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Abstract 

In this thesis we develop efficient methods for automated proof search within 

an important class of mathematical logics. The logics considered are the vary- 

ing, cumulative and constant domain versions of the first-order modal logics 

K, K4, D, D4, T, S4 and S5, and first-order intuitionistic logic. The use of 

these non-classical logics is commonplace within Computing Science and Artifi- 

cial Intelligence in applications in which efficient machine assisted proof search 

is essential. 

Traditional techniques for the design of efficient proof methods for classical 

logic prove to be of limited use in this context due to their dependence on 

properties of classical logic not shared by most of the logics under consideration. 

One major contribution of this thesis is to reformulate and abstract some of these 

classical techniques to facilitate their application to a wider class of mathematical 

logics. 

We begin with Bibel's Connection Calculus: a matrix proof method for clas- 

sical logic comparable in efficiency with most machine orientated proof methods 

for that logic. We reformulate this method to support its decomposition into 

a collection of individual techniques for improving the efficiency of proof search 

within a standard cut-free sequent calculus for classical logic. Each technique 

is presented as a means of alleviating a particular form of redundancy manifest 

within sequent-based proof search. One important result that arises from this 

anaylsis is an appreciation of the role of unification as a tool for removing cer- 

tain proof-theoretic complexities of specific sequent rules; in the case of classical 

logic: the interaction of the quantifier rules. 

All of the non-classical logics under consideration admit complete sequent 

calculi. We anaylse the search spaces induced by these sequent proof systems 

and apply the techniques identified previously to remove specific redundancies 

found therein. Significantly, our proof-theoretic analysis of the role of unifi- 

cation renders it useful even within the propositional fragments of modal and 

intuitionistic logic. 



The result is a set of matrix proof methods for the modal and intuitionistic 

logics considered, that, we argue, are more efficient than the other proof methods 

suggested in the literature for this class of first-order logics. We are careful in 

our generalisation of the matrix method so that search strategies developed for 

use with Bibel's classical matrix method remain applicable in conjunction with 

our non-classical matrix methods. 

In summary: we successfully formulate demonstrably efficient matrix proof 

methods for automated proof search within a comprehensive class of first-order 

modal logics and first-order intuitionistic logic. In so doing we isolate general 

techniques for the design of efficient proof systems which may be applicable to 

other classes of mathematical logic encountered in the future. 
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Chapter 1 

Introduction. 

1.1 The problems and their solution. 

The research reported in this thesis is concerned with the automation of proof 

search within mathematical logics. It lies in the area of automated theorem 

proving (ATP). In this context, our main problem is to formulate efficient meth- 

ods for automated proof search within an important class of non-classical logics 

comprising: 

the modal logics: K, K4, D, D4, T, S4 and S5, and 

intuitionistic logic. 

These logics, and their derivatives, are in widespread use within Computing 

Science and Artificial Intelligence, mostly in applications that require efficient 

methods of proof search. 

Whilst our particular problem is easily stated, there are suprisingly few meth- 

ods immediately to hand for its satisfactory solution. ATP has traditionally 

concentrated on the automation of proof search within classical logic, hence the 

emergence of the term "non-classical" to denote logics that differ semantically 

from classical logic. Not only has attention centered on one particular logic, but 

1 



also on a collection of techniques built around refinements of Robinson's resolu- 

tion inference system for that logic [Rob65]. Unfortunately these techniques are 

not directly applicable to non-classical logics because they require a particular 

normal-form which, in general, does not exist for such logics. 

Part of our solution is to look outside of the resolution paradigm and de- 

velop more abstract techniques that are not dependent on the properties of one 

particular logic. We note that a suitable level of abstraction does exist since all 

of the logics we are interested in admit straightforward sequent proof systems 

(see eg., [Fit83]). Sequent calculi were originally developed by Gentzen [G69] as 

proof-theoretic tools for the analysis of proof within classical and intuitionistic 

logic. We start with an efficient proof method, and a cut-free sequent calculus 

for classical logic. The efficient proof method is Bibel's Connection Calculus 

[Bib82a,Bib82c]: a highly efficient matrix characterisation of validity for classi- 

cal logic. We analyse the proof search space induced by the sequent calculus and 

identify three classes of redundancy within it. The classification of the redun- 

dancies is not based on any features pertaining particularly to classical logic. We 

then (re)formulate the Connection Calculus as a collection of individual, theoret- 

ically motivated, techniques for removing these particular redundancies from the 

search space. The net result is the identification of fairly general techniques for 

the alleviation of certain sequent-based redundancies. We have the beginnings 

of a general theory of efficient proof system design. 

We then repeat the analysis, starting with cut-free sequent calculi for the 

modal logics under consideration. We identify similar redundancies in the modal 

search space as appeared in the classical case. We proceed to remove them by 

adapting the appropriate techniques identified in the original analysis. The result 

is a set of matrix characterisations of validity for the propositional and first-order 

versions of the modal logics K, K4, D, D4, T, S4 and S5, including their varying, 

cumulative and constant domain variants (a total of 20 distinct modal logics in 

all). 

Next we turn to intuitionistic logic and repeat the derivation. Once again 

we start with a cut-free sequent calculus and analyse the redundancies in the 
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induced search space. The formulation of a matrix characterisation of validity 

for intuitionistic logic follows in the same manner as for the modal logics. 

The resulting characterisations support proof search in exactly the same way 

as Bibel's original characterisation of classical logic. Consequently, the search 

methods that he and Andrews have already developed carry over without change 

to the modal and intuitionistic systems [And8l,Bib8l,Bib82b]. In [Bib82b], Bibel 

compares these methods (for classical logic) favourably with the most efficient 

refinements of resolution. His results serve to demonstrate the degree of efficiency 

we have achieved for the automation of proof search within the non-classical 

logics under consideration. 

One slightly unexpected contribution of our analysis of the problems of proof 

search in modal and intuitionistic logics is that we are able to give a compre- 

hensive classification of the redundancies within the alternative proof systems 

proposed in the literature for automated proof search in these logics. It turns out 

that all of them contain redundancies not shared by our matrix characterisations 

(and some contain other, more serious problems as well). 

To summarise: our contribution is two-fold, 

We have succeeded in formulating efficient matrix proof methods for an 

important class of non-classical logics, and have therefore solved our main 

problem. 

We have identified powerful techniques for improving the efficiency of 

sequent-based proof procedures in general. These techniques can be ap- 

plied individually when and where the prerequisite conditions apply, in 

particular, to develop efficient methods of proof search in non-classical 

logics. 

We believe that this research is an important contribution to the field of auto- 

mated theorem proving. 

In the rest of this introductory chapter we consider the elements of the above 

argument that we do not concern ourselves with in the main body of this thesis. 
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In §1.2, we present the motivation for our interest in the efficient automation of 

proof search within non-classical logics in general, and modal and intuitionistic 

logics in particular. In § 1.3, we define for the purposes of this thesis what is meant 

by the "efficiency" of proof procedures for a given logic, and how that efficiency 

may be improved. Since we do not go into the detail of proof procedures based 

on the matrix characterisations of validity developed in the thesis, in §1.4 we 

motivate our interest in this type of characterisation as a basis for practical proof 

procedures. For those readers not familiar with matrix-based proof procedures 

we include a short description of a simple example. Finally, in §1.5 we outline 

the structure of this thesis. 

1.2 Problem solving by computer. 

Mathematical logic is an important tool for both the theory and practice of Com- 

puting Science and Artificial Intelligence. Analytical techniques from logic form 

the basic toolkit for the mathematical investigation of computational concepts 

ranging from the semantics of programming languages (eg., [GMW79,Mar82]), 

through the properties of distributed systems (eg., [Sti85b,HM84]), the integrity 

and structure of databases (eg., [Gra84]), the representation of knowledge and 

belief [Kon86,HM85], to the semantics of natural language [DWP81]. In many 

of these applications, logic is not only used as a mathematical tool for analysis 

but also as a practical tool for the representation and processing of information 

(data). Our concern in this thesis is precisely this practical use of mathematical 

logic as a formalism for representing and solving problems using a computer. 

Mathematical logic, as a branch of mathematics, is primarily concerned with 

the notion of logical consequence. A logic typically consists of a formal language 

for writing sentences to represent information, and a consequence relation, 1=, 

between sentences and sets of sentences. F 1= A expresses the fact that the 

sentence A "follows from," or is a "logical consequence of," the set of sentences 

F. If A follows from the empty set of sentences, we say A is valid in the logic. 
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Consequence relations are usually defined abstractly via an interpretation of 

the formal language in some mathematical structure. This structure forms the 

semantics of the logic (see eg., [CK73j). 

There is a powerful method of solving problems using a combination of math- 

ematical logic and a computer. Suppose we are given a problem to solve in some 

domain. Suppose also that we have an algorithm that can determine whether 

or not a given sentence of the logic is valid. If we can represent our problem as 

a sentence of the logic in such a way that the original problem is solved if and 

only if the sentence representing it is valid, then we can solve our problem by 

executing the validity checking algorithm with the sentence as input. This prob- 

lem solving method is utilised extensively in the applications mentioned above. 

Deductive problems can obviously be solved in this way, but even problems such 

as program synthesis can be transformed into such an inferential paradigm (see 

eg., [MW80,Mar82,Con86j). In fact, one could argue that by viewing the logical 

language as a programming language, and the validity checking algorithm as an 

interpreter, this problem solving method is simply a generalisation of program- 

ming itself [Kow79]. 

The problem solving method outlined above is based on two suppositions: 

1. that we can faithfully represent our informal problem as a sentence of the 

logic, and 

2. that we have a suitable algorithm for checking the validity of sentences of 

the logic. 

Unfortunately, these two criteria are antagonistic. 

The representation of a complex problem within a given domain as a sentence 

(or sentences, if our algorithm checks logical consequence) of a formal logic is 

not an easy task. The difficulty lies in ensuring that the sentence is a faithful 

representation of the problem and the domain. This is eased if the semantics of 

the logic captures some general properties of the domain. For example, suppose 
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our domain required reasoning about information flow through a complex sys- 

tem and concerned the information available to components of the system. If 

the formal language of the logic chosen to represent the problem contains oper- 

ators whose semantics mirror the way in which information can flow throughout 

the system we will be able to interpret sentences in the language informally, 

enhancing our ability to judge whether the formalisation of the problem is faith- 

ful. The representation of our problems within such a language will therefore 

be conceptually easier than if the semantic structure of the logic bore no re- 

semblance whatsoever to the structure of the domain. (This is analogous to the 

ease a programmer might have in implementing a given recursive function in a 

programming language with explicit recursion, compared to a language without 

it.) 

To summarise: in order to facilitate the correct representation of domains and 

problems we need logics whose semantics captures general properties of those do- 

mains. Typically then, each domain will require a specific logic. Turner [Tur84] 

summarises a large number of domain-specific logics developed or adapted for 

such representational use in Computing Science and Artificial Intelligence. Clas- 

sical logic is just one such logic. Non-classical logics are the norm rather than 

the exception for such applications. Of course classical logic, being particularly 

general, can be used in situations where its semantic basis is not appropriate 

by encoding the structure of the domain explicitly. Following the programming 

language analogy: we could code our solutions to complex problems in a uniform 

assembly language; classical logic being that assembly language. 

Unfortunately, as soon as the semantics of a logic becomes non-trivial, check- 

ing sentences for validity in the logic becomes difficult. Practically though, we 

can still solve problems in the manner outlined above provided we are careful 

about the way we formulate the algorithms. This is the main topic addressed in 

this thesis in relation to modal and intuitionistic logics. 

Modal logics, in particular, are used extensively in various branches of Arti- 

ficial Intelligence and Computing Science as logics of knowledge and belief (eg., 

[Moo80,HM85,Kon84]), logics of programs (eg., [Har79,Pne771), and for such 
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tasks as the specification of distributed and concurrent systems (eg., [HM84, 

Sti85b]). In many - if not all - of these applications the need arises for proof 

systems which facilitate efficient automated proof search. 

Modal logics are extensions of classical logic obtained by including the (unary) 

modal operators and Q, the operators of necessity and possibility respectively. 

They arose from a desire to formalise notions such as possibility. Hughes and 

Cresswell's book [HC681 is a good introduction to the field of modal logics. 

Whilst modal logics are extremely popular currently, the author's original 

technical goal was to formulate an efficient proof procedure for intuitionistic 

logic [Dum77]. This logic (and other formal systems with an intuitionistic basis) 

has been identified as perhaps the central logic for capturing basic computa- 

tional constructs. The crucial semantic notion that they formalise is that of 

"construction" as can be seen from the intuitionistic interpretation of implica- 

tion [Dum77]: 

p is a proof of A = B if it is an effective operation that takes any proof 

of A into a proof of B. 

As motivation for the material presented in this thesis, intuitionistic logics are 

being proposed as logics for program derivation. The problem of constructing 

an algorithm that satisfies a given specification is mapped onto the problem of 

proving the specification within an intuitionistic logic (see eg., [Mar82,Con86]). 

The logics are usually typed, and a proof of the sentence: 

Vx E A.3y E B.R(x, y) 

within these intuitionistic logics defines a function, f, that takes an element 

a, of the type A, to an element f (a) of the type B, such that R(a, f (a)) holds. 

Although the design of algorithms is a difficult task, some aspects of this theorem- 

proving process are amenable to automation. For that, we need efficient proof 

methods for automated proof search in such logics. 
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1.3 The efficiency of proof procedures. 

In this section we define what we mean by the "efficiency" of a proof procedure, 

and outline the criteria by which we relate different proof procedures in the 

sequel. 

There are currently no general methods for comparing the efficiency of two 

arbitrary proof procedures. The situation resembles the comparison of the effi- 

ciency of different programming languages. The procedures may run on different 

machines, or may require the setting of parameters, or the input of the problem 

in a certain form, and so on. Typically, benchmark problems are used to provide 

a primitive method of comparison. 

Following Meltzer [Me171], we can decompose a proof procedure into two 

components: 

an inference system, and 

a search strategy. 

Inference systems are simply calculi, or refinements of calculi. For example, 

the sequent calculus is an inference system for classical logic; so is the resolution 

rule of inference. Given a sentence, an inference system induces a search space of 

legal inference steps in which may lie proofs (or more generally: demonstrations 

of the validity) of the sentence, if it is valid. We can define the completeness 

of an inference system in the usual way, in terms of whether or not every valid 

sentence has a proof in the search space induced by the inference system. 

Search strategies are methods of traversing the space induced by an inference 

system. We can talk about the completeness of a search strategy in terms of 

whether or not it searches the entire search space. 

In this thesis we are primarily concerned with inference systems. Our goal is 

to define inference systems that induce as small a search space as possible, and 
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yet still remain complete. When we talk of "redundancies in a search space" we 

mean that the space contains a class of interior nodes (derivations or some other 

form of intermediate state) which can be uniformly eliminated by altering the 

inference system without losing completeness. If a suitable modification is made, 

the search space induced by the new inference system on an arbitrary problem 

is wholly contained within the search space induced by the old inference system 

for that problem. We say the new system is more efficient than the old. We talk 

of a redundancy being "removed" from the old system to form the new one. 

We could potentially run into problems in trying to relate the matrix char- 

acterisations to the other inference systems proposed in the literature for modal 

and intuitionistic logics. However, 

The sequent/tableau proof systems [Fit83,Fit69] are easy to relate to the 

matrix characterisations since we show explicitly how the latter are refine- 

ments of the former. 

The clausal resolution systems [Far82,Far83,Far86] do not treat the full 

modal language and so are flawed in that respect. Moreover, in [Bib82b] 

Bibel carefully compares refinements of clausal resolution with various 

proof procedures based on the matrix characterisations. He defines proce- 

dures that simulate the most efficient of the clausal resolution techniques. 

The non-clausal resolution systems developed for these logics [AM86a, 

AM86b] constitute the most comprehensive extension of resolution-based 

ideas to modal logics. However, the use of resolution is restricted and ex- 

plicit deduction rules rules are used to manipulate the modal operators. 

These proof systems turn out to induce extremely redundant search spaces. 

We describe how these redundancies arise mainly from the failure to deal 

with the order dependence of the modal rules. 

The hybrid resolution/ tableau systems [Kon84,Kon86] are not effective, in 

that arbitrary search is required to determine the correctness of a single 
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inference. The relationship of these systems with the matrix characterisa- 

tions is easily established due to their basis in tableaux. 

In fact, using our analysis of the redundancies in sequent-based proof search we 

are able to give a comprehensive classification of the redundancies within these 

alternative proof systems. 

1.4 Matrix-based proof search. 

In this section we motivate our interest in extending classical matrix methods to 

non-classical logics, as opposed to other styles of proof procedure. 

1.4.1 Matrices, paths and connections. 

The basic idea of the matrix methods, dating back to Prawitz' procedures 

[Pra60], is that a formula of classical logic can be represented as a two-dimension- 

al matrix. For example, the formula: 

(P=:>- Q)A(Q=*- R) =*- (P=R) 

can be seen as the matrix: 
P0 Q° 

u A u (P' = R°) 

Q1 R' 
Or, omitting the connectives: 

QO 

Q1 R' 

(P1 R°) 

This matrix consists of four columns. There is a natural notion of path through 

such a matrix. A path is a set of atomic elements, one from each column of the 

matrix. Two such paths are shown below. 
--- P°---QR' °-- ---P° Q° 

.(P'- - -R°) -- {P' - - -R°)- - 

Q' Q1 '- -R1 
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One way of identifying the matrix representation of a formula is eliminate all 

connectives except conjunctions and disjunctions, and push the negation symbols 

down to the atomic level. This equivalent form of any classical formula is called 

its negation normal-form. The negation normal-form of our example formula is: 

(PA -iQ) V (QA -iR) v (-iPvR) 

If we now replace a negated atom -iP by P1, and an unnegated atom P by P° 

we get: 

(P° A Q1) V (Q0 A R1) V (P1 V R°) 

The superscript of an atom is called its polarity. 

Finally, placing the components of a conjunction vertically, and the compo- 

nents of a disjunction side-by-side, and omitting the connectives, we obtain the 

matrix given above. Since disjunction is associative and commutative, we can 

reorganise the columns (disjunctsl of the matrix thus: 

P1 R° 

Se 
R1 

Notice that this does not affect the contents of the paths through the matrix. It 

should be noted that the matrix is a human aid for describing the method. No 

normal-forming is needed to define the paths through it. 

A connection (hence: "Connection Calculus") is a pair of atomic formula 

occurrences in some path with different polarities, i.e., {P1, P°}. We say they 

are complementary. Bibel and Andrews' characterisation of validity for classical 

propositional logic is as follows: 

THEOREM 1.1 (ANDREWS [AND81], BIBEL [BIB81]) A propositional for- 

mula is classically valid if and only if every path through the (matrix representa- 

tion of the) formula contains a complementary connection. That is, there exists 

a set of connections in the formula (matrix) that are said to span it. 

This characterisation translates the problem of checking a formula for validity 

(in classical logic) into a path-checking problem: i.e., checking that every path 

through the formula contains (as a subpath) a connection. In the next section 

we consider how this path-checking can be performed. 
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1.4.2 Matrix-based proof procedures. 

Both Bibel [Bib8l,Bib82a,Bib82c], and Andrews [And8l] develop proof proce- 

dures based on matrix characterisations of validity for classical logic. Bibel 

[Bib82b] shows that such procedures are comparable in efficiency with the stan- 

dard refinements of resolution (and more efficient in most cases). 

These proof procedures decompose into two components: 

a path-checking algorithm, and 

a method for testing the complementarity of two atomic formula occur- 

rences. 

For proof search in propositional logic, the second component is trivial; we need 

only test whether two atoms are the same proposition, and have different po- 

larities. For first-order logic Robinson's unification algorithm [Rob65] can be 

utilised to test atoms for complementarity. The two atomic formulae of a con- 

nection must unify. 

The crucial point is this: Bibel shows in [Bib82b] that the central component 

of such a proof procedure is the path-checking component. Provided the test 

for complementarity is computationally tractable, it can be called on demand as 

potential connections are identified. Each complementary connection serves to 

check all of the paths of which it is a subpath. The differences between many 

(resolution-based) proof procedures for classical logic can be analysed in terms 

of how many of the paths they successfully eliminate from consideration out 

of the set of paths that they are entitled to eliminate given a complementary 

connection. We refer the reader to Bibel's paper [Bib82b] for more details. 

The other side of this coin is that real improvements in the efficiency of proof 

procedures are obtained by elaborating on this theme and trying to increase the 

number of paths eliminated by each connection. Bibel and his co-workers have 

developed many such efficient algorithms (see [Bib77,Bib82a,HB82] for example). 
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We describe a simple path-checking procedure below for concreteness. For a 

tutorial introduction to these methods the reader is referred to [Bib83]. 

The matrix representation of the example formula of the last section is: 

P0 Qo 

P1 Ro 

T 

Q1 R1 

We choose a column (indicated by the vertical arrow) and an element of that 

column (indicated by the horizontal arrow). Next we search for a complementary 

atom in the remainder of the matrix (formula). We identify the occurrence of P° 

in the second column. This pair forms our first connection. We now eliminate 

all paths through the matrix that contain that connection. These paths are all 

those that pass through P' in the first column, continue into the second through 

P°, and proceed onwards through the matrix. We move our vertical column 

marker to the second column and a horizontal marker to the second row of that 

column indicating that we are only interested in the paths that pass through 

the first column and continue through the second element of the second column. 

(We indicate the connection made with an arc.) 
Po Qo 

P1 Ro 

Q 1 

T 

R1 

We now search for an atom in the remainder of the matrix that is comple- 

mentary to Q1. We find Q° (of course) and repeat the path elimination process 

outlined above. Our markers become: 
P0 Qo 

P1 / R° 

-+ Q1 --> R1 

T 

Notice how the horizontal markers keep a check on the set of paths we have yet 

to consider, namely those that pass through P1 of the first column, Q' of the 

second column, R' of the third column, and continue into the rest of the matrix. 
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Repeating the process for R' we make the final connection and, since there 

are no paths left to check, the formula is proved valid by the three connections: 

/,-Po Qo 

P1 7 Ro 

Q1 R1 

We refer the reader to Bibel's book for a more detailed account of such path- 

checking algorithms. 

1.4.3 Path-checking algorithms for non-classical logics. 

In the main body of this thesis we confine ourselves to a theoretical development 

of matrix characterisations of validity and do not develop any particular proof 

procedures based on these characterisations. We now justify this decision. 

For each (non-classical) logic that we consider, we define what is meant by a 

"path" through a formula and how two atomic formulae may be complementary. 

These notions are thus logic-dependent. The validity of a formula is still captured 

in terms of the existence of a spanning set of connections, but with the notion 

of path and complementarity construed in this logic-dependent manner. 

In fact, we go further. The logic-dependent component of the notion of a path 

does not affect the propositional part of the definition which gives us the basic 

matrix framework. In essence, the modal and intuitionistic matrix representation 

of a formula is the same as the classical definition. The distinction between, say, 

intuitionistic and classical logic, which share the same first-order language, is 

captured solely in terms of the definition of complementarity. Moreover, we 

show that the logic-dependent complementarity tests are tractable, for all of 

the non-classical logics considered, and can be implemented by the standard 

unification algorithm or minor modifications of existing equational unification 

algorithms. 

Consequently, the path-checking algorithms developed for classical logic carry 

over with no change to the non-classical logics that we consider. For example, 

an implementation of a matrix-based proof procedure for S5 modal logic was 
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developed by making minor modifications to a matrix-based proof procedure for 

classical logic [WW87,Wi186]. 

Note that we are not saying that the complexity of checking a propositional 

formula valid in (propositional) intuitionistic or modal logic is the same as the 

complexity of checking the formula classically valid. The former problems are 

(excluding S5) PSPACE-complete, and the latter NP-complete. For classical 

propositional logic we need only consider one instance of the formula as our 

matrix, and check the paths through that. If we find a non-complementary 

path, we can conclude that the formula is falsifiable (and hence not valid). For 

the propositional fragments of both intuitionistic logic and the modal logics 

(excluding S5) we must consider additional "instances" of certain subformulae 

as well as the basic formula before we can conclude that the formula is falsifiable. 

This duplication increases the number of distinct paths through a formula and 

hence the number we have to check. The duplication is reminiscent of Herbrand's 

Theorem for first-order logic. To summarise: we can determine the validity of a 

formula in all of the logics with roughly the same computational resources, but, 

if we cannot immediately prove it valid, the space we must search in order to 

demonstrate its falsifiability is much larger in the intuitionistic and modal cases 

than in the classical case. This provides us with an interesting perspective on 

the role of complexity results in automated theorem proving. 

1.4.4 Summary 

In this section we have motivated our interest in extending matrix proof methods 

to non-classical logics. We have also outlined the properties of the classical 

matrix methods that we preserve in the non-classical matrix methods so as to 

render existing proof procedures applicable for the path-checking component of 

the search. We have also outlined a simple path-checking procedure for those 

readers not familiar with this work. 
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1.5 The structure of the thesis. 

We have motivated our interest in efficient proof methods for non-classical logics 

(§1.2) and outlined the criteria we use to define the relative efficiency of proof 

procedures (§1.3). We have also indicated why we are interested in extending ma- 

trix proof methods (as opposed to other types of proof method) to non-classical 

logics and the properties of such methods that the extension must preserve to 

retain their computational properties (§1.4). 

The thesis is divided into three parts, each dealing with proof search in a 

different logic or class of logics. 

Part I: In this part of the thesis we are concerned with automated proof search 

in classical logic. The part contains two chapters. 

Chapter 2: In this chapter we analyse and classify the redundancies in 

the search space induced by a standard sequent calculus for classical 

logic. 

Chapter 3: In this chapter we present Bibel's Connection Calculus: a 

matrix characterisation of validity for classical logic, as a collection of 

theoretically motivated techniques for removing specific redundancies 

inherent in sequent-based proof search. 

Part II: This part of the thesis is concerned with modal logics. It forms the 

main body of the thesis and comprises five chapters. 

Chapter 4: In this chapter we present the syntax and semantics of the 

modal logics K, K4, D, D4, T, S4 and S5. We also present standard 

sequent calculi for a subset of these logics. 

Chapter 5: In this chapter we analyse redundancies in the search space 

induced by the modal sequent calculi. Good use is made of the some- 

what logic independent classification developed in Part I to classify 
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these redundancies and thus prepare the way for the application of 

the appropriate techniques for their removal. 

Chapter 6: In this chapter we develop the matrix characterisations of 

validity for the target modal logics. We prove the characterisations 

correct and complete. This is the main theoretical chapter of the 

thesis. 

Chapter 7: In this chapter we demonstrate properties of automated proof 

search based on the modal matrix characterisations. In particular, we 

demonstrate that the search spaces induced by the matrix character- 

isations are free from the redundancies identified within the sequent 

search space. We also discuss: 

The use of equational unification algorithms that form central 

components of proof procedures based on the modal matrix char- 

acterisations. 

The use of the matrix characterisations to develop efficient de- 

cision procedures for the propositional fragments of the target 

modal logics. 

This is the main evaluation chapter in the thesis. 

Chapter 8: In this chapter we discuss the relative merits of the other 

major proposals in the literature for the efficient automation of proof 

search in similar classes of modal logics. This is the main related work 

chapter. 

Part III: This part of the thesis is concerned with first-order intuitionistic logic. 

Chapter 9: In this chapter we repeat for the case of intuitionistic logic 

the development given in Part II for the modal logics. We present 

and analyse a standard sequent calculus for this logic, then proceed 

as before to develop a matrix characterisation of validity using the 

(by now) well-tried techniques identified in Part I. 
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Chapter 10 concludes the thesis with a summary and evaluation of the results 

obtained and a survey of interesting open problems, technical developments and 

alternative applications of the techniques developed and employed in this thesis. 
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Part I 

Automated Proof Search in 

Classical Logic. 
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Summary. 

In this initial part of the thesis we present a theoretical reconstruction of Bibel's 

Connection Calculus [Bib82a]: a matrix characterisation of validity for first-order 

classical logic. Our main contribution is not the final characterisation arrived 

at, which is essentially that given by Bibel in [Bib80,Bib82c], but the systematic 

method by which we develop it. That method is as follows: 

First, we analyse the proof search space induced by a standard, cut-free, 

sequent calculus for classical logic. We identify three problems of redun- 

dancy: 

- Notational redundancy: considerable duplication of the same infor- 

mation. 

- Relevance: the inclusion in the search space of branches that cannot 

lead to a proof. 

- Order dependence: the need to explore alternative branches in the 

search space that differ only in the order in which certain sequent 

rules are applied. 

Then we present the major features of the matrix characterisation, as prin- 

cipled methods for removing these redundancies. 

In this way we view the matrix characterisation as a collection of theoretically 

motivated techniques for removing the redundancies inherent in sequent-based 

proof search, rather than as an adhoc proof method for classical logic (as it has 

been seen in the past). In short: we derive, or generate, the matrix characteri- 

sation from consideration of a cut-free sequent proof system [Wa186]. 

In Parts II and III we use the techniques identified in this part of the thesis to 

formulate matrix characterisations of validity for modal and intuitionistic logics 

respectively. We consider these results to be ample evidence of the power of the 

analysis presented here. 
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To reiterate: our contribution is not the formulation of the matrix charac- 

terisation for classical logic itself (which is essentially due to Bibel), but the 

identification of individual abstract techniques within Bibel's work for the re- 

moval of specific redundancies in sequent search spaces. We are then able to 

apply the techniques individually to other logics when and where they are ap- 

plicable. As a particular case in point, consider our analysis of unification as a 

method for overcoming the order dependence of the sequent rules for quantifiers. 

The utility of unification for dealing with the substitutional aspects of classical 

quantifiers is well-known, but, in our opinion, the use to which it can be put in 

the automation of proof search in non-classical logics has not been apparent due 

to the traditional emphasis on Skolemisation within resolution-based systems. 

At best, it is seen as a technique for dealing with the quantificational aspects 

of such logics (see eg., [AM86a,Kon86]). We show in Parts II and III that as 

a proof-theoretic tool for removing dependence on the application order of se- 

quent rules unification can play a crucial role in the formulation of efficient proof 

procedures even for propositional modal and intuitionistic logics. 

This part of the thesis comprises two chapters. In Chapter 2 we present a 

standard cut-free sequent calculus for classical logic and analyse the search space 

of derivations it induces. We identify the redundancies mentioned above by 

means of examples. In Chapter 3, taking each redundancy in turn, we introduce 

the appropriate theoretical structure to support its elimination from the search 

space. The final result is a matrix characterisation of validity for classical logic. 
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Chapter 2 

Sequent-based proof search in 

classical logic. 

2.1 Introduction. 

In this chapter we present a standard cut-free sequent calculus for classical logic 

and analyse some properties of the search space induced by this inference sys- 

tem. Our attention is focussed on the suitability of the calculus as a basis for 

automated proof search. 

First we review the language and semantics of classical logic for the sake 

of completeness (§2.2). Readers familiar with this material can safely skip this 

section. After that we introduce the sequent calculus and some terminology for 

the ensuing discussion (§2.3). In §2.4, we consider how the calculus can be used 

to search for proofs and describe the search space of derivations that it induces. 

Finally, in §2.5 we identify three problems of redundancy in this search space 

by means of examples. In Chapter 3 we formulate specific techniques for the 

removal of these redundancies. These techniques are abstractions of methods 

used by Bibel in the formulation of his Connection Calculus for classical logic 

[Bib80,Bib82c]. 
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2.2 Syntax and semantics. 

In this section we review the syntax and semantics of classical logic. This ma- 

terial is included for completeness and, since it is standard, the presentation 

is brief. Readers are referred to Smullyan's book [Smu68] for a more detailed 

development in the same style. 

2.2.1 Syntax. 

We consider a first-order language comprising: 

1. A denumerable list of n-ary predicate symbols P", Q", ..., for each natural 

number n. 

2. A denumerable list of individual variables x, y, z, (possibly subscripted). 

3. An infinite set of individual constants c, d, (possibly subscripted). 

4. The sentential connectives A, V, = and 

5. The quantifiers V and 3. 

As usual we assume the sets of symbols to be disjoint. We omit the arity of 

predicate symbols when it is clear from the context or irrelevant. We shall refer 

to the variables and constants together to be the individual symbols. 

REMARKS. The above definition defines a class of languages dependent on 

particular choices of predicate, variable, and constant symbols. We assume some 

fixed set of predicate and variable symbols but allow the set of constants of the 

language to vary. If C is a set of constants, by "a first-order language over C" 

we mean a language defined as above whose constant symbols are among C. 

Notice that the language contains no function symbols. We impose this 

restriction because it simplifies our discussions below. The matrix characterisa- 

tions developed in the next chapter are therefore subject to this restriction. We 
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stress: the restriction is for technical convenience only. In a concluding section 

of the next chapter we show explicitly how this restriction can be lifted. (END 

OF REMARKS.) 

Formulae can be defined inductively according to the following formation 

rules. The atomic formulae are n + 1-tuples Pcl ... c, , where P is an n-ary 

predicate symbol and the c;, i = 1, ... , n, are individual symbols (i.e., variables 

or constants). The set of formulae is the smallest set such that: if A and B are 

formulae, and x is an individual variable, 

the atomic formulae are formulae; 

-iA, A A B, A V B and A = B are formulae; 

VxA and 3xA are formulae. 

We shall use A, B and C as meta-variables ranging over formulae. 

Notions such as "free" and "bound" occurrences of individual variables within 

a formula are defined as usual, as is the notion of the substitution of an individual 

constant c for a free variable x in A, denoted by A[c/x]. We shall not repeat the 

definitions explicitly here. Formulae with no free occurrences of variables are 

called sentences. Pure sentences are those containing no constants. 

Immediate and free immediate subformulae are defined as follows: 

A is an immediate (and a free immediate) subformula of -,A; both A and 

B are immediate (and free immediate) subformulae of A A B, A V B and 

A = B. 

For any individual constant c, individual variable x and formula A, A[c/x] 

is an immediate subformula, and A is the free immediate subformula of 

VxA and axA. 

The notion of a (free) subformula is defined by: 

24 



If A is a (free) immediate subformula of B, or identical to B, A is a (free) 

subformula of B. 

If A is a (free) subformula of B, and B is a (free) subformula of C, A is a 

(free) subformula of C. 

A formation tree for a formula A is a tree whose root is labelled by A, whose 

leaves are labelled by the free atomic subformulae of A, and whose interior nodes 

are formed as follows: 

If -A is at an interior node, the node has one child with A at that node. 

If either A A B, A V B or A = B is at an interior node, the node has two 

children with A at the first child and B at the second. 

If either VxA or 3xA is at an interior node, the node has one child with A 

at that child. 

Notice that the formation tree for a quantified formula is finitely branching and 

of finite depth. 

REMARK. The notion of formation tree defined above is not quite standard. 

Formation trees are normally defined to be infinitely branching at nodes labelled 

by formulae whose major symbol is a quantifier, say VxA. The children of such 

a node are then labelled by the immediate subformulae of VxA, rather than its 

free immediate subformula as defined above. We find the definition given more 

suitable for our subsequent discussion. (END OF REMARK.) 

2.2.2 Semantics. 

We present a semantics for the first-order language(s) introduced in the last 

section based on that given by Smullyan [Smu68]. A similar form of semantics 

will be given for the modal logics in Part II. 

Let D' be a set of constants, and D a non-empty set, called a domain, with 

D fl D' = 0. An interpretation (of the first-order language over D') in the domain 
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D is a mapping from D' into D, and from the n-ary predicates of the language 

to n-place relations on D. It is technically convenient to extend interpretations 

to D' U D, by defining them to be the identity function on D. A model is a pair 

(D, t) where D is a domain and c an interpretation in that domain. 

An atomic sentence Pcl ct, is true in the model (D, t) just in case the n- 

tuple: t(cl) , ... , t(ct,), is in the relation t(P) over D". It is false in the model 

otherwise. 

This defines the truth conditions for atomic sentences. The definition is 

extended to all sentences of the language as follows: for any model (D, c), 

1. -A is true in (D, t) if A is false in (D, c). 

2. A A B is true in (D, t) if both A and B are true in (D, c). 

3. A V B is true in (D, t) if either A or B is true in (D, c). 

4. A = B is true in (D, t) if either A is false or B is true in (D, c). 

5. VxA is true in (D, t) if for every c E D, A[c/x] is true in (D, t). 

6. 3xA is true in (D, t) if for some c E D, A[c/x] is true in (D, c). 

A sentence is satisfiable if it is true in at least one model. A sentence is valid 

if it is true in all models. 
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2.3 The sequent calculus. 

In this section we develop a cut-free sequent calculus for classical logic. The 

material is quite standard, so we introduce just the concepts and terminology 

utilised in the rest of this thesis. More leisurely treatments of the same material 

can be found in the books of Kleene [Kle68] or Gallier [Gal86], or Gentzen's 

original paper [G69]. 

We consider a first-order language as before, but with the set of constants 

comprising: 

A denumerable set of individual constants Co. 

A denumerable set of parameters Po. 

Henceforth, we call the union of these sets Do. We use a, b to denote parameters, 

and c, d to denote elements of Do (i.e., individual constants or parameters). 

REMARK. We use the calculus to prove sequents of the language over Co 

(i.e., just including the individual constants) but the proof itself may involve 

sequents of the language over Do (i.e., including both parameters and individ- 

ual constants). We use parameters in the same way as some authors use free 

variables. (See eg., [K1e68].) (END OF REMARK.) 

A sequent is an ordered pair (I', A) of finite sets of sentences over Do, written 

r -- A . r is the antecedent and A the succedent of the sequent; we write 

) A and r -- for the sequents (0, A) and (I', 0) respectively. Following 

convention, we write r, A for the set r u {A} and A, A for the set A U {A}. 

A sequent is interpreted semantically as follows: r --> A is true in a model 

just in case, if all the elements of r are true in the model, at least one element 

of A is true in the model. A sequent is valid just in case it is valid in all models. 

The rules of the calculus fall into three categories: basic sequents or axioms, 

operational rules and structural rules. Since our sequents are formed from sets 
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rather than sequences of formulae (in contrast to Gentzen's original formulation 

[G69]) we have no need for structural rules. This point is explained in more 

detail below. The basic sequents are instances of the schema: 

F,A-->A,A. 

The operational rules appear in pairs, each pair associated with a particular sen- 

tential connective or quantifier. One rule introduces the connective/ quantifier 

into the antecedent, the other introduces it into the succedent. The operational 

rules for a sentential connective or quantifier permits the introduction of a for- 

mula with the symbol connective or quantifier as its major symbol into a sequent. 

There is one rule for introducing such a formula into antecedents, and one for in- 

troducing it into succedents. The complete system is summarised in Figure 2-1. 

An occurrence of a formula of a sequent is called an S-formula (short for 

"sequent-formula"). If it appears in the antecedent of the sequent it may be 

called an antecedent S-formula; if it occurs in the succedent, it may be called a 

succedent S-formula. 

In each of the operational rules, the sequent(s) above the line is called the 

premise(s), and the sequent below the line the conclusion of the rule. The S- 

formula in the conclusion whose major symbol gives the rule its name, is called 

the principal S-formula of the inference. The occurrence(s) of its immediate 

subformula(e) in the premise(s) of the rule instance is (are) called the side S- 

formula(e) of the inference. 

A derivation in this calculus is a tree structure in which each interior node 

is an instance of one of the rules given above (in the usual way). The sequent at 

the root of the tree is called the endsequent of the derivation, while the sequents 

at the leaves of the tree are called, appropriately, the leaves of the derivation. A 

derivation is said to be a derivation of its endsequent from its leaves. A proof of 

a sequent (over CO) is a derivation of that sequent all of whose leaves are basic 

sequents. 
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F, A ---> A, A 

r--+A,A r,B --A 
=>. ) 

r,A--+B,A 
F, A B ---) A F ---* A = B, A 

F, A, B --) A r --* A, A r --+ B, A 

F, AAB - A 
A r ---* AAB, A 

r,A --*A r,B --*A r --->A,B,A 
r,AVB -)A r --*AVB,A 

r)A,A r,A --+A 
r,-,A>A r)-,A,A 

F, A[c/x] -> A 
r,`dxA -- A 

F, A[a/x] -> A 
F, 3xA ---> A 

F -- A[a/x], A 
V 

F --> `dxA, A 

r -> A[c/x], A 

---* V 

-' F ----+ 3xA, A 
3 

For the ---* `d and 3 -> rules: the parameter a must not occur in the 

conclusion. 

Figure 2-1: A cut-free sequent calculus for classical logic. 
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Thinning: 
r ) A r ---) A 

r A >A r--->A A 

Contraction: 

, 

r A A > A 

, 

r A A A , , ---> , , 

r A >A r A A 

Interchange: 

, , 

r, A, B ---> A r ---> A, B, A 
r, B, A ---> A r ---> B, A, A 

Figure 2-2: Structural rules for Gentzen's sequent calculus. 

In Gentzen's original formulation, the r and A in the sequent r --+ A 

stand for sequences of formulae. The calculus is then extended with rules for 

manipulating the structure of sequents. These rules permit: 

the introduction of new S-formulae into both the antecedent and the succe- 

dent; 

the contraction of two S-formulae that are identical as formulae in both 

antecedent and succedent, and 

the interchange of two S-formulae in both antecedent and succedent. 

The rules, called "thinning," "contraction" and "interchange" rules respectively, 

are summarised in Figure 2-2. 

In our formulation, the r and A in the sequent r ---> A stand for sets of 

formulae. Consequently, 

r,A,A = r,A 

and 

r,A,B = r,B,A, 
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by the properties of sets alone. (Recall that we use r, A to denote r U {Al.) 

This explains the absence of contraction and interchange rules. 

A further difference between Gentzen's formulation and ours occurs in the 

basic sequent. Gentzen took 

A )A 

as the schema for basic sequents. We have taken the more general schema: 

r, A -> A, A. 

Consequently there is no need in our formulation for the thinning rules. Formulae 

that would have been introduced by thinning can instead be introduced in the 

basic sequents. Our choice was based on the fact that we utilise the rules in an 

inverted fashion as reduction rules. Our formulation of the basic sequent is more 

natural for this method of proof search (see §2.4). 

Set based formulations of the sequent calculus are quite common, eg., [Smu68, 

Lyn66,Dum771, and we refer the reader to these authors for further details. 

This concludes our presentation of the calculus. It is complete for classical 

logic in the sense that any sequent r -) z (over Co) is valid iff r --> L1 

is provable in the calculus (see eg., [K1e68]). In particular, a sentence, A (over 

Co), is valid iff the sequent: -) Al is provable (by the definition of validity for 

sequents). In the next section we present a number of example derivations and 

proofs within this calculus. 

REMARK. The calculus is called "cut-free" because of the absence of the 

so-called "cut" rule: 

r->A,L1 r,A->L1 
r ) A 

cut 

This rule was included in Gentzen's original formulation of the sequent calculus 

to facilitate the translation of "natural deduction" proofs into proofs within the 

sequent calculus. Gentzen showed that any proof of a sequent involving the 

cut-rule could be translated into a proof in which the cut-rule is not used: a 

"cut-free" proof [G69]. (END OF REMARK.) 
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2.4 Search methods. 

In this section we outline how the calculus may be utilised to determine the 

validity of a sentence, and hence how it induces a search space of derivations. 

We have presented the sequent calculus as a set of axioms (basic sequents) 

and a set of inference rules (operational rules). To determine the validity of a 

sentence A (over CO), we can start from some axioms and try to construct a proof 

of the sequent ---> A. A little thought will reveal that this synthetic method 

is not very directed. How are we to decide which basic sequents to start with? 

How can we decide which constructions are leading us toward the desired goal? 

We consider this method of proof search no further. 

A more sensible method is to examine the sequent we wish to prove and see 

which rules could possibly be used to construct such a sequent. For example, 

suppose we are interested in determining the validity of the sentence: (P = 
Q) A (Q = R) = (P = R). We form the sequent: 

(P=Q)A(Q=R)=(P= R), 

and ask the question: "which rules have such a sequent as an instance of their 

conclusion?" Since there is only one S-formula, it must form the principal S- 

formula of the inference. Since it is a succedent S-formula, and its major connec- 

tive is the implication symbol, the only rule with such a sequent as an instance 

of its conclusion is the --->= rule. We can thus form a derivation with the 

appropriate instance of the premise of the --->= rule as its only leaf, and our 

target sequent as endsequent: 

(P=Q)A(Q=R) ---> P=R 
(2.1) 

---) (P=Q)A(Q=R) = (P=R) 

Now repeat the process. Choose a leaf of derivation 2.1 (there is only one) 

and look at its structure. The sequent in question comprises two S-formulae. 

We are faced with a choice. A new derivation could be constructed by applying 

(in an inverted sense) the --->= rule once again, but this time with the current 
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succedent S-formula P = R as principal formula. Alternatively, a new derivation 

could be constructed by applying (in an inverted sense) the rule A -->, with the 

antecedent S-formula (P = Q) A (Q = R) as principal S-formula. We show the 

derivations that result from each choice below. 

(P = Q) A (Q = R) P -- ) R , -- (2 2 . ) (P=Q)A(Q=R) --) P=R => 
+ =R R P P= A - ) ( ) = (Q ( Q) 

P=Q Q=R --> P=R , 
A 3 2 (P=Q)A(Q=R) -- P=R -- ) ( . 

--) (P=Q)A(Q=R) = (P=R) 
The choice we are faced with we shall term a disjunctive or "OR" choice. It 

is conceivable that by making the wrong choice at this point we will explore 

derivations that are not extendable to proofs. 

REMARK. In actual fact, for the propositional fragment of this calculus, it 

can be shown that such a situation does not arise; i.e., we can make this choice 

arbitrarily and are guaranteed not to rule out the possibility of extending the 

resultant derivation to a proof; that is if a proof of the endsequent exists at all. 

This is not the case for the full first-order calculus, nor for any of the sequent 

calculi we present for the "non-classical" logics considered in the sequel, even for 

their propositional fragments. We return to this issue in §2.5.3 below. (END OF 

REMARK.) 

Continuing in this analytic manner, consider first derivation 2.2. It has only 

one leaf, in which there is only a single non-atomic S-formula: (P = Q) A (Q = 
R). The major symbol of this formula is the conjunction symbol. Consequently 

there is only one rule applicable: A -- ). The resulting derivation is: 

P=Q, Q=R, P -- R 
(P=Q)A(Q=R), P -- ) R 

(P=Q)A(Q=R) --) P=R 
- + (P=Q)A(Q=R) (P=R) 

Now consider derivation 2.3. Although there is still only one leaf sequent, 

it contains three non-atomic S-formulae. All have the implication symbol as 
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their major symbol. We can apply the (inverted) rule -= to P = R, or the 

(inverted) rule =:>.- to either of P = Q or Q = R. We shall choose the first 

possibility. The resulting derivation is: 

P=Q, Q=R, P - R 
P=Q, Q=R -* P=R 

(P=Q)n Q=R --> P=R 
) (P=Q)A(Q=R) (P=R) 

Notice that the leaves of derivations 2.4 and 2.5 are identical even though 

the (inverted) rules were applied in different orders to construct them. Of course 

this would not have been the case had we made the last OR-choice differently. 

We shall return to this issue below (§2.5.3). 

We abandon our parallel development and extend derivation 2.4 only. Choose 

the first antecedent S-formula of the leaf sequent of this derivation to form the 

principal S-formula of the next (inverted) rule application. (There is one other 

OR-choice at this point.) The =- rule has two premises, so the derivation 

becomes: 

Q=R,P - P,R Q=R,P,Q - R 
P=Q, Q=R, P - R 

(P=Q)A(Q=R),P -' R 
(P=Q)A(Q=R) -- P=R 

---4 (P=Q)A(Q=R) (P=R) 

Notice that the left-hand leaf is a basic sequent since there is an occurrence of 

the atomic formula P in both the antecedent and succedent of the leaf. We need 

not extend the derivation at this leaf any further to produce a proof; the leaf is 

said to be closed. Of course, this state of affairs does not always pertain after 

the (inverted) application of a rule with two premises. If the leaf had not closed 

we would have been faced with a choice as to which of the two leaves of the 

derivation to extend next. However, since all of the leaves of a proof must close 

in order for the derivation to form a proof, we have at some time to extend all 

leaves that are not yet basic sequents. This sort of choice we call a conjunctive 

or "AND" choice, since we must consider both possibilities at some time. 
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Returning to the example. Derivation 2.6 has only one unclosed leaf, and 

that leaf contains only one non-atomic S-formula. We have no option but to 

apply the = --> rule once more. The resulting derivation is: 

P , --> Q , P,Q,R --+ R 
QR,P--+ P,R Q=-R,P,Q>R 

P=Q,Q=R,P --> R 

(P=Q)A(Q=R), P --* R - 

(P=Q)A(Q=R) ---> P=R 
-* (P=Q)A(Q=R)(P=R) 

Notice that all leaves of this derivation are closed, hence it is a proof. 

The discussion above indicates how the sequent calculus defines a search 

space of derivations. We say that the act of extending a derivation by applying 

an inverted sequent rule in the manner described reduces the principal S-formula 

of the inference. The leaf of the derivation is also said to have been reduced. The 

goal is to reduce the endsequent until all the leaves of the resulting derivation are 

closed. The result is the desired sequent proof. Used in this way the calculus is 

essentially an analytic tableau system (or more precisely, what Smullyan [Smu68] 

calls a block tableau system.) The inverted rules are the tableau reduction rules. 

2.4.1 Duplication and generative S-formulae. 

In our examples above we extended derivations with leaf sequents of the form: 

AAB --) C 

by reducing them as follows: 

A, B -* C 
AAB -->C 

Because sequents are formed from sets, and 

A ---* 

AAB --> C = AAB, AAB --+ C 

the antecedent S-formula: A A B, can be "preserved" through a reduction if we 

so desire. The reduction step would then look like this: 

A A B, A, B -* C 
A -- (2 9) . AAB -->C 
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Notice that we must choose between four S-formulae in order to extend deriva- 

tion 2.9 (since there are four S-formula in the leaf of the derivation: A A B, A, 

B and C), but between only three in order to extend derivation 2.8. We clearly 

desire to keep such duplication to a minimum while still retaining completeness. 

The reader should check that we uniformly refused to duplicate formulae in 

this manner during reductions in our examples. It can easily be shown that 

for the propositional fragment of the calculus this decision does not compromise 

completeness. Unfortunately, for the full calculus this is not the case. The 

problem lies with the "universal" rules: V --- and --) 3 which, when used to 

reduce leaves of derivations, can introduce any constant or parameter into the 

leaf of the extended derivation. 

In certain proofs, we must reduce: 

antecedent S-formulae of the form: VxA, or 

succedent S-formulae of the form: 3xA, 

more than once, each time with a different constant or parameter. We call S- 

formulae of this type generative. Duplication, in the manner described above, of 

generative S-formula is essential to retain completeness. 

A simple example will illustrate the problem. Consider the sequent: 

> Vx(Px V Qx) = (Pc V Qd) V Pd 

where c and d are individual constants. If we extend this derivation by reducing 

the implication and succedent disjunctions we reach: 

Vx(Px V Qx) -- Pc, Qd, Pd 
Vx(Px V Qx) -- Pc V Qd, Pd --> V 

V 
Vx(Px V Qx) -- Pc V Qd V Pd -- 

(2 10) 
> Vx(Px V Qx) = (Pc V Qd) V Pd 

. 
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There is only one S-formula to reduce in the leaf of derivation 2.10. We reduce 

this S-formula introducing the constant c. Without duplication, we get: 

Pc V Qc ---> Pc, Qd, Pd 
Vx(Px V Qx) ---> Pc, Qd, Pd 
Vx(Px V Qx) ---> Pc V Qd, Pd --V 
Vx(Px V Qx) --> Pc V Qd V Pd --V 

(2 11) 
) V (P V Q ) = (P V d) V Pd 

. 
x x x c Q 

whereas with duplication we get: 

Vx(Px V Qx), Pc V Qc --* Pc, Qd, Pd 
Vx(Px V Qx) --> Pc, Qd, Pd 
Vx(Px V Qx) ---> Pc V Qd, Pd 
Vx(Px V Qx) --> Pc V Qd V Pd 

> V P V Q ) = (P V Qd) V Pd x( x x c 
(2.12) 

Proceeding in parallel, there is only one possible extension of derivation 2.11 via 

the reduction of the disjunction: 

Pc ---> Pc, Qd, Pd Qc ---> Pc, Qd, Pd 
Pc V Qc - Pc, Qd, Pd 

Vx(Px V Qx) --> Pc, Qd, Pd 
Vx(Px V Qx) --> Pc V Qd, Pd 
Vx(Px V Qx) --> Pc V Qd V Pd 

) Vx(Px V Qx) = (Pc V Qd) V Pd 

We choose the same reduction to extend derivation 2.12 giving us: 

(2.13) 

Vx(Px V Qx), Pc ---- Pc, Qd, Pd Vx(Px V Qx), Qc --+ Pc, Qd, Pd 
Vx(Px V Qx), Pc V Qc ---> Pc, Qd, Pd 

Vx(Px V Qx) --> Pc, Qd, Pd 
Vx(Px V Qx) --> Pc V Qd, Pd 
Vx(Px V Qx) --> Pc V Qd V Pd 

) Vx(Px V Qx) = (Pc V Qd) V Pd 
(2.14) 

The left-hand leaf of derivation 2.13 is closed, but the right-hand leaf is not. 

Furthermore, we cannot extend the derivation to a proof since all of the S- 

formulae of the right-hand leaf are atomic. The left-hand leaf of derivation 2.14 

is also closed, and the right-hand leaf not. We can extend the derivation to a 

--> V 

--V 

37 



proof by reducing the generative S-formula in the antecedent once again, this 

time introducing the parameter d. We leave the subsequent details to the reader. 

We could formulate the calculus with alternative rules that reflect the need 

to consider such duplication of generative S-formulae. The alternative rules are 

as follows: (see eg., [K1e68]) 

r, VxA, A[c/x] --1 
b 

r ---Y 2xA, A[c/x], i 
r, `dxA ---> A -- r --- 3xA, A 

If we replace the corresponding rules of Figure 2-1 with the rules above, we can 

uniformly make the restriction that no duplication, other than that built-in to 

these quantifier rules, should occur during a reduction, and still retain complete- 

ness. With this change the system as used for proof search (i.e., inverted) is 

precisely the block tableau of Smullyan [Smu68]. 

The method outlined above for determining the validity of a sentence is fre- 

quently proposed, and actually implemented, as a practical method for auto- 

mated proof search; see eg., [BT75,GMW79,D84,OS86]. Although such sequent- 

based methods are used for classical logic occasionally, they are of particular 

interest when the logic is non-classical, since sometimes they are the only proof 

methods available (eg., [GMW79,Wri85]). Particular cases in point are modal 

and intuitionistic logics. In the next three sections we discuss certain properties 

of this search space by means of examples. Our conclusion is that sequent-based 

search is a poor method of determining the validity of sentences in classical and 

other logics. Our purpose in the rest of this thesis is to develop alternative 

methods. 

2.5 Redundancy in the sequent search space. 

In this section we investigate the structure of the search space induced by the 

sequent calculus. We identify three major redundancies in this space, which we 

term: 

notational redundancy (§2.5.1); 
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relevance (§2.5.2), and 

order dependence (§2.5.3). 

We present examples to illustrate each form of redundancy. 

In Chapter 3 we derive a matrix characterisation of validity for classical 

logic based on the analysis contained in this section. In Parts II and III we 

perform a similar analysis of cut-free sequent calculi for modal and intuitionistic 

logics. These analyses also support the development of matrix characterisations 

of validity for these "non-classical" logics. These matrix characterisations avoid 

the above redundancies. 

2.5.1 Notational redundancy. 

The first issue we focus on is a simple one theoretically, but of great practical 

concern. It concerns the representation of the intermediate states of the search 

space induced by the sequent calculus. These states are derivations. If the 

formula being tested for validity is large, the intermediate derivations can them- 

selves become very large. Moreover, there is a lot of shared structure between 

the derivations since formulae are repeated time and again within different se- 

quents. Due to the existence of OR-choices in the search space, there is a need 

to maintain multiple states at one time (except perhaps if one adopts an incom- 

plete depth-first search [CL73]). The representational overhead in implementing 

sequent-based proof search can become prohibitive. 

The methods of analytic tableaux [Smu68,Fit83} overcome this problem to a 

certain extent, by not repeating formulae in distinct sequents, and maintaining 

information common to many sequents within one branch of the tableau. Even 

tableau, though, require the multiple representation of all the subformulae of a 

complex formula as it is progressively reduced. 

Some of this repetition is however necessary. The reduction of a generative 

formula, say an antecedent S-formula of the form VxA, with the individual sym- 

bol c, introduces the subformula A[c/x] to the derivation. As mentioned in the 
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previous section, we may need to consider multiple subformulae of VxA in the 

derivation, i.e., A[c/x], A[d/x], ... etc, to retain completeness. 

In the next chapter we present a generalisation of Bibel's technique [Bib82c] 

for solving this problem and capturing the shared structure between sequents. 

The technique supports the representation of the subformulae of generative S- 

formulae, such as VxA above, without recourse to copying the main structure of 

A. The technique is based on the notion of a formula tree and multiplicity and 

the technique of structure sharing [BM72] developed for resolution-based proof 

systems. 

2.5.2 Relevance. 

The second issue concerns the manner in which we make OR-choices during 

the search. Consider the (valid) formula: A A (B A P) = P, where P is an 

atomic formula and A and B are arbitrary formulae. The first two steps in the 

construction of a proof of this formula are completely determined, leading to the 

derivation: 

A, B A P ----> P 
AA (B AP) -f P 

) AA (BAF) =P 

At this point we have an OR-choice: whether to reduce the S-formula A or the 

S-formula B A P. Suppose our method of resolving OR-choices was to always 

reduce the "leftmost" S-formula in the sequent. Our next step would be to 

reduce A. If A were some complex formula we could expend a large amount of 

effort reducing it and its subformulae, even though such reductions may not help 

us reach a basic sequent. On the other hand, reduction of the other antecedent 

S-formula leads to a proof immediately. It should be clear that such pathological 

examples can be constructed whatever uniform method of resolving OR-choices 

we adopt. This is the problem we term relevance, and it is due to the fact that 

the obvious sequent-based search methods only utilise information concerning 

the major connectives of the S-formulae of the sequent being reduced [Wa186]. 
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In the next chapter we introduce the notions of path and connection to over- 

come this problem. These notions are generalisations of those developed by Bibel 

[Bib8l] and Andrews [And8l]. The notion of "path" was considered originally 

for formulae in conjunctive normal-form by Prawitz [Pra60]. 

2.5.3 Order dependence. 

We now come to the most fundamental problem with sequent-based proof search. 

The problems of notational redundancy and relevance are essentially proposi- 

tional. The issue addressed in this section arises within the propositional frag- 

ment also, but is more serious within the full first-order system. 

The search method outlined above consists of applying sequent rules in an 

inverted fashion to extend derivations. We say the leaf sequent is reduced by the 

rule application. We identified four sorts of choice in this process: 

AND-choices: which leaf of a derivation to extend. 

OR-choices: given a leaf, which S-formula of the sequent to reduce. 

Universal choices: if the S-formula to be reduced is generative, which pa- 

rameter or constant to introduce. 

Existential choices: if the S-formula to be reduced is not generative, but 

requires the introduction of a parameter, which new parameter to choose. 

Since every leaf of a derivation must be closed for it to constitute a proof, it is 

irrelevant how we make the AND-choices. Since for an existential choice, the 

parameter introduced must be new, we can choose arbitrarily from our denu- 

merable set. We are left with the OR-choices and universal choices. 

2.5.3.1 The propositional fragment. 

Consider first the propositional fragment of the calculus, i.e., there are no uni- 

versal choices. We remarked in §2.4 that for the propositional fragment we can 
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make OR-choices arbitrarily; that is, fix a uniform method (such as "left-most" 

etc) of resolving the choice of which S-formula of a given leaf sequent to reduce. 

At worst, a bad choice will lead to a larger search as described in §2.5.2, but if 

the current leaf can be extended to a subtree all of whose leaves are closed, then 

any method of resolving OR-choices will eventually cause the subtree to close. 

REMARK. We shall not formalise this result since it is well-known. An 

intuitive argument can be made as follows. Define the degree of a sequent to 

be the number of connectives in its S-formulae. Each operational rule of the 

propositional fragment of the calculus has the property that the degree of its 

premises is less than the degree of its conclusion. If we follow our restriction 

of never duplicating S-formulae when they are reduced, the degree of the new 

leaf sequent(s) of the extended derivation is less than the degree of the sequent 

from which they were generated. Any branch of a derivation (a path from the 

root of the derivation to a leaf) can be extended only a finite number of times 

before all the S-formula remaining in the leaf are atomic. If this sequent is 

not a basic sequent it forms the basis for a (propositional) model in which the 

succedent S-formula of the endsequent is false. Formalisations of this argument 

abound since it is a standard systematic method of proving completeness and 

decidability of classical propositional logic. (See for example, [K1e68,Smu68].) 

(END OF REMARK.) 

One important consequence of this fact is that we can eliminate from the 

sequent search space the redundancy exemplified by derivations 2.4 and 2.5 of 

§2.4. Recall that these two derivations differed only in the order in which two 

S-formulae in the leaf sequent of derivation 2.1 were reduced. However both 

derivations have the same leaves, hence from the point of view of progress toward 

a basic sequent, both derivations are equivalent. If we can fix an order in which 

the S-formula of a given sequent are reduced, we can rule one or the other 

derivation out of the search space. This is similar to the selected literal restriction 

used in resolution-based systems [KK71]. 

In summary, we have argued that for the propositional fragment of the cal- 

culus the order in which the sequent rules are applied is not significant (except 
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for efficiency of course, as argued in §2.5.2). We say that there is no order 

dependence amongst the propositional rules. 

2.5.3.2 The first-order case. 

Consider now the full first-order system and the (valid) sentence: 3xVyPxy = 
Vu3vPvu. To search for a proof of this sentence we start with the sequent: 

--> 3xVyPxy = VU3VPVU 

The -->= rule is the only rule applicable to this sequent. Reduction gives us: 

3xVyPxy --> VU3VPVU 
(2.15) 

> 3xVyPxy = VU3VPVU 

We are now faced with an OR-choice: whether to reduce the antecedent or 

succedent S-formula of the leaf. Either choice requires us to make an existential 

choice as to which parameter to introduce. We choose the former and introduce 

the parameter a. The extended derivation is: 

VyPay --> Vu3vPvu 
3xVyPxy --> VU3VPVU (2.16) 

> 3x`dyPxy = VU3VPVU 

Notice that a does not appear in the leaf of derivation 2.15 hence the extension 

is correct. 

