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Content of the thesis

The aim of this thesis is to examine the consistency proofs for arith-

metic by Gerhard Gentzen from di�erent angles. The �rst chapter

is an introduction to how the problem of consistency proofs relates

to the foundational debate of the 20th century. This paper was pre-

sented at the Paris-Nancy PhilMath workshop in 2009 and part of this

paper has appeared in the Logica Yearbook 2009 [13]. The second

chapter examines the di�erent proofs from a more technical aspect.

The subject of the third chapter is the extension of logical systems

with mathematical rules, a method which will be used throughout

the thesis. The fourth chapter gives a consistency proof for an intu-

itionistic sequent calculus. The result is based on Takeuti's proof in

[31]. The proof includes a cut elimination theorem for the calculus

and a syntactical study of the purely arithmetical part of the system,

resulting in a consistency proof for purely arithmetical derivations

that do not contain compound formulas or the induction rule. This

chapter will appear in a Gentzen centenary volume. The �fth chapter

consists of a consistency proof for Heyting arithmetic in natural de-

duction. The proof is based on a normalization proof by Howard and

assigns vectors to derivations, which are then interpreted as ordinals.

The proof appears in Math. Log. Quart. [14].

This thesis is based on a Licensiate thesis approved by the De-

partment of Mathematics and Statistics at the University of Helsinki

in 2010.





Chapter 1

Looking for consistency

1.1 The problem

In 1900 Hilbert presented a list of 23 open problems in di�erent �elds

of mathematics. The second of these problems was to �nd a con-

sistency proof for the arithmetic of real numbers, that is, analysis.

The statement of the problem included the task of presenting an ax-

iomatization, in which all axioms are independent. But according to

Hilbert the most important question was to prove that the axioms

are not contradictory, that is, that a de�nite number of logical steps

from the axioms cannot lead to contradictory results.

The methods employed in the sought proof should be �nitistic,

and it is therefore not su�cient to prove the consistency in a stronger

theory. The �nitistic methods used should not presuppose a com-

pleted in�nity, but instead rely on constructive methods that are

directly accessible even to the man on the street.

The axioms of primitive recursive arithmetic (PRA) are the de�n-

ing equations of primitive recursive functions and the system consists

of a propositional calculus with induction on quanti�er-free formulas.

PRA is a weaker theory than Peano arithmetic (PA) and it is gen-

erally included in, and often identi�ed with, �nitistic logic, because

unbounded quanti�cation over the domain of natural numbers is not

allowed.

Gödel's second incompleteness theorem implies that the methods
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of PA or PRA are not su�cient for proving even the consistency of

PA. Therefore, there is no solution to Hilbert's problem if the methods

are restricted to PRA. The consequences of the result of Gödel cannot

be questioned with respect to Hilbert's second problem. It proves that

the problem is unsolvable and that Hilbert's programme cannot be

carried out in full, but a partial realization is possible.

1.2 From the problem to Hilbert's program-

me

Hilbert's programme was initiated as a consequence of the founda-

tional debate at the turn of the century. During the early 1900's

Hilbert developed his views on the foundations of mathematics and

presented his views in a succession of papers. He proposed a method

for solving the foundational crisis that had emerged after the para-

doxes of set theory. In 1921 the aims of Hilbert's programme consisted

of formalizing all mathematical theories, and providing `�nitary' con-

sistency proofs for them. Furthermore, the programme included that

the questions of mutual independence and completeness of the axioms

of the theory were to be answered and possibly a decision method

found for the theory.

A narrow description of the programme requires �nitary proofs

of the formal consistency of formal arithmetic. In broader terms the

program asserts that in�nitary notions should only be used as abbre-

viations. The aim of the programme is to give an understanding of

existing proofs from a �nitistic view. Hilbert's opinions on in�nitistic

and in particular set theoretic notions in mathematics is that because

they are more or less abbreviations for other concepts, they should be

possible to eliminate from proofs. Although the programme does not

explicitly mention an elimination procedure, we believe that search-

ing for a procedure that eliminates all reference to in�nitistic concepts

is essential. Such a procedure should not solely consist of restricting

the methods of proof, but it should apply to all methods of proof.

Furthermore, the process of eliminating in�nitary concepts could be

regarded as a useful scienti�c tool, as the elimination at times could
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increase our conviction in the theorem proved.1

Hilbert's main point in his second problem was that it should

be possible to make the �niteness of all proofs explicit. This idea

developed into his programme. However, in his statement of the

problem he had left open the question of exactly which axioms were

to be considered and which modes of inference were to be proven free

from contradiction.

The consistency of a theory may be proven either semantically or

syntactically. A semantical proof consists of proving that the theory

is satis�able by a model. An alternative to Hilbert's programme is to

use in�nite models and establish not only consistency, but soundness

of the axioms for the intended meaning. This means too that the

inference rules prove only formulas that are valid with respect to the

system's semantics or that the rules `preserve truth'. A semantical

proof is by no means �nite if it deals with in�nite domains. This

means that the consistency of arithmetic, as referred to in Hilbert's

programme, should be established without the use of in�nite mod-

els. A syntactical consistency proof, on the other hand, requires only

proof theoretical means, as it concerns provability. Completeness of

predicate calculus, however, implies that the semantical and syntac-

tical notions of consistency are equivalent. The di�erence in these

approaches is noticeable in the methods of proof which are accepted.

The proof theoretical approach is namely constructive.

1.3 Gentzen's work related to Hilbert's pro-

gramme

By Gödel's incompleteness theorem from 1931 it was shown that no

formalization of elementary arithmetic can be complete and that it

is impossible to �nd a �nite consistency proof for PA in the sense

that Hilbert's programme required. Therefore, the methods that are

proper to the theory, the consistency of which we are proving, do

not su�ce when proving consistency of the theory. To produce a

consistency proof, the consistency of the methods used need to be

presupposed. That is, no absolute consistency proof exists and all

1Kreisel 1976 [16], p. 98.
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proofs merely reduce the question of consistency to that of the other

theory used.

Kreisel notes that even if the consistency of the theory ensures the

existence of some concept satisfying all the theorems of this system,

it does not ensure that the particular concept (of natural numbers)

for which axioms of arithmetic is intended, satis�es those theorems.2

The incompleteness theorem means that in any formal theory, there

are always true number-theoretical sentences that are not provable

within the theory. Another description of the result is that �sen-

tences can always be found, the proofs of which again always require

new modes of inference�. ([6, p.357]) This reveals a weakness in the

axiomatic method, implying that the consistency proofs must be ex-

tended whenever the proof means are extended. In 1937 Gentzen

however considers the extensions not relevant in practice, because at

that time no Gödel sentence of practical signi�cance had been re-

vealed, except for the sentence expressing consistency. In 1943 he

would himself accomplish such an extension, by proving that the

principle of trans�nite induction up to ε0 is independent of PA.

With broader methods it is still possible to produce a proof,

though the �niteness of these methods is debated. Gödel's dialec-

tica interpretation as well as Gentzen's consistency proofs for PA can

be seen as a realization of Hilbert's programme, if it is extended to

include constructive methods.

1.4 Gentzen's proofs

The earliest proofs of the consistency of Peano arithmetic were pre-

sented by Gentzen, who worked out a total of four proofs that were

published between 1936 and 1974. Neither Bernays nor Gödel were

satis�ed with Gentzen's �rst consistency proof, which is shown in cor-

respondence from Gentzen to Bernays in the fall of 1935.3 The proof

was withdrawn from publication due to the criticism by Bernays for

implicit use of the fan theorem, although this assessment was later

retracted 4. However, a galley proof of the article was preserved and

2Kreisel 1976 [16], p. 97.
3von Plato 2007 [25], p. 392.
4Bernays 1970 [1].
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excerpts were published posthumously in English translation [9], as

well as unabridged in the German original [10].

König's lemma, which states that a �nitely branching tree with

an in�nity of nodes has an in�nite branch, is not constructively valid.

The contrapositive of König's lemma, called the fan theorem, is how-

ever constructive. It states that if all branches of a tree are �nite,

then the whole tree is also �nite.

However, it has been noted by Kreisel in 1987 that this princi-

ple is not su�cient for proving the consistency of Peano arithmetic.

The principle that was implicitly used to prove termination is bar re-

cursion. Bar recursion is essentially recursion on well-founded trees,

it is the contrapositive of a similar classical principle for in�nitely

branching trees. Gentzen, who had already thought of the objections,

reworked his proof and instead relied on the principle of trans�nite

induction. The result was the published second proof [5], which is

contains an ordinal assignment and a constructive proof of the prin-

ciple of trans�nite induction up to the ordinal ε0.

The third proof in sequent calculus was published in 1938. By

Gentzen's fourth proof from 1943, it is proven that the consistency

of PA can be proven relative to a theory if and only if the proof

theoretical ordinal is greater than ε0.

1.5 The principle of trans�nite induction

The principle of trans�nite induction can be expressed in the follow-

ing way: Let P (β) be a property de�ned for all ordinals β and let α

be an arbitrary ordinal. Then if we assume that for all β < α, P (β)

holds, and from this it follows that P (α) holds, then by the principle

the property holds for all ordinals.

Gentzen's use of the principle was restricted to primitive recursive

predicates. The primitive recursive predicates, P (n), can be veri�ed

for an arbitrary number, n, by a bounded computation.

In his proof from 1943 he represented trans�nite induction up to

ε0 as an arithmetical formula and showed that it is not provable in

Peano arithmetic, but that any weaker induction principle is provable.

In the proof the natural numbers are extended by what are called

constructive ordinals. The induction principle is also extended into
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a trans�nite induction principle.

Schütte and Schwichtenberg [30] note that �the trans�nite induc-

tion certainly transcended the �nite standpoint, as by Gödel is nec-

essary, but it proceeds in a completely constructive way, so that the

proof of Gentzen is seen as a testimonial for pure number theory in

the sense of the extended Hilbert Programme...�

In general, a set-theoretical proof of the principle of trans�nite in-

duction is not acceptable if the methods are to be considered reliable

from a constructive point of view. Instead Gentzen proves that each

ordinal up to ε0 is accessible. Accessibility means that all descend-

ing chains of ordinals are �nite, or that the ordinals are well-ordered.

This principle is used in order to prove termination in a �nite number

of steps of the reduction procedure described in Gentzen's proof.

1.6 Crisis and paradoxes

The importance of consistency proofs was debated due to the founda-

tional crisis at the time when Gentzen published his proofs. Gentzen

points out that despite the e�orts to �nd a solution for the para-

doxes of set theory, that is, to pinpoint the fallacy of the reasoning

that leads to antinomies, a clear solution should not be expected.

The �aw in the reasoning cannot de�nitely be pointed at. Gentzen

however follows the proponents of intuitionism by claiming that the

antinomies of set theory have their origin in the liberal use of the

concept of in�nity. He claims that "we can only say de�nitely that

the materialisation of the antinomies is connected with the concept

of in�nity, because a purely �nite mathematics, as far as anyone can

judge, no contradictions can arise, provided the mathematics is cor-

rectly constructed." ([6, p. 353])

One simple solution is to draw a clear line between permissible

and impermissible modes of inference, thereby blocking the undesired

inferences that lead to antinomies. This method has been employed,

for example, in axiomatic set theory, by restricting the comprehension

schema. However, according to Gentzen [6, p. 353] this solution gives

rather arbitrary restrictions if the source of the antinomies has not

been properly identi�ed. Furthermore, new antinomies may in the

future prove to be derivable with the allowed inferences. Another
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solution to the paradox is the introduction of a type structure, which

is also noted by Gentzen.5

In Gentzen's opinion Russell's paradox reveals a fault in the logical

inferences involved. He opposes impredicative de�nitions and regards

only constructive de�nitions as valid. New sets should be de�ned on

the basis of already formed sets, because it is illicit to de�ne an

object by means of a totality and then to regard it as belonging

to that totality, so that it contributes to its own de�nition. The

de�nition of a set of all sets is circular, as this set is de�ned and

then concluded to belong to itself.6 A problem that emerges from

invalidating impredicative reasoning is that this form of reasoning is

also used in analysis, in the proofs of basic theorems, such as the

intermediate value theorem. The de�nition of the intermediate point

is problematic, because the point is included in the intervals de�ned

in the proof of the theorem. This means that the point is de�ned by

referring to the totality of reals and is then concluded to belong to

this totality.

A radical standpoint is taken by the intuitionists who do not con-

sider the arguments used in classical analysis to be valid, because the

law of trichotomy is not true on the intuitionistic continuum. Thus,

they reject the means of proof that allows a division of the reals

into two intervals. The intuitionist standpoint is not only taken to

avoid possible antinomies, but because the classical statements are

considered meaningless.

1.7 The intuitionistic method

Hilbert's programme had not been abandoned by Gentzen. After

the �nitistic methods had proven to be insu�cient for proving the

consistency of arithmetic, Gentzen continued the search for a proof.

Gentzen's work explores the consequences of the �nitistic view of

formalist mathematics as stated by Hilbert. In order to prove consis-

tency Gentzen followed the general aims of Hilbert's program, which

were to prove consistency �by means of inference that are completely

5Gentzen 1969 [9], p. 214.
6Gentzen 1969 [9], p. 134.
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unimpeachable (`�nitist' forms of inference).�7

In 1933 the Gödel-Gentzen negative translation showed that clas-

sical arithmetic can be reduced to intuitionistic arithmetic, implying

that the constructive methods go beyond �nitistic reasoning. There-

fore, Hilbert's programme could be continued if it was modi�ed to use

the broader constructive methods. In the light of this, the negative

translation was considered the �rst consistency proof for arithmetic.8

Gentzen's aim was to prove the consistency of classical mathe-

matics, in the �rst place arithmetic and then analysis, by extending

the methods to constructive or intuitionistically acceptable methods.9

The constructive method used as a foundation for the consistency

proofs is similar to, although somewhat broader than, Hilbert's �ni-

tistic standpoint. In Gentzen's opinion it provides a secure founda-

tion because it employs the concept of possible in�nity, not an actual

in�nity. The actual in�nity is identi�ed as a doubtful element in the

methods of proof. The constructive concept of in�nity, on the other

hand, is not included in the framework of elementary number theory,

but is conjectured to be extensible beyond any formal theory.

These methods include a constructive interpretation of quanti�ca-

tion over the in�nite domain of natural numbers. If the numbers are

substituted one by one in a formula that has been universally quan-

ti�ed, then the result is a true formula. An existentially quanti�ed

formula, on the other hand, means that a witness to the formula has

been found. Even so, Gentzen thinks that some methods encountered

in his proof �give cause for concern� from the �nitistic standpoint, in

particular the principle of trans�nite induction.10 Whether the proof

can be regarded as �nitistic depends on if the principle of trans�nite

induction can be accepted as a �nitistic method.

1.8 How consistency proofs are possible

In a lecture from 1937 ([6, p. 355]) Gentzen characterized Hilbert's

programme as a way to reduce the metamathematical presupposi-

7Gentzen, 1969, [9], p.135.
8von Plato 2007 [25], p. 392.
9Gentzen 2007 [6], and von Plato 2007 [25], p. 383.
10Gentzen 1969 [9], p.136.
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tions and he followed Hilbert in this respect. In a letter from 1932

Gentzen states that through the formalisation of logical deduction,

the task of producing a consistency proof becomes a purely mathe-

matical problem.11 The purpose was to eliminate all philosophical

problems, or at least separate them from scienti�c practice. This

was at a time when he worked on extending the consistency proof for

arithmetic to include the rule of induction.

In his paper from 1936 Gentzen clearly states that the purpose

of the proof is to reduce the question of consistency of arithmetic to

certain general and fundamental principles. He concludes in [5] that a

consistency proof is still possible and meaningful if the methods used

are more reliable, even if not proper to elementary number theory.

It is possible to reduce some parts of arithmetic to other parts, e.g.

arithmetic of complex numbers to that of real numbers. But Gentzen

concludes that there remains the task of proving the consistency of

elementary number theory. His main concern is with the proving of

the consistency of the logical reasoning used when proving statements

about the natural numbers. This means that the consistency of the

system of axioms or the basic relations between numbers is not what

he is aiming to prove, because it is the reasoning employed that may

produce antinomies. Gentzen discusses to what extent it is possible to

carry out a consistency proof and claims that it is both necessary and

possible to produce a proof, due to the paradoxes that had emerged

in other areas of mathematics.

Kreisel, on the other hand, expresses doubt in the signi�cance of

consistency proofs. The question is whether the proofs have epis-

temological value. �If ordinary mathematics is really so reliable [as

Hilbert emphasized] then the value of Hilbert's consistency program

cannot possibly consist in increasing signi�cantly the degree of re-

liability (of ordinary mathematics).�12 It can be noted that Tarski

regarded Gentzen's proof as an interesting metamathematical result,

but he did not think that the proof made the consistency of arithmetic

more evident than by epsilon.13

According to Kreisel the analysis of the signi�cance of a consis-

11Menzler-Trott 2007 [19], p. 29.
12Kreisel 1971 [15], p. 240.
13Menzler-Trott 2007 [19], p. 81.
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tency proof can be more complicated than the proof itself. The point

that Kreisel makes is a criticism of Hilbert's programme; that consis-

tency proofs are sought as a reduction of complex concepts to simpler

ones. The elimination of problematic notions is contrary to our in-

tellectual experience. Our experience instead consists of eliminating

concepts in practice, not just in theory, or of giving independent

meaning to concepts and steps which, originally, occur as mere tech-

nical auxiliaries. 14

1.9 A partial solution

The argument against a relative consistency proof is that it provides

only a limited support for the consistency of arithmetic. In the case of

the negative translation it proves that an inconsistency cannot stem

from the principle of indirect proof. But Gentzen's proofs, however,

claim to be absolute in another sense. Their purpose is to provide

a secure foundation, taken into consideration the limitations that

Gödel's theorem impose. In particular, the additional principle of

trans�nite induction used in Gentzen's proof makes the �niteness of

the proof debatable. By Gentzen's proof it is established that it is

possible to prove consistency without relying on intuitionistic logic.

The reduction procedure of the proof can be represented in primitive

recursive arithmetic and trans�nite induction up to the ordinal ε0
restricted to primitive recursive predicates. The claimed �niteness

of the principle relies on the fact that the predicates to which it is

applied are �nite, that is, they do not contain quanti�cation over the

whole domain of natural numbers. But, as mentioned, Gentzen also

provides a constructive proof for the principle itself.

Thus, there are three methods that can be employed to �nd con-

sistency proofs; �nitism, Gentzen's approach and intuitionism. The

unsuccessful �nitistic approach prohibits the use of negation over a

proposition that has been universally quanti�ed over an in�nite do-

main.15 The intuitionistic approach, on the other hand bans the

law of excluded middle to in�nite sets, which is a weaker restriction.

Thirdly, the principle TI in Gentzen's approach extends inductive

14Kreisel 1971 [15], p. 252.
15Mehlberg 2002 [17], p. 74.
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reasoning to a trans�nite domain. This principle is unprovable in

intuitionistic reasoning.

1.10 A partial solution from the empirical

sciences

According to Hilbert the metamathematics or the knowledge of how

problems are solved should solely be based on �nitistic reasoning.

The reasoning is therefore more restricted than in proper mathe-

matics, in hope of accomplishing an intuitive line of thought. But

according to Mehlberg (2002) too strong restrictions on metamath-

ematics may limit our knowledge. He states that �in particular, the

metamathematical problem of consistency may prove to transcend

the potentialities of human knowledge if the knowledge of a system's

consistency were expected to meet the unrealistic conditions which

were inherent in the initial phase of the formalist program.� 16

Our knowledge may be dependable, even if it is not of the infallible

deductive kind and this kind of knowledge o�ers a solution to the

consistency proof. In Mehlberg's opinion the consistency of a theory

can be dependable if serious and diverse, but unsuccessful, attempts

have been made to derive contradictions. The future possibility of a

proven contradiction points merely to the fact that the knowledge is

not infallible. By a reasonable degree of certainty, as in the empirical

sciences, this can be given the epithet knowledge, rather than belief.

With reference to a conversation with Gödel, Mehlberg states that

the quest for a set-theoretical foundation for mathematics in Gödel's

opinion was mainly for explanatory purpose, not in order to provide

a real foundation. The aim is to explain the phenomena, as is done

in physics, where phenomena are explained by the theory.

1.11 Following in Gentzen's path

The legacy of Gentzen's work in this �eld is that through him ordinal

analysis became known. This is the method of measuring the proof-

theoretic strength of a formal system of mathematics, by the least

16Mehlberg 2002 [17], p.72.
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ordinal, α, with the property that no recursive well-ordering of ordinal

type α may be proven well-ordered in the system in question. That

the proof-theoretical ordinal of �rst-order arithmetic is ε0 was proven

by Gentzen in 1943.

