$1.print_tree_depth-1;; 

Proof$3.no_of_columns = 

if %Proof$2.set_noc > -1 

then %Proof$2.set_noc 

else subproof_width %Proof$1.no_of_columns;; 

Proof$1.selected = 1;; 

Proof.set_ptd = "1;; 
Proof.set_noc = "1;; 

Or_Intro ( Proof Proof ) 

{ show AFB =_> either show A or show B } 
[ Proof$1.appropriate = 

is_Or(succedent %Proof$l.sequent);; 

Proof$1.proven = %Proof$l.appropriate & 

(%Proof$2.proven or %Proof$3.proven);; 

Proof$1.subgoals = 

if %Proof$l.appropriate 

then Or_intro %Proof$1.sequent 

else [empty_sequent;empty_sequent];; 

Proof$2.sequent = hd(%Proof$l.subgoals);; 

Proof$3.sequent = hd(tl(%Proof$l.subgoals));; 
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Proof$2.print_tree_depth = 

if %Proof$2.set_ptd > "1 

then %Proof$2. set_ptd 

else %Proof$1.print_tree_depth-1;; 

Proof$3.print_tree_depth = 

if %Proof$3.set_ptd > -1 

then '%,Proof$3. set_ptd 

else '' /,Proof$1.print_tree_depth-1;; 

Proof$2.no_of_columns = 

if %Proof$2.set_noc > -1 

then %Proof$2. set_noc 

else subproof_width '' /,Proof$l.no_of_columns;; 

Proof$3.no_of_columns = 

if %Proof$3.set_noc > -1 

then %Proof$3.set_noc 

else subproof_width %Proof$1.no_of_columns;; 

Proof$1.selected = 1;; 

Proof.set_ptd = -1;; 
Proof.set_noc = -1;; 

I 

Imp_Intro ( Proof ) 

{ show A->B =_> show A entails B } 
[ Proof$1.appropriate = 

is_Implies(succedent %Proof$1.sequent);; 

Proof$1.proven = 

%Proof$1.appropriate & %Proof$2.proven;; 

Proof$2.sequent = 

if '/,Proof$l.appropriate 

then hd(Implies_intro %Proof$1.sequent) 

else empty_sequent;; 

Proof$2.print_tree_depth = 

if %Proof$2.set_ptd > -1 

then %Proof$2.set_ptd 

else %Proof$1.print_tree_depth-1;; 
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Proof$2.no_of_columns = 

if %Proof$2.set_noc > "1 

then %Proof$2.set_noc 

else subproof_width %Proof$1.no_of_columns;; 

Proof$1.selected = 1;; 

Proof.subgoals = nil;; 
Proof.set_ptd = "1;; 
Proof.set_noc = "1;; 

I 

I Not_Intro ( Proof ) 

{ show -A =_> show A entails contradiction } 
[ Proof$1.appropriate = 

is_Not(succedent %Proof$l.sequent);; 

Proof$1.proven = 

%Proof$1.appropriate & '/.Proof$2.proven;; 

Proof$2.sequent = if %Proof$l.appropriate 

then hd(Not_intro '/.Proof$l.sequent) 

else empty_sequent;; 

Proof$2.print_tree_depth = 

if %Proof$2.set_ptd > "1 

then %Proof$2.set_ptd 

else %Proof$1.print_tree_depth-1;; 

Proof$2.no_of_columns = 

if '' /.Proof$2.set_noc > "1 

then %Proof$2.set_noc 

else subproof_width %Proof$l.no_of_columns;; 

Proof$1.selected = 1;; 

Proof.subgoals = nil;; 
Proof.set_ptd = "1;; 
Proof.set_noc = "1;; 

I 

All_Intro ( Var Proof ) 

{ show !xP(x) ==> show P(Var) 
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+ Var not free in goal } 
inML 

import Symbol_Table;; 

end 

[ Proof$1.appropriate = 

is_ForAll(succedent %Proof$1.sequent) 

& is_unique_identifier(%Proof$1. sequent,%Var.self) 

& not(is_global_constant %Var.self);; 

Proof$1.proven = 

%Proof$1.appropriate & %Proof$2.proven;; 

Proof$2.sequent = 

if %Proof$1.appropriate 

& is-unique-identifier( %Proof$1.sequent, 

%Var.self ) 

then hd(All_intro (%Proof$1.sequent, %Var.self)) 

else empty_sequent;; 

Proof$2.print_tree_depth = 

if %Proof$2.set_ptd > -1 

then %Proof$2.set_ptd 

else %Proof$1.print_tree_depth-1;; 

Proof$2.no_of_columns = 

if %Proof$2.set_noc > -1 

then %Proof$2. set_noc 

else subproof_width %Proof$l.no_of_columns;; 

Proof$1.selected = 1;; 

Proof.subgoals = nil;; 

Proof.set_ptd = -1;; 

Proof.set_noc = -1;; 

Var.no_of_columns = if %Var.set_noc > -1 

then ''/,Var.set_noc 

else %Proof$1.no_of_columns - 5 

- (size "All Introduction");; 

I 

I Exists_Intro ( Term Proof ) 



Appendix A. The Proof Grammar 160 

{ show ?xP(x) ==> show P(Term) for any Term } 
[ Proof$1.appropriate = 

is_ThereExists(succedent %Proof$1.sequent);; 

Proof$1.proven = 

%Proof$l.appropriate & %Proof$2.proven;; 

Proof$2.sequent = 

if %Proof$1.appropriate 

then hd(Exists_intro (%Proof$l.sequent, 

%Term.self)) 

else empty_sequent;; 

Proof$2.print_tree_depth = 

if %Proof$2.set_ptd > "1 

then %Proof$2.set_ptd 

else %Proof$1.print_tree_depth-1;; 

Proof$2.no_of_columns = 

if %Proof$2.set_noc > "1 

then 'Proof$2.set_noc 

else subproof_width %Proof$1.no_of_columns;; 

Term.no_of_columns = 

if %Term.set_noc > "1 

then %Term.set_noc 

else %Proof$1.no_of_columns - 5 

- (size "Exists Introduction");; 

Proof$1.selected = 1;; 

Proof.subgoals = nil;; 
Proof.set_ptd = "1;; 

Proof.set_noc = "1;; 

I And_Elim ( Proof ) 

{ show A&B entails C ==> show A,B entails C } 
[ Proof$1.selected = 1;; 

Proof$1.appropriate = 

is_And(antecedent (%Proof$l.sequent, 

%Proof$1.selected)) 
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?? ["antecedent"] false;; 
Proof$1.proven = 

%Proof$l.appropriate & %Proof$2.proven;; 

Proof$2.sequent = if %Proof$1.appropriate 

then hd(And_elim( %Proof$1.sequent, 

%Proof$1.selected )) 
else empty_sequent;; 

Proof$2.print_tree_depth = 

if %Proof$2.set_ptd > "1 

then %Proof$2.set_ptd 

else %Proof$1.print_tree_depth-1;; 

Proof$2.no_of_columns = 

if %Proof$2.set_noc > "1 

then %Proof$2. set_noc 

else subproof_width %Proof$1.no_of_columns;; 

Proof.subgoals = nil;; 
Proof.set_ptd = "1;; 
Proof.set_noc = "1;; 

] 

Or_Elim ( Proof Proof ) 

{ show AFB entails C 

__> [ show A entails C; show B entails C ] } 
[ Proof$1.selected = 1;; 

Proof$1.appropriate = 

is_Or(antecedent (%Proof$1.sequent, 

%Proof$1.selected)) 

?? ["antecedent"] false;; 
Proof$1.proven = %Proof$1.appropriate 

& %Proof$2.proven & %Proof$3.proven;; 

Proof$1.subgoals = 

if %Proof$1.appropriate 

then Or_elim (%Proof$l.sequent, 

%Proof$1.selected) 

else [empty_sequent;empty_sequent];; 
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Proof$2.sequent = hd(%Proof$i.subgoals);; 

Proof$3.sequent = hd(tl %Proof$i.subgoals);; 

Proof$2.print_tree_depth = 

if %Proof$2.set_ptd > -1 

then %Proof$2.set_ptd 

else %Proof$1.print_tree_depth-1;; 

Proof$3.print_tree_depth = 

if %Proof$3.set_ptd > -1 

then %Proof$3.set_ptd 

else %Proof$1.print_tree_depth-1;; 

Proof$2.no_of_columns = 

if %Proof$2.set_noc > -1 

then %Proof$2.set_noc 

else subproof_width %Proof$1.no_of_columns;; 

Proof$3.no_of_columns = 

if %Proof $3.set_noc > -1 

then %Proof $3 . s et_noc 

else subproof_width %Proof$1.no_of_columns;; 

