
Derivation and Structure in Categorial Grammar

Guy David Barry

PhD

University of Edinburgh
1992



1

Declaration

I declare that this thesis has been composed by myself and that the research reported
therein has been conducted by myself unless otherwise indicated.

Edinburgh, 29 February 1992

Guy Barry



ii

Acknowledgements

First of all I would like to thank my supervisor Robin Cooper for a great deal of support and

encouragement during my time as a PhD student, and especially for being extraordinarily

patient with me while I passed through an unnerving sequence of mental blocks towards
the end of writing up. Thanks also to my examiners Mark Steedman and Ewan Klein for

pointing out several areas which merited clarification.

My closest colleagues during the development of the thesis have been Glyn Morrill,
Mark Hepple, Martin Pickering, Neil Leslie, Martin Emms and David Milward. Almost all
of the present work has been greatly influenced by animated discussions with the above

people in various combinations, and indeed some of it (as indicated in the text) has already
been published as joint work. Special thanks to Martin Pickering and David Milward for

commenting on the draft as it progressed.

Other sources of inspiration at various stages have included Steven Bird, Ted Briscoe,
Matt Crocker, Elisabet Engdahl, Steve Finch, Norman Fraser, Herman Hendriks, Dick

Hudson, Janne Johannessen, Michael Moortgat, Dick Oehrle, Paul Schweizer (my second

supervisor), Anna Szabolcsi, Henry Thompson, Pete Whitelock and Mary Wood.

The thesis has perhaps benefited most of all from the exceptionally stimulating aca¬

demic and social environment at the Edinburgh University Centre for Cognitive Science.
The Centre has virtually been a home to me for the last three years, and I would like to

thank all the students and staff there who have combined to make it such an enjoyable

working-place.



iii

Note

In accordance with regulation 3.5.8 of the Regulatory Standards for Theses I have included

copies of the following three papers as an appendix:.

Morrill, G., Leslie, N., Hepple, M. and Barry, G. (1990). Categorial deductions and struc¬

tural operations. In G. Barry and G. Morrill (eds), Edinburgh Working Papers in Cognitive
Science, Volume 5: Studies in Categorial Grammar, Centre for Cognitive Science, Univer¬

sity of Edinburgh, 1-21.

Barry, G. and Pickering, M. (1990). Dependency and constituency in categorial grammar.
In G. Barry and G. Morrill (eds), Edinburgh Working Papers in Cognitive Science, Volume
5: Studies in Categorial Grammar, Centre for Cognitive Science, University of Edinburgh,
23-45.

Barry, G., Hepple, M., Leslie, N. and Morrill, G. (1991). Proof figures and structural

operators for categorial grammar. In Proceedings of the Fifth Conference of the European

Chapter of the Association for Computational Linguistics, 198-203.

The permission of the other authors has been obtained.



iv

Abstract

Categorial grammar is an approach to language description that may be distinguished by
the following two features: firstly classification of linguistic expressions is achieved by means
of a system of recursively defined types, and secondly the grammar itself is lexicalist, in
that all the information about the combining properties of words is in their lexical entries.
This thesis considers ways in which categorial grammars can be adapted in order to make
them more flexible and more linguistically expressive.

The thesis takes as its starting-point the established frameworks known as AB (de¬

veloped by Ajdukiewicz and Bar-Hillel) and L (developed by Lambek). The linguistic

coverage of each is discussed, and it is shown that AB generates structures analogous to

those in a phrase-structure grammar, whereas L gives a 'flat' structure to expressions in
which any string of words can receive a type. From this it is argued that neither frame¬
work as it stands assigns structures which are entirely suitable for linguistic description,
AB being too restrictive and L being too general.

This leads into a discussion of the notion of constituency, in which it is argued (contrary
to traditional analyses) that a variety of linguistic data supports a 'flexible' notion of
constituency where it is permissible for constituents to overlap. In order to define such
a notion of constituency rigorously, the framework of dependency grammar is introduced,
and the concept of a dependency constituent is defined with respect to this framework. This
leads to the definition of a new categorial framework D, within which only dependency
constituents receive types. Some mathematical properties of D are discussed, along some

of its deficiencies and some sample linguistic applications.

Attention is then turned to linguistic phenomena whose description is outside the scope

of the frameworks so far discussed. These include constructions involving commutation,
iteration and optionality. A hierarchy of logical systems called the 'categorial hierarchy'
is used as motivation for a system of operators called structural modalities, which allows



V

such constructions to be described. Two systems of structured modabties are introduced,
and their logical and bnguistic applications are discussed.

To follow this, a more general network of categorial systems is introduced which con¬

tains both D and the categorial hierarchy, and the possibility of modalities to encode

dependency is discussed. The approach in the thesis is then compared and contrasted with
the alternative approach of Steedman's Combinatory Categorial Grammar, which makes

use of a selected set of type-combining rules. The thesis concludes with a general overview
of the work, and some pointers to further research.
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Chapter 1

Introduction

1.1 Motivation

This thesis considers ways in which categorial grammars can be adapted in order to make
them more linguistically expressive. It has two main aims, the first being to formulate
a better motivated concept of 'constituent' than is generally considered, and the second

being to show how the categorial formalism can be extended to accommodate linguistic

phenomena outside the coverage of the original system. The thesis is not primarily con¬

cerned with providing a precise characterization for particular linguistic phenomena within

categorial grammar; the emphasis is rather on exploiting the mathematical properties of
the system so as to provide a richer framework for the theoretical linguist to work with.

Categorial grammar is an approach to language description that may be distinguished

by the following two features. Firstly, classification of linguistic expressions is achieved by
means of a system of recursively defined types, built from a set of primitive types and a

number of connectives. The basic expressions are deemed to be phrasal rather than lexical

(e.g. sentences and noun phrases); expressions in these categories receive primitive types.
All other linguistic expressions (including words) receive complex types, based on their

(syntactic and semantic) relation to expressions of primitive types.

Secondly, the grammar itself is lexicalist, in that all the information about the com¬

bining properties of words is in their lexical entries. The lexicon consists of a finite set of

type-assignments to words, and the grammar takes the form of a general system of logical

inference; there are no explicit grammar rules. Taken together, the lexicon and the infer-
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ence procedure make it possible to assign the appropriate type or types to any grammatical

expression of the language. Every current linguistic theory involves rich lexical entries, but
theories vary on how much information is included in rules. Lexicalism has the advantage
of putting all the possible sources of variation in the same place, and the rules can be
defined as very general inference procedures with well-studied mathematical properties.

The framework of categorial grammar was chosen because of its distinctive approach
to the classification of linguistic expressions, in two respects in particular. First, the

system of syntactic classification is simultaneously a semantic classification, allowing a

close correspondence between form and meaning to be defined. Second, because there are

no separate grammar rules, the types to which expressions are assigned are completely
determined by the combinatorial properties of those expressions, given a fixed meaning
for the connectives. Hence categorial grammar is directly derived from logic and therefore

gives rise to principled constraints on how it can be developed. This is in contrast to

(say) a phrase-structure grammar, where the addition of a new grammar rule can make a

difference to the set of expressions labelled by a particular category.

Categorial grammar also has the advantage over many linguistic systems of being able
to deal with unbounded dependencies using the same machinery as is used for other con¬

structions. Most other theories postulate a specialized mechanism whose main purpose is
the analysis of unbounded dependencies (for example, tc/i-movement in GB or slash cate¬

gories in GPSG). This is because there is no general analysis of unbounded dependencies

using a phrase-structure grammar with conventional categories.

Some categorial grammars have a property which distinguishes them from the majority
of linguistic theories: they allow more than one syntactically distinct analysis for a single
semantic interpretation of a sentence. Such categorial grammars are sometimes known as

flexible. Flexibility has been claimed to have many advantages, for examples in the analysis
of coordination and in the modelling of human sentence processing. Categorial grammar
is therefore an appropriate formal framework for the development of non-standard theories
of constituency.
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1.2 Overview

In chapter 2 the basic principles of categorial grammar are outlined, starting with the
recursive definition of types and the categorial lexicon. The two simplest categorial frame¬

works, known as AB and L, are then introduced, using a notation known as proof figures
for the presentation of derivations. The meaning of types in each of the two frameworks
is then discussed, and their linguistic coverage is compared. This discussion is used as

motivation for the rest of the material in the thesis.

In chapter 3 the notion of constituency is defined, and traditional 'rigid' constituency

(as in a phrase-structure grammar) is contrasted with the less standard notion of 'flexible'
constituency, where constituents are allowed to overlap. Linguistic arguments are put

forward which suggest that a flexible notion of constituency is in fact to be favoured over

the more usual rigid variety.

In order to develop a precise theory of flexible constituency, the framework of depen¬

dency grammar is introduced, in which syntactic relations hold between individual words
rather than phrases. It is suggested that such relations can be motivated by considering

examples for covariation between words, such as agreement and government. With this
framework in place, the concept of a dependency constituent is defined as an expression

whose words are connected by dependencies, and dependency constituency is shown to be
a flexible form of constituency, satisfying the earlier requirements. A simplified formaliza¬
tion of dependency grammar is introduced which allows types to be given to dependency
constituents.

A new categorial framework D is then presented, intermediate between AB and L in its

coverage. The meaning of types in D is discussed, and it is shown that subject to certain

assumptions the set of expressions derivable in D corresponds to the set of dependency
constituents. Some sample linguistic applications of D are presented, along with a few of
its deficiencies.
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In chapter 4 attention is turned to those constructions which frameworks such as AB,
D and L are inadequate to describe, in particular those involving commutation (i.e. non-
canonical word orders), iteration and optionality. A solution to these problems is developed
by way of the system of logics known as the 'categorial hierarchy', of which L is the bot¬
tom member. The higher logics in the hierarchy are formed from L by the addition of
so-called structural rules manipulating sequences of assumptions. Structural rules are used
to motivate new operators known as structural modalities, which permit the description of

commutation, iteration and optionality. Two systems of structural modalities are intro¬

duced, and some sample linguistic applications are discussed.

In chapter 5 an attempt is made to combine the work of the previous two chapters,

by presenting a more general network of categorial systems containing both D and the

categorial hierarchy. The concept of modalities to encode dependency is also presented.
The material in the thesis is then contrasted with the alternative categorial framework

developed by Steedman, known as Combinatory Categorial Grammar, which makes use of
a selected set of type-combining rules. The thesis concludes with a summary of the work,
and some pointers to further research.
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Categorial Grammar

2.1 Principles of Categorial Grammar

In this section I shall first describe how types are defined in a categorial grammar and how
the typing system may be used to construct a lexicon. Then I shall describe two standard
frameworks of inference for categorial types and show how they may be used to generate

grammatical expressions.

2.1.1 Types and the Lexicon

Syntactically, categorial grammar (CG) categorizes expressions according to how they com¬

bine with other expressions to form larger expressions. Thus in English a finite verb phrase

(or intransitive verb) might be viewed as an expression that combines with a preceding
noun phrase to form a sentence, and a transitive verb might be viewed as an expression
that combines with a following noun phrase to form a finite verb phrase. This suggests a

system of directional types as defined in (2.1):

(2.1) If X is a primitive type then X is a type.

If X and Y are types then X/Y and Y\X are types.

Here X/Y is the type of any linguistic expression that combines with a following adjacent

expression of type Y to form an expression of type X, and Y\X is the type of any lin¬

guistic expression that combines with a preceding adjacent expression of type Y to form
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an expression of type A.1 The precise meaning of 'combines' has deliberately been left

vague here, since it can be interpreted in different ways, giving rise to different varieties of

categorial grammar. I shall go into more detail on this in the next section.

Semantically, CG adopts Frege's principle of compositionality, it assumes that the mean¬

ings of basic expressions are primitive, and that the meanings of other expressions are de¬
fined in terms of their relation to the meanings of the basic expressions. Thus, for instance,
the meaning of a finite verb phrase might be viewed as a function from the meaning of its

subject to the meaning of the sentence formed by combining it with its subject, and the

meaning of a transitive verb might be viewed as a function from the meaning of its object
to the meaning of the verb phrase formed by combining it with its object. This suggests a

system of functional types as defined in (2.2):

(2.2) If X is a primitive type then A is a type.

If A and Y are types then Y—»A is a type.

Here Y—>X is the type of functions from meanings of type Y to meanings of type A.
Note that throughout the thesis I shall only be concerned with those aspects of meaning
that reflect function-argument structure; I shall not consider model-theoretic aspects of

meaning such as the lexical semantics of individual words, or truth-conditions associated
with expressions.

The Fregean principle allows us to state a direct correspondence between syntactic and
semantic types in the manner of Montague (1970). Given a mapping To from primitive

syntactic to semantic types such that if an expression has syntactic type A its semantic

type is t„(A), To can be extended to a general mapping r from all syntactic to semantic

types in the following fashion:

(2.3) t(X) = r0(A) if A is a primitive type

1This is Lambek's (1958) notation for types. In the alternative notation used by Steedman
(1987), what Lambek writes as y\A would be written as A\F.
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r(X/Y) = t(Y)—*T(X)

t(Y\X) = r(y)—»r(X)

Since an expression of syntactic type X/Y or Y\X can be combined with an expression of

syntactic type Y to form an expression of syntactic type X, by the Fregean principle its

meaning must be a function from meanings of semantic type t(Y) to meanings of semantic

type t(X), and is thus of semantic type t(Y)—>t(X). In the linguistic examples I shall use
roman capital letters (e.g. S and NP) for names of primitive syntactic types, and primed
versions of the same letters (e.g. S' and NP') for the corresponding semantic types, so that

r0(S) = S', r0(NP) = NP', etc. (Italic capital letters (e.g. X and Y) will continue to be used
for meta-variables over types.) This avoids argument over the precise nature of semantic

types and the objects in those types.

For the purposes of illustration, assume that English has (at least) the primitive types

given in (2.4), with their associated categories. Most of these categories are fairly standard
in X-bar syntax (JackendofF 1977), but note that the usual CG conventions assume N to

be a phrasal rather than a lexical category (corresponding roughly to N in X-bar syntax),
and that finite verb phrases are not generally assumed to form a basic category. (The
form of linguistic expressions will be represented by means of a sans-serif typeface, e.g. the

expression "John walks" is represented as John walks.)
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Syntactic type Semantic type Example members of cate¬

gory

S (sentences) S' John walks, Mary walks, the
man walks, John likes Mary,
John likes the man, John

speaks to Mary, John must

walk, John says that Mary
walks

NP (noun phrases) NP' John, Mary, the man

N (common nouns) N' man, woman

PP (prepositional phrases) PP' to Mary, for the man

VP (non-finite verb phrases) VP' walk, like Mary

SP (complementized sen¬ SP' that John walks, that John

tences) likes Mary

(This classification into types ignores many finer-grained distinctions of lexical categoriza¬

tion, such as number and case.)

Such a set of basic expressions suffices to infer lexical type-assignments. For instance,
the word "walks" forms a sentence whenever it is preceded by a noun phrase, and so walks
receives the syntactic type NP\S. Suppose we uniformly represent the meaning of a word

by printing the same word in boldface (for example, the form of the word "walks" is rep¬

resented as walks, and its meaning as walks). Then by the Fregean principle the semantic
constant walks receives the semantic type NP'—►S'. Similarly "likes" forms a finite verb

phrase whenever it is followed by a noun phrase which in turn forms a sentence whenever
it is preceded by a noun phrase; thus the syntactic object likes receives the syntactic type

(NP\S)/NP, and the semantic object likes receives the semantic type NP'—»(NP'—»S'). On
these principles we may construct a lexicon such as the following:
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Word Syntactic type Meaning Semantic type

walks NP\S walks NP'—S'

runs NP\S runs NP'—S'

likes (NP\S)/NP likes NP'—(NP'—S')
speaks (NP\S)/PP speaks PP'—(NP'—S')
must (NP\S)/VP must VP'—(NP'—S')
says (NP\S)/SP says SP'—(NP'-S')
John NP John NP'

Mary NP Mary NP'

the NP/N the N'—NP'

man N man N'

to PP/NP to NP'—PP'

for PP/NP for NP'—PP'

walk VP walk VP'

like VP/NP like NP'—VP'

that SP/S that S'—SP'

Since semantic types axe directly derivable from syntactic types, I shall occasionally asso¬

ciate meanings with syntactic types, which is not strictly correct (e.g. walks may be said
to be of type NP\S rather than NP'—S'), but only where this does not lead to confusion.

Modifiers are usually treated as having endocentric functor types (i.e. functions from a

type to itself). For instance, since old man, old woman, ... all have syntactic type N, old
may be classified as having syntactic type N/N (and hence semantic type N'—>N'); similarly,
since man from London, woman from London, ... all have syntactic type N, from London

may be classified as having syntactic type N\N (and semantic type N'—N'). On the same

principles, VP-adverbials will have type (NP\S)/(NP\S) or (NP\S)\(NP\S) depending
on whether they precede or follow their VPs. We shall see in the next chapter that this

analysis of the types of modifiers is at odds with other aspects of the analysis to be adopted,
but I shall keep to it for the time being.
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The above lexicon makes certain tacit assumptions about syntactic structure, which will
become clearer when we consider the interpretation of types in the next section. For the
moment we shall assume that these types are fixed, and consider what inference procedures
are needed to derive the types of other expressions.

2.1.2 The Categorial Frameworks AB and L

A categorial logic can be seen as consisting of a set of theorems or validities which determine
how types can be combined. Coupled with this is an inference procedure which allows us

to determine what the theorems of the logic are. This means that different formulations
of the same logic are possible. Here I shall present two basic categorial logics, known as

AB and L, using the proof figure notation developed in Barry, Hepple, Leslie and Morrill

(1991), which is based on Prawitz' (1965) systems of 'natural deduction'.

Natural deduction was developed by Gentzen (1936) to reflect the natural process of
mathematical reasoning in which one uses a number of inference rules to justify a single
conclusion on the basis of a number of propositions, called assumptions. During a proof
one may temporarily make a new assumption if one of the rules licenses the subsequent
withdrawal of this assumption. The rule is said to discharge the assumption. The conclu¬
sion is said to depend on the undischarged assumptions, which are called the hypotheses of
the proof.

A proof is usually represented as a tree with the assumptions as leaves and the con¬

clusion at the root. Finding a proof is then seen as the task of filling this tree in, and the
inference rules as operations on the partially completed tree. One can write the inference
rules out as such operations, but as these are rather unwieldy it is more usual to present

the rules in a more compact form as operations from a set of subproofs (the premises) to
a conclusion, as follows (where m > 1 and n > 0):

(2.6) Fit Fn]

Xi
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This states that a proof of Z can be obtained from proofs of Xi, ..., Xm+n by discharging

appropriate occurrences of assumptions Y\, ..., Yn (if n is zero then no assumptions are

discharged). The use of square brackets around an assumption indicates its discharge. R
is the name of the rule, and the index i is included to disambiguate proofs, since there may

be an uncertainty as to which rule has discharged which assumption.

As propositions are represented by formulas in logic, so linguistic categories are rep¬

resented by type formulas in CG. The left-to-right order of types indicates the order in
which the forms of subexpressions are to be concatenated to give a composite expression
derived by the proof. Thus we must take note of the order and place of occurrence of the

premises of the rules in the proof figures. Proofs are conventionally annotated with the
words in left-to-right order along the top, so that each word is directly above its type.

The simplest framework of inference for directional categorial types is known as AB

(after Ajdukiewicz (1935) and Bar-Hillel (1953)), or classical categorial grammar. AB can

be formulated in the proof figure notation by means of just two inference rules, one for
each of the connectives / and \. These are known as elimination rules since they determine
how a type containing the connective may be used.

The elimination rule for / states that a proof of type X/Y followed by a proof of type
Y yields a proof of type X. Similarly the elimination rule for \ states that a proof of type

F\A preceded by a proof of type Y yields a proof of type X. Using the notation above,
we may write these rules as follows:

By the Fregean principle, the semantic operation associated with each of the above rules is

functional application; that is to say, in each case the meaning associated with the result

type X is produced by applying the meaning associated with the functor type X/Y or

Y\X to the meaning associated with the argument type Y. (Notation: meta-variables
over meanings will be represented by lower-case Greek letters (e.g. <f> and a). I adopt the
usual notation of concatenation for function application, so that (fa means (f> applied to

(2.7) a.
X/Y Y

/E

b.
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a; however to aid clarity, where functions and/or arguments contain multiple characters,
I shall add a space between the function and the argument, e.g. runs Mary means runs

applied to Mary.) Thus an expression with meaning <j> of type X/Y followed by an

expression with meaning a of type Y gives an expression with meaning 4>a of type X,
and an expression with meaning a of type Y followed by an expression with meaning <j> of

type Y\X gives an expression with meaning (f>a of type X. This correspondence makes it

possible to derive the meaning representation for an expression directly from the structure
of the proof.

For instance, the expression Mary likes John is derived as a sentence as follows:

(2.8) Mary likes John
(NP\S)/NP NP

—/e
NP NP\S

I L\E

This gives rise to the meaning representation in (2.9):

(2.9) (likes John) Mary

Similarly, the sentence Mary says that John speaks to the man has the derivation in (2.10),
and hence the meaning representation in (2.11):

(2.10) Mary says that John speaks to the man

NP/N N
-/e

PP/NP NP
/e

(NP\S)/PP PP
/e

NP NP\S
\e

SP/S s
/e

(NP\S)/SP SP
/e

NP NP\S
r \E

(2.11) (says (that ((speaks (to (the man))) John))) Mary
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The most general system of inference for directional categorial types is known as L (after
Lambek (1958)), or Lambek categorial grammar.2 The proof figure formulation contains
an elimination rule for each connective, exactly as in AB, and so L subsumes the whole
of AB. Thus the derivations in (2.8) and (2.10) are valid in L, yielding the same meaning

representations. However, L also contains an introduction rule for each connective which
states how a type containing that connective may be derived.

The introduction rule for / states that where the rightmost assumption in a proof of
the type X is of type F, that assumption may be discharged to give a proof of the type

X/Y. Similarly, the introduction rule for \ states that where the leftmost assumption in
a proof of the type X is of type F, that assumption may be discharged to give a proof of
the type Y\X. Using the notation above, we may write these rules as follows:

(The off-centre positioning of the Fs in the above rules is meant to indicate that in /i F
is the rightmost undischarged assumption in the proof of X, and in \l F is the leftmost

undischarged assumption in the proof of X.) In addition, L carries the condition that in
both /i and \l the sole assumption in a proof cannot be withdrawn, so that no types are

assigned to the empty string.

For both /i and \l, the meaning of the result is given by functional abstraction over

the meaning of the discharged assumption, which is given by a variable of the appropriate

type. I shall represent variables of a given type by an italic lower-case letter with the

type name as a superscript, e.g. xNP' will represent a variable of type NP', although I shall

usually omit the superscript where the type is apparent from the context. I shall also adopt

(2.12) a. [F]*' b. [F]

2The term Lambek calculus is also widely used, but this should strictly refer only to Lambek's

original sequent calculus formulation of the system.
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the convention of using f,g,h to represent variables which act as functions, and x,y,z to

represent variables which do not.3

Functioned abstraction is represented in the usual way by means of the lambda operator.
For example, the functional abstraction of (likes x) Mary over the variable x, written
Ax[(likes x) Mary], is the function that when applied to any term a gives (likes a) Mary.
This general relation between abstraction, application and substitution is expressed by the
law of /3-equality.

Here cr[a|y] means '<r with a substituted for (each occurrence of) y\ The rules in (2.12)
are analogous to the usual natural deduction rule of conditionalization, except that the
latter allows withdrawal of any number of assumptions, in any position. The semantic

algebra defined by the above set of inference rules corresponds to the subset of the typed
lambda-calculus in which each binder binds exactly one variable (van Benthem 1983).

In L, unlike AB, it is possible to give more than one proof for a single interpretation
of a string. For example, contrast the derivation of Mary likes John in (2.8), and the term

in (2.9), with the derivations in (2.14) and the terms in (2.15):

(2.14) a. Mary likes John

(2.13) (\y[a])a = a[a\y]

NP

(NP\S)/NP [NP]1
mr /E
NP\S—^\E

—/I1
S/NP NP

•/e
S

3This convention is independent of the type of the variable, so that a variable of a functional
type which acts as an argument to another function will be notated as x,y or z rather than f,9
or h. The reason for this convention will become clear in chapter 3.
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b. Mary likes John

NP [NP\S]1
\ £

S (NP\S)/NP NP
/l 7^77 /E

S/(NP\S) NP\S
/e

(2.15) a. (Ax[(likes x) Mary]) John
b- Mary]) (likes John)

Note that the terms in (2.15) are both /3-equal to the term in (2.9) (by the definition in

(2.13)). Each of the proofs in (2.14) is thus said to be derivationally equivalent to the
proof in (2.8). This property of derivational equivalence and has certain ramifications for
theories of parsing (see Barry et al. 1991; cf. also Pareschi and Steedman 1987, Hepple and
Morrill 1989). In the present context, it will be of most concern when we consider 'flexible

constituency' in the next chapter.

2.1.3 Sequent Formulation of L

As an illustration of the fact that categorial frameworks can be given other equivalent

formulations, I shall briefly present Lambek's original sequent formulation of L. L can also
be formulated in other equivalent fashions, such as the axiomatic formulation of Zielonka

(1981).

In sequent calculus (originally developed by Gentzen (1936)), the objects reasoned
about are not individual types but sequents, corresponding to entire proofs in the natural
deduction style. A sequent calculus consists of axioms and inference rules; axioms state

that certain primitive sequents are valid, and inference rules allow new valid sequents to be
derived from old ones. A sequent calculus proof may thus be seen as the instructions for
the construction of a natural deduction proof. Let r, A, $ ... stand for sequences of types

(and X,Y,Z... stand for single occurrences of a type as usual). A (single-conclusioned)
sequent is a statement T =>• X; it asserts that there is a deduction of X depending on the



Chapter 2. Categorial Grammas 16

hypotheses I\ In the sequent formulation of L both the order of the types in T and the
number of occurrences of each type are relevant, and there is a restriction that T must be

non-empty. A rule such as (2.16) states that z follows from T if A follows from A and F
follows from $. It does not matter which order we solve the sub-problems in, so long as

we solve them all.

(2.16) T =$> z [Rule]
A => A

<S> =>Y

In standard sequent systems there is a single schematic axiom saying that every type

yields itself, and for each connective there are two inference rules; a left rule, which allows
us to derive a sequent where the connective newly appears on the left-hand side of the

arrow, and a right rule, which allows us to derive a sequent where the connective newly

appears on the right-hand side of the arrow. The Gentzen-style formulation of L follows
this pattern:

(2.17) A => A [Ax]

T x/y a $ =» Z [/l]
a => f

r a y\x $ => z [\L]
a =>y

r a $ =» z

r =» x/y [/r] r => f\a [\r]
rr^a f r => a

There is thus a close analogy between the use of left rules in sequent calculus and elimina¬
tion rules in natural deduction, and similarly between right rules in sequent calculus and
introduction rules in natural deduction.

L may be formulated with one additional rule, the Cut rule, which combines two proofs

by identifying the conclusion of one with one of the premises of the other:
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(2.i8) [Cut]
r =► x

A X <!>=>Y

Lambek shows that the sequent formulation of L has the property of Cut-elimination,
i.e. every L proof can be transformed into an L proof with the same end-sequent, in
which no Cuts occur. Cut-elimination in sequent calculus corresponds (approximately)
to normalization in natural deduction (see Moortgat 1990a). The Cut-free formulation
provides a decision procedure. A step in the search for a proof of a sequent can only be
an axiom matching, or one of a finite number of possible rule applications, these creating

strictly simpler subgoals since each rule application removes a connective.

2.2 Categorial Grammar and Linguistic Theory

In this section I shall consider what models of linguistic structure are implicitly entailed

by frameworks such as AB and L, by looking more closely at the definition of syntactic

types. This leads to some observations about the linguistic coverage of the frameworks and
their inadequacies, which serve as motivation for the rest of the material in the thesis.

2.2.1 Interpretation of Types

The category symbols of (say) a phrase-structure grammar are by definition labels for

linguistic units. Strictly speaking, the type symbols of categorial grammar have no such

significance, since they merely reflect general combining properties of expressions. Never¬

theless, there is a strong implicit assumption that the assignment of a type to an expression

gives it some status as a linguistic unit (see for example Steedman 1987). Under this as¬

sumption, the set of expressions labelled by a type has a similar status to a linguistic

category. I shall refer to this set as the extension of the type, and to the system for

determining extensions of types as their (syntactic) interpretation.
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Given some interpretation of types, we say that the sequence of types Xi,..., Xn entails

the type Y iff, for any sequence of expressions ai,..., an of types X\,..., Xn respectively,
the expression formed by combining al5..., an in that order is always of type Y. For an

inference calculus to be appropriate to a given interpretation of types, it should therefore
have the properties of soundness and completeness as defined in (2.19):

(2.19) a. A categorial inference calculus is sound with respect to a given interpretation
of types iff, whenever a type Y can be derived from a sequence of types

Xi,..., Xn, it is the case that Y is entailed by X\,..., Xn.

b. A categorial inference calculus is complete with respect to a given interpre¬
tation of types iff, whenever a type Y is entailed by a sequence of types

X\,..., Xn, it is the case that Y can be derived from X\,..., Xn■

Soundness ensures that no 'wrong' type-assignments are obtained by using the calculus;

completeness ensures that no possible type-assignments are missed. If the calculus is sound
and complete, and if it were somehow possible to ensure that all lexical type-assignments
were consistent with the given interpretation, then the grammar would generate all and

only grammatical expressions of the language. With these principles in mind, let us look at
two possible interpretations for types. (Recall that in the discussion of (2.1) the operation
of syntactic combination was deliberately left underspecified, in order to allow for different
modes of interpretation for types.)

Suppose we assume that non-lexical expressions all have a hierarchical structure as

generated by a binary-branching phrase-structure grammar, i.e. one in which each non¬

terminal node has exactly two daughters. In addition, assume (as in X-bar syntax) that
one daughter in each local tree is distinguished as the 'head'. For example, consider the
sentence John spoke to Mary. Here the standard assumption would be that the sentence

divides into head daughter spoke to Mary and non-head daughter John; that spoke to Mary
divides into head daughter spoke and non-head daughter to Mary; and that to Mary divides
into head daughter to and non-head daughter Mary. This can be indicated by means of the

bracketing in (2.20), where round brackets indicate head daughters and square brackets
indicate non-head daughters:
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(2.20) [[John] ((spoke) [(to) [Mary]])]
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In such a system, then, there axe two possible modes of combination for expressions:
head followed by non-head, or non-head followed by head. Furthermore, combination of

expressions is non-associative, i.e. structures cannot be rebracketed; a combined with (b
combined with c) is not the same as (a combined with b) combined with c. This suggests

the following interpretation of types:

(2.21) An expression is of type X/Y (resp. F\A) iff, whenever it is combined with a

following (resp. preceding) non-head of type K, the result is of type X.

So, for example, spoke to Mary has the type NP\S since it forms an S when combined
with a preceding non-head of type NP; spoke has the type (NP\S)/PP since it forms an

expression of type NP\S when combined with a following non-head of type PP. John has
the type NP, but no other type, since it cannot be combined with a non-head to produce
a grammatical expression. Spoke to has no type, since it does not form a unit in the

phrase-structure tree.

As might be expected, AB is both sound and complete with respect to this inter¬

pretation of types. This is clearly reflected in the structure of AB proofs: /e inferences

represent the combination of a head with a following non-head, and \e inferences represent

the combination of a non-head with a following head.

Note that this definition implicitly identifies categorial functors (which are generally

semantically motivated) with syntactic heads. This begs the question of what is the tradi¬

tionally accepted notion of head, about which there is widespread disagreement. We shall
not go into the issues here; see Zwicky (1985) and Hudson's (1987) reply to Zwicky for
a comprehensive discussion. Hudson gives a great deal of evidence which suggests that,
for constructions involving complementation, most syntactically motivated definitions of
head in fact coincide with the notion of semantic functor. However, the reverse appears to

be true in modifier constructions, where according to Hudson's criteria for headship (and

nearly all linguistic theories) the modified element appears to be the head, whereas on

semantic grounds the modifier is standardly assumed to be the functor.
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There are several possible solutions to this problem. We could claim that modifiers are

heads, but this leads to inconsistencies in syntactic description, as discussed in the next

chapter. Alternatively, we could change the definition of head so that it did not always
coincide with the semantic functor. This approach is adopted by Bouma (1988), following
Vennemann and Harlow (1977), where the following definitions are proposed:

(2.22) a. Head: in a construction consisting of a functor F and an argument A, the
head constituent is F, unless it is endotypic (i.e. F is of the form X/X or

X\X, in which case A is the head.

b. Complement: An argument which is not a head is a complement.

c. Modifier: A functor which is not a head is a modifier.

However, this approach would remove the direct correspondence between categorial gram¬
mar and X-bar syntax, and considerably complicate many of the arguments in this and the
next chapter. The only alternative is to claim that modified elements are functors. This
cannot be achieved in a general fashion within AB, since modified elements may combine
with arbitrarily many modifiers, but will turn out to be possible when we consider exten¬

sions to the categorial machinery in later chapters. I shall eventually adopt this solution,
but for the time being I shall ignore modifier constructions wherever possible.

Let us now change our hypothesis about syntactic structure and assume that expres¬
sions have a purely linear structure, i.e. every string is a linguistic unit. This has been
termed structural completeness (Moortgat 1988). There is now only one notion of syn¬
tactic combination, namely concatenation. In addition, the operation is associative, so

that bracketing is redundant; a concatenated with (ft concatenated with c) is the same as

(a concatenated with 6) concatenated with c. This suggests a different interpretation of

types:

(2.23) An expression is of type X/Y (resp. T\X) iff, whenever it is concatenated with
a following (resp. preceding) expression of type Y, the result is of type X.