Continuing from derivation 2.16, we are faced with another OR-choice: to 

reduce the antecedent or succedent S-formula of the leaf. We again choose to 

reduce the antecedent S-formula. This leads to a universal choice and we choose 

the parameter b for the reduction. The result is: 

Pab --> VU3VPVU 

VyPay --> Vu3vPvu 
3x`dyPxy --> VU3VPVU 

-- ) 3xVyPxy = VU3VPVU 
(2.17) 

We could have used the parameter a again, had we so desired, since the choice 

is a universal one. 

We now come to the crucial issue. The leaf of derivation 2.17 contains only 

one non-atomic formula, so to extend the derivation we must apply the --> `d 
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rule. We are faced with an existential choice of parameter. That is, we must 

choose a parameter that does not occur in the current leaf. We cannot, therefore, 

introduce either a or b, but must choose a completely new parameter, say c. The 

result is: 
Pab ---) 3vPvc 

Pab ---> Vu3vPvu 
VyPay ---> Vu3vPvu 

3xVyPxy --+ Vu3vPvu 
- + 3xVyPxy = Vu3vPvu 

(2.18) 

Our aim in extending the derivation is to reach a basic sequent. Deriva- 

tion 2.17 already contains one atomic formula in the antecedent, we need only 

construct a matching one in the succedent. However, any attempt to extend 

derivation 2.18 to a proof is doomed to failure since there is only one non-atomic 

S-formula: 3vPvc, and the antecedent atomic S-formula is not a subformula of 

it. That is, no reduction of 3vPvc can yield an atomic formula of the form: 

Pab. The problem lies, of course, with the previous reduction that introduced 

the parameter c. However, in the reduction of Vu3vPvu, we were constrained to 

choose a new parameter and hence were unable to introduce the parameter b as 

required. 

Recall that after the second reduction, resulting in derivation 2.16, we were 

faced with an OR-choice between reducing the antecedent formula: VyPay, and 

the succedent formula: Vu3vPvu. We chose to reduce the former. Let us remake 

that choice. We extend derivation 2.16 by reducing the succedent formula of its 

leaf. We are faced with an existential choice, so we choose the new parameter b. 

The resultant derivation is: 

VyPay --> 3vPvb 
VyPay ---> Vu3vPvu 

3xVyPxy ---> Vu3vPvu 
- + 3xVyPxy = Vu3vPvu 

----> V 
V -- 

- 3V 

(2.19) 

To extend this derivation we must choose again between the antecedent and 

succedent S-formulae. Both lead to universal parameter choices. We choose the 

former, and introduce the parameter b for the variable y so that the atomic 

side S-formula of the inference, Pab, is a subformula of the succedent S-formula: 
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3vPvb. The new derivation is: 

Pab --f 3vPvb 
VyPay --f 3vPvb d I 

VyPay --f VuavPvu ) d 

3XVYPXY --f VuavPvu -- (2.20) 
1 3XVYPXY VuavPvu 

Finally we reduce the remaining non-atomic S-formula in the leaf sequent of 

derivation 2.20 introducing the parameter a so that the resulting atomic formula 

matches the antecedent atomic formula. We have constructed the proof: 
Pab --1 Pab 

Pab --f 3vPvb 
VyPay - 3vPvb 

VyPay --f Vu3vPvu 
3XVYPXY - Vu3vPvu 

1 3XVYPXY Vu3vPvu 
(2.21) 

This example demonstrates that the order in which the quantifier rules are 

applied is significant. We cannot make OR-choices uniformly as in propositional 

logic. We say that there is an order dependence amongst the quantifier rules. 

One way of exhibiting the constraints on the order in which the S-formulae 

may be reduced to yield a proof is to consider the order in which the imme- 

diate subformulae of quantified formulae are introduced as S-formulae. There 

are two subformulae of the S-formula 3xvyPxy that appear in the derivation as 

S-formulae: VyPay and Pab. The former must be introduced as an S-formula be- 

fore the latter, since the latter is a subformula of the former. Similar constraints 

hold between the two subformulae, 3vPvb and Pab, of Vu3vPvu. This gives us 

the following constraints on the introduction of subformulae of the endsequent 

of our example: 

3XVYPXY Vu3vPvu 

L 1 

VyPay 3vPvb 

1 I 
Pab Pab 

where a solid arrow from a formula A to B indicates that B is an immediate 

subformula of A, and hence B will become an S-formula after A. 
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Now, because we desire the two atomic subformulae of the endsequent to form 

the pair of distinguished S-formulae in a basic sequent, we require that the same 

parameter, say a, be substituted for the pair x and v, and the same parameter, 

say b, substituted for the pair y and u. Since Vu]vPvu is not a generative 

S-formula in the derivation (it is a succedent S-formula of the form VuA) the 

choice of parameter for u is an existential one and subject to the restriction that 

the parameter be new. If we wish to substitute b for u, we must ensure that b 

does not already occur in the sequent. The only way that b could occur in the 

leaf sequent is if the reduction of VyPay to introduce Pab has already occurred. 

This is exactly what went wrong when we formed derivation 2.17. Therefore 

we infer a further constraint for our diagram, namely that the introduction of 

the subformula Pab of VyPay should occur after the introduction of ]vPvb. A 

similar constraint holds between the subformulae Pab (of ]vPvb) and VyPay. 

We represent these constraints as additional dotted arrows in the diagram below. 

IxbyPxy Vu]vPvu 

VyPay ]vPvb 

I 
Pab Pab 

Again, a dotted arrow from A to B indicates that B must become an S-formulae 

after A. The diagram, called a reduction ordering in the sequel, represents 

the orders in which S-formula in the derivation must be introduced in order to 

construct a basic sequent from instances of the free atomic subformulae of the 

endsequent. Notice that the order chosen at first above violates the constraints 

in that VyPay was reduced to Pab before the reduction of Vu]vPvu introduced 

]vPvb. In our second attempt the subformulae were introduced respecting the 

constraints in the diagram above, and a proof resulted. 

In summary, we cannot adopt a uniform method of resolving OR-choices 

as was the case for the propositional fragment of the calculus. There is an 

order dependence amongst the quantifier rules. This is a fundamental problem 

with sequent-based search, since it means that the search space must contain 
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derivations that differ solely in the order in which certain rules are applied. 

Some orders may lead to a proof, some may not. The crucial point is that in 

order to traverse the sequent search space we must actually make a choice as to 

the reduction order. We have shown above that a sequent-based search strategy 

must be prepared to remake that choice. 

In the next chapter we show how unification can be used to overcome this 

order dependency by removing the need actually to choose a given reduction 

order as the search proceeds. Instead only the existence of at least one correct 

reduction order that respects the caveats on the existential rules is checked. 

2.6 Summary. 

In this chapter we have: 

briefly reviewed the syntax and semantics of classical logic; 

introduced a cut-free sequent calculus and shown how it induces a proof 

search space, and 

identified three forms of redundancy within that search space which we 

have termed notational, relevance and order dependence. 

In the next chapter we develop specific techniques for the removal of these re- 

dundancies. The techniques are abstractions of methods used by Bibel in the 

formulation of his Connection Calculus for classical logic [Bib80,Bib82c]. The 

particular techniques (paths and connections) for the removal of problems con- 

cerning relevance were also developed independently by Andrews [And8l]. The 

combination of these techniques results in a matrix characterisation of validity 

for classical logic which is free from the specific problems of sequent-based search 

identified above. The matrix method therefore forms a more suitable basis for 

automated proof search in classical logic. 
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Chapter 3 

A matrix characterisation of validity 
in classical logic. 

3.1 Introduction. 

In the previous chapter we presented a standard cut-free sequent calculus for 

classical logic and demonstrated one way in which it induces a search space of 

derivations. We analysed this search space and identified three types of redun- 

dancy within it. The redundancies were as follows: 

Notational redundancy: considerable duplication of the same information. 

Relevance: the inclusion in the search space of branches that cannot lead 

to a proof. 

Order dependence: the need to explore alternative branches in the search 

space that differ only in the order in which certain sequent rules are applied. 

In this chapter we consider each problem in turn and introduce appropriate 

theoretical structure to alleviate it within practical proof procedures. The final 

result is a matrix characterisation of validity for classical logic free from the 

aforementioned redundancies. The central arguments of this analysis were first 

published in [Wa186]. 
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The matrix characterisation so derived is, in essence, the Connection Calculus 

of Bibel [Bib82a,Bib82c]. We make no claim for originality in the basic nature of 

the characterisation. Our contribution is in the decomposition of the Connection 

Calculus into a set of theoretically based techniques for overcoming redundancies 

arising in sequent-based proof search. The significance of this contribution is 

that, once isolated, these techniques can be applied individually to other logics 

in novel ways to improve the efficiency of automated proof search in those logics. 

We do this to good effect in Parts II and III of this thesis where we develop 

matrix characterisations of validity for a wide range of non-classical logics. 

This chapter is divided into four major sections. In §3.2 we introduce tech- 

niques for removing the notational redundancies of the sequent search space 

based on the notions of formula trees and positions. The techniques amount 

to a theoretically motivated version of "structure sharing" [BM72]: a technique 

originally developed to deal with similar forms of notational redundancy arising 

within resolution-based proof systems. We show that the applicability of the 

technique relies on the subformula property possessed by the cut-free sequent 

calculus. 

In §3.3 we deal with the problem of relevance via the notions of path, po- 

larity and connection. It is the notion of path that makes the label "matrix" 

appropriate for the final characterisation and gives proof methods based on the 

characterisation their path-checking flavour. A path through a formula, A, is 

defined so as to represent a potential leaf of a sequent derivation of the endse- 

quent: --p A. The set of paths through A represents the set of potential leaves 

of any sequent derivation of --> A (given a bound on the number of duplications 

of subformulae of A). A connection in the formula is a representation of the dis- 

tinguished atomic S-formulae within a (potential) basic sequent. It consists of 

two atomic formula occurrences with the same predicate symbol and of differing 

polarities (i. e., a positive and a negative occurrence of a given proposition). If 

a path contains a connection it has the potential to represent a closed leaf of 

a derivation. To overcome problems of relevance we search for connections di- 

rectly rather than adopt the standard connective-based approach. That is, we 
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search directly amongst the potentially closed leaves for a subset suitable for the 

formation of a proof of the endsequent. 

The effect of this is to replace an indirect search for basic sequents with a 

directed one. This eliminates from the (direct) matrix search space those parts 

of the (indirect) sequent search space that are irrelevant for the construction 

of basic sequents and hence proofs. If every path through A contains one of a 

given set of connections the set is said to span the formula. For propositional 

logic we have no need to consider the internal structure of derivations at all. 

Consequently the existence of a spanning set of connections for A entails the 

existence of a sequent proof of - k A and therefore the classical validity of A 

(and vice versa). 

For first-order logic however the internal structure of derivations is impor- 

tant since there are constraints imposed on the application of certain quantifier 

rules: the problem of "order dependence." In §3.4 we introduce a mapping that 

represents the coherence of the choice of parameters for the free variables of 

(free) atomic subformulae in a derivation. Such coherence is required so that 

the two atomic components of a connection can still be construed as the distin- 

guished antecedent and succedent formulae of a basic sequent (i. e., they must 

be identical as formulae). Any such mapping induces a reduction ordering: a 

transitive relation over subformulae of the endsequent that we are proving. The 

reduction ordering represents the constraints on the order in which immediate 

subformulae of quantified (sub)formulae may be introduced as S-formulae into 

a derivation. The constraints arise from the provisos on two existential rules: 

> V and 3 --->. Admissible mappings are those whose reduction orderings are 

irreflexive. 

A connection is defined to be complementary under an admissible mapping 

just in case its atomic components are identical under the mapping. The admis- 

sibility condition then ensures that at least one sequent derivation exists in which 

the required coherence in the choice of parameters is realised so that the current 

set of connections form the closed leaves of the derivation. A spanning set of 

connections, complementary under some such admissible mapping, thus entails 
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the existence of a sequent proof of --- A, and hence the (first-order) validity of 

the formula (and vice versa). Robinson's unification algorithm (or more efficient 

refinements of it) can be used to compute the appropriate mappings. Unification 

is used to ensure the existence of a correct order of sequent rule applications to 

produce a proof of the formula. No single concrete order need be preferred. This 

technique removes the order dependence, induced in the sequent search space by 

the quantifier rules, from the matrix search space. 

Whilst the basic nature of the characterisation is due to Bibel, we believe our 

particular technical formulation of the individual techniques to be quite signifi- 

cant. For example, we utilise Smullyan's uniform notation [Smu68] extensively 

and reformulate the notion of path to relate it more closely with sequent-based 

ideas. We shall remark on the technical differences between our formulation and 

that of Bibel and Andrews as we go. In §3.5 we summarise the relationships 

and argue the case for our formulation which make the individual techniques 

comprising the matrix methods more widely accessible and applicable. 

In the remainder of this introductary section we introduce Smullyan's [Smu68] 

uniform notation. 

3.1.1 Uniform notation. 

In this preliminary section we introduce Smullyan's uniform notation for formu- 

lae over a first-order language. This notation, and others notations based on it, 

are utilised extensively in this thesis. 

A signed formula is a pair (A, n) where A is a formula (over D) and n E {0,1}. 

We let X, Y, Z, possibly subscripted, range over signed formulae. A signed 

formula is said to be atomic if its constituent formula is atomic; otherwise it is 

non-atomic. 

Non-atomic signed formulae are classified as follows: 

1. A signed formula of the form: (A A B, 1), (A V B, 0), (A = B, 0), (-,A, 1) 

or (-,A, 0) is of conjunctive or a-type. We shall sometimes use the symbol 
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"a" to stand for a formula of this form. We define the components, al and 

a2 of such a formula as follows: 

If a = (A A B,1), then al = (A,1) and a2 = (B,1). 

If a = (A V B, 0), then al = (A, 0) and a2 = (B, 0). 

If a = (A = B, 0), then c _ (A,1) and a2 = (B, 0). 

If a = (-'A,1), then al = (A, 0) and a2 = (A, 0). 

If a = (-A, 0), then a1 = (A,1) and a2 = (A,1). 

2. A signed formula of the form: (A A B, 0), (A V B, 1), (A = B, 1) is of 

disjunctive or /3-type. We shall sometimes use the symbol "/3" to stand for 

a formula of this form. We define the components, /31 and /32i of such a 

formula as follows: 

If /3 = (A A B, 0), then /31 = (A, 0) and /32 = (B, 0). 

If /3 = (A V B, 1), then /31 = (A, 1) and /32 = (B, 1). 

If / 3 = (A = B,1), then / 3 1 = (A, 0) and / 3 2 = (B,1). 

3. A signed formula of the form: (VxA, 1) or (3xA, 0) is of universal or 'y-type. 

We shall sometimes use the symbol "ry" to stand for a formula of this form. 

The components, 'yo(c), for c E D, of such a formula are defined as follows: 

for c E D, 

If 'Y = (VxA,1), then -yo(c) = (A[c/x],1). 

If 'Y = (2xA, 0), then -yo(c) = (A[c/x], 0). 

4. A signed formula of the form: (VxA, 0) or (3xA,1) is of existential or 6- 

type. We shall sometimes use the symbol "b" to stand for a formula of 

this form. The components, b(c), for c E D, of such a formula are defined 

as follows: for c E D, 

If b = (bxA, 0), then bo(c) = (A[c/x], 0). 

If b = (2xA,1), then bo(c) = (A[c/x], 1). 
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a al a2 

(A A B,1) (A,1) (B,1) 

(AV B,0) (A,0) (B,0) 

(A = B, 0) (A,1) (B, 0) 

(-,A,1) (A, 0) (A, 0) 

(-,A, 0) (A,1) (A,1) 

Q Q1 Q2 

(AAB,0) (A,0) (B,0) 

(A V B,1) (A,1) (B,1) 

(A = B,1) (A, 0) (B,1) 

'Y 'YO (a) 

(b'xA,1) (A[a/x],1) 

(3xA, 0) (A[a/x], 0) 

8 8o(a) 

(VxA, 0) 

(3xA,1) 

(A[a/x], 0) 

(A[a/x],1) 

Table 3-1: Uniform notation for signed formulae. 

Table 3-1 summarises the complete classification. 

3.2 Formula trees and notational redundancy. 

Gentzen's original motivation for defining sequent calculi was that such systems 

were more amenable to certain meta-mathematical arguments he had in mind 

than the calculi of "natural deduction" in which he was primarily interested. 

In particular the cut-free sequent systems possess what he called a subformula 

property. Simply stated this amounts to the fact that the S-formulae occurring 

in any derivation of a given endsequent are all subformulae of that endsequent. 

Since his original paper this property has become the defining characteristic of 

an "acceptable" cut-free sequent calculus for any logic (see [Sat77] for instance). 

A study of the individual rules of our formulation of the sequent calculus, 

presented in Figure 2-1 of the last chapter, reveals that this formulation also 
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has the subformula property. Notice that the premise(s) of each rule is formed 

completely from subformulae of the conclusion of that rule. This is the proof- 

theoretic basis for the solution to notational redundancy embedded in Bibel's 

Connection Calculus, though he does not explicitly make this association. We 

shall encode a derivation in terms of the subformulae of its endsequent. From a 

theoretical standpoint, we use a structure called a formula tree which contains 

a name, or position, for each subformula of the endsequent. From a practical 

standpoint, positions are understood as pointers into a single concrete represen- 

tation of the endsequent in the database of the proof procedure. During the 

search all intermediate derivations can be encoded in terms of these pointers. 

We now present the details. 

3.2.1 Formula trees for formulae. 

A formula tree for a sentence is a representation of its formation tree. It is best 

explained by example. We include in the formula tree a node, or position, for 

each free subformula of the sentence. The tree ordering is then defined as the 

subformula ordering: a position k is above a position k' in the tree, written 

k << k', provided the formula associated with k' is a proper (free) subformula of 

the formula associated with k. A formula tree for the formula: 

(P=Q)A(Q=R)=--, (P=R) 

is shown in Figure 3-1. We shall use k, l as meta-variables to range over positions 

of formula trees, and << to denote the tree ordering over such positions. For a 

position k of a formula tree we use lab(k) to denote the subformula named by or 

associated with k. A position labelled by an atomic formula is called an atomic 

position. The labels of the positions for our example are also shown in the figure. 

3.2.2 Formula trees for signed formulae. 

The positions of a formula tree for a formula A are not quite rich enough nor 

flexible enough to identify the formulae that make up an arbitrary derivation of 
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(P=Q)A(Q=R)=(P=R) 

(P=Q)A(Q=R) P=R al a$ 

P Q Q = R P R a2 a5 a9 alo 

P Q Q R as a4 a6 a7 

k lab(k) 

ao (PQ)A(Q=R)=(P=R) 
al (P=Q)A(Q=R) 
a2 P=Q 
as P 

a4 Q 

a5 QPR 
a6 Q 

a7 R 

a$ P = R 

a9 P 

alo R 

Figure 3-1: Example formation and formula tree for a formula. 
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the endsequent ---> A. The first problem is that occurrences of formulae in a 

derivation occur either in antecedents or succedents (i.e., they are S-formulae). 

We must represent this component of a formula occurrence also. The second 

problem concerns quantifiers and will be dealt with in §3.2.3. 

Luckily, another proof-theoretic property of sequent systems supports a suc- 

cinct solution to the first problem. First we need some terminology. Let B 

be a particular subformula of A. We can trace the progress of this subformula 

through a derivation until it becomes an S-formula of some sequent within the 

derivation (if it ever does). We call all these occurrences of B the images of B 

in the derivation. An example will help. In the derivation below, taken from 

the previous chapter, we have "boxed" the images of the first occurrence of the 

atomic formula P in the endsequent. 

Q=:- R,P -4 P 

P, Q ---* Q, R P, Q, R ----* R 
R Q = R, P, Q ----* R 

P =:- Q,Q=R,P-->R 
(U = Q) A (Q = R), P ----p R 

(P =Q)A(Q=R) ---* P=R 
--f (®Q)A(Q=R)(P=R) 

A subformula B (free or otherwise) of a given formula A is said to occur positively 

in A if it occurs within an even number of explicit or implicit negations; otherwise 

it occurs negatively in A. An explicit negation is, of course, the negation symbol. 

Implicit negations arise via implications (and sequent arrows). Formally, 

B is a positive subformula of B. 

If a distinguished occurrence of B in A occurs positively (negatively) within 

A, then it occurs positively (negatively) within: AAC, CAA, AV C, CV A, 

C = A, VxA, 2xA and r, A ---> A ; and negatively (positively) within: 

-1A, A = C and r ----p A, A. 

Notice that we have extended the definition to sequents as well. 

The well-known proof-theoretic property of sequent calculi referred to above 

is that an image of a subformula of the endsequent can occur as an antecedent 
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(succedent) S-formula if and only if it is a positive (negative) subformula of the 

endsequent. The basic property of sequent calculi that preserves this invariant 

is that only side formulae occurring negatively within the principal formula of 

an inference change sides from antecedent to succedent or vice versa. The reader 

can check that this is the case in our formulation of the calculus in Figure 2-1. 

The rules to concentrate on are the implication and negation rules. 

Consequently we can identify whether images of a subformula of the endse- 

quent will appear as an antecedent or succedent S-formula within derivations 

of that endsequent by noting whether the subformula occurs positively or neg- 

atively within the endsequent. For example, the distinguished occurrence of P 

occurs positively in the formula: 

(P=- Q)A(Q=- R)=(PAR), 

but negatively within the sequent: 

>(P=- Q)A(Q=- R)=- (P=- R). 

(There are three implicit negations: two implications and one sequent arrow). 

Consequently the images of this distinguished occurrence of P appear as succe- 

dent S-formulae in a derivation of the endsequent (if they appear as S-formulae 

at all). 

To capture these notions in terms of formula trees we define a formula tree 

for a signed formula. Recall that a signed formula is a pair, (A, n), where A is a 

formula and n E {0,1}. A signed formula can be used to represent an S-formula 

as follows: 

(A, 0) represents a succedent S-formula A. 

(A, 1) represents an antecedent S-formula A. 

In particular, we are interested in formula trees for signed formulae of the form: 

(A, 0), since this signed formula represents the sequent: -- A. 
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Formally, a formula tree for a signed formula, (A, n), is a formula tree for the 

formula A together with an assignment of a polarity, pol(k), to each position, k, 

of the formula tree. Polarities are assigned as follows: 

If lab(k) occurs positively within A, then pol(k) = n. 

If lab(k) occurs negatively within A, then pol(k) _ (n + 1) mod 1. 

A formula tree for the signed formula: 

((P=Q)A(Q=R) =>- (P=*- R),0) 

is the formula tree shown in Figure 3-1 together with the polarity assignment: 

k ao al a2 a3 a4 a5 a6 a7 as a9 alo 

[(k) 0 1 1 0 1 1 0 1 0 1 0 

Each position, k, of the formula tree for a signed formula itself denotes a 

signed formula, sform(k), as follows: 

sform(k) df (lab(k),pol(k)). 

We summarise our progress up to now. Our goal is to represent derivations of 

an endsequent, say ----> A, in terms of the subformulae of A. We have introduced 

names, called "positions," for each distinct free subformula of A and arranged 

them in a tree reflecting the subformulae ordering in A. The subformula asso- 

ciated with a position k is its "label" denoted by lab(k). In order to represent 

the S-formulae of derivations using positions we associate a "polarity," pol(k), 

indicating whether images of the label of k appear as succedent (pol(k) = 0) 

or antecedent (pol(k) = 1) S-formulae. This information is obtained by noting 

whether lab(k) occurs positively or negatively within the endsequent. 

REMARKS. Bibel's [Bib80,Bib82c] formulation of a formula tree corresponds 

to our notion of a formula tree for a formula. He does not consider formula 

trees for signed formulae explicitly. Instead, he makes an initial restriction to 

formulae in negation normal-form: a normal form in which negation symbols 

58 



only dominate atomic formulae and there are no implication signs. Under this 
restriction only the polarity of atomic formulae need be considered and the notion 

of a formula tree for a formula suffices to encode derivations. We note that this 

inessential restriction has led to confusion in the literature [Mur82]. 

Our formulation demonstrates how to lift this restriction and is therefore 

more general. This abstraction from specific properties of classical logic is im- 

portant to permit the use of the technique in logics which do not admit a negation 

normal form. Intuitionistic logic is one such logic. Due to the more general for- 

mulation of the technique presented in this section we do not encounter any 

problems in utilising it to improve proof search in that logic. The details are 

presented in Part III. 

We note that Andrews [And8l] does not concern himself with notational 

redundancy. His systems do not include any techniques similar to those presented 

by Bibel in [Bib82a,Bib82c] and generalised here. (END OF REMARKS.) 

3.2.3 Multiplicities and indexed formula trees. 

The notions we have introduced so far are sufficient to encode derivations in the 

propositional fragment of the calculus but not in the full first-order system. The 

problem is that we can only represent free subformulae of the endsequent by posi- 

tions. For propositional logic, this suffices since the notions of "free subformula" 

and "subformula" coincide. For first-order formulae we need to distinguish dif- 

ferent instances of subformulae formed by the substitution of distinct parameters 

for the free variables of free subformulae of the endsequent. 

As a first step we identify the positions of a formula tree that represent 

generative subformulae of the endsequent. Recall that a position k of a formula 

tree for the signed formula (A, 0) represents a signed formula sform(k). We give 

to each non-atomic position k a "type" depending on the type of sform(k) in 

Smullyan's classification presented in the introduction to this chapter. We call 

this the principal type of the position and denote it by Ptype(k). There are four 

principal types: a, ,13, -y and 8. 
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Each position, except for the root position, has a parent in the formula 

tree. Smullyan's classification gives us names for the components (immediate 

subformulae) of signed formulae as well as for formulae themselves. We give to 

each non-atomic position k, a secondary type determined by considering sform(k) 

as a component of the signed formula represented by the parent of k. There 

are six secondary types: al, a2, 01, 02, 'yo, bo (Notice that we do not use 

'to (a), -yo (b) ... individually as secondary types but collapse them all into the 

secondary type 'Yo. A similar remark holds for the bo secondary type.) The 

secondary type of a position k will be denoted by Stype(k). For a given formula 

tree we shall use ro and Ao to denote the sets of positions of secondary type 7o 

and bo respectively. (The reader should not confuse uses of r and A as meta- 

variables for sets of formulae in sequents with its use here as a set of positions.) 

The principal and secondary types of the positions of the formula tree of 

Figure 3-1 are shown below. 

k ao a1 a2 a3 a4 a5 a6 a7 as a9 alo 

pol(k) 0 1 1 0 1 1 0 1 0 1 0 

Ptype(k) a a 0 - - 0 - - a - - 
Stype(k) - a1 a1 

1 01 02 a2 1 01 02 a2 al a2 

Recall that we imposed a duplication restriction on the sequent-based proof 

search considered in the previous chapter. We stipulated that no duplication was 

to occur at any reduction other than at the reduction of generative S-formulae. 

We argued that this restriction does not compromise completeness. Therefore 

we can restrict ourselves to the representation of derivations in which only one 

image of a subformula, lab(k), of the endsequent can appear in any sequent 

unless explicitly duplicated by a reduction of a generative S-formula: lab(k'), 

such that the former is a subformula of the latter; i.e., k' << k. 

A multiplicity controls how many distinct instances of particular subformu- 

lae may occur in a derivation. A position k represents a subformula lab(k) as 

described above. We distinguish different instances of this formula by indexing 

the position thus: k", where rc is a sequence of positive integers. We arrange 
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that lab(k'c) represents a distinct instance of lab(k) for each distinct index K. 

That is: 

lab(k") = lab(kT) if x = T. 

Multiplicities are the means by which we generate appropriate indices. 

The following definitions are introduced for a given formula tree for a given 

signed formula X = (A, 0). A function µ from ro to the natural numbers is called 

a multiplicity for X; it serves to encode the number of instances of subformulae 

of X in the scope of a quantifier of universal force considered within a derivation. 

If it is a multiplicity for X we define the (indexed) formula tree for the indexed 

formula Xµ as a tree of indexed positions of the form: k", where k is a position 

of the basic formula tree for X and is is a sequence of positive integers defined 

in the manner described below. Let kl << k2 << << kn -s k, 1 < n, be all those 

elements of ro that dominate k in the formula tree for X. The indexed position 

k" is a position of the indexed formula tree for Xµ provided: 

1. k is a position of the formula tree for X. 

2. µ(k1)00,1<i<n. 

3. ,c=mlm2mn where 1 <m; <µ(k;), 1 <i<n. 

We shall use is -< T to denote that is is a proper initial sequence of T. The 

ordering on the underlying tree is extended to the indexed tree as follows: for 

indexed positions k" and 1T, 

k c << l1 if k <I and ,c T 

i.e.) k must dominate l in the unindexed formula tree, and is must be an initial, 

but possibly not proper, sequence of T. The polarity, pol(k'c), of an indexed 

position k' is taken to be the same as the polarity of its underlying unindexed 

position k; i.e., pol(k") = pol(k). The label, lab(k" ), of an indexed position k" 

is defined inductively as follows: 
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1. lab(ko) = A, if ko is the root position of the formula tree. 

2. If lab(k") = B A C, and ki, k2 are the children of k", then lab(ki) = B 
and lab(k2) = C. 

3. If lab(k") = B V C, and k;, k2 are the children of k", then lab(ki) = B 

and lab(k2) = C. 

4. If lab(k") = B = C, and ki, kz are the children of k", then lab(ki) = B 

and lab (k) = C. 

5. If lab(k") = -,B, and ki is the child of k", then lab(ki) = B. 

6. If lab(k') = VxB, and ki is a child of k", for some r, is -< r, then lab(ki) _ 
B[ki/x]. 

7. If lab(k") = 3xB, and ki is a child of k", for some r, is r, then lab(ki) _ 
B[ki/x]. 

That is, we use the position itself as a marker for where substitutions can be 

performed for individual variables. Positions of 'Yo and 8o-type appear in the 

atoms labelling the atomic positions of the indexed formula tree in place of what 

otherwise would be free individual variables. One may think of the positions 

used in this way as a special structured set of parameters for our sequent proof 

theory but we prefer another interpretation given in §3.4. 

The notation sform(k') is extended to indexed positions in the obvious way, 

namely: 

sform(k') = (lab(k') , pol(k')). 

Consequently, since the polarity of an indexed position k", and the structural 

form of its label, is identical to the polarity and form of the label of the underlying 

position k, k' inherits the types (both principal and secondary) of k. We use 

ro(µ) and Ao(µ) to denote the sets of indexed positions of (secondary) type 'Yo 

and 8o respectively, in a given (indexed) formula tree for X". 
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We shall use u and v, possibly subscripted, as meta-variables ranging over 

indexed positions when we are not interested in the index, and drop the super- 

script on «µ. Moreover we use a, al, a2, ,Q.... , etc, to denote arbitrary indexed 

positions of that (principal or secondary) type. We shall feel free to use such 
notation as a" to denote an indexed position of a-type when we wish to identify 

the index. Henceforth we shall refer to indexed positions simply as positions. 

We adopt a number of typographical conventions to ease the reader's task in 

following the examples given in the text. These conventions are: 

Indices (sequences of positive integers) are written as strings. For instance, 

the string 121 represents the three-element sequence consisting of "1" fol- 

lowed by "2" followed by "1." Consequently, 12 -< 121. We will have 

no need to consider multiplicities higher than 9 in the discussion or the 

examples presented in this thesis. 

We omit the index on a position if it is the empty sequence. 

Elements of ro(µ) are distinguished with an overbar. These positions play 

a crucial role in the sequel. 

An indexed formula tree for the signed formula: 

(Vx(3yPxy A VzQxz) 3xVyPyx, 0) 

is shown in Figure 3-2. We have taken the multiplicity to be µ(a2) = 1, µ(a6) = 2 

and µ(a$) = 1. 

Notice how the free variables of subformulae in the formation tree are replaced 

by positions in the labels of the indexed formula tree. This is a consequence of the 

definition of the labels of indexed positions given above. We shall step through 

the consequences and technical motivations for these definitions with reference 

to the example. Our explanation will be inductive, following the definitions. 

Consider a signed formula (A, 0) representing the sequent ----> A. Consider a 

free positive subformula of (A, 0) whose major symbol is a universal quantifier; 
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Vx(2yPxy A VzQxz) = 3xVyPyx ao 

Vx(3yPxy A VzQxz) ElxVyPyx 

2yPxy A VzQxz Vy IPyx 

3yPxy VzQxz Pyx 

I 
Pxy Qxz 

1 !l 
1 11 12 a4 a6 a6 

u pol(u) lab(u) Ptype(u) Stype(u) 

ao 0 Vx(ByPxy A VzQxz) = 3xVyPyx a - 
a1 1 `dx(3yPxy A VzQxz) al 

a2 1 3yPa2y A b'zQa2z a 1'0 

a3 1 3yPa4y al 

a4 1 Pa4a4 - bo 

a1 1 `dzQa4z a2 

a61 1 Q a2 a61 - 10 

a 62 1 
1a Q a2a6 2 - ,Yo 

a7 0 3xVyPyx 1 a2 

a8 0 `dyPya$ b 10 

a9 0 Pa7a8 - bo 

Figure 3-2: An indexed formula tree. 
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i.e., a positive subformula of the form: VxB. Let the position that represents 

this subformula in the (basic) formula tree for (A, 0) be 1. We have: 

pol(l) = 1 

lab(l) = VxB 

sform(l) = (VxB,1) 

Ptype(l) = -y 

(Example: VxB is Vx(3yPxy A VzQxz) and l is al in Figure 3-2.) 

Since the free subformula VxB occurs positively in - A (negatively in A) 

instances of it will occur as antecedent S-formulae. Consider such an instance 

VxB' and suppose that it is represented by an indexed position l" in an indexed 

formula tree for (A, 0)". This constitutes the inductive assumption for the ex- 

planation. We have: 

pol(l') = 1 

lab(l') = VxB' 

sform(l') = (VxB', 1) 

Ptype(Y') = -y 

The S-formula (VxB', 1) represented by l" is generative in the sense that multiple 

distinct instances of B' could occur in derivations. Instances are formed by the 

substitution of parameters for the free occurrences of x in B'. It is the only free 

variable in B' by the inductive assumption. The other free variables in the free 

formula B will have been treated as we are now treating x already. 

Let k be the child of l in the basic formula tree. We have: 

pol(k) = 1 

lab(k) = B 

sform(k) = (B,1) 

Stype(k) = 7o 

(Example: k is a2 of the unindexed formula tree which is not shown in Figure 3- 

2.) 
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By choosing a multiplicity with µ(k) = 1 we prescribe that at most one 

distinct instance of B' may be considered in the derivation. (Remember that 

B' contains the free variable x.) Put another way, the language represented by 

the formula tree indexed by that multiplicity can only describe derivations in 

which at most one instance of B' is considered. We generate a distinct name 

for this instance by the indexing method. In the indexed formula tree with this 

multiplicity I" has only one child: k1, where T is the sequence is 1. k' names the 

instance of B'. We have: 

pol(k'') = 1 

Ptype(k) _ 'Yo 

(Example: k' is a2 since r = 0.) The only issue that remains open is to define 

the instance of B' named by Vi. We have some flexibility in this choice since 

any parameter or constant can be substituted for x according to the (inverted) 

universal rules. Instead of attempting to choose at this stage, we delay the choice 

and indicate the potential for a substitution by replacing the free variable by the 

distinct position k'' itself. The effect of this is that the atomic formulae of B' 

contain the position k'1. We now have: 

lab(k') = B'[k1/x] 

sform(k') = (B'[k1 /x],1) 

(Example: The label of a2 is 3yPa2y A `dzQa'z.) 

This completes the inductive construction. We have applied the rule: 

6: If lab(k") = VxB, and ki is a child of k", for some T, ,c -< T, then lab(ki) _ 

B[k"l x] 

of the definition of the labels of indexed positions. 

The reason for the inclusion of positions in the labels of indexed positions 

is technical. In the sequel we shall use a mapping of elements of ro(µ) (the 

positions with an overbar) into the set ro(µ) UAo(µ). This mapping indicates the 

coherence in choice parameter necessary to ensure that certain atomic formula 
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are identical. We wish to compute these mappings using a unification algorithm. 

Using the formulation of labels above we can simply unify the labels of the atomic 

positions and deduce the mapping from that. 

REMARKS. The notion of multiplicity and indexed formula given here differ 

from those given by Bibel in [Bib80,Bib82c]. Bibel's multiplicity can be said 

to be a function from the positions with Ptype(k) = -y instead of those with 

Stype(k) _ 'yo if formulated using the notions developed above. This is because 

he considers the quantified formula to be duplicated (VxB') rather than the 

formula quantified (B'). A quantifier may only be eliminated via the introduction 

of one distinct parameter "associated" with it. Instead of using positions for free 

variables as we do, he indexes the variables themselves. In his scheme (stretching 

our terminology): 

lab(lT) = VxTB'[xT/x"] 

Ptype(lT) = -y 

(He does not formulate the notion of label as we do.) He is then able to leave 

the free variable in place when the quantifier is reduced and use it, as do we, to 

indicate the coherence necessary in the parameter substitution. If he formulated 

the notion of label the clause for quantifiers would look like this: 

6. If lab(k") = VxB, and ki is a child of k", then lab(ki) = B 

The other clauses would be problematic however since we would have to consider 

as separate cases the situations where the immediate subformula of a label is a 

quantified formula. Despite the technical problems his method is essentially 

equivalent to ours for dealing with classical quantifiers only. 

From a sequent point of view Bibel's duplication method is the rule (read 

from conclusion to premise): 

r, Vx'B[x'/x], VxB ----+ A 
r, bxB -* A 

and the reduction like this: 

r, C[c/y] -+ A 
r, vyc -) A 
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whilst our method formalises the rule (read from conclusion to premise): 

r, dyC, C[c/y] -- 0 
r, `dyc - 0 

We do not consider the duplication of the formula VyC to be a duplication at 

all since we can already represent it by a position. The duplication occurs when 

and if the formula is reduced again to introduce another instance of C. Our 

concern for building a representation language for sequent derivations forces us 

to the formulation described above. 

Multiplicities are used to support the solution to problems of order depen- 

dence developed below. Our formulation gives a general account of the distinct 

formula that make up a sequent derivation whilst Bibel's does not. In his writ- 

ings, even though he developed the Connection Calculus via a study of sequent 

proofs, he considers this technique basically a better alternative to Skolemisation 

[CL73] rather than capturing proof-theoretic properties concerning the relation- 

ship of formulae with a derivation. We argue that this latter more abstract view 

can have significant benefits. The pay-off for our formulation is that we are 

able to apply these techniques in the sequel to modal operators (Part II) where 

no variables are concerned at all, and intuitionistic logic (Part III). (END OF 

REMARKS.) 

3.2.4 Summary. 

We have introduced various notions based around that of a formula tree and 

its positions for the removal of the notational redundancy present within the 

sequent search space. Indexed formula trees provide a general language for 

the representation of the formulae that can make up a derivation of a given 

endsequent in terms of the structure of the endsequent. The technique relies on 

the fact that the cut-free sequent calculus possesses the subformula property. 

From a practical point of view, positions can be interpreted as pointers to 

a single concrete representation of the endsequent in the database of the proof 

procedure. We note that all the information concerning types, polarities and 
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labels can be calculated before any attempt at a proof is made. When interpreted 

in this way we have achieved a theoretical exposition of the technique of structure 

sharing [BM72]: a technique developed to reduce the notational redundancy of 

resolution-based systems. 

The essence of the technique for quantifiers is due to Bibel. We have refor- 

mulated it and claim that our formulation is more carefully motivated in terms 

of the structure of sequent derivations. Having separated out the technique from 

the others in the Connection Calculus, it becomes possible to apply it within 

proof procedures not based on any matrix method. Any serious implementation 

of a sequent or analytic tableau proof procedure should consider utilising the 

technique for the representation of intermediate derivations (eg., [OS86}). 

An interesting use of multiplicities to formulate decision procedures for propo- 

sitional modal logics is considered in Chapter 7. 

3.3 Paths, connections and relevance. 

In this section we address the problem of relevance within the sequent search 

space. Recall that when extending a derivation by reducing one of its leaves 

we have to decide which S-formula of the leaf actually to reduce. We have no 

criteria for choosing one S-formula over another. There are a number of obvious 

strategies for ordering these OR-choices. Smullyan [Smu68] considers a number 

of such refinements for his analytic tableau proof methods which are notational 

variants of the sequent calculi we consider. In general such strategies amount 

to a preference for a-type and 8-type S-formulae over fl-type and 'y-type ones. 

Oppacher and Suen [OS86] have describeAsome related strategies. 

None of these strategies overcome the fundamental problem which is the em- 

phasis on the outermost form of an S-formula and not its internal structure. Any 

strategy based on this sort of information cannot identify whether a given reduc- 

tion will hasten the construction of a basic sequent or not. The connective-driven 

nature of sequent search together with the method of dealing with parameter 
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choices are the fundamental drawbacks of sequent-based proof procedures (see 

eg., [BT75,D84,OS86]). 

Robinson [Rob65] shifted the emphasis from connectives to the connection 

with the basic "clash" of the resolution rule of inference. His unification algo- 

rithm also removed the need to choose parameters at the reduction of quantifiers. 

Unfortunately the method he developed of utilising these fundamental ideas re- 

quires the use of a severe normal-form which can introduce a large amount of 

redundancy before the proof search even begins (see [And8l]). Moreover, the 

particular normal-form does not exist for many of the logics in use today. This 

issue forms a serious barrier to the application of resolution to non-classical log- 

ics. At best the methods are of use within a restricted class of formulae of the 

non-classical logic. Typically this class includes precisely those formulae that 

can be put in the particular normal-form required by resolution. A good case in 

point is Farinas-del-Cerro's modal resolution systems [Far86]. 

Some authors have tried to remove this normal-form restriction. The "non- 

clausal" resolution rule of Manna and Waldinger [MW80] and Murray [Mur82] is 

one such proposal. This method forms the basis for one of the alternative modal 

proof methods reviewed in Part II. 

Andrews [And8l] and Bibel [Bib8l,Bib82a] have developed a more subtle 

basis for retaining the sentential connectives, and in Bibel's case the quantifiers 

also, whilst still gaining the benefits of connective-driven search. The methods 

are based on the notion of a path through a formula. This notion is quite common 

in proof-theoretic accounts of logic but was proposed for use in automated proof 

search explicitly by Prawitz [Pra60] in his "improved" proof procedure for for- 

mulae in conjunctive normal-form. The combination of paths with connections 

is the crucial blend. 

At first sight the methods of Andrews and Bibel look quite adhoc. It is 

perhaps this, together with their complexity, that has hindered an appreciation 

of the importance of these techniques for automated proof search. We hope that 

our method of presentation will help to change this situation. 
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In the first section we define the notion of a path through an (indexed) for- 

mula and relate it to sequent-based notions. In the second section we introduce 

the idea of a connection. Finally we summarise the differences between our 

formulation of these notions and those of Bibel and Andrews. 

3.3.1 Paths as sequents. 

IMPORTANT NOTATIONAL POINT. We warn the reader that we shall sys- 

tematically abuse our notation and use the names of types to denote arbitrary 

(un)indexed positions of that type within formal definitions such as the defini- 

tion of the notion of path below. In particular, if we say: "if s, -y" is a path... " 

we mean that "if s, u is a path, and Ptype(u) = 7,... " Furthermore, in this 

context we shall use -y0 'j to denote the child of u. Similar abuses are extended 

to the other types. We shall include indices explicitly where necessary. (END 

OF POINT.) 

Let Xµ be an indexed formula. A path through Xµ is a subset of the positions 

of its formula tree defined below. We shall use s and t, possibly subscripted, to 

denote paths, and adopt the notation s, u to denote the path (set) s U {u}. The 

set of paths through Xµ, is the smallest set such that: 

1. { ko } is a path, where ko is the root position of the formula tree for Xµ; 

2. if s, a" is a path, so is (s \ {a"}), a,", a2' ; 

3. if s, Qlc is a path, so are (s \ {Q"}),,8 ' and (s \ {0"J), 02.; 

4. if s, -yK is a path, so is s, -yo' j, for any j, 1 < j < t4 (,yo); 

5. if s, b" is a path, so is (s \ {b"}), 6o'. 

The path: 

(s \ {a"}), al", a2" 

is said to have been obtained by reduction on a" from s, a". Similarly in the 

other cases. Notice that in the generative case: -y, there is a choice as to which 
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child of the position to introduce. The children differ solely in the last element 

of their indices. 

The definition can be appreciated immediately if one remembers that each 

position represents a signed formula, and that a signed formula represents either 

an antecedent or succedent S-formula depending on its polarity. A set of signed 

formulae therefore represents a sequent. Formally, a set of positions s represents 

the sequent: 

r,)A, 
where: 

F. 

As 

df 

df 

{ lab(u) u E s, pol(u) = 1 } 

{ lab(u) u E s, pol(u) = 0 } 

We can interpret the a clause of the definition of path as referring to sequents. 

Consider a path s, u for some a-type position u. If pol(u) = 1 then sform(u) 

represents an antecedent formula: lab(u). Moreover, sform(u) is a signed formula 

of a-type. Hence lab(u) is a formula either of the form: A A B, or of the form -A 
(see §3.1.1, Table 3-1.) The path therefore represents one of the two sequents: 

ra, A A B - * A, or r -iA 

Suppose ul and u2 are the two children of u. We have: 

1. If lab(u) = A A B, then lab(ul) = A and lab(u2) = B. 

2. If lab(u) = -A, then lab(ul) = lab(u2) = A. 

The a clause says that if s, u is a path, so is (s \ {u}), u1, u2. Consequently, the 

reduced path is one of: 

I', A,B --COs or r,, A, A' 

where r; is r, \ {u} and 0; is A, \ {u}. The reduced path represents precisely 

the sequent that would result from an inverted application of one of the rules: 

r, A, B - O r A, A 
r,AAB -* L 

A r,--, A ) A 
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on the sequent represented by the original path, provided that no duplication 

is allowed. Furthermore, the root path: { ko }, where ko is the root position of 

X = (C, 0) represents the sequent: 

C 

In fact, the set of paths through X are simply (representations of) the set of 

sequents constructable from this endsequent, with a restricted possibility for 

duplication at the reduction of antecedent S-formulae of the form: VxA, and 

succedent S-formulae of the form: 3xA (i.e., the 'y-type positions). 

There are two things to note about the structure of these sequents and their 

generation as paths. Firstly, they contain positions in place of free variables or 

parameters. Secondly, there is no proviso on the application of 8 rules. Notice 

that these differences appear only for first-order formulae not propositional ones. 

We showed in Chapter 1 how the atomic paths can be visualised in terms of a 

nested two-dimensional matrix (at least for propositional formulae). 

We consider the propositional case first. An atomic path through X (there 

is no multiplicity since X is propositional) is a path containing only atomic 

positions. There are a finite number of atomic paths through X since the formula 

tree for X is finite and each reduction replaces a position by its children to form 

the reduced path. The atomic paths are the set of leaves of what we shall call 

a complete derivation. This is a derivation that has been extended as far as 

possible by reducing all non-atomic S-formulae in the leaves. 

3.3.2 Connections. 

A connection is simply a pair of atomic positions in some path through X" whose 

labels have the same predicate symbol but different polarities. (In propositional 

logic the labels are therefore identical.) Since the positions have different polar- 

ities one is a positive occurrence and the other a negative occurrence of some 

proposition. 
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A set of connections is said to span Xµ just in case every atomic path through 

Xµ contains a connection from the set. Andrews [And8l] and Bibel [Bib81] prove 

that if X = (C, 0) where C is a propositional formula, then the existence of a 

spanning set of connections in X ensures the validity of C (and vice versa). We 

can now see why. If every atomic path s contains a connection it represents a 

sequent of the form: 

I's, A ---> A, As 

for some proposition A. Consequently any complete derivation of --> C is a 

proof. 

In the case of propositional logic at least, this is a characterisation of the 

existence of a sequent proof of a formula (and hence its validity) in terms of the 

existence of a spanning set of connections in the formula. No mention is made 

of actually constructing the proof. Put another way, the sequent calculus can be 

seen as a method of checking that every atomic path through the formula con- 

tains a connection. It is a very inefficient method of checking these paths. Bet- 

ter methods are developed by Bibel [Bib82a,Bib77,HB82] and Andrews [And81]. 

The common feature of these path-checking methods that makes them improve- 

ments on the sequent method is their emphasis on connections as opposed to 

paths. The sequent method (and natural deduction methods in general) enu- 

merate paths and then check to see if they contain connections. Matrix methods 

identify a connection first, then eliminate from consideration all the paths that 

contain that connection. The paths are said to have been "checked." The con- 

sideration of paths is driven by the identification of connections and not vice 

versa. In sequent terms, no reduction is performed that does not directly lead 

to the introduction of the two atomic S-formulae corresponding to a connection. 

The problem of relevance is removed from the matrix search space. 

EXAMPLE. We redo the propositional example given in Chapter 1 in or- 

der to illustate the relationship between path-checking and the theoretical ideas 

developed above. We consider the formula: 

(P=>- Q)A(Q=R)=(P=R) 
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A formula tree for the signed formula: 

((P = Q) A (Q = R) =>. (P = R), 0) 

was developed in §3.2. The basic formula tree is shown in Figure 3-1 and the 

assignment of polarities, labels and types developed throughout that section. In 

the introduction we reduced the formula to its negation normal form: 

(P A -,Q) V (Q A -,R) V (-,PVR) 

in order to identify the atomic paths through using a matrix as a visual aid. We 

now have more sophisticated methods of stating the matrix representation of a 

formula. The matrix representation of a signed formula X is defined inductively 

as follows: 

If X is of a-type (eg., (B C, 0)), the matrix representation of X is a 

I x2 matrix with the two components of X (eg., (B, 1) and (C, 0)) as the 

two columns. 

If X is of /3-type (eg., (B = C, 1)), the matrix representation of X is a 

2_ x 3. matrix with the two components of X (eg., (B, 0) and (C, 1)) as the 

two rows. 

Otherwise, if X is non-atomic, the matrix representation of X is a 1 x 1 

matrix with the single component of the formula the submatrix. If X is 

atomic, it is said to be its own matrix representation. 

The reader can check using the types of the positions given for the formula tree 

for our signed example that its matrix representation (via this definition) is: 

Po Q°1 

Q1 R1 

or in terms of positions: 

a4 a7 

(P1 R°) 
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The atomic paths through the matrix are as given in the introduction. We 

leave it to the reader to run the inductive definition of paths given above on the 

formula tree of Figure 3-1 to verify this. The atomic paths are: 

{P°, Q°, , P' R 

{ 1'0, R1, P1,R o } 

{ Q1, Q0, , P1 AO } 

{ Q1,R',P1'R° } 

or, more precisely in terms of positions: 

{ a3, a6, as, alo } 

{ a4, a6, a9, alo } 

{ a3, a7, a9, alo } 

{ a4, a7, a9, alo } 

The three connections identified in the introduction were: 

{ Po, P1 } 

{ Q1,Q° } 

{R1,RO} 

or in terms of positions: 

Notice that the set spans the formula. We conclude that it is propositionally 

valid. The reader might like to check that these three connections form the dis- 

tinguished atomic formulae in any sequent proof of the formula by performing 

the proof in terms of positions instead of formulae. Start with the root path {ao}, 

look at its type, and reduce it according to the definition of path given (or al- 

ternatively translate everything into sequents via the signed formulae sform(k)). 
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In Chapter 1 we outlined how directed, connection-driven search procedures can 

be defined. (END OF EXAMPLE.) 

We have considered the case of propositional logic. We consider the first- 

order case below. First we review the differences between our formulation of the 

notion of path and that of Andrews and Bibel. 

3.3.3 Summary. 

We have introduced the notions of "path" and "connection" and outlined how 

they are sufficient to overcome the problems of relevance within the sequent 

search space. We have shown how the sequent calculus can be seen as an ineffi- 

cient method of enumerating paths through a formula and subsequently checking 

to see if the paths constructed are closed. Replacing that type of search by a 

directed search for connections ensures that only those reductions necessary for 

the realisation of connections are enumerated. Connections can be used to "look 

inside" the structure of S-formulae and calculate which reductions to perform (if 

any) to close a leaf. 

Our formulation of path is somewhat different from that of Andrews and 

Bibel. Their definitions only capture what we have called an atomic path, partly 

because of the restriction to negation normal-form in the theoretical discussion. 

Our formulation makes the relationship with sequent-based ideas explicit. 

In Parts II we adapt the definition of path to suit the extended modal lan- 

guages. The arguments of this section are formalised completely within the 

justification of the modal matrix characterisations. The correctness and com- 

pleteness proofs for these extended matrix systems (Chapter 6) are directly based 

on such proofs for sequent and tableau systems. The generalisation of the no- 

tion of path to relate it to these standard ideas permits quite straightforward 

meta-theoretic arguments about the matrix systems themselves. This is crucial 

if the matrix methods are to be extended successfully to other logics. 
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3.4 Reduction orderings and order dependence. 

So far we have removed the notational redundancies and those of relevance from 

the sequent search space by means of formula trees, paths and connections. The 

basic matrix framework is in place. In the last section we outlined how these 

notions alone are sufficient to characterise validity in classical propositional logic. 

We come now to the last problem identified within the sequent systems: the order 

dependence induced in the search space by the quantifier rules. 

For propositional logic we have no need to consider the internal structure of 

derivations at all. The existence of a spanning set of connections for A means 

that any complete derivation must be closed (i.e., be a proof of -) A) and 

therefore entails the classical validity of A. For first-order logic however the 

internal structure of derivations is important since there are constraints imposed 

on the application of certain quantifier rules. 

First we adapt the notion of a complete derivation to first-order logic where 

duplication of quantified formula (-yo and 5o-type formulae/positions) is permit- 

ted. We can no longer make sense of the phrase "reduce a sequent/path to 

atomic formulae," since there is the possibility of duplicating subformulae arbi- 

trarily. The notion of multiplicity can be used to control this duplication. For a 

given multiplicity it does make sense to define a complete derivation and hence 

the notion of atomic path. Put simply: a path is atomic if every duplication 

sanctioned by the multiplicity has been performed and the results reduced to 

atomic positions. We formalise this notion fully in Part II, Chapter 6, when we 

deal with modal logics. 

Consider the signed formula: 

(`dx(3yPxy A VzQxz) 3x`dyPyx, 0), 

An indexed formula tree for this signed formula was given in §3.2.3, Figure 3- 

2 above. The matrix of this formula contains only one path which, with the 
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multiplicity given, contains four atomic elements as follows: 

1 11 12 1 
a4, a6 , a6 , a9 

or in terms of labels: 

{ Pa2a4, Qa2 61, Qazas2, 'asa$ } ; 

or in terms of atomic formulae: 

{ Pxy, Qxz, Qxz', Py'x' } , 

where we have "primed" variables to indicate that they are distinct. The richness 

of the second representation given in terms of labels compared with the poverty 

of this last representation provides some justification for the complex definition 

of labels used. 

There is only one path since there are no ,0-type subformulae. Recall that 

positions distinguished with an overbar correspond to -yo-type subformulae: the 

immediate subformulae of generative subformulae. This path contains a connec- 

tion: {a4, a9}, since the labels for these two positions have the same predicate 

symbol (P) and different polarities. Can we conclude that the formula is valid? 

Consider the following sequent "pseudo-derivation," where instead of param- 

eters we use positions of the formula tree instead (i.e., labels instead of bonafide 

subformulae of the endsequent): 

Paza4, QaIasl, Qazas2 -' Pala$ 
Paza4, Qazasl, Qazas2 -' VyPyas 

Paza4, Qa2a61, Qa2as2 - 3xVyPyx 
Pa2'a4, Qa2as1, VzQazz - 3xVyPyx 

Pa2la4, VzQazz - 3xVyPyx 
3yPa2,y, VzQazz - 3xVyPyx 

A VzQazz - 3xVyPyx 
Vx(3yPxy A VzQxz) - 3xVyPyx 

> Vx(3yPxy A VzQxz) = 3xVyPyx 

Notice that the multiplicity µ(a6) = 2 sanctions at most two distinct instances 

of Qazz, the (free) immediate subformula of the generative S-formula: VzQazz. 

This potential is represented by the two labels: Qaza61 and Qazag2. The other 
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generative subformulae are restricted by the multiplicity to the production of 

one instance of their immediate subformula only. 

To transform this pseudo-derivation into a proper derivation we need to 

choose parameters for the positions that appear in the formulae. For the re- 

sult to be a proof we must ensure that the parameters are chosen so that the 

antecedent S-formula: Pala4, is identical with the succedent S-formula: Pala8. 

The leaf of the transformed derivation will then be closed. We can represent this 

choice by a mapping t from ro(µ) U 0o(µ) into a suitable set of parameters. One 

immediate constraint on this mapping is that bo-type positions must correspond 

to distinct parameters; i.e., for all u, u' E Do, 

t(u) # t(u') . 

This is because at the reduction of a 6-type S-formula (strictly: signed formula) 

we are forced to introduce completely new parameters. A second constraint is 

that the choice of parameter at the reduction of -y-type S-formulae must not 

interfere with the reduction of the necessary b-type S-formulae. We formalise 

these notions below. 

Given a connection such as {a4, a9}, we consider a mapping a: ro -- (rou Do) 

under which the labels of the atomic positions are identical. The connection is 

said to be complementary under a, or a-complementary. In our example an 

appropriate mapping is: 

Such mappings are calculated by a unification algorithm operating on the labels 

of the atomic positions. The mapping a should be interpreted as prescribing 

the coherence that must exist in the choice of parameters for the derivation to 

close. In terms of the mapping introduced from positions to parameters this is 

formalised as a constraint on t: if a(u) = a(u'), then t(u) = t(u'). Our example 

mapping represents the need for the parameter chosen at the introduction of 

a2 (by the reduction of its parent) to be the same as the one chosen at the 

introduction of a9. A similar constraint holds between a$ and a4. 

80 



or induces a binary relation: C on AO(A) x Fo(A), and a binary relation: 

on I'o(µ) x F0(A), with the latter constrained to be an equivalence relation. 

1. If a(u) = v and v E Fo(p), then u - v. 

2. If a(u) = v and v E A0(A), then v C u. 

3. IfvCuandu' u',then vCu'. 

Finally, we define the reduction ordering a as the transitive closure of the union 

of the formula tree ordering « and C. That is to say: 

4 of 
(GC U C)+ 

The relation C should be interpreted as representing order constraints on 

the introduction of parameters. The parameter chosen at the reduction of a 6- 

type formula must be new. If to close a leaf of a derivation the same parameter 

must be used at the reduction of a -y-type formula, the former reduction had 

better occur before the latter else the proviso on the 6 (existential) rules will 

prohibit the required coherence. This is reflected as a constraint on the order of 

introduction of the immediate subformulae of -y and 6-type formulae, i.e., (the 

labels of) -yo and ao positions. 

In matrix-based search we do not need to choose particular parameters, nor 

choose a particular order in which to apply sequent rules. We are simply inter- 

ested in inferring the necessary coherence any such choice of parameters must 

possess, and then ensuring that there is at least one order of reduction that re- 

spects the provisos on the quantifier rules. The condition necessary for this latter 

situation to pertain is that the reduction ordering induced by a be irreflexive. 

If this is the case, or is said to be admissible. 

The reduction ordering induced by our mapping is shown in Figure 3-3 as a 

directed graph. Notice that it is cyclic. This entails that a is reflexive and hence 

that the coherence required to identify the atomic S-formula forming the connec- 

tion in the leaf of the pseudo-derivation cannot be realised (at this multiplicity). 

In actual fact the formula is not valid. 
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ao 

1 7 

1 1 o 

a3 fa 
y 

a9 

1 
11 12 

a4 a61 a6 

Figure 3-3: A reduction ordering as a directed graph. 

EXAMPLE. We consider the example that motivated our discussion of the 

order problem in Chapter 2, namely: 

(3xVyPxy = Vx3yPyx, 0) 

We choose a constant multiplicity equal to 1. An indexed formula tree is shown 

in Figure 3-4. 

The matrix for this signed formula is simple since there are only two atomic 

subformulae and no Q-type subformula. There is only one atomic path through 

the indexed formula: {a3, a6} and these two atomic positions form a connection. 

The mapping or that identifies their labels is: 

U (a3) = a5 

Q (a6) = a2 

Consequently, a5 C a3 and a2 C a6 are induced. The reduction ordering is: 

It is acyclic and hence there are sequent derivations with the right coherence in 

the choice of parameters to realise the connection as (part of) a basic sequent. 

In this case this is enough to determine the validity of the formula. 
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3xVyPxy = Vx3yPyx 

3xVyPxy Vx3yPyx 

ao 

ai a4 

VyPxy ]yPyx a2 a5 

I 

Pxy Pyx 

u pol(u) lab(u) Ptype(u) Stype(u) 

ao 0 3xVyPxy = Vx3yPyx a - 
ai 1 3xVyPxy 8 al 

a2 1 VyPa2y 7 ao 

as 1 Pa2ag - 70 

a4 0 Vx3yPyx 8 a2 

a5 0 3yPya5 7 ao 

as 0 Pa4a5 - 70 

Figure 3-4: An indexed formula tree (3xVyPxy = `dx3yPyx, 0). 
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The permissible orders for reducing S-formulae can be read from the reduc- 

tion ordering graph. The S-formula corresponding to a position in the graph 

must not be introduced (by the reduction of its parent) until all the other posi- 

tions in the graph from which it is reachable have themselves been introduced. 

In Chapter 1 we deduced these constraints by a consideration of sequent 

derivations directly. Here we see their representation within a matrix frame- 

work. Proof search is driven in the same way as in the propositional case: the 

identification of connections and the subsequent elimination of the atomic paths 

containing the connection. The only addition is that we must check that all the 

connections used so far to eliminate paths are o-complementary under some ad- 

missible mapping or. There is no need to consider the order in which paths (the 

matrix equivalent of sequents) are reduced, we simply check the atomic ones for 

connections and let unification do the work. (END OF EXAMPLE.) 

