

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Automated Proof Search in Non-Classical

Logics:

Efficient Matrix Proof Methods for

Modal and Intuitionistic Logics

Lincoln A. Wallen

Ph.D.

University of Edinburgh

1987

Acknowledgements

I would like to thank the following people:

my supervisor Alan Bundy for inspiration and advice during the research

and throughout the preparation of this thesis;

Paul Brna, Roberto Desimone, Jane Hesketh, Helen Pain and Alan Smaill

for advice, proof-reading and support;

Paul Brna and Jane Hesketh for their invaluable help during the tricky

process of submission;

past and present members of the Mathematical Reasoning Group for cre-

ating a stimulating and supportive environment to work in;

and especially Sonya MacAngus for love and support throughout the years.

The research reported in this thesis was supported by an SERC studentship.

Published Papers

Some of the material contained in this thesis has been published in the fol-

lowing papers:

Generating connection calculi from tableau- and sequent-based proof sys-

tems. In A.G. Cohn and J.R. Thomas, editors, Artificial Intelligence and

its Applications, pages 35-50, John Wiley & Sons, 1986. Proceedings of

AISB85, Warwick, England, April 1985.

Formulating proof systems for automated deduction. In Proceedings of the

IEE Colloquium on Theorem Provers in Theory and Practice, March 1987.

A computationally efficient proof system for S5 modal logic (with G.V.

Wilson). In J. Hallam and C. Mellish, editors, Advances in Artificial Intel-

ligence, pages 141-153, John Wiley & Sons, 1987. Proceedings of AISB87,

Edinburgh, Scotland, April 1987.

Matrix proof methods for modal logics. In J. McDermott, editor, Proceed-

ings of the 10th International Joint Conference on Artificial Intelligence,

pages 917-923, Morgan Kaufmann Inc., 1987.

Copies of these papers may be found inside the back cover of this thesis.

Abstract

In this thesis we develop efficient methods for automated proof search within

an important class of mathematical logics. The logics considered are the vary-

ing, cumulative and constant domain versions of the first-order modal logics

K, K4, D, D4, T, S4 and S5, and first-order intuitionistic logic. The use of

these non-classical logics is commonplace within Computing Science and Artifi-

cial Intelligence in applications in which efficient machine assisted proof search

is essential.

Traditional techniques for the design of efficient proof methods for classical

logic prove to be of limited use in this context due to their dependence on

properties of classical logic not shared by most of the logics under consideration.

One major contribution of this thesis is to reformulate and abstract some of these

classical techniques to facilitate their application to a wider class of mathematical

logics.

We begin with Bibel's Connection Calculus: a matrix proof method for clas-

sical logic comparable in efficiency with most machine orientated proof methods

for that logic. We reformulate this method to support its decomposition into

a collection of individual techniques for improving the efficiency of proof search

within a standard cut-free sequent calculus for classical logic. Each technique

is presented as a means of alleviating a particular form of redundancy manifest

within sequent-based proof search. One important result that arises from this

anaylsis is an appreciation of the role of unification as a tool for removing cer-

tain proof-theoretic complexities of specific sequent rules; in the case of classical

logic: the interaction of the quantifier rules.

All of the non-classical logics under consideration admit complete sequent

calculi. We anaylse the search spaces induced by these sequent proof systems

and apply the techniques identified previously to remove specific redundancies

found therein. Significantly, our proof-theoretic analysis of the role of unifi-

cation renders it useful even within the propositional fragments of modal and

intuitionistic logic.

The result is a set of matrix proof methods for the modal and intuitionistic

logics considered, that, we argue, are more efficient than the other proof methods

suggested in the literature for this class of first-order logics. We are careful in

our generalisation of the matrix method so that search strategies developed for

use with Bibel's classical matrix method remain applicable in conjunction with

our non-classical matrix methods.

In summary: we successfully formulate demonstrably efficient matrix proof

methods for automated proof search within a comprehensive class of first-order

modal logics and first-order intuitionistic logic. In so doing we isolate general

techniques for the design of efficient proof systems which may be applicable to

other classes of mathematical logic encountered in the future.

Table of Contents

1. Introduction. 1

1.1 The problems and their solution 1

1.2 Problem solving by computer .. 4

1.3 The efficiency of proof procedures 8

1.4 Matrix-based proof search .. 10

1.4.1 Matrices, paths and connections 10

1.4.2 Matrix-based proof procedures 12

1.4.3 Path-checking algorithms for non-classical logics. 14

1.4.4 Summary . 15

1.5 The structure of the thesis . 16

I Automated Proof Search in Classical Logic. 19

2. Sequent-based proof search in classical logic. 22

2.1 Introduction . 22

2.2 Syntax and semantics . 23

2.2.1 Syntax . 23

2.2.2 Semantics .. 25

2.3 The sequent calculus .. 27

i

2.4 Search methods . 32

2.4.1 Duplication and generative S-formulae.. 35

2.5 Redundancy in the sequent search space 38

2.5.1 Notational redundancy . 39

2.5.2 Relevance .. 40

2.5.3 Order dependence . 41

2.6 Summary . 47

3. A matrix characterisation of validity in classical logic. 48

3.1 Introduction . 48

3.1.1 Uniform notation . 51

3.2 Formula trees and notational redundancy 53

3.2.1 Formula trees for formulae 54

3.2.2 Formula trees for signed formulae 54

3.2.3 Multiplicities and indexed formula trees.. 59

3.2.4 Summary . 68

3.3 Paths, connections and relevance 69

3.3.1 Paths as sequents . 71

3.3.2 Connections . 73

3.3.3 Summary . 77

3.4 Reduction orderings and order dependence 78

3.5 Summary and discussion . 84

ii

II Automated Proof Search in Modal Logics. 88

4. The semantics and proof theory of modal logics. 92

4.1 Introduction . 92

4.2 Syntax, semantics and notation 93

4.2.1 Syntax . 93

4.2.2 Semantics .. 95

4.2.3 Uniform notation . 98

4.2.4 Sequents and a language for proofs 101

4.3 Sequent calculi for modal logics 102

4.3.1 A sequent calculus for S4 103

4.3.2 Sequent calculi for K, K4, D, D4, T, S4. 113

4.4 S5 and constant domain modal logics 117

4.5 Summary . 120

5. Proof search in modal sequent calculi. 121

5.1 Introduction . 121

5.2 Notational redundancy and relevance 123

5.3 Order dependence . 127

5.4 Interactions: modal operators and quantifiers.. 129

5.5 Conclusions .. 133

6. Matrix characterisations of validity in modal logics. 135

6.1 Introduction . 135

6.1.1 Overview . 136

6.2 Matrices, paths and connections 142

III

6.2.1 Formula occurrences .. 142

6.2.2 Multiplicities . 145

6.2.3 Paths and connections .. 151

6.2.4 Complementari ty . 157

6.3 Correctness .. 173

6.3.1 Overview . 173

6.3.2 Proper reductions . 175

6.3.3 Correctness of proper reductions 184

6.3.4 Summary . 205

6.4 Completeness .. 206

6.4.1 Overview . 207

6.4.2 .C-Hintikka sets and C-Complete paths. 207

6.4.3 The systematic procedure 212

6.5 Conclusions .. 218

7. Matrix-based proof search in modal logics. 220

7.1 Introduction . 220

7.2 Unification problems .. 221

7.2.1 Overview . 222

7.2.2 .C-Admissible substitutions 224

7.2.3 The calculation of Mgum(U) 225

7.2.4 Summary . 229

7.3 Proof search in the matrix systems 230

7.3.1 Structure sharing and notational redundancy. 231

7.3.2 Search strategies and relevance 232

iv

7.3.3 Order dependence . 233

7.4 Decision procedures . 251

7.4.1 A decision procedure for S5 252

7.4.2 Extensions . 260

7.5 Logical consequence and expressibility 262

7.5.1 Logical consequence . 263

7.5.2 Function symbols . 263

7.6 Summary . 264

8. Related work. 265

8.1 Introduction . 265

8.2 Sequent and tableau-based proof systems 267

8.3 Resolution-based proof systems 270

8.3.1 Clausal resolution for modal logics 271

8.3.2 Non-clausal resolution for modal logics. 273

8.4 Hybrid systems .. 277

8.4.1 Theory resolution and tableaux 278

8.4.2 Connections in tableau . 281

8.5 Conclusions .. 282

III Automated deduction in intuitionistic logic. 283

9. Matrix proof methods for intuitionistic logic. 285

9.1 Introduction . 285

9.2 Kripke semantics for J .. 286

v

9.3 A cut-free sequent calculus for J 288

9.4 A matrix characterisation of validity in J 292

9.4.1 Overview . 292

9.4.2 Uniform notation . 293

9.4.3 Formula occurrences .. 294

9.4.4 Multiplicities . 295

9.4.5 Paths and connections .. 297

9.4.6 Complementarity . 299

9.5 Correctness and completeness . 306

9.6 Related work . 309

9.7 Summary . 310

10. Conclusions. 311

10.1 Summary of results . 311

10.1.1 Background for the solution 311

10.1.2 Matrix proof methods for modal logics. 315

10.1.3 A matrix proof method for intuitionistic logic. 319

10.2 Implications and Future work .. 320

10.2.1 A more abstract approach 321

10.3 Summary of the thesis .. 324

Bibliography 328

vi

List of Figures

2-1 A cut-free sequent calculus for classical logic. 29

2-2 Structural rules for Gentzen's sequent calculus. 30

3-1 Example formation and formula tree for a formula. 55

3-2 An indexed formula tree .. 64

3-3 A reduction ordering as a directed graph 82

3-4 An indexed formula tree (]xdyPxy = Vx]yPyx, 0). 83

4-1 A cut-free sequent calculus for S4 105

4-2 A Cut-free sequent calculus for S4 in uniform notation.. 107

5-1 A sequent calculus for pure propositional logic. 124

5-2 Modal rules for T . 127

5-3 Quantifiers rules for cumulative domains 129

6-1 K-derivation (left) and S4-proof (right) of P = P. 138

6-2 Example formation and formula tree 143

6-3 Example indexed formula tree . 149

6-4 Polarities, labels and types for an indexed formula tree. 150

6-5 Indexed formula tree with constant zero multiplicity. 151

6-6 Paths through the indexed formula of Figure 6-3 153

vii

6-7 Indexed formula tree for: (P = P, 0) 162

6-8 Reduction order for connections 172

7-1

7-2

7-3

7-4

7-5

7-6

Indexed formula

Indexed formula

Indexed formula

Indexed formula

Indexed formula

Formula tree for

tree for: (VxPx = Vx Px, 0) 235

tree for: (P A (P = Q) = Q, 0). 240

tree for: (VxPx 3y(Py A Py), 0).. 243

tree with µ(a2) = 2 245

tree for (QP V Q = 0(P V Q), 0). 248

((P V Q) = P V Q, 0).. 255

8-1 Prefixed sequent calculus for S5 268

8-2 Abadi and Manna resolution system for S5 275

8-3 Konolige's theory resolution rule for modal logics.. 280

9-1 A cut-free sequent calculus for intuitionistic logic.. 289

9-2 Formula tree for signed formula: (-'-'A = A, 0).. 296

9-3 Indexed formula tree for (--,A = A, 0) 300

9-4 Indexed formula tree for second example 303

9-5 Reduction ordering for connections 305

viii

List of Tables

3-1 Uniform notation for signed formulae 53

4-1 Conditions on accessibility relations 96

4-2 Uniform notation for signed modal formulae. 99

4-3 Summary of v and 7r rules for the modal logics. 116

6-1 Prefix conditions . 160

6-2 Accessibility relations on prefixes 160

9-1 Uniform notation for signed intuitionistic formulae.. 294

ix

Chapter 1

Introduction.

1.1 The problems and their solution.

The research reported in this thesis is concerned with the automation of proof

search within mathematical logics. It lies in the area of automated theorem

proving (ATP). In this context, our main problem is to formulate efficient meth-

ods for automated proof search within an important class of non-classical logics

comprising:

the modal logics: K, K4, D, D4, T, S4 and S5, and

intuitionistic logic.

These logics, and their derivatives, are in widespread use within Computing

Science and Artificial Intelligence, mostly in applications that require efficient

methods of proof search.

Whilst our particular problem is easily stated, there are suprisingly few meth-

ods immediately to hand for its satisfactory solution. ATP has traditionally

concentrated on the automation of proof search within classical logic, hence the

emergence of the term "non-classical" to denote logics that differ semantically

from classical logic. Not only has attention centered on one particular logic, but

1

also on a collection of techniques built around refinements of Robinson's resolu-

tion inference system for that logic [Rob65]. Unfortunately these techniques are

not directly applicable to non-classical logics because they require a particular

normal-form which, in general, does not exist for such logics.

Part of our solution is to look outside of the resolution paradigm and de-

velop more abstract techniques that are not dependent on the properties of one

particular logic. We note that a suitable level of abstraction does exist since all

of the logics we are interested in admit straightforward sequent proof systems

(see eg., [Fit83]). Sequent calculi were originally developed by Gentzen [G69] as

proof-theoretic tools for the analysis of proof within classical and intuitionistic

logic. We start with an efficient proof method, and a cut-free sequent calculus

for classical logic. The efficient proof method is Bibel's Connection Calculus

[Bib82a,Bib82c]: a highly efficient matrix characterisation of validity for classi-

cal logic. We analyse the proof search space induced by the sequent calculus and

identify three classes of redundancy within it. The classification of the redun-

dancies is not based on any features pertaining particularly to classical logic. We

then (re)formulate the Connection Calculus as a collection of individual, theoret-

ically motivated, techniques for removing these particular redundancies from the

search space. The net result is the identification of fairly general techniques for

the alleviation of certain sequent-based redundancies. We have the beginnings

of a general theory of efficient proof system design.

We then repeat the analysis, starting with cut-free sequent calculi for the

modal logics under consideration. We identify similar redundancies in the modal

search space as appeared in the classical case. We proceed to remove them by

adapting the appropriate techniques identified in the original analysis. The result

is a set of matrix characterisations of validity for the propositional and first-order

versions of the modal logics K, K4, D, D4, T, S4 and S5, including their varying,

cumulative and constant domain variants (a total of 20 distinct modal logics in

all).

Next we turn to intuitionistic logic and repeat the derivation. Once again

we start with a cut-free sequent calculus and analyse the redundancies in the

2

induced search space. The formulation of a matrix characterisation of validity

for intuitionistic logic follows in the same manner as for the modal logics.

The resulting characterisations support proof search in exactly the same way

as Bibel's original characterisation of classical logic. Consequently, the search

methods that he and Andrews have already developed carry over without change

to the modal and intuitionistic systems [And8l,Bib8l,Bib82b]. In [Bib82b], Bibel

compares these methods (for classical logic) favourably with the most efficient

refinements of resolution. His results serve to demonstrate the degree of efficiency

we have achieved for the automation of proof search within the non-classical

logics under consideration.

One slightly unexpected contribution of our analysis of the problems of proof

search in modal and intuitionistic logics is that we are able to give a compre-

hensive classification of the redundancies within the alternative proof systems

proposed in the literature for automated proof search in these logics. It turns out

that all of them contain redundancies not shared by our matrix characterisations

(and some contain other, more serious problems as well).

To summarise: our contribution is two-fold,

We have succeeded in formulating efficient matrix proof methods for an

important class of non-classical logics, and have therefore solved our main

problem.

We have identified powerful techniques for improving the efficiency of

sequent-based proof procedures in general. These techniques can be ap-

plied individually when and where the prerequisite conditions apply, in

particular, to develop efficient methods of proof search in non-classical

logics.

We believe that this research is an important contribution to the field of auto-

mated theorem proving.

In the rest of this introductory chapter we consider the elements of the above

argument that we do not concern ourselves with in the main body of this thesis.

3

In §1.2, we present the motivation for our interest in the efficient automation of

proof search within non-classical logics in general, and modal and intuitionistic

logics in particular. In § 1.3, we define for the purposes of this thesis what is meant

by the "efficiency" of proof procedures for a given logic, and how that efficiency

may be improved. Since we do not go into the detail of proof procedures based

on the matrix characterisations of validity developed in the thesis, in §1.4 we

motivate our interest in this type of characterisation as a basis for practical proof

procedures. For those readers not familiar with matrix-based proof procedures

we include a short description of a simple example. Finally, in §1.5 we outline

the structure of this thesis.

1.2 Problem solving by computer.

Mathematical logic is an important tool for both the theory and practice of Com-

puting Science and Artificial Intelligence. Analytical techniques from logic form

the basic toolkit for the mathematical investigation of computational concepts

ranging from the semantics of programming languages (eg., [GMW79,Mar82]),

through the properties of distributed systems (eg., [Sti85b,HM84]), the integrity

and structure of databases (eg., [Gra84]), the representation of knowledge and

belief [Kon86,HM85], to the semantics of natural language [DWP81]. In many

of these applications, logic is not only used as a mathematical tool for analysis

but also as a practical tool for the representation and processing of information

(data). Our concern in this thesis is precisely this practical use of mathematical

logic as a formalism for representing and solving problems using a computer.

Mathematical logic, as a branch of mathematics, is primarily concerned with

the notion of logical consequence. A logic typically consists of a formal language

for writing sentences to represent information, and a consequence relation, 1=,

between sentences and sets of sentences. F 1= A expresses the fact that the

sentence A "follows from," or is a "logical consequence of," the set of sentences

F. If A follows from the empty set of sentences, we say A is valid in the logic.

4

Consequence relations are usually defined abstractly via an interpretation of

the formal language in some mathematical structure. This structure forms the

semantics of the logic (see eg., [CK73j).

There is a powerful method of solving problems using a combination of math-

ematical logic and a computer. Suppose we are given a problem to solve in some

domain. Suppose also that we have an algorithm that can determine whether

or not a given sentence of the logic is valid. If we can represent our problem as

a sentence of the logic in such a way that the original problem is solved if and

only if the sentence representing it is valid, then we can solve our problem by

executing the validity checking algorithm with the sentence as input. This prob-

lem solving method is utilised extensively in the applications mentioned above.

Deductive problems can obviously be solved in this way, but even problems such

as program synthesis can be transformed into such an inferential paradigm (see

eg., [MW80,Mar82,Con86j). In fact, one could argue that by viewing the logical

language as a programming language, and the validity checking algorithm as an

interpreter, this problem solving method is simply a generalisation of program-

ming itself [Kow79].

The problem solving method outlined above is based on two suppositions:

1. that we can faithfully represent our informal problem as a sentence of the

logic, and

2. that we have a suitable algorithm for checking the validity of sentences of

the logic.

Unfortunately, these two criteria are antagonistic.

The representation of a complex problem within a given domain as a sentence

(or sentences, if our algorithm checks logical consequence) of a formal logic is

not an easy task. The difficulty lies in ensuring that the sentence is a faithful

representation of the problem and the domain. This is eased if the semantics of

the logic captures some general properties of the domain. For example, suppose

5

our domain required reasoning about information flow through a complex sys-

tem and concerned the information available to components of the system. If

the formal language of the logic chosen to represent the problem contains oper-

ators whose semantics mirror the way in which information can flow throughout

the system we will be able to interpret sentences in the language informally,

enhancing our ability to judge whether the formalisation of the problem is faith-

ful. The representation of our problems within such a language will therefore

be conceptually easier than if the semantic structure of the logic bore no re-

semblance whatsoever to the structure of the domain. (This is analogous to the

ease a programmer might have in implementing a given recursive function in a

programming language with explicit recursion, compared to a language without

it.)

To summarise: in order to facilitate the correct representation of domains and

problems we need logics whose semantics captures general properties of those do-

mains. Typically then, each domain will require a specific logic. Turner [Tur84]

summarises a large number of domain-specific logics developed or adapted for

such representational use in Computing Science and Artificial Intelligence. Clas-

sical logic is just one such logic. Non-classical logics are the norm rather than

the exception for such applications. Of course classical logic, being particularly

general, can be used in situations where its semantic basis is not appropriate

by encoding the structure of the domain explicitly. Following the programming

language analogy: we could code our solutions to complex problems in a uniform

assembly language; classical logic being that assembly language.

Unfortunately, as soon as the semantics of a logic becomes non-trivial, check-

ing sentences for validity in the logic becomes difficult. Practically though, we

can still solve problems in the manner outlined above provided we are careful

about the way we formulate the algorithms. This is the main topic addressed in

this thesis in relation to modal and intuitionistic logics.

Modal logics, in particular, are used extensively in various branches of Arti-

ficial Intelligence and Computing Science as logics of knowledge and belief (eg.,

[Moo80,HM85,Kon84]), logics of programs (eg., [Har79,Pne771), and for such

6

tasks as the specification of distributed and concurrent systems (eg., [HM84,

Sti85b]). In many - if not all - of these applications the need arises for proof

systems which facilitate efficient automated proof search.

Modal logics are extensions of classical logic obtained by including the (unary)

modal operators and Q, the operators of necessity and possibility respectively.

They arose from a desire to formalise notions such as possibility. Hughes and

Cresswell's book [HC681 is a good introduction to the field of modal logics.

Whilst modal logics are extremely popular currently, the author's original

technical goal was to formulate an efficient proof procedure for intuitionistic

logic [Dum77]. This logic (and other formal systems with an intuitionistic basis)

has been identified as perhaps the central logic for capturing basic computa-

tional constructs. The crucial semantic notion that they formalise is that of

"construction" as can be seen from the intuitionistic interpretation of implica-

tion [Dum77]:

p is a proof of A = B if it is an effective operation that takes any proof

of A into a proof of B.

As motivation for the material presented in this thesis, intuitionistic logics are

being proposed as logics for program derivation. The problem of constructing

an algorithm that satisfies a given specification is mapped onto the problem of

proving the specification within an intuitionistic logic (see eg., [Mar82,Con86]).

The logics are usually typed, and a proof of the sentence:

Vx E A.3y E B.R(x, y)

within these intuitionistic logics defines a function, f, that takes an element

a, of the type A, to an element f (a) of the type B, such that R(a, f (a)) holds.

Although the design of algorithms is a difficult task, some aspects of this theorem-

proving process are amenable to automation. For that, we need efficient proof

methods for automated proof search in such logics.

7

1.3 The efficiency of proof procedures.

In this section we define what we mean by the "efficiency" of a proof procedure,

and outline the criteria by which we relate different proof procedures in the

sequel.

There are currently no general methods for comparing the efficiency of two

arbitrary proof procedures. The situation resembles the comparison of the effi-

ciency of different programming languages. The procedures may run on different

machines, or may require the setting of parameters, or the input of the problem

in a certain form, and so on. Typically, benchmark problems are used to provide

a primitive method of comparison.

Following Meltzer [Me171], we can decompose a proof procedure into two

components:

an inference system, and

a search strategy.

Inference systems are simply calculi, or refinements of calculi. For example,

the sequent calculus is an inference system for classical logic; so is the resolution

rule of inference. Given a sentence, an inference system induces a search space of

legal inference steps in which may lie proofs (or more generally: demonstrations

of the validity) of the sentence, if it is valid. We can define the completeness

of an inference system in the usual way, in terms of whether or not every valid

sentence has a proof in the search space induced by the inference system.

Search strategies are methods of traversing the space induced by an inference

system. We can talk about the completeness of a search strategy in terms of

whether or not it searches the entire search space.

In this thesis we are primarily concerned with inference systems. Our goal is

to define inference systems that induce as small a search space as possible, and

8

yet still remain complete. When we talk of "redundancies in a search space" we

mean that the space contains a class of interior nodes (derivations or some other

form of intermediate state) which can be uniformly eliminated by altering the

inference system without losing completeness. If a suitable modification is made,

the search space induced by the new inference system on an arbitrary problem

is wholly contained within the search space induced by the old inference system

for that problem. We say the new system is more efficient than the old. We talk

of a redundancy being "removed" from the old system to form the new one.

We could potentially run into problems in trying to relate the matrix char-

acterisations to the other inference systems proposed in the literature for modal

and intuitionistic logics. However,

The sequent/tableau proof systems [Fit83,Fit69] are easy to relate to the

matrix characterisations since we show explicitly how the latter are refine-

ments of the former.

The clausal resolution systems [Far82,Far83,Far86] do not treat the full

modal language and so are flawed in that respect. Moreover, in [Bib82b]

Bibel carefully compares refinements of clausal resolution with various

proof procedures based on the matrix characterisations. He defines proce-

dures that simulate the most efficient of the clausal resolution techniques.

The non-clausal resolution systems developed for these logics [AM86a,

AM86b] constitute the most comprehensive extension of resolution-based

ideas to modal logics. However, the use of resolution is restricted and ex-

plicit deduction rules rules are used to manipulate the modal operators.

These proof systems turn out to induce extremely redundant search spaces.

We describe how these redundancies arise mainly from the failure to deal

with the order dependence of the modal rules.

The hybrid resolution/ tableau systems [Kon84,Kon86] are not effective, in

that arbitrary search is required to determine the correctness of a single

9

inference. The relationship of these systems with the matrix characterisa-

tions is easily established due to their basis in tableaux.

In fact, using our analysis of the redundancies in sequent-based proof search we

are able to give a comprehensive classification of the redundancies within these

alternative proof systems.

1.4 Matrix-based proof search.

In this section we motivate our interest in extending classical matrix methods to

non-classical logics, as opposed to other styles of proof procedure.

1.4.1 Matrices, paths and connections.

The basic idea of the matrix methods, dating back to Prawitz' procedures

[Pra60], is that a formula of classical logic can be represented as a two-dimension-

al matrix. For example, the formula:

(P=:>- Q)A(Q=*- R) =*- (P=R)

can be seen as the matrix:
P0 Q°

u A u (P' = R°)

Q1 R'
Or, omitting the connectives:

QO

Q1 R'

(P1 R°)

This matrix consists of four columns. There is a natural notion of path through

such a matrix. A path is a set of atomic elements, one from each column of the

matrix. Two such paths are shown below.
--- P°---QR' °-- ---P° Q°

.(P'- - -R°) -- {P' - - -R°)- -

Q' Q1 '- -R1

10

One way of identifying the matrix representation of a formula is eliminate all

connectives except conjunctions and disjunctions, and push the negation symbols

down to the atomic level. This equivalent form of any classical formula is called

its negation normal-form. The negation normal-form of our example formula is:

(PA -iQ) V (QA -iR) v (-iPvR)

If we now replace a negated atom -iP by P1, and an unnegated atom P by P°

we get:

(P° A Q1) V (Q0 A R1) V (P1 V R°)

The superscript of an atom is called its polarity.

Finally, placing the components of a conjunction vertically, and the compo-

nents of a disjunction side-by-side, and omitting the connectives, we obtain the

matrix given above. Since disjunction is associative and commutative, we can

reorganise the columns (disjunctsl of the matrix thus:

P1 R°

Se
R1

Notice that this does not affect the contents of the paths through the matrix. It

should be noted that the matrix is a human aid for describing the method. No

normal-forming is needed to define the paths through it.

A connection (hence: "Connection Calculus") is a pair of atomic formula

occurrences in some path with different polarities, i.e., {P1, P°}. We say they

are complementary. Bibel and Andrews' characterisation of validity for classical

propositional logic is as follows:

THEOREM 1.1 (ANDREWS [AND81], BIBEL [BIB81]) A propositional for-

mula is classically valid if and only if every path through the (matrix representa-

tion of the) formula contains a complementary connection. That is, there exists

a set of connections in the formula (matrix) that are said to span it.

This characterisation translates the problem of checking a formula for validity

(in classical logic) into a path-checking problem: i.e., checking that every path

through the formula contains (as a subpath) a connection. In the next section

we consider how this path-checking can be performed.

11

1.4.2 Matrix-based proof procedures.

Both Bibel [Bib8l,Bib82a,Bib82c], and Andrews [And8l] develop proof proce-

dures based on matrix characterisations of validity for classical logic. Bibel

[Bib82b] shows that such procedures are comparable in efficiency with the stan-

dard refinements of resolution (and more efficient in most cases).

These proof procedures decompose into two components:

a path-checking algorithm, and

a method for testing the complementarity of two atomic formula occur-

rences.

For proof search in propositional logic, the second component is trivial; we need

only test whether two atoms are the same proposition, and have different po-

larities. For first-order logic Robinson's unification algorithm [Rob65] can be

utilised to test atoms for complementarity. The two atomic formulae of a con-

nection must unify.

The crucial point is this: Bibel shows in [Bib82b] that the central component

of such a proof procedure is the path-checking component. Provided the test

for complementarity is computationally tractable, it can be called on demand as

potential connections are identified. Each complementary connection serves to

check all of the paths of which it is a subpath. The differences between many

(resolution-based) proof procedures for classical logic can be analysed in terms

of how many of the paths they successfully eliminate from consideration out

of the set of paths that they are entitled to eliminate given a complementary

connection. We refer the reader to Bibel's paper [Bib82b] for more details.

The other side of this coin is that real improvements in the efficiency of proof

procedures are obtained by elaborating on this theme and trying to increase the

number of paths eliminated by each connection. Bibel and his co-workers have

developed many such efficient algorithms (see [Bib77,Bib82a,HB82] for example).

12

We describe a simple path-checking procedure below for concreteness. For a

tutorial introduction to these methods the reader is referred to [Bib83].

The matrix representation of the example formula of the last section is:

P0 Qo

P1 Ro

T

Q1 R1

We choose a column (indicated by the vertical arrow) and an element of that

column (indicated by the horizontal arrow). Next we search for a complementary

atom in the remainder of the matrix (formula). We identify the occurrence of P°

in the second column. This pair forms our first connection. We now eliminate

all paths through the matrix that contain that connection. These paths are all

those that pass through P' in the first column, continue into the second through

P°, and proceed onwards through the matrix. We move our vertical column

marker to the second column and a horizontal marker to the second row of that

column indicating that we are only interested in the paths that pass through

the first column and continue through the second element of the second column.

(We indicate the connection made with an arc.)
Po Qo

P1 Ro

Q 1

T

R1

We now search for an atom in the remainder of the matrix that is comple-

mentary to Q1. We find Q° (of course) and repeat the path elimination process

outlined above. Our markers become:
P0 Qo

P1 / R°

-+ Q1 --> R1

T

Notice how the horizontal markers keep a check on the set of paths we have yet

to consider, namely those that pass through P1 of the first column, Q' of the

second column, R' of the third column, and continue into the rest of the matrix.

13

Repeating the process for R' we make the final connection and, since there

are no paths left to check, the formula is proved valid by the three connections:

/,-Po Qo

P1 7 Ro

Q1 R1

We refer the reader to Bibel's book for a more detailed account of such path-

checking algorithms.

1.4.3 Path-checking algorithms for non-classical logics.

In the main body of this thesis we confine ourselves to a theoretical development

of matrix characterisations of validity and do not develop any particular proof

procedures based on these characterisations. We now justify this decision.

For each (non-classical) logic that we consider, we define what is meant by a

"path" through a formula and how two atomic formulae may be complementary.

These notions are thus logic-dependent. The validity of a formula is still captured

in terms of the existence of a spanning set of connections, but with the notion

of path and complementarity construed in this logic-dependent manner.

In fact, we go further. The logic-dependent component of the notion of a path

does not affect the propositional part of the definition which gives us the basic

matrix framework. In essence, the modal and intuitionistic matrix representation

of a formula is the same as the classical definition. The distinction between, say,

intuitionistic and classical logic, which share the same first-order language, is

captured solely in terms of the definition of complementarity. Moreover, we

show that the logic-dependent complementarity tests are tractable, for all of

the non-classical logics considered, and can be implemented by the standard

unification algorithm or minor modifications of existing equational unification

algorithms.

Consequently, the path-checking algorithms developed for classical logic carry

over with no change to the non-classical logics that we consider. For example,

an implementation of a matrix-based proof procedure for S5 modal logic was

14

developed by making minor modifications to a matrix-based proof procedure for

classical logic [WW87,Wi186].

Note that we are not saying that the complexity of checking a propositional

formula valid in (propositional) intuitionistic or modal logic is the same as the

complexity of checking the formula classically valid. The former problems are

(excluding S5) PSPACE-complete, and the latter NP-complete. For classical

propositional logic we need only consider one instance of the formula as our

matrix, and check the paths through that. If we find a non-complementary

path, we can conclude that the formula is falsifiable (and hence not valid). For

the propositional fragments of both intuitionistic logic and the modal logics

(excluding S5) we must consider additional "instances" of certain subformulae

as well as the basic formula before we can conclude that the formula is falsifiable.

This duplication increases the number of distinct paths through a formula and

hence the number we have to check. The duplication is reminiscent of Herbrand's

Theorem for first-order logic. To summarise: we can determine the validity of a

formula in all of the logics with roughly the same computational resources, but,

if we cannot immediately prove it valid, the space we must search in order to

demonstrate its falsifiability is much larger in the intuitionistic and modal cases

than in the classical case. This provides us with an interesting perspective on

the role of complexity results in automated theorem proving.

1.4.4 Summary

In this section we have motivated our interest in extending matrix proof methods

to non-classical logics. We have also outlined the properties of the classical

matrix methods that we preserve in the non-classical matrix methods so as to

render existing proof procedures applicable for the path-checking component of

the search. We have also outlined a simple path-checking procedure for those

readers not familiar with this work.

15

1.5 The structure of the thesis.

We have motivated our interest in efficient proof methods for non-classical logics

(§1.2) and outlined the criteria we use to define the relative efficiency of proof

procedures (§1.3). We have also indicated why we are interested in extending ma-

trix proof methods (as opposed to other types of proof method) to non-classical

logics and the properties of such methods that the extension must preserve to

retain their computational properties (§1.4).

The thesis is divided into three parts, each dealing with proof search in a

different logic or class of logics.

Part I: In this part of the thesis we are concerned with automated proof search

in classical logic. The part contains two chapters.

Chapter 2: In this chapter we analyse and classify the redundancies in

the search space induced by a standard sequent calculus for classical

logic.

Chapter 3: In this chapter we present Bibel's Connection Calculus: a

matrix characterisation of validity for classical logic, as a collection of

theoretically motivated techniques for removing specific redundancies

inherent in sequent-based proof search.

Part II: This part of the thesis is concerned with modal logics. It forms the

main body of the thesis and comprises five chapters.

Chapter 4: In this chapter we present the syntax and semantics of the

modal logics K, K4, D, D4, T, S4 and S5. We also present standard

sequent calculi for a subset of these logics.

Chapter 5: In this chapter we analyse redundancies in the search space

induced by the modal sequent calculi. Good use is made of the some-

what logic independent classification developed in Part I to classify

16

these redundancies and thus prepare the way for the application of

the appropriate techniques for their removal.

Chapter 6: In this chapter we develop the matrix characterisations of

validity for the target modal logics. We prove the characterisations

correct and complete. This is the main theoretical chapter of the

thesis.

Chapter 7: In this chapter we demonstrate properties of automated proof

search based on the modal matrix characterisations. In particular, we

demonstrate that the search spaces induced by the matrix character-

isations are free from the redundancies identified within the sequent

search space. We also discuss:

The use of equational unification algorithms that form central

components of proof procedures based on the modal matrix char-

acterisations.

The use of the matrix characterisations to develop efficient de-

cision procedures for the propositional fragments of the target

modal logics.

This is the main evaluation chapter in the thesis.

Chapter 8: In this chapter we discuss the relative merits of the other

major proposals in the literature for the efficient automation of proof

search in similar classes of modal logics. This is the main related work

chapter.

Part III: This part of the thesis is concerned with first-order intuitionistic logic.

Chapter 9: In this chapter we repeat for the case of intuitionistic logic

the development given in Part II for the modal logics. We present

and analyse a standard sequent calculus for this logic, then proceed

as before to develop a matrix characterisation of validity using the

(by now) well-tried techniques identified in Part I.

17

Chapter 10 concludes the thesis with a summary and evaluation of the results

obtained and a survey of interesting open problems, technical developments and

alternative applications of the techniques developed and employed in this thesis.

18

Part I

Automated Proof Search in

Classical Logic.

19

Summary.

In this initial part of the thesis we present a theoretical reconstruction of Bibel's

Connection Calculus [Bib82a]: a matrix characterisation of validity for first-order

classical logic. Our main contribution is not the final characterisation arrived

at, which is essentially that given by Bibel in [Bib80,Bib82c], but the systematic

method by which we develop it. That method is as follows:

First, we analyse the proof search space induced by a standard, cut-free,

sequent calculus for classical logic. We identify three problems of redun-

dancy:

- Notational redundancy: considerable duplication of the same infor-

mation.

- Relevance: the inclusion in the search space of branches that cannot

lead to a proof.

- Order dependence: the need to explore alternative branches in the

search space that differ only in the order in which certain sequent

rules are applied.

Then we present the major features of the matrix characterisation, as prin-

cipled methods for removing these redundancies.

In this way we view the matrix characterisation as a collection of theoretically

motivated techniques for removing the redundancies inherent in sequent-based

proof search, rather than as an adhoc proof method for classical logic (as it has

been seen in the past). In short: we derive, or generate, the matrix characteri-

sation from consideration of a cut-free sequent proof system [Wa186].

In Parts II and III we use the techniques identified in this part of the thesis to

formulate matrix characterisations of validity for modal and intuitionistic logics

respectively. We consider these results to be ample evidence of the power of the

analysis presented here.

20

To reiterate: our contribution is not the formulation of the matrix charac-

terisation for classical logic itself (which is essentially due to Bibel), but the

identification of individual abstract techniques within Bibel's work for the re-

moval of specific redundancies in sequent search spaces. We are then able to

apply the techniques individually to other logics when and where they are ap-

plicable. As a particular case in point, consider our analysis of unification as a

method for overcoming the order dependence of the sequent rules for quantifiers.

The utility of unification for dealing with the substitutional aspects of classical

quantifiers is well-known, but, in our opinion, the use to which it can be put in

the automation of proof search in non-classical logics has not been apparent due

to the traditional emphasis on Skolemisation within resolution-based systems.

At best, it is seen as a technique for dealing with the quantificational aspects

of such logics (see eg., [AM86a,Kon86]). We show in Parts II and III that as

a proof-theoretic tool for removing dependence on the application order of se-

quent rules unification can play a crucial role in the formulation of efficient proof

procedures even for propositional modal and intuitionistic logics.

This part of the thesis comprises two chapters. In Chapter 2 we present a

standard cut-free sequent calculus for classical logic and analyse the search space

of derivations it induces. We identify the redundancies mentioned above by

means of examples. In Chapter 3, taking each redundancy in turn, we introduce

the appropriate theoretical structure to support its elimination from the search

space. The final result is a matrix characterisation of validity for classical logic.

21

Chapter 2

Sequent-based proof search in

classical logic.

2.1 Introduction.

In this chapter we present a standard cut-free sequent calculus for classical logic

and analyse some properties of the search space induced by this inference sys-

tem. Our attention is focussed on the suitability of the calculus as a basis for

automated proof search.

First we review the language and semantics of classical logic for the sake

of completeness (§2.2). Readers familiar with this material can safely skip this

section. After that we introduce the sequent calculus and some terminology for

the ensuing discussion (§2.3). In §2.4, we consider how the calculus can be used

to search for proofs and describe the search space of derivations that it induces.

Finally, in §2.5 we identify three problems of redundancy in this search space

by means of examples. In Chapter 3 we formulate specific techniques for the

removal of these redundancies. These techniques are abstractions of methods

used by Bibel in the formulation of his Connection Calculus for classical logic

[Bib80,Bib82c].

22

2.2 Syntax and semantics.

In this section we review the syntax and semantics of classical logic. This ma-

terial is included for completeness and, since it is standard, the presentation

is brief. Readers are referred to Smullyan's book [Smu68] for a more detailed

development in the same style.

2.2.1 Syntax.

We consider a first-order language comprising:

1. A denumerable list of n-ary predicate symbols P", Q", ..., for each natural

number n.

2. A denumerable list of individual variables x, y, z, (possibly subscripted).

3. An infinite set of individual constants c, d, (possibly subscripted).

4. The sentential connectives A, V, = and

5. The quantifiers V and 3.

As usual we assume the sets of symbols to be disjoint. We omit the arity of

predicate symbols when it is clear from the context or irrelevant. We shall refer

to the variables and constants together to be the individual symbols.

REMARKS. The above definition defines a class of languages dependent on

particular choices of predicate, variable, and constant symbols. We assume some

fixed set of predicate and variable symbols but allow the set of constants of the

language to vary. If C is a set of constants, by "a first-order language over C"

we mean a language defined as above whose constant symbols are among C.

Notice that the language contains no function symbols. We impose this

restriction because it simplifies our discussions below. The matrix characterisa-

tions developed in the next chapter are therefore subject to this restriction. We

23

stress: the restriction is for technical convenience only. In a concluding section

of the next chapter we show explicitly how this restriction can be lifted. (END

OF REMARKS.)

Formulae can be defined inductively according to the following formation

rules. The atomic formulae are n + 1-tuples Pcl ... c, , where P is an n-ary

predicate symbol and the c;, i = 1, ... , n, are individual symbols (i.e., variables

or constants). The set of formulae is the smallest set such that: if A and B are

formulae, and x is an individual variable,

the atomic formulae are formulae;

-iA, A A B, A V B and A = B are formulae;

VxA and 3xA are formulae.

We shall use A, B and C as meta-variables ranging over formulae.

Notions such as "free" and "bound" occurrences of individual variables within

a formula are defined as usual, as is the notion of the substitution of an individual

constant c for a free variable x in A, denoted by A[c/x]. We shall not repeat the

definitions explicitly here. Formulae with no free occurrences of variables are

called sentences. Pure sentences are those containing no constants.

Immediate and free immediate subformulae are defined as follows:

A is an immediate (and a free immediate) subformula of -,A; both A and

B are immediate (and free immediate) subformulae of A A B, A V B and

A = B.

For any individual constant c, individual variable x and formula A, A[c/x]

is an immediate subformula, and A is the free immediate subformula of

VxA and axA.

The notion of a (free) subformula is defined by:

24

If A is a (free) immediate subformula of B, or identical to B, A is a (free)

subformula of B.

If A is a (free) subformula of B, and B is a (free) subformula of C, A is a

(free) subformula of C.

A formation tree for a formula A is a tree whose root is labelled by A, whose

leaves are labelled by the free atomic subformulae of A, and whose interior nodes

are formed as follows:

If -A is at an interior node, the node has one child with A at that node.

If either A A B, A V B or A = B is at an interior node, the node has two

children with A at the first child and B at the second.

If either VxA or 3xA is at an interior node, the node has one child with A

at that child.

Notice that the formation tree for a quantified formula is finitely branching and

of finite depth.

REMARK. The notion of formation tree defined above is not quite standard.

Formation trees are normally defined to be infinitely branching at nodes labelled

by formulae whose major symbol is a quantifier, say VxA. The children of such

a node are then labelled by the immediate subformulae of VxA, rather than its

free immediate subformula as defined above. We find the definition given more

suitable for our subsequent discussion. (END OF REMARK.)

2.2.2 Semantics.

We present a semantics for the first-order language(s) introduced in the last

section based on that given by Smullyan [Smu68]. A similar form of semantics

will be given for the modal logics in Part II.

Let D' be a set of constants, and D a non-empty set, called a domain, with

D fl D' = 0. An interpretation (of the first-order language over D') in the domain

25

D is a mapping from D' into D, and from the n-ary predicates of the language

to n-place relations on D. It is technically convenient to extend interpretations

to D' U D, by defining them to be the identity function on D. A model is a pair

(D, t) where D is a domain and c an interpretation in that domain.

An atomic sentence Pcl ct, is true in the model (D, t) just in case the n-

tuple: t(cl) , ... , t(ct,), is in the relation t(P) over D". It is false in the model

otherwise.

This defines the truth conditions for atomic sentences. The definition is

extended to all sentences of the language as follows: for any model (D, c),

1. -A is true in (D, t) if A is false in (D, c).

2. A A B is true in (D, t) if both A and B are true in (D, c).

3. A V B is true in (D, t) if either A or B is true in (D, c).

4. A = B is true in (D, t) if either A is false or B is true in (D, c).

5. VxA is true in (D, t) if for every c E D, A[c/x] is true in (D, t).

6. 3xA is true in (D, t) if for some c E D, A[c/x] is true in (D, c).

A sentence is satisfiable if it is true in at least one model. A sentence is valid

if it is true in all models.

26

2.3 The sequent calculus.

In this section we develop a cut-free sequent calculus for classical logic. The

material is quite standard, so we introduce just the concepts and terminology

utilised in the rest of this thesis. More leisurely treatments of the same material

can be found in the books of Kleene [Kle68] or Gallier [Gal86], or Gentzen's

original paper [G69].

We consider a first-order language as before, but with the set of constants

comprising:

A denumerable set of individual constants Co.

A denumerable set of parameters Po.

Henceforth, we call the union of these sets Do. We use a, b to denote parameters,

and c, d to denote elements of Do (i.e., individual constants or parameters).

REMARK. We use the calculus to prove sequents of the language over Co

(i.e., just including the individual constants) but the proof itself may involve

sequents of the language over Do (i.e., including both parameters and individ-

ual constants). We use parameters in the same way as some authors use free

variables. (See eg., [K1e68].) (END OF REMARK.)

A sequent is an ordered pair (I', A) of finite sets of sentences over Do, written

r -- A . r is the antecedent and A the succedent of the sequent; we write

) A and r -- for the sequents (0, A) and (I', 0) respectively. Following

convention, we write r, A for the set r u {A} and A, A for the set A U {A}.

A sequent is interpreted semantically as follows: r --> A is true in a model

just in case, if all the elements of r are true in the model, at least one element

of A is true in the model. A sequent is valid just in case it is valid in all models.

The rules of the calculus fall into three categories: basic sequents or axioms,

operational rules and structural rules. Since our sequents are formed from sets

27

rather than sequences of formulae (in contrast to Gentzen's original formulation

[G69]) we have no need for structural rules. This point is explained in more

detail below. The basic sequents are instances of the schema:

F,A-->A,A.

The operational rules appear in pairs, each pair associated with a particular sen-

tential connective or quantifier. One rule introduces the connective/ quantifier

into the antecedent, the other introduces it into the succedent. The operational

rules for a sentential connective or quantifier permits the introduction of a for-

mula with the symbol connective or quantifier as its major symbol into a sequent.

There is one rule for introducing such a formula into antecedents, and one for in-

troducing it into succedents. The complete system is summarised in Figure 2-1.

An occurrence of a formula of a sequent is called an S-formula (short for

"sequent-formula"). If it appears in the antecedent of the sequent it may be

called an antecedent S-formula; if it occurs in the succedent, it may be called a

succedent S-formula.

In each of the operational rules, the sequent(s) above the line is called the

premise(s), and the sequent below the line the conclusion of the rule. The S-

formula in the conclusion whose major symbol gives the rule its name, is called

the principal S-formula of the inference. The occurrence(s) of its immediate

subformula(e) in the premise(s) of the rule instance is (are) called the side S-

formula(e) of the inference.

A derivation in this calculus is a tree structure in which each interior node

is an instance of one of the rules given above (in the usual way). The sequent at

the root of the tree is called the endsequent of the derivation, while the sequents

at the leaves of the tree are called, appropriately, the leaves of the derivation. A

derivation is said to be a derivation of its endsequent from its leaves. A proof of

a sequent (over CO) is a derivation of that sequent all of whose leaves are basic

sequents.

28

F, A ---> A, A

r--+A,A r,B --A
=>.)

r,A--+B,A
F, A B ---) A F ---* A = B, A

F, A, B --) A r --* A, A r --+ B, A

F, AAB - A
A r ---* AAB, A

r,A --*A r,B --*A r --->A,B,A
r,AVB -)A r --*AVB,A

r)A,A r,A --+A
r,-,A>A r)-,A,A

F, A[c/x] -> A
r,`dxA -- A

F, A[a/x] -> A
F, 3xA ---> A

F -- A[a/x], A
V

F --> `dxA, A

r -> A[c/x], A

---* V

-' F ----+ 3xA, A
3

For the ---* `d and 3 -> rules: the parameter a must not occur in the

conclusion.

Figure 2-1: A cut-free sequent calculus for classical logic.

29

Thinning:
r) A r ---) A

r A >A r--->A A

Contraction:

,

r A A > A

,

r A A A , , ---> , ,

r A >A r A A

Interchange:

, ,

r, A, B ---> A r ---> A, B, A
r, B, A ---> A r ---> B, A, A

Figure 2-2: Structural rules for Gentzen's sequent calculus.

In Gentzen's original formulation, the r and A in the sequent r --+ A

stand for sequences of formulae. The calculus is then extended with rules for

manipulating the structure of sequents. These rules permit:

the introduction of new S-formulae into both the antecedent and the succe-

dent;

the contraction of two S-formulae that are identical as formulae in both

antecedent and succedent, and

the interchange of two S-formulae in both antecedent and succedent.

The rules, called "thinning," "contraction" and "interchange" rules respectively,

are summarised in Figure 2-2.

In our formulation, the r and A in the sequent r ---> A stand for sets of

formulae. Consequently,

r,A,A = r,A

and

r,A,B = r,B,A,

30

by the properties of sets alone. (Recall that we use r, A to denote r U {Al.)

This explains the absence of contraction and interchange rules.

A further difference between Gentzen's formulation and ours occurs in the

basic sequent. Gentzen took

A)A

as the schema for basic sequents. We have taken the more general schema:

r, A -> A, A.

Consequently there is no need in our formulation for the thinning rules. Formulae

that would have been introduced by thinning can instead be introduced in the

basic sequents. Our choice was based on the fact that we utilise the rules in an

inverted fashion as reduction rules. Our formulation of the basic sequent is more

natural for this method of proof search (see §2.4).

Set based formulations of the sequent calculus are quite common, eg., [Smu68,

Lyn66,Dum771, and we refer the reader to these authors for further details.

This concludes our presentation of the calculus. It is complete for classical

logic in the sense that any sequent r -) z (over Co) is valid iff r --> L1

is provable in the calculus (see eg., [K1e68]). In particular, a sentence, A (over

Co), is valid iff the sequent: -) Al is provable (by the definition of validity for

sequents). In the next section we present a number of example derivations and

proofs within this calculus.

REMARK. The calculus is called "cut-free" because of the absence of the

so-called "cut" rule:

r->A,L1 r,A->L1
r) A

cut

This rule was included in Gentzen's original formulation of the sequent calculus

to facilitate the translation of "natural deduction" proofs into proofs within the

sequent calculus. Gentzen showed that any proof of a sequent involving the

cut-rule could be translated into a proof in which the cut-rule is not used: a

"cut-free" proof [G69]. (END OF REMARK.)

31

2.4 Search methods.

In this section we outline how the calculus may be utilised to determine the

validity of a sentence, and hence how it induces a search space of derivations.

We have presented the sequent calculus as a set of axioms (basic sequents)

and a set of inference rules (operational rules). To determine the validity of a

sentence A (over CO), we can start from some axioms and try to construct a proof

of the sequent ---> A. A little thought will reveal that this synthetic method

is not very directed. How are we to decide which basic sequents to start with?

How can we decide which constructions are leading us toward the desired goal?

We consider this method of proof search no further.

A more sensible method is to examine the sequent we wish to prove and see

which rules could possibly be used to construct such a sequent. For example,

suppose we are interested in determining the validity of the sentence: (P =
Q) A (Q = R) = (P = R). We form the sequent:

(P=Q)A(Q=R)=(P= R),

and ask the question: "which rules have such a sequent as an instance of their

conclusion?" Since there is only one S-formula, it must form the principal S-

formula of the inference. Since it is a succedent S-formula, and its major connec-

tive is the implication symbol, the only rule with such a sequent as an instance

of its conclusion is the --->= rule. We can thus form a derivation with the

appropriate instance of the premise of the --->= rule as its only leaf, and our

target sequent as endsequent:

(P=Q)A(Q=R) ---> P=R
(2.1)

---) (P=Q)A(Q=R) = (P=R)

Now repeat the process. Choose a leaf of derivation 2.1 (there is only one)

and look at its structure. The sequent in question comprises two S-formulae.

We are faced with a choice. A new derivation could be constructed by applying

(in an inverted sense) the --->= rule once again, but this time with the current

32

succedent S-formula P = R as principal formula. Alternatively, a new derivation

could be constructed by applying (in an inverted sense) the rule A -->, with the

antecedent S-formula (P = Q) A (Q = R) as principal S-formula. We show the

derivations that result from each choice below.

(P = Q) A (Q = R) P --) R , -- (2 2 .) (P=Q)A(Q=R) --) P=R =>
+ =R R P P= A -) () = (Q (Q)

P=Q Q=R --> P=R ,
A 3 2 (P=Q)A(Q=R) -- P=R --) (.

--) (P=Q)A(Q=R) = (P=R)
The choice we are faced with we shall term a disjunctive or "OR" choice. It

is conceivable that by making the wrong choice at this point we will explore

derivations that are not extendable to proofs.

REMARK. In actual fact, for the propositional fragment of this calculus, it

can be shown that such a situation does not arise; i.e., we can make this choice

arbitrarily and are guaranteed not to rule out the possibility of extending the

resultant derivation to a proof; that is if a proof of the endsequent exists at all.

This is not the case for the full first-order calculus, nor for any of the sequent

calculi we present for the "non-classical" logics considered in the sequel, even for

their propositional fragments. We return to this issue in §2.5.3 below. (END OF

REMARK.)

Continuing in this analytic manner, consider first derivation 2.2. It has only

one leaf, in which there is only a single non-atomic S-formula: (P = Q) A (Q =
R). The major symbol of this formula is the conjunction symbol. Consequently

there is only one rule applicable: A --). The resulting derivation is:

P=Q, Q=R, P -- R
(P=Q)A(Q=R), P --) R

(P=Q)A(Q=R) --) P=R
- + (P=Q)A(Q=R) (P=R)

Now consider derivation 2.3. Although there is still only one leaf sequent,

it contains three non-atomic S-formulae. All have the implication symbol as

33

their major symbol. We can apply the (inverted) rule -= to P = R, or the

(inverted) rule =:>.- to either of P = Q or Q = R. We shall choose the first

possibility. The resulting derivation is:

P=Q, Q=R, P - R
P=Q, Q=R -* P=R

(P=Q)n Q=R --> P=R
) (P=Q)A(Q=R) (P=R)

Notice that the leaves of derivations 2.4 and 2.5 are identical even though

the (inverted) rules were applied in different orders to construct them. Of course

this would not have been the case had we made the last OR-choice differently.

We shall return to this issue below (§2.5.3).

We abandon our parallel development and extend derivation 2.4 only. Choose

the first antecedent S-formula of the leaf sequent of this derivation to form the

principal S-formula of the next (inverted) rule application. (There is one other

OR-choice at this point.) The =- rule has two premises, so the derivation

becomes:

Q=R,P - P,R Q=R,P,Q - R
P=Q, Q=R, P - R

(P=Q)A(Q=R),P -' R
(P=Q)A(Q=R) -- P=R

---4 (P=Q)A(Q=R) (P=R)

Notice that the left-hand leaf is a basic sequent since there is an occurrence of

the atomic formula P in both the antecedent and succedent of the leaf. We need

not extend the derivation at this leaf any further to produce a proof; the leaf is

said to be closed. Of course, this state of affairs does not always pertain after

the (inverted) application of a rule with two premises. If the leaf had not closed

we would have been faced with a choice as to which of the two leaves of the

derivation to extend next. However, since all of the leaves of a proof must close

in order for the derivation to form a proof, we have at some time to extend all

leaves that are not yet basic sequents. This sort of choice we call a conjunctive

or "AND" choice, since we must consider both possibilities at some time.

34

Returning to the example. Derivation 2.6 has only one unclosed leaf, and

that leaf contains only one non-atomic S-formula. We have no option but to

apply the = --> rule once more. The resulting derivation is:

P , --> Q , P,Q,R --+ R
QR,P--+ P,R Q=-R,P,Q>R

P=Q,Q=R,P --> R

(P=Q)A(Q=R), P --* R -

(P=Q)A(Q=R) ---> P=R
-* (P=Q)A(Q=R)(P=R)

Notice that all leaves of this derivation are closed, hence it is a proof.

The discussion above indicates how the sequent calculus defines a search

space of derivations. We say that the act of extending a derivation by applying

an inverted sequent rule in the manner described reduces the principal S-formula

of the inference. The leaf of the derivation is also said to have been reduced. The

goal is to reduce the endsequent until all the leaves of the resulting derivation are

closed. The result is the desired sequent proof. Used in this way the calculus is

essentially an analytic tableau system (or more precisely, what Smullyan [Smu68]

calls a block tableau system.) The inverted rules are the tableau reduction rules.

2.4.1 Duplication and generative S-formulae.

In our examples above we extended derivations with leaf sequents of the form:

AAB --) C

by reducing them as follows:

A, B -* C
AAB -->C

Because sequents are formed from sets, and

A ---*

AAB --> C = AAB, AAB --+ C

the antecedent S-formula: A A B, can be "preserved" through a reduction if we

so desire. The reduction step would then look like this:

A A B, A, B -* C
A -- (2 9) . AAB -->C

35

Notice that we must choose between four S-formulae in order to extend deriva-

tion 2.9 (since there are four S-formula in the leaf of the derivation: A A B, A,

B and C), but between only three in order to extend derivation 2.8. We clearly

desire to keep such duplication to a minimum while still retaining completeness.

The reader should check that we uniformly refused to duplicate formulae in

this manner during reductions in our examples. It can easily be shown that

for the propositional fragment of the calculus this decision does not compromise

completeness. Unfortunately, for the full calculus this is not the case. The

problem lies with the "universal" rules: V --- and --) 3 which, when used to

reduce leaves of derivations, can introduce any constant or parameter into the

leaf of the extended derivation.

In certain proofs, we must reduce:

antecedent S-formulae of the form: VxA, or

succedent S-formulae of the form: 3xA,

more than once, each time with a different constant or parameter. We call S-

formulae of this type generative. Duplication, in the manner described above, of

generative S-formula is essential to retain completeness.

A simple example will illustrate the problem. Consider the sequent:

> Vx(Px V Qx) = (Pc V Qd) V Pd

where c and d are individual constants. If we extend this derivation by reducing

the implication and succedent disjunctions we reach:

Vx(Px V Qx) -- Pc, Qd, Pd
Vx(Px V Qx) -- Pc V Qd, Pd --> V

V
Vx(Px V Qx) -- Pc V Qd V Pd --

(2 10)
> Vx(Px V Qx) = (Pc V Qd) V Pd

.

36

There is only one S-formula to reduce in the leaf of derivation 2.10. We reduce

this S-formula introducing the constant c. Without duplication, we get:

Pc V Qc ---> Pc, Qd, Pd
Vx(Px V Qx) ---> Pc, Qd, Pd
Vx(Px V Qx) ---> Pc V Qd, Pd --V
Vx(Px V Qx) --> Pc V Qd V Pd --V

(2 11)
) V (P V Q) = (P V d) V Pd

.
x x x c Q

whereas with duplication we get:

Vx(Px V Qx), Pc V Qc --* Pc, Qd, Pd
Vx(Px V Qx) --> Pc, Qd, Pd
Vx(Px V Qx) ---> Pc V Qd, Pd
Vx(Px V Qx) --> Pc V Qd V Pd

> V P V Q) = (P V Qd) V Pd x(x x c
(2.12)

Proceeding in parallel, there is only one possible extension of derivation 2.11 via

the reduction of the disjunction:

Pc ---> Pc, Qd, Pd Qc ---> Pc, Qd, Pd
Pc V Qc - Pc, Qd, Pd

Vx(Px V Qx) --> Pc, Qd, Pd
Vx(Px V Qx) --> Pc V Qd, Pd
Vx(Px V Qx) --> Pc V Qd V Pd

) Vx(Px V Qx) = (Pc V Qd) V Pd

We choose the same reduction to extend derivation 2.12 giving us:

(2.13)

Vx(Px V Qx), Pc ---- Pc, Qd, Pd Vx(Px V Qx), Qc --+ Pc, Qd, Pd
Vx(Px V Qx), Pc V Qc ---> Pc, Qd, Pd

Vx(Px V Qx) --> Pc, Qd, Pd
Vx(Px V Qx) --> Pc V Qd, Pd
Vx(Px V Qx) --> Pc V Qd V Pd

) Vx(Px V Qx) = (Pc V Qd) V Pd
(2.14)

The left-hand leaf of derivation 2.13 is closed, but the right-hand leaf is not.

Furthermore, we cannot extend the derivation to a proof since all of the S-

formulae of the right-hand leaf are atomic. The left-hand leaf of derivation 2.14

is also closed, and the right-hand leaf not. We can extend the derivation to a

--> V

--V

37

proof by reducing the generative S-formula in the antecedent once again, this

time introducing the parameter d. We leave the subsequent details to the reader.

We could formulate the calculus with alternative rules that reflect the need

to consider such duplication of generative S-formulae. The alternative rules are

as follows: (see eg., [K1e68])

r, VxA, A[c/x] --1
b

r ---Y 2xA, A[c/x], i
r, `dxA ---> A -- r --- 3xA, A

If we replace the corresponding rules of Figure 2-1 with the rules above, we can

uniformly make the restriction that no duplication, other than that built-in to

these quantifier rules, should occur during a reduction, and still retain complete-

ness. With this change the system as used for proof search (i.e., inverted) is

precisely the block tableau of Smullyan [Smu68].

The method outlined above for determining the validity of a sentence is fre-

quently proposed, and actually implemented, as a practical method for auto-

mated proof search; see eg., [BT75,GMW79,D84,OS86]. Although such sequent-

based methods are used for classical logic occasionally, they are of particular

interest when the logic is non-classical, since sometimes they are the only proof

methods available (eg., [GMW79,Wri85]). Particular cases in point are modal

and intuitionistic logics. In the next three sections we discuss certain properties

of this search space by means of examples. Our conclusion is that sequent-based

search is a poor method of determining the validity of sentences in classical and

other logics. Our purpose in the rest of this thesis is to develop alternative

methods.

2.5 Redundancy in the sequent search space.

In this section we investigate the structure of the search space induced by the

sequent calculus. We identify three major redundancies in this space, which we

term:

notational redundancy (§2.5.1);

38

relevance (§2.5.2), and

order dependence (§2.5.3).

We present examples to illustrate each form of redundancy.

In Chapter 3 we derive a matrix characterisation of validity for classical

logic based on the analysis contained in this section. In Parts II and III we

perform a similar analysis of cut-free sequent calculi for modal and intuitionistic

logics. These analyses also support the development of matrix characterisations

of validity for these "non-classical" logics. These matrix characterisations avoid

the above redundancies.

2.5.1 Notational redundancy.

The first issue we focus on is a simple one theoretically, but of great practical

concern. It concerns the representation of the intermediate states of the search

space induced by the sequent calculus. These states are derivations. If the

formula being tested for validity is large, the intermediate derivations can them-

selves become very large. Moreover, there is a lot of shared structure between

the derivations since formulae are repeated time and again within different se-

quents. Due to the existence of OR-choices in the search space, there is a need

to maintain multiple states at one time (except perhaps if one adopts an incom-

plete depth-first search [CL73]). The representational overhead in implementing

sequent-based proof search can become prohibitive.

The methods of analytic tableaux [Smu68,Fit83} overcome this problem to a

certain extent, by not repeating formulae in distinct sequents, and maintaining

information common to many sequents within one branch of the tableau. Even

tableau, though, require the multiple representation of all the subformulae of a

complex formula as it is progressively reduced.

Some of this repetition is however necessary. The reduction of a generative

formula, say an antecedent S-formula of the form VxA, with the individual sym-

bol c, introduces the subformula A[c/x] to the derivation. As mentioned in the

39

previous section, we may need to consider multiple subformulae of VxA in the

derivation, i.e., A[c/x], A[d/x], ... etc, to retain completeness.

In the next chapter we present a generalisation of Bibel's technique [Bib82c]

for solving this problem and capturing the shared structure between sequents.

The technique supports the representation of the subformulae of generative S-

formulae, such as VxA above, without recourse to copying the main structure of

A. The technique is based on the notion of a formula tree and multiplicity and

the technique of structure sharing [BM72] developed for resolution-based proof

systems.

2.5.2 Relevance.

The second issue concerns the manner in which we make OR-choices during

the search. Consider the (valid) formula: A A (B A P) = P, where P is an

atomic formula and A and B are arbitrary formulae. The first two steps in the

construction of a proof of this formula are completely determined, leading to the

derivation:

A, B A P ----> P
AA (B AP) -f P

) AA (BAF) =P

At this point we have an OR-choice: whether to reduce the S-formula A or the

S-formula B A P. Suppose our method of resolving OR-choices was to always

reduce the "leftmost" S-formula in the sequent. Our next step would be to

reduce A. If A were some complex formula we could expend a large amount of

effort reducing it and its subformulae, even though such reductions may not help

us reach a basic sequent. On the other hand, reduction of the other antecedent

S-formula leads to a proof immediately. It should be clear that such pathological

examples can be constructed whatever uniform method of resolving OR-choices

we adopt. This is the problem we term relevance, and it is due to the fact that

the obvious sequent-based search methods only utilise information concerning

the major connectives of the S-formulae of the sequent being reduced [Wa186].

40

In the next chapter we introduce the notions of path and connection to over-

come this problem. These notions are generalisations of those developed by Bibel

[Bib8l] and Andrews [And8l]. The notion of "path" was considered originally

for formulae in conjunctive normal-form by Prawitz [Pra60].

2.5.3 Order dependence.

We now come to the most fundamental problem with sequent-based proof search.

The problems of notational redundancy and relevance are essentially proposi-

tional. The issue addressed in this section arises within the propositional frag-

ment also, but is more serious within the full first-order system.

The search method outlined above consists of applying sequent rules in an

inverted fashion to extend derivations. We say the leaf sequent is reduced by the

rule application. We identified four sorts of choice in this process:

AND-choices: which leaf of a derivation to extend.

OR-choices: given a leaf, which S-formula of the sequent to reduce.

Universal choices: if the S-formula to be reduced is generative, which pa-

rameter or constant to introduce.

Existential choices: if the S-formula to be reduced is not generative, but

requires the introduction of a parameter, which new parameter to choose.

Since every leaf of a derivation must be closed for it to constitute a proof, it is

irrelevant how we make the AND-choices. Since for an existential choice, the

parameter introduced must be new, we can choose arbitrarily from our denu-

merable set. We are left with the OR-choices and universal choices.

2.5.3.1 The propositional fragment.

Consider first the propositional fragment of the calculus, i.e., there are no uni-

versal choices. We remarked in §2.4 that for the propositional fragment we can

41

make OR-choices arbitrarily; that is, fix a uniform method (such as "left-most"

etc) of resolving the choice of which S-formula of a given leaf sequent to reduce.

At worst, a bad choice will lead to a larger search as described in §2.5.2, but if

the current leaf can be extended to a subtree all of whose leaves are closed, then

any method of resolving OR-choices will eventually cause the subtree to close.

REMARK. We shall not formalise this result since it is well-known. An

intuitive argument can be made as follows. Define the degree of a sequent to

be the number of connectives in its S-formulae. Each operational rule of the

propositional fragment of the calculus has the property that the degree of its

premises is less than the degree of its conclusion. If we follow our restriction

of never duplicating S-formulae when they are reduced, the degree of the new

leaf sequent(s) of the extended derivation is less than the degree of the sequent

from which they were generated. Any branch of a derivation (a path from the

root of the derivation to a leaf) can be extended only a finite number of times

before all the S-formula remaining in the leaf are atomic. If this sequent is

not a basic sequent it forms the basis for a (propositional) model in which the

succedent S-formula of the endsequent is false. Formalisations of this argument

abound since it is a standard systematic method of proving completeness and

decidability of classical propositional logic. (See for example, [K1e68,Smu68].)

(END OF REMARK.)

One important consequence of this fact is that we can eliminate from the

sequent search space the redundancy exemplified by derivations 2.4 and 2.5 of

§2.4. Recall that these two derivations differed only in the order in which two

S-formulae in the leaf sequent of derivation 2.1 were reduced. However both

derivations have the same leaves, hence from the point of view of progress toward

a basic sequent, both derivations are equivalent. If we can fix an order in which

the S-formula of a given sequent are reduced, we can rule one or the other

derivation out of the search space. This is similar to the selected literal restriction

used in resolution-based systems [KK71].

In summary, we have argued that for the propositional fragment of the cal-

culus the order in which the sequent rules are applied is not significant (except

42

for efficiency of course, as argued in §2.5.2). We say that there is no order

dependence amongst the propositional rules.

2.5.3.2 The first-order case.

Consider now the full first-order system and the (valid) sentence: 3xVyPxy =
Vu3vPvu. To search for a proof of this sentence we start with the sequent:

--> 3xVyPxy = VU3VPVU

The -->= rule is the only rule applicable to this sequent. Reduction gives us:

3xVyPxy --> VU3VPVU
(2.15)

> 3xVyPxy = VU3VPVU

We are now faced with an OR-choice: whether to reduce the antecedent or

succedent S-formula of the leaf. Either choice requires us to make an existential

choice as to which parameter to introduce. We choose the former and introduce

the parameter a. The extended derivation is:

VyPay --> Vu3vPvu
3xVyPxy --> VU3VPVU (2.16)

> 3x`dyPxy = VU3VPVU

Notice that a does not appear in the leaf of derivation 2.15 hence the extension

is correct.

Continuing from derivation 2.16, we are faced with another OR-choice: to

reduce the antecedent or succedent S-formula of the leaf. We again choose to

reduce the antecedent S-formula. This leads to a universal choice and we choose

the parameter b for the reduction. The result is:

Pab --> VU3VPVU

VyPay --> Vu3vPvu
3x`dyPxy --> VU3VPVU

--) 3xVyPxy = VU3VPVU
(2.17)

We could have used the parameter a again, had we so desired, since the choice

is a universal one.

We now come to the crucial issue. The leaf of derivation 2.17 contains only

one non-atomic formula, so to extend the derivation we must apply the --> `d

43

rule. We are faced with an existential choice of parameter. That is, we must

choose a parameter that does not occur in the current leaf. We cannot, therefore,

introduce either a or b, but must choose a completely new parameter, say c. The

result is:
Pab ---) 3vPvc

Pab ---> Vu3vPvu
VyPay ---> Vu3vPvu

3xVyPxy --+ Vu3vPvu
- + 3xVyPxy = Vu3vPvu

(2.18)

Our aim in extending the derivation is to reach a basic sequent. Deriva-

tion 2.17 already contains one atomic formula in the antecedent, we need only

construct a matching one in the succedent. However, any attempt to extend

derivation 2.18 to a proof is doomed to failure since there is only one non-atomic

S-formula: 3vPvc, and the antecedent atomic S-formula is not a subformula of

it. That is, no reduction of 3vPvc can yield an atomic formula of the form:

Pab. The problem lies, of course, with the previous reduction that introduced

the parameter c. However, in the reduction of Vu3vPvu, we were constrained to

choose a new parameter and hence were unable to introduce the parameter b as

required.

Recall that after the second reduction, resulting in derivation 2.16, we were

faced with an OR-choice between reducing the antecedent formula: VyPay, and

the succedent formula: Vu3vPvu. We chose to reduce the former. Let us remake

that choice. We extend derivation 2.16 by reducing the succedent formula of its

leaf. We are faced with an existential choice, so we choose the new parameter b.

The resultant derivation is:

VyPay --> 3vPvb
VyPay ---> Vu3vPvu

3xVyPxy ---> Vu3vPvu
- + 3xVyPxy = Vu3vPvu

----> V
V --

- 3V

(2.19)

To extend this derivation we must choose again between the antecedent and

succedent S-formulae. Both lead to universal parameter choices. We choose the

former, and introduce the parameter b for the variable y so that the atomic

side S-formula of the inference, Pab, is a subformula of the succedent S-formula:

44

3vPvb. The new derivation is:

Pab --f 3vPvb
VyPay --f 3vPvb d I

VyPay --f VuavPvu) d

3XVYPXY --f VuavPvu -- (2.20)
1 3XVYPXY VuavPvu

Finally we reduce the remaining non-atomic S-formula in the leaf sequent of

derivation 2.20 introducing the parameter a so that the resulting atomic formula

matches the antecedent atomic formula. We have constructed the proof:
Pab --1 Pab

Pab --f 3vPvb
VyPay - 3vPvb

VyPay --f Vu3vPvu
3XVYPXY - Vu3vPvu

1 3XVYPXY Vu3vPvu
(2.21)

This example demonstrates that the order in which the quantifier rules are

applied is significant. We cannot make OR-choices uniformly as in propositional

logic. We say that there is an order dependence amongst the quantifier rules.

One way of exhibiting the constraints on the order in which the S-formulae

may be reduced to yield a proof is to consider the order in which the imme-

diate subformulae of quantified formulae are introduced as S-formulae. There

are two subformulae of the S-formula 3xvyPxy that appear in the derivation as

S-formulae: VyPay and Pab. The former must be introduced as an S-formula be-

fore the latter, since the latter is a subformula of the former. Similar constraints

hold between the two subformulae, 3vPvb and Pab, of Vu3vPvu. This gives us

the following constraints on the introduction of subformulae of the endsequent

of our example:

3XVYPXY Vu3vPvu

L 1

VyPay 3vPvb

1 I
Pab Pab

where a solid arrow from a formula A to B indicates that B is an immediate

subformula of A, and hence B will become an S-formula after A.

45

Now, because we desire the two atomic subformulae of the endsequent to form

the pair of distinguished S-formulae in a basic sequent, we require that the same

parameter, say a, be substituted for the pair x and v, and the same parameter,

say b, substituted for the pair y and u. Since Vu]vPvu is not a generative

S-formula in the derivation (it is a succedent S-formula of the form VuA) the

choice of parameter for u is an existential one and subject to the restriction that

the parameter be new. If we wish to substitute b for u, we must ensure that b

does not already occur in the sequent. The only way that b could occur in the

leaf sequent is if the reduction of VyPay to introduce Pab has already occurred.