Clearly expressions receive all the types under this interpretation as they did under (2.21),
but there aire many other possibilities as well. For example, spoke again has the type
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(NP\S)/PP, but it also has the type NP\(S/PP) since the expressions John spoke, the man

spoke, ..., all have type S/PP. Similarly John has types other than NP, such as S/(NP\S),
since whenever it is followed by an expression of type NP\S it forms an expression of

type S. Spoke to can be given the type (NP\S)/NP, since whenever it is followed by an

expression of type NP it forms an expression of type NP\S.

L is both sound and complete with respect to this interpretation; for the proof see

Buszkowski (1983). Note particularly that AB is incomplete with respect to the interpre¬
tation in (2.23), and L is unsound with respect to the interpretation in (2.21). The former
should be clear since (e.g.) John cannot be given the type S/(NP\S) in AB, and the latter

conversely since John can be given the type S/(NP\S) in L.

2.2.2 Linguistic Coverage of AB and L

In assessing the linguistic coverage of categorial frameworks, there are two distinct ques¬

tions to be answered, corresponding roughly to the notions of weak and strong generative

capacity (Chomsky 1965). The first (linguistically less interesting) question is what set of

strings can be generated by the grammar; the second is what structures it is capable of

assigning to them.

To answer the first question, AB has been proved to have context-free generative power

(Bar-Hillel, Gaifman and Shamir 1960), and it is conjectured that L has also. Hence we

may presume that they are capable of generating the same set of strings. However, as

we saw in the last section, AB is capable of assigning many fewer structures than L. In

practice, this makes a significant difference to the linguistic coverage of the two frameworks,
as I shall now illustrate.

Consider English relative clause constructions using who and whom. Both AB and L
are capable of generating simple (non-embedded) subject relative constructions in a rea¬

sonably straightforward fashion. To see this, note first that restrictive relative clauses,

being postmodifiers of nouns, can receive the type N\N. This makes it possible to assign a

type to the subject relative pronoun who given a lexicon such as in (2.5), since it combines
with verb phrases, of type NP\S, to yield relative clauses. We may therefore give who the
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type (N\N)/(NP\S). This gives rise to derivations such as the following:4

(2.24) the man who likes John

(NP\S)/NP NP
—/ E

(N\N)/(NP\S) NP\S
/e

N N\N
\e

NP/N N
/e

NP

(2.25) the ((who (likes John)) man)

However, it is not possible given the type-assignments in (2.5) to derive object relative
clauses in a simple fashion in AB, whatever the type of the relative pronoun. For example,
in the man who Mary likes, Mary likes cannot be given a single type, since the types NP
and (NP\S)/NP cannot be combined. Thus it is necessary either to give who a type that
combines with Mary and likes separately, or to give either Mary or likes an additional lexical

type. This suggests that it would be desirable for the grammar to generate Mary likes as a

unit.

In contrast, observe that the introduction rules of L give us an apparatus for this and
similar constructions which is lacking in AB. Since we can derive Mary likes as an expres¬

sion of type S/NP (as in (2.14a)), assignment of the type (N\N)/(S/NP) to the object
relative pronoun who(m) yields the derivation in (2.26) and the term in (2.27) (cf. Ades
and Steedman 1982):

4Note once more that by representing the meaning of who as who we are not concerning our¬

selves with the truth conditions associated with relative clauses, but merely with their function-

argument structure.
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(2.26) the man who Mary likes

(NP\S)/NP [NP]1
/E

NP NP\S
s

/I1
(N\N)/(S/NP) S/NP

— /e
N N\N

\e
NP/N N

/ E
NP

(2.27) the (who (Ax[(likes x) Mary]) man)

In fact, with no further apparatus we now have a simplified account of some unbounded

dependencies, which is impossible in AB without an unprincipled set of extra lexical type

assignments. For example, all the expressions in (2.28) may be given the type S/NP, as

demonstrated in (2.29); the corresponding lambda-terms are given in (2.30):

(2.28) a. Mary likes

b. Mary speaks to

c. Mary says that John likes

(2.29) a. Mary likes b. Mary speaks to

(NP\S)/NP [NP]1 PP/NP [NP]1
/E — /E

NP NP\S (NP\S)/PP PP
\e / e

S NP NP\S
/i1 L\b

S/NP S
/i1

S/NP
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c. Mary says that John likes

NP

(NP\S)/NP [NP]1
/E

NP\S
i
-/e

SP/S

(NP\S)/SP SP
•/e

NP NP\S
■\e

/jl
S/NP

(2.30) a. Ax[(likes x) Mary]

b. Ax[(speaks (to x)) Mary]

c. Ax[(says (that ((likes x) John))) Mary]

Thus, given the lexical type (N\N)/(S/NP) for the object relative pronoun who(m), we
may derive all the relative clause constructions in (2.31) in a similar fashion to (2.26):

(2.31) a. the man who Mary likes

b. the man who Mary speaks to

c. the man who Mary says that John likes

The reason why this works is that, as noted earlier, L can generate any string as a unit,
and hence the proposed account will always allow relativization when the extraction site
is peripheral (i.e. at leftmost or rightmost position in its clause), since the body of the
relative clause forms a continuous string in the canonical sentence.5

This raises two questions which form the main topics of this thesis. First, is it necessary
or desirable to use a framework which generates all strings in order to deal with these and

5This type for the relative pronoun therefore leads to island constraint violations such as *the
man who Mary saw a woman who likes; see 5.2.3 for a brief discussion of this.
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other constructions? Second, is the restriction to concatenative operations sufficient to

capture ail such constructions? In chapter 3 I shall argue that the answer to the first

question is no, and instead propose a new framework D intermediate between AB and
L which appears to capture the notion of a linguistic unit in a more satisfactory fashion.
Then in chapter 4 I shall argue that the answer to the second question is also no, and

propose the addition of extra operators to the previously proposed categorial frameworks
to deal with this. In chapter 5 I shall use the material in chapters 3 and 4 to motivate
a more general system of categorial logics, make some comparison with other categorial
frameworks, and discuss directions in which further research might be pursued.



Chapter 3

Flexible Constituency and Dependency

3.1 Rigid and Flexible Constituency

So far I have been using the term 'linguistic unit' rather loosely. In this section I shall

attempt to make this more precise by discussing the notion of constituency in syntax. In

particular, I shall argue that the standard 'rigid' notion of constituency as assumed in

phrase-structure grammar is inadequate for linguistic purposes, and that a more general
'flexible' notion appears to be required.

3.1.1 Definitions of Constituency

In order to define constituency in a suitably general fashion, we first need the notion of

subexpression. (This definition assumes that an expression always consists of a string of

words.)

(3.1) Given two expressions £ and T, £ is a subexpression of iF if £ consists of a (non¬
empty) subset of the words in T in the same linear order. If the words in £
form a continuous substring of T, £ is called a continuous subexpression of T\
otherwise it is called a discontinuous subexpression of T.

So, for example, if A,B,C,D,E are (distinct) words in the given language, then the ex¬

pression ABCDE contains (among others) the continuous subexpressions B, CD and
ABCDE, and the discontinuous subexpressions AC, BDE and ACE (but not, for exam¬
ple, CB or BCCD).
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We now define constituency as follows:

(3.2) A constituent representation for an expression £ is a set of subexpressions of £,
called the constituents of £. Constituents may be referred to as continuous or

discontinuous as defined for subexpressions in general.

(3.3) A theory of constituency is any scheme that assigns a constituent representation
to each grammatical expression of a language.

I shall discuss the linguistic motivation for assigning constituent status to a subexpression
below. For the moment, let us assume that a theory of constituency is free to assign
constituent status to any subexpression whatsoever.

A notion of constituency is of course central to all theories of grammar based on phrase-
structure. However, the version of constituency usually assumed in context-free phrase-
structure grammar is considerably more restrictive than that given in (3.3), in at least
two respects. Firstly, in context-free grammar all constituents are continuous, whereas the
above definition also permits discontinuous constituents. Secondly, context-free grammar

always assumes that no two constituents in an expression may overlap. Here two expres¬

sions are defined to overlap if their intersection is non-empty and one is not a subexpression
of the other. For example, in the three-word expression ABC, the subexpressions AB and
BC overlap, but ABC and BC do not, nor do AB and C. Because of the nature of rewrite

rules, a context-free phrase-structure grammar would not permit both AB and BC to be

constituents, but since (3.3) allows any subexpressions whatsoever to be constituents, over¬

lapping constituents are of course permitted. I shall therefore make a distinction between

rigid theories of constituency, which do not allow overlapping constituents, and flexible

ones, which do.

For example, consider the sentence John loves Mary. In a traditional phrase-structure

grammar assuming rigid constituency, this might receive the constituent representation in

(3.4):

(3.4) {John loves Mary, John, loves Mary, loves, Mary}
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No two of these constituents overlap. However, a rigid theory of constituency would not

allow the representation in (3.5), since John loves and loves Mary overlap:

(3.5) {John loves Mary, John, John loves, loves Mary, loves, Mary}

In contrast, a flexible theory of constituency might allow either (3.4) or (3.5), and indeed

many other representations.

In both (3.4) and (3.5), all individual words are constituents, but of course this is not
a necessary consequence of constituency either. I shall refer to theories of constituency
that impose this requirement as exhaustive. For example, the constituent representation
in (3.6) is compatible with a theory of constituency that is rigid, but not exhaustive:

(3.6) {John loves Mary, John, Mary}

It should be noted that the existence of overlapping constituents in an expression is not

strictly speaking incompatible with rigid constituency, since it could be that the expression
is structurally ambiguous (i.e. has several different representations in a rigid system). For
instance, suppose the expression ABC contains the set of constituents in (3.7). This set
constitutes a single representation in a flexible system, but the same set could also arise
within a rigid system from the two representations in (3.8):

(3.7) {ABC,AB, BC,A,B,C}

(3.8) a. {ABC,AB,A,B,C}

b. {ABC,BC,A,B,C}

However, the representation in (3.8) is considerably less parsimonious than that in (3.7),
since in (3.8) the constituenthood of ABC, A, B and C is represented twice. On purely the¬
oretical grounds, therefore, I shall assume (in the absence of evidence to the contrary) that
the existence of overlapping constituents in an expression is a result of flexible constituency
rather than structural ambiguity.

The above definitions have been purely mathematical and have not considered any

linguistic restrictions on what may act as a constituent. We turn to this next.
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3.1.2 Linguistic Arguments for Flexible Constituency

In phrase-structure grammar, the generally assumed linguistic motivation behind assigning
constituent status to a subexpression is distributional, i.e. governed by standard syntactic
tests such as the ability to be replaced by a proform, to be fronted or to be coordinated.
For example, consider the sentence John saw the woman in the red dress. Here there is
distributional evidence that the woman in the red dress is a constituent. It can be replaced

by a proform as in (3.9), it can be fronted as in (3.10), and it can be coordinated as in

(3.11):

(3.9) John saw her.

(3.10) The woman in the red dress, John saw.

(3.11) John saw the woman in the red dress and the man in the grey suit.

I shall now argue that distributional tests such as these axe at least as good a mo¬

tivation for flexible constituency as for rigid constituency. I shall consider a number of

possible constituency tests, many of which have been employed standardly within rigid

constituency theory in order to distinguish between competing rigid analyses. The survey

is not exhaustive, but is intended to show in varied ways that rigid constituency is empir¬

ically too weak. It is important to realize that a linguistic theory may reject a particular

test, but that the systematic use of at least some of these tests is necessary for any theory
based on distributional evidence at all.

Consider coordination first. A conjunct can consist of either subject and verb, or verb
and object:

(3.12) a. John loves and Bill hates Mary,

b. John loves Mary and hates Sue.

This is obviously problematic data for any theory assuming rigid constituency (defined
distributionally) which incorporates coordination into the grammar, since we can infer



Chapter 3. Flexible Constituency and Dependency 30

that John loves and loves Mary are both constituents in John loves Mary (and not merely
in the coordinated sentences, which would be far less interesting). Coordination provides

perhaps the clearest case for assuming flexible constituency in general, and the number of

strings that can serve as conjuncts can be very great.

Fronting is another standard test. For example, pairs like (3.13) are standardly used
to support the claim that Mary is a constituent:

(3.13) a. John loves Mary,

b. Mary, John loves.

The usual argument is roughly that Mary appears in a different position in (3.13b) from
its position in the canonical sentence (3.13a), and hence must be a distributional unit.

However, exactly the same data and the same argument could also be used to support the
claim that John loves is a constituent, since neither of the two parts of (3.13b) has any

distinguished status on purely distributional grounds. By the same argument, then, (3.14)
shows that I think John loves and I think loves Mary are both constituents in I think John
loves Mary, which again requires flexibility:

(3.14) a. Mary, I think John loves,

b. John, I think loves Mary.

(Note that in this case one of the proposed constituents is discontinuous.)1

Other less standard tests for constituency also support a flexible analysis. For example,
we might reasonably claim that the material missing from a 'gapped' conjunct must be

1In fact in languages with complex fronting, such as German, the fronting test alone would

appear to support flexible constituency. Consider the following (taken from Uszkoreit 1987):

(i) a. Das Buch schenken wollte Peter dem Jungen
the book-ACC give wanted Peter the boy-DAT
'Peter wanted to give the boy the book'
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a constituent, such as eats chocolate in (3.15a). In (3.15b), the missing material is eats

constantly (which is discontinuous in the original); again the two expressions overlap.

(3.15) a. John eats chocolate constantly and Bill, occasionally,

b. John eats chocolate constantly and Bill, strawberries.

A final test worth mentioning is replacement. It is sometimes proposed that if a set of
words can be replaced by a constituent then those words are also a constituent (see e.g.

Radford 1988, pp. 90-93). Of course this presupposes that we know that some sets are

constituents already; in particular, if we assume that all single words are constituents, the
claim follows that any string that can be replaced by a single word must be a constituent.
In fact this is a flawed test as it stands, since for example in I saw Mary yesterday the

substring Mary yesterday can be replaced by Mary, and Mary yesterday is not a constituent
under normal analyses. It might be possible to save this test by going beyond strictly

syntactic criteria and enforcing some sort of semantic substitutability, but even if this were

possible the test would still support flexible constituency. For example, in I will see Mary,
will see can be replaced by saw, and see Mary can be replaced by arrive, so we can infer that
will see and see Mary are both constituents.

If these tests for constituent structure are to be used at all, then, the data strongly

suggest that a flexible model of constituent structure is to be preferred. Indeed, in certain
restricted cases, flexible constituency (or its equivalent, structural ambiguity) is standardly
assumed within some phrase-structure-based theories, under what is termed reanalysis.
Consider (3.16):

(3.16) a. At Mary, John stared.

b. Dem Jungen schenken wollte Peter das Buch
the boy-DAT give wanted Peter the book-ACC
'Peter wanted to give the boy the book'

In these examples the fronted elements das Buch schenken and dem Jungen schenken clearly

overlap.
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b. Mary was stared at.
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(3.16a) suggests that at Mary is a prepositional phrase, but (3.16b) suggests that stared at

is a phrasal verb (for the reasons for these claims, see e.g. Radford 1988). One standard
conclusion is that stare at Mary has the structure [stare [at Mary]], but that it can be

reanalysed as [[stare at] Mary]. This is simply an assumption of restricted flexibility; from
this, it is not clear why flexibility should not be made into a general principle. Whatever
the status of this analysis, we can conclude that the case for flexible constituency is very

strong.

However, I have not so far argued for any particular flexible analysis. One (extreme)
possibility is that all strings are constituents, i.e. structural completeness (see 2.2.1). There
are a number of reasons to argue that this is not a good assumption, since some strings
do not appear to serve as distributional units under any test. For instance, consider the

subexpression Mary Bill in (3.17):

(3.17) John told Mary Bill liked Sue.

The tests considered above do not generally support the constituent status of this subex¬

pression. For example, (3.18a-b) show that it cannot be replaced by a proform or fronted.
The coordination test is more liberal, since it appears that a larger class of expressions can

be coordinated (see 3.3.4), but (3.18c) is at least questionable:

(3.18) a. *John told ?? liked Sue.

b. *Mary Bill, John told liked Sue.

c. ?John told [Mary Bill] and [Jane Fred] liked Sue.

In conclusion, it appears that any reasonable theory of flexible constituency will have
some restriction on the degree of flexibility; in general (though not necessarily for every

sentence), there will be some subexpressions which should not be treated as constituents.
In the next section I shall describe a theory of flexible constituency, based on dependency

grammar, which meets this requirement.
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3.2 Dependency Grammar and Dependency Constit¬
uents

In this section I shall make a brief excursion into dependency grammar, outlining the

general framework and giving some linguistic motivation. I shall then show that it is

straightforward to derive a linguistically plausible notion of flexible constituency from the
structures in a dependency grammar; this notion of constituency, referred to as dependency

constituency, will play an important role in the rest of this chapter. I also proposed a

simplified formal framework to generate dependency constituents, in preparation for the

categorial model to be presented in the next section.

3.2.1 Dependency Structures

Dependency grammar (DG) is a grammatical framework in which the primitive syntactic
links hold between individual words (rather than phrases). These links, called dependen¬

cies, relate two words called the head and the dependent. If a dependency links a head H
and a dependent D, we say that D is a dependent of H (or depends on H), and that H
is a head ofD. A dependency structure for an expression consists of all the dependencies
between the words in the expression. Thus dependency structures have the form of di¬
rected graphs where the words are viewed as nodes and the dependencies as directed edges,

leading from the head to the dependent.

A dependency diagram for an expression is a diagram giving both the linear form of the

expression and its dependency structure. For example, in the sentence John spoke to Mary,

suppose that John and to both depend on spoke, that Mary depends on to, and that there
are no other dependencies. (I shall discuss the linguistic motivation for these dependencies
in 3.2.2 below.) Then the dependency diagram will be as in (3.19):

(3.19) i
John spoke to Mary
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The notation is straightforward: we simply write the words in their usual linear order,
and draw a directed edge between each pair of words in a dependency, with an arrow from
the head to the dependent. Note if the directions on the edges in (3.19) are ignored then
it is always possible to find a continuous chain of edges from any node to any other node.
This is referred to in graph-theoretic terms as connectedness.

In many DGs, dependency structures are restricted to have the form of directed trees.

A directed tree (or rooted tree) is a directed graph with the following properties:

(3.20) a. The graph is connected.

b. There is a single node, called the root, which has no head.

c. All nodes except the root have exactly one head (the single-head require¬

ment).

For example, the structure in (3.19) is a directed tree with root spoke. Similarly the
structures in (3.21) and (3.22) are directed trees with roots thinks and gave respectively:

(3.21) ( V
i ) i ^

Fred thinks Bill laughed

(3.22) ( V
i it V

John gave Mary vodka

However, none of the three structures below is a directed tree; (3.23) because it is not

connected, (3.24) because there is no node without a head, and (3.25) because B has two

heads:

(3.23) C y
ABC

(3.24) f >
i ^
A B

( V
(3.25) i^
ABC
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It is also common to make an assumption about the relation between dependency
structure and linear order of words, which is usually called the adjacency requirement. To
define this we need the notion of subordinacy, which is the transitive closure of dependency,
i.e.:

(3.26) Given two words A, B in a dependency structure, B is subordinate to A if it is a

dependent either of A or of some other word subordinate to A.

For example, in (3.21) Fred, laughed and Bill are all subordinate to thinks. The adjacency

requirement runs as follows:

(3.27) No word may intervene between two words in a dependency relation unless it is
subordinate to one of them.

All the above dependency structures satisfy this requirement. (3.19) satisfies it trivially
since all dependencies are between adjacent words. (3.21) satisfies the requirement because
Bill, which intervenes between thinks and laughed, is subordinate to laughed (as well as to

thinks). (3.22) also satisfies the requirement because Mary, which intervenes between gave

and vodka, is subordinate to gave.

On the other hand, the structures in (3.28) and (3.29) violate the adjacency require¬
ment:

(3.28) ( y

ABC

(3.29) ( >
( if V
A B C D

From now on I shall assume the adjacency requirement, although it will not play a central
role in this section since I shall mostly be ignoring word order.

The assumption that dependency structures are trees, plus the adjacency requirement,

yields the version of DG which is sometimes known as classical dependency grammar (Gaif-
man 1965, Robinson 1970; see Fraser 1989). Classical DG has been shown to be (weakly)
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equivalent to context-free phrase-structure grammar (Gaifman 1965). Of course this means

that classical DG has similar generative inadequacies to context-free phrase-structure gram¬

mar, or indeed AB; for instance, it is impossible to formulate a principled account of un¬
bounded dependencies. (The only way that this has been achieved within a DG framework
is by violating the single-head requirement (see Hudson 1984).) However, I shall continue

using classical DG for the time being because of its straightforward formal properties. (A
brief proposal for refining the framework will be given in 3.3.2.)

It is always possible to derive a classical dependency structure from a headed binary-

branching phrase-structure tree (as defined in 2.2.1). To do this we need some more

terminology. Define phrasal heads and dependents as follows:

(3.30) Let £ be an expression with two daughters £\ and £2, of which £\ is the head

daughter. We shall say that £\ is the phrasal head of £, and £2 is the phrasal

dependent of £\.

So, for example, consider the sentence John spoke to Mary with the structure in (3.31)

(repeated from (2.20)). As there, round brackets indicate head daughters and square

brackets indicate non-head daughters:

(3.31) [[John] ((spoke) [(to) [Mary]])]

By the above definition, the phrasal head of the sentence John spoke to Mary is spoke to

Mary, which has phrasal dependent John. In turn, spoke to Mary has phrasal head spoke,
which has phrasal dependent to Mary. Similarly, to Mary has phrasal head to, which has

phrasal dependent Mary.

Given the above definition of phrasal head, we may now define lexical heads and de¬

pendents in such a way that they induce dependency structures compatible with classical
DG. The definitions run as follows:

(3.32) The lexical head of an expression S is S if S is lexical; otherwise it is the lexical
head of the phrasal head of S.
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(3.33) Let Si be a phrasal head with phrasal dependent «S2; let Wi be the lexical head
of Si, and W2 be the lexical head of S2. Then VV2 is a lexical dependent of Wi.

By (3.32), in the sentence John spoke to Mary it follows that John is the lexical head of
John (and of nothing else), and that Mary is the lexical head of Mary; to is the lexical head
of to, and hence also of to Mary; similarly spoke is the lexical head of spoke, hence also of

spoke to Mary, hence also of John spoke to Mary.

Then, by (3.33), since spoke to Mary has the phrasal dependent John, spoke has the
lexical dependent John. Similarly, since spoke has the phrasal dependent to Mary, spoke
also has the lexical dependent to. Finally, since to has the phrasal dependent Mary, to has
the lexical dependent Mary. Thus we have generated the same dependency structure as in

(3.19).

So far I have presented the account purely formally. I shall now discuss the linguistic
motivation both for postulating individual dependency relations and for making the above

assumptions about dependency structures.

3.2.2 Linguistic Motivation for Dependency Structures

The linguistic motivation for assuming a dependency between two words within classical
DG is essentially that the head specifies the category of its dependent, that is to say

subcategorizes for it. For example, in John spoke to Mary, spoke may be said to determine
the category of John and to, while to determines the category of Mary. Note that in
other dependency-based frameworks such as Word Grammar (Hudson 1984) additional
dependencies are allowed. For example, Word Grammar postulates dependencies between
words in a control relation (e.g. John and run in John wants to run) or in a predication
relation (e.g. John and happy in John is happy). However, such dependencies can be seen as

semantic rather than syntactic, and therefore not appropriate to the present account. Hence
I shall assume from now on that subcategorization is the sole criterion for dependency.

This assumption already gives us good grounds for assuming that that dependency
structures are directed trees. Connectedness is straightforwardly justifiable, since otherwise
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there would be no reason to regard the expression as a syntactic unit. The root, being the

unique element with no head, does not have its category determined by any other word,
and so its category is free to determine the category of the whole expression (e.g. the root

of a sentence will always be a verb). Each other word has exactly one head, since its

category must be determined by some word, but cannot be determined by more than one

word.

In general, there is no completely reliable means of determining dependency relations

directly from the form of sentences, and subcategorization must be regarded as a strictly
theoretical construct. However, there are several features of syntax which suggest strongly
that some form of connection between individual words is well motivated. These are tra¬

ditionally classed under such headings as 'agreement' and 'government'. (Here the term

'agreement' refers purely to 'syntactic' rather than 'semantic' agreement, i.e. agreement
constrained solely by syntactic features; for a discussion see Corbett 1979.) A character¬
ization of agreement and government in a categorial framework is given by Bach (1983)

(see also Keenan 1974); here, however, I am concerned purely with a theory-neutral char¬
acterization of the concepts.

Palmer (1971) offers a distinction between two kinds of linkage between words: (i)
a word or class of word requiring a particular form of another word, and (ii) a form of
one word requiring a corresponding form of another. He proposes the labels 'government'
and 'agreement' to describe (i) and (ii) respectively, even though this use does not always

correspond to the traditional use of the terms. For example, he cites the Latin sentence

given below (note that the verb pareo ('obey') takes its object in the dative):

(3.34) Viro bono paruit.
Man-SING-DAT gOod-MASC-SING-DAT obey-PERF-3RD-SING
'He obeyed the good man'

Under Palmer's definition we would say that:

1. The verb (paruit) governs the noun (viro) in case (dative).

2. The adjective (bono) agrees with the noun in case.
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3. The adjective also agrees with the noun in number (singular).
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4. The noun governs the adjective in gender (masculine).

In the first three of these the uses of the terms 'agreement' and 'government' coincide with
their usual uses, but the last would traditionally be referred to as agreement, even though
it is a property of the noun vir itself, and not the particular form of the noun, that gives
rise to the masculine inflection on bono.

Palmer's definition turns out to be a convenient one from the point of view of depen¬

dency, and so I shall adopt it here. In fact both agreement and government can be seen as

special cases of a more general phenomenon called covariation. A formal definition of all
three is given in (3.35).

(3.35) a. Suppose £ is a grammatical expression containing two words X and Y. If
there exist other words X\ and Y\, of the same categories as X and Y

respectively, such that £ is ungrammatical when either Xi is substituted for
X alone or Yi is substituted for Y alone, but grammatical when both X\ is
substituted for X and Y\ is substituted for Y alone, then we shall say that
X and Y covary.

b. If in (a) X and X\ are forms of the same word, and Y and Y\ are forms of
the same word, then we shall say that X and Y agree.

c. If in (a) Y and Yi are forms of the same word, but X and Xi are not forms
of the same word, then we shall say that X governs Y.

If X and Y covary, and more specifically if they agree, we may take this as evidence of a

dependency between X and Y, but since the relation is symmetric it is not possible from

covariation or agreement alone to determine the direction of the dependency, and other
factors must be brought into account. If X governs Y we may take this as evidence that
Y depends on X. However, these conditions should not be thought of as either necessary
or sufficient; I shall discuss exceptions towards the end of this subsection.



Chapter 3. Flexible Constituency and Dependency 40

So, for example, in (3.36a) relies and on covary; in (3.37a) he and likes covary, and in
addition they agree; in (3.38a) will and see covary, and in addition will governs see.

(3.36) a. John relies on Mary.

b. John trusts in Mary.

c. *John trusts on Mary.

d. *John relies in Mary.

(3.37) a. He likes Mary.

b. They like Mary.

c. *They likes Mary.

d. *He like Mary.

(3.38) a. John will see Mary.

b. John has seen Mary.

c. *John has see Mary.

d. *John will seen Mary.

In (3.36), therefore, we may postulate a dependency between the verb and the preposition,
and in (3.37) a dependency between the subject and the verb, although in neither case is
the direction determined. (3.38) gives evidence that the non-finite verb depends on the
auxiliary.2

Note that where morphological marking is not explicit, tests such as the above will not

always work. For example, contrast (3.37) and (3.38) with (3.39) and (3.40):

(3.39) a. He liked Mary.

2Some authors (e.g. Matthews 1981, pp. 155-156) have proposed the opposite direction of
dependency for auxiliary constructions, but this position is less consistent with the above criteria.
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b. They liked Mary.
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(3.40) a. John will hit Mary,

b. John has hit Mary.

In (3.39) agreement cannot be directly demonstrated because of the lack of number marking
on English past tenses. Similarly, in (3.40), because of the coincidence of the base and
perfect forms of hit, government cannot be directly demonstrated. In such cases appeal
must be made to analogous examples such as (3.37) and (3.38).

Sometimes, indeed, it is not possible to demonstrate certain examples of agreement and

government in a given language at all. For instance, since all transitive verbs in English take
accusative objects, it is impossible to demonstrate covariation between a transitive verb

and its object, unless one considers 'cognate objects' such as in the following example:

(3.41) a. John sneezed a loud sneeze.

b. John coughed a loud cough.

c. *John coughed a loud sneeze.

d. *John sneezed a loud cough.

On the other hand, it is possible to do so in German, where most verbs, such as sehen

('see'), take an accusative object, but some, such as helfen ('help'), take a dative object:

(3.42) a. Ich sah ihn. (I saw him-ACC)

b. Ich half ihm. (I helped him-DAT)

c. *lch half ihn.

d. *lch sah ihm.

From such examples we see that verbs govern their objects for case in German, and may

reasonably conclude that objects depend on verbs in general.

A less standard example:
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(3.43) a. Every boy laughed.

b. Many boys laughed.

c. *Many boy laughed.

d. *Every boys laughed.

This example appears to demonstrate that determiners govern nouns in English, suggesting
that nouns depend on determiners. This position is not universal within dependency

grammar (it appears commoner to assume to the opposite direction of dependency), but is
advocated by Hudson (1984), and turns out to be compatible with the categorial grammar
account of dependency to be presented in the next section, so I shall adopt it here.

Finally, consider 'sequence of tenses':

(3.44) a. Fred thinks Bill has left.

b. Fred thought Bill had left.

c. *Fred thought Bill has left.

d. *Fred thinks Bill had left.

In this case the tense of the embedding verb has an effect on the tense of the embedded

verb; by the strict definition in (3.35) this would actually count as agreement rather than

government.

In order to determine the direction of dependency in cases where it is unclear, such
as between subjects and verbs, we must consider other facts about dependency structure.
For example, in Fred thinks Bill laughed we have already ascertained that laughed depends
on thinks; by the single-head requirement laughed cannot therefore be dependent on Bill,
so Bill must be dependent on laughed. We may thus assume in general (in main as well as
subordinate clauses) that subjects depend on verbs rather than vice versa.

Generally, when words are not in a dependency relation they do not exhibit covariation

(and hence do not exhibit agreement or government). For example, the subject and object
of a verb do not in general covary; given a sentence like John loves Mary, there is no possible
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change in the subject that could force a change in the object, or vice versa. Similarly spoke
and Mary do not covary in John spoke to Mary, and thinks and Bill do not covary in Fred
thinks Bill laughed; in each case there is no way of changing one in such a way as to affect
the form of the other.

But in fact covariation cannot be regarded as a sufficient test for dependency, since it
is possible for words to covary when there is no subcategorization relation, as in (3.45):

(3.45) a. Mary respects herself.

b. John respects himself.

c. *Mary respects himself.

d. *John respects herself.

Here the subject and the object of the verb covary, and indeed the subject governs the

object in gender by the strict definition above. This might be argued to provide evidence
for a dependency link from Mary to herself. However, the category of herself (as well
as other features such as case) is still determined by the verb respects, and so by strict

subcategorization the head of herself should be taken to be respects.

Similarly, in languages with a richer agreement system than English, such as French,
covariation can be exhibited between subjects and predicative adjectives:

(3.46) a. Marie est heureuse. (Mary is happy-FEM)

b. Jean est heureux. (John is happy-MASC)

c. *Marie est heureux.

d. *Jean est heureuse.

Some work in dependency grammar has argued for a dependency link between subjects and

predicative adjectives (see e.g. Matthews 1981), but in line with subcategorization it must
be assumed that the verb is the head of both the subject and the predicative adjective,
and hence that there is no dependency link between the two.
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None of the above discussion has addressed modifier constructions. DG standardly deals

with modifiers by assuming that they are optionally subcategorized for. For instance, in
I saw John yesterday, saw is assumed to subcategorize for yesterday as well as I and John.
This means that the dependency structure for this sentence is as below:

(3.47) ( V
i V V
I saw John yesterday

This is consistent with the usual assumptions of X-bar syntax, but at odds with the inter¬

pretation of categorial functors as heads, as we shall see in 3.3.3 when we try to combine
the two approaches (cf. the discussion in 2.2.1). Nevertheless, I shall retain the standard

dependency analysis of modifier constructions, rather than make concessions to CG. (Later
we shall see how CG can be adapted to accommodate this change.) The reason for this will
become clearer when we discuss dependency constituency, but for the moment note that
if we assumed modifiers to be heads of the words they modify, then in the above example

yesterday would be the head of saw, and so the root of the sentence would be yesterday,

contradicting the general principle that the root of the sentence is a verb. Furthermore,
if the sentence were embedded, e.g. Fred thinks I saw John yesterday, then the single-head

requirement would force yesterday rather than saw to be dependent on thinks, for which
there is no motivation (e.g. thinks and yesterday do not covary).

3.2.3 Dependency Constituents

We are now in a position to see how a linguistically motivated notion of flexible constituency
can be derived from dependency structures. Previously, the only form of constituency
considered in relation to DG was a rigid form (see e.g. Matthews 1981, pp. 84-93), which
I shall refer to as full constituency; this will be discussed below. The new flexible form
of constituency, called dependency constituency, was first proposed in Barry and Pickering

(1990), and is discussed further in Pickering (1991).