To summarise: we have motivated Bibel's matrix characterisation of validity 

in first-order classical logic. The characterisation has the form: a formula A 

is valid if and only if there is some multiplicity A, some admissible mapping o 

and some spanning set of o-complementary connections in (A, 0)µ. Unification 

is used to ensure the existence of a correct order of sequent rule applications to 

produce a proof of the formula. No single concrete order need be preferred. This 

technique removes the order dependence, induced in the sequent search space by 

the quantifier rules, from the matrix search space. 

3.5 Summary and discussion. 

In the previous sections we have introduced the basic notions used by Bibel and 

Andrews in the formulation of their matrix methods for classical logic. The 

presentation has not been completely formal, since we do just that in the more 

complicated case of modal logic in Part II. We have shown how these techniques 

can be used to overcome the redundancies in the sequent search space analysed 

in Chapter 2. 
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Whilst the basic nature of the characterisation is due to Bibel, we believe 

our particular technical formulation of the individual techniques to be quite 

significant. A summary of the main points of this argument is as follows: 

The use of polarity and uniform notation. 

Bibel and Andrews restrict their theoretical discussion to formulae in 

negation normal-form. Whilst we recognise that this restriction is not 

necessary, it has 

(a) served to confuse some readers (eg., Murray [Mur82] believed it 

to be a restriction on the scope of the matrix methods); and 

(b) their subsequent formulation of certain notions actually relies on 

it thus restricting the techniques theoretically to logics which ad- 

mit such a normal form. 

An example of the latter is the notion of atomic path. We have elimi- 

nated this restriction in the theory by means of the notion of polarity. 

The cost was potentially high, in terms of the complexity of the result- 

ing formulation, since we now need to consider the entire first-order 

language. We overcame this problem by means of Smullyan's uniform 

notation [Smu68]. 

Indexed formula trees. 

We have altered Bibel's notion of multiplicity in a simple way that, 

we believe, is more in line with the motivation: providing a uniform 

language for the representation of derivations which supports struc- 

ture sharing implementations. In our scheme the formulae duplicated 

are the immediate subformulae of generative subformulae. We prefer 

this formulation because it allows a uniform treatment of modal oper- 

ators and the properties of intuitionistic sentential connectives in the 

sequel. 

Andrews, Miller and Pfenning's [Mil84,Pfe84] notion of an "expansion 

tree" is a somewhat less syntactic version of Bibel's formula trees. 
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They are primarily interested in higher-order logic rather than first- 

order logics. They demonstrate the utility of expansion trees for the 

representation of derivations by showing how they encode derivations 

in both analytic and non-analytic proof systems. They are not pri- 

marily concerned with the efficiency of the proof systems represented 

in the sense that we are in this thesis. Expansion trees may turn out 

to be a more appropriate theoretical tool for assessing the relative 

efficiency of various proof systems for automated proof search. That 

has yet to be shown. This is an interesting topic for future research. 

Paths. 

We have generalised the notion of path so that its relationship with 

sequent-based notions is immediately apparent. Both Bibel and An- 

drews formalise what we call "atomic paths," and their formulation 

relies on the use of negation normal-form. In Part II we shall en- 

counter logics where the notion of an atomic path is quite complex. 

This can be explained in terms of sequent calculi by noting that in 

those logics the reduction of certain S-formulae is strongly coupled 

to the reduction of other S-formulae; i.e., multiple reductions occur 

during the application of a single sequent rule. Moreover, there are 

irreducible non-atomic paths. With the extra flexibility gained from 

our formulation of path we are able to define a notion of an atomic 

path that is appropriate for those logics (though perhaps we should 

call it a "basic path" since it contains non-atomic formulae, and to 

associate it more directly with "basic sequents.") The logics referred 

to here are the K-logics. 

Admissibility. 

Given the changes mentioned above our formulation of the way in 

which unification can be used to remove the order dependence in the 

sequent search space was bound to differ from Bibel and Andrews' 
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account. We note that, until recently, Andrews and his co-workers 

retained skolemisation in their matrix framework (see eg., [And8l]). 

Their later works ([Mi184,Pfe84]) do incorporate Bibel's technique of 

a reduction ordering. Both Bibel and Andrews see the use of the 

technique as a method of dealing specifically with the parameter con- 

ditions on quantifiers of existential force. We, on the other hand, 

have a more general proof-theoretic view in terms of the order depen- 

dence of S-formula reductions within sequent derivations. It is this 

more general view that has enabled us successfully to apply a version 

of the technique to remove the order dependence of more compli- 

cated sequent rules such as the modal rules and rules for negation 

and implication in intuitionistic logic. The technique is used in the 

propositional fragments of the logics as well as the quantified systems. 

Many of these technical improvements were developed during the adaptation of 

Bibel's techniques to modal and intu itionistic logics and in an attempt to for- 

mulate the relationship of the techniques with sequent-based ideas. Some of the 

improvements are merely technical, some are quite fundamental as summarised 

above. We believe this work to be significant for the application of the ideas 

to improve automated proof search in logics other than those considered in the 

remainder of this thesis. 
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Part II 

Automated Proof Search in 

Modal Logics. 

88 



Summary. 

The main result presented in the thesis so far is the decomposition of Bibel's 
Connection Calculus [Bib80,Bib82c]: a matrix characterisation of validity for 

classical logic, into a set of individual techniques for overcoming problems of 

redundancy in sequent-based proof search. The redundancies were identified by 

an analysis of the search space induced by a cut-free sequent calculus. We strove 

to abstract the formulation of the techniques from any dependence on specific 

details of classical logic. Having identified and abstracted these techniques, we 

may now apply them individually as and when they are applicable. In this part 

of the thesis we make use of this flexibility to formulate matrix characterisations 

of validity for a wide class of modal logics. 

Modal logics are used extensively in various branches of Artificial Intelligence 

and Computing Science as logics of knowledge and belief (eg., [Moo80,Kon84, 

HM85]), logics of programs (eg., [Pne77,Har791), and for such tasks as the speci- 

fication of distributed and concurrent systems (eg., [HM84,Sti85b]). In many - 
if not all - of these applications the need arises for proof systems which facili- 

tate efficient automated proof search. Our purpose in this part of the thesis is to 

develop matrix characterisations of validity for both propositional and first-order 

versions of the modal logics K, K4, D, D4, T, S4 and S5. Our methods extend to 

the varying, cumulative and constant domain variants of the quantified logics. 

By judicious use of the techniques identified in Part I of this thesis, we man- 

age to retain the basic structure of the matrix characterisation for classical logic. 

Proof search is reduced to a process of path-checking and complementarity tests 

for pairs of atomic formulae (connections). As a consequence, the matrix char- 

acterisations that we formulate here render search methods developed for use 

with the classical matrix characterisation, eg., [Bib77,Bib82b,HB82], applicable 

without change to the modal logics. We have thus succeeded in extending per- 

haps the most efficient proof search methods developed for classical logic (see 

[Bib82b]) to this important class of non-classical logics. The effective automation 
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of these logics has been a goal of the Automated Theorem Proving community 

for some time. 

Our method for deriving the matrix characterisations of validity for a modal 

logic follows the pattern established in Part I. We analyse the redundancies 

within the search space induced by standard cut-free sequent calculus for that 

logic and then adapt and apply the various techniques discussed in Part I to 

remove them. 

This part of the thesis comprises four chapters. In the first chapter we provide 

a basic introduction to the syntax and semantics of the modal logics under 

consideration. This chapter is included for completeness and reviews well-known 

material. We present cut-free sequent calculi for the logics K, K4, D, D4, T, S4, 

and briefly discuss why similar cut-free proof systems cannot be formulated for 

S5 and the constant-domain variants of the first order logics. Readers familiar 

with such proof systems for modal logics can safely skip this chapter provided 

they are familiar with Fitting's generalisation of Smullyan's uniform notation for 

modal logic [Fit83]. This notation will be used extensively in the sequel. 

In Chapter 5 we investigate the search spaces of the modal sequent systems. 

We conclude that inference rules for modalities introduce considerable complica- 

tions over and above the problems associated with the basic sequent framework 

itself. We analyse the nature of these complications. 

From this analysis, and using the insight gained from our discussion of clas- 

sical logic in Part I, in Chapter 6 we derive matrix characterisations of validity 

for the modal logics under consideration. This constitutes the major result of 

this part of the thesis. We prove the correctness and completeness of these 

characterisations in that chapter. 

In Chapter 7 we outline efficient proof systems based on the matrix charac- 

terisations developed showing how the problems associated with sequent-based 

proof search are avoided. Attention is paid to the nature of the complementarity 

tests which require algorithms for unification under simple equational theories. 
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We also outline how efficient decision procedures for the propositional fragments 

of the modal logics can be developed based on the matrix characterisations. 

A number of authors have attempted to develop computationally efficient 

proof systems for the modal logics considered here, for example: [Far86,AM86a, 

Kon86]. We conclude this part of the thesis with a review of the main proposals in 

the literature. The analysis demonstrates the advantages of the matrix systems 

as a basis for automated proof search in modal logics. 
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Chapter 4 

The semantics and proof theory of 
modal logics. 

4.1 Introduction. 

In this chapter we: 

provide a basic introduction to the syntax and standard (Kripke) semantics 

of the modal logics K, K4, D, D4, T, S4 and S5; 

extend to the modal language the uniform notation utilised in our argu- 

ments above for classical logic, and 

present cut-free sequent calculi for first-order versions of the logics K, K4, 

D, D4, T, S4. 

We also discuss why similar (cut-free) sequent systems for S5 and the constant- 

domain variants of the first-order logics cannot be formulated. The material of 

this chapter is based on the presentation of analytic tableau systems for modal 

logics by Fitting in his book [Fit83]. It is included so as to make the thesis 

self-contained. Readers familiar with analytic proof systems for modal logics 

can safely skip these sections provided they are also familiar with the uniform 

notation defined in §4.2.3. This notation will be used extensively in the sequel. 
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The chapter is structured as follows. First we introduce the language and 

semantics of modal logic and present Smullyan and Fitting's uniform notation to 

simplify the metatheory (§4.2). In §4.3 we develop cut-free sequent calculi for the 

cumulative domain variants of the modal logics K, K4, D, D4, T, S4. We develop 

a calculus for a single logic first, namely S4, then infer the variants for the other 

logics from this basis. We prove the correctness of the S4-system explicitly to 

familiarise the reader with the style of proofs that arise in Chapter 6. Finally, 

we discuss the problems that arise in attempting to formulate similar (cut-free) 

sequent systems for S5 and the constant-domain variants of the first-order logics 

(§4.4). We conclude with a summary. 

The discussion of modality is brief. We are concerned with proof-theoretic 

properties of calculi for these logics rather than arguing the case for the use of 

a particular modal logic for a particular application. The references cited above 

should be consulted for such arguments. The reader is referred to Hughes and 

Cresswell's book [HC68] for a more comprehensive discussion of modal logic itself 

and a bibliography. 

4.2 Syntax, semantics and notation. 

In this section we present the syntax and (Kripke) semantics of the modal logics 

under consideration. We also extend the uniform notation utilised in the previous 

chapter to the modal language. This extension is due to Fitting [Fit83]. 

4.2.1 Syntax. 

The first-order language common to the modal logics considered comprises: 

1. A denumerable list of n-ary predicate symbols Pn, Q",..., for each natural 

number n. 

2. A denumerable list of individual variables x, y, z, (possibly subscripted). 
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3. Infinitely many constants c, d, (possibly subscripted). 

4. The sentential connectives A, V, = and 

5. The quantifiers V and 3. 

6. The modal operators D and 

As usual we assume the sets of symbols to be disjoint. We omit the arity of 

predicate symbols when it is clear from the context or irrelevant. 

REMARKS. The above definition defines a class of languages dependent on 

particular choices of predicate, variable, and constant symbols. In the sequel 

we assume some fixed set of predicate and variable symbols and allow the set 

of constants of the language to vary. We use this flexibility to formalise the 

interpretation of our formal language in the language of models so as to define 

an appropriate notion of validity. If D is a set of constants, by "a modal lan- 

guage over D" we mean a language defined as above whose constant symbols are 

amongst D. 

Notice that the languages we consider contain no function symbols. We make 

this restriction here and in the sequel for technical simplicity. Since the matrix 

characterisations for modal logic derived in Chapter 6 stem from considerations 

of the sequent calculi developed in this chapter, they characterise modal validity 

in languages with no function symbols also. We stress: the restriction is made 

for technical convenience only. In Chapter 7 we show how the restriction can be 

lifted. (The reader may recall that we made a similar simplifying restriction in 

Part I when considering classical logic.) (END OF REMARKS.) 

The sentential connectives and quantifiers are given their usual interpreta- 

tions. There are many common informal interpretations for the modal operators. 

To reflect the historical origins of the symbols we shall refer to O and Q as the 

operators of logical necessity and possibility respectively. (Some authors use the 

symbols L and M for these operators respectively.) 
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The formation rules for the set of modal formulae are simply the formation 

rules for classical first-order formulae augmented by the following rule for the 

unary modal operators: 

If A is a formula, then so are A and QA. 

We shall use A, B, C as metavariables for modal formulae. The notions of sub- 

formula and immediate subformula are extended to the modal language in the 

obvious way: A is the immediate subformula of A and QA, and A together 

with its subformulae are the subformulae of QA and A. The notions of sub- 

stitution, free and bound occurrences of individual variables in formulae, and 

sentences are defined as usual. 

4.2.2 Semantics. 

We include for completeness the standard Kripke semantics [Kri63] for the modal 

logics under consideration. 

A pair (G, R), comprising a non-empty set G and a binary relation R on G 

is called a frame. If we restrict R to satisfy the conditions outlined in Table 4- 

1 we say that (G, R) is an L-frame, where L is the logic associated with that 

condition. The condition of idealisation referred to in the table is the following: 

for each w E G there is some v E G such that w R v holds. 

Notice that the reflexive relations satisfy the idealisation condition since for all 

wEG,wRw. 

REMARK. When the modal operators are informally interpreted as denoting 

logical necessity and possibility the members of G are sometimes referred to as 

"possible worlds," whilst the binary relation R of the frame is called the "acces- 

sibility relation." We shall adopt the latter convention, but call the elements of 

G "points" for brevity. (END OF REMARK.) 

A first-order frame is a 4-tuple G, R, D, D) where (G, R) is a frame, D is 

a non-empty set and D is a mapping from G to non-empty subsets of D. We 
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L Condition on R 

K no conditions 

K4 transitive 

D idealisation 

D4 idealisation, transitive 

T reflexive 

S4 reflexive, transitive 

S5 equivalence 

Table 4-1: Conditions on accessibility relations. 

require also that: 

D = U D(w). 
wEG 

D(w) is interpreted as the set of individuals that "exist" at the point w. 

We can obtain variants of the first-order modal logics by imposing conditions 

on the way D varies over its domain G. We shall be concerned in the sequel 

with the following three possibilities: 

Varying domains: no conditions. 

Cumulative domains: D(w) C D(v), whenever w R v. 

Constant domains: D(w) = D(v), for all w, v E G. 

In this chapter we develop proof systems that are sound and complete for cumu- 

lative domains only. Similar sequent systems can be formulated for the varying 

domain variants of the logics [Fit83]. In §4.4 we briefly consider the problems 

that arise in formulating similar sequent calculi for the constant domain variants 

of the logics. Although the sequent methods of this chapter do not extend to all 

these variants, the matrix systems developed in the sequel do. 
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REMARKS. Since the accessibility relation for S5 is an equivalence relation, 

each point is either accessible from every point of the frame, including itself, or 

the frame partitions into "disjoint" equivalence classes. It turns out that we can 

always restrict attention to the first type of frame without any loss of generality 

[HC68]. 

Under the restriction mentioned above, the class of cumulative domain first- 

order frames for S5 reduces to the constant domain class. Basically, since every 

point w is accessible from every other point v, the cumulative domain condition 

gives us: D(w) C D(v) and D(v) C D(w); i.e., D(w) = D(v). (END OF 

REMARKS.) 

If (G, R, D, D) is a first-order frame, and 11- a relation between the points 

of G and sentences (of the modal language over D), then (G, R, D, D, is a 

first-order Kripke model provided: for each w E G, 

1. W -AAB iffw 11-Aandw 1i-B. 

2. w - A V B if either w 11- A or w 11- B. 

3. w - A = B iff either w 11f A or w 11- B. 

4. w l- -A iff w 11f A. 

5. w - VxA if for all c E D(w), w 11- A[c/x]. 

6. w - 3xA if for some c E D(w), w 11- A[c/x]. 

7. w - DA if for all v E G with w R v, v 11- A. 

8. w - QA iff for some v E G with w R v, v 11- A. 

The relation w 11- A should be read: "A is forced at the point w," or 

A." 

"w forces 

A sentence A, of the modal language over D, is said to be valid in the model 

G, R, D, D, I I-/, provided, for each w E G such that the constants of A are in 

D(w), we have w 11- A. 
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This defines what it means for a sentence of the language of a model to be 

valid in that model. Let Do be another set of constants disjoint from D. An 

interpretation of a language over Do in the model (G, R, D, D, 11-) is a mapping 

t: Do '- D. A sentence, A, (of the modal language over Do) is said to be valid 

under the interpretation t in the model (G, R, D, D, 11-), just in case t(A) is 

valid in that model. Such a sentence is valid just in case it is valid under every 

interpretation in every model. 

REMARKS. In fact we are interested in sentences that are valid in a restricted 

class of models: the S4-models or the K-models etc. In this respect we should 

speak of L-models and L-validity for any of the logics L under consideration. 

Most of the material applies to all models and logics. Consequently we shall 

continue to speak in terms of "models" and "validity," being more precise when 

the need arises. 

Notice that the sentential connectives and quantifiers are interpreted relative 

to a single point in the frame. In contrast, the modal operators are interpreted 

relative to multiple points of the frame via the accessibility relation. In classical 

logic a formula can be either forced (true) or not (false) in a given model. In 

modal logics a formula may be forced or not at each point in a model. Each 

point of a modal model can be seen as a classical model in its own right. (END 

OF REMARKS.) 

4.2.3 Uniform notation. 

Once again we shall make substantial use of a uniform notation for formula 

occurrences to reduce the number of cases we need to consider in the metatheory. 

The notation is an extension of that introduced in Part I for classical logic, and 

is a minor modification of that introduced by Fitting [Fit72]. It takes advantage 

of the symmetry between the modal operators. We assume that the formulae 

in what follows are of the modal language over an arbitrary, but fixed, set of 

constants D. 
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a al a2 

(A A B,1) (A,1) (B,1) 

(A V B, 0) (A, 0) (B, 0) 

(A = B, 0) (A,1) (B, 0) 

(-,A,1) (A, 0) (A, 0) 

(-, A, 0) (A,1) (A,1) 

Q Ql Q2 

(A A B, 0) (A, 0) (B, 0) 

(A V B,1) (A,1) (B,1) 

(A = B,1) (A, 0) (B,1) 

'y 'yo(a) 

(VxA, 1) (A[a/x],1) 

(3xA, O) (A[a/x], 0) 

b bo(a) 

(VxA, 0) 

(3xA,1) 

(A[a/x], 0) 

(A[a/x],1) 

V vo 

(E] A,1) (A,1) 

(QA, 0) (A, 0) 

7r 710 

(DA,0) (A,0) 

(0A,1) (A,1) 

Table 4-2: Uniform notation for signed modal formulae. 

A signed modal formula is a pair: (A, n), where A is a formula and n E {0,1}. 

We let X, Y, Z, possibly subscripted, range over signed modal formulae. A signed 

formula is said to be atomic if its constituent formula is atomic; otherwise it is 

non-atomic. We also speak of the major symbol of a signed formula by which 

we mean the major symbol of its component formula. 

Non-atomic signed formulae whose major symbol is a sentential connective or 

quantifier are classified (as before) as either a, Q, ry or b type depending on their 

sign. Two new classes, v and 7r, are required for signed formulae whose major 

symbol is a modal operator. Table 4-2 contains the complete classification. 

IMPORTANT NOTATIONAL POINT. We shall abuse our notation extensively 

and use a, all a21 p, 81, ,02, 'y, ryo(a), ..., etc, to denote signed formulae of 

the respective types and their immediate subformulae. Consequently, when we 

refer to a formula a, we mean a modal formula of type a. Similarly for the 
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other types. This abuse of notation is used extensively by Smullyan [Smu68] 

and Fitting [Fit83]. (END OF POINT.) 

The semantic notions of the previous section can be extended to signed for- 

mulae. For a model (G, R, D, D, II-), and w E G, we define: 

wII- (A, 1) if wII- A 

and 

wII-(A,0) if w1174 A. 

From these definitions we obtain the following corollary: 

COROLLARY 4.1 Let (G, R, D, D, II-) be a model. For every w E G, 

1. Exactly one of wII- (A, 1) or wII- (A, 0). 

2. wII- a 1f wII- al and wII- a2. 

S. wII- 0 i f w 11-,31 or w 11- Q2 

4. wII- 7 if for each c E D(w), wII- 7o(c). 

5. w II- 6 if for some c E D(w), wII- 60(c). 

6. wII- v iffor all vEGsuch that wRv, v 11-1/0. 

7. wII- ir if for some v c G such that w R v, v II- iro. 

A set S, of signed (or unsigned) sentences over D, is said to be forced at a 

point w in a model, just in case every element of the set is forced at that point. 

We denote this situation by wII- S. 

A set, S, of signed (or unsigned) sentences of the modal language over Do, 

is satisfiable if there is some model (G) R, D, D, II-), and some interpretation 

t: Do -- D such that, for some point w E G, all constants of t(S) are in D(w) 

and wII- t(S). S is said to be unsatisfiable otherwise. 
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4.2.4 Sequents and a language for proofs. 

For the proof theory, we consider a modal language as before, but with the set 

of constants comprising: 

A denumerable set of individual constants. 

A denumerable set of parameters. 

Henceforth, we call the union of these sets Do. We use a, b to denote parameters 

in Do, and c, d to denote constants or parameters in Do. 

A sequent is an ordered pair (I', A) of sets of sentences, written I' -- A . 

I' is the antecedent and A the succedent of the sequent; we write -- A and 

I' -- + for the sequents (0, A) and (I', 0) respectively. Following convention, we 

write I', A for the set I' U {A}. 

A sequent I' -- + A over D is valid in a model (G, R, D, just 

in case: for all w E G, such that the constants of the sequent are in D(w), if 

w 11- I' then, for some A E A, w 11- A. A sequent I' - ) A over Do is valid 

under the interpetation t: Do --> D, in the model (G, R, D, D, 11-), just in case 

t(r) --) t(0) is valid in the model. Finally, a sequent is valid if and only if it is 

valid under every interpretation in every model. 

Recall that that a sequent I' - ) A determines a set Sr U So of signed 

formulae where: 

Sr df {(A,1) AEI'} 

So 
df {(A,0) I AEO}. 

This set is called the associated set of the sequent. 

The following proposition summarises the semantic relationship between se- 

quents and their associated sets. 

PROPOSITION 4.2 A sequent I' --- A is valid if and only if its associated set 

is unsatisfiable. 
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PROOF. The associated set is unsatisfiable just in case for every model: 

G, R, D, D, 11-), every interpretation t of the constants of the set in the 

model, and every w E G such that these constants are in D(w), it is not 

the case that w 11- t(Sr U Se). 

Now, w 11- t(SrUSe) if both w 11- t(Sr) and w 11- t(Se). So w 11- t(SrUSe) 

fails just when the implication: "if w 11- t(Sr), then it is not the case that 

w 11- t(Se)" holds. But: 

w - t(Sr) if w 11- t(I) 

since every X E Sr has X = (B, 1), for some formula B. Similarly, 

w 11- t(Se) fails if w JFf t(Y) 

for some Y E S. But every such Y has Y = (A,0) for some A E A. 

Therefore, 

w 11- t(Se) fails iff w 11- t(A) 

for some A E A. To summarise: the negation of w 11- t(Sr U Se) is 

equivalent to the implication: "if w 11- t(I'), then for some A E A, W II- 

t(A)." But this is just a statement of the validity of r -- A under t in 

the model (G, R, D, D, 11-). 

4.3 Sequent calculi for modal logics. 

In this section we develop cut-free sequent calculi for the modal logics under 

consideration. The material is reasonably standard and has been adapted from 

[Fit83}. In Chapter ,5 we discuss the suitability of these calculi as bases for auto- 

mated proof search. As the reader might expect in the light of previous chapters, 

where we discussed such issues for the classical sequent calculus, the systems are 

found wanting. An analysis of the particular redundancies introduced by the 

rules for the modal operators motivates the ensuing development of the more 

efficient matrix systems in Chapter 6. 
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All of the sequent calculi for the modal logics are essentially variants on a 

basic theme. We exploit this in our presentation. First, we develop the basic 

calculus for S4 in §4.3.1. The calculi for the other logics are presented as variants 

of this calculus in §4.3.2. We include correctness results and examples to give 

the reader a flavour of the arguments to follow in Chapters 5 and 6. 

4.3.1 A sequent calculus for S4. 

In this section we develop (§4.3.1.1), and prove correct (§4.3.1.2), a cut-free 

sequent calculus for S4. Recall that the accessibility relation for S4-models is 

constrained to be both reflexive and transitive. The proof system is designed to 

determine the valid sequents of the logic. 

4.3.1.1 The calculus. 

As usual with cut-free sequent calculi, the rules fall into three categories: basic 

sequents or axioms, operational rules and structural rules. Since our sequents 

are sets of formulae rather than sequences, we have no need for structural rules. 

The basic sequents are instances of the schema: 

I',A) A,A. 

This is identical to the schema defining the basic sequents for the classical sequent 

calculus of Part I. 

The operational rules appear in pairs, each pair associated with a particu- 

lar sentential connective, quantifier or modal operator. One rule introduces the 

connective/quantifier/operator into the antecedent, the other introduces it into 

the succedent. Since classical propositional logic forms a fragment of the modal 

logics, the rules for the former are a subset of the rules for the latter. The quan- 

tifier rules are also lifted directly from the classical calculus. We need additional 

rules for manipulating the modal operators. Recall that these operators, un- 

like the sentential connectives and quantifiers, are interpreted relative to more 
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than one point in a model. The manner in which this is captured by the modal 

rules will become clear in the correctness proofs below. The complete system is 

summarised in Figure 4-1. 

Derivations are defined (as usual) as coherent trees of rule instances. We 

omit the details. Proofs are derivations whose leaves are instances of the basic 

sequent. 

4.3.1.2 Correctness and completeness. 

We now justify the rules by showing that they express theorems about valid 

sequents. The form of these theorems is as follows. For each rule: 

if all the premises are valid, then the conclusion is valid. 

In particular the basic sequent (with no premises) is valid. To simplify the 

arguments we employ the uniform notation introduced above. 

In what follows, by: "satisfiable," "model," "valid," etc, we mean: "S4- 

satisfiable," "S4-model," "S4-valid," etc, repectively. 

Recall that a sequent determines an associated set of signed formulae. The 

rules of Figure 4-1 can be rephrased concisely in terms of these associated sets. 

We shall motivate the form of the rephrased rules with reference to the modal 

rule: 
F, A ) A 

I', A ---3 A 

If Sr and So are the sets of signed formulae associated with I' and 0 respectively, 

i. e., 

Sr of {(B,1)IBEr} 
So 

of {(B,0)lBEA}, 

then the set associated with the premise is: 

Sr, So, (A, 1). 

104 



r,A -i A, L1 

r ---> A,A r,B -* A 
r, A==). B) A 

r,A,B ---i A 
r,AAB - A 

A 

r, A ) A r, B ) A 
r, AV B ---> A 

r --- A, A 
r, ,A ---* L 

r, A[c/x] - A 
r, VxA - A 

r, A[a/x] --- A 
r, 3xA -* A 

r,A ---> A 
r, A ) A 

r*,A-*A* 

V 

-* 

r,A -) B,A 
r-*A=B,A 

r - A,A r- B,A 
r--->AAB,A 

r)A,B,A ---) v r) AVB,A 

r, A i A 
r)-,A,A -3, 

r -* A[a/x], A 
d r -*VxA,t 

r -p A[c/x], A ---. 3 r -* 3xA, A 

r* -i A, A* 
r ---> A, A 

r) A, A 
r)QA,A 

n 

For the -p V and 3 -f rules: the parameter a must not occur in the 

conclusion. 

r* df 

A* df 

{ B B E r} 
{QBQBEA} 

Figure 4-1: A cut-free sequent calculus for S4. 
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Similarly the set of signed formulae associated with the conclusion of the rule 
can be expressed as follows: 

Sr,So,(A,1). 

But the signed formula ( A, 1) is of L/-type according to Table 4-2, consequently 

the rule can be written: 
S, vo 

S, v 

where S is the union of Sr and S. By a similar analysis all four modal rules 

collapse to the pair: 
S,vo S*,70 v 7t S,v S, 7r 

where 

S* at {uIuES}. 

(Recall that v-type formulae are those of the form: ( B, 1) and (QB, 0) for 

some formula B. Consequently, the notation { v I v E S } means the set of v- 

type formula that are elements of S.) The eight sentential operational rules can 

be expressed uniformly as the following pair: 

S, ai, a2 S, Qi S,02 a 
S,Q 

Q. 

The basic sequent becomes simply: 

S, (A,1), (A, 0). 

The condensed system is summarised in Figure 4-2. This leaves us with only 

seven correctness theorems to prove instead of seventeen. 

LEMMA 4.3 A set of signed formulae of the form S, (A, 1), (A, 0) is unsatisfi- 

able. 

PROOF. By case (1), Corollary 4.1, (A, 1) and (A, 0) cannot both be forced 

at the same point of a model. 

PROPOSITION 4.4 All basic sequents are valid. 
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S, (A, 1),(A,0) 

S, 015 02 

s7 a 
S,/1 S,,@2 

Q 
SIP 

a 

S,'yo(a) S, bo(a) 
b 

S, 7 'Y 
s7 b 

S,u0 
v 

SO/ 

S*, iro 

S, 7r 
7r 

For the b rule, the parameter a must not occur in the conclusion. 

S* ar {VIVES} 

Figure 4-2: A Cut-free sequent calculus for S4 in uniform notation. 
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PROOF. Follows immediately from the above lemma and Proposition 4.2. 

LEMMA 4.5 If S, a is satisfiable, so is S, al, a2. 

PROOF. S, a satisfiable implies there is some model (G, R, D, D, I I-) , in- 

terpretation t: Do E-+ D, and w E G with all constants of L(S) and L(a) 

in D(w), such that: w 11- t(S) and w 11- t(a). But then, by case (2), 

Corollary 4.1, w 11- t(a;), i = 1, 2. Hence S, al, a2 is satisfiable at the same 

point, in the same model, under the same interpretation. 

PROPOSITION 4.6 The sentential rules with one premise (i.e., A --+, - --+, 
_+ -,, --) V, ---> *), are correct. 

We prove this result in detail. Similar proofs in the sequel will be shortened or 

omitted. 

PROOF. The associated sets of the premise and conclusion of each of 

these rules have the form S, al, a2 and S, a respectively. The contrapositive 

of Lemma 4.5 reads: if S, al, a2 is unsatisfiable, so is S, a. Hence, by 

Proposition 4.2, if the premise of such a sequent rule is valid, so is the 

conclusion, i.e., it is correct. 0 

LEMMA 4.7 If S3 is satisfiable, so is at least one of S,,31 or S, 02. 

PROOF. Again, let the model (G, R, D, D, JI-) satisfy S,,3 under an inter- 

pretation t, at w E G. By case (3), Corollary 4.1, w 11- t(Q) iff w 11- 1,(,01) 

or w 11- t(,32). The result follows immediately. 

PROPOSITION 4.8 The sentential rules with two premises (i.e., -+ A, V -+, 
----)), are correct. 

LEMMA 4.9 If S, ry is satisfiable, so is S,'Yo(a), for some constant or parameter 

c E Do. 
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PROOF. Let the model (G, R, D, D, 11-) satisfy S, -y at w E G, under an 

interpretation L. Then -yo(c) (possibly) contains c. There are two cases 

depending on whether c is new, or is already a constant of S, -y. 

1. c is new. Then t is not defined on c. Choose a c' E D(w) (which 

is non-empty by definition). Define L' on the constants of S,-yo(c) as 

follows: 
CI, d=c 

L (d) 
t(d), otherwise. 

w 11- t'(S) by hypothesis, and the fact that t' agrees with t. on the 

constants of S. We have: 

i ('yo(c)) = L'('Yo)(L'(c)) = t'(-yo)(c'). 

since L'(c) = c'. Moreover, by case (5), Corollary 4.1, 

w I I- if w I- L'(-yo) (d) 

for every d E D(w). But c' E D(w) by construction. Hence: 

w ({- ('Yo(c)) 

and S, -yo(c) is satisfiable. 

2. c is not new. Then t is already defined on c and L(c) E D(w) by hy- 

pothesis. The model condition cited above ensures that w 11- L(-yo(c)). 

PROPOSITION 4.10 The quantifier rules V ----> and ---> 3 are correct. 

LEMMA 4.11 If S, b is satisfiable, so is S, bo(a), for some parameter a E Do 

which does not occur in S, b. 

PROOF. Let the model (G, R, D, D, J(-) satisfy S, b at w E G, under an 

interpretation L. L is not defined on a, since a does not occur in S, b. By 

case (6), Corollary 4.1, 

w 11- L(b) if w jj- L(bo) (c) 
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for some c E D(w). Extend t as follows: 

c, d = a 
(d) 

t(d), otherwise. 

w II- t'(S) by hypothesis, and the fact that t' agrees with t on the constants 

of S. We have: 

t'(bo(a)) = t'(bo)(t'(a)) = /-'(60) (c). 

since L'(a) = c. Furthermore, by construction, c E D(w) and: 

w Ik t'(So)(c). 

Hence 

w II- /_'(bo(a)), 

and S, bo(a) is satisfiable. 

PROPOSITION 4.12 The sequent rules 3 --> and ---> V are correct. 

The previous five propositions, dealing with the classical parts of the proof 

system, do not rely on a particular modal logic. The final two propositions 

that deal with the modal rules are logic-dependent. They also indicate why the 

sequent systems presented are correct only with respect to the class of cumulative 

domain S4-models. 

LEMMA 4.13 If S, v is S4-satisfiable, so is S, vo. 

PROOF. Let the model (G, R, D, D, II-> satisfy S, v at w E G, under an 

interpretation t. The constants of t(S) and t(vo) are in D(w) by hypothesis. 

Since R is reflexive, w R w holds. Consequently, w 11- t(vo), by case (6), 

Corollary 4.1. Hence S, vo is satisfiable at w also. 

Notice that the proof relies on the fact that the accessibility relation for S4 is 

reflexive. 

PROPOSITION 4.14 The rules --* and -> Q are correct. 
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LEMMA 4.15 If S, 7r is S4-satisiable, so is S*, 7ro. 

PROOF. Recall that S* is the set { v I v E S }. Suppose S, 7r is satisfied in 

the model: (G, R, D, D, jj-) , at w E G, under an interpretation t. w il- 1.(7r) 

implies that there is a v E G, with w R v such that v 11- t(iro), by case (7), 

Corollary 4.1. We claim that v 11- t(S*), and hence the result. 

To prove the claim, consider a v E S* and u E G with v R u. We know 

that w 11- t(v). Since R is transitive, w R u. Consequently u 11- c(vo), by 

case (6), Corollary 4.1. But u is arbitrary, hence for every u with v R u, 

u 11- c(vo), i.e., v 11- t(v) by case (6), Corollary 4.1 once again. Since v was 

arbitrary, the claim follows. a 

Notice that the proof relies on the fact that the accessibility relation for S4 is 

transitive. 

PROPOSITION 4.16 The rules -> El and Q ----> are correct. 

REMARK. Notice that the point at which the premise of the 7r rule is satisfied 

is, in general, distinct from the point at which the conclusion is satisfied in a 

model; the former being accessible from the latter. The model condition for 6 

formulae sanctions the inference of w 11- 6o(c) from w 11- 6, for some c E D(w). 

Proof-theoretically this is represented by the use of a parameter, a, in the 6 rule. 

a is interpreted as denoting this particular constant c E D(w) of the model. Now 

assume that our attention changes, by means of the 7r modal rule to another point 

w' of the model, with w R w'. The model condition for -y formulae sanctions the 

inference of w' 11- 'yo(c) from w' 11- -y, for any c E D(w'). The -y rule, however, 

allows the inference -yo(a) from -y for any parameter or constant a E Do. In 

particular, parameters introduced by the 6 rule at the previous point w are 

assumed to have an interpretation at the new (but accessible) point w'. This 

will only be correct if the interpretation of the parameter, c E D(w), asserted 

to exist at w, is guaranteed to exist at the accessible point w'. The combination 

of the liberal quantifier rules and the modal rules is thus only correct for the 
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cumulative domain models where by definition: D(w) (END OF 

REMARK.) 

The above lemmata serve to establish the correctness of the system. 

THEOREM 4.17 (CORRECTNESS) The proof system summarised in Figure 4- 
1 is correct for the cumulative domain variant of S4; i.e., any sequent provable 

via the system is S4-valid. 

The systematic techniques of Kleene [K1e68], Smullyan [Smu68] or Fitting 
[Fit83] can be adapted to demonstrate the completeness of the calculus presented. 

The proof relies on an adaptation of Konig's Lemma for finitely branching infinite 

trees. The method is to systematically construct a derivation for the endsequent 

> A, starting from the root, such that either: 

(a) The procedure terminates with a proof. 

(b) The procedure terminates with one of the leaves of the derivation not being 

an instance of the basic sequent. 

(c) The procedure continues for ever. 

The construction is performed in such a way that if termination occurs as in 

(b), or the procedure fails to terminate as in (c), enough information has been 

produced to form a model in which A is not valid. Completeness follows imme- 

diately. 

REMARK. This form of systematic completeness proof also furnishes us 

with a semi-decision procedure for the undecidable quantified logics, and can be 

modified to produce decision procedures for the propositional fragments. Unfor- 

tunately, as we will show in the next chapter, such procedures whilst technically 

elegant are less than adequate for automated proof search. (END OF REMARK.) 

EXAMPLE. We conclude this section on S4 with a couple of example proofs 

using the proof system developed above. 
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Our first example is a proof of the (schematic) sentence: D A = D D Al 

where A is some arbitrary formula. This is usually taken to be the defining 
axiom for S4 in axiomatic presentations such as [HC681. 

A--4A 
U (v) 

DA --4 A 
DA--4 DA lir) 

OA --> D D A lir) 
A --4 (a) 

D =DDA 

We have included the classification of each rule application for the reader's 
convenience. Notice, how the formula E IA in the antecedent is "preserved" by 

successive --> D applications. The reader should consider how the proof would 

go wrong if the D -- rule was applied first. We shall examine such problems 

in detail in the next chapter. (END OF EXAMPLE.) 

EXAMPLE. Our second example involves the use of /3 rules as well as both 

types of modal rule. We prove a modal form of modus ponens: D A A D (A = 
B) = D B. 

A --- A, B 
CAI B --> B D A -- A, B (v) 

( D A, A = B --> B Q) 

DA, D(A=B) B 
(v) 

D ir) 
D (A = B) D B A 

l 
D , A -p (CO DAAD(A=B)-->DB 

(CO 
AA ) (A=B = B D ) D 0 

(END OF EXAMPLE.) 

4.3.2 Sequent calculi for K, K4, D, D4, T, S4. 

Above, we developed a sequent calculus for S4. Here we indicate how that system 

can be modified to obtain correct and complete sequent calculi for the cumulative 

domain variants of all of the modal logics under consideration. 

Classical logic is a fragment of each of the modal logics. This is reflected in 

the fact that the basic sequents, and the a, /3, 7 and 6 rules are taken directly 
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from the sequent system given for classical logic presented in Part I. The reader 

should check that the correctness proofs for these rules do not rely on any specific 

properties of S4-models over and above those shared by classical models (the 

latter corresponding to a point of the former). We conclude that these rules are 

correct for every (cumulative domain) modal logic. 

This is not the case for the v and 7r rules. We remarked at the time that 

the correctness (Lemma 4.13) of the v rules ( --) and ---> Q) relies on the 

reflexivity of the accessibility relation for the logic. It is, therefore, only correct 

for the logics T and S4. Likewise, the correctness proof (Lemma 4.15) for the 7r 

rules (Q --) and ---> ) relies on the transitivity of the accessibility relation 

for the logic. Therefore, this rule is only correct for the logics K4, D4 and S4. 

The situation is summarised in the following lemma: 

LEMMA 4.18 Let ( G, R, D, D, JI-) be an L-model, S a set of signed formulae 

over D, and w, v E G such that w R v. Then, 

1. wll- S implies vII-{volvES}. 

2. If R is transitive, w II- S implies v II- { v I V E S }. 

3. If R is reflexive, w II- v implies w II- vo. 

PROOF. The first assertion follows immediately from case (6), Corol- 

lary 4.1. The second was proved as part of the proof of Lemma 4.15 above. 

The third follows again from case (6), Corollary 4.1, together with the fact 

that w R w since R is reflexive, and was proved as part of Lemma 4.13 

above. N 

Finally we have the distinction between the logics whose models satisfy the 

idealisation condition, and those whose models do not, namely K and K4. The 

idealisation condition states that for every point in a model, there is another 

point accessible from it. For the K-logics this is not the case. This manifests 

itself proof-theoretically in the absence of any v rule whatsoever for the K-logics. 
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We obtain the flexibility needed to capture the logics proof-theoretically by 

changing the form of the v and ir rules. The definition of these rules is shown in 

Table 4-3. 

To summarise: A sequent calculus for one of the logics K, K4, D, D4, T, 

S4 consists of the basic sequent rule, the a, fl, -y and 6 rules, and the v and ir 

rules specified for that logic in Table 4-3. We shall not prove the correctness nor 

completeness of these systems. Such proofs, for tableau proof systems, which are 

notational variants of the above sequent calculi, can be found in Fitting's book 

[Fit83]. We conclude with some examples. 

EXAMPLE. As an example of the difference between some of the systems 

described above, we reprove the "modus ponens" example in the system for K. 

A,B -*B A --4A,B =-+ (p) A, A=B -> B -> (ir) A,(A=B) -> B A -* (a) AA (A=B) ---p B - ( ) = a 
AA (A= B) = B ) 

Notice that the form of the ir rule in the K system forces the modal operator to 

quantify every formula in the antecedent of its conclusion. We expect then that 

implicational sentences with different numbers of similar modalities quantifying 

its conclusion and antecedent will not be provable in this system. The S4-axiom 

A = A is one such formula. 

*A- 
A --+ A A -> A 

) A = A 

A -> A A -> A A -> A 
-* (ir) -> (ir) 

? (?) 

The left-hand K-derivation above indicates that A = A is not valid in a 

K-model with three points: wo, wi and w2; wo R wi and wi R w2; and w2 I1f A, 

wi II- A and wo II- A. (END OF EXAMPLE.) 
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Logic S* 

K {voI vES} 

v rule 7r rule 

S*,7ro 
none 

S, 7r 

S*'iro K4 {voI vES}U{vjvES} none 

D {voIvES} 

S, 7r 

S* S*, 7ro 

S S, 7r 

D4 {voIvES}U{vIvES} S S*,7ro 

S S, 7r 

T {voIvES} S,vo S*,7ro 

S,v S, 7r 

S4 {vIvES} S, vo S*, 7ro 

S, v S, 7r 

Table 4-3: Summary of v and 7r rules for the modal logics. 
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EXAMPLE. We prove the sentence Vx(Ax) = Vy(Ay) in the system for 
K. 

Aa --* Aa 
' Vx(Ax) - Aa ( Y) 

---) (ir) Vx(Ax) - Aa -4V 
(6) Vx(Ax) --' Vy(Ay) 

V ) A V 
(a) x( x) y( Ay) 

(END OF EXAMPLE.) 

4.4 S5 and constant domain modal logics. 

In [Fin79] Fine shows that Beth's Definability Theorem, and hence the Craig 

Interpolation Lemma, fails for the constant domain variants of the quantified 

modal logics that we are considering. Beth's Definability Theorem for a logic 

states that if a predicate is implicitly definable in a theory of the logic, then 

it is explicitly definable in that theory. (Roughly speaking, if P is a predicate 

of a theory T, and T' is the result of replacing all occurrences of P with a new 

predicate symbol P of the same arity as P in the axioms of T, then P is implicitly 

definable in T if 

T, T' H Vx1... Vx,,(Px1 ... xn = P'x1 ... xn). 

P is explicitly definable in T if 

T F- Vx1 ...Vxn(Pxl ... xn = A) 

for some formula A in the language of T, not containing P.) 

Fitting [Fit83] gives proofs of the Craig Interpolation Lemma for the propo- 

sitional fragments of the modal logics K, K4, D, D4, T, S4 considered above. 

These proofs are based on so-called symmetric sequent calculi for the logics. The 

notion of a symmetric sequent calculus is easy to grasp. Certain of sentential 

sequent rules, namely the rules for negation and implication, cause formulae to 

"move" from the antecedent to the succedent and vice versa. (More precisely, a 
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succedent formula in the premise may end up as a subformula of an antecedent 

formula in the conclusion of the rule, or vice versa, when the rule is applied 

forwards.) Symmetric sequent calculi are calculi in which none of the rules have 

this property. 

The sequent systems we have presented above are called cut-free because they 

do not contain the inference rule named "cut" by Gentzen [G69]: 

r ----> A, A r, A ----> A 
r )A cut 

This rule arises in the translation of a natural deduction into a derivation in 

the classical sequent calculus of Part I. Cut-free sequent calculi, in general, pos- 

sess the so-called subforrnula property: derivations are formed entirely from the 

subformulae of their endsequent. 

It is a straightforward matter to construct symmetric sequent calculi from 

cut-free systems that possess the subformula principle. Fitting [Fit83] performs 

such constructions for the logics we have considered. 

The import of these results is that we cannot hope to construct cut-free se- 

quent calculi of the type presented in this chapter for the constant domain logics. 

If we could they could be used to construct symmetric sequent systems and hence 

prove the appropriate Interpolation Lemma. The Definability Theorem for the 

logic would then follow. This contradicts Fine's result. 

These results extend to S5 itself since the first-order version of S5 has con- 

stant domains anyway if we assume the cumulativity condition (§4.2.2). In fact 

Fitting [Fit83] suggests that the problem lies with the condition of "symmetry" 

placed on the accessibility relation. S5 is the only logic we are considering whose 

accessibility relation is symmetric. The constant domain assumption is a form of 

symmetry. Individuals asserted to exist at newly considered points, must have 

existed at all other points as well. 

A number of authors have developed sequent-based proof systems for S5. 

Kanger (Kan57] and Fitting [Fit72J utilise the notion of a prefix. Their sequent 

(or tableau) systems then work with augmented sequents comprising prefixed or 
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"spotted" formulae. We shall in fact adopt a similar method to capture S5 and 

the constant domain variants in the next chapter. Other authors have employed 

different methods to obtain cut-free sequent-style proof systems for S5. Sato's 

[Sat77] proof system utilises pairs of sequents, while Mints' system [Min70] is 

cut-free, but his rules fail to have the subformula property. We have seen in 

Part I how important the subformula property is from a practical point of view 

since it forms the basis for structure-sharing methods. 

The constant domain logics can also be captured axiomatically by including, 

as an axiom, the so-called Barcan formula: 

VxAx = VxAx. 

Given the problem of obtaining a uniform proof-theoretic treatment of the 

modal logics, the question arises as to why we chose to introduce the cut-free 

systems that we did rather than, say, Fitting's prefixed systems which are general 

enough to cover all the logics? The answer to this question is partly historical 

and partly technical. Historically we were led to the non-classical matrix systems 

by a study of the sequent systems introduced in this chapter and the standard 

sequent calculus for intuitionistic logic. The fruits of that study are presented in 

the next chapter. The fact that our matrix solutions extended to the constant 

domain logics was somewhat fortuitous. Technically, we are driven by a desire 

to treat a wide range of proof systems. It is more beneficial to see the matrix 

systems as overcoming combinatorial problems in standard proof systems than 

in special purpose ones that may not generalise to other classes of logics. We 

hope that this decision will enable the application of our results to a wider class 

of logics than those considered here. We reconsider these points in Chapter 10. 
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4.5 Summary. 

In this chapter we have presented the syntax and semantics (§4.2) of the modal 

logics K, K4, D, D4, T, S4 and S5. Using a uniform notation due to Smullyan 

[Smu68] and Fitting [Fit83], we presented standard sequent calculi for the cu- 

mulative domain variants of the quantified modal logics K, K4, D, D4, T, S4. 

The material is based on Fitting's treatment of similar material presented in 

[Fit83]. No claim is made for originality. We have briefly discussed the problems 

of formulating cut-free sequent calculi for S5 and the constant-domain versions 

of the modal logics. 
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Chapter 5 

Proof search in modal sequent calculi. 

5.1 Introduction. 

The sequent calculi presented in the previous chapter for some of the modal logics 

under consideration are reasonably natural to use by hand, and have been used 

extensively in metatheoretic arguments about modal logics (eg., [Fit72,Fit83, 

HC68)). Indeed, such uses formed the main motivation for their development in 

the first place. 

As should be expected, these systems are not ideally suited for direct imple- 

mentation and efficient automated proof search. In Part I we identified certain 

redundancies present in the search space generated by the sequent calculus for 

classical logic. These redundancies were broadly classified under the following 

headings: 

Notational redundancy: considerable duplication of the same information. 

Relevance: the inclusion in the search space of branches that cannot lead 

to a proof. 

Order dependence: the need to explore alternative branches in the search 

space that differ only in the order in which certain sequent rules are applied. 
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We treated the sequent system for classical logic as the composition of a calculus 

for the pure propositional fragment with a calculus for the quantificational part 

of the logic. The redundancies concerning notation and relevance were shown 

to arise essentially from the pure propositional subsystem, whilst the quantifi- 

cational subsystem was shown to be responsible for the sensitivity of the search 

space to rule application order. 

By means of this analysis we developed a characterisation of validity in classi- 

cal logic based on matrices. The major components of this characterisation were 

paths, connections and a particular use of unification to overcome the order de- 

pendence induced by quantifiers. This development can be seen as a (theoretical) 

rational reconstruction of the work of Bibel [Bib8l,Bib82a,Bib82c], and to some 

extent, Andrews and his colleagues [And8l]. 

In this short chapter we investigate the structure of the search spaces gener- 

ated by the sequent calculi for modal logics presented in the previous chapter. 

We view each propositional modal system as the composition of a calculus for 

the modal part of the logic with the pure propositional calculus. The quanti- 

fied modal systems are then formed by the addition of the usual calculus for 

quantifiers. 

Since the modal calculi contain the pure propositional calculus as a subsystem 

we should expect the first two types of redundancy, concerning notation and 

relevance, to occur as before. This is indeed the case. For completeness, we 

review these arguments briefly in §5.2. The reader is referred to Part I for a 

more detailed discussion. 

In §5.3 we show how the addition of the modal rules to form the proposi- 

tional modal calculi induces a form of order dependence similar to that found 

when the quantifier rules were added to the propositional calculus in Part I. We 

illustrate this problem with a simple example. Finally, in §5.4 we analyse the 

effect of adding quantifiers to the propositional modal systems. Since both the 

modal rules and the quantifier rules independently induce an order dependence 

in the search space, the question arises as to how these dependencies interact. 

Even though the sequent systems we have presented do not extend to S5 or the 
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constant domain variants of the logics, we are led to conjecture that removing 

the combined order-related redundancies will turn out to be simpler in these 

cases than in the standard quantified modal logics with (arbitrarily) varying or 

cumulative domains. 

In the next chapter we develop matrix-based characterisations of validity 

for all of the modal logics under consideration, and proof methods based on 

these characterisations which do not contain the redundancies identified in this 

chapter. This development is directly motivated by our treatment of similar 

redundancies in classical logic presented in Part I. 

5.2 Notational redundancy and relevance. 

This section is very brief. It is included to make the treatment of modal logic in 

this part of the thesis more self-contained. Basically, since the pure propositional 

sequent calculus forms a subsystem of all the modal logics under consideration, 

the redundancies identified in Part I as coming directly from the propositional 

structure of classical logic are also present in the search spaces generated by the 

modal sequent systems. We repeat certain key notions and examples. For this 

section we restrict our attention to the pure propositional calculus. 

The rules of the pure propositional system are repeated in Figure 5-1 for the 

reader's convenience. To reiterate: the rules come in pairs, one pair for each 

connective. In each pair there is a rule for introducing the connective in the 

antecedent and one for introducing it in the succedent. In addition, instances of 

the basic sequent 

I', A ) A, A 

where A is an atomic formula, constitute the axioms of the system. We call 

the formula in which the distinguished connective is introduced, the principal 

formula of the inference. In addition, we refer to the two occurrences of the 

distinguished atomic formula in instances of the basic sequent as the principal 

formulae of that rule. The immediate subformulae of the principal formula in 
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r, A A, A 

r -->A,A r,B --)A r,A---->B,A 
r, A F B- > A r ---> A=>. B, A 

r,A,B -L r ---> A, A r --> B, A 
r, A A B --- A r i A A B, A 

r, A - A r, B --- A r --> A, B, A 
r,AvB ) A v -' r ---> AvB, A 

r ) A, A r, A ) A 
r, -A --->A r >-,A,A 

-V 

-4 

Figure 5-1: A sequent calculus for pure propositional logic. 

-- 4 n 

the premise(s) are called the side formulae of the inference. Derivations are 

trees of instances of the inference rules. The root of a derivation is called the 

endsequent. Proofs are derivations whose leaves are all instances of the basic 

sequent. A formula that occurs in a sequent of a derivation is called (after 

Gentzen [G69]) an S-formula for "sequent" formula. 

Given a propositional formula A we can test its validity by attempting to 

construct a proof of the sequent --) A using this calculus. As usual, the best 

way to do this is to start with -- A and apply the rules in inverted form, i.e., 

from conclusion to premise(s). This has the effect of constructing derivations 

from the root to the leaves. When inverted, the rules serve to remove occurrences 

of their associated connective from the sequent. The principal formula of such 

an (inverted) inference is said to have been reduced. 

This defines the basic inference system. The space to be searched is that of all 

possible derivations of a given endsequent. We examine briefly the redundancies 

present in the search space generated by this simple inference system. The reader 

is referred to Part I for a more detailed discussion of this calculus. 

The search space generated by the above inference system for the endsequent 
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----p A can contain many distinct interior nodes (derivations) as well as numer- 

ous proofs. Alternative paths through the space arise from the fact that when 

expanding a given derivation, there is a choice as to which leaf sequent to reduce 

next, and, for each such sequent, which of its S-formulae should be reduced. 

If the formula being tested for validity is large, the intermediate derivations 

can themselves become very large. Moreover, there is a lot of shared struc- 

ture between the derivations since formulae are repeated time and again within 

different sequents. This is the notational redundancy referred to above. We 

showed in Part I that, with the usual notion of subformula for the propositional 

language, every S-formula of a derivation is a subformula of the endsequent. 

Consequently, we can encode the interior nodes of the search space entirely in 

terms of the structure of the endsequent. This leads directly to the effective use 

of structure sharing techniques [BM72], originally developed to overcome related 

space problems with resolution based systems. This motivates the use of indexed 

positions in the next chapter. 

In Part I we also showed that for any endsequent the search space generated 

has the following properties: 

1. it is finite, and 

2. if the endsequent is valid, every path through the space leads to a proof. 

The second observation indicates that we can choose an arbitrary order of rule 

application and only ever consider one path through the (potentially large) search 

space. Taken together with the first observation we know that we can fix this 

order uniformly for any endsequent. In this way we can eliminate all alternative 

branches of the original search space leaving us with, for a given endsequent, a 

space containing a single path. The fact that the space is finite clearly reflects 

the decidability of the propositional calculus. 

Although we can successfully reduce the sequent search space to a single 

(determinate) path, this path can be very long. Since we make an arbitrary 

choice of which formula to reduce next in order to expand a given derivation it is 
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possible to waste a lot of effort reducing formulae that cannot ever "contribute" 

to a proof. In Part I we defined this notion of "contribution" roughly in the 

following way. Every formula contains a set of atomic subformulae. An S- 

formula is said to contribute to a proof if one of its atomic subformulae appears 

as a principal formula of an instance of the basic sequent at a leaf of the proof. 

Consider the (propositionally valid) formula: A A (B A P) P, where P is 

an atomic formula and A and B are arbitrary formulae.The first two steps in the 

construction of a proof of this formula (under any uniform regime of choosing the 

order with which to reduce formula in the leaves of an intermediate derivation) 

are completely determined, leading to the derivation: 

A, BAP ---> P 
AA (B A P) -* P 
-) AA(BAP) P 

A ---> 

At this point we have a choice: whether to reduce the formula A or the formula 

B A P. Suppose our reduction regime were to always reduce the "leftmost" S- 

formula in the sequent. Our next step would be to reduce A. If A were some very 

large but valid formula we could expend a large amount of effort reducing it and 

its subformulae, even though it does not contribute to the proof. It should be 

clear that such pathological examples can be constructed whatever our reduction 

regime. This is the problem we have termed relevance, and is due to the fact that 

the natural search method to use with sequent calculi is based on the reduction 

of connectives. The method used to overcome it in the classical matrix system of 

Part I was the connection. We shall see in the next chapter that we are able to 

adapt this solution when the pure propositional system we have been discussing 

is embedded in the full modal systems. 
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r*-->A, r,AA ° r A,A 

r* of {BI BEr} 
A* ar {BJOBEA} 

Figure 5-2: Modal rules for T. 

5.3 Order dependence. 

As discussed in the introduction, we consider the propositional fragments of the 

modal sequent calculi to be formed by adding rules for manipulating modalities 

to the pure propositional calculus. The appropriate modal rules for the logic T 

are repeated in Figure 5-2 for the reader's convenience. In this section we show 

that the order in which these rules are used to reduce S-formulae whose major 

connective is a modal operator, is significant. If an inappropriate reduction order 

is chosen a proof may not be found. This is in direct contrast to the situation 

we found above for the pure propositional calculus where all paths in the search 

space lead eventually to a proof (if the endsequent is provable). It is however 

reminiscent of the addition of quantifier rules to the pure propositional calculus, 

as discussed in Part I. 

Consider the following pair of T-derivations of the endsequent P, (P =:>- 

Q) --p Q, where we have "boxed" the principal formula of each reduction (recall 

that derivations are being constructed from their root to their leaves) : 

--) P, Q 

P=:- Q 

r*' A A* r A A 
r, OA 

O -- 
OA, A 

-- O 

--) Q 

P,(P Q)) Q 
P, (P=- Q) - Q 

P, Q -) ® 1 --`' 
P, P=Q -- 3 Q 

P, (P = Q) 

P 

Q 

Q 
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We cannot obtain a proof from the derivation on the left because we are unable to 

close one of its leaves. This problem arises because the application of the --> El 

rule restricted the formulae available for such a completion. We can influence 

the content of the sequent at this point by changing the order of rule application 

so that more (or fewer) formulae of the form A occur in the antecedent at the 

application of the ---+ rule. This we have done in the proof on the right. The 

import of this observation for automated proof search is that we can no longer fix 

an arbitrary order for the reduction of S-formulae. The search space generated 

by the modal propositional calculus is therefore more complex than the one 

generated by the pure propositional calculus. Derivations in which the reduction 

order of modal formulae differ are different in an essential way. Such choices must 

remain explicit in the search space to retain completeness. The resulting space 

thus contains all possible permutations of (modal) rule applications. 

The fact that reductions with the modal rules lead to formulae being "deleted" 

is the root cause of the order dependence we have just seen. It is somewhat dif- 

ferent in nature from the order dependence induced by the addition of quantifier 

rules to the pure propositional calculus. There the problem was the introduc- 

tion of distinct parameters. Here it is the maintenance of sufficient formulae in 

sequents to complete the proof. The effect on the structure of the search space 

is however similar. One of the major contributions of this thesis is the removal 

of this redundancy by using matrix-based techniques. The details are contained 

in the next chapter. We note at this point that the problem of order dependence 

is perhaps the most important problem to solve to achieve reasonably efficient 

automated proof search in modal logics. We shall see in Chapter 8 that it is 

precisely this problem that most of the other proof systems for modal logics, 

based on resolution, and suggested as appropriate for automated proof search, 

fail to solve. 
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r, A[a/x] --p A 
V r -p A[a/x}, A -- V r, dxA -- r -- dxA, A 

r, A[a/x) - A r --p A[a/x], A 
)3 

3 

r, 3xA --- A 
- r -- 3xA, A 

For the -- V and 3 ---> rules, the parameter a must not occur in the 

conclusion. 

Figure 5-3: Quantifiers rules for cumulative domains. 

5.4 Interactions: modal operators and quanti- 

fiers. 

In the previous section we saw that the modal rules induce complex structure into 

the sequent search spaces. To form calculi for the quantified modal logics with 

cumulative domains we add the ordinary quantifier rules familiar from classical 

logic. The rules are repeated in Figure 5-3 for the reader's convenience. We 

know from Part I that the quantifier rules also induce an order dependence in 

the search space. In this section we investigate how these dependencies interact. 

Consider the following formula of quantified modal logic: 

OOVx (QPx A Qx) Q(VyPy A VzQz). 

We shall attempt to demonstrate the validity of this formula using the quantified 

modal calculus for S4. Accordingly we modify the definitions of r* and A* in 

the modal rules as follows: 

r* 
A* 

df 

df 

{Bj BEr} 
{QBQBED 

Starting from the endsequent: 

---> OOVx (QPx A Qx) Q (VyPy A VzQz) 
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there is no choice as to the first reduction, and we obtain the derivation: 

OOVx (QPx A Qx) --> O (VyPy A VzQz) 
-- OOVx (QPx A Qx) 0(VyPy A VzQz) 

At this point we do have choice since both the antecedent and succedent formula 

of the leaf of the derivation are non-atomic. If we chose to reduce the succedent 

formula, the side formula of this reduction: VyPy A VzQz, would not survive 

the subsequent reduction of the antecedent formula. Looking slightly ahead, we 

can see that this problem will reoccur every time we reduce the O operators 

in the antecedent formula. Since it is clear that both atomic subformulae of 

the succedent formula must contribute to any proof, we must preserve them. 