This is exactly what went wrong when we formed derivation 2.17. Therefore

we infer a further constraint for our diagram, namely that the introduction of

the subformula Pab of VyPay should occur after the introduction of]vPvb. A

similar constraint holds between the subformulae Pab (of]vPvb) and VyPay.

We represent these constraints as additional dotted arrows in the diagram below.

IxbyPxy Vu]vPvu

VyPay]vPvb

I
Pab Pab

Again, a dotted arrow from A to B indicates that B must become an S-formulae

after A. The diagram, called a reduction ordering in the sequel, represents

the orders in which S-formula in the derivation must be introduced in order to

construct a basic sequent from instances of the free atomic subformulae of the

endsequent. Notice that the order chosen at first above violates the constraints

in that VyPay was reduced to Pab before the reduction of Vu]vPvu introduced

]vPvb. In our second attempt the subformulae were introduced respecting the

constraints in the diagram above, and a proof resulted.

In summary, we cannot adopt a uniform method of resolving OR-choices

as was the case for the propositional fragment of the calculus. There is an

order dependence amongst the quantifier rules. This is a fundamental problem

with sequent-based search, since it means that the search space must contain

46

derivations that differ solely in the order in which certain rules are applied.

Some orders may lead to a proof, some may not. The crucial point is that in

order to traverse the sequent search space we must actually make a choice as to

the reduction order. We have shown above that a sequent-based search strategy

must be prepared to remake that choice.

In the next chapter we show how unification can be used to overcome this

order dependency by removing the need actually to choose a given reduction

order as the search proceeds. Instead only the existence of at least one correct

reduction order that respects the caveats on the existential rules is checked.

2.6 Summary.

In this chapter we have:

briefly reviewed the syntax and semantics of classical logic;

introduced a cut-free sequent calculus and shown how it induces a proof

search space, and

identified three forms of redundancy within that search space which we

have termed notational, relevance and order dependence.

In the next chapter we develop specific techniques for the removal of these re-

dundancies. The techniques are abstractions of methods used by Bibel in the

formulation of his Connection Calculus for classical logic [Bib80,Bib82c]. The

particular techniques (paths and connections) for the removal of problems con-

cerning relevance were also developed independently by Andrews [And8l]. The

combination of these techniques results in a matrix characterisation of validity

for classical logic which is free from the specific problems of sequent-based search

identified above. The matrix method therefore forms a more suitable basis for

automated proof search in classical logic.

47

Chapter 3

A matrix characterisation of validity
in classical logic.

3.1 Introduction.

In the previous chapter we presented a standard cut-free sequent calculus for

classical logic and demonstrated one way in which it induces a search space of

derivations. We analysed this search space and identified three types of redun-

dancy within it. The redundancies were as follows:

Notational redundancy: considerable duplication of the same information.

Relevance: the inclusion in the search space of branches that cannot lead

to a proof.

Order dependence: the need to explore alternative branches in the search

space that differ only in the order in which certain sequent rules are applied.

In this chapter we consider each problem in turn and introduce appropriate

theoretical structure to alleviate it within practical proof procedures. The final

result is a matrix characterisation of validity for classical logic free from the

aforementioned redundancies. The central arguments of this analysis were first

published in [Wa186].

48

The matrix characterisation so derived is, in essence, the Connection Calculus

of Bibel [Bib82a,Bib82c]. We make no claim for originality in the basic nature of

the characterisation. Our contribution is in the decomposition of the Connection

Calculus into a set of theoretically based techniques for overcoming redundancies

arising in sequent-based proof search. The significance of this contribution is

that, once isolated, these techniques can be applied individually to other logics

in novel ways to improve the efficiency of automated proof search in those logics.

We do this to good effect in Parts II and III of this thesis where we develop

matrix characterisations of validity for a wide range of non-classical logics.

This chapter is divided into four major sections. In §3.2 we introduce tech-

niques for removing the notational redundancies of the sequent search space

based on the notions of formula trees and positions. The techniques amount

to a theoretically motivated version of "structure sharing" [BM72]: a technique

originally developed to deal with similar forms of notational redundancy arising

within resolution-based proof systems. We show that the applicability of the

technique relies on the subformula property possessed by the cut-free sequent

calculus.

In §3.3 we deal with the problem of relevance via the notions of path, po-

larity and connection. It is the notion of path that makes the label "matrix"

appropriate for the final characterisation and gives proof methods based on the

characterisation their path-checking flavour. A path through a formula, A, is

defined so as to represent a potential leaf of a sequent derivation of the endse-

quent: --p A. The set of paths through A represents the set of potential leaves

of any sequent derivation of --> A (given a bound on the number of duplications

of subformulae of A). A connection in the formula is a representation of the dis-

tinguished atomic S-formulae within a (potential) basic sequent. It consists of

two atomic formula occurrences with the same predicate symbol and of differing

polarities (i. e., a positive and a negative occurrence of a given proposition). If

a path contains a connection it has the potential to represent a closed leaf of

a derivation. To overcome problems of relevance we search for connections di-

rectly rather than adopt the standard connective-based approach. That is, we

49

search directly amongst the potentially closed leaves for a subset suitable for the

formation of a proof of the endsequent.

The effect of this is to replace an indirect search for basic sequents with a

directed one. This eliminates from the (direct) matrix search space those parts

of the (indirect) sequent search space that are irrelevant for the construction

of basic sequents and hence proofs. If every path through A contains one of a

given set of connections the set is said to span the formula. For propositional

logic we have no need to consider the internal structure of derivations at all.

Consequently the existence of a spanning set of connections for A entails the

existence of a sequent proof of - k A and therefore the classical validity of A

(and vice versa).

For first-order logic however the internal structure of derivations is impor-

tant since there are constraints imposed on the application of certain quantifier

rules: the problem of "order dependence." In §3.4 we introduce a mapping that

represents the coherence of the choice of parameters for the free variables of

(free) atomic subformulae in a derivation. Such coherence is required so that

the two atomic components of a connection can still be construed as the distin-

guished antecedent and succedent formulae of a basic sequent (i. e., they must

be identical as formulae). Any such mapping induces a reduction ordering: a

transitive relation over subformulae of the endsequent that we are proving. The

reduction ordering represents the constraints on the order in which immediate

subformulae of quantified (sub)formulae may be introduced as S-formulae into

a derivation. The constraints arise from the provisos on two existential rules:

> V and 3 --->. Admissible mappings are those whose reduction orderings are

irreflexive.

A connection is defined to be complementary under an admissible mapping

just in case its atomic components are identical under the mapping. The admis-

sibility condition then ensures that at least one sequent derivation exists in which

the required coherence in the choice of parameters is realised so that the current

set of connections form the closed leaves of the derivation. A spanning set of

connections, complementary under some such admissible mapping, thus entails

50

the existence of a sequent proof of --- A, and hence the (first-order) validity of

the formula (and vice versa). Robinson's unification algorithm (or more efficient

refinements of it) can be used to compute the appropriate mappings. Unification

is used to ensure the existence of a correct order of sequent rule applications to

produce a proof of the formula. No single concrete order need be preferred. This

technique removes the order dependence, induced in the sequent search space by

the quantifier rules, from the matrix search space.

Whilst the basic nature of the characterisation is due to Bibel, we believe our

particular technical formulation of the individual techniques to be quite signifi-

cant. For example, we utilise Smullyan's uniform notation [Smu68] extensively

and reformulate the notion of path to relate it more closely with sequent-based

ideas. We shall remark on the technical differences between our formulation and

that of Bibel and Andrews as we go. In §3.5 we summarise the relationships

and argue the case for our formulation which make the individual techniques

comprising the matrix methods more widely accessible and applicable.

In the remainder of this introductary section we introduce Smullyan's [Smu68]

uniform notation.

3.1.1 Uniform notation.

In this preliminary section we introduce Smullyan's uniform notation for formu-

lae over a first-order language. This notation, and others notations based on it,

are utilised extensively in this thesis.

A signed formula is a pair (A, n) where A is a formula (over D) and n E {0,1}.

We let X, Y, Z, possibly subscripted, range over signed formulae. A signed

formula is said to be atomic if its constituent formula is atomic; otherwise it is

non-atomic.

Non-atomic signed formulae are classified as follows:

1. A signed formula of the form: (A A B, 1), (A V B, 0), (A = B, 0), (-,A, 1)

or (-,A, 0) is of conjunctive or a-type. We shall sometimes use the symbol

51

"a" to stand for a formula of this form. We define the components, al and

a2 of such a formula as follows:

If a = (A A B,1), then al = (A,1) and a2 = (B,1).

If a = (A V B, 0), then al = (A, 0) and a2 = (B, 0).

If a = (A = B, 0), then c _ (A,1) and a2 = (B, 0).

If a = (-'A,1), then al = (A, 0) and a2 = (A, 0).

If a = (-A, 0), then a1 = (A,1) and a2 = (A,1).

2. A signed formula of the form: (A A B, 0), (A V B, 1), (A = B, 1) is of

disjunctive or /3-type. We shall sometimes use the symbol "/3" to stand for

a formula of this form. We define the components, /31 and /32i of such a

formula as follows:

If /3 = (A A B, 0), then /31 = (A, 0) and /32 = (B, 0).

If /3 = (A V B, 1), then /31 = (A, 1) and /32 = (B, 1).

If / 3 = (A = B,1), then / 3 1 = (A, 0) and / 3 2 = (B,1).

3. A signed formula of the form: (VxA, 1) or (3xA, 0) is of universal or 'y-type.

We shall sometimes use the symbol "ry" to stand for a formula of this form.

The components, 'yo(c), for c E D, of such a formula are defined as follows:

for c E D,

If 'Y = (VxA,1), then -yo(c) = (A[c/x],1).

If 'Y = (2xA, 0), then -yo(c) = (A[c/x], 0).

4. A signed formula of the form: (VxA, 0) or (3xA,1) is of existential or 6-

type. We shall sometimes use the symbol "b" to stand for a formula of

this form. The components, b(c), for c E D, of such a formula are defined

as follows: for c E D,

If b = (bxA, 0), then bo(c) = (A[c/x], 0).

If b = (2xA,1), then bo(c) = (A[c/x], 1).

52

a al a2

(A A B,1) (A,1) (B,1)

(AV B,0) (A,0) (B,0)

(A = B, 0) (A,1) (B, 0)

(-,A,1) (A, 0) (A, 0)

(-,A, 0) (A,1) (A,1)

Q Q1 Q2

(AAB,0) (A,0) (B,0)

(A V B,1) (A,1) (B,1)

(A = B,1) (A, 0) (B,1)

'Y 'YO (a)

(b'xA,1) (A[a/x],1)

(3xA, 0) (A[a/x], 0)

8 8o(a)

(VxA, 0)

(3xA,1)

(A[a/x], 0)

(A[a/x],1)

Table 3-1: Uniform notation for signed formulae.

Table 3-1 summarises the complete classification.

3.2 Formula trees and notational redundancy.

Gentzen's original motivation for defining sequent calculi was that such systems

were more amenable to certain meta-mathematical arguments he had in mind

than the calculi of "natural deduction" in which he was primarily interested.

In particular the cut-free sequent systems possess what he called a subformula

property. Simply stated this amounts to the fact that the S-formulae occurring

in any derivation of a given endsequent are all subformulae of that endsequent.

Since his original paper this property has become the defining characteristic of

an "acceptable" cut-free sequent calculus for any logic (see [Sat77] for instance).

A study of the individual rules of our formulation of the sequent calculus,

presented in Figure 2-1 of the last chapter, reveals that this formulation also

53

has the subformula property. Notice that the premise(s) of each rule is formed

completely from subformulae of the conclusion of that rule. This is the proof-

theoretic basis for the solution to notational redundancy embedded in Bibel's

Connection Calculus, though he does not explicitly make this association. We

shall encode a derivation in terms of the subformulae of its endsequent. From a

theoretical standpoint, we use a structure called a formula tree which contains

a name, or position, for each subformula of the endsequent. From a practical

standpoint, positions are understood as pointers into a single concrete represen-

tation of the endsequent in the database of the proof procedure. During the

search all intermediate derivations can be encoded in terms of these pointers.

We now present the details.

3.2.1 Formula trees for formulae.

A formula tree for a sentence is a representation of its formation tree. It is best

explained by example. We include in the formula tree a node, or position, for

each free subformula of the sentence. The tree ordering is then defined as the

subformula ordering: a position k is above a position k' in the tree, written

k << k', provided the formula associated with k' is a proper (free) subformula of

the formula associated with k. A formula tree for the formula:

(P=Q)A(Q=R)=--, (P=R)

is shown in Figure 3-1. We shall use k, l as meta-variables to range over positions

of formula trees, and << to denote the tree ordering over such positions. For a

position k of a formula tree we use lab(k) to denote the subformula named by or

associated with k. A position labelled by an atomic formula is called an atomic

position. The labels of the positions for our example are also shown in the figure.

3.2.2 Formula trees for signed formulae.

The positions of a formula tree for a formula A are not quite rich enough nor

flexible enough to identify the formulae that make up an arbitrary derivation of

54

(P=Q)A(Q=R)=(P=R)

(P=Q)A(Q=R) P=R al a$

P Q Q = R P R a2 a5 a9 alo

P Q Q R as a4 a6 a7

k lab(k)

ao (PQ)A(Q=R)=(P=R)
al (P=Q)A(Q=R)
a2 P=Q
as P

a4 Q

a5 QPR
a6 Q

a7 R

a$ P = R

a9 P

alo R

Figure 3-1: Example formation and formula tree for a formula.

55

the endsequent ---> A. The first problem is that occurrences of formulae in a

derivation occur either in antecedents or succedents (i.e., they are S-formulae).

We must represent this component of a formula occurrence also. The second

problem concerns quantifiers and will be dealt with in §3.2.3.

Luckily, another proof-theoretic property of sequent systems supports a suc-

cinct solution to the first problem. First we need some terminology. Let B

be a particular subformula of A. We can trace the progress of this subformula

through a derivation until it becomes an S-formula of some sequent within the

derivation (if it ever does). We call all these occurrences of B the images of B

in the derivation. An example will help. In the derivation below, taken from

the previous chapter, we have "boxed" the images of the first occurrence of the

atomic formula P in the endsequent.

Q=:- R,P -4 P

P, Q ---* Q, R P, Q, R ----* R
R Q = R, P, Q ----* R

P =:- Q,Q=R,P-->R
(U = Q) A (Q = R), P ----p R

(P =Q)A(Q=R) ---* P=R
--f (®Q)A(Q=R)(P=R)

A subformula B (free or otherwise) of a given formula A is said to occur positively

in A if it occurs within an even number of explicit or implicit negations; otherwise

it occurs negatively in A. An explicit negation is, of course, the negation symbol.

Implicit negations arise via implications (and sequent arrows). Formally,

B is a positive subformula of B.

If a distinguished occurrence of B in A occurs positively (negatively) within

A, then it occurs positively (negatively) within: AAC, CAA, AV C, CV A,

C = A, VxA, 2xA and r, A ---> A ; and negatively (positively) within:

-1A, A = C and r ----p A, A.

Notice that we have extended the definition to sequents as well.

The well-known proof-theoretic property of sequent calculi referred to above

is that an image of a subformula of the endsequent can occur as an antecedent

56

(succedent) S-formula if and only if it is a positive (negative) subformula of the

endsequent. The basic property of sequent calculi that preserves this invariant

is that only side formulae occurring negatively within the principal formula of

an inference change sides from antecedent to succedent or vice versa. The reader

can check that this is the case in our formulation of the calculus in Figure 2-1.

The rules to concentrate on are the implication and negation rules.

Consequently we can identify whether images of a subformula of the endse-

quent will appear as an antecedent or succedent S-formula within derivations

of that endsequent by noting whether the subformula occurs positively or neg-

atively within the endsequent. For example, the distinguished occurrence of P

occurs positively in the formula:

(P=- Q)A(Q=- R)=(PAR),

but negatively within the sequent:

>(P=- Q)A(Q=- R)=- (P=- R).

(There are three implicit negations: two implications and one sequent arrow).

Consequently the images of this distinguished occurrence of P appear as succe-

dent S-formulae in a derivation of the endsequent (if they appear as S-formulae

at all).

To capture these notions in terms of formula trees we define a formula tree

for a signed formula. Recall that a signed formula is a pair, (A, n), where A is a

formula and n E {0,1}. A signed formula can be used to represent an S-formula

as follows:

(A, 0) represents a succedent S-formula A.

(A, 1) represents an antecedent S-formula A.

In particular, we are interested in formula trees for signed formulae of the form:

(A, 0), since this signed formula represents the sequent: -- A.

57

Formally, a formula tree for a signed formula, (A, n), is a formula tree for the

formula A together with an assignment of a polarity, pol(k), to each position, k,

of the formula tree. Polarities are assigned as follows:

If lab(k) occurs positively within A, then pol(k) = n.

If lab(k) occurs negatively within A, then pol(k) _ (n + 1) mod 1.

A formula tree for the signed formula:

((P=Q)A(Q=R) =>- (P=*- R),0)

is the formula tree shown in Figure 3-1 together with the polarity assignment:

k ao al a2 a3 a4 a5 a6 a7 as a9 alo

[(k) 0 1 1 0 1 1 0 1 0 1 0

Each position, k, of the formula tree for a signed formula itself denotes a

signed formula, sform(k), as follows:

sform(k) df (lab(k),pol(k)).

We summarise our progress up to now. Our goal is to represent derivations of

an endsequent, say ----> A, in terms of the subformulae of A. We have introduced

names, called "positions," for each distinct free subformula of A and arranged

them in a tree reflecting the subformulae ordering in A. The subformula asso-

ciated with a position k is its "label" denoted by lab(k). In order to represent

the S-formulae of derivations using positions we associate a "polarity," pol(k),

indicating whether images of the label of k appear as succedent (pol(k) = 0)

or antecedent (pol(k) = 1) S-formulae. This information is obtained by noting

whether lab(k) occurs positively or negatively within the endsequent.

REMARKS. Bibel's [Bib80,Bib82c] formulation of a formula tree corresponds

to our notion of a formula tree for a formula. He does not consider formula

trees for signed formulae explicitly. Instead, he makes an initial restriction to

formulae in negation normal-form: a normal form in which negation symbols

58

only dominate atomic formulae and there are no implication signs. Under this
restriction only the polarity of atomic formulae need be considered and the notion

of a formula tree for a formula suffices to encode derivations. We note that this

inessential restriction has led to confusion in the literature [Mur82].

Our formulation demonstrates how to lift this restriction and is therefore

more general. This abstraction from specific properties of classical logic is im-

portant to permit the use of the technique in logics which do not admit a negation

normal form. Intuitionistic logic is one such logic. Due to the more general for-

mulation of the technique presented in this section we do not encounter any

problems in utilising it to improve proof search in that logic. The details are

presented in Part III.

We note that Andrews [And8l] does not concern himself with notational

redundancy. His systems do not include any techniques similar to those presented

by Bibel in [Bib82a,Bib82c] and generalised here. (END OF REMARKS.)

3.2.3 Multiplicities and indexed formula trees.

The notions we have introduced so far are sufficient to encode derivations in the

propositional fragment of the calculus but not in the full first-order system. The

problem is that we can only represent free subformulae of the endsequent by posi-

tions. For propositional logic, this suffices since the notions of "free subformula"

and "subformula" coincide. For first-order formulae we need to distinguish dif-

ferent instances of subformulae formed by the substitution of distinct parameters

for the free variables of free subformulae of the endsequent.

As a first step we identify the positions of a formula tree that represent

generative subformulae of the endsequent. Recall that a position k of a formula

tree for the signed formula (A, 0) represents a signed formula sform(k). We give

to each non-atomic position k a "type" depending on the type of sform(k) in

Smullyan's classification presented in the introduction to this chapter. We call

this the principal type of the position and denote it by Ptype(k). There are four

principal types: a, ,13, -y and 8.

59

Each position, except for the root position, has a parent in the formula

tree. Smullyan's classification gives us names for the components (immediate

subformulae) of signed formulae as well as for formulae themselves. We give to

each non-atomic position k, a secondary type determined by considering sform(k)

as a component of the signed formula represented by the parent of k. There

are six secondary types: al, a2, 01, 02, 'yo, bo (Notice that we do not use

'to (a), -yo (b) ... individually as secondary types but collapse them all into the

secondary type 'Yo. A similar remark holds for the bo secondary type.) The

secondary type of a position k will be denoted by Stype(k). For a given formula

tree we shall use ro and Ao to denote the sets of positions of secondary type 7o

and bo respectively. (The reader should not confuse uses of r and A as meta-

variables for sets of formulae in sequents with its use here as a set of positions.)

The principal and secondary types of the positions of the formula tree of

Figure 3-1 are shown below.

k ao a1 a2 a3 a4 a5 a6 a7 as a9 alo

pol(k) 0 1 1 0 1 1 0 1 0 1 0

Ptype(k) a a 0 - - 0 - - a - -
Stype(k) - a1 a1

1 01 02 a2 1 01 02 a2 al a2

Recall that we imposed a duplication restriction on the sequent-based proof

search considered in the previous chapter. We stipulated that no duplication was

to occur at any reduction other than at the reduction of generative S-formulae.

We argued that this restriction does not compromise completeness. Therefore

we can restrict ourselves to the representation of derivations in which only one

image of a subformula, lab(k), of the endsequent can appear in any sequent

unless explicitly duplicated by a reduction of a generative S-formula: lab(k'),

such that the former is a subformula of the latter; i.e., k' << k.

A multiplicity controls how many distinct instances of particular subformu-

lae may occur in a derivation. A position k represents a subformula lab(k) as

described above. We distinguish different instances of this formula by indexing

the position thus: k", where rc is a sequence of positive integers. We arrange

60

that lab(k'c) represents a distinct instance of lab(k) for each distinct index K.

That is:

lab(k") = lab(kT) if x = T.

Multiplicities are the means by which we generate appropriate indices.

The following definitions are introduced for a given formula tree for a given

signed formula X = (A, 0). A function µ from ro to the natural numbers is called

a multiplicity for X; it serves to encode the number of instances of subformulae

of X in the scope of a quantifier of universal force considered within a derivation.

If it is a multiplicity for X we define the (indexed) formula tree for the indexed

formula Xµ as a tree of indexed positions of the form: k", where k is a position

of the basic formula tree for X and is is a sequence of positive integers defined

in the manner described below. Let kl << k2 << << kn -s k, 1 < n, be all those

elements of ro that dominate k in the formula tree for X. The indexed position

k" is a position of the indexed formula tree for Xµ provided:

1. k is a position of the formula tree for X.

2. µ(k1)00,1<i<n.

3. ,c=mlm2mn where 1 <m; <µ(k;), 1 <i<n.

We shall use is -< T to denote that is is a proper initial sequence of T. The

ordering on the underlying tree is extended to the indexed tree as follows: for

indexed positions k" and 1T,

k c << l1 if k <I and ,c T

i.e.) k must dominate l in the unindexed formula tree, and is must be an initial,

but possibly not proper, sequence of T. The polarity, pol(k'c), of an indexed

position k' is taken to be the same as the polarity of its underlying unindexed

position k; i.e., pol(k") = pol(k). The label, lab(k"), of an indexed position k"

is defined inductively as follows:

61

1. lab(ko) = A, if ko is the root position of the formula tree.

2. If lab(k") = B A C, and ki, k2 are the children of k", then lab(ki) = B
and lab(k2) = C.

3. If lab(k") = B V C, and k;, k2 are the children of k", then lab(ki) = B

and lab(k2) = C.

4. If lab(k") = B = C, and ki, kz are the children of k", then lab(ki) = B

and lab (k) = C.

5. If lab(k") = -,B, and ki is the child of k", then lab(ki) = B.

6. If lab(k') = VxB, and ki is a child of k", for some r, is -< r, then lab(ki) _
B[ki/x].

7. If lab(k") = 3xB, and ki is a child of k", for some r, is r, then lab(ki) _
B[ki/x].

That is, we use the position itself as a marker for where substitutions can be

performed for individual variables. Positions of 'Yo and 8o-type appear in the

atoms labelling the atomic positions of the indexed formula tree in place of what

otherwise would be free individual variables. One may think of the positions

used in this way as a special structured set of parameters for our sequent proof

theory but we prefer another interpretation given in §3.4.

The notation sform(k') is extended to indexed positions in the obvious way,

namely:

sform(k') = (lab(k') , pol(k')).

Consequently, since the polarity of an indexed position k", and the structural

form of its label, is identical to the polarity and form of the label of the underlying

position k, k' inherits the types (both principal and secondary) of k. We use

ro(µ) and Ao(µ) to denote the sets of indexed positions of (secondary) type 'Yo

and 8o respectively, in a given (indexed) formula tree for X".

62

We shall use u and v, possibly subscripted, as meta-variables ranging over

indexed positions when we are not interested in the index, and drop the super-

script on «µ. Moreover we use a, al, a2, ,Q.... , etc, to denote arbitrary indexed

positions of that (principal or secondary) type. We shall feel free to use such
notation as a" to denote an indexed position of a-type when we wish to identify

the index. Henceforth we shall refer to indexed positions simply as positions.

We adopt a number of typographical conventions to ease the reader's task in

following the examples given in the text. These conventions are:

Indices (sequences of positive integers) are written as strings. For instance,

the string 121 represents the three-element sequence consisting of "1" fol-

lowed by "2" followed by "1." Consequently, 12 -< 121. We will have

no need to consider multiplicities higher than 9 in the discussion or the

examples presented in this thesis.

We omit the index on a position if it is the empty sequence.

Elements of ro(µ) are distinguished with an overbar. These positions play

a crucial role in the sequel.

An indexed formula tree for the signed formula:

(Vx(3yPxy A VzQxz) 3xVyPyx, 0)

is shown in Figure 3-2. We have taken the multiplicity to be µ(a2) = 1, µ(a6) = 2

and µ(a$) = 1.

Notice how the free variables of subformulae in the formation tree are replaced

by positions in the labels of the indexed formula tree. This is a consequence of the

definition of the labels of indexed positions given above. We shall step through

the consequences and technical motivations for these definitions with reference

to the example. Our explanation will be inductive, following the definitions.

Consider a signed formula (A, 0) representing the sequent ----> A. Consider a

free positive subformula of (A, 0) whose major symbol is a universal quantifier;

63

Vx(2yPxy A VzQxz) = 3xVyPyx ao

Vx(3yPxy A VzQxz) ElxVyPyx

2yPxy A VzQxz Vy IPyx

3yPxy VzQxz Pyx

I
Pxy Qxz

1 !l
1 11 12 a4 a6 a6

u pol(u) lab(u) Ptype(u) Stype(u)

ao 0 Vx(ByPxy A VzQxz) = 3xVyPyx a -
a1 1 `dx(3yPxy A VzQxz) al

a2 1 3yPa2y A b'zQa2z a 1'0

a3 1 3yPa4y al

a4 1 Pa4a4 - bo

a1 1 `dzQa4z a2

a61 1 Q a2 a61 - 10

a 62 1
1a Q a2a6 2 - ,Yo

a7 0 3xVyPyx 1 a2

a8 0 `dyPya$ b 10

a9 0 Pa7a8 - bo

Figure 3-2: An indexed formula tree.

64

i.e., a positive subformula of the form: VxB. Let the position that represents

this subformula in the (basic) formula tree for (A, 0) be 1. We have:

pol(l) = 1

lab(l) = VxB

sform(l) = (VxB,1)

Ptype(l) = -y

(Example: VxB is Vx(3yPxy A VzQxz) and l is al in Figure 3-2.)

Since the free subformula VxB occurs positively in - A (negatively in A)

instances of it will occur as antecedent S-formulae. Consider such an instance

VxB' and suppose that it is represented by an indexed position l" in an indexed

formula tree for (A, 0)". This constitutes the inductive assumption for the ex-

planation. We have:

pol(l') = 1

lab(l') = VxB'

sform(l') = (VxB', 1)

Ptype(Y') = -y

The S-formula (VxB', 1) represented by l" is generative in the sense that multiple

distinct instances of B' could occur in derivations. Instances are formed by the

substitution of parameters for the free occurrences of x in B'. It is the only free

variable in B' by the inductive assumption. The other free variables in the free

formula B will have been treated as we are now treating x already.

Let k be the child of l in the basic formula tree. We have:

pol(k) = 1

lab(k) = B

sform(k) = (B,1)

Stype(k) = 7o

(Example: k is a2 of the unindexed formula tree which is not shown in Figure 3-

2.)

65

By choosing a multiplicity with µ(k) = 1 we prescribe that at most one

distinct instance of B' may be considered in the derivation. (Remember that

B' contains the free variable x.) Put another way, the language represented by

the formula tree indexed by that multiplicity can only describe derivations in

which at most one instance of B' is considered. We generate a distinct name

for this instance by the indexing method. In the indexed formula tree with this

multiplicity I" has only one child: k1, where T is the sequence is 1. k' names the

instance of B'. We have:

pol(k'') = 1

Ptype(k) _ 'Yo

(Example: k' is a2 since r = 0.) The only issue that remains open is to define

the instance of B' named by Vi. We have some flexibility in this choice since

any parameter or constant can be substituted for x according to the (inverted)

universal rules. Instead of attempting to choose at this stage, we delay the choice

and indicate the potential for a substitution by replacing the free variable by the

distinct position k'' itself. The effect of this is that the atomic formulae of B'

contain the position k'1. We now have:

lab(k') = B'[k1/x]

sform(k') = (B'[k1 /x],1)

(Example: The label of a2 is 3yPa2y A `dzQa'z.)

This completes the inductive construction. We have applied the rule:

6: If lab(k") = VxB, and ki is a child of k", for some T, ,c -< T, then lab(ki) _

B[k"l x]

of the definition of the labels of indexed positions.

The reason for the inclusion of positions in the labels of indexed positions

is technical. In the sequel we shall use a mapping of elements of ro(µ) (the

positions with an overbar) into the set ro(µ) UAo(µ). This mapping indicates the

coherence in choice parameter necessary to ensure that certain atomic formula

66

are identical. We wish to compute these mappings using a unification algorithm.

Using the formulation of labels above we can simply unify the labels of the atomic

positions and deduce the mapping from that.

REMARKS. The notion of multiplicity and indexed formula given here differ

from those given by Bibel in [Bib80,Bib82c]. Bibel's multiplicity can be said

to be a function from the positions with Ptype(k) = -y instead of those with

Stype(k) _ 'yo if formulated using the notions developed above. This is because

he considers the quantified formula to be duplicated (VxB') rather than the

formula quantified (B'). A quantifier may only be eliminated via the introduction

of one distinct parameter "associated" with it. Instead of using positions for free

variables as we do, he indexes the variables themselves. In his scheme (stretching

our terminology):

lab(lT) = VxTB'[xT/x"]

Ptype(lT) = -y

(He does not formulate the notion of label as we do.) He is then able to leave

the free variable in place when the quantifier is reduced and use it, as do we, to

indicate the coherence necessary in the parameter substitution. If he formulated

the notion of label the clause for quantifiers would look like this:

6. If lab(k") = VxB, and ki is a child of k", then lab(ki) = B

The other clauses would be problematic however since we would have to consider

as separate cases the situations where the immediate subformula of a label is a

quantified formula. Despite the technical problems his method is essentially

equivalent to ours for dealing with classical quantifiers only.

From a sequent point of view Bibel's duplication method is the rule (read

from conclusion to premise):

r, Vx'B[x'/x], VxB ----+ A
r, bxB -* A

and the reduction like this:

r, C[c/y] -+ A
r, vyc -) A

67

whilst our method formalises the rule (read from conclusion to premise):

r, dyC, C[c/y] -- 0
r, `dyc - 0

We do not consider the duplication of the formula VyC to be a duplication at

all since we can already represent it by a position. The duplication occurs when

and if the formula is reduced again to introduce another instance of C. Our

concern for building a representation language for sequent derivations forces us

to the formulation described above.

Multiplicities are used to support the solution to problems of order depen-

dence developed below. Our formulation gives a general account of the distinct

formula that make up a sequent derivation whilst Bibel's does not. In his writ-

ings, even though he developed the Connection Calculus via a study of sequent

proofs, he considers this technique basically a better alternative to Skolemisation

[CL73] rather than capturing proof-theoretic properties concerning the relation-

ship of formulae with a derivation. We argue that this latter more abstract view

can have significant benefits. The pay-off for our formulation is that we are

able to apply these techniques in the sequel to modal operators (Part II) where

no variables are concerned at all, and intuitionistic logic (Part III). (END OF

REMARKS.)

3.2.4 Summary.

We have introduced various notions based around that of a formula tree and

its positions for the removal of the notational redundancy present within the

sequent search space. Indexed formula trees provide a general language for

the representation of the formulae that can make up a derivation of a given

endsequent in terms of the structure of the endsequent. The technique relies on

the fact that the cut-free sequent calculus possesses the subformula property.

From a practical point of view, positions can be interpreted as pointers to

a single concrete representation of the endsequent in the database of the proof

procedure. We note that all the information concerning types, polarities and

68

labels can be calculated before any attempt at a proof is made. When interpreted

in this way we have achieved a theoretical exposition of the technique of structure

sharing [BM72]: a technique developed to reduce the notational redundancy of

resolution-based systems.

The essence of the technique for quantifiers is due to Bibel. We have refor-

mulated it and claim that our formulation is more carefully motivated in terms

of the structure of sequent derivations. Having separated out the technique from

the others in the Connection Calculus, it becomes possible to apply it within

proof procedures not based on any matrix method. Any serious implementation

of a sequent or analytic tableau proof procedure should consider utilising the

technique for the representation of intermediate derivations (eg., [OS86}).

An interesting use of multiplicities to formulate decision procedures for propo-

sitional modal logics is considered in Chapter 7.

3.3 Paths, connections and relevance.

In this section we address the problem of relevance within the sequent search

space. Recall that when extending a derivation by reducing one of its leaves

we have to decide which S-formula of the leaf actually to reduce. We have no

criteria for choosing one S-formula over another. There are a number of obvious

strategies for ordering these OR-choices. Smullyan [Smu68] considers a number

of such refinements for his analytic tableau proof methods which are notational

variants of the sequent calculi we consider. In general such strategies amount

to a preference for a-type and 8-type S-formulae over fl-type and 'y-type ones.

Oppacher and Suen [OS86] have describeAsome related strategies.

None of these strategies overcome the fundamental problem which is the em-

phasis on the outermost form of an S-formula and not its internal structure. Any

strategy based on this sort of information cannot identify whether a given reduc-

tion will hasten the construction of a basic sequent or not. The connective-driven

nature of sequent search together with the method of dealing with parameter

69

choices are the fundamental drawbacks of sequent-based proof procedures (see

eg., [BT75,D84,OS86]).

Robinson [Rob65] shifted the emphasis from connectives to the connection

with the basic "clash" of the resolution rule of inference. His unification algo-

rithm also removed the need to choose parameters at the reduction of quantifiers.

Unfortunately the method he developed of utilising these fundamental ideas re-

quires the use of a severe normal-form which can introduce a large amount of

redundancy before the proof search even begins (see [And8l]). Moreover, the

particular normal-form does not exist for many of the logics in use today. This

issue forms a serious barrier to the application of resolution to non-classical log-

ics. At best the methods are of use within a restricted class of formulae of the

non-classical logic. Typically this class includes precisely those formulae that

can be put in the particular normal-form required by resolution. A good case in

point is Farinas-del-Cerro's modal resolution systems [Far86].

Some authors have tried to remove this normal-form restriction. The "non-

clausal" resolution rule of Manna and Waldinger [MW80] and Murray [Mur82] is

one such proposal. This method forms the basis for one of the alternative modal

proof methods reviewed in Part II.

Andrews [And8l] and Bibel [Bib8l,Bib82a] have developed a more subtle

basis for retaining the sentential connectives, and in Bibel's case the quantifiers

also, whilst still gaining the benefits of connective-driven search. The methods

are based on the notion of a path through a formula. This notion is quite common

in proof-theoretic accounts of logic but was proposed for use in automated proof

search explicitly by Prawitz [Pra60] in his "improved" proof procedure for for-

mulae in conjunctive normal-form. The combination of paths with connections

is the crucial blend.

At first sight the methods of Andrews and Bibel look quite adhoc. It is

perhaps this, together with their complexity, that has hindered an appreciation

of the importance of these techniques for automated proof search. We hope that

our method of presentation will help to change this situation.

70

In the first section we define the notion of a path through an (indexed) for-

mula and relate it to sequent-based notions. In the second section we introduce

the idea of a connection. Finally we summarise the differences between our

formulation of these notions and those of Bibel and Andrews.

3.3.1 Paths as sequents.

IMPORTANT NOTATIONAL POINT. We warn the reader that we shall sys-

tematically abuse our notation and use the names of types to denote arbitrary

(un)indexed positions of that type within formal definitions such as the defini-

tion of the notion of path below. In particular, if we say: "if s, -y" is a path... "

we mean that "if s, u is a path, and Ptype(u) = 7,... " Furthermore, in this

context we shall use -y0 'j to denote the child of u. Similar abuses are extended

to the other types. We shall include indices explicitly where necessary. (END

OF POINT.)

Let Xµ be an indexed formula. A path through Xµ is a subset of the positions

of its formula tree defined below. We shall use s and t, possibly subscripted, to

denote paths, and adopt the notation s, u to denote the path (set) s U {u}. The

set of paths through Xµ, is the smallest set such that:

1. { ko } is a path, where ko is the root position of the formula tree for Xµ;

2. if s, a" is a path, so is (s \ {a"}), a,", a2' ;

3. if s, Qlc is a path, so are (s \ {Q"}),,8 ' and (s \ {0"J), 02.;

4. if s, -yK is a path, so is s, -yo' j, for any j, 1 < j < t4 (,yo);

5. if s, b" is a path, so is (s \ {b"}), 6o'.

The path:

(s \ {a"}), al", a2"

is said to have been obtained by reduction on a" from s, a". Similarly in the

other cases. Notice that in the generative case: -y, there is a choice as to which

71

child of the position to introduce. The children differ solely in the last element

of their indices.

The definition can be appreciated immediately if one remembers that each

position represents a signed formula, and that a signed formula represents either

an antecedent or succedent S-formula depending on its polarity. A set of signed

formulae therefore represents a sequent. Formally, a set of positions s represents

the sequent:

r,)A,
where:

F.

As

df

df

{ lab(u) u E s, pol(u) = 1 }

{ lab(u) u E s, pol(u) = 0 }

We can interpret the a clause of the definition of path as referring to sequents.

Consider a path s, u for some a-type position u. If pol(u) = 1 then sform(u)

represents an antecedent formula: lab(u). Moreover, sform(u) is a signed formula

of a-type. Hence lab(u) is a formula either of the form: A A B, or of the form -A
(see §3.1.1, Table 3-1.) The path therefore represents one of the two sequents:

ra, A A B - * A, or r -iA

Suppose ul and u2 are the two children of u. We have:

1. If lab(u) = A A B, then lab(ul) = A and lab(u2) = B.

2. If lab(u) = -A, then lab(ul) = lab(u2) = A.

The a clause says that if s, u is a path, so is (s \ {u}), u1, u2. Consequently, the

reduced path is one of:

I', A,B --COs or r,, A, A'

where r; is r, \ {u} and 0; is A, \ {u}. The reduced path represents precisely

the sequent that would result from an inverted application of one of the rules:

r, A, B - O r A, A
r,AAB -* L

A r,--, A) A

72

on the sequent represented by the original path, provided that no duplication

is allowed. Furthermore, the root path: { ko }, where ko is the root position of

X = (C, 0) represents the sequent:

C

In fact, the set of paths through X are simply (representations of) the set of

sequents constructable from this endsequent, with a restricted possibility for

duplication at the reduction of antecedent S-formulae of the form: VxA, and

succedent S-formulae of the form: 3xA (i.e., the 'y-type positions).

There are two things to note about the structure of these sequents and their

generation as paths. Firstly, they contain positions in place of free variables or

parameters. Secondly, there is no proviso on the application of 8 rules. Notice

that these differences appear only for first-order formulae not propositional ones.

We showed in Chapter 1 how the atomic paths can be visualised in terms of a

nested two-dimensional matrix (at least for propositional formulae).

We consider the propositional case first. An atomic path through X (there

is no multiplicity since X is propositional) is a path containing only atomic

positions. There are a finite number of atomic paths through X since the formula

tree for X is finite and each reduction replaces a position by its children to form

the reduced path. The atomic paths are the set of leaves of what we shall call

a complete derivation. This is a derivation that has been extended as far as

possible by reducing all non-atomic S-formulae in the leaves.

3.3.2 Connections.

A connection is simply a pair of atomic positions in some path through X" whose

labels have the same predicate symbol but different polarities. (In propositional

logic the labels are therefore identical.) Since the positions have different polar-

ities one is a positive occurrence and the other a negative occurrence of some

proposition.

73

A set of connections is said to span Xµ just in case every atomic path through

Xµ contains a connection from the set. Andrews [And8l] and Bibel [Bib81] prove

that if X = (C, 0) where C is a propositional formula, then the existence of a

spanning set of connections in X ensures the validity of C (and vice versa). We

can now see why. If every atomic path s contains a connection it represents a

sequent of the form:

I's, A ---> A, As

for some proposition A. Consequently any complete derivation of --> C is a

proof.

In the case of propositional logic at least, this is a characterisation of the

existence of a sequent proof of a formula (and hence its validity) in terms of the

existence of a spanning set of connections in the formula. No mention is made

of actually constructing the proof. Put another way, the sequent calculus can be

seen as a method of checking that every atomic path through the formula con-

tains a connection. It is a very inefficient method of checking these paths. Bet-

ter methods are developed by Bibel [Bib82a,Bib77,HB82] and Andrews [And81].

The common feature of these path-checking methods that makes them improve-

ments on the sequent method is their emphasis on connections as opposed to

paths. The sequent method (and natural deduction methods in general) enu-

merate paths and then check to see if they contain connections. Matrix methods

identify a connection first, then eliminate from consideration all the paths that

contain that connection. The paths are said to have been "checked." The con-

sideration of paths is driven by the identification of connections and not vice

versa. In sequent terms, no reduction is performed that does not directly lead

to the introduction of the two atomic S-formulae corresponding to a connection.

The problem of relevance is removed from the matrix search space.

EXAMPLE. We redo the propositional example given in Chapter 1 in or-

der to illustate the relationship between path-checking and the theoretical ideas

developed above. We consider the formula:

(P=>- Q)A(Q=R)=(P=R)

74

A formula tree for the signed formula:

((P = Q) A (Q = R) =>. (P = R), 0)

was developed in §3.2. The basic formula tree is shown in Figure 3-1 and the

assignment of polarities, labels and types developed throughout that section. In

the introduction we reduced the formula to its negation normal form:

(P A -,Q) V (Q A -,R) V (-,PVR)

in order to identify the atomic paths through using a matrix as a visual aid. We

now have more sophisticated methods of stating the matrix representation of a

formula. The matrix representation of a signed formula X is defined inductively

as follows:

If X is of a-type (eg., (B C, 0)), the matrix representation of X is a

I x2 matrix with the two components of X (eg., (B, 1) and (C, 0)) as the

two columns.

If X is of /3-type (eg., (B = C, 1)), the matrix representation of X is a

2_ x 3. matrix with the two components of X (eg., (B, 0) and (C, 1)) as the

two rows.

Otherwise, if X is non-atomic, the matrix representation of X is a 1 x 1

matrix with the single component of the formula the submatrix. If X is

atomic, it is said to be its own matrix representation.

The reader can check using the types of the positions given for the formula tree

for our signed example that its matrix representation (via this definition) is:

Po Q°1

Q1 R1

or in terms of positions:

a4 a7

(P1 R°)

75

The atomic paths through the matrix are as given in the introduction. We

leave it to the reader to run the inductive definition of paths given above on the

formula tree of Figure 3-1 to verify this. The atomic paths are:

{P°, Q°, , P' R

{ 1'0, R1, P1,R o }

{ Q1, Q0, , P1 AO }

{ Q1,R',P1'R° }

or, more precisely in terms of positions:

{ a3, a6, as, alo }

{ a4, a6, a9, alo }

{ a3, a7, a9, alo }

{ a4, a7, a9, alo }

The three connections identified in the introduction were:

{ Po, P1 }

{ Q1,Q° }

{R1,RO}

or in terms of positions:

Notice that the set spans the formula. We conclude that it is propositionally

valid. The reader might like to check that these three connections form the dis-

tinguished atomic formulae in any sequent proof of the formula by performing

the proof in terms of positions instead of formulae. Start with the root path {ao},

look at its type, and reduce it according to the definition of path given (or al-

ternatively translate everything into sequents via the signed formulae sform(k)).

76

In Chapter 1 we outlined how directed, connection-driven search procedures can

be defined. (END OF EXAMPLE.)

We have considered the case of propositional logic. We consider the first-

order case below. First we review the differences between our formulation of the

notion of path and that of Andrews and Bibel.

3.3.3 Summary.

We have introduced the notions of "path" and "connection" and outlined how

they are sufficient to overcome the problems of relevance within the sequent

search space. We have shown how the sequent calculus can be seen as an ineffi-

cient method of enumerating paths through a formula and subsequently checking

to see if the paths constructed are closed. Replacing that type of search by a

directed search for connections ensures that only those reductions necessary for

the realisation of connections are enumerated. Connections can be used to "look

inside" the structure of S-formulae and calculate which reductions to perform (if

any) to close a leaf.

Our formulation of path is somewhat different from that of Andrews and

Bibel. Their definitions only capture what we have called an atomic path, partly

because of the restriction to negation normal-form in the theoretical discussion.

Our formulation makes the relationship with sequent-based ideas explicit.

In Parts II we adapt the definition of path to suit the extended modal lan-

guages. The arguments of this section are formalised completely within the

justification of the modal matrix characterisations. The correctness and com-

pleteness proofs for these extended matrix systems (Chapter 6) are directly based

on such proofs for sequent and tableau systems. The generalisation of the no-

tion of path to relate it to these standard ideas permits quite straightforward

meta-theoretic arguments about the matrix systems themselves. This is crucial

if the matrix methods are to be extended successfully to other logics.

77

3.4 Reduction orderings and order dependence.

So far we have removed the notational redundancies and those of relevance from

the sequent search space by means of formula trees, paths and connections. The

basic matrix framework is in place. In the last section we outlined how these

notions alone are sufficient to characterise validity in classical propositional logic.

We come now to the last problem identified within the sequent systems: the order

dependence induced in the search space by the quantifier rules.

For propositional logic we have no need to consider the internal structure of

derivations at all. The existence of a spanning set of connections for A means

that any complete derivation must be closed (i.e., be a proof of -) A) and

therefore entails the classical validity of A. For first-order logic however the

internal structure of derivations is important since there are constraints imposed

on the application of certain quantifier rules.

First we adapt the notion of a complete derivation to first-order logic where

duplication of quantified formula (-yo and 5o-type formulae/positions) is permit-

ted. We can no longer make sense of the phrase "reduce a sequent/path to

atomic formulae," since there is the possibility of duplicating subformulae arbi-

trarily. The notion of multiplicity can be used to control this duplication. For a

given multiplicity it does make sense to define a complete derivation and hence

the notion of atomic path. Put simply: a path is atomic if every duplication

sanctioned by the multiplicity has been performed and the results reduced to

atomic positions. We formalise this notion fully in Part II, Chapter 6, when we

deal with modal logics.

Consider the signed formula:

(`dx(3yPxy A VzQxz) 3x`dyPyx, 0),

An indexed formula tree for this signed formula was given in §3.2.3, Figure 3-

2 above. The matrix of this formula contains only one path which, with the

78

multiplicity given, contains four atomic elements as follows:

1 11 12 1
a4, a6 , a6 , a9

or in terms of labels:

{ Pa2a4, Qa2 61, Qazas2, 'asa$ } ;

or in terms of atomic formulae:

{ Pxy, Qxz, Qxz', Py'x' } ,

where we have "primed" variables to indicate that they are distinct. The richness

of the second representation given in terms of labels compared with the poverty

of this last representation provides some justification for the complex definition

of labels used.

There is only one path since there are no ,0-type subformulae. Recall that

positions distinguished with an overbar correspond to -yo-type subformulae: the

immediate subformulae of generative subformulae. This path contains a connec-

tion: {a4, a9}, since the labels for these two positions have the same predicate

symbol (P) and different polarities. Can we conclude that the formula is valid?

Consider the following sequent "pseudo-derivation," where instead of param-

eters we use positions of the formula tree instead (i.e., labels instead of bonafide

subformulae of the endsequent):

Paza4, QaIasl, Qazas2 -' Pala$
Paza4, Qazasl, Qazas2 -' VyPyas

Paza4, Qa2a61, Qa2as2 - 3xVyPyx
Pa2'a4, Qa2as1, VzQazz - 3xVyPyx

Pa2la4, VzQazz - 3xVyPyx
3yPa2,y, VzQazz - 3xVyPyx

A VzQazz - 3xVyPyx
Vx(3yPxy A VzQxz) - 3xVyPyx

> Vx(3yPxy A VzQxz) = 3xVyPyx

Notice that the multiplicity µ(a6) = 2 sanctions at most two distinct instances

of Qazz, the (free) immediate subformula of the generative S-formula: VzQazz.

This potential is represented by the two labels: Qaza61 and Qazag2. The other

79

generative subformulae are restricted by the multiplicity to the production of

one instance of their immediate subformula only.

To transform this pseudo-derivation into a proper derivation we need to

choose parameters for the positions that appear in the formulae. For the re-

sult to be a proof we must ensure that the parameters are chosen so that the

antecedent S-formula: Pala4, is identical with the succedent S-formula: Pala8.

The leaf of the transformed derivation will then be closed. We can represent this

choice by a mapping t from ro(µ) U 0o(µ) into a suitable set of parameters. One

immediate constraint on this mapping is that bo-type positions must correspond

to distinct parameters; i.e., for all u, u' E Do,

t(u) # t(u') .

This is because at the reduction of a 6-type S-formula (strictly: signed formula)

we are forced to introduce completely new parameters. A second constraint is

that the choice of parameter at the reduction of -y-type S-formulae must not

interfere with the reduction of the necessary b-type S-formulae. We formalise

these notions below.

Given a connection such as {a4, a9}, we consider a mapping a: ro -- (rou Do)

under which the labels of the atomic positions are identical. The connection is

said to be complementary under a, or a-complementary. In our example an

appropriate mapping is:

Such mappings are calculated by a unification algorithm operating on the labels

of the atomic positions. The mapping a should be interpreted as prescribing

the coherence that must exist in the choice of parameters for the derivation to

close. In terms of the mapping introduced from positions to parameters this is

formalised as a constraint on t: if a(u) = a(u'), then t(u) = t(u'). Our example

mapping represents the need for the parameter chosen at the introduction of

a2 (by the reduction of its parent) to be the same as the one chosen at the

introduction of a9. A similar constraint holds between a$ and a4.

80

or induces a binary relation: C on AO(A) x Fo(A), and a binary relation:

on I'o(µ) x F0(A), with the latter constrained to be an equivalence relation.

1. If a(u) = v and v E Fo(p), then u - v.

2. If a(u) = v and v E A0(A), then v C u.

3. IfvCuandu' u',then vCu'.

Finally, we define the reduction ordering a as the transitive closure of the union

of the formula tree ordering « and C. That is to say:

4 of
(GC U C)+

The relation C should be interpreted as representing order constraints on

the introduction of parameters. The parameter chosen at the reduction of a 6-

type formula must be new. If to close a leaf of a derivation the same parameter

must be used at the reduction of a -y-type formula, the former reduction had

better occur before the latter else the proviso on the 6 (existential) rules will

prohibit the required coherence. This is reflected as a constraint on the order of

introduction of the immediate subformulae of -y and 6-type formulae, i.e., (the

labels of) -yo and ao positions.

In matrix-based search we do not need to choose particular parameters, nor

choose a particular order in which to apply sequent rules. We are simply inter-

ested in inferring the necessary coherence any such choice of parameters must

possess, and then ensuring that there is at least one order of reduction that re-

spects the provisos on the quantifier rules. The condition necessary for this latter

situation to pertain is that the reduction ordering induced by a be irreflexive.

If this is the case, or is said to be admissible.

The reduction ordering induced by our mapping is shown in Figure 3-3 as a

directed graph. Notice that it is cyclic. This entails that a is reflexive and hence

that the coherence required to identify the atomic S-formula forming the connec-

tion in the leaf of the pseudo-derivation cannot be realised (at this multiplicity).

In actual fact the formula is not valid.

81

ao

1 7

1 1 o

a3 fa
y

a9

1
11 12

a4 a61 a6

Figure 3-3: A reduction ordering as a directed graph.

EXAMPLE. We consider the example that motivated our discussion of the

order problem in Chapter 2, namely:

(3xVyPxy = Vx3yPyx, 0)

We choose a constant multiplicity equal to 1. An indexed formula tree is shown

in Figure 3-4.

The matrix for this signed formula is simple since there are only two atomic

subformulae and no Q-type subformula. There is only one atomic path through

the indexed formula: {a3, a6} and these two atomic positions form a connection.

The mapping or that identifies their labels is:

U (a3) = a5

Q (a6) = a2

Consequently, a5 C a3 and a2 C a6 are induced. The reduction ordering is:

It is acyclic and hence there are sequent derivations with the right coherence in

the choice of parameters to realise the connection as (part of) a basic sequent.

In this case this is enough to determine the validity of the formula.

82

3xVyPxy = Vx3yPyx

3xVyPxy Vx3yPyx

ao

ai a4

VyPxy]yPyx a2 a5

I

Pxy Pyx

u pol(u) lab(u) Ptype(u) Stype(u)

ao 0 3xVyPxy = Vx3yPyx a -
ai 1 3xVyPxy 8 al

a2 1 VyPa2y 7 ao

as 1 Pa2ag - 70

a4 0 Vx3yPyx 8 a2

a5 0 3yPya5 7 ao

as 0 Pa4a5 - 70

Figure 3-4: An indexed formula tree (3xVyPxy = `dx3yPyx, 0).

83

The permissible orders for reducing S-formulae can be read from the reduc-

tion ordering graph. The S-formula corresponding to a position in the graph

must not be introduced (by the reduction of its parent) until all the other posi-

tions in the graph from which it is reachable have themselves been introduced.

In Chapter 1 we deduced these constraints by a consideration of sequent

derivations directly. Here we see their representation within a matrix frame-

work. Proof search is driven in the same way as in the propositional case: the

identification of connections and the subsequent elimination of the atomic paths

containing the connection. The only addition is that we must check that all the

connections used so far to eliminate paths are o-complementary under some ad-

missible mapping or. There is no need to consider the order in which paths (the

matrix equivalent of sequents) are reduced, we simply check the atomic ones for

connections and let unification do the work. (END OF EXAMPLE.)

To summarise: we have motivated Bibel's matrix characterisation of validity

in first-order classical logic. The characterisation has the form: a formula A

is valid if and only if there is some multiplicity A, some admissible mapping o

and some spanning set of o-complementary connections in (A, 0)µ. Unification

is used to ensure the existence of a correct order of sequent rule applications to

produce a proof of the formula. No single concrete order need be preferred. This

technique removes the order dependence, induced in the sequent search space by

the quantifier rules, from the matrix search space.

3.5 Summary and discussion.

In the previous sections we have introduced the basic notions used by Bibel and

Andrews in the formulation of their matrix methods for classical logic. The

presentation has not been completely formal, since we do just that in the more

complicated case of modal logic in Part II. We have shown how these techniques

can be used to overcome the redundancies in the sequent search space analysed

in Chapter 2.

84

Whilst the basic nature of the characterisation is due to Bibel, we believe

our particular technical formulation of the individual techniques to be quite

significant. A summary of the main points of this argument is as follows:

The use of polarity and uniform notation.

Bibel and Andrews restrict their theoretical discussion to formulae in

negation normal-form. Whilst we recognise that this restriction is not

necessary, it has

(a) served to confuse some readers (eg., Murray [Mur82] believed it

to be a restriction on the scope of the matrix methods); and

(b) their subsequent formulation of certain notions actually relies on

it thus restricting the techniques theoretically to logics which ad-

mit such a normal form.

An example of the latter is the notion of atomic path. We have elimi-

nated this restriction in the theory by means of the notion of polarity.

The cost was potentially high, in terms of the complexity of the result-

ing formulation, since we now need to consider the entire first-order

language. We overcame this problem by means of Smullyan's uniform

notation [Smu68].

Indexed formula trees.

We have altered Bibel's notion of multiplicity in a simple way that,

we believe, is more in line with the motivation: providing a uniform

language for the representation of derivations which supports struc-

ture sharing implementations. In our scheme the formulae duplicated

are the immediate subformulae of generative subformulae. We prefer

this formulation because it allows a uniform treatment of modal oper-

ators and the properties of intuitionistic sentential connectives in the

sequel.

Andrews, Miller and Pfenning's [Mil84,Pfe84] notion of an "expansion

tree" is a somewhat less syntactic version of Bibel's formula trees.

85

They are primarily interested in higher-order logic rather than first-

order logics. They demonstrate the utility of expansion trees for the

representation of derivations by showing how they encode derivations

in both analytic and non-analytic proof systems. They are not pri-

marily concerned with the efficiency of the proof systems represented

in the sense that we are in this thesis. Expansion trees may turn out

to be a more appropriate theoretical tool for assessing the relative

efficiency of various proof systems for automated proof search. That

has yet to be shown. This is an interesting topic for future research.

Paths.

We have generalised the notion of path so that its relationship with

sequent-based notions is immediately apparent. Both Bibel and An-

drews formalise what we call "atomic paths," and their formulation

relies on the use of negation normal-form. In Part II we shall en-

counter logics where the notion of an atomic path is quite complex.

This can be explained in terms of sequent calculi by noting that in

those logics the reduction of certain S-formulae is strongly coupled

to the reduction of other S-formulae; i.e., multiple reductions occur

during the application of a single sequent rule. Moreover, there are

irreducible non-atomic paths. With the extra flexibility gained from

our formulation of path we are able to define a notion of an atomic

path that is appropriate for those logics (though perhaps we should

call it a "basic path" since it contains non-atomic formulae, and to

associate it more directly with "basic sequents.") The logics referred

to here are the K-logics.

Admissibility.

Given the changes mentioned above our formulation of the way in

which unification can be used to remove the order dependence in the

sequent search space was bound to differ from Bibel and Andrews'

86

account. We note that, until recently, Andrews and his co-workers

retained skolemisation in their matrix framework (see eg., [And8l]).

Their later works ([Mi184,Pfe84]) do incorporate Bibel's technique of

a reduction ordering. Both Bibel and Andrews see the use of the

technique as a method of dealing specifically with the parameter con-

ditions on quantifiers of existential force. We, on the other hand,

have a more general proof-theoretic view in terms of the order depen-

dence of S-formula reductions within sequent derivations. It is this

more general view that has enabled us successfully to apply a version

of the technique to remove the order dependence of more compli-

cated sequent rules such as the modal rules and rules for negation

and implication in intuitionistic logic. The technique is used in the

propositional fragments of the logics as well as the quantified systems.

Many of these technical improvements were developed during the adaptation of

Bibel's techniques to modal and intu itionistic logics and in an attempt to for-

mulate the relationship of the techniques with sequent-based ideas. Some of the

improvements are merely technical, some are quite fundamental as summarised

above. We believe this work to be significant for the application of the ideas

to improve automated proof search in logics other than those considered in the

remainder of this thesis.

87

Part II

Automated Proof Search in

Modal Logics.

88

Summary.

The main result presented in the thesis so far is the decomposition of Bibel's
Connection Calculus [Bib80,Bib82c]: a matrix characterisation of validity for

classical logic, into a set of individual techniques for overcoming problems of

redundancy in sequent-based proof search. The redundancies were identified by

an analysis of the search space induced by a cut-free sequent calculus. We strove

to abstract the formulation of the techniques from any dependence on specific

details of classical logic. Having identified and abstracted these techniques, we

may now apply them individually as and when they are applicable. In this part

of the thesis we make use of this flexibility to formulate matrix characterisations

of validity for a wide class of modal logics.

Modal logics are used extensively in various branches of Artificial Intelligence

and Computing Science as logics of knowledge and belief (eg., [Moo80,Kon84,

HM85]), logics of programs (eg., [Pne77,Har791), and for such tasks as the speci-

fication of distributed and concurrent systems (eg., [HM84,Sti85b]). In many -
if not all - of these applications the need arises for proof systems which facili-

tate efficient automated proof search. Our purpose in this part of the thesis is to

develop matrix characterisations of validity for both propositional and first-order

versions of the modal logics K, K4, D, D4, T, S4 and S5. Our methods extend to

the varying, cumulative and constant domain variants of the quantified logics.

By judicious use of the techniques identified in Part I of this thesis, we man-

age to retain the basic structure of the matrix characterisation for classical logic.

Proof search is reduced to a process of path-checking and complementarity tests

for pairs of atomic formulae (connections). As a consequence, the matrix char-

acterisations that we formulate here render search methods developed for use

with the classical matrix characterisation, eg., [Bib77,Bib82b,HB82], applicable

without change to the modal logics. We have thus succeeded in extending per-

haps the most efficient proof search methods developed for classical logic (see

[Bib82b]) to this important class of non-classical logics. The effective automation

89

of these logics has been a goal of the Automated Theorem Proving community

for some time.

Our method for deriving the matrix characterisations of validity for a modal

logic follows the pattern established in Part I. We analyse the redundancies

within the search space induced by standard cut-free sequent calculus for that

logic and then adapt and apply the various techniques discussed in Part I to

remove them.

This part of the thesis comprises four chapters. In the first chapter we provide

a basic introduction to the syntax and semantics of the modal logics under

consideration. This chapter is included for completeness and reviews well-known

material. We present cut-free sequent calculi for the logics K, K4, D, D4, T, S4,

and briefly discuss why similar cut-free proof systems cannot be formulated for

S5 and the constant-domain variants of the first order logics. Readers familiar

with such proof systems for modal logics can safely skip this chapter provided

they are familiar with Fitting's generalisation of Smullyan's uniform notation for

modal logic [Fit83]. This notation will be used extensively in the sequel.

In Chapter 5 we investigate the search spaces of the modal sequent systems.

We conclude that inference rules for modalities introduce considerable complica-

tions over and above the problems associated with the basic sequent framework

itself. We analyse the nature of these complications.

From this analysis, and using the insight gained from our discussion of clas-

sical logic in Part I, in Chapter 6 we derive matrix characterisations of validity

for the modal logics under consideration. This constitutes the major result of

this part of the thesis. We prove the correctness and completeness of these

characterisations in that chapter.

In Chapter 7 we outline efficient proof systems based on the matrix charac-

terisations developed showing how the problems associated with sequent-based

proof search are avoided. Attention is paid to the nature of the complementarity

tests which require algorithms for unification under simple equational theories.

90

We also outline how efficient decision procedures for the propositional fragments

of the modal logics can be developed based on the matrix characterisations.

A number of authors have attempted to develop computationally efficient

proof systems for the modal logics considered here, for example: [Far86,AM86a,

Kon86]. We conclude this part of the thesis with a review of the main proposals in

the literature. The analysis demonstrates the advantages of the matrix systems

as a basis for automated proof search in modal logics.

91

Chapter 4

The semantics and proof theory of
modal logics.

4.1 Introduction.

In this chapter we:

provide a basic introduction to the syntax and standard (Kripke) semantics

of the modal logics K, K4, D, D4, T, S4 and S5;

extend to the modal language the uniform notation utilised in our argu-

ments above for classical logic, and

present cut-free sequent calculi for first-order versions of the logics K, K4,

D, D4, T, S4.

We also discuss why similar (cut-free) sequent systems for S5 and the constant-

domain variants of the first-order logics cannot be formulated. The material of

this chapter is based on the presentation of analytic tableau systems for modal

logics by Fitting in his book [Fit83]. It is included so as to make the thesis

self-contained. Readers familiar with analytic proof systems for modal logics

can safely skip these sections provided they are also familiar with the uniform

notation defined in §4.2.3. This notation will be used extensively in the sequel.

92

The chapter is structured as follows. First we introduce the language and

semantics of modal logic and present Smullyan and Fitting's uniform notation to

simplify the metatheory (§4.2). In §4.3 we develop cut-free sequent calculi for the

cumulative domain variants of the modal logics K, K4, D, D4, T, S4. We develop

a calculus for a single logic first, namely S4, then infer the variants for the other

logics from this basis. We prove the correctness of the S4-system explicitly to

familiarise the reader with the style of proofs that arise in Chapter 6. Finally,

we discuss the problems that arise in attempting to formulate similar (cut-free)

sequent systems for S5 and the constant-domain variants of the first-order logics

(§4.4). We conclude with a summary.

The discussion of modality is brief. We are concerned with proof-theoretic

properties of calculi for these logics rather than arguing the case for the use of

a particular modal logic for a particular application. The references cited above

should be consulted for such arguments. The reader is referred to Hughes and

Cresswell's book [HC68] for a more comprehensive discussion of modal logic itself

and a bibliography.

4.2 Syntax, semantics and notation.

In this section we present the syntax and (Kripke) semantics of the modal logics

under consideration. We also extend the uniform notation utilised in the previous

chapter to the modal language. This extension is due to Fitting [Fit83].

4.2.1 Syntax.

The first-order language common to the modal logics considered comprises:

1. A denumerable list of n-ary predicate symbols Pn, Q",..., for each natural

number n.

2. A denumerable list of individual variables x, y, z, (possibly subscripted).

93

3. Infinitely many constants c, d, (possibly subscripted).

4. The sentential connectives A, V, = and

5. The quantifiers V and 3.

6. The modal operators D and

As usual we assume the sets of symbols to be disjoint. We omit the arity of

predicate symbols when it is clear from the context or irrelevant.

REMARKS. The above definition defines a class of languages dependent on

particular choices of predicate, variable, and constant symbols. In the sequel

we assume some fixed set of predicate and variable symbols and allow the set

of constants of the language to vary. We use this flexibility to formalise the

interpretation of our formal language in the language of models so as to define

an appropriate notion of validity. If D is a set of constants, by "a modal lan-

guage over D" we mean a language defined as above whose constant symbols are

amongst D.

Notice that the languages we consider contain no function symbols. We make

this restriction here and in the sequel for technical simplicity. Since the matrix

characterisations for modal logic derived in Chapter 6 stem from considerations

of the sequent calculi developed in this chapter, they characterise modal validity

in languages with no function symbols also. We stress: the restriction is made

for technical convenience only. In Chapter 7 we show how the restriction can be

lifted. (The reader may recall that we made a similar simplifying restriction in

Part I when considering classical logic.) (END OF REMARKS.)

The sentential connectives and quantifiers are given their usual interpreta-

tions. There are many common informal interpretations for the modal operators.

To reflect the historical origins of the symbols we shall refer to O and Q as the

operators of logical necessity and possibility respectively. (Some authors use the

symbols L and M for these operators respectively.)

94

The formation rules for the set of modal formulae are simply the formation

rules for classical first-order formulae augmented by the following rule for the

unary modal operators:

If A is a formula, then so are A and QA.

We shall use A, B, C as metavariables for modal formulae. The notions of sub-

formula and immediate subformula are extended to the modal language in the

obvious way: A is the immediate subformula of A and QA, and A together

with its subformulae are the subformulae of QA and A. The notions of sub-

stitution, free and bound occurrences of individual variables in formulae, and

sentences are defined as usual.

4.2.2 Semantics.

We include for completeness the standard Kripke semantics [Kri63] for the modal

logics under consideration.

A pair (G, R), comprising a non-empty set G and a binary relation R on G

is called a frame. If we restrict R to satisfy the conditions outlined in Table 4-

1 we say that (G, R) is an L-frame, where L is the logic associated with that

condition. The condition of idealisation referred to in the table is the following:

for each w E G there is some v E G such that w R v holds.

Notice that the reflexive relations satisfy the idealisation condition since for all

wEG,wRw.

REMARK. When the modal operators are informally interpreted as denoting

logical necessity and possibility the members of G are sometimes referred to as

"possible worlds," whilst the binary relation R of the frame is called the "acces-

sibility relation." We shall adopt the latter convention, but call the elements of

G "points" for brevity. (END OF REMARK.)

A first-order frame is a 4-tuple G, R, D, D) where (G, R) is a frame, D is

a non-empty set and D is a mapping from G to non-empty subsets of D. We

95

L Condition on R

K no conditions

K4 transitive

D idealisation

D4 idealisation, transitive

T reflexive

S4 reflexive, transitive

S5 equivalence

Table 4-1: Conditions on accessibility relations.

require also that:

D = U D(w).
wEG

D(w) is interpreted as the set of individuals that "exist" at the point w.

We can obtain variants of the first-order modal logics by imposing conditions

on the way D varies over its domain G. We shall be concerned in the sequel

with the following three possibilities:

Varying domains: no conditions.

Cumulative domains: D(w) C D(v), whenever w R v.

Constant domains: D(w) = D(v), for all w, v E G.

In this chapter we develop proof systems that are sound and complete for cumu-

lative domains only. Similar sequent systems can be formulated for the varying

domain variants of the logics [Fit83]. In §4.4 we briefly consider the problems

that arise in formulating similar sequent calculi for the constant domain variants

of the logics. Although the sequent methods of this chapter do not extend to all

these variants, the matrix systems developed in the sequel do.

96

REMARKS. Since the accessibility relation for S5 is an equivalence relation,

each point is either accessible from every point of the frame, including itself, or

the frame partitions into "disjoint" equivalence classes. It turns out that we can

always restrict attention to the first type of frame without any loss of generality

[HC68].

Under the restriction mentioned above, the class of cumulative domain first-

order frames for S5 reduces to the constant domain class. Basically, since every

point w is accessible from every other point v, the cumulative domain condition

gives us: D(w) C D(v) and D(v) C D(w); i.e., D(w) = D(v). (END OF

REMARKS.)

If (G, R, D, D) is a first-order frame, and 11- a relation between the points

of G and sentences (of the modal language over D), then (G, R, D, D, is a

first-order Kripke model provided: for each w E G,

1. W -AAB iffw 11-Aandw 1i-B.

2. w - A V B if either w 11- A or w 11- B.

3. w - A = B iff either w 11f A or w 11- B.

4. w l- -A iff w 11f A.

5. w - VxA if for all c E D(w), w 11- A[c/x].

6. w - 3xA if for some c E D(w), w 11- A[c/x].

7. w - DA if for all v E G with w R v, v 11- A.

8. w - QA iff for some v E G with w R v, v 11- A.

The relation w 11- A should be read: "A is forced at the point w," or

A."

"w forces

A sentence A, of the modal language over D, is said to be valid in the model

G, R, D, D, I I-/, provided, for each w E G such that the constants of A are in

D(w), we have w 11- A.

97

This defines what it means for a sentence of the language of a model to be

valid in that model. Let Do be another set of constants disjoint from D. An

interpretation of a language over Do in the model (G, R, D, D, 11-) is a mapping

t: Do '- D. A sentence, A, (of the modal language over Do) is said to be valid

under the interpretation t in the model (G, R, D, D, 11-), just in case t(A) is

valid in that model. Such a sentence is valid just in case it is valid under every

interpretation in every model.

REMARKS. In fact we are interested in sentences that are valid in a restricted

class of models: the S4-models or the K-models etc. In this respect we should

speak of L-models and L-validity for any of the logics L under consideration.

Most of the material applies to all models and logics. Consequently we shall

continue to speak in terms of "models" and "validity," being more precise when

the need arises.

Notice that the sentential connectives and quantifiers are interpreted relative

to a single point in the frame. In contrast, the modal operators are interpreted

relative to multiple points of the frame via the accessibility relation. In classical

logic a formula can be either forced (true) or not (false) in a given model. In

modal logics a formula may be forced or not at each point in a model. Each

point of a modal model can be seen as a classical model in its own right. (END

OF REMARKS.)

4.2.3 Uniform notation.

Once again we shall make substantial use of a uniform notation for formula

occurrences to reduce the number of cases we need to consider in the metatheory.

The notation is an extension of that introduced in Part I for classical logic, and

is a minor modification of that introduced by Fitting [Fit72]. It takes advantage

of the symmetry between the modal operators. We assume that the formulae

in what follows are of the modal language over an arbitrary, but fixed, set of

constants D.

98

a al a2

(A A B,1) (A,1) (B,1)

(A V B, 0) (A, 0) (B, 0)

(A = B, 0) (A,1) (B, 0)

(-,A,1) (A, 0) (A, 0)

(-, A, 0) (A,1) (A,1)

Q Ql Q2

(A A B, 0) (A, 0) (B, 0)

(A V B,1) (A,1) (B,1)

(A = B,1) (A, 0) (B,1)

'y 'yo(a)

(VxA, 1) (A[a/x],1)

(3xA, O) (A[a/x], 0)

b bo(a)

(VxA, 0)

(3xA,1)

(A[a/x], 0)

(A[a/x],1)

V vo

(E] A,1) (A,1)

(QA, 0) (A, 0)

7r 710

(DA,0) (A,0)

(0A,1) (A,1)

Table 4-2: Uniform notation for signed modal formulae.

A signed modal formula is a pair: (A, n), where A is a formula and n E {0,1}.

We let X, Y, Z, possibly subscripted, range over signed modal formulae. A signed

formula is said to be atomic if its constituent formula is atomic; otherwise it is

non-atomic. We also speak of the major symbol of a signed formula by which

we mean the major symbol of its component formula.

Non-atomic signed formulae whose major symbol is a sentential connective or

quantifier are classified (as before) as either a, Q, ry or b type depending on their

sign. Two new classes, v and 7r, are required for signed formulae whose major

symbol is a modal operator. Table 4-2 contains the complete classification.