The concept of a dependency constituent is straightforward. Given an expression and
an associated dependency structure, the words in a dependency constituent must lie at
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the nodes of a connected substructure (i.e. subgraph). This can be expressed formally as

follows:

(3.48) Let £ be an expression with an associated dependency structure «S, and T be a

subexpression of £. T is a dependency constituent of £ iff there is a connected
substructure (subgraph) T of S such that T consists of the words at the nodes

As with other forms of constituency, a dependency constituent is continuous if its words
form a continuous substring of the original expression, and discontinuous otherwise. Clearly

single words will always be dependency constituents, as will the entire expression; I shall
refer to these particular examples as trivial and to all others as non-trivial.

To illustrate, let us return to the dependency structures for the three sample sentences

given at the beginning of the section, and work out the associated sets of dependency
constituents. First John spoke to Mary:

Here the non-trivial dependency constituents are John spoke, spoke to, to Mary, John spoke
to and spoke to Mary. (These are all continuous, but this will not be the case in general.)
Some of these (to Mary and spoke to Mary) axe standard phrase-structure constituents, but
the rest are not. Since (e.g.) spoke to and to Mary are both dependency constituents but

overlap, dependency constituency is clearly flexible. In this case, in fact, all continuous

strings are dependency constituents, which would be compatible with structural complete¬
ness. However, this is not in general true, as we can see by looking at Fred thinks Bill

laughed:

of T.

(3.19)

(3.21)
r~

i i
Fred thinks

V
i ^

Bill laughed
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Here the non-trivial dependency constituents are Fred thinks, thinks laughed, Bill laughed,
Fred thinks laughed and thinks Bill laughed. Again we have dependency constituents which
are not phrase-structure constituents (e.g. Fred thinks, thinks laughed) and overlapping
constituents (e.g. Fred thinks and thinks Bill laughed); in addition this time two of the

dependency constituents are discontinuous (thinks laughed, Fred thinks laughed). However,
there are now continuous substrings which are not dependency constituents, namely thinks
Bill and Fred thinks Bill, which shows that dependency constituency is not structurally

complete.

Most of the same points arise from the dependency structure for John gave Mary vodka:

(3.22)
( V

i ^( V
John gave Mary vodka

The non-trivial dependency constituents are John gave, gave Mary, gave vodka, John gave

Mary, John gave vodka and gave Mary vodka. Again, Mary vodka is continuous but not a

dependency constituent.

Our final example:

(3-47)
( V

i \( V
I saw John yesterday

The non-trivial dependency constituents are I saw, saw John, saw yesterday, I saw John, I
saw yesterday and saw John yesterday. In fact, if yesterday were the head of saw, the set of

dependency constituents would be the same. However, there would be a difference if the
sentence were embedded; for instance, in Fred thinks I saw John yesterday, with saw as the
head of yesterday, thinks saw is a dependency constituent and thinks yesterday is not. On
the other hand, if yesterday were the head of saw, thinks saw would not be a dependency

constituent, but thinks yesterday would be. Since yesterday relates in meaning to saw and
not to thinks, the version with modified elements as heads makes more sense linguistically.



Chapter 3. Flexible Constituency and Dependency 47

Note that every dependency constituent contains a unique word that has no head within
that dependency constituent; we may naturally extend the earlier terminology and refer to
this as the root of the dependency constituent, since the root of the entire expression when
viewed as a dependency constituent is the same as the root under the original definition.

(The root of a single-word dependency constituent is of course that word.)

For instance, in (3.19) John spoke, spoke to, John spoke to and spoke to Mary all have
root spoke, but to Mary has root to. Similarly in (3.21) thinks laughed has root thinks; Bill

laughed has root laughed. In fact we may use the notion of root to construct an alternative
definition of dependency constituent:

(3.49) Given a dependency structure and a word W in that dependency structure, a

dependency constituent rooted at W is any expression T> such that W is in V,
and the head of each word in V except W is also in V.

Equivalently, there must be a head-dependent chain from W to each other word in D, and

every word in this chain must be in V.

We may now use dependency constituency to motivate the rigid form of constituency
referred to above as full constituency. Note first that for any word W the union of any two

dependency constituents rooted at W is also a dependency constituent rooted at W. It

follows that there must be a dependency constituent rooted at W of which all the others
are subexpressions. We refer to this as the full constituent rooted at W. Formally:

(3.50) For any word W, the full constituent rooted at W is the (unique) expression T
such that W is in T, and any word except W is in T if and only if its head is in

T.

Equivalently, the full constituent rooted at W consists of W and every word subordinate
to W. It follows that in a dependency structure that obeys the adjacency requirement all
full constituents will be continuous. Note that the entire expression is a full constituent

by this definition, but single words in general will not be.
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For example, return to the expression John spoke to Mary, with the dependency structure
in (3.19). There, the full constituent rooted at John is John, the full constituent rooted at

Mary is Mary, the full constituent rooted at to is to Mary, and the full constituent rooted
at spoke is John spoke to Mary. As this example illustrates, full constituency is rigid, but
division into subconstituents is not exhaustive (since e.g. spoke is not a full constituent).
Note that the set of full constituents is the same as the set of expressions that served
as phrasal dependents in the phrase-structure representation (3.31) above. It will always
be the case that when a dependency structure is derived from such a phrase-structure

representation, the resulting set of full constituents will be the same as the original set of

phrasal dependents. This will be discussed further in 3.3.2.

Note also the following:

(3.51) Every full constituent consists of its root plus zero or more full constituents.

For example, the full constituent John spoke to Mary consists of the root spoke plus the
two full constituents John and to Mary; in turn, the full constituent to Mary consists of the
root to plus the single full constituent Mary, and the full constituent Mary consists of the
root Mary alone.

Finally, the following relationship holds between dependency constituency and full con¬

stituency:

(3.52) An expression is a dependency constituent iff it can be combined with zero or

more full constituents to form a full constituent.

This is trivial for those dependency constituents that are also full constituents. Some

examples: Fred thinks can be combined with Bill laughed to form Fred thinks Bill laughed,
and spoke to can be combined with John and Mary to form John spoke to Mary. On the other

hand, Fred thinks Bill cannot be combined with full constituents to form a full constituent

(since laughed is not a full constituent).
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3.2.4 A Formalization of Dependency Grammar
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The above account of DG and dependency constituents has been purely descriptive. I shall
conclude this section by proposing a simplified framework which might form the basis of
a generative theory of DG. I shall not go into great detail since the purpose is mostly to

motivate the connection with the categorial grammar account in the next section.

There is no standard formalism for representing DGs, although one has been proposed

by Gaifman (1965). I shall now propose a grammatical framework which will generate

dependency structures, based directly on subcategorization relations. The mechanisms
resemble those of categorial grammar in that the combining properties of each word are

completely encoded in its lexical entry, and the permissible modes of combination are

entirely governed by general schemas. However, for simplicity's sake I shall completely

ignore linear order and assume that expressions are multisets of words. (A multiset is an

unordered list, so that order is irrelevant but number of occurrences is relevant.) We thus
have no need for the adjacency requirement. Since dependency constituency is independent
of word order, this simplified account will suffice for illustrative purposes. I shall introduce
linear order when the CG formulation is introduced in the next section.

We assume some set of lexical categories. For illustrative purposes the following three
will suffice: V (verb), PN (proper name), P (preposition). Each word has a dependency

type of the form H{D\,...; Dn}, for some lexical categories H, Z?i,..., Dn (n > 0). H (the
head category) is the category of the word itself, and ..., Dn (the dependent categories)
are the categories of the words it sub categorizes for. For example:
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(3.53) John PN{}

Mary PN{}
Bill PN{}
vodka PN{}
laughed V{PN}
to P{PN}
spoke V{PN;P}
thinks V{PN;V}
gave V{PN;PN;PN)

Expressions are generated by matching dependent categories against head categories. This
can be stated by means of the following type-combining rule, where the commas between
the dependency types are used to signify that order is irrelevant (cf. the ID/LP format for

phrase structure rules (Pullum 1982)).

(3.54) H{Di;...;D,}, D,{} , ... , £„{} =#•

The head category of the whole expression will be that of its root, so that in particular
if the resultant category is V{}, the expression is a sentence. This can be illustrated by

using a proof-figure-like notation for derivations:

(3.55) John spoke to Mary
P{PN} PN{}

PN{) V{PN;P} P{}
VO

(3.56) Fred thinks Bill laughed
PN{} V{PN}

PN{) V{PN;V} V{}
vT)
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(3.57) John gave Mary vodka
PN{} V{PN;PN;PN} PN{} PN{}

n)

On the same principles, it is possible to extend the system of categorization for words
in a natural way so that it covers all dependency constituents. A dependency constituent
will receive the dependency type R{Di]... ] Dn} where R is the category of the root and

Di,...,Dn are the categories of its missing dependents. So, for instance, to Mary would
receive the type P{}; John spoke, V{P); spoke to, V{PN;PN}. Note that a dependency
constituent whose dependency type has no dependent categories is a full constituent.

This definition enables us to give a rule for deriving the dependency type for any

dependency constituent from the types of its component parts (given that all words are

dependency constituents). The rule says that two dependency constituents and V2 may

be combined by matching the head category of T>2 against one of the dependent categories
of V1; the head category of the result is the head category of T>\, and the dependent

categories of the result are the union of the remaining dependent categories of T>\ and all
the dependent categories of "D2. Formally:

(3.58) X{Yi;...-,Yk-...-,Ym} , Yk{Zi;...;Zn}
=*X{Y1;...;Yk-1;Yk+1;...;Ym;Z1;...;Zn}

where m > 1, n > 0. Since the order of the Y{ is irrelevant, we may in fact state this

slightly more simply:

(3.59) X{Yi;...-Ym} , Ym{Zi;...;Zn}
=>X{V1;...;Ym-1;Z1;...;Zn}

So, for example, we may use this rule to derive all the following expressions as depen¬

dency constituents of the given types:
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(3.60) a. to Mary b. John spoke to

P{PN} PN{} PN{} V{PN;P}
P{} V{P} P{PN}

V{PN}

(3.61) a. thinks Bill laughed b. thinks laughed

PN{} V{PN} V{PN;V} V{PN}
V{PN;V} V{} V{PN;PN}

V{PN}

(3.62) a. John gave b. gave vodka

PN{} V{PN;PN;PN) V{PN;PN;PN} PN

V{PN;PN) V{PN;PN}

On the other hand, we cannot perform the combinations in (3.63):

(3.63) a. Fred thinks Bill b. Mary vodka

V{V} PN{} PN{} PN{}_

This is exactly in keeping with the analyses directly derived from the dependency struc¬

tures.

The above formalization of course has many deficiencies. Not only does it ignore word

order, but it cannot deal with constructions such as unbounded dependencies which are

outside the scope of classical DG. It may be possible to add a linear precedence component
to the grammar (see e.g. Pullum 1982), and to develop a richer type structure to deal with

'dependencies within dependencies', but this would take us outside the scope of this thesis.

Rather than try to develop this formalization any further, it seems appropriate to use a

categorial model similar to those already developed. The next section suggests how this

might be achieved.
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3.3 Dependency in Categorial Grammar

In this section I shall define a new categorial grammar D, which lies between AB and L
in respect of the set of strings for which it generates types. I shall show that given certain

assumptions about the relation between dependency types and categorial types, the legal
combinations in D correspond to those operations which form continuous dependency

constituents, leading to a more principled model of flexible constituency within categorial

grammar.

3.3.1 A New Categorial Framework D

In the formalization of dependency grammar presented above, the key intuition was that

dependent categories were cancelled against head categories to generate the types of depen¬

dency constituents. In much the same way, D generates the categorial types of dependency
constituents by cancelling the 'argument' part of types against the 'value' part, in an anal¬

ogous fashion to the procedure used in simplifying multiplication of fractions. For instance,
in D the inference from X/Y and Y to X is valid, as is the inference from X/Y and Y/Z
to X/Z; in each case the Y is cancelled. Slightly less obviously, in D the inference from

(Y\X)/Z to Y\(X/Z) is valid; here, although no type symbols have been cancelled, no
new type symbols have been introduced. But the inference from X to Y/(X\Y) is not valid
in D, even though it is valid in L, since the new symbol Y has appeared in the conclusion.
This is not meant to be a precise specification of D-valid inferences, but should provide a

plausible motivation for the formalization to be presented below.

D can be formulated in the proof figure notation in a similar fashion to L, but with an

important restriction. The /E and \E rules are exactly the same as in L (or AB):

(3.64) a. b.
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However, the /i and \l rules have an extra condition on their use: the discharged assump¬

tion must not serve as the functor in a /e or \e inference. Thus the rules may be stated
as follows (cf. (2.12)):

(3.65) a. [y]' where Y does b. [Y]' where Y does
not serve as the not serve as the

functor in a /e Y\jF^ functor in a /e
or \e inference or \e inference

The semantic operation associated with the /i and \l rules is still lambda-abstraction, but
in D it is only permitted to abstract over a variable if it does not act as a function over

anything else.

Clearly all AB derivations are also valid in D, and yield the same meaning represen¬

tations. For example:

(3.66) a. Bill laughed b. spoke to Mary
NP NP\S PP/NP NP

\ £ / j£
S (NP\S)/PP PP

/E
NP\S

(3.67) a. laughed Bill

b. spoke (to Mary)

Also, derivations such as those in (3.68) are valid in D, since the assumptions condition-
alized by the /i rule in each case serve as the argument in a /e inference, not the functor.
Note also that in each of the meaning representations the abstracted-over variable is an

argument, not a function.
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(3.68) a. Fred thinks
(NP\S)/S [S]1

NP NP\S
/e

S
/i1

S/S

\e

b. spoke to

PP/NP [NP]1
(NP\S)/PP PP

/e

NP\S
-/e

(NP\S)/NP
/I1

(3.69) a. Ax[(thinks x) Fred]

b. Ax[spoke (to x)]

But the derivations in (3.70), though valid in L, are not valid in D, since they involve
conditionalization of types that serve as the functor in /e or \e inferences:

(3.70) a. thinks Bill

NP [NPXS]1
Mary vodka

(NP\S)/S
\e

NP\S
-/e

[((NP\S)/NP)/NP]1 NP

(NP\S)/NP
/e

NP

(NP\S)/(NP\S)
/I1

NP\S

(((NP\S)/NP)/NP)\(NP\S)

■/e

\IX

(3.71) a. A/[thinks (/ Bill)]

b. A/[/ Mary John]

Indeed, given the above lexical type-assignments there is no analysis of thinks Bill or Mary
vodka within D, as should be evident from the 'cancellation' intuition.

Note carefully that it is permissible for derivations in D to involve conditionalization
of functional types, so long as these types (and hence the associated variables) serve as

arguments rather than functions. For instance, the following derivation is valid in D:
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(3.72) the man who
(N\N)/(S/NP) [S/NP]1

— /E
N N\N

/e
NP/N N
— / e

NP
/I1

NP/(S/NP)

(3.73) AxNP'~*s'[the ((who x) man)]

Finally, note that the restriction on /i and \l prohibits conditionalization even if the
conditionalized type is a function over another conditionalized type. Thus, for instance,

although the derivation in (3.74) is valid in D, those in (3.76) are not:

(3.74) who John spoke to

PP/NP [NP]1
—/e

(NP\S)/PP PP
/E

NP NP\S
s *

(N\N)/(S/NP) S/NP
/e

(N\N)

(3.75) who (Ax[spoke (to x) John])

(3.76) a. who John

N\N

[(NP\S)/NP]2 [NP]1
/E

NP NP\S
I

/■'
(N\N)/(S/NP) S/NP

/e

(N\N)/((NP\S)/NP)
/I2
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b. who John spoke

[PP/NP]2 [NP]1
(NP\S)/PP PP

/e

/e

NP NP\S
s

/l1
(N\N)/(S/NP) S/NP

/e
N\N

"/!
(N\N)/(PP/NP)

(3.77) a. A/[who (Ax[/ x John])]

b. A#[who (Ax[spoke (g x) John])]

The derivations given already suggest that expressions derivable by D correspond at
least roughly to dependency constituents. I shall now consider what assumptions are

needed to make this correspondence precise.

3.3.2 Interpreting Types in D

In the light of the discussion in 2.2.1, a natural question to ask is what model of syntactic
structure we should assume in order to allow an interpretation of types with respect to

which D is sound and complete. Recall that with AB it is appropriate to assume that
heads are distinguished from non-heads and combination is non-associative, whereas with
L there is no distinction between heads and non-heads and combination is associative. D

stands between the two, in that heads are distinguished but combination is (at least partly)
associative.

Let us return to John spoke to Mary. As noted in (2.20), AB assumes the following

rigid structure, where round brackets indicate head daughters (phrasal heads) and square

brackets indicate non-head daughters (phrasal dependents):

(3.78) [[John] ((spoke) [(to) [Mary]])]
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Suppose we ignore heads and distinguish only non-heads. Then the structure is as follows:

(3.79) [[John] spoke [to [Mary]]]

Assuming an associative concatenation operation, this suggests the following interpretation
of types (cf. (2.21) and (2.23)):

(3.80) An expression is of type X/K (resp. Y\X) iff, whenever it is concatenated with
a following (resp. preceding) non-head of type Y, the result is of type X.

So, for example, spoke to Mary has the type NP\S since it forms an expression of type S
when combined with a preceding non-head of type NP; spoke has both the types (NP\S)/PP
and NP\(S/PP) since it can be combined with a following non-head of type PP to form an

expression of type NP\S, or with a preceding non-head of type NP to form an expression
of type S/PP, and so on. But not all L-valid types are possible; for instance John does
not have the type S/(NP\S), since it cannot be combined with a non-head to form a

grammatical expression.

I conjecture that D is sound and complete with respect to this interpretation of types.
As with AB, /e inferences represent the combination of a head with a following non-head,
and \e inferences represent the combination of a non-head with a following head; /i and

\l inferences allow the withdrawal of a non-head in leftmost or rightmost position.

As mentioned earlier, the set of non-heads (or phrasal dependents) in (3.78), namely
John, Mary, to Mary and John spoke to Mary, is in fact identical to the set of full constituents
that would be generated under the corresponding dependency representation. This would
seem to limit the grammar to generating expressions from which full constituents are

'missing'. Given the result in (3.52), namely that an expression is a dependency constituent
iff it can be combined with zero or more full constituents to form a full constituent, we

might expect D to generate dependency constituents. Further, since (like AB and L)
D can only generate continuous expressions, we might conjecture that it generates all
and only continuous dependency constituents. I shall now demonstrate that under certain

assumptions about the relation between categorial type-assignments and dependency type-

assignments, this is indeed the case.
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Our assumption is that atomic CG types correspond one-to-one with DG lexical cate¬

gories in the following way: there is a bijective function p from the set of atomic CG types

to the set of DG lexical categories such that the root of an expression of atomic CG type

X has the DG lexical category p{X), and the full constituent rooted at a word with DG
lexical category p(X) has the atomic CG type X.

For example, in the sample dependency grammar in 3.2.4 there were three lexical cat¬

egories V, PN and P. These corresponded respectively to the atomic CG types S, NP and

PP; for example, the root of a sentence is a verb, and the full constituent rooted at a verb
is a sentence. Thus we have p(S) = V, p(NP) = PN, p(PP) = P. A more general grammar

might have the following correspondence:

Atomic CG type DG lexical category

S (Sentence) Finite verb

NP (Noun phrase) Determiner or proper name

N (Common noun) Lexical noun

PP (Prepositional phrase) Preposition
VP (Non-finite verb phrase) Non-finite verb

SP (Complementized sentence) Complementizer

Thus this correspondence is reasonable for the types and categories already postulated

(although it breaks down for modifiers, for reasons to be given in 3.3.3). From such a

correspondence it follows that all full constituents receive atomic CG types. This is rea¬

sonable for the fragment of CG equivalent to classical DG (outside which full constituents
are not defined anyway). It can now be shown that an expression can be derived within D
iff it is continuous and can be given a dependency type within the framework of 3.2.4.

Suppose first that an expression £ has the dependency type H{Di,..., Z)„}, for some
lexical categories if, Dx,..., Dn (n > 0). Then for some atomic CG types X, Yx,..., Yn
we have p(X) = H,p(Yx) = Z?i,... ,p(Yn) = Dn. Since any expression of type Yi is a full
constituent with root of category Z), (for each i), £ can be combined with full constituents
of types Yu...,Yn to form a full constituent. Furthermore, the resulting full constituent
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will have a root of category H and hence will be of type X. Since £ is continuous, it can
therefore be generated within D by deriving type X and conditionalizing types Y\,... ,Yn.

Conversely, suppose that an expression £ can be generated within D by deriving type

X and conditionalizing types Yj,..., Yn (n > 0). £ is continuous since it can be generated
within D. £ can be combined with full constituents of types Yj,...,Y^ to form a full
constituent of type X, T say. Let p(X) = H,p(Yx) — Di,..., p(Yn) = Dn. Then T has a

root of type H, and so £ can be given the dependency type H{D\,Dn}.

The main consequence of this can be stated as follows: the type given to a dependency

constituent, within either the CG or the DG formalization, contains information about the

categories of the root and the missing dependents, but no other information about depen¬

dency structure. (The CG type also contains information about linear order.) For example,
the expression John spoke to receives the type V{PN} in DG and the corresponding type

S/NP in CG. Either type tells us that the root is a verb and the missing dependent is

nominal, but other aspects of the structure are hidden. This will play a role in the account

of coordination to be presented at the end of the section.

Note that derivations involving conditionalization of functional types, such as (3.72),
are outside the scope of this correspondence since they assume non-heads (corresponding
to full constituents) which are not of atomic types. This is needed because of the pres¬

ence of higher-order functions in the lexicon (i.e. functions which take other functions as

arguments), such as who of type (N\N)/(S/NP). This makes the categorial treatment of
dependency constituents more powerful than the straightforward DG treatment in this

respect. However, the existence of such higher-order types in CG suggests that the DG

type formalism might be extended in a similar fashion, so that who could be given a type

of the form Rel{V{PN}} (where 'Rel' is a nonce-symbol for the lexical category of relative

pronouns). I shall not pursue this here.

3.3.3 Deficiencies of D

There are still several deficiencies of the categorial account of dependency constituents just

presented. The most obvious problem with D as it stands is that discontinuous depen-
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dency constituents are not derivable, since all expressions must be continuous strings. For

instance, it is impossible to give a type to the discontinuous dependency constituent thinks

laughed in Fred thinks Bill laughed, since non-peripheral types cannot be conditionalized:

(3.82) thinks laughed
[NP] NP\S^

(NP\S)/S S~ ^
/e

NP\S
_***

A solution to this will be proposed when we consider commutation modalities in the next

chapter.

The other main problem is that (as already noted) modifiers must be taken as arguments
rather than functors for the correspondence with DG to work. Consider for example:

(3.83) John runs fast

(3.84) John usually runs

Given that fast and usually are dependents of runs in the two cases, the dependency struc¬

tures clearly show that the underlined expression in (3.83) is a dependency constituent,
whereas that in (3.84) is not:

(3.85) i V V
John runs fast

(3.86) i ^
i ^

John usually runs

However, the standard categorial view of modifiers as functors means that under the usual

type-assignments D makes the opposite prediction, since (3.87) is invalid in D but (3.88)
is valid:
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(3.87) John runs

NP

NP\S [(NP\S)\(NP\S)]1
\e

S/((NP\S)\(NP\S))

(3.88) John usually

NP

(NP\S)/(NP\S) [NP\S]\\e

/i1
S/(NP\S)

The most transpaxent way of dealing with this is to reflect dependency relations by making
modified elements into functors and modifiers into arguments, although this requires mul¬

tiple type-assignments to modifiable elements. For example, suppose verbal modifiers have

special atomic types instead of their usual CG types, say PoV for verbal postmodifiers like
fast and PrV for verbal premodifiers like usually. Then runs would receive the type NP\S
when not modified, (NP\S)/PoV when postmodified, and PrV\(NP\S) when premodified.
Now (3.89) is valid in D and (3.90) is invalid, as desired:

S/((NP\S)\(NP\S))/!
(3.90) John usually

PrV [PrV\(NP\S)]1
\e

NP NP\S

S/(P°V\(NP\S))/l

(3.89) John runs

NP

(NP\S)/PoV [PoV]1
/ e

However, such multiple type-assignments are extremely inelegant. Furthermore, since a

modifiable element may (at least in theory) combine with arbitrarily many modifiers, we
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in fact need an infinite number of type-assignments for each modifiable element. For

example, if nominal premodifiers such as old and happy have the type PrN, and nominal

postmodifiers such as with red hair and who likes cheese have the type PoN, then a noun like
man would have to have the alternative lexical types N, PrN\N, PrN\(PrN\N), ..., and
also N/PoN, (N/PoN)/PoN,..., as well as two-ways modifiable types like (PrN\N)/PoN.
A solution will be proposed when we consider iteration and optionality modalities in the
next chapter, but for the time being I shall simply assume that in any modifier construction
the appopriate lexical type-assignment for the modified element is available.

3.3.4 Linguistic Applications of D

The clearest application of D is to coordination (see also Barry and Pickering (1990) and
Pickering (1991)). Here I shall limit my attention to coordination of continuous expres¬

sions. Consider first the following 'naive' account of coordination based on L types. (An

equivalent account is proposed by Moortgat (1988)).

(3.91) Two (or more) strings can be coordinated if and only if they can be given the
same L type.

This holds in a large class of cases, covering both standard constituent coordination and

many examples of what is generally termed 'non-constituent' coordination. To illustrate,

examples will be annotated by placing square brackets round each conjunct and writing
the minimal shared L type as a subscript to each. For example:

(3.92) a. John [loves Mary]Np\^g and [hates Sue]Np^g.
b. John [kissed Mary]Np^g and [smiled]Np^g.

(3.93) a. John [will buy](Np\g)/Np and [may eat](Np\g)/Np the beans.
b. John [bought](Np\s)/Np and [may eat](Np\g)/Np the beans.
c. John [bought](Np\s)/Np and [paid M(np\s)/np the beans.
d. John [bought](Np\g)/Np and [thinks that Mary will eat](Np^g)/Np the beans.
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In examples (3.92) the conjuncts are phrase structure constituents, whereas in examples

(3.93) they are not, but the same principle allows the coordinations in all of them. Fur¬

thermore, in each case the internal structure of the conjuncts appears to be irrelevant.

However, this is not always the case, as demonstrated by the contrast in (3.94):

(3.94) a. [I believe that -l°hn]s^Np\^ and [Harry thinks that Mary]s^Np^Sj climbed the
mountain.

b. *[J°hnls/(Np\s) anc* IHarry thinks that Mary]s^Np^Sj climbed the mountain.

(3.94a) is correctly generated by (3.91), but (3.94b) is also incorrectly generated, since the
type S/(NP\S) can be given to both conjuncts in each example:

(3.95) a. I believe that John b. Mary
NP [NP\S]1 NP [NPVS]1

\E \E
SP/S s s

'/* /I1
(NP\S)/SP SP S/(NP\S)

— /E
NP NP\S

S
/I1

S/(NP\S)

The data suggest that, contrary to the earlier examples and in defiance of (3.91), the
internal structure of the conjuncts is relevant here. This contrast is repeated in examples
with modifiers, such as the two pairs below (remember that modifiers in L are treated in
the usual CG fashion as functions):

(3.96) a. I ate [two small]NP/N and [three large]NP/N oranges,

b. *1 ate [two small]NP/N and [threejup/N oranges.

(3.97) a. John loves [Mary madly]^Np^s^Npj\^Npysj and [Sue passionately]^Np^s^Np^Np\^.
b. *John loves [Mary madly]^NP\S)/NP)\^NP\S) and [Sue^p^^p^^p^.

(3.91) correctly generates the first of each pair, where the conjuncts have a 'parallel' struc¬
ture, but incorrectly generates the second, where they do not.
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(3.91) also incorrectly generates examples such as the following (the so-called 'Dekker

Paradox'):

(3.98) *[| think that](s/(Np\s))/Np and [a friend of](s/(Np\s))/Np Mary left.
The minimal type for I think that is S/S, whereas the minimal type for a friend of is NP/NP,
but both of these types can be mapped to the same type (S/(NP\S))/NP, as the deriva¬
tions below demonstrate:3

(3.99) a. I think that
[NP]1 [NP\S]2

SP/S S
/E

\E

(NP\S)/SP SP
/ E

NP NP\S
; VE

:/'2
S/(NP\S)

(S/(NP\S))/NP 1
a friend of

PP/NP [NP]1
/E

N/PP PP
/E

NP/N N
-/E

NP ' [NP\S]2
i VE

:/i2
S/(NP\S)

(S/(NP\S))/NP 1

3In fact this overgeneration is systematic, since (3.91) entails the following: for any types

X, Y, Z and any (possibly empty) sequences of types T, A, if T X A =>■ Z and T Y A =>■ Z then
T X Conj Y A Z (where Conj represents the type of the conjunction).
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However, if we turn to D rather than L as a basis for typing expressions, then it is

possible to formulate a coordination schema which captures the data considerably better.
The schema runs as follows:

(3.100) Two (or more) strings can be coordinated if and only if, for some sequence of
D types (Xi,... ,Xn) (n > 1), each string can be partitioned into a sequence of
dependency constituents of those types.

In the case where n = 1, this reduces to the claim that two or more strings can be
coordinated if they are dependency constituents of the same D type. This covers till the
cases in (3.92) and (3.93) above, and many others besides. For instance:

(3.101) [John loves]s/NP, and [Mary thinks Fred hates]s/NP. sonatas by Mozart.

(3.102) That's a sonata which John [loves](Np\^s^Np and [thinks Fred hates]^Np^s^Np.

(3.103) I [put one foot °n](NP\s)/NP, and [put the other foot on a box on](Np\S)/Np, the large
table in the hall.

On the other hand, the claim that the conjuncts have to have the same D type correctly
rules out (3.98) above (repeated with D types as (3.104)), since although the conjuncts
there can be given a shared type within L, they must receive different types within D, as

demonstrated by (3.105):

(3.104) *[l think that]s/s and [a friend of]NP/NP Mary left.
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(3.105^.. I think that
SP/S [S]1

/e
(NP\S)/SP SP

— /E
NP NP\S

7 \E
usf

b. a friend of

PP/NP [NP]1
—/e

N/PP PP
/e

NP/N N
/ e

NP
-/I1

NP/NP

Note that D cannot give any types to these expressions other than those illustrated. The
easiest way to see this is to think in terms of cancellation; for example, in the sequence of

types (NP/N, N/PP, PP/NP) the two N's and the two PP's can be cancelled, but nothing
else.

The cases of (3.100) where n > 1 are based on a similar principle to the product-
based coordination account of Wood (1988) (and cf. Williams 1978, Goodall 1987, Oehrle
1987, Bouma 1989). The important point to note here is that the conjuncts are not

themselves dependency constituents; instead, two strings are coordinable if it is possible to
subdivide each into a sequence of dependency constituents which can be matched type for

type.4 I shall illustrate such coordinations by exhaustively dividing each conjunct into the
minimum number of dependency constituents (this division can be shown to be unique).
Each conjunct is placed in square brackets, and additionally the individual dependency
constituents within each conjunct are placed in round brackets and subscripted with their

4The schema as formulated here thus fails to generate such coordinations where one of the con¬

juncts is itself a coordination, e.g. John loves [Mary madly and Sue passionately] or [Jane intensely].
This is an oversight.
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type in D. With this notation the earlier examples read as follows (treating modifiers as

arguments):

(3.106) a. [(I believe that)s/s (John)sp] and [(Harry thinks that)s/s (Mary)Np] climbed
the mountain.

b. *[(John)Np] and [(Harry thinks that)s/s (Mary^p] climbed the mountain.

(3.107) a. I ate [(two)NP/N (small)prN] and [(three)Np/N (large)PrN] oranges,
b. *1 ate [(two)Np/N (small)PrN] and [(three)NP/N] oranges.

(3.108) a. John loves [(Mary)NP (madly)pcv] and [(Suc)np (passionately)pQv]-

b. *John loves [(Mary)NP (madly)pcv] and [(Suc)np].

As a further example, contrast (3.103), where the conjuncts axe dependency constituents,
with (3.109), where they are not:

(3.109) I put [(one foot)NP (on)PP/Np], and [(the other foot)NP (on a box on)pp/Np], the
large table in the hall.

There are a few possible exceptions to (3.100), for example:

(3.110) ?*John told [(Mary)NP (Bill)NP] and [(Fred)Np (Suc)np] was coming.

In this case the problem may be due to the fact that two elements outside the coordination,
told and was coming, are needed to complete a dependency constituent containing Mary
and Bill (or Fred and Sue), whereas only one external element was needed in the previous

examples: climbed the mountain in (3.106a), oranges in (3.107a), and loves in (3.108a). In
contrast, sentences like (3.111) do seem acceptable:

(3.111) John told [(the mothers)np (that)g/S (their daughters)Np] and [(the fathers)NP (that)gys
(their sons)Np] were all at the party.
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Finally, note that we can only deal with 'unlike category coordination' (Sag, Gazdar,
Wasow and Weisler 1985) if we assume that the conjuncts have some shared type. For

instance, in (3.112), we might give the conjuncts the common type PredP:

(3.112) John is [luckyjpredp and [a roguejpredp.

On this assumption, we can generate the coordination below:

(3.113) John is [(lucky)predp (in the gambling hall)pp] and [(a roguejpredp (in the tavern)pp].

Other linguistic applications of D are more tentative. For example, the unacceptability
of (3.114) suggests that extraction is subject to the restriction (at least in English) that
the non-extracted part of the string must be a dependency constituent:5

(3.114) *How many boys do you think with red hair like football?

Applications of D have also been proposed to incremental interpretation (Pickering 1991)
and to prosodic structure (van der Linden 1991, Bird 1991); in each case the claim is made
that a dependency constituent forms a linguistic unit in some sense.