Accordingly we reduce the antecedent until we have removed all occurrences of 

the modal operator O from it. The resulting derivation is: 

Pa, Qa --* O(VyPy A VzQz) 
OPa, Qa --* O(VyPy A VzQz) 
OPa A Qa --> O(VyPy A VzQz) 

Vx (QPx A Qx) --> 0(VyPy A VzQz) 
OVx (QPx A Qx) --> O(VyPy A VzQz) 

OOVx (QPx A Qx) ----f O (VyPy A VzQz) 
--) OOVx (QPx A Qx) O (VyPy A VzQz) 

Notice the introduction of the parameter a at the reduction of the universal 

quantifier Vx in the antecedent. So far so good. There are two reducible formulae 

in the leaf sequent of the derivation. There is no reason to prefer one over the 

other since the reduction of either does not affect the other formulae in the 

sequent. We choose to extend the derivation as follows. 

Pa, Qa --> VyPy Pa, Qa --> VzQz 
Pa, Qa --> VyPy A VzQz 

Pa, Qa --> O(VyPy A VzQz) 
Pa, Qa -' O(VyPy A VzQz) 

At this point, we have no choice in either of the leaves; we must reduce the 

universal quantifiers in both succedents. In order to obtain a proof we need 

to introduce the parameter a in both reductions. But this violates the side 

condition on the quantifier rules. In order to introduce the same parameter for 

all the quantified variables we must reduce the quantifiers of existential force (Vz 
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and Vy) before the quantifier of universal force (Vx). Going back to the sequent: 

Vx (OPx A Qx) -* O(VyPy A VzQz) 

we can extend the derivation as follows: 

OPa, Qa - Pa 
OPa A El Qa - Pa 

Vx (OPx A Qx) ----k Pa 
Vx (OPx A El Qx) ---p VyPy Vx (OPx A El Qx) -* VzQz 

Vx (OPx A O Qx) --+ VyPy A VzQz 

Vx (OPx A El Qx) --) O(VyPy A VzQz) 

But if we now reduce the antecedent formula OPa in the left hand leaf the succe- 

dent formula Pa will not appear in the new leaf. The same problem will clearly 

arise in the right hand branch if we were to perform the analogous reduction 

sequence there. 

The problem lies in the interaction between the modal and quantifier rules. 

The restrictions on the modal rules force us to reduce the (antecedent) sub- 

formula OPx before the (succedent) subformula O(VyPy A VzQz). The restric- 

tions on the quantifier rules force us to reduce the (succedent) subformulae VyPy 

and VzQz before the (antecedent) formula Vx (OPx A n Qx). But, OPx is a 

subformula of Vx (OPx A El Qx), and both VyPy and VzQz are subformulae of 

O(VyPy A VzQz). Consequently the modal and quantifier constraints cannot be 

simultaneously satisfied; i.e., satisfied within the same derivation. The situation 

is summarised in the following diagram: 

Vx (OPx A El Qx) O (VyPy A VzQz) 

OPx VyPy VzQz 

where the arrows indicate the reduction order constraints discussed above. The 

unsolvability of these constraints is represented by the fact that, as a directed 

graph, the diagram is cyclic. In fact, the original sentence: 

OOVx (OPx A 0 Qx) = O(VyPy A VzQz) 
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is not valid in the logics under consideration. 

The situation for automated proof search is therefore not very healthy. The 

search space must necessarily contain all paths that arise from choosing different 

reduction orders for modal operators and quantifiers. A different order will, in 

general, lead to a different derivation. All such alternatives must be explored to 

retain completeness. 

The sequent systems we are using here characterise the modal logics with 

cumulative domains. The effect of the cumulative domain restriction is that the 

same parameters may be introduced in different modal contexts as we saw in the 

example. The parameter a was introduced at the reduction of the (antecedent) 

universal quantifier Vx in our first derivation. We then went on to reduce the 

(antecedent) subformula QPa which notionally transfers our attention to an- 

other point in the models being investigated. (More precisely, the conclusion 
be 

of the rule only fails toAforced at points where both of its antecedent formulae: 

QPa and Qa, are forced, and its succedent formula: 0(VyPy A VzQz), fails 

to be forced. But, since QPa is forced at this point, by the model conditions 

for Q, there must be another point, accessible from the first, at which Pa itself 

is forced. Pa is still taken to make sense at this new point because, since it is 

accessible from the point in which a was postulated to exist, and the cumulative 

domain condition ensures that individuals that exist at one point also exist in 

all points accessible from it.) 

Calculi for the varying domain variants of the logics would have to encode a 

restriction that ensured that this form of "inheritance" did not occur. In other 

words the coupling between quantifiers and modalities is stronger than in the 

cumulative domain case that we have considered above. Parameters may only 

be used in the modal context in which they are introduced. 

The constant domain variants on the other hand place no restrictions on the 

relationship between quantifiers and modal operators since the same individuals 

exist at every point. The only interactions occur as we have discussed above 

concerning the side conditions on the quantifier and modal rule applications. It 

seems likely (and is in fact the case) that the removal of order dependencies in 
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the constant domain variants will be easier than in the other variants, since the 

coupling of quantifiers with modalities is weaker. 

5.5 Conclusions. 

In this brief chapter we have investigated the structure of the search spaces gener- 

ated by the modal sequent calculi presented in Chapter 4. We have demonstrated 

that these search spaces contain a number of familiar redundancies, namely: 

1. notational redundancies, 

2. relevance: the presence of inessential choices, and 

3. order dependence: the sensitivity of the search space to the order of appli- 

cation of certain inference rules. 

We expected the first two types of redundancy since it was shown in Part I that 

these redundancies are due to the basic sequent format of the pure propositional 

calculus. This calculus forms a subsystem of the modal calculi. 

The sensitivity of the search space to rule application order was shown to be 

more complex than classical logic. Both the modal rules and the quantifier rules 

introduce order dependencies. We showed that these dependencies interact in a 

major way to complicate the search space. 

In the next chapter, based on these observations and the methods used in 

Part I to overcome such redundancies, we present matrix based characterisations 

of validity for modal logics, and proof methods based on these characterisations. 

The search spaces generated by the matrix-based proof systems do not contain 

the redundancies identified above. 

Since we only have at our disposal sequent calculi for the cumulative domain 

variants of some of the modal logics we are interested in, it might seem as though 

we will be unable to develop efficient proof methods for the other variants and 
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logics by means of the analysis we have undertaken. In fact, the matrix-based 

proof methods we develop extend to all the logics and variants under consider- 

ation. We discuss the implications of this sW rising fact further in Chapter 10. 
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Chapter 6 

Matrix characterisations of validity in 
modal logics. 

6.1 Introduction. 

In Chapter4we presented standard cut-free sequent calculi for the cumulative 

domain variants of the first-order modal logics K, K4, D, D4, T, S4. In the 

previous chapter we investigated the combinatorial properties of modalities by 

studying the search spaces induced by these calculi. In this chapter, based on this 

proof-theoretic analysis and the ideas developed for classical logic reported in the 

first part of the thesis, we develop matrix-based characterisations of validity for 

the modal logics K, K4, D, D4, T, S4 and S5. Our methods are sufficiently gen- 

eral to capture the standard first-order versions of the logics (varying domains), 

as well as both constant and cumulative domain variants, and thus transcend the 

scope of the cut-free sequent systems that led to them. We prove the correctness 

and completeness of the matrix characterisations. In the next chapter we outline 

efficient proof systems based on the matrix characterisations, and discuss their 

use as decision procedures for the propositional fragments of the logics. 

We emphasise once more that our concern is the efficient automation of the 

modal logics rather than detailed arguments for their use in a particular ap- 

plication. Such arguments can be found in the literature cited. In Chapter 8 
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we compare the matrix proof systems with other proof systems for modal logics 

proposed in the literature as suitable for automated proof search. We show that 

the matrix systems have considerable computational advantages over these other 

(typically resolution based) systems. 

The remainder of this introduction is devoted to an overview of the matrix- 

based characterisations developed below. It serves to outline the structure of 

this chapter. 

6.1.1 Overview. 

The modal sequent calculi presented in Chapter 4 and analysed in Chapter 5 bear 

a close relationship to the classical sequent calculus discussed in the first part 

of this thesis. Indeed, the modal systems are formed by adding to the classical 

calculus rules specifically for manipulating modalities. As we have seen, this 

seemingly innocuous extension has far reaching effects on sequent-based proof 

search. Let us concentrate first on the features of the classical system that are 

preserved by the addition of the modal rules, namely: 

the systems are still cut-free, 

they retain the subformula property, and 

the basic sequent is unchanged. 

The presence of the first two features in the classical sequent calculus were 

shown to enable the encoding of derivations using syntactic references or pointers 

to the endsequent. Such syntactic references were called positions. This encoding 

supported the use of particular implementation techniques such as structure- 

sharing (BM72]. The fact that these features are also present in the modal 

sequent calculi indicates that we can (and will) develop similar techniques for 

the modal logics. This motivates the definition of formula trees, positions and 

polarity presented in §6.2.1 below. 
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We noted in the previous chapter that modal operators of necessary force 

are generative in the same sense as the first-order quantifiers analysed in Part I. 

Thus, a positive occurrence of the generative subformula O A in the endsequent 

may give rise to multiple instances of its immediate subformula A in a derivation. 

We adapt libel's method of encoding this sort of duplication for quantifiers 

(13ib82aj. The key notion is that of a modal multiplicity. The details are discussed 

in §6.2.2. The form of this solution supports the implementation of the resulting 

matrix systems using structure-sharing techniques. It also ensures that such 

duplication can be demand-driven, rather than adhoc, as we show in the next 

chapter. 

We have demonstrated that the cornbinatorics of the inference rules dealing 

with the propositional structure of classical logic can be captured by the matrix 

representation of formulae, due originally to Prawitz [Pra60] (for formulae in con- 

junctive normal form) and generalised by Andrews [And8l], and Bibel (Bib81]. 

Since the modal logics share the propositional structure of classical logic, the 

notion of path is generalised simply from the classical to the modal case with 

the modal operators acting in a similar way to quantifiers with respect to this 

structure. The details are presented in §6.2.3 below. 

Since the classical basic sequent is preserved in the modal systems, we infer 

that validity in the modal logics can be characterised, at least partially, in terms 

of a set of connections that span the formulae viewed as a matrix. (That is to 

say: every path through the formula contains a connection from the set.) So far 

so good. But now we must deal with the conditions under which such a pair 

of atomic formulae of opposite polarity within a formula can be deemed to be 

complementary, i.e., not only deemed to correspond to an instance of the basic 

sequent, but also that a correct derivation can be formed with the endsequent 

at its root, and that instance of the basic sequent at one of its leaves. 

A simple example will help at this point. Consider the formula: EIP 

O OP, where P is some arbitrary (atomic) formula. We showed in Chapter 4 

that such formulae are valid in S4, but not in K. For the reader's convenience 

the S4-proof and a K-derivation are repeated in Figure 6-1. Treating the modal 
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(') W2 A --iA O- (u) 
W2 A A ( r) (7r) D A D - i 

A --+ D A W1 OA ---+ OA - O 
) (yr) -- D fir 

(a) _a D A ----* D D A WO A---+OA ---,= (a) 
A OA W A = A O o D O O 

Figure 0-1: K-derivation (left) and Sit-proof (right) of O P 0 OP. 

operators as structurally equivalent to quantifiers for the moment (i.e., the paths 

through O A and QA are simply the paths through A itself) the formula contains 

only one path and the two occurrences of P occur on that path with opposite 

polarity. The occurrences therefore form a connection. But here we see that 

in one modal logic (S4) we may consider the connection to be complementary, 

but in another (K) we must not. We must define a notion of complementarity 

for atomic formula occurrences, for each logic, such that, given a spanning set 

of complementary connections, we are ensured of the existence of a proof of the 

formula in the appropriate sequent calculus for that logic. Roughly speaking, 

the set of connections form the leaves of this proof. 

Recall that in the case of classical logic the premise and conclusion of a 

sequent rule could be viewed as making assertions about the structure of a given 

model. Recall also that in Chapter 4 we indicated that the same is true for 

the modal logics but that a modal model consists of a set of classical models or 

points. It is therefore possible (and usual) for a proposition to be forced at one 

point and fail to be forced at another, with no contradiction arising. For the it 

type inference rules, ----f D and Q --->, the premise refers to a different point 

than the conclusion, the former being accessible from the latter. For instance, 

viewed from the root upwards, each (inverted) application of a it-rule in our 

example can be said to introduce a new point accessible from (at least) the point 

associated with the conclusion. Now, let us name these points explicitly for 
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our example. Call the point associated with the endsequent wo. There are two 

applications of (inverted) ir-rules, which introduce two new points wl and w2 

respectively. We have that wo R wl and wl R w2. 

Different logics allow us to conclude different things about the new points 

introduced in this manner. Recall the model condition for the modal operator 

0: 

w (- Cl A if for all v such that w R v, v 11- A, or equivalently, 

w O A i ff for some v such that w R v, v (lf A. 

In K then, all we can infer is that if wo (j- OP, wl 11- P and hence the sub- 

derivation: 
P --* O P W1 

OP ---+ [-][I P WO 

of the K-derivation. Likewise, since there is no antecedent formula O A (reflect- 

ing the fact that we cannot assert that wl 11- E IA), the subsequent application 

of the inverted ir-rule results in: 

0 P W2 

P --+ OP Wl 

For S4 however, since the accessibility relation is transitive, we have that 

wo R w2. Consequently if wo 11- O P then v 11- O P whenever wo R v. We can 

therefore "preserve" the antecedent formula O P through the applications of the 

inverted ir-rule in the S4-derivation thus: 

O P 1 O P 

OP -+OOP 
wl 
too 

and 
O P --+ P W2 

OP - OP Wi 

Again, since in S4 the accessibility relation is reflexive, w2 11- OP implies w2 11- 

P. This inference is performed by the (inverted) v-rule, and the S4-proof is 

complete. 

The key observation is that an appropriate notion of complementarity can 

be defined by noting the context of atoms relative to the modal operators in 

the endsequent. We will represent these contexts by prefixes, and will consider 
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a connection to be complementary when there is a mapping on the prefixes 

of the atomic formulae of the connection which renders them identical. These 

mappings can in fact be seen as substitutions in the usual sense. The logic- 

dependence of such a notion of complementarity is reflected in the conditions 

such mappings should satisfy. For a logic L, these conditions define the set of 

L-admissible substitutions. In practice, as discussed in the next chapter, L- 

admissible substitutions may be computed by specialised unification algorithms, 

one for each logic. 

In the example, the first occurrence of the atom P in the antecedent of the 

implication of the endsequent, occurs inside one modal operator. The polarity 

of this operator is such that only v-rules may be applied to it. We give the atom 

a prefix of a. The other occurrence of P in the endsequent occurs within two 

modalities, both of which can only have it-rules applied to them. We therefore 

give it a prefix of the form be: a sequence (or string) comprising the two atomic 

prefixes b and c. We treat a as a variable wih respect to substitutions, and 

b and c as constants. (Notice that, by convention here and in the sequel, we 

distinguish variables from constants by means of an overbar.) Roughly speaking, 

the atomic formulae occurrences forming the connection are deemed to be K- 

complementary if the prefixes of the atoms are unifiable under the restriction 

that variables may only be mapped to individual constants. The unification 

problem (a, be) is clearly not solvable tinder this restriction. Roughly speaking, 

the atomic formulae occurrences forming the connection are deemed to be S4- 

complementary if their prefixes are unifiable under an equational theory in which 

variables may be instantiated to entire sequences. The unification problem (a, be) 

is solvable in this theory, with unifier a be. The details are presented in §6.2.4. 

Lifting these results to first-order constant domain modal logics is simply a 

matter of combining the modal notion of complementarity with the first-order 

notion presented in Part I. For the varying domain variants, we index individual 

variables with the prefix of their quantifier. Roughly speaking, a given parameter 

may be substituted for two individual variables just in case the prefixes of their 

respective quantifiers unify under the modal substitution referred to above. For 
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the cumulative domain variants, a similar restriction is imposed except that we 

require the quantifier prefix of universally quantified variables in such pairs be 

accessible from the quantifier prefix of its existentially quantified partner. In 

both cases the condition depends on the properties of the accessibility relation 

of the particular logic. The details are given in §6.2.4. 

Sections 6.3 and 6.4 are devoted to proving the correctness and completeness, 

respectively, of the matrix-based characterisations of validity for all logics and 

variants under consideration. The proofs follow the pattern established in Part I; 

i.e., they are based on correctness and (systematic) completeness proofs for 

sequent calculi and analytic tableau proof systems (Smu68,K1e68,Fit83]. 

Testing a formula for validity within a modal logic is therefore successfully 

reduced to a process of path checking and complementarity tests as in the clas- 

sical case. This means that search strategies developed for the classical matrix 

system are applicable to the modal matrix systems without alteration. There are 

two major differences however: 

The test for the complementarity of a connection is performed by a spe- 

cialised unification algorithm. For some logics the appropriate unification 

problems do not yield a single most general unifier. However, it turns 

out that, for the logics under consideration here, the set of most general 

unifiers is finite. 

The generative modal operators give rise to extra opportunities for dupli- 

cation during proof search. This can be seen as the basic cause for the in- 

creased complexity (PSPACE) of the decision problem for the propositional 

fragments of the modal logics K, K4, D, D4, T, S4 over the propositional 

fragment of classical logic (NP). S5, as usual, is a special case (NP). 

In Chapter 7 we discuss search strategies of particular use for individual modal 

systems and present examples. We pay particular attention to the structure of 

the unification algorithms necessary to support the complementarity tests. As 

an additional topic we outline how efficient decision procedures for the propo- 
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sitional fragments of the modal logics can be developed based on the matrix 

characterisations. 

We now present the details. 

6.2 Matrices, paths and connections. 

In this section we develop matrix-based characterisations of validity for the modal 

logics under consideration. The proofs of the correctness and completeness of 

these characterisations can be found in §6.3 and §6.4 respectively. This section 

is written so as to be technically self-contained. On the other hand, we have rel- 

egated motivational information to short remarks, since the introduction above 

and the detail in Part I should suffice. 

6.2.1 Formula occurrences. 

The formation tree for a formula is, as usual, a tree indicating how the formula 

is built up from its subformulae. A formula tree for a signed formula X = (A, n) 

is a tree of names, or positions, one for each distinct subformula occurrence in 

the formation tree of A. The formation tree and a formula tree for the signed 

formula: 

(OOVX (OPx A Q Qx) O(VyPy A VZQx), 0), 

are shown in Figure 6-2. 

We use k and 1, possibly subscripted, as metavariables to range over the 

positions of formula trees. With each position, k, of such a formula tree we 

associate a label, denoted lab(k), and a polarity, denoted pol(k). The label of a 

position is the formula occurrence appearing at the corresponding point in the 

formation tree for the formula. The polarity of a position of a formula tree for 

(A, n) is n, if its label occurs positively in A, and (n + 1) mod 1, if its label 

occurs negatively in A. The labels and polarities of the positions of the example 

formula tree are also shown in Figure 6-2. 
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OOVx (OPx A oQx) = O(VyPy A VzQz) ao 

OOVz(OPz A iQx) O(VyPy A VzQz) a1 a9 

1 1 I 1 

OVx(OPX A OQx) VyPy A VzQz a2 alo 

Vx(OPx A OQx) VyPy VzQz a3 all a13 

I I I I 1 1 

OPx A OQx Py Qz a4 a12 a14 

as a7 

a6 a8 

k pol(k) lab(k) Ptype(k) Stype(k) 

ao 0 OOVX (OPX A OQx) = O(VyPy AVzQz) a pro 

a1 1 OOVz(OPz A 0Qx) it al 

a2 1 OVx(OPz A 0Qx) 7r pro 

a3 1 Vx(OPx A Qx) 11 Iro 

a4 1 OPx A OQx a '10 

as 1 OPx it al 

a6 1 Px - 7ro 

a7 1 E Qx v a2 

a8 1 Qx - vo 

a9 0 O(VyPy A VzQz) v a2 

alo 0 VyPy A VzQz Q vo 

all 0 VyPy S Ql 

a12 0 Py - So 

a13 0 VzQz S 02 

a14 0 Qz - So 

Figure 6-2: Example formation and formula tree. 
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Positions with atomic labels are called atomic positions. We use « to denote 

the tree ordering of positions in the formula tree: i.e., for positions k and 1, 

k t I just in case lab(l) is a subformula of lab(k) in the formation tree. 

REMARKS. Positions form the basis for implementations of the matrix sys- 

tems using structure-sharing techniques (BM72]. A position should be inter- 

preted as a pointer to a subformula of the formula being tested for validity 

stored in computer memory. 

Theoretically, we use an extension of the formula tree for (A, n) to represent 

the possible formula that may take part in a sequent derivation of an endsequent 

of the form: - A if n = 0, and A -+ if n = 1. In this spirit, the polarity 

of a position determines whether the subformula labelling the position will oc- 

cur as an antecedent or succedent formula of any such derivation. (END OF 

REMARKS. ) 

Each position k represents a particular signed formula, denoted sform(k), as 

follows: 

sform(k) = (lab(k) , pol(k)). 

Consequently, the classification of signed formulae presented in Chapter 4 can be 

extended to the non-atomic positions of a formula tree by defining the principal 

type, Ptype(k), of a position k to be the type of the signed formula sform(k). 

The principal types are therefore a, Q, 7, 6, v and x. (Note: atomic positions 

have no principal type.) 

Every formula occurrence of the formation tree, except the root formula 

itself, is an immediate subformula of some subformula of the root formula. Con- 

sequently we can define the secondary type, Stype(k), of a position k to be the 

type of the signed formula sform(k) determined with respect to the principal 

type of its parent. For example: suppose sform(k) _ (B A C, 0). Suppose also 

that k, and k2 are the children of k in the formula tree, i.e., 

sform(kr) = (B, 1) and sforrn(k2) = (C, 0). 

Then, since Ptype(k) = a we define 

Stype(kr) = al and Stype(k2) = C12- 
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Another example: suppose sform(k) = (QB,1). Suppose also that kl is the child 

of k with sform(kl) = (B, 1). Then, since Ptype(k) = 7r, we have Stype(kl) = 7ro. 

The secondary types are therefore ai, a2, Qt, Q2, 'Yo, So, vo and gyro. In addition, 

if the polarity of the root position is 0 we define its secondary type to be 7ro. 

Conversely, if the polarity of the root position is 1 we define its secondary type 

to be vo. 

Each non-atomic position therefore has two types: 

its principal type (eg., a, Q, v, ...): determined by its label and polarity, 

and 

its secondary type (eg., a1, a2i Q1, ...): determined by the principal type of 

its parent. 

Atomic positions have only a secondary type. The principal and secondary types 

of the positions of the example formula tree are also shown in Figure 6-2. 

For a given formula tree, we shall use 1/o, Ho, Fo and Do to denote the sets 

of positions of secondary type vo, 7ro, 7o and &o respectively. 

6.2.2 Multiplicities. 

We noted above that our intention is to use formula trees to represent sequent 

derivations. We shall characterise the existence of a sequent proof of the formula, 

and hence its validity, in terms of the internal structure of the formula, as we 

did in Part I for classical logic. Positions are the means by which we refer to this 

structure. The notions of multiplicities and indexed formula trees introduced 

below, are used to capture the fact that during a derivation certain subformulae 

are utilised in multiple ways. We say that quantifiers of universal force, and 

modal operators of necessary force, are generative. In terms of the sequent calculi 

of Chapter 4 the genericity of such quantifiers and modal operators emerges 

through the -y and v rules which, when inverted, give rise to multiple instances 

of their side formulae. 

145 



In Part I we presented a notion of multiplicity for the quantifiers. We repeat 

that here in the context of modal logic, but call it a first-order multiplicity. We 

treat the generative modal operators in a similar manner leading to the notion 

of a modal multiplicity. A multiplicity for a formula of quantified modal logic is 

simply the combination of both the first-order and modal multiplicities. 

Informally, a multiplicity indicates how many instances of particular subfor- 

mulae are, or may be, utilised in a derivation. Recall that a position, k, of the 

basic formula tree represents a (sub)formula via its label: lab(k). We distin- 

guish different instances of this formula by indexing the position thus: k", where 

x is sequence of positive integers. We arrange that lab(k") represents a distinct 

instance of lab(k) for each distinct index K. That is: 

lab(k") = lab(k') iff k = r. 

Multiplicities are the means by which we generate appropriate indices. 

For quantified formulae such as lab(k) = VxB, instances of its immediate 

subformula: lab(k1) = B, are formed by the substitution of distinct constants or 

parameters for the individual variable x free in B. While the positions allow us to 

name these instances, we also require the labels of indexed positions to represent 

the different subformulae as mentioned above. Consequently, we define the label 

of an indexed position to take account of these potential substitutions. In this 

we are aided by our particular formulation of multiplicity (as opposed to Bibel's) 

as argued in Part I. We use the 7o and bo positions themselves as an indication 

of the potential for substitution to form a new instance. 

The following definitions are introduced for a given formula tree for a given 

signed formula X = (A,0). 

A function Am from Vo to the natural numbers is called a modal multiplicity 

for X; it serves to encode the number of instances of subformulae of X in the 

scope of a modal operator of necessary force considered within a putative proof. 

A function µQ from ro to the natural numbers is called a first-order multi- 

plicity for X; it serves to encode the number of instances of subformulae of X in 

the scope of a quantifier of universal force considered within a putative proof. 
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A multiplicity µ for X is the combination of a modal and first-order multi- 

plicity thus: for a position k E 1/o U ro: 

µn1(k), k E L6; 
µ(k) _ 

µq(k), k E I'o. 

If µ is a multiplicity for X we define the (indexed) formula tree for the indexed 

formula X" as a tree of indexed positions of the form kK, where k is a position 

of the basic formula tree for X and K is a sequence of positive integers defined 

in the manner described below. Let k, << k2 << . « k k, 1 < n, be all those 

elements of ro that dominate k in the formula tree for X. The indexed position 

k" is an position of the indexed formula tree for X" provided: 

1. k is a position of the formula tree for X. 

2. µ(k,) 0, 1 < I < n. 

3. K =mlmsmwhere 1 <m, <u(k,), 1 <i<n. 

We shall use rc -< r to denote that rc is a proper initial sequence of r. The 

ordering on the underlying tree is extended to the indexed tree as follows: for 

indexed positions k" and 1f, 

k"«"lf iff k«1 and r.-<7- 

i.e., k must dominate I in the (unindexed) formula tree, and is must be an initial 

(possibly not proper) sequence of r. The polarity, pol(k" ), of an indexed position 

k" is taken to be the same as the polarity of its underlying (unindexed) position 

k; i.e., pol(k4) = pol(k). The label, lab(k" ), of an indexed position k" is defined 

inductively as follows: 

1. lab(ko) = A, if ko is the root position of the formula tree. 

2. If 1ab(k") = B A C, and ki , k2 are the children of k", then 1ab(ki) = B 

and lab(k2) = C. 
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3. If lab(k") = B V C, and k; , kz are the children of k", then lab(ki) = B 

and lab(k2) = C. 

4. If lab(V) = B = C, and k; , k7 are the children of k", then lab(ki) = B 

and lab(k2) = C. 

5. If lab(k) = -,B, and ki is the child of k", then lab(ki) = B. 

6. If lab(k) = VzB, and k; is a child of k", for some r, rc < r, then lab(ki) _ 

B(ki /xJ. 

7. If lab(k) = 3zB, and k; is a child of k", for some r, rc 

B(k; /x). 

-< r, then lab(ki) = 

8. If lab(k") = QB, and k; is a child of k", for some r, rc < r, then lab(ki) _ 

B. 

9. If lab(k") = p B, and k; is a child of k", for some r, rc r, then lab(ki) _ 

B. 

That is, we use the position itself as a marker for where substitutions can be 

performed for individual variables. Positions of 7o and bo-type appear in the 

atoms labelling the atomic positions of the indexed formula tree in place of what 

otherwise would be free individual variables. 

The notation sform(u) is extended to indexed positions in the obvious way, 

namely: 

sform(u) = (lab(u) , pol(u)). 

Consequently, since the polarity of an indexed position k", and the structural 

form of its label, is identical to the polarity and form of the label of the under- 

lying position k, k" inherits the types (both principal and secondary) of k. We 

use JVo(µ), Tlo(µ), Fo(µ) and 0o(µ) to denote the sets of indexed positions of 

secondary type vo, 7ro, 7o and bo respectively, in an indexed formula tree for Xµ. 

Figure 6-3 shows an indexed formula tree for the example formula of Fig- 

ure 6-2 with a multiplicity of IQ(a4) = 2 and 1 otherwise. As a convention we 
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OOdx (OPx A DQx) => O(VyPy A dzQz) 

OOdx(OPx A cQx) O(dyPy A dzQz) 

Odx(0Px A DQx) dyPy A dzQz 

,l\ 
dx(OPx A DQx) dyPy dzQz 

1 1 

OPx A D Qx Py Qz 

OPx DQx 

ao 

a1 ag 

1 

a2 

1 

1 a1o 

1 

a3 1 1 

1 a1 a13 

1 1 

1 2 1 l a4 a4 a12 a14 

1 / 1 
1 1 2 2 a5 a7 a5 a7 

1 11 2 21 a6 all ag a8 

Figure 6-3: Example indexed formula tree. 

omit indices consisting of the empty sequence and omit the brackets surround- 

ing sequences of integers. Hence 12 denotes the sequence consisting of the unit 

sequences 1 and 2. Since we will have no need to consider multiplicities higher 

than nine in the development of the matrix systems, this should not lead to any 

confusion. Figure 6-4 shows the polarities, labels and types of the tree. 

We shall use u and v, possibly subscripted, as meta-variables ranging over 

indexed positions when we are not interested in the index, and drop the super- 

script on «". Moreover we use a, al, a2 0, ..., etc, as before to denote arbitrary 

indexed positions of that (principal or secondary) type. We shall feel free to 

use such notation as a" to denote an indexed position of a-type when we wish 

to identify the index. Henceforth, we shall refer to indexed positions simply as 

positions. 

REMARKS. In Part I we slightly altered Bibel's notion of a multiplicity 
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u pol(u) lab(u) Ptype(u) Stype(u) 

ao 0 E l z) a 70 

al I O O Vx(QPx A []Qx) 7r al 

a2 1 O Vx(O Px A Qx) 7r pro 

a3 1 Vx(QPx A Qx) It 70 

a4 1 QPa4 A O Qal a '10 

as 1 QPa' 7r al 

a8 1 Pa4 - 70 

a7 1 p Qx v a2 

all 1 Qa - vo 

a4 1 QPa4 A O Qa4 a 'Yo 

a6 1 QPa2 7r al 

ae 1 Pat - 70 

a7 1 p Qa4 v a2 

a41 1 Qa2 - vo 

a9 0 O (VyPy A dzQz) v a2 

a10 0 dyPy A dzQz v0 

all 0 dyPy 6 al 
1 

a12 0 1 Pall - 60 

al3 0 dzQz 6 Q2 

aio 0 Qai4 - 60 

Figure 6-4: Polarities, labels and types for an indexed formula tree. 
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a3 

Figure 6-5: Indexed formula tree with constant zero multiplicity. 

(Bib82aj. The resulting notion corresponds to a first-order multiplicity here. The 

new definition is more appropriate for discussing the role of quantifiers in the 

matrix and sequent systems presented there. Here we have another vindication 

of our formulation since we are able to treat the genericity of modalities and 

quantifiers (technically) in exactly the same way. 

We have left open the possibility that the multiplicity of a position may be 

zero. In this case the indexed formula tree is truncated. Figure 6-5 shows the 

indexed formula tree of our example with a constant zero multiplicity. (END OF 

REMARKS.) 

6.2.3 Paths and connections. 

IMPORTANT NOTATIONAL POINT. We warn the reader that we shall sys- 

tematically abuse our notation and use the names of types to denote arbitrary 

(un)indexed positions of that type within formal definitions such as the defini- 

tion of the notion of path below. In particular, if we say: "if s, 7r" is a path..." 

we mean that "if s, u is a path, and Ptype(u) = 7r,..." Furthermore, in this 

context we shall use 7r0 ' to denote the child of u. Similar abuses are extended to 

the other types. We shall include indices explicitly where necessary. (END OF 

POINT.) 
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Let X" be an indexed formula. A path through X" is a subset of the positions 

of its formula tree defined below. We shall use s and t, possibly subscripted, to 

denote paths, and adopt the notation s, u to denote the path (set) s U {u}. The 

set of paths through X", is the smallest set such that: 

1. { k0 } is a path, where ko is the root position of the formula tree for X"; 

2. if s, a" is a path, so is (s \ {a"}), al", a2"; 

3. if s,,8' is a path, so are (s \ {a"}), 01" and (s \ {p"}), p2"; 

4. if s, 7" is a path, so is s, 70"J, for any j, 1 < j < µ4(ryo); 

5. if s, b" is a path, so is (s \ {b"}), bo" 

6. if s, v" is a path, so is s, vo"J, for any j, 1 < j < zM(vo); 

7. if s, i" is a path, so is (s \ {7r}), no" 

The path: 

(S\ {a')), al', a2" 

is said to have been obtained by reduction on a" from s, a". Similarly in the 

other cases. Notice that in the generative cases: ry and v, there is a choice as 

to which child of the position to introduce. The children differ solely in the last 

element of their indices. 

EXAMPLE. Consider the indexed formula tree of Figure 6-3. A sample of the 

paths through this indexed formula are shown in Figure 6-6. Apart from the first 

path, the rest are obtained by a single reduction from their predecessor. Notice 

how the generative positions (i.e., those of 7 and v type) are preserved once 

they enter the path. Notice also how their indexed children are introduced by 

repeated reduction. Finally, notice how the Q-red on aio introduces only one of 

the children of that position, namely: ail. Other paths result from the inclusion 

of the alternative child: a13. The resemblence of the reduction operations used 
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{ao} 

a-reduction on ao 

{a,,a9} 

v-reduction on a9 

1 
a1, ao, alo 

/3-reduction on aio 

1 a,,ao,all } 

b-reduction on ail 

{ a1, a9, a12 } 

7r-reduction on al 

a2, a0, a12 } 

7r-reduction on a2 

{ a3, ao, a12 } 

7-reduction on a3 

1 a3ia4 a0,a12 } 

a-reduction on a4 

{ a3i as1, ar1, ao, a112 } 

7r-reduction on ab 

{ a3, a1, a1, act, a1 g 7 12 } 

v-reduction on a7 

11 { as,a.,a7,a8 ,act,a12 } 

7-reduction on a3 

2 11 1 { a3ia4,a.,a7,a8 ,act,a12 } 

a-reduction on a4 

2 2 11 { a3, a,, a7, a., a7, a8 , act, a12 } 

7r-reduction on a5 

2 2 11 { a3i ae' ar' ao, ar, a8 , ao, a12 } 

v-reduction on a7 

2 2 21 11 } { a3f a8, a a8 , a6, a7, a8 ao, a12 

Figure 6-6: Paths through the indexed formula of Figure 6-3. 
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to define the notion of path to the sequent rules of Chapter 4 is not accidental. 

(END OF EXAMPLE.) 

Each path s through X determines a set of positions as follows: 

S(s) = {vf v«u forsomeuEs}. 

We call S(s) the set associated with the path s. 

REMARK. As we remarked in Part I, our definition of path differs from 

Andrews' (And81) and Bibel's (Bib811 definition so as to demonstrate the re- 

lationship between the matrix methods and tableau/sequent methods. Each 

clause in the definition, when interpreted as operating on the set associated with 

the path, corresponds roughly to an application of an inverted sequent inference 

rule (see Chapter 4). This was explained in detail in Chapter 3 for the case of 

classical logic. (END OF REMARK.) 

EXAMPLE. 

S({ao}) = {ao} 

S ({ a3, a9, a12 }) = { a0, a1, a2, a3, a9, al0, all, a12 } 

S({ 
1 1 11 1 a3, a6, a7, a8 , a9, a12 {ao, a1, a2, a3, 

1 1 1 1 11 1 1 1 a4, a5, a6, a7, a8 , ag, a10, a11, a12 

S({ a3i a2 2 a21 al al all aal }) _ {a a a a a2 a2 a2 a2 a 
6 7 

21 'a 
8 6+ 9, 12 0, 1, 2, 3, 7+ 8 

1 1 1 1 11 1 1 1 a4, a5, a6, a7, a8 , a9, a10, all, a12 

(END OF EXAMPLE.) 

In a similar vein we define, D(s), the set of positions dominated by the path 

s. Informally, D (s) represents those positions that can possibly be "reached" by 

further reductions. Formally, the definition of D(s) is quite complex. First we 

define an intermediate set I(s) inductively as follows: I(s) is the smallest set of 

positions such that s C 1(s), and closed under the rule: 
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if u E I (s) and v is a child of u with v 0 S (s), then v E 1(s). 

D (s) is then defined by: 

D(s) `'-` I (s) \ s. 

EXAMPLE. 

D({ ao }) = every position of the indexed tree. 

as, aq, a1z D ({ 1 

D ({ as, a', a', ag1, a9, a12 

a3, 2 21 a', a', " ' 
D , ag, a7, a9 , ae, a7, as , as, a12 

})= 

}) 

1 1 1 1 11 2 2 2 2 21 
a4, a5, as, a7, as , a4, 

a5'a6 
a7, as , 

2 2 2 2 21 a4, a5, as, a7, as 

0 

Notice that the positions ais and ai4 are not elements of D(s) after the reduction 

of aio which is of fl-type. In the last path above, for example, a9 is such that 

a9 C< ais. But a9 is of v-type, and its child uo for which uo g a13 is the position 

aio. But aio is in the set associated with the path (i.e., it has been reduced 

already), hence ais is not in the set dominated by the path. (Similarly for a14 of 

course.) (END OF EXAMPLE.) 

A path, s, through Xµ is an atomic path just in case D(s) = 0. From these 

definitions we conclude: 

FACT 6. 1 If s is an atomic path, then for k" E s either: 

(a) k is an atomic position; or 

(b) k is of -y-type, k1 its child, and for all j, 1 < j < ILQ (k1), ki 2 E S (s); or 

(c) k is of v-type, k1 its child, and for all j, 1 < j < 1uM(k1), ki 2 E S (s). 

EXAMPLE. Consider the previous examples of paths and their associated 

sets. The third path: {as, a., a7, ag1, a9i a12} consists only of atomic positions 
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and -y and v-type positions. It is not atomic since not all of the children of as 

are elements of S(s). In other words, we can reduce the path further. The last 

path, however, is atomic, since all such reductions have been performed. (END 

OF EXAMPLE.) 

The above definitions are somewhat complex. Luckily, the "matrix" char- 

acterisations get their name from a visual method of identifying the atomic 

elements of atomic paths through indexed formulae. The matrix representation 

of a formula described for classical logic in Chapters 1 and 3 carries over to the 

modal case with no change. Consider our example (signed) formula: 

(OOVx (QPx A O Qx) =' O (VyPy A VzQz), 0) 

indexed as in Figure 6-3. If we distinguish its a-type subformulae from its Q- 

type subformulae by placing the components of the former side-by-side and the 

components of the latter one above the other, we obtain a nested matrix thus: 
O d' (Py') 

OOd= O (Px') A ° (Qx') O (Px2) A ° (Qx2) A 

dz (Qz') 
(For the reader's convenience we have left the individual variables in the atoms 

and simply indexed them x', x2 to distinguish the different instances. Strictly 

speaking, Px' below should read Pa4 etc.) Notice that the two instances of the 

subformula Px A Qx are considered to be the components of an implicit a-type 

formula. This follows from the -y clause (4) of the definition of paths above. If 

we omit the connectives, quantifiers and modal operators we are left with the 

skeleton matrix: 
(Py') 

(Px' Qx') (Px2 Qx2) 

Qzl l 
which corresponds roughly to the so-called "deep formula" in the expansion tree 

approach of Miller (Mil84). 

The atomic elements of an atomic path are simply the horizontal matrix 

paths through such a matrix. In this case there are two atomic paths through 

the formula, one with atomic elements {Px', Qx', Px2, Qx2, Py'} and one 
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whose atomic elements are {Px1, Qx1, Px2, Qx2, Qz1}. More precisely, we 

should express these sets as positions thus: 

{al all as a21 a } and {a all a2 a21 a1 
8+ 8 + 8+ 8 12 6+ 8 + 6 8 141. 

A connection in an (indexed) formula is a subpath of a path through the 

formula consisting of two atomic positions of different polarities, but labelled 

by an atomic formula with the same predicate symbol. A set of connections 

is said to span the formula just when every atomic path through it contains a 

connection from the set. 

For example, the two connections {a,,, a12} and {a8111, ai4} span the indexed 

formula displayed above. So does the connection pair {as, a12} and {a821), ai4}. 

6.2.4 Complementarity. 

The generalisation of the notion of formula tree, position, path and connection 

to the modal language was quite straightforward. Indeed, up to this point, 

the modal operators have been treated simply as a new form of quantifier. As 

we discussed in the introduction, our aim is to formulate a (logic-dependent) 

notion of complementarity for connections which ensures that the existence of 

a spanning set of complementary connections in an (indexed) signed formula, 

(A, O) , entails the existence of a proof of the sequent: - A, in a sequent 

calculus for that logic. The correctness of the sequent system then ensures the 

validity of A. Conversely, since every valid formula has a sequent proof, we 

require that if A is valid, then there is such a spanning set of complementary 

connections in (A, 0)' for some multiplicity y; i.e., the matrix characterisations 

are complete. The formulation of complementarity should be structural; i.e., it 

should be in terms of syntactic properties of the formula A. 

In this section we present appropriate definitions of complementarity for con- 

nections for the modal logics under consideration. The propositional fragments 

of the logics are treated first, the first-order systems second. In §6.3 and §6.4 
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we prove the correctness and completeness of the resulting characterisations of 

validity. 

6.2.4.1 Propositional modal logics. 

For a formula A of pure propositional logic, connections are complementary 

by definition. Since there is no need for multiplicities (no modal operators or 

quantifiers) we obtain the simple characterisation of validity (re)derived in Part I. 

THEOREM 6.2 (ANDREWS [AND81], BIBEL [BIB81]) A propositional for- 

mula A is valid iff there exists a set of connections that spans (A, 0). 

As discussed in Part I complementarity in propositional logic is this simple be- 

cause there is no order dependence between the sequent inference rules. In the 

last chapter we showed how the modal inference rules induced such an order 

dependence. Thus, in the presence of modal operators we must be more careful. 

The propositional complementarity of two atoms is not enough to guarantee that 

a derivation of the endsequent exists with that connection at one of its leaves. 

We saw that the number and nature of the modal operators that quantify atoms 

are crucial factors in determining whether the appropriate sequent derivation 

exists. We capture this notion of "modal context" in terms of the formula tree 

as shown below. 

The following definitions are introduced for a given (indexed) formula tree for 

a given (indexed) formula X". Let TM(p) denote the union of Lo(p) and Ilo(p). 

We associate with each position u of the formula tree a sequence of positions, 

pre(u), called a prefix, as follows: if u1 << u2 « « u S u, 1 < n, are those 

elements of TM(p) that dominate u in the formula tree, then 

pre(u) 
ulu2 u,,, K, K4, D, D4, T, S4; 

u,,, S5. 

The prefix of a position encodes the modal context of the position within the 

formula tree. For example, the (non-S5) prefix of a6 in the indexed formula of 

Figure 6-3 is the sequence aoa2a3a1, while the (non-S5) prefix of a12 is aoaio 

The S5-prefix of the former position is a6, and of the latter ai0. 
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We shall use p and q as metavariables for prefixes, and P(µ) to denote the 

complete set of prefixes of the positions of X". We shall use p -< q to denote that 

p is a proper initial sequence of q, and u E p to denote that u is a unit element 

(i.e., u E TM(µ)) of the sequence p. 

The definition of prefixes gives us the following fact: 

FACT 6.3 For all positions u and v, v E pre(u) implies V -S U. 

Let T' denote the set of sequences (words) generated from some set T of 

elements, and T' = T+ U {0}. We define C-accessibility relations on T* x T* by 

the conditions shown in Table 6-1. For example, the S4-accessibility relation on 

T* is defined as follows: for p, q E T*, p Ro q if and only if either: 

(a) (general) q = pu, where u E T; or 

(b) (reflexive) q = p; or 

(c) (transitive) p -< q. 

An equivalent definition is: for all p, q E T*, 

pRoq if p-<q. 

We prefer the first since we can generate the definitions for all of the logics 

(except S5) by means of the general, reflexive and transitive conditions. Notice 

that the transitive condition subsumes the general condition. The definitions for 

the logics under consideration are given in Table 6-2. With these definitions we 

immediately have the following fact: 

FACT 6.4 Let L be one of the logics: K, K4, D, D4, T, S4. Let Ro be the 

L-accessibility relation on T*. Then, for all p,q E T*, 

pRoq implies p-<q. 
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Property Condition 

general p Ro pu, p E T`, u E T 

reflexive p Ro p, p E T* 

transitive p Ro pq, p E T*, q E T+ 

Table 6-1: Prefix conditions. 

L Properties of Ro 

K, D general 

T general, reflexive 

K4, D4 general, transitive 

S4 general, reflexive, transitive 

S5 u Ro v, u, v E T 

Table 6-2: Accessibility relations on prefixes. 
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REMARK. These definitions are adapted from the so-called prefixed tableau 

systems of Fitting ]Fit72,Fit83]. We discuss the relationship between these sys- 

tems and the matrix systems in detail in Chapter 8. (END OF REMARK.) 

Of course, for our purposes, the sequences are generated by the set TM(A). 

We can think of prefixes either semantically or proof-theoretically. Semantically, 

each prefix is the name of a point in a model. Accessibility relations on prefixes 

are used to represent properties of the accessibility relation of the model. Proof- 

theoretically, the prefix of a position represents the sequence of (inverted) modal 

rule applications that are necessary to produce an occurrence of the subformula 

rooted at that position as an S-formula in a derivation. Recall that our aim 

is to guarantee that, given a connection, there exist a sequence of (inverted) 

rule applications that produce images of both the atomic formulae that label 

the components of the connection in the same sequent. But the (inverted) 7r 

rules rules cause formulae to be "deleted" from the sequent. On the other hand, 

in certain logics, L/-type formulae may be preserved through such a deletion 

operation. We must ensure that the ancestor formulae of the pair of atoms that 

form the connection are not "deleted." 

Let us return to the example given in the introduction, namely the S4- 

validity of P = P. An indexed formula tree for the signed formula: 

(P P,0), with a constant multiplicity of 1, is shown in Figure 6-7. 

Notice that we have distinguished the vo-type element, b2, with an overbar: 62. 

Recall the S4-proof of this formula: 

w2 PP 
w2 P ---+ P (v) 

) wl P--P (ir 
w P OOP ('r) o 

( ) wo - P P a 

where we have included the (notional) point about which each sequent makes an 

assertion. We have that wo R wl and wl R W2. The next step is to include the 
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OP = OOP bo 

P P b, bs 

1 1 L. 1 

P P 62 b4 

1 

P 

1 

b5 

u pol(u) lab(u) pre(u) pres5(u) Ptype(u) Stype(u) 

bo 0 OP = P 6o bo a Iro 

b, 1 P bo bo v al 
b4 

1 P bob, b, - vo 

b3 0 COP bo bo it a2 

b4 0 OP bob4 b4 it iro 

b5 0 P bob465 b5 - iro 

Figure 6--7: Indexed formula tree for: (C] P O O P, 0). 
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prefixes of the S-formulae in the derivation thus: 

wz Pb" b2 
---- Pbb4b5 

wy ( P) bo biibaba 
o --* (u) 
--- (7r) 

wl (O P) b, --' (O P) bobs 

wo (OP) b --' (OOP) b -ate (ir) 

(CO 
WO -- (nP = O P) b 

This is an S4-proof because we can preserve the antecedent image (DP):bo 

through two applications of the S4 (inverted) 7r rule. This in turn is permit- 

ted because the accessibility relation for S4 is transitive, i.e., wo R w2. 

We come now to the crucial issue. Rather than dealing in terms of notional 

points of a model, we deal instead with prefixes. We use the prefixes of subfor- 

mulae to denote the notional points. The properties of the accessibility relation 

on points is represented by the accessibility relation on prefixes given for S4 in 

Tables 6-1 and 6-2. 

With this as the aim, we are forced to consider the following correspondence 

between prefixes and points: 

bo 

bob4 

bob4b5 

wo 

wl 

w2 

Now consider the prefix bob2 of the atomic antecedent image of P in the above 

derivation. To what notional point does it correspond? We have a choice. Due 

to the transitivity of the accessibility relation for S4, bobz could denote any point 

accessible from bo (i.e., wo). By the entries in Tables 6-1 and 6-2 for S4 this 

means any prefix of which bo is an intial sequence. Consequently, we can choose 

to let bobz denote the point w2 by the prefix mapping: 

bz '-- b4b5 
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Turning the argument about, roughly speaking, provided we can find a mapping 

of vo positions, to TM(µ)* such that the prefixes of the positions of the connection 

(in this case bob' and bob4b5) are identical, the connection is S4-complementary. 

Looking at it another way, the prefix mapping encodes the range over which 

the (inverted) v rule must not be applied to the S-formula ( P).b,, in order to 

preserve this ancestor of the atom Pb bi. 

The discussion above motivates the following definitions. Let am be a map- 

ping from Vo to TM(µ)*. Recall that P(µ) is the set of prefixes of the indexed 

formula X". Define PP,,, (µ) to be the image of P (µ) under am in the following 

sense: 

er(µ) = { P I P < anf(9) , q E (µ) , 

where am: TM(µ)* TM(µ)* is the homomorphic extension of am to TM(A)*. 

Such a mapping am is a modal substitution just in case: 

A. u c am(v) implies am(u) = u. 

B. pu E PCM(µ) implies pu = cM(pre(u)). 

The first condition is for technical convenience only, and restricts our attention 

to substitutions that are "minimal" in an obvious sense. The second condition 

ensures the coherence of the substitution and reflects the fact that we shall 

compute modal substitutions by unifying the prefixes of positions labelled with 

atomic formulae. We shall point out where these conditions are 

correctness proofs. 

A modal substitution am induces an equivalence 

EM on TM(µ) x TM(µ) as follows: 

1. If am(u) = v and v E Vo(,a), then u "'M v. 

2. If am(u) = p and p Vo(µ), then for all v - p, 

3. If v EM u and u '"M u', then v EM u'. 

relation ^'M 

v EM u. 

utilised in the 

and a relation 
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This definition should be compared with the similar one given for classical quan- 

tifiers in Chapter 3. 

A modal substitution QM is £-admissible provided 

1. QM respects the £-accessibility relation Ro on TM(µ)`; i.e., for all P, q E 

TM(t)', 

p Ro q implies am" (p) Ro cr (q) . 

2. (K-logics only) u '°'M u' implies v CM u (and hence v CM u') for some 

a-related position v. 

3. d = (<C U CM)+ is irreflexive. 

Once again the reader should compare this definition with the definition of ad- 

missibility for a classical mapping. Except for the condition pertaining to the 

K-logics the only addition is the first condition concerning the stability of L- 

accessibility relations on prefixes. 

Two positions are a-related just in case there is some path s for which both 

positions are elements of S(s). Alternatively, a position u is a-related to a 

position u' just in case the <<-greatest common ancestor of u and u' is not a 

0-position. By "<<-greatest common ancestor of u and u'" we mean a position 

v such that v < u, v << u', and there is no position v', distinct from v, with 

v « v', such that v' << u and v' << u' both hold. In terms of matrices, positions 

that are not a-related appear in the same column vertically separated. 

The appropriate notion of complementarity for the propositional modal logics 

under consideration is as follows: if am is an £-admissible modal substitution 

for X", a connection { u, v } in Xµ is said to be arm -complementary iff 

a (pre(u)) = * (p re (v)) 

REMARKS. The relation v 4 u should be interpreted as a prescription that 

"position v should be introduced into a path (by the reduction of its parent) 

before position u." Accordingly we call the relation the reduction ordering. Its 
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irreflexivity ensures that we could construct a sequent proof with -- A as root 

using the sequent systems of Chapter 4 (assuming that the signed formula X is 

(A, 0)). This last remark will be made clear in the correctness proofs of §6.3. 

Suitable substitutions can be computed using variants on a string-unification 

algorithm. For all of the logics under consideration the set of most general uni- 

fiers is finite, but not necessarily a singleton. We discuss this further in the next 

chapter. For S5 the standard unification algorithm suffices. The admissibility 

check is an check for acyclicity if a is interpreted as a directed graph. 

The extra condition for the K-logics reflects the fact that there is no rule 

which, when inverted, reduces v-type formulae only. Reductions of v-type S- 

formulae in a sequent derivation only occur during the reduction of 7r-type for- 

mulae. We must therefore ensure that every vo position (formula) is associated, 

via the modal substitution, to a 7ro position (formula) whose reduction causes the 

introduction of the vo position (formula). The condition stated above ensures 

that this is indeed the case. We shall indicate in the correctness proofs where 

this condition plays its role. (END OF REMARKS.) 

We have defined what it means for a connection to be complementary in a 

modal logic. The final step is to characterise the validity of a modal formula 

in terms of such complementary connections. This is achieved by extending 

the complementarity of a connection to the paths that contain it. Informally, 

this is the final link in the correspondence between the modal sequent calculi 

of Chapter 4 and the matrix methods: a path made complementary itself by 

containing a complementary connection as a subpath corresponds to an instance 

of the basic sequent. 

Let QM be an L-admissible modal substitution for Xµ. A path, s, through 

Xµ is said to be QM-complementary just in case: 

1. It contains a QM-complementary connection {u, v} (as a subpath). 

2. (K-logics only.) For all u' e Q(pre(u)), U' E S(s). 
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A set of aM-complementary connections spans X" just in case the set ensures 

that every atomic path through X" is a-complementary. 

REMARK. For the idealisable modal logics: D, D4, T, S4, S5, this mirrors 

the definition for classical logic given in Part I. For the non-idealisable K-logics: 

K and K4, an extra condition is imposed. This condition can be motivated by 

reference to the sequent calculi of Chapter 4. Informally, since there is no v 

rule in the sequent calculi for the K-logics, every reduction of a v-type formula 

(position) must be "driven" by the reduction of a 7r-type formula (position). 

This constraint is met in the matrix methods by the extra condition (2) on 

K and K4-admissible substitutions, which force such "linking" between vo and 

7ro positions. But such connections only correspond to basic sequents that can 

be "constructed," so to speak, by (inverted) applications of the 7r rule. The 

definition of path was purely structural, and hence the same for each logic. This 

is desirable so that path checking algorithms developed for classical logic (eg., 

(Bib82a,IIB82)) are immediately applicable to the modal logics. For the K-logics 

however, although a path may structurally contain a complementary connection 

(as a subpath), that connection may not in fact be "constructable" without an 

independent v rule. The extra condition is necessary to ensure that a path is only 

classified as being complementary if the complementary connection it contains is 

constructable in this sense. We shall remark on this condition in the correctness 

proofs below where these notions are made more precise. (END OF REMARK.) 

In §6.3 and §6.4 we prove both halves of the following theorem: 

THEOREM 6.5 A propositional modal formula A is L-valid iff there is a modal 

multiplicity µM, an L-admissible modal substitution am and a set of am- 

complementary connections that spans the indexed formula (A, 0)""!. 

EXAMPLE. Consider our example formula 

(P = P,0) 

and its formula tree in Figure 6-7. The connection { 62, b5 } spans the formula. 

The prefixes of these atomic positions are: pre(b') = bob' and pre(b5) = bob4b5 
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(where we distinguish vo-type positions in prefixes with an overbar for the 

reader's convenience). Consider the mapping am defined as follows: 

b4b5, u = b2 

u, otherwis e. 

Under am the two prefixes are identical. Firstly, am is a modal substitution 

since Conditions A and B hold. (Condition B is easy to check: simply notice 

that the only element of P (p) affected by the substitution is bob2, and that its 

image under am is bob4b5. Furthermore, aM(pre(b5)) = bob4b5 and af(pre(b4)) _ 
bob4.) Secondly, am respects C-accessibility relations on prefixes that satisfy the 

transitive condition. Thirdly, the K-condition is satisfied since b4 and b5 are 

a-related to 6'. (Indeed there are no 0-type positions in the formula tree at all.) 

Finally, the reduction ordering a induced by the mapping can be pictured as a 

directed graph as follows: 

bo 

b5 

where we have used dotted arrows to represent the CM relation. Since the 

directed graph is acyclic we conclude that the mapping is K4, D4 and S4- 

admissible. This suffices to show that the path is am-complementary for D4 

and S4, and therefore that the formula is valid in these logics. For K4 we have 

both b4 and b5 are elements of the set associated with the single atomic path 

through the formula. Consequently, this path is a-complementary and the for- 

mula is also valid in K4. 

For S5 the prefixes are pre(b2) = 62 and pre(b5) = b5. The mapping that 

takes 62 to b5 is clearly S5-admissible and its reduction ordering is a subgraph 

of that shown above (and hence acyclic also). The formula is therefore S5-valid 

also. (END OF EXAMPLE.) 
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0.2.4.2 First-order modal logics. 

Extending the matrix characterisations of validity in the propositional fragments 

to the quantified logics is straightforward. We consider constant, varying and 

cumulative domain variants of the quantified logics. The notion of a first-order 

substitution below is identical to that introduced in Part I for classical logic. 

Let TQ(µ) denote the set Fo(,u) UAo(µ) (cf. TM(µ)). A first-order substitution 

is a mapping aQ: I'o(µ) '--+ TQ(,u) U C, where C is the set of constants in the 

formula being tested for validity. 

For constant domains, a connection is interpreted as complementary if we 

can find a first-order substitution aQ that render the (atomic) labels of the two 

atomic positions identical. 

For varying and cumulative domains, the modalities and quantifiers interact. 

Universally quantified variables only range over those individuals that "exist" 

at the point denoted by the prefix of their quantifiers. Existential quantifiers 

express the existence of individuals only in the point denoted by their prefixes. 

Consequently, our first-order substitution aQ must respect the modal substitu- 

tion am. 

For soundness, we must place restrictions on first-order substitutions to 

ensure that the positions representing parameters introduced for existentially 

bound variables (replaced in the labels of positions by elements of Ao(µ)) are 

indeed arbitrary. In terms of sequent systems, we must ensure that such posi- 

tions are introduced (by the reduction of their parent) before the introduction 

of any position representing a universally bound variable (i.e., element of Fo(µ)) 

which is to receive the same parameter. These notions should be familiar from 

Part I. The similarity between the restrictions on quantifier reductions and the 

restrictions on modal operator reductions is not accidental [Smu7O]. 

A first-order substitution aQ: r0(µ) - TQ(µ) U C induces an equivalence 

relation -eQ and a relation CQ on TQ x TQ as follows: 

1. If aQ(u) = v and v E I'o, then u -Q v. 
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2. If oQ(u) = v and v v ro, then v Cq u. 

3. If v C :Q u and u -Q u', then v F U'. 

A combined substitution is a pair consisting of a modal substitution and 

a first-order substitution. A combined substitution (am, CQ) is L-admissible 

provided 

1. QM respects L-accessibility relations, as before. 

2. (K-logics only) u -m u' implies v EM u (and hence v cm u') for some 

cx-related position v. 

3. d = (<< U CM U CQ)+ is irreflexive. 

4. The following condition holds for am and oQ depending on the domain 

condition for the logic L: 

Constant domains: No condition. 

Varying domains: If CQ(u') = v', then am(pre(v')) = a" (pre(u')). 

Cumulative domains: If CQ(u') = v', then either: 

(a) am(pre(v')) _ a* (pre(u')); or 

(b) a* (pre(v')) Ro a* (pre(u')) 

REMARKS. There is no coupling of the modal and first-order substitutions 

for constant domains. For varying domains however, there is such a coupling, 

namely: "parameters" (elements of TQ(µ)) associated by the first-order substitu- 

tion must have identical prefixes under the modal substitution. (Intuitively, the 

prefix of such an element is the point at which it exists.) The corresponding cou- 

pling for cumulative domains is weaker: the prefix of the "variable parameter" 

(element of I'o) need only be L-accessible from the prefix of its image. (END OF 

REMARKS.) 

The appropriate notion of complementarity is then as follows: if a is an 

L-admissible combined substitution for Xc`, a connection { u, v } in Xc` is o- 

complementary if 
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1. cM(pre(u)) = oM(pre(v)). 

2. CQ(lab(u)) = CQ(lab(v)). 

REMARK. Recall that the label of an atomic position u is an atomic formula 

with elements of TQ(A) in place of what otherwise would be free individual 

variables. This is a consequence of the definition of the label of an indexed 

position given in §6.2.2. Consequently substitutions can be extended to modal 

formulae in the obvious way. This makes sense of the second condition above. 

(END OF REMARK.) 

A path is c-complementary under the same conditions as were discussed in 

the previous section. The difference between the first-order and propositional 

characterisations of validity is captured solely in the notion of complementarity 

for connections. 

In §6.3 and §6.4, we prove both halves of the theorem: 

THEOREM 6.6 A (first-order) modal formula A is L-valid if there is a multi- 

plicity µ, an L-admissible combined substitution c and a set of c-complementary 

connections that spans the indexed formula (A, 0)M. 

EXAMPLE. Consider the example formula 

(OOVx (0Px A Qz) p(VyPy A VzQz), 0) 

indexed as in Figure 6-3. We noted before that the connections {as, a12} and 

{ag', a14} span the formula. The prefixes and labels of positions are also show 

in the figure. The mapping cm that takes alo to a2a3a6, aa' to a'', and is the 

identity everywhere else, unifies the respective pairs of prefixes. It is easy to 

check that cm is propositionally admissible for the transitive logics K4, D4 and 

S4. 

The mapping oQ that takes a9 to ail and a4 to a'4, and is the identity every- 

where else, unifies the labels of the atomic positions comprising the connections. 
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Figure 6-8: Reduction order for connections. 

The reduction ordering induced by the combined substitution (QM, vQ) is 

shown in Figure 6-8. Notice that the graph is cyclic. The two connections 

cannot be simultaneously complementary in any of the first-order logics. Recall 

that in Chapter 5 we presented this formula for which we could not find a proof. 

We ascribed the problem to an interaction between the reduction order for the 

modal operators with the reduction order for quantifiers. Here we see how the 

cyclicity of the reduction ordering Q, induced by the combined substitution, 

captures such constraints. More examples can be found in the next chapter. 