After the Second World War some subsystems of classical anal-

ysis were proven to be consistent using the methods developed by

Gentzen. By restricting the application of the comprehension axiom

in second order predicate calculus, subsystems of classical analysis

are obtained. For some of these systems it is possible to produce

constructive consistency proofs.17

17Schütte and Schwichtenberg 1990 [30], p. 725.



Chapter 2

Consistency proofs in

di�erent calculi

2.1 Natural deduction and sequent calcu-

lus

In Gentzen's opinion the object of logic is to study the general struc-

tures of proofs. This opinion is a break with the logicist tradition of

Frege, Peano, Russell and Hilbert who considered the object of logic

to study logical truth.1

Gentzen developed the systems of natural deduction and sequent

calculus to analyze the structure of proofs. The former was successful

for the intuitionistic case and the latter was needed to deal with the

classical case. Natural deduction with its hypothetical reasoning was

developed to echo better than axiomatic calculi the actual reasoning

in mathematical proofs. It can be noted that the system of natural

deduction was independently developed by Jaskowski in 1934. His

system is presented in linear form and his work does not contain any

analysis of the structure of the derivations.2

Sequent calculus, on the other hand, proved to be the system in

which Gentzen found his main result, the Hauptsatz or cut elimina-

1von Plato 2007, [25], p. 384.
2Jaskowski 1967 [12].
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tion theorem. The system was developed to prove the Hauptsatz for

predicate logic. The result can be used to prove consistency for the

system of rules. The calculus formalizes the derivability of a formula

from other formulas, Γ→ C, represented by an arrow between a list

of assumptions, Γ, as an antecedent and a conclusion, C, as a succe-

dent of the sequent. As a generalization of the notion of sequent a

classical multi-succedent calculus is obtained. In the classical calcu-

lus the sequents, Γ→ ∆, can be interpreted as a number of cases, ∆,

under the open assumptions, Γ. It is not necessarily decidable which

of the cases hold.

In Gentzen's formalized systems intuitionistic logic gains a strong

position because it becomes a special case of the classical calculus.

This property may not be as striking in other calculi, in which the

rules are chosen di�erently. The calculi show his intent to use intu-

itionistic logic as a base for his argumentation.

2.2 From 1936 to 1938

The calculus used in Gentzen's �rst two proofs is natural deduction

in sequent calculus style. The calculus has rules from natural deduc-

tion operating on sequents. Instead of left rules, operating on the

antecedent, there are elimination rules operating on the succedent.

In the latter proof from 1936 the number of rules is decreased.

Initial sequents are used in order to replace logical rules and dis-

junction, implication and the existential quanti�er are eliminated.

The new initial sequents replacing the logical rules are among others

A&B → A, A,B → A&B, ∀xA(x) → A(t) and ¬¬A → A. Gentzen

regarded structural rules as purely formal modi�cations of the se-

quents, except for the rule of weakening. These rules were added to

the calculus in order to obtain special features for the formalism.

The proof from 1936 can be explained as a `reduction procedure'

for sequents. Firstly, all free variables are replaced by numerals and

then choices are made as the sequent is reduced to less complex se-

quents. The choices made can be regarded as aiming for the worst

possible scenario, in which the sequent is falsi�ed. The reduction ends

in a reduced form, which consists of a true sequent. A sequent is true

if the antecedent contains a false atomic formula or if the succedent
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is a true atomic formula. Gentzen shows that initial sequents are re-

ducible and that the rules preserve reducibility. Consistency follows

from the fact that the sequent → 0 = 1 is not in reduced form nor

reducible.

The proof also gives an ordinal assignment to prove that the pro-

cess terminates. This can be compared to the proof from 1938, which

also uses an ordinal assignment, but has a standard notation for the

ordinal numbers.

As a standard version of the classical consistency proof we con-

sider Takeuti's version [31], which is based on Gentzen's proof [7].

This third proof is the best known of Gentzen's papers on this sub-

ject. Gentzen's consistency proof from 1938 can be explained as con-

sisting of a well-ordering of all derivations and a reduction procedure

for derivations of the empty sequent. Derivations are ordered by com-

plexity and the reduction decreases the complexity of the derivation.

Therefore, if there exists a derivation of the empty sequent, then by

a �nite number of steps a simple derivation, which does not contain

any induction rule, is reached. Consistency then follows by proving

that the empty sequent is not derivable without the induction rule.

In the article from 1938 a standard multi-succedent sequent cal-

culus is used. In contrast to the earlier proofs the reduction process

resembles cut elimination. In the �rst step of the reduction proce-

dure free variables in a derivation of the empty sequent are replaced

by numerals. Then the `end-piece' of the derivation is considered.

The end-piece consists of structural rules and induction at the end

of the derivation. Induction rules and initial sequents are reduced if

they occur in the end-piece. Lastly, cuts on compound formulas are

reduced. The cuts are not directly reduced to cuts on less complex

formulas, but additional cuts on the less complex formulas are intro-

duced. This introduction of additional cuts is called the height-line

argument. The ordinal assignment de�nes a notion of height of a cut

and the additional cuts push up the places in the derivation where

the heights of the cuts drop. These drops a�ect the ordinal assigned

and the result is a reduction of the ordinal of the derivation.
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2.3 Gentzen's consistency proof performed

in natural deduction

Since the publication of Gentzen's proof, the conducting of the consis-

tency proof in standard natural deduction has been an open problem.

This problem has recently been solved for an intuitionistic calculus

by the present author in chapter 5. The result is based on a nor-

malization proof by Howard [11], recommended to the author by Per

Martin-Löf. The new consistency proof is performed in the manner

of Gentzen, by giving a reduction procedure for derivations of falsity.

In contrast to Gentzen's proof, the procedure uses a vector assign-

ment. The reduction reduces the �rst component of the vector and

this component can be interpreted as an ordinal less than ε0, thus

ordering the derivations by complexity and proving termination of

the process.

The assignment uses vectors instead of a direct ordinal assignment

because the length of the vector is used as a parameter coding the

complexity of the formulas in the derivation. An interesting feature

of the proof is that the reduction of induction rules produces non-

normalities in the reduced derivation as it introduces an implication,

which is directly followed by an elimination of the same implica-

tion. This can be compared to Gentzen's proof from 1938, which

introduces additional cuts in the derivation. However, if Gentzen's

proof were translated into natural deduction, the reduced implica-

tion would become a composition of the premises of the induction

rule. Gentzen's procedure otherwise resembles cut elimination and

the natural deduction proof resembles a normalization proof as stan-

dard detour conversions are made after the induction inferences have

been reduced.

In the article Zusammenfassung von mehreren vollständigen In-

duktionen zu einer einzigen, which was published posthumously, Gen-

tzen shows a method of fusing several induction inferences in a deriva-

tion into one. A formula (y = 1 ⊃ A1(x))& . . .&(y = n ⊃ An(x)),

denoted B(x), is constructed, which contains the free variables x and

y and fuses the induction formulas Ai, where 1 ≤ i ≤ n. Then from

the formula [B(0)&∀x(B(x) ⊃ B(x + 1))] ⊃ ∀xB(x), the induction

axiom for each separate formula may be derived, by substituting num-
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bers for the free variable y. A consequence of this result is that the

number of induction inferences cannot be used as a measure of the

derivation's complexity, it is the complexity of the induction formula

that counts.

2.4 Consistency without induction

When Gentzen began writing his thesis, Untersuchungen über das

logische Schliessen (1934) [9], he intended to provide a consistency

proof for arithmetic, by proving the Hauptsatz. However, it turned

out not to be possible to treat the rule of induction in this manner.

Therefore, a corollary occurring in the thesis is only a consistency

proof for the system without induction.

In the thesis Gentzen presents a formal axiomatic system for ele-

mentary arithmetic without induction. He concludes that it cannot

be proven that the system actually allows us to represent all types of

proofs customary in formal arithmetic. It can only be tested that in-

dividual proofs are representable. He then proves consistency for this

system. A contradiction is derivable if and only if there is a deriva-

tion in the logical calculus of a sequent with an empty succedent and

arithmetical axioms in the antecedent. The sharpened Hauptsatz is

then applied to the derivation and free variables are replaced with a

constant. Furthermore, by replacing eigenvariables in subdervations

it is concluded that if an inconsistency is derivable, then it is also

derivable from numerical propositions using only propositional logic.

And such a derivation is not possible, which Gentzen indicates by

referring to a soundness proof for the propositional calculus.

The sharpened Hauptsatz states that if each formula in a derived

sequent has quanti�ers only as outermost connectives, then there is a

cut-free derivation, which has only quanti�er rules at the end of the

derivation. There is a midsequent in the derivation dividing it into

an upper part, containing only propositional logic and a lower part

containing only quanti�er rules.

The aim of the �rst part of the chapter 4 is to provide a proof

analysis of a system of arithmetical rules. As a corollary of the main

lemmas together with cut elimination we get a consistency proof

for arithmetic without induction by using purely proof-theoretical
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means. A consistency proof for the full arithmetical system can be

obtained by a Gentzen-style proof, such as in [31, ch. 2, �12].

Lemma 4.4.11 proves that the empty sequent is not derivable with-

out the second in�nity rule, which states that the successor function

is injective. By a combinatorial argument it is then proven that the

second in�nity rule is admissible if the antecedent is empty.

Gentzen and Takeuti use semantical arguments to prove a lemma

(our lemma 4.4.20) stating that there is no so called simple deriva-

tion of the empty sequent. Their proof is short, but we shall instead

use methods which are coherent with the proof theoretical analysis

of Gentzen's consistency proof. It is shown that the lemma can be

proved purely proof-theoretically, by formulating the arithmetical ax-

ioms as rules instead of initial sequents and by considering all possible

combinations of these rules, as in lemma 4.4.14.

2.5 A direct proof in an intutionistic cal-

culus

A study of the papers Gentzen left behind shows that he worked

on yet another �fth proof between 1939 and 1943. The aim was

to rework the 1938 proof with an intuitionistic sequent calculus, to

get a direct proof of the consistency of intuitionistic Heyting arith-

metic. Gentzen's attempts are preserved in the form of close to a

hundred large pages of stenographic notes, with the signum BTJZ

that stands for "Proof theory of intuitionistic number theory". For

further reading and description of Gentzen's manuscripts we recom-

mend the thorough discussion of Gentzen's work found in [27].

The aim of the second part of chapter 4 is to give a direct Gentzen-

style proof of the consistency of intuitionistic arithmetic or Heyting

arithmetic. It is based on Gentzen's classical proof from 1938 for-

mulated by G. Takeuti in [31, ch. 2, �12]. Takeuti's proof can be

considered the standard proof for the classical calculus. The proof is

carried out by giving a reduction procedure (as in our lemma 4.4.21)

for every derivation of the empty sequent that represents a contra-

diction in the system. By giving every sequent an ordinal it is shown

that the reduction procedure terminates.
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Another proof of the consistency of Heyting arithmetic is given by

B. Scarpellini in [29]. His proof is based on the reductions of the clas-

sical calculus. An intuitionistic derivation is reduced by the classical

reductions. This results in a classical derivation with multi-succedent

sequents. However, as the additional formulas in the succedent have

been introduced by weakening, they can be deleted from the deriva-

tion, making it an intuitionistic derivation.
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Chapter 3

Rules of proof extending

a logical calculus

3.1 Axioms as rules

There are four ways of extending sequent calculus by axioms of a

mathematical theory. When extending a logical system with for-

malized axioms for proof analysis, the standard methods lead to the

failure of main results, such as Gentzen's Hauptsatz. The �rst way

is to add an axiom A in the form of a sequent ⇒ A. These sequents

can be leafs of a derivation. This way of adding axioms leads to the

failure of cut elimination. Gentzen (1938) added mathematical basic

sequents P1, . . . , Pm ⇒ Q1, . . . , Qn to the logical system. In this case

the cuts can be limited to cuts on these basic sequents. A third way

is to treat axioms as a context Γ and relativizing each theorem to

Γ thus proving results of the form Γ ⇒ C. In this case cut elimi-

nation applies. The fourth method, which will be examined below,

is to extend the logical system by mathematical rules. If a sequent

is derivable in one of these four systems, then it is derivable in the

other systems as well. Thus, the four systems are equivalent.

The treatment of mathematical rules is developed in [20] and [21].

The method consists of converting axioms into rules of proof extend-

ing the logical calculus. By the treatment of axioms as rules, the
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derivation of a compound formula can be transformed into a deriva-

tion, in which the mathematical rules are separated from the logical

part. A consequence is that there are logic-free derivations of atomic

formulas from atomic assumptions.

Negri and von Plato [21] give a formulation of mathematical rules

in a G3 system (both classical and intuitionistic), in which the struc-

tural rules (weakening, contraction and cut) are admissible and not

explicit rules. In [20] the method is extended to geometric theories1

which contain existential axioms.

If a set of axioms for a theory are (the universal closure of)

quanti�er-free formulas, then these axioms can be converted into rules

of proof for the construction of formal derivations. Any quanti�er-

free axiom is equivalent to a conjunction of disjunctions of atoms and

negations of atoms, ¬P1 ∨ · · · ∨ ¬Pm ∨Q1 ∨ · · · ∨Qn. A conjunction

of disjunctions of this kind is equivalent to a conjunction of implica-

tions of the form: P1& . . .&Pm ⊃ Q1 ∨ · · · ∨ Qn. This implication

can be transformed into a rule of sequent calculus in which the ac-

tive formulas of the rule are on the right side or the left side of the

sequent arrow. The right rule scheme, R-RS, that corresponds to the

implication is

Γ→ ∆, Q1, . . . , Qn, P1 . . . Γ→ ∆, Q1, . . . , Qn, Pm
Γ→ ∆, Q1, . . . , Qn

R−RS

The right rule can be interpreted as: if each atomic formula P1, . . . , Pm
follows as a case under the assumptions Γ, then the cases under Γ

are Q1, . . . , Qn.

The left rule scheme, L-RS, that corresponds to the implication

is

Q1, P1, . . . , Pm,Γ→ ∆ . . . Qn, P1, . . . , Pm,Γ→ ∆

P1, . . . , Pm,Γ→ ∆
L−RS

The interpretation of the left rule is that if something follows from

each of the cases Q1, . . . , Qn, then it already follows from just assum-

ing P1, . . . , Pm.

The conversion of axioms into rules of proof can be extended

to geometric theories, which have existential quanti�ers included in

1Geometric formula is a term from category theory.
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the axioms. The axioms of geometric theories belong to the set of

geometric implications. Examples of geometric theories are Robinson

arithmetic, the theory of nondegenerate ordered �elds and the theory

of real closed �elds.

3.1.1 De�nition. A geometric formula contains no implication or

universal quanti�er. A geometric implication is a sentence of the form

∀x(A ⊃ B), where A and B are geometric formulas. Furthermore, a

geometric theory is axiomatized by geometric implications.

Any geometric implication can be reduced to a conjunction of

formulas of the form ∀x(P1& . . .&Pm ⊃ ∃y1M1∨· · ·∨∃ynMn), where

Pi is an atomic formula for 1 ≤ i ≤ m and Mj is a conjunction of

atomic formulas for 1 ≤ j ≤ n. In the implication the variable

yj does not appear in Pi. We will use a vector notation, P for a

multiset of formulas P1, . . . , Pm and Qj for Qj1 , . . . , Qjkj . Let Mj be

the conjunction Qj1& . . .&Qjkj where Qjl are atomic formulas. A

replacement in a vector, Qj(yj/xj) denotes the replacement in each

of the components, that is Qj1(yj/xj), . . . , Qjkj (yj/xj).

The left geometric rule scheme, L-GRS, that corresponds to the

geometric axiom is

Q1(y1/x1), P ,Γ→ ∆ . . . Qn(yn/xn), P ,Γ→ ∆

P ,Γ→ ∆
L−GRS

where the variables yi, 1 ≤ i ≤ n, are the eigenvariables of the rule.

The eigenvariables must not occur in the conclusion of the rule, that

is in P ,Γ,∆.

The geometric axiom is equivalent to the geometric rule scheme,

because assuming admissibility of the structural rules, the axiom is

derivable from the geometric rule scheme and the scheme is derivable

if the geometric axiom is assumed.

The principal formulas of the rule (P1, . . . , Pm for the left rule and

Q1, . . . , Qn for the right rule) have to be repeated in the premises of

the rules in order to preserve admissibility of contraction when adding

mathematical rules to the logical system. When proving (height-

preserving) admissibility of contraction by induction on the length of

the derivation the repetition of the formula in the premises makes it
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possible to permute a contraction on Pi above the mathematical rule,

by duplicating the contraction for each premise.

It can be noted that a substitution of formulas in the rule scheme

can produce a duplicated principal formula, Pi. Therefore, to ensure

that contraction is admissible we also need to add a rule where the

formula is not duplicated. In other words, we have a closure condition

on the system of rules: If a given geometric theory includes a rule of

the form

Q1(y1/x1), P , P, P,Γ→ ∆ . . . Qn(yn/xn), P , P, P,Γ→ ∆

P , P, P,Γ→ ∆

then the system should also include the rule

Q1(y1/x1), P , P,Γ→ ∆ . . . Qn(yn/xn), P , P,Γ→ ∆

P , P,Γ→ ∆

The vector P is P1, . . . , Pm−2.

3.1.2 Example. In the theory of equality the rule of transitivity

a = c, a = b, b = c,Γ→ ∆

a = b, b = c,Γ→ ∆
Tr

has a limiting case if all terms are the same. In this case however the

rule given by the closure condition,

a = a, a = a,Γ→ ∆

a = a,Γ→ ∆

is a special case of the re�exivity rule,

a = a,Γ→ ∆

Γ→ ∆
Ref

which is already included in the theory.

3.2 Natural deduction

A Harrop formula contains no hidden disjunctions, which implies that

if a disjunction is derivable from a set of Harrop formulas, then one

of the disjuncts is derivable.
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3.2.1 De�nition. The class of Harrop formulas is de�ned by

1. atomic formulas and ⊥ are Harrop formulas,

2. if A and B are Harrop formulas, then A&B is a Harrop formula,

3. if B is a Harrop formula, then A ⊃ B is a Harrop formula.

Any Harrop axiom is equivalent to a conjunction of implications

of the form: P1& . . .&Pm ⊃ Q for atomic Q and P1, . . . , Pm. Ax-

ioms that are Harrop-formulas may be converted into rules of nat-

ural deduction, because the calculus gives a single conclusion in a

natural-deduction-style rule. Therefore, the natural deduction rule

corresponding to the implication above is

P1 . . . Pm
Q

Rule

For axioms of a general form the system can be transformed into

a multi-conclusion natural deduction. Given an axiom of the general

form P1& . . .&Pm ⊃ Q1 ∨ · · · ∨Qn the corresponding rule of proof is

P1 . . . Pm
Q1 . . . Qn

MultiRule

The atomic formulas P1, . . . , Pm are the premises and the atomic

formulas Q1, . . . , Qn are the conclusions of the rule.

For geometric theories the axioms may be converted into rules

with eigenvariables resembling the rule for disjunction elimination:

....
P1 . . .

....
Pm

[Q1(y1/x1)]
....
C · · ·

[Qn(yn/xn)]
....
C

C

The conclusion of the rule, C, is an arbitrary formula and the sets of

atomic formulas Qj , containing the eigenvariables yj , are discharged.

The eigenvariables must not occur free in the open assumptions (ex-

cluding the discharged assumptions), or the conclusion of the rule.
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3.3 The subterm property

One feature of mathematical rules is that the active and principal

formulas are atomic formulas. If a logical rule occurs above the math-

ematical rule in a derivation, then the two rules may be permuted.

This holds because the active formula of the mathematical rule is not

the principal formula of the logical rule, but it is in the context of the

conclusion of the logical rule. Thus, there is a derivation in which

the all mathematical rules are above the logical rules. As a result

of Gentzen's cut elimination in sequent calculus or normalization in

natural deduction it is not necessary to consider the logical rules at

all if both the assumptions and the conclusion are atomic formulas.

Therefore, it is possible to separate the mathematical and the logical

part of a derivation.

Because the logical system for sequent calculus, described above,

is of type G3 with the structural rules admissible, we may do a root-

�rst proof search. By this search the derivability of a sequent reduces

to the derivability of the leafs with mathematical rules.

If a subterm property is proven for a theory, then the terms oc-

curring in the derivation may be restricted to known terms from the

assumptions or the conclusion of the derivation. If this is the case

and our assumptions are a �nite set of atomic formulas, then the pos-

sible combinations of terms in atomic formulas can be restricted to a

�nite number. By combining these formulas we get a �nite number

of possible derivations and it may be checked if any of these deriva-

tions are valid. Therefore, if the subterm property holds, we have

a positive solution to the so-called uniform word problem, claiming

that the derivability of an atomic formula from a number of atomic

formulas is decidable. Thus, it is decidable if a leaf is derivable with

mathematical rules.