Finally, note that D may be of relevance in relation to computational parsing. Pure

bottom-up parsing in L is in general impossible because infinitely many types can be
derived from any given type (see Moortgat 1988). In contrast, it is evident, given the

'cancelling' intuition, that the set of types to which a sequence of types can be mapped
within D is finite. This suggests that expressions can be parsed bottom-up within D even

if the type of the entire expression is unknown. See Hepple (1991).

sAppaxent counterexamples such as Which boy do you know that plays football? are presumably

examples of extraposition.



Chapter 4

Extensions to Categorial Grammar

4.1 Linguistic and Logical Motivation

Throughout the last two chapters there have been several examples of constructions which
it appeared that the mechanisms of frameworks such as AB, L and D were insufficient
to describe. In this section I shall first present further linguistic evidence which suggests

that the type system assumed in these frameworks is inadequate, and then present some

logically inspired motivation for extending the frameworks. Together these will provide

background for the extended categorial grammar to be presented in the next section.

4.1.1 Non-Sequential Constructions

The categorial frameworks we have considered so far (AB, L and D) have all used the same

directional type system with the two connectives / and \. Although the interpretation
of the connectives differs between the systems, in each case there is an assumption of

sequentiality. expressions combine in a strict linear sequence. As we have already seen,

this does not enable us to describe discontinuous constituents; in fact there are many

different classes of constructions that cannot be described straightforwardly (or at all) if
sequentiality is adhered to. These may be grouped under the headings of commutation, i.e.

departures from canonical word order; iteration, i.e. use of an expression more than once,

or combining with arbitrary numbers of complements; and optionality, i.e. non-use of an

expression, or combining with optional complements.
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We can find examples of all three of these by looking at extraction constructions.
Consider commutation first. In chapter 2 an account of unbounded relativization within
L (also valid within D) was proposed which involved giving the type (N\N)/(S/NP) to
object relative pronouns such as who(m), generating all the constructions in (4.1) (repeated
from (2.31)):

(4.1) a. the man who Mary likes

b. the man who Mary speaks to

c. the man who Mary says that John likes

However, within either L or D, the type S/NP can only be given to expressions that consist
of a sentence missing an NP from the rightmost position. Thus this type will not generate
constructions such as in (4.2):

(4.2) a. the man who Mary introduced to Sue

b. the man who Mary greeted warmly

The only way of generating the constructions in (4.2) in L or D is to give an extra type
to the relative pronoun so that it combines with both parts of the clause body separately

(for instance who might have the type ((N\N)/PP)/((S/PP)/NP) in (4.2a)). However,
this fails to capture the obvious generalization that, in all the constructions in both (4.1)
and (4.2), the body of the relative clause consists of a sentence missing an NP from some

position (not necessarily peripheral). Thus it would be desirable if we could find a single
way of characterizing all expressions that have this property, which is impossible under an

assumption of adjacency.

Turning to iteration, consider the problem ofmultiple extraction, such as in the parasitic

gap construction in (4.3). (We are not concerned here with linguistic constraints on where

parasitic gaps may occur.)

(4.3) the man who Mary passed without greeting
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Here the body of the relative clause is missing two NPs. Again, this could be handled in
an ad hoc fashion by giving extra types to the relative pronoun. However, the fact that
such constructions can be recursed means that (at least in theory) the body of the relative
clause may be missing arbitrarily many NPs (from one upwards):

(4.4) a. the man who Mary passed

b. the man who Mary passed without greeting

c. the man who Mary passed without greeting after seeing

d. the man who Mary passed without greeting after seeing before recognizing

Thus who would have to receive infinitely many lexical types under this analysis.

Finally, extraction may be optional, as in the following example:

(4.5) a. The lecture was too long for Mary to follow.

b. The lecture was too long for Mary to concentrate.

Once more, this could be handled by multiple type-assignments, but a generalization would
be lost.

Commutation, iteration and optionality also occur in the description of complement
constructions. For instance, a head may combine with a complement which is not adjacent
to it, as in (4.6b):

(4.6) a. A critique of HPSG appeared,

b. A critique appeared of HPSG.

Assuming on the basis of (4.6a) that critique has the lexical type N/PP, (4.6b) could be dealt
with within AB, L or D by giving appeared an additional type such as ((NP/PP)\S)/PP.
However, this goes against normal assumptions about syntactic structure; specifically, the

assignment of this type within D would mean that of HPSG was a dependent of appeared
rather than critique. (This problem corresponds to a violation of the adjacency requirement
within dependency grammar.)
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Iterated and optional complements are also relatively easy to find. The simplest ex¬

ample of iterated complements occurs if we regard coordinators as heads taking arbitrary
numbers of complements:

(4.7) a. John and Mary left.

b. Sue, John and Mary left.

c. Bill, Sue, John and Mary left.

d. Jane, Bill, Sue, John and Mary left.

Clearly and would require an infinite number of lexical types to deal with this. Similarly,

optional complements are found in examples like (4.8) and (4.9), where ate and thought
would require two types each:

(4.8) a. John ate the apple,

b. John ate.

(4.9) a. The thought that Mary was dead appalled him.

b. The thought appalled him.

Another instance of both iteration and optionality comes about when we try to incorpo¬

rate dependency into categorial grammar, as in the previous chapter. Recall that modifiers
are standardly treated as dependents by dependency grammar, which means that a strict

dependency interpretation of D would require them to be treated as arguments rather
than as functors. However, modifiers are well known to be both iterable and optional, as

illustrated by (4.10) and (4.11) respectively:

(4.10) a. John arrived suddenly.

b. John arrived suddenly in a taxi.

c. John arrived suddenly in a taxi with a suitcase.

d. John arrived suddenly in a taxi with a suitcase at six o'clock.
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(4.11) a. John arrived suddenly,

b. John arrived.

Thus if we want to avoid problems such as those illustrated in 3.3.3 we need some mecha¬

nism to deal with iteration and optionality.

The motivation for including some sort of 'non-sequential' mechanism in the grammar

should be clear by now. Before moving on to the proposed linguistic account, I shall
consider the logical motivation for extending frameworks such as L in this way.

4.1.2 The Categorial Hierarchy

From a logical perspective, L can be seen as the weakest of a hierarchy of logics which
differ in the amount of freedom allowed in the use of assumptions. L as it stands forms
a 'sequential logic', which is essentially the single-conclusioned, implicational fragment
of non-commutative linear logic (see Girard 1989; Abrusci 1989).1 The highest logic in
the hierarchy corresponds to the implicational fragment of the calculus LJ introduced in
Gentzen (1936). Gentzen formulated this calculus in terms of sequences of propositions,
and then provided explicit structural rules to show the permitted ways to manipulate these

sequences. The structural rules are permutation, which allows the order of the assumptions
to be changed; contraction, which allows an assumption to be used more than once; and

weakening, which allows an assumption to be ignored. The inclusion or exclusion of these
rules results in a hierarchy of logics sometimes known as the 'categorial hierarchy', discussed
in e.g. van Benthem (1987), Moortgat (1988), Ono (1988) and Wansing (1989).

In standard natural deduction style formulations of these logics, where the proof is

organized as a tree, structural operations are implicit in the treatment of occurrences of

assumptions and the conditions on their discharge (e.g. the usual natural deduction presen¬

tation of intuitionistic logic). However, for present purposes it will be more appropriate to

1However, proofs from no premises are permissible in non-commutative linear logic.
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deed with structural rules by explicitly including them in proof figures (since it will enable
a more direct motivation for the structural modalities to be described in the next section).
This means that we have to extend the proof figure notation introduced in 2.1.2.

Recall that a tree structure was imposed on proof figures by requiring each inference
rule to have a single formula below the line. However, suppose that we now allow inference
rules to have an arbitrary number of formulas (zero or more) below the line, so that the

general version of a rule is as in (4.12) (where m > 0, n > 0):

(4.12) : :
Xi • •• xm

R
Yi ••• Yn

However, we wish to retain the requirement that proofs should have a single conclusion,
and so we impose a global condition on proofs by requiring that the final inference used in
a proof must have exactly one formula below the line. Alternatively, we could view (4.12)
not as an inference rule in itself, but as a shorthand for the following (for some formula

Z):

(4.13) i :
Xx ... Xm

R
Y\ ••• Yr

Z

(4.13) essentially says that if an inference rule has more than one formula below the line,
all these formulas must all be used lower down the proof, so that the proof has a single
conclusion.

The 'Lambek-van Benthem' calculus LP (van Benthem 1983, 1986) is like L except
that the order of premises is irrelevant. LP is essentially the implicational fragment of
Girard's (1987) linear logic. In the proof figure notation, we may obtain LP from L by
adding a structural rule of permutation as follows:
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(4.14) ; i
X Y

PRM

(Since this rule is not single-conclusioned, it may not form the last inference in a proof.)
Addition of the permutation rule means that the directional implicational types X/Y,

Y\X are equivalent, since they are mutually derivable:

(4.15) [Y]1 X/Y Y\X [Y]1
PRM PRM

X/Y Y Y Y\X
/e \e

X X

y —y
Y\X X/Y

For the purposes of LP (and higher logics), therefore, we need use only a single type for
the two, which I shall notate in the more conventional fashion as Y-+X. The elimination

and introduction rules for —> will be given as for \ (though the rules for / would have done
as well).

(4.16) i i [Y]' Condition on —»i: Y is the leftmost
Y Y—>X

► E undischarged assumption in the proof
I'

Y—>X of X

Without loss of generality, rule applications can be kept subject to the previous ordering
conditions for \. For example, we may derive the type Y—*(X—>Z) from X—>(Y—*Z) in
LP as follows:

(4.17) [X]1 [Y]2
PRM

Y X X—>(Y—*Z)
>E

Y—
>E

.I1
X-+Z

y\2
Y-+(X^Z)

However, since the order of premises is irrelevant, the logic is unaffected by allowing the

argument type Y in the —»E rule to occur either to the left or the right of the functor type
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Y—*X, and Y to be any undischarged assumption above X in the —>1 rule. This removes

the need for an explicit permutation rule.

LPC is an extension of LP which allows assumptions to be used more than once, a

property which it shares with relevance logic (Anderson and Belnap 1975). This may be
achieved in the proof figure formulation by adding a structural rule of contraction:

(4.18) :
X

CON
X X

The —>E and —*l rules are as before in this formulation. By way of example of derivation
in LPC, we may derive X—+Y from X—»(X—*Y) as follows:

(4.19) [X]1
CON

x x x^(x-+y)
>E

X-+Y
>E

Y
►i1

X—>Y

LPC could be alternatively formulated in a natural deduction style by relaxing the di¬

rectionality conditions on L and allowing withdrawal of one or more occurrences of a

conditionalized assumption. This removes the need for explicit rules of permutation and
contraction.

Finally we may extend LPC to LPCW2, where it is permissible for assumptions not

to be used at all. It thus corresponds to the implicational fragment of intuitionistic logic.
In the proof figures, this is achieved by adding a structural rule of weakening:

(4.20) ;
X
—WKN

Because this rule has no conclusion, in practice weakening will not be notated this way.

2This calculus is called LPCE in Moortgat (1988).
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Instead the weakened assumption will be 'absorbed' from the left or the right as follows:

(4.21) a. : : b. : :
X Y Y X

WKNi WKNr
Y Y

For example, the derivation of X—>Y from Y looks like this:

(4.22) [X]1 Y
WKNi

Y
♦I1

X-+Y

This derivation satisfies the ordering conditions on conditionalization since X is indeed the
leftmost assumption dominating Y. LPCW could be alternatively formulated in a natural
deduction style by relaxing the directionality conditions on L and allowing withdrawal of
zero or more occurrences of a conditionalized assumption. This removes the need for

explicit rules of permutation, contraction and weakening.

Note that for each of the three systems, if the —*E and —>1 rules are interpreted as

application and abstraction respectively, then we obtain a different subset of the lambda-
calculus. This is a generalization of the Curry-Howard isomorphism for intuitionistic logic
and full lambda-calculus (Curry and Feys 1958; Howard 1969). Exactly one assumption
must be discharged by the —>1 rule in LP (or L), and so we obtain the set of lambda-
terms in which each variable occurrence is bound exactly once (the 'single-bind' lambda-

calculus). In LPC, one or more assumptions may be discharged, and so the resulting

fragment allows multiple binding but not vacuous abstraction. Finally LPCW, where
zero or more assumptions may be discharged, corresponds to the full lambda-calculus with
vacuous abstraction.

We may conveniently display the categorial hierarchy as in Figure 4-1 below:
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Figure 4—1: The categorial hierarchy

LPCW

LPC

LP

4.2 Structural Modalities

In this section I shall summarize work by Glyn Morrill, Neil Leslie, Mark Hepple and

myself which extends the categorial type system to deal with non-sequentiality by defining

operators called structural modalities, motivated by structural rules and the logics in the

categorial hierarchy. Two alternative systems of modalities will be proposed, and some

logical and linguistic properties of the two systems will be discussed.

4.2.1 Extending the Categorial Type System

It is possible to deal with non-sequential linguistic phenomena in a very crude fashion

simply by using structural rules; permutation for commutation, contraction for iteration,
and weakening for optionality. But since these rules can be applied freely, the resulting
calculi would overgenerate wildly. Permutation would imply that word order was irrele¬

vant; contraction would imply that any word in a sentence could fulfil any number of roles;
and weakening would imply that sentences could contain arbitrary words not contributing
to their meaning. For example, (4.23a) would be generated by LP, (4.23b) by LPC, and
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(4.23c) by LPCW:3

(4.23) a. 'saw John Mary

(NP\S)/NP NP
prm

NP (NP\S)/NP NP
—/e

NP\S
\e

b. *John saw

NP (NP\S)/NP
-con

NP NP

(NP\S)/NP NP
-PRM

NP\S
•/e

\e

c. *John

NP

saw Mary Bill
NP NP

(NP\S)/NP NP
-wknr

NP\S
-/e

\e

However, we have seen that individual linguistic elements may exhibit commutation,
iteration or optionality, which suggests that we should be able to indicate that structural

operations are permissible on specific types, while still forbidding them as general inference
rules. There is a precedent for this in (commutative) linear logic (Girard 1987), which has a

structural rule of permutation, but not contraction or weakening. In addition to the usual

logical operators, linear logic has the so-called exponentials ! ('of course') and ? ('why not'),
which bring back the structural rules of contraction and weakening in a controlled way.

For instance, the formula \X represents an item from which zero or more occurrences of
the formula X may be derived, corresponding to both contraction and weakening. The
structural modalities described here are in the spirit of Girard's exponentials, but are

geared more to individual structural rules, and thus to specific linguistic operations.

Two different, though related, systems of structural modalities are proposed in Barry,

Hepple, Leslie and Morrill (1991) and Morrill, Leslie, Hepple and Barry (1990). I shall

3For illustrative purposes we revert to a directional type system here, even though there is no
difference in meaning between X/Y and F\X in these systems.
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describe both below, referring to them as the 'cumulative' system and the 'orthogonal'

system respectively. The main difference is that the cumulative system defines a complete

logic but its linguistic coverage is more restricted, whereas the orthogonal system has

greater coverage but is not complete.

Structural modalities may be classified into universal and existential modalities. Broadly

speaking the universal modalities may be said to represent 'any' (location, number of oc¬
currences, etc.), and the existential modalities to represent 'some' (location, number of
occurrences, etc.); in fact the terminology arises since the behaviour of the operators in
each class bears a resemblance to that of the operators □ (universal modality) and <C> (ex¬
istential modality) in some modal logics (see below). The cumulative system as currently
formulated contains only universal modalities; the orthogonal system contains both uni¬
versal and existential modalities. For convenience I shall list the notation used for all the

structural modalities in (4.24).4

Cumulative Orthogonal
Universal Universal Existential

Commutation A C> and <4 ) and (
Iteration t ! +

Optionality t II ?

Universal modalities have the common property that any item of a universally modal

type also has the corresponding non-modal type, and the existential modalities have the

property that any item of a non-modal type also has the corresponding existentially modal

type. This means there are straightforward elimination rules for the universal modalities
and introduction rules for the existential modalities, but the complementary rules in each
case are less straightforward. Introduction rules have been formulated for the universal
modalities in the cumulative system, making the logic complete, but universal introduction

4The notation for the cumulative iteration and optionality modalities has been changed from
that given in Barry et al., in order to avoid confusion with the notation for the corresponding

orthogonal modalities.
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and existential elimination rules have not been formulated for the orthogonal system. This
does not appear to matter in practice, since it appears that the universal introduction and
existential elimination rules are in fact rarely needed for linguistic purposes, as will become
clear when we look at the examples below.

In general, universal modalities are appropriate for describing the behaviour of lexical
items that subcategorize for expressions which are themselves missing commutable, iter-
able or optional arguments; such items typically receive types of the form ((□ Z)—*Y)—+X,
where □ represents one of the universal modalities and —> one of the implications. Con¬

versely, existential modalities are appropriate for describing the behaviour of lexical items
that subcategorize for commutable, iterable or optional arguments; such items typically
receive types of the form (O^)-*yX, where O represents one of the existential modalities.
Note that all these operators are strictly formal devices and not geared towards specific

linguistic phenomena, so that in many cases the modalities on their own will not be suf¬
ficient to capture all aspects of the behaviour of a given lexical item. Thus the proposed

types may still lead to overgeneration in some cases; for instance the proposed types for
relative pronouns do not take account of island constraints, and all notions of 'domains' or
'boundedness' will be ignored. (See Morrill (1989) for an approach to boundedness within

CG.)

4.2.2 Cumulative Structural Modalities

For each of commutation, iteration and optionality, the cumulative system defines a single
universal modality. For each universal modality there is an elimination rule, an introduction

rule, and one or more so-called 'operational rules', which are essentially controlled versions
of structural rules. The system is called 'cumulative' because as we proceed up the hierarchy
each modality inherits all the inference rules of the previous one.

Commutation is achieved by means of the operator A. AX is the type of an item of

type X which may be freely permuted; thus an occurrence of an item of type X in any

position may be derived from an item of type AX. A type whose outermost operator is
A will be referred to as a A-type. As we shall see, A-types (and other such modal types)
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do not in general occur in the lexicon; they are usually only assumed within a derivation.
A has the following inference rules:

(4.25) : : Condition on Al: every path to an undischarged as-

Ae Al sumption in the proof of X leads to an independent
X AX

subproof of a A-type

AX Y Y AX
Aprm prmA

Y AX AX Y

The Ae rule is simply a consequence of the fact that an item of type AX is also of type X.
The APRM and PRMA rules are the usual structural rule of permutation, but restricted to

cases where one of the types is a A-type. The Al rule is more complicated, since it has a

side condition which says (essentially) that A-types can only be derived from assumptions
which are all A-types.5 The operator will be assumed to have identity semantics, so that
the term associated with the input type to the Ae rule will also be associated with the

output type.6

This operator makes it possible to deal with the earlier problems involving non-peripheral
extraction. Recall that within L it is not possible to characterize expressions that con¬

sist of (say) a sentence missing an NP from some position. Within L-fA, on the other

hand, all such expressions may be given the type S/ANP (or equivalently ANP\S). This
is because the type ANP may be assumed in rightmost (or leftmost) position and then

permuted to whatever place is appropriate to the derivation. Thus assignment of the type

(N\N)/(S/ANP) to the object relative pronoun who(m) allows both peripheral and non-

peripheral extraction, as illustrated by the derivations in (4.26) and the terms in (4.27):

5I shall not be using the rule here, but for an illustration of its use see Hepple (1990).

6Notationally, unary operators will be assumed to bind tighter than binary ones, so that

AX/Y means (AX)/Y rather than A(X/Y).
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(4.26) a. who Mary greeted

[ANP]1
(NP\S)/NP NP

/e

Ae

NP NP\S
i VE

/i1
(N\N)/(S/ANP) S/ANP

/ E
N\N

b. who Mary greeted warmly

(NP\S)\(NP\S) [ANP]1
prmA

ANP (NP\S)\(NP\S)
-Ae

(NP\S)/NP NP
/ E

NP\S •) \E
NP NP\S

7
/i1

(N\N)/(S/ANP) S/ANP
/£

N\N

(4.27) a. who (Ax[(greeted x) Mary])
b. who (Ax[(warmly (greeted x)) Mary])

This treatment partly resembles that ofMoortgat (1988), who deals with such constructions

by means of the extraction operator f; the type X |Y is assigned to any string of type X

missing a subpart of type Y somewhere within it. (In fact Moortgat later suggests (1990b)
that the type X | Y may in fact be definable in terms of permutation modalities.)

Iteration is achieved by means of the operator f. jX is the type of an item of type X
which may be freely permuted and iterated; thus one or more occurrences of items of type
X in any position may be derived from an item of type fX. f has the all the inference
rules of A, plus an analogue of the contraction rule which we shall call fCON:
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(4.28) : : Condition on fl: every path to an undischarged as-
tx X

|E fl sumption in the proof of X leads to an independent
X \X

subproof of a f-type

tX Y Y \X ]X
fPRM PRMt fCON

Y \X tX Y \X \X

The same remarks apply to these rules as to the rules for A, and again f is assumed to
have identity semantics.

This gives us a simplified treatment of multiple extraction. If the type of who is refined
to (N\N)/(S/fNP), it will now license extraction not just from any position in the body of
a relative clause, but from any number of positions (greater than or equal to one). Since
f has all the inference rules of A, the derivations in (4.26) will still go through with the
new type. In addition, the fcON inference rule allows the derivation given in (4.29), and
the corresponding term in (4.30):

(4.29) who Mary passed without greeting
[tNP]1

-fcon

VP/NP NP
-/e

tNP |NP
-fE

((NP\S)\(NP\S))/VP VP

(NP\S)\(NP\S) /E
PRMt

tNP (NP\S)\(NP\S)
"tE

(NP\S)/NP NP
/E

NP\S
NP NP\S

s VE
h1

-\e

(N\N)/(S/tNP) S/tNP
/e

N\N

(4.30) who (Ax[((without (greeting x)) (passed x)) Mary])

As a linguistic treatment of parasitic gaps, this overgenerates in many ways (for instance
it does not capture their asymmetry), but it demonstrates in principle how the type of a
relative pronoun can be adapted to allow multiple extractions.
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Finally, optionality is achieved by means of the operator J. \X is the type of an item
of type X which may be freely permuted and iterated and omitted; thus zero or more

occurrences of items of type X in any position may be derived from an item of type XX.

X has the all the inference rules of f, plus an analogue of the weakening rule which we shall
call jwkn:

(4.31) : : Condition on }i: every path to an undischarged as-
fX X
-fE fl sumption in the proof of X leads to an independent

X tx
subproof of a J-type

%X Y Y tX \X \X Y Y \X
iprm prmj jcon f\vkn wkn j

Y XX XX Y XX XX Y Y

Cases of extraction which allow all of commutation, iteration and optionality are not

easy to find, but the following may serve as an example:

(4.32) a. The lecture was too long for Mary to follow.

b. The lecture was too long for Mary to follow easily.

c. The lecture was too long for Mary to follow without transcribing.

d. The lecture was too long for Mary to concentrate.

In (a) too long licenses simple peripheral extraction, in (b) simple non-peripheral extraction,
in (c) multiple extraction and in (d) no extraction. We may thus assume that too long
licenses extraction from any number of positions in the embedded clause greater than or

equal to zero. In the linguistic analysis, I shall assume for simplicity that to-infinitives are

single lexical items of type VP, that for-to clauses have a special atomic type ForP (so that
for has the type (ForP/VP)/NP), and that predicate phrases like too long to follow have a

special atomic type PredP. Too long will therefore receive the type PredP/(ForP/JNP).

Since J has all the inference rules of f, (4.32a-c) may be generated in a similar way to
the earlier examples. The wknj rule allows (4.32d) to be derived as in (4.33), giving the
term in (4.34):
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(4.33) too long for Mary to concentrate

(ForP/VP)/NP NP
/e

ForP/VP VP

ForP [JNP]1
•wknJ

PredP/(ForP/JNP)

ForP
/jl

ForP/JNP

(4.34) too-long (Ax[for (to-concentrate Mary)])

The cumulative system is reasonably logically 'clean', in that its three operators define
three distinct levels, analogous to LP, LPC and LPCW (and thus to a different subset
of the lambda-calculus). In addition, the existence of introduction rules makes the system

complete in a technical sense, since the elimination and introduction rules for each universal

modality are identical to those for the universal modality in the modal logic S4 (see Dosen

1990). However, the expressive power of the cumulative system is severely limited, since

firstly the operational rules are not independent, and secondly the universal modalities are

only capable of dealing with commutable, iterable and optional extractions (see below for
an explanation of this). For this reason it is usually preferable for linguistic purposes to

use the orthogonal system, which I shall now discuss.

4.2.3 Orthogonal Structural Modalities

For each of commutation, iteration and optionality, the orthogonal system defines both
universal and existential structural modalities. (For commutation it turns out to be more

convenient to have two directional versions, though a single modality as with the cumula¬
tive system would also be possible.) For each universal modality there is an elimination
rule and a single operational rule (analogous to a structural rule), but no introduction
rule; symmetrically, for each existential modality there is an introduction rule and a single

operational rule (analogous to an inverted version of a structural rule), but no elimina-
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tion rule. The system is called 'orthogonal' because the operational rules for the various
modalities are independent. The orthogonal system has greater expressive power than the

cumulative system, but is less well motivated from a logical point of view; in particular
it is not straightforward to assign meaning representations. (For this reason they will be
omitted from the derivations below.)

The universal commutation modalities are notated as t> (written as a prefix operator)
and < (written as a postfix operator). t>X is the type of an item of type X which may

be freely permuted to the right, and X<3 is the type of an item of type X which may be

freely permuted to to the left. Thus > and < each have the following inference rules: a

directional analogue of the permutation rule, and an elimination rule.

(4.35) a. : : b. : :
>X Y Y X<3

t>PRM <PRM
Y >X X< Y

(4.36) a. : b. :
>X X<

t>e <1 e
X X

So, for instance, the derivations in (4.26) can be achieved in this system using <1 instead
of A; the type assigned to who will now be (N\N)/(S/NP<):

(4.37) a. who Mary greeted
[NP <| j1

(NP\S)/NP NP
/e

-<3E

NP NP\S
I \E

/i1
(N\N)/(S/NP«) S/NP<

/e
N\N
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who Mary greeted warmly

(NP\S)/NP NP
—/e

(NP\S)\(NP\S) [NP^]1
<prm

NP<J (NP\S)\(NP\S)
-<] e

NP\S
\e

NP NP\S
I ^

/■'
(N\N)/(S/NP<) S/NP<

/e
N\N

Dual to these modalities are two existential commutation modalities, ) (written postfix)
and ( (written prefix). The type X) (resp. (X) is assigned to an item of type X either in
its canonical position or somewhere to the right (resp. left) of its canonical position. This
is achieved by means of the rules )l and (i, which allow the appropriate modality to be
added, and the operational rules )EXC and (EXC ('exchange'), which allow types bearing
the modality to be moved to any position on the given side. Note that the )l and (i rules
are inversions of the >E and <]E rules, and the )EXC and (EXC rules are inversions of
the t>PRM and <PRM rules. (Since permutation is symmetrical, the EXC rules are in fact

structurally identical to the PRM rules, but this is a slightly misleading coincidence.)

(4.38) a. : b. :
X X
—)i —(i
X) (X

(4.39) a. : : b. : :
X) Y Y (X

)exc (exc
Y X) (X Y

By way of example a type X/(Y represents elements which are functors over Fs some¬

where to the right, but not necessarily immediately to the right. In this way we can define



Chapter 4. Extensions to Categorial Grammar 90

the 'long-distance' functors X//Y and Y\\X of Bach (1984).7 This means that we can

deal with examples like (4.6) by giving critique the type N/(PP:

(4.40) a. a critique of HPSG appeared

PP/NP NP
/ E

PP

N/(PP (PP
/e

NP/N N
-/e

NP NP\S
\E

b. a critique appeared of HPSG

PP/NP NP
/ E

PP

:0
NP\S (PP

(exc
N/(PP (PP NP\S

/e
NP/N N

/e
NP

-\e

The universal iteration modality is notated as !. X] is the type of an item from which
one or more occurrences of the type X may be derived. Thus ! has an elimination rule and
an analogue of the contraction rule, but no other rules:

(4.4!) a. ^ b. ^
-:con !e

x- x■ X

7Typically such specifications would need to be made with reference also to the domains within
which the word order variation is allowed, e.g. by using the modal treatment of boundedness
introduced in Morrill (1989).
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In order to perform multiple extraction within this framework, then, both permutation
and iteration operators are needed. For instance, to generate (4.4), who must receive the

type (N\N)/(S/(NP<l)!):

(4.42) who Mary passed without greeting
[(NPOT

'con
(NP«)' (NP<Q',t

VP/NP NP< NP<3
<JPRM <3E

((NP\S)\(NP\S))/VP NP<d VP/NP NP
C PRW /E

NP<a ((NP\S)\(NP\S))/VP VP
<E /E

(NP\S)/NP NP (NP\S)\(NP\S)
/E

NP\S
NP NP\S

8 XE
7/'1

-\E

(N\N)/(S/(NP<3) ) S/(NP<)
/E

N\N

Dual to ! is the existential iteration modality + (the usual 'Kleene plus' symbol). The

type X+ is assigned to an item formed by combining one or more items of type X. This
is achieved by means of the +I rule, which introduces the operator, and the +EXP ('expan¬

sion') rule, which combines identical types bearing it. Again, note that the +I rule is an

inversion of the !E rule, and the +EXP rule is an inversion of the !CON rule.

(4.43)a. : b. : :V '
X X+ X+

+1 +EXP
x+ x+

As an example, iterated coordination of NPs may be treated by giving coordinators the

type (NP+\NP)/NP, which will allow one or more NPs to the left of the coordinator:
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Bill Sue

NP NP
+i

NP+ NP+

John and Mary

■+I
NP

+exp +i
NP+ NP+ (NP+\NP)/NP NP

+ exp /e
NP+ NP+\NP

\e
NP

This approach may be compared to the iterating coordination schema of GPSG (Gazdar,
Klein, Pullum and Sag 1985, pp. 169ff.). Compare also Wood's (1988) categorial treatment
of coordination in which the coordinator receives a type notated as AI(X+ * A), where I is
a so-called 'infix slash'; the intended meaning is that A may be any category, the conjuncts

may be multiple, and the conjunction is infixed before the final conjunct.

Finally, the universal optionality modality is notated as X" is the type of an item
from which zero or one occurrences of the type X may be derived. " has an elimination rule
and an operational rule of weakening, but in keeping with the presentation in (4.21) I shall
present two directional 'absorption' versions of the weakening rule, H\VKNi and "wKNr:

(4.45) a. : : b. : : c. :
All Y Y All All.

wkni wknr "e
Y Y X

Note that this operator allows 'zero or one' gaps, not just 'zero or more', and so could be
used in the type of a lexical item whose argument optionally contained a gap (perhaps as

in languages with resumptive pronouns or optional clitic doubling). The modality can of
course be combined with the universal commutation and iteration modalities to produce

an operator with the power of J.

Dual to " is the existential optionality modality 7; A? indicates zero or one items of

type A. The ?I rule introduces the operator on a non-modal type as with other existential

modalities; the ?STN ('strengthening') rule creates a modal type from nothing. As with
the other universal-existential pairs, the ?I rule is an inversion of the "e rule, and the ?STN
rule is an inversion of the "\VKN rule.
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(4.46) a.

X7
a:7

-?STN

By way of example, the optionality of the sentential complement of thought may be
characterized by assignment to N/SP7:

(4.47) the thought that Mary was dead

—

N/SP- SP-
/E

NP/N N#
/E

NP

(4.48)the thought
-?STN

N/SP- SP-
-/e

NP/N N
/ E

NP

The existential iteration and optionality modalities can be combined to produce a 'zero

or more' operator. Since this is the same as 'Kleene star', I shall notate it as *, where X*
is equivalent to (X+)7. * may be viewed as having the inference rules of both + and 7:

(4.49) a. : b. : : c.
X X* X* —*STN

*1 *EXP X*
X* X*

The use of this operator becomes appropriate in the light of the discussion of modifiers
in 3.3.3, which requires us to view modifiers as arguments rather than functors to reflect

dependency relations. There it was shown that under the normal categorial type system

an infinite number of lexical type-assignments would be needed for each modifiable ele¬
ment to reflect the fact that modifiers are iterable and optional. However, the * operator
allows us to give the lexical types (PrN*\N)/PoN* to nouns and PrV*\((NP\S)/PoV*)
to intransitive verbs (cf. HPSG (Pollard and Sag 1987)), allowing derivations such as the



Chapter 4. Extensions to Categorial Grammar 94

following:
(4.50) a. John arrived

*stn
PrV* PrV*\((NP\S)/PoV*)

\e *stn
(NP\S)/PoV* PoV*

/e
NP NP\S

^ \E

b. John arrived promptly
*stn

PrV* PrV*\((NP\S)/PoV*) PoV
-\e

(NP\S)/PoV* PoV*
/ E

NP NP\S
\e

c. John arrived promptly in a taxi
PoV PoV

*stn *1 *1
PrV* PrV*\((NP\S)/PoV*) PoV* PoV*

\ £ * £}£ p
(NP\S)/PoV* PoV*

/e
NP NP\S

I \E

d. John suddenly arrived
PrV

PrV* PrV*\((NP\S)/PoV*)
\e *stn

(NP\S)/PoV* PoV*
/e

NP NP\S
\e

In actual fact type-assignments to some modifiable elements may have to be more

complex than this. For instance, if we take sentential postmodifiers and premodifiers into
account as well as verbal ones (e.g. today John arrived, John arrived today), then the type
of intransitive verbs will be of the form

PrV*\((NP\((PrS*\S)/PoS*))/PoV*) ,
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since modifiers for the resulting sentence must be taken into account. The types of all
verbs will have to be refined similarly, e.g. transitive verbs will have the type

Such complexity in type-assignments is of course undesirable, but as things stand there is
no straightforward way to avoid it because of the automatic correspondence between heads
and functors, and because linear order is directly encoded into the type.