IMPORTANT NOTATIONAL POINT. We shall abuse our notation extensively

and use a, all a21 p, 81, ,02, 'y, ryo(a), ..., etc, to denote signed formulae of

the respective types and their immediate subformulae. Consequently, when we

refer to a formula a, we mean a modal formula of type a. Similarly for the

99

other types. This abuse of notation is used extensively by Smullyan [Smu68]

and Fitting [Fit83]. (END OF POINT.)

The semantic notions of the previous section can be extended to signed for-

mulae. For a model (G, R, D, D, II-), and w E G, we define:

wII- (A, 1) if wII- A

and

wII-(A,0) if w1174 A.

From these definitions we obtain the following corollary:

COROLLARY 4.1 Let (G, R, D, D, II-) be a model. For every w E G,

1. Exactly one of wII- (A, 1) or wII- (A, 0).

2. wII- a 1f wII- al and wII- a2.

S. wII- 0 i f w 11-,31 or w 11- Q2

4. wII- 7 if for each c E D(w), wII- 7o(c).

5. w II- 6 if for some c E D(w), wII- 60(c).

6. wII- v iffor all vEGsuch that wRv, v 11-1/0.

7. wII- ir if for some v c G such that w R v, v II- iro.

A set S, of signed (or unsigned) sentences over D, is said to be forced at a

point w in a model, just in case every element of the set is forced at that point.

We denote this situation by wII- S.

A set, S, of signed (or unsigned) sentences of the modal language over Do,

is satisfiable if there is some model (G) R, D, D, II-), and some interpretation

t: Do -- D such that, for some point w E G, all constants of t(S) are in D(w)

and wII- t(S). S is said to be unsatisfiable otherwise.

100

4.2.4 Sequents and a language for proofs.

For the proof theory, we consider a modal language as before, but with the set

of constants comprising:

A denumerable set of individual constants.

A denumerable set of parameters.

Henceforth, we call the union of these sets Do. We use a, b to denote parameters

in Do, and c, d to denote constants or parameters in Do.

A sequent is an ordered pair (I', A) of sets of sentences, written I' -- A .

I' is the antecedent and A the succedent of the sequent; we write -- A and

I' -- + for the sequents (0, A) and (I', 0) respectively. Following convention, we

write I', A for the set I' U {A}.

A sequent I' -- + A over D is valid in a model (G, R, D, just

in case: for all w E G, such that the constants of the sequent are in D(w), if

w 11- I' then, for some A E A, w 11- A. A sequent I' -) A over Do is valid

under the interpetation t: Do --> D, in the model (G, R, D, D, 11-), just in case

t(r) --) t(0) is valid in the model. Finally, a sequent is valid if and only if it is

valid under every interpretation in every model.

Recall that that a sequent I' -) A determines a set Sr U So of signed

formulae where:

Sr df {(A,1) AEI'}

So
df {(A,0) I AEO}.

This set is called the associated set of the sequent.

The following proposition summarises the semantic relationship between se-

quents and their associated sets.

PROPOSITION 4.2 A sequent I' --- A is valid if and only if its associated set

is unsatisfiable.

101

PROOF. The associated set is unsatisfiable just in case for every model:

G, R, D, D, 11-), every interpretation t of the constants of the set in the

model, and every w E G such that these constants are in D(w), it is not

the case that w 11- t(Sr U Se).

Now, w 11- t(SrUSe) if both w 11- t(Sr) and w 11- t(Se). So w 11- t(SrUSe)

fails just when the implication: "if w 11- t(Sr), then it is not the case that

w 11- t(Se)" holds. But:

w - t(Sr) if w 11- t(I)

since every X E Sr has X = (B, 1), for some formula B. Similarly,

w 11- t(Se) fails if w JFf t(Y)

for some Y E S. But every such Y has Y = (A,0) for some A E A.

Therefore,

w 11- t(Se) fails iff w 11- t(A)

for some A E A. To summarise: the negation of w 11- t(Sr U Se) is

equivalent to the implication: "if w 11- t(I'), then for some A E A, W II-

t(A)." But this is just a statement of the validity of r -- A under t in

the model (G, R, D, D, 11-).

4.3 Sequent calculi for modal logics.

In this section we develop cut-free sequent calculi for the modal logics under

consideration. The material is reasonably standard and has been adapted from

[Fit83}. In Chapter ,5 we discuss the suitability of these calculi as bases for auto-

mated proof search. As the reader might expect in the light of previous chapters,

where we discussed such issues for the classical sequent calculus, the systems are

found wanting. An analysis of the particular redundancies introduced by the

rules for the modal operators motivates the ensuing development of the more

efficient matrix systems in Chapter 6.

102

All of the sequent calculi for the modal logics are essentially variants on a

basic theme. We exploit this in our presentation. First, we develop the basic

calculus for S4 in §4.3.1. The calculi for the other logics are presented as variants

of this calculus in §4.3.2. We include correctness results and examples to give

the reader a flavour of the arguments to follow in Chapters 5 and 6.

4.3.1 A sequent calculus for S4.

In this section we develop (§4.3.1.1), and prove correct (§4.3.1.2), a cut-free

sequent calculus for S4. Recall that the accessibility relation for S4-models is

constrained to be both reflexive and transitive. The proof system is designed to

determine the valid sequents of the logic.

4.3.1.1 The calculus.

As usual with cut-free sequent calculi, the rules fall into three categories: basic

sequents or axioms, operational rules and structural rules. Since our sequents

are sets of formulae rather than sequences, we have no need for structural rules.

The basic sequents are instances of the schema:

I',A) A,A.

This is identical to the schema defining the basic sequents for the classical sequent

calculus of Part I.

The operational rules appear in pairs, each pair associated with a particu-

lar sentential connective, quantifier or modal operator. One rule introduces the

connective/quantifier/operator into the antecedent, the other introduces it into

the succedent. Since classical propositional logic forms a fragment of the modal

logics, the rules for the former are a subset of the rules for the latter. The quan-

tifier rules are also lifted directly from the classical calculus. We need additional

rules for manipulating the modal operators. Recall that these operators, un-

like the sentential connectives and quantifiers, are interpreted relative to more

103

than one point in a model. The manner in which this is captured by the modal

rules will become clear in the correctness proofs below. The complete system is

summarised in Figure 4-1.

Derivations are defined (as usual) as coherent trees of rule instances. We

omit the details. Proofs are derivations whose leaves are instances of the basic

sequent.

4.3.1.2 Correctness and completeness.

We now justify the rules by showing that they express theorems about valid

sequents. The form of these theorems is as follows. For each rule:

if all the premises are valid, then the conclusion is valid.

In particular the basic sequent (with no premises) is valid. To simplify the

arguments we employ the uniform notation introduced above.

In what follows, by: "satisfiable," "model," "valid," etc, we mean: "S4-

satisfiable," "S4-model," "S4-valid," etc, repectively.

Recall that a sequent determines an associated set of signed formulae. The

rules of Figure 4-1 can be rephrased concisely in terms of these associated sets.

We shall motivate the form of the rephrased rules with reference to the modal

rule:
F, A) A

I', A ---3 A

If Sr and So are the sets of signed formulae associated with I' and 0 respectively,

i. e.,

Sr of {(B,1)IBEr}
So

of {(B,0)lBEA},

then the set associated with the premise is:

Sr, So, (A, 1).

104

r,A -i A, L1

r ---> A,A r,B -* A
r, A==). B) A

r,A,B ---i A
r,AAB - A

A

r, A) A r, B) A
r, AV B ---> A

r --- A, A
r, ,A ---* L

r, A[c/x] - A
r, VxA - A

r, A[a/x] --- A
r, 3xA -* A

r,A ---> A
r, A) A

r*,A-*A*

V

-*

r,A -) B,A
r-*A=B,A

r - A,A r- B,A
r--->AAB,A

r)A,B,A ---) v r) AVB,A

r, A i A
r)-,A,A -3,

r -* A[a/x], A
d r -*VxA,t

r -p A[c/x], A ---. 3 r -* 3xA, A

r* -i A, A*
r ---> A, A

r) A, A
r)QA,A

n

For the -p V and 3 -f rules: the parameter a must not occur in the

conclusion.

r* df

A* df

{ B B E r}
{QBQBEA}

Figure 4-1: A cut-free sequent calculus for S4.

105

Similarly the set of signed formulae associated with the conclusion of the rule
can be expressed as follows:

Sr,So,(A,1).

But the signed formula (A, 1) is of L/-type according to Table 4-2, consequently

the rule can be written:
S, vo

S, v

where S is the union of Sr and S. By a similar analysis all four modal rules

collapse to the pair:
S,vo S*,70 v 7t S,v S, 7r

where

S* at {uIuES}.

(Recall that v-type formulae are those of the form: (B, 1) and (QB, 0) for

some formula B. Consequently, the notation { v I v E S } means the set of v-

type formula that are elements of S.) The eight sentential operational rules can

be expressed uniformly as the following pair:

S, ai, a2 S, Qi S,02 a
S,Q

Q.

The basic sequent becomes simply:

S, (A,1), (A, 0).

The condensed system is summarised in Figure 4-2. This leaves us with only

seven correctness theorems to prove instead of seventeen.

LEMMA 4.3 A set of signed formulae of the form S, (A, 1), (A, 0) is unsatisfi-

able.

PROOF. By case (1), Corollary 4.1, (A, 1) and (A, 0) cannot both be forced

at the same point of a model.

PROPOSITION 4.4 All basic sequents are valid.

106

S, (A, 1),(A,0)

S, 015 02

s7 a
S,/1 S,,@2

Q
SIP

a

S,'yo(a) S, bo(a)
b

S, 7 'Y
s7 b

S,u0
v

SO/

S*, iro

S, 7r
7r

For the b rule, the parameter a must not occur in the conclusion.

S* ar {VIVES}

Figure 4-2: A Cut-free sequent calculus for S4 in uniform notation.

107

PROOF. Follows immediately from the above lemma and Proposition 4.2.

LEMMA 4.5 If S, a is satisfiable, so is S, al, a2.

PROOF. S, a satisfiable implies there is some model (G, R, D, D, I I-) , in-

terpretation t: Do E-+ D, and w E G with all constants of L(S) and L(a)

in D(w), such that: w 11- t(S) and w 11- t(a). But then, by case (2),

Corollary 4.1, w 11- t(a;), i = 1, 2. Hence S, al, a2 is satisfiable at the same

point, in the same model, under the same interpretation.

PROPOSITION 4.6 The sentential rules with one premise (i.e., A --+, - --+,
_+ -,, --) V, ---> *), are correct.

We prove this result in detail. Similar proofs in the sequel will be shortened or

omitted.

PROOF. The associated sets of the premise and conclusion of each of

these rules have the form S, al, a2 and S, a respectively. The contrapositive

of Lemma 4.5 reads: if S, al, a2 is unsatisfiable, so is S, a. Hence, by

Proposition 4.2, if the premise of such a sequent rule is valid, so is the

conclusion, i.e., it is correct. 0

LEMMA 4.7 If S3 is satisfiable, so is at least one of S,,31 or S, 02.

PROOF. Again, let the model (G, R, D, D, JI-) satisfy S,,3 under an inter-

pretation t, at w E G. By case (3), Corollary 4.1, w 11- t(Q) iff w 11- 1,(,01)

or w 11- t(,32). The result follows immediately.

PROPOSITION 4.8 The sentential rules with two premises (i.e., -+ A, V -+,
----)), are correct.

LEMMA 4.9 If S, ry is satisfiable, so is S,'Yo(a), for some constant or parameter

c E Do.

108

PROOF. Let the model (G, R, D, D, 11-) satisfy S, -y at w E G, under an

interpretation L. Then -yo(c) (possibly) contains c. There are two cases

depending on whether c is new, or is already a constant of S, -y.

1. c is new. Then t is not defined on c. Choose a c' E D(w) (which

is non-empty by definition). Define L' on the constants of S,-yo(c) as

follows:
CI, d=c

L (d)
t(d), otherwise.

w 11- t'(S) by hypothesis, and the fact that t' agrees with t. on the

constants of S. We have:

i ('yo(c)) = L'('Yo)(L'(c)) = t'(-yo)(c').

since L'(c) = c'. Moreover, by case (5), Corollary 4.1,

w I I- if w I- L'(-yo) (d)

for every d E D(w). But c' E D(w) by construction. Hence:

w ({- ('Yo(c))

and S, -yo(c) is satisfiable.

2. c is not new. Then t is already defined on c and L(c) E D(w) by hy-

pothesis. The model condition cited above ensures that w 11- L(-yo(c)).

PROPOSITION 4.10 The quantifier rules V ----> and ---> 3 are correct.

LEMMA 4.11 If S, b is satisfiable, so is S, bo(a), for some parameter a E Do

which does not occur in S, b.

PROOF. Let the model (G, R, D, D, J(-) satisfy S, b at w E G, under an

interpretation L. L is not defined on a, since a does not occur in S, b. By

case (6), Corollary 4.1,

w 11- L(b) if w jj- L(bo) (c)

109

for some c E D(w). Extend t as follows:

c, d = a
(d)

t(d), otherwise.

w II- t'(S) by hypothesis, and the fact that t' agrees with t on the constants

of S. We have:

t'(bo(a)) = t'(bo)(t'(a)) = /-'(60) (c).

since L'(a) = c. Furthermore, by construction, c E D(w) and:

w Ik t'(So)(c).

Hence

w II- /_'(bo(a)),

and S, bo(a) is satisfiable.

PROPOSITION 4.12 The sequent rules 3 --> and ---> V are correct.

The previous five propositions, dealing with the classical parts of the proof

system, do not rely on a particular modal logic. The final two propositions

that deal with the modal rules are logic-dependent. They also indicate why the

sequent systems presented are correct only with respect to the class of cumulative

domain S4-models.

LEMMA 4.13 If S, v is S4-satisfiable, so is S, vo.

PROOF. Let the model (G, R, D, D, II-> satisfy S, v at w E G, under an

interpretation t. The constants of t(S) and t(vo) are in D(w) by hypothesis.

Since R is reflexive, w R w holds. Consequently, w 11- t(vo), by case (6),

Corollary 4.1. Hence S, vo is satisfiable at w also.

Notice that the proof relies on the fact that the accessibility relation for S4 is

reflexive.

PROPOSITION 4.14 The rules --* and -> Q are correct.

110

LEMMA 4.15 If S, 7r is S4-satisiable, so is S*, 7ro.

PROOF. Recall that S* is the set { v I v E S }. Suppose S, 7r is satisfied in

the model: (G, R, D, D, jj-) , at w E G, under an interpretation t. w il- 1.(7r)

implies that there is a v E G, with w R v such that v 11- t(iro), by case (7),

Corollary 4.1. We claim that v 11- t(S*), and hence the result.

To prove the claim, consider a v E S* and u E G with v R u. We know

that w 11- t(v). Since R is transitive, w R u. Consequently u 11- c(vo), by

case (6), Corollary 4.1. But u is arbitrary, hence for every u with v R u,

u 11- c(vo), i.e., v 11- t(v) by case (6), Corollary 4.1 once again. Since v was

arbitrary, the claim follows. a

Notice that the proof relies on the fact that the accessibility relation for S4 is

transitive.

PROPOSITION 4.16 The rules -> El and Q ----> are correct.

REMARK. Notice that the point at which the premise of the 7r rule is satisfied

is, in general, distinct from the point at which the conclusion is satisfied in a

model; the former being accessible from the latter. The model condition for 6

formulae sanctions the inference of w 11- 6o(c) from w 11- 6, for some c E D(w).

Proof-theoretically this is represented by the use of a parameter, a, in the 6 rule.

a is interpreted as denoting this particular constant c E D(w) of the model. Now

assume that our attention changes, by means of the 7r modal rule to another point

w' of the model, with w R w'. The model condition for -y formulae sanctions the

inference of w' 11- 'yo(c) from w' 11- -y, for any c E D(w'). The -y rule, however,

allows the inference -yo(a) from -y for any parameter or constant a E Do. In

particular, parameters introduced by the 6 rule at the previous point w are

assumed to have an interpretation at the new (but accessible) point w'. This

will only be correct if the interpretation of the parameter, c E D(w), asserted

to exist at w, is guaranteed to exist at the accessible point w'. The combination

of the liberal quantifier rules and the modal rules is thus only correct for the

111

cumulative domain models where by definition: D(w) (END OF

REMARK.)

The above lemmata serve to establish the correctness of the system.

THEOREM 4.17 (CORRECTNESS) The proof system summarised in Figure 4-
1 is correct for the cumulative domain variant of S4; i.e., any sequent provable

via the system is S4-valid.

The systematic techniques of Kleene [K1e68], Smullyan [Smu68] or Fitting
[Fit83] can be adapted to demonstrate the completeness of the calculus presented.

The proof relies on an adaptation of Konig's Lemma for finitely branching infinite

trees. The method is to systematically construct a derivation for the endsequent

> A, starting from the root, such that either:

(a) The procedure terminates with a proof.

(b) The procedure terminates with one of the leaves of the derivation not being

an instance of the basic sequent.

(c) The procedure continues for ever.

The construction is performed in such a way that if termination occurs as in

(b), or the procedure fails to terminate as in (c), enough information has been

produced to form a model in which A is not valid. Completeness follows imme-

diately.

REMARK. This form of systematic completeness proof also furnishes us

with a semi-decision procedure for the undecidable quantified logics, and can be

modified to produce decision procedures for the propositional fragments. Unfor-

tunately, as we will show in the next chapter, such procedures whilst technically

elegant are less than adequate for automated proof search. (END OF REMARK.)

EXAMPLE. We conclude this section on S4 with a couple of example proofs

using the proof system developed above.

112

Our first example is a proof of the (schematic) sentence: D A = D D Al

where A is some arbitrary formula. This is usually taken to be the defining
axiom for S4 in axiomatic presentations such as [HC681.

A--4A
U (v)

DA --4 A
DA--4 DA lir)

OA --> D D A lir)
A --4 (a)

D =DDA

We have included the classification of each rule application for the reader's
convenience. Notice, how the formula E IA in the antecedent is "preserved" by

successive --> D applications. The reader should consider how the proof would

go wrong if the D -- rule was applied first. We shall examine such problems

in detail in the next chapter. (END OF EXAMPLE.)

EXAMPLE. Our second example involves the use of /3 rules as well as both

types of modal rule. We prove a modal form of modus ponens: D A A D (A =
B) = D B.

A --- A, B
CAI B --> B D A -- A, B (v)

(D A, A = B --> B Q)

DA, D(A=B) B
(v)

D ir)
D (A = B) D B A

l
D , A -p (CO DAAD(A=B)-->DB

(CO
AA) (A=B = B D) D 0

(END OF EXAMPLE.)

4.3.2 Sequent calculi for K, K4, D, D4, T, S4.

Above, we developed a sequent calculus for S4. Here we indicate how that system

can be modified to obtain correct and complete sequent calculi for the cumulative

domain variants of all of the modal logics under consideration.

Classical logic is a fragment of each of the modal logics. This is reflected in

the fact that the basic sequents, and the a, /3, 7 and 6 rules are taken directly

113

from the sequent system given for classical logic presented in Part I. The reader

should check that the correctness proofs for these rules do not rely on any specific

properties of S4-models over and above those shared by classical models (the

latter corresponding to a point of the former). We conclude that these rules are

correct for every (cumulative domain) modal logic.

This is not the case for the v and 7r rules. We remarked at the time that

the correctness (Lemma 4.13) of the v rules (--) and ---> Q) relies on the

reflexivity of the accessibility relation for the logic. It is, therefore, only correct

for the logics T and S4. Likewise, the correctness proof (Lemma 4.15) for the 7r

rules (Q --) and --->) relies on the transitivity of the accessibility relation

for the logic. Therefore, this rule is only correct for the logics K4, D4 and S4.

The situation is summarised in the following lemma:

LEMMA 4.18 Let (G, R, D, D, JI-) be an L-model, S a set of signed formulae

over D, and w, v E G such that w R v. Then,

1. wll- S implies vII-{volvES}.

2. If R is transitive, w II- S implies v II- { v I V E S }.

3. If R is reflexive, w II- v implies w II- vo.

PROOF. The first assertion follows immediately from case (6), Corol-

lary 4.1. The second was proved as part of the proof of Lemma 4.15 above.

The third follows again from case (6), Corollary 4.1, together with the fact

that w R w since R is reflexive, and was proved as part of Lemma 4.13

above. N

Finally we have the distinction between the logics whose models satisfy the

idealisation condition, and those whose models do not, namely K and K4. The

idealisation condition states that for every point in a model, there is another

point accessible from it. For the K-logics this is not the case. This manifests

itself proof-theoretically in the absence of any v rule whatsoever for the K-logics.

114

We obtain the flexibility needed to capture the logics proof-theoretically by

changing the form of the v and ir rules. The definition of these rules is shown in

Table 4-3.

To summarise: A sequent calculus for one of the logics K, K4, D, D4, T,

S4 consists of the basic sequent rule, the a, fl, -y and 6 rules, and the v and ir

rules specified for that logic in Table 4-3. We shall not prove the correctness nor

completeness of these systems. Such proofs, for tableau proof systems, which are

notational variants of the above sequent calculi, can be found in Fitting's book

[Fit83]. We conclude with some examples.

EXAMPLE. As an example of the difference between some of the systems

described above, we reprove the "modus ponens" example in the system for K.

A,B -*B A --4A,B =-+ (p) A, A=B -> B -> (ir) A,(A=B) -> B A -* (a) AA (A=B) ---p B - () = a
AA (A= B) = B)

Notice that the form of the ir rule in the K system forces the modal operator to

quantify every formula in the antecedent of its conclusion. We expect then that

implicational sentences with different numbers of similar modalities quantifying

its conclusion and antecedent will not be provable in this system. The S4-axiom

A = A is one such formula.

*A-
A --+ A A -> A

) A = A

A -> A A -> A A -> A
-* (ir) -> (ir)

? (?)

The left-hand K-derivation above indicates that A = A is not valid in a

K-model with three points: wo, wi and w2; wo R wi and wi R w2; and w2 I1f A,

wi II- A and wo II- A. (END OF EXAMPLE.)

115

Logic S*

K {voI vES}

v rule 7r rule

S*,7ro
none

S, 7r

S*'iro K4 {voI vES}U{vjvES} none

D {voIvES}

S, 7r

S* S*, 7ro

S S, 7r

D4 {voIvES}U{vIvES} S S*,7ro

S S, 7r

T {voIvES} S,vo S*,7ro

S,v S, 7r

S4 {vIvES} S, vo S*, 7ro

S, v S, 7r

Table 4-3: Summary of v and 7r rules for the modal logics.

116

EXAMPLE. We prove the sentence Vx(Ax) = Vy(Ay) in the system for
K.

Aa --* Aa
' Vx(Ax) - Aa (Y)

---) (ir) Vx(Ax) - Aa -4V
(6) Vx(Ax) --' Vy(Ay)

V) A V
(a) x(x) y(Ay)

(END OF EXAMPLE.)

4.4 S5 and constant domain modal logics.

In [Fin79] Fine shows that Beth's Definability Theorem, and hence the Craig

Interpolation Lemma, fails for the constant domain variants of the quantified

modal logics that we are considering. Beth's Definability Theorem for a logic

states that if a predicate is implicitly definable in a theory of the logic, then

it is explicitly definable in that theory. (Roughly speaking, if P is a predicate

of a theory T, and T' is the result of replacing all occurrences of P with a new

predicate symbol P of the same arity as P in the axioms of T, then P is implicitly

definable in T if

T, T' H Vx1... Vx,,(Px1 ... xn = P'x1 ... xn).

P is explicitly definable in T if

T F- Vx1 ...Vxn(Pxl ... xn = A)

for some formula A in the language of T, not containing P.)

Fitting [Fit83] gives proofs of the Craig Interpolation Lemma for the propo-

sitional fragments of the modal logics K, K4, D, D4, T, S4 considered above.

These proofs are based on so-called symmetric sequent calculi for the logics. The

notion of a symmetric sequent calculus is easy to grasp. Certain of sentential

sequent rules, namely the rules for negation and implication, cause formulae to

"move" from the antecedent to the succedent and vice versa. (More precisely, a

117

succedent formula in the premise may end up as a subformula of an antecedent

formula in the conclusion of the rule, or vice versa, when the rule is applied

forwards.) Symmetric sequent calculi are calculi in which none of the rules have

this property.

The sequent systems we have presented above are called cut-free because they

do not contain the inference rule named "cut" by Gentzen [G69]:

r ----> A, A r, A ----> A
r)A cut

This rule arises in the translation of a natural deduction into a derivation in

the classical sequent calculus of Part I. Cut-free sequent calculi, in general, pos-

sess the so-called subforrnula property: derivations are formed entirely from the

subformulae of their endsequent.

It is a straightforward matter to construct symmetric sequent calculi from

cut-free systems that possess the subformula principle. Fitting [Fit83] performs

such constructions for the logics we have considered.

The import of these results is that we cannot hope to construct cut-free se-

quent calculi of the type presented in this chapter for the constant domain logics.

If we could they could be used to construct symmetric sequent systems and hence

prove the appropriate Interpolation Lemma. The Definability Theorem for the

logic would then follow. This contradicts Fine's result.

These results extend to S5 itself since the first-order version of S5 has con-

stant domains anyway if we assume the cumulativity condition (§4.2.2). In fact

Fitting [Fit83] suggests that the problem lies with the condition of "symmetry"

placed on the accessibility relation. S5 is the only logic we are considering whose

accessibility relation is symmetric. The constant domain assumption is a form of

symmetry. Individuals asserted to exist at newly considered points, must have

existed at all other points as well.

A number of authors have developed sequent-based proof systems for S5.

Kanger (Kan57] and Fitting [Fit72J utilise the notion of a prefix. Their sequent

(or tableau) systems then work with augmented sequents comprising prefixed or

118

"spotted" formulae. We shall in fact adopt a similar method to capture S5 and

the constant domain variants in the next chapter. Other authors have employed

different methods to obtain cut-free sequent-style proof systems for S5. Sato's

[Sat77] proof system utilises pairs of sequents, while Mints' system [Min70] is

cut-free, but his rules fail to have the subformula property. We have seen in

Part I how important the subformula property is from a practical point of view

since it forms the basis for structure-sharing methods.

The constant domain logics can also be captured axiomatically by including,

as an axiom, the so-called Barcan formula:

VxAx = VxAx.

Given the problem of obtaining a uniform proof-theoretic treatment of the

modal logics, the question arises as to why we chose to introduce the cut-free

systems that we did rather than, say, Fitting's prefixed systems which are general

enough to cover all the logics? The answer to this question is partly historical

and partly technical. Historically we were led to the non-classical matrix systems

by a study of the sequent systems introduced in this chapter and the standard

sequent calculus for intuitionistic logic. The fruits of that study are presented in

the next chapter. The fact that our matrix solutions extended to the constant

domain logics was somewhat fortuitous. Technically, we are driven by a desire

to treat a wide range of proof systems. It is more beneficial to see the matrix

systems as overcoming combinatorial problems in standard proof systems than

in special purpose ones that may not generalise to other classes of logics. We

hope that this decision will enable the application of our results to a wider class

of logics than those considered here. We reconsider these points in Chapter 10.

119

4.5 Summary.

In this chapter we have presented the syntax and semantics (§4.2) of the modal

logics K, K4, D, D4, T, S4 and S5. Using a uniform notation due to Smullyan

[Smu68] and Fitting [Fit83], we presented standard sequent calculi for the cu-

mulative domain variants of the quantified modal logics K, K4, D, D4, T, S4.

The material is based on Fitting's treatment of similar material presented in

[Fit83]. No claim is made for originality. We have briefly discussed the problems

of formulating cut-free sequent calculi for S5 and the constant-domain versions

of the modal logics.

120

Chapter 5

Proof search in modal sequent calculi.

5.1 Introduction.

The sequent calculi presented in the previous chapter for some of the modal logics

under consideration are reasonably natural to use by hand, and have been used

extensively in metatheoretic arguments about modal logics (eg., [Fit72,Fit83,

HC68)). Indeed, such uses formed the main motivation for their development in

the first place.

As should be expected, these systems are not ideally suited for direct imple-

mentation and efficient automated proof search. In Part I we identified certain

redundancies present in the search space generated by the sequent calculus for

classical logic. These redundancies were broadly classified under the following

headings:

Notational redundancy: considerable duplication of the same information.

Relevance: the inclusion in the search space of branches that cannot lead

to a proof.

Order dependence: the need to explore alternative branches in the search

space that differ only in the order in which certain sequent rules are applied.

121

We treated the sequent system for classical logic as the composition of a calculus

for the pure propositional fragment with a calculus for the quantificational part

of the logic. The redundancies concerning notation and relevance were shown

to arise essentially from the pure propositional subsystem, whilst the quantifi-

cational subsystem was shown to be responsible for the sensitivity of the search

space to rule application order.

By means of this analysis we developed a characterisation of validity in classi-

cal logic based on matrices. The major components of this characterisation were

paths, connections and a particular use of unification to overcome the order de-

pendence induced by quantifiers. This development can be seen as a (theoretical)

rational reconstruction of the work of Bibel [Bib8l,Bib82a,Bib82c], and to some

extent, Andrews and his colleagues [And8l].

In this short chapter we investigate the structure of the search spaces gener-

ated by the sequent calculi for modal logics presented in the previous chapter.

We view each propositional modal system as the composition of a calculus for

the modal part of the logic with the pure propositional calculus. The quanti-

fied modal systems are then formed by the addition of the usual calculus for

quantifiers.

Since the modal calculi contain the pure propositional calculus as a subsystem

we should expect the first two types of redundancy, concerning notation and

relevance, to occur as before. This is indeed the case. For completeness, we

review these arguments briefly in §5.2. The reader is referred to Part I for a

more detailed discussion.

In §5.3 we show how the addition of the modal rules to form the proposi-

tional modal calculi induces a form of order dependence similar to that found

when the quantifier rules were added to the propositional calculus in Part I. We

illustrate this problem with a simple example. Finally, in §5.4 we analyse the

effect of adding quantifiers to the propositional modal systems. Since both the

modal rules and the quantifier rules independently induce an order dependence

in the search space, the question arises as to how these dependencies interact.

Even though the sequent systems we have presented do not extend to S5 or the

122

constant domain variants of the logics, we are led to conjecture that removing

the combined order-related redundancies will turn out to be simpler in these

cases than in the standard quantified modal logics with (arbitrarily) varying or

cumulative domains.

In the next chapter we develop matrix-based characterisations of validity

for all of the modal logics under consideration, and proof methods based on

these characterisations which do not contain the redundancies identified in this

chapter. This development is directly motivated by our treatment of similar

redundancies in classical logic presented in Part I.

5.2 Notational redundancy and relevance.

This section is very brief. It is included to make the treatment of modal logic in

this part of the thesis more self-contained. Basically, since the pure propositional

sequent calculus forms a subsystem of all the modal logics under consideration,

the redundancies identified in Part I as coming directly from the propositional

structure of classical logic are also present in the search spaces generated by the

modal sequent systems. We repeat certain key notions and examples. For this

section we restrict our attention to the pure propositional calculus.

The rules of the pure propositional system are repeated in Figure 5-1 for the

reader's convenience. To reiterate: the rules come in pairs, one pair for each

connective. In each pair there is a rule for introducing the connective in the

antecedent and one for introducing it in the succedent. In addition, instances of

the basic sequent

I', A) A, A

where A is an atomic formula, constitute the axioms of the system. We call

the formula in which the distinguished connective is introduced, the principal

formula of the inference. In addition, we refer to the two occurrences of the

distinguished atomic formula in instances of the basic sequent as the principal

formulae of that rule. The immediate subformulae of the principal formula in

123

r, A A, A

r -->A,A r,B --)A r,A---->B,A
r, A F B- > A r ---> A=>. B, A

r,A,B -L r ---> A, A r --> B, A
r, A A B --- A r i A A B, A

r, A - A r, B --- A r --> A, B, A
r,AvB) A v -' r ---> AvB, A

r) A, A r, A) A
r, -A --->A r >-,A,A

-V

-4

Figure 5-1: A sequent calculus for pure propositional logic.

-- 4 n

the premise(s) are called the side formulae of the inference. Derivations are

trees of instances of the inference rules. The root of a derivation is called the

endsequent. Proofs are derivations whose leaves are all instances of the basic

sequent. A formula that occurs in a sequent of a derivation is called (after

Gentzen [G69]) an S-formula for "sequent" formula.

Given a propositional formula A we can test its validity by attempting to

construct a proof of the sequent --) A using this calculus. As usual, the best

way to do this is to start with -- A and apply the rules in inverted form, i.e.,

from conclusion to premise(s). This has the effect of constructing derivations

from the root to the leaves. When inverted, the rules serve to remove occurrences

of their associated connective from the sequent. The principal formula of such

an (inverted) inference is said to have been reduced.

This defines the basic inference system. The space to be searched is that of all

possible derivations of a given endsequent. We examine briefly the redundancies

present in the search space generated by this simple inference system. The reader

is referred to Part I for a more detailed discussion of this calculus.

The search space generated by the above inference system for the endsequent

124

----p A can contain many distinct interior nodes (derivations) as well as numer-

ous proofs. Alternative paths through the space arise from the fact that when

expanding a given derivation, there is a choice as to which leaf sequent to reduce

next, and, for each such sequent, which of its S-formulae should be reduced.

If the formula being tested for validity is large, the intermediate derivations

can themselves become very large. Moreover, there is a lot of shared struc-

ture between the derivations since formulae are repeated time and again within

different sequents. This is the notational redundancy referred to above. We

showed in Part I that, with the usual notion of subformula for the propositional

language, every S-formula of a derivation is a subformula of the endsequent.

Consequently, we can encode the interior nodes of the search space entirely in

terms of the structure of the endsequent. This leads directly to the effective use

of structure sharing techniques [BM72], originally developed to overcome related

space problems with resolution based systems. This motivates the use of indexed

positions in the next chapter.

In Part I we also showed that for any endsequent the search space generated

has the following properties:

1. it is finite, and

2. if the endsequent is valid, every path through the space leads to a proof.

The second observation indicates that we can choose an arbitrary order of rule

application and only ever consider one path through the (potentially large) search

space. Taken together with the first observation we know that we can fix this

order uniformly for any endsequent. In this way we can eliminate all alternative

branches of the original search space leaving us with, for a given endsequent, a

space containing a single path. The fact that the space is finite clearly reflects

the decidability of the propositional calculus.

Although we can successfully reduce the sequent search space to a single

(determinate) path, this path can be very long. Since we make an arbitrary

choice of which formula to reduce next in order to expand a given derivation it is

125

possible to waste a lot of effort reducing formulae that cannot ever "contribute"

to a proof. In Part I we defined this notion of "contribution" roughly in the

following way. Every formula contains a set of atomic subformulae. An S-

formula is said to contribute to a proof if one of its atomic subformulae appears

as a principal formula of an instance of the basic sequent at a leaf of the proof.

Consider the (propositionally valid) formula: A A (B A P) P, where P is

an atomic formula and A and B are arbitrary formulae.The first two steps in the

construction of a proof of this formula (under any uniform regime of choosing the

order with which to reduce formula in the leaves of an intermediate derivation)

are completely determined, leading to the derivation:

A, BAP ---> P
AA (B A P) -* P
-) AA(BAP) P

A --->

At this point we have a choice: whether to reduce the formula A or the formula

B A P. Suppose our reduction regime were to always reduce the "leftmost" S-

formula in the sequent. Our next step would be to reduce A. If A were some very

large but valid formula we could expend a large amount of effort reducing it and

its subformulae, even though it does not contribute to the proof. It should be

clear that such pathological examples can be constructed whatever our reduction

regime. This is the problem we have termed relevance, and is due to the fact that

the natural search method to use with sequent calculi is based on the reduction

of connectives. The method used to overcome it in the classical matrix system of

Part I was the connection. We shall see in the next chapter that we are able to

adapt this solution when the pure propositional system we have been discussing

is embedded in the full modal systems.

126

r*-->A, r,AA ° r A,A

r* of {BI BEr}
A* ar {BJOBEA}

Figure 5-2: Modal rules for T.

5.3 Order dependence.

As discussed in the introduction, we consider the propositional fragments of the

modal sequent calculi to be formed by adding rules for manipulating modalities

to the pure propositional calculus. The appropriate modal rules for the logic T

are repeated in Figure 5-2 for the reader's convenience. In this section we show

that the order in which these rules are used to reduce S-formulae whose major

connective is a modal operator, is significant. If an inappropriate reduction order

is chosen a proof may not be found. This is in direct contrast to the situation

we found above for the pure propositional calculus where all paths in the search

space lead eventually to a proof (if the endsequent is provable). It is however

reminiscent of the addition of quantifier rules to the pure propositional calculus,

as discussed in Part I.

Consider the following pair of T-derivations of the endsequent P, (P =:>-

Q) --p Q, where we have "boxed" the principal formula of each reduction (recall

that derivations are being constructed from their root to their leaves) :

--) P, Q

P=:- Q

r*' A A* r A A
r, OA

O --
OA, A

-- O

--) Q

P,(P Q)) Q
P, (P=- Q) - Q

P, Q -) ® 1 --`'
P, P=Q -- 3 Q

P, (P = Q)

P

Q

Q

127

We cannot obtain a proof from the derivation on the left because we are unable to

close one of its leaves. This problem arises because the application of the --> El

rule restricted the formulae available for such a completion. We can influence

the content of the sequent at this point by changing the order of rule application

so that more (or fewer) formulae of the form A occur in the antecedent at the

application of the ---+ rule. This we have done in the proof on the right. The

import of this observation for automated proof search is that we can no longer fix

an arbitrary order for the reduction of S-formulae. The search space generated

by the modal propositional calculus is therefore more complex than the one

generated by the pure propositional calculus. Derivations in which the reduction

order of modal formulae differ are different in an essential way. Such choices must

remain explicit in the search space to retain completeness. The resulting space

thus contains all possible permutations of (modal) rule applications.

The fact that reductions with the modal rules lead to formulae being "deleted"

is the root cause of the order dependence we have just seen. It is somewhat dif-

ferent in nature from the order dependence induced by the addition of quantifier

rules to the pure propositional calculus. There the problem was the introduc-

tion of distinct parameters. Here it is the maintenance of sufficient formulae in

sequents to complete the proof. The effect on the structure of the search space

is however similar. One of the major contributions of this thesis is the removal

of this redundancy by using matrix-based techniques. The details are contained

in the next chapter. We note at this point that the problem of order dependence

is perhaps the most important problem to solve to achieve reasonably efficient

automated proof search in modal logics. We shall see in Chapter 8 that it is

precisely this problem that most of the other proof systems for modal logics,

based on resolution, and suggested as appropriate for automated proof search,

fail to solve.

128

r, A[a/x] --p A
V r -p A[a/x}, A -- V r, dxA -- r -- dxA, A

r, A[a/x) - A r --p A[a/x], A
)3

3

r, 3xA --- A
- r -- 3xA, A

For the -- V and 3 ---> rules, the parameter a must not occur in the

conclusion.

Figure 5-3: Quantifiers rules for cumulative domains.

5.4 Interactions: modal operators and quanti-

fiers.

In the previous section we saw that the modal rules induce complex structure into

the sequent search spaces. To form calculi for the quantified modal logics with

cumulative domains we add the ordinary quantifier rules familiar from classical

logic. The rules are repeated in Figure 5-3 for the reader's convenience. We

know from Part I that the quantifier rules also induce an order dependence in

the search space. In this section we investigate how these dependencies interact.

Consider the following formula of quantified modal logic:

OOVx (QPx A Qx) Q(VyPy A VzQz).

We shall attempt to demonstrate the validity of this formula using the quantified

modal calculus for S4. Accordingly we modify the definitions of r* and A* in

the modal rules as follows:

r*
A*

df

df

{Bj BEr}
{QBQBED

Starting from the endsequent:

---> OOVx (QPx A Qx) Q (VyPy A VzQz)

129

there is no choice as to the first reduction, and we obtain the derivation:

OOVx (QPx A Qx) --> O (VyPy A VzQz)
-- OOVx (QPx A Qx) 0(VyPy A VzQz)

At this point we do have choice since both the antecedent and succedent formula

of the leaf of the derivation are non-atomic. If we chose to reduce the succedent

formula, the side formula of this reduction: VyPy A VzQz, would not survive

the subsequent reduction of the antecedent formula. Looking slightly ahead, we

can see that this problem will reoccur every time we reduce the O operators

in the antecedent formula. Since it is clear that both atomic subformulae of

the succedent formula must contribute to any proof, we must preserve them.

Accordingly we reduce the antecedent until we have removed all occurrences of

the modal operator O from it. The resulting derivation is:

Pa, Qa --* O(VyPy A VzQz)
OPa, Qa --* O(VyPy A VzQz)
OPa A Qa --> O(VyPy A VzQz)

Vx (QPx A Qx) --> 0(VyPy A VzQz)
OVx (QPx A Qx) --> O(VyPy A VzQz)

OOVx (QPx A Qx) ----f O (VyPy A VzQz)
--) OOVx (QPx A Qx) O (VyPy A VzQz)

Notice the introduction of the parameter a at the reduction of the universal

quantifier Vx in the antecedent. So far so good. There are two reducible formulae

in the leaf sequent of the derivation. There is no reason to prefer one over the

other since the reduction of either does not affect the other formulae in the

sequent. We choose to extend the derivation as follows.

Pa, Qa --> VyPy Pa, Qa --> VzQz
Pa, Qa --> VyPy A VzQz

Pa, Qa --> O(VyPy A VzQz)
Pa, Qa -' O(VyPy A VzQz)

At this point, we have no choice in either of the leaves; we must reduce the

universal quantifiers in both succedents. In order to obtain a proof we need

to introduce the parameter a in both reductions. But this violates the side

condition on the quantifier rules. In order to introduce the same parameter for

all the quantified variables we must reduce the quantifiers of existential force (Vz

130

and Vy) before the quantifier of universal force (Vx). Going back to the sequent:

Vx (OPx A Qx) -* O(VyPy A VzQz)

we can extend the derivation as follows:

OPa, Qa - Pa
OPa A El Qa - Pa

Vx (OPx A Qx) ----k Pa
Vx (OPx A El Qx) ---p VyPy Vx (OPx A El Qx) -* VzQz

Vx (OPx A O Qx) --+ VyPy A VzQz

Vx (OPx A El Qx) --) O(VyPy A VzQz)

But if we now reduce the antecedent formula OPa in the left hand leaf the succe-

dent formula Pa will not appear in the new leaf. The same problem will clearly

arise in the right hand branch if we were to perform the analogous reduction

sequence there.

The problem lies in the interaction between the modal and quantifier rules.

The restrictions on the modal rules force us to reduce the (antecedent) sub-

formula OPx before the (succedent) subformula O(VyPy A VzQz). The restric-

tions on the quantifier rules force us to reduce the (succedent) subformulae VyPy

and VzQz before the (antecedent) formula Vx (OPx A n Qx). But, OPx is a

subformula of Vx (OPx A El Qx), and both VyPy and VzQz are subformulae of

O(VyPy A VzQz). Consequently the modal and quantifier constraints cannot be

simultaneously satisfied; i.e., satisfied within the same derivation. The situation

is summarised in the following diagram:

Vx (OPx A El Qx) O (VyPy A VzQz)

OPx VyPy VzQz

where the arrows indicate the reduction order constraints discussed above. The

unsolvability of these constraints is represented by the fact that, as a directed

graph, the diagram is cyclic. In fact, the original sentence:

OOVx (OPx A 0 Qx) = O(VyPy A VzQz)

131

is not valid in the logics under consideration.

The situation for automated proof search is therefore not very healthy. The

search space must necessarily contain all paths that arise from choosing different

reduction orders for modal operators and quantifiers. A different order will, in

general, lead to a different derivation. All such alternatives must be explored to

retain completeness.

The sequent systems we are using here characterise the modal logics with

cumulative domains. The effect of the cumulative domain restriction is that the

same parameters may be introduced in different modal contexts as we saw in the

example. The parameter a was introduced at the reduction of the (antecedent)

universal quantifier Vx in our first derivation. We then went on to reduce the

(antecedent) subformula QPa which notionally transfers our attention to an-

other point in the models being investigated. (More precisely, the conclusion
be

of the rule only fails toAforced at points where both of its antecedent formulae:

QPa and Qa, are forced, and its succedent formula: 0(VyPy A VzQz), fails

to be forced. But, since QPa is forced at this point, by the model conditions

for Q, there must be another point, accessible from the first, at which Pa itself

is forced. Pa is still taken to make sense at this new point because, since it is

accessible from the point in which a was postulated to exist, and the cumulative

domain condition ensures that individuals that exist at one point also exist in

all points accessible from it.)

Calculi for the varying domain variants of the logics would have to encode a

restriction that ensured that this form of "inheritance" did not occur. In other

words the coupling between quantifiers and modalities is stronger than in the

cumulative domain case that we have considered above. Parameters may only

be used in the modal context in which they are introduced.

The constant domain variants on the other hand place no restrictions on the

relationship between quantifiers and modal operators since the same individuals

exist at every point. The only interactions occur as we have discussed above

concerning the side conditions on the quantifier and modal rule applications. It

seems likely (and is in fact the case) that the removal of order dependencies in

132

the constant domain variants will be easier than in the other variants, since the

coupling of quantifiers with modalities is weaker.

5.5 Conclusions.

In this brief chapter we have investigated the structure of the search spaces gener-

ated by the modal sequent calculi presented in Chapter 4. We have demonstrated

that these search spaces contain a number of familiar redundancies, namely:

1. notational redundancies,

2. relevance: the presence of inessential choices, and

3. order dependence: the sensitivity of the search space to the order of appli-

cation of certain inference rules.

We expected the first two types of redundancy since it was shown in Part I that

these redundancies are due to the basic sequent format of the pure propositional

calculus. This calculus forms a subsystem of the modal calculi.

The sensitivity of the search space to rule application order was shown to be

more complex than classical logic. Both the modal rules and the quantifier rules

introduce order dependencies. We showed that these dependencies interact in a

major way to complicate the search space.

In the next chapter, based on these observations and the methods used in

Part I to overcome such redundancies, we present matrix based characterisations

of validity for modal logics, and proof methods based on these characterisations.

The search spaces generated by the matrix-based proof systems do not contain

the redundancies identified above.

Since we only have at our disposal sequent calculi for the cumulative domain

variants of some of the modal logics we are interested in, it might seem as though

we will be unable to develop efficient proof methods for the other variants and

133

logics by means of the analysis we have undertaken. In fact, the matrix-based

proof methods we develop extend to all the logics and variants under consider-

ation. We discuss the implications of this sW rising fact further in Chapter 10.

134

Chapter 6

Matrix characterisations of validity in
modal logics.

6.1 Introduction.

In Chapter4we presented standard cut-free sequent calculi for the cumulative

domain variants of the first-order modal logics K, K4, D, D4, T, S4. In the

previous chapter we investigated the combinatorial properties of modalities by

studying the search spaces induced by these calculi. In this chapter, based on this

proof-theoretic analysis and the ideas developed for classical logic reported in the

first part of the thesis, we develop matrix-based characterisations of validity for

the modal logics K, K4, D, D4, T, S4 and S5. Our methods are sufficiently gen-

eral to capture the standard first-order versions of the logics (varying domains),

as well as both constant and cumulative domain variants, and thus transcend the

scope of the cut-free sequent systems that led to them. We prove the correctness

and completeness of the matrix characterisations. In the next chapter we outline

efficient proof systems based on the matrix characterisations, and discuss their

use as decision procedures for the propositional fragments of the logics.

We emphasise once more that our concern is the efficient automation of the

modal logics rather than detailed arguments for their use in a particular ap-

plication. Such arguments can be found in the literature cited. In Chapter 8

135

we compare the matrix proof systems with other proof systems for modal logics

proposed in the literature as suitable for automated proof search. We show that

the matrix systems have considerable computational advantages over these other

(typically resolution based) systems.

The remainder of this introduction is devoted to an overview of the matrix-

based characterisations developed below. It serves to outline the structure of

this chapter.

6.1.1 Overview.

The modal sequent calculi presented in Chapter 4 and analysed in Chapter 5 bear

a close relationship to the classical sequent calculus discussed in the first part

of this thesis. Indeed, the modal systems are formed by adding to the classical

calculus rules specifically for manipulating modalities. As we have seen, this

seemingly innocuous extension has far reaching effects on sequent-based proof

search. Let us concentrate first on the features of the classical system that are

preserved by the addition of the modal rules, namely:

the systems are still cut-free,

they retain the subformula property, and

the basic sequent is unchanged.

The presence of the first two features in the classical sequent calculus were

shown to enable the encoding of derivations using syntactic references or pointers

to the endsequent. Such syntactic references were called positions. This encoding

supported the use of particular implementation techniques such as structure-

sharing (BM72]. The fact that these features are also present in the modal

sequent calculi indicates that we can (and will) develop similar techniques for

the modal logics. This motivates the definition of formula trees, positions and

polarity presented in §6.2.1 below.

136

We noted in the previous chapter that modal operators of necessary force

are generative in the same sense as the first-order quantifiers analysed in Part I.

Thus, a positive occurrence of the generative subformula O A in the endsequent

may give rise to multiple instances of its immediate subformula A in a derivation.

We adapt libel's method of encoding this sort of duplication for quantifiers

(13ib82aj. The key notion is that of a modal multiplicity. The details are discussed

in §6.2.2. The form of this solution supports the implementation of the resulting

matrix systems using structure-sharing techniques. It also ensures that such

duplication can be demand-driven, rather than adhoc, as we show in the next

chapter.

We have demonstrated that the cornbinatorics of the inference rules dealing

with the propositional structure of classical logic can be captured by the matrix

representation of formulae, due originally to Prawitz [Pra60] (for formulae in con-

junctive normal form) and generalised by Andrews [And8l], and Bibel (Bib81].

Since the modal logics share the propositional structure of classical logic, the

notion of path is generalised simply from the classical to the modal case with

the modal operators acting in a similar way to quantifiers with respect to this

structure. The details are presented in §6.2.3 below.

Since the classical basic sequent is preserved in the modal systems, we infer

that validity in the modal logics can be characterised, at least partially, in terms

of a set of connections that span the formulae viewed as a matrix. (That is to

say: every path through the formula contains a connection from the set.) So far

so good. But now we must deal with the conditions under which such a pair

of atomic formulae of opposite polarity within a formula can be deemed to be

complementary, i.e., not only deemed to correspond to an instance of the basic

sequent, but also that a correct derivation can be formed with the endsequent

at its root, and that instance of the basic sequent at one of its leaves.

A simple example will help at this point. Consider the formula: EIP

O OP, where P is some arbitrary (atomic) formula. We showed in Chapter 4

that such formulae are valid in S4, but not in K. For the reader's convenience

the S4-proof and a K-derivation are repeated in Figure 6-1. Treating the modal

137

(') W2 A --iA O- (u)
W2 A A (r) (7r) D A D - i

A --+ D A W1 OA ---+ OA - O
) (yr) -- D fir

(a) _a D A ----* D D A WO A---+OA ---,= (a)
A OA W A = A O o D O O

Figure 0-1: K-derivation (left) and Sit-proof (right) of O P 0 OP.

operators as structurally equivalent to quantifiers for the moment (i.e., the paths

through O A and QA are simply the paths through A itself) the formula contains

only one path and the two occurrences of P occur on that path with opposite

polarity. The occurrences therefore form a connection. But here we see that

in one modal logic (S4) we may consider the connection to be complementary,

but in another (K) we must not. We must define a notion of complementarity

for atomic formula occurrences, for each logic, such that, given a spanning set

of complementary connections, we are ensured of the existence of a proof of the

formula in the appropriate sequent calculus for that logic. Roughly speaking,

the set of connections form the leaves of this proof.

Recall that in the case of classical logic the premise and conclusion of a

sequent rule could be viewed as making assertions about the structure of a given

model. Recall also that in Chapter 4 we indicated that the same is true for

the modal logics but that a modal model consists of a set of classical models or

points. It is therefore possible (and usual) for a proposition to be forced at one

point and fail to be forced at another, with no contradiction arising. For the it

type inference rules, ----f D and Q --->, the premise refers to a different point

than the conclusion, the former being accessible from the latter. For instance,

viewed from the root upwards, each (inverted) application of a it-rule in our

example can be said to introduce a new point accessible from (at least) the point

associated with the conclusion. Now, let us name these points explicitly for

138

our example. Call the point associated with the endsequent wo. There are two

applications of (inverted) ir-rules, which introduce two new points wl and w2

respectively. We have that wo R wl and wl R w2.

Different logics allow us to conclude different things about the new points

introduced in this manner. Recall the model condition for the modal operator

0:

w (- Cl A if for all v such that w R v, v 11- A, or equivalently,

w O A i ff for some v such that w R v, v (lf A.

In K then, all we can infer is that if wo (j- OP, wl 11- P and hence the sub-

derivation:
P --* O P W1

OP ---+ [-][I P WO

of the K-derivation. Likewise, since there is no antecedent formula O A (reflect-

ing the fact that we cannot assert that wl 11- E IA), the subsequent application

of the inverted ir-rule results in:

0 P W2

P --+ OP Wl

For S4 however, since the accessibility relation is transitive, we have that

wo R w2. Consequently if wo 11- O P then v 11- O P whenever wo R v. We can

therefore "preserve" the antecedent formula O P through the applications of the

inverted ir-rule in the S4-derivation thus:

O P 1 O P

OP -+OOP
wl
too

and
O P --+ P W2

OP - OP Wi

Again, since in S4 the accessibility relation is reflexive, w2 11- OP implies w2 11-

P. This inference is performed by the (inverted) v-rule, and the S4-proof is

complete.

The key observation is that an appropriate notion of complementarity can

be defined by noting the context of atoms relative to the modal operators in

the endsequent. We will represent these contexts by prefixes, and will consider

139

a connection to be complementary when there is a mapping on the prefixes

of the atomic formulae of the connection which renders them identical. These

mappings can in fact be seen as substitutions in the usual sense. The logic-

dependence of such a notion of complementarity is reflected in the conditions

such mappings should satisfy. For a logic L, these conditions define the set of

L-admissible substitutions. In practice, as discussed in the next chapter, L-

admissible substitutions may be computed by specialised unification algorithms,

one for each logic.

In the example, the first occurrence of the atom P in the antecedent of the

implication of the endsequent, occurs inside one modal operator. The polarity

of this operator is such that only v-rules may be applied to it. We give the atom

a prefix of a. The other occurrence of P in the endsequent occurs within two

modalities, both of which can only have it-rules applied to them. We therefore

give it a prefix of the form be: a sequence (or string) comprising the two atomic

prefixes b and c. We treat a as a variable wih respect to substitutions, and

b and c as constants. (Notice that, by convention here and in the sequel, we

distinguish variables from constants by means of an overbar.) Roughly speaking,

the atomic formulae occurrences forming the connection are deemed to be K-

complementary if the prefixes of the atoms are unifiable under the restriction

that variables may only be mapped to individual constants. The unification

problem (a, be) is clearly not solvable tinder this restriction. Roughly speaking,

the atomic formulae occurrences forming the connection are deemed to be S4-

complementary if their prefixes are unifiable under an equational theory in which

variables may be instantiated to entire sequences. The unification problem (a, be)

is solvable in this theory, with unifier a be. The details are presented in §6.2.4.

Lifting these results to first-order constant domain modal logics is simply a

matter of combining the modal notion of complementarity with the first-order

notion presented in Part I. For the varying domain variants, we index individual

variables with the prefix of their quantifier. Roughly speaking, a given parameter

may be substituted for two individual variables just in case the prefixes of their

respective quantifiers unify under the modal substitution referred to above. For

140

the cumulative domain variants, a similar restriction is imposed except that we

require the quantifier prefix of universally quantified variables in such pairs be

accessible from the quantifier prefix of its existentially quantified partner. In

both cases the condition depends on the properties of the accessibility relation

of the particular logic. The details are given in §6.2.4.

Sections 6.3 and 6.4 are devoted to proving the correctness and completeness,

respectively, of the matrix-based characterisations of validity for all logics and

variants under consideration. The proofs follow the pattern established in Part I;

i.e., they are based on correctness and (systematic) completeness proofs for

sequent calculi and analytic tableau proof systems (Smu68,K1e68,Fit83].

Testing a formula for validity within a modal logic is therefore successfully

reduced to a process of path checking and complementarity tests as in the clas-

sical case. This means that search strategies developed for the classical matrix

system are applicable to the modal matrix systems without alteration. There are

two major differences however:

The test for the complementarity of a connection is performed by a spe-

cialised unification algorithm. For some logics the appropriate unification

problems do not yield a single most general unifier. However, it turns

out that, for the logics under consideration here, the set of most general

unifiers is finite.

The generative modal operators give rise to extra opportunities for dupli-

cation during proof search. This can be seen as the basic cause for the in-

creased complexity (PSPACE) of the decision problem for the propositional

fragments of the modal logics K, K4, D, D4, T, S4 over the propositional

fragment of classical logic (NP). S5, as usual, is a special case (NP).

In Chapter 7 we discuss search strategies of particular use for individual modal

systems and present examples. We pay particular attention to the structure of

the unification algorithms necessary to support the complementarity tests. As

an additional topic we outline how efficient decision procedures for the propo-

141

sitional fragments of the modal logics can be developed based on the matrix

characterisations.

We now present the details.

6.2 Matrices, paths and connections.

In this section we develop matrix-based characterisations of validity for the modal

logics under consideration. The proofs of the correctness and completeness of

these characterisations can be found in §6.3 and §6.4 respectively. This section

is written so as to be technically self-contained. On the other hand, we have rel-

egated motivational information to short remarks, since the introduction above

and the detail in Part I should suffice.

6.2.1 Formula occurrences.

The formation tree for a formula is, as usual, a tree indicating how the formula

is built up from its subformulae. A formula tree for a signed formula X = (A, n)

is a tree of names, or positions, one for each distinct subformula occurrence in

the formation tree of A. The formation tree and a formula tree for the signed

formula:

(OOVX (OPx A Q Qx) O(VyPy A VZQx), 0),

are shown in Figure 6-2.

We use k and 1, possibly subscripted, as metavariables to range over the

positions of formula trees. With each position, k, of such a formula tree we

associate a label, denoted lab(k), and a polarity, denoted pol(k). The label of a

position is the formula occurrence appearing at the corresponding point in the

formation tree for the formula. The polarity of a position of a formula tree for

(A, n) is n, if its label occurs positively in A, and (n + 1) mod 1, if its label

occurs negatively in A. The labels and polarities of the positions of the example

formula tree are also shown in Figure 6-2.

142

OOVx (OPx A oQx) = O(VyPy A VzQz) ao

OOVz(OPz A iQx) O(VyPy A VzQz) a1 a9

1 1 I 1

OVx(OPX A OQx) VyPy A VzQz a2 alo

Vx(OPx A OQx) VyPy VzQz a3 all a13

I I I I 1 1

OPx A OQx Py Qz a4 a12 a14

as a7

a6 a8

k pol(k) lab(k) Ptype(k) Stype(k)

ao 0 OOVX (OPX A OQx) = O(VyPy AVzQz) a pro

a1 1 OOVz(OPz A 0Qx) it al

a2 1 OVx(OPz A 0Qx) 7r pro

a3 1 Vx(OPx A Qx) 11 Iro

a4 1 OPx A OQx a '10

as 1 OPx it al

a6 1 Px - 7ro

a7 1 E Qx v a2

a8 1 Qx - vo

a9 0 O(VyPy A VzQz) v a2

alo 0 VyPy A VzQz Q vo

all 0 VyPy S Ql

a12 0 Py - So

a13 0 VzQz S 02

a14 0 Qz - So

Figure 6-2: Example formation and formula tree.

143

Positions with atomic labels are called atomic positions. We use « to denote

the tree ordering of positions in the formula tree: i.e., for positions k and 1,

k t I just in case lab(l) is a subformula of lab(k) in the formation tree.

REMARKS. Positions form the basis for implementations of the matrix sys-

tems using structure-sharing techniques (BM72]. A position should be inter-

preted as a pointer to a subformula of the formula being tested for validity

stored in computer memory.

Theoretically, we use an extension of the formula tree for (A, n) to represent

the possible formula that may take part in a sequent derivation of an endsequent

of the form: - A if n = 0, and A -+ if n = 1. In this spirit, the polarity

of a position determines whether the subformula labelling the position will oc-

cur as an antecedent or succedent formula of any such derivation. (END OF

REMARKS.)

Each position k represents a particular signed formula, denoted sform(k), as

follows:

sform(k) = (lab(k) , pol(k)).

Consequently, the classification of signed formulae presented in Chapter 4 can be

extended to the non-atomic positions of a formula tree by defining the principal

type, Ptype(k), of a position k to be the type of the signed formula sform(k).

The principal types are therefore a, Q, 7, 6, v and x. (Note: atomic positions

have no principal type.)

Every formula occurrence of the formation tree, except the root formula

itself, is an immediate subformula of some subformula of the root formula. Con-

sequently we can define the secondary type, Stype(k), of a position k to be the

type of the signed formula sform(k) determined with respect to the principal

type of its parent. For example: suppose sform(k) _ (B A C, 0). Suppose also

that k, and k2 are the children of k in the formula tree, i.e.,

sform(kr) = (B, 1) and sforrn(k2) = (C, 0).

Then, since Ptype(k) = a we define

Stype(kr) = al and Stype(k2) = C12-

144

Another example: suppose sform(k) = (QB,1). Suppose also that kl is the child

of k with sform(kl) = (B, 1). Then, since Ptype(k) = 7r, we have Stype(kl) = 7ro.

The secondary types are therefore ai, a2, Qt, Q2, 'Yo, So, vo and gyro. In addition,

if the polarity of the root position is 0 we define its secondary type to be 7ro.

Conversely, if the polarity of the root position is 1 we define its secondary type

to be vo.

Each non-atomic position therefore has two types:

its principal type (eg., a, Q, v, ...): determined by its label and polarity,

and

its secondary type (eg., a1, a2i Q1, ...): determined by the principal type of

its parent.

Atomic positions have only a secondary type. The principal and secondary types

of the positions of the example formula tree are also shown in Figure 6-2.

For a given formula tree, we shall use 1/o, Ho, Fo and Do to denote the sets

of positions of secondary type vo, 7ro, 7o and &o respectively.

6.2.2 Multiplicities.

We noted above that our intention is to use formula trees to represent sequent

derivations. We shall characterise the existence of a sequent proof of the formula,

and hence its validity, in terms of the internal structure of the formula, as we

did in Part I for classical logic. Positions are the means by which we refer to this

structure. The notions of multiplicities and indexed formula trees introduced

below, are used to capture the fact that during a derivation certain subformulae

are utilised in multiple ways. We say that quantifiers of universal force, and

modal operators of necessary force, are generative. In terms of the sequent calculi

of Chapter 4 the genericity of such quantifiers and modal operators emerges

through the -y and v rules which, when inverted, give rise to multiple instances

of their side formulae.

145

In Part I we presented a notion of multiplicity for the quantifiers. We repeat

that here in the context of modal logic, but call it a first-order multiplicity. We

treat the generative modal operators in a similar manner leading to the notion

of a modal multiplicity. A multiplicity for a formula of quantified modal logic is

simply the combination of both the first-order and modal multiplicities.

Informally, a multiplicity indicates how many instances of particular subfor-

mulae are, or may be, utilised in a derivation. Recall that a position, k, of the

basic formula tree represents a (sub)formula via its label: lab(k). We distin-

guish different instances of this formula by indexing the position thus: k", where

x is sequence of positive integers. We arrange that lab(k") represents a distinct

instance of lab(k) for each distinct index K. That is:

lab(k") = lab(k') iff k = r.

Multiplicities are the means by which we generate appropriate indices.

For quantified formulae such as lab(k) = VxB, instances of its immediate

subformula: lab(k1) = B, are formed by the substitution of distinct constants or

parameters for the individual variable x free in B. While the positions allow us to

name these instances, we also require the labels of indexed positions to represent

the different subformulae as mentioned above. Consequently, we define the label

of an indexed position to take account of these potential substitutions. In this

we are aided by our particular formulation of multiplicity (as opposed to Bibel's)

as argued in Part I. We use the 7o and bo positions themselves as an indication

of the potential for substitution to form a new instance.

The following definitions are introduced for a given formula tree for a given

signed formula X = (A,0).

A function Am from Vo to the natural numbers is called a modal multiplicity

for X; it serves to encode the number of instances of subformulae of X in the

scope of a modal operator of necessary force considered within a putative proof.

A function µQ from ro to the natural numbers is called a first-order multi-

plicity for X; it serves to encode the number of instances of subformulae of X in

the scope of a quantifier of universal force considered within a putative proof.

146

A multiplicity µ for X is the combination of a modal and first-order multi-

plicity thus: for a position k E 1/o U ro:

µn1(k), k E L6;
µ(k) _

µq(k), k E I'o.

If µ is a multiplicity for X we define the (indexed) formula tree for the indexed

formula X" as a tree of indexed positions of the form kK, where k is a position

of the basic formula tree for X and K is a sequence of positive integers defined

in the manner described below. Let k, << k2 << . « k k, 1 < n, be all those

elements of ro that dominate k in the formula tree for X. The indexed position

k" is an position of the indexed formula tree for X" provided:

1. k is a position of the formula tree for X.

2. µ(k,) 0, 1 < I < n.

3. K =mlmsmwhere 1 <m, <u(k,), 1 <i<n.

We shall use rc -< r to denote that rc is a proper initial sequence of r. The

ordering on the underlying tree is extended to the indexed tree as follows: for

indexed positions k" and 1f,

k"«"lf iff k«1 and r.-<7-

i.e., k must dominate I in the (unindexed) formula tree, and is must be an initial

(possibly not proper) sequence of r. The polarity, pol(k"), of an indexed position

k" is taken to be the same as the polarity of its underlying (unindexed) position

k; i.e., pol(k4) = pol(k). The label, lab(k"), of an indexed position k" is defined

inductively as follows:

1. lab(ko) = A, if ko is the root position of the formula tree.

2. If 1ab(k") = B A C, and ki , k2 are the children of k", then 1ab(ki) = B

and lab(k2) = C.

147

3. If lab(k") = B V C, and k; , kz are the children of k", then lab(ki) = B

and lab(k2) = C.

4. If lab(V) = B = C, and k; , k7 are the children of k", then lab(ki) = B

and lab(k2) = C.

5. If lab(k) = -,B, and ki is the child of k", then lab(ki) = B.

6. If lab(k) = VzB, and k; is a child of k", for some r, rc < r, then lab(ki) _

B(ki /xJ.

7. If lab(k) = 3zB, and k; is a child of k", for some r, rc

B(k; /x).

-< r, then lab(ki) =

8. If lab(k") = QB, and k; is a child of k", for some r, rc < r, then lab(ki) _

B.

9. If lab(k") = p B, and k; is a child of k", for some r, rc r, then lab(ki) _

B.

That is, we use the position itself as a marker for where substitutions can be

performed for individual variables. Positions of 7o and bo-type appear in the

atoms labelling the atomic positions of the indexed formula tree in place of what

otherwise would be free individual variables.

The notation sform(u) is extended to indexed positions in the obvious way,

namely:

sform(u) = (lab(u) , pol(u)).

Consequently, since the polarity of an indexed position k", and the structural

form of its label, is identical to the polarity and form of the label of the under-

lying position k, k" inherits the types (both principal and secondary) of k. We

use JVo(µ), Tlo(µ), Fo(µ) and 0o(µ) to denote the sets of indexed positions of

secondary type vo, 7ro, 7o and bo respectively, in an indexed formula tree for Xµ.

Figure 6-3 shows an indexed formula tree for the example formula of Fig-

ure 6-2 with a multiplicity of IQ(a4) = 2 and 1 otherwise. As a convention we

148

OOdx (OPx A DQx) => O(VyPy A dzQz)

OOdx(OPx A cQx) O(dyPy A dzQz)

Odx(0Px A DQx) dyPy A dzQz

,l\
dx(OPx A DQx) dyPy dzQz

1 1

OPx A D Qx Py Qz

OPx DQx

ao

a1 ag

1

a2

1

1 a1o

1

a3 1 1

1 a1 a13

1 1

1 2 1 l a4 a4 a12 a14

1 / 1
1 1 2 2 a5 a7 a5 a7

1 11 2 21 a6 all ag a8

Figure 6-3: Example indexed formula tree.

omit indices consisting of the empty sequence and omit the brackets surround-

ing sequences of integers. Hence 12 denotes the sequence consisting of the unit

sequences 1 and 2. Since we will have no need to consider multiplicities higher

than nine in the development of the matrix systems, this should not lead to any

confusion. Figure 6-4 shows the polarities, labels and types of the tree.

We shall use u and v, possibly subscripted, as meta-variables ranging over

indexed positions when we are not interested in the index, and drop the super-

script on «". Moreover we use a, al, a2 0, ..., etc, as before to denote arbitrary

indexed positions of that (principal or secondary) type. We shall feel free to

use such notation as a" to denote an indexed position of a-type when we wish

to identify the index. Henceforth, we shall refer to indexed positions simply as

positions.

REMARKS. In Part I we slightly altered Bibel's notion of a multiplicity

149

u pol(u) lab(u) Ptype(u) Stype(u)

ao 0 E l z) a 70

al I O O Vx(QPx A []Qx) 7r al

a2 1 O Vx(O Px A Qx) 7r pro

a3 1 Vx(QPx A Qx) It 70

a4 1 QPa4 A O Qal a '10

as 1 QPa' 7r al

a8 1 Pa4 - 70

a7 1 p Qx v a2

all 1 Qa - vo

a4 1 QPa4 A O Qa4 a 'Yo

a6 1 QPa2 7r al

ae 1 Pat - 70

a7 1 p Qa4 v a2

a41 1 Qa2 - vo

a9 0 O (VyPy A dzQz) v a2

a10 0 dyPy A dzQz v0

all 0 dyPy 6 al
1

a12 0 1 Pall - 60

al3 0 dzQz 6 Q2

aio 0 Qai4 - 60

Figure 6-4: Polarities, labels and types for an indexed formula tree.

150

a3

Figure 6-5: Indexed formula tree with constant zero multiplicity.

(Bib82aj. The resulting notion corresponds to a first-order multiplicity here. The

new definition is more appropriate for discussing the role of quantifiers in the

matrix and sequent systems presented there. Here we have another vindication

of our formulation since we are able to treat the genericity of modalities and

quantifiers (technically) in exactly the same way.

We have left open the possibility that the multiplicity of a position may be

zero. In this case the indexed formula tree is truncated. Figure 6-5 shows the

indexed formula tree of our example with a constant zero multiplicity. (END OF

REMARKS.)

6.2.3 Paths and connections.

IMPORTANT NOTATIONAL POINT. We warn the reader that we shall sys-

tematically abuse our notation and use the names of types to denote arbitrary

(un)indexed positions of that type within formal definitions such as the defini-

tion of the notion of path below. In particular, if we say: "if s, 7r" is a path..."

we mean that "if s, u is a path, and Ptype(u) = 7r,..." Furthermore, in this

context we shall use 7r0 ' to denote the child of u. Similar abuses are extended to

the other types. We shall include indices explicitly where necessary. (END OF

POINT.)

151

Let X" be an indexed formula. A path through X" is a subset of the positions

of its formula tree defined below. We shall use s and t, possibly subscripted, to

denote paths, and adopt the notation s, u to denote the path (set) s U {u}. The

set of paths through X", is the smallest set such that:

1. { k0 } is a path, where ko is the root position of the formula tree for X";

2. if s, a" is a path, so is (s \ {a"}), al", a2";

3. if s,,8' is a path, so are (s \ {a"}), 01" and (s \ {p"}), p2";

4. if s, 7" is a path, so is s, 70"J, for any j, 1 < j < µ4(ryo);

5. if s, b" is a path, so is (s \ {b"}), bo"

6. if s, v" is a path, so is s, vo"J, for any j, 1 < j < zM(vo);

7. if s, i" is a path, so is (s \ {7r}), no"

The path:

(S\ {a')), al', a2"

is said to have been obtained by reduction on a" from s, a". Similarly in the

other cases. Notice that in the generative cases: ry and v, there is a choice as

to which child of the position to introduce. The children differ solely in the last

element of their indices.

EXAMPLE. Consider the indexed formula tree of Figure 6-3. A sample of the

paths through this indexed formula are shown in Figure 6-6. Apart from the first

path, the rest are obtained by a single reduction from their predecessor. Notice

how the generative positions (i.e., those of 7 and v type) are preserved once

they enter the path. Notice also how their indexed children are introduced by

repeated reduction. Finally, notice how the Q-red on aio introduces only one of

the children of that position, namely: ail. Other paths result from the inclusion

of the alternative child: a13. The resemblence of the reduction operations used

152

{ao}

a-reduction on ao

{a,,a9}

v-reduction on a9

1
a1, ao, alo

/3-reduction on aio

1 a,,ao,all }

b-reduction on ail

{ a1, a9, a12 }

7r-reduction on al

a2, a0, a12 }

7r-reduction on a2

{ a3, ao, a12 }

7-reduction on a3

1 a3ia4 a0,a12 }

a-reduction on a4

{ a3i as1, ar1, ao, a112 }

7r-reduction on ab

{ a3, a1, a1, act, a1 g 7 12 }

v-reduction on a7

11 { as,a.,a7,a8 ,act,a12 }

7-reduction on a3

2 11 1 { a3ia4,a.,a7,a8 ,act,a12 }

a-reduction on a4

2 2 11 { a3, a,, a7, a., a7, a8 , act, a12 }

7r-reduction on a5

2 2 11 { a3i ae' ar' ao, ar, a8 , ao, a12 }

v-reduction on a7

2 2 21 11 } { a3f a8, a a8 , a6, a7, a8 ao, a12

Figure 6-6: Paths through the indexed formula of Figure 6-3.

153

to define the notion of path to the sequent rules of Chapter 4 is not accidental.

(END OF EXAMPLE.)