(END OF EXAMPLE.) 
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6.3 Correctness. 

In this section we prove that the matrix characterisations of validity presented 

above are correct for the modal logics under consideration. The method used 

is based on standard techniques for systematic correctness proofs of analytic 

tableau (eg., (Smu68,Fit83j) and cut-free sequent calculi (eg., [K1e681), together 

with the techniques developed in Part I for classical logic. 

For the rest of this section we assume the following: let A be a modal sentence 

whose validity we are interested in, X the signed modal formula (A, 0), 1L a 

multiplicity for X, and a a combined L-admissible mapping for X". Under 

these assumptions, the statement of correctness for the matrix characterisations 

is: 

if there is a set of a-complementary connections that span (A, 0)", A is 

L-valid. 

By "position" we mean "position of X"," by "path" we mean "path through 

X"," etc. In addition we shall not refer explicitly to the components, aM and 

aQ, of the combined substitution, but use a to denote both, leaving it to the 

context to determine which we mean. Since the domains and codomains of 

both components are disjoint, no confusion can arise. Furthermore we shall not 

distinguish between a and its homomorphic extension over prefixes 0, formulae 

and signed formulae, again leaving it up to the context to determine which we 

mean. First we provide an overview of the ensuing proofs. 

6.3.1 Overview. 

Recall that a path s determines an associated set of positions S (s). S (s) rep- 

resents the positions that dominate the elements of s in the formula ordering 

S. Recall also the dual notion D (s), that represents the set of distinct positions 
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that can potentially be "reached" by further path reductions. In particular, 

recall that S(s) n D(s) = 0, by definition. 

S (s) represents a sequent in a certain sense. We called the relation 1 the 

"reduction ordering," when it was introduced above. We shall show (§6.3.2, 

Proposition 6.14) that, starting from the singleton set of paths containing only 

the root path, a sequence of reduction operations can be performed on this set 

of sets - replacing a path by the paths obtained from its reduction - until we 

are left only with the irreducible set of atomic paths through Xµ. Moreover, this 

can be done in such a way that at none of these reductions is a position intro- 

duced into a path whilst a 4-lesser position still remains reachable by further 

reductions. This defines informally what we mean by a proper reduction. The 

paths are said to be Q-compatible. In other words, the order in which positions 

are introduced by reduction respects the reduction ordering Q. The irreflexiv- 

ity (acyclicity) of a is the crucial condition that guarantees the existence of an 

appropriate sequence of proper reductions. 

Intuitively, for a subclass of the logics, proper reductions correspond to ap- 

plications of the sequent inference rules on the sequent represented by the path. 

We show that each proper reduction is correct in a sense reminiscent of the 

correctness of the individual sequent rules of Chapter 4. Consequently, Proposi- 

tion 6.14 ensures the existence of a sequent derivation of A with the atomic 

paths corresponding to its leaves. The existence of a spanning set of comple- 

mentary connections entails that all the leaves of this derivation are instances of 

the basic sequent, i.e., the derivation is a proof of -; A, and consequently A is 

valid. 

Our proofs of the correctness of proper path reductions are semantic, rather 

than proof-theoretic, in part because we have not developed suitable sequent 

calculi for S5 and the varying and constant domain versions of the logics under 

consideration. More centrally, we believe that this approach will support the 

application of the ideas of this chapter to other (more complicated) logics for 

which, like S5 and the constant domain modal logics, standard, cut-free sequent 

systems are not available. 
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The formal ideas are based on Fitting's justification of his prefixed tableau 

systems [Fit72,Fit83]. We decompose the proofs into four sections for the reader's 

convenience, and to suggest the relationship with the correctness proofs for the 

sequent rules presented in Chapter 4. The reader is invited to review those 

proofs as an aid. Roughly speaking, we consider a path to be L-satisfiable if the 

set of positions associated with it can be interpreted in an L-model in a natural 

way. We show correctness by demonstrating that: 

1. A path that contains a complementary connection is not L-satisfiable 

(§6.3.3.1). 

2. If a 4-compatible path through X,' is L-satisfiable, a proper reduction en- 

sures that at least one of the resulting paths is also L-satisfiable (§§6.3.3.2- 

6.3.3.4). 

3. The non-validity of A means the root path is L-satisfiable (§6.3.4). 

Consequently, the fact that we can reduce the root path to the set of atomic 

paths ensures that at least one of these paths is L-satisfiable. The existence 

of a spanning set of complementary connections for Xµ ensures that all atomic 

paths contain complementary connections, and hence are not L-satisfiable, a 

contradiction. A must therefore be valid, and the characterisations correct. 

6.3.2 Proper reductions. 

For the most part, the notion of a proper reduction can be presented (but not 

justified) independently of a particular logic. There is an important exception, 

namely, proper v-reductions. 

The logics partition into two classes: the idealisable logics D, D4, T, S4, S5, 

and the non-idealisable logics K and K4. The condition of idealisation ensures 

that there is a point accessible from any given point of a frame. This structure 

sanctions the inclusion of a v rule in the sequent calculi for the idealisable logics 

presented in Chapter 4. The form of this rule is logic dependent; a dependence 
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which will be reflected in the different cases considered in the justification of 

proper v-reductions in the sequel. For the non-idealisable K-logics however, 

there is no v rule. A v-reduction of a path s, to obtain s', introduces a new 

position into S(s'). The absence of a v sequent rule for the K-logics might 

suggest that no form of v-reduction is justifiable. In fact, we are able to justify 

v-reductions for these logics in which the prefix of the new position is already a 

prefix of an element of S(s). 

Below, we define the notion of a ,I-compatible path. Roughly speaking, a 

proper reduction is one that preserves the 4-compatibility of paths. We capture 

the difference between the idealisable and non-idealisable logics via alternative 

definitions of d-compatibility, and hence of proper v-reductions. 

6.3.2.1 Idealisablc logics. 

A position u E D(s) is said to be unrestricted for a path s just in case there is 

no Q-greater element in S(s); i.e., no v E S(s) such that u< v. A paths is said 

to be Q-compatible just in case every position of D(s) is unrestricted for s. An 

element of D(s) that is restricted (i.e., not unrestricted) in some sense "cannot 

be reached" by proper reductions. Some reduction has been performed "out of 

order" as defined by the reduction ordering d. 

We say that a non-atomic, d-compatible path, s, is properly reducible on 

a position u E s just when the children of u introduced by the reduction are 

a-least elements of D(s). Notice that a proper reduction of s transfers positions 

from D (s) to S (s). 

LEMMA 6.7 The root path {ko} is 4-compatible. 

PROOF. Notice that S({ko}) = {ko}, and that ko is the 4-least position. 

We now come to the main lemma for the idealisable logics. 
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LEMMA 6.8 If s is a non-atomic Q-compatible path, there is some element 

u E s on which s is properly reducible. Moreover, the paths that result from such 

a proper reduction are themselves a-compatible. 

PROOF. Since s is non-atomic, D(s) is non-empty. The set of Q-least 

elements of D(s) is also non-empty since a is irreflexive (i.e., acyclic when 

viewed as a directed graph). Consider the parents (elements of s) of these 

d-least elements. We claim that all of the positions introduced by reduction 

on any of these parents are Q-least elements of D(s). 

Observe that this holds trivially if one of the parents has only one child 

(i.e., is of 7r or b type), since its child is a-least by assumption. Also, if 

one of the parents is generative (i.e., is of v or -y type) we may choose to 

introduce any of its children that are a-least in D(s) (at least one such 

child must exist by assumption). 

Suppose such a parent u is of a or A type. We claim that both the children 

ul and u2 of u are a-least elements of D(s). The secondary types of these 

children are one of: al, a2, 01 or 02. Notice that there is no v E D(s) with 

v << u i = 1, 2, since such a v would have v -S u (the parent of the ui) and 

thus be an element of S (s). Also, since u, TM(µ) and ui 0 TQ (µ), i = 1, 2, 

any v E D (s) with v < u, must have v a u. (Another way of putting this 

is that the u, do not participate in any EM or EQ relationships.) But this 

contradicts v being unrestricted and hence the d-compatibility of s. Both 

children must therefore be <-least elements of D(s). 

Note how the condition of irreflexivity required of the reduction ordering, 

a, induced by an admissible substitution, ensures that the set of d-least 

elements of D(s) for a non-atomic path is non-empty. 

We have shown the existence of an element of s, say u, all of whose children 

are d-least elements of D(s). s is therefore properly reducible on u. Con- 

sider a path s' obtained from the proper reduction of s on u. Clearly, D (s') 

is subset of D(s) and therefore every element of the former is unrestricted 

in s by hypothesis (s is a-compatible). Also S (s') is a superset of S (s), 
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containing as extra elements some or all of the children of u, depending on 

the type of u. Hence, a position v E D(s') could only fail to be unrestricted 

in s' if one of the children of u, say u,, was such that v d ui. But ui, i = 1, 2, 

is a 4-least element of D (s) by construction, so this cannot be. Hence s' is 

,q-compatible. a 

6.3.2.2 Non-idealisable logics. 

For the K-logics we need variants of the notions introduced above. Define the 

intermediate set IK(s) inductively as follows (cf.I(s)): 1K(s) is the smallest set 

of positions such that s C IK(s), and closed under the rule: 

if u E IK(s) and v is a child of u with v S(s), then: 

(a) if v is not of vo-type, v E IK(s); 

(b) if v is of vo-type, v E IK(s) provided: for every v' e v(v), v' E 

S(s) U IK(s). 

We then define DK(s) in terms of IK(s) (cf.the definition of D(s) in terms of 

I (s)): 

DK(s) IK(s) \ s. 

As an immediate consequence of this definition we have: 

FACT 6.9 Let s be a path and uo E DK(s) a position of vo-type. For every 

v E Q(UO), V E S(s) U DK(s). 

Clearly, DK(s) C D(s). The positions omitted from DK(s) but contained in 

D (s) are those vo type positions (and their descendants) whose prefix contains 

elements neither in the set associated with the path, nor "reachable" by further 

path reductions of the kind outlined below. We define K-atomic paths to be 

those paths for which DK(s) = 0 (cf. atomic paths where D(s) = 0). With this 

latter definition we get a counterpart to Fact 6.1: 
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FACT 6. 10 If s is a K-atomic path, then for k" E s either: 

(a) k is an atomic position; or 

(b) k is of -1-type, k, its child, and for all j, 1 < j < ue(kl), kl' E S(s); or 

(c) k is of v-type, kl its child, and for all j, 1 < j < jM(kl), either 

k;' E S(s); or 

for some v e v(pre(k")), v S(s). 

The following lemma summarises the relationship between K-atomic paths and 

paths obtainable by reduction from them. 

LEMMA 6.11 Let s be a K-atomic path. If it E D(s), there is some vo-type 

position u' E D(s), whose parent is an element of s such that: 

1. U'U. 

'. For some v e a(pre(u')), v S(s). 

PROOF. Immediate from the previous fact and the fact that u E D(s) 

implies u S (s). a 

A position u E DK(s) is said to be unrestricted for a path s just in case there 

is no <-greater element in S (s); i. e., no v E S (s) such that u < v. A path 8 is 

said to be <-compatible just in case: 

1. Every position of DK(s) is unrestricted for s. 

2. For all u E S(s), v e a(pre(u)) implies v E S(s). 

The first clause is identical to that given in the definition of <-compatibility for 

idealisable logics, except with DK(s) in place of D(s). The second condition is 

an addition. 

179 



We say that a non-atomic, 4-compatible path, s, is properly reducible on a 

position u E s just in case the children of u introduced by the reduction are 

<i-least elements of DK(s). Under these definitions we have: 

LEMMA 6.12 The root path {ka} is a-compatible, 

PROOF. Notice that S({ko}) = {k0}, and that ko is the a-least position. 

We now come to the main lemma for the non-idealisable logics. 

LEMMA 6.13 If s is a Q-compatible path which is not K-atomic, there is some 

element u E s on which s is properly reducible. Moreover, the paths that result 

from such a proper reduction are themselves < -compatible. 

PROOF. The proof is similar to the proof of Lemma 6.8 above. Since s 

is not K-atomic, DK(s) is non-empty. The irreflexivity of a ensures the 

existence of at least one a-least element of DK(s). Likewise we can show 

the existence of an element of s, all of whose children are a-least in DK(s). 

s is thus properly reducible on this position. 

Let u be the appropriate element of s. Consider a path obtained from the 

(proper) reduction of s on u. In order to show Q-compatibility of s', we 

must show that: 

1. every position of DK(s') is unrestricted for s', and 

2. for all u E S(s'), v e Q(pre(u)) implies v E S(s'). 

The proof of the first condition is identical to that given for the idealisable 

logics in Lemma 6.8. 

To prove the second condition, we notice that only 7r and v reductions 

introduce positions whose prefixes (potentially) differ from their parents. 

Let uo be the child of u introduced by the reduction. In both cases S (S') _ 
S (s) U {uo} and pre(uo) = pre(u) uo. Consequently: 

Q(pre(u)) = a(pre(u)) Q(uo) . 
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By hypothesis (s 4-compatible) the elements of a(pre(u)) are already ele- 

ments of S(s), and hence S(s'). We are left to show that for all v e a(uo), 

v E S (s') 

1. ir-reductions: Notice that a(uo) = uo (uo is of 7ro type) and uo E S(s'). 

2. v-reductions: Suppose for some v e a(uo), v 0 S (s'). We derive a 

contradiction. Since uo E DK(s), v E S(s) U DK(s) (Fact 6.9). There- 

fore, v E DK(s) (S(s) C S(s')). But, v s a(uo) implies v i uo, which 

contradicts, uo being a i-least element of DK(s). 

Therefore, in both cases, s' is 4-compatible. 0 

6.3.2.3 Reduction to atomic paths. 

Lemmas 6.7 and 6.8 for the idealisable logics, and Lemmas 6.12 and 6.13 for the 

non-idealisable logics, indicate that we can successfully reduce the i-compatible 

root path to, in the case of the idealisable logics, the set of atomic paths through 

Xµ, and in the case of the non-idealisable logics, the set of q-compatible K- 

atomic paths, while maintaining the a-compatibility of every intermediate path 

considered. 

PROPOSITION 6.14 Starting from the singleton set consisting of the root path 

through Xµ, there exists a sequence of proper path reductions by which the atomic 

paths (K-atomic paths) through X" may be enumerated. That is, if ko is the root 

position of X", the procedure: 

W :_ {ko}; 

While there is a non-atomic path (non K-atomic path) s in W do: 

1. Properly reduces,- 

2. Replace s in W by the paths that result from this reduction; 

terminates, resulting in the set of atomic paths (K-atomic paths) through X". 

Furthermore, at every stage, all the elements of W are a-compatible. 
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PROOF. Lemma 6.7 (Lemma 6.12) ensures that the initial element of W 

is i-compatible, while Lemma 6.8 (Lemma 6.13) shows that this property 

is an invariant for the loop for the idealisable (non-idealisable) logics. Ter- 

mination can be established from the fact that X" contains finitely many 

positions, and a path, s', that results from the reduction of s, satisfies: 

D(s') C D(s) (DK(s') C DK(s)). A well-ordering which decreases at each 

iteration is easy to construct. 0 

6.3.2.4 K-atomic paths. 

For the idealisable logics, Proposition 6.14 guarantees the proper reduction of 

the root path to the atomic paths through X". The existence of a set of connec- 

tions that span X" ensures that each atomic path contains a a-complementary 

connection. This is the desired situation as outlined in the introduction to this 

section. In the following sections we justify proper reductions. 

For the non-idealisable logics, however, we can only reduce as far as the 

K-atomic paths using proper reductions. Recall that for the non-idealisable 

logics a path t, containing a or-complementary connection { ul, u2 }, is only or- 

complementary itself if for every v e: a(pre(u)), v E S(t). We now show that the 

existence of a set of or-complementary connections that makes every atomic path 

through X" or-complementary in this sense, entails that every K-atomic path 

through X" is also or-complementary. 

In what follows we understand the term: "Q-compatible," and the term: "a- 

complementary," in the sense of the non-idealisable logics. We need the following 

lemmata: 

LEMMA 6.15 Let s be a d-compatible K-atomic path. Furthermore, let { ul, u2 } 

be a or -complementary connection. If u, E s, i = 1,2, s is or-complementary. 

PROOF. Since the connection is or-complementary we have a(pre(ui)) = 

a(pre(u2)). We must show that for all v E a(pre(ul)), v c S(s). But this 

182 



follows immediately from the definition of 4-compatibility (for the non- 

idealisable logics). 

The main proposition is as follows: 

PROPOSITION 6.16 If U is a set of a-complementary connections that span Xµ, 

and s is a Q -compatible K-atomic path, s is a-complementary. 

PROOF. If s is an atomic path the result follows by hypothesis and 

Lemma 6.15. Suppose then that s is not an atomic path. Let t be an 

atomic path reachable by reductions (possibly not proper) from s. By hy- 

pothesis there is a a-complementary connection { u1, u2 } E U that makes 

t a-complementary. Therefore, for all v e a(pre(u,)), i = 1,2, we have 

v E S (t), by definition. Furthermore, for any such v, we must have v E $ (s) 

or v E D(s) (since t is obtained from s by reductions). 

If u, E S (s) then u, E s, i = 1, 2, since the u, are atomic positions. By 

Lemma 6.15, s is a-complementary. 

Therefore, without loss of generality, suppose that ul 0 s, i.e., ul 0 S(s). 

We derive a contradiction. 

Since ul E t but ul s, we have: ul E D(s) (t is obtained from s by 

reductions). Let u' be the vo-type position, with u' <_ u1, whose parent is 

an element of s. Such an u' must exist by Lemma 6.11. Since u' ' ul, 

pre(u') -< pre(ul), and consequently, 

a(pre(u')) -< a(pre(ul)) . 

Since u' DK(s) (s is K-atomic), there must be a v' e a(pre(u')) such 

that v' S(s) (nor of DK(s) for that matter). Since v e a(pre(u')), v e 

a(pre(ul)) and hence must be an element of D(s). By Condition B on 

modal substitutions we have: 

a(pre(v')) -{ a(pre(u')) . 
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Let u" be the vo-type position with u" << v', whose parent is an element of 

s (Lemma 6.11). u" << v' implies u" < v'. Since v' c v(pre(u')), we have 

v' <1 u', and hence u" < u', by the transitivity of <. u" must be distinct 

from u' since < is irreflexive. Moreover, since u" << v', pre(u") -C pre(v'), 

and 

v(pre(u")) -< v(pre(v')) . 

Therefore: 

c(Pre(u")) Q(Pre(v')) a(Pre(u')) a(PTe(ul)) 

Thus, for all v e v(pre(u")), v E S(t). We can repeat the reasoning to 

obtain a u"', u"" etc, all elements of D(s), such that: 

... < u < u"' < u" < u' < ul 

Suppose u* is the <-least of this sequence (which must exist since there are 

only a finite number of positions and < is irreflexive). We have that for all 

v c Q(pre(u*)), v E S(t); and consequently, for such a v, either v E S(s) or 

v E D(s) as before. By assumption, v D(s), else u* could not be <I-least 

in D(s). Hence V E S(s). But then u* E DK(s) and s is not K-atomic, 

contradicting the hypothesis. N 

6.3.3 Correctness of proper reductions. 

In the previous section we showed that the root path could be properly reduced 

to the set of atomic, or K-atomic paths through X". Moreover, if Xµ is spanned, 

by a set of Q-complementary connections, every atomic or K-atomic path through 

X" is v-complementary(for the appropriate definition of "c-complementary" for 

paths.) 

Roughly speaking, we consider a path to be L-satisfiable if the set of positions 

associated with it can be interpreted in an L-model in a natural way. In this 

section we show that proper reductions preserve L-satisfiability, and that a- 

complementary paths are not L-satisfiable. 
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Recall that we use P (µ) to denote the set of prefixes in X. We need to 

specialise this notation as follows: let P (ii, s) denote the set of prefixes of the 

positions in S (s), i.e., 

P (µ, s) 
df { pre(u) i u E S (s) } , 

and P,(µ, s) the "image" of P (µ, s) under a, i.e., 

Pa(A,s) dt {pIp-<a(q), q E P(µ,s)}. 

Notice that if q is the image of the prefix of some element of S (s) under ar, then 

P,(µ,s) contains all initial subsequences of q. It is the set of prefixes that we 

shall interpret into a model. 

We need similar notions for constants. By the definition of the label of 

a position, the elements of TQ(µ) that can possibly appear in the label of an 

indexed position must dominate that position in the formula tree. We use C(µ, s) 

to denote this set thus: 

C(µ,s) 
df 

TQ(p) n S(s) 

Let C,(µ, s) denote the image of C(µ, s) under a, together with the individual 

constants of A, i.e., 

C,(µ,s) { or (u) I u c C(p,s) } U {constants of A}. df 

These definitions are the quantifier counterparts to the definitions of P (p, s) and 

P,(µ, s) above. C,(µ, s) is the set of constants that we shall interpret into a 

model. 

Since the notation will get cumbersome otherwise, we shall usually omit 

mention of µ. That is, we use P(s) in place of P(p,s), P,(s) instead of P"(11, S), 

C(s) instead of C(µ,s) and C,(s) instead of C,(Fi,s). 

For a set of prefixes P we use I P I to denote the set of positions that comprise 

the prefixes: 

API df {uEpIpEP}. 

The following facts are immediate consequences of these definitions and Fact 6.3: 
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FACT 6.17 I(s)I C S(s). 

FACT 6.18 C(s) C S(s). 

Let (G, R, D, D, II-) be an C-model and (Go, Ro) be an C-frame with GonG = 

0. Let p, q denote elements of Go. (Go will be our set of prefixes and Ro the 

accessibility relation on prefixes.) Let Do be a set of constants distinct from D. 

A mapping: 

t:PoCGo,--+G and t:CoCDoi-*D 

is an C-interpretation for Po and Co in \G, R, D, D, II-) if, for any p, q E Po, 

p Ro q implies t(p) R t(q) 

We say that a path, s, is C-satisfcable under a just in case there is an L- 

model, (G, R, D, D, and an C-interpretation, t, of P,(s) into G and CQ(s) 

into D such that: 

1. For each u E S (s), with p = a(pre(u)) and Y = a(sform(u)), all the 

constants of e(Y) are in D(t(p)) and: 

t(p) II- c(Y) . 

2. For each v E Ce(s) with q = o'(pre(v)): 

q E P,(s) implies t(v) E D(t(q)). 

The first condition is the formal expression of the informal argument of the 

introduction. The prefix, pre(u), of a position, u, is used as the name of a point 

at which the signed formula, sform(u) = (lab(u) , pol(u)), associated with the 

position is forced. We require this relationship to hold under a mapping, a, of 

"variable" elements of the prefix, and "variables" in the atoms of the formula. 

"Variables" represent a degree of choice in the point or parameter named. 

The second condition, called the Parameter Condition, ensures that parame- 

ters are interpreted in a consistent way. The condition ensures that the constant 
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of the model denoted by v is an element of the domain of the point of the model 

denoted by the prefix of v. This condition is only of interest for the varying and 

cumulative domain logics as the following lemma shows. 

LEMMA 6.19 Let C denote a constant domain logic under consideration. If 
the first condition for C-satisfiability under or holds for a path s, so does the 

Parameter Condition. 

PROOF. Suppose v E Ca(s) with q = a(pre(v)), and q E Pa(s). The 

first condition on C-satisfiability gives us a model, (G, R, D, D, II-), and 

an interpretation, t, of P,(s) and Ca(s) in that model. Thus t(v) E D(w), 

for some w E G, and t(q) = w', for some W' E G. But D(w) = D(w'), since 

,C has constant domains. Hence t(v) E D(t(q)). t 

The Parameter Condition plays a crucial role only in the justification of proper 7 

reductions (Proposition 6.27) for these logics. We shall remark on it there. The 

condition must be checked for each reduction however. To that end, we simplify 

the other proofs by means of the following lemmata. 

For application in the case of a and /3 reductions: 

LEMMA 6.20 Let s be a d-compatible path through Xµ, C-satisfiable under o,. 

Let s' be a path resulting from the proper reduction of s on a position u E S. If 
Po(s') = P,(s) and Co(s') = Ca(s), then s' satisfies the Parameter Condition. 

PROOF. Since C,(s') = Ca(s) and PP(s') = Pa(s) the Parameter Condition 

must hold for s' since it held for s by hypothesis. 

For application in the case of 7r and v reductions: 

LEMMA 6.21 Let C denote 

1. a varying domain logic; or 

2. a cumulative domain variant of one of K, K4, D, D4, T, S4. 
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Let s be a .1 -compatible path through X". For p E TM(A)*, if p there is 

no v E C,(s) with a(pre(v)) = p. 

PROOF. Suppose not. That is suppose for v E C,(s), a(pre(v)) = p and 

p 0 P,(s). First notice that any such v cannot have v E C(s), because in 

that case v E S(s) (since C(s) C S(s)) and by definition: p E P,(s), which 

contradicts p 0 .'(s). 

So there must be a u E C(s) with c(u) = v. Suppose a(pre(u)) = q. By the 

reasoning above, q E P,(s). 

1. For varying domains: since a is .C-admissible, we have: q = p, 

p E P,(s), which contradicts p 0 P,(s). 

2. For cumulative domain variants of K, K4, D, D4, T, S4: since a is 

.C-admissible, we have either: (a) q =p; or (b) p Ro q. 

The first case we dealt with above. For these logics, Fact 6.4 gives us 

that p -< q. But then, p E P,(s), by definition of P,(s), which again 

contradicts p -1(s). 

IMPORTANT NOTATIONAL POINT. In what follows we shall abuse our no- 

tation and use principal and secondary types to denote arbitrary positions of 

that type. In particular, if we say: "a path s is properly reducible on ir," we 

mean that there is a position u E s such that Ptype(u) = it and s is properly 

reducible on u. Furthermore, in this context we shall use no to denote the child 

of u. Similar abuses are extended to the other types. (END OF POINT.) 

6.3.3.1 Complementary paths. 

PROPOSITION 6.22 A path s through X" which contains a a-complementary 

connection { u, v } is not .C-satisfiable. 

PROOF. By definition of a a-complementary connection: 
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o(pre(u)) = p = o(pre(v)), for some prefix p E TM(,u)*. 

o(lab(u)) = P = o(lab(v)), for some atomic formula P. 

pol(u) pol(y). 

Suppose, for a contradiction, that s is L-satisfiable with (G, R, D, D, II-) 

and c the appropriate C-model and L-interpretation. Then, by definition, 

all the constants of e(P) are in D(t(p)), and: 

t(p) II- t(o(sform(u))) and t(p) - t(o(sform(v))), 

i.e., 

t(p) 11- t((P, O)) and t(p) - t((P,1)), 

or equivalently: 

t(p) II/ t(P) and t(p) Il- t(P), 

since the polarities of the positions are different. This contradicts condition 

(1) Corollary 4.1 for models. Hence s is not L-satisfiable under or. a 

REMARK. Notice that we extend t and or, to signed formulae thus: for a 

position u, 

t((lab(u), pol(u))) = (t(lab(u)), pol(u)) 

o((lab(u) , pol(u))) = (o(lab(u)) , pol(u)). 

We shall do this extensively in the sequel without remark. Furthermore, both c 

and or leave the structure of formulae unchanged, mapping only the arguments 

of predicate symbols. Consequently the mappings preserve the types of signed 

formulae. (END OF REMARK.) 

6.3.3.2 Propositional reductions. 

We justify proper a and f reductions. 

189 



PROPOSITION 6.23 Lets be a 4-compatible path through X", C-satisfiable un- 

der a, and properly reducible on a. Then the path obtained by reduction on a is 

C-satisfiable under a. 

PROOF. The path obtained by reduction of s on a is (s \ {a}), al, a2. Call 

this path s'. We have: 

S (s') = S (s) U {al, a2}. 

P.(s') _ P.(s). 

Ca(S') Lo(S)- 

Let p be the image of the prefix of a under a. Then p is also the image of 

the prefixes of the a i = 1, 2, under a. Let Y be the image of sform(a) 

under a. Note that Y is a signed formula of a type. We shall use Yi and 

Y2 to denote its immediate subformulae. Under these conventions: 

Y, = a(sform(al)) and Y2 = a(sform(a2)) 

by the definition of labels. By hypothesis we have the existence of an C- 

model, ( G, R, D, D, 11-), and an C-interpretation, t, for which: 

t(p) 11- t(Y) . 

Hence, by the model conditions for a-type formulae (Corollary 4.1): 

t(p) 11- t(Yj) and t(p) 11- t(Y2) 

that is: 

t(p) 11- t(a(sform(al))) and t(p) 11- t(a(sform(a2))) . 

The Parameter Condition is satisfied by s' by Lemma 6.20. Consequently, 

the reduced path is C-satisfiable under a. 

PROPOSITION 6.24 Let s be a d-compatible path through Xµ, C-satisfiable un- 

der a, and properly reducible on /i. At least one of the paths obtained by reduction 

on a is C-satisfiable under a. 
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PROOF. Two paths result from the reduction of s on Q: (s \ {Q}), 91 and 
(s \ {Q}), Q2. Call these sl and s2 respectively. We have: for i 1, 2, 

S(s,) = S(s) U {Q,}. 

P (S,) = Pa(S). 

C,(S,) = C,(s). 

If p is the image of the prefix of Q under a, then p is also the prefix of 

01 and Q2. Let Y be the image of sform(Q) under v. Note that Y is a 

signed formula of Q type. We shall use Y1 and Y2 to denote its immediate 

subformulae. Under these conventions: 

Yl = a(sform(Q1)) and Y2 = a(sform(Q2)) 

by the definition of labels. By hypothesis we have the existence of an 

model, ( G, R, D, D, 11-), and an L-interpretation, t, for which: 

t(p) 11- c(Y) . 

By the model conditions for Q-type formulae (Corollary 4.1), either: 

t(p) 11- t(Yj) or t(p) 11- t(Y2) 

That is: 

t(p) 11- t(a(sform(01))) or c(p) 11- t(a(sform(Q2))) . 

The Parameter Condition is satisfied by s i = 1, 2, by Lemma 6.20. Con- 

sequently, at least one of the resulting paths is L-satisfiable under v. 

6.3.3.3 Quantifier reductions. 

Before proving the correctness of proper b reductions, we prove an auxilliary 

lemma, the force of which is that the "parameters" (elements of Ao) introduced 

by proper b reductions are indeed new to the "sequent." This follows from the 

4-compatibility of the path. 
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LEMMA 6.25 Let s be a <I-compatible path, reducible on b, then bo V Ce(s). 

PROOF. Suppose, for a contradiction, that bo E Co(s). Since bo E D(s), 

bo V S (s), and hence bo V C(s) (by Fact 6.18). Thus there must be some 

v E C(s) with a(v) = bo, i.e., bo a v. But there can be no such v E C(s) C 

S (s) since bo is unrestricted for s. a 

We now justify proper b reductions. 

PROPOSITION 6.26 Lets be a <1 -compatible path through X'4, L-satisfiable un- 

der a, and properly reduc:ble on b. The path obtained by reduction on b is 

L-satisfiable under a. 

PROOF. The path obtained by reduction on b is (s\{b}),bo. Call this 

path s'. We have: 

S (s') = S (3) U {bo}. 

P.(s') _ P.(S). 

Co(s') = Co(s) U {bo}. 

Let p be the image of the prefix of b (and hence of bo) under a. Let Y be 

the image of sform(b) under a. Note that Y is a signed formula of b type. 

We shall use Yo to denote its immediate subformula with the individual 

quantified variable free, and Yo(a), for some a, to indicate substitution of 

a for that free variable. The particular a we are interested in, of course, is 

the position bo itself. Under these conventions: 

Yo(bo) = a(sform(bo)) 

by the definition of labels and since a(bo) = bo. By hypothesis we have 

an L-model, (G, R, D, D, 11-), and an L-interpretation, t, for which: all 

constants of t(Y) are in D(i(p)), and: 

t(p) II- t(Y) . 
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Hence, by the model conditions (Corollary 4.1), there is some c E D(t(p)) 

such that: 

t(P) II- t(Yo) (c) 

(Remember, t and v map only constants. t(Yo) is therefore a b formula over 

the language of the model with a free individual variable. We use t(Yo) (c) 

to denote the substitution of c, a constant of the model, for that variable.) 

Since bo ' C,(s) (Lemma 6.25), t is undefined for bo. We extend t to C,(s') 

as follows: 
c, u=bo 

t'(u) 
L(U) , u E C,(s) . 

The extended mapping is an L-interpretation for S(s') since bo is the only 

additional constant, and t was an f-interpretation for S(s). Since t'(bo) = c 

and t'(p) = t(p), we have: t'(bo) E D(t'(p)). Now, since: 

t(p) II- t(Yo) (c), 

and t and t' agree on the constants of Yo and p: 

t'(P) II- t'(Yo) (c). 

Furthermore: 

t'(Yo) (c) = t'(Yo) (t'(bo)) = t'(Yo(bo)) = t'(u(sform (bo))) 

Consequently: 

t'(p) II- t'(a(sform(bo))) . 

For U E S(s): 

t(a(pre(u))) II- t(a(sform(u))) 

by hypothesis, and since t and t' agree on C,(s), we have: 

t'(a(pre(u))) (I- t'(u(sform(u))) . 

The Parameter Condition is satisfied for C,(s') since it was satisfied for 

C,(s) by hypothesis, and for bo we have: a(pre(bo)) = p, p E P,(s') and 

t'(bo) E D(t'(p)) by construction. s' is therefore C-satisfiable under Q. 
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PROPOSITION 6.27 Lets be a -1-compatible path through Xµ, L-satisfiable un- 

der a, and properly reducible on 7. The path obtained by reduction on -y is 

L-satisfable under a. 

PROOF. Let k" be the 7-type position in question and 1 the child of k in 

the (unindexed) formula tree. By definition, the secondary type of I is 'Yo. 

k" has µ(1) children in the indexed formula tree X". For s to be reducible 

on k" it means that there is at least one j, 1 < j < µ(l) such that 1"i E D(s) 

with 1" being a a-least element of D(s). Let -yo denote the position l"' for 

some such j. We continue as in the 6 case above. 

The path obtained by reduction on 7 is s, 70. Call this path s'. We have: 

S (s') = S (s) U {7o}. 

po(s') = po(s). 

C0(s') = C(s) U {7o). 

Let p be the image of the prefix of 7 (and hence of 'Yo) under a. Let Y be 

the image of sform(7) under a. Note that Y is a signed formula of -y type. 

We shall use Y0 to denote its immediate subformula with the individual 

quantified variable free, and Yo(a), for some a, to indicate substitution of 

a for that free variable. The particular a we are interested in, of course, is 

the image, v, of -yo under a. Under these conventions: 

Yo(v) = a(sform(ryo)) , 

by the definition of labels, and since a(70) = v. By hypothesis we have 

an L-model, (G, R, D, D, I1-), and an L-interpretation, t, for which: all 

constants of c(Y) are in D(t(p)), and: 

t(p) II- t(Y) . 

Hence, by the model conditions (Corollary 4.1), for every e E D(t(p)): 

t(p) II- t(Yo) (c) 

Let a(pre(v)) = q. Since v is a constant of Yo(v), we need only show how 

to extend c to t', an L-interpretation for Co (s'), such that: 
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t'(v) E D(t'(p)), and, 

the Parameter Condition holds for s'. 

We consider each domain condition in turn. 

Constant domains: This is the simplest case. The Parameter Condition 

is satisfied for any extension of t by Lemma 6.19. 

1. Suppose V E C0(s). Then C0(s) = C,(s'). t is already defined 

on v and t(v) E D(w) for some w E G. But D(w) = D(t(p)) by 

assumption (constant domains). Define: t' = t. 

2. Suppose v 0 C0(s). Choose c E D(t(p)) (one exists since every 

domain of the model is non-empty). Extend t as follows: 
C' u=v 

(u) t(u) , u E C0(s) . 

Clearly t' is an L-interpretation for C0(s'), and t'(v) E D(t'(p)) by 

construction. 

Varying domains: The extra condition on varying domain admissibil- 

ity states that: for u',v' E TT(µ), if a(u') = v', then a(pre(u')) _ 

a(pre(v')) 

Since: u(-yo) = v, p = q under this condition; i.e., D(t(p)) = D(t(q)). 

Extend t as in the constant domain case depending on whether v E 

C, (s) or not. 

1. Suppose V E C0(s). Then C0(s) = C0(s'). t is already defined on 

v and t(v) E D(t(q)) by the Parameter Condition for s. Hence: 

t(v) E D(t(p)), since D(t(p)) = D(t(q)). Define: t' = t. The 

Parameter Condition holds for s' by Lemma 6.20. 

2. Suppose v 0 C0(s). Choose c E D(t(p)). (All domains are non- 

empty.) Extend t as follows: 
C' u=v 

(u) t(u), u E C0(s) . 

Clearly t' is an L-interpretation for C,,(s'). t(v) E D(t(p)) by 

construction, and the Parameter Condition holds for s', since 

D(t(p)) = D(t(q))- 
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Cumulative domains: The extra condition on cumulative domain admis- 

sibility is: for u', v' E TT(µ), if o(u') = v', then either: (a) o(pre(u')) _ 

o(pre(v')); or (b) o(pre(v')) Ro o(pre(u')). Since o('yo) = v, we have 

either: (a) p = q, or (b) q Ro p. 

(a) p = q. Then D(t(p)) = D(t(q)). Proceed as in the varying domain 

case above. 

(b) q Ro p. q Ro p implies q -< p for the logics K, K4, D, D4, T, S4 

by Fact 6.4. Consequently q E Pa(s), by definition of Pa(s). Since 

t is an L-interpretation for Pa(s) we have: t(q) R t(p), and thus, 

since the model has cumulative domains, D(t(q)) C D(t(p)). 

i. Suppose V E Cc(s). Then Ca(s') = Ce(s). Since q E Pa(s) and 

the Parameter Condition holds for s, t(v) E D(t(q)). Conse- 

quently: t(v) E D(t(p)), since D(t(q)) C D(t(p)). The Param- 

eter Condition holds for s' by Lemma 6.20. 

ii. Suppose V 0 Cc(s). Choose c E D(t(q)). (All domains are 

non-empty.) Extend c as follows: 

C, u=V 

lt(u), uEC"(s). 

Clearly t' is an L-interpretation for C,(s'). Moreover, t'(v) E 

D(t'(p)) by construction, and since t' and t agree on Pa(s). 

The Parameter Condition holds for s' under t' by the choice 

of interpretation for v, and the fact that it held for s under t. 

6.3.3.4 Modal reductions. 

Before proving the correctness of proper 7r reductions, we prove some auxilliary 

lemmata, the force of which is that the prefixes introduced by proper 7r reductions 

are indeed new to the "sequent." This follows from the 1-compatibility of the 

path. 
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LEMMA 6.28 Let s be a 4-compatible path, properly reducible on 7r, then 7ro 

IP,(S)I. 

PROOF. Suppose no E IP0(s)I. We show that this leads to a contradiction. 

iro E D (s) since s is properly reducible on 7r. iro E D (s) implies iro iV S (s), 

and therefore, 7ro V JP(s)I (Fact 6.17). Therefore, there must be some 

v E IP(s)I with 7ro c a(v), and consequently iro d v. But v E JP(s)I implies 

v E S (s) since J P (s) J C S(s). Hence, we have 7ro d v for some v E S (s) 

which contradicts 7ro being unrestricted and hence the 4-compatibility of 

S. 8 

LEMMA 6.29 Let s be a d-compatible path, properly reducible on 7r, and p7ro = 

o(pre(7ro)). Then 

1. pro V Pa(s). 

2. For the logics K, Kd, D, Dd, T, S4 only: there is no q E Pa(s) with piro Ro q. 

PROOF. 

1. Follows immediately, since iro E p7ro and iro 0 IPa(s)I by the previous 

lemma. 

2. Any such q must have piro -< q by Fact 6.4. Since 7ro e p7ro, we must 

have 7ro a q, which contradicts the previous lemma. 

PROPOSITION 6.30 Lets be a d-compatible path through Xµ, .C-satisfiable un- 

der a, and properly reducible on 7r. The path obtained by reduction on 7r is 

L-satisfiable under Q. 

PROOF. The path obtained by reduction on 7r is (s \ {7r}), 7ro. Call this 

path s'. Let p be the image of the prefix of 7r under a; i.e., p = g(pre(7r)). 

We have: 
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S(s') = S(s) U {lro}. 

P,(s') = Pa(s) U {plro}. (S5: P,,(S') = Pa(s) U {lro}.) 

Ca(s') = Ce(s). 

Let Y be the image of sform(ir) under or. Note that Y is a signed formula 

of r type. We shall use Yo to denote its immediate subformula; i.e., 

Yo = a(sform(iro)) . 

By hypothesis we have the existence of an L-model, ( G, R, D, D, and 

an L-interpretation, t, for which: 

All constants of t(Y) are in D(t(p)), and: t(p) 11- t(Y). 

For all v E C0(s) with a(pre(v)) = r, if r E Pa(s), t(v) E D(t(r)). 

Hence, by the model conditions (Corollary 4.1) there is some point w E G, 

with t(p) R w, such that: 

W 11- t(Yo) . 

Since pro V Pa(s) (S5: iro V Pa(s)) by Lemma 6.29, t is undefined for pro. 

We extend t to P,,(s') as follows: 

I w, q = pro (S5: q = pro) 

tr(q) t(q) , otherwise. 

Assuming the extended mapping is an L-interpretation, we have by con- 

struction: for u E S (s), 

t'(a(pre(u))) 11- t'(a(sform(u))) 

since t and t' agree on Pa(s) and C0(s). In addition, by choice, we have: 

t'(p'ro) II- t'(Yo) 

t'(plro) II- t'(a(sform(iro))) 

since t'(piro) = w. 
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The Parameter Condition is satisfied for s' under t' for constant domains 

by Lemma 6.19. For varying and cumulative domains, by Lemma 6.21, 

p7ro P,(s) implies there can be no v E C0(s) with a(pre(v)) = piro. The 

Parameter Condition holds in these cases since it held for s under t, and t 

and t' agree on P0(s) and C0(s). s' is therefore C-satisfiable under a. 

We have only to show that t' is indeed an C-interpretation of the extended 

set of prefixes P0(s') into (G, R, D, D, JI-), i.e., that for q, r E P, (s') 

q Ro r implies L'(q) R L'(r). 

By hypothesis, and the fact that t agrees with t' on P,(s), the above holds 

when both q and r are elements of P0(s). Moreover, Lemma 6.29 tells us 

that there are no r E P0(s), with piro Ro r (S5: iro Ro r). We have, therefore, 

only to deal with the case of q E P0(s) for which q Ro plro (S5: q Ro 7ro). 

For S5: 

L'(q) R L'(lro) 

since R ensures that every point of G is accessible from every other point. 

For the other logics, suppose that q Ro piro for some q E P0(s'). There are 

a number of possibilities for q depending on the accessibility relation on 

prefixes for that logic (Table 6-2). We examine each condition in turn. 

1. q = p. (General: all logics except S5.) Notice that: 

L'(q) = L(q) = L(p) = L'(p) 

since q = p and, p E P,(s). Also t'(p) R L'(plro) since L'(p) R w and 

w = pro (by construction). Hence: 

L'(q) R t'(piro). 

2. q = p7ro. (Reflexive: T, S4.) Impossible, since by Lemma 6.29, p7ro 

P0(8). 

3. q -< p. (Transitive: K4, D4, S4.) Then: 

L'(q) R L'(p) 
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since p,q E P,(s) and t and t' agree on p,(s). But: 

t'(p) R t'(pno), 

since t'(p) R w and w = p7ro by construction. Consequently: 

t'(q) R t'(piro) 

follows from the transitivity of R. 

PROPOSITION 6.31 Lets be a <-compatible path through X', C-satisfiable un- 

der c, and properly reducible on v. The path obtained by reduction on v is 

L'-satisfiable under c. 

PROOF. Let k" be the v-type position in question and I the child of k in 

the (unindexed) formula tree. By definition, the secondary type of l is vo. 

k" has µ(l) children in the indexed formula tree X. For s to be properly 

reducible on k" it means that there is at least one j, 1 < j < µ(l) such that 

1" E D(s). Furthermore, this position must be a <-least element of D(s). 

Let vo denote the position 1". We continue as in the 7r case above. 

The path obtained by reduction on v is s, vo. Call this path s'. Let p be 

the image of the prefix of v under c, and q the image of vo itself under c; 

i. e., p = a(pre(v)) and q = c(vo). We have: 

S (s') = S (s) u {vo}. 

P.,(s') _ P., (s) U { r I r -< pq }. (S5: P,(s') U {q}.) 

C,(s') = C,(s). 

Let Y be the image of sform(v) under c. Note that Y is a signed formula 

of v type. We shall use Yo to denote its immediate subformula; i.e., 

Yo = c(sform(vo)) . 

By hypothesis we have the existence of an ,C-model, ( G, R, D, and 

an .C-interpretation, t, for which: 
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All constants of t(Y) are in D(t(p)), and: t(p) (I- t(Y) 

For all v E Ce(s) with c(pre(v)) = r, if r E Pa(s), t(v) E D(t(r)). 

Hence, by the model conditions (Corollary 4.1) for all points w E G, with 

t(P) R w: 

w II- t(Yo) . 

If we can extend i. to an C-interpretation t' for PP(s') such that 

t'(p) R t'(pq), and 

if v E Ca(s') and a(pre(v)) = r, then r E PP(s'); 

we are done, since, by the above model condition: 

L'(Pq) II-- c'(Yo) , 

t'(pq) II- c(sform(vo)) . 

We deal with the logics other than S5 first. For these logics, the prefix of 

vo (under a) is the sequence pq. We identify two cases: 

1. q = 0. (Reflexive logics: T and S4.) In this case p is the prefix of both 

t'0 and v under a; i.e., PP(s') = Pa(s). Define t' = t. Since t' is defined 

on p, and R is reflexive: t'(p) R t'(p). That is: 

L'(p) R t'(pq). 

The Parameter Condition holds for s' under t' by Lemma 6.20. 

2. q = ulu2 . u,,, 1 < n. We construct a series of £-interpretations 

to, L1, ... , to for the sets: P, ,,(s) and C'(s), 0 < i < n, defined induc- 

tively as follows: 

P°(s) = Pa(s) 

P '(s) = P,,(s) U { pul ... ui}1 } , 0 < i < n - 1. 

C'(s) = Ce(s), 0<i<n. 
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The construction of t, is inductive, and ensures that: 

Lr(p) R tn(pq) 

Base case: we take to = L. to is an L-interpretation for P° (s) by 

hypothesis. 

Inductive case: given t,, 0 < i < n -1, we construct ti+1 as follows. 

There are two cases depending on whether pul u;+1 E P, ,(s) or 

not. 

(a) put u,+1 E P,,(s). Then t, is already defined on pul .. u;+,, 

and, by the induction hypothesis, is an L-interpretation for 

P, '(s). Define t,+1 = c,. Since 

pul ... u, Ro pu1 ... ut+1 

we have: 

c,(pu1 ... u,) R t,(pu1 ... ui+1), 

and hence: 

c,+1(pu1 ... u+) R c;+1(pu1 ... ut+1) . 

The Parameter Condition holds since we have: P1 +1(s) _ 

P, (s), C'o 1(s) = C,,(s) and finally ti+l = c;. 

(b) pul u,+1 P,,(s). This situation cannot arise in the case 

of the non-idealisable K-logics: K and K4, since by definition, 

properly reducing a vo-type position cannot introduce any new 

prefixes. For the others, since they are idealisable, there is a 

w E G with t,(pul . u;) R w. Extend the interpretation to 

Po+1(s) by defining 

w, qr= pul ... ui+1 
c++l(ql) - tj(q') , q' E P,,(s) . 

We have to show that the extended mapping is indeed an 

interpretation. There can be no p' E P, (s) with put u;+1 Ro 

p'. (pul uj+1 would be an initial sequence of such a p', and 
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all such initial sequences are in P, (s). Hence pul ui+l E 

Pp (s) contradicting our assumption that pul ui+1 Po (s).) 

Suppose p' Ro pul u,+1 Then p' must be an initial sequence 

of pul u,+1. There are three possibilities depending on the 

form of the accessibility relation on prefixes for the logic (Ta- 

ble 6-2). 

i. p' = put u,. (General: D, D4, T, S4.) Since 

t,(pul ... u,) R w, 

t, agrees with L,+1 on Po (s) and w = Lj+l(pul . . ui+1), we 

have: 

L,+l(pul ... u,) R L,+1(pul ... ui+1). 

ii. p' = put . u,+1. (Reflexive: T, S4.) Notice that 

L,+1(pul ... u,+1) R L,+1(pul ... ui+1) 

since R is reflexive. 

iii. p' -< pu1 ... u,. (Transitive: D4, S4.) In this case we have 

p' Ro pu1.. ui, and hence Li+1(p') R Li+1(pul u,) since 

both p' and put u, are members of P, (s), and Li agrees 

with Li+l on PP(s). By construction, 

Lt+1(pui ... u,) R Li+l(pui ... 

Hence, by the transitivity of R we have 

L,+1(p) R L,+i (pul ... ui+1) 

as required. 

The Parameter Condition holds in the varying and cumulative 

domain cases by hypothesis, and since pul ui+1 PQ (s) 

(Lemma 6.21). 

This completes the inductive construction of to, < n. 

We have that 

Ln(pul ... ui) R Ln(pu1 0<i<n-1. 
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Recall that q = ui un For the non-transitive logics: K, D, T, 

n < 1, and hence 

tn(p) R tn(pq) 

For the transitive logics: K4, D4, S4, the transitivity of R gives 

us: 

tn(p) R tn(pq). 

The Parameter Condition also holds for s' under t' by construction. 

Hence s' is C-satisfiable under a. 

This finishes the treatment of the logics other than S5. For S5 the argument 

is simple. If p = a(pre(v)) and q = a(pre(vo)) then p,q E TM(/c) (i.e., p 

and q are positions). There are two possibilities depending on whether q is 

already in P,(s) or not. 

1. q E P,(s). Then t is defined on q. Since every point is accessible from 

every other point, we have 

t(p)Rt(q). 

The Parameter Condition holds by hypothesis. 

2. q ¢ P,(s). Choose w E G with t(p) R w, and extend i to P,(s') by 

defining: 
w, r=q 

1 c(r) , otherwise. 

Again, since every point is accessible from every other point, 

t(p) R L(q) , 

and the extended mapping is an S5-interpretation for P,(s'). The 

Parameter Condition holds for varying domains by hypothesis, and by 

Lemma 6.21. It holds for constant domains of course (Lemma 6.19). 

By hypothesis, 

t(p) jj- t(a(sform(v))) . 
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Since t(p) R t(q), we have 

t(q) 11- t(u(sform(vo))) 

by the model conditions (Corollary 4.1). Hence s' is S5-satisfiable under u. 

6.3.4 Summary. 

We are now in a position to prove the correctness of the matrix characterisations. 

THEOREM 6.32 (CORRECTNESS) A modal formula A is L-valid if there is a 

modal multiplicity µ, an L-admissible substitution u, and a set of er- complementary 

connections that spans the indexed formula (A, 0)'. 

PROOF. Suppose not. That is, suppose the multiplicity, substitution and 

spanning connection set exist, but A is not L-valid. Let Co denote the 

constants of A. Then there is an L-model, (G, R, D, D, II-), and an inter- 

pretation, t, in the model, and some w c- G with t(a) C- D(w), for every 

a C- Co, such that: 

w 11f t(A) 

(equivalently: w 11- t((A, 0))). 

For the root path so = {ko} (ko is the root position of the formula tree for 

(A, 0)) we have: 

S (so) = { ko }. 

P.o (so) = { ko }. 

C" (so) = Co. 

Extend the mapping t by putting: t(ko) = w. t is then an L-interpretation 

for P (so) and Co(so). Furthermore, since 

u(pre(ko)) = ko and u(sform(ko)) = (A, 0) 
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we have: 

c(ko) 11- a(sform(ko)), 

by construction. The root path is thus C-satisfiable under a. 

For the idealisable logics D, D4, T, S4, S5, we can reduce the root path 

to the set of atomic paths through (A, 0)' by a series of proper reductions 

(Proposition 6.14). For the non-idealisable logics K and K4, we can reduce 

the root path to the set of K-atomic paths through (A, 0)' by a series of 

proper reductions (Proposition 6.14). 

Since the root path is L-satisfiable under a, at least one of the atomic 

paths (K-atomic paths) through (A, 0)' is L-satisfiable under a, by Propo- 

sitions 6.23, 6.24, 6.26, 6.27, 6.30 and 6.31. 

But every atomic path contains a a-complementary connection, which con- 

tradicts Proposition 6.22; directly in the case of the idealisable logics, and 

with the use of Proposition 6.16 in the case of the non-idealisable logics. 

Hence, A is valid. 0 

6.4 Completeness. 

In this section we prove that the matrix characterisations of validity presented 

above are complete for the modal logics under consideration. Once again our 

methods follow the pattern of standard systematic proofs of completeness for 

analytic tableau and sequent-based proof systems. The systematic nature of the 

proof defines semi-decision procedures for the (first-order) logics. In the next 

chapter we outline more efficient methods of proof search based on the matrix 

characterisations. 

For the rest of this section we assume that A is a modal sentence and X the 

signed formula (A,0). Under these assumptions, the statement of completeness 

for the matrix characterisations is: 
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if A is L-valid, there is a multiplicity, it, for X, an L-admissible substitu- 

tion, a, for X" and a set of or-complementary connections that span Xµ. 

6.4.1 Overview. 

The idea behind the proofs is simple. We define a procedure guaranteed to 

construct a multiplicity, p, and an L-admissible substitution, or, such that either: 

(a) there exists an atomic path through X" which is L-satisfiable under or; or 

(b) every atomic path through X" contains a or-complementary connection. 

For any multiplicity and L-admissible substitution, the root position, ko, of the 

indexed formula is contained in the associated set of any path. Moreover, the 

polarity of ko is 0. Hence the first conclusion entails that the label of ko, i.e., A, 

cannot be L-valid. The L-validity of A then forces the second conclusion, and 

hence completeness. 

The two central issues are therefore: 

the nature of such a multiplicity and substitution; and 

the definition of the procedure itself. 

We deal with each issue, in that order, in the next two sections. 

6.4.2 L-Hintikka sets and L-Complete paths. 

First we define a basic L-satisfiable structure called an L-Hintikka set, compris- 

ing signed formulae and prefixes. 

Let (Go, Ro, Do, Do) be a first-order C-frame. Furthermore, suppose the set 

of constants Do is partitioned into sets: Do(p) for P E Go, such that Do is the 

union of all the Do(p). That is to say, 

Do= U Do (p). 
PEGO 
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Let Po C Go and Co C Do. A prefixed signed formula over Po and Co is a pair, 

p : Y, where p E Po and Y is a signed formula over Co. We say that a set, S, 

of prefixed signed formulae over Po and Co, is C-satisfiable just in case there is 

an C-model (G, R, D, D, II-), and an 2-interpretation, t, of Po and Co in the 

model, such that: for each p : Y E S, all the constants of t(Y) are in D(t(p)) 

and 

t(p) II- L(Y) . 

For a set, S, of prefixed signed formula over Po and Co, define Co(p), for p E Po, 

as follows: 

Co (p) 
df = Co n Do (p) 

That is, Co(p) is the set of constants of (the prefixed formulae of) S associated 

with the prefix p. We say that S is an C-I-Iintikka set (of prefixed signed formulae) 

just in case: 

0. There is no atomic formula B for which, for some p E Po, both 

p:(B,1)ES and p:(B,O)ES. 

1. p:aESimpliesp:alESand p:a2ES. 

2. p:,DESimplies p:i1ESor p:,32ES. 

3. p: 7 E S implies p: 7o(a) E S for all a such that: 

Constant domains: a E Co. 

Varying domains: a E Co(p). 

Cumulative domains: a E Co(q), for some q E Po with either (a) q = p, 

or (b) q Ro p. 

4. p:5ESimplies p: bo(a) ESforsome aECo(p). 

5. p : v E S implies q : vo E S, for all q E Po such that p Ro q, and, for the 

D-logics only: there is such a q. 
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6. p : lr E S implies q : gyro E S, for some q E Po such that p Ro q. 

The import of the notion of an C-Hintikka set is summarised by the following 

theorem, a version of which is proved in [Fit83]: 

THEOREM 6.33 (FITTING [FIT83]) Any C-Hintikka set over P0 and Co is 

C-satisfiable in a model (Po, Ro, Co, Co, JJ-), under the identity C-interpretation, 

where Co(p) C Co(p). 

REMARK. What we call C-Hintikka sets, Fitting calls C-downward saturated 

sets. We use the former for brevity. (END OF REMARK.) 

Next we define a property of a multiplicity and C-admissible substitution 

that extends this C-satisfiable structure to paths and positions. 

Let A be a multiplicity for X and or an C-admissible substitution for X. 
Recall that, for any path s, Ce(S) denotes the set of constants of the labels of the 

set of positions S (s), and Pa(s) denotes the set of prefixes of these positions. We 

define the set of constants associated with the prefix p E Pa(s), denoted Ca(s, p), 

as follows: 

C,,, (s, p) 
ae { v E C,,,(s) 

I a(pre (v)) = p } . 

An atomic path, s, through Xµ is said to be C-complete under a just in case: 

1. For all -yK E s with p = a(pre(-y" )) and for every v such that: 

Constant domains: v E Ca(s); 

Varying domains: v E C", (s, P); 

Cumulative domains: v E Ca(s, q), for some q E Pa(s) with either 

q = p, or (b) q Ro p; 

there exists a j, 0 < j < µ('yo), such that: 

('to") = v. 
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2. For all v" E s with p = a(pre(v" )) and for every q E Pa(s) with p R0 q, 

there exists a j, 0 < j < A(vo), such that: 

a(pre(voj)) = q. 

The conditions here for elements of r and V should be compared with the con- 

ditions required for prefixed signed formulae of -y-type and 1/ -type respectively 

in the definition of an L-Hintikka set. 

Let u be a multiplicity for X and o an L-admissible substitution for X L. 

Define the set of prefixed signed formulae, Pforms(s), as follows: 

Pforms(s) ar { p : Y (p = a(pre(u)) , Y = a(sform(u)) , u E S (s) } . 

Notice that Pforms(s) is a set of prefixed signed formulae over the set of prefixes: 

Pa(s), and the set of constants: Ca(s). Notice also that the prefixed signed 

formula: 

ko : (A, 0), 

is an element of Pforms(s), for every path s. We now have: 

LEMMA 6.34 Let s be a non-complementary atomic path through XP. If s is 

L-complete under a, Pforms(s) is an L-Hintikka set. 

PROOF. The correspondence between the definitions of L-complete and 

L-Hintikka set are obvious: Pa(s) = Po, Ca(s) = Co and Ca(s, p) = Co(p). 

First notice that the atomic clause (0) is satisfied by virtue of s being non- 

complementary. 

Secondly notice that the propositional clauses: (1) and (2), dealing with 

atomic, a and Q type formulae are satisfied by virtue of s being an atomic 

path. 

Next notice that the b and x clauses: (4) and (6), are satisfied, by the 

definition of labels in the first case, and the definition of prefixes in the 

second, together with the fact that s is an atomic path. (Note that the 
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condition that a E Co(p) is satisfied under the correspondence of C,(s, p) 

with Co(p) and the definition of the former. 

Finally, by the definition of paths, all 'y and v-type positions of S (s) are 

elements of s itself. (They are never "deleted," so to speak, by a path 

reduction.) Under the correspondence outlined above, conditions (3) and 

(5) for 'y and v-type prefixed signed formulae respectively are satisfied by 

the conditions stipulated for 'y and v-type positions in the definition of the 

L-completen ss of a path. 0 

Recall the definition of when a path s through Xµ is L-satisfiable under a 

from the previous section: we need an L-model, (G, R, D, D, 11->, and an L- 

interpretation, t, of Pa(s) and Ce(s) in the model such that: 

1. For each u E S (s), with p = a(pre(u)) and Y = a(sform(u)), all the 

constants of t(Y) are in D(t(p)) and: 

t(p) 11- t(Y) . 

2. For each v E Ca(s) with q = Q(pre(v)): 

q E PP(s) implies t(v) E D(t(q)). 

We now have the central proposition: 

PROPOSITION 6.35 Let s be a non-complementary atomic path through Xµ. If 
s is L-complete under a, it is L-satisfiable under a. 

PROOF. Immediate from Theorem 6.33 and Lemma 6.34. Note that the 

Paramater Condition is satisfied by the definition of Co (s, p), its correspon- 

dence with Co(p) in Lemma 6.34, and finally the particular model asserted 

to exist by Theorem 6.33. 

From this we deduce: 
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COROLLARY 6.36 For a modal formula A, if there exists an multiplicity, µ, 

an L-admissible substitution, a, and an atomic path, s, through (A, 0)µ which is 

L-complete under a, then A is not valid. 

PROOF. Under the hypotheses, the previous proposition tells us that the 

atomic path is L-satisfiable under a. This means there is an L-model, 

(G, R, D, D, 11-), and an L-interpetation, t, with the usual properties with 

respect to the positions of S (s). In particular, since ko E S (s) we have 

(by the first condition of L-satisfiability under a): all constants of A are in 

D(t(ko)) and 

t (ko) I I- t ((A, 0)) 

Since: 

ko is the prefix of ko. 

ko E l 0(a), i.e., it is constant under a. 

sform(ko) = (A, 0). 

A contains no "parameter" positions so sform(ko) is constant under a. 

Consequently, A is not valid. a 

This achieves our first goal, namely to capture the nature of a multiplicity µ 

and L-admissible substitution a that ensures that a non-complementary atomic 

path is C-satisfiable under a. In the next section we present a procedure that 

constructs such a pair (µ, a) for any non-valid modal sentence. 

6.4.3 The systematic procedure. 

In this section we define a procedure which, for a modal formula A, constructs 

a multiplicity, µ, and an L-admissible substitution, a, such that either: 

(a) there exists an atomic path through (A, 0)' which is L-complete under a; 

or 
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(b) every atomic path through (A, 0)' contains a a-complementary connection. 

By Corollary 6.36, the first option would entail that A is not valid. Therefore, 

if A is valid, the procedure must terminate with the second option. Hence 

completeness. 