3.4 Applications of the axioms-as-rules method

The method of axioms-as-rules has been applied to predicate logic

with equality, theories of apartness and order, projective and plane

a�ne geometry [28], as well as lattice theory, ordered �elds and real
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closed �elds.2

The subterm property for lattices was established in [22] by an

analysis of the formal derivations of a natural deduction system ex-

tended by rules for lattice theory. The result has also been extended

to minimal quantum logic or orthologic, which is the study of ortho-

lattices. Meninander [18] presents a positive solution to the uniform

word problem for ortholattices. By analysis of the structure of pos-

sible derivations it is shown that proof search is bounded and thus

that the uniform word problem is solvable.

A consequence of a positive solution to the uniform word problem

for a �nite Harrop axiom system is the existence of a polynomial-time

decision algorithm for the derivability of an atomic formula from a

�nite number of atomic assumptions. There is only a linear number

of known subterms of the assumptions and the conclusion. Then the

derivation rules are applied to derive new atomic formulas with these

subterms until no new atomic formulas are derivable. This process is

a polynomial time decision algorithm for the uniform word problem.

The proof of this is analogous to the proof of a polynomial-time al-

gorithm for lattices by Skolem from 1920, which was rediscovered by

Cosmadakis [3]3.

Another example of a system extended with rules is found in [24],

in which a system of rules in natural deduction for Heyting arith-

metic is presented. The logical part of the system includes general

elimination rules, which are of the same form as the standard dis-

junction elimination rule. The induction rule is similarly formulated

which makes possible the permutative conversions. A normalization

theorem is then proven for Heyting arithmetic and as a consequence

the existence property is proven.

3.5 Independence of Euclid's parallel pos-

tulate

Von Plato [28] applies the method of axioms-as-rules to projective

and a�ne plane geometry proving that the rules with eigenvariables

2Negri 2003 [20]
3Burris 1995 [2] and von Plato 2007 [26].
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are conservative over the base theory. The method employed consists

of proving the subterm property, concluding that the geometrical

objects of a derivation may be restricted to terms known from the

assumptions or from the conclusion of the theorem. The lowermost

occurrences of a new term in a derivation are considered and by per-

muting rules a standard form of derivation is obtained to which a

combinatorial analysis can be applied. By combinatorial analysis of

the possible rules the derivation is transformed to a shorter deriva-

tion. Thereby, using induction on the length of the derivation the

subterm property is proved.

As a consequence of the subterm property consistency proofs for

the two geometric theories are obtained, because the empty sequent

is not derivable. The stronger statement that any set of atomic for-

mulas is consistent also follows due to the fact that no sequent Γ→,

with Γ a set of atomic formulas, can be derived in a system of mathe-

matical right rules. The main corollary however is the independence

of Euclid's parallel axiom for a�ne geometry. The parallel postulate

states that given a point, a, outside a line, l, there is no point incident

with both the line l and the parallel line through the point a. This can

be formalized as ¬(a ∈ l) ⊃ ¬(b ∈ l&b ∈ par(l, a)) and expressed as

a sequent without logical connectives as b ∈ l, b ∈ par(l, a)→ a ∈ l.4
The rule corresponding to the axiom included in the system of rules

is the rule for uniqueness of parallel lines.

a ∈ l a ∈ m l ‖ m
l = m

Unipar

If we assume b ∈ l and b ∈ par(l, a), as well as the additional assump-

tion l ‖ par(l, a), then by application of the rule we get the conclusion

l = par(l, a). By line substitution and the a�ne axiom of incidence,

a ∈ par(l, a), we get the sought conclusion a ∈ l.
The proof of the independence of the parallel postulate comes

from the fact that restriction to known terms from the sequent b ∈
l, b ∈ par(l, a)→ a ∈ l can only produce a few new atomic formulas,

but not the sought formula a ∈ l. None of the rules, excluding the rule
of the uniqueness of the parallel line, can be applied to the premises

b ∈ l and b ∈ par(l, a). Using the available rules of the system we can

4The construction par(l, a) is the parallel line to l through the point a.
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only produce the new atomic formulas a ∈ par(l, a), par(l, a) ‖ l and
l ‖ par(l, a). After that nothing but loops are produced. Therefore,

there cannot be a derivation of the parallel axiom if the corresponding

rule of the uniqueness of the parallel line is left out.

Thus, it is possible to prove the independence of Euclid's parallel

postulate using proof theoretical means as opposed to the standard

method of referring to non-Euclidean geometries.
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Chapter 4

A direct Gentzen-style

consistency proof for

Heyting arithmetic

The aim of this chapter is to give a direct Gentzen-style proof of

the consistency of intuitionistic arithmetic. The proof is based on

Takeuti's proof [31, ch. 2, �12]. The �rst part of the chapter removes

semantical arguments from the proof, by giving a purely proof theo-

retical analysis of the calculus without induction. A direct proof of

cut elimination is included in the analysis of the system. Finally, the

consistency proof for the complete system is given in Gentzen-style.

The proof is direct, instead of concluding that consistency of the in-

tuitionistic calculus follows from consistency of the classical calculus,

as the former is a subsystem of the latter. We shall assume that the

reader has basic knowledge of ordinals and refer to [31] for a more

detailed treatment of the subject.

4.1 The sequent calculus G0i

A sequent is an expression of the form Γ → A or Γ →, where the

antecedent Γ is a (possibly empty) multiset. A multiset is a �nite list

of formulas where the order of the formulas does not matter but the
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multiplicity of the formulas does, in contrast to ordinary sets. In the

succedent A is a formula, but the succedent can also be empty. The

rules for the intuitionistic sequent calculus G0i, from [23] except that

we have no rule of weakening, are as follows.

Initial sequent:

A,Γ→ A

Logical rules:

A,B,Γ→ C

A&B,Γ→ C
L&

Γ→ A Γ′ → B
Γ,Γ′ → A&B

R&

A,Γ→ C B,Γ′ → C

A ∨B,Γ,Γ′ → C
L∨ Γ→ A

Γ→ A ∨B R∨
Γ→ B

Γ→ A ∨B R∨

Γ→ A
∼A,Γ→ L∼

A,Γ→
Γ→∼A R∼

Γ→ A B,Γ′ → C

A ⊃ B,Γ,Γ′ → C
L⊃

A,Γ→ B

Γ→ A ⊃ B R⊃

A(t/x),Γ→ C

∀xA,Γ→ C
L∀

Γ→ A(y/x)

Γ→ ∀xA R∀

A(y/x),Γ→ C

∃xA,Γ→ C
L∃

Γ→ A(t/x)

Γ→ ∃xA R∃

Structural rules:

A,A,Γ→ C

A,Γ→ C
LC

Γ→ A A,Γ′ → C

Γ,Γ′ → C
Cut

In the quanti�er rules the expression A(t/x) means that every free

occurrence of x in A is substituted with the term t. In the rules L∃
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and R∀ the standard variable restriction holds that y, also called the

eigenvariable of the rule, must not be free in the conclusion of the

rule. The formula that is introduced in the conclusion of a logical rule,

for example A&B in the conjunction rules, is the principal formula

of the rule. The formulas that the rule is applied on are the active

formulas. In the structural rules the principal formula is the formula

that the rules are applied on, in this case A. The formula is also called

contraction or cut formula. The multiset Γ in the sequents is called

the context of the rule. We use a calculus with arbitrary contexts in

all initial sequents and hence no rule of weakening is needed. We will

use the notation Γ1−2 as short for Γ1,Γ2.

4.2 Heyting arithmetic

The language of Heyting arithmetic consists of the constant 0, the

unary functional symbol s, the binary functional symbols + and ·
and the binary predicate symbol =.

4.2.1 De�nition. Terms are inductively de�ned. The constant 0

and variables are terms and if t and t′ are terms then s(t), t+ t′ and

t · t′ are also terms. Terms are closed if they do not contain any

variable.

Formal expressions for the natural numbers, numerals, are induc-

tively de�ned: 0 is a numeral and if m is a numeral, then s(m) is also

a numeral. The numeral m is m copies of s followed by a 0.

The axioms of Heyting arithmetic can be formulated as rules of

natural deduction, expanding the logical calculus. Together with an

induction rule the logical and arithmetical rules constitute the system

of Heyting arithmetic (HA). Negri and von Plato [21] developed the

general method for converting mathematical axioms into rules for

the primary purpose of proving cut elimination in systems of sequent

calculus. The speci�c system for arithmetic was �rst used by von

Plato [24] to prove the disjunction and existential properties. These

rules act on the succedent part of the sequents and have arbitrary

contexts. As a special case we get rules without premises.
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Rules for the equality relation:

Γ→ t = t
Ref

Γ→ t = t′

Γ→ t′ = t
Sym

Γ1 → t = t′ Γ2 → t′ = t′′

Γ1−2 → t = t′′
Tr

Recursion rules:

Γ→ t+ 0 = t
+Rec0

Γ→ t+ s(t′) = s(t+ t′)
+Recs

Γ→ t · 0 = 0
·Rec0

Γ→ t · s(t′) = t · t′ + t
·Recs

Replacement rules:

Γ→ t = t′

Γ→ s(t) = s(t′)
sRep

Γ→ t = t′

Γ→ t+ t′′ = t′ + t′′
+Rep1

Γ→ t′ = t′′

Γ→ t+ t′ = t+ t′′
+Rep2

Γ→ t = t′

Γ→ t · t′′ = t′ · t′′
·Rep1

Γ→ t′ = t′′

Γ→ t · t′ = t · t′′
·Rep2

In�nity rules:

Γ→ s(t) = 0

Γ→
Inf1

Γ→ s(t) = s(t′)

Γ→ t = t′
Inf2

Induction rule:

Γ1 → A(0/x) A(y/x),Γ2 → A(sy/x) A(t/x),Γ3 → D

Γ1−3 → D
Ind

In the arithmetical rules t, t′ and t′′ are terms. In the induction rule

y is the eigenvariable of the rule and it should not occur free in the

conclusion. The induction formula A is arbitrary.
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4.2.2 De�nition. A valid derivation in HA is de�ned inductively.

An initial sequent or an arithmetical rule without premises is a valid

derivation and a valid derivation is obtained by applying a rule on

valid derivations of the premises of the rule.

The end-piece of a derivation is de�ned in the following way: the

end-sequent belongs to the end-piece. Furthermore, if the conclu-

sion of a structural rule or Ind is included in the end-piece, then the

premises of the rule are also included in the end-piece. An arithmeti-

cal or logical rule borders on the end-piece if the conclusion of the

rule is included in the end-piece.

A formula A is a descendant of a formula B if A is in the context

of the conclusion of a rule and B is an identical formula in the context

of a premise or if A is the principal formula of the rule and B is an

active formula in a premise. Furthermore, if A a descendant of B

and B is a descendant of C, then A is a descendant of C. If A is a

descendant of B, then B is a predecessor of A.

4.3 The ordinal of a derivation

We de�ne the height of a sequent in a derivation.

4.3.1 De�nition. (i) The grade of a formula is the number of

logical symbols in the formula. The grade of a Cut or an Ind

is the grade of the cut or the induction formula.

(ii) The height of a sequent S in a derivation P , denoted h(S;P ) or

h(S), is the maximum of the grades of the cuts and inductions

below S in P .

Note that the height of the end-sequent is 0 and that the premises

of a rule all have the same height. If S1 is a sequent under another

sequent S2, then h(S1) 6 h(S2).

To be able to calculate with ordinals we need to de�ne a suitable

sum operation.

4.3.2 De�nition. If two ordinals µ and ν are expressed in normal

form µ = ωµ1 + ωµ2 + · · · + ωµm and ν = ων1 + ων2 + · · · + ωνn ,

where µ1 > µ2 > · · · > µm and ν1 > ν2 > · · · > νn, then the

natural sum, denoted µ#ν, is equal to ωλ1 +ωλ2 + · · ·+ωλm+n , where
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{λ1, λ2, . . . , λm+n} = {µ1, µ2, . . . , ν1, ν2, . . . } are equal multisets and
λ1 > · · · > λn+m.

We shall also use the following notation: for an ordinal α and

a natural number n, ωn(α) is inductively de�ned as ω0(α) ≡ α and

ωn+1(α) ≡ ωωn(α). Thus, we have

ωn(α) ≡ ω·
··
ωα
}
n times ω.

The limit of ωn(0) when n approaches in�nity is ε0, an ordinal which

in some ways characterizes the strength of derivability of arithmetic.

We can conclude that the following property holds for the ordinal ε0.

4.3.3 De�nition. An ordinal α is accessible if it has been shown

that every decreasing sequence beginning with α is �nite.

4.3.4 Lemma. ε0 is accessible.

Takeuti [31] proves the lemma by de�ning eliminators, which are

operations on concretely given decreasing sequences of ordinal num-

bers. An argument with the standard well-ordering is also given to

convince the reader that it is indeed a well-ordering. The notion

of accessibility is only considered when it has been constructively

demonstrated that a sequence is �nite. The aim of the proof is to

avoid abstract notions, except for concepts which are reduced to con-

crete operations. This, makes the proof an extension of the �nitistic

standpoint of Hilbert.

We can now give every derivation in HA an ordinal.

4.3.5 De�nition. The ordinal of a sequent S in a derivation P ,

denoted o(S;P ) or o(S), is de�ned inductively as follows:

1. An initial sequent has the ordinal 1.

2. The conclusion of an arithmetical rule without premises has the

ordinal 1.

3. If S is the conclusion of a contraction then the ordinal is the

same as the ordinal of the premise.

4. If S is the conclusion of a one-premise arithmetical or logical

rule, where the ordinal of the premise is µ, then o(S) = µ+ 1.
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5. If S is the conclusion of a two-premise arithmetical or logical

rule, where the ordinals of the premises are µ and ν respectively,

then o(S) = µ#ν.

6. If S is the conclusion of a cut where the premises have the

ordinals µ and ν, then o(S) = ωk−l(µ#ν), or

ω·
··
ωµ#ν

}
k − l times ω,

where k is the height of the premises and l is the height of the

conclusion.

7. If S is the conclusion of an induction and the premises have

the ordinals µ1, µ2 and µ3 and the height k and the conclusion

has the height l, then the ordinal of the conclusion is o(S) =

ωk−l+1(µ1#µ2#µ3).

The ordinal of a derivation P , denoted o(P ), is the ordinal of the

end-sequent. Thus, every derivation has an ordinal less than ε0.

If the height remains unchanged in a cut the ordinal of the con-

clusion in point 6 is µ#ν, whereas the ordinal of the corresponding

case in point 7 is ωµ1#µ2#µ3 .

4.4 The consistency of Heyting arithmetic

4.4.1 The consistency theorem

4.4.1 De�nition. A system is said to be inconsistent if the empty

sequent → is derivable. If the system is not inconsistent it is consis-

tent.

4.4.2 Theorem (The consistency of Heyting arithmetic). The empty

sequent → is not derivable in HA, that is, HA is consistent.

To prove this theorem we give a reduction procedure for deriva-

tions. Assume that there is a derivation of the empty sequent. Fur-

thermore, we may assume that the arithmetical rules are applied

before logical and structural rules in the derivation. If needed, it is
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possible to change the order of the rules according to lemma 4.4.5,

even though this may increase the ordinal of the derivation. The

permutation only has to be performed once before the reduction pro-

cedure. By the reduction procedure we conclude that if there is a

derivation of the empty sequent, then there is a reduced derivation

with a lower ordinal and another reduced derivation and so on. Then

we would have an in�nite succession of decreasing ordinals all less

than ε0, but this is impossible and the reduction procedure must

terminate. This is a contradiction and we therefore cannot have a

derivation of the empty sequent. Thus, the system of Heyting arith-

metic, HA, is consistent.

The reduction procedure for derivations is described in lemma

4.4.21, but before we give the proof we need some additional results.

4.4.2 Properties of derivations

4.4.3 De�nition. A thread in a derivation is a sequence of sequents

in a derivation, for which the following holds:

1. It begins with an initial sequent or the conclusion of an arith-

metical rule without premises.

2. Every sequent but the last one is a premise of a rule and the

sequent is followed by the conclusion of that rule.

4.4.4 Lemma. Assume that S1 is a sequent in a derivation P . Let P1

be the subderivation ending with S1 and let P ′1 be another derivation

ending with S1. Now let P ′ be the derivation that results from the

process of substituting P ′1 for P1 in P .

If o(S1;P ′) < o(S1;P ), then o(P ′) < o(P ).

Proof. For every thread in P passing through S1 we show that the

following holds: If S is a sequent in a thread at or below S1 and if

S′ is the corresponding sequent to S in P ′, then o(S′;P ′) < o(S;P ).

According to the assumption the proposition holds if S = S1. The

heights of the sequents below S in P and S′ in P ′ are the same and

for every ordinal α, β and γ that satisfy α < β, we have α#γ < β#γ.

Thus, the inequality is retained for every rule applied. If we then let

S be the end-sequent of the derivation we obtain the inequality for

the derivations.
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4.4.5 Lemma. In a derivation we can permute the order of the rules

and �rst apply the arithmetical rules and then Ind and the logical and

structural rules.

Proof. If we have a logical rule followed by an arithmetical rule, then

the arithmetical rule is not applied on the principal formula of the

logical rule, since this formula is compound. Hence, we can permute

the order of the rules and apply the arithmetical rule �rst.

Assume that we have an instance of contraction followed by an

arithmetical rule. If the arithmetical rule is not applied on the con-

traction formula, then we can permute the order of the rules. We now

consider the case that the arithmetical rule is applied on the contrac-

tion formula. If the arithmetical rule is a one-premise rule, then we

can apply the arithmetical rule on each copy of the formula followed

by an instance of contraction. If on the other hand the arithmetical

rule has two premises, that is, if the rule is an instance of transitivity,

then we can apply transitivity on each copy of the formula, multiply-

ing the derivation of the other transitivity premise, and then apply

contraction on the principal formula of the transitivity and also on

possible formulas in the context of the multiplied premise.

If we have an instance of Cut followed by an arithmetical rule,

then we can permute the order of the rules and the same holds for

an instance of Ind followed by an arithmetical rule.

Note that this change in the order of the rules can increase the

ordinal of the derivation.

4.4.6 Lemma. (i) For an arbitrary closed term t there exists a

numeral n such that → t = n can be derived without Ind or

Cut.

(ii) Let t and t′ be closed terms for which → t = t′ can be derived

without Ind or Cut and let q be an arbitrary term. Now the

sequent → q(t/x) = q(t′/x) is derivable without Ind or Cut.

(iii) Let t and t′ be closed terms for which → t = t′ can be derived

without Ind or Cut and let q and r be terms. Then the sequent

q(t/x) = r(t/x)→ q(t′/x) = r(t′/x) can be derived without Ind

or Cut.
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(iv) Let t and t′ be closed terms for which → t = t′ can be de-

rived without Ind or Cut. Then for an arbitrary formula A the

sequent A(t/x)→ A(t′/x) can be derived without Ind or Cut.

Proof. (i) For the constant 0 the proposition holds. Assume that

the proposition holds for the closed terms t and t′, that is there

are n and m, such that → t = n and → t′ = m can be de-

rived without Ind or Cut. Then the sequent → s(t) = s(n) is

derivable with sRep where s(n) ≡ n+ 1.

The sequent → t+ t′ = n+m can be derived as follows. First

we get a derivation of → t+ t′ = n+m.

→ t = n
→ t+ t′ = n+ t′

+Rep1
→ t′ = m

→ n+ t′ = n+m
+Rep2

→ t+ t′ = n+m
Tr

Furthermore, if m = 0 we have → n + 0 = n+ 0 with +Rec0

since n+ 0 ≡ n. Ifm > 0, that ism = sm′ for somem′, then we

have as induction hypothesis a derivation of→ n+m′ = n+m′.

→ n + sm′ = s(n + m′)
+Recs

→ n + m′ = n + m′

→ s(n + m′) = s(n + m′)
sRep

→ n + sm′ = s(n + m′)
Tr

We now have → n+m = n+m for every m. With transitivity

on the conclusions of these derivations we get the result →
t+ t′ = n+m.

The sequent → t · t′ = n ·m is derivable in a similar manner.

(ii) If q is the constant 0 or a variable di�erent from x, then the

sequent is derivable with Ref . If q is the variable x, then we

already have the derivation according to the assumption. Now

assume that q ≡ s(q′) and as induction hypothesis we have a

derivation of→ q′(t/x) = q′(t′/x) that ful�lls the requirements.