Each path s through X determines a set of positions as follows:

S(s) = {vf v«u forsomeuEs}.

We call S(s) the set associated with the path s.

REMARK. As we remarked in Part I, our definition of path differs from

Andrews' (And81) and Bibel's (Bib811 definition so as to demonstrate the re-

lationship between the matrix methods and tableau/sequent methods. Each

clause in the definition, when interpreted as operating on the set associated with

the path, corresponds roughly to an application of an inverted sequent inference

rule (see Chapter 4). This was explained in detail in Chapter 3 for the case of

classical logic. (END OF REMARK.)

EXAMPLE.

S({ao}) = {ao}

S ({ a3, a9, a12 }) = { a0, a1, a2, a3, a9, al0, all, a12 }

S({
1 1 11 1 a3, a6, a7, a8 , a9, a12 {ao, a1, a2, a3,

1 1 1 1 11 1 1 1 a4, a5, a6, a7, a8 , ag, a10, a11, a12

S({ a3i a2 2 a21 al al all aal }) _ {a a a a a2 a2 a2 a2 a
6 7

21 'a
8 6+ 9, 12 0, 1, 2, 3, 7+ 8

1 1 1 1 11 1 1 1 a4, a5, a6, a7, a8 , a9, a10, all, a12

(END OF EXAMPLE.)

In a similar vein we define, D(s), the set of positions dominated by the path

s. Informally, D (s) represents those positions that can possibly be "reached" by

further reductions. Formally, the definition of D(s) is quite complex. First we

define an intermediate set I(s) inductively as follows: I(s) is the smallest set of

positions such that s C 1(s), and closed under the rule:

154

if u E I (s) and v is a child of u with v 0 S (s), then v E 1(s).

D (s) is then defined by:

D(s) `'-` I (s) \ s.

EXAMPLE.

D({ ao }) = every position of the indexed tree.

as, aq, a1z D ({ 1

D ({ as, a', a', ag1, a9, a12

a3, 2 21 a', a', " '
D , ag, a7, a9 , ae, a7, as , as, a12

})=

})

1 1 1 1 11 2 2 2 2 21
a4, a5, as, a7, as , a4,

a5'a6
a7, as ,

2 2 2 2 21 a4, a5, as, a7, as

0

Notice that the positions ais and ai4 are not elements of D(s) after the reduction

of aio which is of fl-type. In the last path above, for example, a9 is such that

a9 C< ais. But a9 is of v-type, and its child uo for which uo g a13 is the position

aio. But aio is in the set associated with the path (i.e., it has been reduced

already), hence ais is not in the set dominated by the path. (Similarly for a14 of

course.) (END OF EXAMPLE.)

A path, s, through Xµ is an atomic path just in case D(s) = 0. From these

definitions we conclude:

FACT 6. 1 If s is an atomic path, then for k" E s either:

(a) k is an atomic position; or

(b) k is of -y-type, k1 its child, and for all j, 1 < j < ILQ (k1), ki 2 E S (s); or

(c) k is of v-type, k1 its child, and for all j, 1 < j < 1uM(k1), ki 2 E S (s).

EXAMPLE. Consider the previous examples of paths and their associated

sets. The third path: {as, a., a7, ag1, a9i a12} consists only of atomic positions

155

and -y and v-type positions. It is not atomic since not all of the children of as

are elements of S(s). In other words, we can reduce the path further. The last

path, however, is atomic, since all such reductions have been performed. (END

OF EXAMPLE.)

The above definitions are somewhat complex. Luckily, the "matrix" char-

acterisations get their name from a visual method of identifying the atomic

elements of atomic paths through indexed formulae. The matrix representation

of a formula described for classical logic in Chapters 1 and 3 carries over to the

modal case with no change. Consider our example (signed) formula:

(OOVx (QPx A O Qx) =' O (VyPy A VzQz), 0)

indexed as in Figure 6-3. If we distinguish its a-type subformulae from its Q-

type subformulae by placing the components of the former side-by-side and the

components of the latter one above the other, we obtain a nested matrix thus:
O d' (Py')

OOd= O (Px') A ° (Qx') O (Px2) A ° (Qx2) A

dz (Qz')
(For the reader's convenience we have left the individual variables in the atoms

and simply indexed them x', x2 to distinguish the different instances. Strictly

speaking, Px' below should read Pa4 etc.) Notice that the two instances of the

subformula Px A Qx are considered to be the components of an implicit a-type

formula. This follows from the -y clause (4) of the definition of paths above. If

we omit the connectives, quantifiers and modal operators we are left with the

skeleton matrix:
(Py')

(Px' Qx') (Px2 Qx2)

Qzl l
which corresponds roughly to the so-called "deep formula" in the expansion tree

approach of Miller (Mil84).

The atomic elements of an atomic path are simply the horizontal matrix

paths through such a matrix. In this case there are two atomic paths through

the formula, one with atomic elements {Px', Qx', Px2, Qx2, Py'} and one

156

whose atomic elements are {Px1, Qx1, Px2, Qx2, Qz1}. More precisely, we

should express these sets as positions thus:

{al all as a21 a } and {a all a2 a21 a1
8+ 8 + 8+ 8 12 6+ 8 + 6 8 141.

A connection in an (indexed) formula is a subpath of a path through the

formula consisting of two atomic positions of different polarities, but labelled

by an atomic formula with the same predicate symbol. A set of connections

is said to span the formula just when every atomic path through it contains a

connection from the set.

For example, the two connections {a,,, a12} and {a8111, ai4} span the indexed

formula displayed above. So does the connection pair {as, a12} and {a821), ai4}.

6.2.4 Complementarity.

The generalisation of the notion of formula tree, position, path and connection

to the modal language was quite straightforward. Indeed, up to this point,

the modal operators have been treated simply as a new form of quantifier. As

we discussed in the introduction, our aim is to formulate a (logic-dependent)

notion of complementarity for connections which ensures that the existence of

a spanning set of complementary connections in an (indexed) signed formula,

(A, O) , entails the existence of a proof of the sequent: - A, in a sequent

calculus for that logic. The correctness of the sequent system then ensures the

validity of A. Conversely, since every valid formula has a sequent proof, we

require that if A is valid, then there is such a spanning set of complementary

connections in (A, 0)' for some multiplicity y; i.e., the matrix characterisations

are complete. The formulation of complementarity should be structural; i.e., it

should be in terms of syntactic properties of the formula A.

In this section we present appropriate definitions of complementarity for con-

nections for the modal logics under consideration. The propositional fragments

of the logics are treated first, the first-order systems second. In §6.3 and §6.4

157

we prove the correctness and completeness of the resulting characterisations of

validity.

6.2.4.1 Propositional modal logics.

For a formula A of pure propositional logic, connections are complementary

by definition. Since there is no need for multiplicities (no modal operators or

quantifiers) we obtain the simple characterisation of validity (re)derived in Part I.

THEOREM 6.2 (ANDREWS [AND81], BIBEL [BIB81]) A propositional for-

mula A is valid iff there exists a set of connections that spans (A, 0).

As discussed in Part I complementarity in propositional logic is this simple be-

cause there is no order dependence between the sequent inference rules. In the

last chapter we showed how the modal inference rules induced such an order

dependence. Thus, in the presence of modal operators we must be more careful.

The propositional complementarity of two atoms is not enough to guarantee that

a derivation of the endsequent exists with that connection at one of its leaves.

We saw that the number and nature of the modal operators that quantify atoms

are crucial factors in determining whether the appropriate sequent derivation

exists. We capture this notion of "modal context" in terms of the formula tree

as shown below.

The following definitions are introduced for a given (indexed) formula tree for

a given (indexed) formula X". Let TM(p) denote the union of Lo(p) and Ilo(p).

We associate with each position u of the formula tree a sequence of positions,

pre(u), called a prefix, as follows: if u1 << u2 « « u S u, 1 < n, are those

elements of TM(p) that dominate u in the formula tree, then

pre(u)
ulu2 u,,, K, K4, D, D4, T, S4;

u,,, S5.

The prefix of a position encodes the modal context of the position within the

formula tree. For example, the (non-S5) prefix of a6 in the indexed formula of

Figure 6-3 is the sequence aoa2a3a1, while the (non-S5) prefix of a12 is aoaio

The S5-prefix of the former position is a6, and of the latter ai0.

158

We shall use p and q as metavariables for prefixes, and P(µ) to denote the

complete set of prefixes of the positions of X". We shall use p -< q to denote that

p is a proper initial sequence of q, and u E p to denote that u is a unit element

(i.e., u E TM(µ)) of the sequence p.

The definition of prefixes gives us the following fact:

FACT 6.3 For all positions u and v, v E pre(u) implies V -S U.

Let T' denote the set of sequences (words) generated from some set T of

elements, and T' = T+ U {0}. We define C-accessibility relations on T* x T* by

the conditions shown in Table 6-1. For example, the S4-accessibility relation on

T* is defined as follows: for p, q E T*, p Ro q if and only if either:

(a) (general) q = pu, where u E T; or

(b) (reflexive) q = p; or

(c) (transitive) p -< q.

An equivalent definition is: for all p, q E T*,

pRoq if p-<q.

We prefer the first since we can generate the definitions for all of the logics

(except S5) by means of the general, reflexive and transitive conditions. Notice

that the transitive condition subsumes the general condition. The definitions for

the logics under consideration are given in Table 6-2. With these definitions we

immediately have the following fact:

FACT 6.4 Let L be one of the logics: K, K4, D, D4, T, S4. Let Ro be the

L-accessibility relation on T*. Then, for all p,q E T*,

pRoq implies p-<q.

159

Property Condition

general p Ro pu, p E T`, u E T

reflexive p Ro p, p E T*

transitive p Ro pq, p E T*, q E T+

Table 6-1: Prefix conditions.

L Properties of Ro

K, D general

T general, reflexive

K4, D4 general, transitive

S4 general, reflexive, transitive

S5 u Ro v, u, v E T

Table 6-2: Accessibility relations on prefixes.

160

REMARK. These definitions are adapted from the so-called prefixed tableau

systems of Fitting]Fit72,Fit83]. We discuss the relationship between these sys-

tems and the matrix systems in detail in Chapter 8. (END OF REMARK.)

Of course, for our purposes, the sequences are generated by the set TM(A).

We can think of prefixes either semantically or proof-theoretically. Semantically,

each prefix is the name of a point in a model. Accessibility relations on prefixes

are used to represent properties of the accessibility relation of the model. Proof-

theoretically, the prefix of a position represents the sequence of (inverted) modal

rule applications that are necessary to produce an occurrence of the subformula

rooted at that position as an S-formula in a derivation. Recall that our aim

is to guarantee that, given a connection, there exist a sequence of (inverted)

rule applications that produce images of both the atomic formulae that label

the components of the connection in the same sequent. But the (inverted) 7r

rules rules cause formulae to be "deleted" from the sequent. On the other hand,

in certain logics, L/-type formulae may be preserved through such a deletion

operation. We must ensure that the ancestor formulae of the pair of atoms that

form the connection are not "deleted."

Let us return to the example given in the introduction, namely the S4-

validity of P = P. An indexed formula tree for the signed formula:

(P P,0), with a constant multiplicity of 1, is shown in Figure 6-7.

Notice that we have distinguished the vo-type element, b2, with an overbar: 62.

Recall the S4-proof of this formula:

w2 PP
w2 P ---+ P (v)

) wl P--P (ir
w P OOP ('r) o

() wo - P P a

where we have included the (notional) point about which each sequent makes an

assertion. We have that wo R wl and wl R W2. The next step is to include the

161

OP = OOP bo

P P b, bs

1 1 L. 1

P P 62 b4

1

P

1

b5

u pol(u) lab(u) pre(u) pres5(u) Ptype(u) Stype(u)

bo 0 OP = P 6o bo a Iro

b, 1 P bo bo v al
b4

1 P bob, b, - vo

b3 0 COP bo bo it a2

b4 0 OP bob4 b4 it iro

b5 0 P bob465 b5 - iro

Figure 6--7: Indexed formula tree for: (C] P O O P, 0).

162

prefixes of the S-formulae in the derivation thus:

wz Pb" b2
---- Pbb4b5

wy (P) bo biibaba
o --* (u)
--- (7r)

wl (O P) b, --' (O P) bobs

wo (OP) b --' (OOP) b -ate (ir)

(CO
WO -- (nP = O P) b

This is an S4-proof because we can preserve the antecedent image (DP):bo

through two applications of the S4 (inverted) 7r rule. This in turn is permit-

ted because the accessibility relation for S4 is transitive, i.e., wo R w2.

We come now to the crucial issue. Rather than dealing in terms of notional

points of a model, we deal instead with prefixes. We use the prefixes of subfor-

mulae to denote the notional points. The properties of the accessibility relation

on points is represented by the accessibility relation on prefixes given for S4 in

Tables 6-1 and 6-2.

With this as the aim, we are forced to consider the following correspondence

between prefixes and points:

bo

bob4

bob4b5

wo

wl

w2

Now consider the prefix bob2 of the atomic antecedent image of P in the above

derivation. To what notional point does it correspond? We have a choice. Due

to the transitivity of the accessibility relation for S4, bobz could denote any point

accessible from bo (i.e., wo). By the entries in Tables 6-1 and 6-2 for S4 this

means any prefix of which bo is an intial sequence. Consequently, we can choose

to let bobz denote the point w2 by the prefix mapping:

bz '-- b4b5

163

Turning the argument about, roughly speaking, provided we can find a mapping

of vo positions, to TM(µ)* such that the prefixes of the positions of the connection

(in this case bob' and bob4b5) are identical, the connection is S4-complementary.

Looking at it another way, the prefix mapping encodes the range over which

the (inverted) v rule must not be applied to the S-formula (P).b,, in order to

preserve this ancestor of the atom Pb bi.

The discussion above motivates the following definitions. Let am be a map-

ping from Vo to TM(µ)*. Recall that P(µ) is the set of prefixes of the indexed

formula X". Define PP,,, (µ) to be the image of P (µ) under am in the following

sense:

er(µ) = { P I P < anf(9) , q E (µ) ,

where am: TM(µ)* TM(µ)* is the homomorphic extension of am to TM(A)*.

Such a mapping am is a modal substitution just in case:

A. u c am(v) implies am(u) = u.

B. pu E PCM(µ) implies pu = cM(pre(u)).

The first condition is for technical convenience only, and restricts our attention

to substitutions that are "minimal" in an obvious sense. The second condition

ensures the coherence of the substitution and reflects the fact that we shall

compute modal substitutions by unifying the prefixes of positions labelled with

atomic formulae. We shall point out where these conditions are

correctness proofs.

A modal substitution am induces an equivalence

EM on TM(µ) x TM(µ) as follows:

1. If am(u) = v and v E Vo(,a), then u "'M v.

2. If am(u) = p and p Vo(µ), then for all v - p,

3. If v EM u and u '"M u', then v EM u'.

relation ^'M

v EM u.

utilised in the

and a relation

164

This definition should be compared with the similar one given for classical quan-

tifiers in Chapter 3.

A modal substitution QM is £-admissible provided

1. QM respects the £-accessibility relation Ro on TM(µ)`; i.e., for all P, q E

TM(t)',

p Ro q implies am" (p) Ro cr (q) .

2. (K-logics only) u '°'M u' implies v CM u (and hence v CM u') for some

a-related position v.

3. d = (<C U CM)+ is irreflexive.

Once again the reader should compare this definition with the definition of ad-

missibility for a classical mapping. Except for the condition pertaining to the

K-logics the only addition is the first condition concerning the stability of L-

accessibility relations on prefixes.

Two positions are a-related just in case there is some path s for which both

positions are elements of S(s). Alternatively, a position u is a-related to a

position u' just in case the <<-greatest common ancestor of u and u' is not a

0-position. By "<<-greatest common ancestor of u and u'" we mean a position

v such that v < u, v << u', and there is no position v', distinct from v, with

v « v', such that v' << u and v' << u' both hold. In terms of matrices, positions

that are not a-related appear in the same column vertically separated.

The appropriate notion of complementarity for the propositional modal logics

under consideration is as follows: if am is an £-admissible modal substitution

for X", a connection { u, v } in Xµ is said to be arm -complementary iff

a (pre(u)) = * (p re (v))

REMARKS. The relation v 4 u should be interpreted as a prescription that

"position v should be introduced into a path (by the reduction of its parent)

before position u." Accordingly we call the relation the reduction ordering. Its

165

irreflexivity ensures that we could construct a sequent proof with -- A as root

using the sequent systems of Chapter 4 (assuming that the signed formula X is

(A, 0)). This last remark will be made clear in the correctness proofs of §6.3.

Suitable substitutions can be computed using variants on a string-unification

algorithm. For all of the logics under consideration the set of most general uni-

fiers is finite, but not necessarily a singleton. We discuss this further in the next

chapter. For S5 the standard unification algorithm suffices. The admissibility

check is an check for acyclicity if a is interpreted as a directed graph.

The extra condition for the K-logics reflects the fact that there is no rule

which, when inverted, reduces v-type formulae only. Reductions of v-type S-

formulae in a sequent derivation only occur during the reduction of 7r-type for-

mulae. We must therefore ensure that every vo position (formula) is associated,

via the modal substitution, to a 7ro position (formula) whose reduction causes the

introduction of the vo position (formula). The condition stated above ensures

that this is indeed the case. We shall indicate in the correctness proofs where

this condition plays its role. (END OF REMARKS.)

We have defined what it means for a connection to be complementary in a

modal logic. The final step is to characterise the validity of a modal formula

in terms of such complementary connections. This is achieved by extending

the complementarity of a connection to the paths that contain it. Informally,

this is the final link in the correspondence between the modal sequent calculi

of Chapter 4 and the matrix methods: a path made complementary itself by

containing a complementary connection as a subpath corresponds to an instance

of the basic sequent.

Let QM be an L-admissible modal substitution for Xµ. A path, s, through

Xµ is said to be QM-complementary just in case:

1. It contains a QM-complementary connection {u, v} (as a subpath).

2. (K-logics only.) For all u' e Q(pre(u)), U' E S(s).

166

A set of aM-complementary connections spans X" just in case the set ensures

that every atomic path through X" is a-complementary.

REMARK. For the idealisable modal logics: D, D4, T, S4, S5, this mirrors

the definition for classical logic given in Part I. For the non-idealisable K-logics:

K and K4, an extra condition is imposed. This condition can be motivated by

reference to the sequent calculi of Chapter 4. Informally, since there is no v

rule in the sequent calculi for the K-logics, every reduction of a v-type formula

(position) must be "driven" by the reduction of a 7r-type formula (position).

This constraint is met in the matrix methods by the extra condition (2) on

K and K4-admissible substitutions, which force such "linking" between vo and

7ro positions. But such connections only correspond to basic sequents that can

be "constructed," so to speak, by (inverted) applications of the 7r rule. The

definition of path was purely structural, and hence the same for each logic. This

is desirable so that path checking algorithms developed for classical logic (eg.,

(Bib82a,IIB82)) are immediately applicable to the modal logics. For the K-logics

however, although a path may structurally contain a complementary connection

(as a subpath), that connection may not in fact be "constructable" without an

independent v rule. The extra condition is necessary to ensure that a path is only

classified as being complementary if the complementary connection it contains is

constructable in this sense. We shall remark on this condition in the correctness

proofs below where these notions are made more precise. (END OF REMARK.)

In §6.3 and §6.4 we prove both halves of the following theorem:

THEOREM 6.5 A propositional modal formula A is L-valid iff there is a modal

multiplicity µM, an L-admissible modal substitution am and a set of am-

complementary connections that spans the indexed formula (A, 0)""!.

EXAMPLE. Consider our example formula

(P = P,0)

and its formula tree in Figure 6-7. The connection { 62, b5 } spans the formula.

The prefixes of these atomic positions are: pre(b') = bob' and pre(b5) = bob4b5

167

(where we distinguish vo-type positions in prefixes with an overbar for the

reader's convenience). Consider the mapping am defined as follows:

b4b5, u = b2

u, otherwis e.

Under am the two prefixes are identical. Firstly, am is a modal substitution

since Conditions A and B hold. (Condition B is easy to check: simply notice

that the only element of P (p) affected by the substitution is bob2, and that its

image under am is bob4b5. Furthermore, aM(pre(b5)) = bob4b5 and af(pre(b4)) _
bob4.) Secondly, am respects C-accessibility relations on prefixes that satisfy the

transitive condition. Thirdly, the K-condition is satisfied since b4 and b5 are

a-related to 6'. (Indeed there are no 0-type positions in the formula tree at all.)

Finally, the reduction ordering a induced by the mapping can be pictured as a

directed graph as follows:

bo

b5

where we have used dotted arrows to represent the CM relation. Since the

directed graph is acyclic we conclude that the mapping is K4, D4 and S4-

admissible. This suffices to show that the path is am-complementary for D4

and S4, and therefore that the formula is valid in these logics. For K4 we have

both b4 and b5 are elements of the set associated with the single atomic path

through the formula. Consequently, this path is a-complementary and the for-

mula is also valid in K4.

For S5 the prefixes are pre(b2) = 62 and pre(b5) = b5. The mapping that

takes 62 to b5 is clearly S5-admissible and its reduction ordering is a subgraph

of that shown above (and hence acyclic also). The formula is therefore S5-valid

also. (END OF EXAMPLE.)

168

0.2.4.2 First-order modal logics.

Extending the matrix characterisations of validity in the propositional fragments

to the quantified logics is straightforward. We consider constant, varying and

cumulative domain variants of the quantified logics. The notion of a first-order

substitution below is identical to that introduced in Part I for classical logic.

Let TQ(µ) denote the set Fo(,u) UAo(µ) (cf. TM(µ)). A first-order substitution

is a mapping aQ: I'o(µ) '--+ TQ(,u) U C, where C is the set of constants in the

formula being tested for validity.

For constant domains, a connection is interpreted as complementary if we

can find a first-order substitution aQ that render the (atomic) labels of the two

atomic positions identical.

For varying and cumulative domains, the modalities and quantifiers interact.

Universally quantified variables only range over those individuals that "exist"

at the point denoted by the prefix of their quantifiers. Existential quantifiers

express the existence of individuals only in the point denoted by their prefixes.

Consequently, our first-order substitution aQ must respect the modal substitu-

tion am.

For soundness, we must place restrictions on first-order substitutions to

ensure that the positions representing parameters introduced for existentially

bound variables (replaced in the labels of positions by elements of Ao(µ)) are

indeed arbitrary. In terms of sequent systems, we must ensure that such posi-

tions are introduced (by the reduction of their parent) before the introduction

of any position representing a universally bound variable (i.e., element of Fo(µ))

which is to receive the same parameter. These notions should be familiar from

Part I. The similarity between the restrictions on quantifier reductions and the

restrictions on modal operator reductions is not accidental [Smu7O].

A first-order substitution aQ: r0(µ) - TQ(µ) U C induces an equivalence

relation -eQ and a relation CQ on TQ x TQ as follows:

1. If aQ(u) = v and v E I'o, then u -Q v.

169

2. If oQ(u) = v and v v ro, then v Cq u.

3. If v C :Q u and u -Q u', then v F U'.

A combined substitution is a pair consisting of a modal substitution and

a first-order substitution. A combined substitution (am, CQ) is L-admissible

provided

1. QM respects L-accessibility relations, as before.

2. (K-logics only) u -m u' implies v EM u (and hence v cm u') for some

cx-related position v.

3. d = (<< U CM U CQ)+ is irreflexive.

4. The following condition holds for am and oQ depending on the domain

condition for the logic L:

Constant domains: No condition.

Varying domains: If CQ(u') = v', then am(pre(v')) = a" (pre(u')).

Cumulative domains: If CQ(u') = v', then either:

(a) am(pre(v')) _ a* (pre(u')); or

(b) a* (pre(v')) Ro a* (pre(u'))

REMARKS. There is no coupling of the modal and first-order substitutions

for constant domains. For varying domains however, there is such a coupling,

namely: "parameters" (elements of TQ(µ)) associated by the first-order substitu-

tion must have identical prefixes under the modal substitution. (Intuitively, the

prefix of such an element is the point at which it exists.) The corresponding cou-

pling for cumulative domains is weaker: the prefix of the "variable parameter"

(element of I'o) need only be L-accessible from the prefix of its image. (END OF

REMARKS.)

The appropriate notion of complementarity is then as follows: if a is an

L-admissible combined substitution for Xc`, a connection { u, v } in Xc` is o-

complementary if

170

1. cM(pre(u)) = oM(pre(v)).

2. CQ(lab(u)) = CQ(lab(v)).

REMARK. Recall that the label of an atomic position u is an atomic formula

with elements of TQ(A) in place of what otherwise would be free individual

variables. This is a consequence of the definition of the label of an indexed

position given in §6.2.2. Consequently substitutions can be extended to modal

formulae in the obvious way. This makes sense of the second condition above.

(END OF REMARK.)

A path is c-complementary under the same conditions as were discussed in

the previous section. The difference between the first-order and propositional

characterisations of validity is captured solely in the notion of complementarity

for connections.

In §6.3 and §6.4, we prove both halves of the theorem:

THEOREM 6.6 A (first-order) modal formula A is L-valid if there is a multi-

plicity µ, an L-admissible combined substitution c and a set of c-complementary

connections that spans the indexed formula (A, 0)M.

EXAMPLE. Consider the example formula

(OOVx (0Px A Qz) p(VyPy A VzQz), 0)

indexed as in Figure 6-3. We noted before that the connections {as, a12} and

{ag', a14} span the formula. The prefixes and labels of positions are also show

in the figure. The mapping cm that takes alo to a2a3a6, aa' to a'', and is the

identity everywhere else, unifies the respective pairs of prefixes. It is easy to

check that cm is propositionally admissible for the transitive logics K4, D4 and

S4.

The mapping oQ that takes a9 to ail and a4 to a'4, and is the identity every-

where else, unifies the labels of the atomic positions comprising the connections.

171

ao

a2 - -

a3

at
4

1 1
a12 a14

11

a2 4

at all 2 21 a8 a8 a6 a8

11

Figure 6-8: Reduction order for connections.

The reduction ordering induced by the combined substitution (QM, vQ) is

shown in Figure 6-8. Notice that the graph is cyclic. The two connections

cannot be simultaneously complementary in any of the first-order logics. Recall

that in Chapter 5 we presented this formula for which we could not find a proof.

We ascribed the problem to an interaction between the reduction order for the

modal operators with the reduction order for quantifiers. Here we see how the

cyclicity of the reduction ordering Q, induced by the combined substitution,

captures such constraints. More examples can be found in the next chapter.

(END OF EXAMPLE.)

172

6.3 Correctness.

In this section we prove that the matrix characterisations of validity presented

above are correct for the modal logics under consideration. The method used

is based on standard techniques for systematic correctness proofs of analytic

tableau (eg., (Smu68,Fit83j) and cut-free sequent calculi (eg., [K1e681), together

with the techniques developed in Part I for classical logic.

For the rest of this section we assume the following: let A be a modal sentence

whose validity we are interested in, X the signed modal formula (A, 0), 1L a

multiplicity for X, and a a combined L-admissible mapping for X". Under

these assumptions, the statement of correctness for the matrix characterisations

is:

if there is a set of a-complementary connections that span (A, 0)", A is

L-valid.

By "position" we mean "position of X"," by "path" we mean "path through

X"," etc. In addition we shall not refer explicitly to the components, aM and

aQ, of the combined substitution, but use a to denote both, leaving it to the

context to determine which we mean. Since the domains and codomains of

both components are disjoint, no confusion can arise. Furthermore we shall not

distinguish between a and its homomorphic extension over prefixes 0, formulae

and signed formulae, again leaving it up to the context to determine which we

mean. First we provide an overview of the ensuing proofs.

6.3.1 Overview.

Recall that a path s determines an associated set of positions S (s). S (s) rep-

resents the positions that dominate the elements of s in the formula ordering

S. Recall also the dual notion D (s), that represents the set of distinct positions

173

that can potentially be "reached" by further path reductions. In particular,

recall that S(s) n D(s) = 0, by definition.

S (s) represents a sequent in a certain sense. We called the relation 1 the

"reduction ordering," when it was introduced above. We shall show (§6.3.2,

Proposition 6.14) that, starting from the singleton set of paths containing only

the root path, a sequence of reduction operations can be performed on this set

of sets - replacing a path by the paths obtained from its reduction - until we

are left only with the irreducible set of atomic paths through Xµ. Moreover, this

can be done in such a way that at none of these reductions is a position intro-

duced into a path whilst a 4-lesser position still remains reachable by further

reductions. This defines informally what we mean by a proper reduction. The

paths are said to be Q-compatible. In other words, the order in which positions

are introduced by reduction respects the reduction ordering Q. The irreflexiv-

ity (acyclicity) of a is the crucial condition that guarantees the existence of an

appropriate sequence of proper reductions.

Intuitively, for a subclass of the logics, proper reductions correspond to ap-

plications of the sequent inference rules on the sequent represented by the path.

We show that each proper reduction is correct in a sense reminiscent of the

correctness of the individual sequent rules of Chapter 4. Consequently, Proposi-

tion 6.14 ensures the existence of a sequent derivation of A with the atomic

paths corresponding to its leaves. The existence of a spanning set of comple-

mentary connections entails that all the leaves of this derivation are instances of

the basic sequent, i.e., the derivation is a proof of -; A, and consequently A is

valid.

Our proofs of the correctness of proper path reductions are semantic, rather

than proof-theoretic, in part because we have not developed suitable sequent

calculi for S5 and the varying and constant domain versions of the logics under

consideration. More centrally, we believe that this approach will support the

application of the ideas of this chapter to other (more complicated) logics for

which, like S5 and the constant domain modal logics, standard, cut-free sequent

systems are not available.

174

The formal ideas are based on Fitting's justification of his prefixed tableau

systems [Fit72,Fit83]. We decompose the proofs into four sections for the reader's

convenience, and to suggest the relationship with the correctness proofs for the

sequent rules presented in Chapter 4. The reader is invited to review those

proofs as an aid. Roughly speaking, we consider a path to be L-satisfiable if the

set of positions associated with it can be interpreted in an L-model in a natural

way. We show correctness by demonstrating that:

1. A path that contains a complementary connection is not L-satisfiable

(§6.3.3.1).

2. If a 4-compatible path through X,' is L-satisfiable, a proper reduction en-

sures that at least one of the resulting paths is also L-satisfiable (§§6.3.3.2-

6.3.3.4).

3. The non-validity of A means the root path is L-satisfiable (§6.3.4).

Consequently, the fact that we can reduce the root path to the set of atomic

paths ensures that at least one of these paths is L-satisfiable. The existence

of a spanning set of complementary connections for Xµ ensures that all atomic

paths contain complementary connections, and hence are not L-satisfiable, a

contradiction. A must therefore be valid, and the characterisations correct.

6.3.2 Proper reductions.

For the most part, the notion of a proper reduction can be presented (but not

justified) independently of a particular logic. There is an important exception,

namely, proper v-reductions.

The logics partition into two classes: the idealisable logics D, D4, T, S4, S5,

and the non-idealisable logics K and K4. The condition of idealisation ensures

that there is a point accessible from any given point of a frame. This structure

sanctions the inclusion of a v rule in the sequent calculi for the idealisable logics

presented in Chapter 4. The form of this rule is logic dependent; a dependence

175

which will be reflected in the different cases considered in the justification of

proper v-reductions in the sequel. For the non-idealisable K-logics however,

there is no v rule. A v-reduction of a path s, to obtain s', introduces a new

position into S(s'). The absence of a v sequent rule for the K-logics might

suggest that no form of v-reduction is justifiable. In fact, we are able to justify

v-reductions for these logics in which the prefix of the new position is already a

prefix of an element of S(s).

Below, we define the notion of a ,I-compatible path. Roughly speaking, a

proper reduction is one that preserves the 4-compatibility of paths. We capture

the difference between the idealisable and non-idealisable logics via alternative

definitions of d-compatibility, and hence of proper v-reductions.

6.3.2.1 Idealisablc logics.

A position u E D(s) is said to be unrestricted for a path s just in case there is

no Q-greater element in S(s); i.e., no v E S(s) such that u< v. A paths is said

to be Q-compatible just in case every position of D(s) is unrestricted for s. An

element of D(s) that is restricted (i.e., not unrestricted) in some sense "cannot

be reached" by proper reductions. Some reduction has been performed "out of

order" as defined by the reduction ordering d.

We say that a non-atomic, d-compatible path, s, is properly reducible on

a position u E s just when the children of u introduced by the reduction are

a-least elements of D(s). Notice that a proper reduction of s transfers positions

from D (s) to S (s).

LEMMA 6.7 The root path {ko} is 4-compatible.

PROOF. Notice that S({ko}) = {ko}, and that ko is the 4-least position.

We now come to the main lemma for the idealisable logics.

176

LEMMA 6.8 If s is a non-atomic Q-compatible path, there is some element

u E s on which s is properly reducible. Moreover, the paths that result from such

a proper reduction are themselves a-compatible.

PROOF. Since s is non-atomic, D(s) is non-empty. The set of Q-least

elements of D(s) is also non-empty since a is irreflexive (i.e., acyclic when

viewed as a directed graph). Consider the parents (elements of s) of these

d-least elements. We claim that all of the positions introduced by reduction

on any of these parents are Q-least elements of D(s).

Observe that this holds trivially if one of the parents has only one child

(i.e., is of 7r or b type), since its child is a-least by assumption. Also, if

one of the parents is generative (i.e., is of v or -y type) we may choose to

introduce any of its children that are a-least in D(s) (at least one such

child must exist by assumption).

Suppose such a parent u is of a or A type. We claim that both the children

ul and u2 of u are a-least elements of D(s). The secondary types of these

children are one of: al, a2, 01 or 02. Notice that there is no v E D(s) with

v << u i = 1, 2, since such a v would have v -S u (the parent of the ui) and

thus be an element of S (s). Also, since u, TM(µ) and ui 0 TQ (µ), i = 1, 2,

any v E D (s) with v < u, must have v a u. (Another way of putting this

is that the u, do not participate in any EM or EQ relationships.) But this

contradicts v being unrestricted and hence the d-compatibility of s. Both

children must therefore be <-least elements of D(s).

Note how the condition of irreflexivity required of the reduction ordering,

a, induced by an admissible substitution, ensures that the set of d-least

elements of D(s) for a non-atomic path is non-empty.

We have shown the existence of an element of s, say u, all of whose children

are d-least elements of D(s). s is therefore properly reducible on u. Con-

sider a path s' obtained from the proper reduction of s on u. Clearly, D (s')

is subset of D(s) and therefore every element of the former is unrestricted

in s by hypothesis (s is a-compatible). Also S (s') is a superset of S (s),

177

containing as extra elements some or all of the children of u, depending on

the type of u. Hence, a position v E D(s') could only fail to be unrestricted

in s' if one of the children of u, say u,, was such that v d ui. But ui, i = 1, 2,

is a 4-least element of D (s) by construction, so this cannot be. Hence s' is

,q-compatible. a

6.3.2.2 Non-idealisable logics.

For the K-logics we need variants of the notions introduced above. Define the

intermediate set IK(s) inductively as follows (cf.I(s)): 1K(s) is the smallest set

of positions such that s C IK(s), and closed under the rule:

if u E IK(s) and v is a child of u with v S(s), then:

(a) if v is not of vo-type, v E IK(s);

(b) if v is of vo-type, v E IK(s) provided: for every v' e v(v), v' E

S(s) U IK(s).

We then define DK(s) in terms of IK(s) (cf.the definition of D(s) in terms of

I (s)):

DK(s) IK(s) \ s.

As an immediate consequence of this definition we have:

FACT 6.9 Let s be a path and uo E DK(s) a position of vo-type. For every

v E Q(UO), V E S(s) U DK(s).

Clearly, DK(s) C D(s). The positions omitted from DK(s) but contained in

D (s) are those vo type positions (and their descendants) whose prefix contains

elements neither in the set associated with the path, nor "reachable" by further

path reductions of the kind outlined below. We define K-atomic paths to be

those paths for which DK(s) = 0 (cf. atomic paths where D(s) = 0). With this

latter definition we get a counterpart to Fact 6.1:

178

FACT 6. 10 If s is a K-atomic path, then for k" E s either:

(a) k is an atomic position; or

(b) k is of -1-type, k, its child, and for all j, 1 < j < ue(kl), kl' E S(s); or

(c) k is of v-type, kl its child, and for all j, 1 < j < jM(kl), either

k;' E S(s); or

for some v e v(pre(k")), v S(s).

The following lemma summarises the relationship between K-atomic paths and

paths obtainable by reduction from them.

LEMMA 6.11 Let s be a K-atomic path. If it E D(s), there is some vo-type

position u' E D(s), whose parent is an element of s such that:

1. U'U.

'. For some v e a(pre(u')), v S(s).

PROOF. Immediate from the previous fact and the fact that u E D(s)

implies u S (s). a

A position u E DK(s) is said to be unrestricted for a path s just in case there

is no <-greater element in S (s); i. e., no v E S (s) such that u < v. A path 8 is

said to be <-compatible just in case:

1. Every position of DK(s) is unrestricted for s.

2. For all u E S(s), v e a(pre(u)) implies v E S(s).

The first clause is identical to that given in the definition of <-compatibility for

idealisable logics, except with DK(s) in place of D(s). The second condition is

an addition.

179

We say that a non-atomic, 4-compatible path, s, is properly reducible on a

position u E s just in case the children of u introduced by the reduction are

<i-least elements of DK(s). Under these definitions we have:

LEMMA 6.12 The root path {ka} is a-compatible,

PROOF. Notice that S({ko}) = {k0}, and that ko is the a-least position.

We now come to the main lemma for the non-idealisable logics.

LEMMA 6.13 If s is a Q-compatible path which is not K-atomic, there is some

element u E s on which s is properly reducible. Moreover, the paths that result

from such a proper reduction are themselves < -compatible.

PROOF. The proof is similar to the proof of Lemma 6.8 above. Since s

is not K-atomic, DK(s) is non-empty. The irreflexivity of a ensures the

existence of at least one a-least element of DK(s). Likewise we can show

the existence of an element of s, all of whose children are a-least in DK(s).

s is thus properly reducible on this position.

Let u be the appropriate element of s. Consider a path obtained from the

(proper) reduction of s on u. In order to show Q-compatibility of s', we

must show that:

1. every position of DK(s') is unrestricted for s', and

2. for all u E S(s'), v e Q(pre(u)) implies v E S(s').

The proof of the first condition is identical to that given for the idealisable

logics in Lemma 6.8.

To prove the second condition, we notice that only 7r and v reductions

introduce positions whose prefixes (potentially) differ from their parents.

Let uo be the child of u introduced by the reduction. In both cases S (S') _
S (s) U {uo} and pre(uo) = pre(u) uo. Consequently:

Q(pre(u)) = a(pre(u)) Q(uo) .

180

By hypothesis (s 4-compatible) the elements of a(pre(u)) are already ele-

ments of S(s), and hence S(s'). We are left to show that for all v e a(uo),

v E S (s')

1. ir-reductions: Notice that a(uo) = uo (uo is of 7ro type) and uo E S(s').

2. v-reductions: Suppose for some v e a(uo), v 0 S (s'). We derive a

contradiction. Since uo E DK(s), v E S(s) U DK(s) (Fact 6.9). There-

fore, v E DK(s) (S(s) C S(s')). But, v s a(uo) implies v i uo, which

contradicts, uo being a i-least element of DK(s).

Therefore, in both cases, s' is 4-compatible. 0

6.3.2.3 Reduction to atomic paths.

Lemmas 6.7 and 6.8 for the idealisable logics, and Lemmas 6.12 and 6.13 for the

non-idealisable logics, indicate that we can successfully reduce the i-compatible

root path to, in the case of the idealisable logics, the set of atomic paths through

Xµ, and in the case of the non-idealisable logics, the set of q-compatible K-

atomic paths, while maintaining the a-compatibility of every intermediate path

considered.

PROPOSITION 6.14 Starting from the singleton set consisting of the root path

through Xµ, there exists a sequence of proper path reductions by which the atomic

paths (K-atomic paths) through X" may be enumerated. That is, if ko is the root

position of X", the procedure:

W :_ {ko};

While there is a non-atomic path (non K-atomic path) s in W do:

1. Properly reduces,-

2. Replace s in W by the paths that result from this reduction;

terminates, resulting in the set of atomic paths (K-atomic paths) through X".

Furthermore, at every stage, all the elements of W are a-compatible.

181

PROOF. Lemma 6.7 (Lemma 6.12) ensures that the initial element of W

is i-compatible, while Lemma 6.8 (Lemma 6.13) shows that this property

is an invariant for the loop for the idealisable (non-idealisable) logics. Ter-

mination can be established from the fact that X" contains finitely many

positions, and a path, s', that results from the reduction of s, satisfies:

D(s') C D(s) (DK(s') C DK(s)). A well-ordering which decreases at each

iteration is easy to construct. 0

6.3.2.4 K-atomic paths.

For the idealisable logics, Proposition 6.14 guarantees the proper reduction of

the root path to the atomic paths through X". The existence of a set of connec-

tions that span X" ensures that each atomic path contains a a-complementary

connection. This is the desired situation as outlined in the introduction to this

section. In the following sections we justify proper reductions.

For the non-idealisable logics, however, we can only reduce as far as the

K-atomic paths using proper reductions. Recall that for the non-idealisable

logics a path t, containing a or-complementary connection { ul, u2 }, is only or-

complementary itself if for every v e: a(pre(u)), v E S(t). We now show that the

existence of a set of or-complementary connections that makes every atomic path

through X" or-complementary in this sense, entails that every K-atomic path

through X" is also or-complementary.

In what follows we understand the term: "Q-compatible," and the term: "a-

complementary," in the sense of the non-idealisable logics. We need the following

lemmata:

LEMMA 6.15 Let s be a d-compatible K-atomic path. Furthermore, let { ul, u2 }

be a or -complementary connection. If u, E s, i = 1,2, s is or-complementary.

PROOF. Since the connection is or-complementary we have a(pre(ui)) =

a(pre(u2)). We must show that for all v E a(pre(ul)), v c S(s). But this

182

follows immediately from the definition of 4-compatibility (for the non-

idealisable logics).

The main proposition is as follows:

PROPOSITION 6.16 If U is a set of a-complementary connections that span Xµ,

and s is a Q -compatible K-atomic path, s is a-complementary.

PROOF. If s is an atomic path the result follows by hypothesis and

Lemma 6.15. Suppose then that s is not an atomic path. Let t be an

atomic path reachable by reductions (possibly not proper) from s. By hy-

pothesis there is a a-complementary connection { u1, u2 } E U that makes

t a-complementary. Therefore, for all v e a(pre(u,)), i = 1,2, we have

v E S (t), by definition. Furthermore, for any such v, we must have v E $ (s)

or v E D(s) (since t is obtained from s by reductions).

If u, E S (s) then u, E s, i = 1, 2, since the u, are atomic positions. By

Lemma 6.15, s is a-complementary.

Therefore, without loss of generality, suppose that ul 0 s, i.e., ul 0 S(s).

We derive a contradiction.

Since ul E t but ul s, we have: ul E D(s) (t is obtained from s by

reductions). Let u' be the vo-type position, with u' <_ u1, whose parent is

an element of s. Such an u' must exist by Lemma 6.11. Since u' ' ul,

pre(u') -< pre(ul), and consequently,

a(pre(u')) -< a(pre(ul)) .

Since u' DK(s) (s is K-atomic), there must be a v' e a(pre(u')) such

that v' S(s) (nor of DK(s) for that matter). Since v e a(pre(u')), v e

a(pre(ul)) and hence must be an element of D(s). By Condition B on

modal substitutions we have:

a(pre(v')) -{ a(pre(u')) .

183

Let u" be the vo-type position with u" << v', whose parent is an element of

s (Lemma 6.11). u" << v' implies u" < v'. Since v' c v(pre(u')), we have

v' <1 u', and hence u" < u', by the transitivity of <. u" must be distinct

from u' since < is irreflexive. Moreover, since u" << v', pre(u") -C pre(v'),

and

v(pre(u")) -< v(pre(v')) .

Therefore:

c(Pre(u")) Q(Pre(v')) a(Pre(u')) a(PTe(ul))

Thus, for all v e v(pre(u")), v E S(t). We can repeat the reasoning to

obtain a u"', u"" etc, all elements of D(s), such that:

... < u < u"' < u" < u' < ul

Suppose u* is the <-least of this sequence (which must exist since there are

only a finite number of positions and < is irreflexive). We have that for all

v c Q(pre(u*)), v E S(t); and consequently, for such a v, either v E S(s) or

v E D(s) as before. By assumption, v D(s), else u* could not be <I-least

in D(s). Hence V E S(s). But then u* E DK(s) and s is not K-atomic,

contradicting the hypothesis. N

6.3.3 Correctness of proper reductions.

In the previous section we showed that the root path could be properly reduced

to the set of atomic, or K-atomic paths through X". Moreover, if Xµ is spanned,

by a set of Q-complementary connections, every atomic or K-atomic path through

X" is v-complementary(for the appropriate definition of "c-complementary" for

paths.)

Roughly speaking, we consider a path to be L-satisfiable if the set of positions

associated with it can be interpreted in an L-model in a natural way. In this

section we show that proper reductions preserve L-satisfiability, and that a-

complementary paths are not L-satisfiable.

184

Recall that we use P (µ) to denote the set of prefixes in X. We need to

specialise this notation as follows: let P (ii, s) denote the set of prefixes of the

positions in S (s), i.e.,

P (µ, s)
df { pre(u) i u E S (s) } ,

and P,(µ, s) the "image" of P (µ, s) under a, i.e.,

Pa(A,s) dt {pIp-<a(q), q E P(µ,s)}.

Notice that if q is the image of the prefix of some element of S (s) under ar, then

P,(µ,s) contains all initial subsequences of q. It is the set of prefixes that we

shall interpret into a model.

We need similar notions for constants. By the definition of the label of

a position, the elements of TQ(µ) that can possibly appear in the label of an

indexed position must dominate that position in the formula tree. We use C(µ, s)

to denote this set thus:

C(µ,s)
df

TQ(p) n S(s)

Let C,(µ, s) denote the image of C(µ, s) under a, together with the individual

constants of A, i.e.,

C,(µ,s) { or (u) I u c C(p,s) } U {constants of A}. df

These definitions are the quantifier counterparts to the definitions of P (p, s) and

P,(µ, s) above. C,(µ, s) is the set of constants that we shall interpret into a

model.

Since the notation will get cumbersome otherwise, we shall usually omit

mention of µ. That is, we use P(s) in place of P(p,s), P,(s) instead of P"(11, S),

C(s) instead of C(µ,s) and C,(s) instead of C,(Fi,s).

For a set of prefixes P we use I P I to denote the set of positions that comprise

the prefixes:

API df {uEpIpEP}.

The following facts are immediate consequences of these definitions and Fact 6.3:

185

FACT 6.17 I(s)I C S(s).

FACT 6.18 C(s) C S(s).

Let (G, R, D, D, II-) be an C-model and (Go, Ro) be an C-frame with GonG =

0. Let p, q denote elements of Go. (Go will be our set of prefixes and Ro the

accessibility relation on prefixes.) Let Do be a set of constants distinct from D.

A mapping:

t:PoCGo,--+G and t:CoCDoi-*D

is an C-interpretation for Po and Co in \G, R, D, D, II-) if, for any p, q E Po,

p Ro q implies t(p) R t(q)

We say that a path, s, is C-satisfcable under a just in case there is an L-

model, (G, R, D, D, and an C-interpretation, t, of P,(s) into G and CQ(s)

into D such that:

1. For each u E S (s), with p = a(pre(u)) and Y = a(sform(u)), all the

constants of e(Y) are in D(t(p)) and:

t(p) II- c(Y) .

2. For each v E Ce(s) with q = o'(pre(v)):

q E P,(s) implies t(v) E D(t(q)).

The first condition is the formal expression of the informal argument of the

introduction. The prefix, pre(u), of a position, u, is used as the name of a point

at which the signed formula, sform(u) = (lab(u) , pol(u)), associated with the

position is forced. We require this relationship to hold under a mapping, a, of

"variable" elements of the prefix, and "variables" in the atoms of the formula.

"Variables" represent a degree of choice in the point or parameter named.

The second condition, called the Parameter Condition, ensures that parame-

ters are interpreted in a consistent way. The condition ensures that the constant

186

of the model denoted by v is an element of the domain of the point of the model

denoted by the prefix of v. This condition is only of interest for the varying and

cumulative domain logics as the following lemma shows.

LEMMA 6.19 Let C denote a constant domain logic under consideration. If
the first condition for C-satisfiability under or holds for a path s, so does the

Parameter Condition.

PROOF. Suppose v E Ca(s) with q = a(pre(v)), and q E Pa(s). The

first condition on C-satisfiability gives us a model, (G, R, D, D, II-), and

an interpretation, t, of P,(s) and Ca(s) in that model. Thus t(v) E D(w),

for some w E G, and t(q) = w', for some W' E G. But D(w) = D(w'), since

,C has constant domains. Hence t(v) E D(t(q)). t

The Parameter Condition plays a crucial role only in the justification of proper 7

reductions (Proposition 6.27) for these logics. We shall remark on it there. The

condition must be checked for each reduction however. To that end, we simplify

the other proofs by means of the following lemmata.

For application in the case of a and /3 reductions:

LEMMA 6.20 Let s be a d-compatible path through Xµ, C-satisfiable under o,.

Let s' be a path resulting from the proper reduction of s on a position u E S. If
Po(s') = P,(s) and Co(s') = Ca(s), then s' satisfies the Parameter Condition.

PROOF. Since C,(s') = Ca(s) and PP(s') = Pa(s) the Parameter Condition

must hold for s' since it held for s by hypothesis.

For application in the case of 7r and v reductions:

LEMMA 6.21 Let C denote

1. a varying domain logic; or

2. a cumulative domain variant of one of K, K4, D, D4, T, S4.

187

Let s be a .1 -compatible path through X". For p E TM(A)*, if p there is

no v E C,(s) with a(pre(v)) = p.

PROOF. Suppose not. That is suppose for v E C,(s), a(pre(v)) = p and

p 0 P,(s). First notice that any such v cannot have v E C(s), because in

that case v E S(s) (since C(s) C S(s)) and by definition: p E P,(s), which

contradicts p 0 .'(s).

So there must be a u E C(s) with c(u) = v. Suppose a(pre(u)) = q. By the

reasoning above, q E P,(s).

1. For varying domains: since a is .C-admissible, we have: q = p,

p E P,(s), which contradicts p 0 P,(s).

2. For cumulative domain variants of K, K4, D, D4, T, S4: since a is

.C-admissible, we have either: (a) q =p; or (b) p Ro q.

The first case we dealt with above. For these logics, Fact 6.4 gives us

that p -< q. But then, p E P,(s), by definition of P,(s), which again

contradicts p -1(s).

IMPORTANT NOTATIONAL POINT. In what follows we shall abuse our no-

tation and use principal and secondary types to denote arbitrary positions of

that type. In particular, if we say: "a path s is properly reducible on ir," we

mean that there is a position u E s such that Ptype(u) = it and s is properly

reducible on u. Furthermore, in this context we shall use no to denote the child

of u. Similar abuses are extended to the other types. (END OF POINT.)

6.3.3.1 Complementary paths.

PROPOSITION 6.22 A path s through X" which contains a a-complementary

connection { u, v } is not .C-satisfiable.

PROOF. By definition of a a-complementary connection:

188

o(pre(u)) = p = o(pre(v)), for some prefix p E TM(,u)*.

o(lab(u)) = P = o(lab(v)), for some atomic formula P.

pol(u) pol(y).

Suppose, for a contradiction, that s is L-satisfiable with (G, R, D, D, II-)

and c the appropriate C-model and L-interpretation. Then, by definition,

all the constants of e(P) are in D(t(p)), and:

t(p) II- t(o(sform(u))) and t(p) - t(o(sform(v))),

i.e.,

t(p) 11- t((P, O)) and t(p) - t((P,1)),

or equivalently:

t(p) II/ t(P) and t(p) Il- t(P),

since the polarities of the positions are different. This contradicts condition

(1) Corollary 4.1 for models. Hence s is not L-satisfiable under or. a

REMARK. Notice that we extend t and or, to signed formulae thus: for a

position u,

t((lab(u), pol(u))) = (t(lab(u)), pol(u))

o((lab(u) , pol(u))) = (o(lab(u)) , pol(u)).

We shall do this extensively in the sequel without remark. Furthermore, both c

and or leave the structure of formulae unchanged, mapping only the arguments

of predicate symbols. Consequently the mappings preserve the types of signed

formulae. (END OF REMARK.)

6.3.3.2 Propositional reductions.

We justify proper a and f reductions.

189

PROPOSITION 6.23 Lets be a 4-compatible path through X", C-satisfiable un-

der a, and properly reducible on a. Then the path obtained by reduction on a is

C-satisfiable under a.

PROOF. The path obtained by reduction of s on a is (s \ {a}), al, a2. Call

this path s'. We have:

S (s') = S (s) U {al, a2}.

P.(s') _ P.(s).

Ca(S') Lo(S)-

Let p be the image of the prefix of a under a. Then p is also the image of

the prefixes of the a i = 1, 2, under a. Let Y be the image of sform(a)

under a. Note that Y is a signed formula of a type. We shall use Yi and

Y2 to denote its immediate subformulae. Under these conventions:

Y, = a(sform(al)) and Y2 = a(sform(a2))

by the definition of labels. By hypothesis we have the existence of an C-

model, (G, R, D, D, 11-), and an C-interpretation, t, for which:

t(p) 11- t(Y) .

Hence, by the model conditions for a-type formulae (Corollary 4.1):

t(p) 11- t(Yj) and t(p) 11- t(Y2)

that is:

t(p) 11- t(a(sform(al))) and t(p) 11- t(a(sform(a2))) .

The Parameter Condition is satisfied by s' by Lemma 6.20. Consequently,

the reduced path is C-satisfiable under a.

PROPOSITION 6.24 Let s be a d-compatible path through Xµ, C-satisfiable un-

der a, and properly reducible on /i. At least one of the paths obtained by reduction

on a is C-satisfiable under a.

190

PROOF. Two paths result from the reduction of s on Q: (s \ {Q}), 91 and
(s \ {Q}), Q2. Call these sl and s2 respectively. We have: for i 1, 2,

S(s,) = S(s) U {Q,}.

P (S,) = Pa(S).

C,(S,) = C,(s).

If p is the image of the prefix of Q under a, then p is also the prefix of

01 and Q2. Let Y be the image of sform(Q) under v. Note that Y is a

signed formula of Q type. We shall use Y1 and Y2 to denote its immediate

subformulae. Under these conventions:

Yl = a(sform(Q1)) and Y2 = a(sform(Q2))

by the definition of labels. By hypothesis we have the existence of an

model, (G, R, D, D, 11-), and an L-interpretation, t, for which:

t(p) 11- c(Y) .

By the model conditions for Q-type formulae (Corollary 4.1), either:

t(p) 11- t(Yj) or t(p) 11- t(Y2)

That is:

t(p) 11- t(a(sform(01))) or c(p) 11- t(a(sform(Q2))) .

The Parameter Condition is satisfied by s i = 1, 2, by Lemma 6.20. Con-

sequently, at least one of the resulting paths is L-satisfiable under v.

6.3.3.3 Quantifier reductions.

Before proving the correctness of proper b reductions, we prove an auxilliary

lemma, the force of which is that the "parameters" (elements of Ao) introduced

by proper b reductions are indeed new to the "sequent." This follows from the

4-compatibility of the path.

191

LEMMA 6.25 Let s be a <I-compatible path, reducible on b, then bo V Ce(s).

PROOF. Suppose, for a contradiction, that bo E Co(s). Since bo E D(s),

bo V S (s), and hence bo V C(s) (by Fact 6.18). Thus there must be some

v E C(s) with a(v) = bo, i.e., bo a v. But there can be no such v E C(s) C

S (s) since bo is unrestricted for s. a

We now justify proper b reductions.

PROPOSITION 6.26 Lets be a <1 -compatible path through X'4, L-satisfiable un-

der a, and properly reduc:ble on b. The path obtained by reduction on b is

L-satisfiable under a.

PROOF. The path obtained by reduction on b is (s\{b}),bo. Call this

path s'. We have:

S (s') = S (3) U {bo}.

P.(s') _ P.(S).

Co(s') = Co(s) U {bo}.

Let p be the image of the prefix of b (and hence of bo) under a. Let Y be

the image of sform(b) under a. Note that Y is a signed formula of b type.

We shall use Yo to denote its immediate subformula with the individual

quantified variable free, and Yo(a), for some a, to indicate substitution of

a for that free variable. The particular a we are interested in, of course, is

the position bo itself. Under these conventions:

Yo(bo) = a(sform(bo))

by the definition of labels and since a(bo) = bo. By hypothesis we have

an L-model, (G, R, D, D, 11-), and an L-interpretation, t, for which: all

constants of t(Y) are in D(i(p)), and:

t(p) II- t(Y) .

192

Hence, by the model conditions (Corollary 4.1), there is some c E D(t(p))

such that:

t(P) II- t(Yo) (c)

(Remember, t and v map only constants. t(Yo) is therefore a b formula over

the language of the model with a free individual variable. We use t(Yo) (c)

to denote the substitution of c, a constant of the model, for that variable.)

Since bo ' C,(s) (Lemma 6.25), t is undefined for bo. We extend t to C,(s')

as follows:
c, u=bo

t'(u)
L(U) , u E C,(s) .

The extended mapping is an L-interpretation for S(s') since bo is the only

additional constant, and t was an f-interpretation for S(s). Since t'(bo) = c

and t'(p) = t(p), we have: t'(bo) E D(t'(p)). Now, since:

t(p) II- t(Yo) (c),

and t and t' agree on the constants of Yo and p:

t'(P) II- t'(Yo) (c).

Furthermore:

t'(Yo) (c) = t'(Yo) (t'(bo)) = t'(Yo(bo)) = t'(u(sform (bo)))

Consequently:

t'(p) II- t'(a(sform(bo))) .

For U E S(s):

t(a(pre(u))) II- t(a(sform(u)))

by hypothesis, and since t and t' agree on C,(s), we have:

t'(a(pre(u))) (I- t'(u(sform(u))) .

The Parameter Condition is satisfied for C,(s') since it was satisfied for

C,(s) by hypothesis, and for bo we have: a(pre(bo)) = p, p E P,(s') and

t'(bo) E D(t'(p)) by construction. s' is therefore C-satisfiable under Q.

193

PROPOSITION 6.27 Lets be a -1-compatible path through Xµ, L-satisfiable un-

der a, and properly reducible on 7. The path obtained by reduction on -y is

L-satisfable under a.

PROOF. Let k" be the 7-type position in question and 1 the child of k in

the (unindexed) formula tree. By definition, the secondary type of I is 'Yo.

k" has µ(1) children in the indexed formula tree X". For s to be reducible

on k" it means that there is at least one j, 1 < j < µ(l) such that 1"i E D(s)

with 1" being a a-least element of D(s). Let -yo denote the position l"' for

some such j. We continue as in the 6 case above.

The path obtained by reduction on 7 is s, 70. Call this path s'. We have:

S (s') = S (s) U {7o}.

po(s') = po(s).

C0(s') = C(s) U {7o).

Let p be the image of the prefix of 7 (and hence of 'Yo) under a. Let Y be

the image of sform(7) under a. Note that Y is a signed formula of -y type.

We shall use Y0 to denote its immediate subformula with the individual

quantified variable free, and Yo(a), for some a, to indicate substitution of

a for that free variable. The particular a we are interested in, of course, is

the image, v, of -yo under a. Under these conventions:

Yo(v) = a(sform(ryo)) ,

by the definition of labels, and since a(70) = v. By hypothesis we have

an L-model, (G, R, D, D, I1-), and an L-interpretation, t, for which: all

constants of c(Y) are in D(t(p)), and:

t(p) II- t(Y) .

Hence, by the model conditions (Corollary 4.1), for every e E D(t(p)):

t(p) II- t(Yo) (c)

Let a(pre(v)) = q. Since v is a constant of Yo(v), we need only show how

to extend c to t', an L-interpretation for Co (s'), such that:

194

t'(v) E D(t'(p)), and,

the Parameter Condition holds for s'.

We consider each domain condition in turn.

Constant domains: This is the simplest case. The Parameter Condition

is satisfied for any extension of t by Lemma 6.19.

1. Suppose V E C0(s). Then C0(s) = C,(s'). t is already defined

on v and t(v) E D(w) for some w E G. But D(w) = D(t(p)) by

assumption (constant domains). Define: t' = t.

2. Suppose v 0 C0(s). Choose c E D(t(p)) (one exists since every

domain of the model is non-empty). Extend t as follows:
C' u=v

(u) t(u) , u E C0(s) .

Clearly t' is an L-interpretation for C0(s'), and t'(v) E D(t'(p)) by

construction.

Varying domains: The extra condition on varying domain admissibil-

ity states that: for u',v' E TT(µ), if a(u') = v', then a(pre(u')) _

a(pre(v'))

Since: u(-yo) = v, p = q under this condition; i.e., D(t(p)) = D(t(q)).

Extend t as in the constant domain case depending on whether v E

C, (s) or not.

1. Suppose V E C0(s). Then C0(s) = C0(s'). t is already defined on

v and t(v) E D(t(q)) by the Parameter Condition for s. Hence:

t(v) E D(t(p)), since D(t(p)) = D(t(q)). Define: t' = t. The

Parameter Condition holds for s' by Lemma 6.20.

2. Suppose v 0 C0(s). Choose c E D(t(p)). (All domains are non-

empty.) Extend t as follows:
C' u=v

(u) t(u), u E C0(s) .

Clearly t' is an L-interpretation for C,,(s'). t(v) E D(t(p)) by

construction, and the Parameter Condition holds for s', since

D(t(p)) = D(t(q))-

195

Cumulative domains: The extra condition on cumulative domain admis-

sibility is: for u', v' E TT(µ), if o(u') = v', then either: (a) o(pre(u')) _

o(pre(v')); or (b) o(pre(v')) Ro o(pre(u')). Since o('yo) = v, we have

either: (a) p = q, or (b) q Ro p.

(a) p = q. Then D(t(p)) = D(t(q)). Proceed as in the varying domain

case above.

(b) q Ro p. q Ro p implies q -< p for the logics K, K4, D, D4, T, S4

by Fact 6.4. Consequently q E Pa(s), by definition of Pa(s). Since

t is an L-interpretation for Pa(s) we have: t(q) R t(p), and thus,

since the model has cumulative domains, D(t(q)) C D(t(p)).

i. Suppose V E Cc(s). Then Ca(s') = Ce(s). Since q E Pa(s) and

the Parameter Condition holds for s, t(v) E D(t(q)). Conse-

quently: t(v) E D(t(p)), since D(t(q)) C D(t(p)). The Param-

eter Condition holds for s' by Lemma 6.20.

ii. Suppose V 0 Cc(s). Choose c E D(t(q)). (All domains are

non-empty.) Extend c as follows:

C, u=V

lt(u), uEC"(s).

Clearly t' is an L-interpretation for C,(s'). Moreover, t'(v) E

D(t'(p)) by construction, and since t' and t agree on Pa(s).

The Parameter Condition holds for s' under t' by the choice

of interpretation for v, and the fact that it held for s under t.

6.3.3.4 Modal reductions.

Before proving the correctness of proper 7r reductions, we prove some auxilliary

lemmata, the force of which is that the prefixes introduced by proper 7r reductions

are indeed new to the "sequent." This follows from the 1-compatibility of the

path.

196

LEMMA 6.28 Let s be a 4-compatible path, properly reducible on 7r, then 7ro

IP,(S)I.

PROOF. Suppose no E IP0(s)I. We show that this leads to a contradiction.

iro E D (s) since s is properly reducible on 7r. iro E D (s) implies iro iV S (s),

and therefore, 7ro V JP(s)I (Fact 6.17). Therefore, there must be some

v E IP(s)I with 7ro c a(v), and consequently iro d v. But v E JP(s)I implies

v E S (s) since J P (s) J C S(s). Hence, we have 7ro d v for some v E S (s)

which contradicts 7ro being unrestricted and hence the 4-compatibility of

S. 8

LEMMA 6.29 Let s be a d-compatible path, properly reducible on 7r, and p7ro =

o(pre(7ro)). Then

1. pro V Pa(s).

2. For the logics K, Kd, D, Dd, T, S4 only: there is no q E Pa(s) with piro Ro q.

PROOF.

1. Follows immediately, since iro E p7ro and iro 0 IPa(s)I by the previous

lemma.

2. Any such q must have piro -< q by Fact 6.4. Since 7ro e p7ro, we must

have 7ro a q, which contradicts the previous lemma.

PROPOSITION 6.30 Lets be a d-compatible path through Xµ, .C-satisfiable un-

der a, and properly reducible on 7r. The path obtained by reduction on 7r is

L-satisfiable under Q.

PROOF. The path obtained by reduction on 7r is (s \ {7r}), 7ro. Call this

path s'. Let p be the image of the prefix of 7r under a; i.e., p = g(pre(7r)).

We have:

197

S(s') = S(s) U {lro}.

P,(s') = Pa(s) U {plro}. (S5: P,,(S') = Pa(s) U {lro}.)

Ca(s') = Ce(s).

Let Y be the image of sform(ir) under or. Note that Y is a signed formula

of r type. We shall use Yo to denote its immediate subformula; i.e.,

Yo = a(sform(iro)) .

By hypothesis we have the existence of an L-model, (G, R, D, D, and

an L-interpretation, t, for which:

All constants of t(Y) are in D(t(p)), and: t(p) 11- t(Y).

For all v E C0(s) with a(pre(v)) = r, if r E Pa(s), t(v) E D(t(r)).

Hence, by the model conditions (Corollary 4.1) there is some point w E G,

with t(p) R w, such that:

W 11- t(Yo) .

Since pro V Pa(s) (S5: iro V Pa(s)) by Lemma 6.29, t is undefined for pro.

We extend t to P,,(s') as follows:

I w, q = pro (S5: q = pro)

tr(q) t(q) , otherwise.

Assuming the extended mapping is an L-interpretation, we have by con-

struction: for u E S (s),

t'(a(pre(u))) 11- t'(a(sform(u)))

since t and t' agree on Pa(s) and C0(s). In addition, by choice, we have:

t'(p'ro) II- t'(Yo)

t'(plro) II- t'(a(sform(iro)))

since t'(piro) = w.

198

The Parameter Condition is satisfied for s' under t' for constant domains

by Lemma 6.19. For varying and cumulative domains, by Lemma 6.21,

p7ro P,(s) implies there can be no v E C0(s) with a(pre(v)) = piro. The

Parameter Condition holds in these cases since it held for s under t, and t

and t' agree on P0(s) and C0(s). s' is therefore C-satisfiable under a.

We have only to show that t' is indeed an C-interpretation of the extended

set of prefixes P0(s') into (G, R, D, D, JI-), i.e., that for q, r E P, (s')

q Ro r implies L'(q) R L'(r).

By hypothesis, and the fact that t agrees with t' on P,(s), the above holds

when both q and r are elements of P0(s). Moreover, Lemma 6.29 tells us

that there are no r E P0(s), with piro Ro r (S5: iro Ro r). We have, therefore,

only to deal with the case of q E P0(s) for which q Ro plro (S5: q Ro 7ro).

For S5:

L'(q) R L'(lro)

since R ensures that every point of G is accessible from every other point.

For the other logics, suppose that q Ro piro for some q E P0(s'). There are

a number of possibilities for q depending on the accessibility relation on

prefixes for that logic (Table 6-2). We examine each condition in turn.

1. q = p. (General: all logics except S5.) Notice that:

L'(q) = L(q) = L(p) = L'(p)

since q = p and, p E P,(s). Also t'(p) R L'(plro) since L'(p) R w and

w = pro (by construction). Hence:

L'(q) R t'(piro).

2. q = p7ro. (Reflexive: T, S4.) Impossible, since by Lemma 6.29, p7ro

P0(8).

3. q -< p. (Transitive: K4, D4, S4.) Then:

L'(q) R L'(p)

199

since p,q E P,(s) and t and t' agree on p,(s). But:

t'(p) R t'(pno),

since t'(p) R w and w = p7ro by construction. Consequently:

t'(q) R t'(piro)

follows from the transitivity of R.

PROPOSITION 6.31 Lets be a <-compatible path through X', C-satisfiable un-

der c, and properly reducible on v. The path obtained by reduction on v is

L'-satisfiable under c.

PROOF. Let k" be the v-type position in question and I the child of k in

the (unindexed) formula tree. By definition, the secondary type of l is vo.

k" has µ(l) children in the indexed formula tree X. For s to be properly

reducible on k" it means that there is at least one j, 1 < j < µ(l) such that

1" E D(s). Furthermore, this position must be a <-least element of D(s).

Let vo denote the position 1". We continue as in the 7r case above.

The path obtained by reduction on v is s, vo. Call this path s'. Let p be

the image of the prefix of v under c, and q the image of vo itself under c;

i. e., p = a(pre(v)) and q = c(vo). We have:

S (s') = S (s) u {vo}.

P.,(s') _ P., (s) U { r I r -< pq }. (S5: P,(s') U {q}.)

C,(s') = C,(s).

Let Y be the image of sform(v) under c. Note that Y is a signed formula

of v type. We shall use Yo to denote its immediate subformula; i.e.,

Yo = c(sform(vo)) .

By hypothesis we have the existence of an ,C-model, (G, R, D, and

an .C-interpretation, t, for which:

200

All constants of t(Y) are in D(t(p)), and: t(p) (I- t(Y)

For all v E Ce(s) with c(pre(v)) = r, if r E Pa(s), t(v) E D(t(r)).

Hence, by the model conditions (Corollary 4.1) for all points w E G, with

t(P) R w:

w II- t(Yo) .

If we can extend i. to an C-interpretation t' for PP(s') such that

t'(p) R t'(pq), and

if v E Ca(s') and a(pre(v)) = r, then r E PP(s');

we are done, since, by the above model condition:

L'(Pq) II-- c'(Yo) ,

t'(pq) II- c(sform(vo)) .

We deal with the logics other than S5 first. For these logics, the prefix of

vo (under a) is the sequence pq. We identify two cases:

1. q = 0. (Reflexive logics: T and S4.) In this case p is the prefix of both

t'0 and v under a; i.e., PP(s') = Pa(s). Define t' = t. Since t' is defined

on p, and R is reflexive: t'(p) R t'(p). That is:

L'(p) R t'(pq).

The Parameter Condition holds for s' under t' by Lemma 6.20.

2. q = ulu2 . u,,, 1 < n. We construct a series of £-interpretations

to, L1, ... , to for the sets: P, ,,(s) and C'(s), 0 < i < n, defined induc-

tively as follows:

P°(s) = Pa(s)

P '(s) = P,,(s) U { pul ... ui}1 } , 0 < i < n - 1.

C'(s) = Ce(s), 0<i<n.

201

The construction of t, is inductive, and ensures that:

Lr(p) R tn(pq)

Base case: we take to = L. to is an L-interpretation for P° (s) by

hypothesis.

Inductive case: given t,, 0 < i < n -1, we construct ti+1 as follows.

There are two cases depending on whether pul u;+1 E P, ,(s) or

not.

(a) put u,+1 E P,,(s). Then t, is already defined on pul .. u;+,,

and, by the induction hypothesis, is an L-interpretation for

P, '(s). Define t,+1 = c,. Since

pul ... u, Ro pu1 ... ut+1

we have:

c,(pu1 ... u,) R t,(pu1 ... ui+1),

and hence:

c,+1(pu1 ... u+) R c;+1(pu1 ... ut+1) .

The Parameter Condition holds since we have: P1 +1(s) _

P, (s), C'o 1(s) = C,,(s) and finally ti+l = c;.

(b) pul u,+1 P,,(s). This situation cannot arise in the case

of the non-idealisable K-logics: K and K4, since by definition,

properly reducing a vo-type position cannot introduce any new

prefixes. For the others, since they are idealisable, there is a

w E G with t,(pul . u;) R w. Extend the interpretation to

Po+1(s) by defining

w, qr= pul ... ui+1
c++l(ql) - tj(q') , q' E P,,(s) .

We have to show that the extended mapping is indeed an

interpretation. There can be no p' E P, (s) with put u;+1 Ro

p'. (pul uj+1 would be an initial sequence of such a p', and

202

all such initial sequences are in P, (s). Hence pul ui+l E

Pp (s) contradicting our assumption that pul ui+1 Po (s).)

Suppose p' Ro pul u,+1 Then p' must be an initial sequence

of pul u,+1. There are three possibilities depending on the

form of the accessibility relation on prefixes for the logic (Ta-

ble 6-2).

i. p' = put u,. (General: D, D4, T, S4.) Since

t,(pul ... u,) R w,

t, agrees with L,+1 on Po (s) and w = Lj+l(pul . . ui+1), we

have:

L,+l(pul ... u,) R L,+1(pul ... ui+1).

ii. p' = put . u,+1. (Reflexive: T, S4.) Notice that

L,+1(pul ... u,+1) R L,+1(pul ... ui+1)

since R is reflexive.

iii. p' -< pu1 ... u,. (Transitive: D4, S4.) In this case we have

p' Ro pu1.. ui, and hence Li+1(p') R Li+1(pul u,) since

both p' and put u, are members of P, (s), and Li agrees

with Li+l on PP(s). By construction,

Lt+1(pui ... u,) R Li+l(pui ...

Hence, by the transitivity of R we have

L,+1(p) R L,+i (pul ... ui+1)

as required.

The Parameter Condition holds in the varying and cumulative

domain cases by hypothesis, and since pul ui+1 PQ (s)

(Lemma 6.21).

This completes the inductive construction of to, < n.

We have that

Ln(pul ... ui) R Ln(pu1 0<i<n-1.