Proof.set_ptd = "1;; 
Proof.set_noc = -1;; 

162 

I Imp_Elim ( Proof Proof ) 

{ show A->B entails C 

=_> [ show A; show B entails C ] } 
Proof$1.selected = 1;; 

Proof$1.appropriate = 

is_Implies(antecedent (%Proof$i.sequent, 

%Proof$1.selected)) 

?? ["antecedent"] false;; 
Proof $1. proven = '/.Proof $ i .appropriate 

& %Proof$2.proven & %Proof$3.proven;; 

Proof$1.subgoals = 

if %Proof$i.appropriate 

then Implies_elim (%Proof$1.sequent, 
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else 

'/.Proof$1. selected) 

[empty_sequent;empty_sequent];; 

Proof$2.sequent = hd('/,Proof$l.subgoals);; 

Proof$3.sequent = hd(tl %Proof$1.subgoals);; 

Proof$2.print_tree_depth = 

if '/.Proof$2. set_ptd > "1 

then '' /.Proof$2. set_ptd 

else %Proof$1.print_tree_depth-1;; 

Proof$3.print_tree_depth = 

if '' /.Proof$3. set_ptd > "1 

then %Proof$3.set_ptd 

else '' /.Proof$l.print_tree_depth-1;; 

Proof$2.no_of_columns = 

if '/,Proof$2.set_noc > "1 

then '/,Proof$2. set_noc 

else subproof_width %Proof$l.no_of_columns;; 

Proof$3.no_of_columns = 

if %Proof$3.set_noc > "1 

then %Proof$3.set_noc 

else subproof_width '' /,Proof$l.no_of_columns;; 

Proof.set_ptd = -1;; 

Proof.set_noc = "1;; 

Not_Elim ( Proof ) 

{ show -A entails B ==> show A } 
[ Proof$1.selected = 1;; 

Proof$1.appropriate = 

is_Not(antecedent ('/,Proof$1.sequent, 

%,Proof$l.selected)) 

?? ["antecedent"] false;; 
Proof$1.proven = 

''/,Proof$l.appropriate & '/,Proof$2. proven; ; 

Proof$2.sequent = 

if %Proof$l.appropriate 
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then hd(Not_elim (%Proof$l.sequent, 

%Proof$1.selected)) 

else empty_sequent;; 

Proof$2.print_tree_depth = 

if %Proof$2.set_ptd > "1 

then %Proof$2.set_ptd 

else %Proof$1.print_tree_depth-1;; 

Proof$2.no_of_columns = 

if %Proof$2.set_noc > "1 

then %Proof$2.set_noc 

else subproof_width %Proof$1.no_of_columns;; 

Proof.subgoals = nil;; 
Proof.set_ptd = "1;; 
Proof.set_noc = "1;; 

I 

I All_Elim ( Term Proof ) 

{ show !xP(x) entails C 

==> show P(Term) entails C for any Term 

Proof$1.selected = 1;; 

Proof$1.appropriate = 

is_ForAll(antecedent (%Proof$l.sequent, 

%Proof$l.selected)) 

?? ["antecedent"] false;; 
Proof$1.proven = 

%Proof$l.appropriate & %Proof$2.proven;; 

Proof$2.sequent = 

if %Proof$l.appropriate 

then hd(Al1_elim (%Proof$1.sequent, 

%Proof$1.selected, 

%Term.self)) 

else empty_sequent;; 

Proof$2.print_tree_depth = 

if %Proof$2.set_ptd > "1 

then %Proof$2.set_ptd 

} 
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I 

else %Proof$l.print_tree_depth-1;; 

Proof$2.no_of_columns = 

if %Proof$2.set_noc > "1 

then %Proof$2.set_noc 

else subproof_width %Proof$1.no_of_columns;; 

Term.no_of_columns = 

if %Term.set_noc > -1 

then %Term.set_noc 

else %Proof$1.no_of_columns - 5 

- (size "All Elimination");; 
Proof.subgoals = nil;; 
Proof.set_ptd = "1;; 
Proof.set_noc = °1;; 

Exists_Elim ( Var Proof ) 

{ show ?xP(x) entails A 

show P(Var) entails A 

+ Var not free in goal } 
inML 

import Symbol_Table;; 

end 

165 

Proof$1.selected = 1;; 

Proof$1.appropriate = 

is_unique_identifier(%Proof$1.sequent, 

%Var.self) 

& (not (is-global-constant %Var.self)) 

& (is_ThereExists(antecedent(''%Proof$1.sequent, 

%Proof$1.selected)) 

?? ["antecedent"] false);; 

I. 

Proof$1.proven = 

%Proof$1.appropriate & %Proof$2.proven;; 

Proof$2.sequent = 

if %Proof$1.appropriate 

& is_unique_identifier(%Proof$l.sequent, 
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'/.Var. self ) 
then hd(Exists_elim (%Proof$1.sequent, 

%Proof$1. selected, 

%Var.self)) 

else empty_sequent;; 

Proof$2.print_tree_depth = 

if %Proof$2.set_ptd > "1 

then 7..Proof$2. set_ptd 

else %Proof$1.print_tree_depth-1;; 

Proof$2.no_of_columns = 

if %Proof$2.set_noc > "1 

then %Proof$2. set_noc 

else subproof_width %Proof$1.no_of_columns;; 

Var.no_of_columns = 

if %Var.set_noc > "1 

then %Var.set_noc 

else %Proof$1.no_of_columns - 5 

- (size "Exists Elimination");; 
Proof.subgoals = nil;; 
Proof.set_ptd = "1;; 
Proof.set_noc = "1;; 

Remove_Antecedent ( Proof ) 

{ show A entails B =_> 

show B (for tidying up!) } 
[ Proof$1.selected = 1;; 

Proof$1.appropriate = 

let val test=antecedent(''%Proof$1.sequent, 

%Proof$1.selected) 

in 
true 

end 

?? ["antecedent"] false;; 
Proof$1.proven = %Proof$2.proven;; 
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Proof$2.sequent = 

if %Proof$1.appropriate 

then remove-antecedent (%Proof$l.sequent, 

%Proof$1.selected) 

else empty_sequent;; 

Proof$2.print_tree_depth = 

if %Proof$2.set_ptd > "1 

then %Proof$2.set_ptd 

else %Proof$1.print_tree_depth-1;; 

Proof$2.no_of_columns = 

if '/.Proof$2.set_noc > "1 

then %Proof$2.set_noc 

else subproof_width %Proof$l.no_of_columns;; 

Proof.subgoals = nil;; 
Proof.set_ptd 

Proof.set_noc 

I 

Recall (Fact GenTermList GenFormList Proof Proof) 

{ Match the named fact against the current 

goal. See "/gforms/Facts_Matching.ml for 
details } 

inML 

import Generic_Formulae; 

{ Now we need to import Recall_Prelims again, in 
order to make the desired definition of snd 

visible 
} 

import Recall-Prelims;; 

end 

[ Proof$1.subgoals 

= let val substs 

= give-priority-to( %Fact.autosubsts, 

{over} (some(%GenTermList.substs 

@ %GenFormList.substs))); 
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val (GF,GT) = unzip_substs substs 

{ give-priority-to Si S2 will remove 

those substitutions in S2 which occur 

in Si 

} 
in 

fact_subgoals(Instantiate_Generics(%Fact.sequent, 

GF,GT), 

%Proof$i.sequent) 

end {of let..in};; 
{ the subgoals will be 

show premises,fact-conclusion entails conclusion 

show premises entails AND(Fact-premises) 

The latter goal comes second so that we can easily 

omit it from the display if the fact has no 

premises. 

} 

Proof$2.sequent = hd %Proof$i.subgoals;; 

Proof$3.sequent = hd(tl %Proof$i.subgoals);; 

GenTermList.still_gents = 

undetermined-terms %Fact.gents %Fact.autosubsts ;; 
GenFormList.still_genfs = 

;; undetermined-formulae %Fact.genfs %Fact.autosubsts 

Fact.autosubsts = 

if %Proof$i.selected < "1 

then none 

else if %Proof$i.selected = "i 
then match_formulae(%Fact.genfs,'/.Fact.gents) 

(succedent(%Fact.sequent), 

succedent(%Proof$i.sequent)) 

else match_formulae('/.Fact.genfs,%Fact.gents) 

(antecedent(%Fact.sequent, 

%Fact.selected), 

antecedent(%Proof$i.sequent, 

%Proof$i. selected) ) 
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??["antecedent"] none;; 

{ Thus we match the conclusion of the fact 
against the goal conclusion, unless otherwise 

informed, in which case we match a particular 
premise in the goal to a particular fact- 
premise: both of these are determined outside 

the grammar. 