Recall that the conditions on modal substitutions were: 

A. u e a(v) implies a(u) = U. 

B. Pu E P,S 4) implies pu = a(pre(u)). 

The conditions for C-admissibility were: 

1. a respects C-accessibility relations Ro, i.e., for all p, q E TM, 

p Ro q implies a(p) Ro a(q) 

2. (K-logics only) u - u' implies v C u for some a-related position v. 

3. <1 = (<< U CM U CQ)+ is irreflexive. 

4. The following condition holds for aM and aQ depending on the domain 

condition for the logic C: 

Constant domains: No condition. 

Varying domains: If aQ(u') = v', then a (pre(v')) = QM(pre(u')). 

Cumulative domains: If aQ (u') = v', then either: 

(a) QM(PTe(v')) = QM(pre(u')); or 

(b) a#r(pre(v')) Ro a#r(pTe(u')) 

In what follows, we refer to the four conditions for C-admissibility above as the 

"First," "Second," "Third" and "Fourth" conditions respectively. 

Let A(µ) denote the set of atomic paths through X. We construct induc- 

tively a sequence (µo, ao), (Al, a1), ... , (µn, an), ... of pairs of multiplicities and 

C-admissible mappings as follows: 
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Base. Define µo to be the constant zero function; i.e., for all u E 1/0, µo(u) = 0, 

and uo to be the identity function on TQ (µo) and TM(m) We claim first that ao 

is an L-admissible substitution. 

PROOF. Condition A clearly holds for the identity function. Condition B 

holds by the definition of prefixes. Consequently uo is a modal substitution. 

The identity function clearly satisfies the First condition. Since ro(,.0) = 
Vo(µo) = 0, -Q, CQ, "'M and CM, are the empty relations. Consequently 

the Second, Third and Fourth conditions are also satisfied. Hence uo is 

L-admissible. 

Induction. Having completed stage n, if there is a set of a-complementary 

connections that spans A(µn), stop. Likewise, if any non-complementary path in 

A(µ,) is L-complete under Qn, stop. (We note that the test for L-completeness 

under a substitution is effective.) 

Otherwise construct (µn+1, Qn+1) as follows: from the non-complementary 

atomic paths in A(µn) select a paths with smallest S(s). From s select the first 

(or leftmost) non-atomic position, say 1'. (Here we assume that the non-atomic 

positions of an atomic path are ordered in some uniform fashion.) Note that 1' is 

either of -y or v type, since these are the only non-atomic positions of an atomic 

path. Let p denote the image of the prefix of l" under Qn, and to the child of l 

in the unindexed formula tree. We deal with each case in turn. 

1. l" E r(µn). Then to E T. Let Q be the largest set defined according to 

the domain condition of L as follows: 

Constant domains: Q C C,(s); 

Varying domains: Q C C,(s, p); 

Cumulative domains: Q C UgGPo(s) Ca(s, q) such that either: (a) q = p, 

or (b) q Ro p; 

such that for all u E Q, there is no j, 1 G j < µn(10), with: 

a(lo= U. 
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There are two cases depending on whether Q is empty or not. 

(a) Q = 0. This case occurs if l" is "complete" already. Define µn+1 

and an+1 = an. an+1 is therefore L-admissible by hypothesis. 

(b) Q = {cl, c2, ... , c,n}, for 1 < m. Define µn+1 as follows: 

/Ln+l(v) _ 

Define Qn+l as follows: 

Qn+1(v) = 

/in(v)+m, v=10 

An(v), v 10. 

Cis v = to , i n(l0) C C /In+1(l0), i = . /fin 10 i 

Un(v), otherwise. 

We claim that Qn+1 is L-admissible. 

PROOF. the modal component of the substitution is unchanged. 

Hence the First, Second and Third conditions are satisfied. No- 

tice that the I0 'j are all new 'yo-type positions. Consequently, the 

reduction relation induced by the extended substitution remains 

irreflexive. The construction was arranged such that the Fourth 

condition holds. 0 

This completes the construction for a ry type position. 

2. 1" E L(µn). Let Q denote the set of prefixes q E Pa(s) with p Ro q and no 

j, 1 < j:5 1a (10), such that: 

K, K4, D, D4, T, S4: pr = q, where r = Qn(lo' 

S5: q = Qn(lpi). 

Again there are two cases depending on whether or not Q is empty: 

(a) Q = 0. For the logics other than the D-logics define 

/Ln+1 = An and 

Qn+1 is L-admissible by hypothesis. 

Qn+1 = Un- 
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For the D-logics define µ,,+l as follows: 

µn+1(v) = 
µn(v) + 1, v = 10 

µn(v), v 0 10. 

Let i = µn(lo) + 1. For the D-logics define Qn+l as follows: 

t. 
o , v - to 

Qn+l (v) = 
Un(v), v loi. 

We claim that the extended mapping Un+1 is an f,-admissible substi- 

tution. 

PROOF. First notice that lo' is completely new. Hence its prefix: 

plo i, is the only new prefix and Conditions A and B are satisfied 

by construction. It is easy to check that an+1 is L-admissible 

by virtue of the fact that is is new. (Note that accessibility on 

prefixes for all of the logics satisfies the general condition.) 

(b) Q 0 0. Suppose Q has m elements q1, q2, ... , qm, (1 < m). Define 

µn+1 as follows: 

µn(v) + m, v = uo 
µn+1 (v) 

An(v), v 0 uo. 

Suppose, without loss of generality that are elements of 

TM (µn) * such that: 

q;=pr 1<i<m. 

Define un+l as follows: 

ri, v = 10 , 
Qn+ l (v) 

µn(10) µn+1(10), Z = _µn(10) 

Un(v), otherwise. 

We have to show that an+1 is an L-admissible substitution. Qn+1 is a 

modal substitution since: 

A. lp' IPa(8)1, µn(10) :5 < µn+.1(10), and v e q, 1 < i < m, implies 

v E Since the condition held for Un, it holds for Qn+,. 

B. By construction and the fact that an was a modal substitution. 

Qn+1 is L-admissible since: 
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1. a,,+l respects L-accessibility relations by construction. 

2. (K-logics). v e r1, 1 < i < m implies v e tPP(s)l. Hence all such 

positions are a-related to the log. The existence of at least one 

is guaranteed by the L-admissibility of a,,. 

3. . remains irreflexive since the I0'', µR (lo) < j < µ.+1(lo) are 

completely new. 

4. The first-order substitution has not altered so the fourth condi- 

tion holds. 

We now mark l as the rightmost element of all the new atomic paths in A(µ,,+1) 

obtained by virtue of any increase in multiplicity. If no new paths result, 1" is 

marked as the rightmost element of s in A(tL,,+1). This completes the construc- 

tion. 

The procedure given above is a matrix-based analogue of the usual systematic 

construction of tableau or sequent proofs. We can now prove completeness. 

THEOREM 6.37 (COMPLETENESS) If A is an L-valid modal formula, there is 

a multiplicity µ, an L-admissible substitution a, and a set of a-complementary 

connections that spans (A,O)µ. 

PROOF. Perform the systematic construction given above. There are the 

following possibilities: 

1. The procedure terminates with a multiplicity p, L-admissible substi- 

tution a, and either 

(a) a set of a-complementary connections that span X"; or 

(b) a non-complementary atomic path through X"`, L-complete under 

a. 

2. The procedure fails to terminate and hence there is a path s E A(µ) 

for which S (s) is infinite. (This conclusion requires the familiar use of 

Konigs Lemma for infinite, finite branching trees.) By the systematic 

nature of the construction, s is L-complete under a. That is, we have 
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arranged things so that every atomic path is periodically considered 

(it becomes a smallest such path) and every position in it considered 

in turn (under our assumption that the elements of the paths have 

been ordered in some fashion). Each time a position is considered it 

is "completed." 

By Proposition 6.35, both (1b) and (2) are impossible, hence the result. 

6.5 Conclusions. 

In this chapter we have presented matrix-based characterisations of validity for 

the modal logics K, K4, D, D4, T, S4 and S5. Our methods extend to the first- 

order systems including constant, varying and cumulative domain variants. We 

have proved the correctness and completeness of these characterisations. 

The development was motivated by the proof-theoretic analysis of modal 

sequent calculi contained in the previous chapter, and the analysis of a matrix- 

based characterisation of validity for classical logic presented in the first part of 

the thesis. We identified a number of redundancies within the modal sequent 

calculi which we classified under the headings: 

notational redundancy, 

relevance, and 

order dependence. 

To overcome similar problems for classical logic, Bibel [Bib82a] and Andrews 

[And8l] used the notions of matrix, path and connection, developing a suitable 

notion of when two atomic formulae occurrences could be considered comple- 

mentary. They reduced checking the validity of a sentence of first-order classical 

logic to a process of path checking and complementarity tests performed by a 

unification algorithm. 
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The material of this chapter represents a comprehensive extension of these 

ideas to modal logics. As in the classical case, valid formulae are characterised 

by their syntactic structure. Indeed, so uniform is the extension that search 

strategies based on the classical characterisation are immediately applicable in 

the modal case. We have sucessfully reduced checking a modal formula for 

validity in a modal logic to a process of path checking and complementarity 

tests performed by a specialised unification algorithm reflecting the properties 

of the accessibility relation for that logic. 

In the next chapter we outline efficient proof systems based on the matrix 

characterisations, and discuss their use as decision procedures for the proposi- 

tional fragments of the logics. 
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Chapter 7 

Matrix-based proof search in modal 
logics. 

7.1 Introduction. 

In Chapter 5 we identified certain redundancies within the search space generated 

by the modal sequent calculi of Chapter 4. These redundancies were shown 

to render the sequent systems inefficient for automated proof search. In the 

previous chapter, inspired by our analysis of classical logic presented in Part I 

of this thesis, we developed matrix-based characterisations of validity for modal 

logics. In this chapter we investigate aspects of proof search based on the matrix 

characterisations, and demonstrate, amongst other things, that it is free of the 

aforementioned redundancies. 

An important aspect of matrix-based proof search in modal logic is the pro- 

posed use of specialised unification algorithms to determine the complementarity 

of pairs of atomic formula occurrences. In §7.2 we discuss the properties of these 

unification problems and show that they are tractable variants of common uni- 

fication problems under equational theories. Next, in §7.3, we present a series 

of examples designed to show that matrix-based proof search is free from the 

redundancies demonstrated to arise within sequent-based proof search. We also 

take the opportunity to illustrate some of the more subtle conditions placed on 
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L-admissible substitutions that reflect the properties of various logics. In §7.4, 

we show how the matrix characterisations can be used to formulate efficient 

decision procedures for the propositional fragments of modal logics. For sim- 

plicity, we concentrate on S5. Finally, in §7.5, we deal with two miscellaneous 

but important issues. The first concerns the use of the matrix characterisations 

to decide instances of the standard consequence relation for modal logics. The 

second concerns the extension of the characterisations to languages involving 

function symbols. 

7.2 Unification problems. 

In §7.3, we show that proof procedures based on the matrix characterisations 

do not suffer from the redundancies inherent in sequent-based search methods. 

In Chapter 8 we demonstrate the advantages of matrix-based proof search over 

other methods proposed in the literature for automated proof search in modal 

logics. In these analyses we suppose that the basic component of matrix-based 

proof search is the selection of potentially complementary connections and the 

elimination of atomic paths spanned by these connections. 

Recall that matrix characterisations of validity are couched in terms of the 

existence of L-admissible substitutions that render a spanning set of connections 

simultaneously complementary. A search procedure must therefore ensure that 

after the addition of a connection to the current (non-spanning) set, there exists 

an L-admissible substitution that makes all of the connections in the augmented 

set simultaneously complementary. We stress that the task is to ensure the 

existence of at least one such substitution, not to actually choose one. 

The assumption then, is that the operation of deciding whether or not such 

an L-admissible substitution exists after the addition of a new connection is a 

computationally tractable step. While the detailed development of individual 

proof procedures for modal logics based on the matrix characterisations is con- 

sidered beyond the scope of this thesis, in this section we justify the above view of 
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matrix-based proof search in modal logics, by showing that the complementarity 

tests are indeed computationally tractable. 

Our method is to show that the complementarity tests can be performed by 

refinements of standard unification algorithms. We do not persue an overly for- 

mal approach here, but merely seek to convince. In particular, we do not develop 

any unification algorithms specifically geared to the task at hand. The existence 

of more general algorithms in the literature is considered sufficient evidence that 

such specialised algorithms can be easily developed. In the last resort, one could 

simply apply these more general algorithms directly, then eliminate undesired 

substitutions. 

The structure of this section is as follows: we begin with an overview to 

isolate the problematic components of the complementarity test (§7.2.1). We 

then prove some general properties of L-admissible substitutions (§7.2.2), and 

proceed to treat each logic in turn thereafter. 

7.2.1 Overview. 

Let A be a modal formula and X the signed formula (A,0). At each step of the 

search, we assume that the proof procedure maintains: 

a multiplicity for X; 

a set of connections U in X'`; 

a set of substitutions, denoted Mgu(U), for elements of ro(µ) and 14o(µ), 

and 

an indication of the state of the basic atomic path checking search. 

We require Mgu(U) to have the following properties: 

1. Correctness. Every o E Mgu(U) is an L-admissible substitution under 

which the elements of U are simultaneously a-complementary. 

222 



2. Completeness. Every L-admissible substitution under which the elements 

of U are simultaneously or- complementary is an instance of some substitu- 

tion of Mgu(U). 

3. Minimality. No substitution in Mgu(U) is an instance of another distinct 

element of Mgu(U). 

These conditions are precisely those defining the notion of a set of most general 

unifiers in the usual sense (see, for example, [P1o72,Sie84]). 

Recall that, roughly speaking, an L-admissible substitution or renders a con- 

nection or-complementary if it identifies the labels and prefixes of the atomic 

positions. Recall also that such substitutions comprise two components: 

a first-order substitution, GQ, that identifies the labels of the positions, and 

a modal substitution, GM, that identifies the prefixes of the positions. 

(In the case of the varying and cumulative domain variants of the logics there 

are interactions between these components, but only in the sense that aQ may 

require prefixes other than those of the positions of the connection to be identified 

under GM.) 

The calculation of a most general first-order substitution for the current set 

of connections poses no problem since we can employ Robinson's unification al- 

gorithm [Rob65] directly (or more efficient refinements of it). If any C -admissible 

first-order substitutions exist at all for a given set of connections, there is a sin- 

gle most general one satisfying the conditions of correctness, completeness and 

minimality. 

We can therefore structure Mgu(U) into two parts: MguQ(U) and MguM(U). 

MguQ(U) comprises a single most general first-order substitution for the labels of 

the connections in U. MguM(U) comprises a set of (independent) most general 

modal substitutions for U. Each element of MguM(U) together with the sole 

element of MguQ(U) forms an L-admissible (combined) substitution. 
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The test of L-admissibility for a combined substitution, comprises two major 

components: 

the calculation of the reduction ordering i and a test of its irreflexivity, 

and 

checking that the modal substitution respects the L-accessibility relation 

on prefixes. 

We remarked earlier that the irreflexivity test can be seen as a test of the acyclic- 

ity of a directed graph. Efficient algorithms for such operations are well known. 

The second test concerns only the modal substitution. We do not propose to 

generate modal substitutions and then test that they respect the L-accessibility 

relation for the particular logic of interest. Rather, we suggest the use of spe- 

cialised unification algorithms that only compute most general modal substitu- 

tions that satisfy this constraint. The constraint is effectively "built-in." 

To summarise: we have argued that the only potentially problematic part 

of the complementarity test is the calculation of most general modal substitu- 

tions that respect the L-accessibility relation for a given logic. In the following 

sections we argue that these calculations can be perfomed, respecting the con- 

straints of correctness, completeness and minimality, by modifications of stan- 

dard equational unification algorithms. We begin by noting some properties of 

L-admissible modal substitutions in general. 

7.2.2 L-Admissible substitutions. 

The existence of an L-admissible substitution is an indication of the existence of a 

reduction order of the quantifiers and modal operators in the formula via sequent 

rules (when such calculi exist). We expect there to be only a finite number of 

correct reduction orders (derivations) for a given multiplicity. Consequently, we 

expect there to be only a finite number of distinct L-admissible substitutions for 

a given multiplicity. We show that this is indeed the case. 
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Let A be a modal formula, X the signed modal formula (A, p), µ be a mul- 

tiplicity for X and or an L-admissible substitution for X. 

FACT 7.1 TM(p) is finite. 

Let p be a prefix of the indexed formula tree for Xµ. 

FACT 7.2 Foralluea(p),uETM(p). 

LEMMA 7.3 a(p) glug2ug3 for any u E TM(p), and q; E TM(p)*, i = 1,2,3. 

PROOF. Suppose not. That is, suppose v(p) = glug2uq3. By Condition B 

on modal substitutions, we must have: 

qiu = v(pre(u)) = giug2u, 

which is absurd. R 

The above results indicate that there are a finite number of L-admissible sub- 

stitutions for a given multiplicity. 

PROPOSITION 7.4 The number of L-admissible substitutions for X" is finite. 

PROOF. The subset of TM(p)* comprising prefixes without repetitions is 

finite since TM(p) itself is finite. 

7.2.3 The calculation of MguM(U). 

In this subsection we consider the calculation of MguM(U) for each modal logic 

in turn. In what follows, if p E TM(µ)*, we use len(p) to denote the length of p 

(as a string). 
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7.2.3.1 K and D. 

These logics, together with S5, are the simplest. The accessibility relation on 

prefixes for these logics is as follows (see Chapter 6): 

pRoq if q=pu 

for u E TM(/2) and p, q E TM(µ)*. 

PROPOSITION 7.5 If a is a K or D-admissible substitution, for all p E TM(A)*, 

len(a(p)) = len(p) . 

PROOF. Obvious. If this were not the case the substitution would not 

respect the accessibility relation. 0 

Consequently, if we treat prefixes as strings of variables and constants, the stan- 

dard unification algorithm suffices to compute most general substitutions that 

respect the K and D-accessibility relations. That is, variables are not considered 

string variables, and may only be instantiated to elements of TM(µ). 

We conclude that for these logics, the set MguM(U) for a given set of con- 

nections in Xµ is a singleton set. Therefore Mgu(U) is a singleton set and the 

standard unification algorithm suffices for its calculation. 

7.2.3.2 T. 

The accessibility relation on prefixes for this logic is as follows (see Chapter 6): 

pRoq if q=pu 

for some u E TM(p) U {0}. That is, Ro is reflexive. The appropriate length result 

for this logic is: 

PROPOSITION 7.6 If a is a T-admissible substitution, for all p E TM(A)*, 

len(o (p)) < len(p). 
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If we treat prefixes as strings of variables and constants, once again the standard 

unification algorithm suffices to compute most general substitutions that respect 

T-accessibility relations, provided we allow variables to "collapse" in the sense 

that they may be instantiated to the empty string/prefix. If instead of strings 

we introduce an explicit binary function symbol * (i.e., a prefix is a structure: 

ul * (u2 * ( , u )) . . .)) then this unification problem can be shown to be an 

instance of unification under an assumption that * is idempotent. That is, 

equational unification ([Sie84]) under the theory: 

For such unification problems, the set of most general unifers is finite, but not 

necessary a singleton [Sie84]. General algorithms are given in [Sie82]. 

We conclude that for T, Mgu(U) is not necessarily a singleton set but that 

algorithms exist for its calculation. 

7.2.3.3 K4 and D4. 

The accessibility relation on prefixes for these logics is as follows (see Chapter 6): 

pRoq if p--<q 

for p, q E TM(A) *. 

PROPOSITION 7.7 If u is a K4 or D4-admissible substitution, for all p E TM(p)*, 

len(a(p)) > len(p) . 

Treating prefixes as strings once again, we must now consider the variables as true 

string variables that may be instantiated to non-empty strings only. Unification 

algorithms exist for general string unification, eg., [P1o72,Sie75], but the set 

of most general unifiers of two strings p and q can be infinite [Sie84]. This 

situation arises because of the ability to repeat substrings and generate unifiers 

under which the image of p is of arbitrary length. The repetition constraint 
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(Lemma 7.3) restricts the full generality of the string unification. The set of 

most general unifiers is again finite but not necessarily a singleton set. 

We conclude that for K4 and D4, MguM(U) is finite. 

7.2.3.4 S4. 

The accessibility relation on prefixes for S4 is as follows (see Chapter 6): 

pRoq iff p--<q 

for p,q E TM(µ)*. There is no length condition on the result of an S4-admissible 

substitution; it can be either longer or shorter. Once again, restricted string 

unification is the appropriate computational tool for computing most general 

unifiers of prefixes and hence most general S4-admissible substitutions. This 

time we admit the empty string as a valid instantiation of a variable. 

The situation is reminiscent of unification under associativity and idempo- 

tence. Algorithms for this more general problem exist in the literature (eg., 

[Sie82]). 

We conclude once again that Mgu(U) is not necessarily a singleton set but 

that algorithms exist for its calculation. 

7.2.3.5 S5. 

The unification algorithm for computing most general modal substitutions for 

this logic is even more straightforward. The accessibility relation on prefixes for 

S5 is as follows (see Chapter 6): 

u Ro v if u, v E TM(tc). 

That is, every unit prefix is accessible from every other. A similar length result 

holds for this logic as for K and D. 

PROPOSITION 7.8 If or is an S5-admissible substitution, for all u E TM(I,c), 

len(a(u)) = len(u) . 
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Prefixes are simply variables or constants. The standard unification algorithm 

suffices to compute most general substitutions that respect the S5-accessibility 

relation. 

We conclude that for S5, MguM(U), and hence Mgu(U) is a singleton set. 

the standard unification algorithm suffices for its calculation. 

7.2.4 Summary. 

To summarise: we have argued that the only problematic component of the 

complementarity test in a modal logic is the calculation of most general modal 

substitutions that respect the L-accessibility relation on prefixes for the logic. 

We have argued that in all cases this problem is a restriction of a more general 

problem for which suitable unification algorithms exist. In the case of K, D and 

S5, the standard unification algorithm suffices. If it exists, there is a unique 

most general (combined) L-admissible substitution for a set of connections. For 

T, unification under an assumption of idempotency is suitable. There are a fi- 

nite number of most general, T-admissible (combined) substitutions for a set 

of connections (when any exists at all). For the transitive logics K4, D4 and 

S4 associative, or string unification of prefixes is suitable. The general string 

unification problem may admit an infinite number of independent most general 

unifiers, but this only arises due to repetition. Since any such repetative sub- 

stitution cannot be L-admissible (Lemma 7.3) there are a finite number of most 

general, L-admissible (combined) substitutions for a set of connections (when 

any exists at all). Modifying the string unification algorithm to eliminate sub- 

stitutions inducing repetition is straightforward [Sie75]. 
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7.3 Proof search in the matrix systems. 

The matrix-based characterisations of validity presented in the previous chap- 

ter can be used to liberate validity checking in modal logics from the direct 

construction of a sequent proof tree. Instead, the validity of a sentence can be 

determined by showing that all the atomic paths through (an expansion) of the 

sentence viewed as a nested, two dimensional matrix, contain complementary 

connections. In the previous section we justified this view of matrix-based proof 

search by arguing that testing connections for complementarity is computation- 

ally tractable. The path checking task can be performed by first identifying a 

complementary connection within the sentence, and then eliminating from future 

consideration all atomic paths in which the connection appears as a subpath. If 

all the atomic paths through the sentence can be eliminated in this manner, it 

is valid. The basic search is confined to the decision as to which connections 

to make in the first place (cf.Part I). In this section we demonstrate that such 

matrix-based proof search is free from the redundancies demonstrated to arise 

in sequent-based proof search. In the next chapter we compare matrix-based 

proof search with the main resolution-based proposals in the literature for use 

with modal logics. Our conclusions are that the matrix characterisations devel- 

oped above provide less redundant bases for automated proof search than these 

systems. 

The redundancies identified with sequent-based search were classified under 

the following three headings: 

notational redundancy, 

relevance, and 

order dependence. 

The reader is referred to Chapter 5 for a detailed discussion of these problems. 

We deal with each in turn. 
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7.3.1 Structure sharing and notational redundancy. 

We noted in Chapter 5 that testing a modal formula for validity using a se- 

quent/tableau calculus requires the construction of a proof tree/tableau for the 

appropriate endsequent. The search space is an OR-tree of possible derivations 

(partial proofs). Consequently, the use of any search strategy, except perhaps 

an incomplete depth-first search, requires the simultaneous storage of multiple 

derivations. Since a derivation itself is a tree consisting of many formulae, the 

space required to store such constructs can quickly become prohibitive. 

A similar problem arises in resolution-based systems due to the number of 

resolvents that need to be stored during the use of standard resolution proof 

procedures. Boyer and Moore [BM72] devised a data-storage scheme which they 

termed structure-sharing. Descendants of this data-storage scheme are now stan- 

dard components of resolution-based theorem proving systems. We shall not go 

into details of the structure-sharing technique since we discussed it in Part I. 

The basic idea is that new resolvents are not stored explicitly, but as a skeleton 

(consisting of pointers to the original set of clauses) together with a context 

marker that identifies the appropriate instantiations of the skeletal variables. In 

this way only the information necessary to construct the resolvent is retained, 

rather than the resolvent itself. Common structure is effectively shared between 

the intermediate constructs (in the case of resolution: clauses) manipulated by 

the proof procedure and the original set of clauses. 

We showed in Part I that the formulation of such a technique relies, in essence, 

on the fact that classical logic admits (complete) proof systems that possess the 

subformula property: i.e., any intermediate structure required in the proof of a 

formula within the proof system can be expressed entirely in terms of the sub- 

formulae of the original formula. The use of the notions of formula tree, position 

and polarity in the (theoretical) formulation of the matrix characterisation of 

validity for classical logic, were shown to directly support the implementation of 

matrix-based proof procedures that utilise structure-sharing methods. In short, 

positions can be interpreted as pointers to a single concrete representation of 
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the formula being tested for validity stored in a database. Each derivation, an 

intermediate state of the sequent search space, can be represented by pointers to 

the endsequent together with contextual information about the instantiations of 

free individual variables, instead of by explicit copies of formulae. Consequently, 

intermediate states in the matrix-based search space consist only of a collection 

of sets of pointers and context information, that allows the reconstruction of the 

leaves of derivations. The saving in space is considerable. The reader is referred 

to the arguments of Part I for more detail. 

We noted in Chapter 5 that the modal sequent calculi also possess the sub- 

formula property. Consequently we adopted a similar method (also based on 

formula trees, positions and polarity) of capturing the applicability of structure- 

sharing in theorem provers based on the matrix characterisations of Chapter 6. 

Since the details are the same as the classical case we omit them here and refer 

the reader to the discussion of Part I. A structure-sharing scheme was used in this 

way in the implementation of a matrix-based theorem-prover for S5 [WW87). 

7.3.2 Search strategies and relevance. 

The problem that we have termed "relevance" within sequent-based proof search 

is basically a problem with the propositional fragment of the logics under consid- 

eration. Derivations are proofs just when their leaves are instances of the basic 

sequent; i.e., contain a pair of propositionally complementary atomic formulae. 

The task of constructing proofs, as opposed to simply derivations, requires de- 

cisions as to which S-formulae to reduce to obtain such a pair in the resulting 
and 

sequent. In Chapters 2, 5 we showed that connective driven search, typical of 

sequent-based proof systems, leads to larger search spaces than is strictly neces- 

sary since reductions are considered which cannot contribute to the construction 

of a basic sequent, and hence a proof. The switch to connection driven search 

overcomes these problems. The crucial point is that the connection search space 

is formulated in terms of the potential basic sequents that can be formed given 

the propositional structure of the formula we are trying to prove. The latter 
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structure is captured by the matrix representation of the formula; a represen- 

tation that defines the set of atomic paths through the formula, and hence the 

potential leaves of a proof. 

Since we rehearsed these arguments in detail in Part I we shall not repeat 

them here. Bibel [Bib82b,Bib82a] shows how some of the standard resolution 

search strategies can be utilised for this process. His results carry over to our 

modal systems without change. In addition, Bibel and his coworkers [Bib77, 

HB82,Bib82b] have investigated methods of improving the basic propositional 

component of matrix-based proof search. Their results transfer to the modal 

case without change since the propositional structure is the same. 

7.3.3 Order dependence. 

In the previous two subsections we briefly indicated how proof procedures based 

on the matrix ideas of Chapter 6 can be formulated so as not to suffer from the 

notational and relevance redundancies that plague sequent-based proof systems. 

The arguments were brief because the same structures had been used in Part I to 

overcome similar problems arising within classical logic. Due to the interactions 

of the rules for modalities and quantifiers, different reduction orders for the same 

set of modal operators and quantifiers will, in general, lead to essentially different 

derivations. Indeed, such derivations differ to the extent that it may be possible 

to construct a proof of the endsequent by extending one such derivation, but not 

from another. We have called this problem one of rule "order dependence." In 

the context of modal logic, this problem is perhaps the most important one to 

solve. We shall see in Chapter 8 that it is precisely this problem that most of 

the other proof systems for modal logics, based on resolution, and suggested as 

appropriate for automated proof search, fail to solve. 

In this subsection we demonstrate how the matrix ideas of the previous chap- 

ter do overcome such problems. That is, we demonstrate that matrix-based proof 

search does not suffer from the redundancies associated with rule order depen- 

233 



dence. We do this by means of a series of examples designed to show the following 

features of matrix-based proof-search: 

1. The first example shows how the (sequent-based) problem of choosing an 

appropriate reduction order for quantifiers and modal operators is over- 

come. The set of appropriate orders is calculated by unification rather 

than explored by search. The import of this fact is that the matrix-based 

search space is properly contained in the sequent-based search space. 

2. A given order of reduction, appropriate at one point in the search, can be 

rendered inappropriate by a subsequent construction. If, as in sequent- 

based search, we are required to choose an explicit order in the first place, 

our choice may require subsequent revision. The second example shows 

how matrix-based search removes the need for such revision by avoiding 

overcommitment. 

3. The third example demonstrates how extra copies of -y and v-type formu- 

lae are considered by need in matrix-based search, rather than arbitrarily 

as is the case in sequent-based search. The theoretical treatment of the 

duplication of subformulae provided by the matrix characterisations also 

supports the formulation of efficient decision procedures for the proposi- 

tional fragments of the modal logics. We explore this feature further in 

§7.4. 

4. The matrix characterisations distinguish the K-logics from the D-logics 

only in the extra condition placed on the modal substitution in the defi- 

nition of, say, K-admissibility. The fourth example illustrates the role of 

this restriction. 

EXAMPLE. The first example is an instance of the converse Barcan formula: 

bxPx = bxLIPx, 

and is designed to show how the problem of choosing a reduction order for 

quantifiers and modal operators to obtain a proof is overcome using the matrix 
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`dxPx = dx Px a0 

`dxPx dx Px a1 a4 

1 1 1 1 

dxPx Px a2 a5 

1 1 

Px Px 

u pol(u) lab(u) pre(u) preS5(u) Ptype(u) Stype(u) 

ao 0 VxPx = Vx Px a0 a0 a 7ro 

al 1 `dxPx ao ao v al 
a2 1 `dxPx aoa2 a2 7 vo 

ail 1 Pall aoa2 a2 - 70 

a4 0 dx Px ao a0 S a2 

a5 0 Pa5 a0 ao 7r so 

a6 0 Pa5 aoa6 a6 - 7r0 

Figure 7-1: Indexed formula tree for: ( dxPx = dx Px, 0) . 

characterisations. An indexed formula tree for this formula (signed 0), with 

(constant) multiplicity 1, is shown in Figure 7-1. 

There are six derivations within the sequent system of, say, S4, that differ in 

the order in which the modal operators and quantifiers are reduced, causing the 

introduction of their immediate subformulae into the derivation. The possible 

orders of introduction for these immediate subformulae are: 

111 1-11 a2 a3 a5a6 a5a2a3 a6 

1 11 1 ll a2asQ3 a6 asQ2a6a3 

1 11 1-11 a2asa6a3 a5a6Q2a3 . 

Notice that since VxPx is a subformula of VxPx, a2 must always be introduced 

before a3. Similarly for the pair a5 and a6. 
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A sequent-based proof system would be required to choose from amongst this 

collection. For S4, only one of these reduction orders can lead to a proof with 

the current multiplicity. The successful order is: 

a a al all 5 6 2 3 

giving the following S4-proof: 

PbPb 
VxPx --> Pb 
VxPx -+ Pb 

EiVxPx --> EiPb 
pVxPx -+ VxpPx 

) pdxPx Vx f Px 

All such considerations are overcome using the matrix characterisations. 

There is no search in this case since there is only one atomic path and one 

possible connection, namely: {a3', a6}. The prefixes and labels of this connec- 

tion are identified by the following (most general) combined substitution: 

QM (a2) - a6 

11 
QQ (a3 = a5. 

It is easy to check that this mapping is a modal substitution. Condition A 

holds trivially, since for no vo-type positions u and v do we have am(U) = v. 

Condition B holds since pre(a2) = aoa2 and pre(a6) = aoa6, hence QM(pre(a2)) = 

QM(pre(as)) 

As for L-admissibility, the substitution respects all accessibility relations 

since only a unit sequence (a6) is substituted for a variable. The reduction 

ordering (as a directed graph) for this substitution is: 

ao 

al a4 

I 1. 
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which is acyclic. Notice that the graph represents the fact that a6 must be 

introduced before a2, and hence, given the pairwise restrictions on a2, as and 

as, a6, the only order of introduction of the six subformulae that leads to a proof 

is: 

a5a64Ia11. 

The extra condition for K-logics is easily shown to be satisfied. 

This argument shows that the substitution is admissible in the logics K, K4, 

D, D4, T, S4. Since there is only one path through the formula the connection 

spans the formula. (Note that for the K-logics the condition on complementarity 

is satisfied since all positions of the formula tree are in the set associated with the 

atomic path.) The sentence is therefore valid in the constant domain variants of 

these logics. 

The first-order substitution has: 

11 
QQ (a3 = as 

where as1 is of vo-type and as is of iro-type. Furthermore, 

aM (pre (a31) ) 

CM(pTe(a5)) 

aoa6 

ao, 

and so 

UM(pre(as)) Ro QM(pTe(a31)) 

in the logics K, K4, D, D4, T, S4. This argument shows that the sentence is also 

valid in the cumulative domain variants of these logics. 

The connection is not complementary in the varying domain systems, since: 

aM(pre(a31)) = aoa6 ao = CM(pre(as)) 

The non-complementarity of the atomic path for varying domains immediately 

gives us a two-point model, and a point in that model at which the formula 

fails to be forced. The general construction is as follows: we have two points, 
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ao and aoa6, with the latter accessible from the former. If u is a position with 

pre(u) = p, then put: 

J p II- lab(u) , if pol(u) = 1 

1 p IIf lab(u) , if pol(u) = 0. 

If u is a position of -yo or So type, with pre(u) = p put: 

u E D(p) . 

For the current example, these constructions produce: 

w 

Notice that aoa6 

ao 

aoa6 

11- 

D (w) {AI w II-A} 
VxPx 

VxPx, Pal' 

{AIwJIfAl 
VxPx, Pa5 

Pas 

VxPx and aoa6 11-/ Pas. This is consistent because 

D (aoa6). Notice also, that 

ao IIf VxPx = VxPx 

a5 V 

since ao II- VxPx and ao 11 -/ Vx Px. The reader can easily check that the 

above structure can be extended to an S4-model and hence is a falsifying model 

for all the other logics in their varying domain formulation except S5. (But it 

can be extended to one for S5 as well - see below.) 

For S5, the most general combined substitution that identifies the prefixes 

and labels of the connection is: 

UM (a2) - a6 

UQ (a11) = a5 

i.e., identical to the combined substitution for the other logics. The reduction 

ordering is therefore acyclic and the sentence valid in constant domain S5. Since: 

UM(pre (d") ) = a6 ao = am(pre (a5)) , 

the connection is not complementary in varying domain S5. The reader can 

easily check that the partial model given before can be extended to a falsifying, 

varying domain S5-model. 
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Notice how the sequent search amongst a large number of competing deriva- 

tions is replaced by the deterministic use of unification and connections. The 

only choices that remain are: which connections to make, and what multiplicity 

to accept. The undecidability of the validity problem for the first order logics 

can be expressed in terms of the fact that we cannot determine in advance a 

maximum multiplicity within which we should restrict our search. See §7.4 for 

more details. (END OF EXAMPLE.) 

EXAMPLE. The second example is the sentence: 

P A (P = Q) = Q. 

This example is included to show how determining an appropriate order of re- 

duction for modal operators (and quantifiers) cannot be done with regard to one 

connection in isolation. The decision is a global one to which each connection 

contributes. Within sequent-based search we are forced to choose an explicit 

order without knowing whether our particular choice will remain appropriate in 

the light of future constructions. In matrix-based search we postpone the choice. 

At each stage of the search enough information is maintained to check whether 

or not there is at least one correct derivation with the current set of connections 

at its leaves. The approriate condition is, of course, the irreflexivity of the re- 

duction relation <. The indexed formula tree, with (constant) multiplicity 1, is 

shown in Figure 7-2. 

A T-derivation of this sentence is show below: 

> Q 
P -P,QP,Q --* Q 

P,P=Q ---> Q 
P, (P = Q) --* Q 

P, (P = Q) -* Q PA(P=Q)-*Q 
-* PA(P=Q)=Q 

There are six orders in which we can reduce the three distinct modal operators 

239 



OP A0(P=Q) 0Q ao 

O P n 0 (P = Q) O Q al as 

P 0 (P Q) Q a2 a4 a9 

1 1 1 1 

P P Q 3 5 

al 1 a7 

u pol(u) lab(u) pre(u) press(u) Ptype(u) Stype(u) 

a0 0 0 P A 0 (P = Q) = 0 Q a0 ao a 7ro 

al 1 0 P A 0 (P = Q) a0 ao a al 
a2 1 0 P ao ao v al 
a3 1 P aoa3 a3 - v0 

a4 1 0 (P = Q) a0 a0 v a2 

a5 1 P = Q aoa5 5 Q vo 

a6 0 P aoa5 a5 - QS 

a7 1 Q aoa5 a5 - 02 

as 0 O Q a0 ao 7r cx2 

ag 0 Q a0ag ag - 7ro 

Figure 7-2: Indexed formula tree for: ( P A 0 (P = Q) = 0 Q, 0). 
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in the sentence and so introduce their immediate subformulae: 

1-1 1-1 a3a5ag a5a3ag 

1-1 1-1 aga3a5 aga5a3 

1 1 1 1 a5 aga3 a3aga5. 

The derivation above corresponds to the order: 

1-1 (L3a5a9. 

Notice that this order does not lead to a proof since one of the leaves of the 

derivation is not an instance of the basic sequent and there is no prospect of 

making it so (it contains only one atomic formula). So much for sequent-based 

search. 

There are two atomic paths through the sentence with this multiplicity, and 

two possible connections within them. Consider the connection {a3, a6}. The 

most general modal substitution necessary to identify the prefixes of this con- 

nection is: 

am (a') = a' 

(Since the sentence is propositional, there is no need to consider a first-order 

substitution to identify the labels of the positions forming the connection; the 

labels are propositionally complementary by definition.) 

The reduction ordering induced by this substitution is simply the tree or- 

dering itself since the substitution only associates two "variables." The tree is 

obviously acyclic (as a directed graph). So far so good. This connection rep- 

resents the left-hand leaf of the sequent derivation given above. The reduction 

order of that derivation: a3a5ag is compatible with this connection since it is 

compatible with the formula tree. 

The connection {a3, a6} spans only one of the atomic paths through the 

formula. The second is spanned by the other connection: {a7, ag}. The most 

general modal substitution that identifies the prefixes of both connections is: 

am (a3) 

aM(a5) 

ag 

ag. 
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The reduction ordering induced by this substitution is: 

ao 

al a8 

a3 a5 

l\ 
i i a6 a7 

which, once again, is acyclic. Notice that the reduction order we chose before, 

while appropriate for the first connection is inappropriate for the two connections 

in unison. (a9 must be introduced before both a3 and a5.) A correct reduction 

order is therefore ao, a8, a9, a'. Following this advice, we can construct a T-proof 

of the sentence: 

P -- P, Q P, Q ---> Q 
P, P = Q ---4 Q 

P, (P=Q) - Q 
PA(P=Q) --> Q 

PA(P=Q)=Q 
(END OF EXAMPLE.) 

EXAMPLE. Our third example is the sentence: 

VxPx 3y(Py A Py). 

This example is designed to show how extra copies of -y and v-type formulae are 

considered by need in matrix-based search, rather than arbitrarily as is the case 

in sequent-based search. The indexed formula tree, with (constant) multiplicity 

1, is shown in Figure 7-3. 
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O ̀ dxPx 3y(Py n 0 Py) ao 

0 ̀ dxPx 3y(Py A 0 Py) al a4 

`dxPx Py A 0 Py 2 5 

Px P 0 Py all al al y 3 6 7 

1 I 
Py al s 

u pol(u) lab(u) pre(u) pres5(u) Ptype(u) Stype(u) 

ao 0 0`dxPx = 3y(Py n 0 Py) ao ao cx 7ro 

a1 1 0 ̀ dxPx ao ao v cxl 

a2 1 `dxPx a0a2 2 vo 

a31 
1 Pa31 a0a2 a2 - 70 

a4 0 3y(Py n 0 Py) ao ao 7 a2 

a1 0 Pas A 0 Pas ao ao 18 70 

a6 0 Pal ao ao - Q1 

a2 0 0 Pal ao ao 7r 82 

al 8 0 - Pal 5 
anal 8 a1 pro 

Figure 7-3: Indexed formula tree for: (0VxPx 3y(Py A 0 Py), 0). 
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Two S4-derivations of this formula are shown below: 

--* Pb 
Pb -* Pb Pb -* Pb 

Pb --+ Pb A Pb 
Pb -- 3y(Py A Py) 

VxPx - 3y(Py A Py) 
VxPx - 3y(Py A Py) 
-* VXPX 3y(Py A Py) 

Pb - Pb 
VxPx - Pb 
VxPx -* Pb 

VxPx, Pb -* Pb VxPx, Pb - + Pb 
VxPx, Pb --> Pb A Pb 

VxPx, Pb -4 3y(Py A Py) 
VxPx, VxPx --* ]y(Py A Py) 

VxPx - ) 3y(Py A Py) 
-- p VXPX 3y(Py A Py) 

The second is a proof. Notice how we are unable to close one of the leaves 

in the first derivation, while in the second this problem is overcome by retaining 

a "copy" of the antecedent formula VxPx. This latter operation reflects the 

fact that we are working with sets of formulae. In general, within sequent-based 

search, we must be prepared to "copy" each formula of v and -y type each time 

we generate an instance of its immediate subformula. In the proof we have only 

duplicated exactly that formula needed to close the leaf. In practice, many extra 

formulae must be retained in derivations so as to ensure completeness. 

In matrix-based search the duplication of such formulae is governed by the re- 

quirements of connections. In other words, duplication is demand-driven. There 

are two atomic paths through the formula with this multiplicity. Likewise, there 

are two possible connections in the indexed formula of Figure 7-3 which together 

span it: {a31, a6} and {a3', a$}. Consider the first connection. The most gen- 

eral combined substitution necessary to identify the prefixes and labels of this 

connection is: 

0 

al. 
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ao 

a1 a4 

1 2 1 a2 a2 a5 

11 21 1 1 a3 a3 a6 a7 

i 
a1 s 

U pol(u) lab(u) pre(u) preS5 (u) Ptype(u) Stype(u) 

a2 

a31 

1 

1 

VxPx 

Pa31 

a0(L2 

a0(L2 

a2 

a2 - 
v0 

'Y0 

Figure 7-4: Indexed formula tree with µ(a2) = 2. 

The reduction ordering induced by this substitution is simply the formula tree 

itself since the substitution only identifies variables. 

Now consider the other connection {a31, a8}. Under the current modal sub- 

stitution we have: 

uM (pre (a31)) = ao a0a8 = uM (pre (as)) , 

hence the two connections cannot be made simultaneously complementary. This 

reflects the situation in the derivation 7.1 above. Since the failure to identify 

the prefixes is due to the modal substitution for a2, we increase the multiplicity 

of the lowest vo-type position dominating, or equal to a2. This is a2 itself. The 

new (indexed) formula tree for this multiplicity together with the information 

for the extra positions is shown in Figure 7-4. 

Consider the connection {a2, a8}. Under the current modal substitution we 
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have: 

um (pre (a')) 

um (pre (a')) 

z a0a2 

1 a0ag. 

The increase in multiplicity provides the necessary flexibility. These prefixes can 

be identified by extending the combined substitution with: 

°M( a2) - as 

= a1, 

The reduction ordering remains acyclic: 

ao 

a1 a4 

i\ 
1 2 1 

a2 a2 N 

11 21 " 1 1 all 
CL3 a6 a7 

The formula is therefore valid in the constant domain variants of the logics 

K, K4, D, D4, T, S4. Since 

QM (pre (a31)) = ao 

aM(pre (a31)) = a0ag 

aM(pre (as)) = a0 
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the connections are also complementary in the cumulative domain variants, but 

not in the varying domain systems. 

Notice how the increase in multiplicity was driven by the choice of connection. 

In sequent-based search, to retain completeness we must always perform such 

duplications. This increases the number of S-formulae that are candidates for 

reduction at any given stage and hence introduces redundant states in the search 

space. (END OF EXAMPLE.) 

EXAMPLE. Our final example is simply to demonstrate the role of the extra 

conditions placed on the modal substitution in the definition of admissibility for 

the K-logics and when a connection ensures that an atomic path is complemen- 

tary. These are the only conditions that distinguish the matrix characterisations 

for the K-logics from their D-counterparts. 

Consider the formula: 

op V Q = Q(P V Q). 

An indexed formula tree for this formula, with (constant) multiplicity 1, is shown 

in Figure 7-5. 

There are two atomic paths through the indexed formula, and two connec- 

tions: {a3i a$} and {a5, a9}, which together span it. The prefixes and labels of 

these connections are identified by the substitution: 

a3 

= a3. 

It is easy to see that this mapping is indeed a modal substitution, and admissible 
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Op v Q = (PVQ) 

OPVQ O(PVQ) 

ao 

al a6 

Op Q PVQ a2 a4 a7 

P Q P Q as a5 ag a9 

u pol(u) lab(u) pre(u) preS5 (u) Ptype(u) Stype(u) 

ao 0 OP V Q = O (P V Q) ao ao ci pro 

al 1 O P V Q ao ao Q al 

a2 1 OP ao ao it Qi 

a3 1 P aoa3 as - pro 

a4 1 Q ao ao v 82 

a5 1 Q aoa5 a5 - vo 

a6 0 O(P V Q) ao ao v a2 

a7 0 PVQ aoa' a ci vo 

a$ 0 P aoa' al - al 

a9 0 Q aoai al - a2 

Figure 7-5: Indexed formula tree for (OP V Q O(P V Q), 0). 
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in D, D4, T, S4, S5. The reduction relation is shown below: 

ao 

al a6 

a3--+a5 a8 a9 

Informally, the K-condition comprises two components: 

the image, under the modal substitution, of a vo-type position in the prefix 

of an element of the connection must be comprised of iro-type positions 

only; and 

these iro positions must be a-related to the vo position. 

The substitution above satisfies the first condition, but not the second since a3 

is not a-related to 45. The substitution is therefore not K or K4-admissible. 

REMARK. Indeed there is no iro-type position a-related to a5. Conse- 

quently the atomic positions with a5 in their prefix cannot take part in a K- 

complementary connection. This phenomenon is a subtle modal notion of purity, 

a concept familiar from resolution systems. A literal is taken to be pure if there 

is no complement for it within the set of clauses. The matrix counterpart of this 

notion is similar: an atomic position is pure if there is no complement for it in 

the matrix. Pure literals (atomic positions) cannot take part in a proof. The K- 

condition can thus be used to classify atomic positions as pure when attempting 

to determine the K-validity of formulae. (END OF REMARK.) 

The K-condition can be motivated by looking at the structure of sequent 

derivations of our example formula. The reduction relation above tells us that 
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a3 must be introduced before both a5 and a'. One such K-derivation is as follows: 

P -- P, Q 
P -- PVQ 

OP --> 0(PVQ) Q -- 0(PVQ) 
OPV Q -- 0(PVQ) 

) OP V Q = 0(P V Q) 

Recall that the sequent system for K has no v rule, and the 7r rule is: 

S*, iro 

S, 7r 

where S* of 
{ vo I v E S }. Hence the presence of the reduction: 

P -*PVQ 
OP ---* O(PVQ) 

in the derivation above. Moreover, there is no rule applicable to the right-hand 

leaf sequent. The K-condition represents the conditions under which such a dead- 

end will occur on the way to an instance of the basic sequent represented by a 

connection. In our case the connection is: {a5, a'}. 

As usual, we have enough information to construct a falsifying K-model for 

the formula from the non-complementary atomic path. Call this path s. Then, 

{ 1 1 } s a5, as,a4ia6 

and 

S } . a5, age a4, a6, a0, a1 (S) - { 1 1 

The (partial) model contains only one point, ao, at which the elements of S (s) 

with prefix ao are forced, or not forced, according to their polarity (1 or 0 

respectively) : 

w 

ao 

{AIwI1-A} 
OPV Q, Q 

{AI w11-/A} 

O(PVQ) 

Basically ao II- Q because there are no points accessible from ao. Hence all 

such points force Q! There is no point accessible from ao at which P V Q is 

forced. Consequently ao 11f 0(P V Q). Since ao forces the antecedent and fails 

to force the consequent of an implication, it also fails to force the implication 

itself. Notice that it is irrelevant which of ao 11- Q or ao 11f Q we take. (END 

OF EXAMPLE.) 
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7.4 Decision procedures. 

In §7.3 we demonstrated how the duplication of certain subformulae (v and -f- 

type subformulae) could be driven by the goal of making a given set of connec- 

tions simultaneously complementary. Duplication is achieved by increasing the 

multiplicity. For a given multiplicity, the set of atomic paths through the indexed 

formula is finite. We can therefore search the resulting space exhaustively for a 

spanning set of connections and appropriate admissible substitution. Increasing 

the multiplicity, in general, increases the number of atomic paths through the 

indexed formula, thereby increasing the size of the search space. The matrix 

characterisations of validity, in terms of the existence of a multiplicity, suggests 

a modal analogue of Herbrand's Theorem. 

For the quantified logics we cannot determine in advance a fixed multiplicity 

within which to search such that, if no substitution, and spanning set of com- 

plementary connections are found within that (finite) space, the formula is not 

valid. This is a reflection of the undecidability of the validity problem for these 

logics. On the other hand, the propositional fragments of the modal logics are 

decidable. This suggests that it is possible to determine from the structure of 

a formula, a "maximal" multiplicity within which to search for a proof of its 

validity. In this section we outline how the matrix characterisations provide a 

powerful framework for formulating decision procedures for these fragments by 

supporting the calculation of such maximal multiplicities. 

The heart of the method is the notion of an C-Hintikka multiplicity for a 

propositional formula A. An C-Hintikka multiplicity, µ, has the property that 

if there is no £-admissible modal substitution a, and set of a-complementary 

connections that spans (A, 0)µ, then A is not valid. An C-Hintikka multiplicity 

for a formula provides an effective bound on the size of the space to be searched 

by limiting the possibilities for duplication. If we can't prove the formula valid 

within these bounds, we are permitted to conclude that it is not valid. 
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In the next subsection we show how to determine a reasonably small S5- 

Hintikka multiplicity for propositional formulae. We concentrate on S5 for sim- 

plicity in order to illustrate the technique. At the time of writing S5 is the only 

logic for which an interesting and computationally significant construction has 

been defined and proved correct. In §7.4.2 we briefly indicate how to extend this 

result to the other logics. 

REMARK. We stress: defining an C-Hintikka multiplicity for a given formula 

for the other logics is straightforward, since the number of subformulae of the 

formula is finite. This, essentially, is the approach taken in tableau methods, 

such as Fitting's [Fit83], and Hughes and Cresswell's diagrammatic methods 

[HC68], to show that various modal logics are decidable in the first place. For 

the purposes of automated deduction, since the C-Hintikka multiplicity defines 

the space that must be searched exhaustively to determine the non-validity of the 

formula, we are motivated by the desire to determine least such multiplicities. 

It is this problem that requires some more technical effort for a satisfactory 

resolution for the other logics. That being so, all the fundamental ideas necessary 

for such extensions are, we believe, contained in the S5 case below. The problem 

is simply one of time. (END OF REMARK.) 

7.4.1 A decision procedure for S5. 

In this subsection we formulate a decision procedure for S5 by giving a con- 

struction for an S5-Hintikka multiplicity for propositional modal formulae. The 

method is as follows: 

First we define the modal degree of a formula. Intuitively the degree of a 

formula indicates the maximum nesting of modal operators in the formula. 

Hughes and Cresswell [HC68] show how, for S5 at least, any formula may 

be transformed into an equivalent formula of first-degree. 

Next, we give a construction of a special multiplicity [ for a given formula. 
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Finally, we demonstrate that such multiplicities are L-Hintikka multiplic- 

ities provided the formula is of at most first-degree. 

In the next section we outline how the restriction to first-degree formulae can be 

lifted for S5, and the method extended to the other modal logics. 

7.4.1.1 Modal degree. 

The modal degree of a formula is defined inductively on the structure of formulae 

as follows ([HC68]): 

1. Atomic formulae are of degree 0. 

2. If A and B are formulae of degree n and m respectively, -,A, A A B, A = B 

and A V B are of degree max(n, m). 

3. If A is a formula of degree n, A and OA are of degree n + 1. 

For example, if P and Q are atomic formulae, (P A Q) is of degree 1, whereas 

(OP A OQ) is of degree 3. If the degree of a formula is 1, we say it is of 

first-degree. 

The reader is referred to Hughes and Cresswell's book [HC68] for a procedure 

for transforming arbitrary propositional modal formulae to equivalent formulae 

of first-degree in S5. The transfomation basically rests on the S5-validity of 

equivalences of the form: 

(AAB) (AA B) 
O(A V B) = (OA V OB) 

(AV B) (AV B) 
(AVOB) (AVOB) 

and 

O(AAB) (OAAB) 
O(A A OB) (OA A OB). 
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7.4.1.2 The construction of µ. 

Let A be a propositional modal formula and X the signed formula (A, 0). Re- 

call that we use HO to denote the set of unindexed positions of 7ro-type in the 

unindexed formula tree. Recall also that, for a given multiplicity µ for X, llo(µ) 

and 1/o(µ) denote the set of 7ro and vo-type positions of the indexed formula X" 
respectively. As a final extension of this notation, if s is a path through X't, let 

1/o(µ, s) denote those elements of 1/o(µ) that are elements of the set associated 

with the path s; similarly for HO(µ, s). Formally, 

df 

df 

1/o(µ) n S (s) 

no (µ) n S (s) . 

Define M(k) C llo to be the set of 7ro-type positions a-related to the position 

k of the unindexed formula tree for X. (Recall that two positions are a-related 

just in case they are both contained in some path through X.) Likewise, or a 

multiplicity µ and position k" of the indexed formula tree for X", define M(µ, k") 

to be the set of 7ro-type positions a-related to k" in the indexed formula tree. 

The multiplicity µ is then defined as follows: for k E 1/0, 

µ(k) = IM(k)1+1. 

We claim that µ is an S5-Hintikka multiplicity for A provided A is of at most 

first-degree. Before proving the claim, we illustrate the construction with an 

example. 

EXAMPLE. Consider the first-degree formula: 

(P v Q) = P V Q. 

An unindexed formula tree for this formula is shown in Figure 7-6. Since 

M(a2) = {a7, ag}, µ for this formula is the multiplicity: 

µ(a2) = 3. 

(END OF EXAMPLE.) 
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(PV Q) = PV Q ao 

(PVQ) P V Q ai a5 

PVQ P Q a2 a6 a8 

P Q P Q a3 a4 a7 a9 

u pol(o) lab(u) pre(u) preS5 (u) Ptype(u) Stype(u) 

ao 0 (PV Q) = PV Q - ao a 7r0 

ai 1 (PVQ) - ao v ai 

a2 1 PVQ - ao 0 vo 

a3 1 P - a2 - Nl 

a4 1 Q - a2 - 02 

a5 0 P V Q - ao a a2 

a6 0 P - ao 7r ai 

a7 0 P - a6 - 70 

ag 0 Q - ao 7r a2 

a9 0 Q - ag - 70 

Figure 7-6: Formula tree for ( (P V Q) = P V Q, 0). 
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7.4.1.3 The proof. 

In this section we work under a global assumption that A is at most a first-degree 

formula. We prove that the multiplicity µ is an S5-Hintikka multiplicity for A. 

First note some immediate consequences of the restriction to first-degree 

formulae. The lemmata indicate that increases in multiplicity do not increase 

the number of distinct -7ro-type positions a-related to any position. It gives some 

indication as to why we defined µ in terms of the unindexed formula tree (via 

M(k)), and why it suffices as a Hintikka multiplicity for first-degree formulae. 

LEMMA 7.9 rlo(/-L) = I10. 

PROOF. Since A is at most first-degree there are no nested modalities. An 

increase in multiplicity does not duplicate any -7ro-type positions. 0 

LEMMA 7.10 For a multiplicity µ and indexed position k" of Xµ, M(µ, k") 

M(k). 

PROOF. This is again an immediate consequence of the fact that A is at 

most first-degree. By the previous lemma, duplication does not increase 

the number of -7ro-type positions in the indexed formula. 

Next, we introduce some notions concerning multiplicities. Let 0 denote the 

constant zero multiplicity for X, and 1 the constant multiplicity equal to 1. We 

have the following fact: (recall that A(µ) denotes the set of atomic paths through 

Xµ) 

FACT 7.11 For s E A (0), if u E s either (a) u is an atomic position, or (b) 

u E U (i.e., of v-type. 

Let µ and µ' be multiplicities for X. µ' is said to be an extension of µ, written: 

A' > µ, just in case for every k E Ilo, µ'(k) > µ(k). Notice that all multiplicities 

are extensions of 0. 
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Let s be a path through XI`, for some multiplicity it, and suppose u E S (s). 

Define s[u] to be the subpath of s through the subtree rooted at u. That is, 

s[u] = {vESIu«v}. 

We define an equality on sets of indexed positions by "forgetting" the indices. 

For a set of indexed positions, S, define basic(S) as follows: 

basic(S) df {kIk"ES}. 

Let it and µ' be two multiplicities for X, and s and s' two sets of indexed positions 

of Xµ and Xµ respectively. 

S .+ s' iff basic(s) = basic(s') . 

Since A is of first-degree, any atomic path through Xµ can be decomposed 

into an atomic path through X° together with the subpaths through the indi- 

vidual vo-type position of S (s). Formally, 

LEMMA 7.12 Let µ be a multiplicity for X. Any s E A(µ) partitions into 

distinct sets: so, and s[u] for u E Vo(ic, s), such that so E A(O) and s[u] is a 

subpath of s with 

s = SO U U s[u] 
uE V0(µ,s) 

Furthermore, for any so E A (0) there is at least one path s through X' with so 

as a subpath. 

PROOF. Immediate from Fact 7.11 and the fact that A contains no nested 

modalities. 0 

From these definitions and lemmata we get: 

LEMMA 7.13 For any µ > 0, HIo(p, s) = Ilo(0, so), for some so E A(O) as 

described above. 
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We prove the main claim in the following way. First we define a particular 

modal substitution Q over X3'. This substitution essentially ensures that every 

possible distinct substitution is considered for a given vo-type position. (µ is 

sufficiently large to allow this.) Then we demonstrate that if A (A) contains 

a non-complementary path (i.e., there is no spanning set of Q-complementary 

connections for X1'), any extension µ > µ cannot alter this situation, for any 

modal substitution. We prove this latter part, by showing that A(µ) contains 

an atomic path which is structurally identical to the non-complementary atomic 

path in A(µ). 

Suppose, for k E Uo, 

M(k) = { rl,r2,...,rm }. 

Let ko denote the root position of the unindexed formula tree for A. Define the 

substitution Q as follows: 

r1, 1 < i < m; 
a(k`) 

ko, i=m+1. 
It is easy to check that Q is a modal substitution. Next, notice that Q is S5- 

admissible, since: 

1. The mapping preserves S5-accessibility relations on prefixes since any pre- 

fix is accessible from any other. 

2. The reduction relation induced by Q is irreflexive since, for no two distinct 

positions u, v E TM(µ) do we have u « v. (Recall that TM(µ) = Vo(µ) U 

no (T) ) 

As a final preliminary we prove a result concerning the multiplicity µ and the 

substitution a which expresses its "completeness" in a certain sense. 

LEMMA 7.14 Lets E A(µ) and k E basic(Vo(µ,s)). Then, for all7ro-type posi- 

tions v E 110(µ,s) there is some index T, with 1 < T < µ(k), such that Q(kT) = v. 

PROOF. Immediate, from the definition of Q and the fact that 110 (Al s) C 

M(k). 
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PROPOSITION 7.15 Let µ be an extension of µ, and v any S5-admissible sub- 

stitution for Xµ. If there is an atomic path s E A(µ) that does not contain a 

v-complementary connection, then there is a atomic path t E A(µ) that does not 

contain a v-complementary connection. 

PROOF. By Lemma 7.12, 

s = so u U s[u] 
uEVo(A,s) 

for some atomic path so E A(0) and particular subpaths, s[u], through 

u E 1/0(µ,s). We are free to choose an atomic path t E A(µ) such that: 

t = so u U t[u] 
uE Vo(µ,t) 

for some subpaths t[u], through u E 1/o(µ, t). We choose the t[u] as follows: 

letu=l", 

1. Suppose v(l") = v for some 7r0-type position v. By Lemma 7.13, 

v E IIo(µ, s). By Lemma 7.14, there is an index r, with 1 < r < µ(l), 

such that Q(lT) = v. Choose for t[l"] the subpath through i' such that: 

t[l"] [IT]. 

2. Suppose u(ln) = v for some v0-type position v. By Lemma 7.13, there 

is some index r, with 1 < r < µ(l), such that Q(lT) = k0, where k0 is 

the root position of the formula tree. (Recall k0 E Ho and k0 E S (s') 

for all paths s'. Consequently k0 E IIo(µ,s).) Choose for t[l'] the 

subpath through l" such that: 

t[l'] s[ln]. 