203

Recall that q = ui un For the non-transitive logics: K, D, T,

n < 1, and hence

tn(p) R tn(pq)

For the transitive logics: K4, D4, S4, the transitivity of R gives

us:

tn(p) R tn(pq).

The Parameter Condition also holds for s' under t' by construction.

Hence s' is C-satisfiable under a.

This finishes the treatment of the logics other than S5. For S5 the argument

is simple. If p = a(pre(v)) and q = a(pre(vo)) then p,q E TM(/c) (i.e., p

and q are positions). There are two possibilities depending on whether q is

already in P,(s) or not.

1. q E P,(s). Then t is defined on q. Since every point is accessible from

every other point, we have

t(p)Rt(q).

The Parameter Condition holds by hypothesis.

2. q ¢ P,(s). Choose w E G with t(p) R w, and extend i to P,(s') by

defining:
w, r=q

1 c(r) , otherwise.

Again, since every point is accessible from every other point,

t(p) R L(q) ,

and the extended mapping is an S5-interpretation for P,(s'). The

Parameter Condition holds for varying domains by hypothesis, and by

Lemma 6.21. It holds for constant domains of course (Lemma 6.19).

By hypothesis,

t(p) jj- t(a(sform(v))) .

204

Since t(p) R t(q), we have

t(q) 11- t(u(sform(vo)))

by the model conditions (Corollary 4.1). Hence s' is S5-satisfiable under u.

6.3.4 Summary.

We are now in a position to prove the correctness of the matrix characterisations.

THEOREM 6.32 (CORRECTNESS) A modal formula A is L-valid if there is a

modal multiplicity µ, an L-admissible substitution u, and a set of er- complementary

connections that spans the indexed formula (A, 0)'.

PROOF. Suppose not. That is, suppose the multiplicity, substitution and

spanning connection set exist, but A is not L-valid. Let Co denote the

constants of A. Then there is an L-model, (G, R, D, D, II-), and an inter-

pretation, t, in the model, and some w c- G with t(a) C- D(w), for every

a C- Co, such that:

w 11f t(A)

(equivalently: w 11- t((A, 0))).

For the root path so = {ko} (ko is the root position of the formula tree for

(A, 0)) we have:

S (so) = { ko }.

P.o (so) = { ko }.

C" (so) = Co.

Extend the mapping t by putting: t(ko) = w. t is then an L-interpretation

for P (so) and Co(so). Furthermore, since

u(pre(ko)) = ko and u(sform(ko)) = (A, 0)

205

we have:

c(ko) 11- a(sform(ko)),

by construction. The root path is thus C-satisfiable under a.

For the idealisable logics D, D4, T, S4, S5, we can reduce the root path

to the set of atomic paths through (A, 0)' by a series of proper reductions

(Proposition 6.14). For the non-idealisable logics K and K4, we can reduce

the root path to the set of K-atomic paths through (A, 0)' by a series of

proper reductions (Proposition 6.14).

Since the root path is L-satisfiable under a, at least one of the atomic

paths (K-atomic paths) through (A, 0)' is L-satisfiable under a, by Propo-

sitions 6.23, 6.24, 6.26, 6.27, 6.30 and 6.31.

But every atomic path contains a a-complementary connection, which con-

tradicts Proposition 6.22; directly in the case of the idealisable logics, and

with the use of Proposition 6.16 in the case of the non-idealisable logics.

Hence, A is valid. 0

6.4 Completeness.

In this section we prove that the matrix characterisations of validity presented

above are complete for the modal logics under consideration. Once again our

methods follow the pattern of standard systematic proofs of completeness for

analytic tableau and sequent-based proof systems. The systematic nature of the

proof defines semi-decision procedures for the (first-order) logics. In the next

chapter we outline more efficient methods of proof search based on the matrix

characterisations.

For the rest of this section we assume that A is a modal sentence and X the

signed formula (A,0). Under these assumptions, the statement of completeness

for the matrix characterisations is:

206

if A is L-valid, there is a multiplicity, it, for X, an L-admissible substitu-

tion, a, for X" and a set of or-complementary connections that span Xµ.

6.4.1 Overview.

The idea behind the proofs is simple. We define a procedure guaranteed to

construct a multiplicity, p, and an L-admissible substitution, or, such that either:

(a) there exists an atomic path through X" which is L-satisfiable under or; or

(b) every atomic path through X" contains a or-complementary connection.

For any multiplicity and L-admissible substitution, the root position, ko, of the

indexed formula is contained in the associated set of any path. Moreover, the

polarity of ko is 0. Hence the first conclusion entails that the label of ko, i.e., A,

cannot be L-valid. The L-validity of A then forces the second conclusion, and

hence completeness.

The two central issues are therefore:

the nature of such a multiplicity and substitution; and

the definition of the procedure itself.

We deal with each issue, in that order, in the next two sections.

6.4.2 L-Hintikka sets and L-Complete paths.

First we define a basic L-satisfiable structure called an L-Hintikka set, compris-

ing signed formulae and prefixes.

Let (Go, Ro, Do, Do) be a first-order C-frame. Furthermore, suppose the set

of constants Do is partitioned into sets: Do(p) for P E Go, such that Do is the

union of all the Do(p). That is to say,

Do= U Do (p).
PEGO

207

Let Po C Go and Co C Do. A prefixed signed formula over Po and Co is a pair,

p : Y, where p E Po and Y is a signed formula over Co. We say that a set, S,

of prefixed signed formulae over Po and Co, is C-satisfiable just in case there is

an C-model (G, R, D, D, II-), and an 2-interpretation, t, of Po and Co in the

model, such that: for each p : Y E S, all the constants of t(Y) are in D(t(p))

and

t(p) II- L(Y) .

For a set, S, of prefixed signed formula over Po and Co, define Co(p), for p E Po,

as follows:

Co (p)
df = Co n Do (p)

That is, Co(p) is the set of constants of (the prefixed formulae of) S associated

with the prefix p. We say that S is an C-I-Iintikka set (of prefixed signed formulae)

just in case:

0. There is no atomic formula B for which, for some p E Po, both

p:(B,1)ES and p:(B,O)ES.

1. p:aESimpliesp:alESand p:a2ES.

2. p:,DESimplies p:i1ESor p:,32ES.

3. p: 7 E S implies p: 7o(a) E S for all a such that:

Constant domains: a E Co.

Varying domains: a E Co(p).

Cumulative domains: a E Co(q), for some q E Po with either (a) q = p,

or (b) q Ro p.

4. p:5ESimplies p: bo(a) ESforsome aECo(p).

5. p : v E S implies q : vo E S, for all q E Po such that p Ro q, and, for the

D-logics only: there is such a q.

208

6. p : lr E S implies q : gyro E S, for some q E Po such that p Ro q.

The import of the notion of an C-Hintikka set is summarised by the following

theorem, a version of which is proved in [Fit83]:

THEOREM 6.33 (FITTING [FIT83]) Any C-Hintikka set over P0 and Co is

C-satisfiable in a model (Po, Ro, Co, Co, JJ-), under the identity C-interpretation,

where Co(p) C Co(p).

REMARK. What we call C-Hintikka sets, Fitting calls C-downward saturated

sets. We use the former for brevity. (END OF REMARK.)

Next we define a property of a multiplicity and C-admissible substitution

that extends this C-satisfiable structure to paths and positions.

Let A be a multiplicity for X and or an C-admissible substitution for X.
Recall that, for any path s, Ce(S) denotes the set of constants of the labels of the

set of positions S (s), and Pa(s) denotes the set of prefixes of these positions. We

define the set of constants associated with the prefix p E Pa(s), denoted Ca(s, p),

as follows:

C,,, (s, p)
ae { v E C,,,(s)

I a(pre (v)) = p } .

An atomic path, s, through Xµ is said to be C-complete under a just in case:

1. For all -yK E s with p = a(pre(-y")) and for every v such that:

Constant domains: v E Ca(s);

Varying domains: v E C", (s, P);

Cumulative domains: v E Ca(s, q), for some q E Pa(s) with either

q = p, or (b) q Ro p;

there exists a j, 0 < j < µ('yo), such that:

('to") = v.

209

(a)

2. For all v" E s with p = a(pre(v")) and for every q E Pa(s) with p R0 q,

there exists a j, 0 < j < A(vo), such that:

a(pre(voj)) = q.

The conditions here for elements of r and V should be compared with the con-

ditions required for prefixed signed formulae of -y-type and 1/ -type respectively

in the definition of an L-Hintikka set.

Let u be a multiplicity for X and o an L-admissible substitution for X L.

Define the set of prefixed signed formulae, Pforms(s), as follows:

Pforms(s) ar { p : Y (p = a(pre(u)) , Y = a(sform(u)) , u E S (s) } .

Notice that Pforms(s) is a set of prefixed signed formulae over the set of prefixes:

Pa(s), and the set of constants: Ca(s). Notice also that the prefixed signed

formula:

ko : (A, 0),

is an element of Pforms(s), for every path s. We now have:

LEMMA 6.34 Let s be a non-complementary atomic path through XP. If s is

L-complete under a, Pforms(s) is an L-Hintikka set.

PROOF. The correspondence between the definitions of L-complete and

L-Hintikka set are obvious: Pa(s) = Po, Ca(s) = Co and Ca(s, p) = Co(p).

First notice that the atomic clause (0) is satisfied by virtue of s being non-

complementary.

Secondly notice that the propositional clauses: (1) and (2), dealing with

atomic, a and Q type formulae are satisfied by virtue of s being an atomic

path.

Next notice that the b and x clauses: (4) and (6), are satisfied, by the

definition of labels in the first case, and the definition of prefixes in the

second, together with the fact that s is an atomic path. (Note that the

210

condition that a E Co(p) is satisfied under the correspondence of C,(s, p)

with Co(p) and the definition of the former.

Finally, by the definition of paths, all 'y and v-type positions of S (s) are

elements of s itself. (They are never "deleted," so to speak, by a path

reduction.) Under the correspondence outlined above, conditions (3) and

(5) for 'y and v-type prefixed signed formulae respectively are satisfied by

the conditions stipulated for 'y and v-type positions in the definition of the

L-completen ss of a path. 0

Recall the definition of when a path s through Xµ is L-satisfiable under a

from the previous section: we need an L-model, (G, R, D, D, 11->, and an L-

interpretation, t, of Pa(s) and Ce(s) in the model such that:

1. For each u E S (s), with p = a(pre(u)) and Y = a(sform(u)), all the

constants of t(Y) are in D(t(p)) and:

t(p) 11- t(Y) .

2. For each v E Ca(s) with q = Q(pre(v)):

q E PP(s) implies t(v) E D(t(q)).

We now have the central proposition:

PROPOSITION 6.35 Let s be a non-complementary atomic path through Xµ. If
s is L-complete under a, it is L-satisfiable under a.

PROOF. Immediate from Theorem 6.33 and Lemma 6.34. Note that the

Paramater Condition is satisfied by the definition of Co (s, p), its correspon-

dence with Co(p) in Lemma 6.34, and finally the particular model asserted

to exist by Theorem 6.33.

From this we deduce:

211

COROLLARY 6.36 For a modal formula A, if there exists an multiplicity, µ,

an L-admissible substitution, a, and an atomic path, s, through (A, 0)µ which is

L-complete under a, then A is not valid.

PROOF. Under the hypotheses, the previous proposition tells us that the

atomic path is L-satisfiable under a. This means there is an L-model,

(G, R, D, D, 11-), and an L-interpetation, t, with the usual properties with

respect to the positions of S (s). In particular, since ko E S (s) we have

(by the first condition of L-satisfiability under a): all constants of A are in

D(t(ko)) and

t (ko) I I- t ((A, 0))

Since:

ko is the prefix of ko.

ko E l 0(a), i.e., it is constant under a.

sform(ko) = (A, 0).

A contains no "parameter" positions so sform(ko) is constant under a.

Consequently, A is not valid. a

This achieves our first goal, namely to capture the nature of a multiplicity µ

and L-admissible substitution a that ensures that a non-complementary atomic

path is C-satisfiable under a. In the next section we present a procedure that

constructs such a pair (µ, a) for any non-valid modal sentence.

6.4.3 The systematic procedure.

In this section we define a procedure which, for a modal formula A, constructs

a multiplicity, µ, and an L-admissible substitution, a, such that either:

(a) there exists an atomic path through (A, 0)' which is L-complete under a;

or

212

(b) every atomic path through (A, 0)' contains a a-complementary connection.

By Corollary 6.36, the first option would entail that A is not valid. Therefore,

if A is valid, the procedure must terminate with the second option. Hence

completeness.

Recall that the conditions on modal substitutions were:

A. u e a(v) implies a(u) = U.

B. Pu E P,S 4) implies pu = a(pre(u)).

The conditions for C-admissibility were:

1. a respects C-accessibility relations Ro, i.e., for all p, q E TM,

p Ro q implies a(p) Ro a(q)

2. (K-logics only) u - u' implies v C u for some a-related position v.

3. <1 = (<< U CM U CQ)+ is irreflexive.

4. The following condition holds for aM and aQ depending on the domain

condition for the logic C:

Constant domains: No condition.

Varying domains: If aQ(u') = v', then a (pre(v')) = QM(pre(u')).

Cumulative domains: If aQ (u') = v', then either:

(a) QM(PTe(v')) = QM(pre(u')); or

(b) a#r(pre(v')) Ro a#r(pTe(u'))

In what follows, we refer to the four conditions for C-admissibility above as the

"First," "Second," "Third" and "Fourth" conditions respectively.

Let A(µ) denote the set of atomic paths through X. We construct induc-

tively a sequence (µo, ao), (Al, a1), ... , (µn, an), ... of pairs of multiplicities and

C-admissible mappings as follows:

213

Base. Define µo to be the constant zero function; i.e., for all u E 1/0, µo(u) = 0,

and uo to be the identity function on TQ (µo) and TM(m) We claim first that ao

is an L-admissible substitution.

PROOF. Condition A clearly holds for the identity function. Condition B

holds by the definition of prefixes. Consequently uo is a modal substitution.

The identity function clearly satisfies the First condition. Since ro(,.0) =
Vo(µo) = 0, -Q, CQ, "'M and CM, are the empty relations. Consequently

the Second, Third and Fourth conditions are also satisfied. Hence uo is

L-admissible.

Induction. Having completed stage n, if there is a set of a-complementary

connections that spans A(µn), stop. Likewise, if any non-complementary path in

A(µ,) is L-complete under Qn, stop. (We note that the test for L-completeness

under a substitution is effective.)

Otherwise construct (µn+1, Qn+1) as follows: from the non-complementary

atomic paths in A(µn) select a paths with smallest S(s). From s select the first

(or leftmost) non-atomic position, say 1'. (Here we assume that the non-atomic

positions of an atomic path are ordered in some uniform fashion.) Note that 1' is

either of -y or v type, since these are the only non-atomic positions of an atomic

path. Let p denote the image of the prefix of l" under Qn, and to the child of l

in the unindexed formula tree. We deal with each case in turn.

1. l" E r(µn). Then to E T. Let Q be the largest set defined according to

the domain condition of L as follows:

Constant domains: Q C C,(s);

Varying domains: Q C C,(s, p);

Cumulative domains: Q C UgGPo(s) Ca(s, q) such that either: (a) q = p,

or (b) q Ro p;

such that for all u E Q, there is no j, 1 G j < µn(10), with:

a(lo= U.

214

There are two cases depending on whether Q is empty or not.

(a) Q = 0. This case occurs if l" is "complete" already. Define µn+1

and an+1 = an. an+1 is therefore L-admissible by hypothesis.

(b) Q = {cl, c2, ... , c,n}, for 1 < m. Define µn+1 as follows:

/Ln+l(v) _

Define Qn+l as follows:

Qn+1(v) =

/in(v)+m, v=10

An(v), v 10.

Cis v = to , i n(l0) C C /In+1(l0), i = . /fin 10 i

Un(v), otherwise.

We claim that Qn+1 is L-admissible.

PROOF. the modal component of the substitution is unchanged.

Hence the First, Second and Third conditions are satisfied. No-

tice that the I0 'j are all new 'yo-type positions. Consequently, the

reduction relation induced by the extended substitution remains

irreflexive. The construction was arranged such that the Fourth

condition holds. 0

This completes the construction for a ry type position.

2. 1" E L(µn). Let Q denote the set of prefixes q E Pa(s) with p Ro q and no

j, 1 < j:5 1a (10), such that:

K, K4, D, D4, T, S4: pr = q, where r = Qn(lo'

S5: q = Qn(lpi).

Again there are two cases depending on whether or not Q is empty:

(a) Q = 0. For the logics other than the D-logics define

/Ln+1 = An and

Qn+1 is L-admissible by hypothesis.

Qn+1 = Un-

215

For the D-logics define µ,,+l as follows:

µn+1(v) =
µn(v) + 1, v = 10

µn(v), v 0 10.

Let i = µn(lo) + 1. For the D-logics define Qn+l as follows:

t.
o , v - to

Qn+l (v) =
Un(v), v loi.

We claim that the extended mapping Un+1 is an f,-admissible substi-

tution.

PROOF. First notice that lo' is completely new. Hence its prefix:

plo i, is the only new prefix and Conditions A and B are satisfied

by construction. It is easy to check that an+1 is L-admissible

by virtue of the fact that is is new. (Note that accessibility on

prefixes for all of the logics satisfies the general condition.)

(b) Q 0 0. Suppose Q has m elements q1, q2, ... , qm, (1 < m). Define

µn+1 as follows:

µn(v) + m, v = uo
µn+1 (v)

An(v), v 0 uo.

Suppose, without loss of generality that are elements of

TM (µn) * such that:

q;=pr 1<i<m.

Define un+l as follows:

ri, v = 10 ,
Qn+ l (v)

µn(10) µn+1(10), Z = _µn(10)

Un(v), otherwise.

We have to show that an+1 is an L-admissible substitution. Qn+1 is a

modal substitution since:

A. lp' IPa(8)1, µn(10) :5 < µn+.1(10), and v e q, 1 < i < m, implies

v E Since the condition held for Un, it holds for Qn+,.

B. By construction and the fact that an was a modal substitution.

Qn+1 is L-admissible since:

216

1. a,,+l respects L-accessibility relations by construction.

2. (K-logics). v e r1, 1 < i < m implies v e tPP(s)l. Hence all such

positions are a-related to the log. The existence of at least one

is guaranteed by the L-admissibility of a,,.

3. . remains irreflexive since the I0'', µR (lo) < j < µ.+1(lo) are

completely new.

4. The first-order substitution has not altered so the fourth condi-

tion holds.

We now mark l as the rightmost element of all the new atomic paths in A(µ,,+1)

obtained by virtue of any increase in multiplicity. If no new paths result, 1" is

marked as the rightmost element of s in A(tL,,+1). This completes the construc-

tion.

The procedure given above is a matrix-based analogue of the usual systematic

construction of tableau or sequent proofs. We can now prove completeness.

THEOREM 6.37 (COMPLETENESS) If A is an L-valid modal formula, there is

a multiplicity µ, an L-admissible substitution a, and a set of a-complementary

connections that spans (A,O)µ.

PROOF. Perform the systematic construction given above. There are the

following possibilities:

1. The procedure terminates with a multiplicity p, L-admissible substi-

tution a, and either

(a) a set of a-complementary connections that span X"; or

(b) a non-complementary atomic path through X"`, L-complete under

a.

2. The procedure fails to terminate and hence there is a path s E A(µ)

for which S (s) is infinite. (This conclusion requires the familiar use of

Konigs Lemma for infinite, finite branching trees.) By the systematic

nature of the construction, s is L-complete under a. That is, we have

217

arranged things so that every atomic path is periodically considered

(it becomes a smallest such path) and every position in it considered

in turn (under our assumption that the elements of the paths have

been ordered in some fashion). Each time a position is considered it

is "completed."

By Proposition 6.35, both (1b) and (2) are impossible, hence the result.

6.5 Conclusions.

In this chapter we have presented matrix-based characterisations of validity for

the modal logics K, K4, D, D4, T, S4 and S5. Our methods extend to the first-

order systems including constant, varying and cumulative domain variants. We

have proved the correctness and completeness of these characterisations.

The development was motivated by the proof-theoretic analysis of modal

sequent calculi contained in the previous chapter, and the analysis of a matrix-

based characterisation of validity for classical logic presented in the first part of

the thesis. We identified a number of redundancies within the modal sequent

calculi which we classified under the headings:

notational redundancy,

relevance, and

order dependence.

To overcome similar problems for classical logic, Bibel [Bib82a] and Andrews

[And8l] used the notions of matrix, path and connection, developing a suitable

notion of when two atomic formulae occurrences could be considered comple-

mentary. They reduced checking the validity of a sentence of first-order classical

logic to a process of path checking and complementarity tests performed by a

unification algorithm.

218

The material of this chapter represents a comprehensive extension of these

ideas to modal logics. As in the classical case, valid formulae are characterised

by their syntactic structure. Indeed, so uniform is the extension that search

strategies based on the classical characterisation are immediately applicable in

the modal case. We have sucessfully reduced checking a modal formula for

validity in a modal logic to a process of path checking and complementarity

tests performed by a specialised unification algorithm reflecting the properties

of the accessibility relation for that logic.

In the next chapter we outline efficient proof systems based on the matrix

characterisations, and discuss their use as decision procedures for the proposi-

tional fragments of the logics.

219

Chapter 7

Matrix-based proof search in modal
logics.

7.1 Introduction.

In Chapter 5 we identified certain redundancies within the search space generated

by the modal sequent calculi of Chapter 4. These redundancies were shown

to render the sequent systems inefficient for automated proof search. In the

previous chapter, inspired by our analysis of classical logic presented in Part I

of this thesis, we developed matrix-based characterisations of validity for modal

logics. In this chapter we investigate aspects of proof search based on the matrix

characterisations, and demonstrate, amongst other things, that it is free of the

aforementioned redundancies.

An important aspect of matrix-based proof search in modal logic is the pro-

posed use of specialised unification algorithms to determine the complementarity

of pairs of atomic formula occurrences. In §7.2 we discuss the properties of these

unification problems and show that they are tractable variants of common uni-

fication problems under equational theories. Next, in §7.3, we present a series

of examples designed to show that matrix-based proof search is free from the

redundancies demonstrated to arise within sequent-based proof search. We also

take the opportunity to illustrate some of the more subtle conditions placed on

220

L-admissible substitutions that reflect the properties of various logics. In §7.4,

we show how the matrix characterisations can be used to formulate efficient

decision procedures for the propositional fragments of modal logics. For sim-

plicity, we concentrate on S5. Finally, in §7.5, we deal with two miscellaneous

but important issues. The first concerns the use of the matrix characterisations

to decide instances of the standard consequence relation for modal logics. The

second concerns the extension of the characterisations to languages involving

function symbols.

7.2 Unification problems.

In §7.3, we show that proof procedures based on the matrix characterisations

do not suffer from the redundancies inherent in sequent-based search methods.

In Chapter 8 we demonstrate the advantages of matrix-based proof search over

other methods proposed in the literature for automated proof search in modal

logics. In these analyses we suppose that the basic component of matrix-based

proof search is the selection of potentially complementary connections and the

elimination of atomic paths spanned by these connections.

Recall that matrix characterisations of validity are couched in terms of the

existence of L-admissible substitutions that render a spanning set of connections

simultaneously complementary. A search procedure must therefore ensure that

after the addition of a connection to the current (non-spanning) set, there exists

an L-admissible substitution that makes all of the connections in the augmented

set simultaneously complementary. We stress that the task is to ensure the

existence of at least one such substitution, not to actually choose one.

The assumption then, is that the operation of deciding whether or not such

an L-admissible substitution exists after the addition of a new connection is a

computationally tractable step. While the detailed development of individual

proof procedures for modal logics based on the matrix characterisations is con-

sidered beyond the scope of this thesis, in this section we justify the above view of

221

matrix-based proof search in modal logics, by showing that the complementarity

tests are indeed computationally tractable.

Our method is to show that the complementarity tests can be performed by

refinements of standard unification algorithms. We do not persue an overly for-

mal approach here, but merely seek to convince. In particular, we do not develop

any unification algorithms specifically geared to the task at hand. The existence

of more general algorithms in the literature is considered sufficient evidence that

such specialised algorithms can be easily developed. In the last resort, one could

simply apply these more general algorithms directly, then eliminate undesired

substitutions.

The structure of this section is as follows: we begin with an overview to

isolate the problematic components of the complementarity test (§7.2.1). We

then prove some general properties of L-admissible substitutions (§7.2.2), and

proceed to treat each logic in turn thereafter.

7.2.1 Overview.

Let A be a modal formula and X the signed formula (A,0). At each step of the

search, we assume that the proof procedure maintains:

a multiplicity for X;

a set of connections U in X'`;

a set of substitutions, denoted Mgu(U), for elements of ro(µ) and 14o(µ),

and

an indication of the state of the basic atomic path checking search.

We require Mgu(U) to have the following properties:

1. Correctness. Every o E Mgu(U) is an L-admissible substitution under

which the elements of U are simultaneously a-complementary.

222

2. Completeness. Every L-admissible substitution under which the elements

of U are simultaneously or- complementary is an instance of some substitu-

tion of Mgu(U).

3. Minimality. No substitution in Mgu(U) is an instance of another distinct

element of Mgu(U).

These conditions are precisely those defining the notion of a set of most general

unifiers in the usual sense (see, for example, [P1o72,Sie84]).

Recall that, roughly speaking, an L-admissible substitution or renders a con-

nection or-complementary if it identifies the labels and prefixes of the atomic

positions. Recall also that such substitutions comprise two components:

a first-order substitution, GQ, that identifies the labels of the positions, and

a modal substitution, GM, that identifies the prefixes of the positions.

(In the case of the varying and cumulative domain variants of the logics there

are interactions between these components, but only in the sense that aQ may

require prefixes other than those of the positions of the connection to be identified

under GM.)

The calculation of a most general first-order substitution for the current set

of connections poses no problem since we can employ Robinson's unification al-

gorithm [Rob65] directly (or more efficient refinements of it). If any C -admissible

first-order substitutions exist at all for a given set of connections, there is a sin-

gle most general one satisfying the conditions of correctness, completeness and

minimality.

We can therefore structure Mgu(U) into two parts: MguQ(U) and MguM(U).

MguQ(U) comprises a single most general first-order substitution for the labels of

the connections in U. MguM(U) comprises a set of (independent) most general

modal substitutions for U. Each element of MguM(U) together with the sole

element of MguQ(U) forms an L-admissible (combined) substitution.

223

The test of L-admissibility for a combined substitution, comprises two major

components:

the calculation of the reduction ordering i and a test of its irreflexivity,

and

checking that the modal substitution respects the L-accessibility relation

on prefixes.

We remarked earlier that the irreflexivity test can be seen as a test of the acyclic-

ity of a directed graph. Efficient algorithms for such operations are well known.

The second test concerns only the modal substitution. We do not propose to

generate modal substitutions and then test that they respect the L-accessibility

relation for the particular logic of interest. Rather, we suggest the use of spe-

cialised unification algorithms that only compute most general modal substitu-

tions that satisfy this constraint. The constraint is effectively "built-in."

To summarise: we have argued that the only potentially problematic part

of the complementarity test is the calculation of most general modal substitu-

tions that respect the L-accessibility relation for a given logic. In the following

sections we argue that these calculations can be perfomed, respecting the con-

straints of correctness, completeness and minimality, by modifications of stan-

dard equational unification algorithms. We begin by noting some properties of

L-admissible modal substitutions in general.

7.2.2 L-Admissible substitutions.

The existence of an L-admissible substitution is an indication of the existence of a

reduction order of the quantifiers and modal operators in the formula via sequent

rules (when such calculi exist). We expect there to be only a finite number of

correct reduction orders (derivations) for a given multiplicity. Consequently, we

expect there to be only a finite number of distinct L-admissible substitutions for

a given multiplicity. We show that this is indeed the case.

224

Let A be a modal formula, X the signed modal formula (A, p), µ be a mul-

tiplicity for X and or an L-admissible substitution for X.

FACT 7.1 TM(p) is finite.

Let p be a prefix of the indexed formula tree for Xµ.

FACT 7.2 Foralluea(p),uETM(p).

LEMMA 7.3 a(p) glug2ug3 for any u E TM(p), and q; E TM(p)*, i = 1,2,3.

PROOF. Suppose not. That is, suppose v(p) = glug2uq3. By Condition B

on modal substitutions, we must have:

qiu = v(pre(u)) = giug2u,

which is absurd. R

The above results indicate that there are a finite number of L-admissible sub-

stitutions for a given multiplicity.

PROPOSITION 7.4 The number of L-admissible substitutions for X" is finite.

PROOF. The subset of TM(p)* comprising prefixes without repetitions is

finite since TM(p) itself is finite.

7.2.3 The calculation of MguM(U).

In this subsection we consider the calculation of MguM(U) for each modal logic

in turn. In what follows, if p E TM(µ)*, we use len(p) to denote the length of p

(as a string).

225

7.2.3.1 K and D.

These logics, together with S5, are the simplest. The accessibility relation on

prefixes for these logics is as follows (see Chapter 6):

pRoq if q=pu

for u E TM(/2) and p, q E TM(µ)*.

PROPOSITION 7.5 If a is a K or D-admissible substitution, for all p E TM(A)*,

len(a(p)) = len(p) .

PROOF. Obvious. If this were not the case the substitution would not

respect the accessibility relation. 0

Consequently, if we treat prefixes as strings of variables and constants, the stan-

dard unification algorithm suffices to compute most general substitutions that

respect the K and D-accessibility relations. That is, variables are not considered

string variables, and may only be instantiated to elements of TM(µ).

We conclude that for these logics, the set MguM(U) for a given set of con-

nections in Xµ is a singleton set. Therefore Mgu(U) is a singleton set and the

standard unification algorithm suffices for its calculation.

7.2.3.2 T.

The accessibility relation on prefixes for this logic is as follows (see Chapter 6):

pRoq if q=pu

for some u E TM(p) U {0}. That is, Ro is reflexive. The appropriate length result

for this logic is:

PROPOSITION 7.6 If a is a T-admissible substitution, for all p E TM(A)*,

len(o (p)) < len(p).

226

If we treat prefixes as strings of variables and constants, once again the standard

unification algorithm suffices to compute most general substitutions that respect

T-accessibility relations, provided we allow variables to "collapse" in the sense

that they may be instantiated to the empty string/prefix. If instead of strings

we introduce an explicit binary function symbol * (i.e., a prefix is a structure:

ul * (u2 * (, u)) . . .)) then this unification problem can be shown to be an

instance of unification under an assumption that * is idempotent. That is,

equational unification ([Sie84]) under the theory:

For such unification problems, the set of most general unifers is finite, but not

necessary a singleton [Sie84]. General algorithms are given in [Sie82].

We conclude that for T, Mgu(U) is not necessarily a singleton set but that

algorithms exist for its calculation.

7.2.3.3 K4 and D4.

The accessibility relation on prefixes for these logics is as follows (see Chapter 6):

pRoq if p--<q

for p, q E TM(A) *.

PROPOSITION 7.7 If u is a K4 or D4-admissible substitution, for all p E TM(p)*,

len(a(p)) > len(p) .

Treating prefixes as strings once again, we must now consider the variables as true

string variables that may be instantiated to non-empty strings only. Unification

algorithms exist for general string unification, eg., [P1o72,Sie75], but the set

of most general unifiers of two strings p and q can be infinite [Sie84]. This

situation arises because of the ability to repeat substrings and generate unifiers

under which the image of p is of arbitrary length. The repetition constraint

227

(Lemma 7.3) restricts the full generality of the string unification. The set of

most general unifiers is again finite but not necessarily a singleton set.

We conclude that for K4 and D4, MguM(U) is finite.

7.2.3.4 S4.

The accessibility relation on prefixes for S4 is as follows (see Chapter 6):

pRoq iff p--<q

for p,q E TM(µ)*. There is no length condition on the result of an S4-admissible

substitution; it can be either longer or shorter. Once again, restricted string

unification is the appropriate computational tool for computing most general

unifiers of prefixes and hence most general S4-admissible substitutions. This

time we admit the empty string as a valid instantiation of a variable.

The situation is reminiscent of unification under associativity and idempo-

tence. Algorithms for this more general problem exist in the literature (eg.,

[Sie82]).

We conclude once again that Mgu(U) is not necessarily a singleton set but

that algorithms exist for its calculation.

7.2.3.5 S5.

The unification algorithm for computing most general modal substitutions for

this logic is even more straightforward. The accessibility relation on prefixes for

S5 is as follows (see Chapter 6):

u Ro v if u, v E TM(tc).

That is, every unit prefix is accessible from every other. A similar length result

holds for this logic as for K and D.

PROPOSITION 7.8 If or is an S5-admissible substitution, for all u E TM(I,c),

len(a(u)) = len(u) .

228

Prefixes are simply variables or constants. The standard unification algorithm

suffices to compute most general substitutions that respect the S5-accessibility

relation.

We conclude that for S5, MguM(U), and hence Mgu(U) is a singleton set.

the standard unification algorithm suffices for its calculation.

7.2.4 Summary.

To summarise: we have argued that the only problematic component of the

complementarity test in a modal logic is the calculation of most general modal

substitutions that respect the L-accessibility relation on prefixes for the logic.

We have argued that in all cases this problem is a restriction of a more general

problem for which suitable unification algorithms exist. In the case of K, D and

S5, the standard unification algorithm suffices. If it exists, there is a unique

most general (combined) L-admissible substitution for a set of connections. For

T, unification under an assumption of idempotency is suitable. There are a fi-

nite number of most general, T-admissible (combined) substitutions for a set

of connections (when any exists at all). For the transitive logics K4, D4 and

S4 associative, or string unification of prefixes is suitable. The general string

unification problem may admit an infinite number of independent most general

unifiers, but this only arises due to repetition. Since any such repetative sub-

stitution cannot be L-admissible (Lemma 7.3) there are a finite number of most

general, L-admissible (combined) substitutions for a set of connections (when

any exists at all). Modifying the string unification algorithm to eliminate sub-

stitutions inducing repetition is straightforward [Sie75].

229

7.3 Proof search in the matrix systems.

The matrix-based characterisations of validity presented in the previous chap-

ter can be used to liberate validity checking in modal logics from the direct

construction of a sequent proof tree. Instead, the validity of a sentence can be

determined by showing that all the atomic paths through (an expansion) of the

sentence viewed as a nested, two dimensional matrix, contain complementary

connections. In the previous section we justified this view of matrix-based proof

search by arguing that testing connections for complementarity is computation-

ally tractable. The path checking task can be performed by first identifying a

complementary connection within the sentence, and then eliminating from future

consideration all atomic paths in which the connection appears as a subpath. If

all the atomic paths through the sentence can be eliminated in this manner, it

is valid. The basic search is confined to the decision as to which connections

to make in the first place (cf.Part I). In this section we demonstrate that such

matrix-based proof search is free from the redundancies demonstrated to arise

in sequent-based proof search. In the next chapter we compare matrix-based

proof search with the main resolution-based proposals in the literature for use

with modal logics. Our conclusions are that the matrix characterisations devel-

oped above provide less redundant bases for automated proof search than these

systems.

The redundancies identified with sequent-based search were classified under

the following three headings:

notational redundancy,

relevance, and

order dependence.

The reader is referred to Chapter 5 for a detailed discussion of these problems.

We deal with each in turn.

230

7.3.1 Structure sharing and notational redundancy.

We noted in Chapter 5 that testing a modal formula for validity using a se-

quent/tableau calculus requires the construction of a proof tree/tableau for the

appropriate endsequent. The search space is an OR-tree of possible derivations

(partial proofs). Consequently, the use of any search strategy, except perhaps

an incomplete depth-first search, requires the simultaneous storage of multiple

derivations. Since a derivation itself is a tree consisting of many formulae, the

space required to store such constructs can quickly become prohibitive.

A similar problem arises in resolution-based systems due to the number of

resolvents that need to be stored during the use of standard resolution proof

procedures. Boyer and Moore [BM72] devised a data-storage scheme which they

termed structure-sharing. Descendants of this data-storage scheme are now stan-

dard components of resolution-based theorem proving systems. We shall not go

into details of the structure-sharing technique since we discussed it in Part I.

The basic idea is that new resolvents are not stored explicitly, but as a skeleton

(consisting of pointers to the original set of clauses) together with a context

marker that identifies the appropriate instantiations of the skeletal variables. In

this way only the information necessary to construct the resolvent is retained,

rather than the resolvent itself. Common structure is effectively shared between

the intermediate constructs (in the case of resolution: clauses) manipulated by

the proof procedure and the original set of clauses.

We showed in Part I that the formulation of such a technique relies, in essence,

on the fact that classical logic admits (complete) proof systems that possess the

subformula property: i.e., any intermediate structure required in the proof of a

formula within the proof system can be expressed entirely in terms of the sub-

formulae of the original formula. The use of the notions of formula tree, position

and polarity in the (theoretical) formulation of the matrix characterisation of

validity for classical logic, were shown to directly support the implementation of

matrix-based proof procedures that utilise structure-sharing methods. In short,

positions can be interpreted as pointers to a single concrete representation of

231

the formula being tested for validity stored in a database. Each derivation, an

intermediate state of the sequent search space, can be represented by pointers to

the endsequent together with contextual information about the instantiations of

free individual variables, instead of by explicit copies of formulae. Consequently,

intermediate states in the matrix-based search space consist only of a collection

of sets of pointers and context information, that allows the reconstruction of the

leaves of derivations. The saving in space is considerable. The reader is referred

to the arguments of Part I for more detail.

We noted in Chapter 5 that the modal sequent calculi also possess the sub-

formula property. Consequently we adopted a similar method (also based on

formula trees, positions and polarity) of capturing the applicability of structure-

sharing in theorem provers based on the matrix characterisations of Chapter 6.

Since the details are the same as the classical case we omit them here and refer

the reader to the discussion of Part I. A structure-sharing scheme was used in this

way in the implementation of a matrix-based theorem-prover for S5 [WW87).

7.3.2 Search strategies and relevance.

The problem that we have termed "relevance" within sequent-based proof search

is basically a problem with the propositional fragment of the logics under consid-

eration. Derivations are proofs just when their leaves are instances of the basic

sequent; i.e., contain a pair of propositionally complementary atomic formulae.

The task of constructing proofs, as opposed to simply derivations, requires de-

cisions as to which S-formulae to reduce to obtain such a pair in the resulting
and

sequent. In Chapters 2, 5 we showed that connective driven search, typical of

sequent-based proof systems, leads to larger search spaces than is strictly neces-

sary since reductions are considered which cannot contribute to the construction

of a basic sequent, and hence a proof. The switch to connection driven search

overcomes these problems. The crucial point is that the connection search space

is formulated in terms of the potential basic sequents that can be formed given

the propositional structure of the formula we are trying to prove. The latter

232

structure is captured by the matrix representation of the formula; a represen-

tation that defines the set of atomic paths through the formula, and hence the

potential leaves of a proof.

Since we rehearsed these arguments in detail in Part I we shall not repeat

them here. Bibel [Bib82b,Bib82a] shows how some of the standard resolution

search strategies can be utilised for this process. His results carry over to our

modal systems without change. In addition, Bibel and his coworkers [Bib77,

HB82,Bib82b] have investigated methods of improving the basic propositional

component of matrix-based proof search. Their results transfer to the modal

case without change since the propositional structure is the same.

7.3.3 Order dependence.

In the previous two subsections we briefly indicated how proof procedures based

on the matrix ideas of Chapter 6 can be formulated so as not to suffer from the

notational and relevance redundancies that plague sequent-based proof systems.

The arguments were brief because the same structures had been used in Part I to

overcome similar problems arising within classical logic. Due to the interactions

of the rules for modalities and quantifiers, different reduction orders for the same

set of modal operators and quantifiers will, in general, lead to essentially different

derivations. Indeed, such derivations differ to the extent that it may be possible

to construct a proof of the endsequent by extending one such derivation, but not

from another. We have called this problem one of rule "order dependence." In

the context of modal logic, this problem is perhaps the most important one to

solve. We shall see in Chapter 8 that it is precisely this problem that most of

the other proof systems for modal logics, based on resolution, and suggested as

appropriate for automated proof search, fail to solve.

In this subsection we demonstrate how the matrix ideas of the previous chap-

ter do overcome such problems. That is, we demonstrate that matrix-based proof

search does not suffer from the redundancies associated with rule order depen-

233

dence. We do this by means of a series of examples designed to show the following

features of matrix-based proof-search:

1. The first example shows how the (sequent-based) problem of choosing an

appropriate reduction order for quantifiers and modal operators is over-

come. The set of appropriate orders is calculated by unification rather

than explored by search. The import of this fact is that the matrix-based

search space is properly contained in the sequent-based search space.

2. A given order of reduction, appropriate at one point in the search, can be

rendered inappropriate by a subsequent construction. If, as in sequent-

based search, we are required to choose an explicit order in the first place,

our choice may require subsequent revision. The second example shows

how matrix-based search removes the need for such revision by avoiding

overcommitment.

3. The third example demonstrates how extra copies of -y and v-type formu-

lae are considered by need in matrix-based search, rather than arbitrarily

as is the case in sequent-based search. The theoretical treatment of the

duplication of subformulae provided by the matrix characterisations also

supports the formulation of efficient decision procedures for the proposi-

tional fragments of the modal logics. We explore this feature further in

§7.4.

4. The matrix characterisations distinguish the K-logics from the D-logics

only in the extra condition placed on the modal substitution in the defi-

nition of, say, K-admissibility. The fourth example illustrates the role of

this restriction.

EXAMPLE. The first example is an instance of the converse Barcan formula:

bxPx = bxLIPx,

and is designed to show how the problem of choosing a reduction order for

quantifiers and modal operators to obtain a proof is overcome using the matrix

234

`dxPx = dx Px a0

`dxPx dx Px a1 a4

1 1 1 1

dxPx Px a2 a5

1 1

Px Px

u pol(u) lab(u) pre(u) preS5(u) Ptype(u) Stype(u)

ao 0 VxPx = Vx Px a0 a0 a 7ro

al 1 `dxPx ao ao v al
a2 1 `dxPx aoa2 a2 7 vo

ail 1 Pall aoa2 a2 - 70

a4 0 dx Px ao a0 S a2

a5 0 Pa5 a0 ao 7r so

a6 0 Pa5 aoa6 a6 - 7r0

Figure 7-1: Indexed formula tree for: (dxPx = dx Px, 0) .

characterisations. An indexed formula tree for this formula (signed 0), with

(constant) multiplicity 1, is shown in Figure 7-1.

There are six derivations within the sequent system of, say, S4, that differ in

the order in which the modal operators and quantifiers are reduced, causing the

introduction of their immediate subformulae into the derivation. The possible

orders of introduction for these immediate subformulae are:

111 1-11 a2 a3 a5a6 a5a2a3 a6

1 11 1 ll a2asQ3 a6 asQ2a6a3

1 11 1-11 a2asa6a3 a5a6Q2a3 .

Notice that since VxPx is a subformula of VxPx, a2 must always be introduced

before a3. Similarly for the pair a5 and a6.

235

A sequent-based proof system would be required to choose from amongst this

collection. For S4, only one of these reduction orders can lead to a proof with

the current multiplicity. The successful order is:

a a al all 5 6 2 3

giving the following S4-proof:

PbPb
VxPx --> Pb
VxPx -+ Pb

EiVxPx --> EiPb
pVxPx -+ VxpPx

) pdxPx Vx f Px

All such considerations are overcome using the matrix characterisations.

There is no search in this case since there is only one atomic path and one

possible connection, namely: {a3', a6}. The prefixes and labels of this connec-

tion are identified by the following (most general) combined substitution:

QM (a2) - a6

11
QQ (a3 = a5.

It is easy to check that this mapping is a modal substitution. Condition A

holds trivially, since for no vo-type positions u and v do we have am(U) = v.

Condition B holds since pre(a2) = aoa2 and pre(a6) = aoa6, hence QM(pre(a2)) =

QM(pre(as))

As for L-admissibility, the substitution respects all accessibility relations

since only a unit sequence (a6) is substituted for a variable. The reduction

ordering (as a directed graph) for this substitution is:

ao

al a4

I 1.

236

which is acyclic. Notice that the graph represents the fact that a6 must be

introduced before a2, and hence, given the pairwise restrictions on a2, as and

as, a6, the only order of introduction of the six subformulae that leads to a proof

is:

a5a64Ia11.

The extra condition for K-logics is easily shown to be satisfied.

This argument shows that the substitution is admissible in the logics K, K4,

D, D4, T, S4. Since there is only one path through the formula the connection

spans the formula. (Note that for the K-logics the condition on complementarity

is satisfied since all positions of the formula tree are in the set associated with the

atomic path.) The sentence is therefore valid in the constant domain variants of

these logics.

The first-order substitution has:

11
QQ (a3 = as

where as1 is of vo-type and as is of iro-type. Furthermore,

aM (pre (a31))

CM(pTe(a5))

aoa6

ao,

and so

UM(pre(as)) Ro QM(pTe(a31))

in the logics K, K4, D, D4, T, S4. This argument shows that the sentence is also

valid in the cumulative domain variants of these logics.

The connection is not complementary in the varying domain systems, since:

aM(pre(a31)) = aoa6 ao = CM(pre(as))

The non-complementarity of the atomic path for varying domains immediately

gives us a two-point model, and a point in that model at which the formula

fails to be forced. The general construction is as follows: we have two points,

237

ao and aoa6, with the latter accessible from the former. If u is a position with

pre(u) = p, then put:

J p II- lab(u) , if pol(u) = 1

1 p IIf lab(u) , if pol(u) = 0.

If u is a position of -yo or So type, with pre(u) = p put:

u E D(p) .

For the current example, these constructions produce:

w

Notice that aoa6

ao

aoa6

11-

D (w) {AI w II-A}
VxPx

VxPx, Pal'

{AIwJIfAl
VxPx, Pa5

Pas

VxPx and aoa6 11-/ Pas. This is consistent because

D (aoa6). Notice also, that

ao IIf VxPx = VxPx

a5 V

since ao II- VxPx and ao 11 -/ Vx Px. The reader can easily check that the

above structure can be extended to an S4-model and hence is a falsifying model

for all the other logics in their varying domain formulation except S5. (But it

can be extended to one for S5 as well - see below.)

For S5, the most general combined substitution that identifies the prefixes

and labels of the connection is:

UM (a2) - a6

UQ (a11) = a5

i.e., identical to the combined substitution for the other logics. The reduction

ordering is therefore acyclic and the sentence valid in constant domain S5. Since:

UM(pre (d")) = a6 ao = am(pre (a5)) ,

the connection is not complementary in varying domain S5. The reader can

easily check that the partial model given before can be extended to a falsifying,

varying domain S5-model.

238

Notice how the sequent search amongst a large number of competing deriva-

tions is replaced by the deterministic use of unification and connections. The

only choices that remain are: which connections to make, and what multiplicity

to accept. The undecidability of the validity problem for the first order logics

can be expressed in terms of the fact that we cannot determine in advance a

maximum multiplicity within which we should restrict our search. See §7.4 for

more details. (END OF EXAMPLE.)

EXAMPLE. The second example is the sentence:

P A (P = Q) = Q.

This example is included to show how determining an appropriate order of re-

duction for modal operators (and quantifiers) cannot be done with regard to one

connection in isolation. The decision is a global one to which each connection

contributes. Within sequent-based search we are forced to choose an explicit

order without knowing whether our particular choice will remain appropriate in

the light of future constructions. In matrix-based search we postpone the choice.

At each stage of the search enough information is maintained to check whether

or not there is at least one correct derivation with the current set of connections

at its leaves. The approriate condition is, of course, the irreflexivity of the re-

duction relation <. The indexed formula tree, with (constant) multiplicity 1, is

shown in Figure 7-2.

A T-derivation of this sentence is show below:

> Q
P -P,QP,Q --* Q

P,P=Q ---> Q
P, (P = Q) --* Q

P, (P = Q) -* Q PA(P=Q)-*Q
-* PA(P=Q)=Q

There are six orders in which we can reduce the three distinct modal operators

239

OP A0(P=Q) 0Q ao

O P n 0 (P = Q) O Q al as

P 0 (P Q) Q a2 a4 a9

1 1 1 1

P P Q 3 5

al 1 a7

u pol(u) lab(u) pre(u) press(u) Ptype(u) Stype(u)

a0 0 0 P A 0 (P = Q) = 0 Q a0 ao a 7ro

al 1 0 P A 0 (P = Q) a0 ao a al
a2 1 0 P ao ao v al
a3 1 P aoa3 a3 - v0

a4 1 0 (P = Q) a0 a0 v a2

a5 1 P = Q aoa5 5 Q vo

a6 0 P aoa5 a5 - QS

a7 1 Q aoa5 a5 - 02

as 0 O Q a0 ao 7r cx2

ag 0 Q a0ag ag - 7ro

Figure 7-2: Indexed formula tree for: (P A 0 (P = Q) = 0 Q, 0).

240

in the sentence and so introduce their immediate subformulae:

1-1 1-1 a3a5ag a5a3ag

1-1 1-1 aga3a5 aga5a3

1 1 1 1 a5 aga3 a3aga5.

The derivation above corresponds to the order:

1-1 (L3a5a9.

Notice that this order does not lead to a proof since one of the leaves of the

derivation is not an instance of the basic sequent and there is no prospect of

making it so (it contains only one atomic formula). So much for sequent-based

search.

There are two atomic paths through the sentence with this multiplicity, and

two possible connections within them. Consider the connection {a3, a6}. The

most general modal substitution necessary to identify the prefixes of this con-

nection is:

am (a') = a'

(Since the sentence is propositional, there is no need to consider a first-order

substitution to identify the labels of the positions forming the connection; the

labels are propositionally complementary by definition.)

The reduction ordering induced by this substitution is simply the tree or-

dering itself since the substitution only associates two "variables." The tree is

obviously acyclic (as a directed graph). So far so good. This connection rep-

resents the left-hand leaf of the sequent derivation given above. The reduction

order of that derivation: a3a5ag is compatible with this connection since it is

compatible with the formula tree.

The connection {a3, a6} spans only one of the atomic paths through the

formula. The second is spanned by the other connection: {a7, ag}. The most

general modal substitution that identifies the prefixes of both connections is:

am (a3)

aM(a5)

ag

ag.

241

The reduction ordering induced by this substitution is:

ao

al a8

a3 a5

l\
i i a6 a7

which, once again, is acyclic. Notice that the reduction order we chose before,

while appropriate for the first connection is inappropriate for the two connections

in unison. (a9 must be introduced before both a3 and a5.) A correct reduction

order is therefore ao, a8, a9, a'. Following this advice, we can construct a T-proof

of the sentence:

P -- P, Q P, Q ---> Q
P, P = Q ---4 Q

P, (P=Q) - Q
PA(P=Q) --> Q

PA(P=Q)=Q
(END OF EXAMPLE.)

EXAMPLE. Our third example is the sentence:

VxPx 3y(Py A Py).

This example is designed to show how extra copies of -y and v-type formulae are

considered by need in matrix-based search, rather than arbitrarily as is the case

in sequent-based search. The indexed formula tree, with (constant) multiplicity

1, is shown in Figure 7-3.

242

O ̀ dxPx 3y(Py n 0 Py) ao

0 ̀ dxPx 3y(Py A 0 Py) al a4

`dxPx Py A 0 Py 2 5

Px P 0 Py all al al y 3 6 7

1 I
Py al s

u pol(u) lab(u) pre(u) pres5(u) Ptype(u) Stype(u)

ao 0 0`dxPx = 3y(Py n 0 Py) ao ao cx 7ro

a1 1 0 ̀ dxPx ao ao v cxl

a2 1 `dxPx a0a2 2 vo

a31
1 Pa31 a0a2 a2 - 70

a4 0 3y(Py n 0 Py) ao ao 7 a2

a1 0 Pas A 0 Pas ao ao 18 70

a6 0 Pal ao ao - Q1

a2 0 0 Pal ao ao 7r 82

al 8 0 - Pal 5
anal 8 a1 pro

Figure 7-3: Indexed formula tree for: (0VxPx 3y(Py A 0 Py), 0).

243

Two S4-derivations of this formula are shown below:

--* Pb
Pb -* Pb Pb -* Pb

Pb --+ Pb A Pb
Pb -- 3y(Py A Py)

VxPx - 3y(Py A Py)
VxPx - 3y(Py A Py)
-* VXPX 3y(Py A Py)

Pb - Pb
VxPx - Pb
VxPx -* Pb

VxPx, Pb -* Pb VxPx, Pb - + Pb
VxPx, Pb --> Pb A Pb

VxPx, Pb -4 3y(Py A Py)
VxPx, VxPx --*]y(Py A Py)

VxPx -) 3y(Py A Py)
-- p VXPX 3y(Py A Py)

The second is a proof. Notice how we are unable to close one of the leaves

in the first derivation, while in the second this problem is overcome by retaining

a "copy" of the antecedent formula VxPx. This latter operation reflects the

fact that we are working with sets of formulae. In general, within sequent-based

search, we must be prepared to "copy" each formula of v and -y type each time

we generate an instance of its immediate subformula. In the proof we have only

duplicated exactly that formula needed to close the leaf. In practice, many extra

formulae must be retained in derivations so as to ensure completeness.

In matrix-based search the duplication of such formulae is governed by the re-

quirements of connections. In other words, duplication is demand-driven. There

are two atomic paths through the formula with this multiplicity. Likewise, there

are two possible connections in the indexed formula of Figure 7-3 which together

span it: {a31, a6} and {a3', a$}. Consider the first connection. The most gen-

eral combined substitution necessary to identify the prefixes and labels of this

connection is:

0

al.

244

ao

a1 a4

1 2 1 a2 a2 a5

11 21 1 1 a3 a3 a6 a7

i
a1 s

U pol(u) lab(u) pre(u) preS5 (u) Ptype(u) Stype(u)

a2

a31

1

1

VxPx

Pa31

a0(L2

a0(L2

a2

a2 -
v0

'Y0

Figure 7-4: Indexed formula tree with µ(a2) = 2.

The reduction ordering induced by this substitution is simply the formula tree

itself since the substitution only identifies variables.

Now consider the other connection {a31, a8}. Under the current modal sub-

stitution we have:

uM (pre (a31)) = ao a0a8 = uM (pre (as)) ,

hence the two connections cannot be made simultaneously complementary. This

reflects the situation in the derivation 7.1 above. Since the failure to identify

the prefixes is due to the modal substitution for a2, we increase the multiplicity

of the lowest vo-type position dominating, or equal to a2. This is a2 itself. The

new (indexed) formula tree for this multiplicity together with the information

for the extra positions is shown in Figure 7-4.

Consider the connection {a2, a8}. Under the current modal substitution we

245

have:

um (pre (a'))

um (pre (a'))

z a0a2

1 a0ag.

The increase in multiplicity provides the necessary flexibility. These prefixes can

be identified by extending the combined substitution with:

°M(a2) - as

= a1,

The reduction ordering remains acyclic:

ao

a1 a4

i\
1 2 1

a2 a2 N

11 21 " 1 1 all
CL3 a6 a7

The formula is therefore valid in the constant domain variants of the logics

K, K4, D, D4, T, S4. Since

QM (pre (a31)) = ao

aM(pre (a31)) = a0ag

aM(pre (as)) = a0

246

the connections are also complementary in the cumulative domain variants, but

not in the varying domain systems.

Notice how the increase in multiplicity was driven by the choice of connection.

In sequent-based search, to retain completeness we must always perform such

duplications. This increases the number of S-formulae that are candidates for

reduction at any given stage and hence introduces redundant states in the search

space. (END OF EXAMPLE.)

EXAMPLE. Our final example is simply to demonstrate the role of the extra

conditions placed on the modal substitution in the definition of admissibility for

the K-logics and when a connection ensures that an atomic path is complemen-

tary. These are the only conditions that distinguish the matrix characterisations

for the K-logics from their D-counterparts.

Consider the formula:

op V Q = Q(P V Q).

An indexed formula tree for this formula, with (constant) multiplicity 1, is shown

in Figure 7-5.

There are two atomic paths through the indexed formula, and two connec-

tions: {a3i a$} and {a5, a9}, which together span it. The prefixes and labels of

these connections are identified by the substitution:

a3

= a3.

It is easy to see that this mapping is indeed a modal substitution, and admissible

247

Op v Q = (PVQ)

OPVQ O(PVQ)

ao

al a6

Op Q PVQ a2 a4 a7

P Q P Q as a5 ag a9

u pol(u) lab(u) pre(u) preS5 (u) Ptype(u) Stype(u)

ao 0 OP V Q = O (P V Q) ao ao ci pro

al 1 O P V Q ao ao Q al

a2 1 OP ao ao it Qi

a3 1 P aoa3 as - pro

a4 1 Q ao ao v 82

a5 1 Q aoa5 a5 - vo

a6 0 O(P V Q) ao ao v a2

a7 0 PVQ aoa' a ci vo

a$ 0 P aoa' al - al

a9 0 Q aoai al - a2

Figure 7-5: Indexed formula tree for (OP V Q O(P V Q), 0).

248

in D, D4, T, S4, S5. The reduction relation is shown below:

ao

al a6

a3--+a5 a8 a9

Informally, the K-condition comprises two components:

the image, under the modal substitution, of a vo-type position in the prefix

of an element of the connection must be comprised of iro-type positions

only; and

these iro positions must be a-related to the vo position.

The substitution above satisfies the first condition, but not the second since a3

is not a-related to 45. The substitution is therefore not K or K4-admissible.

REMARK. Indeed there is no iro-type position a-related to a5. Conse-

quently the atomic positions with a5 in their prefix cannot take part in a K-

complementary connection. This phenomenon is a subtle modal notion of purity,

a concept familiar from resolution systems. A literal is taken to be pure if there

is no complement for it within the set of clauses. The matrix counterpart of this

notion is similar: an atomic position is pure if there is no complement for it in

the matrix. Pure literals (atomic positions) cannot take part in a proof. The K-

condition can thus be used to classify atomic positions as pure when attempting

to determine the K-validity of formulae. (END OF REMARK.)

The K-condition can be motivated by looking at the structure of sequent

derivations of our example formula. The reduction relation above tells us that

249

a3 must be introduced before both a5 and a'. One such K-derivation is as follows:

P -- P, Q
P -- PVQ

OP --> 0(PVQ) Q -- 0(PVQ)
OPV Q -- 0(PVQ)

) OP V Q = 0(P V Q)

Recall that the sequent system for K has no v rule, and the 7r rule is:

S*, iro

S, 7r

where S* of
{ vo I v E S }. Hence the presence of the reduction:

P -*PVQ
OP ---* O(PVQ)

in the derivation above. Moreover, there is no rule applicable to the right-hand

leaf sequent. The K-condition represents the conditions under which such a dead-

end will occur on the way to an instance of the basic sequent represented by a

connection. In our case the connection is: {a5, a'}.

As usual, we have enough information to construct a falsifying K-model for

the formula from the non-complementary atomic path. Call this path s. Then,

{ 1 1 } s a5, as,a4ia6

and

S } . a5, age a4, a6, a0, a1 (S) - { 1 1

The (partial) model contains only one point, ao, at which the elements of S (s)

with prefix ao are forced, or not forced, according to their polarity (1 or 0

respectively) :

w

ao

{AIwI1-A}
OPV Q, Q

{AI w11-/A}

O(PVQ)

Basically ao II- Q because there are no points accessible from ao. Hence all

such points force Q! There is no point accessible from ao at which P V Q is

forced. Consequently ao 11f 0(P V Q). Since ao forces the antecedent and fails

to force the consequent of an implication, it also fails to force the implication

itself. Notice that it is irrelevant which of ao 11- Q or ao 11f Q we take. (END

OF EXAMPLE.)

250

7.4 Decision procedures.

In §7.3 we demonstrated how the duplication of certain subformulae (v and -f-

type subformulae) could be driven by the goal of making a given set of connec-

tions simultaneously complementary. Duplication is achieved by increasing the

multiplicity. For a given multiplicity, the set of atomic paths through the indexed

formula is finite. We can therefore search the resulting space exhaustively for a

spanning set of connections and appropriate admissible substitution. Increasing

the multiplicity, in general, increases the number of atomic paths through the

indexed formula, thereby increasing the size of the search space. The matrix

characterisations of validity, in terms of the existence of a multiplicity, suggests

a modal analogue of Herbrand's Theorem.

For the quantified logics we cannot determine in advance a fixed multiplicity

within which to search such that, if no substitution, and spanning set of com-

plementary connections are found within that (finite) space, the formula is not

valid. This is a reflection of the undecidability of the validity problem for these

logics. On the other hand, the propositional fragments of the modal logics are

decidable. This suggests that it is possible to determine from the structure of

a formula, a "maximal" multiplicity within which to search for a proof of its

validity. In this section we outline how the matrix characterisations provide a

powerful framework for formulating decision procedures for these fragments by

supporting the calculation of such maximal multiplicities.

The heart of the method is the notion of an C-Hintikka multiplicity for a

propositional formula A. An C-Hintikka multiplicity, µ, has the property that

if there is no £-admissible modal substitution a, and set of a-complementary

connections that spans (A, 0)µ, then A is not valid. An C-Hintikka multiplicity

for a formula provides an effective bound on the size of the space to be searched

by limiting the possibilities for duplication. If we can't prove the formula valid

within these bounds, we are permitted to conclude that it is not valid.

251

In the next subsection we show how to determine a reasonably small S5-

Hintikka multiplicity for propositional formulae. We concentrate on S5 for sim-

plicity in order to illustrate the technique. At the time of writing S5 is the only

logic for which an interesting and computationally significant construction has

been defined and proved correct. In §7.4.2 we briefly indicate how to extend this

result to the other logics.

REMARK. We stress: defining an C-Hintikka multiplicity for a given formula

for the other logics is straightforward, since the number of subformulae of the

formula is finite. This, essentially, is the approach taken in tableau methods,

such as Fitting's [Fit83], and Hughes and Cresswell's diagrammatic methods

[HC68], to show that various modal logics are decidable in the first place. For

the purposes of automated deduction, since the C-Hintikka multiplicity defines

the space that must be searched exhaustively to determine the non-validity of the

formula, we are motivated by the desire to determine least such multiplicities.

It is this problem that requires some more technical effort for a satisfactory

resolution for the other logics. That being so, all the fundamental ideas necessary

for such extensions are, we believe, contained in the S5 case below. The problem

is simply one of time. (END OF REMARK.)

7.4.1 A decision procedure for S5.

In this subsection we formulate a decision procedure for S5 by giving a con-

struction for an S5-Hintikka multiplicity for propositional modal formulae. The

method is as follows:

First we define the modal degree of a formula. Intuitively the degree of a

formula indicates the maximum nesting of modal operators in the formula.

Hughes and Cresswell [HC68] show how, for S5 at least, any formula may

be transformed into an equivalent formula of first-degree.

Next, we give a construction of a special multiplicity [for a given formula.

252

Finally, we demonstrate that such multiplicities are L-Hintikka multiplic-

ities provided the formula is of at most first-degree.

In the next section we outline how the restriction to first-degree formulae can be

lifted for S5, and the method extended to the other modal logics.

7.4.1.1 Modal degree.

The modal degree of a formula is defined inductively on the structure of formulae

as follows ([HC68]):

1. Atomic formulae are of degree 0.

2. If A and B are formulae of degree n and m respectively, -,A, A A B, A = B

and A V B are of degree max(n, m).

3. If A is a formula of degree n, A and OA are of degree n + 1.

For example, if P and Q are atomic formulae, (P A Q) is of degree 1, whereas

(OP A OQ) is of degree 3. If the degree of a formula is 1, we say it is of

first-degree.

The reader is referred to Hughes and Cresswell's book [HC68] for a procedure

for transforming arbitrary propositional modal formulae to equivalent formulae

of first-degree in S5. The transfomation basically rests on the S5-validity of

equivalences of the form:

(AAB) (AA B)
O(A V B) = (OA V OB)

(AV B) (AV B)
(AVOB) (AVOB)

and

O(AAB) (OAAB)
O(A A OB) (OA A OB).

253

7.4.1.2 The construction of µ.

Let A be a propositional modal formula and X the signed formula (A, 0). Re-

call that we use HO to denote the set of unindexed positions of 7ro-type in the

unindexed formula tree. Recall also that, for a given multiplicity µ for X, llo(µ)

and 1/o(µ) denote the set of 7ro and vo-type positions of the indexed formula X"
respectively. As a final extension of this notation, if s is a path through X't, let

1/o(µ, s) denote those elements of 1/o(µ) that are elements of the set associated

with the path s; similarly for HO(µ, s). Formally,

df

df

1/o(µ) n S (s)

no (µ) n S (s) .

Define M(k) C llo to be the set of 7ro-type positions a-related to the position

k of the unindexed formula tree for X. (Recall that two positions are a-related

just in case they are both contained in some path through X.) Likewise, or a

multiplicity µ and position k" of the indexed formula tree for X", define M(µ, k")

to be the set of 7ro-type positions a-related to k" in the indexed formula tree.

The multiplicity µ is then defined as follows: for k E 1/0,

µ(k) = IM(k)1+1.

We claim that µ is an S5-Hintikka multiplicity for A provided A is of at most

first-degree. Before proving the claim, we illustrate the construction with an

example.

EXAMPLE. Consider the first-degree formula:

(P v Q) = P V Q.

An unindexed formula tree for this formula is shown in Figure 7-6. Since

M(a2) = {a7, ag}, µ for this formula is the multiplicity:

µ(a2) = 3.

(END OF EXAMPLE.)

254

(PV Q) = PV Q ao

(PVQ) P V Q ai a5

PVQ P Q a2 a6 a8

P Q P Q a3 a4 a7 a9

u pol(o) lab(u) pre(u) preS5 (u) Ptype(u) Stype(u)

ao 0 (PV Q) = PV Q - ao a 7r0

ai 1 (PVQ) - ao v ai

a2 1 PVQ - ao 0 vo

a3 1 P - a2 - Nl

a4 1 Q - a2 - 02

a5 0 P V Q - ao a a2

a6 0 P - ao 7r ai

a7 0 P - a6 - 70

ag 0 Q - ao 7r a2

a9 0 Q - ag - 70

Figure 7-6: Formula tree for ((P V Q) = P V Q, 0).

255

7.4.1.3 The proof.

In this section we work under a global assumption that A is at most a first-degree

formula. We prove that the multiplicity µ is an S5-Hintikka multiplicity for A.

First note some immediate consequences of the restriction to first-degree

formulae. The lemmata indicate that increases in multiplicity do not increase

the number of distinct -7ro-type positions a-related to any position. It gives some

indication as to why we defined µ in terms of the unindexed formula tree (via

M(k)), and why it suffices as a Hintikka multiplicity for first-degree formulae.

LEMMA 7.9 rlo(/-L) = I10.

PROOF. Since A is at most first-degree there are no nested modalities. An

increase in multiplicity does not duplicate any -7ro-type positions. 0

LEMMA 7.10 For a multiplicity µ and indexed position k" of Xµ, M(µ, k")

M(k).

PROOF. This is again an immediate consequence of the fact that A is at

most first-degree. By the previous lemma, duplication does not increase

the number of -7ro-type positions in the indexed formula.

Next, we introduce some notions concerning multiplicities. Let 0 denote the

constant zero multiplicity for X, and 1 the constant multiplicity equal to 1. We

have the following fact: (recall that A(µ) denotes the set of atomic paths through

Xµ)

FACT 7.11 For s E A (0), if u E s either (a) u is an atomic position, or (b)

u E U (i.e., of v-type.

Let µ and µ' be multiplicities for X. µ' is said to be an extension of µ, written:

A' > µ, just in case for every k E Ilo, µ'(k) > µ(k). Notice that all multiplicities

are extensions of 0.

256

Let s be a path through XI`, for some multiplicity it, and suppose u E S (s).

Define s[u] to be the subpath of s through the subtree rooted at u. That is,

s[u] = {vESIu«v}.

We define an equality on sets of indexed positions by "forgetting" the indices.

For a set of indexed positions, S, define basic(S) as follows:

basic(S) df {kIk"ES}.

Let it and µ' be two multiplicities for X, and s and s' two sets of indexed positions

of Xµ and Xµ respectively.

S .+ s' iff basic(s) = basic(s') .

Since A is of first-degree, any atomic path through Xµ can be decomposed

into an atomic path through X° together with the subpaths through the indi-

vidual vo-type position of S (s). Formally,

LEMMA 7.12 Let µ be a multiplicity for X. Any s E A(µ) partitions into

distinct sets: so, and s[u] for u E Vo(ic, s), such that so E A(O) and s[u] is a

subpath of s with

s = SO U U s[u]
uE V0(µ,s)

Furthermore, for any so E A (0) there is at least one path s through X' with so

as a subpath.

PROOF. Immediate from Fact 7.11 and the fact that A contains no nested

modalities. 0

From these definitions and lemmata we get:

LEMMA 7.13 For any µ > 0, HIo(p, s) = Ilo(0, so), for some so E A(O) as

described above.

257

We prove the main claim in the following way. First we define a particular

modal substitution Q over X3'. This substitution essentially ensures that every

possible distinct substitution is considered for a given vo-type position. (µ is

sufficiently large to allow this.) Then we demonstrate that if A (A) contains

a non-complementary path (i.e., there is no spanning set of Q-complementary

connections for X1'), any extension µ > µ cannot alter this situation, for any

modal substitution. We prove this latter part, by showing that A(µ) contains

an atomic path which is structurally identical to the non-complementary atomic

path in A(µ).

Suppose, for k E Uo,

M(k) = { rl,r2,...,rm }.

Let ko denote the root position of the unindexed formula tree for A. Define the

substitution Q as follows:

r1, 1 < i < m;
a(k`)

ko, i=m+1.
It is easy to check that Q is a modal substitution. Next, notice that Q is S5-

admissible, since:

1. The mapping preserves S5-accessibility relations on prefixes since any pre-

fix is accessible from any other.

2. The reduction relation induced by Q is irreflexive since, for no two distinct

positions u, v E TM(µ) do we have u « v. (Recall that TM(µ) = Vo(µ) U

no (T))

As a final preliminary we prove a result concerning the multiplicity µ and the

substitution a which expresses its "completeness" in a certain sense.

LEMMA 7.14 Lets E A(µ) and k E basic(Vo(µ,s)). Then, for all7ro-type posi-

tions v E 110(µ,s) there is some index T, with 1 < T < µ(k), such that Q(kT) = v.

PROOF. Immediate, from the definition of Q and the fact that 110 (Al s) C

M(k).

258

PROPOSITION 7.15 Let µ be an extension of µ, and v any S5-admissible sub-

stitution for Xµ. If there is an atomic path s E A(µ) that does not contain a

v-complementary connection, then there is a atomic path t E A(µ) that does not

contain a v-complementary connection.

PROOF. By Lemma 7.12,

s = so u U s[u]
uEVo(A,s)

for some atomic path so E A(0) and particular subpaths, s[u], through

u E 1/0(µ,s). We are free to choose an atomic path t E A(µ) such that:

t = so u U t[u]
uE Vo(µ,t)

for some subpaths t[u], through u E 1/o(µ, t). We choose the t[u] as follows:

letu=l",

1. Suppose v(l") = v for some 7r0-type position v. By Lemma 7.13,

v E IIo(µ, s). By Lemma 7.14, there is an index r, with 1 < r < µ(l),

such that Q(lT) = v. Choose for t[l"] the subpath through i' such that:

t[l"] [IT].

2. Suppose u(ln) = v for some v0-type position v. By Lemma 7.13, there

is some index r, with 1 < r < µ(l), such that Q(lT) = k0, where k0 is

the root position of the formula tree. (Recall k0 E Ho and k0 E S (s')

for all paths s'. Consequently k0 E IIo(µ,s).) Choose for t[l'] the

subpath through l" such that:

t[l'] s[ln].

In both cases:

r" E t[l"] if rT E s[lT].

(All the positions of t[l'] have index r. since A is at most first-degree. Sim-

ilarly for the positions of s[lT].) Hence, by construction:

t;-' S.

259

We claim that this path cannot contain a or-complementary connection.

Suppose not. That is, suppose there is some 6-complementary connection

{k', k22} in t. Without loss of generality, suppose the prefixes of these

atomic positions are l', 1 = 1, 2, respectively. We have, by assumption:

v(111) = v = a(l22).

lab(ki1) = lab(k12).

Regardless of whether v is of 7r0 or v0-type, we chose t such that there are

some indices T1 and T2 such that:

a(li') = v', a = 1, 2,

for some 7ro-type position v' E IIo(E2)s), and

t[lt'] s[lt'] i = 1,2.

That is, k E s, i = 1,2, and {k11,k'} forms a Q-complementary connection

in s. This contradicts our assumption that no such connection exists.

THEOREM 7.16 If A is a propositional modal formula of at most first-degree,

µ for A is an S5-Hintikka multiplicity.

PROOF. We must show that if there is no L-admissible modal substitution

a and set of a-complementary connections that span (A, 0)p, then A is

not valid. Proposition 7.15 tells us that if Q is not sufficient to obtain a

spanning set of Q-complementary connections, no increase in multiplicity

and alternative substitution is sufficient. By the completeness of the matrix

characterisations, this means that A is not valid.

7.4.2 Extensions.

We remark at this stage how a decision procedure for first-degree S5 formulae

can be defined based on the development above. Firstly, during standard path-

checking proof search we place a bound on the multiplicity for each vo-type

260

position of the formula. Secondly, we need never consider substitutions v that

have the property:

a(k"1) = v = a(k"2)

for some 7ro-type position v; or

a(k"1) = a(k12) = a(k13)

for distinct ,c;, i = 1, 2, 3. These restrictions can be motivated by looking at the

structure of the substitution Q defined above.