NOTE: We should still allow old-fashioned 

facts matching, where we don't want to perform 

any auto-substitution. We will probably 

represent this by setting Fact.selected to -2. 

NOTE 2: autosubsts is set to none should 

either call of antecedent (goal or fact) fail. 
} 

Fact.genfs = map (avoid-parameter-clash-in-formula 

(all_vars_of_sequent %Proof$l.sequent)) 

(snd '/.Fact. recall) ; ; 

{ Thus for example, a generic phi(x) becomes 

phi(x') if the variable x occurs in the goal } 

Fact.gents = map (avoid-parameter-clash-in-term 

(all_vars_of_sequent '/.Proof$l.sequent)) 

(third %Fact.recall);; 

Proof$1.selected = -2;; 

{ This setting ensures that Autosubsts is none 

by default. 

} 

Proof$1.appropriate = '/.Fact.valid;; 

{ I suppose we should also check that if we are 

matching premises, then both selected premises 

should actually exist. 

} 

Proof$1.proven = %Proof$l.appropriate 

& '/.Proof$2.proven 

& Proof$3.proven;; 

GenTermList.print_depth = 
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%Proof$l.print_tree_depth - 1;; 
GenFormList.print_depth = 

%Proof$l.print_tree_depth - 1;; 
GenTermList.no_of_columns = 

if Y.GenTermList.set_noc > "1 

then %GenTermList.set_noc 

else %Proof$l.no-of-columns;; 

GenFormList.no_of_columns = 

if %GenFormList.set_noc > "1 

then %GenFormList.set_noc 

else %Proof$l.no-of-columns;; 

Proof$1.set_ptd = "1;; 

Proof$1.set_noc = -1;; 
Proof$2.print_tree_depth = 

if %Proof$2.set_ptd > "1 

then %Proof $2 . s et_ptd 

else %Proof$1.print_tree_depth-1;; 

Proof$2.no_of_columns = 

if %Proof$2.set_noc > -1 

then %Proof$2. set_noc 

else subproof_width %Proof$l.no-of-columns;; 

Proof$3.print_tree_depth = 

if %Proof$3.set_ptd > "1 

then %Proof$3. set_ptd 

else %Proof$1.print_tree_depth-1;; 

Proof$3.no_of_columns = 

if %Proof$3.set_noc > "1 

then %Proof$3.set_noc 

else subproof_width %Proof$l.no-of-columns;; 

I 

Duplicate_Antecedent ( Proof ) 

{ show A entails B ==> show A,A entails B } 

[ Proof$1.selected = 1;; 

Proof$1.appropriate = 
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let val test=antecedent('%Proof$1.sequent, 

%Proof$1.selected) 

in true end 

?? ["antecedent"] false;; 
Proof$1.proven = %Proof$2.proven;; 

Proof$2.sequent = 

if ''/.Proof$1.appropriate 

then duplicate-antecedent (%Proof$i.sequent, 

%Proof$1.selected) 

else empty_sequent;; 

Proof$2.print_tree_depth = 

if %Proof$2.set_ptd > "1 

then %Proof$2.set_ptd 

else %Proof$1.print_tree_depth-1;; 

Proof$2.no_of_columns = 

if %Proof$2.set_noc > "1 

then '/.Proof$2. set_noc 

else subproof_width %Proof$1.no_of_columns;; 

Proof.subgoals = nil;; 
Proof.set_ptd = "1;; 

Proof.set_noc = "1;; 

]; 

Term ::= Term() 

[ Term.self = variable(NewTermName());; 

{ Initially "TERM-n", this can be 

altered by the user } 

Term.set_noc = "1;; 

]; 

Formula :.= Formula() 

[ Formula.self = atomic("FORMULA", );; 
Formula.set_noc = "1;; 

]; 
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Var ..= Var() 

[ Var.self = "VAR";; 

Var.set_noc = "1;; 
]; 

Fact A_Fact () 

inML 

import Factic; 

{ A version of tactics especially implemented to 

allow the function Factic without dependency 

upon the Proof_Grammar! 

} 
import Recall_Prelims;; 

end 

[ Fact.name = "FACT-NAME";; 

{ Altered by the user, either directly, or by 

choosing from a menu of facts } 
Fact.recall = 

if '/.Fact.name = "FACT-NAME" 

then dummy-recall-option 

else let val (f,fl,tl,aorl) 

= recall '/.Fact .name 

?? ["unknown fact"] dummy-recall 

in 
case f of 

atomic(fname,nil) 

if fname = "dummy-fact" 

then factinfo(f,nil,nil,none, 
"dummy-fact") 

{ no such fact } 
else factinfo(f,fl,tl,some(aorl), 

%Fact.name) 

_ factinfo(f,fl,tl,some(aorl), 
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%Fact.name) 

end {of let..in};; 
Fact.sequent = (Factic (fst(%Fact.recall)));; 

{ The sequent corresponding to the fact, 
eg x=y&y=z->x=z ==> x=y,y=z entails x=z } 

Fact.selected = -1;; 
{ Which premise of the fact is to be used in 

the matching (-1 === conclusion)} 

Fact.valid = (fifth %Fact.recall) <> "dummy-fact";; 

Fact.fact = fst %Fact.recall;; 

173 

GenFormList :.= A_GenFormList () 

{ Those generic formulae which the user 

has to supply } 
[ GenFormList.substs 

= let val new_subst f 
= form_subst(f,f); 

{ turns a term into a subst } 
val new_substs 

{ Those generic formulae for which the 

user has not supplied a 

substitution } 

= map new_subst 

(undetermined-formulae 

%GenFormList.still_genfs 

(some %GenFormList.user_substs)) 

in 
new_substs ® (%GenFormList.user_substs) 

end {of let..in};; 
GenFormList.user_substs = nil;; 

{ user_substs will change as the user supllies new 

formula substitutions. 
} 
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GenFormList.set_noc = "1;; 
]; 

GenTermList A_GenTermList () 

[ GenTermList.substs 

= let val new_subst f 
= term_subst(f,f); 

{ turns a term into a subst } 

val new_substs 

{ Those generic terms for which the 

user has not supplied a 

substitution } 

= map new_subst 

(undetermined-terms 

%GenTermList.still_gents 

(some %GenTermList.user_substs)) 

in 
new_substs @ (%GenTermList.user_substs) 

end {of let..in};; 
GenTermList.user_substs = nil;; 

{ user_substs will change as the user supllies new 

term substitutions. 
} 

GenTermList.set_noc = "1;; 

end 
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Interactive Proof Editor -- Brief User Guide 

Contents 

-------- (approx.%) 

Starting Off ..................................................... 0 

Some Notation ....................................................7 

The Sun Mouse .................................................... 18 

The Keypad .......................................................21 
Keyboard Commands ................................................29 
Mouse Menu Commands ..............................................50 
The Text Editor ..................................................55 
Using the Choosers ...............................................60 
Using Facts ......................................................70 

The Theory Database ..............................................80 
Syntax of Formulae ...............................................95 
Bugs ............................................................. 100 

Starting Off (on the Sun console) 

Read the file IPE.README for info on termcaps, etc. 

IF using the Sun console: 

Within the "suntools" window system, start a new shell window. 

Stretch it so that it covers almost the entire screen (this MUST 

be done before entering the IPE, as it cannot cope with 

changes in window size within a session). 

END_IF 

Ensure that the environment variable IPE_THEORIES is set to the 

path of the theories directory (or the desired 

theories directory, if there are more than one). 

Make this directory the current directory. 
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IF using Sun console 

Type "BIGipe5" 

ELSE 

Type "ipe5" 

ENDIF 

Some Notation 

This document is quite free with its notation. Some terms that will 

remain more or less fixed are: 

"goal/premise/conclusion/conjecture": 

A goal is the immediate objective of a proof, consisting 

of a list of premises and a conclusion (all of which 

are 1st-order predicate calculus formulae in the IPE). 

The idea of top-down goal-directed proof is to take 

a goal and do something to it to break it into a set 

of (hopefully simpler) subgoals. Rather than look 

deep into each formula in a goal and work magic, the 

IPE relies on good-old-fashioned structural decomposition; 

ie the formulae in the subgoals differ from those of the 

parent goal only by the loss of their outermost logical 
connective. An IPE goal looks like this: 

"show premises entails conclusion" 

(the show being omitted once the goal has been proven). 

On the other hand, by a conjecture here we will mean 

the initial formula that we are trying to prove. The 

idea is that, being the nouns in the language of proof, 

goals should not be available outside that realm. 