In both cases: 

r" E t[l"] if rT E s[lT]. 

(All the positions of t[l'] have index r. since A is at most first-degree. Sim- 

ilarly for the positions of s[lT].) Hence, by construction: 

t;-' S. 
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We claim that this path cannot contain a or-complementary connection. 

Suppose not. That is, suppose there is some 6-complementary connection 

{k', k22} in t. Without loss of generality, suppose the prefixes of these 

atomic positions are l', 1 = 1, 2, respectively. We have, by assumption: 

v(111) = v = a(l22). 

lab(ki1) = lab(k12). 

Regardless of whether v is of 7r0 or v0-type, we chose t such that there are 

some indices T1 and T2 such that: 

a(li') = v', a = 1, 2, 

for some 7ro-type position v' E IIo(E2)s), and 

t[lt'] s[lt'] i = 1,2. 

That is, k E s, i = 1,2, and {k11,k'} forms a Q-complementary connection 

in s. This contradicts our assumption that no such connection exists. 

THEOREM 7.16 If A is a propositional modal formula of at most first-degree, 

µ for A is an S5-Hintikka multiplicity. 

PROOF. We must show that if there is no L-admissible modal substitution 

a and set of a-complementary connections that span (A, 0)p, then A is 

not valid. Proposition 7.15 tells us that if Q is not sufficient to obtain a 

spanning set of Q-complementary connections, no increase in multiplicity 

and alternative substitution is sufficient. By the completeness of the matrix 

characterisations, this means that A is not valid. 

7.4.2 Extensions. 

We remark at this stage how a decision procedure for first-degree S5 formulae 

can be defined based on the development above. Firstly, during standard path- 

checking proof search we place a bound on the multiplicity for each vo-type 
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position of the formula. Secondly, we need never consider substitutions v that 

have the property: 

a(k"1) = v = a(k"2) 

for some 7ro-type position v; or 

a(k"1) = a(k12) = a(k13) 

for distinct ,c;, i = 1, 2, 3. These restrictions can be motivated by looking at the 

structure of the substitution Q defined above. 

Recall that our goal is to define least such L-Hintikka multiplicities. We can 

improve on µ defined above by taking account of the fact that the identification 

of two distinct positions under the substitution can only produce complementary 

connections in the formula if there are (propositionally complementary) atomic 

formulae with those positions as prefixes. For example, consider this variant of 

the example formula of the previous section: 

(P V Q) (OP = Q) 

(The formula tree for this formula is isomorphic to that shown in Figure 7-6, 

right down to the types of the positions. The only difference is that the two 

occurrences of P have the same polarity. We take advantage of this and use the 

same names to refer to the corresponding positions.) The construction given 

above would still produce an S5-Hintikka multiplicity µ with 

jt(a2) = 3. 

We can show that the smaller multiplicity: 

j(a2)=1 

is also an S5-Hintikka multiplicity and clearly leads to a smaller search space 

containing one possible connection only. The existence of a non-complementary 

path at this multiplicity immediately leads to the conclusion that the formula is 

not valid. Basically, instead of using all of the distinct positions a-related to the 

vo-type position, we only count those which prefix potential connections. 
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The construction and proof of Theorem 7.16 relies on the fact that an increase 

in multiplicity, in a manner of speaking, does not increase the number of distinct 

prefixes in the formula. Of course it does increase the number of vo-type positions 

of the unindexed formula tree, but we need only consider substitutions that map 

all vo-type positions to distinct iro-type positions. (This is also reflected in the 

completeness proofs of Chapter 6, where the substitutions used to construct 

a-complete atomic paths were "ground" in this sense.) The crucial lemma is 

Lemma 7.13. In fact, it is not difficult to show that very slight modifications of 

the S5-construction of the last section suffice for the other logics also, under the 

restriction to first-degree formulae of course. 

To lift the restriction to formulae in first-degree normal-form for S5, and 

hence extend the method to the other logics, we need to calculate the increase 

in distinct prefixes (iro-type positions) that occurs when the multiplicity is in- 

creased. Clearly this depends on the degree of the particular formula. Notice 

that for first-degree formulae we were able to define µ in terms of M(k) by 

µ(k) = IM(k) I + 1. 

The more general case requires the definition to be in terms of M(/2, k"). The 

recursive nature of such a definition reflects the fact that an increase in the 

multiplicity for one position will, in general, force increases for other positions. 

We have not developed such characterisations to-date, but believe it to be a 

simple, if tedious technical exercise. 

7.5 Logical consequence and expressibility. 

In this section we consider two miscellaneous but important issues: namely, the 

use of the matrix characterisations to decide instances of the consequence relation 

for the modal logics, and the extension of the characterisations to languages 

containing function symbols. 
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7.5.1 Logical consequence 

The matrix characterisations capture the structure of valid sentences within 
modal logics. In practice we are interested in the relation of logical consequence 

between sentences and sets of sentences. The characterisations suffice to decide 

instances of logical consequence. 

The consequence relation for modal logics that we wish to capture is the 

following: the sentence A is a logical consequence of (the set of sentences) O 

just in case, for any L-model, and any L-interpretation t in that model, for all 

wEG, 

w 11- t(0) implies w 11- t(A). 

We write 0 A. Deduction theorems hold for the modal logics under the above 

notion of logical consequence. 

THEOREM 7.17 (DEDUCTION THEOREM) If A is a sentence, and 0 a set of 

sentences, then for all the modal logics under consideration: 

0 J= A if O A. 

We can therefore use the matrix characterisations to decide instances of logical 

consequence by proving the validity of the implication 0 = A, instead of the 

consequence 0 = A. (In implementations of course the distinction can be hidden. 

See [WW87].) 

7.5.2 Function symbols. 

We have considered languages containing no function symbols. This restriction 

was made for technical convenience. Function symbols can be added to the 

matrix systems in the same way as Bibel adds function symbols to his classical 

matrix system [Bib82a]. The only change occurs in the method for calculating 

the relation Cq induced by a first-order substitution. The definition given was: 

a first-order substitution oQ: ro(1) --> TQ(u) U C induces an equivalence relation 

-q and a relation Cq on TQ x TQ as follows: 
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1. If aq(u) = v and v c to, then u -q v. 

2. If aq(u)=vand voro,then vCqu. 

3. IfVEquandu -q u', then vCqu'. 

Since the image of a vo-type position under aq can now be a term t, we alter 

the second clause to: 

2. If a'q (u) = t for some term t, for all v E Tq (µ) that are subterms of t, 

VCgU. 

Everything else goes through unchanged. 

7.6 Summary. 

In this chapter we have: 

1. Justified the view of matrix-based proof search in modal logics as being 

essentially a path checking process (§7.2). We did this by demonstrating 

that the complementarity tests, as in classical logic, are computationally 

tractable. Indeed, algorithms already exist for computing most general 

L-admissible substitutions. 

2. Demonstrated that proof search based on the matrix characterisations over- 

comes the problems identified with sequent-based proof search (§7.3). 

3. Shown how the characterisations support the development of efficient de- 

cision procedures for the propositional fragments of modal logics (§7.4). 

4. Shown how the characterisat ions can be used to decide instances of modal 

consequence relations and the restriction to first-order languages with no 

function symbols can be trivially lifted (§7.5). 
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Chapter 8 

Related work. 

8.1 Introduction. 

In the previous chapters we developed matrix characterisations of validity for 

the first-order modal logics K, K4, D, D4, T, S4 and S5. We captured not only 

the standard quantified logics, but also their cumulative and constant domain 

variants. We have succeeded in turning the task of checking a modal formula 

for validity into a path checking task, with each primitive operation a test for 

complementarity. We showed in the previous chapter that the complementarity 

tests are tractable and instances of standard (string) unification problems. 

Our goal has been to extend techniques for automated deduction in classi- 

cal logic to modal logics while retaining the computational properties of these 

techniques. We have succeeded in this goal. Indeed, search strategies based on 

the classical matrix systems are applicable without change in the modal case. 

The specifically "modal" aspects of the proof search are dealt with by unifica- 

tion during the complementarity tests. In [Bib82b], Bibel develops a series of 

path checking algorithms for classical matrices that are equivalent to the most 

efficient resolution strategies. His results suffice to demonstrate the degree of 

efficiency we have achieved for automated deduction in modal logics. 
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In this chapter we review the other major proposals in the literature for (com- 

putationally) efficient proof procedures for (roughly) the same class of modal 

logics. We identify three types of system: 

Proof systems based on sequent/tableau calculi (§8.2). 

Systems based on either clausal or non-clausal resolution (§8.3). 

Hybrid proof systems based on a mixture of sequent/tableau ideas and 

resolution (§8.4). 

As discussed in the introduction to this thesis, comparing the efficiency of 

proof procedures is a difficult task. We restrict ourselves to investigating prop- 

erties of the search spaces generated by the proposed inference systems. In 

some cases, such as the sequent/tableau systems, we can show that the matrix 

search space is a subspace of the space generated by the sequent/tableau system. 

In others, such as Abadi and Manna's adaptation of non-clausal resolution to 

modal logics [AM86a], we indicate the combinatorial problems possessed by the 

systems that make them much less appropriate for automated proof search than 

the matrix systems. 

We note at the outset that, in the author's opinion, each of the proposals 

reviewed provide a more redundant basis for automated proof search than our 

modal matrix characterisations. The reason is simple. None of the proposals 

overcome what we have termed the "order dependence" of the modal rules, or 

more abstractly, the interaction of modalities. We point to our use of unification 

to solve this problem as a central contribution. Indeed, our threefold classifica- 

tion of the redundancies of sequent-based proof search can be used to summarise 

the problems with the other proposals: 

The spaces generated by sequent/tableau proof systems, in general contain 

all three types of redundancy: notational, relevance and order dependence. 

The spaces generated by the resolution and hybrid tableau/resolution proof 

systems: 
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can be extended to utilise structure sharing methods to overcome the 

notational problems; 

- overcome the relevance problem by means of connections, 

- overcome the order problems of the quantifiers, but 

- fail to deal with the order problems associated with modalities. 

Additionally, none of the resolution proposals capture the full range of 

modal logics treated here, though in some cases the systems can be ex- 

tended. 

8.2 Sequent and tableau-based proof systems 

In Chapter 5 we identified redundancies in the search spaces generated by stan- 

dard sequent and tableau calculi for modal logics that render them inappro- 

priate for automated proof search. These redundancies are common to all 

modal sequent/tableau systems with a characteristic emphasis on connectives 

and interacting inference rules. Such systems include those presented by Kripke 

[Kri63], Fitting [Fit83], Hughes and Cresswell [HC68], and the decision methods 

of Halpern and Moses [HM84] for various extended classes of modal logic. In 

Chapter 7 we demonstrated that proof search based on the matrix characterisa- 

tions were free from the redundancies, and hence form more suitable bases for 

automated deduction in modal logics. We shall not repeat the arguments here, 

but refer the reader to the chapters cited. 

Fitting's prefixed tableau systems [Fit72,Fit83] deserve further mention be- 

cause they are related to the methods employed in the matrix characterisations. 

Indeed, our methods were partially inspired by his systems. For instance, a pre- 

fixed sequent system for S5, developed by Kanger [Kan57], was used to suggest 

a matrix characterisation for that logic in (Wa186]. In (Wa187] we used Fitting's 

prefixed systems to motivate the design of matrix characterisations, much as we 

used more standard sequent systems in this thesis. 
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r, p:A--->p:A,A 

r,p:A,p:B--;A 
A 

r--->p:A,A r--; p:B,A 
r, p : (A A B) -- A r ---p p : (A A B), A 

r,p:A--+ A r,p:B--->A r---p:A, p." B, A 
r, p:(AVB) > A 

v - r p:(AVB),A -->v 

F-p:A,A r,p:B--A r,p:A---fp:B,A 
r, p : (A B) --- A 

=:> r -- p : (A B), A --- 
r, p: A --- A r - p: A, A -- --, -, r p : (`'A), A r, p : (-,A) -* A 

r, q:A -, A r --> q: A, A -- r,P:(A) --) A r --- p:(A),A 
r q: A --> A r ---, A A 

r,p:(OA) -' A r --> p:(OA),A -*O 
In all the modal rules we must have: p Ro q. 

For the --- and Q - rules: q must not appear in the conclusion. 

Figure 8-1: Prefixed sequent calculus for S5. 

Let (Go, Ro) be an L-frame. A prefixed formula is a pair p : A, where p E Go 

and A is a modal formula. The rules for sequent versions of Fitting's prefixed 

systems are shown in Figure 8-1. Fitting utilises sequences of integers for the 

set of prefixes Go and defines the accessibility relation Ro in exactly the same way 

as we did in Chapter 6 for prefixes consisting of sequences of positions. Indeed 

we took the definitions from his [Fit83], as remarked at the time. For example, 

the accessibility relation for S4 is defined as: 

pRoq iff p--< q. 

The rules of the calculus are inverted for proof search, derivations being 

constructed from their root to their leaves. The use of prefixes allows Fitting, 

as it did us, to capture the constant domain logics easily. Despite the use of 
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prefixes however, all three types of redundancy remain in the prefixed sequent 

systems. They possess the notational and relevance redundancies by virtue of the 

standard sequent/tableau framework. Moreover, the proviso on the "ir" rules: 

--> and Q -, induce interactions between these rules and the "v" rules: - and - Q - classic order dependence. A simple example will help to 

illustrate this. Consider the S4-theorem: A A (A = B) = A. We begin by 

prefixing the formula with the prefix 1, and applying the rules for implication, 

conjunction and the v rule - + twice, thereby introducing the prefix 11, which 

has 1 -< 11. (Note: we use 11 to denote the two element prefix formed from the 

concatenation of the two unit sequences: 1 and 1.) The resulting derivation is 

shown below. 

11: A, 11:(A=B) --> 1:(A) 
11A, 1: (A=B) -- 1:(A) 

I 1: (A=B) --> 1:(El A) 
1:(AAEl (A=B)) --> 1:(A) 
--> 1:(AA0(A=B)=El A) 

But now when we come to reduce the succedent formula, we are prohibited 

from introducing the prefix 11 by the proviso on the --* rule. Of course, we 

should have reduced the succedent formula before the antecedent formulae. 

In conclusion, despite the use of prefixes, Fitting's systems suffer from the 

same problems as the more standard sequent/tableau systems. It is possible to 

introduce our unification solution to the prefix systems directly. In fact, the 

motivational arguments used to introduce the matrix systems in Chapter 6 es- 

sentially did this. Jackson and Reichgelt [JR87] investigate this method further. 
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8.3 Resolution-based proof systems. 

Perhaps the most obvious method of developing computationally efficient proof 

methods for modal logics is to adapt Robinson's resolution method [Rob65J, and 

its refinements (see eg., [CL731). The idea would be to extend the resolution 

method to modal logics while retaining the computational advantages exhibited 

by the method for classical logic. 

The major hurdle to this approach is that the standard resolution method 

requires that the input formula be in clausal form. The precise details of this 

normal form are not important. We refer the reader to Chang and Lee's book 

[CL731 for a full description. Suffice it to say the method relies on the validity 

of equivalences such as: 

Vx<A - <>VxA, 

as well as the existence of a conjunctive normal form for the propositional frag- 

ments. We have already seen that modal operators and quantifiers do not com- 

mute freely. (In fact, the equivalence above is not valid in any of the logics we 

have considered, since the left-to-right implication fails.) Moreover, a simple 

conjunctive normal form does not exist for all the modal logics. (Hughes and 

Cresswell, in [HC681, define a modal clausal form for S5 and point out that its 

existence is dependent on the number of distinct modal functions, of a given 

set of propositional variables, expressible in the logic. For S5 this number is 

finite because, as we showed in Chapter 7, every S5 formula can be reduced to 

a formula of a particular maximum degree, namely 1. For S4 and T, there is no 

such finite degree to which formulae can be reduced. Hence there are an infinite 

number of distinct modal functions for these logics, and no such normal form 

exists.) 

Consequently, a resolution approach must either restrict the language of for- 

mulae to, say, prenex formulae, where no quantifiers are allowed in the scope of 

modal operators, and abandon classical clausal form; or alternatively, abandon 

normal form altogther. The most comprehensive treatment of modal logics using 
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the former approach is that of Farinas del Cerro [Far82,Far83,Far86]. The most 

comprehensive treatment of modal logics using the latter approach is that of 

Abadi and Manna [AM86b,AM86a]. We review both approaches below. 

8.3.1 Clausal resolution for modal logics. 

Farifias del Cerro has developed clausal resolution systems for the propositional 

modal logics K [Far82], S4 and S5; and a linear temporal logic of programs 

[Far83]. In [Far86] he argues that the systems extend to the prenex subset of 

the first-order logics. 

We note that these methods have not been developed for the wide class of 

propositional logics treated in this thesis. Secondly, we note that the extension 

of the systems to first-order modal logics requires the aforementioned syntac- 

tic restriction to prenex normal form; a restriction not shared by the matrix 

characterisations. Thirdly, Bibel's results in [Bib82b] suffice to show that search 

methods based on matrix characterisations are more efficient than standard re- 

finements of classical clausal resolution. These results generalise immediately 

to the modal case since we were careful to preserve the path checking nature 

of the search. (Basically, Bibel interprets resolution inferences within a matrix 

framework and shows that each standard resolution inference fails to eliminate 

all the atomic paths that are proved complementary by the inference. In this 

way, more resolution inferences are performed than is strictly necessary. Part of 

this redundancy comes directly from the use of clausal form.) 

Farinas del Cerro's modal resolution inference rules are defined in the follow- 

ing manner. First, a modal "clausal form" is defined in which modal operators 

may quantify subclauses. For example, the formula: 

(PVQVO(RAT)) 

is in normal form because it is a conjunction of clauses (one in this case) each of 

which is of the form: 

C=L1V.. VLm V C1 V...V C,vOD,v...vODp, 
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where the C,, and Dk are themselves clauses, and the L; literals. We shall briefly 

present the system for S5. 

A single resolution inference is performed by means of a procedure on clauses. 

Write (Cl, C2) for clauses C1 and C2 are resolvable, and define this relation and 

the resolvent: E(Cl, C2), recursively as follows: 

1. Classical rules: 

(a) For atomic P, E(P, -,P) = 0. (P, -,P) is resolvable. 

(b) E((DI V D2), C) = E(D1, C) V D2. If (D1, C) is resolvable then so is 

(D1 V D2, C). 

(c) E(D1 A C1 A D2 A C2) = E(D1 A D2) A C1 A C2. If the clause D1 A D2 

is resolvable, so is the clause D1 A C1 A D2 A C2- 

2. Modal rules: 

(a) E( D, C) = E(D, C). If (D, C) is resolvable, so is ( D, C). 

(b) E( D, OC) = (E (D, C) A C). If (D, C) is resolvable, then so is 

(0D,OC) 

(c) E( D, C) = E(D, C). If (D, C) is resolvable, so is ( D, C). 

(d) E(B[O(D1 A D2 A C)]) = B[O(E(DI, D2) A CAD, A D2)]. If (D1, D2) 

is resolvable, so is B[O(D1 A D2 A Q. 

(The last rule of each class defines what it means for a clause to be resolvable 

with itself.) 

Given two clauses, the above set of rules is run as a procedure to determine 

whether the clauses are resolvable and compute the resolvent. Notice that the 

procedure is non-deterministic. Choices must be made in two of the classical 

rules and the final modal rule. The resolution rule is therefore not effective 

in that a search must be undertaken to determine the results of the inference. 

In the case of the quantified logics this search will be arbitrary. The modal 

rules effectively search for classical inconsistencies (connections) within modal 
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contexts. This is no more than a particular strategy for applying tableau or 

sequent rules to produce an instance of the basic sequent. In fact it is worse, 

since the results of such applications to break down complex formulae are not 

stored in a sequent, or on a tableau, but are computed anew for each attempted 

resolution. 

This behaviour should be compared with the method of identifying comple- 

mentary connections in systems based on the matrix characterisations. In the 

matrix systems no normal forming is necessary, with its attendant increase in 

redundancy due to the expansion of the formula. We conclude that the clausal 

resolution systems are less suitable for automated proof search in modal logics 

than the modal matrix systems. 

8.3.2 Non-clausal resolution for modal logics. 

Abadi and Manna [AM86b,AM86a] develop resolution methods only for the con- 

stant domain formulations of the modal logics we have considered. It is not 

immediately obvious whether their methods extend to varying and cumulative 

domain variants. Their methods are based on Murray [Mur82] and Manna and 

Waldinger's [MW80] non-clausal resolution rule. 

A resolution proof system for a given (constant domain) logic contains two 

types of rule: 

1. Simplification rules. 

2. Deduction rules: 

(a) The resolution rule. 

(b) Modal rules. 

Simplification rules have the form: 

A,, ... , A,. B 
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where the A; are conjuncts of a formula that are deleted and replaced by B in 

an application of the rule. So, for example, the simplification rule: P, -,P = 1 

applied to the conjunct: 

QVO(,PAQAP) 

yields 

QvO(QA1). 

(Note: T and 1 stand for "true" and "false" respectively.) Deduction rules have 

the form: 

A1,..., A,,.,, B 

where again the A; are conjuncts of a formula. In this case the formula B is 

added as an extra conjunct. 

The non-clausal resolution rule is a deduction rule of the form: 

A(C), B(C') AO(T) V BO(1) 

where the notation A(C) indicates that C occurs as a subformula of A, and 

0 is the most general unifier of C and C'. Crucially, to retain soundness, the 

following restrictions are placed on the application of the resolution rule: 

1. Same world restriction: the occurrences of C replaced in an application of 

the resolution rule must not be in the scope of any modal operators. 

2. The replaced instances of CO and C'O are not in the scope of any quantifier 

in AO or BO. 

(In fact, these are not the only restrictions introduced in [AM86a]. Other, more 

complicated restrictions are necessary for dealing with quantifier prefixes of A 

and B. However, is not necessary to repeat the other restrictions for the purposes 

of the argument below.) Abadi and Manna's system for S5 is shown in Figure 8- 

2. (The notation Q' and Q3 is used by these authors to indicate quantifier 

occurrences of universal and existential force within a formula respectively.) 
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1. Simplification rules: 

True-false simplification rules: 

- TVA=T. 
- 1,A1. 
- O1 1. 

Negation rules: 

- -no A Q-A. 

--,QA=-'A. 
- -(A n B) = (-A V -B). 

- -(A V B) = (-A n -B). 

- -,A=A. 
Weakening rule: 

- A, B = A. 

Distribution rule: 

- A,BIVVBm==* (AABI)VV(AABm). 

Quantifier extraction rules: 

- A(Q'x.C[x]) = dx'.A(C[x']) 

- A(Q3x.C[x]) = 3x'.A(C[x']). (Restriction: the replaced expression 

should not occur in the scope of any quantifier of universal force Qd or 

modal operator of necessary force.) 

2. Deduction rules: 

The resolution rule (with restrictions). 

Modal rules: 

- A,QB j--> Q(DAA B). 

- o A - A. 

- QA,OB a ) Q(QAA B). 

- A% )QA. 

Figure 8--2: Abadi and Manna resolution system for S5. 
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Here is a proof of the formula: 

(VxPx) = (Vx Px) 

using this system, (roughly) as presented in [AM86a]. (They actually proved 

this formula in their system for K.) The first step is to remove the implication 

and negate the formula in order to derive 1: 

[-' (VxPx) V (Vx Px)]. 

By the negation rules we get: 

(VxPx) A (3xQ-Px). 

By the existential quantifier extraction rule we get: 

3x'[ (VxPx) A Q-Px']. 

The first modality rule gives us: 

3x'[ (VxPx) A Q-'Px' A 0 ( (VxPx) A-Px')]. 

Weakening gives us: 

3x'Q [[I (VxPx) A -iPx')]. 

The second modality rule gives us: 

3x'Q[(VxPx) A -iPx')]. 

Finally, resolution with A = -iPx', B = Px, C = Px' and C' = Px gives us: 

3x'Q[(VxPx) A -Px') A (-T V 1)]. 

True-false simplification gives us: 

Notice the number of rules that need to be applied in order to perform what, 

in systems based on the matrix characterisations, would be a single step per- 

formed by unification; i.e., testing the complementarity of a single connection. 
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Notice that at each stage many of the rules of the system are applicable in 

multiple places within the proof state (conjunction). But crucially, notice the 

application of the modal rules to move the atomic formulae into the same modal 

context so that the resolution rule can apply. The system has all the order de- 

pendence problems of the tableau systems, as well as a non-analytic nature that 

means as the deduction proceeds, the number of possible inferences to choose 

from at the next stage increases dramatically. Notice the judicious use of the 

weakening rule to focus attention. Considering the combinatorial problems that 

would arise in a large search of this kind, we must conclude that the Abadi and 

Manna systems do not provide bases adequate for automated proof search in 

modal logics as the matrix characterisations, despite their use of resolution. The 

redundancies in the systems arise from two sources: the non-clausal resolution 

rule itself, and the modal rules. 

Despite the disadvantages outlined above, their method has an advantage in 

that the inference rules are locally defined, in contrast to the complex nature 

of the matrix systems. This supports the rapid extension of their basic modal 

systems to intensional logics with other types of modal operator, most notably 

temporal logics [AM86b] with many different and interacting forms of modal 

operator (eg., "next-time" operators etc. The extension of the matrix charac- 

terisations to such logics requires careful thought and has not been investigated 

by the author. The Abadi and Manna systems are also somewhat easier to use 

by hand. 

We conclude that the non-clausal modal resolution methods leave much to 

be desired for automated proof search compared with the matrix systems. 

8.4 Hybrid systems. 

In the previous section we reviewed two proposals for modal proof systems that 

attempt to import the efficiency of resolution to modal logics. One was based on 

a normal form, the other was not. The resolution proposals are separated from 
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the more standard sequent/tableau approaches by the central role played by the 

connection. The other major component of resolution that makes it suitable for 

automated proof search is the use of unification to manage the interaction of 

quantifiers. Modal operators have the same computational properties as quan- 

tifiers. The major failing of the resolution proposals was their failure to extend 

the unification solution to these operators. The modal matrix characterisations 

were specifically designed with this in mind. In the final analysis, the resolution 

systems proposed resort to adhoc methods of manipulating modal formulae so 

as to allow the application of a constrained resolution rule. 

In this section we review two slightly more principled approaches to ma- 

nipulating modalities. While recognising that the classical resolution rule must 

be restricted in its application for soundness, Wrightson [Wri85] and Konolige 

[Kon86] fall back on tableau methods to cope with the modalities. The results 

are an interesting hybrid of tableau and resolution. The problem is that, as 

Konolige explicitly acknowledges in [Kon86], the manner in which the resolution 

rule is utilised is not effective. That is to say, arbitrary search may be necessary 

to determine if a given resolution inference is justified. 

8.4.1 Theory resolution and tableaux. 

In [Kon86], Konolige develops hybrid systems of resolution and tableaux for the 

varying domain versions of the modal logics treated in this thesis. We believe 

that his systems can be extended to the cumulative domain variants, but it is 

not clear that they extend to the constant domain variants also. 

The idea is simple. First, a clausal form is defined in which modal operators 

are treated as predicate symbols. For example (VxPx A Qy) is taken to be 

a single literal with one free variable. Other than this the details are as in 

classical logic. A technique of a bullet operator is used to allow Skolemisation. 

For example, the clausal form of the sentence: 

Vx3yP(x, y) = O3zQ(x, y, z) 
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is 

-iP(x, f (x)) V O 3zQ(x, f (x), z). 

The term f (x) indicates that the term f (x) must be interpreted outside the 

modal context. It will not unify with a non bulleted term. Similar remarks hold 

for the Skolem variable x. This is Konolige's method of capturing the varying 

domain conditions. The matrix characterisations utilise prefixes for this task. 

We shall restrict our attention to the propositional systems, since this will be 

sufficient for our central arguments concerning proof search. 

Konolige's resolution rule is based on Stickel's theory resolution rule [Sti85a], 

and is shown for a series of logics in Figure 8-3. 

The second rule permits the construction of a resolvent: 

A,VA2V...VA,VA2V.. A"VA2V... 

provided the associated set below the rule is unsatisfiable. If the reader thinks 

of the premises of the second rule as being a subset of the formulae on a tableau 

(or in a sequent), the rule allows the resolvent to be adjoined to the current 

tableau provided a new tableau, containing the formulae of the associated set, 

is unsatisfiable. The system spawns new tableau at each application of theory 

resolution. A hierarchy of tableaux is thus constructed. The definition of the 

auxil iary tableau differs from logic to logic. For example, the inclusion of the set: 

OI', reflects the transitivity of the accessibility relation of the logic. It should 

be compared with the set of formulae "preserved" through the application of 

a modal sequent rule for the transitive logics described in Chapter 4. In this 

vein, the first rule is essentially the v rule of the standard modal sequent calculi. 

Notice that it is sound only for the reflexive logics. 

Each theory resolution step, therefore, is nothing more than an application 

of modal sequent rules, manipulating the modal context of non-modal formulae. 

Different modal contexts are represented by different tableau, as in the original 

tableau systems of Kripke [Kri63]. Ordinary resolution is used to deduce whether 

a given tableau is unsatisfiable. 
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This first rule is only for the idealisable logics T, S4 and S5: 

BVA 
BVA 

This second rule is for all the modal logics stated: 

CC1VA1 

Ca C2VA2 

DDi V Al 

,0D2VA2 

E1vA" I 
E2VA2 

A,VA2VVA' VA'2vA"VA2v 
where 

K,T {r,-,C1} 
K4, S4 { t, r, -,C1 } 

S5 { t, r,-D1,,pA,,o,E } 

and 

r = {C1,C2,...} 

D = { D1, D2, ... } 

E _ { El, E2, . } 

L F Cl, C2, ... } 

etc 

is unsatisfiable 

Figure 8-3: Konolige's theory resolution rule for modal logics. 
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Notice that the theory resolution rule is not effective. The formation of the 

resolvent, and hence its subsequent use as a parent of other resolution inferences, 

is dependent on the unsatisfiability of the auxiliary tableau. This latter question 

can require arbitrary search. To address this problem, Konolige and Geissler 

propose interleaving inferences on the auxiliary tableau with inferences on the 

main tableau. However, notice that there is a choice to be made as to which 

formulae to include in a given application of theory resolution. The system is 

prone to all the same redundancies as standard sequent/tableau systems. The 

only advantage is the use of classical resolution within an individual tableau to 

demonstrate its unsatisfiablility. 

We conclude that Konolige's systems are less suitable for automated proof 

search than the matrix characterisations. 

8.4.2 Connections in tableau. 

Wrightson [Wri85] recognises the central component of resolution as being the 

connection, and its major problem the requirement of normal form. He also 

recognises the utility of tableau/sequent rules for formalising the properties of 

intensional operators and that tableau suffer from what we have termed: the 

relevance problem. 

He proposes the use of tableau for "non-classical" logics, but augmented with 

connections, stored in a connection graph [Kow75], to guide the application of 

tableau rules. His proposals do not address the problems of notational redun- 

dancy in tableau, nor the order dependence of the modal tableau rules, but do 

incorporate unification to overcome the order dependence of the quantifier rules. 
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8.5 Conclusions. 

In this chapter we have reviewed a number of proposals for automated proof 

search in modal logics. We have argued that the matrix characterisations devel- 

oped above are more appropriate as a basis for this task. None of the proposals 

reviewed solve the basic problem arising from the order dependence of modalities, 

although the resolution based systems do adopt Robinson's unification solution 

to the order dependence of quantifiers. We are led to the conclusion that there 

is, in general, a lack of appreciation of the proof-theoretic role of unification. We 

believe that this state of affairs has arisen because of the semantic justification 

of unification, involving Skolemisation. (Both Abadi and Manna's, and Kono- 

lige's proposal introduced a complicated form of modal Skolemisation, though 

the first two authors leave its use as optional.) If unification had been seen as 

a proof-theoretic tool for managing the interactions of quantifiers, the solution 

developed in this part of the thesis for modal logics would have emerged sooner. 

We point to our elaboration and analysis of the function of unification in Part I 

of this thesis, based on that given by Bibel in [Bib82a], as a major contribution 

to the field of automated theorem proving. 
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Part III 

Automated deduction in 

intuitionistic logic. 
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Summary. 

The main results presented in the thesis so far have been: 

Part I: The decomposition of Bibel's Connection Calculus [Bib80,Bib82c]: a 

matrix characterisation of validity for classical logic, into a set of individual 

techniques for overcoming problems of redundancy in proof search in that 

logic. 

Part II: The formulation, using these techniques, of matrix characterisations of 

validity for a wide class of modal logics, and hence the provision of methods 

for efficient automated proof search in these logics. 

The modal logics treated in Part II are extensions of classical logic. That 

is to say, they contain first-order classical logic as a subsystem. In this part 

of the thesis we reinforce the results obtained so far by presenting a matrix 

characterisation of validity for first-order intuitionistic logic. Intuitionistic logic 

is a subsystem of classical logic, and is perhaps the archetypal "non-classical" 

logic. In this way we achieve two objectives: firstly, we provide further evidence 

of the power of our approach for the efficient automation of proof search in 

arbitrary logics; secondly, we provide a basis for efficient proof methods for what 

is possibly the central logic of computation, and of considerable current interest 

[Mar82,Con86,CH85]. 

There is only one chapter in this part of the thesis since we keep the details 

to a minimum. Our method is, as should be apparent by now, to analyse the 

redundancies within the search space induced by a standard cut-free sequent 

calculus for intuitionistic logic, and selectively apply the techniques isolated in 

Part I of this thesis to remove them. 
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Chapter 9 

Matrix proof methods for 
intuitionistic logic. 

9.1 Introduction. 

Intuitionistic logic is perhaps the archetypal "non-classical" logic. Hailed by 

some as the "proper" foundational logic for mathematics (eg., [Bro75,Dum77]), 

it is currently receiving wide attention within computer science as a means of 

formalising the notion of "construction" and hence computation (eg., [Mar82]). 

As with the modal logics of Part II, it is beyond the scope of this thesis to moti- 

vate the use of this logic for particular applications, we simply point the reader 

to the references cited. We note, however, that the logic is not only receiving 

attention as a tool for the theoretical analysis of computational constructs, it 

is also proposed as a logic for the practical derivation of programs; a formal 

approach to the construction of verifiably correct software (eg., [Mar82,Con86]). 

Applications such as in the computer support for these principled methods of 

program derivation, serve to motivate the need for efficient automated proof 

search in this logic. 

In this chapter we present a matrix characterisation of validity for first-order 

intuitionistic logic along the lines of the characterisations developed in Part II 
for modal logics. In fact, our method is the same: we start by presenting the 
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(Kripke) semantics for intuitionistic logic (§9.2). We then investigate the prop- 

erties of the search space induced by a standard cut-free sequent calculus for 

the logic (§9.3), and adapt the matrix techniques accordingly (§9.4). We prove 

the correctness and completeness of the matrix characterisation by means of an 

embedding of intuitionistic logic in S4, due to Godel [God69] (§9.5). Finally 

we compare proof procedures based on the matrix characterisation with other 

proposals for automating proof search in this important logic (§9.6). 

Throughout, we keep the details to a minimum. The reader will be familiar 

enough with the development method by now to fill the gaps. In the concluding 

chapter of this thesis we discuss the import of the material of this chapter for the 

matrix approach to automating proof search in arbitrary logics. For typographic 

ease, and following Gentzen [G69], we use the symbol "J" to denote the system 

of intuitionistic logic. 

9.2 Kripke semantics for J. 

The language of J is the same as the language of classical logic. The distinction 

between the two logics arises in the semantics of the connectives and quantifiers. 

Once again we assume an arbitrary, but fixed set of variables and predicate sym- 

bols, but allow the constants to vary, each distinct set defining a new language. 

We talk of sentences and formulae over a set of constants when we wish to em- 

phasise the constants of the language. As in previous chapters we use A, B, C 

to denote (intuitionistic) formulae. 

A first-order intuitionistic frame, or J-frame, is a quadruple: CG, R, D, D), 

where 

G is a non-empty set (of points), 

R is a transitive and reflexive relation on G, 

D is a non-empty set (of constants), and 
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D is a mapping from G to non-empty subsets of D that satisfies the cu- 

mulative domain condition: for all w, w' E G, 

w R w' implies D(w) C D(w'). 

Without any loss of essential generality we further assume that: 

D = U D(w). 
wEG 

REMARK. Notice that a J-frame is a cumulative domain S4-frame (arid vice 

versa). (END OF REMARK.) 

A first-order intuitionistic (Kripke) model is a quintuple: (G, R, D, 

where (G, R, D, D) is a J-frame and IH- a relation between elements of G and 

sentences over D such that: 

0. For A atomic, w [[- A and w R w' implies w' [- A. 

1. W - A A B iff w - A and w 11- B. 

2. w [- A V B iff either w 11- A or w 11- B. 

3. w [[- A = B if for all w' E G, such that w R w', either w' 1174 A or 

011- B. 

4. w11--iAifl'for all w'EG,such that wRw',w'11f A. 

5. W 11- VxA if for all w' E G, such that w R w', and all c E 

A[c/x]. 

6. w 11- 3xA if for some c E D(w), w 11- A[c/x]. 

.D(w'), w' [[ 

Once again, the relation w 11- A can be read "w forces A." Notice that four 

clauses of the above definition are "modal," in that they refer to the accessibility 

relation, R, of the frame. 

Validity in the language of a model, interpretations, and validity in general 

are defined as in the modal case. Briefly: A sentence A, of the (intuitionistic) 
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language over D, is valid in the model: (G, R, D, D, II-), provided, for each w E 

G such that the constants of A are in D(w), we have w JI- A. An interpretation 

of a language over Do in the model ( G, R, D, D, II -), is a mapping t: Do E---> D. 

A sentence A, of the language over Do, is valid under the interpretation c in the 

model just in case c(A) is valid in that model. Such a sentence is valid just in 

case it is valid under every interpretation in every model. 

9.3 A cut-free sequent calculus for J. 

In this section we present a standard cut-free sequent calculus for J, and investi- 

gate the search space generated by it. Similar calculi can be found, for instance, 

in Dummett [Dum77] or Fitting [Fit69]. As usual, we work with sets of formu- 

lae, so there are no structural rules. The formulae are over a countable language 

containing denumerable constant and parameter symbols. The full system is 

shown in Figure 9-1. This system is both correct and complete for J (see, eg., 

[Fit69]). 

The calculus is similar to the classical sequent system. In fact the two systems 

differ only in the three rules: ---> --}= and - V. For these rules the 

succedent of the premise is restricted to the side formula of the inference, whereas 

in the corresponding classical rules the succedent may contain multiple formulae. 

We shall call these rules special. 

For the purposes of proof search we invert the rules as usual, forming a 

tableau system. Used in this way, the three special rules cause formulae to be 

deleted from the sequent; a situation we are familiar with from the modal se- 

quent calculi of Part II. There are differences however. Whereas in the modal 

calculi the rules that cause such deletions concern the modal operators only, 

here the special rules are for particular occurrences of connectives and quanti- 

fiers. Whereas in the modal sequent calculi the modal operators also provide 

the means of preserving formulae during an inference involving such "deletion," 

here there is no specific operator or connective identified for this purpose; all 
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r, A ) A, A 

r, A, B -- o r ---> A, A r ---> B, A 
r, A A B --* A 

A -- r ) A n B, A 

r,A --* A r,B --) A 
r,AvB --)O V -4 

r --*A,A r,B --*t 

r )A,B,A 
V r >AvB,A 

r, A ) B 
r, A F B ) A r ) A=- B, A 

r ) A, A r, A --+ 
r, -,A ---) A r ---> -,A, A 

r, A[c/x] ---i A 
r, VxA ---> A 

r, A[a/x] ---> A 
r, 3xA ---> A 

3 

--4 -1 

r -- A[a/x] --- b r --*VxA,A 

r --) A[c/x], A 
r ---) 3xA, A 

For the ----> V and 3 --) rules, the parameter a must not occur in the 

conclusion. 

Figure 9--1: A cut-free sequent calculus for intuitionistic logic. 
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antecedent formulae are preserved. Two simple examples will help to illustrate 

this behaviour. EXAMPLE. The first example is a well-known non-theorem of 

J: -,A = A. A derivation of this formula is shown below. We consider such 

derivations to have been constructed from the root upwards. Notice how the leaf 

of the derivation is not a basic sequent, i.e., the derivation is not a proof. Notice 

also how the (inverted) -> -, rule causes the "deletion" of all other succedent 

formulae except the side formula of the inference. 

A 

-'-'A 

(END OF EXAMPLE.) 

A, A 
A 

-A A 

EXAMPLE. The second example is the J-theorem: A = (B A C) = ((A = 
B) V (A = C)). A proof of this sentence is shown below. 

B,C,A-->B 
A ->A,B B AC,A ->B A----> 

A = (B A C), A --) B = ----> 

A=(BAC) -> A=B,A=C -- 
A=(BAC) -> (A=B)V(A=C) --->V 

> A==> (BAC ==> A B V A C ==> 
) (( ) ( ==> )) =>. 

Here the (inverted) ---->= rule is applied to a succedent formula: A = B, before 

the antecedent implication: A = (B A C), is reduced with the (inverted) rule 

=> ). The effect of applying the latter rule first is shown below. 

B,C,A )B 
A ---* B B A C, A ---> B 

--> Al A=B, A=C B A C -> A=B, A=C 
A= (BAC) - > A=B, A= C 

A=(BAC) -> (A=B)V(A=C) 
-> A=> (BAC)=((A=B)V(A=:- C)) 

Notice that although we successfully construct a basic sequent in the right-hand 

branch of the derivation as before, the left-hand branch presents a problem. The 

reader should recognise this as a classic case of order dependence amongst the 
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rules. Notice also that this dependence arises in the propositional fragment of 

the calculus. 

The reader should also note the repetition of formula within the sequent 

derivations and the emphasis on connectives. (END OF EXAMPLE.) 

The two examples above serve to illustrate that the cut-free sequent calculus 

presented in Figure 9--1 suffers from the same three classes of redundancy as the 

other calculi we have studied in this thesis, namely: 

notational redundancy, 

relevance, and 

order dependence amongst the rules. 

The first redundancy arises (as usual) from the basic sequent or tableau frame- 

work. The second type of redundancy arises (as usual) from the emphasis on 

connectives. The third, and most interesting redundancy, arises from the seman- 

tics of the connectives themselves. 

The special rules for certain occurrences of the connectives: -, and =, and 

the universal quantifier V, induce one sort of order dependence. A second source 

of order dependence is the interaction between quantifiers of universal and exis- 

tential force arising from the parameter condition on the rules: --> V and 3 --. 
This latter problem is common to all the quantified logics we have studied in 

this thesis. The two sorts of dependencies will, of course, interact. Consequently 

the situation resembles that of quantified modal logics. 
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9.4 A matrix characterisation of validity in J. 

In this section we develop a matrix characterisation of validity for intuitionistic 

logic. We shall keep the details to a minimum as the reader will have seen 

enough of this already to fill in the gaps. We present motivational arguments 

in the following subsection and in short remarks thereafter. This section is not 

intended to be self contained. We rely heavily on definitions given in Parts I 

and II. In the next section we prove the correctness and completeness of the 

characterisation. 

9.4.1 Overview. 

First notice that the sequent calculus for J presented above possesses the sub- 

formula property. Moreover, the basic sequent is common to the classical and 

modal calculi. From these observations we conclude that our standard approach 

for removing the notational and relevance redundancies of sequent calculi are ap- 

plicable in the case of J. We expect, therefore, to formulate the characterisation 

in terms of the positions of formula trees that capture the structure of formulae 

and support the use of structure sharing techniques in practical implementa- 

tions. We also expect the notion of path and connection to be unchanged from 

the classical and modal cases. The validity of a formula will be characterised in 

terms of a spanning set of complementary connections within it. 

The most interesting problem, as we found with modal logics in Part II, is to 

formulate an appropriate notion of complementarity that takes account of the 

order dependence amongst rules. We have noted that the "special" rules induce 

an order dependence in the sequent search space in addition to the expected 

order dependence induced by the quantifier rules. We know how to deal with the 

quantifier problem from our experience with classical logic. The former problem 

seems to present us with a new challenge however. Superficially it resembles the 

order dependence induced by the modal operators in that S-formulae are deleted 
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by the application of certain (inverted) rules. In contrast to the modal case, 

there is not one operator and its dual responsible for this problem. Indeed, it is 

certain occurrences of connectives and quantifiers that contribute to the problem. 

In addition, there appears to be no identified operator by which formulae are 

"preserved" through an application of the special rules; in fact, all antecedent 

formulae are preserved through such an application. 

This latter observation is the clue. We have already developed the notion 

of polarity which allows us to identify antecedent subformulae in terms of the 

structure of the formula whose validity we are testing. Moreover, the only con- 

nectives that move S-formulae from antecedent to succedent, and vice versa, are 

the rules for implication and negation. We must ensure that formula occurrences 

containing the two identified atomic formulae of a connection as subformulae are 

not deleted by the application of a special rule. This can be achieved by ensuring 

that the "ancestors" of the atomic formulae (those formulae of which the atomic 

formulae are subformulae) are antecedent formulae during such applications. To 

do this, we only have need to control the application of the rules dual to the 

special rules, namely: -- , =* ) and V --*. 

The final issue concerns the genericity of quantifiers and antecedent formu- 

lae. Once again we employ a multiplicity to encode the number of "copies" 

of subformulae utilised in a derivation. To support a clean technical solution 

to the duplication of antecedent formulae we alter the definition of a formula 

tree slightly by adding extra positions. It turns out that this extension mirrors 

the fundamental relationship between J and S4. First we review some uniform 

notation. 

9.4.2 Uniform notation. 

Signed formulae are defined as usual. We use Smullyan and Fitting's classifi- 

cation of signed formulae developed for classical logic to capture the structural 

properties of the connectives and quantifiers. The classification is repeated in 
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a al a2 

(A A B,1) (A,1) (B,1) 

(AV B,0) (A,0) (B,0) 

(A = B, 0) (A,1) (B, 0) 

(--A,1) (A, 0) (A, 0) 

(-,A, 0) (A,1) (A,1) 

Q Q1 Q2 

(A A B, 0) (A, 0) (B, 0) 

(A V B,1) (A,1) (B,1) 

(A = B,1) (A, 0) (B,1) 

'Y 'Yo(a) 

(VxA,1) (A[a/x],1) 

(2xA, 0) (A[a/x], 0) 

b bo(a) 

(VxA, 0) 

(3xA,1) 

(A[a/x], 0) 

(A[a/x],1) 

Table 9--1: Uniform notation for signed intuitionistic formulae. 

Table 9-1 for the reader's convenience. As before, we use X, Y, Z to denote 

arbitrary signed formulae. 

In addition, we call a (signed) formula special if it is atomic, or its major con- 

nective/quantifier is either an implication, a negation, or a universal quantifier. 

9.4.3 Formula occurrences. 

The notion of formula tree, positions, labels and polarity are defined roughly as 

before. There is one crucial difference. Let A be an intuitionistic formula and 

X the signed formula (A,0). In the classical and modal cases the formula tree 

for X contained one position for each distinct subformula of A. Here we add 

extra positions for technical convenience. Basically, an extra position is inserted 

between each position that corresponds to a special subformula of A and its 

original parent. The polarity and label of such an extra position is defined to 

be the same as the polarity and label of its child. We erect a classification for 
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these extra positions as follows. If the polarity of such a position is 1, it has 

principal type 0; if its polarity is 0, its principal type is 0. The secondary types 

of these extra positions is obtained from their parents as usual. The child of 

such a position is given secondary type 00 or 00 depending on the principal type 

of its parent. In addition, we classify the root position as having secondary type 

00 (cf. the modal case where the root position was defined to have ir0 secondary 

type). Atomic positions are positions labelled by atomic formulae, but not of 

0 or 0 type. (We need this extra caveat because we defined the label of the 

extra positions, i.e., positions of 0 and -0 type, to be the label of their child. 

Consequently there are non-leaf positions of the formula tree labelled by atomic 

formulae. The caveat ensures that only leaf positions are deemed to be atomic.) 

An example will help. A formula tree for the signed formula: (-'-'A = A, 0), 

is shown in Figure 9-2. The table in the figure contains the appropriate classi- 

fication of positions. 

Once again we shall use the capital Greek letter to denote the set of positions 

of that type in a given formula tree. For the example tree of Figure 9-2, -D0 = 

{a1, a3} and' _ {bo, b2, b4}. We say that the positions of secondary type Oo and 

00 are special positions. 

REMARK. Notice that by the addition of the extra positions we have ensured 

that all special positions have secondary type 00 or 00 depending on their polar- 

ity. This is the motivation for the addition of these positions. In the next section 

we define a multiplicity to capture the genericity of antecedent formulae using 

this classification. In following sections, we use this property to define the notion 

of a prefix. Finally, when we come to prove the correctness and completeness of 

the characterisation, we shall see how the addition of this structure has semantic 

significance. (END OF REMARK.) 

9.4.4 Multiplicities. 

Since the logic is quantified we use a first-order multiplicity, µg, to encode the 

number of distinct copies of subformulae quantified by a quantifier of universal 
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bo 

1 

ao 

--A A bl b4 

,l 1 1 

-'-,A A al a4 

1 

-IA 

1 

I 
b2 

1 

a3 

k pol(k) lab(k) Ptype(k) Stype(k) 

bo 0 -,A* A 0 Po 

ao 0 -,A = A a 00 

bl 1 -i-iA 0 a, 

al 1 -'-'A a 00 

b2 0 -IA 0 al 

a2 0 -IA a 00 

b3 1 A qS al 

a3 1 A - qSo 

b4 0 A a2 

a4 0 A - 00 

Figure 9-2: Formula tree for signed formula: (-'-'A = A, 0). 
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force (ry type) are being utilised in the derivation. Such a multiplicity is a 

function from ro to the natural numbers as before. 

We define the notion of an intuitionistic multiplicity as a function from 'Do 

to the natural numbers. Notice that the sets Fo and -,Do are disjoint by virtue 

of the extra positions. An intuitionistic multiplicity, z j, encodes the number 

of copies of antecedent formulae utilised in a derivation. As in the modal case, 

a multiplicity for a signed formula X is the union of both a first-order and 

intuitionistic multiplicity. We shall again use it, possibly subscripted, to denote 

(combined) multiplicities. 

The indexed formula tree for the indexed formula Xµ is formed from indexed 

positions as in the classical and modal cases. The notions of labels, polarity and 

tree ordering, are extended to indexed positions in the usual way. (Recall that 

the labels of indexed positions contain positions in place of quantified variables.) 

Indexed positions, k", inherit the types of their underlying (unindexed) compo- 

nents as before. Once again we shall use u, v, possibly subscripted to denote 

indexed positions when we are not interested in their indices. 

IMPORTANT NOTATIONAL POINT. Once more we warn the reader that we 

shall systematically abuse our notation and use the names of types to denote 

arbitrary (un)indexed positions of that type within formal definitions such as 

the definition of the notion of path in the next subsection. In particular, if we 

say: "if s, 0' is a path..." we mean that "if s, u is a path, and Ptype(u) = 0,..." 
Furthermore, in this context we shall use 400 to denote the child of u. Similar 

abuses are extended to the other types. We shall include indices explicitly where 

necessary. (END OF POINT.) 

9.4.5 Paths and connections. 

The definition of paths through an indexed formula is an extension of the defini- 

tion for classical logic to take account of the two new types of position. Let Xµ 

be an indexed signed formula. A path through X'S` is a subset of the positions of 

its formula tree defined below. We shall again use s and t, possibly subscripted, 
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to denote paths, and once more adopt the convention that s, u denotes the path 

s U {u}. The set of paths through Xµ is the smallest set such that: 

1. { ko } is a path, where ko is the root position of the formula tree for Xµ; 

2. if s, a" is a path, so is (s \ {a"}), alm, a2"; 

3. if s, Q' is a path, so are (s \ {Q"}), Qllc and (s \ {/"}), 02'; 

4. if s, ry" is a path, so is s, Yo'' for any j, 1 < j < AQ bo); 

5. if s, 8" is a path, so is 
(s \ {5"}), 80". 

6. if s, Or is a path, so is s, Oo'', for any j, 1 < j < Ai(q$o); 

7. if s, 0" is a path, so is (s \ {',}),',o'`. 

REMARK. Notice that the 0 positions act in a similar way to the generative 

ry positions. 

A more striking similarity can be seen between the clauses for and 0 and 

the clauses given for v and ir in Chapter 6. Reading v for 0, ir for and um for 

Uj, renders the two definitions of path identical. This is not a coincidence, as 

we shall see in §9.5. (END OF REMARK.) 

For a path s through Xµ, the notions 

S (s) : the set of positions associated with the path s; and its dual, 

D(s): those positions "reachable" by further path reductions from s, 

are defined as for classical logic. Atomic paths are also defined as in classical 

logic and idealisable modal logics, namely those paths, s, for which D (s) = 0. 

A connection in an (indexed) formula, as before, is a subpath of a path 

through the formula consisting of two atomic positions of different polarities, 

but labelled by an atomic formula with the same predicate symbol. 
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9.4.6 Complementarity. 

We now come to the crucial issue, namely, characterising when it is that a 

connection can be deemed complementary in J, and hence correspond to an 

instance of the basic sequent. We follow the pattern established for modal logics. 

Let A be an intuitionistic formula, X the signed modal formula (A, 0) and µ 

a multiplicity for X. The following definitions are given for a particular indexed 

formula tree for Xµ. 

Let TT(µ) denote the union of 4'0 and TO. (cf. TQ(µ) and TM(a).) We 

associate with each position u of the formula tree a sequence of positions, pre(u), 

called a prefix, in exactly the same way as was done for modal logic in Part II. 

That is, if ul « u2 « . . « un < u, 1 < n, are those elements of TT (µ) that 

dominate u in the formula tree, then 

pre(u) = u1u2...un. 

The prefix of a position encodes the context of that position within the formula 

tree with respect to the special positions. 

Let us update the example. An indexed formula tree for the signed formula: 

(-,A = A, 0), based on the unindexed formula tree of Figure 9-2 is shown in 

Figure 9-3. The multiplicity is constant for all -yo and Oo type positions, and 

equal to 1. The prefixes of the positions are also shown in the table. Notice 

that we have distinguished the 00 type positions from the others by means of an 

overbar. 

The final step is to define complementarity for connections in terms of the 

prefixes of the atomic positions that comprise them. In fact the definition is 

exactly the same as that given for cumulative domain S4 in Part II, with Tj(µ) 

playing the role of TM(µ). We repeat the definition for the reader's convenience. 

Accessibility on prefixes. The J-accessibility relation, Ro, on Tj(p)* is de- 

fined to be the smallest relation such that: for p, q E TJ(A)*, p Ro q just in case: 

either 
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bo 

1 

ao 

-,-,A = A bl b4 

.l 1 1 

-,A A 

1 

-,A 

1 

al a4 

1 

b 
2l 

1 

A a22 

1 

b 
3l 

1 

all 
3 

u pol(u) lab(u) pre(u) Ptype(u) Stype(u) 

bo 0 -,-,A A bo V 00 

ao 0 -,-,A = A boao a 00 

bl 1 -'-'A boao al 
al 1 -, -,A boaoai a 00 

b2 0 -,A boaoai al 

a2 0 -,A boaoaia2 a o 

bg 1 A boaoaia2 al 
ag' 1 A boaoalaiasl - 00 

b4 0 A boao a2 

a4 0 A boaoa4 - to 

Figure 9-3: Indexed formula tree for (-'-,A = A, 0)- 
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(a) q = pu, where u E Tj (it), or 

(b) q = p, or 

(c) p -< q. 

As with S4, this can be shortened to: 

pRoq if p -<q. 

Intuitionistic substitutions. An intuitionistic substitution is a mapping QJ 

from -I)o(µ) to Tj(µ)*. It induces a relation Ej and -'j on Tj(µ) X Tj(µ) in the 

usual way (see Chapter 6, §6.2.4.1). 

First-order substitutions. A first-order substitution is a mapping o , from 

ro(it) to TQ(it) U C, where C is the set of constants in the formula being tested 

for validity. It induces a relation EQ and -Q on TQ (µ) x TQ (µ) in the usual way. 

J-Admissible substitutions. A combined substitution is a pair, (aj, o ), 

consisting of an intuitionistic substitution and a first-order substitution. It is 

J-admissible provided: 

1. o j respects the J-accessibility relation. 

2. d = (« U Ej U EQ)+ is irreflexive. 

3. If vQ (u) = v, then either: 

(a) v# (pre(y)) = cr (pre(u)); or 

(b) vj (pre(v)) Ro v (pre(u)). 

(This latter condition can be simplified to: 

QJ (Pre(v)) v (pTe(u))) 

In the above conditions, aj indicates the homomorphic extension of o j to Tj(it)*. 
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Complementarity. A connection { u, v } is said to be cr-complementary just 

in case: 

1. aj (pre(u)) = u (pre(y)), and 

2. ae(lab(u)) = ae(lab(v)). 

The reader can check that the above definitions are identical to those given in 

Chapter 6 for cumulative domain S4. In the next section we prove the theorem: 

THEOREM 9.1 An intuitionistic formula A is J-valid if and only if there is a 

multiplicity, it, for the signed formula (A, 0), a J-admissible combined substitu- 

tion, a, and a set of cr-complementary connections that span (A, 0)µ. 

We shall end this section with two examples. 

EXAMPLE. Consider the indexed formula tree for (--,A = A, 0) shown in 

Figure 9-3. There is only one atomic path through the formula and it contains 

both atomic positions and and a4. These positions form a connection. The prefix 

of the former is boaoaia2a31, the prefix of the latter is boaoa4. We can compute 

J-admissible substitutions using the same unification method as was suggested 

for use in S4. The prefixes cannot be unified since boaoa4 is "ground" and does 

not contain the "ground" position a2. The connection is not J-complementary. 

From the non-complementary atomic path we can construct a model in which 

the formula fails to be forced. We leave the details to the reader. (END OF 

EXAMPLE.) 

EXAMPLE. In the second example we prove the J-theorem: A = (B A C) = 
((A = B) V (A = C)). An indexed formula tree for the signed formula: 

(A = (B A C) = ((A = B) v (A = C)), 0) 

is shown in Figure 9-4. We have taken a constant multiplicity of 1. Notice that 

we have only included the significant positions in the table. 

There are two atomic paths through this formula, the atomic elements of 

which can be seen if the formula is displayed in matrix form; i. e., the components 
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bo 

i 
ao 

A = (B A C) = ((A = B) V (A = C)) 

A =* (B A C) (A =* B) V (A =* C) 

b1 a6 

1 a1 b7 blo 

A BAC A= B A= C 

B C A B A C 

b2 a3 a7 alo 

d \ /\ 
b5 bII8 bg b11 b12 

a51 
a8 ag all a12 

U po1(u) lab(u) pre(u) Ptype(u) Stype(u) 

bo 0 A = (B A C) ((A = B) V (A = C)) bo 0 'o 
ao 0 A (B A C) = ((A = B) V (A = C)) boao cx 00 

a1 1 A = (B A C) boaoai 00 

a2 0 A boaoaia2 - 00 

al 1 B A C boaoai U 82 

all 1 B b0aoaiall 00 

al l 5 1 C boaoaiall 
5 - 00 

a6 0 (A = B) V (A = C) boao a cx2 

a7 0 A =* B boaoa7 cx 00 

a8 1 A boaoa7a8 - 00 

a9 0 B boaoa7ag - 
'+ b0 

alo 0 A = C boaoalo a 00 

ail 1 A boaoa10ai1 - 00 

a12 0 C boaoa1oa12 - 00 

= ((A = B) (A z* C) ) 

Figure 9-4: Indexed formula tree for second example. 
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of a type subformulae are placed horizontally on the page, and the components 

of 6 type subformulae are placed vertically on the page. The resulting matrix is 

also shown in Figure 9-4. 

Choose an element from the first column, say a2, representing the occurrence 

of A in the implication A = (BAC). Search for an atomic position with opposite 

polarity, but the same predicate symbol in the atomic paths that contain a2. 

There is a choice: either a8 or ail. Since these two positions are elements of 

both atomic paths it doesn't matter which we choose (in this instance). Choose 

the first: a8. The prefix of a2 is boaoaia2, and the prefix of a8 is boaoa7a8. 

They are identified by the substitution: aj(ai) = a7 and aj(a8) = a2. Provided 

this substitution is J-admissible we have only to find a connection within the 

remaining atomic path. 

Choose an element from the first column contained in the other path. We 

have a choice, either a41 or a51. We choose the first possibility (and come back to 

consider the second later). Having chosen a41 there is no choice for a potential 

complementary position, the only candidate is a9. The prefix of a4 is boaoai a41, 

but under the current intuitionistic substitution becomes boaoa7a41. The prefix 

of a9 is boaoa7a9. The two can be unified by extending the current substitution 

with aj (a41) = a9. 

Both paths contain one of the two connections: {a2, a8} and {a41, a9}. The 

reduction ordering induced by the substitution is shown in Figure 9-5. Notice 

that it is acyclic. The other conditions are easy to check and we leave the details 

to the reader. Assuming the correctness of the characterisation, the formula is 

valid. These two connections correspond to the basic sequents in the sequent 

proof of this formula given in §9.3. Notice how the reduction ordering captures 

the constraint we discussed there: that the succedent formula A = B be reduced 

before the antecedent formula A = (B A C). In terms of positions, a7 must be 

reduced before ai. 

Recall that at the second stage there was a choice between all and a" 
We chose the former. Suppose we had chosen the latter. The prefix of ab1 

is boaoaiabl, which under the current substitution becomes baaoa7`abl. The only 
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bo 

ao 

bl a6 

ai 
K b7 bio 

41 
i l b2 a3 a7 a10 

a2 b4 b5 b8 b9 

all i 

a4 a5 a8 a9 a12 

Figure 9-5: Reduction ordering for connections. 
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possible choice for the complement is a12. The prefix of this position is boaoaloa12 

The two prefixes cannot therefore be unified. This represents the fact that 

whichever of the two succedent implications we reduce, the special rule -r= 
causes the deletion of the other. The atomic formulae in the basic sequents of any 

proof of this formula must involve atoms from one or other of the implications, 

but not both. (END OF EXAMPLE.) 

9.5 Correctness and completeness. 

In this section we prove the correctness and completeness of the characterisation 

of J-validity developed above. We do not prove Theorem 9.1 from first principles. 