Recall that our goal is to define least such L-Hintikka multiplicities. We can

improve on µ defined above by taking account of the fact that the identification

of two distinct positions under the substitution can only produce complementary

connections in the formula if there are (propositionally complementary) atomic

formulae with those positions as prefixes. For example, consider this variant of

the example formula of the previous section:

(P V Q) (OP = Q)

(The formula tree for this formula is isomorphic to that shown in Figure 7-6,

right down to the types of the positions. The only difference is that the two

occurrences of P have the same polarity. We take advantage of this and use the

same names to refer to the corresponding positions.) The construction given

above would still produce an S5-Hintikka multiplicity µ with

jt(a2) = 3.

We can show that the smaller multiplicity:

j(a2)=1

is also an S5-Hintikka multiplicity and clearly leads to a smaller search space

containing one possible connection only. The existence of a non-complementary

path at this multiplicity immediately leads to the conclusion that the formula is

not valid. Basically, instead of using all of the distinct positions a-related to the

vo-type position, we only count those which prefix potential connections.

261

The construction and proof of Theorem 7.16 relies on the fact that an increase

in multiplicity, in a manner of speaking, does not increase the number of distinct

prefixes in the formula. Of course it does increase the number of vo-type positions

of the unindexed formula tree, but we need only consider substitutions that map

all vo-type positions to distinct iro-type positions. (This is also reflected in the

completeness proofs of Chapter 6, where the substitutions used to construct

a-complete atomic paths were "ground" in this sense.) The crucial lemma is

Lemma 7.13. In fact, it is not difficult to show that very slight modifications of

the S5-construction of the last section suffice for the other logics also, under the

restriction to first-degree formulae of course.

To lift the restriction to formulae in first-degree normal-form for S5, and

hence extend the method to the other logics, we need to calculate the increase

in distinct prefixes (iro-type positions) that occurs when the multiplicity is in-

creased. Clearly this depends on the degree of the particular formula. Notice

that for first-degree formulae we were able to define µ in terms of M(k) by

µ(k) = IM(k) I + 1.

The more general case requires the definition to be in terms of M(/2, k"). The

recursive nature of such a definition reflects the fact that an increase in the

multiplicity for one position will, in general, force increases for other positions.

We have not developed such characterisations to-date, but believe it to be a

simple, if tedious technical exercise.

7.5 Logical consequence and expressibility.

In this section we consider two miscellaneous but important issues: namely, the

use of the matrix characterisations to decide instances of the consequence relation

for the modal logics, and the extension of the characterisations to languages

containing function symbols.

262

7.5.1 Logical consequence

The matrix characterisations capture the structure of valid sentences within
modal logics. In practice we are interested in the relation of logical consequence

between sentences and sets of sentences. The characterisations suffice to decide

instances of logical consequence.

The consequence relation for modal logics that we wish to capture is the

following: the sentence A is a logical consequence of (the set of sentences) O

just in case, for any L-model, and any L-interpretation t in that model, for all

wEG,

w 11- t(0) implies w 11- t(A).

We write 0 A. Deduction theorems hold for the modal logics under the above

notion of logical consequence.

THEOREM 7.17 (DEDUCTION THEOREM) If A is a sentence, and 0 a set of

sentences, then for all the modal logics under consideration:

0 J= A if O A.

We can therefore use the matrix characterisations to decide instances of logical

consequence by proving the validity of the implication 0 = A, instead of the

consequence 0 = A. (In implementations of course the distinction can be hidden.

See [WW87].)

7.5.2 Function symbols.

We have considered languages containing no function symbols. This restriction

was made for technical convenience. Function symbols can be added to the

matrix systems in the same way as Bibel adds function symbols to his classical

matrix system [Bib82a]. The only change occurs in the method for calculating

the relation Cq induced by a first-order substitution. The definition given was:

a first-order substitution oQ: ro(1) --> TQ(u) U C induces an equivalence relation

-q and a relation Cq on TQ x TQ as follows:

263

1. If aq(u) = v and v c to, then u -q v.

2. If aq(u)=vand voro,then vCqu.

3. IfVEquandu -q u', then vCqu'.

Since the image of a vo-type position under aq can now be a term t, we alter

the second clause to:

2. If a'q (u) = t for some term t, for all v E Tq (µ) that are subterms of t,

VCgU.

Everything else goes through unchanged.

7.6 Summary.

In this chapter we have:

1. Justified the view of matrix-based proof search in modal logics as being

essentially a path checking process (§7.2). We did this by demonstrating

that the complementarity tests, as in classical logic, are computationally

tractable. Indeed, algorithms already exist for computing most general

L-admissible substitutions.

2. Demonstrated that proof search based on the matrix characterisations over-

comes the problems identified with sequent-based proof search (§7.3).

3. Shown how the characterisations support the development of efficient de-

cision procedures for the propositional fragments of modal logics (§7.4).

4. Shown how the characterisat ions can be used to decide instances of modal

consequence relations and the restriction to first-order languages with no

function symbols can be trivially lifted (§7.5).

264

Chapter 8

Related work.

8.1 Introduction.

In the previous chapters we developed matrix characterisations of validity for

the first-order modal logics K, K4, D, D4, T, S4 and S5. We captured not only

the standard quantified logics, but also their cumulative and constant domain

variants. We have succeeded in turning the task of checking a modal formula

for validity into a path checking task, with each primitive operation a test for

complementarity. We showed in the previous chapter that the complementarity

tests are tractable and instances of standard (string) unification problems.

Our goal has been to extend techniques for automated deduction in classi-

cal logic to modal logics while retaining the computational properties of these

techniques. We have succeeded in this goal. Indeed, search strategies based on

the classical matrix systems are applicable without change in the modal case.

The specifically "modal" aspects of the proof search are dealt with by unifica-

tion during the complementarity tests. In [Bib82b], Bibel develops a series of

path checking algorithms for classical matrices that are equivalent to the most

efficient resolution strategies. His results suffice to demonstrate the degree of

efficiency we have achieved for automated deduction in modal logics.

265

In this chapter we review the other major proposals in the literature for (com-

putationally) efficient proof procedures for (roughly) the same class of modal

logics. We identify three types of system:

Proof systems based on sequent/tableau calculi (§8.2).

Systems based on either clausal or non-clausal resolution (§8.3).

Hybrid proof systems based on a mixture of sequent/tableau ideas and

resolution (§8.4).

As discussed in the introduction to this thesis, comparing the efficiency of

proof procedures is a difficult task. We restrict ourselves to investigating prop-

erties of the search spaces generated by the proposed inference systems. In

some cases, such as the sequent/tableau systems, we can show that the matrix

search space is a subspace of the space generated by the sequent/tableau system.

In others, such as Abadi and Manna's adaptation of non-clausal resolution to

modal logics [AM86a], we indicate the combinatorial problems possessed by the

systems that make them much less appropriate for automated proof search than

the matrix systems.

We note at the outset that, in the author's opinion, each of the proposals

reviewed provide a more redundant basis for automated proof search than our

modal matrix characterisations. The reason is simple. None of the proposals

overcome what we have termed the "order dependence" of the modal rules, or

more abstractly, the interaction of modalities. We point to our use of unification

to solve this problem as a central contribution. Indeed, our threefold classifica-

tion of the redundancies of sequent-based proof search can be used to summarise

the problems with the other proposals:

The spaces generated by sequent/tableau proof systems, in general contain

all three types of redundancy: notational, relevance and order dependence.

The spaces generated by the resolution and hybrid tableau/resolution proof

systems:

266

can be extended to utilise structure sharing methods to overcome the

notational problems;

- overcome the relevance problem by means of connections,

- overcome the order problems of the quantifiers, but

- fail to deal with the order problems associated with modalities.

Additionally, none of the resolution proposals capture the full range of

modal logics treated here, though in some cases the systems can be ex-

tended.

8.2 Sequent and tableau-based proof systems

In Chapter 5 we identified redundancies in the search spaces generated by stan-

dard sequent and tableau calculi for modal logics that render them inappro-

priate for automated proof search. These redundancies are common to all

modal sequent/tableau systems with a characteristic emphasis on connectives

and interacting inference rules. Such systems include those presented by Kripke

[Kri63], Fitting [Fit83], Hughes and Cresswell [HC68], and the decision methods

of Halpern and Moses [HM84] for various extended classes of modal logic. In

Chapter 7 we demonstrated that proof search based on the matrix characterisa-

tions were free from the redundancies, and hence form more suitable bases for

automated deduction in modal logics. We shall not repeat the arguments here,

but refer the reader to the chapters cited.

Fitting's prefixed tableau systems [Fit72,Fit83] deserve further mention be-

cause they are related to the methods employed in the matrix characterisations.

Indeed, our methods were partially inspired by his systems. For instance, a pre-

fixed sequent system for S5, developed by Kanger [Kan57], was used to suggest

a matrix characterisation for that logic in (Wa186]. In (Wa187] we used Fitting's

prefixed systems to motivate the design of matrix characterisations, much as we

used more standard sequent systems in this thesis.

267

r, p:A--->p:A,A

r,p:A,p:B--;A
A

r--->p:A,A r--; p:B,A
r, p : (A A B) -- A r ---p p : (A A B), A

r,p:A--+ A r,p:B--->A r---p:A, p." B, A
r, p:(AVB) > A

v - r p:(AVB),A -->v

F-p:A,A r,p:B--A r,p:A---fp:B,A
r, p : (A B) --- A

=:> r -- p : (A B), A ---
r, p: A --- A r - p: A, A -- --, -, r p : (`'A), A r, p : (-,A) -* A

r, q:A -, A r --> q: A, A -- r,P:(A) --) A r --- p:(A),A
r q: A --> A r ---, A A

r,p:(OA) -' A r --> p:(OA),A -*O
In all the modal rules we must have: p Ro q.

For the --- and Q - rules: q must not appear in the conclusion.

Figure 8-1: Prefixed sequent calculus for S5.

Let (Go, Ro) be an L-frame. A prefixed formula is a pair p : A, where p E Go

and A is a modal formula. The rules for sequent versions of Fitting's prefixed

systems are shown in Figure 8-1. Fitting utilises sequences of integers for the

set of prefixes Go and defines the accessibility relation Ro in exactly the same way

as we did in Chapter 6 for prefixes consisting of sequences of positions. Indeed

we took the definitions from his [Fit83], as remarked at the time. For example,

the accessibility relation for S4 is defined as:

pRoq iff p--< q.

The rules of the calculus are inverted for proof search, derivations being

constructed from their root to their leaves. The use of prefixes allows Fitting,

as it did us, to capture the constant domain logics easily. Despite the use of

268

prefixes however, all three types of redundancy remain in the prefixed sequent

systems. They possess the notational and relevance redundancies by virtue of the

standard sequent/tableau framework. Moreover, the proviso on the "ir" rules:

--> and Q -, induce interactions between these rules and the "v" rules: - and - Q - classic order dependence. A simple example will help to

illustrate this. Consider the S4-theorem: A A (A = B) = A. We begin by

prefixing the formula with the prefix 1, and applying the rules for implication,

conjunction and the v rule - + twice, thereby introducing the prefix 11, which

has 1 -< 11. (Note: we use 11 to denote the two element prefix formed from the

concatenation of the two unit sequences: 1 and 1.) The resulting derivation is

shown below.

11: A, 11:(A=B) --> 1:(A)
11A, 1: (A=B) -- 1:(A)

I 1: (A=B) --> 1:(El A)
1:(AAEl (A=B)) --> 1:(A)
--> 1:(AA0(A=B)=El A)

But now when we come to reduce the succedent formula, we are prohibited

from introducing the prefix 11 by the proviso on the --* rule. Of course, we

should have reduced the succedent formula before the antecedent formulae.

In conclusion, despite the use of prefixes, Fitting's systems suffer from the

same problems as the more standard sequent/tableau systems. It is possible to

introduce our unification solution to the prefix systems directly. In fact, the

motivational arguments used to introduce the matrix systems in Chapter 6 es-

sentially did this. Jackson and Reichgelt [JR87] investigate this method further.

269

8.3 Resolution-based proof systems.

Perhaps the most obvious method of developing computationally efficient proof

methods for modal logics is to adapt Robinson's resolution method [Rob65J, and

its refinements (see eg., [CL731). The idea would be to extend the resolution

method to modal logics while retaining the computational advantages exhibited

by the method for classical logic.

The major hurdle to this approach is that the standard resolution method

requires that the input formula be in clausal form. The precise details of this

normal form are not important. We refer the reader to Chang and Lee's book

[CL731 for a full description. Suffice it to say the method relies on the validity

of equivalences such as:

Vx<A - <>VxA,

as well as the existence of a conjunctive normal form for the propositional frag-

ments. We have already seen that modal operators and quantifiers do not com-

mute freely. (In fact, the equivalence above is not valid in any of the logics we

have considered, since the left-to-right implication fails.) Moreover, a simple

conjunctive normal form does not exist for all the modal logics. (Hughes and

Cresswell, in [HC681, define a modal clausal form for S5 and point out that its

existence is dependent on the number of distinct modal functions, of a given

set of propositional variables, expressible in the logic. For S5 this number is

finite because, as we showed in Chapter 7, every S5 formula can be reduced to

a formula of a particular maximum degree, namely 1. For S4 and T, there is no

such finite degree to which formulae can be reduced. Hence there are an infinite

number of distinct modal functions for these logics, and no such normal form

exists.)

Consequently, a resolution approach must either restrict the language of for-

mulae to, say, prenex formulae, where no quantifiers are allowed in the scope of

modal operators, and abandon classical clausal form; or alternatively, abandon

normal form altogther. The most comprehensive treatment of modal logics using

270

the former approach is that of Farinas del Cerro [Far82,Far83,Far86]. The most

comprehensive treatment of modal logics using the latter approach is that of

Abadi and Manna [AM86b,AM86a]. We review both approaches below.

8.3.1 Clausal resolution for modal logics.

Farifias del Cerro has developed clausal resolution systems for the propositional

modal logics K [Far82], S4 and S5; and a linear temporal logic of programs

[Far83]. In [Far86] he argues that the systems extend to the prenex subset of

the first-order logics.

We note that these methods have not been developed for the wide class of

propositional logics treated in this thesis. Secondly, we note that the extension

of the systems to first-order modal logics requires the aforementioned syntac-

tic restriction to prenex normal form; a restriction not shared by the matrix

characterisations. Thirdly, Bibel's results in [Bib82b] suffice to show that search

methods based on matrix characterisations are more efficient than standard re-

finements of classical clausal resolution. These results generalise immediately

to the modal case since we were careful to preserve the path checking nature

of the search. (Basically, Bibel interprets resolution inferences within a matrix

framework and shows that each standard resolution inference fails to eliminate

all the atomic paths that are proved complementary by the inference. In this

way, more resolution inferences are performed than is strictly necessary. Part of

this redundancy comes directly from the use of clausal form.)

Farinas del Cerro's modal resolution inference rules are defined in the follow-

ing manner. First, a modal "clausal form" is defined in which modal operators

may quantify subclauses. For example, the formula:

(PVQVO(RAT))

is in normal form because it is a conjunction of clauses (one in this case) each of

which is of the form:

C=L1V.. VLm V C1 V...V C,vOD,v...vODp,

271

where the C,, and Dk are themselves clauses, and the L; literals. We shall briefly

present the system for S5.

A single resolution inference is performed by means of a procedure on clauses.

Write (Cl, C2) for clauses C1 and C2 are resolvable, and define this relation and

the resolvent: E(Cl, C2), recursively as follows:

1. Classical rules:

(a) For atomic P, E(P, -,P) = 0. (P, -,P) is resolvable.

(b) E((DI V D2), C) = E(D1, C) V D2. If (D1, C) is resolvable then so is

(D1 V D2, C).

(c) E(D1 A C1 A D2 A C2) = E(D1 A D2) A C1 A C2. If the clause D1 A D2

is resolvable, so is the clause D1 A C1 A D2 A C2-

2. Modal rules:

(a) E(D, C) = E(D, C). If (D, C) is resolvable, so is (D, C).

(b) E(D, OC) = (E (D, C) A C). If (D, C) is resolvable, then so is

(0D,OC)

(c) E(D, C) = E(D, C). If (D, C) is resolvable, so is (D, C).

(d) E(B[O(D1 A D2 A C)]) = B[O(E(DI, D2) A CAD, A D2)]. If (D1, D2)

is resolvable, so is B[O(D1 A D2 A Q.

(The last rule of each class defines what it means for a clause to be resolvable

with itself.)

Given two clauses, the above set of rules is run as a procedure to determine

whether the clauses are resolvable and compute the resolvent. Notice that the

procedure is non-deterministic. Choices must be made in two of the classical

rules and the final modal rule. The resolution rule is therefore not effective

in that a search must be undertaken to determine the results of the inference.

In the case of the quantified logics this search will be arbitrary. The modal

rules effectively search for classical inconsistencies (connections) within modal

272

contexts. This is no more than a particular strategy for applying tableau or

sequent rules to produce an instance of the basic sequent. In fact it is worse,

since the results of such applications to break down complex formulae are not

stored in a sequent, or on a tableau, but are computed anew for each attempted

resolution.

This behaviour should be compared with the method of identifying comple-

mentary connections in systems based on the matrix characterisations. In the

matrix systems no normal forming is necessary, with its attendant increase in

redundancy due to the expansion of the formula. We conclude that the clausal

resolution systems are less suitable for automated proof search in modal logics

than the modal matrix systems.

8.3.2 Non-clausal resolution for modal logics.

Abadi and Manna [AM86b,AM86a] develop resolution methods only for the con-

stant domain formulations of the modal logics we have considered. It is not

immediately obvious whether their methods extend to varying and cumulative

domain variants. Their methods are based on Murray [Mur82] and Manna and

Waldinger's [MW80] non-clausal resolution rule.

A resolution proof system for a given (constant domain) logic contains two

types of rule:

1. Simplification rules.

2. Deduction rules:

(a) The resolution rule.

(b) Modal rules.

Simplification rules have the form:

A,, ... , A,. B

273

where the A; are conjuncts of a formula that are deleted and replaced by B in

an application of the rule. So, for example, the simplification rule: P, -,P = 1

applied to the conjunct:

QVO(,PAQAP)

yields

QvO(QA1).

(Note: T and 1 stand for "true" and "false" respectively.) Deduction rules have

the form:

A1,..., A,,.,, B

where again the A; are conjuncts of a formula. In this case the formula B is

added as an extra conjunct.

The non-clausal resolution rule is a deduction rule of the form:

A(C), B(C') AO(T) V BO(1)

where the notation A(C) indicates that C occurs as a subformula of A, and

0 is the most general unifier of C and C'. Crucially, to retain soundness, the

following restrictions are placed on the application of the resolution rule:

1. Same world restriction: the occurrences of C replaced in an application of

the resolution rule must not be in the scope of any modal operators.

2. The replaced instances of CO and C'O are not in the scope of any quantifier

in AO or BO.

(In fact, these are not the only restrictions introduced in [AM86a]. Other, more

complicated restrictions are necessary for dealing with quantifier prefixes of A

and B. However, is not necessary to repeat the other restrictions for the purposes

of the argument below.) Abadi and Manna's system for S5 is shown in Figure 8-

2. (The notation Q' and Q3 is used by these authors to indicate quantifier

occurrences of universal and existential force within a formula respectively.)

274

1. Simplification rules:

True-false simplification rules:

- TVA=T.
- 1,A1.
- O1 1.

Negation rules:

- -no A Q-A.

--,QA=-'A.
- -(A n B) = (-A V -B).

- -(A V B) = (-A n -B).

- -,A=A.
Weakening rule:

- A, B = A.

Distribution rule:

- A,BIVVBm==* (AABI)VV(AABm).

Quantifier extraction rules:

- A(Q'x.C[x]) = dx'.A(C[x'])

- A(Q3x.C[x]) = 3x'.A(C[x']). (Restriction: the replaced expression

should not occur in the scope of any quantifier of universal force Qd or

modal operator of necessary force.)

2. Deduction rules:

The resolution rule (with restrictions).

Modal rules:

- A,QB j--> Q(DAA B).

- o A - A.

- QA,OB a) Q(QAA B).

- A%)QA.

Figure 8--2: Abadi and Manna resolution system for S5.

275

Here is a proof of the formula:

(VxPx) = (Vx Px)

using this system, (roughly) as presented in [AM86a]. (They actually proved

this formula in their system for K.) The first step is to remove the implication

and negate the formula in order to derive 1:

[-' (VxPx) V (Vx Px)].

By the negation rules we get:

(VxPx) A (3xQ-Px).

By the existential quantifier extraction rule we get:

3x'[(VxPx) A Q-Px'].

The first modality rule gives us:

3x'[(VxPx) A Q-'Px' A 0 ((VxPx) A-Px')].

Weakening gives us:

3x'Q [[I (VxPx) A -iPx')].

The second modality rule gives us:

3x'Q[(VxPx) A -iPx')].

Finally, resolution with A = -iPx', B = Px, C = Px' and C' = Px gives us:

3x'Q[(VxPx) A -Px') A (-T V 1)].

True-false simplification gives us:

Notice the number of rules that need to be applied in order to perform what,

in systems based on the matrix characterisations, would be a single step per-

formed by unification; i.e., testing the complementarity of a single connection.

276

Notice that at each stage many of the rules of the system are applicable in

multiple places within the proof state (conjunction). But crucially, notice the

application of the modal rules to move the atomic formulae into the same modal

context so that the resolution rule can apply. The system has all the order de-

pendence problems of the tableau systems, as well as a non-analytic nature that

means as the deduction proceeds, the number of possible inferences to choose

from at the next stage increases dramatically. Notice the judicious use of the

weakening rule to focus attention. Considering the combinatorial problems that

would arise in a large search of this kind, we must conclude that the Abadi and

Manna systems do not provide bases adequate for automated proof search in

modal logics as the matrix characterisations, despite their use of resolution. The

redundancies in the systems arise from two sources: the non-clausal resolution

rule itself, and the modal rules.

Despite the disadvantages outlined above, their method has an advantage in

that the inference rules are locally defined, in contrast to the complex nature

of the matrix systems. This supports the rapid extension of their basic modal

systems to intensional logics with other types of modal operator, most notably

temporal logics [AM86b] with many different and interacting forms of modal

operator (eg., "next-time" operators etc. The extension of the matrix charac-

terisations to such logics requires careful thought and has not been investigated

by the author. The Abadi and Manna systems are also somewhat easier to use

by hand.

We conclude that the non-clausal modal resolution methods leave much to

be desired for automated proof search compared with the matrix systems.

8.4 Hybrid systems.

In the previous section we reviewed two proposals for modal proof systems that

attempt to import the efficiency of resolution to modal logics. One was based on

a normal form, the other was not. The resolution proposals are separated from

277

the more standard sequent/tableau approaches by the central role played by the

connection. The other major component of resolution that makes it suitable for

automated proof search is the use of unification to manage the interaction of

quantifiers. Modal operators have the same computational properties as quan-

tifiers. The major failing of the resolution proposals was their failure to extend

the unification solution to these operators. The modal matrix characterisations

were specifically designed with this in mind. In the final analysis, the resolution

systems proposed resort to adhoc methods of manipulating modal formulae so

as to allow the application of a constrained resolution rule.

In this section we review two slightly more principled approaches to ma-

nipulating modalities. While recognising that the classical resolution rule must

be restricted in its application for soundness, Wrightson [Wri85] and Konolige

[Kon86] fall back on tableau methods to cope with the modalities. The results

are an interesting hybrid of tableau and resolution. The problem is that, as

Konolige explicitly acknowledges in [Kon86], the manner in which the resolution

rule is utilised is not effective. That is to say, arbitrary search may be necessary

to determine if a given resolution inference is justified.

8.4.1 Theory resolution and tableaux.

In [Kon86], Konolige develops hybrid systems of resolution and tableaux for the

varying domain versions of the modal logics treated in this thesis. We believe

that his systems can be extended to the cumulative domain variants, but it is

not clear that they extend to the constant domain variants also.

The idea is simple. First, a clausal form is defined in which modal operators

are treated as predicate symbols. For example (VxPx A Qy) is taken to be

a single literal with one free variable. Other than this the details are as in

classical logic. A technique of a bullet operator is used to allow Skolemisation.

For example, the clausal form of the sentence:

Vx3yP(x, y) = O3zQ(x, y, z)

278

is

-iP(x, f (x)) V O 3zQ(x, f (x), z).

The term f (x) indicates that the term f (x) must be interpreted outside the

modal context. It will not unify with a non bulleted term. Similar remarks hold

for the Skolem variable x. This is Konolige's method of capturing the varying

domain conditions. The matrix characterisations utilise prefixes for this task.

We shall restrict our attention to the propositional systems, since this will be

sufficient for our central arguments concerning proof search.

Konolige's resolution rule is based on Stickel's theory resolution rule [Sti85a],

and is shown for a series of logics in Figure 8-3.

The second rule permits the construction of a resolvent:

A,VA2V...VA,VA2V.. A"VA2V...

provided the associated set below the rule is unsatisfiable. If the reader thinks

of the premises of the second rule as being a subset of the formulae on a tableau

(or in a sequent), the rule allows the resolvent to be adjoined to the current

tableau provided a new tableau, containing the formulae of the associated set,

is unsatisfiable. The system spawns new tableau at each application of theory

resolution. A hierarchy of tableaux is thus constructed. The definition of the

auxil iary tableau differs from logic to logic. For example, the inclusion of the set:

OI', reflects the transitivity of the accessibility relation of the logic. It should

be compared with the set of formulae "preserved" through the application of

a modal sequent rule for the transitive logics described in Chapter 4. In this

vein, the first rule is essentially the v rule of the standard modal sequent calculi.

Notice that it is sound only for the reflexive logics.

Each theory resolution step, therefore, is nothing more than an application

of modal sequent rules, manipulating the modal context of non-modal formulae.

Different modal contexts are represented by different tableau, as in the original

tableau systems of Kripke [Kri63]. Ordinary resolution is used to deduce whether

a given tableau is unsatisfiable.

279

This first rule is only for the idealisable logics T, S4 and S5:

BVA
BVA

This second rule is for all the modal logics stated:

CC1VA1

Ca C2VA2

DDi V Al

,0D2VA2

E1vA" I
E2VA2

A,VA2VVA' VA'2vA"VA2v
where

K,T {r,-,C1}
K4, S4 { t, r, -,C1 }

S5 { t, r,-D1,,pA,,o,E }

and

r = {C1,C2,...}

D = { D1, D2, ... }

E _ { El, E2, . }

L F Cl, C2, ... }

etc

is unsatisfiable

Figure 8-3: Konolige's theory resolution rule for modal logics.

280

Notice that the theory resolution rule is not effective. The formation of the

resolvent, and hence its subsequent use as a parent of other resolution inferences,

is dependent on the unsatisfiability of the auxiliary tableau. This latter question

can require arbitrary search. To address this problem, Konolige and Geissler

propose interleaving inferences on the auxiliary tableau with inferences on the

main tableau. However, notice that there is a choice to be made as to which

formulae to include in a given application of theory resolution. The system is

prone to all the same redundancies as standard sequent/tableau systems. The

only advantage is the use of classical resolution within an individual tableau to

demonstrate its unsatisfiablility.

We conclude that Konolige's systems are less suitable for automated proof

search than the matrix characterisations.

8.4.2 Connections in tableau.

Wrightson [Wri85] recognises the central component of resolution as being the

connection, and its major problem the requirement of normal form. He also

recognises the utility of tableau/sequent rules for formalising the properties of

intensional operators and that tableau suffer from what we have termed: the

relevance problem.

He proposes the use of tableau for "non-classical" logics, but augmented with

connections, stored in a connection graph [Kow75], to guide the application of

tableau rules. His proposals do not address the problems of notational redun-

dancy in tableau, nor the order dependence of the modal tableau rules, but do

incorporate unification to overcome the order dependence of the quantifier rules.

281

8.5 Conclusions.

In this chapter we have reviewed a number of proposals for automated proof

search in modal logics. We have argued that the matrix characterisations devel-

oped above are more appropriate as a basis for this task. None of the proposals

reviewed solve the basic problem arising from the order dependence of modalities,

although the resolution based systems do adopt Robinson's unification solution

to the order dependence of quantifiers. We are led to the conclusion that there

is, in general, a lack of appreciation of the proof-theoretic role of unification. We

believe that this state of affairs has arisen because of the semantic justification

of unification, involving Skolemisation. (Both Abadi and Manna's, and Kono-

lige's proposal introduced a complicated form of modal Skolemisation, though

the first two authors leave its use as optional.) If unification had been seen as

a proof-theoretic tool for managing the interactions of quantifiers, the solution

developed in this part of the thesis for modal logics would have emerged sooner.

We point to our elaboration and analysis of the function of unification in Part I

of this thesis, based on that given by Bibel in [Bib82a], as a major contribution

to the field of automated theorem proving.

282

Part III

Automated deduction in

intuitionistic logic.

283

Summary.

The main results presented in the thesis so far have been:

Part I: The decomposition of Bibel's Connection Calculus [Bib80,Bib82c]: a

matrix characterisation of validity for classical logic, into a set of individual

techniques for overcoming problems of redundancy in proof search in that

logic.

Part II: The formulation, using these techniques, of matrix characterisations of

validity for a wide class of modal logics, and hence the provision of methods

for efficient automated proof search in these logics.

The modal logics treated in Part II are extensions of classical logic. That

is to say, they contain first-order classical logic as a subsystem. In this part

of the thesis we reinforce the results obtained so far by presenting a matrix

characterisation of validity for first-order intuitionistic logic. Intuitionistic logic

is a subsystem of classical logic, and is perhaps the archetypal "non-classical"

logic. In this way we achieve two objectives: firstly, we provide further evidence

of the power of our approach for the efficient automation of proof search in

arbitrary logics; secondly, we provide a basis for efficient proof methods for what

is possibly the central logic of computation, and of considerable current interest

[Mar82,Con86,CH85].

There is only one chapter in this part of the thesis since we keep the details

to a minimum. Our method is, as should be apparent by now, to analyse the

redundancies within the search space induced by a standard cut-free sequent

calculus for intuitionistic logic, and selectively apply the techniques isolated in

Part I of this thesis to remove them.

284

Chapter 9

Matrix proof methods for
intuitionistic logic.

9.1 Introduction.

Intuitionistic logic is perhaps the archetypal "non-classical" logic. Hailed by

some as the "proper" foundational logic for mathematics (eg., [Bro75,Dum77]),

it is currently receiving wide attention within computer science as a means of

formalising the notion of "construction" and hence computation (eg., [Mar82]).

As with the modal logics of Part II, it is beyond the scope of this thesis to moti-

vate the use of this logic for particular applications, we simply point the reader

to the references cited. We note, however, that the logic is not only receiving

attention as a tool for the theoretical analysis of computational constructs, it

is also proposed as a logic for the practical derivation of programs; a formal

approach to the construction of verifiably correct software (eg., [Mar82,Con86]).

Applications such as in the computer support for these principled methods of

program derivation, serve to motivate the need for efficient automated proof

search in this logic.

In this chapter we present a matrix characterisation of validity for first-order

intuitionistic logic along the lines of the characterisations developed in Part II
for modal logics. In fact, our method is the same: we start by presenting the

285

(Kripke) semantics for intuitionistic logic (§9.2). We then investigate the prop-

erties of the search space induced by a standard cut-free sequent calculus for

the logic (§9.3), and adapt the matrix techniques accordingly (§9.4). We prove

the correctness and completeness of the matrix characterisation by means of an

embedding of intuitionistic logic in S4, due to Godel [God69] (§9.5). Finally

we compare proof procedures based on the matrix characterisation with other

proposals for automating proof search in this important logic (§9.6).

Throughout, we keep the details to a minimum. The reader will be familiar

enough with the development method by now to fill the gaps. In the concluding

chapter of this thesis we discuss the import of the material of this chapter for the

matrix approach to automating proof search in arbitrary logics. For typographic

ease, and following Gentzen [G69], we use the symbol "J" to denote the system

of intuitionistic logic.

9.2 Kripke semantics for J.

The language of J is the same as the language of classical logic. The distinction

between the two logics arises in the semantics of the connectives and quantifiers.

Once again we assume an arbitrary, but fixed set of variables and predicate sym-

bols, but allow the constants to vary, each distinct set defining a new language.

We talk of sentences and formulae over a set of constants when we wish to em-

phasise the constants of the language. As in previous chapters we use A, B, C

to denote (intuitionistic) formulae.

A first-order intuitionistic frame, or J-frame, is a quadruple: CG, R, D, D),

where

G is a non-empty set (of points),

R is a transitive and reflexive relation on G,

D is a non-empty set (of constants), and

286

D is a mapping from G to non-empty subsets of D that satisfies the cu-

mulative domain condition: for all w, w' E G,

w R w' implies D(w) C D(w').

Without any loss of essential generality we further assume that:

D = U D(w).
wEG

REMARK. Notice that a J-frame is a cumulative domain S4-frame (arid vice

versa). (END OF REMARK.)

A first-order intuitionistic (Kripke) model is a quintuple: (G, R, D,

where (G, R, D, D) is a J-frame and IH- a relation between elements of G and

sentences over D such that:

0. For A atomic, w [[- A and w R w' implies w' [- A.

1. W - A A B iff w - A and w 11- B.

2. w [- A V B iff either w 11- A or w 11- B.

3. w [[- A = B if for all w' E G, such that w R w', either w' 1174 A or

011- B.

4. w11--iAifl'for all w'EG,such that wRw',w'11f A.

5. W 11- VxA if for all w' E G, such that w R w', and all c E

A[c/x].

6. w 11- 3xA if for some c E D(w), w 11- A[c/x].

.D(w'), w' [[

Once again, the relation w 11- A can be read "w forces A." Notice that four

clauses of the above definition are "modal," in that they refer to the accessibility

relation, R, of the frame.

Validity in the language of a model, interpretations, and validity in general

are defined as in the modal case. Briefly: A sentence A, of the (intuitionistic)

287

language over D, is valid in the model: (G, R, D, D, II-), provided, for each w E

G such that the constants of A are in D(w), we have w JI- A. An interpretation

of a language over Do in the model (G, R, D, D, II -), is a mapping t: Do E---> D.

A sentence A, of the language over Do, is valid under the interpretation c in the

model just in case c(A) is valid in that model. Such a sentence is valid just in

case it is valid under every interpretation in every model.

9.3 A cut-free sequent calculus for J.

In this section we present a standard cut-free sequent calculus for J, and investi-

gate the search space generated by it. Similar calculi can be found, for instance,

in Dummett [Dum77] or Fitting [Fit69]. As usual, we work with sets of formu-

lae, so there are no structural rules. The formulae are over a countable language

containing denumerable constant and parameter symbols. The full system is

shown in Figure 9-1. This system is both correct and complete for J (see, eg.,

[Fit69]).

The calculus is similar to the classical sequent system. In fact the two systems

differ only in the three rules: ---> --}= and - V. For these rules the

succedent of the premise is restricted to the side formula of the inference, whereas

in the corresponding classical rules the succedent may contain multiple formulae.

We shall call these rules special.

For the purposes of proof search we invert the rules as usual, forming a

tableau system. Used in this way, the three special rules cause formulae to be

deleted from the sequent; a situation we are familiar with from the modal se-

quent calculi of Part II. There are differences however. Whereas in the modal

calculi the rules that cause such deletions concern the modal operators only,

here the special rules are for particular occurrences of connectives and quanti-

fiers. Whereas in the modal sequent calculi the modal operators also provide

the means of preserving formulae during an inference involving such "deletion,"

here there is no specific operator or connective identified for this purpose; all

288

r, A) A, A

r, A, B -- o r ---> A, A r ---> B, A
r, A A B --* A

A -- r) A n B, A

r,A --* A r,B --) A
r,AvB --)O V -4

r --*A,A r,B --*t

r)A,B,A
V r >AvB,A

r, A) B
r, A F B) A r) A=- B, A

r) A, A r, A --+
r, -,A ---) A r ---> -,A, A

r, A[c/x] ---i A
r, VxA ---> A

r, A[a/x] ---> A
r, 3xA ---> A

3

--4 -1

r -- A[a/x] --- b r --*VxA,A

r --) A[c/x], A
r ---) 3xA, A

For the ----> V and 3 --) rules, the parameter a must not occur in the

conclusion.

Figure 9--1: A cut-free sequent calculus for intuitionistic logic.

289

antecedent formulae are preserved. Two simple examples will help to illustrate

this behaviour. EXAMPLE. The first example is a well-known non-theorem of

J: -,A = A. A derivation of this formula is shown below. We consider such

derivations to have been constructed from the root upwards. Notice how the leaf

of the derivation is not a basic sequent, i.e., the derivation is not a proof. Notice

also how the (inverted) -> -, rule causes the "deletion" of all other succedent

formulae except the side formula of the inference.

A

-'-'A

(END OF EXAMPLE.)

A, A
A

-A A

EXAMPLE. The second example is the J-theorem: A = (B A C) = ((A =
B) V (A = C)). A proof of this sentence is shown below.

B,C,A-->B
A ->A,B B AC,A ->B A---->

A = (B A C), A --) B = ---->

A=(BAC) -> A=B,A=C --
A=(BAC) -> (A=B)V(A=C) --->V

> A==> (BAC ==> A B V A C ==>
) (() (==>)) =>.

Here the (inverted) ---->= rule is applied to a succedent formula: A = B, before

the antecedent implication: A = (B A C), is reduced with the (inverted) rule

=>). The effect of applying the latter rule first is shown below.

B,C,A)B
A ---* B B A C, A ---> B

--> Al A=B, A=C B A C -> A=B, A=C
A= (BAC) - > A=B, A= C

A=(BAC) -> (A=B)V(A=C)
-> A=> (BAC)=((A=B)V(A=:- C))

Notice that although we successfully construct a basic sequent in the right-hand

branch of the derivation as before, the left-hand branch presents a problem. The

reader should recognise this as a classic case of order dependence amongst the

290

rules. Notice also that this dependence arises in the propositional fragment of

the calculus.

The reader should also note the repetition of formula within the sequent

derivations and the emphasis on connectives. (END OF EXAMPLE.)

The two examples above serve to illustrate that the cut-free sequent calculus

presented in Figure 9--1 suffers from the same three classes of redundancy as the

other calculi we have studied in this thesis, namely:

notational redundancy,

relevance, and

order dependence amongst the rules.

The first redundancy arises (as usual) from the basic sequent or tableau frame-

work. The second type of redundancy arises (as usual) from the emphasis on

connectives. The third, and most interesting redundancy, arises from the seman-

tics of the connectives themselves.

The special rules for certain occurrences of the connectives: -, and =, and

the universal quantifier V, induce one sort of order dependence. A second source

of order dependence is the interaction between quantifiers of universal and exis-

tential force arising from the parameter condition on the rules: --> V and 3 --.
This latter problem is common to all the quantified logics we have studied in

this thesis. The two sorts of dependencies will, of course, interact. Consequently

the situation resembles that of quantified modal logics.

291

9.4 A matrix characterisation of validity in J.

In this section we develop a matrix characterisation of validity for intuitionistic

logic. We shall keep the details to a minimum as the reader will have seen

enough of this already to fill in the gaps. We present motivational arguments

in the following subsection and in short remarks thereafter. This section is not

intended to be self contained. We rely heavily on definitions given in Parts I

and II. In the next section we prove the correctness and completeness of the

characterisation.

9.4.1 Overview.

First notice that the sequent calculus for J presented above possesses the sub-

formula property. Moreover, the basic sequent is common to the classical and

modal calculi. From these observations we conclude that our standard approach

for removing the notational and relevance redundancies of sequent calculi are ap-

plicable in the case of J. We expect, therefore, to formulate the characterisation

in terms of the positions of formula trees that capture the structure of formulae

and support the use of structure sharing techniques in practical implementa-

tions. We also expect the notion of path and connection to be unchanged from

the classical and modal cases. The validity of a formula will be characterised in

terms of a spanning set of complementary connections within it.

The most interesting problem, as we found with modal logics in Part II, is to

formulate an appropriate notion of complementarity that takes account of the

order dependence amongst rules. We have noted that the "special" rules induce

an order dependence in the sequent search space in addition to the expected

order dependence induced by the quantifier rules. We know how to deal with the

quantifier problem from our experience with classical logic. The former problem

seems to present us with a new challenge however. Superficially it resembles the

order dependence induced by the modal operators in that S-formulae are deleted

292

by the application of certain (inverted) rules. In contrast to the modal case,

there is not one operator and its dual responsible for this problem. Indeed, it is

certain occurrences of connectives and quantifiers that contribute to the problem.

In addition, there appears to be no identified operator by which formulae are

"preserved" through an application of the special rules; in fact, all antecedent

formulae are preserved through such an application.

This latter observation is the clue. We have already developed the notion

of polarity which allows us to identify antecedent subformulae in terms of the

structure of the formula whose validity we are testing. Moreover, the only con-

nectives that move S-formulae from antecedent to succedent, and vice versa, are

the rules for implication and negation. We must ensure that formula occurrences

containing the two identified atomic formulae of a connection as subformulae are

not deleted by the application of a special rule. This can be achieved by ensuring

that the "ancestors" of the atomic formulae (those formulae of which the atomic

formulae are subformulae) are antecedent formulae during such applications. To

do this, we only have need to control the application of the rules dual to the

special rules, namely: -- , =*) and V --*.

The final issue concerns the genericity of quantifiers and antecedent formu-

lae. Once again we employ a multiplicity to encode the number of "copies"

of subformulae utilised in a derivation. To support a clean technical solution

to the duplication of antecedent formulae we alter the definition of a formula

tree slightly by adding extra positions. It turns out that this extension mirrors

the fundamental relationship between J and S4. First we review some uniform

notation.

9.4.2 Uniform notation.

Signed formulae are defined as usual. We use Smullyan and Fitting's classifi-

cation of signed formulae developed for classical logic to capture the structural

properties of the connectives and quantifiers. The classification is repeated in

293

a al a2

(A A B,1) (A,1) (B,1)

(AV B,0) (A,0) (B,0)

(A = B, 0) (A,1) (B, 0)

(--A,1) (A, 0) (A, 0)

(-,A, 0) (A,1) (A,1)

Q Q1 Q2

(A A B, 0) (A, 0) (B, 0)

(A V B,1) (A,1) (B,1)

(A = B,1) (A, 0) (B,1)

'Y 'Yo(a)

(VxA,1) (A[a/x],1)

(2xA, 0) (A[a/x], 0)

b bo(a)

(VxA, 0)

(3xA,1)

(A[a/x], 0)

(A[a/x],1)

Table 9--1: Uniform notation for signed intuitionistic formulae.

Table 9-1 for the reader's convenience. As before, we use X, Y, Z to denote

arbitrary signed formulae.

In addition, we call a (signed) formula special if it is atomic, or its major con-

nective/quantifier is either an implication, a negation, or a universal quantifier.

9.4.3 Formula occurrences.

The notion of formula tree, positions, labels and polarity are defined roughly as

before. There is one crucial difference. Let A be an intuitionistic formula and

X the signed formula (A,0). In the classical and modal cases the formula tree

for X contained one position for each distinct subformula of A. Here we add

extra positions for technical convenience. Basically, an extra position is inserted

between each position that corresponds to a special subformula of A and its

original parent. The polarity and label of such an extra position is defined to

be the same as the polarity and label of its child. We erect a classification for

294

these extra positions as follows. If the polarity of such a position is 1, it has

principal type 0; if its polarity is 0, its principal type is 0. The secondary types

of these extra positions is obtained from their parents as usual. The child of

such a position is given secondary type 00 or 00 depending on the principal type

of its parent. In addition, we classify the root position as having secondary type

00 (cf. the modal case where the root position was defined to have ir0 secondary

type). Atomic positions are positions labelled by atomic formulae, but not of

0 or 0 type. (We need this extra caveat because we defined the label of the

extra positions, i.e., positions of 0 and -0 type, to be the label of their child.

Consequently there are non-leaf positions of the formula tree labelled by atomic

formulae. The caveat ensures that only leaf positions are deemed to be atomic.)

An example will help. A formula tree for the signed formula: (-'-'A = A, 0),

is shown in Figure 9-2. The table in the figure contains the appropriate classi-

fication of positions.

Once again we shall use the capital Greek letter to denote the set of positions

of that type in a given formula tree. For the example tree of Figure 9-2, -D0 =

{a1, a3} and' _ {bo, b2, b4}. We say that the positions of secondary type Oo and

00 are special positions.

REMARK. Notice that by the addition of the extra positions we have ensured

that all special positions have secondary type 00 or 00 depending on their polar-

ity. This is the motivation for the addition of these positions. In the next section

we define a multiplicity to capture the genericity of antecedent formulae using

this classification. In following sections, we use this property to define the notion

of a prefix. Finally, when we come to prove the correctness and completeness of

the characterisation, we shall see how the addition of this structure has semantic

significance. (END OF REMARK.)

9.4.4 Multiplicities.

Since the logic is quantified we use a first-order multiplicity, µg, to encode the

number of distinct copies of subformulae quantified by a quantifier of universal

295

bo

1

ao

--A A bl b4

,l 1 1

-'-,A A al a4

1

-IA

1

I
b2

1

a3

k pol(k) lab(k) Ptype(k) Stype(k)

bo 0 -,A* A 0 Po

ao 0 -,A = A a 00

bl 1 -i-iA 0 a,

al 1 -'-'A a 00

b2 0 -IA 0 al

a2 0 -IA a 00

b3 1 A qS al

a3 1 A - qSo

b4 0 A a2

a4 0 A - 00

Figure 9-2: Formula tree for signed formula: (-'-'A = A, 0).

296

force (ry type) are being utilised in the derivation. Such a multiplicity is a

function from ro to the natural numbers as before.

We define the notion of an intuitionistic multiplicity as a function from 'Do

to the natural numbers. Notice that the sets Fo and -,Do are disjoint by virtue

of the extra positions. An intuitionistic multiplicity, z j, encodes the number

of copies of antecedent formulae utilised in a derivation. As in the modal case,

a multiplicity for a signed formula X is the union of both a first-order and

intuitionistic multiplicity. We shall again use it, possibly subscripted, to denote

(combined) multiplicities.

The indexed formula tree for the indexed formula Xµ is formed from indexed

positions as in the classical and modal cases. The notions of labels, polarity and

tree ordering, are extended to indexed positions in the usual way. (Recall that

the labels of indexed positions contain positions in place of quantified variables.)

Indexed positions, k", inherit the types of their underlying (unindexed) compo-

nents as before. Once again we shall use u, v, possibly subscripted to denote

indexed positions when we are not interested in their indices.

IMPORTANT NOTATIONAL POINT. Once more we warn the reader that we

shall systematically abuse our notation and use the names of types to denote

arbitrary (un)indexed positions of that type within formal definitions such as

the definition of the notion of path in the next subsection. In particular, if we

say: "if s, 0' is a path..." we mean that "if s, u is a path, and Ptype(u) = 0,..."
Furthermore, in this context we shall use 400 to denote the child of u. Similar

abuses are extended to the other types. We shall include indices explicitly where

necessary. (END OF POINT.)

9.4.5 Paths and connections.

The definition of paths through an indexed formula is an extension of the defini-

tion for classical logic to take account of the two new types of position. Let Xµ

be an indexed signed formula. A path through X'S` is a subset of the positions of

its formula tree defined below. We shall again use s and t, possibly subscripted,

297

to denote paths, and once more adopt the convention that s, u denotes the path

s U {u}. The set of paths through Xµ is the smallest set such that:

1. { ko } is a path, where ko is the root position of the formula tree for Xµ;

2. if s, a" is a path, so is (s \ {a"}), alm, a2";

3. if s, Q' is a path, so are (s \ {Q"}), Qllc and (s \ {/"}), 02';

4. if s, ry" is a path, so is s, Yo'' for any j, 1 < j < AQ bo);

5. if s, 8" is a path, so is
(s \ {5"}), 80".

6. if s, Or is a path, so is s, Oo'', for any j, 1 < j < Ai(q$o);

7. if s, 0" is a path, so is (s \ {',}),',o'`.

REMARK. Notice that the 0 positions act in a similar way to the generative

ry positions.

A more striking similarity can be seen between the clauses for and 0 and

the clauses given for v and ir in Chapter 6. Reading v for 0, ir for and um for

Uj, renders the two definitions of path identical. This is not a coincidence, as

we shall see in §9.5. (END OF REMARK.)

For a path s through Xµ, the notions

S (s) : the set of positions associated with the path s; and its dual,

D(s): those positions "reachable" by further path reductions from s,

are defined as for classical logic. Atomic paths are also defined as in classical

logic and idealisable modal logics, namely those paths, s, for which D (s) = 0.

A connection in an (indexed) formula, as before, is a subpath of a path

through the formula consisting of two atomic positions of different polarities,

but labelled by an atomic formula with the same predicate symbol.

298

9.4.6 Complementarity.

We now come to the crucial issue, namely, characterising when it is that a

connection can be deemed complementary in J, and hence correspond to an

instance of the basic sequent. We follow the pattern established for modal logics.

Let A be an intuitionistic formula, X the signed modal formula (A, 0) and µ

a multiplicity for X. The following definitions are given for a particular indexed

formula tree for Xµ.

Let TT(µ) denote the union of 4'0 and TO. (cf. TQ(µ) and TM(a).) We

associate with each position u of the formula tree a sequence of positions, pre(u),

called a prefix, in exactly the same way as was done for modal logic in Part II.

That is, if ul « u2 « . . « un < u, 1 < n, are those elements of TT (µ) that

dominate u in the formula tree, then

pre(u) = u1u2...un.

The prefix of a position encodes the context of that position within the formula

tree with respect to the special positions.

Let us update the example. An indexed formula tree for the signed formula:

(-,A = A, 0), based on the unindexed formula tree of Figure 9-2 is shown in

Figure 9-3. The multiplicity is constant for all -yo and Oo type positions, and

equal to 1. The prefixes of the positions are also shown in the table. Notice

that we have distinguished the 00 type positions from the others by means of an

overbar.

The final step is to define complementarity for connections in terms of the

prefixes of the atomic positions that comprise them. In fact the definition is

exactly the same as that given for cumulative domain S4 in Part II, with Tj(µ)

playing the role of TM(µ). We repeat the definition for the reader's convenience.

Accessibility on prefixes. The J-accessibility relation, Ro, on Tj(p)* is de-

fined to be the smallest relation such that: for p, q E TJ(A)*, p Ro q just in case:

either

299

bo

1

ao

-,-,A = A bl b4

.l 1 1

-,A A

1

-,A

1

al a4

1

b
2l

1

A a22

1

b
3l

1

all
3

u pol(u) lab(u) pre(u) Ptype(u) Stype(u)

bo 0 -,-,A A bo V 00

ao 0 -,-,A = A boao a 00

bl 1 -'-'A boao al
al 1 -, -,A boaoai a 00

b2 0 -,A boaoai al

a2 0 -,A boaoaia2 a o

bg 1 A boaoaia2 al
ag' 1 A boaoalaiasl - 00

b4 0 A boao a2

a4 0 A boaoa4 - to

Figure 9-3: Indexed formula tree for (-'-,A = A, 0)-

300

(a) q = pu, where u E Tj (it), or

(b) q = p, or

(c) p -< q.

As with S4, this can be shortened to:

pRoq if p -<q.

Intuitionistic substitutions. An intuitionistic substitution is a mapping QJ

from -I)o(µ) to Tj(µ)*. It induces a relation Ej and -'j on Tj(µ) X Tj(µ) in the

usual way (see Chapter 6, §6.2.4.1).

First-order substitutions. A first-order substitution is a mapping o , from

ro(it) to TQ(it) U C, where C is the set of constants in the formula being tested

for validity. It induces a relation EQ and -Q on TQ (µ) x TQ (µ) in the usual way.

J-Admissible substitutions. A combined substitution is a pair, (aj, o),

consisting of an intuitionistic substitution and a first-order substitution. It is

J-admissible provided:

1. o j respects the J-accessibility relation.

2. d = (« U Ej U EQ)+ is irreflexive.

3. If vQ (u) = v, then either:

(a) v# (pre(y)) = cr (pre(u)); or

(b) vj (pre(v)) Ro v (pre(u)).

(This latter condition can be simplified to:

QJ (Pre(v)) v (pTe(u)))

In the above conditions, aj indicates the homomorphic extension of o j to Tj(it)*.

301

Complementarity. A connection { u, v } is said to be cr-complementary just

in case:

1. aj (pre(u)) = u (pre(y)), and

2. ae(lab(u)) = ae(lab(v)).

The reader can check that the above definitions are identical to those given in

Chapter 6 for cumulative domain S4. In the next section we prove the theorem:

THEOREM 9.1 An intuitionistic formula A is J-valid if and only if there is a

multiplicity, it, for the signed formula (A, 0), a J-admissible combined substitu-

tion, a, and a set of cr-complementary connections that span (A, 0)µ.

We shall end this section with two examples.

EXAMPLE. Consider the indexed formula tree for (--,A = A, 0) shown in

Figure 9-3. There is only one atomic path through the formula and it contains

both atomic positions and and a4. These positions form a connection. The prefix

of the former is boaoaia2a31, the prefix of the latter is boaoa4. We can compute

J-admissible substitutions using the same unification method as was suggested

for use in S4. The prefixes cannot be unified since boaoa4 is "ground" and does

not contain the "ground" position a2. The connection is not J-complementary.

From the non-complementary atomic path we can construct a model in which

the formula fails to be forced. We leave the details to the reader. (END OF

EXAMPLE.)

EXAMPLE. In the second example we prove the J-theorem: A = (B A C) =
((A = B) V (A = C)). An indexed formula tree for the signed formula:

(A = (B A C) = ((A = B) v (A = C)), 0)

is shown in Figure 9-4. We have taken a constant multiplicity of 1. Notice that

we have only included the significant positions in the table.

There are two atomic paths through this formula, the atomic elements of

which can be seen if the formula is displayed in matrix form; i. e., the components

302

bo

i
ao

A = (B A C) = ((A = B) V (A = C))

A =* (B A C) (A =* B) V (A =* C)

b1 a6

1 a1 b7 blo

A BAC A= B A= C

B C A B A C

b2 a3 a7 alo

d \ /\
b5 bII8 bg b11 b12

a51
a8 ag all a12

U po1(u) lab(u) pre(u) Ptype(u) Stype(u)

bo 0 A = (B A C) ((A = B) V (A = C)) bo 0 'o
ao 0 A (B A C) = ((A = B) V (A = C)) boao cx 00

a1 1 A = (B A C) boaoai 00

a2 0 A boaoaia2 - 00

al 1 B A C boaoai U 82

all 1 B b0aoaiall 00

al l 5 1 C boaoaiall
5 - 00

a6 0 (A = B) V (A = C) boao a cx2

a7 0 A =* B boaoa7 cx 00

a8 1 A boaoa7a8 - 00

a9 0 B boaoa7ag -
'+ b0

alo 0 A = C boaoalo a 00

ail 1 A boaoa10ai1 - 00

a12 0 C boaoa1oa12 - 00

= ((A = B) (A z* C))

Figure 9-4: Indexed formula tree for second example.

303

of a type subformulae are placed horizontally on the page, and the components

of 6 type subformulae are placed vertically on the page. The resulting matrix is

also shown in Figure 9-4.

Choose an element from the first column, say a2, representing the occurrence

of A in the implication A = (BAC). Search for an atomic position with opposite

polarity, but the same predicate symbol in the atomic paths that contain a2.

There is a choice: either a8 or ail. Since these two positions are elements of

both atomic paths it doesn't matter which we choose (in this instance). Choose

the first: a8. The prefix of a2 is boaoaia2, and the prefix of a8 is boaoa7a8.

They are identified by the substitution: aj(ai) = a7 and aj(a8) = a2. Provided

this substitution is J-admissible we have only to find a connection within the

remaining atomic path.

Choose an element from the first column contained in the other path. We

have a choice, either a41 or a51. We choose the first possibility (and come back to

consider the second later). Having chosen a41 there is no choice for a potential

complementary position, the only candidate is a9. The prefix of a4 is boaoai a41,

but under the current intuitionistic substitution becomes boaoa7a41. The prefix

of a9 is boaoa7a9. The two can be unified by extending the current substitution

with aj (a41) = a9.

Both paths contain one of the two connections: {a2, a8} and {a41, a9}. The

reduction ordering induced by the substitution is shown in Figure 9-5. Notice

that it is acyclic. The other conditions are easy to check and we leave the details

to the reader. Assuming the correctness of the characterisation, the formula is

valid. These two connections correspond to the basic sequents in the sequent

proof of this formula given in §9.3. Notice how the reduction ordering captures

the constraint we discussed there: that the succedent formula A = B be reduced

before the antecedent formula A = (B A C). In terms of positions, a7 must be

reduced before ai.

Recall that at the second stage there was a choice between all and a"
We chose the former. Suppose we had chosen the latter. The prefix of ab1

is boaoaiabl, which under the current substitution becomes baaoa7`abl. The only

304

bo

ao

bl a6

ai
K b7 bio

41
i l b2 a3 a7 a10

a2 b4 b5 b8 b9

all i

a4 a5 a8 a9 a12

Figure 9-5: Reduction ordering for connections.

305

possible choice for the complement is a12. The prefix of this position is boaoaloa12

The two prefixes cannot therefore be unified. This represents the fact that

whichever of the two succedent implications we reduce, the special rule -r=
causes the deletion of the other. The atomic formulae in the basic sequents of any

proof of this formula must involve atoms from one or other of the implications,

but not both. (END OF EXAMPLE.)

9.5 Correctness and completeness.

In this section we prove the correctness and completeness of the characterisation

of J-validity developed above. We do not prove Theorem 9.1 from first principles.

Instead we utilise an embedding of J in cumulative domain S4.

One way of seeing the relationship with modal ideas is to reformulate the

semantic clauses for the intuitionistic forcing relation given in the definition of a

J-model in §9.2. Notice that the "modal" clauses are those for atomic formulae,

negation, implication and universal quantification:

0. For A atomic, w ((- A and w R w' implies w'11- A.

3. w ((- A B if for all w' E G, such that w R w', either w' ((-/ A or

w' B.

4. w -'A 1ff for all w' E G, such that w R w', WI A.

5. w ((- VxA if for all w' E G, such that w R w', and all c E D(w'), w' ((-

A[c/x].

Compare these clauses with the semantic clause for the modal operator from

Part II:

w((- Aiffforallw'EG,suchthatwRw',w'11-A.

If we apply this clause to the formula -,A within a modal logic we obtain:

306

w"- D-Aiffforallw'EG,such that wRw',w'IF--A.

Applying the classical/modal clause for negation, the above is equivalent to:

w 11- El -A if for all w' e G, such that w R w', w' 11-/ A,

which is reminiscent of the intuitionistic clause for negation. A similar analysis

can be carried out for the other "modal" clauses of the intuitionistic defini-

tion. We leave the details to the reader. In all cases the intuitionistic connec-

tive/quantifier resembles its classical counterpart provided we preface it with

the modal operator 0. Given, the fact that a J-frame is identical to a cumula-

tive domain S4-frame we might expect that there is a fundamental relationship

between cumulative domain S4 and J.

The relationship was identified by Godel in [God69]. He showed that the set

of intuitionistic formulae could be embedded in the set of modal formulae by a

mapping 3 such that:

THEOREM 9.2 (GODEL) A formula of intuitionistic logic, A, is J-valid if and

only if F(A) is S4-valid.

We shall use a modification of the embedding taken from Fitting [Fit83]. It is

exactly as outlined above with reference to the semantic clauses:

0. F(A) = D A, for atomic A.

1. F(A A B) = F(A) A F(B).

2. Y_ (A V B) = F(A) V Y_ (B).

= F(B)). 3. Y_ (A = B) = D (7 (A)

4. ,F(-,A) = D F(A).

5. F(VxA) = DVxF(A).

6. F(RxA) _ RxF(A).

307

Let A be an intuitionistic formula and B be a modal formula. Write I-j A

for the relation: there is a multiplicity, A, for (A, 0), a J-admissible combined

substitution, or, and a set, U, of or-complementary connections that span (A, 0)'-.

Similarly, write F-S4 B for the relation: there is a multiplicity, /Z', for (B, 0),

a S4-admissible combined substitution, v', and a set, U', of or-complementary

connections that span (B, 0)". Write =a A for A is J-valid and hs4 B for B is

S4-valid.

Given the theorem:

THEOREM 9.3 F-J A if and only if f_S4 J(A).

we are done since:

F-JA if _S4 J(A)

if =S4 J(A)

if =JA.

The first step is by Theorem 9.3, the second by the correctness and completeness

of the matrix characterisation of validity for S4 proved in Part II, and the final

step by Theorem 9.2.

We do not so much as prove Theorem 9.3, as invite the reader to notice

that under the definitions given in §9.4, the intuitionistic formula tree for an

intuitionistic formula A is isomorphic to the modal formula tree for the modal

formula J(A). The isomorphism identifies 0 and V positions with v and it

positions respectively. Under this isomorphism we have:

The set of J-paths through (A, 0)' are exactly the set of S4-paths through

(J(A),0)µ.

The J-atomic positions of (A, 0)' are exactly the S4-atomic positions of

(1(A), 0)µ.

The J-prefix of a position of (A, 0)' is exactly the S4-prefix of the corre-

sponding position of (J(A), 0)' under the isomorphism.

308

A J-admissible mapping is S4-admissible, and vice versa.

For example,

jr (-,-,A = A) = (0-,-,0A = A).

The embedding J introduces an "extra" position as the parent of each position

corresponding to a special subformula of the intuitionistic formula, exactly as

we did in §9.4.

9.6 Related work.

There have been few attempts to automate proof search in intuitionistic logic.

There are of course standard methods such as tableau [Fit83] and sequent calculi

[G691, but we have already shown that connective-based search methods are

quite redundant. Farinas-del-Cerro [Far86] cites a forthcoming thesis in which

his method for modal logics is used to automate proof search in propositional

intuitionistic logic via a modal translation (like ours). We reviewed his clausal

resolution technique in Chapter 8 and concluded that it was quite redundant and

doesn't extend to the full modal language. Presumably this is why his method

only extends to the propositional fragment of intuitionistic logic.

Intuitionistic logic is being used within the Logic Programming community,

eg., [Gab85,McC86]. The proof methods used are tailored to give a programming

language flavour. None of these authors consider the full first-order language and

the proof procedures of Gabbay and McCarty are based on tableaux.

The author is currently unaware of any proposal in the literature for a proof

procedure for full first-order intuitionistic logic which approaches the efficiency

of the one outlined in this chapter. We stress: the standard path-checking al-

gorithms for classical logic are rendered applicable to intuitionistic logic without

change by the matrix method developed here. A small cost is paid in the in-

creased complexity of the complementarity test.

309

9.7 Summary.

In this chapter we have defined a matrix characterisation of validity for first-

order intuitionistic logic, and proved it correct and complete. We developed the

characterisation in the (by now) standard fashion of analysing the properties of

a cut-free sequent calculus for the logic. We have shown that the efficiency of

proof procedures based on this characterisation compares favourably with other

proof methods suggested in the literature for automating proof search in this

logic.

The particular characterisation presented is probably not optimal. The for-

mulation was partially led by the desire for a simple correctness and completeness

proof via an embedding of J in S4. The particular embedding used was taken

from Fitting [Fit83]. There are, however, other embeddings which may lead to

less redundant characterisations by introducing fewer "extra" positions in certain

circumstances. Such issues have not been explored by the author to-date.

It can be argued that the characterisation developed above is equivalent to

first embedding an intuitionistic formula into the modal language and then using

the matrix characterisation for cumulative domain S4 on the result. This is true.

We have preferred to perform the embedding in the metatheory, rather than

the object language, because, as with modal logic, the metatheoretic approach

gives us the opportunity to refine the characterisation by "building-in" special

techniques based on properties of the logic. We mentioned above that there

are a number of embeddings of J in S4. We would hope to be able to take

advantage of the best features of all of them in the same characterisation, possibly

dynamically. We may then have to work harder to prove the correctness and

completeness. This opportunity is denied to us by the object language translation

approach. We have not performed such studies to date, but believe that the

presentation of this chapter, with the motivation provided by the analysis of the

sequent calculus, will serve as a good starting point for such studies.

310

Chapter 10

Conclusions.

10.1 Summary of results.

The research reported in this thesis concerned the automation of proof search

within mathematical logics. It lies in the area of automated theorem proving

(ATP). In this context, our main problem was to formulate efficient methods for

automated proof search within an important class of non-classical logics com-

prising:

the modal logics: K, K4, D, D4, T, S4 and S5, and

intuitionistic logic.

These logics, and their derivatives, are in widespread use within Computing

Science and Artificial Intelligence, mostly in applications that require efficient

methods of proof search.

10.1.1 Background for the solution.

In Part I of this thesis we presented a theoretical reconstruction of Bibel's Con-

nection Calculus [Bib82a]: a matrix characterisation of validity for first-order

classical logic. Our main contribution was the decomposition of the method into

311

a collection of theoretically motivated techniques for overcoming certain types

of redundancy within the search spaces induced by sequent calculi.

Three classes of redundancy were identified:

Notational redundancy: considerable duplication of the same information.

Relevance: the inclusion in the search space of branches that cannot lead

to a proof.

Order dependence: the need to explore alternative branches in the search

space that differ only in the order in which certain sequent rules are applied.

10.1.1.1 Techniques for removing notational redundancy.

The techniques isolated for the removal of notational redundancies involved a

special use of the formation tree of a formula and an indexing technique for

capturing the genericity of the quantifiers. This enables the representation of

derivations in terms of the syntactic structure of the formula being tested for va-

lidity. The whole scheme is a theoretically motivated reconstruction of structure

sharing [BM72]. We described how its application within sequent-based search

relies on the system possessing the subformula property.

The isolation of this technique from the overall matrix framework supports

its use to remove notational redundancies in the implementation of sequent or

tableau-based proof systems for any logic, provided the proof system possesses

the subformula property.

10.1.1.2 Techniques for removing redundancies of relevance.

The techniques isolated for the removal of problems of relevance were the no-

tions of path, polarity and connection. It is the notion of path that makes the

label "matrix" appropriate for the final characterisation and gives proof meth-

ods based on the characterisation their path-checking flavour. A path through

312

a formula, A, is defined so as to represent a potential leaf of a sequent deriva-

tion of the endsequent: --> A. The set of paths through A represents the set

of potential leaves of any sequent derivation of -> A (given a bound on the

number of duplications of subformulae of A). A connection in the formula is a

representation of the distinguished atomic S-formulae within a (potential) basic

sequent. It consists of two atomic formula occurrences with the same predicate

symbol and of differing polarities (i.e., a positive and a negative occurrence of

a given proposition). If a path contains a connection it has the potential to

represent a closed leaf of a derivation. To overcome problems of relevance we

search for connections directly rather than adopt the standard connective-based

approach. That is, we search directly amongst the potentially closed leaves for

a subset suitable for the formation of a proof of the endsequent.

The effect of this is to replace an indirect search for basic sequents with a

directed one. This eliminates from the (direct) matrix search space those parts

of the (indirect) sequent search space that are irrelevant for the construction

of basic sequents and hence proofs. If every path through A contains one of a

given set of connections the set is said to span the formula. The existence of

a spanning set of connections for A entails the existence of a sequent proof of

A (and vice versa), and therefore the classical validity of A (and vice versa).

The notion of a connection arises from the nature of the basic sequent of the

calculus:

F, A --+ A, A

which in turn arises from the reflexivity of the consequence relation for the logic:

A = A. Such a property is practically taken to be a defining characteristic of a

consequence relation ("A follows from A") and hence is very likely to hold for

any logic of interest.

10.1.1.3 Techniques for the removal of order dependence.

For first-order logic the existence of a spanning set of connections is not sufficient

to characterise validity since the quantifier rules induce constraints on the way in

313

which derivations are constructed. The sequents resulting from the application of

the same two rules to the same two (indpendent) S-formulae can differ depending

on the order in which the rules are applied. We called this a problem of the "order

dependence" of certain sequent rules.

The techniques isolated for the removal of this problem were the notions of

complementarity and the admissibility of mappings between (constructs repre-

senting) certain subformulae of the endsequent ---> A. The subformulae of sig-

nificance are the side-formulae of the order dependent rules of the calculus. For

classical logic these were shown to be the immediate subformulae of quantified

subformulae of A. The mapping represents the coherence of the choice of pa-

rameters for the free variables of (free) atomic subformulae in a derivation. Such

coherence is required so that the two atomic components of a connection can be

construed as the distinguished antecedent and succedent formulae of a basic se-

quent (i.e., they must be identical as formulae). We showed how such a mapping

induces a reduction ordering: a transitive relation over subformulae of the end-

sequent that we are proving. The reduction ordering represents the constraints

on the order in which immediate subformulae of quantified (sub) formulae may

be introduced as S-formulae into a derivation. The constraints arise from the

provisos on the two "existential" rules: - --> V and 3 -->. Admissible mappings

are those whose reduction orderings are irreflexive.

A connection is defined to be complementary under an admissible mapping

just in case its atomic components are identical under the mapping. The ad-

missibility condition ensures that at least one sequent derivation exists in which

the required coherence in the choice of parameters is realised so that the current

set of connections form the closed leaves of the derivation. A spanning set of

connections in A, complementary under some such admissible mapping, thus

entails the existence of a sequent proof of --* A (and vice versa), and hence the

(first-order) validity of A (and vice versa). Robinson's unification algorithm (or

more efficient refinements of it) can be used to compute the appropriate map-

pings. Unification is used to ensure the existence of a correct order of sequent

rule applications to produce a proof of the formula. No single concrete order

314

need be preferred. This technique removes the order dependence, induced in the

sequent search space by the quantifier rules, from the matrix search space.

The definitions of admissibility and of complementarity depend on the nature

of the sequent system.

10.1.1.4 Conclusions.

Whilst the basic nature of this matrix characterisation of validity in classical logic

is due to Bibel, we believe our technical formulation of the individual techniques

to be quite significant. For example, the view we have developed of the utility

of unification for overcoming problems of order dependence permits the use of

unification in new ways for the automation of proof search in mathematical logics.

A good indication of this potential is provided by our treatment of modal and

intuitionistic logics summarised below. We utilised Smullyan's uniform notation

[Smu68] extensively and reformulated the notions of multiplicity and path to

relate them more closely with sequent-based ideas.

In summary: our contribution has been to identify powerful techniques within

Bibel's Connection Calculus [Bib80,Bib82c] for classical logic for improving the

efficiency of sequent-based proof procedures in general. We have abstracted these

techniques from a dependence on the details of classical logic by a proof-theoretic

analysis of their effect on the search space induced by a cut-free sequent calculus

for that logic.

Once identified, these techniques can be applied in new ways when and where

their prerequisite conditions apply. In particular we used them in this thesis to

develop efficient methods of proof search in non-classical logics. The results of

these applications are summarised in the next two subsections.

10.1.2 Matrix proof methods for modal logics.

In Part II of the thesis we developed matrix characterisations of validity for

the modal logics K, K4, D, D4, T, S4 and S5 in their varying, cumulative and

315

constant domain versions, a total of 20 distinct first-order modal logics in all.

(The constant and cumulative domain versions of S5 are equivalent.)

The solution is motivated by a discussion of redundancies in the proof search

space induced by cut-free sequent calculi for the modal logics. We note that cut-

free sequent systems do not exist for all of the logics considered. This fact does

not present a problem in the uniform application of techniques for the removal

of the redundancies identified.

By judicious use of the techniques isolated in Part I of this thesis and sum-

marised above, we succeeded in retaining the basic structure of the matrix char-

acterisation for classical logic. Validity checking is reduced to a process of path-

checking and complementarity tests for connections. As a consequence, search

methods developed for use with the classical matrix characterisation (eg., [Bib77,

Bib82b,HB82]) are applicable without change to the modal logics. We have thus

succeeded in extending one of the most efficient proof methods developed for

classical logic (see [Bib82b]) to this important class of non-classical logics with-

out compromising the basic computational properties of the method.

The main technical problem solved in order to achieve these results was the

removal of problems of order dependence induced by the modal operators. In

terms of the techniques summarised in the previous section the subformulae

that are of significance are the side formulae of the modal rules, i.e., the imme-

diate subformulae of modally quantified subformulae of the endsequent: --> A.

We developed representations of these subformulae using the notion of a prefix

adapted from Fitting's systems of tableaux [Fit72,Fit83] and Kanger's "spot-

ted" sequent system for S5 [Kan57]. Each atomic subformula of A receives a

prefix representing the modal context in which it appears. Mappings are defined

over these prefixes. Connections are defined to be complementary just when

an admissible mapping identifies the prefixes of the atomic formulae of the con-

nection. Such a mapping induces a reduction ordering in the same manner as

the corresponding mapping in the classical case summarised above. Once again

admissible mappings can be computed by means of unification algorithms. We

return to this point shortly.

316

The definition of admissibility is the key component of the treatment. It

comprises two central conditions: the first (and logic-dependent) condition stip-

ulates that the mapping respects a so-called accessibility relation on prefixes.

This relation reflects basic properties of the semantics of the logic. The second

(and logic-independent) condition stipulates that the reduction ordering induced

by the mapping is irreflexive. These definitions are so arranged that the exis-

tence of a spanning set of complementary connections ensures the validity of A

in the particular modal logic (and vice versa).

10.1.2.1 First-order modal logics.

The combination of the solution to specifically modal problems summarised

above and the solution to the problems concerning quantifiers is straightforward.

The first-order and modal mappings are independent. Both induce a reduction

ordering. The reduction ordering for the quantified modal systems is the union

(and transitive closure) of the two separate orderings.

Constant domains. In the simplest case of the constant domain variants

(where there is no semantic correlation between modality and existence) the

logic-dependent condition on the modal mapping is retained.