Then we get→ s(q′(t/x)) = s(q′(t′/x)) with sRep. If q ≡ q′+q′′
we get the following derivation where we write q′(t) and q′′(t)

instead of q′(t/x) and q′′(t/x) and the sequent arrow is left out.

q′(t) = q′(t′)

q′(t) + q′′(t) = q′(t′) + q′′(t)
+Rep1

q′′(t) = q′′(t′)

q′(t′) + q′′(t) = q′(t′) + q′′(t′)
+Rep2

q′(t) + q′′(t) = q′(t′) + q′′(t′)
Tr
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If q ≡ q′ · q′′ the derivation is similar.

(iii) According to point (ii) we have derivations of → q(t) = q(t′)

and → r(t) = r(t′) that ful�ll the requirements. We can now

construct the derivation:

→ q(t) = q(t′)

→ q(t′) = q(t)
Sym

q(t) = r(t)→ q(t) = r(t)

q(t) = r(t)→ q(t′) = r(t)
Tr

→ r(t) = r(t′)

q(t) = r(t)→ q(t′) = r(t′)
Tr

(iv) The proof is carried out by induction on the complexity of the

formula. If A is an atomic formula, then the proposition is

proved in case (iii).

IfA ≡ B&C and we as induction hypothesis have thatB(t/x)→
B(t′/x) and C(t/x) → C(t′/x) are derivable without Ind or

Cut, then we get the derivation:

B(t/x)→ B(t′/x) C(t/x)→ C(t′/x)

B(t/x), C(t/x)→ B(t′/x)&C(t′/x)
R&

B(t/x)&C(t/x)→ B(t′/x)&C(t′/x)
L&

Assume that A ≡ ∀yB. If x ≡ y then x is not free in A and

A(t/x) → A(t′/x) is an initial sequent. On the other hand

if x is not y, then we have by the induction hypothesis that

(B(z/y))(t/x) → (B(z/y))(t′/x), where x 6= z, can be derived

without Ind or Cut. Because t and t′ are closed terms, they do

not contain y and we may change the order of the substitutions,

that is (B(z/y))(t/x) = (B(t/x))(z/y) and (B(z/y))(t′/x) =

(B(t′/x))(z/y). We now get the derivation:

(B(t/x))(z/y)→ (B(t′/x))(z/y)

∀yB(t/x)→ (B(t′/x))(z/y)
L∀

∀yB(t/x)→ ∀yB(t′/x)
R∀

The other cases are similar.
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In point (i) of the lemma, we only state the existence of a numeral

that equals the closed term, not that this numeral is unique. The

uniqueness of the numeral is equivalent to the consistency of simple

derivations proved in lemma 4.4.20.

4.4.3 Cut elimination in Heyting arithmetic

We shall give a direct proof of cut elimination in the system HA.

Note that the Cut rule is a special case of our induction rule, if

the induction formula has no occurrence of the variable x. In this

case the second premise of the induction is an initial sequent and we

have a form of vacuous induction. Thus, cuts can be eliminated by

replacing them with inductions. But as the cut elimination theorem

4.4.8 shows, we can also properly eliminate Cut.

4.4.7 De�nition. The length of a derivation in HA is de�ned induc-

tively.

An initial sequent has the length 1.

The length of the conclusion of an arithmetical rule without premises

is 1.

The length of the conclusion of the rule Sym is the same as the length

of the premise.

The length of the conclusion of a one-premise rule (except Sym),

where the premise has the length α is α+ 1.

The length of the conclusion of a two-premise rule, where the premises

have the lengths α and β is α+ β.

The length of the conclusion of Ind, where the premises have the

lengths α, β and γ is α+ β + γ.

4.4.8 Theorem (Cut elimination in HA). If there is a derivation of

the sequent Γ→ D in HA, then we can transform the derivation into

a derivation of the same sequent without Cut or additional inductions.

Proof. The proof is by induction on the grade of the cut formula with

a subinduction on the length of the derivation. We assume that there

are no instances of Cut above the cut we consider.

We assume that the right cut premise has been derived with n−1

instances of contraction on the cut formula, where n > 1. We consider

the premise of the �rst contraction.
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1. Firstly, we consider the case that the premise is an initial

sequent.

Γ1 → A

An,Γ2 → A

A,Γ2 → A
LCn−1

Γ1−2 → A
Cut

In this case we can add the missing context Γ2 in the derivation of

the left cut premise and get the sought derivation without Cut.

We now assume that the premise of the contraction has been

derived by a rule R.

Γ1 → A

An,Γ2 → D
R

A,Γ2 → D
LCn−1

Γ1−2 → D
Cut

If rule R is an instance of Sym we can permute the contractions and

the cut above the Sym. The length of the cut remains unchanged.

Thus, we may assume that R is not Sym.

2. If rule R is an arithmetical rule without premises, then also

the conclusion of the cut is an instance of the same rule.

3. If rule R is an arithmetical one-premise rule, then A is not

principal in the rule. We can then permute the contractions and the

cut above the arithmetical rule, diminishing the length of the cut.

4. Suppose rule R is Tr.

Γ1 → A

Ak,Γ′1 → t = t′ Al,Γ′2 → t′ = t′′

An,Γ2 → t = t′′
Tr

A,Γ2 → t = t′′
LCn−1

Γ1−2 → t = t′′
Cut

where Γ2 = Γ′1−2 and n = k + l. We then transform the derivation

diminishing the length of the cuts on A.

Γ1 → A

Ak,Γ′1 → t = t′

A,Γ′1 → t = t′
LCk−1

Γ1,Γ
′
1 → t = t′

Cut
Γ1 → A

Al,Γ′2 → t′ = t′′

A,Γ′2 → t′ = t′′
LCl−1

Γ1,Γ
′
2 → t′ = t′′

Cut

Γ2
1,Γ2 → t = t′′

Tr

.

.

.

.

contractions

Γ1−2 → t = t′′
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5. If rule R is a logical one-premise rule where A is not principal,

then we can permute the contractions and the cut above the rule,

diminishing the length of the cut.

6. If rule R is a logical two-premise rule where A is not principal,

then we transform the derivation as in case 4, diminishing the length

of the cuts.

7. Suppose rule R is a logical rule where A is principal. We

consider the rule with which the left premise of the cut has been

derived.

7.1 If the left cut premise is an initial sequent, then the formula

A is in Γ1. Thus, we can get the conclusion of the cut by adding

the missing context Γ1 without A in the derivation of the right cut

premise.

7.2 The left cut premise has not been derived by an arithmetical

rule, since the formula A has logical structure.

7.3 If the left cut premise has been derived by a logical one-

premise rule where A is not principal, then we can permute the cut

above the rule.

7.4 If the left cut premise has been derived by a logical two-

premise rule where A is not principal, that is L ⊃ or L∨, then we

can in the case of L∨ apply Cut twice, once on each premise of the

logical rule and then apply the logical rule and in the case of L ⊃
apply Cut before the rule.

7.5 If the left cut premise has been derived by a logical rule where

A is principal, then we consider the derivation according to the form

of the formula. We consider the case where A is a conjunction B&C.

Γ′1 → B Γ′′1 → C

Γ1 → B&C
R&

B,C, (B&C)n−1,Γ2 → D

(B&C)n,Γ2 → D
L&

B&C,Γ2 → D
LCn−1

Γ1−2 → D
Cut

In the derivation

Γ′1 → B Γ′′1 → C

Γ1 → B&C
R&

B,C, (B&C)n−1,Γ2 → D

B,C,B&C,Γ2 → D
LCn−2

B,C,Γ1−2 → D
Cut

the cut length is shorter. Thus, we have by the induction hypoth-

esis a derivation of the sequent B,C,Γ1−2 → D without Cut. We
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now construct the following derivation, where the grades of the cut

formulas are less.

Γ′1 → B

Γ′′1 → C B,C,Γ1−2 → D

B,Γ′′1 ,Γ1−2 → D
Cut

Γ2
1,Γ2 → D

Cut

.... contractions

Γ1−2 → D

The other cases of cut formula are treated in a similar manner.

7.6 If the left cut premise has been derived by a contraction, then

we can permute the cut above the rule.

7.7 If the left cut premise has been derived by Ind, then we can

permute the cut above the rule.

8. If rule R is an instance of contraction, where A is not principal,

then we can permute the contractions and the cut above the rule,

diminishing the length of the cut.

9. Suppose rule R is an instance of Ind.

Γ1 → A

Ak,Γ′1 → B(0) Al, B(y),Γ′2 → B(sy) Am, B(t),Γ′3 → D

An,Γ2 → D
Ind

A,Γ2 → D
LCn−1

Γ1−2 → D
Cut

Here we have Γ2 = Γ′1−3 and n = k + l + m. We transform the

derivation as in case 4, diminishing the length of the cuts on A.

This direct proof of cut elimination in Heyting arithmetic is an

extension of the proof given in [23]. Note that unlike Gentzen's origi-

nal proof of cut elimination for sequent calculus in his thesis of 1933,

our proof is carried out without introducing any rule of multicut.

4.4.4 Consistency proof for simple derivations

4.4.9 De�nition. A simple derivation is a derivation without free

variables, without Ind and that contains only atomic formulas.

Thus, in a simple derivation we have only initial sequents, arith-

metical and structural rules, and in addition there are no compound

formulas in the contexts.
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Our aim is now to show that there is no simple derivation of the

empty sequent, but �rst we consider only the case that the derivation

does not contain rule Inf2.

4.4.10 De�nition. We inductively de�ne if the value of a closed

term is 0 or 1. The constant 0 has value 0. A term of the form s(t)

has value 1. A term of the form t + t′ has value 0 if both t and t′

have value 0 and otherwise it has value 1. A term of the form t · t′
has value 0 if t or t′ has value 0 and otherwise it has value 1.

According to the de�nition a closed term has value 0 if it equals

0 and value 1 if it is greater than 0.

4.4.11 Lemma. There is no simple derivation of the empty sequent

without rule Inf2.

Proof. Assume that there is a derivation of the empty sequent with-

out rule Inf2. According to theorem 4.4.8 there is then a derivation

of the empty sequent without Cut (and this new derivation without

Cut is also without Inf2 and Ind). Furthermore, we note that in a

cut-free simple derivation of the empty sequent all sequents have an

empty antecedent, since formulas in the antecedent can only disap-

pear through cut. Therefore, there are no initial sequents or instances

of contraction in the derivation, but only arithmetical rules.

Now, the last rule of the derivation must be Inf1, because all other

rules give as a conclusion a sequent with a formula in the succedent.

Thus, we have a derivation of the sequent → s(t) = 0 for some term

t.

In a simple derivation there are only closed terms and every term

therefore has a value. We now prove by induction on the length of

the derivation that every sequent in the derivation of → s(t) = 0 has

the property that the succedent is a formula t = t′ where t and t′

have the same value.

Base case of the induction. As stated we have no initial se-

quents in the derivation and thus, we only consider the conclusions of

the arithmetical rules without premises as the base case. We want to

prove that the terms of the principal formula in the succedent have

the same value.

In Ref both terms of the principal formula, t = t, have the same

value. In +Rec0 the terms t + 0 and t of the principal formula,
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t + 0 = t, have the same value. In +Recs the principal formula

is of the form t + s(t′) = s(t + t′). Both t + s(t′) and s(t + t′) in

+Recs have the value 1. In ·Rec0 the principal formula is of the form

t · 0 = 0. The constant 0 has the value 0 and the term t · 0 therefore

also has the same value. In ·Recs the principal formula is of the form
t · s(t′) = t · t′ + t. If the term t has the value 1, then both terms

t · s(t′) and t · t′ + t have the value 1. If t on the other hand has the

value 0, then both terms have the value 0.

Induction step. Assume as induction hypothesis that the propo-

sition holds for the premises of an arithmetical rule, that is, that the

terms of the formulas in the succedents of the premises have the same

value.

In Sym we can conclude that if the terms t and t′ in the formula

t = t′ have the same value, then the same applies for the formula

t′ = t in the conclusion. In Tr we can see that if the terms of the

formula t = t′ and t′ = t′′ have the same values, then the terms of

the formula t = t′′ have the same value. In sRep both terms of the

formula s(t) = s(t′) in the conclusion have the value 1. In +Rep1, if

the terms of the formula t = t′ in the premise have the same value,

then also the terms of the formula t + t′′ = t′ + t′′ in the conclusion

have the same value. The same holds for rule +Rep2 and the ·Rep-
rules.

Because all sequents in the derivation have an empty antecedent,

rule Inf1 gives the empty sequent as the conclusion and thus it can

occur only as the last rule in the derivation.

Thus, we have completed the induction and have proved that in

a simple derivation of the sequent → s(t) = 0, all sequents have in

the succedent an equation where the terms have the same value. On

the other hand the terms s(t) and 0 have di�erent values. This is a

contradiction and therefore there cannot exist any simple derivation

of the empty sequent.

4.4.12 Lemma. If we have a derivation of a sequent Γ → D, then

there is a derivation of the same length of the sequent where all in-

stances of Sym come directly after arithmetical rules without premises

or after initial sequents.

Proof. Suppose that we have a premise of Sym derived by a rule
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that is not an arithmetical rule without premises. If the rule is a

one-premise arithmetical rule, that is sRep,+Rep, ·Rep, or Inf2, we
can permute the instance of Sym above the other rule. If we have

two instances of Sym, we have a loop and can delete both rules. If

the rule is logical (except L∨), structural or an instance of Inf , we

can also permute Sym above the other rule.

If the rule is an instance of Tr, then the derivation is:

Γ1 → t = t′ Γ2 → t′ = t′′

Γ1−2 → t = t′′
Tr

Γ1−2 → t′′ = t
Sym

We can then instead apply Sym on each premise followed by Tr.

Γ2 → t′ = t′′

Γ2 → t′′ = t′
Sym

Γ1 → t = t′

Γ1 → t′ = t
Sym

Γ1−2 → t′′ = t
Tr

This does not alter the length of the derivation. The case of L∨ is

similar.

4.4.13 Lemma. There is a derivation of the sequent → 0 · c = 0

(without Inf2) for every closed term c.

Proof. Firstly we show by induction that for every numeralm we have

a derivation of the sequent → 0 ·m = 0. We can derive → 0 · 0 = 0

with ·Recs. Now assume that m is sn for some numeral n and we

have a derivation of → 0 · n = 0. We then get the derivation

→ 0 · s(n) = 0 · n+ 0
·Recs → 0 · n+ 0 = 0 · n +Rec0 → 0 · n = 0

→ 0 · n+ 0 = 0
Tr

→ 0 · s(n) = 0
Tr

Thus, the proposition holds for every numeral.

For every closed term c there is a numeral m for which the se-

quent → c = m is derivable (without Inf2), this according to lemma

4.4.5(i). We then get the sought derivation

→ c = m
→ 0 · c = 0 ·m ·Rep2 → 0 ·m = 0

→ 0 · c = 0
Tr
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4.4.14 Lemma. If there is a simple derivation of the sequent →
s(t) = s(t′) without the rule Inf2, then there is a simple derivation

of the sequent → t = t′ without Inf2.

Proof. The proof is by induction on the length of the derivation. We

assume that if there is a shorter derivation of some sequent→ s(a) =

s(b), then we have a derivation of → a = b without rule Inf2.

Assume that we have a simple derivation of a sequent → s(t) =

s(t′) without Inf2. We can by theorem 4.4.8 assume that the deriva-

tion is cut free. Thus, every sequent in the derivation has an empty

antecedent. By lemma 4.4.12 we can assume that all instances of

Sym come directly after arithmetical rules without premises (note

that there are no initial sequents in the derivation because the an-

tecedents are empty).

We consider the form of the derivation. The last rule can be

sRep,Ref, Sym, or Tr.

1. Assume that the last rule of the derivation is sRep. The

premise of the rule is → t = t′ and we can remove the rule and get

the sought derivation.

2. Assume that the last rule is Ref . Then t ≡ t′ and the sequent

→ t = t′ is also derivable with Ref .

3. Assume that the last rule is Sym. Since the premise of Sym is

derived by an arithmetical rule without premises the only possibility

is that this rule is Ref . The case is treated as in case 2.

4. The remaining possibility is that the last rule is derived by Tr.

We trace up in the derivation along the left premise until we reach a

sequent not derived by Tr. The derivation is of the form

→ s(t) = a1 → a1 = a2

→ s(t) = a2
Tr

.... Tr − rules
→ s(t) = an → an = s(t′)

→ s(t) = s(t′)
Tr

(4.4.15)

where n > 1 and the sequent → s(t) = a1 is not derived by Tr.

If one of the other Tr-premises → ai = ai+1 is derived by Tr

→ s(t) = ai

→ ai = a → a = ai+1

→ ai = ai+1

→ s(t) = ai+1
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we can change the order of the Tr-rules without altering the length

of the derivation.

→ s(t) = ai → ai = a

→ s(t) = a → a = ai+1

→ s(t) = ai+1

Hence, we can assume that the derivation is of the form 4.4.15 and

that none of the premises → ai = ai+1 have been derived by Tr.

When a derivation has the form of derivation 4.4.15, then the right

premises of the two consecutive Tr rules are called adjecent.

If some term ai is of the form s(t′′), then the sequent → s(t) = ai
is the sequent → s(t) = s(t′′). We can then alter the order of the

Tr-rules and get a derivation of the same length.

→ s(t) = s(t′′)

→ s(t′′) = ai+1....
→ s(t′′) = an → an = s(t′)

→ s(t′′) = s(t′)

→ s(t) = s(t′)

The derivations of the sequents → s(t) = s(t′′) and → s(t′′) = s(t′)

are shorter and we therefore have derivations of the sequents→ t = t′′

and → t′′ = t′. By Tr we get the sought derivation of → t = t′.

We can now assume that the derivation has the form 4.4.15 and

that no term ai has the form s(t′′). We consider the di�erent possi-

bilities to derive the Tr-premises.

4.1 Assume that one of the premises has been derived by Ref .

We now have a loop in the derivation since the conclusion of the

following Tr is the same as the other premise. We can delete the

rule Tr and get a shorter derivation. Thus, we may assume that no

premise has been derived by Ref .

4.2 Assume that two adjacent Tr-premises have been derived by

the same replacement rule +Rep1,+Rep2, ·Rep1, or ·Rep2 or that

three adjacent Tr-premises have been derived by two instances of the

same replacement rule with one instance of the other replacement
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rule in between. As an example we consider the following derivation.

→ s(t) = a+ b
→ b = c

→ a+ b = a+ c
+Rep2

→ s(t) = a+ c
Tr

→ c = d
→ a+ c = a+ d

+Rep2

→ s(t) = a+ d
Tr

We can then apply Tr on the premises of the replacement rules

and get a shorter derivation.

→ s(t) = a+ b

→ b = c → c = d
→ b = d

Tr

→ a+ b = a+ d
+Rep2

→ s(t) = a+ d
Tr

Thus, we can assume that we at most have two adjacent Tr-

premises derived by +Rep or ·Rep and that these rules have di�erent

indexes.

4.3 Assume that some of the Tr-premises have been derived by

Sym and +Rec0. We consider the rightmost premise derived in this

way. It cannot be the last Tr-premise → an = s(t) since the sequent

is of the form → ai = ai + 0. Thus, the derivation is of the form

→ ai + 0 = ai
+Rec0

→ ai = ai + 0
Sym

→ s(t) = ai + 0
Tr?

→ ai + 0 = b
R

→ s(t) = b
Tr

(4.4.16)

where Tr? indicates that if ai ≡ s(t) we have no rule there, but if

ai 6≡ s(t) we have a Tr-rule there.
RuleR can according to the form of the term be Sym,+Rec0,+Rep1,

or +Rep2 and if the rule is Sym, then the premise can be derived by

·Recs. We consider the di�erent alternatives.

4.3.1 Assume that R is +Rec0. Then b ≡ ai. If ai ≡ s(t), then

we have derived an instance of Ref and if ai 6≡ s(t), then we have a

loop in the derivation with the sequent → s(t) = ai two times. By

eliminating the loop we get a shorter derivation.

4.3.2 Assume that R is +Rep1. Now b ≡ c+ 0 and the derivation
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4.4.16 is

→ ai + 0 = ai
+Rec0

→ ai = ai + 0
Sym

→ s(t) = ai + 0
Tr?

→ ai = c
→ ai + 0 = c+ 0

+Rep1

→ s(t) = c+ 0
Tr

We can transform the derivation into a shorter derivation.

→ ai = c

→ s(t) = c
Tr?