(Besides which, it makes some things easier). Hence, 

the ultimate purpose of any IPE proof is to justify a 

single formula, which we can then turn into a lemma 

(meaning an IPE-lemma rather than a proof in itself). 
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"proof structure": 
The IPE's internal representation of a proof. This is 
actually a dependency-labelled attributed derivation 

tree for an attribute grammar (just thought you might 

like to know!), and as goals are attributes the tree 

shape is independent of the goals, which is why it is 
often called a proof structure rather than just a proof. 

(But it does get called a proof sometimes too). 

"pointed region/area/selection": 

the node in the proof structure corresponding to the cursor 

position on the display. Also pointed premise/proof/node. 

Note that this is distinct from the notion of current 

selection. 

"selected region/current selection": 
The position of the IPE's internal "tree cursor"; ie the 

current node in the proof structure. In the active buffer 
this is normally highlit. Note that when a formula in a 

goal is highlit the current selection is actually the proof 

node whose goal holds the premise, but the IPE remembers 

that an individual premise is selected as well. Thus 

any operation that applies to a proof node will still 
apply whenever a formula of its goal is selected. 

"active buffer": 
The IE is a multi-buffer system, but only one buffer can 

be displayed and worked on at one time; this is called 

the active buffer. Most of the IPE's commands operate 

solely on the current buffer, some operate between the 

active buffer and one other, and only one operates on 

all the buffers at once (it lists them) - not counting 

Exit, of course. 
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The SUN Mouse (only available on Sun workstation console) 

Left button: PICKs the region being pointed at by the mouse (PICK 

simply changes the currently selected region). 

Middle button: IF pointing at a premise or conclusion in a goal, 

performs the appropriate PROOF STEP; 

IF pointing at a text-edit position (eg initial 
conjecture, term/var in quantifier rule), performs 

an ENTER DATA (text edit of that object) 

Otherwise, Zooms In on the pointed area (this will 
make it the "centre" for display generation) 

Right button: Presents a menu of further commands. 

The Keypad 

If your terminal has a numeric keypad, then hopefully within the IPE 

it will be bound to the following functions: 

IPE Keypad 

I ' I I I 

IHome I I I 

I ie Home is Home 

(aka Zoom to Root) 

(Zoom (Zoom IScrlll 

lout I In I Up I 

lEnterlPick IPrintl 
(Data I I I 

I IProoflScrlll 

Scroll Up is keypad 9 

Zoom In is keypad 8 

Zoom Out is keypad 7 

Print is keypad 6 

Pick is keypad 5 

Enter Data is keypad 4 

Scroll Down is keypad 3 

Proof Step is keypad 2 
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(Help IStep IDown I I Help is keypad 1 

----- ----- ----- I 

I Exit I I I Exit is keypad 0 

If this does not seem to be the case, try any other function keys; 

if that doesn't work, then typing ESC then n instead of keypad n should 

work! 

On the Sun console, four of the keypad keys are used as arrow keys, 

there is no Home key and no keypad zero. Furthermore, the keypad is 
upside-down with respect to the above! As a result, some of the keypad 

commands are not available as such on the console; however they are all 
implemented either in the mouse menu or as an individual mouse button, 

so this is no great loss. 

Proof Step is the main operation of the IPE. By pointing to a 

premise or conjecture in a goal and hitting the Proof Step button (or 

just by pointing with the mouse and clicking the middle button), the 

user can expand the proof at that point by a rule appropriate to the 

"active" operator of the formula. (For example, Proof Stepping on A&C 

in "show AIB,C entails A&C" will expand the proof at that point by an 

And Introduction rule, producing 

show (AIB),C entails A&C 

use And Introduction 

and show (AIB),C entails A 

and AIB,C entails C 

is immediate 

(ie, generating two subproofs, one of which follows immediately). If 
Proof Step is applied by pointing to the "entails" part of the goal 

display, then an Immediate rule is applied. This differs from the 

(default) rule RTP? in that it is an error for the goal not to be 

immediate. 

Enter Data is used when the user wishes to change a text-edit 
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point, that is, an area on the screen enclosed in angle brackets 

("<...>"). Hitting this button whilst pointing within such an area 

(or pointing with the mouse and pressing the middle button) will place 

the user in a text editor (described below). Once editing is complete, 

an appropriate parser for the class of object (Formula, Term, 

Identifier) is applied to test the text; the editor is not exited until 

the user supplies a parseable expression or aborts the edit. 

The Pick command is used to make the pointed region the current 

selection; this corresponds to the left mouse button. Although 

commands such as Proof Step and Enter Data automatically perform a Pick 

before acting, others do not (the buffer application/copying commands, 

read from file, weaken/duplicate) and require an explicit Pick 

beforehand. (On the Sun console, this problem vanishes because of the 

mouse). 

Scroll Up and Scroll Down move the screen-sized window over the 

entire proof display; when preceded by a number they scroll by that 

many lines, defaulting to 10 lines. Zoom In makes the pointed area the 

current region and forces a regeneration of the display (this can be 

useful in some buggy situations), whilst Zoom Out makes the nth parent 

of the pointed node the current region, where n is typed beforehand and 

defaults to 1. This command is useful for moving back up the tree to 

parts no longer on display. 

Print appends a printout of the current proof to the file IPE.out. 

The style of printed output is very different; the proof is presented 

in bottom-up fashion using a compact notation whereby the original 

introduction and elimination derivation rules are used to construct 

premises from assumptions, axioms, lemmas and premises derived earlier. 

Unlike the interactive display style this method attempts to minimise 

the repetition of premises within the same scope in a proof. 

Unfortunately, the proof printing is still incorrect, in that correct 

proofs are sometimes printed wrongly and marked as unproven. 

Keyboard commands 
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These commands are simply typed on the keyboard; all are single- 
letter commands (no RETURN required), although some may make use of a 

prefixed argument count. 

The actions of the following will only be described briefly here; a 

better idea of their operation might be had from the demonstration 

scripts. 

A - Apply Buffer. Asks for buffer name and applies current 

selection of that buffer to the current selection of the 

active buffer. As in all proof expansion operations, 

the original subtree in the active buffer is lost, although 

it can normally be yanked back. 

B - Change to Buffer. Asks for the name of a buffer and makes 

it the active buffer, creating it as a buffer rooted on 

Theorem if it does not exist. The current position of 

the newly-active buffer is restored, although autoprove 

and automove may change this if in effect. 
C - Copy to Buffer. Asks for a buffer name and copies the 

the current selection of the active buffer to that of the 

named buffer. If the named buffer's current selection is 
its root and the types of the two selections do not match 

(eg Proof vs Theorem) then the contents of the buffer are 

completely overwritten (normally a mismatch causes an 

error). If the named buffer does not exist then it is 
created with the active selection as its root. 

d - Duplicate a premise. Makes a second copy of the pointed 

premise in a goal. This is necessary for some proofs as 

elimination rules always remove their arguments from the 

premise list. This is a proof expansion operation, so 

that any current subproof is lost. Normally, it can be 

restored using Yank, but it is safer to copy the subproof 

to another buffer before Duplicating. 

D - Delete Buffer. The Chooser lists all buffers other than the 

current buffer. More than one may be selected for deletion; 
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upon acceptance all selected buffers are deleted. As 

buffers take up quite a lot of storage this is a useful 

operation. 

H - Show other help. Toggles between the two IPE help windows. 

This can sometimes get out of step, particularly after 
text-edit operations, so that it occasionally has to be hit 
twice before it works. 

L - Save Lemma. Zooms to the top of the proof (the active 

buffer must be rooted on Theorem), checks it and if it is 
proven attempts to construct a lemma from it. The name of 

the theory in which it is to be stored, and a name for the 

lemma are asked for. The theory must exist (as a 

subdirectory of the current theories-directory), but must 

not contain a file with the same name as the lemma. 

BEWARE: lemma names must be valid IPE identifiers, but this 
is not checked by Save Lemma, which will accept any valid 
file name! The lemma is written to the named theory 

directory; however due to a discrepancy the proof is 
printed to lemma-name.proof not in the theory directory, 
but in the current directory. 

M - Toggle automove mode. In this mode, after each proof- 

altering operation the IPE moves the current selection to 

the nearest proof node requiring work, where "nearest" is 
in a depth-first sense and nodes "requiring work" are 

either unexpanded or inappropriate rule applications. 

Setting automove mode resets autoprove mode. 

P - Toggle autoprove mode. In this mode the IPE will repeatedly 

expand proofs after each alteration, so long as the goal 

of a proof has only one possible operator-expansion (ie 
so long as only one formula in the goal is non-atomic). 