Varying and cumulative domains. For these variants, where there is a

correlation between modality and existence, the modal and first-order mappings

interact. The first-order mapping must respect the modal mapping in a complex

way. Positions identified by the first-order mapping must have identical prefixes

(varying domains), or prefixes which are accessible from each other (cumulative

domains), under the modal mapping. The essence of this relationship is taken

from Fitting[Fit83] and his prefixed tableau systems. We adapt it to the matrix

systems and use unification to remove the order dependence inherent in his

tableau systems.

317

10.1.2.2 The use of unification.

We mentioned that unification algorithms could be used to compute the modal

mappings. In fact, we are interested in the computation of mappings that sat-

isfy the logic-dependent condition, i.e., they respect the accessibility relation on

prefixes for a given logic. We demonstrated that such mappings can be calcu-

lated by means of standard unification algorithms. The most complex algorithm

needed is a restricted version of string unification [Sie75].

10.1.2.3 Decision procedures.

We also outline how the theoretical basis of the matrix characterisations can be

used to formulate efficient decision procedures for the propositional fragments

of the modal logics. We develop such a procedure for S5 explicitly and indicate

how it may be generalised to the other modal logics considered.

10.1.2.4 Related work.

Finally, we use the analytic tools developed in this thesis to classify the redun-

dancies in the search spaces of the major proposals in the literature for efficient

proof systems for similar classes of modal logic considered here. We identify

three types of system:

Proof systems based on sequent/tableau calculi.

Systems based on either clausal or non-clausal resolution.

Hybrid proof systems based on a mixture of sequent/tableau ideas and

resolution.

To summarise our findings:

The spaces generated by sequent/tableau proof systems, in general contain

all three types of redundancy: notational, relevance and order dependence.

318

The spaces generated by the resolution and hybrid tableau/resolution proof

systems:

- can be extended to utilise structure sharing methods to overcome the

notational problems;

- overcome the relevance problem by means of connections,

- overcome the order problems of the quantifiers using unification, but

- fail to deal with the order problems associated with modalities.

Additionally, none of the resolution proposals capture the full range of

modal logics treated here, though in some cases the systems can be ex-

tended.

We show that each of the proposals reviewed provide a more redundant basis for

automated proof search than the modal matrix characterisations summarised

above. None of the proposals overcome the order dependence of the modal

rules, or more abstractly, the interaction of modalities. We point to our use of

unification to solve this problem as a central contribution.

10.1.2.5 Conclusions.

We have succeeded in extending one of the most efficient proof methods de-

veloped for classical logic to an important class of non-classical logics without

compromising the basic computational properties of the method. The solution

is both effective and comprehensive. We believe these results to be a major

contribution to the field of automated theorem proving.

10.1.3 A matrix proof method for intuitionistic logic.

The modal logics treated in this thesis are extensions of classical logic. That is

to say, they contain first-order classical logic as a subsystem. In Part III of the

thesis we reinforced the results of Parts I and II that are summarised above by

319

developing a matrix characterisation of validity for first-order intuitionistic logic.

Intuitionistic logic is a subsystem of classical logic, and is perhaps the archetypal

"non-classical" logic. This result achieves two objectives:

1. It provides an efficient proof method for what is a logic of considerable

current interest.

2. It provides further evidence of the power of the approach developed in this

thesis for the efficient automation of proof search in non-classical logics.

We obtained this result in our standard way. By analysing the redundancies

within the search space induced by a standard cut-free sequent calculus for the

logic we were able to adapt the techniques isolated in Part I to their removal. As

was the case for the modal logics, the main technical problem was the removal

of problems of order dependence. This time it was the sentential connectives

rather than additional operators that werejroat cause of the problem. We

adopted a prefix technique again inspired by an embedding of intuitionistic logic

in S4 modal logic. The correctness and completeness of the characterisation was

established by this root also.

10.2 Implications and Future work.

We have succeeded in our goal of formulating efficient methods for automated

proof search within an important class of non-classical logics. The solution is

both comprehensive and effective. We have compared our methods with oth-

ers proposed in the literature and demonstrated the advantages of the matrix

methods.

In developing this solution we have achieved what could be a more signifi-

cant result. We have isolated powerful techniques for improving the efficiency of

sequent-based proof procedures in general by the analysis of an existing matrix

proof method for classical logic. These techniques can be applied individually

when and where the prerequisite conditions apply. In particular they can be used

320

to develop efficient methods of proof search in other non-classical logics. We be-

lieve these results in themselves to be a significant contribution to understanding

in the field of Automated Theorem Proving.

In this penultimate section we evaluate what we have achieved with an eye

to directions for future research.

10.2.1 A more abstract approach.

We argued in the introduction to this thesis that non-classical logics are the

rule rather than the exception. Representation and reasoning within a domain

requires a language with a well-defined semantic structure that reflects general
will

properties of that domain. As new domains are encountered soAnew logics be

developed. We believe that in applications in Computing Science and Artificial

Intelligence involving the use of logic to represent and manipulate information,

"logic" is a synonym for "general theory." This places a heavy burden on the de-

signer of proof systems. The day after one's latest success in taming a weird logic

for application A, someone will suggest that you have a go at their new formal-

ism for application B. Adhoc solutions may solve individual practical problems

but they do not yield robust theories with which to tackle new problems.

Although the central problem addressed in this thesis is the automation of

particular logics of current interest, we have endeavoured to maintain as abstract

a view of our solution methods as is technically feasible given our current un-

derstanding. In Part I of the thesis we managed to abstract certain techniques

from their original setting (embedded within Bibel's Connection Calculus) and

give them a certain logic-independent flavour. This level of abstraction was used

to good effect in Parts II and III.

We would have liked to have been able to present a single matrix framework

- a generic Connection Calculus - and then described how to specialise it to

the logics considered in this thesis. Our understanding is not yet deep enough

to achieve this level of abstraction. This is a major area for further research.

321

There are a number of themes woven throughout the thesis motivating our

discussion. We would like to be able to formalise these intuitions. One such

theme is the correlation between the existence of a cut-free sequent calculus

for a logic (containing a standard basic sequent and possessing the subformula

property) with the existence of a matrix characterisation of validity in the logic.

Is the former a sufficient condition for the latter? A satisfactory treatment of this

question may be a prerequisite for the formulation of a generic matrix method.

On the other hand the reliance on proof-theoretic is; iay be slightly mis-

leading. Notice that we argued explicitly (following Fine [Fin79]) that cut-free

sequent calculi for S5 and the constant domain variants of the first-order modal

logics were not feasible. Nevertheless we succeeded in formulating simple matrix

methods for these logics. The proof-theoretic notions on which we have relied are

merely visible symptoms of a more abstract structure. We note that all the logics

considered in this thesis admit a form of Kripke semantics. The formalisation

of the matrix techniques in terms of the properties of such semantic bases is an

area of further research we would definitely like to pursue. In [Smu70], Smullyan

captures commonalities between classical, modal and intuitionistic logics quite

uniformly in terms of his systems of analytic tableau (equivalent to cut-free se-

quent systems). This work may provide a suitable starting point for the research

outlined above.

The question arises as to how flexible the matrix methods are. Some domains

will need combinations of logics that deal with different aspects of the domain.

Are the matrix methods applicable to such hybrid logics? It is quite possible that

the answer is "no." The matrix methods give a global characterisation of validity

involving all the connectives/operators/quantifiers of the logic. A certain amount

of coherence is required. This is usually the case with analytic proof systems

such as analytic tableau and cut-free sequent calculi, and this property may

be the key to explaining why such methods support matrix-type refinements.

The matrix methods will most likely not be applicable to "ill-structured" logics

where many operators are considered in an adhoc manner. Abadi and Manna's

322

axiomatic techniques [AM86a,AM86b] are more suited to these logics, but at a

cost of efficiency. This should probably be seen as inevitable.

One further possibility is to try to capture the relationship between the ma-

trix methods developed here and the results of embeddings in classical logic.

Prefixes were initially interpreted proof-theoretically, but we resorted to seman-

tic justifications in the end. In the justifications prefixes were interpreted as the

names of points in a potential falsifying model. This could be made explicit by

representing the semantics of the (modal) logic in, say, classical logic. Our use

of unification would then reduce to a method for dealing with the special theory

of the accessibility relation for the logic. This is an avenue worth exploring be-

cause it would enable the use of existing proof procedures for classical logic in

non-classical logics.

As a caveat here: we believe that characterising a logic directly can lead to

many benefits. The decision procedures outlined in Chapter 7 could probably

not been formulated outwith the matrix framework. We defined the notion of

an L-Hintikka multiplicity which set effective bounds on the size of the space to

be searched in order to conclude that a formula is falsifiable. We indicated how

this result could be extended to the other logics. Some technical work on this

need to be done. It would also be interesting to define the notion of minimal

L-Hintikka multiplicities: multiplicities that are provably the smallest possible

for a given logic.

Another example of how a detailed analysis of a logic rather than its embed-

ding in a more general setting such as classical logic can yield dividends is the

possibility of formulating powerful notions of purity in non-classical logics. We

remarked on one such possibility in Chapter 7 where the K-conditions on admis-

sibility rejected a potential connection. There is scope for exploiting the matrix

characterisations of modal logic by building-in specific modal techniques to the

improve the standard path-checking algorithms. Modal definitions of purity are

but one avenue that could be pursued.

We have already extended the work reported in this thesis by developing a

matrix characterisation for Ketonen and Weyrauch's Direct Predicate Calculus

323

[KW84]: a decidable subsystem of classical logic defined by removing the con-

traction rule from a cut-free sequent calculus. This suggests it may be possible

to capture relevance logics [AB75] which require similar care in the duplication

of formula in derivations. We have not looked at this question in any detail

to-date.

Andrews and his co-workers have developed matrix systems for classical

higher-order logic (Church's Type Theory) [Mil84,Pfe84].,it would be interesting

to try to combine their results with the method developed here for first-order

intuitionistic logic and develop efficient methods of proof search for logics such

as intuitionistic type theory [Mar82,Con86].

10.3 Summary of the thesis.

The research reported in this thesis is concerned with the automation of proof

search within mathematical logics. It lies in the area of automated theorem

proving (ATP). In this context, our main problem was to formulate efficient

methods for automated proof search within an important class of non-classical

logics comprising:

the modal logics: K, K4, D, D4, T, S4 and S5, and

intuitionistic logic.

These logics, and their derivatives, are in widespread use within Computing

Science and Artificial Intelligence, mostly in applications that require efficient

methods of proof search.

Our contribution is two-fold,

We have succeeded in formulating efficient matrix proof methods for the

target logics, and have therefore solved our main problem.

324

In the pursuit of this solution we have isolated powerful techniques for im-

proving the efficiency of sequent-based proof procedures in general. These

techniques can be applied individually when and where the prerequisite

conditions apply. In particular they can be applied to develop efficient

methods of proof search in other non-classical logics.

We believe that this research is an important contribution to the field of auto-

mated theorem proving.

325

Bibliography

[AB75] A.R. Anderson and B.D. Belnap. Entailment. Volume 1, Princeton

University Press, Princeton, NJ, 1975.

[AM86a] M. Abadi and Z. Manna. Modal theorem proving. In J.H. Siek-

mann, editor, 8th International Conference on Automated Deduction,

pages 172-189, July 1986. Lecture Notes in Computer Science, Vol-

ume 230, Springer Verlag.

[AM86b] M. Abadi and Z. Manna. A timely resolution. In Proceedings of

Symposium on Logic in Computer Science, pages 176-186, June 1986.

[And8l] P.B. Andrews. Theorem-proving via general matings. Journal of the

Association for Computing Machinery, 28(2):193-214, April 1981.

[Bib77] W. Bibel. Tautology Testing with an improved Matrix Reduction. Re-

search Report TUM-INFO-7706, Institut fur Informatik, Technische

Universitat Miinchen, May 1977.

[Bib80] W. Bibel. The Complete Theoretical Basis for the Systematic Proof

Method. Bericht ATP-6-XII-80, Technische Universitat Munchen, De-

cember 1980.

[Bib81] W. Bibel. On matrices with connections. Journal of the Association

for Computing Machinery, 28(4):633-645, October 1981.

[Bib82a] W. Bibel. Automated Theorem Proving. Friedr. Vieweg & Sohn,

Braunschweig, 1982.

326

[Bib82b] W. Bibel. A comparative study of several proof procedures. Artificial

Intelligence, 18:269-293, 1982.

[Bib82c] W. Bibel. Computationally improved versions of Herbrand's Theo-

rem. In J. Stern, editor, Proceedings of the Herbrand Symposium,

Logic Colloquium '81, pages 11-28, North-Holland Publishing Co.,

1982.

[Bib83] W. Bibel. Matings in matrices. Communications of the ACM,

28(4):844-852, November 1983.

[BM72] R.S. Boyer and J.S. Moore. The sharing of structure in theorem-

proving programs. In B. Meltzer and D. Michie, editors, Machine

Intelligence 7, pages 101-116, Edinburgh University Press, 1972.

[Bro75] L.E.J. Brouwer. Collected Works. Volume 1, North Holland, 1975.

[BT75] W.W. Bledsoe and M. Tyson. The UT Interactive Prover. Research

Report ATP-17, Departments of Mathematics and Computer Sci-

ences, University of Texas at Austin, May 1975.

[CH85] Th. Coquand and G. Huet. Constructions: a higher order proof sys-

tem for mechanising mathematics. In B. Buchberger, editor, EURO-

CAL '85: European Conference on Computer Algebra, pages 151-184,

Springer Verlag, 1985.

[CK73] C.C. Chang and H.J. Keisler. Model Theory. Volume 73 of Studies

in Logic, North Holland, 1973.

[CL73] C-L. Chang and R.C-T. Lee. Symbolic Logic and Mechanical Theorem

Proving. Academic Press, 1973.

[Con86] R.L. Constable et at. Implementing Mathematics with the Nuprl Proof

Development System. Prentice Hall, 1986.

327

(D841 Schmidt D. A programming notation for tactical reasoning. In

Shostak R.E., editor, 7th International Conference on Automated De-

duction, pages 445-459, May 1984. Lecture Notes in Computer Sci-

ence, Volume 170, Springer Verlag.

[Dum77] M. Durnmett. Elements of Intuitionism. Oxford University Press,

1977.

[DWP81] D.R. Dowty, R.E. Wall, and S. Peters. Introduction to Montague

semantics. Reidel, Dordrecht, 1981.

[Far82] L. Farinas-del-Cerro. A simple deduction method for modal logic.

Information Processing Letters, 14(2), 1982.

[Far83] L. Farinas-del-Cerro. Temporal reasoning and termination of pro-

grams. In S. Amarel, editor, 8th International Joint Conference on

Artificial Intelligence, pages 926-929, 1983.

[Far86] L. Farinas-del-Cerro. Resolution modal logics. Logique et Analyse,

110-111:153-172, 1986.

[Fin79] K. Fine. Failures of the interpolation lemma in quantified modal

logic. JSL, 44(2), June 1979.

[Fit69] M.C. Fitting. Intuitionistic logic, model theory and forcing. Studies

in logic and the foundations of mathematics, North Holland, 1969.

[Fit72] M.C. Fitting. Tableau methods of proof for modal logics. Notre Dame

Journal of Formal Logic, XIII:237-247, 1972.

[Fit83] M.C. Fitting. Proof methods for modal and intuitionistic logics. Vol-

ume 169 of Synthese library, D. Reidel, Dordrecht, Holland, 1983.

[G691 Gentzen G. Investigations into logical deduction. In Szabo M.E.,

editor, The collected papers of Gerhard Gentzen, chapter 3, pages 68-

131, North-Holland, Amsterdam, 1969. Translation.

328

[Gab85] D.M. Gabbay. N-prolog: an extension of prolog with hypothetical

implication. ii: logical foundations and negation as failure. Logic

Programming, 2(4):251-283, 1985.

[Ga186] J.H. Gallier. Logic for Computer Science: Foundations of Automated

Theorem Proving. Volume 5 of Computer Science and Technology,

Harper & Row, 1986.

[GMW79] M.J.C. Gordon, A.J. Milner, and C.P. Wadsworth. Edinburgh LCF

- A mechanised logic of computation. Volume 78 of Lecture Notes in

Computer Science, Springer Verlag, 1979.

[God69] K. Godel. An interpretation of the intuitionistic sentential logic. In

J. Hintikka, editor, The Philosophy of mathematics, pages 128-129,

OUP, 1969.

[Gra84] P.M.D. Gray. Logic, Algebra and Databases. Volume 29 of Computers

and their applications, Ellis Horwood, 1984.

[Har79] D. Harel. First-Order Dynamic Logic. Volume 68 of Lecture Notes in

Computer Science, Springer Verlag, 1979.

[HB82] K.M. Hornig and W. Bibel. Improvements of a tautology testing

algorithm. In D.W. Loveland, editor, 6th International Conference on

Automated Deduction, pages 326-342, Springer Verlag, 1982. Lecture

Notes in Computer Science No. 138.

[HC68] G.E. Hughes and M.J. Cresswell. An Introduction to Modal Logic.

Methuen, London, 1968.

[HM84] J.Y. Halpern and Y. Moses. Knowledge and common knowledge in a

distributed environment. In 3rd ACM Conference on the Principles

of Distributed Computing, pages 50-61, 1984.

329

[HM85] J.Y. Halpern and Y. Moses. A guide to the modal logics of knowledge

and belief: preliminary draft. In 9th International Joint Conference on

Artificial Intelligence, pages 479-490, 1985.

[JR87] P. Jackson and H. Reichgelt. A general proof method for first-order

modal logic. In J. McDermott, editor, 10th International Joint Con-

ference on Artificial Intelligence, pages 942-944, Morgan Kaufmann

Inc., 1987.

[Kan57] S. Kanger. Provability in logic. Volume 1 of Stockholm Studies in

Philosophy, Almqvist and Wiksell, Stockholm, 1957.

[KK71] R. Kowalski and D. Kuehner. Linear resolution with selection func-

tion. Artificial Intelligence, 2:227-260, 1971.

[Kle68] S.C. Kleene. Mathematical Logic. John Wiley & Sons, 1968.

(Kon84] K. Konolige. A Deduction Model of Belief and its Logics. PhD thesis,

Stanford University, 1984.

[Kon86] K. Konolige. Resolution and quantified epistemic logics. In J.H. Siek-

mann, editor, 8th International Conference on Automated Deduction,

pages 199-208, July 1986. Lecture Notes in Computer Science, Vol-

ume 230, Springer Verlag.

[Kow75] R. Kowalski. A proof procedure using connection graphs. Journal of

the Association for Computing Machinery, 22(4):572-595, 1975.

(Kow79] R. Kowalski. Logic for Problem Solving. Artificial Intelligence Series,

North Holland, 1979.

[Kri63] S.A. Kripke. Semantical analysis of modal logic I, normal proposi-

tional calculi. ZML, 8:67-96, 1963.

[KW84] J. Ketonen and R. Weyhrauch. A decidable fragment of predicate

calculus. Theoretical Computer Science, 32(3):297-309, 1984.

330

[Lyn66] R.C Lyndon. Notes on Logic. Van-Nostrand, Princeton, 1966.

[Mar82] P. Martin-Lof. Constructive mathematics and computer program-

ming, pages 153-175. Volume IV of Logic, Methodology and Phi-

losophy of Science, North-Holland, Amsterdam, 1982.

[McC86] L.T. McCarty. Fixed point semantics and tableau proof procedures for

a clausal intuitionistic logic. Technical Report LRP-TR-18, Depart-

ment of Computer Science, Rutgers, 1986.

[Me171] B. Meltzer. Prolegomena to a theory of efficiency of proof procedures.

In Artificial Intelligence and Heuristic Programming, pages 15-33,

Edinburgh University Press, 1971.

[Mil841 D.A. Miller. Expansion tree proofs and their conversion to natural

deduction proofs. In R.E. Shostak, editor, 7th International Confer-

ence on Automated Deduction, pages 375-393, May 1984. Lecture

Notes in Computer Science, Volume 170, Springer Verlag.

[Min70] G.E. Mints. Cut-free calculi of the S5 type. In Studies in constructive

mathematics and mathematical logic, Part II, Seminars in Mathemat-

ics, pages 115-120, 1970.

[Moo80] R.C. Moore. Reasoning about knowledge and action. Technical

Note 191, SRI International, Menlo Park, Ca., 1980.

[Mur82] N.V. Murray. Completely non-clausal theorem proving. Artificial

Intelligence, 18:67-85, 1982.

[MW 80] Z. Manna and R. Waldinger. A deductive approach to program syn-

thesis. ACM Transactions on Programming Languages and Systems,

2(1):90-121, 1980.

[OS86] F. Oppacher and E. Suen. Controlling deduction with proof conden-

sation and heuristics. In J.H. Siekmann, editor, 8th International

331

Conference on Automated Deduction, pages 384-393, July 1986. Lec-

ture Notes in Computer Science, Volume 230, Springer Verlag.

[Pfe84] F. Pfenning. Analytic and non-analytic proofs. In R.E. Shostak,

editor, 7th International Conference on Automated Deduction,

pages 375-393, May 1984. Lecture Notes in Computer Science, Vol-

ume 170, Springer Verlag.

[P1o72] G. Plotkin. Building in equational theories. In Machine Intelligence,

Edinburgh University Press, 1972.

[Pne77] A. Pneuli. The temporal logic of programs. In 18th Annual Sympo-

sium on Foundations of Computer Science, pages 46-57, 1977.

[Pra60] D. Prawitz. An improved proof procedure. Theoria, 26:102-139,

1960.

[Rob65] J.A. Robinson. A machine oriented logic based on the resolution

principle. J Assoc. Comput. Mach., 12:23-41, 1965.

[Sat771 M. Sato. A study of kripke-type models for some modal logics by

gentzen's sequential method. In Publications, pages 381-468, Re-

search Institute for Mathematical Sciences, Kyoto University, 1977.

[Sie75] J. Siekmann. String Unification. Memo CSM-7, Essex University,

1975.

[Sie82] J. Siekmann. A noetherian and confluent rewrite system for idempo-

tent semigroups. In Semi group Forum, 1982.

[Sie84] J.H. Siekmann. Universal unification. In Shostak R.E., editor, 7th

International Conference on Automated Deduction, pages 1-42, May

1984. Lecture Notes in Computer Science, Volume 170, Springer Ver-

lag.

332

[Smu68] R.M. Smullyan. First-Order Logic. Volume 43 of Ergebnisse der

Mathematik, Springer-Verlag, Berlin, 1968.

[Smu70] R.M. Smullyan. Abstract quantification theory. In J. Myhill and R.E.

Vesley, editors, Intuitionism and Proof Theory, pages 79-91, North

Holland, Amsterdam, 1970.

[Sti85a] M.E. Stickel. Automated deduction by theory resolution. Journal of

Automated Reasoning, 1:333-355, 1985.

[Sti85b] C. Stirling. Modal logics for communicating systems. Internal Re-

port CSR-193-85, Dept. of Computer Science, Edinburgh University,

1985.

[Tur84] R Turner. Logics for Artificial Intelligence. Ellis Horwood, 1984.

[Wa186] L.A. Wallen. Generating connection calculi from tableau- and

sequent-based proof systems. In A.G. Cohn and J.R. Thomas, ed-

itors, Artificial Intelligence and its Applications, pages 35-50, John

Wiley & Sons, 1986. Proceedings of AISB85, Warwick, England,

April 1985.

[Wal87] L.A. Wallen. Matrix proof methods for modal logics. In J. McDer-

mott, editor, 10th International Joint Conference on Artificial Intel-

ligence, pages 917-923, Morgan Kaufmann Inc., 1987.

[Wi186] G.V. Wilson. Implementation of a connection method theorem-prover

for S5 modal logic. Master's thesis, Department of Artificial Intelli-

gence, University of Edinburgh, 1986.

[Wri85] Graham Wrightson. Nonclassical logic theorem proving. Journal of

Automated Reasoning, 1(1):35-37, 1985.

[WW87] L.A. Wallen and G.V. Wilson. A computationally efficient proof sys-

tem for S5 modal logic. In J. Hallam and C. Mellish, editors, Advances

333

in Artificial Intelligence, pages 141-153, John Wiley & Sons, 1987.

Proceedings of AISB87, Edinburgh, Scotland, April 1987.

334

GENERATING
CONNECTION

CALCULI FROM TABLEAU
AND SEQUENT BASED

PROOF SYSTEMS*
Lincoln A. Wallen Edinburgh University, Edinburgh EH1 2QL, U.K.

ABSTRACT

The relationship between Bibel's connection calculus and Smullyan's system
of analytic tableaux for first-order classical logic is discussed in depth. The
major features of this analysis form a methodology for constructing a connec-
tion calculus for a given logic from a tableau or sequent based proof system
for that logic.

It is claimed that the methodology is sufficiently general to be applied to a
number of common first-order logics. This claim is supported by a brief
description of the results of its application to a sequent calculus for S5 modal
logic.

This research was support in part by SERC grants GR/C/35967, GRB/67766, and an SERC
studentship to the author.

Artificial Intelligence and its Applications, edited by A. G. Cohn and J. R. Thomas
© 1986 John Wiley & Sons Ltd.

35

36 ARTIFICIAL INTELLIGENCE AND ITS APPLICATIONS

1. INTRODUCTION

For many years implementations of Robinson's resolution system (Robin-
son, 1965), and refinements thereof, have been the dominant means of
automating deduction in first-order classical logic. Recently Bibel (1981),
and independently Andrews (1981), have developed a more subtle basis for
deduction in this logic based on the notions of paths and connections. The
efficiency of proof procedures developed within this framework compares
very favourably with all common refinements of resolution (Bibel, 1982a).

More important however is the relationship Bibel's connection calculus
bears to various techniques based on Gentzen's sequent calculus (Gentzen,
1969) and in particular its relationship to Beth's method of semantic
tableaux (Beth, 1959) as modified by Smullyan (1968). Tableau and Gentzen
systems have become a standard metamathematical tool for the specifica-
tion and investigation of different logics in both mathematics and computer
science, e.g. Fitting (1983), Kanger (1957), Nishimura (1983). Indeed, using
his systems of analytic tableaux, Smullyan (1970) has developed a notion
of an abstract quantification theory; a unifying framework for many first-
order logics.

This paper sets out in some detail the relationship between the connection
calculus and Smullyan's system; first for (classical) propositional logic
(§3-§6), and then for a first-order system (§7-§8). The relationship is

developed by applying a series of transformations to the tableau system to
derive the major features of the corresponding connection calculus.

I claim that this analysis forms the basis for a general methodology for
the efficient automation of first-order logics specified using tableau or
Gentzen systems. A similar analysis of Andrews' results (Andrews, 1981)
may lead to an extension of the methodology to higher-order logics.

The methodology has been used successfully to develop a connection
calculus for S5 modal logic from Kanger's Gentzen-style system (Kanger,
1957). A brief description of this enterprise is contained in the penultimate
section. The full details of the efficient modal proof system thus obtained
will be reported elsewhere.

2. PRELIMINARIES

In the next few sections, while dealing with propositional logic, I shall use

a language comprising a denumerable number of propositional variables P,

Q, R,. . . together with the sentential connectives , V , A and D denoting
negation, disjunction, conjunction and implication respectively. The for-
mulas X, Y, Z,... of propositional logic are defined as usual. The proposi-
tions variables will sometimes be referred to as the atomic formulas.

For the connection calculus, where we require more structure on for-
mulas, I shall make use of Bibel's notion of a formula-tree. An example
of the formula-tree for the formula X, of the form ((P V Q) A (P D Q)) J
Q. is shown in Fig. 1.

GENERATING CONNECTION CALCULI FROM TABLEAU 37

(kd7)

(k1.A) (ke,Q)

' (k

P
2 /,\ (k 3.) (4,Q) (k6,P) (k7,Q)

Figure 1: Formula-tree for ((P V Q) A (P 3 Q)) 3 Q

W. denotes the set of positions ko - k8 of X. The label Xk of a position
k E W. is the piece of concrete syntax paired with it. So, for instance,
Xko = D, and Xk3 = Xk6 = P. The tree-ordering < ., over W,, is the vertical
partial order in the figure; e.g. ko < xk2, and k4 and k6 are incomparable
w.r.t. < Henceforth the subscript X will be dropped if no confusion can
arise. Finally let Xk denote the subformula of X rooted at position k; for
example, Xk5 = P 3 Q.

The following eight facts, derived directly from the semantic clauses for
the sentential connectives, form the basis for both the method of analytic
tableaux and the connection method. Under any interpretation

F1. For negation,
(a) if - Y is false, Y is true,
(b) if -W Y is true, Y is false.

F2. For disjunction,
(a) if Y V Z is false, both Y and Z are false,
(b) if Y V Z is true, either Y or Z is true.

F3. For conjunction,
(a) if Y A Z is false, either Y or Z is false,
(b) if Y A Z is true, both Y and Z are true.

F4. For implication,
(a) if Y 3 Z is false, Y is true and Z is false,
(b) if Y 3 Z is true, either Y is false or Z is true.

3. TABLEAUX FOR PROPOSITIONAL LOGIC

This section contains a review of the basic structures underlying the method
of analytic tableaux. The definitions that follow are taken, with slight
modifications, from Smullyan (1968).*

We begin by defining the notion of a signed formula.
Definition 3.1: A signed formula is an expression TX or FX, where X is

an unsigned formula. Informally TX and FX are read `X is true' and `X
is false' respectively. The conjugate of a signed formula TX is the signed
formula FX (and vice versa).

* In fact we use what Smullyan calls `block tableaux' since the relationship these notational
variants of analytic tableaux bear to the connection calculus and sequent calculi in general is
quite direct.

38 ARTIFICIAL INTELLIGENCE AND ITS APPLICATIONS

Definition 3.2: An analytic tableau 3 for a formula X is an ordered
dyadic tree, whose nodes are sets of occurrences of signed formulas, con-
structed as follows.

TO. The tree comprising a single node with [FX) at its root is a tableau
for X. We call this unique tableau the initial tableau for X.

T1. 3 is a tableau for X just in case there exists a finite sequence

(.%,, ... , J n =T) of ordered dyadic trees whose nodes are sets of oc-

currences of formulas, such that j6-1 is the initial tableau for X and
for each i < n, 3; is a direct extension of T;. 9 is said to be an ex-

tension of J,.

A direct extension of a tableau is an application of one of the following rule

schemata to an end-point S of one of its branches.

(S[F--'Y]) (S[FYvZ]) (S[FYAZ]) (S[FYDZ])
(S,TY) (S,FY,FZ) (S,FY) I (S,FZ) (S,TY,FZ)

(S[T--'Y]) (S[TYVZ]) (S[TYAZ]) (S[TYDZ])
(S,FY) (S,TY) I (S,TZ) (S,TY,TZ) (S,FY) I (S,TZ)

Of the two types of rule

(S[a]) (S[3])
(S, al, a2) (S, 3)1(S, 02)

the first kind should be read:

- to extend a brach with end-point S containing the formula a, adjoin the
set S U [a,, a2) as the sole successor of S;

and the second:

- to extend a branch with end-point S containing the formula 0, adjoin
S U 10, and S U 102) as the left and right successors respectively of S.

The formula a or 0 distinguished in an application of a rule is said to have
been reduced.

Informally, the tableau method works by assuming X to be false (FX is

placed at the root of the tableau) and attempting to show, using the eight
facts presented in the previous section, that this assumption leads to a
contradiction. Readers should convince themselves that the reduction rules
for tableaux described above are merely a syntactic representation of those
eight facts. The contradictions are the occurrences of two signed formulas
TY and FY in the same node indicating that, under the assumptions pertain-
ing for the construction of that branch, Y must be both true and false. The
different branches arise because of the alternative conclusions possible from
an assumption, say, that Y V Z is true. We need to show that under either
possibility (that Y is true, or that Z is true) we get a contradiction. Thus the
method requires that there is a node containing such a contradiction on
every branch. This motivates the following definitions.

GENERATING CONNECTION CALCULI FROM TABLEAU 39

Definition 3.3: An end-point S of a tableau is (atomically) closed just in
case it contains a signed (atomic) formula and its conjugate, otherwise it is
open. A tableau is (atomically) closed if the end-points of all its branches
are (atomically) closed. By an (atomic) proof for a formula X we mean an
(atomically) closed tableau for X.

A tableau proof of the tautology shown in figure 1 is displayed in figure 2.
Definition 3.4: An end-point S of a tableau is said to be complete just in

case

F -' YES=TYES
T-, YES FY E S

FYvZES = FYES and FZES
TYVZESTYESor TZES
FY AZES= FYES or FZES
TYAZES=TYESand TZES
FYDZES-TYES and FZES
TYDZES=FYES or TZES

A tableau is said to be complete just in case the end-points of all its branches
are complete.

A set of signed formulas which in addition to the above conditions does
not contains a signed atomic formula and its conjugate, is sometimes called
a Hintikka, or downward saturated set. Such sets are of importance due to
the following fact proved in Smullyan (1968).

Fact 3.5: Every Hintikka set is satisf able. In other words, any Hintikka
set S may be completed to a model Al in which

if FY E S (resp. TY E S), then Y is false (resp. true) in 41.

Thus, by definition
Fact 3.6: Any complete open end-point of any tableau is satisfiable.
We can obtain a complete tableau by ensuring that every signed formula

in each end-point has been reduced once. If we manage to construct a
branch with a complete open end-point S then we are guaranteed the
existence of a model that satisfies S. In particular, since FX is a member of
every node of any tableau for X, X must be false in this model. Hence X
is not a tautology. Consistency follows directly from the eight facts

{F((PvQ)A (P) Q)) 3 Q}

{,T(PVQ)A(P)Q),FQ}

{.,.,FQ,TPvQ,TPDQ}

I. , FQ,TPvQ,TPDQ,TP} {.,., FQ,TPvQ,TP 3 Q,TQ}

{.,.,FQ,TPvQ,TP)Q,TP,TQ} {.,.,FQ,TPvQ,TPiQ,TP,FP}

Figure 2: A tableau proof of ((P V Q)A (P J Q)) J Q

40 ARTIFICIAL INTELLIGENCE AND ITS APPLICATIONS

presented in the previous section. In conclusion then:
Theorem 3.7: X is a tautology of (classical) propositional logic if and only

if every complete tableau for X is (atomically) closed.
We proceed to investigate the precise relationship between this theorem

and a modified version of Bibel's connection theorem for propositional
logic.

4. POLARITY

Consider again the reduction rules for tableaux. A moment's reflection
should suffice to convince the reader that the sign with which a subformula
of X can appear in any node of any tableau for X is uniquely determined
by the structure of X.

This observation may be formalised by associating with each position
k E W a polarity indicating the sign with which it will appear.

Definition 4.1: Suppose no E (0, 1) . For a formula X, we define the
polarity p (k) E (0,1) of a position k E W (with respect to no) inductively
according to the structure of X.

POO. If Xk = X, ie. k = ko the root position of X,
p (k) = no

Pot. If Xk = Y for some subformula Y = Xr,

p (r) = (p (k) + 1) mod 2.

Pot. If Xk = Y V Z for some subformulas Y = Xr and Z = XS of X,

p(r) = p(s) = p(k).

Po3. If Xk = Y A Z for some subformulas Y = Xr and Z = XS of X,

p (r) = p (s) = p (k).
Po4. If Xk = Y D Z for some subformulas Y = Xr and Z = XS of X,

p (r) = (p (k) + 1) mod 2, and p (s) = p (k).

Remark 4.2: p is well-defined. Give a polarity no for the root position ko

of a formula X, the above definition assigns a unique element of (0,1) to
each k E W.
We have the following

Proposition 4.3: Let 3 be a tableau for X, and assign p (ko) = 0 where ko

is the root position of the formula-tree for X. For any subformula Y = Yk

of X that appears signed on 3-

Y appears as FY (resp. TY) if and only if p (k) = 0 (resp. 1).

Thus the notion of polarity fulfills the same purpose as Smullyan's notion
of signed formulas. Our first modification to the tableaux method is to
make the nodes of tableaux sets of positions instead of signed formulas. We

can then reformulate the reduction rules for tableaux in terms of positions

GENERATING CONNECTION CALCULI FROM TABLEAU 41

and their polarity. Such a modification amounts to a form of structure shar-
ing (Boyer and Moore, 1972) and is invaluable when implementing such
proof procedures.*

The following definition completes this modification.
Definition 4.4: A connection in a formula X is an (unordered) pair

(ki, k2 of positions in X such that
CO. Xkt = Xk2 = P for some atomic formula P, and

Cl. p(ki) 56 p(k2)-

Clearly the existence of a connection in a node of a modified tableau is
equivalent to saying that the node of the corresponding analytic tableau is
atomically closed.

5. PATHS

We can obtain a complete tableau for a formula X with a finite number of
reductions since (in propositional logic at least) we are required to reduce
each (non-atomic) signed formula in a node just once, in order that the end-
points of the resulting branches be complete. Furthermore, if we restrict
ourselves to searching for atomically closed tableaux, a non-atomic for-
mula that has been reduced need not be considered as potentially forming
part of the contradiction on this branch and may be discarded.

Accordingly, we may modify our two types of rules as follows

(SIce]) (S[al)
(Sc , «t, «Z) (S\ 3, at) I (Sla, at)

where the formulas a and 0 must be contained in S as before but after the
application a and 0 are deleted from the new end-points. This is denoted
by the notation Scr.

In other words we eliminate signed formulas as they are reduced.
Complete end-points constructed with the above rules contain signed
atomic formulas only.

The connection method is based on the notion of paths, which we define
below.

Definition 5.1: Let X be a formula, and assign p(ko) = 0. A path through
X is a (non-empty) set of indexed positions of X defined inductively as
follows.

P0. If Xk = X, i.e. k = kp the root position of X,

(k) is a path through X.

* The reader may like to visualise the positions as pointers to a unique concrete representation
of the formula. The nodes of tableaux are then sets of pointers to formulas instead of the for-
mulas themselves. The computational advantages of such a scheme are manifold.

42 ARTIFICIAL INTELLIGENCE AND ITS APPLICATIONS

If IS [k]) is a path through X, and Xk is non-atomic, then

P1. If Xk = , Y such that Y = X,,

[Sk,r } is a path through X.

P2. If Xk = Y V Z for subformulas Y = X, and Z = XS of X,

if p(k) = 0, then [S\k,r,s } is a path through X,
if p(k) = 1, then [S\k,r} and [S\k,s} are both paths through X.

P3. If Xk = Y A Z for subformulas Y = X, and Z = XS of X,

if p (k) = 0, then [S\k,r } and [S\k,s } are both paths through X.
if p(k) = 1, then [S\k,r,s} is a path through X,

P4. If Xk = Y D Z for subformulas Y = X, and Z = XS of X,

if p(k) = 0, then [S\k,r,s } is a path through X,
if p (k) = 1, then [Sk,r } and [Sk,s } are both paths through X.

If all elements of a path p are labelled by atomic formulas we say that
p is an atomic path. In the above definition we use S\k to mean the set S

with any occurrence of k removed. S [k] indicates that k is a member of the
set S.

Remark 5.2: Readers should note that Bibel's notion of path corresponds
to our notion of atomic path.

Remark 5.3: In the sequel, `a path through a formula X' we mean a path
through X with respect to the initial choice of p(ko) = 0 for the root position
of X.

Under our latest modification of the tableau method the nodes of a
tableau coincide exactly with paths through the formula at its root; the
elements of a complete end-point constitute an atomic path. Indeed, the
set of end-points on the branches of a complete (modified) tableau for X

constitute all the atomic paths through X. From theorem 3.7 we get imme-
diately a slightly modified version of Bibel's connection theorem for
propositional logic.

Theorem 5.4: X is a tautology of (classical) propositional logic if and only
if every atomic path through X contains a connection.

The atomic paths through the formula displayed in Fig. I and proved in
Fig. 2 are [k3, k6i k8] , [k3, k,, k8] , [k4, k6, k8 } , [k4, k,, k8 } . The reader
should identify the labels and polarities of these positions and note that
each of these paths contain a connection.

6. CONNECTIONS VERSUS CONNECTIVES

As described above, the tableau method works by applying the reduction
rules to a previously constructed tableau and checking to see if a contra-
diction has been derived on every branch. The nodes of a tableau are now

GENERATING CONNECTION CALCULI FROM TABLEAU 43

elements of W,, instead of signed formulas, and the reduction rules replace
reduced positions by the positions resulting from their reduction. This
ensures that a position (signed formula) is reduced once only.

The proof procedure is still what I shall call connective based, in that the
decision as to which position (signed formula) is chosen for reduction next
is arbitrary and not guaranteed to bring a contradiction any nearer. The
specific rule applied is only dependent on the label (major connective) of the
chosen position.

The final modification is to identify the contradictions first, and then per-
form those (and only those) reductions that allow the contradiction to be
realised. In this way no superfluous reductions are performed. I shall call
this type of proof procedure (ie. resolution-style calculi) connection based.

Using proposition 4.3 we can identify the potential connections (con-
tradictions) in advance and, having done so, reduce the relevant positions
in the current path so that its end-point contains the connection.

Bibel (1982a) develops a series of algorithms based on the above method
whose efficiency compares favourably with most of the common proof pro-
cedures reported in the literature. Bibel's book (Bibel, 1982b) should be
consulted for more details on the algorithmic aspects of the calculus.

Remark 6.1: Note that the reductions needed to realise a connection once
it has been identified in the current path may be performed in any order
(subject of course to the formula ordering < J.

7. THE FIRST-ORDER CASE

In this section and subsequently, I shall use a (first-order) language compris-
ing n-ary predicate constants P', Q', R°, ... ; individual variables x, y,
z, . . .; individual parameters a, b, c, . . .; the sentential connectives as
before and the quantifiers d and 3. Formulas are defined as usual, and
formula-trees for formulas of this language are obvious generalisations of
the trees introduced in §2.

The extension of the analytic tableaux method to first-order (classical)
logic is based on the following four facts. Under any interpretation in a
universe U,

F5. For the universal quantifier,

(a) if dxY is false, then for some a E U, YX is false,
(b) if dxY is true, then for every a E U, YX is true.

F6. For the existential quantifier,

(a) if 3xY is false, then for every a E U, YX is false,
(b) if 3xY is true, then for some a E U, YX is true.

YX denotes the substitution of the parameter `a' for the free occurrences of
the variable `x' in Y.

44 ARTIFICIAL INTELLIGENCE AND ITS APPLICATIONS

Accordingly we get the four rules

(S[FvxY])
with roviso (S [TdxY])

p
(S,FYX) (S,TYX)

(S[F3xY]) (S[T3xY])
(S,FYX) (S,TYX)

with proviso

The proviso in the Fd and T3 rules is that `a' be a new parameter. Tableaux
are defined as before.

In the propositional case, our first modification was to replace the signed
formulas with positions. For first-order systems the situation is not as
straightforward since we must take account of the parameters substituted
for bound variables during the reduction of signed quantified formulas.
Indeed for formulas of `universal type' (TdxY and F3xY) we may need to
consider different instances of Y in order to deduce the necessary
contradictions*.

We follow Bibel (1980) and use an indexing mechanism to encode these
instances. Each position, labelled by a quantifier of universal type, is
assigned a natural number, its multiplicity µ(k), indicating how many
instances of the sub-formula dominated by the quantifier are needed to
seduce the contradictions in the tableau. Under our modification the nodes
)f tableaux now become indexed positions.

We extend our notion of polarity to positions labelled with quantifiers by
idding the following two clauses to definition 4.1.

Pos. If Xk = dxY for some subformula Y = X,
p(r) = p(k)

Po6. If Xk = 3 xY for some subformula Y = XI,

p(r) = p(k)

Let WX and WX denote those positions of WX labelled by a quantifier of
existential or universal type respectively. i.e.

WX= (kEWXI Xk= 3(v) and p(k)= 1(0))

WX=(kEWXlXk=`d(3)andp(k)=1(0))

Definition 7.1: The multiplicity µ for a formula X with p(ko) = 0, is a
function which assigns a natural number µ (k) to each element k E W. X'
is called an indexed formula and its positions WX are defined as follows
k" E WX just in case

11. k E WX.

12. If 1kt, ..., kn) S WX are all the positions such that
kl < ... < kn <_ k, then x = (jt... jn) where 1 <_ j; <_ µ(k;), i = 1, ..., n.

The tree ordering < X' is defined as k" < ' k ' ' ' just in case k < Xk' and

* Recall that if vxY is true (3xY is false) we may deduce that Y; is true (is false) for any
parameter `a'.

GENERATING CONNECTION CALCULI FROM TABLEAU 45

(k1(1) Vx(1) t) (k5)Vz(),0)

t)
(kz (k6),Rz(),0)

(k(tt)
3Y(n),0)

(k3
(12)

11Y (12),0)

I
I

(01), px(1)y(11)
o) 4

(tz)

a
PxY,0)

Figure 3: Indexed formula-tree for Vx(13 yPxy) D vzRz

x' = xconcr for some sequence z of natural numbers. Also we let Xk" = Xk,
and p (k") = p (k).

Fig. 3 illustrates these definitions for an expansion of the formula
V x (- 3yPxy) J VzRz with µ (k 1) = 1 and µ (k3) = 2.

Our first two modifications now go through as before. We extend the
notion of a path through a formula X to a path through an indexed formula
X'` as follows.

Definition 7.2: Let X be a formula and assign p(ko) = 0. Let µ be a
multiplicity for X. The paths through X" are (non-empty) sets of indexed
positions of X" defined inductively according to the structure of X.

PO-P4. As before (definition 5.1) with indexed positions replacing the
positions. If IS[k']) is a path through X'`, and Xk" is non-atomic, then

P5. If Xk = vxY for Y = Xr,

if p(k) = 0, then [S\k",r") is a path through X'`;
if p(k) = 1, then [S\k",ri'', , r"' (k)) is a path through V.

P6. If Xk = 3xY for Y = Xr,

if p(k) = 0, then [S\k",ri-', ..., r"''`(`)) is a path through X'`;
if p(k) = 1, then [S\k",r") is a path through V.

Finally, since our modified tableaux consist solely of positions, when we
reduce a quantified formula we must simultaneously increment a substitu-
tion relation a for that variable freed by the reduction. This substitution
records the parameters that replace each variable in the full analytic
tableau. Note that variables are distinguished by their binding position.*

8. ORDER DEPENDENCE OF RULES

The final modification, outlined in §6, was to search for the connections
first, and then perform only those reductions needed to realise that connec-

The binding position of a variable x contained in an atomic formula is the position of the
quantifier vx or 3x that immediately dominates that occurrence of x. Different instances of
the same variable are distinguished by the index of the position.

46 ARTIFICIAL INTELLIGENCE AND ITS APPLICATIONS

(k),3,0)

(ko), 3x,1) (k4),V,,,O)

(k(Z3,VY,1) (k5,3u,0)

(k(3), Pxy,1) (k(6),Puv,O)

Figure 4: Representation of =xVyPxy D OVu3uPuv

tion and close the resulting branch. It was of crucial importance that the
order in which the subsequent reductions are performed be immaterial.

At the first-order level this is not the case due to the restrictions placed
on the existential rules. To see this consider the following example.

Example 8.1: 3xvyPxy 3 vv3uPuv
The positions of this formula are shown in Fig. 4 in the form of triples

containing the name, label, and polarity of that position. The vertical order-
ing denotes the formula ordering < , . The multiplicity µ has the value 1

throughout the formula. Here (kj'),k6')) is the potential connection requir-
ing that a parameter `a' say, is substituted for both x and u; and a parameter
`b' say, for both y and v.

There are six possible reduction orders of which all but the two orders
ki), k2'), k4), k5') corresponding to (x, y, v, u), and k4), k'), ki), k2') cor-
responding to (v, u, x, y) are correct.

However, we are only interested in the existence of a correct reduction
order. In more complicated situations, a particular order that is correct for
the current set of connections may be rendered incorrect by a future connec-
tion which induces more constraining relationships between the positions.
Clearly we want to avoid having to test out potential reductions each time
a new connection is made.

Bibel (1982a, b) has developed a beautiful solution to this problem which
we describe informally below.

Suppose a potential connection requires that the same parameter be

substituted for two variables x and y. Let kX and kY be the positions labelled
by the binding occurrences of x and y respectively.

0. Suppose both kx and kY are in W. That is to say both x and y are

existentially bound. Then the connection must be rejected since no

correct reduction order exists. Basically, once one position has been

reduced and a parameter substituted, the reduction of the second

quantifier with the same parameter must violate the proviso.
1. Suppose, w.l.o.g., that kx E WX and k,. E WX; i.e. x is universally and

y existentially bound. In order to satisfy the proviso when reducing kY,

we must ensure that it is reduced before U. This situation is

represented by posting the relation kY <kx i.e. kY `before' k.
2. Now suppose both kx and ky are in WX; i.e. both are universally

GENERATING CONNECTION CALCULI FROM TABLEAU 47

bound. We represent the fact that the same parameter must be
substituted for both variables by posting the relation kX -- kY. --- is
taken to be an equivalence relation, and induces more ordering
constraints thus:

- if kz <kX and kX -- kY then kz <k'
representing the fact that if kz myst be reduced before kX, and the
same parameter used to reduce kY as is used for kX, then kz must be
reduced before kY too.

Clearly the reduction order must respect <x", the formula-tree order. Con-
sequently we can represent all the constraints induced by connections by the
reduction relation < defined as .< = (< xi, fl <)*.

Remark 8.2: The reader should interpret kX < kY to mean, kX must be
reduced before kY. Note that < is a partial order. A correct reduction se-
quence exists so long as < is acyclic.

Remark 8.3: If we require further that < satisfy the uniqueness property
if kz <kX and kY <k', then kz = kY;

we can even do without a substitution relation and explicit parameters. The
set of positions k' with k E WX has the right uniqueness properties to func-
tion as the domain of parameters, and the extra condition above ensures
that no substitution clashes occur.*

The reduction relation < for the example is shown in Fig. 5. The correct
reduction sequences can be read off by selecting successive positions that
have no unselected <-predecessors.t

In resolution based systems, Skolemisation is used to encode the quan-
tifier restrictions. In contrast to Skolemisation, the above scheme requires
no normal-form. But more important is the fact that Bibel's solution to the
problem represents a general method of overcoming the order dependence
of reduction rules when passing from a connective based proof procedure
to a connection based one. The generality of this scheme will be put to good
use in the sequel.

We conclude this section with the version of the connection theorem for
first-order (classical) logic that we have effectively derived.

Theorem 8.4: X is first-order valid if and only if there is a multiplicity

Figure 5: The reduction relations for example 8.1

* In the above development, in the interests of clarity, I have assumed that the language con-
tains no function symbols. If functions symbols occur, < cannot perform the role of a
substitution. We must modify the definition of < such that if the term t is to be substituted
for the variable x, all the binding positions of variables that occur in t are put in < relation
to the binding position of x.
t I.e. no arcs going out from it into (as yet) unselected positions.

48 ARTIFICIAL INTELLIGENCE AND ITS APPLICATIONS

µ for X, and a set of connections V in X such that
1. every atomic path through X'` contains a connection from V (as a

subpath), and
2. the reduction relation < induced by V is acyclic.

9. A CONNECTION THEOREM FOR S5 MODAL LOGIC

A series of steps that effectively transform an analytic tableaux system for
classical first-order logic into a version of Bibel's connection calculus for
that logic have been described. This section contains support for the claim
that the nature of these steps is not wholly dependent on the logic over
which they are performed. The essential features of a connection calculus
for S5 modal logic obtained from Kanger's Gentzen system for that logic
(Kanger, 1957) are presented. Lack of space necessitates that the details be
kept to a minimum. A full exposition of this relatively efficient calculus will
appear elsewhere.

Syntax

We augment the syntax of propositional logic with the (unary) modal
operator of necessity, . *

Semantics

Kripke's possible world semantics (Kripke, 1959) for S5 yields the following
facts.

MO. For necessity,

(a) if Y is false in a world, then Y is false in some world,
(b) if Y is true in a world, then Y is true in every world.

Formal system features

Kanger uses the notion of a spotted sequentt, where the formulas are
indexed by natural numbers denoting possible worlds. For instance, the
axioms of the system are sequents of the form

U[Ym] -V[Ym]

and the rules for implication

U[Ylm]-V[YZ] U-V[Ylm] U[Yi]-V
U - V,(Y1 D Y2)m U,(Yi D Y2)`° - V

* The unary modal operator, o denoting possibility, can be defined as - - .

t A sequent U - V is a notational variant of a set of signed formulas. All formulas signed T
are collected in the antecedent U, those signed F are collected in the succedent V. The inference
rules of a sequent system, when read from conclusion to premise(s) form a tableau system.

GENERATING CONNECTION CALCULI FROM TABLEAU 49

The rules for necessity take the form
m m

U
U - V,(DY)n with proviso U,(Y)° V

where the proviso on the (->) rule is that m must not appear in
U V,(Y)°. With the rule inverted, for use as a reduction rule, the pro-
viso reads `m must be a new number' (cf. the proviso on the quantifier rules
of §7.)

The reduction relation a

The proviso on the above rule for reducing operators of possible-type* in-
troduces an ordering constraint on the sequences of reductions in exactly
the same way as the quantifiers of existential-type did before. In this case
the propositional variables are `bound' by the modal operators dominating
them. Formulas bound by operators of necessary-type are true in all pos-
sible worlds and hence may appear with any index. Consequently we use a
modal multiplicity to encode these instances.

Polarity, indexed formulas and paths are defined as before by treating the
modal operators as quantifiers. Connections are pairs of positions labelled
by propositional variables whose (modal) binding occurrences have been
reduced with the same index. The first two steps then go through as before
yielding tableaux whose nodes are sets of (unreduced) positions.

The final modification, to form a connection based proof system,
requires the use of a reduction relation. Once again this relation is defined
as the transitive closure of the formula-tree ordering for the indexed for-
mula and a `substitution' ordering < induced by the connections. The
domain of positions labelled by modal operators of possible-type replaces
the natural numbers of Kanger's system as names for the possible worlds
in the same way as the indexed elements of WX could be used to replace the
domain of parameters before. t

We conclude with a statement of the connection theorem for S5 modal
logic obtained from Kanger's system.

Theorem 9.1: X is S5 valid if and only if there is a modal multiplicity p

for X, and a set of connections V in X° such that

1. every atomic path through X° contains a connection from V (as a

subpath), and
2. the S5 reduction relation a induced by V is acyclic.

10. CONCLUSIONS AND FURTHER WORK

I have presented a detailed account of the relationship between a system of

* Occurrences of (resp. o) with polarity 0(resp. 1).
t This tight correspondence between the structures supporting a connection calculus for S5 and
those for first-order classical logic is not accidental; there is a fundamental relationship
between S5 and the monadic predicate calculus aptly illuminated by the present analysis.

50 ARTIFICIAL INTELLIGENCE AND ITS APPLICATIONS

analytic tableaux and a connection calculus for first-order classical logic.
The relationship was developed by applying a series of modifications to the
former to obtain the latter. I have claimed that these modifications are
general enough to apply to other logics specified using tableau or Gentzen
systems and, to substantiate this, preliminary results in the form of a con-
nection calculus for S5 modal logic have been presented briefly.

This work is being extended in two complementary directions. Firstly, the
theoretical foundation of the methodology itself is being investigated in the
hope of characterising precisely the conditions under which a formal system
may be systematically automated in the above manner. Secondly the
methodology is being refined by applying it to other common (first-order)
logics such as S4 modal logic and first-order intuitionistic logic.

REFERENCES

Andrews, P. B. (1981). Theorem-Proving via General Matings, J of the ACM, 28
(2), 193-214.

Beth, E. W. (1959). The foundations of mathematics, North Holland, Amsterdam.
Also Harper and Row, New York 1966.

Bibel, W. (1980). The Complete Theoretical Basis for the Systematic Proof Method.
Bericht ATP-6-XII-80. Tchnische Universitat Miinchen.

Bibel, W. (1981). On Matrices with Connections, J. of the ACM, 28(4), 633-645.
Bibel, W. (1982a). A Comparative Study of Several Proof Procedures, Artificial

Intelligence, 18, 269-293.
Bibel, W. (1982b). Automated Theorem Proving. Friedr Vieweg & Sohn,

Braunschweig/Wiesbaden.
Boyer, R, S., and Moore, J. S. (1972). The Sharing of Structure in Theorem-

Proving Programs. Machine Intelligence, 7, 101-116.
Fitting, M. C. (1983). Proof methods for modal and intuitionistic logics, Synthese

library, 169: D Reidel, Dordrecht, Holland.
Gentzen, G. (1969). Investigations into Logical Deduction. In The collected papers

of Gerhard Gentzen, chapter 3, pp 68-131. Szabo M E (ed), North Holland,
Amsterdam, Translation.

Kanger, S. (1957). Provability in logic, Stockholm Studies in Philosophy, 1:
Almqvist and Wiksell, Stockholm.

Kripke, S. (1959). A Completeness Theorem in Modal Logic, J Symbolic Logic,
24(1), 1-14;

Nishimura, H. (1983). Hauptsatz for higher-order modal logic. J Symbolic Logic,
48(3), 744-751.

Robinson, J. A. (1965). A machine oriented logic based on the Resolution principle,
J of the ACM 12, 23-41.

Smullyan, R. M. (1968). First-Order Logic. Ergebnisse der Mathematik, 43,
Springer-Verlag, Berlin.

Smullyan, R. M. (1970). Abstract quantification theory. Intuitionism and Proof
Theory, North Holland, Amsterdam, pp 79-91.

FORMULATING PROOF SYSTEMS FOR AUTOMATED DEDUCTION'

L. A. Wallen2

We describe various logic-independent techniques for the design of proof systems that support efficient
automated proof search. The techniques are illustrated through the design of a proof system for a fragment of
an intensional logic.

1. Introduction

Symbolic logic plays a major role in computer science, both as a tool for analysis and as a framework for
representation and reasoning. A pragmatic view is adopted when logic is used as a representation language:
there is not one logic, but many; a logic is a very general theory that axiomatises the basic properties of the
objects of semantic interest. Such applications of logics abound: eg., classical and constructive logic for program
derivation [Mar82,Abr841, modal logics for reasoning about distributed processes [HM841, higher-order logic for
hardware verification [Gor851, etc.

It is the proof system for a logic that furnishes us with the concrete notion of "proof." Within the bounds
of soundness, we can design the proof system to reflect our concern with pragmatic issues such as elegance, or
- and this is our present concern - efficiency of proof search.

In many applications the computer can be used to support the search for proofs. In some circumstances
it is appropriate to fully automate search. Within interactive proof environments, for example, automation of
the search for certain types of subproof can be used to raise the level of interaction, leaving the user free to
concentrate on more demanding aspects of proof design (see eg., [BM79,GMW79,Con861.)

Here we meet with a problem. Proof systems that directly reflect the underlying semantics of logics, such
as sequent calculi are easy to design because they model the semantics of a logic more or less directly. As a
consequence, the majority of logics considered for application in computer science admit such proof systems.
However, sequent systems (and systems of natural deduction in general) form inadequate bases for automated
proof search as we shall show below. Moreover, while relatively efficient proof systems exist for classical logic
(eg., resolution), the extension of such methods to other logics has met with limited success [Far861.

In this short paper we outline elements of a theory of proof system design which can be used to develop
efficient proof systems for a given logic directly from a sequent proof system for that logic. We are thus able to
design an efficient proof system for a logic by sole virtue of the fact that it admits a certain type of sequent proof
system. In this way we are able to treat logics that were previously outside the scope of traditional (automated)
theorem-proving techniques. We illustrate the theory through the design of a proof system for a fragment of an
intensional logic.

2. A simple intensional logic

In this section we introduce a simple intensional logic which we call L. The language of L consists of
denumerably many propositional variables p, q, r,..., a binary connective D and a unary connective . The
set of lower formulae of L is the smallest set containing the propositional variables and closed under the usual
formation rule for the binary connective D . The set of formulae of L is the smallest set containing the lower
formulae, closed under both the formation rule for D and the rule: if A is a lower formula, A is a formula.
Basically, we exclude nested modalities. The propositional variables will sometimes be called atomic formulae.
We use A, B, C and I', 0 as metavariables to range over formulae and sets of formulae respectively.

We give a Kripke-style semantics to L. An L-frame is a pair (G, R) consisting of a non-empty set G and
a reflexive relation R over G. An L-model is a triple (G, R, =) where (G, R) is an L-frame and = a relation
between elements of G and formulae such that: for all w E G

1. Either w = A or w A, for all atomic A.

2. w=ADB if wBorwKA.
3. w = A if for all v E G such that w R v, v = A.

'IEE Colloquium on Theorem Provers in Theory and Practice, IEE, Savoy Place, London, March 1987.
2Lincoln Wallen is a member of the Department of Artificial Intelligence, University of Edinburgh.

1

A model (G, R, =) satisfies a formula A just when w A, for all w E G. A formula A is an L-consequence of
a set of formulae r just in case, every L-model that simultaneously satisfies the formulae of r also satisfies A.

We can define a natural proof system for the L-consequence relation based on sequents. If r and A are sets
of formulae of L, then r -- A is a sequent. r is the antecedent and A the succedent. We interpret sequents as
follows:

4. w r -, A iff if w = r (i.e., w = A for every element A E r), then for some A in A, w A.

To decide whether a formula A is an L-consequence of a set of formulae r, we attempt to prove the sequent
r -, A using the proof system defined below. We take as axioms all sequents of the form:

r,A-'A,A
for atomic A; and as operational rules:

r,A-B,A --+ A r -. A,t
r - AFB, A

-
r, AFB A r --A r,A --+ O

x

0 r, A A

where r =d f {B I B E r}. Derivations are defined as usual and a proof is a derivation whose leaves are
axioms. The root of a derivation is called the end sequent. In practice we use the rules inverted, working
backwards from the desired end sequent to the leaves. The application of a rule, inverted in this manner, will
be called a reduction.

It is easy to show that the above proof system is a characterisation of the consequence relation of L.

3. Rule order and unification.

Consider the following pair of derivations, where we have "boxed" the principal formula of each reduction
(recall that derivations are being constructed from their root to their leaves):

q

r - A,

q p, q

p, (P:D q) -,
p

q
(PDq) -, q

P,

x x

q q

PDq
D q P

-' q

p, (pD q) - q
We cannot obtain a proof from the derivation on the left because we are unable to close one of its leaves. This
problem arises because the application of the -, rule restricted the formulae available for such a completion.
We can influence the content of the set r p by changing the order of rule application so that more (or less)

formulae of the form A occur in the antecedent at the application of the -' rule. This we have done in the
proof on the right. The import for automated proof search is that we must consider all possible permutations
of rule applications as potentially leading to a proof.

We can overcome this type of problem in the following manner. An indexed formula is a pair A°` comprising
a formula A and an element a of a set formed from the disjoint union of two alphabets C and V. Let r and A
range over sets of indexed formulae and a, Q over indices. The basic idea is to index formulae rather than remove
them from a sequent, construct a "proof" with no regard for rule order, then employ unification to ensure that
an appropriate rule order could have been chosen that would result in a proof in the original sequent system.
The operational rules of the new proof system are as follows:

r, A°` -' B°`, O r, B° - A r - A°, O

r -, (A B) a, A r, (A B) a A

r -,Ab,A
r _(A)°,0

r, Ax A -
r, (A)° , A

-

where we require that the elements a E C and x E V used to extend indices in the rules do not appear as

indices of any other formula in the upper sequent. The axiom rule is:

v
r, A° - A#, A

2

for atomic A, where v: V I-4 C is such that v(a) = c (P). Derivations are defined as usual. Proofs, on the
other hand, are derivations whose leaves are not only instances of the axiom rule, but for which the mappings
associated with the set of leaves are consistent. To prove that A is an L-consequence of r we prove the sequent ra -+ A" for some arbitrary element a E C. (ra =df{Aa I A E r}.)

A proof of our example is shown below. Notice how we have used the previously incorrect order for applying
rules.

po,

{y -* b}

qY

po,

qb

{x-+b,y-+ b}

pX - IpY,gb

(p D 4)y

po,

qb

((PD4))a qb

pX, (0 (p D q))a -
(P)a

(q)a
((pDq))a - (0 4)a

We can use a simple unification algorithm to compute the appropriate mappings when we reach the leaves of
derivations and a substitution table to check consistency.

4. Representational redundancy

We have successfully reduced the space to be searched for a proof by identifying derivations that differ only
in the order in which the modal rules are applied. We shall remove remaining redundancies of a similar nature
in the next section. In this section we deal with an issue of representation.

First note that both the sequent systems we have discussed possess the so-called subformula property. That
is, derivations are formed solely from subformulae of the end sequent. Consequently, every formula occurrence
in a derivation has a unique image in the end sequent.

In our search for a proof we need to represent trees of sequents which occupy large amounts of computer
memory. We can improve this situation by storing the end sequent explicitly in memory once, but instead of
storing new sequents generated by rule applications explicitly, we construct them out of pointers to subformulae
in the end sequent. This is a principled application of structure-sharing [BM72]: a technique developed within
the resolution community to cope with a similar problem. Here we see it arise naturally from proof-theoretical
properties of our sequent system.

5. Primary and incidental choices

Although the new sequent system we have introduced successfully identifies derivations that differ only in
the order in which the modal rules are applied, and with the use of structure-sharing we can reduce the memory
requirements for individual derivations, an implementation of this system would still suffer from its emphasis
on connectives. That is, although at all times we are working towards instances of the axiom schema the proof
system does not reflect this. We could spend time and space reducing a formula in a sequent from which there
is no hope of obtaining an axiom given the other formulae in that sequent.

A derivation of an end sequent is said to be complete just when its leaves consist solely of atomic formulae;
i.e., no more reductions are possible. The index of an atomic formula appearing in a derivation is chosen at
the reduction of the modal operator that dominates its' image in the end sequent (if there is no such operator
the index of the atomic formula is the index chosen at the start of the derivation for the formulae of the end
sequent). If we ensure that two occurrences of modal operators that share the same image are reduced using the
same index, then every complete derivation of that end sequent has the same set of leaves. Since the criterion
for distinguishing a proof from a derivation is that all the leaves are axioms (under some mapping of indices)
we have only to check whether every leaf in this set is an axiom. In other words, the order in which we apply
the sequent rules is immaterial! The rules are merely a manner of enumerating this unique set of leaves which
we shall call atomic paths.

Based on these observations we can devise more efficient means of checking whether the atomic paths are

axioms (under a given mapping of indices).
First, we define positive and negative occurrences of formulae as follows: C occurs positively in C; C occurs

positively (negatively) in A D B if it occurs negatively (positively) in A or positively (negatively) in B; C
occurs positively (negatively) in A if it occurs positively (negatively) in A; C occurs positively (negatively)

in r - A if it occurs positively (negatively) in A for some A E r or negatively (positively) in A for some

AEO.
Now notice that a formula occurs in an antecedent (succedent) within a derivation if and only if its image

occurs positively (negatively) in the end sequent. This means that we can determine in advance whether a given

3

atomic subformula of the end sequent is constrained to occur in antecedents or succedents within derivations. A
connection is a pair of atomic formula occurrences {A+, AO-} in an atomic path, where we have used subscripts
to indicate whether the images of these formulae occur positively or negatively in the end sequent. Such a
connection is said to be complementary just in case there is a mapping v such that v(a) = a(,0). If a connection
is complementary then, the paths that contain it are axioms. Consequently we have:

A formula A is an L-consequence of a set of formulae r if there is a mapping and a set of connections
simultaneously complementary under that mapping, such that every atomic path for r -+ A contains a
connection from the set.

We can enumerate the atomic paths for a given end sequent by viewing the latter as a nested matrix. If
A D B occurs positively (negatively) in the end sequent, we place the matrix representations of A and B in
a 1 x 2 (2 x 1) matrix. For atomic formulae we indicate whether it occurs positively or negatively in the end
sequent by means of a subscript. We also indicate the indices for atomic formulae which can be determined
from their dominating modal operator. As a matrix therefore, our example reads:

Py pEl
qY

qb

Notice how the atomic formulae py and q+ of the middle column have the same index y. This is because they
share the same dominating modal operator which occurs positively in the end sequent and hence will appear
only in antecedents within derivations.

The atomic paths for an end sequent are the horizontal matrix paths through its matrix representation. Our
example matrix has a total of two atomic paths: {p+, py , qb } and {p+, q+, qb }.

Our proof system has now changed drastically. No longer are we interested in connectives. To prove our
example consequence we choose an atomic formula in the matrix, say p+, and then look for another occurrence
of the propositional variable p occurring negatively. In this case there is only one, namely py. We then
attempt to unify the indices obtaining the substitution x/y. All paths containing the connection {p+, py} are
eliminated from consideration. Next we choose an atomic formula not on such a path, say q+, and repeat the
process resulting in the addition of the connection {q+, qb } to our set and the component b/y to our current
substitution. Since we have covered all atomic paths with our two connections and can construct a consistent
mapping (from the consistent substitution), we conclude that q is an L-consequence of p and (p D q).

6. Conclusions

We have outlined some techniques that may be used to develop an efficient proof system for a given logic from
a sequent proof system for that logic. These techniques have been applied successfully to develop efficient proof
systems for a range of widely used first-order intensional logics [Wa187]. Implementation of one of these systems

has been completed and tested [WW87]. This represents the most comprehensive application of theorem-proving
techniques to non-standard logics yet achieved.

Two further points are worth mentioning. Firstly, the resulting proof systems require no normal-forming of
input. Secondly, due to their genesis from sequent systems it is possible to interpret the path-checking algorithms
(i.e., proof search) as constructing derivations in indexed sequent systems similar to the one introduced above.

This facilitates the use of the matrix systems within interactive environments.
These techniques have their origin in the matrix methods of Andrews [And8l] and Bibel [Bib8l] for classical

logics. In [Bib82], Bibel develops many path-checking algorithms for classical logic and relates them favourably
to standard resolution systems. All of these algorithms may be used in the matrix proof systems for non-

standard logics developed along the lines outlined above. Fitting [Fit83] develops tableau systems for various
modal logics. His systems do not incorporate unification and are connective based. These tableau systems

therefore suffer from the same redundancies as the sequent systems we started with.

Acknowledgements

This work was supported in part by SERC/Alvey grants GR/D/44874 and GR/D/44270.

References

[Abr84] J.R. Abrial. The mathematical construction of a program. Science of Computer Programming,

4:45-86, 1984.

4

[And81] P.B. Andrews. Theorem-proving via general matings. Journal of the Association for Computing
Machinery, 28(2):193-214, April 1981.

[Bib81] W. Bibel. On matrices with connections. Journal of the Association for Computing Machinery,
28(4):633-645, October 1981.

[Bib82] W. Bibel. A comparative study of several proof procedures. Artificial Intelligence, 18:269-293, 1982.

[BM72] R.S. Boyer and J.S. Moore. The sharing of structure in theorem-proving programs. In B. Meltzer
and D. Michie, editors, Machine Intelligence 7, pages 101-116, Edinburgh University Press, 1972.

[BM79] R.S. Boyer and J.S. Moore. A Computational Logic. ACM monograph series, Academic Press, 1979.

[Con86] R.L. Constable et at. Implementing Mathematics with the Nuprl Proof Development System. Prentice
Hall, 1986.

[Far86] L. Farinas-del-Cerro. Resolution modal logics. Logique et Analyse, 110-111:153-172, 1986.

[Fit83] M.C. Fitting. Proof methods for modal and intuitionistic logics. Volume 169 of Synthese library, D.
Reidel, Dordrecht, Holland, 1983.

[GMW79] M.J.C. Gordon, A.J. Milner, and C.P. Wadsworth. Edinburgh LCF - A mechanised logic of compu-
tation. Volume 78 of Lecture Notes in Computer Science, Springer Verlag, 1979.

[Gor85] M.J.C. Gordon. HOL: A machine oriented formulation of higher-order logic. Report 68, Computer
Lab., Cambridge University, 1985.

[HM84] J.Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed environment. In
3rd ACM Conference on the Principles of Distributed Computing, pages 50-61, 1984.

[Mar82] P. Martin-Lof. Constructive mathematics and computer programming, pages 153-175. Volume IV of
Logic, Methodology and Philosophy of Science, North-Holland, Amsterdam, 1982.

[Wa1871 L.A. Wallen. Matrix proof methods for modal logics. In J. McDermott, editor, 10th International
Joint Conference on Artificial Intelligence, Morgan Kaufmann Inc., 1987. To appear.

[WW87] L.A. Wallen and G.V. Wilson. A computationally efficient proof system for S5 modal logic. In
J. Hallam and C. Mellish, editors, Advances in Artificial Intelligence, John Wiley & Sons, 1987.

'oceedings of AISB87, Edinburgh, Scotland, April 1987, to appear.

5

A Computationally Efficient Proof System for S5
Modal Logic

Lincoln A. Wallen Gregory V. Wilson
Department of Artificial Intelligence

Edinburgh University
Scotland

Abstract
We present a computationally efficient matrix proof system for S 5 modal logic. The sys-

tem requires no normal-form and admits a natural implementation using structure-sharing
techniques. In addition, proof search may be interpreted as constructing generalised proofs
in an appropriate sequent calculus, thus facilitating its use within interactive environments.
We describe features of an implementation developed from an existing implementation of
a matrix proof system for first-order logic.

1 Introduction.

Modal logics are widely used in various branches of artificial intelligence and computer science
as logics of knowledge and belief (eg., [Moo80,HM85,Kon84j), logics of programs (eg., [Pne771),
and for specifying distributed and concurrent systems (eg., [HM84,Sti851). As a consequence,
the need arises for proof systems for these logics which facilitate efficient automated proof
search.

The main hurdle to the application of resolution based techniques to non-standard logics is
that the techniques are formulated under the assumption that the input formulae are in clausal
form [CL73]. Most non-standard logics of interest fail to admit such a normal-form.