As mentioned above, neither of the two systems of operators is designed to address

particular linguistic phenomena, which means that the sample type-assignments above are

of necessity rather crude when it comes to dealing with individual constructions. For in¬

stance, the cumulative modality system, with the type (N\N)/(S/ANP) for who(m), would
incorrectly generate the following construction (and similarly for the orthogonal system):

(4.51) *who(m) I think that arrived

(PrV*\((NP\((PrS*\S)/PoS*))/PoV*))/NP .

NP\S [ANP]1
■prmA

ANP NP\S
Ae

NP

SP/S

(NP\S)/SP SP
—/E

NP NP\S
■\e

S

(N\N)/(S/ANP)
N\N

h
S/ANP

/e

Similarly, the type (N\N)/(S/NP!) for who(m), designed to allow multiple extraction, al¬
lows extraction of any number of NPs in any positions and hence gives rise to overgenera-

tions such as the following:
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(4.52) *who(m) loves

[NP']1
(NP\S)/NP NP!, NP!

prm e

NP!, (NP\S)/NP NP
e /e

NP NP\S
s

con

(N\N)/(S/NP!) S/NP!
/e

N\N

However, in each of the above cases appeal could be made to case features on the extracted

NP, since an object relative pronoun has been used to perform a subject extraction.

The applications presented for the existential modalities can also cause overgeneration.
For example, the type N/(PP given for critique in (4.40) allows its complement to appear

anywhere to its right, which would generate constructions such as the following:

(4.53) *the critique impressed of HPSG John
PP/NP NP
— /E

PP

(NP\S)/NP (PP
(exc

N/(PP {PP (NP\S)/NP
-/e

NP/N N NP
/e /e

NP NP\S
7 \E

In general, therefore, all the above operators should be seen as tools for use in the descrip¬
tion of constructions, rather than linguistic devices in their own right. To provide a more

accurate characterization of these phenomena would require an account of boundedness,
which is outside the scope of this thesis. See Hepple (1990) for extensive discussion of the
interaction of commutation and boundary phenomena.



Chapter 5

Synthesis, Comparisons and Conclusions

5.1 Dependency and the Categorial Hierarchy

In this section I shall consider how the various categorial frameworks discussed so far may
be viewed as part of a more general network of categorial systems. With this as background
I shall then suggest that modalities analogous to structural modalities may be introduced
into the Lambek calculus so that dependency may be dealt with in a controlled fashion.

5.1.1 A Network of Categorial Systems

In chapter 3 we discussed the relation between AB, D and L, and in chapter 4 we looked
at the 'categorial hierarchy' containing L, LP, LPC and LPCW. For convenience I shall

repeat the interpretation of directional types in each of the frameworks AB, L and D in

(5.1):

(5.1) a. In AB: an expression is of type X/Y (resp. K\A) iff, whenever it is com¬

bined (non-associatively) with a following (resp. preceding) non-head of type
Y, the result is of type X.

b. In L: an expression is of type X/Y (resp. Y\X) iff, whenever it is concate¬

nated (associatively) with a following (resp. preceding) expression of type
Y, the result is of type X.
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Figure 5—1: The categorial network

c. In D: an expression is of type X/Y (resp. Y\X) iff, whenever it is concate¬

nated (associatively) with a following (resp. preceding) non-head of type Y,
the result is of type X.

In fact we may view all of these systems as part of a more general network of categorial

systems, as illustrated in Figure 5-1. Several of these calculi have not yet been discussed,
and will be explained below. NL is the non-associative calculus of Lambek (1961); DP,
DPC and DPCW are new calculi constructed by analogy with LP, LPC and LPCW.
The calculi are arranged in a lattice, where X is above Y in the lattice iffX is more powerful
than Y (i.e. all the theorems of X are also theorems of Y). Essentially one proceeds
'north-west' in the diagram by adding structural rules, and 'north-east' by removing the

dependency constraint.

NL is the calculus that arises when expressions are deemed to have a binary-branching
structure without any notion of head. Combination of expressions is non-associative, so

that structures cannot be rebracketed, but neither daughter in a local tree is distinguished
in any way. Essentially, NL contains all AB-valid inferences plus those L-valid inferences
that do not require associativity. For example, the inferences in (5.2a) are valid in NL,
but those in (5.2b) are not:

(5.2) a. X/Y Y=>X
Y Y\X=>X
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X/Y Y/Z Z=>X
Y (Y\X)/Z Z=>X
X => Y/(X\Y)
X/Z =» (Y/(X\Y))/Z

Z/(Y/(X\Y)) =► Z/X

b. X/Y Y/Z^X/Z
Y (Y\X)/Z 7^ X/Z
(Y\X)/Z & Y\(X/Z)

The following interpretation of types can be given for NL (cf. (5.1)):

(5.3) An expression is of type X/Y (resp. Y\X) iff, whenever it is combined (non-
associatively) with a following (resp. preceding) expression of type Y, the result
is of type X.

NL is hard to formulate in the proof figure notation, and I shall not attempt to do so here.
For an axiomatic formulation see Lambek (1961).

DP, DPC and DPCW are new calculi obtained from D in the obvious fashion by

cumulatively adding structural rules of permutation, contraction and weakening; however
there is a slight complication with their formulation in the proof figure notation since types
can be copied by the structural rules. Thus it is no longer sufficient to require merely that
the type conditionalized by an —>1 inference does not itself occur as the functor in an —>E

inference; we must also require that no copy of the conditionalized type occurs as a functor.

For example, consider the following derivation, which is valid in LP but not in DP:

[Z^Y]1 Z
PRM

Z Z^Y
>E

Y Y^X
>E

X
T

(Z^Y)^X

This is invalid in DP because the copy of the conditionalized type Z—YY created by the

permutation rule acts as the functor in an —*E inference.
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The addition of structural rules to D mirrors some of the extensions that have been

proposed to classical dependency grammar to cover a wider range of linguistic phenom¬
ena. Essentially, adding permutation corresponds to removing the adjacency requirement,

adding contraction corresponds to removing the single-headedness requirement, and adding

weakening corresponds to removing the connectedness requirement. In such a way we may

build up a 'dependency hierarchy' in the manner of Fraser (1989). As with the grammars

in the categorial hierarchy, it is clear that adding freely applying structural rules to D
would be linguistically undesirable. However, structural modalities can be added to D
in an exactly analogous fashion to L, allowing controlled degrees of non-adjacency, multi-
headedness and disconnectedness. I shall not give separate illustrations of this here since
all the examples in chapter 4 in fact obey the dependency constraint.

5.1.2 Dependency Modalities

Given the above discussion, it is natural to ask whether it is possible to encode dependency

by means of modalities within L rather than by means of a special calculus. It turns out

that this can be achieved in a natural fashion by means of a single modality. This modality
is unusual in that its sole inference rule is an introduction rule. I shall use the notation O

for it, so that the rule reads as follows:

(5.4) X
—o
o*

The intuition behind <j> is that it always occurs on any type that is deemed to be a

dependent in the particular analysis. Up until now we have assumed that all arguments
in CG are dependents, so a straightforward mapping from types in D to types in L+O
would produce a lexicon such as the following (the usual L/D types are included for

comparison):
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(5.5)

101

Word Syntactic type in L+0> Syntactic type in L/D
walks ONP\S NP\S
runs ONP\S NP\S
likes (ONP\S)/ONP (NP\S)/NP

speaks (0NP\S)/0PP (NP\S)/PP
must (ONP\S)/0>VP (NP\S)/VP
says (ONP\S)/OSP (NP\S)/SP
John NP NP

Mary NP NP

to PP/ONP PP/NP
for PP/ONP PP/NP
walk VP VP

like VP/ONP VP/NP
that SP/06 SP/S

The fact that 0> can be freely introduced means that an expression may be analysed as a

dependent whenever it is needed by a head. For instance:

(5.6) Mary says that John speaks to Bill

NP

PP/ONP ONP
o

pp
■/e

NP (ONP\S)/CPP
-O

OPP

ONP ONP\S

:0
/e

SP/06

NP (CNP\S)/CSP
-0

SP

OSP

s
0

06//e

\e

ONP 0NP\S
/e

\e

Furthermore, an expression that is missing a dependent or dependents can always be given
a type where the type(s) of the missing dependent(s) are marked with 0^ since appropriate
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0>-types can be assumed and conditionalized in the derivation. For example:

(5.7) Mary speaks to

pp/onp [onp]1
/E

pp
o

np «ot\s)/cpp cpp
o /E

onp onp\s
5

/i1
s/onp

It follows that in this system dependency constituents will always receive types of the

form O^n—>X)) (where n > 0). We can illustrate this by giving O-based

analogues of the derivations in 3.3.1. Expressions such as Fred thinks and spoke to, which
are dependency constituents, can receive types of this form, whereas expressions such as

thinks Bill and Mary vodka cannot:

(5.8) Fred
np

thinks

onp
-o

(0NP\S)/06 [OS]1
onp\s

/e
\e

s/os
/i1

spoke to

pp/onp [onp]1

(ONP\S)/OPP

pp

opp

\e

onp\s

o

/e

(onp\s)/onp
/e

(5.9) thinks

(onp\s)/os

onp\s

Bill

np
— 0*
onp [onp\s]

s
—o
OS
/ E

\e

(onp\s)/(onp\s)
/I1

Mary vodka

np

[((ONpysvoNpyoNP]1
-o

(onp\s)/onp

onp np
/e

onp

onp\s

(((onp\s)/onp)/onp)\(onp\s)

/ E

VI1

In order to be a dependency constituent, thinks Bill would have to be able to receive the type

(0NP\S)/0(CNP\S), and Mary vodka the type 0<((CNP\S)/0NP)/0NP)\(0NP\S).
Neither of these is possible, because the derivation would require assuming the type



Chapter 5. Synthesis, Comparisons and Conclusions 103

<XONP\S) in the first case and 0(((0NP\S)/CNP)/0NP) in the second case. But since

O has no elimination rule, there is no way of removing the operator so that each of these

functions can be applied to the appropriate argument. In essence, this enforces the 'no
functor abstraction' constraint automatically.

In addition, the use of an explicit dependency modality gives us an extra degree of free¬

dom, in that we can regard the arguments in some lexical entries as being non-dependent,
i.e. of type Y—*X rather than —*X. This of course breaks with the strict dependency

interpretation of CG assumed for D, but it might be useful in cases where it is unclear
whether to regard functors or arguments as heads, as with determiners and nouns. Suppose
we give determiners such as the and a the lexical type NP/N in this system (rather than
NP/ON); note that this does not match the schema for types of dependency constituents

given earlier. Then we can no longer derive strings such as John saw the as dependency
constituents, since the conditionalized type in the derivation below is not a dependent:

(5.10)John saw the
NP/N [N]1

/e
NP
o

NP (CNP\S)/CNP) ONP
O ~~~r~ /E

ONP CNP\S
s

/I1
S/N

Given the near-unacceptability of constructions such as ?*John saw the, and Bill saw a,

woman, it seems at least plausible that John saw the should not have the status of a de¬

pendency constituent. In contrast, determiners such as two and many might retain the

type NP/ON, since John saw two arguably has the properties of a dependency constituent

(since e.g. John saw two, and Bill saw many, women appears to be acceptable).

Finally, note that there may be a correlation in the distribution of dependency modali¬
ties and structural modalities in a system that combines the two. This is because, as noted
in 4.2.1, structural modalities only appear on arguments (or on arguments of arguments),



Chapter 5. Synthesis, Comparisons and Conclusions 104

which suggests that structural modalities might conceivably be viewed as a special type of

dependency modality. I shall not pursue this further here.

5.2 Comparisons with Combinatory Categorial Gram¬
mar

Many of the linguistic phenomena covered in the last two chapters have been dealt with
in alternative fashions by other categorial frameworks. In this section I shall look in detail
at one such framework, developed by Steedman (1987, 1990) and known as Combinatory

Categorial Grammar (CCG), and compare its treatments of flexible constituency and non-

sequentiality with the ones proposed here.

5.2.1 Combinatory Categorial Grammar

CCG resembles the categorial frameworks we have already considered in that it consists
of a lexicon plus a system for combining types. However, it differs from them in that the

system for combining types is not a general logical inference procedure but a specified set

of rules. The rules of CCG are inspired by combinatory logic (Curry and Feys 1958), which
is an alternative system to the lambda-calculus for defining functional application and
functional abstraction. It does not make use of bound variables but instead uses operators

called combinators to define functions in terms of other functions.

The simplest rules in CCG, corresponding to the /e and \e inferences in the proof

figure formulation of AB or L, are the rules of functional application. They state that an

expression of a functor type may be combined with an expression of an argument type on

the appropriate side, and that the meaning of the result is the meaning of the function

applied to that of the argument. This can be notated by means of the notation in (5.11),
which uses colons to separate meanings from types and an arrow (=>) to denote derivation.
The notation means that a sequence of expressions with the meanings and types to the left
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of the arrow can be combined (in that order) to produce an expression with the meaning
and type to the right of the arrow.

(5.11) a. Forward application (indexed ))
<t> : X/Y a : Y 4>a : X

b. Backward application (indexed ()
a : Y <j> : Y\X =» <f>ct : X

In addition to the application rules, there are a number of combinatory rules which allow
more complex type-combining operations. Semantically, these rules correspond to cer¬

tain primitive combinators; syntactically, they are constrained by three principles which
Steedman claims to be universal.

Steedman formulates his semantics in terms of the three combinators B, T (or C„) and
S. These can be defined by means of the equivalences in (5.12):

(5.12) a. Bfgx = f(gx)

b. Txf = fx

c. S fgx = fx(gx)

However, it will be more perspicuous for present purposes to regard B and S as two-

place operators, and T as a one-place operator, so that the combinators can be viewed as

corresponding to special lambda-expressions as in (5.13):

(5.13) a. Bfg = Ax[f(gx)]

b. Tx = Af[fx]

c. Sfg = Xx[fx(gx)]

B thus performs the operation of functional composition, and T reverses the roles of func¬
tion and argument (type-raising). S ('substitution') is harder to describe straightforwardly,
but it can be thought of as taking two one-place functions and forming a new function which
identifies their arguments.
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The above equivalences automatically put constraints on the relations between the
semantic types of terms that can be combined, as follows (where X,Y,Z axe arbitrary
semantic types):

Thus B combines functions of types Y—+X and Z—+Y to form a function of type Z—>X; T

maps a term of type X to a function of type (X—>Y)—S combines functions of types

Z—>(K—*X) and Z-^Y to form a function of type Z—*X.

The syntactic types of expressions that can be combined axe further constrained by the

following three principles, which are claimed to be universal:

(5.15) a. Adjacency. Combinatory rules may only apply to entities which are linguis¬

tically realized and adjacent.

b. Directional Consistency. All syntactic combinatory rules must be consistent
with the directionality of the principal function.

c. Directional Inheritance: If the category that results from the application of a

combinatory rule is a function category, then the slash defining directionality
for a given argument in that category will be the same as the one defining

directionality for the corresponding argument(s) in the input function(s).

The principle of adjacency is akin to the assumption of 'sequentially' that was earlier made
for L, and the principle of directional consistency essentially ensures that the directionality
of slashes is respected. (Note that the application rules in (5.11) both conform to these two

principles.) Directional inheritance is a rather less obvious assumption, saying in essence

that directionality is a property of arguments rather than functions, as we shall see in the

examples below.

By placing these constraints on the combinations in (5.14) we obtain a set of possible
syntactic combinatory rules. It is important to note that the licensing of a particular

(5.14) a. B/F_>= Axz[f(gx)\
b. Tx* = A fx~*Y[fx\
c. S fz~*(Y-+x)gZ-*Y — AXz[fx(gx)\
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syntactic rule does not entail that that rule will be used by a given language, so that in
contrast to the categorial frameworks of the previous chapters there may be language-

specific variation in the choice of grammar rules; the use of certain rules may be restricted
to particular type instantiations, or even forbidden altogether for a particular language, as

we shall see in 5.2.2 below. Ignoring such restrictions for the moment, the above principles
license four different versions of the B (composition) rule, depending on the directionality of
the 'main' and 'subsidiary' functions, as follows (rules are referred to as harmonic where the
main and subsidiary functions have the same directionality, and disharmonic otherwise):

(5.16) a. Forward harmonic composition ()B)

<f*:X/Y X:Y/Z=> B<fiX : X/Z

b. Backward harmonic composition ((B)
X : Z\Y <}> : Y\X => B<f>x : Z\X

c. Forward disharmonic composition ()Bx)
4>: X/Y x ■ Z\Y => B^x : Z\X

d. Backward disharmonic composition ((Bx)
X'.Y/Z <j>:Y\X =>B<j>X: X/Z

Likewise there are four possible versions of the S (substitution) rule:

(5.17) a. Forward harmonic substitution ()S)
4.: (X/Y)/Zx-V/Z^ S4x X/Z

b. Backward harmonic substitution ((S)

X'.Z\Y </>■.Z\(Y\X) =► Sfo : Z\X

c. Forward disharmonic substitution ()Sx)
4 : Z\(X/Y) x '• Z\Y =$■ S<t>X : Z\X

d. Backward disharmonic substitution ((Sx)

X : Y/Z <f> : (Y\X)/Z =► S<j>x : X/Z

Finally, there are arguably four possible versions of the T (type-raising) rule, though it
is not entirely clear how the principles of Consistency and Inheritance should apply to
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type-raising (see Steedman 1991 for discussion of this). I shall list all four below, using the
terms 'symmetric' and 'asymmetric' to distinguish the variants:

(5.18) a. Forward symmetric type-raising ()T)
a : X =» Ta : Y/(X\Y)

b. Backward symmetric type-raising ((T)
a-.X^Ta: (Y/X)\Y

c. Forward asymmetric type-raising ()Tx)
a:X^Ta: Y/(Y/X)

d. Backward asymmetric type-raising ((Tx)
a-.X^Ta: (A\y)\K

Type-raising was originally introduced as a lexical rule by both Steedman and Dowty, and
its presentation as a syntactic operation in CCG is sometimes taken to be a notations!
convenience. However, for ease of comparison I shall assume here that type-raising is a

syntactic operation on a par with composition and substitution.

Note that some of the above rules (), (, )B, (B, )T and (T) are derivable as theorems
of L, and thus their use will not give rise to any new word orders; we shall refer to these
as order-preserving. The order-preserving rules form a subsystem which generates some,

but by no means all, L-valid combinations. For example, CCG does not include either of
the two rules below, and indeed cannot derive them by using any other rules:

(5.19) X/Y =* (X/Z)/{Y/Z) ('forward division')

(5.20) (Y\X)/Z => Y\(X/Z) ('associativity')

However, both rules are valid in L and can be given a combinatory semantics; (5.19) as

the 'unary' version of B, defined by B/ = A^Aar[/(_^a:)], and (5.20) as Curry and Feys'

'commuting' combinator C, defined by C/ = \y\x[(fx)y].

The remaining rules of CCG are derivable as theorems of higher categorial logics: )Bx,

(Bx, )Tx and (Tx are derivable in LP (and of course all higher logics), and )S, (S, )Sx
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and (Sx are derivable in LPC. The existence of non-order-preserving rules means that it
is not straightforwardly possible in CCG to give 'extensional' interpretations of types as it
was in AB, L and D, since for example a type of the form X/Y may be given to expressions
which do not consist of an X missing a Y from the rightmost position (see Steedman 1991

for discussion of this). Note also that the composition and substitution rules, but not
the type-raising rules, are dependency-preserving by the generalized definition given in the

previous section, so that ), (, )B and (B are also derivable in D, )Bx and (Bx in DP,
and )S, (S, )Sx and (Sx in DPC. The consequences of this will become evident in the

linguistic discussion below.

In fact Steedman regards the composition rule as a specific case of a 'generalized'

composition rule, of which the forward harmonic version is given in (5.21):

(5.21) Generalized forward harmonic composition ()Bn)
4> : X/Y X : ((Y/Zr)/ .. .)/Zn => B"fa : ((X/Z,)/ .. .)/Zn

(Steedman in fact regards the n in this rule as being bounded by the highest valency in

the lexicon.) The combinator Bn is recursively defined to be B for n = 1, and BBBn_1
for n > 1. All instances of generalized forward harmonic composition are derivable in L

(and D). For n = 1 the above rule is just the ordinary forward harmonic composition rule.

For n = 2 we obtain the following:

(5.22) Second-order forward harmonic composition ()B2)
4> '• X/Y X - (Y/ZJ/Zt => BVx : (X/Za)/Z2

This is the only 'higher-order' version of generalized composition that will be considered
from now on.

5.2.2 Linguistic Applications of CCG

Let us now consider how the above system is used in the analysis of English. Clearly all
derivations in AB have direct analogues in CCG, using the two application rules (whose
use is unconstrained). For example, the expression Mary likes John may be derived as a
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sentence as follows (cf. 2.8):

(5.23) Mary likes John

(NP\S)/NP NP^
NP NP\S^

The notation for derivations is based on Steedman's, and resembles the proof figure notation
to a large extent. The words are written in sequence at the top of the derivation; each
is underlined and its type is written below. When two types are combined, a line is

drawn underneath both of them and indexed with the appropriate rule index; the resultant

category is then written below the line. The meaning is derived directly from the structure

of the proof, just as with the proof figures for L, by interpreting the ) and ( rules as

functional application (cf. (2.9)):

(5.24) (likes John) Mary

To generate constructions within the scope of L, CCG uses its order-preserving combi¬

natory rules, constrained to a greater or lesser extent. For example, it is usual to restrict
the use of the forward symmetric type-raising rule to subject NPs as follows:

(5.25) Subject type-raising ()T)
a : NP =► Ta : S/(NP\S)

Derivations that would be performed in L (or D) by means of the /i rule are performed
in CCG using a combination of the )T and )B rules (for the moment assume )B to be

unconstrained). For example, we may assign the type S/NP to Mary likes by means of the
derivation in (5.26), giving the term in (5.27):

(5.26) Mary likes
NP

:>T
S/(NP\S) (NP\S)/NP

)B
S/NP
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(5.27) B (T Mary) likes

111

Using the equivalences in (5.13) and applying /^-reduction, we see that this combinatory
term is equivalent to the lambda-term that would be derived using L:

(5.28) B (T Mary) likes = Ax[(T Mary) (likes x)] = Ax[(A/[/ Mary]) (likes x)j t>p

Ax[(likes x) Mary]

Repeated use of the )T and )B rules in this fashion allows arbitrary right-peripheral ex¬
traction:

(5.29) a. Mary speaks to
NP (NP\S)/PP PP/NP

)T — — )B
S/(NP\S) (NP\S)/NP

)B
S/NP

b. Mary says that John likes
NP

:>T
S/(NP\S) (NP\S)/NP

)B
SP/S S/NP

—>B
NP (NP\S)/SP SP/NP

>T )B
S/(NP\S) (NP\S)/NP^

S/NP

(5.30) a. B (T Mary) (B speaks to)

b. B (T Mary) (B says (B that (B (T Mary) likes)))

We thus have an account of unbounded extraction similar to the one put forward for L.
For instance, the man who Mary likes has the derivation in (5.31) and the meaning repre¬

sentation in (5.32):
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(5.31) the man who Mary likes
NP

:>T
S/(NP\S) (NP\S)/NP

)B
(N\N)/(S/NP) S/NP^

N N\NL_(
NP/N Nx

NP ^

(5.32) the ((who (B (T Mary) likes)) man)

Similarly, versions of the (B and (T rules may be used where L would employ the \l
rule. For instance, in order to account for coordinate constructions like give Mary vodka
and Sue whisky, Dowty (1988) assigns Mary vodka the type ((VP/NP)/NP)\VP by the

following analysis:

(5.33) Mary vodka
NP NP

(T (T
((VP/NP)/NP)\(VP/NP) (VP/NP)\VP^

((VP/NP)/NP)\VP

The )B2 rule would be used to generate expressions such as will lend as constituents

(Steedman gives the example a car which I will lend, and may sell, to that man as motivation):

(5.34) will lend

(NP\S)/VP (VP/NP)/NP 2

((NP\S)/NP)/NP ^

The non-order-preserving rules are used for constructions outside the scope of L. For

instance, Steedman proposes the following restriction on the (B X rule (slightly simplified

here):
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(5.35) English backward disharmonic composition ((Bx)
X:Y/Z 4>:Y\X =>B<f>X:X/Z
where Y = NP\S or VP

This version of the rule may be used to assign the type S/NP to an expression consisting
of an S missing an NP internally, so that the object relative pronoun type (N\N)/(S/NP)
will serve for both peripheral and non-peripheral extraction:

(5.36) who Mary greeted warmly
NP (NP\S)/NP (NP\S)\(NP\S)

)T (Bx
S/(NP\S) (NP\S)/NP

(N\N)/(S/NP) S/NP
N\N ^

The (S x rule may be restricted in a similar fashion:

(5.37) English backward disharmonic substitution ((Sx)
X:Y/Z <j>:(Y\X)/Z=*S<j>X:X/Z
where Y = NP\S or VP

This rule may be used to assign the type S/NP to an expression consisting of an S missing
more than one NP, so that the same object relative pronoun type will also serve for para¬
sitic extraction:

(5.38) who Mary passed without greeting
((NP\S)\(NP\S))/VP VP/NP

—)B
NP (NP\S)/NP ((NP\S)\(NP\S))/NP

)T (Sx
S/(NP\S) (NP\S)/NP

)B
(N\N)/(S/NP) S/NP

N\N

Use of the remaining non-order-preserving rules in English is generally forbidden, al¬

though Steedman (1987) suggests using a restricted version of the forward asymmetric
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type-raising rule )Tx to deal with topicalization, and Steedman (1990) proposes an ac¬

count of gapping based on a very restricted use of the )Bx rule, both of which we shall

ignore here.

5.2.3 Comparisons

We have seen that the order-preserving rules (beyond application) of CCG axe used to

yield an account of flexible constituency, whereas the non-order-preserving rules are being
used to deal with non-sequentiality. In view of this, it is natural to consider both how the
version of flexible constituency implicit in CCG compares with dependency constituency,
and how the accounts of non-sequentiality compare with the use of structural modalities.

Take flexible constituency first. As noted earlier, the operation of type-raising is not

dependency-preserving, and so the rules as stated above can generate expressions that are
not dependency constituents, e.g. Fred said Bill:

(5.39) Fred said Bill
NP

NP (NP\S)/S S/(NP\S)|^
S/(NP\S) (NP\S)/(NP\S)

S/(NP\S)

On the usual assumption that constituents of the same type can be coordinated, this allows
the incorrect coordination in (5.40):

(5.40) *[Mary] and [Fred said Bill] laughed.

In fact Steedman agrees with the dependency constituency account in assuming that Fred
said Bill should not be analysed as a constituent, and is thus forced to place an ad-hoc
restriction on the forward harmonic composition rule as follows:

(5.41) Forward harmonic composition ()B)
<f>: X/Y x-y/X^ B<f>x : X/Z where Z ^ NP\S
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Such a move would not be necessary if the non-dependency-preserving rule of type-raising
were absent from the grammar, although a replacement operation would be needed to

combine verbs (other than intransitive verbs) with subjects, such as the rule of associativity
in (5.20) above, which is dependency-preserving.1 Note also that with the restriction in

(5.41) it is now not possible to derive Fred said Bill and Tom said Mary laughed, since there
is no way within CCG of coordinating expressions that are not constituents.

It is also possible for an expression to be a dependency constituent but not a CCG
constituent. For example, Steedman treats modifiers as functors in the usual categorial
fashion but forbids modified elements to type-raise over them. In the absence of associa¬

tivity, this means that an incomplete relative clause such as a man who likes cannot be

analysed as a CCG constituent:

(5.42) a man who likes

(N\N)/(NP\S) (NP\S)/NP
NP/N N (N\N)/NP

In contrast, a man who likes would be analysed as a dependency constituent irrespective
of whether modifiers or modified elements are viewed as functors. The CCG analysis is

partly motivated by the desire to capture island constraints as in (5.43) (which cannot be
derived from dependency constituency alone):

(5.43) *Beans, I met a man who likes.

However, it also incorrectly rules out coordinations such as (5.44):

(5.44) Most people like, but I know a man who hates, sonatas by Mozart.

JThe rule could be restricted in a similar way to the type-raising rule, e.g. as in (i):

(i) a : (NP\S)/X ^ Ca : NP\(S/X)



Chapter 5. Synthesis, Comparisons and Conclusions 116

(5.44) would be allowed in an account of coordination based on dependency constituency,
because the conjuncts axe both dependency constituents of type S/NP.

Even if the CCG rules were modified to generate only dependency constituents, it would
still be impossible to account for the parallel coordination phenomena described earlier,
since they require the generation of expressions that are not dependency constituents. For

instance, consider (5.45):

(5.45) John loves [Mary madly] and [Sue passionately],

Dowty (1988) deals with such constructions by using the combinatory rules (B and (T;
note that (T is not dependency-preserving.2

(5.46) Mary madly
NP

((NP\S)/NP)\(NP\S)(T(NP\S)\(NP\S)
((NP\S)/NP)\(NP\S)

The conjuncts in (5.45) are constituents under Dowty's analysis, but not dependency con¬

stituents. However, this means that Dowty is unable to prevent the forbidden coordina¬
tion in (5.47), since both Mary madly and Sue can be analysed as constituents of type

((NP\S)/NP)\(NP\S):

(5.47) *John loves [Mary madly] and [Sue],

Comparisons between the CCG treatment of non-sequentiality and the treatments us¬

ing structural modalities are a little less straightforward, because they work on different

principles. For example, return to the non-peripheral extraction example who Mary greeted

warmly given earlier. Given the type (N\N)/(S/NP) for who, it is impossible to generate
this construction using order-preserving rules, because S/NP is only assignable to expres¬

sions consisting of an S missing an NP at the rightmost end. The structural modality

2This example follows Dowty in taking modifiers to be functors, but a similar argument can
be constructed if modified elements are taken to be functors.
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approach solves this by refining the type of who, whereas the CCG approach solves it by

(effectively) extending the interpretation of S/NP. The CCG approach thus appears to be
at a disadvantage in one respect, since it allows overgenerations such as the following:

(5.48) *Mary greeted warmly John

(NP\S)/NP (NP\S)\(NP\S)
-(Bx

(NP\S)/NP NP^
NP NP\S

-(

Steedman argues that such a mechanism is in fact desirable since it allows the genera¬

tion of heavy-NP-shifted constructions such as Mary greeted warmly the winner of the 1989
Booker Prize, but this does not explain why the construction in (5.48) is ungrammatical,
nor why the addition of another modifier is impossible (e.g.*Mary greeted warmly the winner
of the 1989 Booker Prize with open arms). Similar use of the (Sx rule incorrectly generates
constructions such as *Mary passed without greeting John.

On the other hand, CCG's Principle of Inheritance prevents the generation of certain
constructions that would be allowed by a naive structural modality approach, such as the

following:

(5.49) *who(m) I think that arrived
NP (NP\S)/SP SP/S

>T >B
S/(NP\S) (NP\S)/S

(N\N)/(S/NP) S/S NP\S

Because the subject of arrived is a leftward-directional argument, by Inheritance there
can be no combinatory rule that would turn it into the rightward-directional argument

required within the argument of who. On the other hand, as we saw in (4.51), the struc¬

tural modality system with the type (N\N)/(S/ANP) for who would incorrectly generate
this construction.3 Similar remarks extend to multiple extraction. CCG's inheritance

3Such an analysis could however be blocked by case features on the NP, so there is no need to

make an appeal to argument directionality in this case.
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principle would automatically block who loves (where both subject and object have been

extracted) as a relative clause, since the two extracted arguments have different direction-

alities, whereas the naive account based on structural modalities allows it if case is not

taken into consideration (as shown in (4.52)).

Less obviously, CCG also correctly blocks certain multiple extractions where the ex¬

tracted arguments have the same directionality, e.g. who I showed (where direct and indirect

object have been extracted), since there is no rule of the form (X/Y)/Y =>■ X/Y (which
would be derivable in LPC):

(5.50) *who(m) I showed
NP

)T
(N\N)/(S/NP) S/(NP\S) ((NP\S)/NP)/NP

It is not obvious how the present account would block this; the relevant intuition appears

to be that the extracted arguments should be dependent on different heads, which cannot

be captured by means of the devices introduced in earlier chapters. One possible approach
is not to regard parasitic extraction as a special syntactic phenomenon at all, but to regard
it as a form of control. For example, since without can control the subject of a subordinate
verb as in John left without apologizing, it could be argued that it controls both the subject
and the object in the man who Mary passed without greeting, and thus has the additional

type ((NP\S)\(NP\S))/VP. This would remove the need to use the iteration modality in
the type of the relative pronoun (and in fact would leave no obvious role for the iteration

modality to play in syntax).

In conclusion, it seems that the rules of CCG capture many of the intuitions of chap¬
ters 3 and 4, and that each account has its positive and negative aspects from a linguistic

point of view, but that the account presented here is mathematically better motivated.
This is not of course to say that combinatory formulations of CG are in themselves less

mathematically rigorous; in particular, a combinatory formulation of a dependency calculus
closely related to D is given in Hepple (1991).
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5.3 Further Remarks and Conclusions

In this final section I shall attempt to indicate how further research might proceed from
the material in the earlier sections, and draw some conclusions.

Chapter 3 essentially put forward three arguments; that theories of rigid constituency
are inadequate for linguistic description, that a linguistically appropriate notion of flexible

constituency can be derived from a dependency grammar, and that (subject to certain

assumptions) this notion of constituency can be captured in a categorial grammar with a

suitable reinterpretation of types. Chapter 4 addressed the lack of coverage of categorial

grammar by advancing the claim that the categorial hierarchy can be used to motivate the
addition of operators to deal with non-sequential constructions. Section 5.1 made steps

towards combining the approaches of chapters 3 and 4, and section 5.2 compared the entire

approach with the rule-based alternative of CCG.