Autoprove uses automove to repeatedly find nodes requiring 

work (see above). If the node is amenable, it is auto- 

expanded, otherwise the current selection is left there 

for the user to expand. 



Appendix B. The IPE User Manual 184 

R - Read a proof structure from a file and replace the current 

subtree with it. A one-line edit window appears to allow 

the user to enter a file name, which is interpreted relative 
to the current directory. (For example, select the 

Conjecture/Theorem part of a buffer then type R followed by 

Examplel (note the case) and Return. This will load the 

first example into the buffer. Solutionl can be similarly 
read). 

S - Save the proof structure of the current buffer in a file. 
Together with Read from File, this can be used to store 

partial proofs between IPE sessions. 

T - Load a Theory. Asks for the name of a theory, and loads it. 
This means that the theory's environment file is processed 

(included theories are recursively loaded, symbol 

declarations are instantiated), and that all the facts 

(axioms and lemmas) in the theory are now visible. The 

named theory must exist as a subdirectory of the current 

theories-directory. More than one theory may be loaded at 

top-level, but duplicate symbol declarations will cause 

loading to fail and corrupt the loaded declarations. 

Theories are searched for facts in a depth-first fashion 

through the tree of recursive loads; where more than one 

theory has been loaded at top-level the most recently 

loaded has precedence. 

W - Weaken (remove a premise). Removes the pointed premise of 

a goal. The main use of this is simply to tidy up goals by 

removing premises not needed in the subproof. As with 

Duplicate, this is a proof expansion. 

Y - Yank. Whenever a structure other than a blank Theorem or 

unexpanded proof is overwritten (by Proof Step, Apply 

Buffer, Recall, Duplicate or Weaken), it is stored in the 

Yank tree, and can be applied to the pointed selection. 

The yank tree is not buffer-specific: there is only one. 

It is not recommended that Yank be relied on, as the yank 
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tree is liable to change with great frequency; with 

forethought, saving trees in buffers should be used. The 

tree replaced by Yank is lost for good. 

-C Break out of the IPE by generating an interrupt it cannot 

ignore, though actually it has been known to sometimes! 

Be careful: this doesn't ask for permission before 

terminating the entire session. 

-L List Buffers. Presents a list of all the buffers in the 

present session, showing the types of their roots and 

current selections. Input following -L deletes the buffer 
list window and returns to command level. 

-P Dump the display text of the current selection to the file 
IPE.out in the current directory. 

-R Redraw the screen. Useful for blotting out system messages 

and the like 
-Z Suspend the IPE and return to UNIX. This is not possible on 

the Sun console-with-mouse version, which is why the latter 
should be run inside suntools. 

0-9 Build up an argument count for a command. Relevant to Zoom 

Out, Scroll Up/Down, >,< and the arrow keys. The argument 

should precede the command, eg 25 then left arrow moves 

left 25 characters. 

> - Display-above controller. On its own, increments the 

current value of display-above (the maximum number of nodes 

to be displayed above the current selection); preceded by 

an argument, sets display-above to that value. For example 

0> indicates that none of the structure above the current 

selection is to be displayed. The change is effected 

immediately (ie display recalculation is forced). 
< - Display-below controller. Similar to >, but there is a 

lower limit of 2 on its value, so that the sons of the 

current selection will always be visible. 

Mouse Menu Commands (on Sun) 
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On the Sun workstation, the right mouse button presents a list of 

further commands. Most of these are duplicates of commands listed 
above; however the fact-using commmnds are not duplicated elsewhere. 

(Thus it is not possible to use facts on a mouseless terminal). The 

facts commands presented on the menu are: 

Use Fact 

Choose Matching Facts 

Choose from Named Facts 

Choose from All Facts 

Choose Fact by Name 

These are described in the "Using Facts" section. 

A Demonstration 

Let's suppose that we approach IPE wanting to prove the formula 

if for all x, P(x) implies Q(x), 

and for some y P(y) holds 

then for some z Q(z) holds 

An intuitive proof of this is not too hard: let y be such that P(y) 

holds (as allowed by "for some y, P(y) holds"), then by the first 
statement we have that Q(y) holds, and so therefore Q(z) holds for some 

z (namely z=y). However, we want to use IPE to construct a machine- 

checked formal proof of this. Re-expressed in the IPE's syntax for 
logical expressions, the above becomes 

!x (P(x) -> Q(x)) & (?y P(y)) -> (?z Q(z)) 

where "!x" is used for "for all x", "?y" is used for "for some y", "&" 

is "and" and "->" is "implies". (See the "Syntax of Formulae" section 
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towards the end). Once the IPE's title page has been dispensed with, 
the screen looks something like this: 

Conjecture 

<FORMULA> 

Attempted Proof 

show FORMULA 

plus some other information at the bottom of the screen which we shall 
ignore for the moment. What we are looking at is the top of an IPE 

proof tree, which states our initial goal, and the (attempted) proof 

constructed thus far. This is the display of a tree structure; we can 

point at and select areas on the screen which correspond to nodes in 

the tree, so that when we select an area on the display and perform 

some action upon it, it is really the underlying tree structure that is 
being affected. Selecting a part of the tree is easy; using the mouse, 

simply point at its corresponding display (ie move the mouse until the 

mouse arrow lies over that region of the screen), and click (press then 

release) the LEFT button. The area on the screen representing that 
node of the tree will be highlit. For example, pressing the left 
button when the mouse arrow is anywhere on the word "Attempted" will 
cause the phrases, "Conjecture" and "Attempted Proof" to be highlit, 
together with their underlines. This shows us that we have selected 

the root node of the structure. 

At the moment, we've not built up any proof at all, so the proof is 
just a single "unexpanded" leaf, "show FORMULA". What we have to do 

first of all is to replace FORMULA with our own formula, as given 

above. We position the mouse cursor over the copy of FORMULA which 

appears within the angle brackets (points on the display between angle 

brackets are known as "text-edit" points -- places where the user can 

alter information fed into the IPE) and this time press the MIDDLE 

mouse button (the "action" button). This causes the appearance of a 
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window with the text "FORMULA" in it. This is a simple text editor 
which we can use to manipulate pieces of text. (A full list of the 

operations available is given below). However, the header "Formula" 

informs us that whatever we type will be parsed as a formula when we 

quit the editor; if the parsing fails then we will have to re-edit the 

text until it succeeds or we abort the edit. For the moment, we will 
simply type Control-K (Control together with K) to delete the word 

"FORMULA" and type in our own formula as shown above. We then quit the 

editor by pressing (NOT clicking) the RIGHT mouse button (the "menu" 

button) and selecting the appropriate entry by dragging the cursor to 

it then releasing the button. Assuming we've typed the formula 

correctly, the display updates to 

Conjecture 

<!x(P(x)->Q(x))&?yP(y)->?zQ(z)> 

Attempted Proof 

show !x(P(x)->Q(x))&?yP(y)->?zQ(z) 

Our new formula has been accepted, and passed down to the proof. Now 

we can start constructing the proof... 

In the IPE, we build proofs in a goal-directed fashion: we take a 

problem and attempt to reduce it to one or more simpler problems by the 

application of some appropriate rule. A "goal" in the IPE has the 

general form 

show premise-formula,... entails conclusion-formula 

In the case above, there are no premises, so a shorter form is 
displayed. 

There are a small set of built-in rules for "simplifying" goals, 

with two rules for each logical connective. One rule applies when the 

connective is the "topmost" connective in the conclusion, and the other 
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when it occurs similarly in a premise. To invoke a rule, we simply 

have to point at the formula we wish to "make use of" in simplifying 
our goal, and click the action button. (Note that it is important 

which instance of the formula we select on the display, as different 
instances will (usually) "belong to" different goals). Here we only 

have one goal, and only one formula instance which we can use to 

simplify the goal, so we point at it and press the Action button. The 

IPE notes that the topmost connective of the formula is an implication, 

and since it is the conclusion, IPE applies its "Implies Introduction" 

rule, updating the proof and the display to 

Conjecture 

<!x(P(x)->Q(x))&?yP(y)->?zQ(z)> 

Attempted Proof 

show !x(P(x)->Q(x))&?yP(y)->?zQ(z) 

use Implies Introduction 

and show !x(P(x)->Q(x))&?yP(y) entails ?zQ(z) 

(with the Implies Introduction text highlit). Thus we now have a 

simpler subgoal whereby we've assumed the LHS of the implication and 

have to demonstrate the RHS. Here we have a choice of actions: we 

could simplify the conclusion or the premise; we shall choose the 

premise. "Actioning" on this gives us 

Conjecture 

<!x(P(x)->Q(x))&?yP(y)->?zQ(z)> 

Attempted Proof 

show !x(P(x)->Q(x))&?yP(y)->?zQ(z) 

use Implies Introduction 

and show !x(P(x)->Q(x))&?yP(y) entails ?zQ(z) 
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use And Elimination on premise 1 

and show !x(P(x)->Q(x)),?yP(y) entails ?zQ(z) 