Bibel's connection calculus [Bib8l,Bib82a] is a non-clausal proof system for first-order logic
comparable in computational efficiency to the most efficient of the clausal techniques for that
logic [Bib82b]. In [Wa186] it was shown that far from being an ad-hoc proof system for one
particular logic, the connection calculus could be seen as a framework for implementing sequent.
and tableau-based proof systems in a computationally efficient manner. Since most of the non-
standard logics of interest admit such proof systems we can make use of this analysis to develop
connection calculi for them. This paper fulfills an undertaking to present the details of such an
application to S5 modal logic.

We begin by presenting Kanger's sequent calculus for S 5 [Kan57] using a notation developed
by Smullyan and Fitting [Smu68,Fit72]. Next, we develop a connection calculus from the
sequent system using the techniques discussed in [Wa186]. In addition to the basic theory,
we give details of an implementation developed directly from an existing implementation of
the connection calculus for standard first-order logic. The adaptation from first-order classical
logic to S5 proved quite straightforward. Further details of this implementation can be found
in [Wil86].

Because we do not need to give up our sequent interpretation of the proof system, it is
possible to view proof search within the modal connection calculus as a process which constructs
a form of sequent proof tree. Brief details of this are given. Such a facility encourages the use

of these techniques within interactive environments (cf. [BT751).

Advancee in Artificial Intelligence, editors J. Hallam and C. Mellish, pages 141-153, John Wiley & Sons, 1987.
Proceedings of AISB87, Edinburgh Scotland, April 1987.

2 Preliminaries.

2.1 Syntax, semantics and notation.

Modal formulae are defined as usual by adding the formation rule:

if A is a formula, then so are A and QA,

to the formation rules for propositional formulae. We let A, B, C range over modal formulae.
A signed modal formula is a pair (A, n), where A is a formula and n E {O, 11. We let X, Y, Z

range over signed modal formulae.
Following Smullyan [Smu68] and Fitting [Fit83] we classify signed modal formulae and their

principal signed subformulae as follows:

a al a2 Q al 02 V vo

AAB,1) A,1) B,1) (AAB,0) (A,0) (B, 0) (A,1) (A,1)
(A V B, 0) (A, 0) (B, 0) (A V B,1) (A,1) (B,1) (OA, 0) (A, 0)
(A = B, 0) (A,1) (B, 0) (A = B,1) (A, 0) (B,1) 7r pro

(- A, 1) (A, 1) (A, 1) (A,0) A,0
(-A, 0) (A, 0) (A, 0) (<)A, 1) (A,1)

We shall use a, al, a2, p, 01, 02.... to denote signed formulae and their components of the
respective types.

For example, a signed formula of the form (A A B, 1) is an a according to the first table
above. Its components (A, 1) and (B, 1) are denoted by a1 and a2 respectively.

An S 5-model structure is a pair (G, R) consisting of a set G and an equivalence relation R
on G. An S 5-model is a triple (G, R, II-) where (G, R) is an S 5-model structure, and

I - is a

relation between elements of G and signed formulae which, for all w E G satisfies:

1. exactly one of w II- (A, 1) or w II- (A, 0);

2. w - a if w - a1 and w II- a2;

3. w II-0iffw II-01 orw I[-02;

4. w II- v iff for all v E G such that wRv, v II- vo;

5. W II- 7r if for some v E G such that wRv, v II- 7ro.

A formula A is S 5-valid in the S 5-model (G, R, II-) if for all w E G, w II- (A, 1). A formula is

S 5-valid if it is S 5-valid in all S 5-models.

2.2 A sequent calculus for S5.

Let (Go, Ro) be an S 5-model structure, fixed for the rest of this section. We use p, q to denote

elements of Go. We refer to these elements as prefixes. For p E Go, pX is called a prefixed

signed formula. Prefixes are used to name possible worlds in some arbitrary model Ro is used

to represent the relation of accessibility between prefixes and hence between possible worlds in

that model. pX is satisfied by a model just when the world denoted by p, say c(p), satisfies X;
i.e., a(p) II- X.

For our purposes sequents are merely sets of prefixed signed formulae. We use S, pX to
denote S U { pX }. Note that pX may occur in S.

We now present Kanger's system for S 5 using this notation. The basic sequent is a sequent

which contains both p(A, 1) and p(A, 0) for some atomic formula A, i.e.,

S, p(A,1), p(A, 0).

The operational rules are stated concisely thus:

Si Pal, Pa2 S, PQi S, P132

S, pa a S, PQ

S, qvo S, giro
S, pv

v
S, Pi

The ir-rule is subject to the following proviso-

q must not occur in S (i.e., q must not prefix any other formula in S).

Derivations and proofs are defined as usual. A formula A is a theorem if there is a proof of the
sequent { p(A, 0) } for some (arbitrary) prefix p. This calculus is both sound and complete for
S5 [Kan571.

Remark. The usual representation of sequents can be recovered by introducing a sequent
arrow -+ and placing those prefixed formulae signed 1 on the left of the arrow and those signed
0 on the right.

In practice we use the rules from conclusion to premises; i.e., we start with the sequent
{ p(A, 0) } and build a proof tree backwards from this root to the leaves. Used in this way, the
sequent system is equivalent to Fitting's prefixed tableau system for S5 [Fit721. The force of
the proviso on the ir-rule is that the prefix q must be completely new to the upper sequent. 0

3 A connection calculus for S5.

As discussed in [Wa1861 the proviso on the ir rule introduces an order dependence in the search
for a proof. If a prefix is introduced by the use of the v rule it cannot subsequently be introduced
by the use of the ir rule. The path to an basic sequent may therefore be blocked by injudicious
choices of the prefix q in both (inverted) modal rules. This fact, together with the blind
connective-driven search for the appropriate pairs of atoms to form a basic sequent, makes
direct implementation of the sequent system inefficient. In [Wa1861 we show how inefficiencies
such as these are tackled in the case of first-order logic by Bibel's connection calculus.

In the context of modal logic the key techniques are:

connection driven search: putative instances of the basic sequent are identified using
structural properties of the formula.

delayed choice of prefix: the symbols introduced as prefixes during use of the v rule
are considered as "variables." The prefixes introduced by applications of the ir rule
are considered as "constants." The instantiation of the variable prefixes is driven by
the choice of connection (basic sequent) which requires the prefixes of the distinguished
atomic formulae to be identical.

reduction ordering: the substitution mentioned above is considered admissible if a correct
(partial) proof tree can always be constructed from the current set of connections. In par-
ticular this means respecting the proviso on the ir-rule. This property of the substitution
is checked directly rather than by actually constructing such a proof tree.

structure sharing: the intermediate states of the proof are encoded using pointers into the
original formula. No new formulae need be considered. In particular, multiple instances
of subformulae (in this case instances of formulae dominated by modal operators) are
obtained by an indexing method rather than explicit copying.

3.1 Formula trees.

A formula tree for a signed modal formula is a variant of its formation tree containing additional
information as to the polarity of its subformulae. It is best explained by example. Figure 1

shows the formula tree for the formula (((A A B) A QC Q(A A C)), 0). The piece of

(A, 1) a3 (0, 0) as

(A, 1) a4 (0, 1) a7 (A, 0 a1o

(A, 1) a5 (B, 1) a6 (C, 1) as (A, 0) all (C, 0) a12

Figure 1: A formula tree.

concrete syntax associated with a node or position in the tree is called the label of that position.
We classify the positions of a formula tree according to the classification of the subformula

rooted at that position. Thus if the subformula is an a, then the position is an a; if it is a /9,

the position is a /9, etc. Additionally, we classify the root node of the formula tree as a 7ro.

Notice that each position has two types: its principal type (eg., a, /9, v, ...) is determined
by its label and polarity, while its secondary type (eg., al, a2) 01, ...) arises from the type of
its parent.

For a given formula tree we use k, 1, possibly subscripted, to denote positions and Lo and
11o denote the sets of positions of type vo and 7ro respectively.

3.2 Modal multiplicity.

The inverted rule enables any prefix q to be introduced into a sequent to prefix formulae rooted
at vo-type positions. Within the context of a sequent proof this is the mechanism by which one
works towards instances of the basic sequent to complete a branch.

The definitions of this section are introduced for a given formula tree for a given signed
formula X. A function µM from Lo to the positive integers is called a modal multiplicity for X.
A modal multiplicity serves to encode the number of distinct instances of vo-type (sub)formulae
used within a putative proof.

If µM is a modal multiplicity for X we define the (indexed) formula tree for the indexed
formula XIIM as a tree of indexed positions of the form k", where k is a position of the basic
formula tree for X and ,c is a sequence of positive integers defined as follows: if k1 < k2 < <
kn < k, 0 < n, are those vo-type positions that dominate k in the basic formula tree for X,
then

cE{(.7172...jn) I 1<ii 5p(ki), 1<i<n}.
The ordering in the indexed tree <I'm is defined in terms of the ordering on the underlying
tree. For indexed positions k" and 1"

k" <I'm lT if k < 1 and r = r.0,

where 0 is some sequence of positive integers. The polarity and label of an indexed position
k" is taken to be the same as the polarity and label of its underlying position. Consequently,
indexed positions inherit the type of their underlying position.

We let u, v, possibly subscripted, range over indexed positions when we are not interested in
the index, and omit the superscript on <. We abuse our notation and let Vo, 11o, etc., denote
the sets of indexed positions of an indexed formula tree of the appropriate types. Henceforth
we shall refer to indexed positions simply as positions.

Figure 2 shows the indexed formula tree for our example formula with a modal multiplicity
of 11M(alo) = 2 and 1 otherwise. As a convention we omit empty indices.

(A, 1) as 0) as

(A, 1) a4 (<>,1) a7 (A, 0) a10 (A, 0) a10

(A, 1) ab (B, 1) a6 (C, 1) as (A, 0) a(111) (C, 0) a112 2 (A, 0) a121 (C 0) a(2) 11 12

Figure 2: An indexed formula tree.

3.3 Paths and connections.

A path through XµM is a subset of the positions of its formula tree. We shall use s, t, possibly
subscripted, to denote these paths, and adopt the notation s[u] for a path s with an occurrence
of the position u. The set of paths through X1`-, is the smallest set such that:

1. { ko } is a path, where ko is the root node of the formula tree for XµM;

2. if 3[a"] is a path, so is (s - {a"U {al", a2"};

3. if s[Q"] is a path, so are (s - {Q"}) U {Ql"} and (s - {Q"}) U

4. if s[v"] is a path, so is s U {vowa}, 1 < j < AM(vo);

5. if s[lr"] is a path, so is s U {lro"}.

The path (s - {a"U {al", a2"} is said to have been obtained by reduction on a" from s;
similar terminology is used in the other cases.

Each path s through XµM determines a set (or sequent) of positions as follows:

S(s)={xIx<y for some yEs}.

A path s through XµM is atomic if for every k" in s either

(a) k is labeled by an atomic formula, or

(b) k is a v and for all j, 1 < j < /M(vo), vo" E S(s).

Remark. Our definition of path differs from Andrews' [And8l] and Bibel's [Bib81] defini-
tion so as to demonstrate the relationship between the matrix methods and sequent/tableau
methods. Their paths correspond roughly to our atomic paths. Each clause in our definition,
when interpreted as operating on the sequent associated with the path, corresponds to an (in-
verted) rule of Kanger's system. Furthermore, for a given multiplicity, the sequent associated

with an atomic path is complete in the sense that its membership cannot be increased by the

application of further rules. These relationships are discussed in more detail in [Wa1861.

We can see the atomic paths through an indexed formula by writing the components of
an a-type subformula side by side and the components of a /3-type subformula one above the
other to form a nested matrix. Multiple instances of vo-subformulae are treated as multiple
components of an a-type parent. The matrix representation of the indexed formula of Figure 2
is shown in Figure 3. The atomic paths through the formula are then (roughly) the horizontal

(,(A)_",(A
(A-A-B) - A - (OC)- - p- A A

C C

Figure 3: Matrix representation of a formula.

matrix paths that consist of atomic formulae. There are four such paths in our example. One
s shown as a dotted line in the figure.

A connection in Xl`M is an unordered pair of positions of its formula tree labeled by the same
atomic formula but of different polarities. In terms of the sequent system we wish to interpret
a connection as an instance of a basic sequent. A set of connections is said to span XI`M just
when every atomic path through XlIM contains a connection from the set. For example, the
connections { a5, ail) } and { as, ail } span our example formula.

3.4 Complementarity.

In order to interpret a connection as an instance of a basic sequent we must ensure that the
two atomic formulae represented by the positions of a connection have the same prefix. These
prefixes are determined when the modal operator dominating the atomic formula is reduced
using the inverted modal rules.

Let T denote the set Lo U Ho. We use pre(u) to denote the <-greatest T-element that
dominates u in the formula ordering. pre(u) is called the prefix of u. Note that since the root
node of a formula tree is a T-element this notion is well-defined. We shall use p, q, to denote
positions when we are considering them as prefixes. In our ongoing example, the prefix of ab is
a2, whereas the prefix of a(') is aio

The next step is to notice that we are free to choose the prefix introduced when we use the
v-rule, but must introduce arbitrary new prefixes when utilising the 7r-rule. We have indicated
that the two positions that constitute a connection must have the same prefix. Consequently
we treat vo-type prefixes as variables and lro-type prefixes as constants and build a modal
substitution a: Lo -+ T under which the required prefixes are identical.

For example, the modal substitution a = { am
io

+- a2 } renders the connection { a5, a1(i) }

complementary. Recall that a2 is a 7ro-type positon and hence a constant whereas a(') is a
vo-type position and therefore a variable. We cannot build a consistent substitution that also
makes the connection { as, ail } complementary since this would have to involve the component

a10 +- as and a2 and as are distinct constants.
The substitution of a 7ro prefix for a vo prefix entails that the former is introduced in place

off the latter with the v-rule. But this means that 7ro prefixes may be introduced into a sequent
before the use of the 7r rule that introduced them from their parent and hence the proviso on
the rule would not be met. We must ensure that this never happens.

A modal substitution a: Uo -+ T induces an equivalence relation -M and a relation EM on
T X T as follows:

1. If a(u) = v for some v of vo-type, then u ^'M v.

2. If a(u) = v for some v of lro-type, then v CM u.

3. If v CM u and u ^'M u', then v CM u'.

The substitution o is S 5-admissible provided the reduction ordering C
aet (< U CM)+ is

irreflexive.
The relation v CM u between a 7ro and a vo position indicates that the formula rooted at

the parent of v (a 7r-type formula) should be reduced using the 7r rule to introduce the prefix
v before the parent of u (a v-type formula) is reduced using the v rule to introduce the prefix
u, the value of which is also v under the modal substitution. The equivalence relation ^'M
indicates that the two vo-type prefixes must take the same value under the substitution.

Let o be an S5-admissible mapping for XMM. A connection { x, y } in XµM is said to be

o-complementary if o(pre(x)) = o(pre(y)). A set of connections is said to be o-complementary
if all its elements are o-complementary.

We are now in a position to state our extension of Bibel's connection theorem to S5 modal
logic.

Theorem 3.4.1 A formula A is S5-valid if there is a modal multiplicity p m, an S5-admissible
mapping o and a set of o-complementary connections that spans (A, 0)µ"M

We omit the proof of this theorem due to lack of space. Correctness follows directly from
the correctness of Kanger's sequent system together with the argument that the irreflexivity
of Q ensures the existence of a correct sequent proof respecting the proviso on the 7r rule.
Completeness is obtained by showing that a modal multiplicity can be constructed such that
the sequent associated with an atomic path containing no complementary connection forms an

S5-Hintikka set which is realizable (see [Fit831).

4 Implementation.

An implementation of this connection calculus for S 5 has been developed from an existing
implementation of a connection calculus for first-order logic [Wa1831. The implementation
language chosen was Quintus PROLOG since we were more concerned with the techniques used

to implement the proof system than in absolute efficiency. This section describes some of the
interesting features of the implementation, a more comprehensive description can be found in
[Wil861.

4.1 Static data structures.

4.1.1 Formula tree representation.

Each position of the formula tree must be stored in some space-efficient way which permits
a time-efficient lookup mechanism. It is important that this storage method also allow the
program to manipulate portions of the formula tree without actually making copies of those
portions, so that demands on storage space do not become excessive. The formula tree forms
the basis for an implementation utilising structure sharing.

For both implementations (first-order and S5) each position is stored as a tuple in the
PROLOG database. While there are three conceptually distinct tuple types for representing
quantifiers or modal operators, connectives, and atomic formulae, the same overall structure is

used throughout.
The data fields in these tuples record such things as the polarity of the position, its descen-

dents in the formula ordering, its label (the concrete syntax at that point in the formula tree),

a pointer to its parent position, and a pointer to its next sibling in the formula tree. (Recall

that the label of a position will be either a connective, a quantifier or modal operator, or an

atomic formula.) These tuples are constructed and placed in the database as the formula is

read in, and, with one exception described in the next section, are never modified thereafter.

Each tuple is assigned a unique numeric identifier as it is constructed.

All references to tuples by the theorem prover are made through the use of pointers. A
pointer consists of a numeric identifer together with an index indicating the particular instance
of the tuple being referenced.

This representation allows formula tree nodes to be accessed in a variety of ways other than
by reference to their identifiers. For example, all occurrences of nodes containing a particular
proposition or connective, or having a particular polarity, can be retrieved using the same sort
of database lookup which retrieves the tuple associated with a particular identifier.

The assignment of numeric identifiers to tuples is done depth-first and left-to-right, so as to
facilitate various frequently performed operations. For instance, if n and m are two position
identifiers, and n' is the next sibling of n then m is dominated by n just in case (a) n < m
and (b) m < n' (i.e., dominance can be determined using just two integer comparisons). For
example, the signed modal formula (D ((A A B) A OC O(A A C)), 0), represented by the
tree shown in Figure 1, would be stored in the PROLOG database as shown in Figure 4.

Identifier Syntax Polarity Type Descendents Next Sibling

(1, D, 0, 7r, (2), 13)
(2, =>., 0, a, (3,9), 13)
(3, A, 1, a, (4,7), 9)
(4, A, 1, a, (5,6), 7)

(5, A, 1, -, -, 6)
(6, B, 1, 8)
(7, O, 1, ir, (8), 10)
(8, C, 1, -, 11)
(9, O, 0, v, (10), 13)
(10, A, 0, a, (11,12), 13)

(11, A, 0, -, -, 12)
(12, C, 0, -, -, 13)

Figure 4: Example modal database.

4.1.2 Multiplicity and prefixes.

The modal multiplicity records the number of distinct instances of subformulae dominated by a
v type modal operator allowed within the (partial) proof at any given point in time. Positions
are always considered indexed as described in section 3.1. The modal multiplicity is represented
as a table with one entry for each vo position in the formula tree. Indices are therefore stored as
lists of positive integers. For S 5, prefixes are simply positions which represent modal operators.

4.1.3 Proof Tree Representation
The proof state within a connection calculus is represented by a record of the connections made
so far, the substitution constructed and the paths through the formula still to checked for the
current multiplicity. OR choices arise when there is more than one possible connection that
makes a given path complementary (see Section 4.2.1). The OR choices are maintained as a
tree.

In this implementation, each node of the tree is stored in the database as it is constructed
and identified by a string of bits. The identifier for a node N is constructed according to the
following rules:

1. The identifier of the root node is 1.

2. If N is the right descendent of a node M and the identifier of M is B, the identifier of N
is 1B.

3. If N is the left descendent of a node M (or only descendent, if M is a unary node), and
the identifier of M is B, the identifier of N is OB.

When these rules have been followed, the node whose identifer is Il is an ancestor of the node
whose identifier is 12 if Il is a right-adjusted substring of 12. This test can be done directly on
the identifiers themselves, without requiring any database lookups or tree traversals. However,
this test is more complicated, and hence slower, than the corresponding integer comparison test
used to determine ancestry of formula tree nodes.

Storage of node identifiers is also more complicated for the dynamic proof trees than for
the static formula trees. A node at depth D requires a bit-string D bits long to identify it.
For trees of reasonable depth, D exceeds the length of the standard PROLOG integer, and so
the bit string must be split across several such integers. In practise, identifiers and pointers
are recorded using a three-place data structure, "code (X, Y, Z) ", in which "Z" is a list of 16-bit
integers, and "X" and "Y" identify the word and bit position containing the bit most recently
added to the identifer.

Considerable savings in space could have been obtained if the search strategy was confined
to depth-first, left-to-right through the space of possible connections. (Such a procedure resem-
bles the search strategy of standard PROLOG interpreters.) However the original program was
designed to investigate aspects of heuristic search, so a more flexible representation of partial
proofs was required.

4.1.4 Connection graphs.

The last static data structure of interest is the connection graph. Since only a single copy of
the formula tree is kept, the positions in which a particular atomic formula may be found with
a particular polarity can be tabulated as the formulae are being input. This table is called a
"connection graph", and by referring to it while constructing proofs the theorem prover never
needs to search the formula tree to find complementary propositions. The connection graph is
propositional but could be extended to include unification information.

Note that the use of a connection graph is distinct from the use of connection graph resolution
[Kow75] in which alterations to this data structure are a part of the inference mechanism. The
connection graph used here is not manipulated or changed in any way once the proof process
is initiated.

Remark. However the two systems are in some interesting sense complementary. Connec-
tion graph resolution could be used to make permanent alterations in the formula tree so as to
"compile" certain inferences and cut down on search within a run of the connection method.
To our knowledge, this potential has not been exploited. 0

4.2 Dynamic features.

4.2.1 Path checking and goal representation.

The connection theorem (in the case of S5, Theorem 3.4.1) underlying a given connection
calculus expresses the validity of a formula in terms of a condition on the set of atomic paths
through the formula. The main component of that condition is that a set of connections
can be found such that every atomic path contains at least one connection from that set.
Checking a formula for validity therefore reduces in part to a process of path checking. Indeed,
many resolution based proof procedures can be interpreted in this way and a comparison made
between them [Bib82b].

This path checking process can best be expressed using the matrix representation of the
formula introduced above in which the components of a ,0-type formula are displayed one above
the other in the plane whilst the components of an a-type formula are displayed side by side.

The algorithm we use to check the atomic paths through a formula is based on that presented
in [Bib82a]. A partial proof is represented by a set of goals. Each goal represents a set of atomic
paths which have not yet been fully examined, but which share the same initial segment.
The initial segment itself is divided into two parts, the active path and the expansion. The
active path is a set of atomic formulae amongst which no connections exist. When choosing
between possible connections, those involving the atomic formulae referenced in the active
path are preferred over all others. This is equivalent to the unit preference heuristic [CL73].
The expansion is a set of references to partially examined subformulae. These references are
generated by the reduction of a-type nodes, and correspond to dynamically created hypotheses
which may contain extra problem-specific information in the form of variable instantiations not
present in the original axioms. When choosing between possible connections, those involving
the subformulae referenced in the expansion are preferred over those involving uninstantiated
axioms. This is similar to the "set-of-support" heuristic used in resolution based systems.

4.2.2 Unification.

The reduction ordering is represented by a graph whose nodes are prefixes and whose arcs
indicate precedence and/or equivalence of nodes. When a connection is formed, and two prefixes
are unified, one new arc is added to this graph to show the effect on reduction order of the
unification, and zero or more arcs added to show any new precedence information introduced
by formula ordering. (Recall that the reduction ordering a is the transitive closure of the union
of the substitution relation and the formula ordering.) If at any point this graph becomes cyclic
as a result of the introduction of arcs and/or nodes to represent a particular unification, the
connection inducing that unification is inadmissible.

The unification of prefixes in S5 is equivalent to unification in a subset of first-order logic
containing only constants and variables, and not functions or terms. Consequently, the rep-
resentation used for prefixes, and the way in which they are unified, can be simpler than the
corresponding mechanisms within the implementation for first-order logic. For example, a sub-
stitution table must be maintained when performing unification in first-order logic to allow the
two unifications x +--+ f (a, b) and x +--+ f (b, a) to be distinguished. No such table is needed when
unifying prefixes in S 5 on the other hand, because all such unification is one-to-one. Similarly,
unification of S 5 prefixes is non-recursive, since there is never any need to "unpack" a term so

as to unify its subterms.

4.2.3 Reporting proof search.

In [Wa186] it was shown how a connection-based search for first-order logic could be interpreted
as constructing a generalised form of sequent (or tableau) proof. The derivations are "gener-
alised" because the choice of prefix at the reduction of a v type position is delayed until a later
date via the process of unification. The derivations are similar in spirit to those constructed
using Jackson and Reichgelt's sequent systems [JR87], or modal versions of Reeves' tableau
system [Ree87].

In the implementation, this correspondence was exploited by reporting the search for con-
nections as a sequence of applications of Kanger's sequent rules.

Remark. It is important to realize that the search is conducted at the level of connections.
The use of sequent rules for proof output is simply a matter of "pretty-printing" to provide
informative output. This should be contrasted with sequent based systems that search a much
larger space, full of redundancies, in order to obtain such "natural" reporting facilities [BT75].

While this is a powerful result, many problems remain. We shall mention two.

Firstly, the naive translation of connections into sequent derivations (partial proof trees)
does not produce an intuitively satisfying sequent proof (even though this proof is correct).
The problem lies in the fact that although each individual connection can be reported as an
intelligible derivation, the juxtaposition of derivations corresponding to successive connections
does not necessarily result in any recognisable pattern.

Attempts were made to change the order in which reduction steps were displayed so as to
make the resulting output more comprehensible, including printing some sequences bottom-up
and others top-down, but no simple solution was found. Some ad hoc mechanisms incorporated
into the theorem prover were useful. For example, when a position representing an implication
is reduced, the theorem prover will print either

Rule: - >C or Rule:A- >

depending on whether the consequent or antecedent branch of the formula tree is being pursued.
Work by Andrews and his colleagues [And80,Mil84] may prove useful in this context even

though these authors are concerned with the presentation of a complete proof expressed in terms
of connections as a natural deduction or sequent calculus proof. Here we are concerned with
the reporting the proof search directly.

The second problem concerns S 5 and modal logics in general. For these logics even well-
formed sequent proofs are not intelligible since propositions may be true in one context and
false in another; sequent proofs are not appropriate for the display of these contexts. A display
facility based on the box diagrams of [HC68] is one possible approach.

5 Related work.

A number of authors have developed computationally oriented proof systems for S 5. Some are
based on clausal resolution (eg., [Far83]) since S5 does admit a modal clausal form. Bibel's
comparison of the classical connection calculus with classical clausal techniques in [Bib82b]
suffice to demonstrate the benefits of our approach.

Abadi and Manna [AM86] develop a system based on non-clausal resolution. Their system
suffers from various combinatorial problems due to the fact that the modal operators are ma-
nipulated by special deduction rules. The application of resolution is severely restricted. Our
use of prefixes and unification removes the need for the special rules and liberates the use of
the basic resolution operation (making a connection).

Konolige system [Kon86] involves the construction of multiple tableaux. Resolution is re-
stricted to operate within each tableau. Again the combinatorics of his system are not ideal;
indeed the construction of an auxiliary tableau is only justified in retrospect introducing many
sources of redundancy. Our use of prefixes eliminates the need to consider multiple tableaux.

6 Conclusions.

We have presented the theory and some details of an implementation of a computationally
efficient proof system for S 5 modal logic. The system is a variant on Bibel's connection calculus
for first-order logic. The implementation was developed in a straightforward manner from a
previous implementation of the connection calculus for first-order logic.

The basic techniques, summarised at the beginning of Section 3.1 were:

The search should be confined in the first instance to selecting instances of the basic
sequent schema of the appropriate sequent calculus. A process of unification together
with a reduction ordering should be used to ensure that a correct sequent proof could
be constructed at every stage without overcommitting the system to choices of particular
values for the "variable" constructs. (In the case of first order systems these variable
constructs are universally quantified variables. In the modal case the constructs are
prefixes denoting possible worlds.)

It was suggested in [Wa186] that the techniques applied here to what is in effect the simplest
modal logic could be used to produce computationally efficient proof systems for more compli-
cated logics. We have succeeded in constructing a generalised connection calculus for the modal
logics K, K4, D, D4, T, S4 and S5, as well as both constant- and varying-domain versions
of their first-order variants. The details can be found in [Wa187]. In the latter case we can
deal with versions of the logics in which the so-called "monotonicity" condition holds between
worlds and versions in which no such condition holds. The generalised connection calculus is
specialised to a particular version of a particular logic by altering the admissibility conditions
on the modal substitution. All other details (including the methods for proof search) remain
the same.

Acknowledgements

This research was supported in part by SERC/Alvey grants GR/D/44874 and GR/D/44270,
and a British Council Commonwealth scholarship to the second author. We are indebted to
Richard O'Keefe who described the utility of the numbering method for formula trees adopted,
and Jane Hesketh who helped develop the bit string representation of integers in PROLOG.

References

[AM86] M. Abadi and Z. Manna. Modal theorem proving. In J.H. Siekmann, editor, 8th
International Conference on Automated Deduction, pages 172-189, July 1986. Lecture
Notes in Computer Science, Volume 230, Springer Verlag.

[And80] P.B. Andrews. Transforming matings into natural deduction proofs. In W. Bibel
and R. Kowalski, editors, 5th International Conference on Automated Deduction,
pages 281-292, 1980. Lecture Notes in Computer Science, Volume 87, Springer Verlag.

[And8l] P.B. Andrews. Theorem-proving via general matings. Journal of the Association for
Computing Machinery, 28(2):193-214, April 1981.

[Bib8l] W. Bibel. On matrices with connections. Journal of the Association for Computing
Machinery, 28(4):633-645, October 1981.

[Bib82a] W. Bibel. Automated Theorem Proving. Friedr. Vieweg & Sohn, Braunschweig, 1982.

[Bib82b] W. Bibel. A comparative study of several proof procedures. Artificial Intelligence,
18:269-293, 1982.

[BT75] W.W. Bledsoe and M. Tyson. The UT Interactive Prover. Research Report ATP-17,
Departments of Mathematics and Computer Sciences, University of Texas at Austin,
May 1975.

[CL73] C-L. Chang and R.C-T. Lee. Symbolic logic and mechanical theorem proving. Aca-
demic Press, 1973.

[Far83] L. Farinas-del-Cerro. Temporal reasoning and termination of programs. In S. Amarel,
editor, 8th International Joint Conference on Artificial Intelligence, pages 926-929,
1983.

[Fit72] M.C. Fitting. Tableau methods of proof for modal logics. Notre Dame Journal of
Formal Logic, XIII:237-247, 1972.

[Fit83] M.C. Fitting. Proof methods for modal and intuitionistic logics. Volume 169 of Syn-
these library, D. Reidel, Dordrecht, Holland, 1983.

[HC68] G.E. Hughes and M.J. Cresswell. An Introduction to Modal Logic. Methuen, Londe
1968.

[HM84] J.Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed
environment. In 3rd ACM Conference on the Principles of Distributed Computing,
pages 50-61, 1984.

[HM85] J.Y. Halpern and Y. Moses. A guide to the modal logics of knowledge and be-
lief:preliminary draft. In 9th International Joint Conference on Artificial Intelligence,
pages 479-490, 1985.

[JR87] P. Jackson and H. Reichgelt. A general proof method for first-order modal logic.
Submitted to IJCAI-87, 1987.

[Kan57] S. Kanger. Provability in logic. Volume 1 of Stockholm Studies in Philosophy,
Almqvist and Wiksell, Stockholm, 1957.

[Kon84] K. Konolige. A Deduction Model of Belief and its Logics. PhD thesis, Stanford
University, 1984.

[Kon86] K. Konolige. Resolution and quantified epistemic logics. In J.H. Siekmann, editor, 8th
International Conference on Automated Deduction, pages 199-208, July 1986. Lecture
Notes in Computer Science, Volume 230, Springer Verlag.

[Kow75] R. Kowalski. A proof procedure using connection graphs. Journal of the Associatic
for Computing Machinery, 22(4:572-595, 1975.

[Mil84] D.A. Miller. Expansion tree proofs and their conversion to natural deduction proo
In R.E. Shostak, editor, 7th International Conference on Automated Deductic
pages 375-393, May 1984. Lecture Notes in Computer Science, Volume 170, Spring
Verlag.

[Moo80] R.C. Moore. Reasoning about knowledge and action. Technical Note 191, SRI Inter-
national, Menlo Park, Ca., 1980.

[Pne77] A. Pneuli. The temporal logic of programs. In 18th Annual Symposium on Founda-
tions of Computer Science, pages 46-57, 1977.

[Ree87] S. Reeves. Semantic tableaux as a framework for automated theorem proving. In J.
Hallam and C. Mellish, editors, (This proceedings), Wiley & Sons, 1987.

[Smu68] R.M. Smullyan. First-Order Logic. Volume 43 of Ergebnisse der Mathematik,
Springer-Verlag, Berlin, 1968.

[Sti85] C. Stirling. Modal logics for communicating systems. Technical Report CSR-193-85,
Dept. of Computer Science, Edinburgh University, 1985.

[Wa183] L.A. Wallen. Towards the Provision of a Natural Mechanism for Expressing Domain-
Specific Global Strategies in General Purpose Theorem-Provers. Research Paper 202,
Dept. of Artificial Intelligence, Edinburgh, September 1983.

[Wa186] L.A. Wallen. Generating connection calculi from tableau- and sequent-based proof
systems. In A.G. Cohn and J.R. Thomas, editors, Artificial Intelligence and its Ap-
plications, pages 35-50, Wiley & Sons Ltd., 1986.

[Wa187] L.A. Wallen. Matrix proof methods for modal logics. In J. McDermott, editor,
10th International Joint Conference on Artificial Intelligence, Morgan Kaufmann Inc.,
1987. To appear.

[Wil86] G.V. Wilson. Implementation of a connection method theorem-prover for S5 modal
logic. Master's thesis, Department of Artificial Intelligence, University of Edinburgh,
1986.

Matrix proof methods for modal logics

Lincoln A. Wallen
Dept. of Artificial Intelligence

University of Edinburgh
Scotland

Abstract
We present matrix proof systems for both constant- and varying-domain versions of the

first-order modal logics K, K4, D, D4, T, S4 and S5 based on modal versions of Herbrand's
Theorem specifically formulated to support efficient automated proof search. The systems
treat the full modal language (no normal-forming) and admit straightforward implementations
using structure-sharing techniques. A key feature of our approach is the use of a specialised
unification algorithm to reflect the conditions on the accessibility relation for a given logic. The
matrix system for one logic differs from the matrix system for another only in the nature of this
unification algorithm. In addition, proof search may be interpreted as constructing generalised
proof trees in an appropriate tableau- or sequent-based proof system. This facilitates the use
of the matrix systems within interactive environments.

1 Introduction.

Modal logics are widely used in various branches of artificial intelligence and computer science as
logics of knowledge and belief (eg., [Moo80,HM85,Kon84]), logics of programs (eg., [Pne77]), and
for specifying distributed and concurrent systems (eg., [HM84,Sti85b]). As a consequence, the need
arises for proof systems for these logics which facilitate efficient automated proof search.

Traditional proof systems for modal logics, such as tableau- or sequent-based systems are readily
available (eg., [Kan57,Nis83,Fit83]). While these systems are to some extent human-oriented, the
proof rules form an inadequate basis for automated proof search since they generate search spaces
that contain considerable redundancies. The redundancies arise mainly from the characteristic
emphasis on connectives and the proof rules for modal operators and quantifiers.

The matrix methods for first-order classical logic, pioneered by Prawitz [Pra60], and further
developed by Andrews [And8l] and Bibel [Bib8l], have been demonstrated to be less redundant
than the most efficient of the resolution based methods for that logic [Bib82b]. The methods
combine an emphasis on connections (drawn from the resolution methods) with an intensional
notion of a path.

In this paper we present matrix proof systems for the modal logics K, K4, D, D4, T, s4 and s5,
based on modal versions of Bibel's "computationally improved" Herbrand Theorem for first-order
classical logic [Bib82c]. We consider both constant- and varying-domain versions of the first-order
modal logics.

The major features of our approach may be summarised as follows. Validity within a logic is
characterised by the existence of a set of connections (pairs of atomic formula occurrences: one pos-
itive, one negative) within the formula, with the property that every so-called atomic path through
the formula contains (as a subpath) a connection from the set (§ 2.4). Such a set of connections

Proceedings of the 10th International Joint Conference in Artificial Intelligence, pages 917-923, Morgan Kaufmann Inc.,
1987.

1

is said to span the formula. For classical propositional logic this condition suffices [And8l,Bib8l].
For first-order logic a substitution (of parameters or terms for variables) must be found under
which the (then propositional) connections in the spanning set are simultaneously complementary.
Conditions are placed on the substitution that ensure amongst other things that a proof within a
particular tableau- or sequent-based proof system is constructable from the connections and the
substitution [Bib82c,Wa186]. This basically amounts to ensuring that the restrictions found on the
traditional quantifier rules can be met.

For the propositional modal logics we keep the basic matrix framework but define a notion
of complementarity for atomic formulae that ensures the existence of a proof in one of Fitting's
prefixed tableau systems [Fit72,Fit83]. This amounts to ensuring that, semantically: the two
atomic formulae of a connection can be interpreted as inhabiting the same "possible world," and
proof-theoretically: that they can be given the same prefix (§ 2.5.1). The key observation is that
this can be established by noting the position of the atoms relative to the modal operators in the
original formula and utilising a specialised unification algorithm operating over representations of
these positions. Clearly, this notion of complementarity is logic-dependent, a dependence which
is reflected in the choice of unification algorithm. Lifting these results to first-order constant-
domain modal logics is simply a matter of combining this modal notion of complementarity with
the first-order notion (§ 2.5.2).

For the varying-domain versions we index individual variables with the prefix of their quantifier.
The substitution of one variable for another is permitted provided their prefixes can be unified
(§ 2.5.2).

Checking a formula for validity within a modal logic is therefore reduced to a process of path
checking and complementarity tests performed by a specialised unification algorithm (§ 3). During
this process extra copies may need to be considered of universally quantified formulae and/or
formulae dominated by a modal operator of "necessary" () force. The duplication in both cases
is managed by an extension of Bibel's indexing technique or multiplicity [Bib82a] which supports
the implementation of the matrix systems using structure-sharing techniques [BM72]. The notions
of multiplicity, substitution and spanning sets of connections form the basis of the relationship
with Herbrand's Theorem.

A number of authors have attempted to adapt computationally oriented proof systems for first-
order logic to the modal logics considered here (eg., [Far83], [AM86a], [Kon86]). We compare our
approach favourably to theirs in Section 4.

2 The modal matrix systems.

2.1 Preliminaries.

We assume familiarity with the usual definition of the modal language and formulae. We let A, B
range over formulae and P, Q range over atomic formulae.

A pair (G, R), comprising a non-empty set G and a binary relation R on G is called a frame.
Let D be some non-empty set. A first-order frame over D is a triple (G, R, P) where (G, R) is a
frame and P is a mapping from G to non-empty subsets of D. P(w) can be interpreted as the set
of individuals that "exist" in the world w.

We can obtain different versions of the first-order logics by restricting the way in which P
varies from world to world. For example, we could require the constant-domain condition: for
w, w' E G, P(w) = P(w'). Axiomatically, constant-domain modal logics are obtained by including
the so-called Barcan formula Vx Ax = VxAx as an additional axiom. Our purpose here is not
to choose between these possibilities but to develop matrix proof systems for each of the variants.

If we restrict R to satisfy the conditions outlined in Table 1, we say that (G, R, P) is an L-frame
over D, where L is the logic associated with the conditions. The "idealization" condition is that

2

£
K
K4
D

D4
T
s4
S5

Condition on R
no conditions
transitive
idealization
idealization, transitive
reflexive
reflexive, transitive
equivalence

Table 1: Conditions on accessibility relations.

for every element w E G there is some element w' E G such that w R w'. Once again our purpose
is not to choose between these logics but to develop matrix proof systems for each.

An £-model over D is a pair ((G, R, P), II-) where (G, R, P) is an £-frame over D and [I- is a

relation between elements of G and sentences such that: for all w E G

1. W II-AABiffwll- Aandwll- B.

2. w II- A V B iff either w ll- A or w Il- B.

3. w - A B if either wII74A or w Il- B.

w - A if wIIVA.

w I- A iff for all v E G with w R v, v II- A.

w II- QA if for some v E G with w R v, v ll- A.

w II- VxA if for all d E P(w), w II- A[d/x].

8. w II- 3xA if for some d E P(w), w II- A[d/x].

Satisfaction in a model and validity are defined as usual.
A signed formula is a pair (A, n) where A is a formula and n E { 0,1 }. We let X, Y range over

signed formulae. Informally, the signs "1" and "0" should be interpreted as the qualifiers "is true"
and "is false" respectively. For ease of exposition we use a uniform notation due to Smullyan and
Fitting that classifies signed formulae according to their sign and major connective/operator as
shown in Table 2.

2.2 Formula occurrences.

A formula tree for a signed formula is a variant of its formation tree containing additional informa-
tion as to the polarity of its subformula occurrences (i.e., whether an occurrence of a subformula
is negative or positive within the formula). It is best explained by example. A formula tree for
the signed formula (X Vx (QPx A Qx) = Q(VyPy A VzQz), 0) is shown in Figure 1. Following
Bibel [Bib82c], we name the nodes or positions of the tree (ao-a14) so as to distinguish different oc-

currences of the same subformula. With each position we associate the polarity of the subformula
rooted at that position and a label consisting of the major connective/operator of that subformula,
or the subformula itself when that is atomic. We use < to denote the (partial) ordering in the
formula tree. Positions form the basis for implementations of the matrix systems using structure-
sharing techniques [BM72]. A position should be interpreted as a pointer to a single copy of the
main formula stored in computer memory. Unlike resolution-based methods, these matrix methods
do not require the explicit generation of intermediate formulae.

3

a a1 a2 I/ vo It 'Yo

AAB,l A,1 B,1 DA,1) (A,1) `dxA, l A,1
(A V B, 0) (A, 0) (B, 0) (QA, 0) (A, 0) (3xA, 0) (A, 0)

(A = B, 0) (A, 1) (B, 0)

(-,A,1) (A, 0) (A, 0)
(-A, 0) (A,1) (A, 1)

Q

AAB,O
(A V B,1)
(A = B,1)

Nl
A,0)

(A,1)
(A, 0)

/92 7r

(B, o) (D -AO)
(B, 1) (<:>A, 1)

(B,1)

70 6

(A,0) `xA,0
(A, 1) (3xA, 1)

Table 2: Classification of signed formulae.

ao (= , 0)

ao

A, 0

(A,1)

(,1) a2 alo (A, 0)

(Vx, 1) as (Vy, 0) all a13 (`dz, 0)

(A, 1) a4 (Py, 0) a12 a14 (Qz, 0)

(,1)a5 a7(D,1)

(Px,1) a6 as (Qx,1)

Figure 1: Formula tree for (Q)Vx (QPx A D Qx) Q(VyPy A VzQz), 0).

(,1) al ag (0, 0)

4

In terms of analytic tableau systems [Smu68,Fit83], the polarity of a position determines the
sign with which the subformula rooted at that position will occur on any analytic tableau which
has the main (signed) formula as root [Wa186]. Therefore, the classification of signed formulae can
be extended to the positions of a formula tree by defining the type of a position to be the type of
the signed formula rooted at that position in the tree. In addition, we consider the root node of
the formula tree to be of lro type.

Notice that each position has two types: its principal type (eg., a, ,Q, v, ...) is determined by its
label and polarity, while its secondary type (eg., all a2, ,Ql, ...) arises from the type of its parent.

For a given formula tree we use k, 1, possibly subscripted, to denote positions and Lo, no, ro
and Do to denote the sets of positions of type vo, lro, yo and 6o respectively.

2.3 Multiplicities.

The semantic clauses for interpreting formulae whose major symbol is a modal operator of "nec-
essary" force (i.e., v-type) or a quantifier of "universal" force (i.e., -y-type) indicate that we must
consider multiple instances of the principle subformula of such a formula occurrence (i.e., formulae
rooted at vo- and -10-type positions respectively within a formula tree). In the modal case we
intend different instances to inhabit different worlds; in the case of a quantified formula, we form
different instances by the substitition of different parameters for the (universally) bound variable.

The following definitions are introduced for a given formula tree for a given signed formula X.
A function µM from Vo to the positive integers is called a modal multiplicity for X; it serves to

encode the number of instances of subformulae of X in the scope of a modal operator of necessary
force considered within a putative proof.

A function uQ from ro to the positive integers is called a first-order multiplicity for X; it serves
to encode the number of instances of subformulae of X in the scope of a quantifier of universal
force considered within a putative proof.

A multiplicity p for X is the combination of a modal and first-order multiplicity thus: for a
position k of the formula tree

I FPM (k), k E Lo;

lu(k) = uQ(k), k E ro;
undefined, otherwise.

If A is a multiplicity for X we define the (indexed) formula tree for the indexed formula Xµ as
a tree of indexed positions of the form k", where k is a position of the basic formula tree for X
and rc is a sequence of positive integers defined as follows: if ki < k2 < < kn < k, 1 < n, are
those vo- and -10-type positions that dominate k in the basic formula tree for X, then

XG1(31i2... n) 11<7i<_IL(ki), 1<i<n}.
The ordering in the indexed tree <1` is defined in terms of the ordering on the underlying tree: for
indexed positions k" and IT

k" <1` IT iff k < l and r = xO,

where 0 is some sequence of positive integers. The polarity and label of an indexed position k" is

taken to be the same as the polarity and label of its underlying position k except that, in the case

of atomic formulae, individual variables are indexed with the index of the child of their quantifier
position (i.e., a yo or 6o position) so as to distinguish the different instances. Consequently, indexed
positions inherit the type of their underlying position also.

Figure 2 shows the indexed formula tree for the example formula of Figure 1 with a multiplicity
of UQ(a4) = 2 and constant (i.e., 1) otherwise. As a convention we omit indices consisting of the
empty sequence.

5

ao (=*-, 0)

(n,1) a(l)

(O,1) a(,l)
a(1)I

(0,I)

`Px0)'
1)a6l)

a,') (Qx(l),1)

(O,1) a1 aq (O, 0)

10

(x,1) as (dY, O) aii) ais (dz, 0)

i

((1) a

(O,1)lai7) 0771(0)1)

(P1`')' 1)
a67) a°7) (Qx(2),1)

(I //I
`PYIh) O) ail) aii) (Qz(1)' 0)

Figure 2: Indexed formula tree

We let u, v, possibly subscripted, range over indexed positions when we are not interested in
the index, and drop the superscript on <. We abuse our notation and let Lo, lIo etc, denote the
sets of indexed positions of an indexed formula tree of the appropriate types. Henceforth we shall
refer to indexed positions simply as positions.

Remark. Bibel's notion of a multiplicity [Bib82a] corresponds to our notion of a first-order
multiplicity. We have altered his definition slightly to support the symmetry between the treatment
of modal operators and quantifiers obtained above. Notice that, for an indexed formula, the set
ro and the set of distinct universally quantified variables, and the set Ao and the set of distinct
existentially quantified variables in the formula are in 1-1 correspondence. We shall make use of
this observation in the sequel. a

2.4 Paths and connections.

Let X" be an indexed formula. A path through X" is a subset of the positions of its formula tree
defined below. We shall use s, t, possibly subscripted, to denote paths, and adopt the notation s[a"]
to denote a path s with an occurrence of a distinguished a-type position with index rc. Similarly
for the other types. The set of paths through X", is the smallest set such that:

1. { ko } is a path, where ko(is the root position of the formula tree for X";

2. if s[a"] is a path, so is (s - {a"}) U {al", a2"};

3. if s[/j"] is a path, so are (s - {p"}) U {Ql"} and (s U 102r-};

4. if s[v"] is a path, so is s U {vo"i }, 1 < j < PM(vo);

5. if s[7r"] is a path, so is s U {7ro"}.

6. if s[ry"] is a path, so is s U {ryo"y}, 1:5 j < PQ(-to);

7. if s[d"] is a path, so is s U {do"}.

I

6

The path (s - {a"}) U {a1", a2"} is said to have been oozazned by reduction on a" from s[a"].
Similarly in the other cases.

Each path s through X determines a set (branch or sequent) of positions as follows

S(s)={xI x<y for some yEs}.
A path, s, through XI` is an atomic path if for k' E s, either

(a) k is labelled by an atomic formula; or

(b) kEL,andforall j, 1<j</LM(vo), vo"1ES(s);or

(c) k E I', and for all j, 1 < j < /LQ(ryo), io"1 E S(s).

Remark. Our definition of path differs from Andrews' [And8l] and Bibel's [Bib8l] definition
so as to demonstrate the relationship between the matrix methods and tableau/sequent methods.
Each clause in the definition, when interpreted as operating on the branch associated with the
path, corresponds to an analytic tableau rule [Smu68,Fit83]. A path is a representation of the
unused formulae on a branch. Furthermore, for a given multiplicity, the branch associated with
an atomic path is complete. These relationships are discussed in more detail in [Wa186]. 0

Consider our example (signed) formula:

(OOVx (OPx A O Qx) O(VyPy AVzQz), 0)

indexed as in Figure 2. If we distinguish its a-type subformulae from its /3-type subformulae by
placing the components of the former side-by-side and the components of the latter one above the
other, we obtain a nested matrix thus:

O Vb (py(1))
OObx C O (Px(1)) A (Qx(1))/ l (\ O (Px(2))

A 0 (Qx(2))) A
Vz (Qz(1))

Notice that the two instances of the subformula Px A Qx are considered to be the components of
an implicit a-type formula. This follows from the ry clause (6) of the definition of paths above. If
we omit the connectives and operators we are left with the skeleton matrix:

(Px(1) Qx(1)) (Px(2) Qx(2))

py(1)

Qz(1)

which corresponds in part to the so-called "deep formula" in the expansion tree approach of Miller
[Mil84].

The atomic elements of an atomic path are simply the horizontal matrix paths through such
a matrix. In this case there are two atomic paths through the formula, one with atomic elements
{ Px(1), Qx(1), px(2), Qx(2), Py(1) } and one with elements { Px(1), Qx(1), px(2), Qx(2), Qz(1) }.
More precisely, we should express these sets as positions thus:

1
a(1) a(1) a(2) a(2) a(1) } and

1
a(1) a(1) a(2) a(2) a(1) 6 8 6 8 12 a6 8 6 x 8 14

A connection in an (indexed) formula is a subpath of a path through the formula consisting
of two positions labelled by an atomic formula with the same predicate symbol but of different
polarities. A set of connections is said to span the formula just when every atomic path through
it contains a connection from the set.

For example, the two connections { a61), a12) } and { a81), a14) } span the indexed formula

}. displayed above. So does the connection pair
1

a6 l), a12)
1

and { a82), a14 (1)

7

2.5 Complementarity.

As remarked above, for a given multiplicity, the atomic paths through an indexed formula serve
to represent the branches of a complete analytic tableau with the main formula at its root. In the
same spirit, we wish to interpret connections as the two formula occurrences that atomically close
the branches on which they occur.

For propositional logic, connections are complementary by definition. Since there is no need for
multiplicities (no modal operators or quantifiers) this observation leads to a simple characterisation
of validity.

Theorem 2.5.1 (Andrews [And8l], Bibel [Bib8l]) A propositional formula A is valid if there
exists a set of connections that spans (A, 0).

This theorem is the matrix counterpart to the following theorem for analytic tableaux:

Theorem 2.5.2 (Smullyan [Smu68]) A propositional formula A is valid iff there exists an
atomically closed analytic tableau for (A, 0).

The matrix theorem is more appropriate as a basis for automated proof search because there
is no need to actually construct a tableau. The spanning condition simply ensures that a tableau
of the appropriate form can be constructed; we search for a spanning set of connections directly
rather than via the connective oriented tableau rules [Wa186].

In the presence of modal operators and quantifiers we must be more careful. We deal with
modal operators first.

2.5.1 Propositional modal systems.

Informally we must ensure that the two atomic formulae represented by the positions of a con-
nection can be considered to inhabit the same possible world. In terms of tableaux, this involves
synchronising the choices of possible worlds made during the reduction of the modal (sub)formulae
that contain these atomic formulae as subformulae; or, in terms of positions, the reduction of the
v- and 7r-type positions that dominate the positions of the connection in the formula tree.

The following definitions are introduced for a given (indexed) formula tree for a given (indexed)
formula Xµ.

Let TM denote the union of 1/o and llo. We associate a sequence of positions called a prefix,
denoted pre(u), with each position u of the formula tree as follows: if u1 < u2 < < u,a < u,
1 < n, are those TM-elements that dominate u in the formula tree, then

(ul u2 un), K, K4, D, D4, T, S4; pre(u) (un), S5.

The prefix of a position encodes its modal context within the formula tree. We shall use p, q to
denote prefixes.

For example, the prefix of a6ll is (aoa2a3aG1)) while the prefix of a1(l2)
is aoaM

We can place various conditions on a binary relation Ro C TM x TM as shown in Table 3.

Such a relation is an £-accessibility relation provided it satisfies the properties associated with £
in Table 4.

Remark. These definitions are adapted from Fitting [Fit72,Fit83]. Each prefix "names" a
possible world. Since the positions of the (indexed) formula tree correspond to signed subformulae
of Xµ, a position taken together with its prefix corresponds to his notion of a prefixed signed

(sub)formula. The prefix identifies the world in which the subformula is taken to be true or false
depending on its sign. Binary relations on prefixes are thus used to represent the properties of the
accessibility relation for a given logic. 0

8

Property
general
reflexive
transitive

L
K, D

T
K4, D4

S4

S5

Condition: For p, q E TM
pR0pq, Iq =1
pRop
pRopq, lqI? 1

Table 3: Prefix conditions.

Properties of R0
general
general, reflexive
general, transitive
general, reflexive, transitive
every prefix accessible from every other prefix

Table 4: Accessibility on prefixes.

We have indicated that the two positions that constitute a connection must be interpreted
as inhabiting the same possible world; i.e., have the same prefix. We ensure this by building a
modal substitution am under which the prefixes of the positions are identical. The discussion below
motivates the ensuing definitions.

Consider a v-type position u with prefix p. The semantic clause for the subformula rooted at u
allows us to conclude that the subformula rooted at the child of u, say v, has the same truth value
(sign) in any world accessible from the world denoted by p. By definition, the prefix of v is (pv)
since v is of v0-type. Tables 3 and 4 give us the conditions under which a prefix can be considered
to be accessible from p.

Take D4 for example. Any prefix of which p is a proper initial subsequence will be accessible
from p. Consequently, if we consider v to be a "variable" and allow it to be instantiated under
some mapping am: VO -+ Tj to any non-empty sequence we can guarantee that the image of
(pv) under (the homomorphic extension of) am will be accessible from the image of p under (the
homomorphic extension of) am. In the case of S4, we allow v to be instantiated with any sequence
including the empty sequence to reflect the reflexivity of the S4 accessibility relation. For S5, since
our notion of prefix is different, we need only consider unit sequences as possible instantiations for
such "variables."

Now consider a 7r-type position u with prefix p. The semantic clause for the subformula rooted
at u allows us to conclude that the subformula rooted at the child of u, say v, has the same truth
value (sign) as u in some world accessible from the world denoted by p. Again, by definition, the
prefix of v is (pv) since v is of a 7ro-type. From the tables we can see that (pv) itself is accessible
from p by virtue of the fact that accessibility relations on prefixes for all of the logics satisfy the
general condition. Consequently we consider 7ro-type positions as "constants" under the mappings
am introduced above. In the context of a tableau proof, the choice of this possible world must be
arbitrary; i.e., the prefix (pv) must be new to the tableau. The "constant" v can only be introduced
in a prefix by the reduction of v's parent u, or by the reduction of a v-type position introducing a
"variable" (a v0-type position) whose image under am contains v. To preserve soundness therefore,
we must ensure that the former can occur before the latter.

A modal substitution am: VO -+ TM induces an equivalence relation "'M and a relation CM on
TM x TM as follows:

1. If QM (u) = v for some v of vo-type, then u ^'M v.

2. If am(u) = p and p is not a unit sequence consisting of a vo-type position, then for all v p,

9

v cm u; where -< is the subsequence relation on TM.

3. IfvCMuandu -MU', then v EM U'.

A modal substitution am is £-admissible provided

1. am respects ,-accessibility relations R0i i.e., for all p, q E TM,

p R0 q implies o'M(p) R0 a' (q)

where a# M: TM - TM is the homomorphic extension of am to TM.

2. (K-logics only) u ^'M u' implies v CM u (and hence v CM u') for some position v.

3. 1 = (< U CM)+ is irreflexive, where CM is the relation induced by am described above.

The appropriate notion of complementarity for the propositional modal logics under consider-
ation is as follows: (for an indexed formula X") if am is an £-admissible modal substitution for
X" a connection { u, v } in X1' is said to be am -complementary iff

1. am#(pTe(u)) = a#it(pTe(v)).

Remarks. The relation v CM u should be interpreted as a prescription that "position v should
be reduced before position u," in the sense of tableaux. The relation a is called the reductio
ordering. Its irreflexivity ensures that we could construct an analytic tableau with X as root usin,
the generic prefixes instantiated by am, so that all of the restrictions on prefixes mentioned abovo
are met. This method of representing the restrictions on traditional modal tableau rules is an
adaptation of the method used by Bibel [Bib82a] for the classical quantifier rules.

Suitable mappings can be computed using variants on a string-unification algorithm. In all
cases the set of most general unifiers is finite but not necessarily a singleton [Sie84]. For S5 the
standard unification algorithm suffices. The admissibility check is an check for acyclicity if < is
interpreted as a directed graph.

The extra condition for the K-logics is a translation into the current setting of Fitting's notion
of a used prefix. Basically, since these logics are not idealizable we must ensure that each prefix
(under am) of a v0-type position (formula) has been introduced by the reduction of a it-type
position (formula) beforehand.

We have proved the following theorem:

Theorem 2.5.3 A propositional modal formula A is £-valid iff there is a modal multiplicity 11M,

an £-admissible modal substitution arm and a set of arm -complementary connections that spans the
indexed formula (A, 0)1A".

The proof involves showing that starting from a tableau with (A, 0) at its root we can con-
struct an atomically closed prefixed tableau by following the reduction ordering induced by the
substitution, and prefixing each subformula with the image under the substitution of the prefix of
its root position. The multiplicity indicates the number of times a given v-type formula is reduced
to form the tableau. Completeness involves showing that a suitable modal multiplicity µM can
be constructed to form a modal Hintikka set from the set associated with any non-complementary
atomic path (i.e., unclosed branch) through (A, 0)""

Although we have used tableau systems to motivate the definition of the matrix systems, no
tableau construction is actually performed in the use of such methods. The theorem above is
utilised directly. (See Section 3.)

10

2.5.2 First-order modal systems.

Extending the propositional matrix systems presented above to first-order modal logics is straight-
forward. We consider both constant- and varying-domain versions.

For constant-domains, a pair of atomic formulae labelling the positions of a connection can
be interpreted as complementary if we can find a first-order substitution vq of parameters for
individual variables that render the two atoms identical.

For varying-domains, the modalities and quantifiers interact. Universally quantified variables
only range over those individuals that "exist" in the world denoted by the prefix of their quantifiers.
Existential quantifiers express the existence of individuals only in the world denoted by their
prefixes. Consequently, our first-order substitution vq must respect the modal substitution 0M.

Instead of introducing an explicit set of parameters we note that there is a 1-1 correspondence
between ro and the set of distinct universally bound variables, and Oo and the set of distinct
existentially bound variables within the indexed formula. Consequently first-order substitutions
are considered over these positions rather than individual variables. Notice that the position
corresponding to the individual variable x quantified at a position u is the child of u in the formula
tree.

More formally, let Tq denote the set ro u Do. A first-order substitution is a mapping vq: ro --
Tq. For soundness, we must place restrictions on first-order substitutions to ensure that the
positions representing parameters introduced for existentially bound variables (Do) are indeed ar-
bitrary. In terms of tableaux, we must ensure that such positions are introduced (by the reduction
of their parent) before the introduction of any position representing a universally bound variable
which receives the same parameter under the substitution vq. The similarity between these restric-
tions on quantifier reductions and the restrictions on modal operator reductions is not accidental
[Smu70].

A first-order substitution vq: ro -- Tq induces an equivalence relation --q and a relation Cq
on Tq x Tq as follows:

1. If vq(u) = v for some v of -yo-type, then u --q v.

2. If vq(u) = v for some v of bo-type, then v Cq u.

3. If v Cq u and u --q u', then v Cq u'.

A combined substitution is a pair consisting of a modal substitution and a first-order substitu-
tion. A combined substitution (arm, vq) is £-admissible provided

1. aM respects .C-accessibility relations, as before.

2. (K-logics only) u ..,M u' implies v CM u (and hence v CM u') for some position v.

3. d = (< U CM U Cq)+ is irreflexive, where CM and Cq are the relations induced by arm

and vq respectively as described above and in § 2.5.1.

For constant-domains the appropriate notion of complementarity is as follows: (for an indexed
formula Xµ) if or is an £-admissible combined substitution for Xµ, a connection { u, v } in X," is
or-complementary iff

1. orm* (pTe(u)) =or* (pTe(v)).

2. aq(label(u)) = vq(label(v)).

For varying domains complementarity is defined in the following way: (for an indexed for-
mula Xµ) if or is an £-admissible combined substitution for Xµ, a connection { u, v } in X'" is
or-complementary iff

11

1. C3* (pre(u)) = QM(pre(v)).

2. QQ(label(u)) = QQ(label(v)).

3. If QQ(u') = v', then a' (pre(u')) = of (pre(v')).

Note the addition of the third clause by which the modal and first-order substitution interact.
Remark. We have blurred the distinction between an individual variable and the position that

represents it in order to state the second condition.
Consequently we have:

Theorem 2.5.4 A (first-order) modal formula A is L-valid iff there is a multiplicity 14, an
admissible combined substitution a and a set of a-complementary connections that spans the indexed
formula (A, 0)µ.

Once again we utilise tableau techniques to prove this theorem.

3 Proof search in the matrix systems.

The matrix systems presented above reduce the task of checking a modal formula for validity
to one of path checking and complementarity tests. The path checking is performed by adding
connections to a set and eliminating all those atomic paths that contain the new connection. If all
atomic paths can be eliminated in this manner, the formula is valid. Complementarity tests are

performed as each connection is added. Bibel [Bib82b,Bib82a] shows how some of the standard
resolution search strategies can be utilised for this process. His results carry over to our modal
systems without change.

Consider the example (indexed) formula of Figure 2. Ignoring the first-order features for the

moment, the connection { a61), a12) } gives rise to the problem of unifying the prefixes (aoa2a3ae1))

and (aoa o), where we have overlined the vo-type ("variable") positions. We can immediately see

that such a connection cannot be made (propositionally) complementary (condition 1) unless the
accessibility relation of the logic is transitive. If this is the case, the (most general) unifier sends

a o to the sequence
a2a3a61)

The second connection { a8(l)3 a14 } gives rise to the problem of unifying the prefixes (aoa2a3a81))

and (aoa o). Since a ti has the value a2a3a61) under the current modal substitution, we can make

the two connections (propositionally) complementary if we send as1) to a61) .

Consider now the first-order features of our example formula. In addition to the modal substi-
tution we must build a first-order substitution which unifies the labels of the connections.

For the first connection we must unify PxM with Py(l). This gives rise to the problem of

unifying a41) with a12) . The most general unifier simply maps the former position to the latter.
So far so good. Consider now the second connection. That gives rise to the problem of unifying
Qx(1) with Qz' ', i.e., a41) with a14 . Clearly we cannot build a consistent mapping for 41) which
unifies both labels.

Due to the multiplicity of a4 there is an alternative connection { a(2), a14 } which together with

the first also forms a spanning set (§ 2.4). Propositionally, this connection gives us the problem of

unifying (aoa2a3a82) and I aoa o) which is easily accomplished by mapping a82 to a611 (recall

that a10 is already mapped to a2a3a61)). At the first-order level we must unify Qx(2) and Qz('),

i.e., a42) with a14 which can now be accomplished.

12

41)

Connection
1. a(1) a(i) 6 12

2. asl), ai4

2'. a(.2), ai4

(1) _(1)
ag as ar, as

Figure 3: Reduction relation for connections 1 and 2'.

M-prefix
aoa2a3a

1 ,aoa1

6 io

aoa2a3a81), aoaio

aoa2a3as2), aoaio

QM QQ Q-prefix
41 (1) 4 (1)) alo --, a2a3a6 a4 , a12

aoa2a O

aa8 a(o1) _(1)
a4

(1) , a14 aoa2a3, aoaio

as2) a6l) -(2)
a4

(1) , a14 aoa2a3, aoaio

propositional: o-(pre(u)) = a* (pre(v)) II

constant-domain: oQ(IabeI(u)) = oQ(Iabel(v))

varying-domain: foroQ(u') = v', o -(pre(u')) = am(pre (v'))

Table 5: Connections and unification problems.

The reduction ordering induced by these substitutions is shown as a graph in Figure 3. Notice
that it is cyclic. It is easy to show that no increase in multiplicity can overcome this. Consequently
we conclude that the formula is not valid in the first-order constant domain versions of the transitive
logics.

We can also check the third condition to determine the status of the formula with respect to
the varying-domain logics. Our first-order substitution mapped a41) to a12 and a(2) to a14). The

1 prefix of a() is (aoa2a3 while the prefix of a12 is (aoio). Under the modal substitution this 4

latter prefix becomes (aoa2a3ag1)). Since these two prefixes cannot be unified the connections

are not complementary in the varying-domain logics. (Notice that we do not even get as far as a
cyclicity check in this case.) The prefixes and unifiers are summarised in Table 5.

The path checking process may be interpreted as constructing proof trees in a prefixed tableau
or sequent based proof system where the prefixes contain "Skolem" variables and are interpreted
as "Skolem" functions. The appropriate systems are similar in spirit to those of Jackson and
Reichgelt [JR87]. This has been utilised in implementations to provide a human oriented interface
to the search [WW87]. Note that we are concerned with an interface to the search itself rather
than the presentation of an already constructed proof for which the techniques of [And80,Mi184]
are applicable.

13

4 Related work

There are two main approaches for extending resolution techniques to modal logics. The first
is to restrict the syntactic form of formulae, so that an appropriate modal clausal-form may be
defined, and apply clausal resolution techniques (eg., [Far83]). Bibel's comprehensive comparison
of clausal resolution-based methods and his matrix method for first-order logic [Bib82b] suffices
to demonstrate the advantages of proof search based on the matrix approach for modal logics
presented above.

The second approach is to restrict the application of the resolution rule to modal contexts in
which it is sound. In semantic terms this means utilising resolution within each possible world.
Inference across possible worlds is performed by another mechanism. Abadi and Manna's systems
[AM86a,AM86b], based on non-clausal resolution [MW80,Mur82], form perhaps the most com-
prehensive extension of resolution techniques to modal logics along these lines. The mechanism
they employ to manage modalities are Hilbert-style deduction rules which are used to conjoin new
formulae. For example, the modal deduction rules for S5 are:

Ml: A, QB --Q (A A B) M3: A --, A
M2: QA, QB --' Q(QA A B) M4: A --' A.

While hand proofs using these systems can be short, the search spaces they generate are quite
redundant due to the connective-based rules for manipulating modalities. Combinations of M3
and M4 must be aplied to facilitate the application of M1 and M2. Only when complementary
subformulae are moved into the same modal context in this manner can the resolution rule be
applied. Moreover, since the systems are generative, rules remain applicable to old formulae
throughout the proof. This should be compared with our connection-based approach and the
calculations used to establish validity illustrated in the previous section. In the example there, the
propositional structure of the formula defined the space to be searched (four possible connections).
The modal operators were dealt with using a unification algorithm.

Konolige's systems [Kon86] are based on tableau systems (one tableau for each possible world).
Ordinary resolution is utilised within each tableau and a version of Stickel's Theory-resolution
[Sti85a] used to manipulate modalities by creating new tableaux. Search is complicated by the
need to choose suitable sets of formulae to form these new tableaux. The use of theory resolution
is not effective, in the sense that an arbitrary amount of search must be performed to determine
that the generation of a given resolvent is indeed sound. Konolige proposes the use of multiple
refutation procedures to overcome these problems.

Acknowledgements

This research was supported in part by SERC/Alvey grants GR/D/44874 and GR/D/44270.

References

[AM86a] M. Abadi and Z. Manna. Modal theorem proving. In J.H. Siekmann, editor, 8th Inter-
national Conference on Automated Deduction, pages 172-189, July 1986. Lecture Notes
in Computer Science, Volume 230, Springer Verlag.

[AM86b] M. Abadi and Z. Manna. A timely resolution. In Proceedings of Symposium on Logic in
Computer Science, pages 176-186, June 1986.

[And80] P.B. Andrews. Transforming matings into natural deduction proofs. In W. Bibel and R.
Kowalski, editors, 5th International Conference on Automated Deduction, pages 281-292,
1980. Lecture Notes in Computer Science, Volume 87, Springer Verlag.

14

[And8l] P.B. Andrews. Theorem-proving via general matings. Journal of the Association for
Computing Machinery, 28(2):193-214, April 1981.

[Bib8l] W. Bibel. On matrices with connections. Journal of the Association for Computing
Machinery, 28(4):633-645, October 1981.

[Bib82a] W. BibeL Automated Theorem Proving. Friedr. Vieweg & Sohn, Braunschweig, 1982.

[Bib82b] W. Bibel. A comparative study of several proof procedures. Artificial Intelligence,
18:269-293, 1982.

[Bib82c] W. Bibel. Computationally improved versions of Herbrand's Theorem. In J. Stern, edi-
tor, Proceedings of the Herbrand Symposium, Logic Colloquium '81, pages 11-28, North-
Holland Publishing Co., 1982.

[BM72] R.S. Boyer and J.S. Moore. The sharing of structure in theorem-proving programs. In
B. Meltzer and D. Michie, editors, Machine Intelligence 7, pages 101-116, Edinburgh
University Press, 1972.

[Far83] L. Farinas-del-Cerro. Temporal reasoning and termination of programs. In S. Amarel,
editor, 8th International Joint Conference on Artificial Intelligence, pages 926-929, 1983.

[Fit72] M.C. Fitting. Tableau methods of proof for modal logics. Notre Dame Journal of Formal
Logic, XIII:237-247, 1972.

[Fit83] M.C. Fitting. Proof methods for modal and intuitionistic logics. Volume 169 of Synthese
library, D. Reidel, Dordrecht, Holland, 1983.

[HM84] J.Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed environ-
ment. In 3rd ACM Conference on the Principles of Distributed Computing, pages 50-61,
1984.

[HM85] J.Y. Halpern and Y. Moses. A guide to the modal logics of knowledge and be-
lief.preliminary draft. In 9th International Joint Conference on Artificial Intelligence,
pages 479-490, 1985.

[JR87] P. Jackson and H. Reichgelt. A general proof method for first-order modal logic. Sub-
mitted to IJCAI-87, 1987.

[Kan57] S. Kanger. Provability in logic. Volume 1 of Stockholm Studies in Philosophy, Almgvist
and Wiksell, Stockholm, 1957.

[Kon84] K. Konolige. A Deduction Model of Belief and its Logics. PhD thesis, Stanford Univer-
sity, 1984.

[Kon86] K. Konolige. Resolution and quantified epistemic logics. In J.H. Siekmann, editor, 8th
International Conference on Automated Deduction, pages 199-208, July 1986. Lecture
Notes in Computer Science, Volume 230, Springer Verlag.

[Mil84] D.A. Miller. Expansion tree proofs and their conversion to natural deduction proofs. In
R.E. Shostak, editor, 7th International Conference on Automated Deduction, pages 375-
393, May 1984. Lecture Notes in Computer Science, Volume 170, Springer Verlag.

[Moo80] R.C. Moore. Reasoning about knowledge and action. Technical Note 191, SRI Interna-
tional, Menlo Park, Ca., 1980.

15

[Mur82] N.V. Murray. Completely non-clausal theorem proving. Artificial Intelligence, 18:67-85,
1982.

[MW80] Z. Manna and R. Waldinger. A deductive approach to program synthesis. ACM Trans-
actions on Programming Languages and Systems, 2(1:90-121, 1980.

[Nis83] H. Nishimura. Hauptsatz for higher-order modal logic. Journal of Symbolic Logic,
48(3):744-751, September 1983.

[Pne77] A. Pneuli. The temporal logic of programs. In 18th Annual Symposium on Foundations
of Computer Science, pages 46-57, 1977.

[Pra6O] D. Prawitz. An improved proof procedure. Theoria, 26:102-139, 1960.

[Sie84] J.H. Siekmann. Universal unification. In Shostak R.E., editor, 7th International Con-
ference on Automated Deduction, pages 1-42, May 1984. Lecture Notes in Computer
Science, Volume 170, Springer Verlag.

[Smu68]

[Smu70]

[Sti85a]

[Sti85b]

[Wa186]

R.M. Smullyan. First-Order Logic. Volume 43 of Ergebnisse der Mathematik, Springer-
Verlag, Berlin, 1968.

R.M. Smullyan. Abstract quantification theory. In J. Myhill and R.E. Vesley, editors,
Intuitionism and Proof Theory, pages 79-91, North Holland, Amsterdam, 1970.

M.E. Stickel. Automated deduction by theory resolution. Journal of Automated Reason-
ing, 1:333-355, 1985.

C. Stirling. Modal logics for communicating systems. Technical Report CSR-193-85,
Dept. of Computer Science, Edinburgh University, 1985.

L.A. Wallen. Generating connection calculi from tableau- and sequent-based proof sys-
tems. In A.G. Cohn and J.R. Thomas, editors, Artificial Intelligence and its Applications,
pages 35-50, Wiley & Sons Ltd., 1986.

[WW87] L.A. Wallen and G.V. Wilson. A computationally efficient proof system for S5 modal
logic. In J. Hallam and C. Mellish, editors, Advances in Artificial Intelligence, John
Wiley & Sons, 1987. Proceedings of AISB87, Edinburgh, Scotland, April 1987.

16

	PhD coversheet April 2012
	EDI-INF-PHD-87-014.pdf