→ c+ 0 = c
+Rec0

→ c = c+ 0
Sym

→ s(t) = c+ 0
Tr

4.3.3 Assume that R is Sym and that the premise of this rule is

derived by ·Recs. Now ai ≡ 0 ·c, b ≡ 0 ·s(c) and the derivation 4.4.16

is

→ s(t) = 0 · c
→ 0 · c + 0 = 0 · c

+Rec0

→ 0 · c = 0 · c + 0
Sym

→ s(t) = 0 · c + 0
Tr

→ 0 · s(c) = 0 · c + 0
·Recs

→ 0 · c + 0 = 0 · s(c)
Sym

→ s(t) = 0 · s(c)
Tr

According to lemma 4.4.13 there is a derivation of the sequent

→ 0 · s(c) = 0 (without rule Inf2). With Tr we get a derivation of

the sequent → s(t) = 0 without Inf2. Thus, applying Inf1 we get a

derivation of the empty sequent without Inf2. This is a contradiction

according to lemma 4.4.11.

4.3.4 Assume that R is +Rep2. Then b ≡ ai + c and we have

another Tr-premise to the right derived by a rule R′. The derivation

4.4.16 is

→ ai + 0 = ai
+Rec0

→ ai = ai + 0
Sym

→ s(t) = ai + 0
Tr?

→ 0 = c
→ ai + 0 = ai + c

+Rep2

→ s(t) = ai + c
Tr

→ ai + c = d
R′

→ s(t) = d
Tr

(4.4.17)

Considering the form of the formula ai + c = d the rule R′ can be

Sym,+Rec0,+Recs, or +Rep1 (note that according to 4.2 the rule

cannot be +Rep2) and if it is Sym, then the Sym-premise can only

be derived by ·Recs. We consider the di�erent possibilities.
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4.3.4.1 Assume that R′ is +Rec0. The derivation is treated as in

case 4.3.1.

4.3.4.2 Assume that R′ is +Recs. Now c ≡ s(e) and d ≡ s(ai+e).
The sequent → 0 = c is then → 0 = s(e). This gives a contradiction

as in case 4.3.3.

4.3.4.3 Assume that R′ is +Rep1. Now d ≡ ai + e and the

derivation 4.4.17 is

→ ai + 0 = ai
+Rec0

→ ai = ai + 0
Sym

→ s(t) = ai + 0
Tr?

→ 0 = c
→ ai + 0 = ai + c

+Rep2

→ s(t) = ai + c
Tr

→ ai = e

→ ai + c = e + c
+Rep1

→ s(t) = e + c
Tr

We can transform the derivation into a shorter derivation.

→ ai = e
→ e+ 0 = e

+Rec0

→ e = e+ 0
Sym

→ ai = e+ 0
Tr

→ 0 = c
→ e+ 0 = e+ c

+Rep2

→ ai = e+ c
Tr

→ s(t) = e+ c
Tr?

4.3.4.4 Assume that R′ is Sym and that the Sym-premise has

been derived by ·Recs. Now ai ≡ c · e, d ≡ c · s(e) and the conclusion

of derivation 4.4.17 is → s(t) = c · s(e). We get a simple derivation

of the sequent → s(t) = 0 without Inf2, since according to lemma

4.4.13 we have a simple derivation of the sequent → 0 · s(e) = 0.

→ s(t) = c · s(e)

→ 0 = c
→ c = 0

Sym

→ c · s(e) = 0 · s(e)
·Rep1

→ s(t) = 0 · s(e)
Tr

→ 0 · s(e) = 0

→ s(t) = 0
Tr

This is a contradiction as in case 4.3.3.

We have now treated all the possibilities of rule R′ and case 4.3.4

is �nished. We have also treated all cases in 4.3 and thus, we can

assume that no Tr-premise in derivation 4.4.15 has been derived by

Sym and +Rec0.

4.4 We consider derivation 4.4.15. The leftmost Tr-premise →
s(t) = a1 can only be derived by Sym and the premise of Sym by
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+Recs. The following Tr-premise can be derived by +Rep1,+Rep2,

Sym, or +Recs and if it is derived by Sym, then the Sym-premise is

derived by ·Recs. We treat the di�erent cases simultaneously, since

the derivation will ultimately have the same form disregarding some

Rep-rules and possible instances of ·Recs. According to case 4.2 we

can only have two adjacent Tr-premises derived by the +Rep-rules.

We assume that we have one premise derived by +Rep1 and one by

+Rep2. The following Tr-premise can be derived by +Recs,+Rec0,

or Sym and ·Recs. If it is derived by +Rec0 we get a contradiction

as in case 4.3.3. We assume that the premise is derived by Sym and

·Recs. The following two premises can be derived by ·Rep1 and ·Rep2
and the next only by ·Recs, because if it is derived by ·Rec0 we have a

contradiction as in case 4.3.3. Again we can have two +Rep-rules and

a number of repetitions of the rules ·Recs, ·Rep1, ·Rep2, ·Recs,+Rep1
and +Rep2. The last Tr-premise is derived by +Recs.

Hence, the derivation has the following form (where we have left

out the sequent arrow and unnecessary parentheses):

a + sb = s(a + b)
+Recs

s(a + b) = a + sb
Sym

a = c
a + sb = c + sb

+Rep1

s(a + b) = c + sb
Tr

sb = d
c + sb = c + d

+Rep2

s(a + b) = c + d
Tr

From the rule ·Recs we have c ≡ d · e.

....
s(a+ b) = c+ d

d · se = c+ d
·Recs

c+ d = d · se
Sym

s(a+ b) = d · se
Tr

d = f

d · se = f · se
·Rep1

s(a+ b) = f · se
Tr

From the rule ·Recs we have g ≡ sh.

....
s(a+ b) = f · se

se = g

f · se = f · g
·Rep2

s(a+ b) = f · g
Tr

f · g = f · h+ f
·Recs

s(a+ b) = f · h+ f
Tr
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.

.

.
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s(a + b) = f · h + f

f · h = c2

f · h + f = c2 + f
+Rep1

s(a + b) = c2 + f
Tr

f = d2

c2 + f = c2 + d2
+Rep2

s(a + b) = c2 + d2
Tr

From the formula s(a+b) = c2 +d2 we can have a repetition of ·Recs
and Rep-rules. If we have n − 1 repetitions, where n > 1, then the

end of the derivation is
....

s(a+ b) = cn + dn cn + dn = s(a2 + b2)
+Recs

s(a+ b) = s(a2 + b2)
Tr

(4.4.18)

Here we have cn ≡ a2 and dn ≡ sb2 and also a2 + b2 ≡ t′.
If in the derivation we have at least one row of the speci�ed rules,

that is, if n > 1, then we show that we can derive ci = ci+1 and

di = di+1. If we don't have all Rep-rules in the derivation, then we

have identities instead of equations and the derivation is shorter.

In the derivation we have subderivations of the formulas di = fi
and fi · hi = ci+1 and we also have the identity ci ≡ di · ei. Since

gi ≡ shi and we have a subderivation of sei = gi, that is sei = shi,

we have by the induction hypothesis a derivation of ei = hi. Thus,

we can construct a derivation of ci = ci+1.

di = fi
di · ei = fi · ei

·Rep1
ei = hi

fi · ei = fi · hi
·Rep2

di · ei = fi · hi
Tr

fi · hi = ci+1

di · ei = ci+1
Tr

On the other hand we get di = di+1 with Tr from di = fi and

fi = di+1.

With Tr we get derivations of c = cn and d = dn. We now

construct a derivation of t = t′, that is a + b = a2 + b2. From the

subderivation of a = c and the derivation of c = cn, we get with Tr

a derivation of a = cn. Since cn ≡ a2 we now have a derivation of

a = a2.

From the subderivation of sb = d and the derivation of d = dn
we get with Tr a derivation of sb = dn. Since dn ≡ sb2 we have a
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derivation of sb = sbn and this derivation is shorter. According to

the induction hypothesis we have a derivation of b = bn. We now get

the sought derivation

a = a2
a+ b = a2 + b

+Rep1
b = b2

a2 + b = a2 + b2
+Rep2

a+ b = a2 + b2
Tr

Hence, we have treated case 4.4 and also case 4 is �nished.

4.4.19 Lemma. If there is a simple derivation of the sequent → t =

t′, then there is a derivation of the same sequent without rule Inf2

Proof. Assume that the sequent→ t = t′ is derivable with at least one

instance of Inf2 in the derivation. Then take an uppermost instance

of Inf2. The premise of this rule is → s(u) = s(v). According to

lemma 4.4.14 the conclusion of the rule→ u = v is derivable without

Inf2. Thus, we can replace the subderivation with this derivation

without Inf2. In this way we can remove every instance of Inf2 in

the derivation.

4.4.20 Lemma. There is no simple derivation of the empty sequent.

Proof. Assume that we have a simple derivation of the empty se-

quent. According to theorem 4.4.8 there is a cut-free derivation of

the sequent. The last rule of this derivation must be Inf1 with a

premise → s(t) = 0 because all other rules give as the conclusion a

sequent with a formula in the succedent. According to lemma 4.4.19

the premise is derivable without Inf2. Therefore, we also have a

derivation of the empty sequent without Inf2. This is a contradic-

tion according to lemma 4.4.11 and thus, there cannot be any simple

derivation of the empty sequent.

Gentzen and Takeuti use semantical arguments in their proofs of

this lemma, while we managed to complete the proof using purely

proof-theoretical means. Takeuti proves that there is either a false

formula in the antecedent of a sequent in a simple proof or a true

formula in the succedent. He needs these semantical arguments be-

cause he has arbitrary initial sequents in his system only speci�ed

by the requirement that they have a true atomic formula with closed
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terms in the succedent or a false formula in the antecedent. We man-

aged to abolish the semantical arguments of the lemma through our

formulation of the system HA.

4.4.5 The reduction procedure for derivations

We can now begin to describe the actual reduction procedure for

derivations of the empty sequent. The main idea of the proof is that

we �rst substitute free variables in the derivation. Then according to

the form of the derivation we convert inductions or cuts on compound

formulas with predecessors in arithmetical rules or initial sequents.

If this is not possible, then we have a so-called suitable cut. If we

have a suitable cut, then we can introduce cuts on formulas of a

lower grade. The problematic case is that if there are contractions on

the cut formula we cannot directly convert the suitable cut into cuts

on formulas of lower grade. The problem is solved by the so-called

height lines that are permuted up in the derivation by introducing

additional cuts on formulas of lower grade, lowering the ordinal of

the derivation.

4.4.21 Lemma (Reduction Procedure). If P is a derivation of the

empty sequent → in which the arithmetical rules are applied before

the logical and structural rules, then there exists a derivation P ′ of

the empty sequent such that o(P ′) < o(P ).

Proof. The proof describes a reduction procedure where a derivation

P is transformed into a derivation P ′ with a lower ordinal. The

reduction consists of several steps, which are performed as many times

as possible before proceeding to the next step and the reduction ends

when a derivation with a lower ordinal is reached.

Let P be a derivation of the empty sequent →. We may assume

that the eigenvariables of the rules are di�erent and that an eigen-

variable occurs only above the rule in the derivation.

Step 1. If there are any free variables in the derivation that

are not eigenvariables, we substitute them with the constant 0. The

derivation that results from this process is also a valid derivation of

the empty sequent and it has the same ordinal as P .

Step 2. If the end-piece of P contains an induction, then we

perform the following reduction. Assume I to be one of the last
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inductions of the derivation.

....
Γ1

µ1→ A(0)

P0(x)
....

A(x),Γ2
µ2→ A(sx)

....
A(t),Γ3

µ3→ D (l)

Γ1−3 → D (k)
I

....→

Here P0(x) is the subderivation ending with A(x),Γ2 → A(sx) and S

is the sequent Γ1−3 → D. The premises of I all have the same height,

l. Let k be the height of the conclusion of the rule and let µi, where

i = 1, 2, 3, be the ordinals of the premises. Now the conclusion has

the ordinal o(Γ1−3 → D;P ) = ωl−k+1(µ1#µ2#µ3).

The term t in the third premise of the rule does not contain any

free variable since they were substituted in step 1. Neither does t

contain any eigenvariables because I is the last rule with an eigen-

variable in the derivation. Thus, t is a closed term and there exists a

number n, for which the sequent → t = n is derivable without induc-

tions or cuts (this according to lemma 4.4.6(i)). Therefore, we have

a derivation, Q, of the sequent A(n)→ A(t) also without inductions

or cuts. This according to lemma 4.4.6(iv).

The derivation P can now be reduced to P ′ according to the

following principle if n > 0. If n equals 0 the corresponding reduction

is used but no contractions are needed and instead the missing context

Γ2 is added in the derivation.) Let P0(m) be the derivation that

results from P0(x) when every occurrence of x is substituted with m

and let Π be the derivation:

....
Γ1 → A(0)

P0(0)
....

A(0),Γ2 → A(s0)

Γ1,Γ2 → A(s0)
Cut

P0(1)
....

A(s0),Γ2 → A(ss0)

Γ1,Γ
2
2 → A(ss0)

Cut

....
Γ1,Γ

n
2 → A(n)

We reduce P to the following derivation P ′ where Π is a sub-
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derivation:

Π....
Γ1,Γ

n
2 → A(n)

Q
....

A(n)→ A(t)

Γ1,Γ
n
2 → A(t)

Cut

....
A(t),Γ3 → D

Γ1,Γ
n
2 ,Γ3 → D

Cut

.... Contractions

Γ1−3 → D
....→

All cuts shown in Π and P ′ are on formulas of the same grade,

so all cut premises have the same height l. Therefore, the ordinals

of the premises of the �rst cut in Π are o(Γ1 → A(0);P ′) = µ1 and

o(A(0),Γ2 → A(s0);P ′) = µ2. The ordinal of the conclusion, S′1, is

then o(S′1) = ωl−l(µ1#µ2) = µ1#µ2. The conclusion of the second

cut, S′2, then has the ordinal o(S′3) = µ1#µ2#µ2 and so on. If we

write µ ∗m = µ#µ# . . .#µ(m times) we get o(S′m) = µ1#(µ2 ∗m)

for every m = 1, . . . , n. If we denote the ordinal of Q by q, we

have o(A(n) → A(t)) = q < ω because Q does not contain any

inductions or cuts. Because each of the ordinals µ1, µ2 ∗ n, q, and
µ3 are less than ωµ1#µ2#µ3 , the sum is also less, that is we have

the inequality µ1#(µ2 ∗ n)#q#µ3 < ωµ1#µ2#µ3 . From this follows

that o(S;P ′) = ωk−l(µ1#(µ2 ∗ n)#q#µ3) < ωl−k+1(µ1#µ2#µ3) =

o(S;P ), that is o(S;P ′) < o(S;P ). According to lemma 4.4.4 we

then have o(P ′) < o(P ).

Thus, if there is an induction in the end-piece we have reduced

the derivation. Otherwise we can assume that the end-piece is free

from inductions.

Step 3. Assume that there is a compound formula E in the end-

piece of the derivation. Let I be the cut in the end-piece where the

formula disappears. No predecessor of the formula in the left cut

premise can be derived by an arithmetical rule that borders on the

end-piece since the formula E has logical structure. Now assume that

a predecessor of the formula in the right cut premise has been derived
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by an arithmetical rule that borders on the end-piece.

....
Γ1 → E

E,Γ′2 → D′
Arithm.

....
E,Γ2 → D (k)

Γ1−2 → D (l)
I

....→

Above the arithmetical rule that borders on the end-piece we have

only other arithmetical rules and initial sequents (this according to

the assumption made in the beginning of the proof.) The formula E

is therefore not principal in any rule above the arithmetical rule and

it cannot be introduced in an initial sequent as the formula on both

sides either, since no succedent of a sequent above the arithmetical

rule can be compound.

Hence, the formula E has been introduced in the context of an

arithmetical rule without premises or in an initial sequent and we can

eliminate the formula and trace down in the derivation deleting the

formula in the context of every arithmetical rule. Thus, the derivation

that results from this process is a derivation of the sequent Γ′2 → D′

that is otherwise similar to the derivation of E,Γ′2 → D′.

We now divide the reduction into two cases depending on whether

we have any contractions on the formula E between the arithmetical

rule that borders on the end-piece and the cut I where the formula

disappears.

Case 1. Assume that there are no contractions on the formula

E between the arithmetical rule and I. We now continue deleting

every occurrence of E and also the cut I, instead adding the missing

context Γ1 in the antecedent. Thus, we have a valid derivation of the

sequent Γ1−2 → D and the derivation P ′ is as follows:

Γ1,Γ
′
2 → D′

Arithm.

....
Γ1−2 → D

....→

Now in order to calculate the ordinal of the new derivation let S
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be a sequent in P above E,Γ2 → D and let S′ be the corresponding

sequent in P ′. We then show by induction on the number of inferences

up to E,Γ2 → D that the following inequality holds

ωk1−k2(o(S;P )) > o(S′;P ′), (4.4.22)

where k1 = h(S;P ) and k2 = h(S′;P ′) and thus k1 > k2.
If S is an initial sequent or the conclusion of an arithmetical rule

without premises, then o(S;P ) = o(S′;P ′) = 1 and the proposition

holds. Now assume that the sequent S has been derived with a rule

and that the claim holds for its premises. If S has been derived with

contraction, the heights and the ordinals of the conclusions S and S′

are the same as for the premises and the proposition holds.

If S has been derived with an arithmetical or logical one-premise

rule then the heights of the conclusions are the same as for the

premises. If we let the ordinals of the premises be α and α′ we get

ωk1−k2(o(S;P )) = ωk1−k2(α+ 1) > ωk1−k2(α). Since the claim holds

for the premises, that is ωk1−k2(α) > α′, we get ωk1−k2(α + 1) > α′

and furthermore, ωk1−k2(α+ 1) > α′ + 1 and the proposition holds.

If S has been derived with an arithmetical or logical two-premise

rule then again the heights of the conclusions are the same as for

the premises. If we let the ordinals of the premises be α, β and

α′, β′ we have the following inequalities for the premises of the rules

ωk1−k2(α) > α′ and ωk1−k2(β) > β′. If k1 = k2, then we get from

the inequalities of the premises α > α′ and β > β′ the inequal-

ity ωk1−k2(o(S;P )) = o(S;P ) = α#β > α′#β′. On the other

hand if k1 > k2, then we get ωk1−k2(α#β) > ωk1−k2(α) > α′ and

ωk1−k2(α#β) > ωk1−k2(β) > β′. This gives ωk1−k2(α#β) > α′#β′

and the proposition holds.

If S has been derived with a cut the premises of which have the

heightm1 and the ordinals α and β and S′ has been derived with a cut

the premises of which have the height m2 and the ordinals α′ and β′,

then we have the following inequalities for the premises ωm1−m2
(α) >

α′ and ωm1−m2(β) > β′. We then get ωk1−k2(o(S;P )) = ωk1−k2
(ωm1−k1(α#β)) = ωm1−k2(α#β) = ωm2−k2(ωm1−m2

(α#β)). Ifm1 =

m2 then from the inequalities of the premises α > α′ and β > β′

we get the inequality ωm2−k2(ωm1−m2(α#β)) = ωm2−k2(α#β) >
ωm2−k2(α′#β′). Ifm1 > m2 then we get ωm1−m2

(α#β) > ωm1−m2
(α)
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> α′ and ωm1−m2(α#β) > ωm1−m2(β) > β′. Thus, we get ωm1−m2

(α#β) > α′#β′ and from this follows that ωm2−k2(ωm1−m2
(α#β)) >

ωm2−k2(α′#β′), that is the proposition holds.

If S has been derived with an Ind the premises of which have the

height m1 and the ordinals α, β and γ and S′ has been derived with

an Ind the premises of which have the height m2 and the ordinals

α′, β′ and γ′ then we have the following inequalities for the premises

ωm1−m2
(α) > α′, ωm1−m2

(β) > β′ and ωm1−m2
(γ) > γ′. We then

have

ωk1−k2(o(S;P )) = ωk1−k2(ωm1−k1+1(α#β#γ))

= ωm1−k2+1(α#β#γ)

= ωm2−k2+1(ωm1−m2
(α#β#γ))

> ωm2−k2+1(α′#β′#γ′) = o(S′;P ′)

Thus, it has been proved that inequality 4.4.22 holds.

Now let S be the sequent E,Γ2 → D and S′ the corresponding

sequent Γ1−2 → D. If we let o(Γ1 → E;P ) = µ1, o(E,Γ2 → D;P ) =

µ2, o(Γ1−2 → D;P ) = ν and o(Γ1−2 → D;P ′) = ν′ and also let

h(Γ1−2 → D;P ) = l and h(E,Γ2 → D;P ) = k, then we have l 6 k

and h(Γ1−2 → D;P ′) = l. From the inequality we get

ωk−l(µ2) > ν′

and from this follows the inequality

ν = ωk−l(µ1#µ2) > ωk−l(µ2) > ν′.

According to lemma 4.4.4 we can conclude that o(P ) > o(P ′).

Case 2. Assume that there is at least one contraction on the

formula E between the arithmetical rule and I. Let the uppermost

contraction be I ′. Recall that we have a derivation of the sequent

Γ′2 → D′ that is otherwise similar to the derivation of E,Γ′2 → D′.