This gives us two "smaller" premises, bringing further connectives "to 
the surface" for application of IPE rules. Suppose that we decide to 

work upon the "!x" premise: this gives us 

Conjecture 

<!x(P(x)->Q(x))&?yP(y)->?zQ(z)> 

Attempted Proof 

show !x(P(x)->Q(x))&?yP(y)->?zQ(z) 

use Implies Introduction 
and show !x(P(x)->Q(x))&?yP(y) entails ?zQ(z) 

use And Elimination on premise 1 

and show !x(P(x)->Q(x)),?yP(y) entails ?zQ(z) 

use All Elimination on premise 1 with <TERM_1> 

and show P(TERM_1)->Q(TERM_1),?yP(y) entails ?zQ(z) 

The All Elimination rule chooses TERM-1 as a single instance of x, so 

that we can now assume P(TERM_1)->Q(TERM_1). Since TERM-1 appears in 

angle brackets (like the initial conjecture), we can change it to 

something else (after all, if we have "for all x P(x)" then we should 

be able to assume P holding for any term we like in place of x). So 

we can point at the TERM-1 in angle brackets and press the action 

button to get a text-edit window which we can use to supply a new term. 

(This time the window header informs us that a Term is expected). 

Here, if we simply replace TERM-1 by "a", the display resumes as 

Conjecture 

<!x(P(x)->Q(x))&?yP(y)->?zQ(z)> 

Attempted Proof 
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show !x(P(x)->Q(x))&?yP(y)->?zQ(z) 

use Implies Introduction 

and show !x(P(x)->Q(x))&?yP(y) entails ?zQ(z) 

use And Elimination on premise 1 

and show !x(P(x)->Q(x)),?yP(y) entails ?zQ(z) 

use All Elimination on premise 1 with <a> 

and show P(a)->Q(a),?yP(y) entails ?zQ(z) 

with our new instance of the universally quantified premise in place. 

If we now choose to simplify this goal using ?yP(y), we get 

Conjecture 

<!x(P(x)->Q(x))&?yP(y)->?zQ(z)> 

Attempted Proof 

show !x(P(x)->Q(x))&?yP(y)->?zQ(z) 

use Implies Introduction 

and show !x(P(x)->Q(x))&?yP(y) entails ?zQ(z) 

use And Elimination on premise 1 

and show !x(P(x)->Q(x)),?yP(y) entails ?zQ(z) 

use All Elimination on premise 1 with <a> 

and show P(a)->Q(a),?yP(y) entails ?zQ(z) 

use Exists Elimination on premise 2 with <y> 

and show P(a)->Q(a),P(y) entails ?zQ(z) 

Again, the IPE has chosen a name for us; here it simply used the name 

that was already there when it stripped of the existential quantifier. 
However, "y" is not what we wanted, so we edit it to "a": 

Conjecture 

<!x(P(x)->Q(x))&?yP(y)->?zQ(z)> 
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Attempted Proof 

show !x(P(x)->Q(x))&?yP(y)->?zQ(z) 

use Implies Introduction 

and show !x(P(x)->Q(x))&?yP(y) entails ?zQ(z) 

use And Elimination on premise 1 

and show !x(P(x)->Q(x)),?yP(y) entails ?zQ(z) 

use All Elimination on premise 1 with <a> 

and show P(a)->Q(a),?yP(y) entails ?zQ(z) 

use Exists Elimination on premise 2 with <a> 

-- non-unique identifier! 

We have made a mistake! When we know that P(y) holds for some y, we do 

not know for which y it does hold; we cannot assume that P holds for 
any of the variables or terms already occurring in the goal. The IPE 

"eliminates" the existential quantifier by first choosing some variable 

name which doesn't occur free (ie ignoring variables which are "bound" 

by some quantification) in the goal. The user is free to change the 

name to something that looks more meaningful or prettier, but the IPE 

will check that no variable of that name appears freely in the goal. 

Referring back to our earlier informal proof, we see that our mistake 

was to eliminate the universal quantifier too soon; the existential 
quantifier should have been dealt with first. 

This is not difficult to remedy in IPE, because we are not committed 

to a proof step when we make it. We can go back to any point in the 

proof and perform any alternative (applicable) rule. Here, we need to 

replace the All Elimination step with an Exists Elimination: we do this 
by pointing at the instance of ?yP(y) in that goal and pressing the 

action button, giving 

Conjecture 

<!x(P(x)->Q(x))&?yP(y)->?zQ(z)> 

Attempted Proof 
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show !x(P(x)->Q(x))&?yP(y)->?zQ(z) 

use Implies Introduction 

and show !x(P(x)->Q(x))&?yP(y) entails ?zQ(z) 

use And Elimination on premise 1 

and show !x(P(x)->Q(x)),?yP(y) entails ?zQ(z) 

use Exists Elimination on premise 2 with <y> 

and show !x(P(x)->Q(x)),P(y) entails ?zQ(z) 

The two steps below the And Elimination have been replaced by this 
single step. (Note: the original two steps have not been lost forever 

(yet); they are squirreled away but can be brought back and applied to 

any point in the proof, or saved in another buffer, or applied to a 

different proof in another buffer. However, that's getting a little 
ahead of things...) 

This time we can safely replace "y" by "a", as "a" doesn't occur 

freely (or even at all) in the goal. We don't have to do this, since 

"y" will do quite well, but maybe we believe that "a" is a better name. 

Again we Action on the "y" in <y> and text-edit it to an "a"... 

Conjecture 

<!x(P(x)->Q(x))&?yP(y)->?zQ(z)> 

Attempted Proof 

show !x(P(x)->Q(x))&?yP(y)->?zQ(z) 

use Implies Introduction 

and show !x(P(x)->Q(x))&?yP(y) entails ?zQ(z) 

use And Elimination on premise 1 

and show !x(P(x)->Q(x)),?yP(y) entails ?zQ(z) 

use Exists Elimination on premise 2 with <a> 

and show !x(P(x)->Q(x)),P(a) entails ?zQ(z) 

Now we can instantiate the universal formula as previously; Action 
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on !x(P(x)->Q(x)), then editing <TERM-2> to <a> yields 

Conjecture 

<!x(P(x)->Q(x))&?yP(y)->?zQ(z)> 

Attempted Proof 

show !x(P(x)->Q(x))&?yP(y)->?zQ(z) 

use Implies Introduction 

and show !x(P(x)->Q(x))&?yP(y) entails ?zQ(z) 

use And Elimination on premise 1 

and show !x(P(x)->Q(x)),?yP(y) entails ?zQ(z) 

use Exists Elimination on premise 2 with <a> 

and show !x(P(x)->Q(x)),P(a) entails ?zQ(z) 

use All Elimination on premise 1 with <a> 

and show P(a)->Q(a),P(a) entails ?zQ(z) 

Let's work on the implication; Action on it gives 

Conjecture 

<!x(P(x)->Q(x))&?yP(y)->?zQ(z)> 

Attempted Proof 

show !x(P(x)->Q(x))&?yP(y)->?zQ(z) 

use Implies Introduction 

and show !x(P(x)->Q(x))&?yP(y) entails ?zQ(z) 

use And Elimination on premise 1 

and show !x(P(x)->Q(x)),?yP(y) entails ?zQ(z) 

use Exists Elimination on premise 2 with <a> 

and show !x(P(x)->Q(x)),P(a) entails ?zQ(z) 

use All Elimination on premise 1 with <a> 

and show P(a)->Q(a),P(a) entails ?zQ(z) 

use Implies Elimination on premise 1 
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and P(a) entails P(a) 

is immediate 

and show Q(a),P(a) entails ?zQ(z) 

If the Implies Elimination rule looks a little confusing, then it 
might help to see it used on an unprovable goal, 

"show A->B,C entails D": 

show A->B,C entails D 

use Implies Elimination on premise i 
and show C entails A 

and show B,C entails D 

The two subgoals of Implies Elimination are: 

1) Show that the left-hand side of the implication (A) can be 

derived from the other premises (C); 

2) Assume the right-hand side (B) as a new premise, 

and we have to prove both before Implies Elimination is satisfied; in 
other words, we can only assume B if we can derive A from the other 

premises. 

In our example, the left-hand side, P(a), already occurs as a 

premise; as a result, the first subgoal is immediate, since the 

conclusion also occurs as a premise. Thus we have completed a 

subproof, for the first time. Note that the word "show" vanishes, 

since the goal has now been shown. 