Each of these lines of enquiry gives rise to further questions. The case for flexible

constituency has not often been put forward outside the context of CG, and consequently

independent evidence for flexible constituency has rarely been explored, other theories of

grammar almost always taking rigid constituency as axiomatic. In view of this, it would
be advantageous if a more detailed linguistic study of the evidence for and against flexible

constituency could be carried out in a theory-neutral setting. Similarly, the dependency

grammar tradition has not generally been concerned with the idea of constituency (al¬
though the relation between dependency and full constituency has been pointed out in
various places). It appears that the study of dependency grammar could benefit from an

analysis of the forms of constituency that can be derived from it. In addition to this, a more

thorough investigation of the correspondence between categorial grammar and dependency

grammar demonstrated in section 3.3 would help to shed fight on both formalisms, espe¬

cially in respect of those cases such as modifier constructions where there is a mismatch
between traditional notions of head and functor.

The material in chapter 4 presents both logical and linguistic questions. The main log-
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ical question is whether an adequate interpretation can be given to the structural modali¬
ties in an analogous fashion to the interpretation of standard categorial types; this would

presumably require the construction of models where the underlying algebra contained

commutable, iterable or optional elements. The main linguistic question appears to be
whether the tools presented there can be combined with other devices to produce a lin¬

guistically adequate account of the phenomena described there. It may turn out that some
of the operators presented are in fact better replaced with operators more specific to the
constructions concerned.

The idea of an all-encompassing network of categorial logics, the possibility of adding
further operators for linguistic purposes, and the programme of fitting existing categorial

grammar formalisms into this network, all appear to be fruitful ways of attempting to

tie together the diverse family of categorial grammars that have been used in linguistic

description.

This thesis has attempted to demonstrate some of the ways in which categorial gram¬
mar can be adapted to deal with a wider range of linguistic phenomena, without losing
mathematical precision. In my opinion this has served to demonstrate both a strength
and a weakness of the formalism. The strength lies in the fact that since all the rules of
CG are logical validities, it can be adapted to different linguistic requirements simply by

changing the interpretation of types. The weakness lies in the fact that it can be difficult
to accommodate linguistic phenomena which do not fit straightforwardly into the given

interpretation, even when new operators are added. Whether or not the case has yet been

proven for the use of CG as a general-purpose linguistic tool, it remains a rich area to

explore for both the mathematician and the linguist.
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Categorial Deductions and Structural Operations*

Glyn Morrill, Neil Leslie, Mark Hepple and Guy Barry

Categorial grammar is an approach to language description in which expressions are clas¬
sified according to recursively defined categories. The combination of expressions is governed
not by specific linguistic rules but by general logical inference mechanisms, so that all the
information about the combining potential of a word resides in its lexical categorization.
Various systems of inference for categorial grammar have been proposed, in particular the
'syntactic calculus' of Lambek (1958). However, use of the Lambek calculus for linguistic
work has generally been rather limited. There appear to be two main reasons for this: the
notations most commonly used can sometimes obscure the structure of proofs and fail to
clearly convey linguistic structure, and the calculus as it stands is apparently not powerful
enough to describe many phenomena encountered in natural language.

In this paper we suggest ways of dealing with both these deficiencies. Firstly, we refor¬
mulate the Lambek calculus using proof figures based on the 'natural deduction' notation
commonly used for derivations in logic. Natural deduction is generally regarded as the most
economical and comprehensible system for working on proofs by hand, and we suggest that
the same advantages hold for a similar presentation of categorial derivations. Secondly, we
introduce devices for the characterization of word order variation, iteration and optionality,
features of natural language which the Lambek calculus does not capture with the desired
sensitivity and generality. This is achieved by means of operators called structural modalities,
derived from the usual structural rules found in logic.

1 Fregean Analysis
The point of departure for categorial grammar can be seen as Frege's position that there
are certain 'complete expressions' which are the primary bearers of meaning, and that the
meanings of'incomplete expressions' (including words) are derivative, being their contribution
to the meanings of the expressions in which they occur. Frege took proper names and sentences
to be the complete expressions. Consider a language containing some proper names {"John",
"Mary", ...} and some sentences {"John walks", "Mary walks", ..., "John likes John", ... };
such sets of linguistic objects will be called categories, and will be indexed by types, in this
case NP and S respectively.1 Now, the significance of "walks" is that it occurs with an NP
to form an S, and it is attributed with a meaning which is a function from NP meanings into
the meanings of the S's it forms with those NP's; the category of such objects can be indexed

*We would like to thank Martin Pickering and Pete Whitelock for comments and discussion relating to
this work. The authors were respectively supported by SERC Postdoctoral Fellowship B/ITF/206; ESPRIT
Project 393 and Cognitive Science/HCI Research Initiative 89/CS01 and 89/CS25; ESRC Research Studentship
C00428722003; SERC Research Studentship 88306971.

'Thus a type is a symbol denoting a category. There are alternative terminologies, e.g. use of category to
mean category symbol, or type to mean a domain, rather than a symbol indexing a domain.
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by the type NP —► S, and we say that (following the Fregean procedure) type NP —>■ S is
assigned to "walks". Similarly, "likes John", "likes Mary", ... are assigned type NP —► S, and
consequently "likes" is assigned type NP —► (NP —► S), etc.

Note that on this view compositionality is methodological rather than empirical: the
meanings of parts are defined in terms of the meanings of wholes. Note also that the semantic
functions we build up in this way fall within a simple type hierarchy; Russell's theory of types,
prompted by the paradoxes, was a major influence on Lesniewski's 'semantic categories', the
immediate precursor of Ajdukiewicz and categorial grammar.

The above system for semantic type-assignment can be extended to one which is simulta¬
neously a syntactic type-assignment, i.e. one in which the types by which incomplete expres¬
sions are classified encode the manner in which they constitute subparts of other expressions.
This can be achieved by the use of a directional system, in which the undirected implication
Y —► X is replaced by two directed implications X/Y ('X over Y') and Y\X ('Y under X'),
representing respectively incomplete expressions that combine with a following or preceding
expression of type Y to form an expression of type X? Thus for example "walks" forms an S
when preceded by an NP, so is assigned type NP\S, and "likes" forms an NP\S when followed
by an NP, so is assigned type (NP\S)/NP.

Linguistic categories are not limited to finite inhabitation, e.g. in general languages contain
an infinite number of sentences. However, the set of words from which the objects in those
categories are constructed is usually presumed to be a finite set, known as the vocabulary.
The task of a grammar is to finitely describe the membership of (possibly) infinite categories,
and the above type-theoretic perspective suggests a procedure for doing this. By establishing
an initial type assignment relation between the vocabulary and types (a lexicon), a full type
assignment between expressions and types may be determined, according to a general system
of type inference. In the next section we shall present such a system of inference for the
directed types described above, the calculus L of Lambek (1958), and discuss properties and
linguistic applications of that system.

2 The Lambek Calculus L

2.1 Preliminaries

Given a set of primitive types, the set of bidirectional types is defined as shown in (1).

(1) a. If X is a primitive type
then X is a type.

b. IfX and Y are types
then X/Y and Y\X are types.

Let us assume as basic categories prepositional phrases, noun phrases, sentences, and common

nouns, indexed by primitive types PP, NP, S, and N respectively. By the principles outlined
above, we may assign types to words as follows:

2In the alternative notation used by, for example, Steedman, these types would be written X/Y, X\Y
respectively.
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(2) for PP/NP
NP

(NP\S)/NP
N

NP/N
(NP\S)/S
(NP\S)/PP
(N\N)/(S/NP)

John, Mary
likes
man

the
thinks
votes

who

We assume that words have (at least) two components, form (represented by italics) and
meaning (represented by boldface). For example, the word "for" will be taken to have form
denoted by for and meaning denoted by for.

2.2 Proof Figures
We shall present the rules of L by means of proof figures, based on Prawitz' (1965) systems
of 'natural deduction'. Natural deduction was developed by Gentzen (1936) to reflect the
natural process of mathematical reasoning in which one uses a number of inference rules
to justify a single conclusion on the basis of a number of propositions, called assumptions.
During a proof one may temporarily make a new assumption if one of the rules licenses the
subsequent withdrawal of this assumption. The rule is said to discharge the assumption. The
conclusion is said to depend on the undischarged assumptions, which are called the hypotheses
of the proof.

A proof is usually represented as a tree with the assumptions as leaves and the conclusion
at the root. Finding a proof is then seen as the task of filling this tree in, and the inference
rules as operations on the partially completed tree. One can write the inference rules out as
such operations, but as these are rather unwieldy it is more usual to present the rules in a
more compact form as operations from a set of subproofs (the premises) to a conclusion, as
follows:

This states that a proof of Z can be obtained from proofs of X\, ..., -Xm+n by discharging
appropriate occurrences of assumptions Yj, ..., Yn. The use of square brackets around an

assumption indicates its discharge. The index i is used to disambiguate proofs, where there
may be an uncertainty as to which rule has discharged which assumption.

As propositions are represented by formulas in logic, so linguistic categories are represented
by type formulas in the Lambek calculus. The left-to-right order of types indicates the order
in which the forms of subexpressions are to be concatenated to give a composite expression
derived by the proof. Thus we must take note of the order and place of occurrence of the
premises of the rules in the proof figures for L. There is also a problem with the presentation
of the rules in the compact notation as some of the rules will be written as i/they had a
number of conclusions, as follows:

(3) [YiY [yn]'
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(4) : :
Xi ••• Xm

Rule
Fx ... Yn

This rule should be seen as a shorthand for:

(5) i i
Xx ••• Xm

Rule
>i ••• y„

Z

If the rules are viewed in this way it will be seen that they do not violate the single conclusion
nature of the figures.3

As with standard natural deduction, for each connective there is an introduction rule
which states how a type containing that connective may be derived, and an elimination rule
which states how a type containing that connective may be consumed. We shall follow the
historical development of the calculus by giving the elimination rules before the introduction
rules.

The elimination rule for / states that a proof of type X/Y followed by a proof of type Y
yields a proof of type X. Similarly the elimination rule for \ states that a proof of type Y\X
preceded by a proof of type Y yields a proof of type X. Using the notation above, we may
write these rules as follows:

(6) a. : : b. : :
X/Y Y Y Y\X
— /E —\E

X X

The meaning of the composite expression is given by the functional application of the meaning
of the functor expression (i.e. the one of type X/Y or T\X) to the meaning of the argument
expression (i.e. the one of type Y). We represent function application by juxtaposition, so
that likes John means likes applied to John.

The subsystem of L using only the rules /E and \E corresponds to the categorial calculus
of Ajdukiewicz (1935) and Bar-Hillel (1953), and is sometimes known as the AB calculus.
Within this calculus, we may derive "Mary likes John" as a sentence as follows:

(7) Mary likes John

(NP\S)/NP NP
NP NP\S ^

The meaning of the sentence is read off the proof by interpreting the /E and \E inferences
as function application, giving the following:

(8) (likes John) Mary

Similarly, the sentence "Mary thinks John votes for the man" may be derived thus:
3Notice that these rules mean that the proof figures are not trees, but directed acyclic graphs.
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(9) Mary thinks John votes for the man

NP/N N
■/E

PP/NP NP
—/E

(NP\S)/PP PP ^
NP NP\S ^

—\E
(NP\S)/S S

/E
NP NP\S

I VE
From this we can read off the meaning representation:

(10) (thinks ((votes (for (the man))) John)) Mary
The introduction rule for / states that where the rightmost assumption in a proof of the

type X is of type Y, that assumption may be discharged to give a proof of the type X/Y.
Similarly, the introduction rule for \ states that where the leftmost assumption in a proof of
the type X is of type Y, that assumption may be discharged to give a proof of the type Y\X.
Using the notation above, we may write these rules as follows:

(11) a. [Y]n b. [Y]n

X
„ X n

-/In \In
X/Y Y\X

Note however that this notation does not embody the conditions that have been stated,
namely that in /I Y is the rightmost undischarged assumption in the proof of X, and in
\I Y is the leftmost undischarged assumption in the proof of X. In addition, the Lambek
calculus carries the condition that in both /I and \I the sole assumption in a proof cannot be
withdrawn, so that no types are assigned to the empty string.4

In the introduction rules, the meaning of the result is given by functional abstraction
over the meaning of the discharged assumption, which can be represented by a variable of
the appropriate type. For example, the functional abstraction of [(likes x) Mary] over the
variable i, written Ax[(likes x) Mary], is the function that gives (likes John) Mary when
applied to John, (likes (the man)) Mary when applied to the man, and so on. This
general relation between abstraction, application and substitution is expressed by the law of
P-equality:

(12) (Ay[a])/3 = a\f3/y]
This is read: '(Ay[a])/3 is equal to a with /3 substituted for y\ The rules in (11) are analogous
to the usual natural deduction rule of conditionalization, except that the latter allows with¬
drawal of any number of assumptions, in any position. The semantic algebra defined by the
above set of inference rules corresponds to the subset of the typed lambda-calculus in which
each binder binds exactly one variable (van Benthem 1983). We shall refer to this as the
'single-bind' lambda-calculus. This correspondence between proofs in L and meaning repre¬
sentations in the single-bind lambda-calculus can be seen as a version of the Curry-Howard cor¬
respondence between intuitionistic implicational deduction and full lambda-calculus (Curry
and Feys 1958; Howard 1969).

4 However, this condition is not an essential feature of the logic (cf. subsection 3.1).
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The /I and \I rules are commonly used in constructions that are standardly assumed to
involve 'empty categories'. For example, the non-canonical constituent "Mary likes" can be
derived as of type S/NP, and hence assignment of type (N\N)/(S/NP) to an object relative
pronoun allows analysis of relativization as follows (cf. Ades and Steedman 1982):

(13) the man who Mary likes

(NP\S)/NP [NP])—/k.
NP NP\S

S *
/I1

(N\N)/(S/NP) S/NP
/E

N N\N
\E

NP/N N
/E

NP

Again, the meaning of the string can be read off the above proof by interpreting /I and \I as
functional abstraction, giving the following:

(14) the (who (Ax[(likes x) Mary]) man)
Note that this mechanism is only powerful enough to allow constructions where the extraction
site is clause-peripheral; for non-peripheral extraction, and multiple extraction such as with
parasitic gaps, we appear to need an extended logic. Meeting such requirements is part of
the concern of section 4 below.

The use of the /I and \I rules in conjunction with the /E and \E rules means that it is
possible to give more than one proof for a single reading of a string. For example, compare
the derivation of "Mary likes John" in (7), and the corresponding lambda-term in (8), with
the derivation in (15) and the lambda-term in (16):

(15) Mary likes John

(NP\S)/NP [NP]1/e
NP NP\S

i
r/i

S/NP NP
/E

(16) (Ax[(likes x) Mary]) John

By the definition in (12), the terms in (8) and (16) are /3-equal, and thus have the same mean¬
ing; the proofs in (7) and (15) are thus equivalent. This property of derivational equivalence
(also termed 'spurious ambiguity') is common to many versions of categorial grammar, and
can c;iuse problems for the design of efficient parsing algorithms, where the usual aim is to
find each reading of a string once and only once. Such problems can however be overcome
by defining a notion of normal form for proofs (and their corresponding terms) in such a way
that each equivalence class of proofs contains a unique normal form (e.g. Hepple and Morrill
1989). One advantage of the present formulation is that it offers a particularly simple way of
doing this.
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2.3 Normal Forms

In order to define normal forms for both L and the single-bind lambda-calculus, we will first
define the notions of contraction and reduction. A contraction schema R t> C consists of a

particular pattern R within proofs or terms (the redex) and an equal and simpler pattern C
(the contractum). A reduction consists of a series of contractions, each replacing an occurrence
of a redex by its contractum. A normal form is a proof or term on which no contractions are

possible.
We define the following contraction schemas: weak contraction {or proofs, and (}-contraction

for the corresponding lambda-terms.

(17) a. [YT b. [Y]n

_£_/jn : > y '■ X MP > Y
X/Y Y : Y Y\X :

/E X \E X

(18) (At/[a])/3 >a[J3/y]

From (12) we see that /3-reduction preserves meaning according to the standard functional in¬
terpretation of typed lambda-calculus. Therefore the corresponding weak reduction preserves
the semantic functional interpretation of the proof; in addition it preserves the syntactic string
interpretation since the redex and contractum contain the same leaves in the same order.

For example, the proof in (15) weakly contracts to the proof in (7), and correspondingly
the term in (16) /3-contracts to the term in (8). The results of these contractions cannot be
further contracted and so are the respective results of reduction to weak normal form and
/3-normal form.

Weak contraction and /3-contraction strictly decrease the sizes of proofs and terms, e.g. the
number of symbols in a contractum is always less than that in a redex.5 Thus there is strong
normalization with respect to these reductions: every proof (term) reduces to a weak normal
form (/3-normal form) in a finite number of steps. This has as a corollary (normalization)
that every proof (term) has a normal form, so that normal forms are fully representative:
every proof (term) is equal to one in normal form. Since reductions preserve interpretations,
an interpretation of a normal form will always be the same as that of the original proof
(term). Thus restricting the search to just such proofs addresses the problem of derivational
equivalence, while preserving generality in that all interpretations are found.

The single-bind proofs (lambda-terms) appear to straightforwardly inherit the property
of intuitionistic proofs (full lambda-terms) that if a proof (term) M reduces to two proofs
(terms) N\,Ni, then there is a proof (term) N3 to which both N\ and fV2 reduce. It follows
that a proof (term) cannot reduce to more than one normal form, and so every proof (term)
has a unique normal form. This is known as the Church-Rosser property.

If,all normal forms were non-equal, restriction of search to normal forms would be optimal
in that each equivalence class has a single representative within the narrowed search space.
However, the standard extensions! functional interpretation of typed lambda-calculus also
satisfies the following law of q-equality:

5This follows immediately from the single-bind character of the languages; if there were multiple binding,
contraction could involve duplication of subparts substituted and so could increase size.
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(19) Ay[a(y)] = a
(y not free in a)

Accordingly there is a second form of contraction for each of L and the single-bind lambda-
calculus, which we shall term strong contraction and ij-contraction respectively. These are as
follows:

(20) a. : b. :
X/Y [Y]n : [Y]n Y\X :—5—/E > X/Y \E > Y\X

A A

/In \In
X/Y Y\X

(21) Aj/[a(y)] > a

A proof (term) is said to be in strong normal form (firj-normal form) if there are no weak
or strong contractions (/?- or 77- contractions) possible on it. Since strong reductions (firj-
reductions) also preserve interpretations, it is sufficient to find all and only the strong normal
proofs for a given string and a given result type in order to find all possible readings in that
type.

A notion of contraction creates a partitioning into normal and non-normal proofs. For
the purposes of proof search a structural characterization of just the normal proofs can be
exploited (see e.g. Konig 1989; Hepple 1990). Weak normal proofs can be specified as follows.
Suppose we define a branch of a proof in L as starting with any hypothesis and tracing down
until it hits either the conclusion type (a main branch) or the argument type of an elimination
inference (a side branch). Then in a weak normal proof no branch can contain an introduction
inference followed by an elimination inference. It follows that each branch must consist of a
sequence of (zero or more) eliminations followed by a sequence of (zero or more) introductions.
However, a similar structural characterization of strong normal proofs is harder to formulate.

2.4 Sequent Calculus
The above notation for proofs is convenient for their presentation on the page, but for the
development of proof-search algorithms it is more convenient to use Gentzen's (1936) sequent
calculus notation, where the objects reasoned about are sequents corresponding to entire
natural deduction proofs. A sequent calculus consists of axioms and inference rules; axioms
state that certain primitive sequents are valid, and inference rules allow new valid sequents
to be derived from old ones. A sequent calculus proof may thus be seen as the instructions
for the construction of a natural deduction proof. Lambek (1958), in his original presentation
of the calculus, used a sequent calculus notation in order to establish its decidability.

We shall use T, A, $ ... to stand for sequences of types, and X, Y,Z... to stand for single
occurrences of a type. A (single-conclusioned) sequent is a statement T => X; it asserts that
there is a deduction of X depending on the hypotheses I\ In Lambek calculus both the order
of th£ types in T and the number of occurrences of each type are relevant, and there is a
restriction that T must be non-empty.

We shall present the sequent rules in refinement notation to emphasize their application
to proof search. A rule such as (22) states that Z follows from T if X follows from A and Y
follows from $. It does not matter which order we solve the sub-problems in, so long as we
solve them all.

8



(22) T => Z [Rule]
A => X
$ => Y

In standard sequent systems there is a single schematic axiom saying that every type
yields itself, and for each connective there axe two inference rules; a left rule, which allows us
to derive a sequent where the connective newly appears on the left-hand side of the arrow,
and a right rule, which allows us to derive a sequent where the connective newly appears on
the right-hand side of the arrow. The Gentzen-style formulation of L follows this pattern:

(23) X => X [Ax]

t X/Y a $ => Z [/l] t a Y\X $ => Z [\l]
a =► Y a => y
rx$^z r x $ => z

r => x/y [/r] r => y\x [\r]
r y => x y r => x

There is a close analogy between the use of left rules in sequent calculus and elimination rules
in natural deduction, and similarly between right rules in sequent calculus and introduction
rules in natural deduction. For example, compare the following sequent proof with the proof
in (13):

(24) NP/N N (N\N)/(S/NP) NP (NP\S)/NP => NP [/L]
N (N\N)/(S/NP) NP (NP\S)/NP => N [/L]

NP (NP\S)/NP =» S/NP [/R]
NP (NP\S)/NP NP => S [/L]

NP =>• NP ' [Ax]
NP NP\S =► S [\L]

NP => NP [Ax]
S=»S [Ax]

n n\n =*• n [\L]
N => N [Ax]
N =► N [Ax]

NP => NP [Ax]
L may be formulated with one additional rule, the Cut rule, which combines two proofs

by identifying the conclusion of one with one of the premises of the other:

(25) A T $ => y [Cut]
r => x
Axny

t

Lambek shows that the sequent formulation of L has the property of Cut-elimination, i.e.
every L proof can be transformed into an L proof with the same end-sequent, in which no
Cuts occur. Cut-elimination in sequent calculus corresponds (approximately) to normalization
in natural deduction (cf. the corresponding result for intuitionistic logic; see also Moortgat
1990a). The Cut-free formulation provides a decision procedure. A step in the search for
a proof of a sequent can only be an axiom matching, or one of a finite number of possible
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rule applications, these creating strictly simpler subgoals since each rule application removes
a connective.

Moortgat (1988) shows how the types in sequents in L may be annotated with lambda-
terms to indicate their semantic content; the resulting terms can be shown to be the same as
those obtained in the natural deduction style formulation.

3 A Structural Hierarchy of Logics
The rest of this paper will be concerned with the development of mechanisms extending L to
a calculus with greater linguistic applicability, in particular addressing the problems of word
order variation, iteration and optionality. In this section we describe how L can be extended
to yield a structural hierarchy of logics, and in the next section we refine these extensions in
a manner suited to linguistic description.

From a logical perspective, L can be thought of as the weakest member of a hierarchy of
implicational type-inference logics, differing in the amount of freedom allowed in the use of
assumptions; L takes into account the order of assumptions and the number of occurrences of
each, but we may choose to ignore these factors to a greater or lesser extent. This 'categorial
hierarchy' is discussed in e.g. van Benthem (1987), Moortgat (1988), Ono (1988) and Wansing
(1989). It consists of L followed by what are essentially the implicational fragments of linear,
relevance and intuitionistic logic.

Sequent calculus differentiates between levels in the hierarchy by means of structural rules
explicitly manipulating lists of assumptions. In natural deduction style formulations, on the
other hand, structural operations are implicit in the treatment of occurrences of assumptions
and the conditions on their discharge. In the presentations below we shall break with com¬
mon practice by including explicit structural rules in proof figures; this will enable a closer
comparison with the structural operators to be discussed in the next section.

3.1 L and Sequential Logic
L as it stands forms a 'sequential logic', which is a subset of non-commutative linear logic
(see Girard 1989). The single-conclusioned, implicational fragment of non-commutative linear
logic corresponds exactly to L, except that proofs from no premises are permissible in the
former.

3.2 LP and Linear Logic
The 'Lambek-van Benthem' calculus LP (van Benthem 1983, 1986) is like L except that
the order of premises is irrelevant. We may implement this by adding a structural rule of
permutation to the natural deduction proof figures:

(26) : :
X Y

9 xP
This is the first appearance of a rule that is not single-conclusioned. As noted earlier, such
a rule may not form the last inference in a proof, since complete proofs must have a single
conclusion type.

Addition of the permutation rule means that the directional implicational types X/Y,
Y\X axe equivalent, since they are mutually derivable:

10



(27) [Y]1 X/YY\X [y]1
X/Y Y Y Y\X
— /E —\E

X
, X

\P /I1
Y\X X/Y

For the rest of this section, therefore, we need use only a single implicational type; we choose
y\X, and notate it in the more conventional fashion as Y—*X. We repeat the elimination
and introduction rules here:

(28) : : [Y]n
Y Y-*X :

-E X

y—x
♦in

Without loss of generality, rule applications can be kept subject to the previous ordering
conditions for \. For example, we may derive the transition X-+(Y—>Z) => Y->(X-+Z) in
LP as follows:

(29) [XV [y£
y x x—*(Y—*z)'—*E

Y—*Z
>E

z
-i1

X-+Z
.I2

y—(x—z)

However, since the order of premises is irrelevant, the logic is unaffected by allowing the
argument type Y in the —>E rule to occur either to the left or the right of the functor type
Y—*X, and Y to be any undischarged assumption above X in the —*1 rule. This removes the
need for an explicit permutation rule. In a sequent calculus presentation of LP, the structural
rule of permutation runs as follows:

(30) r X Y A => Z [P]
T Y X A => Z

LP corresponds to the single-bind lambda-calculus, and is a subsystem of Girard's (1987)
linear logic, in which permutation of assumptions preserves derivability; the implication in
LP is like Girard's linear implication.

3.3 LPC and Relevance Logic
LPC is an extension of LP which allows assumptions to be used more than once. This may
be achieved by adding a structural rule of contraction to the natural deduction formulation:

(31)' :
X

C
X X

The -*E and —>-1 rules are as before in this formulation. By way of example of derivation in
LPC, the transition X—>(X—*Y) => X-+Y is proved as follows:

11



(32)jxy_c
X X X^{X->Y)

>E
x-y

>E
Y

-I1
x—y

LPC could be alternatively formulated in a natural deduction style by relaxing the direction¬
ality conditions on L and allowing withdrawal of one or more occurrences of a conditionalized
assumption. This removes the need for explicit rules of permutation and contraction. The
sequent calculus formulation of the contraction rule is as follows:

(33) T X A=> Z [c]
r x x a =» z

LPC corresponds to the multiple-bind lambda-calculus without vacuous abstraction, and it
shares with relevance logic (Anderson and Belnap 1975) the preservation of derivability under
the structural operations of permutation and contraction.

3.4 LPCW and Intuitionistic Logic

Finally we may extend LPC to LPCW, where it is permissible for assumptions not to be
used at all. This may be achieved by adding a structural rule of weakening to the natural
deduction formulation:

(34) :
X
—W

In fact, in order that a weakened assumption may be understood as a subpart of a proof,
applications of weakening in a derivation will be represented as follows:

(35) a. : : b. : :
x y y x

w, w,
y y

For example, the transition Y => X—►P is valid in LPCW:

(36) [X]1 Y
Wj

y
j1

x-y

This derivation satisfies the ordering conditions on conditionalization since X is indeed the
leftmost assumption dominating Y. LPCW could be alternatively formulated in a natural
deduction style by relaxing the directionality conditions on L and allowing withdrawal of
zero or more occurrences of a conditionalized assumption. This removes the need for explicit
rules of permutation, contraction and weakening. The sequent calculus formulation of the
weakening rule is as follows:

(37) t X a => Z [w]
r a =► z

12



LPCW corresponds to the full lambda-calculus allowing vacuous abstraction, and it shares
with intuitionistic logic the preservation of derivability under the structural operations of
permutation, contraction and weakening.

4 Structural Modalities

Freely applying structural rules are clearly not appropriate in categorial grammars for linguis¬
tic description. Permutation would imply that word order was irrelevant; contraction would
imply that any word in a sentence could fulfil any number of roles; and weakening would
imply that sentences could contain arbitrary words not contributing to their meaning. Never¬
theless, commutable, iterable, and optional elements do arise in natural language: a relative
pronoun may license a gap6 anywhere in body of the relative clause, it may license multiple
gaps (as in parasitic gap constructions), and a gap may be optionally required (perhaps as in
resumptive pronoun constructions); similarly a head may allow some freedom in the location
of a complement, it may allow multiple complements (as in iterated coordination), and it
may optionally take a complement. This suggests that we should be able to indicate that
structural operations are permissible on specific types, while still forbidding them as general
inference rules.

There is a precedent for the above in (commutative) linear logic, which contains the so-
called exponentials ! ('of course') and ? ('why not'), which bring back the structural rules of
contraction and weakening in a controlled way. The behaviour of ! and ? bears a resemblance
to that of the operators □ (universal modality) and O (existential modality) in some modal
logics. For our linguistic calculus, which has rather different applications, we shall suggest
a system of operators called structural modalities. Corresponding to commutation, iteration
and optionality, we define both universal and existential structural modalities; there are two
directional versions for each of the commutation modalities.

Universal Existential
Commutation ><] ><

Iteration
1 +

Optionality II 7

Broadly speaking the universal modalities may be said to represent 'any' (any location, any
number of occurrences greater than zero, any number of occurrences less than two), and
the existential modalities to represent 'some' (some location, some number of occurrences
greater than zero, some number of occurrences less than two). For each modality there is an
'operational rule' which governs its behaviour; the operational rules for universal modalities
are analogous to the corresponding structural rules, and those for existential modalities are

analogous to inverted versions of the corresponding structural rules. We shall examine these
rules in detail for each operator below.

Universal modalities have the common property that any item of a universally modal
type also has the corresponding non-modal type, and the existential modalities have the
property that any item of a non-modal type also has the corresponding existentially modal
type. This means there are straightforward elimination rules for the universal modalities and
introduction rules for the existential modalities, but the complementary rules in each case are
less straightforward. Since we are not fixing here a particular semantics with respect to which

6We use the term 'gap' purely descriptively.
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we expect the logic to be complete, we shall be ignoring introduction rules for the universal
modalities and elimination rules for the existential modalities.

In grammar, the universals and existentials will effect the structural operations with re¬
spect to gaps and realized elements respectively. When we look at lexical type-assignments
involving these modalities, we will find that existential modalities are appropriate for describ¬
ing the behaviour of lexical items that subcategorize for commutable, iterable or optional
arguments; such items typically receive types of the form OY-*X, where O represents one of
the existential modalities and —+ one of the implications.7 Conversely, universal modalities
are appropriate for describing the behaviour of lexical items that subcategorize for strings
that are missing commutable, iterable or optional arguments; such items typically receive
types of the form (oZ—where □ represents one of the universal modalities. As we
shall see in the examples, it follows from these assignments that the missing introduction and
elimination rules are rarely needed for linguistic purposes.

4.1 Commutation Modalities

We notate the two universal commutation modalities as > (written as a prefix operator)
and <1 (written as a postfix operator). The type (resp. X<) is assigned to an item of
type X which may occur in its current position or anywhere to the right (resp. left) of its
current position. This is achieved by means of the rules >Perm and <]Perm, which allow
types bearing the appropriate modality to be moved to any position on the given side, and
the rules >E and <E, which allow the modality to be dropped:

(39) a. : : b. : :
>X Y Y X<

>Perm <1 Perm
Y >X X< Y

(40) a. : b. :
>x x<

>E <E
X X

The above may also be expressed as sequent rules:

(41) T >XYA=>Z [>Perm] T Y X< A^Z [<Perm]
TY >XA=>Z TX<YA=>Z

r t>X A => Y [>L] TX<\ A =>Y [<L]
TX A=>Y TX A=>Y

Note that the structural operation performed by the >Perm and <1 Perm rules (in either
formulation) is the normal structural operation of permutation.

We may use these modalities in a treatment of non-peripheral extraction, as in "the man
who Bill meets today". Moortgat (1988) deals with such constructions by means of the
extraction operator j; the type X fY is assigned to any string of type X missing a subpart of
type V somewhere within it. So assigning the type (N\N)/(SfNP) to object relative pronouns
licenses extraction from any position in the body of a relative clause. We may accomplish the
same in the present framework by giving relative pronouns the type (N\N)/(S/NP< ):

7Here, and uniformly in what follows, unary operators bind tighter than binary ones.
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(42) who Bill meets today
(NP\S)\(NP\S) [NP<]J
NP< (NP\S)\(NP\S)

-<E

< Perm

(NP\S)/NP NP ^
NP\S ^

NP NP\S
s *

/I1

"\E

(N\N)/(S/NP<) S/NP«^/e
N\N

Moortgat (1990b) suggests that the type X f Y may in fact be definable in terms of modalities
similar to the ones above.

We notate the two existential commutability modalities as > (written postfix) and <
(written prefix). The type X> (resp. <X) is assigned to an item of type X either in its
current position or somewhere to the right (resp. left) of its current position. This is achieved
by means of the rules >1 and <1, which allow the appropriate modality to be added, and the
operational rules >Exch and <Exch ('exchange'), which allow types bearing the modality to
be moved to any position on the given side:

(43) a. : b. :
X X

x>> Tx^
(44) a. : : b. : :

X> Y Y <X
>Exch <Exch

Y X> <X Y

The corresponding sequent rules are as follows:

(45) T=> X> [>R] T=><X [<R]
T => X r =► X

T(X> Y)=> Z [>Exch] T(Y <X) => Z [<Exch]
r(y x>) => z r(<x y) => z

Note that the permutation operation is symmetrical and so the structural operations asso¬
ciated with the >Exch and <Exch rules are trivially inversions of the usual permutation
operation.