We can now reduce the derivation on the left into the one on the right
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by eliminating the contraction.

E,Γ′2 → D′
Arithm.

....
E,E,Γ′′2 → D′′

E,Γ′′2 → D′′
I′

....
E,Γ2 → D

....

 

Γ′2 → D′
Arithm.

....
E,Γ′′2 → D′′

....
E,Γ2 → D

....

In this reduction the ordinal is preserved and o(P ) = o(P ′). We

now repeat step 3 if we can or continue with step 4 and assume that

compound formulas in the end-piece of P do not have predecessors

in arithmetical rules that border on the end-piece. Therefore, these

formulas must have predecessors in initial sequents or logical rules

that border on the end-piece.

Step 4. Assume that the end-piece contains an initial sequent

D,Γ → D. Since the end-sequent is empty both formulas D (or

rather descendants of both formulas) must disappear through cuts.

Assume that the D in the antecedent is the �rst formula to disappear

in a cut (the other case is similar). The derivation P now has the

form

....
Γ1 → D

D,Γ→ D
....

D,Γ2 → D

Γ1−2 → D
Cut

....→
We can reduce P into a derivation P ′ where the cut has been elim-

inated by adding the missing context Γ2 in the antecedent of the

derivation of the left premise.

Since both D's from the sequent D,Γ → D disappear through

cuts, we have a cut on the other D in the succedent below the sequent

Γ1−2 → D. Therefore, the heights of the sequents remain unchanged,

while the ordinal of the subderivation ending with Γ1−2 → D de-

creases. Thus, we get o(P ′) < o(P ) by lemma 4.4.4.

We can now proceed to step 5 and can assume that the end-piece

does not contain any initial sequents but only cuts and contractions.
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Step 5. To continue the reduction procedure we consider the

compound cut formulas of the end-piece. We want to diminish the

ordinal of the derivation by introducing cuts on shorter formulas. For

this we need a suitable cut in the end-piece.

4.4.23 De�nition. A cut in the end-piece of a derivation is a suit-

able cut if both copies of the cut formula have predecessors that are

principal in logical rules that border on the end-piece.

4.4.24 Sublemma. Assume that a derivation P ful�lls the following

requirements:

1. the end-piece of P contains at least one cut on a compound

formula.

2. In every cut on a compound formula in the end-piece each copy

of the cut formula has a predecessor in the conclusion of a logical

rule that borders on the end-piece.

3. The principal formula of the logical rule mentioned in point (2)

has a descendant that disappears through a cut in the end-piece.

Then P has a suitable cut.

Proof. The proof is an induction on the number of cuts on compound

cut formulas in the end-piece.

In the end-piece of P there is at least one cut on a compound

formula according to point (1). If there is only one cut, then the cut

formulas of both premises have a predecessor in a logical rule border-

ing on the end-piece according to point (2). If the principal formula

of the rule was not the predecessor of the cut formula, then, according

to point (3), it would have to disappear through another cut in the

end-piece. Thus, the principal formula has to be the predecessor of

the only cut and we have a suitable cut.

Now assume that P has n cuts on compound formulas in the

end-piece. As induction hypothesis we have that any derivation with

fewer such cuts has a suitable cut, provided that the derivation ful�ls

the stipulated requirements. Let I be the last of the cuts on some
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compound formula, D.

P1....
Γ1 → D

P2....
D,Γ2 → E

Γ1−2 → E
I

If I is a suitable cut the proposition is proved. Therefore, we assume

that I is not a suitable cut. Both cut formulas of the premises have,

according to point (2) a predecessor in the conclusion of a logical

rule bordering on the end-piece. Since the cut is not a suitable cut a

predecessor of one D is not principal in one of the logical rules. We

may assume that this is the case for the D in the premise Γ1 → D.

According to point (3) a descendant of the principal formula in the

logical rule disappears through a cut. If this cut was I, then the

principal formula would be D, but then I would be a suitable cut.

Therefore, there must be another cut on a compound formula and

this cut is above I in P1 since I was the last cut. Thus, P1 satis�es

point (1). P1 also inherits property (2) from P . None of the principal

formulas in the logical rules bordering on the end-piece can disappear

through the cut I, since that would make I a suitable cut, therefore

the cuts must be in P1 and P1 ful�lls criterion (3). With that, the

subderivation P1 ful�lls all three requirements and according to the

induction hypothesis has a suitable cut. This is also a suitable cut of

the derivation P .

We now continue to consider the derivation P of the empty se-

quent. If the derivation P contained only atomic formulas, then any

instances of Ind would be in the end-piece, but this is not possible

since these were reduced in step 2. Hence, the derivation P contains

a compound formula, for otherwise the derivation would be simple

which is impossible according to lemma 4.4.20. Since the end-sequent

is empty and the end-piece does not contain any instances of Ind all

formulas in the end-piece must disappear through cuts. At least one

of these formulas has logical structure. The derivation P therefore

satis�es the �rst criterion in sublemma 4.4.24. Assume that D is

a compound formula that disappears though a cut in the end-piece.

The formula D cannot have a predecessor in an arithmetical rule that

borders on the end-piece, since these were treated in step 3. Neither
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can a predecessor of D have been introduced in an initial sequent in

the end-piece, since these were treated in step 4. The only remaining

possibility is that the formula has a predecessor in the conclusion of

a logical rule bordering on the end-piece. This means that P satis�es

the second criterion in sublemma 4.4.24. From the fact that the end-

sequent is empty and that there are no inductions in the end-piece

we draw the conclusion that P satis�es the third criterion in lemma

4.4.24. Therefore, P ful�lls all the requirements of the sublemma and

P contains a suitable cut.

Now consider the lowermost suitable cut I and perform the fol-

lowing reduction according to the form of the cut formula.

Case 1. Assume that the cut formula of the last suitable cut is

a conjunction B&C. Now P has the form

....
Γ′′1 → B

....
Γ′′′1 → C

Γ′1 → B&C
R&

....
Γ1

µ→ B&C

....
B,C,Γ′2 → D′

B&C,Γ′2 → D′
L&

....
B&C,Γ2

ν→ D (l)

Γ1−2 → D
I

....

Θ
λ→ E (k)

....→

where Γ′1 = Γ′′1 ,Γ
′′′
1 and Θ→ E is the �rst sequent below I that has

a lower height than the premises of the cut. Such a sequent exists

because the height of the end-sequent is 0 while the cut premises have

a height of at least 1. Let l be the height of the premises of the cut I

and let h(Θ→ E;P ) = k. Then we have k < l. The sequent Θ→ E

must be the conclusion of a cut since the end-piece only contains

contractions and cuts and the conclusion of a contraction has the

same height as the premise. Furthermore, we let o(Γ1 → B&C) =

µ, o(B&C,Γ2 → D) = ν and o(Θ→ E) = λ.

In the derivation of B,C,Γ′2 → D′ we can add the formula B&C in

the context and get a derivation of the sequent B&C,B,C,Γ′2 → D′.
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Now let P3 be the following derivation:

....
Γ1

µ3→ B&C

....
B&C,B,C,Γ′2 → D′

....
B&C,B,C,Γ2

ν3→ D

B,C,Γ1−2 → D
J3

....
B,C,Θ→ E

We take the derivation of Γ′′1 → B and instead of applying a

right conjunction rule we add the missing formulas Γ′′′1 in the context

and get a derivation of the sequent Γ′1 → B. Then we apply the

cuts and contractions above the left premise of the cut J3 shown

in P3 (this is possible because the descendant of the conjunction in

the succedent disappears through the cut J3 and therefore cannot be

principal in another rule above the cut.) Hence, we have constructed

a derivation of the sequent Γ1 → B. We again instead of applying the

cut J3 add the missing context Γ2 and get a derivation of Γ1−2 → B.

After this we continue with the same rules as below P3 applying the

same rules on the same formulas if we have a contraction or a cut

on formulas in the antecedent. If we on the other hand in P3 have

a cut on the formula in the succedent (that is a cut on the formula

in P3 that has been replaced by the formula B in the constructed

derivation) we instead of applying the cut add the missing context in

the antecedent of the sequent. Thus, we get a valid derivation of the

sequent Θ → B and we call this derivation P1. Correspondingly we

construct a derivation of the sequent Θ→ C from the derivation P3

and call this derivation P2.
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We now compose the three derivations into the derivation P ′:

P1....

Θ
λ1→ B

P2....

Θ
λ2→ C

P3....

B,C,Θ
λ3→ E (m2)

B,Θ2 → E (m1)
Cut

Θ3 λ0→ E (k)
Cut

.... contractions

Θ→ E....→

Let m1 be the height of the premises of the cut on the formula B

and let m2 be the height of the premises of the cut on the formula C.

The premises of the cut J3 in P ′ have the height l because all cuts

below the premises of the cut I also occur below J3. And both added

cuts have a lower grade than the cut formula B&C. Furthermore, we

have that h(Θ3 → E;P ′) = k.

Assume that the grade of B is higher than or equal to the grade

of C (otherwise we may exchange the order of the two cuts). Now we

have m1 = m2. If k is higher than the grade of B (and the grade of

C), then we have that k = m1 = m2 and if not m1 equals the grade

of B. In both cases we have k 6 m1.

Let

λ0 = o(Θ3 → E;P ′)

λ1 = o(Θ→ B;P ′)

λ2 = o(Θ→ C;P ′)

λ3 = o(B,C,Θ→ E;P ′)

µ3 = o(Γ1 → B&C;P ′)

ν3 = o(B&C,B,C,Γ2 → D;P ′)

Then we have that ν3 < ν since the heights of the sequents above

remain unchanged and a logical rule has been removed. Furthermore,

we have that µ3 = µ.

Now let
S′1 S′2
S′

J′
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be an arbitrary rule between J3 and the sequent B,C,Θ→ E in the

subderivation P3 of P ′ and let

S1 S2

S
J

be the corresponding rule between I and Θ→ E in P . Let
α′1 = o(S′1;P ′) α′2 = o(S′2;P ′) α′ = o(S′;P ′)

α1 = o(S1;P ) α2 = o(S2;P ) α = o(S;P )

k1 = h(S′1;P ) = h(S′2;P ′) k2 = h(S′;P ′)
Then we have that α = α1#α2 if S

′ is not the sequent B,C,Θ→
E and α = ωl−k(α1#α2) if S′ is the sequent B,C,Θ → E. On the

other hand we have that α′ = ωk1−k2(α′1#α′2).

We show by induction on the number of inferences between J3
and S′ that

α′ < ωl−k2(α) (4.4.25)

if S′ is not the sequent B,C,Θ→ E.

If J ′ is J3 then we have that

α′ = ωl−k2(µ3#ν3) < ωl−k2(µ#ν) = ωl−k2(α)

because µ3 = µ and ν3 < ν.

If we assume that the inequality holds for the premises of J ′, that

is α′1 < ωl−k1(α1) and α′2 < ωl−k1(α2) then we get that α′1#α′2 is less

than ωl−k1(α1)#ωl−k1(α2), this implies that α′1#α′2 < ωl−k1(α1#α2).

From this follows that the inequality holds for the conclusion, because

we have

α′ = ωk1−k2(α′1#α′2) < ωk1−k2(ωl−k1(α1#α2))

= ωl−k2(α1#α2) = ωl−k2(α).

Thus, it is proved that the inequality 4.4.25 holds.

The inequality 4.4.25 holds for the premises of the cut that gives

the sequent B,C,Θ → E. The premises have the height l = k2
and if we denote the ordinals of the premises α′1 and α′2 and for the

corresponding premises in P , α1 and α2, we get from the inequalities

of the premises that α′1 < ωl−l(α1) = α1 and α′2 < ωl−l(α2) = α2

hold. From this follows that λ3 = ωl−m2
(α′1#α′2) < ωl−m2

(α1#α2) =

ωl−m2
(κ), if we let λ = ωl−k(κ).
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Then remains to calculate corresponding inequalities for the ordi-

nals of the other subderivations P1 and P2. We consider the deriva-

tion P1. There are two possibilities to consider, namely, that the

last cut above the sequent Θ → E in P3 has been eliminated in the

construction of P1 and the possibility that there is a corresponding

cut above the sequent Θ → B in P1. We show that in both cases

λ1 6 λ3.
Assume that there is a corresponding cut in P1. The conclusion of

the cut in P3 has the height m2, the premises have the height l > m2

and the cut formula has the grade l. The cut formula of the cuts

between J3 and the cut in question have a grade lower or equal to

l. Thus, all heights remain unchanged when the cuts are removed in

P1. And we conclude that λ1 6 λ3.
Now, assume for the other case that the last cut above the se-

quent Θ → B has been eliminated. This means that the heights of

the corresponding sequents in P1 and P3 are no longer equal. We

de�ne the notion height di�erence to be able to inductively prove the

inequality we want.

4.4.26 De�nition. Let the premises of a cut or an induction have

the height g and the conclusion the height h. The height di�erence

of the cut or the induction is g − h for the cut and g − h+ 1 for the

induction. The height di�erence between two sequents in a derivation

is the sum of the height di�erences for all cuts and inductions between

the two sequents.

The height di�erence between two sequents is equal to the height

of the uppermost sequent, minus the height of the lowermost sequent,

plus the number of inductions between the sequents.

Let S be a sequent in P3 with the ordinal α and S′ the corre-

sponding sequent in P1 with the ordinal α′. We show by induction

that

α′ 6 ωh−h′(α) (4.4.27)

where h is the height di�erence between S and the conclusion of the

subderivation P3, that is B,C,Θ→ E and h′ is the height di�erence

between S′ and the conclusion of the subderivation P1, that is Θ→ B.

The expression is well de�ned if h > h′. The sequents B,C,Θ→
E and Θ → B have the same height m1 = m2 and the number of
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inductions between S and B,C,Θ→ E and between S′ and Θ→ B

is the same. Since the cut formulas below S′ also occur below S we

have that the height of S is greater or equal to the height of S′. This

means that h > h′ and the expression is well de�ned. We can now

proceed to proving the inequality 4.4.27.

If S is an initial sequent or the conclusion of an arithmetical rule

without premises, then α′ = α = 1 and the inequality holds regardless

of the size of h− h′.
Assume that the inequality holds for the premise of a one-premise

rule. Let the height di�erence under the premise in P3 be h and in P1

h′ and let the ordinals of the premises be α and α′ respectively. The

height di�erences under the conclusions are the same. If the rule is

a contraction the inequality of the premises is preserved. If the rule

is logical or arithmetical then we get α′ 6 ωh−h′(α) < ωh−h′(α + 1)

and from this α′ + 1 6 ωh−h′(α+ 1).

Assume that the inequality holds for the premises of a two-premise

arithmetical or logical rule, that is α′1 6 ωh−h′(α1) and α′2 6 ωh−h′(α2)

hold. Here α1 and α2 are the ordinals of the premises in P3 and α
′
1 and

α′2 are the ordinals of the premises in P1. The height di�erences un-

der the premises, h and h′, are the same as under the conclusion. We

then get α′ = α′1#α′2 6 ωh−h′(α1)#ωh−h′(α2) 6 ωh−h′(α1#α2) =

ωh−h′(α).

Assume that the inequality holds for the premises of a cut in P3,

that is α′1 6 ωh−h′(α1) and α′2 6 ωh−h′(α2) hold. If the cut has been

eliminated in P1, then S
′ has the ordinal α′1. Let the height di�erence

of the cut be g in P3. Now the height di�erence under S is h − g
and we get the inequality α′ = α′1 6 ωh−h′(α1) < ωh−h′(α1#α2) =

ω(h−g)−h′(ωg(α1#α2)) = ω(h−g)−h′(α). On the other hand if the

cut also occurs in P1, in other words if it has not been eliminated,

we let the height di�erence in P1 be g′. Now the height di�erence

under S is h − g and under S′ h′ − g′ and we get the inequality

for the conclusion α′ = ωg′(α
′
1#α′2) 6 ωg′(ωh−h′(α1)#ωh−h′(α2)) 6

ωg′(ωh−h′(α1#α2)) = ωg′+h−h′−g(ωg(α1#α2)) = ω(h−g)−(h′−g′)(α).

Lastly assume that the inequality holds for the premises of an

instance of Ind, that is α′1 6 ωh−h′(α1), α′2 6 ωh−h′(α2) and α′3 6
ωh−h′(α3). Let the height di�erence for the induction in P1 be g′

and in P3 g. Now the height di�erence under S is h − g and un-
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der S′ h′ − g′ and we get the inequality α′ = ωg′(α
′
1#α′2#α′3) 6

ωg′(ωh−h′(α1)#ωh−h′(α2)#ωh−h′(α3)) 6 ωg′(ωh−h′(α1#α2#α3)) =

ωg′+h−h′−g(ωg(α1#α2#α3)) = ω(h−g)−(h′−g′)(α).

Thus, it has been proved that the inequality holds. Now let S

be the sequent B,C,Θ → E and S′ the sequent Θ → B. Then the

height di�erences h and h′ are 0 and we get λ1 6 ωh−h′(λ3) = λ3.

Regardless of the last cut has been eliminated, we thus have λ1 6
λ3. Correspondingly we get λ2 6 λ3. Using the inequality λ3 <

ωl−m2
(κ) and the fact that m1 = m2 we then get λ1#λ2#λ3 <

ωl−m1
(κ), since l > m1. Furthermore, we get that λ0 = ωm1−k(λ1#

(ωm2−m1(λ2#λ3))) = ωm1−k(λ1#λ2#λ3) < ωm1−k(ωl−m1(κ))

= ωl−k(κ) = λ.

From the inequality λ0 < λ we get, according to lemma 4.4.4,

that o(P ) > o(P ′).

Case 2. Assume that the cut formula of the last suitable cut is

∀xB(x). The derivation P then has the form

....
Γ′1 → B(y/x)

Γ′1 → ∀xB(x)
R∀

....
Γ1 → ∀xB(x)

....
B(t/x),Γ′2 → D′

∀xB(x),Γ′2 → D′
L∀

....
∀xB(x),Γ2 → D

Γ1−2 → D
I

....
Θ→ E....→

where the sequent Θ→ E is de�ned in the same way as in case 1.

From the derivation of the sequent B(t/x),Γ′2 → D′2 we get a

derivation of the sequent ∀xB(x), B(t/x),Γ′2 → D′2 by adding a for-
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mula in the context. Let P2 be the following derivation:

....
Γ1 → ∀xB(x)

....
∀xB(x), B(t/x),Γ′2 → D′

....
∀xB(x), B(t/x),Γ2 → D

B(t/x),Γ1−2 → D
J2

....
B(t/x),Θ→ E

We can get a derivation of the sequent Γ′1 → B(t/x) from the

derivation of Γ′1 → B(y/x) by substituting y with t. We then ap-

ply the rules between the logical rule and J2 in P2 to the sequent

Γ′1 → B(t/x) (this is possible because the quanti�ed formula in the

succedent of the sequents in P2 is not principal in any rule above the

cut J2). We now have a derivation of the sequent Γ1 → B(t/x) and

can instead of applying the cut add the missing context in the an-

tecedent and get a derivation of Γ1−2 → B(t/x). Then we apply the

cuts and contractions below the cut J2 on formulas in the antecedent.

If we have a cut on the succedent, that is on the formula that has

been replaced with B(t/x), we just add the missing context in the

antecedent and eliminate the cut. Thus, we obtain a valid derivation

of the sequent Θ→ B(t/x) and we call this derivation P1.

Now we can join the two derivations together into one derivation

P ′
P1....

Θ→ B(t/x)

P2....
B(t/x),Θ→ E

Θ2 → E
Cut

.... contractions

Θ→ E....→

The ordinal calculations are similar to the ones in case 1 and for the

other cases of cut formulas the proofs are also similar.

Thus, we have reduced the derivation P into a derivation P ′ with

a lower ordinal and the proof of lemma 4.4.21 is �nished. We can

conclude that the derivation P ′ also ful�lls the requirement that all
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arithmetical rules are applied before the logical and structural rules.

This makes it possible to repeat the reduction and get a sequence of

decreasing ordinals.

With the proof of the reduction procedure �nished we also have

a proof of the consistency theorem 4.4.2.

Some of the essential features of our proof are: Cut elimination is

proved directly, without Gentzen's rule of multicut; The arithmetical

axioms are treated purely syntactically; all rules with several premises

have independent contexts and no rule of weakening is used. It is

hoped that a comparison of our proof with Gentzen's notes in his

series BTJZ will be helpful in the understanding of Gentzen's work

on the consistency of intuitionistic arithmetic. There are still only

fragmentary translations of these notes, but the problem seems to

have been contraction and thereby the multiplication of certain parts

of the derivations in the reductions.