It is still required of us to demonstrate the second goal. Action 

on the conclusion gives 

Conjecture 

<!x(P(x)->Q(x))&?yP(y)->?zQ(z)> 

Attempted Proof 
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show !x(P(x)->Q(x))&?yP(y)->?zQ(z) 

use Implies Introduction 
and show !x(P(x)->Q(x))&?yP(y) entails ?zQ(z) 

use And Elimination on premise 1 

and show !x(P(x)->Q(x)),?yP(y) entails ?zQ(z) 

use Exists Elimination on premise 2 with <a> 

and show !x(P(x)->Q(x)),P(a) entails ?zQ(z) 

use All Elimination on premise 1 with <a> 

and show P(a)->Q(a),P(a) entails ?zQ(z) 

use Implies Elimination on premise 1 

and P(a) entails P(a) 

is immediate 

and show Q(a),P(a) entails ?zQ(z) 

use Exists Introduction with <TERM_3> 

and show Q(a),P(a) entails Q(TERM_3) 

Exists Introduction is very similar to All Elimination: in the 

latter we choose any term as an instance of the quantified variable; 
in the former we can choose any term "t" for which we believe that we 

can demonstrate Q(t). In this case, the obvious choice is "a". 

Editing TERM_3 to "a" gives 

Theorem 

<!x(P(x)->Q(x))&?yP(y)->?zQ(z)> 

Proof 

!x(P(x)->Q(x))&?yP(y)->?zQ(z) 

by Implies Introduction 

and !x(P(x)->Q(x))&?yP(y) entails ?zQ(z) 

by And Elimination on premise 1 

and !x(P(x)->Q(x)),?yP(y) entails ?zQ(z) 

by Exists Elimination on premise 2 with <a> 

196 
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and !x(P(x)->Q(x)),P(a) entails ?zQ(z) 

by All Elimination on premise 1 with <a> 

and P(a)->Q(a),P(a) entails ?zQ(z) 

by Implies Elimination on premise 1 

and P(a) entails P(a) 

is immediate 

and Q(a),P(a) entails ?zQ(z) 

by Exists Introduction with <a> 

and Q(a),P(a) entails Q(a) 

QED 

197 

Since Q(a) appears on both sides, we have produced a trivial (and 

hence proven) goal. The Exists Elimination rule recognises that this 
means that its goal (Q(a),P(a) entails ?zQ(z)) has also been proven; 

the Implies Elimination sees that both its subgoals are now proven,... 

and so on upwards until it transpires that our original goal and thus 

our original conjecture has been proven. When each rule realises that 

its goal has been demonstrated, its display alters so that it now says, 

"goal by me and subgoals" instead of, "show goal using me and 

subgoals"; and the root of the proof now displays the initial formula 

as a "Theorem" and the proof as a "Proof" rather than as a "Conjecture" 

and an "Attempted Proof".. .plus a throwaway "QED". 

So we have completed our first proof using the IPE. This 

demonstrates most of the basic operations IPE provides for proving 

theorems of "bare" first-order intuitionistic predicate calculus. 

The Text Editor 

This is used to edit formulae, terms, identifiers and some user 

responses. Text can be entered as expected, and is used by the IPE 

only when the editor is exited (using the appropriate selection from 
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the mouse menu/keypad). 

In this mode, the left & middle mouse buttons move the text cursor 

(as do the arrow keys), whilst the right button again presents a menu 

of commands (including EXIT). As in the main IPE, keypad 1 toggles a 

help display showing what else is available on the keypad. 

Further text-edit commands are: 

Ctrl-A : beginning of line 
Ctrl-E : end of line 
Ctrl-P : previous line 
Ctrl-N : next line 
Ctrl-F : forwards 1 character 

Ctrl-B : backwards "" "" 

Ctrl-D : delete next character 

Ctrl-K : delete to end of line 
Ctrl-C : abort text edit (asks for confirmation) 

A single-line version of this editor is used to read user input in 

some commands: in this case, hitting the RETURN key is equivalent to 

EXIT. 

Using the Choosers 

Certain commands of the IPE involve the use of an interaction 
package called a Chooser. In the IPE, three similar sorts are used: 

the plain Chooser, the MiniChooser and the EditOrChooser. Essentially 

each of these presents a window with a list of options; the user can 

then point at these options to select them, usually by clicking a mouse 

button when pointing at an item. What happens next depends upon the 

sort of Chooser. 

The plain Chooser presents an options window plus several buttons. 

The left and middle mouse buttons can be used to select an item in 

the options window, by pointing and clicking (which highlights the 
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item). If only one item can be chosen at a time, then selecting an item 

deselects any other selection; otherwise the item is additionally 
selected (and can be unselected by clicking it again). 

The right mouse button presents a menu of options as follows: 

Accept Accept the current selection(s) and exit the Chooser 

This is only applicable when there is a selection. 

Prev Show the previous page of items. 

This only applies when there is a previous page 

Next Show the next page of items (similar to Prev) 

More Add a new item to the list of items. 

This is mainly used whenever it would be very 

expensive to generate the entire list of items prior 
to the user making a choice (eg in Facts-Matching). 

It only applies when more items can be generated. 

Cancel Exit the chooser without accepting any selection 

To the right of the options window is a stack of "button windows" 

corresponding to the menu options; however whenever a command is not 

applicable, its button is invisible. 
A command may be invoked either by selecting the appropriate entry 

from the mouse menu or by clicking with the left or middle buttons on 

the relevant button. 

The MiniChooser presents an options window. The only possible 

operations are the acceptance of a single item (exiting the 

MiniChooser) or cancellation. Clicking any mouse button on an item 

selects that item and leaves the MiniChooser; clicking outside the 

options window cancels the MiniChooser. This is used when the number 

of items is small and fixed, eg in command menus or when an operation 

involves a buffer that must exist. 
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The EditOrChooser is similar to the plain Chooser except that it 
also offers an edit window within which the user can enter an option of 

their own. To enter the edit window, click the left or middle button 

on it; this turns off any current selection in the options window, and 

any text subsequently typed goes into the edit window and is considered 

the current selection. Leaving the edit window (by clicking the mouse 

elsewhere) delselects it. The EditOrChooser is mainly used in buffer 
operations to allow the user to create a new buffer for the operation 

or to simply use an old one. 

If there are no current objects to choose from, then a one-line edit 
window is presented instead. 

Using Facts 

The IPE is designed to work with a database of axiomatic theories. 
Each theory contains a number of facts (axioms and lemmas) which can 

be used in IPE proofs. An IPE proof can be converted into a lemma which 

is then stored in a particular theory for later use. A theory may also 

declare certain symbols as `special', so that they have some particular 
meaning within that theory and all of its dependent theories. 

Commands : 

Load Theory 

This presents a list of possible theories to load, using the 

MiniChooser. When a theory is selected, its axioms and lemmas are 

rendered visible to the IPE, and its special declarations are 

activated. Any theories upon which the named theory depends are 

loaded first. 

Recall Template 

Expands the current tree position (which must be a Proof node 

or a goal therein) by the blank "Recall fact" template. The user 

can then Text-Edit the "FACT-NAME" component to the name of some 
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existing fact. (In practice, the command Choose Fact By Name is 
probably better). 

Choose From Matching Facts 

Expects the current position to be a formula within a goal. 

Given this formula, it is matched against facts in the theory 

database. Each fact which matches with a valid substitution of its 
free variables is displayed in a Chooser window. (The search is 
only performed when requested by the user via More to generate new 

items). When a paritcular match is chosen, the current proof node 

is expanded by a Recall Fact rule with the appropriate 

substitutions (if any) automatically performed by the IPE. 

Note that as the matcher is only operating on a single formula 

it may not necessarily perform all the subsitutions needed to 

instantiate the axiom; the remainder will then have to be supplied 

by the user, by Enter Data (or middle mouse button) on the 

text-edit points corresponding to the unsubstituted terms/formulae. 

Also, as the matching algorithm only handles first-order cases, 

higher order generics will not be matched. 

Choose From All Facts 

is very similar to the above, except that it also shows those 

facts for which no successful match with the selected formula was 

obtained. This allows the use of higher-order facts. 

Choose from Named Facts 

first presents a Chooser list of all the visible facts. The 

user can select one or more of these; matching is then performed 

only upon the chosen facts. This is useful when the user knows 

roughly which facts will be useful for the current goal, and avoids 

trudging through lots of irrelevant facts and their matchings. 

Choose Fact By Name 

Presents a Chooser list of all the visible fact names; upon 
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selection of a fact, no automatic substitution is performed. 