By way of example a type X/<Y represents elements which axe functors over Ts some¬
where to the right, but not necessarily immediately to the right. In this way we can define the
'long-distance' functors X//Y and T\\X of Bach (1984). Typically such specifications would
need to be made with reference also to the domains within which the word order variation
is allowed, e.g. by using the modal treatment of boundedness introduced in Morrill (1989),
but the essential idea is as illustrated by Bach's example of SOV and OSV alternation in
Japanese:
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(46) a. Nao-ga neko-o miru
PN-subj cat-obj sees
'Nao sees a cat'

b. neko-o Nao-ga miru
'Nao sees a cat'

(47) a. Nao-ga neko-o miru b. neko-o Nao-ga
NPo NPo

->I >1
NPo> NPo>\(NPs\S) NPo> NPs

-\E >Exch
NPs NPs\S NPs NPo> NPo>\(NPs\S)

—\E - —-\E
S NPs\S

z l\e

4.2 Iterability Modalities
The universal iterability modality is such that the type X! is assigned to an item from which
one or more occurrences of the type X may be derived. This is achieved by means of the
rule 'Con, which copies any type bearing the operator, and the rule 'E, which removes the
operator.

(48) a. : b. :

Con —!E
X' x'- X

The corresponding sequent rules are:

(49) T X! A => Y [!Con] T X1 A => Y [!L]
rx!x!A=^y rxA=>y

The structural operation performed by the !Con rule is contraction. Note that the premise in
the sequent formulation of this rule is more complex than the conclusion since it contains at
least an extra !, and so the sequent formulation no longer provides a straightforward decision
procedure.

We now have the apparatus for a rudimentary treatment of parasitic gaps. Assignment
of the type (N\N)/(S/(NP<)-) to a relative pronoun will allow it to fill any number of gaps
in any positions. (This clearly overgenerates, but allows an illustration of the interaction of
iteration and commutation operators.) "The paper which Suzy files without reading" can
thus be derived as follows:
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(50) Suzy files without reading

[(NP*)']1 'Con

(NP«)'E (NP<O!,e
VP/NP NP< NP<

< Perm <1E
((NP\S)\(NP\S))/VP NP<1 VP/NP NP

<J Perm /E
NP<1 ((NP\S)\(NP\S))/VP VP

<E /E
—————— ——,e <npns)ynpvs'

NP\S
NP NP\S

<

-\E

S/(NP<)

the paper which Suzy files without reading

(N\N)/(S/(NP<))! S/(NP<])!
/E

N N\N
\e

NP/N N
/E

NP

The existential iteration modality is such that X+ represents some non-zero number of
items of type X. This is achieved by means of the +I rule, which introduces the operator,
and the +Exp ('expansion') rule, which combines identical types bearing it:

(51) a. : b. : :K '
X X+ X+
+I +Exp

Correspondingly there are the following sequent rules:

(52) X+ [+R] n+ I+A => Y [+Exp]
r => x r x+ a => y

The operation associated with the +Exp rule is the inverse of the operation of contraction.
Iterated coordination may be treated by assignment of coordinators to (X+\X)/X:

(53) John Bill Mary and Suzy
NP NP

+1 +i
Np+ NP+ NP

-+Exp +1
NP+ NP+ (NP+\NP)/NP NP+ Exp /E

NP+ NP+\NP
\e

NP
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4.3 Optionality Modalities
The universal optionality modality is such that X" is assigned to an item from which zero or
one occurrences of the type X may be derived. This is achieved by means of the rules HWknj
and HWknr, which remove any type bearing the operator, and a standard universal modality
elimination rule "E:

(54) a. : : b. : : c. :
XW y Y X11 X".

Wkm Wknr —aE
Y Y X

The corresponding sequent rules are:

(55) T X" A =► Y [HWkn] T X" A => Y [I'L]
r a rxA=>y

Again, the structural operation performed by "Wkn is that of weakening.
This operator would be used in the type of a lexical item whose argument optionally con¬

tained a gap (perhaps as in languages with resumptive pronouns or optional clitic doubling).
Such constructions are rare in English, but may occur when an adjective is modified by "too":
contrast "the lecture was too boring for me to follow" with "the lecture was too boring for
me to stay awake". Let predicative adjectives have the type Pred, and let "for .. .to" clauses
have the type SP. Then we may capture the above data by giving "too" a type such that "too
boring" receives the type Pred/(S/NPH):
(56) too boring for me to follow

(NP\S)/NP [NP11]1
'E

NP NP\S
— \e

NP
/e

SP/S s
— /E

SP
■/I1

Pred/(SP/NP") SP/NP1'
Pred ^

(57) too boring for me to stay awake
NP NP\S

—\E
SP/S s

-/E
SP [NP11] „

®Wknr
SP

/I1
Pred/(SP/NP") SP/NP11

Pred ^
l

The existential optionality modality in X? indicates zero or one items of type X. The ?I
rule introduces the operator on a non-modal type as with other existential modalities; the
?Stn ('strengthening') rule creates a modal type from nothing:
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(58) a. : b.
X Stn

?I X
X-

Expressed as sequent proof rules these are as in (59):

(59) r=>x7 [?r] r a => y fStn]
r => x rx?a=>y

Once again the 7Stn rule is associated with an operation which is the inverse of weakening. As
with the !Con rule, the premise in the sequent version is more complex than the conclusion,
which may cause problems for proof search.

By way of example, the optionality of the sentential complement of beliefmay be charac¬
terized by assignment to N/SP7:

(60) the belief that John lies

sp-..
N/SP? SPT

—/E
NP/N N

/E
NP

(61) the belief
?Stn

N/SP SP?
-/E

NP/N N
/E

NP

5 Conclusion

This paper has introduced a scheme of natural deduction-like proof figures for the Lambek
calculus, and has proposed structural modalities which are suitable for the capture of linguistic
generalizations in categorial grammar. It remains to refine the semantics and proof theory,
and the development of strategies for proof search offers a particular challenge. For the
present, we hope that the proposals made can be seen as gaining linguistic practicality in the
categorial description of natural language, without losing mathematical elegance.
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Dependency and Constituency in Categorial Grammar

Guy Barry and Martin Pickering

1 Introduction

It has been seen as an advantage of some systems of categorial grammar (Steedman 1987;
Moortgat 1988) that they allow the definition of some notion of 'flexible constituency'. This
has been argued to allow accounts of syntactic phenomena such as coordination and ex¬
traction, as well as other phenomena such as incremental interpretation and intonational
structure.

In phrase-structure theories of grammar, category symbols are merely labels for con¬
stituents, and so by definition everything that can be given a category must be a constituent.
In categorial grammars, on the other hand, the symbols used reflect more general combining
properties of strings. To avoid confusion we shall use the word type rather than category to
refer to these symbols. Nevertheless, there is still an implicit assumption that any string that
can be given a type is a constituent. We shall refer to this assumption as the type-constituent
correspondence hypothesis.

In the Lambek calculus, every string can be given a type, so type-constituent correspon¬
dence would predict that every string is a constituent. If the notion of constituency has any

independent linguistic use, then we cannot maintain type-constituent correspondence within
the Lambek calculus. This indicates that we must either abandon the Lambek calculus as a

linguistic framework or abandon type-constituent correspondence.
The former approach suggests the use of a more restricted calculus such as Steedman's

Combinatory Categorial Grammar (CCG). By means of a particular set of type-combining
rules, Steedman attempts to assign types to all and only those strings that can be regarded
as constituents. This approach is open to two criticisms. Firstly, the type-combining rules
are proposed on the basis of specific linguistic phenomena rather than general principles, so
that the set of constituents generated is in some sense arbitrary, and (as we shall argue)
leads to some anomalies in linguistic description. This could perhaps however be rectified
by a more principled choice of rules. Secondly, though, Steedman's approach has no way
of characterizing strings that are not constituents, even though it appears (as we shall also
argue) that the characterization of such strings is necessary for the description of certain
linguistic phenomena. We shall go into more detail on both these points in section 5.

In this paper we shall investigate the alternative approach of retaining the general Lambek
framework, but dropping type-constituent correspondence. Instead we shall argue from the
standpoint of dependency, by proposing a definition of dependency within the Lambek calcu¬
lus, and from it deriving a new notion of constituency, which we shall refer to as dependency
constituency. We shall argue that the notion of a dependency constituent has applications
in the syntactic description of coordinate constructions, as well as in the development of an
incremental account of sentence processing. We believe that it has applications in other areas
of linguistics such as the syntax; of extraction, and intonational structure.
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2 Dependencies and Dependency Constituents
2.1 Heads and Dependents
All notions of dependency rely on a primitive notion of head; roughly speaking, the head is
the element on which other elements depend. For example, consider the following sentence:

(1) Bill talks to Mary.

Three approaches seem plausible. If we assume that heads and dependents are both phrases,
then given standard phrase-structure assumptions talks to Mary is the head of the sentence
and has the single dependent Bill, and talks is the head of talks to Mary and has the single
dependent to Mary. Alternatively, if we assume that heads are words and dependents are

phrases, then talks can be taken as the head of the sentence and as having the two dependents
to Mary and Bill. Finally, if we assume that heads and dependents are both words, then talks
can be taken as the head of the sentence and as having the two dependents to and Bill, and
to can be taken as having the single dependent Mary.

There is no primitive notion of head in categorial grammar, but the notion of seman¬
tic/syntactic functor is often taken to be head-like. This raises two questions; should catego¬
rial grammar be thought of as having phrasal or lexical heads and dependents, and what is
the relationship of functors to 'traditional' (linguistically motivated) heads?

To answer the first point, let us limit our attention for the moment to applicative categorial
grammar (AB). AB can be thought of as having phrasal heads and phrasal dependents if we
adopt the following definition (where the semantic type Y —► X collapses the two syntactic
types X/Y, Y\X):
Definition 1 When a string of a functor type Y —*X combines with a string of an argument
type Y to form a string of type X, the functor string is the phrasal head and the argument
string the (phrasal) dependent.
Thus in Bill talks to Mary of type S, talks to Mary of type NP\S is the phrasal head, and Bill of
type NP is the dependent. Similarly, in talks to Mary of type NP\S, talks of type (NP\S)/PP
is the phrasal head, and to Mary of type PP is the dependent.

But we may also regard AB as having lexical heads and phrasal dependents if we adopt
the following alternative definition:

Definition 2 When a word of a functor type Y\ —►(... —► (Yn —►X) ...) combines with strings
of argument types Yi,...,Y„ to form a string of type X, the functor word is the lexical head
and the argument strings the (phrasal) dependents.

Thus, in Bill talks to Mary of type S, talks of type (NP\S)/PP is the lexical head, and to Mary
of type PP and Bill of type NP are the dependents.

In other words, we can derive the notion of a lexical head from that of a phrasal head by
a process similar to 'uncurrying' of functions. But it seems more natural to view dependents
as phrasal, since functions take expressions of phrasal rather than lexical types as arguments.
(This view will be reinforced when we consider the full Lambek calculus below.)

The second point begs the question of what is the traditionally accepted notion of head,
about which there is widespread disagreement. We shall not go into the issues here; see Zwicky
(1985) and Hudson's (1987) reply to Zwicky for a comprehensive discussion. Hudson gives
a great deal of evidence which suggests that, for constructions involving complementation,
most syntactically motivated definitions of head in fact coincide with the notion of semantic
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functor. However, the reverse appears to be true in modifier constructions, where according
to Hudson's criteria for headship (and nearly all linguistic theories) the modified element
appears to be the head, whereas on semantic grounds the modifier is standardly assumed to
be the functor (as witnessed by the most common categorial type assignments N/N, N\N,
(NP\S)\(NP\S) for adjectives, relative clauses and adverbs respectively).

There are three possible solutions to this problem, none of them entirely satisfactory. We
could deny the equivalence of head and functor, but this would require us to define a separate
theoretical primitive of 'head' independently of the categorial grammar formalism; we shall
not pursue this further. Alternatively we could claim that modifiers are heads, although as
we shall see in subsection 2.3 this approach leads to an unsatisfactory notion of constituency.
Finally we could claim that modified elements are functors, which seems to be supported by
the fact that the distinction between modifiers and optional arguments is not always clear.

We shall formalize the above description of modifiers by assuming that modifiers have
atomic types, and that modifiable types are functions over zero or more premodifiers and zero
or more postmodifiers (cf. HPSG (Pollard and Sag 1987)). We can achieve this by extending
the categorial machinery with a 'Kleene star' structural operator, so that X* means 'zero or
more occurrences of X'^We shall classify noun premodifiers as AdnPre, noun postmodifiers
as AdnPost, verb premodifiers as AdvPre and verb postmodifiers as AdvPost. Thus lexical
nouns will be categorized as

(AdnPre*\N)/AdnPost*,
from which the types N, AdnPre\N, AdnPre\(AdnPre\N), N/AdnPost etc. are derivable.
Similarly intransitive verbs will be categorized as

(AdvPre*\(NP\S))/AdvPost*,
transitive verbs as

((AdvPre*\(NP\S))/AdvPost*)/NP,
and so on. Since it would be unwieldy (and uninformative) to write down these complex types
in every derivation, we shall usually write only the derived type that is appropriate to the
particular derivation. For example, man will be given the type N in the man walks, AdnPre\N
in the old man walks, N/AdnPost in the man who I like walks and so on.

2.2 Dependency in the Lambek Calculus
When we try to generalize the ideas of head and dependent developed above for AB to
the full Lambek calculus L, we run into a problem, since the roles of functor and argument
can be reversed. Suppose we assume that head-dependent relations are based on the functor-
argument relations implicit in lexical type assignments. Then, for instance, John walks consists
of a function walks of type NP\S applying to an argument John of type NP, and so walks is
the head. But if we assign the higher type S/(NP\S) to John, then John appears to be the
head. If the basic meaning of John is represented as john in the first case, then its meaning
in the second case will be A/./ john, where / is a variable of type NP—>S; when John is
type-raised, the dependency relations implicit in the lexical assignments are lost. We shall
refer to a meaning representation as dependency-preserving if it maintains the head-dependent
relations derivable from lexical assignments. More formally:
Definition 3 A lambda-calculus meaning representation is dependency-preserving iff it does
not involve abstraction of a variable that occurs as a functor within it.
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As pointed out in Morrill, Leslie, Hepple and Barry (1990), there is a direct correspondence
between such lambda-terms and derivations in the 'natural deduction' style formulation of L.
Thus definition 3 is equivalent to the following:

Definition 4 A derivation in L is dependency-preserving iff it does not discharge an as¬
sumption that forms the major premise of an Elimination inference.

So for example consider the six derivations below, and their associated lambda^terms.
The three in (2) are dependency-preserving, and the three in (3) are not:2
(2) the

NP/N

dog
N

NP

the dog

-/E

b. John

NP

likes

(NP\S)/NP [NP]]
NP\S

■/E

\E

S/NP
A

Ainp [likes i john]

will

(NP\S)/VP VP/NP [NP],
VP

NP\S
"/E

-/Ii
(NP\S)/NP

AzNP[will (see z)]

■/E

(3) a. dog runs b. that Harry

'\E

[NP/N], N NP\S
NP ^

SP/S NP [NP\S],
\E

-\h
SP

-/E

-/ii
(NP/N)\S ' " SP/(NP\S)

A/N^NP[ri1ns (/ dog)] A/NP"^[that (/ harry)]

Mary John

[((NP\S)/NP)/NP], NP NP

(NP\S)/NP
/E

NP\S
•/E

\Ix
(((NP\S)/NP)/NP)\(NP\S)

A/NP^Nr^NP-s))[/ mary john]
The term the dog is dependency-preserving because it does not involve abstraction, and
the terms Az[likes x john] and Ax [will (see z)] are dependency-preserving because in each
case the abstracted variable does not occur as a functor. On the other hand, the terms
A/[runs (/ dog)], A/[that (/ harry)] and A/[/ mary john] are not dependency-preserving,
since in each case the abstracted variable is a functor over one or more arguments.

We shall refer to strings with dependency-preserving analyses as dependency constituents.
More precisely:
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Definition 5 A dependency constituent is a string (under a particular reading) whose normal-
form derivation in L is dependency-preserving (equivalently, for which some derivation in L
is dependency-preserving).

(The equivalence of the two definitions is immediate because the normalization process never
introduces new functors.) Thus the underlined substrings in (4) below are analysable as
dependency constituents, whereas those in (5) are not:

(4) a. The dog runs.

b. John likes Marv.

c. John will see Marv.

(5) a. The dog runs.

b. I think that Harry left.
c. I showed Mary John.

Intuitively, we may think of the underlined substrings in (5) as having 'missing heads'; two
words cannot be related because the head of one or both of them is absent from the string.

If we take the traditional notion of constituent to correspond to strings with purely applica¬
tive derivations, then the notion of dependency constituent is seen to subsume the traditional
notion. The advantage of this notion of constituency is that it allows a degree of flexibility in
constituent structure while still requiring that constituents are (in some sense) semantically
coherent units. For example, consider:

(6) John thinks that Harry likes Mary.

Here, the substrings that Harry, thinks that Harry and John thinks that Harry are not dependency
constituents, but every other substring (including one-word strings and the entire sentence)
is, e.g. John thinks, John thinks that, that Harry likes, thinks that Harry likes.

2.3 Consequences of Dependency Constituency

Clearly the choice of head in modifier constructions will make a difference to what strings are
regarded as dependency constituents. Consider for example:

(7) the tall man

(8) the man who I saw

If modifiers are regarded as heads, the underlined substring in (7) wiH be a dependency
constituent, but the one in (8) will not be. On the other hand, if modified elements are
regarded as heads, the underlined substring in (7) will not be a dependency constituent, but
the one in (8) will be. The relevant proofs and lambda-terms foHow:

(9) a. the tall b. the tall

NP/N N/N [N]i NP/N AdnPre [AdnPre\N]j
N ^ N ^
/E /E

NP NP
/Ii /Ii

NP/N NP/(AdnPre\N)

AzN[the (tall z)] A/AdnPre-N[the (/ tall)]
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(10) a. the man b. the man

NP/N N [N\N]i( ^ NP/N N/AdnPost [AdnPosth ^
N ^ N /E
/E /E

NP NP
/Ii /Ii

NP/(N\N) NP/AdnPost

A/N~N[the (/ man)] AxAdnPo"[the (man x)]
This would seem to support the choice of modified element as head, since there is a clear
intuitive connection between the and man, but not between the and tall. We shall assume
modified elements to be heads for the rest of the paper (though we shall sometimes give
alternative analyses where modifiers axe assumed to be heads).

It is worth noting here that the string underlined in (11) cannot be a dependency con¬
stituent, whatever the choice of head in modifier constructions:

(11) John loves Mary madly.

(12) a. Mary madly

[(NP\S)/NP]i NP ^ (NP\S)\(NP\S)/E
NP\S

\E
NP\S

:\i»
((NP\S)/NP)\(NP\S)

A/NP_^NP_,S)[madly (/ mary)]

b. Mary madly

[((NP\S)/AdvPost)/NP]i NP AdvPost

(NP\S)/AdvPost E
NP\S ^

\Ii
(((NP\S)/AdvPost)/NP)\(NP\S)

AyNp-<AdvPo«v-(NP—s))j^y mary) madly]
Some interesting consequences of this definition of dependency emerge when we consider

constructions involving extraction. Firstly, as one might expect, any relative clause is a
dependency constituent, e.g. the underlined fragments of the following two constructions:3

(13) the box which John knelt op

(14) the box on which John knelt
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(15) which John knelt on

AdnPost/(S/NP) NP (NP\S)/PP PP/NP [NP]i
PP
/E

■/E

S
/Ii

S/NP
/E

AdnPost

which (AxNP [knelt (on x) john])

(16) on which John knelt

NP\S
——\E

AdnPost/(S/PP) NP (NP\S)/PP [PP]!
/E

NP\S
\E

S
/Ii

S/PP
/E

AdnPost

on-which (Arpp [knelt x john])

On the other hand, some fragments of relative clauses are not dependency constituents, such
as the two underlined below:

(17) the box which John knelt on
(18) the box which John knelt on

(19) which John

AdnPost/(S/NP) NP [(NP\S)/NP]j [NP]i _
/E

NP\S
\E

S
/h

S/NP
/E

AdnPost
/h

AdnPost/((NP\S)/NP)
A/NP^(NP~s)[WhiCh (AxNP[/ x john])]

(20) which John knelt

AdnPost/(S/NP) NP (NP\S)/PP [PP/NP]2 [NP]i ^
/E

PP
/E

AdnPost

S
/h

S/NP
— /E

NP\S
\E

:/h
AdnPost/(PP/NP)

AjNP-J>p[which (AxNP[knelt (g x) john])]
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By our definition, neither derivation is dependency-preserving, since in each case an abstracted
variable acts as a functor (/NP—(np-6) }n first case? ffnp-*>p jn t^e case). gut each
time the argument of the abstracted functor is not a constant but another abstracted variable,
so that the 'headless' element is not a lexical item.

Thus we see that definition 3 enables us to make some subtle distinctions. For example,
the underlined phrase in (21) will be analysed as a dependency constituent, whereas that in
(22) will not:

(21) the tray on which Mary placed the cake

(22) the tray which Mary placed the cake on

(23) on which Mary placed

AdnPost/(S/PP) NP ((NP\S)/PP)/NP [NP]2 _ [PP]i
(NP\S)/PP ^

s

s/pp''11
/e

NP\S
\e

-/e

AdnPost
/h

AdnPost/NP

AyNP [on-which (Axpp [placed y x mary])]

(24) which Mary placed

AdnPost/(S/NP) NP ((NP\S)/PP)/NP [NP]3 [PP/NP]2 [NP]i
/e /e

(NP\S)/PP PP;^
NP\S ^

\E

AdnPost
:/h

/ii
S/NP

/e

AdnPost/(PP/NP)
-/l3

(AdnPost/(PP/NP))/NP
aynp a3NF^pp[which (ainp[placed y (g x) mary])]

In the first case only complete arguments of placed are abstracted, but in the second the
variable g is abstracted, which is itself a functor over the abstracted variable x. This seems to
capture the intuition that in (21) the relative pronoun on which fills an argument role of the
verb placed, whereas in (22) the relative pronoun which fills an argument role not of placed
itself but of the prepositional argument of placed (which is outside the string).

To summarize this section, we have attempted to capture the intuitive notion of depen¬
dency within the Lambek calculus, and from it derived a flexible notion of constituency. We
have thus abandoned the assumption that any string that can be assigned a type must be a
constituent. Let us now see how this notion can be applied to problems of coordination and
incremental processing.

8



3 Coordination

3.1 Coordination of Dependency Constituents
A claim often made in favour of flexible categorial grammars is their ability to deal with a

large proportion of coordination phenomena by means of a single principle, usually assumed
to be as follows:

Hypothesis 1 Two (or more) strings may be coordinated to give a string of type X iff each
has type X.

For the purposes of this discussion we shall treat the two directions of implication in hypoth¬
esis 1 as two separate hypotheses. One direction may be phrased as follows:

Hypothesis 2 If two (or more) strings can be given the same type X, then they can be
coordinated to give a string of type X.

We shall discuss the converse later (hypothesis 4).
The precise mechanism used to implement hypothesis 2 varies from formulation to for¬

mulation (e.g. polymorphic types for conjunctions, syncategorematic rule schemas), but the
principle remains the same. In this section we are concerned not with the mechanism for co¬

ordination, but with the characterization of what strings can be coordinated. To save space
in examples, instead of giving full derivations we shall usually merely bracket each conjunct,
and specify the type that must be assigned to each conjunct (and to the coordinate structure)
for the derivation to proceed.

If we are working within the full Lambek calculus, hypothesis 2 holds true in a large class
of cases. For instance, we can clearly coordinate strings that form standard phrase structure
constituents, like (25) below:

(25) John [sang some songs] and [played the piano].
Type of each conjunct: NP\S

We can also deal with cases like (26) and (27), both of which are usually classified under the
heading of 'non-constituent' coordination:

(26) John [will buy] and [may eat] the beans.
Type of each conjunct: (NP\S)/NP

(27) John loves [Mary madly] and [Sue passionately].
Type of each conjunct: (((NP\S)/AdvPost*)/NP)\(NP\S)

In our terms, (25) and (26) both involve coordination of dependency constituents, while (27)
involves coordination of non-dependency constituents. Although these three examples look
very different, in each case the structure of each conjunct is the same, in the sense that each
consists of a sequence of words of the same lexical types. Hypothesis 2 will always allow
coordination in such cases, since L can always give the same type to two strings with the
same structure (in this sense).

More interesting are cases where the conjuncts have different structures, such as (28) and
(29):

(28) John [plays the piano] and [sings].
Type of each conjunct: NP\S
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(29) John [bought] and [may eat] the beans.
Type of each conjunct: (NP\S)/NP

However, the unacceptability of (30) shows that hypothesis 2 overgenerates:4

(30) *John loves [Mary madly] and [Sue].
Type of each conjunct: (((NP\S)/AdvPost*)/NP)\(NP\S)

In (28) and (29) both conjuncts are again dependency constituents, but in (30) the first
conjunct is not. Note that even if we took modifiers to be heads we could still give the
conjuncts in (30) the shared type ((NP\S)/NP)\(NP\S).

In general, the restrictions on coordination of unlike structures seem to be stronger than
those on coordination of like structures. For example, (31) appears to be acceptable, but (as
noted by Steedman) (32) does not:

(31) [I believe that John] and [Harry thinks that Mary] is a genius.
Type of each conjunct: S/(NP\S)

(32) *[I believe that John] and [Many] is a genius.
Type of each conjunct: S/(NP\S)

Note once more that both conjuncts in (31) and the first conjunct is (32) are not dependency
constituents. Similarly, (33) seems acceptable, but not (34):

(33) [two small] and [three large] oranges
Type of each conjunct: NP/(AdnPre*\N)

(34) *[two smaU] and [three] oranges
Type of each conjunct: NP/(AdnPre*\N)

Here, the conjuncts in (33) and the first conjunct in (34) are not dependency constituents if
modified elements are analysed as heads (although they would be if modifiers were analysed
as heads).

This evidence suggests that there is some correlation between coordinability and depen¬
dency constituency. In the examples where both conjuncts are dependency constituents,
namely (25), (26), (28) and (29), coordination is always possible. This suggests that hypoth¬
esis 2 might be replaced by the following weaker claim:

Hypothesis 3 If two (or more) dependency constituents can be given the same type X, then
they can be coordinated to give a string of type X.5
But in the examples where at least one conjunct is not a dependency constituent, coordination
appears to be restricted to cases like (27), (31) and (33) where the conjuncts are structurally
similar; it is not possible for the other examples (30), (32) and (34). In order to discriminate
between these cases we need a more precise notion of 'like structure', which we shaU discuss
in the next subsection.

So far we have not examined the converse claim to hypothesis 2:

Hypothesis 4 If two (or more) strings can be coordinated to give a string of type X, then
each can be given type X.

In order to maintain this hypothesis we must have some mechanism for dealing with well-
known cases of 'unlike category coordination' such as (35):
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(35) John is [lucky] and [a rogue].
Whatever the type of lucky and a rogue, it must be assignable to both lucky and a rogue. If we
say that these two items have only the lexical types AdnPre and NP respectively, and that is is
lexically ambiguous between (NP\S)/AdnPre and (NP\S)/NP, then we are forced to conclude
that no type is assignable to lucky and a rogue. But if we give lucky and a rogue an additional
shared lexical type, PredP say, and give is the single lexical type (NP\S)/PredP, then assigning
the type PredP to lucky and a rogue is consistent with hypothesis 4. Alternatively we might
extend L with boolean operators, as suggested in Morrill (1990), to achieve a similar effect.

From hypotheses 3 and 4 it follows that two (or more) dependency constituents can be
coordinated to give a string of type X iff each has type X.

3.2 Coordination of Non-Dependency Constituents

Hypothesis 3 puts no restrictions on the internal structure of the two dependency constituents
that are coordinated, as we can see by comparing (25) and (28), or (26) and (29). But even
when the conjuncts themselves are not dependency constituents, there appears to be no
restriction on the internal structure of any substring that is a dependency constituent. For
example, (36) and (37) are both as good as (27):

(36) John loves [Mary madly] and [the young woman passionately].

(37) John loves [Mary madly] and [Sue with great ardour].

This would appear to suggest a form of 'constituentwise' coordination, in which the conjuncts
are matched dependency constituent for dependency constituent. We may formalize this as
follows:

Definition 6 Let a be any string. Suppose a can be divided into substrings (an,...,a„)
(where n > I) such that each a, is a dependency constituent, but there is no i such that
a,a1+i is a dependency constituent. (It is easily shown that such a division must exist and be
unique.) This is then called a division ofa into maximal dependency constituents (MDCs).
So for instance the division into MDCs of John bought is (John bought); the division into
MDCs of the young woman passionately is (the young woman, passionately). We define further:

Definition 7 A set of strings a,/?,..., each with n MDCs (aj,... ,an), (/?i,.. ..., are
parallel if for each i a;,may be given the same type.

A similar notion might be defined by including the product connective; for product-based
treatments of coordination see e.g. Wood (1988), Bouma (1989).

Given this definition, we may make the following claim, which subsumes hypothesis 3:

Hypothesis 5 Two (or more) parallel strings of type X may be coordinated to give a string
of type X.

Hypothesis 5 claims that any two (or more) strings of type X which each have n MDCs of
types (Xi,... ,Xn) can be coordinated to give a string of type X. This covers a large class
of examples of classical 'non-constituent coordination' not covered by hypothesis 3, including
(27), (31), (33), (36) and (37) (repeated below as (38) to (42)):6
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(38) John loves [Mary madly] and [Sue passionately].
Type of each conjunct: (((NP\S)/AdvPost*)/NP)\(NP\S)
Types of MDCs of each conjunct: (NP, AdvPost)

(39) [I believe that John] and [Harry thinks that Mary] is a genius.
Type of each conjunct: S/(NP\S)
Types of MDCs of each conjunct: (S/S, NP)

(40) [two small] and [three large] oranges
Type of each conjunct: NP/(AdnPre*\N)
Types of MDCs of each conjunct: (NP/N, AdnPre)

(41) John loves [Mary madly] and [the young woman passionately].
Type of each conjunct: (((NP\S)/AdvPost*)/NP)\(NP\S)
Types of MDCs of each conjunct: (NP, AdvPost)

(42) John loves [Mary madly] and [Sue with great ardour].
Type of each conjunct: (((NP\S)/AdvPost*)/NP)\(NP\S)
Types of MDCs of each conjunct: (NP, AdvPost)

It also predicts, given some mechanism for dealing with constructions such as (35), that (43)
will be grammatical:

(43) John is [pious in church] and [a rogue in the tavern].

The converse of hypothesis 5 (which subsumes hypothesis 4) also appears to be true:

Hypothesis 6 If two (or more) strings can be coordinated to give a string of type X, then
they are parallel strings of type X.

For example, in none of (30), (32) and (34) (repeated below as (44) to (46)) are the intended
conjuncts parallel, since in each case they contain different numbers of MDCs, and indeed
coordination is not possible in any of them:

(44) *John loves [Mary madly] and [Sue].
Type of each conjunct: (((NP\S)/AdvPost*)/NP)\(NP\S)
Types of MDCs of first conjunct: (NP, AdvPost)
Types of MDCs of second conjunct: (NP)

(45) *[I believe that John] and [Mary] is a genius.
Type of each conjunct: S/(NP\S)
Types of MDCs of first conjunct: (S/S, NP)
Types of MDCs of second conjunct: (NP)

(46) *[two small] and [three] oranges
Type of each conjunct: NP/(AdnPre*\N)
Types of MDCs of first conjunct: (NP/N, AdnPre)
Types of MDCs of second conjunct: (NP/N)

Note that if we took modifiers to be heads both two small and three would be analysed as

dependency constituents, and hence (46) would be incorrectly predicted to be grammatical.
The present account also rules out examples such as the following two:
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(47) ?I talked [about cricket to Edna] and [to Eric about chess].

(48) ?*I gave [John a pencil] and [a pen to Mary].

It might be possible to generate (47) by some relaxation of the definition of parallelism, but
there is no obvious general way to generate (48).

To summarize, we may combine hypotheses 5 and 6 into the following principle:

Hypothesis 7 Two (or more) strings may be coordinated to give a string of type X iff each
has type X and they are parallel.

4 Incremental Interpretation
The above discussion of coordination shows that forming a dependency constituent is in some
sense a straightforward operation. If this is so, it seems likely that the parser does not
encounter any difficulties in forming these constituents, though it is of course not necessary
that it does always act this way. This suggests that constructions which always form a single
dependency constituent when processed left-associatively, that is, word by word from left to
right, should not cause processing difficulties. As an example, consider (49) below:

(49) John saw the farmer who owned the dog which chased the cat.

For instance, John, John saw, John saw the, John saw the farmer, John saw the farmer who are
all dependency constituents. Clearly we do not have any difficulty processing this sentence,
and it is at least intuitively reasonable that we do process it word by word. This can be
taken as an example of an 'incremental' parse (Steedman 1989). Note additionally that it has
even intonation, which suggests that there are no points where we encounter momentary or

prolonged processing difficulty.
Let us now look at the left-associative derivation for this sentence:

(50) John saw the farmer who owned
NP (NP\S)/NP^ NP/N N/AdnPost AdnPost/(NP\S) (NP\S)/NP

S/NP

S/N
-D

D
S/AdnPost

S/(NP\S)
d

S/NP

the dog which chased the cat

S/NP NP/N N/AdnPost AdnPost/(NP\S) (NP\S)/NP NP/N N

S/N
D

S/AdnPost

S/(NP\S)
S/NP

D
S/N

D
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We have marked each combination with D, in order to indicate that they are combinations
that form dependency constituents. At no point is there any need to abstract over a functor
in the meaning representation. The simplicity of the operations seems to be reflected in the
ease we have processing it.