Finally, because of the close connection between an intuitionistic

sequent calculus with independent contexts and natural deduction,

proof presented in this chapter is a useful step towards the proof in

natural deduction. However, it will be shown in chapter 5 that the

ordinal assignment of the natural deduction system requires special

treatment. The ordinal assignment di�ers completely, due to the

fact that the cut rule places sequents beside each other, whereas the

composition of derivations in natural deduction stores subderivations

on top of each other.



Chapter 5

Consistency of Heyting

arithmetic in natural

deduction

This is the pre-peer reviewed version of the following article:

A. Kanckos, Consistency of Heyting Arithmetic in Natural

Deduction. Mathematical Logic Quarterly, vol. 56 (2010),

no. 6, pp. 611� 624.

The earliest proofs of the consistency of Peano arithmetic were

presented by Gentzen. Since the publication of Gentzen's proof in

sequent calculus, the conducting of the consistency proof in standard

natural deduction has been an open problem. The aim of this chap-

ter is to solve this problem by giving a consistency proof in natural

deduction for Heyting arithmetic. The result is based on a normal-

ization proof by Howard [11].

The present consistency proof is performed in the manner of

Gentzen, by giving a reduction procedure for derivations of falsity.

The procedure is appended with the assignment of a vector to each

derivation and it is shown that the reduction reduces the �rst compo-

nent. This component can be interpreted as an ordinal less than ε0,

thus ordering the derivations by complexity and proving termination

of the process. To prove consistency it needs to be established that
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no derivation of the simplest kind exists. An important initial task

is then to examine how natural deduction can be extended into an

arithmetical system.

5.1 Logical calculus

The following rules constitute the standard calculus of intuitionistic

natural deduction. Negation is a de�ned concept with ¬A ≡ A ⊃ ⊥.

⊥
C
⊥E

A B
A&B

&I
A&B
A

&E
A&B
B

&E

A
A ∨B ∨I

B
A ∨B ∨I

A ∨B

[A]
....
C

[B]
....
C

C
∨E

[A]
....
B

A ⊃ B ⊃I
A ⊃ B A

B
⊃E

A(y/x)

∀xA ∀I
∀xA
A(t/x)

∀E

A(t/x)

∃xA(x)
∃I

∃xA(x)

[A(y/x)]
....
C

C
∃E

In the formula denoted by A(t/x) every occurrence of the variable

x in A(x) has been substituted with the term t. The standard variable

restriction holds in the rules ∀I and ∃E: the eigenvariable y must not
be free in the conclusion of the rule, nor in any assumption that the
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conclusion depends on, except for the discarded assumption A(y/x)

in the existential rule. The premise with logical structure, which

is eliminated in the conclusion of an elimination rule, is the major

premise of the rule. The other premises are minor premises.

5.2 Arithmetical rules and induction

As mentioned in the paper by Negri and von Plato [21], it is possible

to convert the rules of sequent calculus into non-logical introduction

and elimination rules of natural deduction.

Rules for the equality relation:

t = t
Ref

t = t′

t′ = t
Sym

t = t′ t′ = t′′

t = t′′
Tr

Recursion rules:

t+ 0 = t
+Rec0

t+ s(t′) = s(t+ t′)
+Recs

t · 0 = 0
·Rec0

t · s(t′) = t · t′ + t
·Recs

Replacement rules:

t = t′

s(t) = s(t′)
sRep

t = t′

t+ t′′ = t′ + t′′
+Rep

t′ = t′′

t+ t′ = t+ t′′
+Rep

t = t′

t · t′′ = t′ · t′′
·Rep t′ = t′′

t · t′ = t · t′′
·Rep

In�nity rules:

s(t) = 0

⊥
Inf1

s(t) = s(t′)

t = t′
Inf2
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Induction rule:

A(0/x)

[A(y/x)]
....

A(sy/x)

A(t/x)
Ind

The eigenvariable y of the induction rule obeys the standard variable

restriction and the induction formula A is arbitrary.

Although the system is intuitionistic it is possible to derive the

law of excluded middle for atomic formulas, ∀x∀y(x = y ∨ ¬x = y),

by the induction rule. Therefore, the formula A∨¬A can be derived

for an arbitrary quanti�er-free formula A.

5.2.1 De�nition. A purely arithmetical derivation is a derivation

where only arithmetical rules occur. (Induction is not included among

the arithmetical rules.)

5.3 Properties of arithmetical derivations

The overall aim of Gentzen-style consistency proofs is to reduce com-

plex derivations of a contradiction to simpler derivations. Therefore,

a natural starting point is to consider the most elementary kind of

derivations. The primary goal is to prove consistency for these purely

arithmetical derivations.

5.3.1 Lemma. (i) For a closed term t there exists a unique nu-

meral m, for which there is a purely arithmetical derivation of

t = m.

(ii) Let t and t′ be closed terms and assume that there is a purely

arithmetical derivation of the formula t = t′. Then there is a

purely arithmetical derivation of the formula q(t/x) = q(t′/x)

for an arbitrary term q(x).

(iii) Let t and t′ be closed terms and assume that there is a purely

arithmetical derivation of the formula t = t′. Then for arbitrary

terms q(x) and r(x) there is a purely arithmetical derivation of

q(t′/x) = r(t′/x) from the open assumption q(t/x) = r(t/x).
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(iv) Let t and t′ be closed terms and assume that there is a purely

arithmetical derivation of the formula t = t′. Then for an ar-

bitrary formula A the formula A(t/x) ⊃ A(t′/x) can be derived

without Ind.

Proof. The proof of (i)-(iii) is by induction on the complexity of the

term and the proof of (iv) is by induction on the complexity of the

formula A. By proving that there is a derivation of A(t′) from the

open assumption A(t) a proof of (iv) is obtained through a �nal

implication introduction. If A is an atomic formula, then the claim

is proved in (iii). For the inductive step it is assumed that formula

A is a compound formula. Assuming that A is a conjunction B&C,

the following derivation may be constructed:

[B(t)&C(t)]

B(t)
&E

....
B(t′)

[B(t)&C(t)]

C(t)
&E

....
C(t′)

B(t′)&C(t′)
&I

(B(t)&C(t)) ⊃ (B(t′)&C(t′))
⊃I

The other cases are similar.

5.3.2 Lemma. There is no purely arithmetical derivation of falsity.

Proof. By the uniqueness of the numeral equal to a term, the premise

of rule Inf1 cannot be derived without open assumptions. Therefore,

it is not possible to derive falsity.

5.4 Assignment of vectors to derivations

The normalization proof of Howard [11] provides a unique ordinal as-

signment up to ε0 to terms of Gödel's theory T of primitive recursive

functionals and proves that restricted reductions of the terms reduce

the ordinals. In addition, a non-unique assignment is given for gen-

eral reductions. By the well-ordering of ε0, each reduction sequence

terminates into a normal form, thereby proving strong normalization.
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The unique assignment can be adapted to derivations in natural

deduction. If each derivation is assigned an ordinal number as a mea-

sure of its complexity, then derivations can be ordered aiming for a

proof of termination. The assignment of ordinal numbers to terms

in T is indirect through a vector assignment and an interpretation

of vectors as ordinals. A detour by vectors is needed, because the

length of the vector provides an additional parameter for the calcu-

lations. This parameter is used in the de�nition of two operations

(also originating in Howard's paper) that will provide desired prop-

erties of vectors. The length of the vector assigned to a formula in a

derivation will depend on the complexity of the formula.

5.4.1 De�nition. The level of a formula A, denoted l(A), is induc-

tively de�ned.

1. The level of an atomic formula and falsity is 0.

2. The level of a conjunction A&B is max{l(A), l(B)}.

3. The level of a disjunction A ∨B is max{l(A), l(B)}.

4. The level of an implication A ⊃ B is max{l(A) + 1, l(B)}.

5. The level of a universally quanti�ed formula ∀xA is l(A).

6. The level of an existentially quanti�ed formula ∃xA is l(A).

5.4.1 The theory E
The vectors that will be assigned to derivations and formulas of

derivations are vectors of expressions. These expressions are de-

�ned by introducing an axiomatic theory E of an order relation ≺
on expressions. In section 5.4.3 the expressions of this theory will be

interpreted as ordinals.

5.4.2 De�nition. Expressions are inductively de�ned.

(i) The constants 0, 1 and ω are expressions.

(ii) For all formulas A and all i in N, the variable xAi is an expres-

sion.
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(iii) If f and g are expressions, then f +g and (f, g) are also expres-

sions.

Equality between expressions is treated axiomatically and obeys

re�exivity and the replacement axiom. The weak order relation f 4 g
is de�ned as f ≺ g or f = g and the relation f � g as g ≺ f . The

axioms of the theory E are listed below.

1. If f ≺ g and g ≺ h, then f ≺ h.

2. If f ≺ g, then ¬f = g.

3. f + g = g + f and (f + g) + h = f + (g + h).

4. If f ≺ g, then f + h ≺ g + h.

5. f + g = f if and only if g = 0.

6. 0 4 f and 0 ≺ 1 ≺ ω.

7. If f ≺ ω and g ≺ ω, then f + g ≺ ω.

8. (f, g + h) = (f, g) + (f, h).

9. If g ≺ c and h ≺ c, then (g, f) + (h, f) 4 (c, f).

10. If f ≺ g, then (h, f) ≺ (h, g).

11. If f ≺ g and ¬h = 0, then (f, h) ≺ (g, h).

12. (0, f) = f .

13. (f, (g, h)) = (f + g, h)

If f � 0 and h � 0, then by axioms 12, 11 and 8 the following

inequality holds:

(f, g) + h ≺ (f, g + h) if f � 0 and h � 0. (5.4.3)
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5.4.2 Vectors of expressions

Expressions can be divided into classes, Ci, with the property that

each expression in a class contains no variable that has a lower index

than the class. A class of vectors C can be de�ned by presupposing

that each component of the vector belongs to the corresponding class

of expressions. The vectors in C will be the ones assigned to formulas

in a derivation and two operations, the box- and the delta-operation

acting upon these vectors will shortly be de�ned.

If fi is an expression for each 0 6 i 6 n, then the n+ 1-tuple f =

〈f0, . . . , fn〉 is a vector of length n. For 0 6 i 6 n the expression fi,

also denoted (f)i, is called the ith component of f . For i > length(f),

the component (f)i is de�ned to be 0. Addition of vectors f and g is

done component by component, f + g = 〈f0 + g0, . . . , fn + gn〉 where
n = max{length(f), length(g)}.

Finally, a vector of variables is de�ned for every formula A with

the level l(A) = n, xA = 〈xA0 , . . . , xAn 〉.

5.4.4 De�nition. The classes Ci of expressions are de�ned by four

clauses.

(i) If the expression h contains no variables, then h is in Ci.

(ii) For every formula A, the variable xAi is in Ci.

(iii) If the expressions f and g are in Ci, then so is f + g.

(iv) If the expression f is in Ci+1 and the expression g is in Ci, then

(f, g) is in Ci.

The class C consists of all vectors h, such that hi is in Ci for 0 6 i 6
length(h).

5.4.5 De�nition. The box-operation of two vectors f�g is de�ned to

be the vector h = 〈h0, . . . , hn〉, where n = max{length(f), length(g)},
such that

hn = fn + gn and

hi = (hi+1, fi + gi) for 0 6 i < n. (5.4.6)
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Note that equation 5.4.6 in fact holds for all 0 6 i 6 n, because

recalling that hi = 0 for all i > max{length(f), length(g)}, and

relying on axiom 12 the component hn can be written as a pair and a

simple calculation gives hi = fn+gn = (0, fn+gn) = (hn+1, fn+gn).

Another noticeable fact is the commutativity of the box-operation

that follows from axiom 3, which states commutativity of addition

on the expressions.

5.4.7 De�nition. The delta-operation on a formula A of an expres-

sion h in ∪Ci, denoted δAh, is a vector in C of length l(A) + 1 that

does not contain any component of the vector xA. The vector is

de�ned when the Ci, to which h belongs, is speci�ed.

1. If h is in Ci and contains no component of xA, then δAh is

the vector of length l(A) + 1, de�ned by (δAh)i = h + 1 and

(δAh)j = 1, when j 6= i and 0 6 j 6 l(A) + 1.

2. If h is xAi , then (δAh)j = 1 for 0 6 j 6 l(A) + 1.

3. If h contains a component of xA and h = f + g, where f and g

are in Ci, then δ
Ah = δAf + δAg.

4. If h contains a component of xA and h = (f, g), where f is in

Ci+1 and g is in Ci, then

(δAh)j = (δAf)j + (δAg)j if 0 6 j 6 l(A) and

(δAh)j = 2(δAf)j + 2(δAg)j + 1 if j = l(A) + 1.

The delta-operation is also de�ned for vectors h = 〈h0, . . . , hn〉 in C.

(δAh)j = (δAh0)j + · · ·+ (δAhn)j if 0 6 j 6 l(A) + 1

and if n > l(A) + 1, then we de�ne

(δAh)j = hj + 1 for l(A) + 1 < j 6 n.

The vector δAh has the length max{l(A) + 1, n}.

By the de�nitions of the operations both are well-de�ned opera-

tions on vectors in C.

5.4.8 Lemma. If f and g are in C, then f�g and δAf are in C.
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5.4.3 Interpretation of E
To �nalize the argument of the consistency proof, expressions of the

theory E are to be interpreted as ordinals. In general, expressions can

be interpreted as functions of the variables contained in them. From

the �rst component of the vector assigned to a derivation a function

is obtained, which applied to a suitable constant, say 0, will give an

ordinal.

The relation a � b is interpreted as a > b and a+ b as the natural

sum a#b. The natural sum of two ordinals a and b represented in

Cantor normal form a = ωa1 +· · ·+ωan and b = ωb1 +· · ·+ωbm , where
a1 > · · · > an and b1 > · · · > bm, is de�ned as a#b = ωc1 + · · · +
ωcn+m , where c1 > · · · > cn+m is a rearrangement of the sequence

a1, . . . , an, b1, . . . , bm. The de�nition of (a, b) is separated into two

cases depending on whether b = 0. The pair (a, 0) is interpreted as

0. On the other hand, assume that b � 0 and represent b in Cantor

normal form to the base 2, b = 2b1 + · · ·+ 2bn , where b1 > · · · > bn.

Then (a, b) is 2c1 + · · · + 2cn , where ci = a#bi and 1 6 i 6 n. The

described interpretation satis�es axioms 1 to 13 of the theory E given
in section 5.4.1.

5.4.4 The vector assignment

After all preparations it is now possible to assign a vector, f , to each

formula, A, in a derivation such that length(f) = l(A) and f is in

C. To increase readability the following notation is introduced: if

f = 〈f0, . . . , fn〉, and g = 〈f0, . . . , fm〉 where m 6 n, then g = (f) �m
is the restricted vector.

5.4.9 De�nition. The vector assigned to a formula in a derivation

is inductively de�ned as follows:

1. An assumption A is assigned the vector xA = 〈xA0 , . . . , xAn 〉,
where n = l(A).

2. The conclusion of an arithmetical rule without premises is as-

signed the vector 〈0〉.

3. The conclusion of a one-premise arithmetical rule has the same

vector as the premise.
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4. If the premises of an instance of Tr or &I are assigned the

vectors f and g, then the conclusion of the rule is assigned the

vector f + g.

5. If the premise of an instance of &E is assigned the vector f ,

then the conclusion of the rule is assigned a vector g, such that

gi = fi + 1, for 0 6 i 6 n, where n is the level of the formula in

the conclusion.

6. If the premise of ∨I is assigned the vector f , then the conclusion

of the rule is assigned the vector g, such that gi = fi + 1, for

0 6 i 6 n, where n is the level of the formula in the conclusion.

7. If the premises of ∨E are assigned the vectors f , g and h, then

the conclusion of the rule is assigned the vector e, such that

ei = (f�(δAg + δBh))i for 0 6 i 6 n, where n is the level of

the formula in the conclusion and A and B are the discarded

assumptions of the rule.

8. If the premise of ⊃ I is assigned the vector f , then the con-

clusion of the rule is assigned the vector δAf , where A is the

discarded assumption of the rule.

9. If the premises of ⊃ E are assigned the vectors f and g, then

the conclusion of the rule is assigned the vector h, such that

hi = (f�g)i for 0 6 i 6 n, where n is the level of the formula

in the conclusion.

10. If the premise of ∀I is assigned the vector f , then the conclusion

of the rule has the same vector.

11. If the premise of ∀E is assigned the vector f , then the conclusion

of the rule is assigned the vector g, such that gi = fi + 1, for

0 6 i 6 length(f).

12. If the premise of ∃I is assigned the vector f , then the conclusion

of the rule has the same vector.

13. If the premises of ∃E are assigned the vectors f and g, then

the conclusion of the rule is assigned the vector h, such that

hi = (f�δA(x)g)i, for 0 6 i 6 n, where n is the level of the
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formula in the conclusion and A(x) is the discarded assumption

of the rule.

14. If the premise of ⊥E is assigned the vector f , then the conclu-

sion of the rule is assigned the vector g, such that gi = fi+1, for

0 6 i 6 n, where n is the level of the formula in the conclusion.

15. If the formula concluded by an instance of Ind is A(t), then

the vector assigned to this formula depends on the term t. Let

f = 〈f0, . . . , fn+1〉, where n = l(A), be the vector assigned to

the derivation of A(m′) ⊃ A(t′) described in lemma 5.3.1(iv)

for some closed term t′ for which t′ = m′ is derivable.

(a) If t is a closed term, then there is a derivation of t = m for

some unique numeral m according to lemma 5.3.1. If the

vectors assigned to the premises of the Ind-rule are h and

g, then the vector of the conclusion of the induction is

((〈f0, . . . , fn+1, 2(m+ 1)〉�δA(x)g) �n+1 �h) �n,

where the length of the vector 〈f0, . . . , fn+1, 2(m + 1)〉 is
n+ 2 = l(A) + 2.

(b) If on the other hand the term t contains a variable, then

the vector of the conclusion of the induction is

((〈f0, . . . , fn+1, ω〉�δA(x)g) �n+1 �h) �n,

where the length of 〈f0, . . . , fn+1, ω〉 is n+ 2 = l(A) + 2.

The vector assigned to the conclusion of a derivation is the vector

assigned to the whole derivation.

Note that the delta-operation is always performed on a vector

when an assumption is discharged in the subderivation to which the

vector is assigned. The performed operation gives a vector not con-

taining the variables assigned to the discarded assumption. There-

fore, a formula derived without open assumptions (i.e. a theorem)

must have a vector assigned to it which do not contain any variables.

In particular, the vector f used in the assignment of vectors to

inductions does not contain any variables. Furthermore, since the
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vector 〈0〉 is assigned to a purely arithmetical derivation without

open assumptions, the vector f does not depend on the term t′, but

only on the logical structure of A and the vector is well-de�ned.

5.5 Reduction procedure

The restricted reductions of [11] with a unique ordinal assignment

correspond to a limitation in choice of the considered reducibility in

the HA-derivation. The reducibility may not be a part of a sub-

derivation that has open assumptions. Since all open assumptions

must be discharged to derive a theorem, there would be an applica-

tion of the delta-operation on the corresponding vector if there were

open assumptions. The problem that arises with these general re-

ductions is that order preservation is not necessarily provable for the

delta-operation. If f ≺ g, then (δAf)i ≺ (δAg)i does not follow in

any obvious way when the expressions f and g di�er in structure and

fall under separate clauses in the de�nition of the delta-operation.

However, even if general reductions cannot be treated, a suitable re-

ducibility can be chosen in a derivation of falsity.

5.5.1 Theorem. If there is a derivation of ⊥ to which the vector f

is assigned, then there is a derivation of ⊥ to which the vector g is

assigned and f0 � g0.

Proof. Assume that there exists a derivation of ⊥. Reduction steps

are performed on the derivation in a speci�c order, each step is per-

formed as many times as possible before proceeding to the next step.

First step 1 is applied as many times as possible, then step 2 if pos-

sible. If step 2 is not possible, then step 3 may apply and �nally if

no other reduction is possible step 4 is performed.

Step 1. All free variables in the derivation, which are not eigen-

variables, are replaced with the constant 0.

Step 2. If there is an instance of falsity elimination in the deriva-

tion below all instances of introduction rules and inductions and be-

low which there are only arithmetical rules and major premises of

elimination rules, then it is possible to eliminate the rule and the

rest of the derivation below the rule. The new derivation is also a

derivation of falsity, with no open assumptions.
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Step 3. Assume that there is at least one induction below which

there are no introduction rules, only major premises of elimination

rules and arithmetical rules. Consider the lowermost (or rather one

of the lowermost) of these inductions.

....
A(0)

[A(x)]
....