The Theory Database 

This section describes the innards of the database and how to make 

your own theories. (Please note the addenda at the end of this section). 

The IPE theory database allows the extension of what is essentially 

an editor aimed at purely propositional proofs with uninterpreted 

symbols into a system allowing the construction of hierarchies of 

axiomatic theories. The theories present are Equality, Peano, List and 

ListOps, each containing a small number of axioms and a growing number 

of IPE-generated lemmas. 

An IPE theory is a UNIX directory containing a environment file 
plus axiom and lemma files (possibly with proof printouts for the 

lemma files). A single collection of theories consists of a directory 
containing theories. No theory in a collection may refer to a theory 

elsewhere (although setting a soft link of the same name in the 

theories-directory would work). 

The environment file tells the IPE which other theories this 
theory depends upon, and contains declarations of special predicate, 

function and constant symbols. As an example, the environment of the 

theory List is 

includes Equality 

predicate null(x) 
constant nil 
function cons(a,l) 

This shows that List depends upon Equality, and declares the symbol 

null to be a unary predicate, nil to be a constant term and cons to be a 

2-place function (term expression). 

Any included theories in an environment must precede any symbol 

declarations; the latter must each appear on a seperate line, although 
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more than one theory may be mentioned in a single includes (which may 

spread over several lines). The environment may be empty, but it must 

exist. 
When the IPE loads a theory, it begins by processing the 

.environment. Any included theories are recursively loaded first (it is 
possible for a theory to include itself, but the IPE avoids loading the 

same theory twice and marks a theory as loaded before processing the 

environment). Then each symbol declaration is processed. The 

motivation behind symbol declarations follows. 

In making a lemma from a theorem such as A&B&C->(A&C), the IPE tries 

to generalise it as much as possible, attempting to capture some of the 

"reusability" of the original proof structure. Here for example, it is 

clear that the proof structure would also prove E&F&G->(E&G) or even 

(!xP(x)) & (alb) & (c->d) -> ((!xP(x)) & (c->d)): in short, we could 

replace A,B and C by any formula and the proof structure would still 

work. So when the IPE saves such a lemma, it saves it as a formula 

schema with substitutable parameters (called generics). When the lemma 

is used, the user is allowed to substitute any formula for these 

generics (generic terms are also possible) to create a lemma instance. 

If the lemma created from the above theorem were called Example, 

then it would look like this: 

lemma Example is 
A&B&C->(A&C) 

generic formulae A 

and B 

and C 

and would exist as a file to itself in some IPE theory directory. When 

the FACT-NAME in a Recall Fact rule is changed, the IPE searches 

through its loaded theories (in depth first order of loading, includer 

before the included) until it finds a file of that name. Upon finding 
it, it reads it in and converts the information above into an "editable 
premise" in the proof. 
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IPE axioms are simply lemmas that are taken for granted, and have 

not been proven using the IPE. The sole difference in appearance is in 
the word "axiom" replacing the word "lemma". The IPE does not care 

whether or not a fact is an axiom or lemma, and the user needn't know 

either. 
As an example of the use of axioms, consider the "definition" of the 

length of a list (from ListOps): 

axiom Lengthl is 
length(nil)=O 

axiom Length2 is 
length(cons(a,L))=(S(O) + length(L)) 

generic terms a 

and L 

Induction is also defined axiomatically: 

axiom Listlnduction is 
phi(nil) & (!L(phi(L)->!a phi(cons(a,L)))) -> !L phi(L) 

generic formulae phi(L) 

The main problem with axioms is that they are user-created. Not 

only is it possible to create inconsistent theories, it is also 

possible to construct axioms with bad syntax. At present, the IPE only 

remembers that a symbol has been declared; it does not check the arity 
of further occurences. So for example, the "cons" in "cons(nil)" will 
be considered valid and special even although in reality it should be 

on or the other but not both. Once the full power of declared-symbol 

checking is put into operation, such cases will be checked and sent one 

way or the other. 

Suppose we construct a proof of "length(cons(a,nil))=S(0)". When we 

come to make a lemma from it, it is important that the IPE should know 

which symbols can be substituted for without destroying the essential 
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meaning. Having used axioms which define properties for the special 

symbols "length", "cons","nil","S" and "0", it would not be correct to 

allow these symbols to be replaced by other terms to whom these 

properties do not apply! By informing the IPE that these symbols are 

special, we avoid this problem altogether. However, we now introduce 

the problem of accidentally giving some arbitrary symbol in a 

conjecture the same name as a declared symbol, proving it without using 

any properties of the symbol and then saving it only to discover that 
the saved lemma is too restrictive. Far worse would be the case when 

an axiom is similarly over-restricted. Enforcing the naming of the 

generics in axioms solves the latter problem; to solve the former 

requires keeping a tally of all the facts used in a proof and what 

symbols they define properties for, which the IPE does not do at 

present. 

To sum up: to create your own theory you need: 

1) a file environment, whose most general form is 

includes Theoryl Theory2 

Theory3 

constant blah 

function f(placel,place2,...,place_n) 

predicate s(placel,...,place_n) 

function g(x) 

predicate C 

Notes: the file may be empty, but must exist; blah,f,s,place_i,g,x 

and C can be any valid IPE identifier, but blah,f,s,g and C 

must not be already declared when this theory is loaded (or 

occur more than once in the evironement, including as place 

markers). 

2) A set of axiom files; each file must have the same name as the 
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axiom and have the following general structure: 

axiom AxiomName is 
FORMULA 

generic terms ti 
and t2(x,y,z) 

generic formulae phi(x) 

and A 

206 

Notes: 

AxiomName must be a valid IPE identifier; 
FORMULA must be a valid IPE formula; 

no more than one generic to a line; use repetition with and as 

above; the generic terms (if any) must precede the generic 

formulae (if any); the generics must make sense with respect to 

the formula! (ie, if G is a generic then it must have the same 

arity throughout the formula, and should ideally not occur as 

anything else (eg as a predicate instead of/as well as a term). 

To create your own theories directory as a subdirectory of some_dir: 

(in CShell) 

cd some_dir # move to desired parent dir. 
mkdir my-theories # make a new subdirectory 

cd my-theories # move to new directory 
mkdir My-Very-Own-Theory # Creating new theories 

...(etc)... 
In -s $IPE_THEORIES/Peano Peano # Links to existing theories 

...(etc)... 
setenv IPE_THEORIES some_dir/my_theories 

# so the IPE looks here 

Now fill My-Very-Own-Theory with environment and axioms. 
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ADDENDA: The above was written prior to the construction of IPE5 

with facts-matching. Now each theory requires an additional file, 
".facts", which will contain the names of all of the facts in that 

theory. Normally, the IPE will add new lemmas to this file, but the 

axioms must be put there by the creator of the theory. As with 

.environment, this file must exist and contain no blank lines. 
Secondly, the theories directory itself requires a file ".theories", 

which lists the names of all the theories therein. 

Syntax of Formulae - some examples 

The syntax for IPE formulae is a little strange, in that there is no 

precedence of infix operators; instead, all expressions associate to the 

left. Thus "A&B&C->A&C" means "(A&B&C->A)&C", and not "A&B&C->(A&C)" as 

one might expect. 

"A 8t B" means A and B 

"A I B" means A or B 

"A -> B" means A implies B 

"A" means not A 

"!x p(x)II means for all x p(x) 

"?x p(x)" means there exists x such that p(x) 

Examples: 

(A->B)&(B->C)->(A->C) 

!x(P(x)->Q(x)) & ?x P(x) -> ?x Q(x) 

length(cons(a,nil))=S(0) 

BUGGINESS 
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There are several bugs; some have semi-known causes and will be 

fixed "soon"; others occur in ill-determined circumstances or refuse to 

occur twice under (seemingly) the same conditions. All ML-generated 

escapes not handled within the IPE will be trapped at the very top and 

generate an "Oops" message. Some of these are benign, in that they can 
be ignored and will not destroy anything. Others are more serious - 

errors during attribute reevaluation can leave the proof structure in a 

half-evaluated state, so that further operations generate 

"Oops: circularity" messages. (This means that the dependency tree 

reevaluator believes that it has detected a semantic loop). In this 

case nothing more can be done than to abandon the proof and start again 

in a new buffer. If the text editor crashes for some reason it can 

leave its window on-screen permanently, in which case the entire 

session has to be abandoned through illegibility. 

Quite a serious (and recently noticed) bug is that when the screen 

is scrolled, the positioning by mouse still acts as though the screen 

was at the top of the display. 

Generally, the best thing to do if an error message comes up is to 

try and carry on, perhaps by doing something else (this is where Zoom 

In can be useful), and only give up when a message repeats itself or 

things look completely crazy. 
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