Similar effects occur if we extend the sentence with further relative clauses:

(51) John saw the farmer who owned the dog which chased the cat which followed the
mouse which nibbled the cheese.

The sentence does not become obviously harder to process when we extend it in this way. If we
do a left-associative parse, we again see that the types generated do not become complex and
we never have the need to make any non-dependency combinations. Hence we have support
for the hypothesis that the formation of dependency constituents is easy for the parser.

We should note in contrast that a theory that does not allow the parser to form dependency
constituents at will may encounter problems with such sentences as these. Standard phrase
structure grammars would give (49) the following constituent structure:

(52) [John [saw [the [farmer [who [owned [the [dog [which [chased [the [cat]]]]]]]]]]]].

A simple association between grammar and parser would assume that the parser could only
form constituents when it reached the very end of this sentence. This is utterly out of keeping
with the fact that the sentence, and its extensions, are straightforward to process. Hence
presumably such an account has to make use of parsing principles that are not in direct
correspondence with the grammar. A processing account based on dependency constituents,
on the other hand, does lend itself to a parsimonious relationship between grammar and
parser. See Steedman (1989) for related arguments.

So if the calculus allows a combination that forms a dependency constituent, the parser is
able to make that combination. But what happens when the left-associative derivation does
not solely form dependency constituents? Clearly we are still able to interpret many such
sentences:

(53) The tall boy died.

There is no dependency relation between the and tall, so the left-associative parse does not
always form dependency constituents. However we encounter no problem with this sentence.
It seems that we can either make a non-dependency association between the first two words,
or we wait until we reach boy, which is in a dependency relation with both words. In other
words, is our method of processing entirely left-associative, or is it restricted to the formation
of dependency constituents? We are not going to suggest an answer to this question, but
simply discuss both alternatives.

Let us consider a nested construction as defined by Chomsky (1965):

(54) John saw the cat which the dog which the farmer owned chased.

Such constructions are uncontroversially hard to process. This is in sharp contrast to (49),
even though they are 'grammatically' of similar complexity. Unlike (49), (54) does not have a
left-associative derivation that only forms dependency constituents, and, unlike (53), this does
not seem to be a 'local' effect. In (54), the initial substring the cat which forms a dependency
constituent, but not the cat which the, so that the dog which must be parsed separately from
the cat which. Similarly the farmer must be parsed separately from the cat which and the dog
which. At the point before owned, then, we find that we have three unrelated dependency
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constituents, the cat which, the dog which and the farmer. Intonationally as well, we can

distinguish units John saw the cat which, the dog which and the farmer, which are the same as
the three dependency constituents.

The point is even clearer when we contrast the effect found by recursing the construction
in (51) above and in (55) below:

(55) John saw the girl who the rat which the cat which the dog which the farmer owned
chased scratched bit.

(51) is no more complex to parse than (49), and remains parsable if we recurse the construction
still further. The same cannot be said of (55), which is virtually incomprehensible. Similarly,
at the point before owned in (55), we have four unrelated dependency constituents. Each
extension of (54) increases the number of unrelated dependency constituents, in contrast to
extensions of (49).

We could parse nested constructions like (54) purely left-associatively, in which case we
are forced to allow the parser to make combinations that are not dependency-preserving (here
notated by N):

(56) John saw the cat which the dog
NP (NP\S)/NP

^ NP/N N/AdnPost AdnPost/(S/NP) NP/N N/AdnPost
S/NP

D
S/N

D
S/AdnPost

S/(S/NP)

S/((NP\S)/NP)/N
S/((NP\S)/NP)/AdnPost

which the farmer owned chased

S/((NP\S)/NP)/AdnPost AdnPost/(S/NP)
^ NP/N N (NP\S)/NP (NP\S)/NP

S/((NP\S)/NP)/(S/NP)

S/((NP\S)/NP)/((NP\S)/NP)/N
S/((NP\S)/NP)/((NP\S)/NP)

S/((NP\S)/NP)

We can see the complexity of the syntactic types after these combinations; there is a strong
contrast with the simple types found in the derivation of (49) above. The lambda-terms
become similarly complex. For instance, the lambda-term for John saw the cat which is

A/NP_>s[saw (the (cat (which /))) john],
but the term for John saw the cat which the is

Aj/NA5NF>_^NP_6)[saw (the (cat (which (AzNP[y x (the y)])))) john].
In the second lambda-term, the abstracted variable g acts as a functor, unlike / in the first
lambdarterm.

It is also possible that the parser does not make these non-dependency combinations at
all, but instead uses some device like a stack to store dependency constituents (see Ades and
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Steedman 1982). This means that our derivation is no longer fully left-associative. Here we
represent the maximally incremental derivation containing only dependency combinations:
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(57) John saw the cat which

NP (NP\S)/NP^ NP/N N/AdnPost AdnPost/(S/NP)
S/NP

S/N
-D

D
S/AdnPost

S/(S/NP)

the dog which

NP/N N/AdnPost AdnPost/(S/NP)
NP/AdnPost

D
NP/(S/NP)

the farmer owned- chased

S/(S/NP) NP/(S/NP) NP/N N^ (NP\S)/NP (NP\S)/NP
NP

S/NP
— D

-D

NP
D

S/NP
D

Another example of the contrast between nested and non-nested constructions can be seen
in (21) and (22), repeated below as (58) and (59):

(58) the tray on which Mary placed the cake

(59) the tray which Mary placed the cake on

At the verb put, we have a single dependency constituent in (58) but not in (59). As pointed
out in Pickering and Barry (1989, 1990), we can recurse each construction on the object noun
phrase, for instance in the sentences below:

(60) John found the box in which I put the tray on which Mary placed the cake.

(61) John found the box which I put the tray which Mary placed the cake on in.

(61) is very hard to process, while (60) is easy to process. Our account predicts this directly,
because (61) has three unrelated dependency constituents, John found the box which, I put
the tray which and Mary placed the cake, at the point before the word on. This is not the
case in (60), because each time we reach an embedded verb, we can form a single dependency
constituent from all of the preceding material. In (61) we cannot form a single dependency
constituent when we reach each embedded verb. Pickering and Barry contrast a dependency
based account with an account making use of empty categories, and, given that the construc¬
tion in (60) can be recursed, show that the latter account makes the wrong predictions for
sentences like (60).

We have demonstrated that an account of sentence processing based on the construction
of dependency constituents makes reasonable predictions about processing complexity. We
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see this as an explanation of Chomsky's (1965) claim that nested constructions are hard to
process, and hence why they are so rare in natural language use. It seems therefore that
the notion of a dependency constituent is useful both in explaining linguistic data such as
coordination, and explaining facts about sentence processing: combining elements to form a
dependency constituent is easy, but combining elements to form a non-dependency constituent
is hard and not automatic.

5 Comparisons and Conclusions
5.1 Comparisons with Combinatory Categorial Grammar
We have argued that the assumption of type-constituent correspondence within the Lambek
calculus must be dropped if the notion of constituency is to retain any linguistic relevance,
and dealt with this by defining the notion of dependency constituency. Let us contrast this
notion of constituency with the CCG notion of constituency (Steedman 1987).

As mentioned in the Introduction, CCG uses a particular set of rules, known as combina¬
tory rules, to assign types to all and only those strings that the theory regards as constituents.
Steedman uses a combination of L-valid and L-invalid rules, but for the purposes of this dis¬
cussion we shall restrict our attention to the former, since the L-invalid rules are highly
restricted in their applicability and might reasonably be regarded as peripheral. Thus we are

viewing CCG as a subset of L.
CCG puts two restrictions on possible type combinations. First, it restricts them to those

that can be achieved by means of a particular set of binary and unary rules, including the
following:

(62) Forward application (indexed ))
X/Y Y => X
Backward application (indexed ()
Y Y\X =>X
Forward composition (indexed )B)
X/Y Y/Z=>X/Z
Forward type-raising (indexed )T)
X => Y/(X\Y)

However, CCG does not include other L-valid inferences such as forward division (X/Y =>
(X/Z)/(Y/Z)) or commutation ((Y\X)/Z => Y\(X/Z)). (The choice of rules is made on the
basis of specific linguistic phenomena, so that there is no straightforward characterization of
which rules are included and which are not.) Secondly, CCG puts type-specific restrictions
on the use of the above rules. For instance, there is a stipulation that the use of the forward
type-raising rule is restricted to subjects:

(63) NP => S/(NP\S)

Although there is a considerable overlap between CCG constituents and dependency con¬

stituents, the existence of type-raising in CCG (which is not dependency-preserving by our
definition) generates some CCG constituents that are not dependency constituents. For in¬
stance, let us return to our initial examples in section 2 (repeated here as (64) and (65)):
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(64) a. The dog runs.

b. John likes Marv.

c. John will see Marv.

(65) a. The dog runs.

b. I think that Harry left.
c. I showed Mary John.

Recall that the underlined fragments in (64) were analysed as dependency constituents, but
not those in (65). Steedman's analysis can give a type to the fragments in (64a-c) and (65b),
but not to those in (65a) or (65c):

(66) a. the dog b. John likes c. will see

NP/N N NP (NP\S)/NP (NP\S)/VP VP/NP
NP ^ S/(NP\S)^T ^ (NP\S)/NP ^)B

S/NP

(67) a. dog runs b. that Harry c. Mary John
N NP\S SP/S NP NP NP

_*♦» )T
S/(NP\S)

-)B
SP/(NP\S)

The only point of disagreement here is that Harry in (65b), which is a CCG constituent
but not a dependency constituent. It would however not be a CCG constituent if the non-

dependency-preserving operation of type-raising were absent from the grammar. (Note that
removing type-raising from the above set of rules would also stop John likes in (64b) from being
a constituent, but this could be achieved by means of the dependency-preserving operation
of commutation on likes.) The above account forces Steedman to analyse I believe that John
as a constituent of type S/(NP\S), and hence to allow the forbidden coordination in (32)
(repeated here as (68)):

(68) *[I believe that John] and [Mary] is a genius.

It is also possible for dependency constituents not to be CCG constituents. For example,
Steedman treats modifiers as functors, but forbids modified elements to type-raise over them,
in order to account for their status as islands, as in (69):

(69) *Beans, I met a man who likes.

A man who likes will be analysed as a dependency constituent irrespective of whether modifiers
or modified elements are assumed to be heads. We therefore cannot expect dependency
constituents to give us a complete account of island constraints. However, the absence of
type-raising over modifiers and of commutation means that it cannot be analysed as a CCG
constituent:

(70) a man who likes

NP/N N (N\N)/(NP\S) (NP\S)/NP
(N\N)/NP B
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Steedman's attempt to capture island constraints merely by blocking derivations such as the
above makes incorrect predictions about coordination and processing of such strings. For
instance, it rules out coordinations such as the following:

(71) Most people like, but I know a man who hates, sonatas by Mozart.

This is allowed in our account because the conjuncts are both dependency constituents of
type S/NP. More generally, Steedman's account always forbids a noun to combine with an
incomplete relative clause. This has serious implications for processing, because it predicts
that a noun cannot be combined with a following relative clause until the entire relative clause
is processed. For instance, the maximally incremental derivation of a man who likes Mary in
CCG is as follows:

(72) a man who likes Mary

^ ~ (NW/(„ns) (NP\S)/NP "NP"
(N\N)/NP

N

Using arguments analogous to those in the previous section, this would incorrectly predict
that multiple relative clause constructions such as (51) (repeated here as (73)) should always
become difficult to process at some point, irrespective of the structure of the relative clauses
themselves:

(73) I saw the farmer who owned the dog which chased the cat which followed the mouse
which nibbled the cheese.

Steedman's account allows some combinations (e.g. who owned the), but the number of ele¬
ments that have to be remembered independently still increases when the sentence is extended.

Even if the CCG rules were modified to generate all and only dependency constituents,
it would still be impossible to account for phenomena that involved the formation of non-
dependency constituents, such as the coordination in (27) (repeated here as (74)):

(74) John loves [Mary madly] and [Sue passionately].

The only way to generate such constructions under an assumption of type-constituent cor¬
respondence is to allow non-dependency-preserving rules. For example, Dowty (1988) deals
with such constructions by using combinatory rules of backward composition and backward
type-raising (he assumes the latter to be lexical):

(75) Backward composition (indexed (B)
Z\Y Y\X => Z\X
Backward type-raising (indexed (T)
x ^ (y/x)\y

Although both rules are L-valid, only backward composition is dependency-preserving. Thus
the conjuncts in (74) are constituents under Dowty's analysis, but not dependency constituents:7

7Here we follow Dowty in taking modifiers to be heads, but a similar argument can be constructed if
modified elements are taken to be heads.
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(76) Mary madly
~NP~ (NP\S)\(NP\S)

((NP\S)/NP)\(NP\Sj

((NP\S)/NP)\(NP\S)
This means that Dowty is unable to prevent the forbidden coordination in (30) (repeated
here as (77)), since both Mary madly and Sue can be analysed as constituents of type
((NP\S)/NP)\(NP\S):
(77) *John loves [Mary madly] and [Sue].

5.2 Further Applications
We would not be surprised if the notion of dependency constituency has other linguistic
applications. Steedman has argued that flexible categorial grammars allow considerable gen¬
eralizations between the constituents that are needed to deal with coordination, incremental
interpretation, extraction and intonational structure. We agree with this view, except that
we claim that the relevant notion is dependency constituency rather than CCG constituency.
This paper has covered only coordination and incremental interpretation, but there are a
number of possible applications to other linguistic phenomena. For example, the unaccept-
ability of (78) suggests that extraction is subject to the restriction that the non-extracted
part of the string must be a dependency constituent:8
(78) *How many boys do you think in ten like football?
However, as we have seen above, this condition is not sufficient in itself to capture all island
constraints.

Dependency constituency also appears to be relevant to an account of intonational struc¬
ture. Steedman (1990) shows that the range of possible intonations is greater than those that
are most obviously allowable by traditional phrase structure, but that there are still many
strings which do not form possible intonational units. Again we believe that the range of
possible intonational units can be derived from the notion of dependency constituency.

In summary, we believe that the approach taken in this paper has the following two
advantages. Firstly, the notion of constituency is defined in a principled fashion from the
notion of dependency. Secondly, it is possible to give types to strings that axe not constituents.
This appears to be theoretically elegant and also to explain a considerable range of data.
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ABSTRACT

Use of Lambek's (1958) categorial grammar for lin¬
guistic work has generally been rather limited. There
appear to be two main reasons for this: the nota¬
tions most commonly used can sometimes obscure the
structure of proofs and fail to clearly convey linguistic
structure, and the calculus as it stands is apparently
not powerful enough to describe many phenomena en¬
countered in natural language.

In this paper we suggest ways of dealing with both
these deficiencies. Firstly, we reformulate Lambek's
system using proof figures based on the 'natural de¬
duction' notation commonly used for derivations in
logic, and discuss some of the related proof-theory.
Natural deduction is generally regarded as the most
economical and comprehensible system for working
on proofs by hand, and we suggest that the same

advantages hold for a similar presentation of cate-
gorial-derivations. Secondly, we introduce devices
called structural modalities, based on the structural
rules found in logic, for the characterization of com¬
mutation, iteration and optionality. This permits the
description of linguistic phenomena which Lambek's
system does not capture with the desired sensitivity
and generality.

LAMBEK CATEGORIAL
GRAMMAR

PRELIMINARIES

Categorial grammar is an approach to language de¬
scription in which the combination of expressions is
governed not by specific linguistic rules but by general
logical inference mechanisms. The point of departure
can be seen as Frege's position that there are certain
'complete expressions' which are the primary bear¬
ers of meaning, and that the meanings of 'incomplete
expressions' (including words) are derivative, being
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their contribution to the meanings of the expressions
in which they occur. We suppose that linguistic ob¬
jects have (at least) two components, form (syntactic)
and meaning (semantic). We refer to sets of such ob¬
jects as categories, which are indexed by types, and
stipulate that all complete expressions belong to cat¬
egories indexed by primitive types. We then recur¬

sively classify incomplete expressions according to the
means by which they combine (syntactically and se-
mantically) with other expressions.

In the 'syntactic calculus' of Lambek (1958) (var¬
iously known as Lambek categorial grammar, Lambek
calculus, or L), expressions are classified by means of
a set of bidirectional types as defined in (1).
(1) a. If A is a primitive type then A is a type.

b. If A and Y are types then X/Y and Y\X
are types.

X/Y (resp. E\A) is the type of incomplete expres¬
sions that syntactically combine with a following (iesp.
preceding) expression of type Y to form an expression
of type A, and semantically are functions from mean¬

ings of type Y to meanings of type A.
Let us assume complete expressions to be sen¬

tences (indexed by the primitive type S), noun phrases
(NP), common nouns (N), and non-finite verb phrases
(VP). By the above definitions, we may assign types
to words as follows:

(2) John, Mary, Suzy
man, paper
the

likes, read
quickly
without

understanding

= NP
= N
= NP/N
= (NP\S)/NP
= (NP\S)\(NP\S)
= ((NP\S)\(NP\S))/VP
= VP/NP

We represent the form of a word by printing it in
italics, and its meaning by the same word in boldface.
For instance, the form of the word "man" will be
represented as man and its meaning as man.

PROOF FIGURES

We shall present the rules of L by means of proof
figures, based on Prawitz' (1965) systems of 'nat¬
ural deduction'. Natural deduction was developed
by Gentzen (1936) to reflect the natural process of
mathematical reasoning in which one uses a number
of inference rules to justify a single proposition, the
conclusion, on the basis of having justifications of a
number of propositions, called assumptions. During



a proof one may temporarily make a new assumption
if one of the rules licenses the subsequent withdrawal
of this assumption. The rule is said to discharge the
assumption. The conclusion is said to depend on the
undischarged assumptions, which are called the hy¬
potheses of the proof.

A proof is usually represented as a tree with the
assumptions as leaves and the conclusion at the root.
Finding a proof is then seen as the task of filling this
tree in, and the inference rules as operations on the
partially completed tree. One can write the infer¬
ence rules out as such operations, but as these are
rather unwieldy it is more usual to present the rules
in a more compact form as operations from a set of
subproofs (the premises) to a conclusion, as follows
(where m > 1 and n > 0):

(3) [Y.Y

Xi Xrn—n lm—n+1
-R'

This states that a proof of Z can be obtained from
proofs of Xlt ... , Xm by discharging appropriate oc¬
currences of assumptions Y\, ..., Yn. The use of
square brackets around an assumption indicates its
discharge. R is the name of the rule, and the index i
is included to disambiguate proofs, since there may be
an uncertainty as to which rule has discharged which
assumption.

As propositions are represented by formulas in
logic, so linguistic categories are represented by type
formulas in L. The left-to-right order of types indi¬
cates the order in which the forms of subexpressions
are to be concatenated to give a composite expres¬
sion derived by the proof. Thus we must take note
of the order and place of occurrence of the premises
of the rules in the proof figures for L. There is also
a problem with the presentation of the rules in the
compact notation as some of the rules will be written
as if they had a number of conclusions, as follows:

(4)
Xi x„

-R
Tl ••• Tn

This rule should be seen as a shorthand for:

(5)
A:

Yi Y„
-R

If the rules are viewed in this way it will be seen that
they do not violate the single conclusion nature of the
figures.

As with standard natural deduction, for each con¬
nective there is an elimination rule which states how
a type containing that connective may be consumed,
and an introduction rule which states how a type con¬

taining that connective may be derived. The elimi¬

nation rule for / states that a proof of type X/Y
followed by a proof of type Y yields a proof of type
X. Similarly the elimination rule for \ states that
a proof of type Y\X preceded by a proof of type Y
yields a proof of type X. Using the notation above,
we may write these rules as follows:

(6)
X/Y

b.

-/E
Y\X

\E

We shall give a semantics for this calculus in the same

style as the traditional functional semantics for intu-
itionistic logic (Troelstra 1969; Howard 1980). In the
two rules above, the meaning of the composite expres¬
sion (of type X) is given by the functional application
of the meaning of the functor expression (i.e. the one
of type X/Y or Y\X) to the meaning of the argument
expression (i.e. the one of type Y). We represent func¬
tion application by juxtaposition, so that likes John
means likes applied to John.

Using the rules /E and \E, we may derive "Mary
likes John" as a sentence as follows:

(7) Mary likes John

(NP\S)/NP NP
NP NP\S

•/E

•\E

The meaning of the sentence is read off the proof by
interpreting the /E and \E inferences as function ap¬
plication, giving the following:
(8) (likes John) Mary

The introduction rule for / states that where the
rightmost assumption in a proof of the type X is of
type Y, that assumption may be discharged to give
a proof of the type X/Y. Similarly, the introduction
rule for \ states that where the leftmost assumption
in a proof of the type X is of type Y, that assumption
may be discharged to give a proof of the type Y\X.
Using the notation above, we may write these rules
as follows:

(9) [Y]'

X

X/Y
•/r

b. [Y]'

X

Y\X
•\r

Note however that this notation does not embody the
conditions that have been stated, namely that in /I
Y is the rightmost undischarged assumption in the
proof of X, and in \I Y is the leftmost undischarged
assumption in the proof of X. In addition, L carries
the condition that in both /I and \I the sole assump¬
tion in a proof cannot be withdrawn, so that no types
are assigned to the empty string.

In the introduction rules, the meaning of the re¬
sult is given by lambda-abstraction over the meaning
of the discharged assumption, which can be repre¬
sented by a variable of the appropriate type. The re¬

lationship between lambda-abstraction and function
application is given by the law of p-equality in (10),



where a{jd\y] means 'a with /J substituted for y'. (See
Hindley and Seldin 1986 for a full exposition of the
typed lambda-calculus.)
(10) (Ay[or])£ = a[fi\y\
Since exactly one assumption must be withdrawn, the
resulting lambda-terms have the property that each
binder binds exactly one variable occurrence; we refer
to this as the 'single-bind' property (van Benthem
1983). The rules in (9) are analogous to the usual
natural deduction rule of conditionalization, except
that the latter allows withdrawal of any number of
assumptions, in any position.

The /I and \I rules are commonly used in con¬
structions that are assumed in other theories to in¬
volve 'empty categories', such as (11):
(11) (John is the man) who Mary likes.
We assume that the relative clause modifies the noun

"man" and hence should receive the type N\N. The
string "Mary likes" can be derived as of type S/NP,
and so assignment of the type (N\N)/(S/NP) to the
object relative pronoun "who" allows the analysis in
(12) (cf. Ades and Steedman 1982):

(12) who Mary

NP

likes

(NP\S)/NP [NP]1
NP\S

/E

\E

(N\N)/(S/NP) S/NP;/11
-/E

N\N

The meaning of the string can be read off the proof by
interpreting /I and \I as lambda-abstraction, giving
the term in (13):
(13) who (Ax[(likes x) Mary])
Note that this mechanism is only powerful enough
to allow constructions where the extraction site is

clause-peripheral; for non-peripheral extraction (and
multiple extraction) we appear to need an extended
logic, as described later.

DERIVATIONAL EQUIVALENCE AND
NORMAL FORMS

In the above system it is possible to give more than
one proof for a single reading of a string. For exam¬
ple, compare the derivation of "Mary likes John" in
(7), and the corresponding lambda-term in (8), with
the derivation in (14) and the lambda-term in (15):

(14) Mary
f

likes John

(NP\S)/NP [NP]1
NP NP\S

/E

•\E

S/NP
-/I1

NP
-/E

By the definition in (10), the terms in (8) and (15) are
//-equal, and thus have the same meaning; the proofs
in (7) and (14) are said to exhibit derivational equiva¬
lence. The relation of derivational equivalence clearly
divides the set of proofs into equivalence classes. We
shall define a notion of normal form for proofs (and
their corresponding terms) in such a way that each
equivalence class of proofs contains a unique normal
form (cf. Hepple and Morrill 1989).

We first define the notions of contraction and reduc¬
tion. A contraction schema R > C consists of a par¬
ticular pattern R within proofs or terms (the redex)
and an equal and simpler pattern C (the contractum).
A reduction consists of a series of contractions, each
replacing an occurrence of a redex by its contractum.
A normal form is then a proof or term on which no
contractions are possible.

We define the following contraction schemas: weak
contraction in (16) for proofs, and j)-contraction in
(17) for the corresponding lambda-terms.

(16) PT

X/Y
•/r

"/E

b. PT

x

Y\X
\r

"\E

y

x

Y

X

(15) (Ax[(likes x) Mary]) John

(17) (Ay[a])/9 > ar[/9|y]
From (10) we see that //-contraction preserves mean¬
ing according to the standard functional interpreta¬
tion of typed lambda-calculus. Therefore the cor¬

responding weak contraction preserves the semantic
functional interpretation of the proof; in addition it
preserves the syntactic string interpretation since the
redex and contractum contain the same leaves in the
same order. For example, the proof in (14) v.-cakly
contracts to the proof in (7), and correspondingly the
term in (15) //-contracts to the term in (8). The
results of these contractions cannot be further con¬

tracted and so are the respective results of reduction
to weak normal form and f)-normal form.

Weak contraction in L strictly decreases the size
of proofs (e.g. the number of symbols in a contractum
is always less than that in a redex), and //-contraction
in the single-bind lambda-calculus strictly decreases
the size of terms. Thus there is strong normalization
with respect to these reductions: every proof (term)
reduces to a weak normal form (//-normal form) in
a finite number of steps. This has as a corollary
(normalization) that every proof (term) has a nor¬
mal form, so that normal forms are fully represen¬
tative: every proof (term) is equal to one in normal
form. Since reductions preserve interpretations, an

interpretation of a normal form will always be the



same as that of the original proof (term). Thus re¬

stricting the search to just such proofs addresses the
problem of derivational equivalence, while preserving
generality in that all interpretations are found.

Proofs in L and single-bind lambda^terms (like
the more general cases of intuitionistic proofs and full
lambda-terms) exhibit a property called the Church-
Rosser property,1 from which it follows that normal
forms are unique.2

For formulations of L that are oriented to pars¬

ing, defining normal forms for proofs provides a basis
for handling the so-called 'spurious ambiguity' prob¬
lem, by providing for parsing methods which return
all and only normal form proofs. See Konig (1989)
and Hepple (1990).

STRUCTURAL MODALITIES

From a logical perspective, L can be seen as the weak¬
est of a hierarchy of implicational sequent logics which
differ in the amount of freedom allowed in the use

of assumptions. The highest of these is (the impli¬
cational fragment of) the logistic calculus LJ intro¬
duced in Gentzen (1936). Gentzen formulated this
calculus in terms of sequences of propositions, and
then provided explicit structural rules to show the
permitted ways to manipulate these sequences. The
structured rules are permutation, which allows the or¬
der of the assumptions to be changed; contraction,
which allows an assumption to be used more than
once; and weakening, which allows an assumption to
be ignored. For a discussion of the logics generated
by dropping some or all of these structural rules see

e.g. van Benthem (1987).
Although freely applying structural rules are clear¬

ly not appropriate in categorial grammars for linguis¬
tic description, commutable, iterable and optional el¬
ements do occur in natural language. This suggests
that we should have a way to indicate that structural
operations are permissible on specific types, while still
forbidding their general application. To achieve this
we propose to follow the precedent of the exponen¬
tial operators of Girard's (1987) linear sequent logic,
which lacks the rules of contraction and weakening,
by suggesting a similar system of operators called
structural modalities. Here we shall describe a sys¬
tem of universal modalities, which allow us to deal
with the logic of commutable, iterable and optional
extractions.3

For each universal modality we shall present an
elimination rule, and one or more 'operational rules',
which are essentially controlled versions of structural

1 This (s the property that if a proof (term) M reduces
to two proofs (terms) , N?, then there is a proof (term)
to which both iVi and N? reduce.

2The above remarks also extend to a second form of re¬

duction, strong reduction/g-reduction, which we have not
space to describe here. See Morrill et a/. (1990).

3The name is chosen because the elimination and in¬
troduction rules appropriate to each operator turn out to
be those for the universal modality in the modal logic S4.
See Dosen (1990).

rules. (Introduction rules can also be defined, but we
omit these here for brevity and because they are not
required for the linguistic applications we discuss.)
Note that these operators are strictly formal devices
and not geared towards specific linguistic phenom¬
ena. Their use for the applications described, which
are suggested purely for illustration, may lead to over-
generation in some cases.4

COMMUTATION

The type AX is assigned to an item of type X which
may be freely permuted. A has the following infer¬
ence rules:

(18) : : : : :
AX AX V Y AX

AE APrm PrmA
X Y AX AX Y

From these rules we see that an occurrence of an item
of type X in any position may be derived from an item
of type AX.

We may use this operator in a treatment of rela-
tivization that will allow not only peripheral extrac¬
tion as in (19a), but also non-peripheral extraction as
in (19b):
(19) a. (Here is the paper) which Suzy read,

b. (Here is the paper) which Suzy read
quickly.

We shall generate these examples by assuming that
"which" licenses extraction from any position in the
body of the relative clause. We may accomplish this
by giving "which" the type (N\N)/(S/ANP) (cf. the
extraction operator f of Moortgat (1988)). This al¬
lows the derivations in (20a-b) (see Figure 1), which
correspond to the lambda^terms in (21a-b) respec¬
tively:

(21) a. which (Az[(read z) Suzy])
b. which (Az((quickly (read x)) Suzy])

ITERATION

The type X! is assigned to an item of type X which
may be freely permuted and iterated. ' has the fol¬
lowing inference rules:

(22) : : : :
X! X' Y Y x'
—'E !Prm Prm!
X Y X' X' Y

X'
-'Con

X' X'

4In Morrill et al. (1990) we give a system of modali¬
ties that differs from the present proposal in several re¬
spects. There are two unidirectional commutation modal¬
ities rather than the single bidirectional modality given
here, and a single operational rule is associated with each
of the universal modalities. We also suggest a (more ten¬
tative) system of existential modalities for dealing with
elements that are themselves commutable, iterable or

optional.



(20) a. which Suzy read
[ANP]1

(NP\S)/NP NP
/E

NP NP\S
s NE

-/I1

-AE

(N\N)/(S/ANP) S/ANP
^/E

N\N

which Suzy read quickly

(NP\S)\(NP\S) [ANP]1
PrmA

ANP (NP\S)\(NP\S)
-AE

(NP\S)/NP NP

NP\S
\E

NP NP\S
5 NE

(N\N)/(S/ANP) S/ANP
/E

N\N

(24) which Suzy read without understanding
[NP1]1

NP! NP!
-'E

-'Con

VP/NP NP
-/E

((NP\S)\(NP\S))/VP VP

(NP\S)\(NP\S) /E ,
Prm'

NP', (NP\S)\(NP\S)
E

(NP\S)/NP NP^
NP\S

\E
NP NP\S

5 ^
(N\N)/(S/NP') S/NP!

/E
N\N

(28) too long for Suzy to concentrate

(ForP/VP)/NP NP
-/E

ForP/VP VP
■/E

ForP [NP I']1
Wlcnll

ForP
•/I1

PrfedP/(ForP/NPH) ForP/NPH
^

/E
PredP

Figure 1. Derivations illustrating use of structural modalities



One or more occurrences of items of type X in any

position may be derived from an item of type X'.
We may use this modality in a treatment of mul¬

tiple extraction. Consider the parasitic gap construc¬
tion in (23):
(23) (Here is the paper) which Suzy read without

understanding.
In order to generate both this example and the ones
in (19), we shall now assume that "which" licenses
extraction not just from any position in the body of
a relative clause, but from any number of positions
greater than or equal to one. We may do this by al¬
tering the type of "which" to (N\N)/(S/NP!). Since
! has all the inference rules of A, the derivations in
(20) will still go through with the new type. In addi¬
tion, the !Con inference rule allows the derivation of
(23) given in (24) (see Figure 1), and the correspond¬
ing term in (25):
(25) which (Ax[((without (understanding x))

(read x)) Suzy])

OPTIONALITY

The type X" is assigned to an item of type X which
may be freely permuted, iterated and omitted. " has
the following inference rules:

(26)
X*.

-IIE

A"

in
-IIpr -Prmll

Xll
II Co

X«

in Y Y i«
llWkn Wlm"

Zero or more occurrences of items of type X in any

position may be derived from an item of type X".
We may use this modality in a treatment of op¬

tional extraction, as illustrated by (27):
(27) a. (The paper was) too long for Suzy to read.

b. (The paper was) too long for Suzy to read
quickly.

c. (The paper was) too long for Suzy to read
without understanding.

d. (The paper was) too long for Suzy to con¬
centrate.

We shall assume for simplicity that "to"-infinitives
are single lexical items of type VP, that "for-to" clauses
have a special atomic type ForP (so that "for" has
the type (ForP/VP)/NP), and that predicate phrases
have a special atomic type PredP. Given these assign¬
ments, the type PredP/(ForP/NP!) for "too long"
would allpw (27a-c), but not (27d). In order to gener¬
ate all four examples, we shall assume that "too long"
licenses extraction from any number of positions in
the embedded clause greater than or equal to zero,
and thus give it the type PredP/(ForP/NP"). Again,
" has all the inference rules of !, generating (27a-c),
and the Wkn" rule allows (27d) to be derived as in
(28) (see Figure 1), giving the term in (29):
(29) too-long (Ax[for (to-concentrate Suzy)])

CONCLUSIONS

We have introduced a scheme of proof figures for Lam-
bek categorial grammar in the style of natural de¬
duction, and proposed structural modalities which we

suggest are suitable for the capture of linguistic gen¬
eralizations. It remains to extend the semantic treat¬

ment of the structural modalities, to refine the proof
theory, and hence to develop more efficient parsing al¬
gorithms. For the present, we hope that the proposals
made can be seen as gaining linguistic practicality in
the categorial description of natural language, with¬
out losing mathematical elegance.
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