A(sx)

A(t)
Ind

Because there are no introduction rules, and in particular no uni-

versal introduction below the induction and only major premises of

elimination rules, in particular no minor premise of existential elimi-

nation, the formula A(t) cannot contain eigenvariables. Furthermore,

all free variables were replaced in step 1. Therefore, the term t must

be closed and there exists a derivation of t = m for some numeral m

according to lemma 5.3.1(i). The reduction now performed depends

on the numeral m.

Case 1. If m ≡ 0, then according to lemma 5.3.1(iv) there is a

derivation of A(0) ⊃ A(t) without inductions. The reduced derivation

is composed by implication elimination with the �rst premise of the

induction as minor premise.

....
A(0) ⊃ A(t)

....
A(0)

A(t)
⊃E

Case 2. If m ≡ s(m′) for some numeral m′, then according

to lemma 5.3.1(iv) there is a derivation of A(sm′) ⊃ A(t) without

inductions and the following reduction on the derivation is performed:

....
A(sm′) ⊃ A(t)

[A(m′)]
....

A(sm′)

A(m′) ⊃ A(sm′)
⊃I

....
A(0)

[A(x)]
....

A(sx)

A(m′)
Ind

A(sm′)
⊃E

A(t)
⊃E
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The derivation of A(sm′) from A(m′) is the second premise of the

original induction with m′ substituted for x.

Step 4. According to lemma 5.3.2 there is no purely arithmeti-

cal derivation of falsity. Therefore, the derivation must contain an

instance of induction, falsity elimination, or another logical rule. Con-

sider a lowermost instance of such a rule. If it is falsity elimination

or induction, then either step 2 or step 3 applies. Now assume that

we have a logical rule in the derivation. Because the conclusion of

the derivation is not compound, there must be an elimination rule

below each introduction. Hence, it may be assumed that the rule is

an elimination rule. If the major premise of the elimination rule is

the conclusion of another elimination rule, then it is possible to trace

up through the major premises of elimination rules, until a formula

concluded by some other rule is reached. The major premise under

consideration is a compound formula and therefore not concluded by

an arithmetical rule, neither can the formula be a discharged assump-

tion because no rule discharges assumptions above major premises of

elimination rules. Three possibilities remain, each suitable for reduc-

tion: the formula is concluded by falsity elimination, induction or an

introduction rule. In the �rst two cases step 2 or step 3 applies. In

the third case an operational reduction is performed depending on

the outermost logical connective of the formula.

Case 1. If the formula is an implication, then the derivation has

the form:
[A]
....
B

A ⊃ B ⊃I

....
A

B
⊃E

and this is reduced into the following derivation:
....
A....
B

Case 2 to case 5 on conjunctions, disjunctions, universally and

existentially quanti�ed formulas respectively are similar standard de-

tour conversions.
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Thus, in all cases the derivation has been reduced. The vector

calculations associated with the reductions are performed in lemma

5.6.12.

5.6 Vector calculations

Lemmas 5.6.1-5.6.7, stating properties of the box- and delta-operations,

are all proven or simply stated in [11]. The lemmas 5.6.1-5.6.4 are

proven by downward induction on i from the axioms of the theory E .
The expression denoted by f [g/xA] is obtained from the expression f

by substitution of each occurrence of xAi with (g)i. The notation also

applies to vectors f [g/xA], where variable occurrences are replaced

in each component.

5.6.1 Lemma. (f�g)i < fi for all i.

5.6.2 Lemma. Assume that length(f) = length(g) = n and fi < gi
for 0 6 i 6 n, then (f�h)i < (g�h)i for all i.

5.6.3 Lemma. Under the assumption of lemma 5.6.2 and the ad-

ditional assumption fi � gi for 0 6 i 6 k and some k 6 n, the

inequality (f�h)i � (g�h)i holds for 0 6 i 6 k.

Lemma 5.6.3 can be generalized for vectors that di�er in length.

Because if length(f) = n, length(g) = m, n > m and fi � gi for

all i 6 m, then (f�h)i � (〈g0, . . . , gm, 0, . . . , 0〉�h)i = (g�h)i for all

i 6 m.

5.6.4 Lemma. Assume that length(f) = length(g) = n + 1 >

length(h) and fi � 0 and gi � 0 for 0 6 i 6 n + 1. Let c be a

vector such that 2fn+1 + 2gn+1 ≺ cn+1 and fi + gi 4 ci for all i 6 n.
Then

2((f�h)�(g�h))i ≺ (c�h)i for all i 6 n+ 1.

5.6.5 Lemma. Let e be a vector of length l(A) and assume h is in

Ci. Then ((δAh)�e)i � h[e/xA].

Proof. The lemma is proven by induction on the number of times

clauses 3 and 4 in the de�nition of the delta-operation are applied in

δAh. A complete proof is found in [11, Lemma 2.11].
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5.6.6 Corollary. If h is in C and e has length l(A), then ((δAh)�e)i �
(h[e/xA])i for all i 6 length(h).

The next lemma is proven by induction on the length of the deriva-

tion.

5.6.7 Lemma. Assume that there is a derivation of A to which the

vector f is assigned and a derivation of B to which the vector g is

assigned and that A is an open assumption in the latter derivation.

Assume furthermore that no open assumption in the derivation of A

becomes discarded in the derivation of B, where all assumptions A

have been replaced with the derivation of A, then the vector assigned

to this derivation is g[f/xA].

Now the aim becomes to prove that the reduction performed in

step 1, substituting a constant for each free variable, does not increase

the components of the vector.

5.6.8 Lemma. If there is a derivation to which the vector h is as-

signed and another derivation, to which the vector g is assigned, and

the latter derivation is obtained from the former by substituting a

term for a free variable, then hi < gi for 0 6 i 6 length(h).

Proof. The vector assignment is otherwise the same, but for the fact

that some inductions concluding a term with a variable may now

have become inductions with a closed term, which fall under the

�rst clause of the vector assignments to inductions. Assume that

this is the case for some induction. Now, (〈f0, . . . , fn+1, ω〉)i <
(〈f0, . . . , fn+1, 2(m + 1)〉)i for all i. By induction on the number

of times the box- and delta-operations are applied, it is possible to

show that the inequalities are preserved for the components of the

vectors. The induction hypothesis is that hi < h′i and gi < g′i for

all i, and the inductive step gives (h�g)i < (h�g′)i < (h′�g′)i by
lemma 5.6.2.

What remains to be shown is that a similar inequality holds for

the delta-operation, (δAh)i < (δA
′
h′)i, where A

′ comes from A by

substitution of the term for the free variable.

1. If hj contains no component of xA, then h′j contains no com-

ponent of xA′ and (δAhj)j = hj + 1 < h′j + 1 = (δA
′
h′j)j , where
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the inequality follows from the induction hypothesis. The other

components of the vectors δAhj and δ
A′h′j are 1.

2. If hj is xAj , then h
′
j is xA

′

j and the components of the vectors

δAhj and δ
A′h′j are 1.

3. If hj contains a component of xA and hj = u + v, then h′j
contains a component of xA′ and h′j = u′ + v′. Then δAhj =

δAu+ δAv < δA
′
u′ + δAv < δA

′
u′ + δA

′
v′ = δA

′
h′j .

4. If hj contains a component of xA and hj = (u, v), then h′j
contains a component of xA′ and h′j = (u′, v′). The calculations

of the inequalities are similar to those in case 3.

Thus, in all cases (δAhj)i < (δA
′
h′j)i and therefore (δAh)i < (δA

′
h′)i.

The following lemma calculates the vectors of the reduction per-

formed in step 3 (case 2) dealing with the inductions.

5.6.9 Lemma. Let e = ((〈f0, . . . , fn+1, 2m + 4〉�g) �n+1 �h) �n,
and let e′ = ((((〈f0, . . . , fn+1, 2m + 2〉�g) �n+1 �h) �n �g) �n
�f) �n, where f = δAf ′, g = δAg′ and furthermore length(f) =

length(g) = n+ 1 and length(h) = n. Then ei � e′i for 0 6 i 6 n.

Proof. First, the vectors r, t and b are de�ned.

r = (((〈f0, . . . , fn+1, 2m+ 2〉�g) �n+1 �h) �n �g) �n
t = ((〈f0, . . . , fn+1, 2m+ 2〉�g) �n+1 �h) �n
b = (〈f0, . . . , fn+1, 2m+ 2〉�g) �n+1

Let a be the vector of length n+ 1 de�ned as follows: an+1 = gn+1 +

fn+1 + 1 and ai = (ai+1, gi + fi) for 0 6 i 6 n. Relying on these

de�nitions, it is possible to prove that e′i 4 (a�t)i, by downward

induction on i 6 n. In fact, the stronger claim 2e′i ≺ (a�t)i is

proven.

For i = n the equation 2e′n = 2(fn+1, rn+fn) = 2(fn+1, (t�g)n+

fn) = 2(fn+1, (gn+1, tn + gn) + fn) holds. Furthermore, because f =

δAf ′ for some vector f ′, the strict inequality fj < 1 � 0 holds for
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all j 6 n + 1 by the de�nition of the delta-operation. By a similar

argument: gj < 1 � 0 for all j 6 n+ 1.

Thus, by inequality 5.4.3, 2(fn+1, (gn+1, tn + gn) + fn) ≺ 2(fn+1,

(gn+1, tn+gn+fn)). By axiom 13 this equals 2(fn+1+gn+1, tn+gn+

fn). Because also the inequality gn + fn = (0, gn + fn) 4 (an+1, gn +

fn) = an holds, 2(fn+1+gn+1, tn+gn+fn) 4 2(fn+1+gn+1, tn+an).

Using axiom 9 and the fact that fn+1 + gn+1 ≺ an+1 the proof of the

base case is completed by the calculation 2(fn+1 + gn+1, tn + an) 4
(an+1, tn + an) = (a�t)n.

For the inductive step i < n the vector e′ can be analyzed as

follows: 2e′i = 2(e′i+1, ri + fi) = 2(e′i+1, (ri+1,

ti+gi)+fi). Since i < n, ri+1 = (t�g)i+1 < gi+1 < 1 by lemma 5.6.1.

Therefore, it is possible to use inequality 5.4.3 followed by axiom 13

to get 2(e′i+1, (ri+1, ti + gi) + fi) ≺ 2(e′i+1, (ri+1, ti + gi + fi)) =

2(e′i+1 + ri+1, ti + gi + fi). By lemma 5.6.1 ri+1 4 (r�f)i+1 = e′i+1,

which gives ri+1 + e′i+1 4 2e′i+1. By axiom 9 and the induction

hypothesis the inductive step is completed 2(e′i+1 + ri+1, ti + gi +

fi) 4 ((a�t)i+1, ti + gi + fi) 4 ((a�t)i+1, ti + ai) = (a�t)i. Thus,

e′i 4 (a�t)i 4 (a�(b�h))i for i 6 n+ 1.

By lemma 5.6.1 ai 4 (a�h)i for i 6 n + 1 and hence e′i 4
((a�h)�(b�h))i. It is therefore su�cient to prove that ((a�h)�(b�h))i
≺ (c�h)i for all i 6 n+ 1 where

c = (〈f0, . . . , fn+1, 2m+ 4〉�g) �n+1 .

Clearly, ai � 0 for i 6 n + 1 and as stated above gi < 1 � 0

for i 6 n + 1. Therefore, by lemma 5.6.1, bi = (〈f0, . . . , fn+1, 2m +

2〉�g)i < gi < 1 for i 6 n+ 1 and also bi � 0 holds. By lemma 5.6.4

it is su�cient to prove

2an+1 + 2bn+1 ≺ cn+1, (5.6.10)

ai + bi 4 ci, for i < n+ 1. (5.6.11)

The �rst goal is to prove inequality 5.6.10. From fn+1 < 1 and

gn+1 < 1 follow that 2an+1 = 2(fn+1+gn+1+1) 4 3(fn+1+gn+1). By

axioms 12, 9 and 11, 3(fn+1 +gn+1) = 3(0, fn+1 +gn+1) 4 (2, fn+1 +

gn+1) ≺ (2m + 3, fn+1 + gn+1). On the other hand by axiom 9

2bn+1 = 2(2m + 2, fn+1 + gn+1) 4 (2m + 3, fn+1 + gn+1). Thus,
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2an+1 + 2bn+1 ≺ 2(2m + 3, fn+1 + gn+1) and by axiom 9 2an+1 +

2bn+1 ≺ (2m+ 4, fn+1 + gn+1) = cn+1.

The remaining goal is to prove inequality 5.6.11. Because it was

proved above, that ai+1 � 0 and bi+1 � 0, it follows that ai+1+bi+1 �
ai+1 and ai+1 + bi+1 � bi+1. Therefore, by axiom 9, ai + bi =

(ai+1, fi + gi) + (bi+1, fi + gi) 4 (ai+1 + bi+1, fi + gi). Hence, by

induction hypothesis ai + bi 4 (ci+1, fi + gi) = ci, which proves the

claim.

The proofs above are su�cient preparation for calculating the

vectors of the derivations in the reduction procedure.

5.6.12 Lemma. Let P be a derivation of ⊥ to which the vector f

is assigned. If P ′ from P by performing the reduction described in

theorem 5.5.1 and g is the vector assigned to P ′, then f0 � g0.

Proof. Step 1. According to lemma 5.6.8 the expressions of the

vector are not increased, by the procedure of substituting a constant

for free variables in the derivation.

Step 2. The level of falsity is 0, so the vector assigned to the

premise of the falsity elimination has one component, f = 〈f0〉. By

induction on the number of rules below the falsity elimination it can

be shown that the �rst component of the vector assigned to the deriva-

tion P is greater than f0. For the base case of the induction it can

be concluded that the rule of falsity elimination increases the vector,

because f0 + 1 � f0. Now assume as the induction hypothesis that

g0 � f0 for some vector g assigned to a formula below the falsity

elimination. Below the falsity elimination rule there are no rules that

discharge assumptions that falsity depends on, so there are no delta-

operations on the vector g, but only box-operations and additions

of 1. For the case of the box-operation a simple calculation gives

(g�h)0 < g0 � f0 by lemma 5.6.1 and the induction hypothesis. If

the elimination rule only adds 1 to the components of the vector,

then the statement is clear. This proves the claim.

Step 3. In this step, where an induction is reduced, there are

two cases.

Case 1. The �rst case considered is when the term in the conclu-

sion of the induction is equal to 0. Let h and g′ be the vectors assigned

to the premises of the induction in P and let f be the vector assigned
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to the derivation of A(m) ⊃ A(t). Furthermore, let g = δA(x)g′ and

denote e = (〈f0, . . . , fn+1, 2〉�g) �n+1. Then the vector assigned to

the conclusion of the induction rule in P is (e�h) �n. The vector

assigned to the reduced derivation is (f�h) �n.

By downward induction on i, it can be proved that ei � fi. For

i = n+1 the component of e is en+1 = (2, gn+1+fn+1). Since f = δAf ′

for some vector f ′, the components of the vector are positive fi < 1 �
0 for 0 6 i 6 n+1. Thus, with axiom 11 of the theory E , the following
calculation holds en+1 � (0, gn+1 + fn+1) = gn+1 + fn+1 < fn+1.

For the inductive step the component of e is ei = (ei+1, gi+fi). By

the induction hypothesis ei+1 � fi+1 � 0. Again by axiom 11 and the

fact that fi � 0 it can be concluded that ei � (0, gi+fi) = gi+fi < fi.
This concludes the inductive proof.

By lemma 5.6.3 and the claim proved above (e�h)i � (f�h)i for

0 6 i 6 n + 1 and the vectors of the reduced part of the derivation

have been calculated.

What remains to be shown is that the rules below the reduced

part of the derivation preserve the inequality. This claim is proved

by induction on the number of rules. As in step 2, it can be con-

cluded that there are no rules below discharging assumptions that

the conclusion of the induction rule depends on, so there are only

box-operations and additions of 1. The base case, that the inequal-

ity holds if there are no rules below, is already proved above. Now

assume as the induction hypothesis, that a0 � b0 and ai < bi for

i 6 length(a) = length(b). Then lemma 5.6.3 can be used to get

(a�c)0 � (b�c)0 for some vector c and (a�c)i < (b�c)i for i > 0.

On the other hand, also a0 + 1 � b0 + 1 follows from the induction

hypothesis as well as ai + 1 < bi + 1 for i > 0. This proves the claim.

Case 2. The second case of step 3, considers an induction, for

which the term in the conclusion equals a successor. Let h, g and

f be as in case 1. Then the vector assigned to the conclusion of the

induction rule in P is ((〈f0, . . . , fn+1, 2m + 4〉�g) �n+1 �h) �n and

this is reduced to ((((〈f0, . . . , fn+1, 2m + 2〉�g) �n+1 �h) �n �g) �n
�f) �n in P ′. The claim that the components of the vector in P are

greater than the components of the vector in P ′ for i 6 n is proven

by lemma 5.6.9. As in case 1 the rules below preserve the inequality.

Step 4. This step is divided into cases according to the logical
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rules in the detour conversion.

Case 1. Let the vector assigned to the premise of the implication

introduction rule in P be f and the vector assigned to the minor

premise of the implication elimination rule be g. Then the vector

assigned to the conclusion of the elimination is (δAf�g) �l(B). This

vector is reduced to the vector f [g/xA] according to lemma 5.6.7.

Corollary 5.6.6 gives the desired result for these two vectors. As in

step 3 (case 1) the rules below preserve the inequality.

Case 2. Let the vectors assigned to the premises of the con-

junction introduction rule in P be f and g. Assume that A is the

conclusion of the elimination rule. Then the vector assigned to the

conclusion of the elimination is (〈f0 + g0 + 1, . . . , fn + gn + 1〉) �l(A),

where n = max{length(f), length(g)}. This vector is reduced to the

vector f .

By the axioms of E it is easily concluded that fi + gi + 1 � fi
for all i 6 n and as in step 3 (case 1) the rules below preserve the

inequality.

Case 3. Let the vector assigned to the premise of the disjunction

introduction rule in P be f and let g and h be the vectors assigned to

the minor premises of the elimination rule. Assume that the premise

of the introduction rule is A, since the other case is dual. Then the

vector assigned to the conclusion of the elimination is (〈f0+1, . . . , fn+

1〉�(δAg + δBh)) �l(C), where n = l(A ∨ B) > length(f), and this is

reduced to g[f/xA] according to lemma 5.6.7.

Now, (δAg+ δBh)i < (δAg)i for all i by the axioms of E and thus

(〈f0 + 1, . . . , fn + 1〉�(δAg + δBh))i < (〈f0 + 1, . . . , fn + 1〉�δAg)i
for all i by lemma 5.6.2. Furthermore, (〈f0 + 1, . . . , fn + 1〉�δAg)i <
(〈f0, . . . , fn〉�δAg)i = (f�δAg)i for all i. According to corollary 5.6.6

the desired result (f�δAg)i � (g[f/xA])i holds for all i 6 l(C). As

in step 3 (case 1) the rules below preserve the inequality.

Case 4. Let the vector assigned to the premise of the universal

introduction rule in P be f , then the vector assigned to the conclu-

sion of the elimination rule is 〈f0 + 1, . . . , fn + 1〉. In the derivation

of the premise of the introduction rule, A(y/x), the term t can be

substituted for x. If t contains a variable, then the vector, f ′, of

the derivation that results from the reduction procedure remains un-

changed and equal to f and if t is closed, then by lemma 5.6.8 the
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components of the vector are not increased. Thus, fi+1 � fi < f ′i for
all i 6 n. As in step 3 (case 1) the rules below preserve the inequality.

Case 5. Let the vector assigned to the premise of the existen-

tial introduction rule in P be f and let g be the vector assigned to

the minor premise, C, of the elimination rule. Then the vector as-

signed to the conclusion of the elimination is (f�δAg) �l(C). Let g′

be the vector of the derivation that results from the process of sub-

stituting the term t in the premise of the introduction rule for x in

the derivation of the minor premise of the elimination rule. Then,

(δAg)i < (δAg′)i and the vector assigned to the reduced derivation

is g′[f/xA]. By lemma 5.6.2 follows that (f�δAg)i < (f�δAg′)i for
all i. From corollary 5.6.6 the desired result (f�δAg′)i � (g′[f/xA])i
follows for i 6 l(C). As in step 3 (case 1) the rules below preserve

the inequality.

5.7 The consistency theorem

5.7.1 Theorem (The consistency of Heyting arithmetic). Falsity is

not derivable in the system HA, that is, it is consistent.

Proof. Assume that the system HA is inconsistent and that there is

a derivation of falsity. According to theorem 5.5.1 there is a reduced

derivation with a lower ordinal and another reduced derivation and so

on. This produces an in�nite succession of decreasing ordinals all less

than ε0, but this is impossible because the well-ordering of ε0 implies

that the reduction procedure must terminate. Thus, there cannot

exist a derivation of falsity and the system of Heyting arithmetic is

consistent.
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