Instead we utilise an embedding of J in cumulative domain S4. 

One way of seeing the relationship with modal ideas is to reformulate the 

semantic clauses for the intuitionistic forcing relation given in the definition of a 

J-model in §9.2. Notice that the "modal" clauses are those for atomic formulae, 

negation, implication and universal quantification: 

0. For A atomic, w ((- A and w R w' implies w'11- A. 

3. w ((- A B if for all w' E G, such that w R w', either w' ((-/ A or 

w' B. 

4. w -'A 1ff for all w' E G, such that w R w', WI A. 

5. w ((- VxA if for all w' E G, such that w R w', and all c E D(w'), w' ((- 

A[c/x]. 

Compare these clauses with the semantic clause for the modal operator from 

Part II: 

w((- Aiffforallw'EG,suchthatwRw',w'11-A. 

If we apply this clause to the formula -,A within a modal logic we obtain: 
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w"- D-Aiffforallw'EG,such that wRw',w'IF--A. 

Applying the classical/modal clause for negation, the above is equivalent to: 

w 11- El -A if for all w' e G, such that w R w', w' 11-/ A, 

which is reminiscent of the intuitionistic clause for negation. A similar analysis 

can be carried out for the other "modal" clauses of the intuitionistic defini- 

tion. We leave the details to the reader. In all cases the intuitionistic connec- 

tive/quantifier resembles its classical counterpart provided we preface it with 

the modal operator 0. Given, the fact that a J-frame is identical to a cumula- 

tive domain S4-frame we might expect that there is a fundamental relationship 

between cumulative domain S4 and J. 

The relationship was identified by Godel in [God69]. He showed that the set 

of intuitionistic formulae could be embedded in the set of modal formulae by a 

mapping 3 such that: 

THEOREM 9.2 (GODEL) A formula of intuitionistic logic, A, is J-valid if and 

only if F(A) is S4-valid. 

We shall use a modification of the embedding taken from Fitting [Fit83]. It is 

exactly as outlined above with reference to the semantic clauses: 

0. F(A) = D A, for atomic A. 

1. F(A A B) = F(A) A F(B). 

2. Y_ (A V B) = F(A) V Y_ (B). 

= F(B)). 3. Y_ (A = B) = D (7 (A) 

4. ,F(-,A) = D F(A). 

5. F(VxA) = DVxF(A). 

6. F(RxA) _ RxF(A). 
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Let A be an intuitionistic formula and B be a modal formula. Write I-j A 

for the relation: there is a multiplicity, A, for (A, 0), a J-admissible combined 

substitution, or, and a set, U, of or-complementary connections that span (A, 0)'-. 

Similarly, write F-S4 B for the relation: there is a multiplicity, /Z', for (B, 0), 

a S4-admissible combined substitution, v', and a set, U', of or-complementary 

connections that span (B, 0)". Write =a A for A is J-valid and hs4 B for B is 

S4-valid. 

Given the theorem: 

THEOREM 9.3 F-J A if and only if f_S4 J(A). 

we are done since: 

F-JA if _S4 J(A) 

if =S4 J(A) 

if =JA. 

The first step is by Theorem 9.3, the second by the correctness and completeness 

of the matrix characterisation of validity for S4 proved in Part II, and the final 

step by Theorem 9.2. 

We do not so much as prove Theorem 9.3, as invite the reader to notice 

that under the definitions given in §9.4, the intuitionistic formula tree for an 

intuitionistic formula A is isomorphic to the modal formula tree for the modal 

formula J(A). The isomorphism identifies 0 and V positions with v and it 

positions respectively. Under this isomorphism we have: 

The set of J-paths through (A, 0)' are exactly the set of S4-paths through 

(J(A),0)µ. 

The J-atomic positions of (A, 0)' are exactly the S4-atomic positions of 

(1(A), 0)µ. 

The J-prefix of a position of (A, 0)' is exactly the S4-prefix of the corre- 

sponding position of (J(A), 0)' under the isomorphism. 
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A J-admissible mapping is S4-admissible, and vice versa. 

For example, 

jr (-,-,A = A) = (0-,-,0A = A). 

The embedding J introduces an "extra" position as the parent of each position 

corresponding to a special subformula of the intuitionistic formula, exactly as 

we did in §9.4. 

9.6 Related work. 

There have been few attempts to automate proof search in intuitionistic logic. 

There are of course standard methods such as tableau [Fit83] and sequent calculi 

[G691, but we have already shown that connective-based search methods are 

quite redundant. Farinas-del-Cerro [Far86] cites a forthcoming thesis in which 

his method for modal logics is used to automate proof search in propositional 

intuitionistic logic via a modal translation (like ours). We reviewed his clausal 

resolution technique in Chapter 8 and concluded that it was quite redundant and 

doesn't extend to the full modal language. Presumably this is why his method 

only extends to the propositional fragment of intuitionistic logic. 

Intuitionistic logic is being used within the Logic Programming community, 

eg., [Gab85,McC86]. The proof methods used are tailored to give a programming 

language flavour. None of these authors consider the full first-order language and 

the proof procedures of Gabbay and McCarty are based on tableaux. 

The author is currently unaware of any proposal in the literature for a proof 

procedure for full first-order intuitionistic logic which approaches the efficiency 

of the one outlined in this chapter. We stress: the standard path-checking al- 

gorithms for classical logic are rendered applicable to intuitionistic logic without 

change by the matrix method developed here. A small cost is paid in the in- 

creased complexity of the complementarity test. 
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9.7 Summary. 

In this chapter we have defined a matrix characterisation of validity for first- 

order intuitionistic logic, and proved it correct and complete. We developed the 

characterisation in the (by now) standard fashion of analysing the properties of 

a cut-free sequent calculus for the logic. We have shown that the efficiency of 

proof procedures based on this characterisation compares favourably with other 

proof methods suggested in the literature for automating proof search in this 

logic. 

The particular characterisation presented is probably not optimal. The for- 

mulation was partially led by the desire for a simple correctness and completeness 

proof via an embedding of J in S4. The particular embedding used was taken 

from Fitting [Fit83]. There are, however, other embeddings which may lead to 

less redundant characterisations by introducing fewer "extra" positions in certain 

circumstances. Such issues have not been explored by the author to-date. 

It can be argued that the characterisation developed above is equivalent to 

first embedding an intuitionistic formula into the modal language and then using 

the matrix characterisation for cumulative domain S4 on the result. This is true. 

We have preferred to perform the embedding in the metatheory, rather than 

the object language, because, as with modal logic, the metatheoretic approach 

gives us the opportunity to refine the characterisation by "building-in" special 

techniques based on properties of the logic. We mentioned above that there 

are a number of embeddings of J in S4. We would hope to be able to take 

advantage of the best features of all of them in the same characterisation, possibly 

dynamically. We may then have to work harder to prove the correctness and 

completeness. This opportunity is denied to us by the object language translation 

approach. We have not performed such studies to date, but believe that the 

presentation of this chapter, with the motivation provided by the analysis of the 

sequent calculus, will serve as a good starting point for such studies. 
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Chapter 10 

Conclusions. 

10.1 Summary of results. 

The research reported in this thesis concerned the automation of proof search 

within mathematical logics. It lies in the area of automated theorem proving 

(ATP). In this context, our main problem was to formulate efficient methods for 

automated proof search within an important class of non-classical logics com- 

prising: 

the modal logics: K, K4, D, D4, T, S4 and S5, and 

intuitionistic logic. 

These logics, and their derivatives, are in widespread use within Computing 

Science and Artificial Intelligence, mostly in applications that require efficient 

methods of proof search. 

10.1.1 Background for the solution. 

In Part I of this thesis we presented a theoretical reconstruction of Bibel's Con- 

nection Calculus [Bib82a]: a matrix characterisation of validity for first-order 

classical logic. Our main contribution was the decomposition of the method into 
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a collection of theoretically motivated techniques for overcoming certain types 

of redundancy within the search spaces induced by sequent calculi. 

Three classes of redundancy were identified: 

Notational redundancy: considerable duplication of the same information. 

Relevance: the inclusion in the search space of branches that cannot lead 

to a proof. 

Order dependence: the need to explore alternative branches in the search 

space that differ only in the order in which certain sequent rules are applied. 

10.1.1.1 Techniques for removing notational redundancy. 

The techniques isolated for the removal of notational redundancies involved a 

special use of the formation tree of a formula and an indexing technique for 

capturing the genericity of the quantifiers. This enables the representation of 

derivations in terms of the syntactic structure of the formula being tested for va- 

lidity. The whole scheme is a theoretically motivated reconstruction of structure 

sharing [BM72]. We described how its application within sequent-based search 

relies on the system possessing the subformula property. 

The isolation of this technique from the overall matrix framework supports 

its use to remove notational redundancies in the implementation of sequent or 

tableau-based proof systems for any logic, provided the proof system possesses 

the subformula property. 

10.1.1.2 Techniques for removing redundancies of relevance. 

The techniques isolated for the removal of problems of relevance were the no- 

tions of path, polarity and connection. It is the notion of path that makes the 

label "matrix" appropriate for the final characterisation and gives proof meth- 

ods based on the characterisation their path-checking flavour. A path through 
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a formula, A, is defined so as to represent a potential leaf of a sequent deriva- 

tion of the endsequent: --> A. The set of paths through A represents the set 

of potential leaves of any sequent derivation of -> A (given a bound on the 

number of duplications of subformulae of A). A connection in the formula is a 

representation of the distinguished atomic S-formulae within a (potential) basic 

sequent. It consists of two atomic formula occurrences with the same predicate 

symbol and of differing polarities (i.e., a positive and a negative occurrence of 

a given proposition). If a path contains a connection it has the potential to 

represent a closed leaf of a derivation. To overcome problems of relevance we 

search for connections directly rather than adopt the standard connective-based 

approach. That is, we search directly amongst the potentially closed leaves for 

a subset suitable for the formation of a proof of the endsequent. 

The effect of this is to replace an indirect search for basic sequents with a 

directed one. This eliminates from the (direct) matrix search space those parts 

of the (indirect) sequent search space that are irrelevant for the construction 

of basic sequents and hence proofs. If every path through A contains one of a 

given set of connections the set is said to span the formula. The existence of 

a spanning set of connections for A entails the existence of a sequent proof of 

A (and vice versa), and therefore the classical validity of A (and vice versa). 

The notion of a connection arises from the nature of the basic sequent of the 

calculus: 

F, A --+ A, A 

which in turn arises from the reflexivity of the consequence relation for the logic: 

A = A. Such a property is practically taken to be a defining characteristic of a 

consequence relation ("A follows from A") and hence is very likely to hold for 

any logic of interest. 

10.1.1.3 Techniques for the removal of order dependence. 

For first-order logic the existence of a spanning set of connections is not sufficient 

to characterise validity since the quantifier rules induce constraints on the way in 
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which derivations are constructed. The sequents resulting from the application of 

the same two rules to the same two (indpendent) S-formulae can differ depending 

on the order in which the rules are applied. We called this a problem of the "order 

dependence" of certain sequent rules. 

The techniques isolated for the removal of this problem were the notions of 

complementarity and the admissibility of mappings between (constructs repre- 

senting) certain subformulae of the endsequent ---> A. The subformulae of sig- 

nificance are the side-formulae of the order dependent rules of the calculus. For 

classical logic these were shown to be the immediate subformulae of quantified 

subformulae of A. The mapping represents the coherence of the choice of pa- 

rameters for the free variables of (free) atomic subformulae in a derivation. Such 

coherence is required so that the two atomic components of a connection can be 

construed as the distinguished antecedent and succedent formulae of a basic se- 

quent (i.e., they must be identical as formulae). We showed how such a mapping 

induces a reduction ordering: a transitive relation over subformulae of the end- 

sequent that we are proving. The reduction ordering represents the constraints 

on the order in which immediate subformulae of quantified (sub) formulae may 

be introduced as S-formulae into a derivation. The constraints arise from the 

provisos on the two "existential" rules: - --> V and 3 -->. Admissible mappings 

are those whose reduction orderings are irreflexive. 

A connection is defined to be complementary under an admissible mapping 

just in case its atomic components are identical under the mapping. The ad- 

missibility condition ensures that at least one sequent derivation exists in which 

the required coherence in the choice of parameters is realised so that the current 

set of connections form the closed leaves of the derivation. A spanning set of 

connections in A, complementary under some such admissible mapping, thus 

entails the existence of a sequent proof of --* A (and vice versa), and hence the 

(first-order) validity of A (and vice versa). Robinson's unification algorithm (or 

more efficient refinements of it) can be used to compute the appropriate map- 

pings. Unification is used to ensure the existence of a correct order of sequent 

rule applications to produce a proof of the formula. No single concrete order 
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need be preferred. This technique removes the order dependence, induced in the 

sequent search space by the quantifier rules, from the matrix search space. 

The definitions of admissibility and of complementarity depend on the nature 

of the sequent system. 

10.1.1.4 Conclusions. 

Whilst the basic nature of this matrix characterisation of validity in classical logic 

is due to Bibel, we believe our technical formulation of the individual techniques 

to be quite significant. For example, the view we have developed of the utility 

of unification for overcoming problems of order dependence permits the use of 

unification in new ways for the automation of proof search in mathematical logics. 

A good indication of this potential is provided by our treatment of modal and 

intuitionistic logics summarised below. We utilised Smullyan's uniform notation 

[Smu68] extensively and reformulated the notions of multiplicity and path to 

relate them more closely with sequent-based ideas. 

In summary: our contribution has been to identify powerful techniques within 

Bibel's Connection Calculus [Bib80,Bib82c] for classical logic for improving the 

efficiency of sequent-based proof procedures in general. We have abstracted these 

techniques from a dependence on the details of classical logic by a proof-theoretic 

analysis of their effect on the search space induced by a cut-free sequent calculus 

for that logic. 

Once identified, these techniques can be applied in new ways when and where 

their prerequisite conditions apply. In particular we used them in this thesis to 

develop efficient methods of proof search in non-classical logics. The results of 

these applications are summarised in the next two subsections. 

10.1.2 Matrix proof methods for modal logics. 

In Part II of the thesis we developed matrix characterisations of validity for 

the modal logics K, K4, D, D4, T, S4 and S5 in their varying, cumulative and 
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constant domain versions, a total of 20 distinct first-order modal logics in all. 

(The constant and cumulative domain versions of S5 are equivalent.) 

The solution is motivated by a discussion of redundancies in the proof search 

space induced by cut-free sequent calculi for the modal logics. We note that cut- 

free sequent systems do not exist for all of the logics considered. This fact does 

not present a problem in the uniform application of techniques for the removal 

of the redundancies identified. 

By judicious use of the techniques isolated in Part I of this thesis and sum- 

marised above, we succeeded in retaining the basic structure of the matrix char- 

acterisation for classical logic. Validity checking is reduced to a process of path- 

checking and complementarity tests for connections. As a consequence, search 

methods developed for use with the classical matrix characterisation (eg., [Bib77, 

Bib82b,HB82]) are applicable without change to the modal logics. We have thus 

succeeded in extending one of the most efficient proof methods developed for 

classical logic (see [Bib82b]) to this important class of non-classical logics with- 

out compromising the basic computational properties of the method. 

The main technical problem solved in order to achieve these results was the 

removal of problems of order dependence induced by the modal operators. In 

terms of the techniques summarised in the previous section the subformulae 

that are of significance are the side formulae of the modal rules, i.e., the imme- 

diate subformulae of modally quantified subformulae of the endsequent: --> A. 

We developed representations of these subformulae using the notion of a prefix 

adapted from Fitting's systems of tableaux [Fit72,Fit83] and Kanger's "spot- 

ted" sequent system for S5 [Kan57]. Each atomic subformula of A receives a 

prefix representing the modal context in which it appears. Mappings are defined 

over these prefixes. Connections are defined to be complementary just when 

an admissible mapping identifies the prefixes of the atomic formulae of the con- 

nection. Such a mapping induces a reduction ordering in the same manner as 

the corresponding mapping in the classical case summarised above. Once again 

admissible mappings can be computed by means of unification algorithms. We 

return to this point shortly. 
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The definition of admissibility is the key component of the treatment. It 

comprises two central conditions: the first (and logic-dependent) condition stip- 

ulates that the mapping respects a so-called accessibility relation on prefixes. 

This relation reflects basic properties of the semantics of the logic. The second 

(and logic-independent) condition stipulates that the reduction ordering induced 

by the mapping is irreflexive. These definitions are so arranged that the exis- 

tence of a spanning set of complementary connections ensures the validity of A 

in the particular modal logic (and vice versa). 

10.1.2.1 First-order modal logics. 

The combination of the solution to specifically modal problems summarised 

above and the solution to the problems concerning quantifiers is straightforward. 

The first-order and modal mappings are independent. Both induce a reduction 

ordering. The reduction ordering for the quantified modal systems is the union 

(and transitive closure) of the two separate orderings. 

Constant domains. In the simplest case of the constant domain variants 

(where there is no semantic correlation between modality and existence) the 

logic-dependent condition on the modal mapping is retained. 

Varying and cumulative domains. For these variants, where there is a 

correlation between modality and existence, the modal and first-order mappings 

interact. The first-order mapping must respect the modal mapping in a complex 

way. Positions identified by the first-order mapping must have identical prefixes 

(varying domains), or prefixes which are accessible from each other (cumulative 

domains), under the modal mapping. The essence of this relationship is taken 

from Fitting[Fit83] and his prefixed tableau systems. We adapt it to the matrix 

systems and use unification to remove the order dependence inherent in his 

tableau systems. 
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10.1.2.2 The use of unification. 

We mentioned that unification algorithms could be used to compute the modal 

mappings. In fact, we are interested in the computation of mappings that sat- 

isfy the logic-dependent condition, i.e., they respect the accessibility relation on 

prefixes for a given logic. We demonstrated that such mappings can be calcu- 

lated by means of standard unification algorithms. The most complex algorithm 

needed is a restricted version of string unification [Sie75]. 

10.1.2.3 Decision procedures. 

We also outline how the theoretical basis of the matrix characterisations can be 

used to formulate efficient decision procedures for the propositional fragments 

of the modal logics. We develop such a procedure for S5 explicitly and indicate 

how it may be generalised to the other modal logics considered. 

10.1.2.4 Related work. 

Finally, we use the analytic tools developed in this thesis to classify the redun- 

dancies in the search spaces of the major proposals in the literature for efficient 

proof systems for similar classes of modal logic considered here. We identify 

three types of system: 

Proof systems based on sequent/tableau calculi. 

Systems based on either clausal or non-clausal resolution. 

Hybrid proof systems based on a mixture of sequent/tableau ideas and 

resolution. 

To summarise our findings: 

The spaces generated by sequent/tableau proof systems, in general contain 

all three types of redundancy: notational, relevance and order dependence. 
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The spaces generated by the resolution and hybrid tableau/resolution proof 

systems: 

- can be extended to utilise structure sharing methods to overcome the 

notational problems; 

- overcome the relevance problem by means of connections, 

- overcome the order problems of the quantifiers using unification, but 

- fail to deal with the order problems associated with modalities. 

Additionally, none of the resolution proposals capture the full range of 

modal logics treated here, though in some cases the systems can be ex- 

tended. 

We show that each of the proposals reviewed provide a more redundant basis for 

automated proof search than the modal matrix characterisations summarised 

above. None of the proposals overcome the order dependence of the modal 

rules, or more abstractly, the interaction of modalities. We point to our use of 

unification to solve this problem as a central contribution. 

10.1.2.5 Conclusions. 

We have succeeded in extending one of the most efficient proof methods de- 

veloped for classical logic to an important class of non-classical logics without 

compromising the basic computational properties of the method. The solution 

is both effective and comprehensive. We believe these results to be a major 

contribution to the field of automated theorem proving. 

10.1.3 A matrix proof method for intuitionistic logic. 

The modal logics treated in this thesis are extensions of classical logic. That is 

to say, they contain first-order classical logic as a subsystem. In Part III of the 

thesis we reinforced the results of Parts I and II that are summarised above by 
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developing a matrix characterisation of validity for first-order intuitionistic logic. 

Intuitionistic logic is a subsystem of classical logic, and is perhaps the archetypal 

"non-classical" logic. This result achieves two objectives: 

1. It provides an efficient proof method for what is a logic of considerable 

current interest. 

2. It provides further evidence of the power of the approach developed in this 

thesis for the efficient automation of proof search in non-classical logics. 

We obtained this result in our standard way. By analysing the redundancies 

within the search space induced by a standard cut-free sequent calculus for the 

logic we were able to adapt the techniques isolated in Part I to their removal. As 

was the case for the modal logics, the main technical problem was the removal 

of problems of order dependence. This time it was the sentential connectives 

rather than additional operators that werejroat cause of the problem. We 

adopted a prefix technique again inspired by an embedding of intuitionistic logic 

in S4 modal logic. The correctness and completeness of the characterisation was 

established by this root also. 

10.2 Implications and Future work. 

We have succeeded in our goal of formulating efficient methods for automated 

proof search within an important class of non-classical logics. The solution is 

both comprehensive and effective. We have compared our methods with oth- 

ers proposed in the literature and demonstrated the advantages of the matrix 

methods. 

In developing this solution we have achieved what could be a more signifi- 

cant result. We have isolated powerful techniques for improving the efficiency of 

sequent-based proof procedures in general by the analysis of an existing matrix 

proof method for classical logic. These techniques can be applied individually 

when and where the prerequisite conditions apply. In particular they can be used 
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to develop efficient methods of proof search in other non-classical logics. We be- 

lieve these results in themselves to be a significant contribution to understanding 

in the field of Automated Theorem Proving. 

In this penultimate section we evaluate what we have achieved with an eye 

to directions for future research. 

10.2.1 A more abstract approach. 

We argued in the introduction to this thesis that non-classical logics are the 

rule rather than the exception. Representation and reasoning within a domain 

requires a language with a well-defined semantic structure that reflects general 
will 

properties of that domain. As new domains are encountered soAnew logics be 

developed. We believe that in applications in Computing Science and Artificial 

Intelligence involving the use of logic to represent and manipulate information, 

"logic" is a synonym for "general theory." This places a heavy burden on the de- 

signer of proof systems. The day after one's latest success in taming a weird logic 

for application A, someone will suggest that you have a go at their new formal- 

ism for application B. Adhoc solutions may solve individual practical problems 

but they do not yield robust theories with which to tackle new problems. 

Although the central problem addressed in this thesis is the automation of 

particular logics of current interest, we have endeavoured to maintain as abstract 

a view of our solution methods as is technically feasible given our current un- 

derstanding. In Part I of the thesis we managed to abstract certain techniques 

from their original setting (embedded within Bibel's Connection Calculus) and 

give them a certain logic-independent flavour. This level of abstraction was used 

to good effect in Parts II and III. 

We would have liked to have been able to present a single matrix framework 

- a generic Connection Calculus - and then described how to specialise it to 

the logics considered in this thesis. Our understanding is not yet deep enough 

to achieve this level of abstraction. This is a major area for further research. 
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There are a number of themes woven throughout the thesis motivating our 

discussion. We would like to be able to formalise these intuitions. One such 

theme is the correlation between the existence of a cut-free sequent calculus 

for a logic (containing a standard basic sequent and possessing the subformula 

property) with the existence of a matrix characterisation of validity in the logic. 

Is the former a sufficient condition for the latter? A satisfactory treatment of this 

question may be a prerequisite for the formulation of a generic matrix method. 

On the other hand the reliance on proof-theoretic is; iay be slightly mis- 

leading. Notice that we argued explicitly (following Fine [Fin79]) that cut-free 

sequent calculi for S5 and the constant domain variants of the first-order modal 

logics were not feasible. Nevertheless we succeeded in formulating simple matrix 

methods for these logics. The proof-theoretic notions on which we have relied are 

merely visible symptoms of a more abstract structure. We note that all the logics 

considered in this thesis admit a form of Kripke semantics. The formalisation 

of the matrix techniques in terms of the properties of such semantic bases is an 

area of further research we would definitely like to pursue. In [Smu70], Smullyan 

captures commonalities between classical, modal and intuitionistic logics quite 

uniformly in terms of his systems of analytic tableau (equivalent to cut-free se- 

quent systems). This work may provide a suitable starting point for the research 

outlined above. 

The question arises as to how flexible the matrix methods are. Some domains 

will need combinations of logics that deal with different aspects of the domain. 

Are the matrix methods applicable to such hybrid logics? It is quite possible that 

the answer is "no." The matrix methods give a global characterisation of validity 

involving all the connectives/operators/quantifiers of the logic. A certain amount 

of coherence is required. This is usually the case with analytic proof systems 

such as analytic tableau and cut-free sequent calculi, and this property may 

be the key to explaining why such methods support matrix-type refinements. 

The matrix methods will most likely not be applicable to "ill-structured" logics 

where many operators are considered in an adhoc manner. Abadi and Manna's 

322 



axiomatic techniques [AM86a,AM86b] are more suited to these logics, but at a 

cost of efficiency. This should probably be seen as inevitable. 

One further possibility is to try to capture the relationship between the ma- 

trix methods developed here and the results of embeddings in classical logic. 

Prefixes were initially interpreted proof-theoretically, but we resorted to seman- 

tic justifications in the end. In the justifications prefixes were interpreted as the 

names of points in a potential falsifying model. This could be made explicit by 

representing the semantics of the (modal) logic in, say, classical logic. Our use 

of unification would then reduce to a method for dealing with the special theory 

of the accessibility relation for the logic. This is an avenue worth exploring be- 

cause it would enable the use of existing proof procedures for classical logic in 

non-classical logics. 

As a caveat here: we believe that characterising a logic directly can lead to 

many benefits. The decision procedures outlined in Chapter 7 could probably 

not been formulated outwith the matrix framework. We defined the notion of 

an L-Hintikka multiplicity which set effective bounds on the size of the space to 

be searched in order to conclude that a formula is falsifiable. We indicated how 

this result could be extended to the other logics. Some technical work on this 

need to be done. It would also be interesting to define the notion of minimal 

L-Hintikka multiplicities: multiplicities that are provably the smallest possible 

for a given logic. 

Another example of how a detailed analysis of a logic rather than its embed- 

ding in a more general setting such as classical logic can yield dividends is the 

possibility of formulating powerful notions of purity in non-classical logics. We 

remarked on one such possibility in Chapter 7 where the K-conditions on admis- 

sibility rejected a potential connection. There is scope for exploiting the matrix 

characterisations of modal logic by building-in specific modal techniques to the 

improve the standard path-checking algorithms. Modal definitions of purity are 

but one avenue that could be pursued. 

We have already extended the work reported in this thesis by developing a 

matrix characterisation for Ketonen and Weyrauch's Direct Predicate Calculus 
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[KW84]: a decidable subsystem of classical logic defined by removing the con- 

traction rule from a cut-free sequent calculus. This suggests it may be possible 

to capture relevance logics [AB75] which require similar care in the duplication 

of formula in derivations. We have not looked at this question in any detail 

to-date. 

Andrews and his co-workers have developed matrix systems for classical 

higher-order logic (Church's Type Theory) [Mil84,Pfe84].,it would be interesting 

to try to combine their results with the method developed here for first-order 

intuitionistic logic and develop efficient methods of proof search for logics such 

as intuitionistic type theory [Mar82,Con86]. 

10.3 Summary of the thesis. 

The research reported in this thesis is concerned with the automation of proof 

search within mathematical logics. It lies in the area of automated theorem 

proving (ATP). In this context, our main problem was to formulate efficient 

methods for automated proof search within an important class of non-classical 

logics comprising: 

the modal logics: K, K4, D, D4, T, S4 and S5, and 

intuitionistic logic. 

These logics, and their derivatives, are in widespread use within Computing 

Science and Artificial Intelligence, mostly in applications that require efficient 

methods of proof search. 

Our contribution is two-fold, 

We have succeeded in formulating efficient matrix proof methods for the 

target logics, and have therefore solved our main problem. 
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In the pursuit of this solution we have isolated powerful techniques for im- 

proving the efficiency of sequent-based proof procedures in general. These 

techniques can be applied individually when and where the prerequisite 

conditions apply. In particular they can be applied to develop efficient 

methods of proof search in other non-classical logics. 

We believe that this research is an important contribution to the field of auto- 

mated theorem proving. 
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1. INTRODUCTION 

For many years implementations of Robinson's resolution system (Robin- 
son, 1965), and refinements thereof, have been the dominant means of 
automating deduction in first-order classical logic. Recently Bibel (1981), 
and independently Andrews (1981), have developed a more subtle basis for 
deduction in this logic based on the notions of paths and connections. The 
efficiency of proof procedures developed within this framework compares 
very favourably with all common refinements of resolution (Bibel, 1982a). 

More important however is the relationship Bibel's connection calculus 
bears to various techniques based on Gentzen's sequent calculus (Gentzen, 
1969) and in particular its relationship to Beth's method of semantic 
tableaux (Beth, 1959) as modified by Smullyan (1968). Tableau and Gentzen 
systems have become a standard metamathematical tool for the specifica- 
tion and investigation of different logics in both mathematics and computer 
science, e.g. Fitting (1983), Kanger (1957), Nishimura (1983). Indeed, using 
his systems of analytic tableaux, Smullyan (1970) has developed a notion 
of an abstract quantification theory; a unifying framework for many first- 
order logics. 

This paper sets out in some detail the relationship between the connection 
calculus and Smullyan's system; first for (classical) propositional logic 
(§3-§6), and then for a first-order system (§7-§8). The relationship is 

developed by applying a series of transformations to the tableau system to 
derive the major features of the corresponding connection calculus. 

I claim that this analysis forms the basis for a general methodology for 
the efficient automation of first-order logics specified using tableau or 
Gentzen systems. A similar analysis of Andrews' results (Andrews, 1981) 
may lead to an extension of the methodology to higher-order logics. 

The methodology has been used successfully to develop a connection 
calculus for S5 modal logic from Kanger's Gentzen-style system (Kanger, 
1957). A brief description of this enterprise is contained in the penultimate 
section. The full details of the efficient modal proof system thus obtained 
will be reported elsewhere. 

2. PRELIMINARIES 

In the next few sections, while dealing with propositional logic, I shall use 

a language comprising a denumerable number of propositional variables P, 

Q, R,. . . together with the sentential connectives , V , A and D denoting 
negation, disjunction, conjunction and implication respectively. The for- 
mulas X, Y, Z,... of propositional logic are defined as usual. The proposi- 
tions variables will sometimes be referred to as the atomic formulas. 

For the connection calculus, where we require more structure on for- 
mulas, I shall make use of Bibel's notion of a formula-tree. An example 
of the formula-tree for the formula X, of the form ((P V Q) A (P D Q)) J 
Q. is shown in Fig. 1. 
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(kd7) 

(k1.A) (ke,Q) 

' (k 

P 
2 /,\ (k 3.) (4,Q) (k6,P) (k7,Q) 

Figure 1: Formula-tree for ((P V Q) A (P 3 Q)) 3 Q 

W. denotes the set of positions ko - k8 of X. The label Xk of a position 
k E W. is the piece of concrete syntax paired with it. So, for instance, 
Xko = D, and Xk3 = Xk6 = P. The tree-ordering < ., over W,, is the vertical 
partial order in the figure; e.g. ko < xk2, and k4 and k6 are incomparable 
w.r.t. < Henceforth the subscript X will be dropped if no confusion can 
arise. Finally let Xk denote the subformula of X rooted at position k; for 
example, Xk5 = P 3 Q. 

The following eight facts, derived directly from the semantic clauses for 
the sentential connectives, form the basis for both the method of analytic 
tableaux and the connection method. Under any interpretation 

F1. For negation, 
(a) if - Y is false, Y is true, 
(b) if -W Y is true, Y is false. 

F2. For disjunction, 
(a) if Y V Z is false, both Y and Z are false, 
(b) if Y V Z is true, either Y or Z is true. 

F3. For conjunction, 
(a) if Y A Z is false, either Y or Z is false, 
(b) if Y A Z is true, both Y and Z are true. 

F4. For implication, 
(a) if Y 3 Z is false, Y is true and Z is false, 
(b) if Y 3 Z is true, either Y is false or Z is true. 

3. TABLEAUX FOR PROPOSITIONAL LOGIC 

This section contains a review of the basic structures underlying the method 
of analytic tableaux. The definitions that follow are taken, with slight 
modifications, from Smullyan (1968).* 

We begin by defining the notion of a signed formula. 
Definition 3.1: A signed formula is an expression TX or FX, where X is 

an unsigned formula. Informally TX and FX are read `X is true' and `X 
is false' respectively. The conjugate of a signed formula TX is the signed 
formula FX (and vice versa). 

* In fact we use what Smullyan calls `block tableaux' since the relationship these notational 
variants of analytic tableaux bear to the connection calculus and sequent calculi in general is 
quite direct. 
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Definition 3.2: An analytic tableau 3 for a formula X is an ordered 
dyadic tree, whose nodes are sets of occurrences of signed formulas, con- 
structed as follows. 

TO. The tree comprising a single node with [FX) at its root is a tableau 
for X. We call this unique tableau the initial tableau for X. 

T1. 3 is a tableau for X just in case there exists a finite sequence 

(.%,, ... , J n =T) of ordered dyadic trees whose nodes are sets of oc- 

currences of formulas, such that j6-1 is the initial tableau for X and 
for each i < n, 3; is a direct extension of T;. 9 is said to be an ex- 

tension of J,. 

A direct extension of a tableau is an application of one of the following rule 

schemata to an end-point S of one of its branches. 

(S[F--'Y]) (S[FYvZ]) (S[FYAZ]) (S[FYDZ]) 
(S,TY) (S,FY,FZ) (S,FY) I (S,FZ) (S,TY,FZ) 

(S[T--'Y]) (S[TYVZ]) (S[TYAZ]) (S[TYDZ]) 
(S,FY) (S,TY) I (S,TZ) (S,TY,TZ) (S,FY) I (S,TZ) 

Of the two types of rule 

(S[a]) (S[3]) 
(S, al, a2) (S, 3)1(S, 02) 

the first kind should be read: 

- to extend a brach with end-point S containing the formula a, adjoin the 
set S U [a,, a2) as the sole successor of S; 

and the second: 

- to extend a branch with end-point S containing the formula 0, adjoin 
S U 10, and S U 102) as the left and right successors respectively of S. 

The formula a or 0 distinguished in an application of a rule is said to have 
been reduced. 

Informally, the tableau method works by assuming X to be false (FX is 

placed at the root of the tableau) and attempting to show, using the eight 
facts presented in the previous section, that this assumption leads to a 
contradiction. Readers should convince themselves that the reduction rules 
for tableaux described above are merely a syntactic representation of those 
eight facts. The contradictions are the occurrences of two signed formulas 
TY and FY in the same node indicating that, under the assumptions pertain- 
ing for the construction of that branch, Y must be both true and false. The 
different branches arise because of the alternative conclusions possible from 
an assumption, say, that Y V Z is true. We need to show that under either 
possibility (that Y is true, or that Z is true) we get a contradiction. Thus the 
method requires that there is a node containing such a contradiction on 
every branch. This motivates the following definitions. 
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Definition 3.3: An end-point S of a tableau is (atomically) closed just in 
case it contains a signed (atomic) formula and its conjugate, otherwise it is 
open. A tableau is (atomically) closed if the end-points of all its branches 
are (atomically) closed. By an (atomic) proof for a formula X we mean an 
(atomically) closed tableau for X. 

A tableau proof of the tautology shown in figure 1 is displayed in figure 2. 
Definition 3.4: An end-point S of a tableau is said to be complete just in 

case 

F -' YES=TYES 
T-, YES FY E S 

FYvZES = FYES and FZES 
TYVZESTYESor TZES 
FY AZES= FYES or FZES 
TYAZES=TYESand TZES 
FYDZES-TYES and FZES 
TYDZES=FYES or TZES 

A tableau is said to be complete just in case the end-points of all its branches 
are complete. 

A set of signed formulas which in addition to the above conditions does 
not contains a signed atomic formula and its conjugate, is sometimes called 
a Hintikka, or downward saturated set. Such sets are of importance due to 
the following fact proved in Smullyan (1968). 

Fact 3.5: Every Hintikka set is satisf able. In other words, any Hintikka 
set S may be completed to a model Al in which 

if FY E S (resp. TY E S), then Y is false (resp. true) in 41. 

Thus, by definition 
Fact 3.6: Any complete open end-point of any tableau is satisfiable. 
We can obtain a complete tableau by ensuring that every signed formula 

in each end-point has been reduced once. If we manage to construct a 
branch with a complete open end-point S then we are guaranteed the 
existence of a model that satisfies S. In particular, since FX is a member of 
every node of any tableau for X, X must be false in this model. Hence X 
is not a tautology. Consistency follows directly from the eight facts 

{F((PvQ)A (P) Q)) 3 Q} 

{,T(PVQ)A(P)Q),FQ} 

{.,.,FQ,TPvQ,TPDQ} 

I. , FQ,TPvQ,TPDQ,TP} {.,., FQ,TPvQ,TP 3 Q,TQ} 

{.,.,FQ,TPvQ,TP)Q,TP,TQ} {.,.,FQ,TPvQ,TPiQ,TP,FP} 

Figure 2: A tableau proof of ((P V Q)A (P J Q)) J Q 
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presented in the previous section. In conclusion then: 
Theorem 3.7: X is a tautology of (classical) propositional logic if and only 

if every complete tableau for X is (atomically) closed. 
We proceed to investigate the precise relationship between this theorem 

and a modified version of Bibel's connection theorem for propositional 
logic. 

4. POLARITY 

Consider again the reduction rules for tableaux. A moment's reflection 
should suffice to convince the reader that the sign with which a subformula 
of X can appear in any node of any tableau for X is uniquely determined 
by the structure of X. 

This observation may be formalised by associating with each position 
k E W a polarity indicating the sign with which it will appear. 

Definition 4.1: Suppose no E (0, 1) . For a formula X, we define the 
polarity p (k) E (0,1) of a position k E W (with respect to no) inductively 
according to the structure of X. 

POO. If Xk = X, ie. k = ko the root position of X, 
p (k) = no 

Pot. If Xk = Y for some subformula Y = Xr, 

p (r) = (p (k) + 1) mod 2. 

Pot. If Xk = Y V Z for some subformulas Y = Xr and Z = XS of X, 

p(r) = p(s) = p(k). 

Po3. If Xk = Y A Z for some subformulas Y = Xr and Z = XS of X, 

p (r) = p (s) = p (k). 
Po4. If Xk = Y D Z for some subformulas Y = Xr and Z = XS of X, 

p (r) = (p (k) + 1) mod 2, and p (s) = p (k). 

Remark 4.2: p is well-defined. Give a polarity no for the root position ko 

of a formula X, the above definition assigns a unique element of (0,1) to 
each k E W. 
We have the following 

Proposition 4.3: Let 3 be a tableau for X, and assign p (ko) = 0 where ko 

is the root position of the formula-tree for X. For any subformula Y = Yk 

of X that appears signed on 3- 

Y appears as FY (resp. TY) if and only if p (k) = 0 (resp. 1). 

Thus the notion of polarity fulfills the same purpose as Smullyan's notion 
of signed formulas. Our first modification to the tableaux method is to 
make the nodes of tableaux sets of positions instead of signed formulas. We 

can then reformulate the reduction rules for tableaux in terms of positions 
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and their polarity. Such a modification amounts to a form of structure shar- 
ing (Boyer and Moore, 1972) and is invaluable when implementing such 
proof procedures.* 

The following definition completes this modification. 
Definition 4.4: A connection in a formula X is an (unordered) pair 

(ki, k2 of positions in X such that 
CO. Xkt = Xk2 = P for some atomic formula P, and 

Cl. p(ki) 56 p(k2)- 

Clearly the existence of a connection in a node of a modified tableau is 
equivalent to saying that the node of the corresponding analytic tableau is 
atomically closed. 

5. PATHS 

We can obtain a complete tableau for a formula X with a finite number of 
reductions since (in propositional logic at least) we are required to reduce 
each (non-atomic) signed formula in a node just once, in order that the end- 
points of the resulting branches be complete. Furthermore, if we restrict 
ourselves to searching for atomically closed tableaux, a non-atomic for- 
mula that has been reduced need not be considered as potentially forming 
part of the contradiction on this branch and may be discarded. 

Accordingly, we may modify our two types of rules as follows 

(SIce] ) (S[al) 
(Sc , «t, «Z) (S\ 3, at) I (Sla, at ) 

where the formulas a and 0 must be contained in S as before but after the 
application a and 0 are deleted from the new end-points. This is denoted 
by the notation Scr. 

In other words we eliminate signed formulas as they are reduced. 
Complete end-points constructed with the above rules contain signed 
atomic formulas only. 

The connection method is based on the notion of paths, which we define 
below. 

Definition 5.1: Let X be a formula, and assign p(ko) = 0. A path through 
X is a (non-empty) set of indexed positions of X defined inductively as 
follows. 

P0. If Xk = X, i.e. k = kp the root position of X, 

(k) is a path through X. 

* The reader may like to visualise the positions as pointers to a unique concrete representation 
of the formula. The nodes of tableaux are then sets of pointers to formulas instead of the for- 
mulas themselves. The computational advantages of such a scheme are manifold. 
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If IS [k]) is a path through X, and Xk is non-atomic, then 

P1. If Xk = , Y such that Y = X,, 

[Sk,r } is a path through X. 

P2. If Xk = Y V Z for subformulas Y = X, and Z = XS of X, 

if p(k) = 0, then [S\k,r,s } is a path through X, 
if p(k) = 1, then [S\k,r} and [S\k,s} are both paths through X. 

P3. If Xk = Y A Z for subformulas Y = X, and Z = XS of X, 

if p (k) = 0, then [S\k,r } and [S\k,s } are both paths through X. 
if p(k) = 1, then [S\k,r,s} is a path through X, 

P4. If Xk = Y D Z for subformulas Y = X, and Z = XS of X, 

if p(k) = 0, then [S\k,r,s } is a path through X, 
if p (k) = 1, then [Sk,r } and [Sk,s } are both paths through X. 

If all elements of a path p are labelled by atomic formulas we say that 
p is an atomic path. In the above definition we use S\k to mean the set S 

with any occurrence of k removed. S [ k ] indicates that k is a member of the 
set S. 

Remark 5.2: Readers should note that Bibel's notion of path corresponds 
to our notion of atomic path. 

Remark 5.3: In the sequel, `a path through a formula X' we mean a path 
through X with respect to the initial choice of p(ko) = 0 for the root position 
of X. 

Under our latest modification of the tableau method the nodes of a 
tableau coincide exactly with paths through the formula at its root; the 
elements of a complete end-point constitute an atomic path. Indeed, the 
set of end-points on the branches of a complete (modified) tableau for X 

constitute all the atomic paths through X. From theorem 3.7 we get imme- 
diately a slightly modified version of Bibel's connection theorem for 
propositional logic. 

Theorem 5.4: X is a tautology of (classical) propositional logic if and only 
if every atomic path through X contains a connection. 

The atomic paths through the formula displayed in Fig. I and proved in 
Fig. 2 are [k3, k6i k8 ] , [k3, k,, k8 ] , [k4, k6, k8 } , [k4, k,, k8 } . The reader 
should identify the labels and polarities of these positions and note that 
each of these paths contain a connection. 

6. CONNECTIONS VERSUS CONNECTIVES 

As described above, the tableau method works by applying the reduction 
rules to a previously constructed tableau and checking to see if a contra- 
diction has been derived on every branch. The nodes of a tableau are now 
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elements of W,, instead of signed formulas, and the reduction rules replace 
reduced positions by the positions resulting from their reduction. This 
ensures that a position (signed formula) is reduced once only. 

The proof procedure is still what I shall call connective based, in that the 
decision as to which position (signed formula) is chosen for reduction next 
is arbitrary and not guaranteed to bring a contradiction any nearer. The 
specific rule applied is only dependent on the label (major connective) of the 
chosen position. 

The final modification is to identify the contradictions first, and then per- 
form those (and only those) reductions that allow the contradiction to be 
realised. In this way no superfluous reductions are performed. I shall call 
this type of proof procedure (ie. resolution-style calculi) connection based. 

Using proposition 4.3 we can identify the potential connections (con- 
tradictions) in advance and, having done so, reduce the relevant positions 
in the current path so that its end-point contains the connection. 

Bibel (1982a) develops a series of algorithms based on the above method 
whose efficiency compares favourably with most of the common proof pro- 
cedures reported in the literature. Bibel's book (Bibel, 1982b) should be 
consulted for more details on the algorithmic aspects of the calculus. 

Remark 6.1: Note that the reductions needed to realise a connection once 
it has been identified in the current path may be performed in any order 
(subject of course to the formula ordering < J. 

7. THE FIRST-ORDER CASE 

In this section and subsequently, I shall use a (first-order) language compris- 
ing n-ary predicate constants P', Q', R°, ... ; individual variables x, y, 
z, . . .; individual parameters a, b, c, . . .; the sentential connectives as 
before and the quantifiers d and 3. Formulas are defined as usual, and 
formula-trees for formulas of this language are obvious generalisations of 
the trees introduced in §2. 

The extension of the analytic tableaux method to first-order (classical) 
logic is based on the following four facts. Under any interpretation in a 
universe U, 

F5. For the universal quantifier, 

(a) if dxY is false, then for some a E U, YX is false, 
(b) if dxY is true, then for every a E U, YX is true. 

F6. For the existential quantifier, 

(a) if 3xY is false, then for every a E U, YX is false, 
(b) if 3xY is true, then for some a E U, YX is true. 

YX denotes the substitution of the parameter `a' for the free occurrences of 
the variable `x' in Y. 
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Accordingly we get the four rules 

(S[FvxY]) 
with roviso (S [TdxY] ) 

p 
(S,FYX) (S,TYX) 

(S[F3xY]) (S[T3xY]) 
(S,FYX) (S,TYX) 

with proviso 

The proviso in the Fd and T3 rules is that `a' be a new parameter. Tableaux 
are defined as before. 

In the propositional case, our first modification was to replace the signed 
formulas with positions. For first-order systems the situation is not as 
straightforward since we must take account of the parameters substituted 
for bound variables during the reduction of signed quantified formulas. 
Indeed for formulas of `universal type' (TdxY and F3xY) we may need to 
consider different instances of Y in order to deduce the necessary 
contradictions*. 

We follow Bibel (1980) and use an indexing mechanism to encode these 
instances. Each position, labelled by a quantifier of universal type, is 
assigned a natural number, its multiplicity µ(k), indicating how many 
instances of the sub-formula dominated by the quantifier are needed to 
seduce the contradictions in the tableau. Under our modification the nodes 
)f tableaux now become indexed positions. 

We extend our notion of polarity to positions labelled with quantifiers by 
idding the following two clauses to definition 4.1. 

Pos. If Xk = dxY for some subformula Y = X, 
p(r) = p(k) 

Po6. If Xk = 3 xY for some subformula Y = XI, 

p(r) = p(k) 

Let WX and WX denote those positions of WX labelled by a quantifier of 
existential or universal type respectively. i.e. 

WX= (kEWXI Xk= 3(v) and p(k)= 1(0)) 

WX=(kEWXlXk=`d(3)andp(k)=1(0)) 

Definition 7.1: The multiplicity µ for a formula X with p(ko) = 0, is a 
function which assigns a natural number µ (k) to each element k E W. X' 
is called an indexed formula and its positions WX are defined as follows 
k" E WX just in case 

11. k E WX. 

12. If 1kt, ..., kn) S WX are all the positions such that 
kl < ... < kn <_ k, then x = (jt... jn) where 1 <_ j; <_ µ(k;), i = 1, ..., n. 

The tree ordering < X' is defined as k" < ' k ' ' ' just in case k < Xk' and 

* Recall that if vxY is true (3xY is false) we may deduce that Y; is true (is false) for any 
parameter `a'. 
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Figure 3: Indexed formula-tree for Vx( 13 yPxy) D vzRz 

x' = xconcr for some sequence z of natural numbers. Also we let Xk" = Xk, 
and p (k") = p (k). 

Fig. 3 illustrates these definitions for an expansion of the formula 
V x ( - 3yPxy) J VzRz with µ (k 1) = 1 and µ (k3) = 2. 

Our first two modifications now go through as before. We extend the 
notion of a path through a formula X to a path through an indexed formula 
X'` as follows. 

Definition 7.2: Let X be a formula and assign p(ko) = 0. Let µ be a 
multiplicity for X. The paths through X" are (non-empty) sets of indexed 
positions of X" defined inductively according to the structure of X. 

PO-P4. As before (definition 5.1) with indexed positions replacing the 
positions. If IS[ k']) is a path through X'`, and Xk" is non-atomic, then 

P5. If Xk = vxY for Y = Xr, 

if p(k) = 0, then [S\k",r") is a path through X'`; 
if p(k) = 1, then [S\k",ri'', , r"' (k)) is a path through V. 

P6. If Xk = 3xY for Y = Xr, 

if p(k) = 0, then [S\k",ri-', ..., r"''`(`)) is a path through X'`; 
if p(k) = 1, then [S\k",r") is a path through V. 

Finally, since our modified tableaux consist solely of positions, when we 
reduce a quantified formula we must simultaneously increment a substitu- 
tion relation a for that variable freed by the reduction. This substitution 
records the parameters that replace each variable in the full analytic 
tableau. Note that variables are distinguished by their binding position.* 

8. ORDER DEPENDENCE OF RULES 

The final modification, outlined in §6, was to search for the connections 
first, and then perform only those reductions needed to realise that connec- 

The binding position of a variable x contained in an atomic formula is the position of the 
quantifier vx or 3x that immediately dominates that occurrence of x. Different instances of 
the same variable are distinguished by the index of the position. 
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(k),3,0) 

(ko ), 3x,1) (k4),V,,,O) 

(k(Z3,VY,1) (k5,3u,0) 

(k(3), Pxy,1) (k(6),Puv,O) 

Figure 4: Representation of =xVyPxy D OVu3uPuv 

tion and close the resulting branch. It was of crucial importance that the 
order in which the subsequent reductions are performed be immaterial. 

At the first-order level this is not the case due to the restrictions placed 
on the existential rules. To see this consider the following example. 

Example 8.1: 3xvyPxy 3 vv3uPuv 
The positions of this formula are shown in Fig. 4 in the form of triples 

containing the name, label, and polarity of that position. The vertical order- 
ing denotes the formula ordering < , . The multiplicity µ has the value 1 

throughout the formula. Here (kj'),k6')) is the potential connection requir- 
ing that a parameter `a' say, is substituted for both x and u; and a parameter 
`b' say, for both y and v. 

There are six possible reduction orders of which all but the two orders 
ki ), k2'), k4 ), k5') corresponding to (x, y, v, u), and k4 ), k'), ki ), k2') cor- 
responding to (v, u, x, y) are correct. 

However, we are only interested in the existence of a correct reduction 
order. In more complicated situations, a particular order that is correct for 
the current set of connections may be rendered incorrect by a future connec- 
tion which induces more constraining relationships between the positions. 
Clearly we want to avoid having to test out potential reductions each time 
a new connection is made. 

Bibel (1982a, b) has developed a beautiful solution to this problem which 
we describe informally below. 

Suppose a potential connection requires that the same parameter be 

substituted for two variables x and y. Let kX and kY be the positions labelled 
by the binding occurrences of x and y respectively. 

0. Suppose both kx and kY are in W. That is to say both x and y are 

existentially bound. Then the connection must be rejected since no 

correct reduction order exists. Basically, once one position has been 

reduced and a parameter substituted, the reduction of the second 

quantifier with the same parameter must violate the proviso. 
1. Suppose, w.l.o.g., that kx E WX and k,. E WX; i.e. x is universally and 

y existentially bound. In order to satisfy the proviso when reducing kY, 

we must ensure that it is reduced before U. This situation is 

represented by posting the relation kY <kx i.e. kY `before' k. 
2. Now suppose both kx and ky are in WX; i.e. both are universally 
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bound. We represent the fact that the same parameter must be 
substituted for both variables by posting the relation kX -- kY. --- is 
taken to be an equivalence relation, and induces more ordering 
constraints thus: 

- if kz <kX and kX -- kY then kz <k' 
representing the fact that if kz myst be reduced before kX, and the 
same parameter used to reduce kY as is used for kX, then kz must be 
reduced before kY too. 

Clearly the reduction order must respect <x", the formula-tree order. Con- 
sequently we can represent all the constraints induced by connections by the 
reduction relation < defined as .< = ( < xi, fl <)*. 

Remark 8.2: The reader should interpret kX < kY to mean, kX must be 
reduced before kY. Note that < is a partial order. A correct reduction se- 
quence exists so long as < is acyclic. 

Remark 8.3: If we require further that < satisfy the uniqueness property 
if kz <kX and kY <k', then kz = kY; 

we can even do without a substitution relation and explicit parameters. The 
set of positions k' with k E WX has the right uniqueness properties to func- 
tion as the domain of parameters, and the extra condition above ensures 
that no substitution clashes occur.* 

The reduction relation < for the example is shown in Fig. 5. The correct 
reduction sequences can be read off by selecting successive positions that 
have no unselected <-predecessors.t 

In resolution based systems, Skolemisation is used to encode the quan- 
tifier restrictions. In contrast to Skolemisation, the above scheme requires 
no normal-form. But more important is the fact that Bibel's solution to the 
problem represents a general method of overcoming the order dependence 
of reduction rules when passing from a connective based proof procedure 
to a connection based one. The generality of this scheme will be put to good 
use in the sequel. 

We conclude this section with the version of the connection theorem for 
first-order (classical) logic that we have effectively derived. 

Theorem 8.4: X is first-order valid if and only if there is a multiplicity 

Figure 5: The reduction relations for example 8.1 

* In the above development, in the interests of clarity, I have assumed that the language con- 
tains no function symbols. If functions symbols occur, < cannot perform the role of a 
substitution. We must modify the definition of < such that if the term t is to be substituted 
for the variable x, all the binding positions of variables that occur in t are put in < relation 
to the binding position of x. 
t I.e. no arcs going out from it into (as yet) unselected positions. 
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µ for X, and a set of connections V in X such that 
1. every atomic path through X'` contains a connection from V (as a 

subpath), and 
2. the reduction relation < induced by V is acyclic. 

9. A CONNECTION THEOREM FOR S5 MODAL LOGIC 

A series of steps that effectively transform an analytic tableaux system for 
classical first-order logic into a version of Bibel's connection calculus for 
that logic have been described. This section contains support for the claim 
that the nature of these steps is not wholly dependent on the logic over 
which they are performed. The essential features of a connection calculus 
for S5 modal logic obtained from Kanger's Gentzen system for that logic 
(Kanger, 1957) are presented. Lack of space necessitates that the details be 
kept to a minimum. A full exposition of this relatively efficient calculus will 
appear elsewhere. 

Syntax 

We augment the syntax of propositional logic with the (unary) modal 
operator of necessity, . * 

Semantics 

Kripke's possible world semantics (Kripke, 1959) for S5 yields the following 
facts. 

MO. For necessity, 

(a) if Y is false in a world, then Y is false in some world, 
(b) if Y is true in a world, then Y is true in every world. 

Formal system features 

Kanger uses the notion of a spotted sequentt, where the formulas are 
indexed by natural numbers denoting possible worlds. For instance, the 
axioms of the system are sequents of the form 

U[Ym] -V[Ym] 

and the rules for implication 

U[Ylm]-V[YZ] U-V[Ylm] U[Yi]-V 
U - V,(Y1 D Y2)m U,(Yi D Y2)`° - V 

* The unary modal operator, o denoting possibility, can be defined as - - . 

t A sequent U - V is a notational variant of a set of signed formulas. All formulas signed T 
are collected in the antecedent U, those signed F are collected in the succedent V. The inference 
rules of a sequent system, when read from conclusion to premise(s) form a tableau system. 
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The rules for necessity take the form 
m m 

U 
U - V,(DY)n with proviso U,(Y)° V 

where the proviso on the (-> ) rule is that m must not appear in 
U V,(Y)°. With the rule inverted, for use as a reduction rule, the pro- 
viso reads `m must be a new number' (cf. the proviso on the quantifier rules 
of §7.) 

The reduction relation a 

The proviso on the above rule for reducing operators of possible-type* in- 
troduces an ordering constraint on the sequences of reductions in exactly 
the same way as the quantifiers of existential-type did before. In this case 
the propositional variables are `bound' by the modal operators dominating 
them. Formulas bound by operators of necessary-type are true in all pos- 
sible worlds and hence may appear with any index. Consequently we use a 
modal multiplicity to encode these instances. 

Polarity, indexed formulas and paths are defined as before by treating the 
modal operators as quantifiers. Connections are pairs of positions labelled 
by propositional variables whose (modal) binding occurrences have been 
reduced with the same index. The first two steps then go through as before 
yielding tableaux whose nodes are sets of (unreduced) positions. 

The final modification, to form a connection based proof system, 
requires the use of a reduction relation. Once again this relation is defined 
as the transitive closure of the formula-tree ordering for the indexed for- 
mula and a `substitution' ordering < induced by the connections. The 
domain of positions labelled by modal operators of possible-type replaces 
the natural numbers of Kanger's system as names for the possible worlds 
in the same way as the indexed elements of WX could be used to replace the 
domain of parameters before. t 

We conclude with a statement of the connection theorem for S5 modal 
logic obtained from Kanger's system. 

Theorem 9.1: X is S5 valid if and only if there is a modal multiplicity p 

for X, and a set of connections V in X° such that 

1. every atomic path through X° contains a connection from V (as a 

subpath), and 
2. the S5 reduction relation a induced by V is acyclic. 

10. CONCLUSIONS AND FURTHER WORK 

I have presented a detailed account of the relationship between a system of 

* Occurrences of (resp. o ) with polarity 0(resp. 1). 
t This tight correspondence between the structures supporting a connection calculus for S5 and 
those for first-order classical logic is not accidental; there is a fundamental relationship 
between S5 and the monadic predicate calculus aptly illuminated by the present analysis. 
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analytic tableaux and a connection calculus for first-order classical logic. 
The relationship was developed by applying a series of modifications to the 
former to obtain the latter. I have claimed that these modifications are 
general enough to apply to other logics specified using tableau or Gentzen 
systems and, to substantiate this, preliminary results in the form of a con- 
nection calculus for S5 modal logic have been presented briefly. 

This work is being extended in two complementary directions. Firstly, the 
theoretical foundation of the methodology itself is being investigated in the 
hope of characterising precisely the conditions under which a formal system 
may be systematically automated in the above manner. Secondly the 
methodology is being refined by applying it to other common (first-order) 
logics such as S4 modal logic and first-order intuitionistic logic. 
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FORMULATING PROOF SYSTEMS FOR AUTOMATED DEDUCTION' 

L. A. Wallen2 

We describe various logic-independent techniques for the design of proof systems that support efficient 
automated proof search. The techniques are illustrated through the design of a proof system for a fragment of 
an intensional logic. 

1. Introduction 

Symbolic logic plays a major role in computer science, both as a tool for analysis and as a framework for 
representation and reasoning. A pragmatic view is adopted when logic is used as a representation language: 
there is not one logic, but many; a logic is a very general theory that axiomatises the basic properties of the 
objects of semantic interest. Such applications of logics abound: eg., classical and constructive logic for program 
derivation [Mar82,Abr841, modal logics for reasoning about distributed processes [HM841, higher-order logic for 
hardware verification [Gor851, etc. 

It is the proof system for a logic that furnishes us with the concrete notion of "proof." Within the bounds 
of soundness, we can design the proof system to reflect our concern with pragmatic issues such as elegance, or 
- and this is our present concern - efficiency of proof search. 

In many applications the computer can be used to support the search for proofs. In some circumstances 
it is appropriate to fully automate search. Within interactive proof environments, for example, automation of 
the search for certain types of subproof can be used to raise the level of interaction, leaving the user free to 
concentrate on more demanding aspects of proof design (see eg., [BM79,GMW79,Con861.) 

Here we meet with a problem. Proof systems that directly reflect the underlying semantics of logics, such 
as sequent calculi are easy to design because they model the semantics of a logic more or less directly. As a 
consequence, the majority of logics considered for application in computer science admit such proof systems. 
However, sequent systems (and systems of natural deduction in general) form inadequate bases for automated 
proof search as we shall show below. Moreover, while relatively efficient proof systems exist for classical logic 
(eg., resolution), the extension of such methods to other logics has met with limited success [Far861. 

In this short paper we outline elements of a theory of proof system design which can be used to develop 
efficient proof systems for a given logic directly from a sequent proof system for that logic. We are thus able to 
design an efficient proof system for a logic by sole virtue of the fact that it admits a certain type of sequent proof 
system. In this way we are able to treat logics that were previously outside the scope of traditional (automated) 
theorem-proving techniques. We illustrate the theory through the design of a proof system for a fragment of an 
intensional logic. 

2. A simple intensional logic 

In this section we introduce a simple intensional logic which we call L. The language of L consists of 
denumerably many propositional variables p, q, r,..., a binary connective D and a unary connective . The 
set of lower formulae of L is the smallest set containing the propositional variables and closed under the usual 
formation rule for the binary connective D . The set of formulae of L is the smallest set containing the lower 
formulae, closed under both the formation rule for D and the rule: if A is a lower formula, A is a formula. 
Basically, we exclude nested modalities. The propositional variables will sometimes be called atomic formulae. 
We use A, B, C and I', 0 as metavariables to range over formulae and sets of formulae respectively. 

We give a Kripke-style semantics to L. An L-frame is a pair (G, R) consisting of a non-empty set G and 
a reflexive relation R over G. An L-model is a triple (G, R, =) where (G, R) is an L-frame and = a relation 
between elements of G and formulae such that: for all w E G 

1. Either w = A or w A, for all atomic A. 

2. w=ADB if wBorwKA. 
3. w = A if for all v E G such that w R v, v = A. 

'IEE Colloquium on Theorem Provers in Theory and Practice, IEE, Savoy Place, London, March 1987. 
2Lincoln Wallen is a member of the Department of Artificial Intelligence, University of Edinburgh. 
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A model (G, R, =) satisfies a formula A just when w A, for all w E G. A formula A is an L-consequence of 
a set of formulae r just in case, every L-model that simultaneously satisfies the formulae of r also satisfies A. 

We can define a natural proof system for the L-consequence relation based on sequents. If r and A are sets 
of formulae of L, then r -- A is a sequent. r is the antecedent and A the succedent. We interpret sequents as 
follows: 

4. w r -, A iff if w = r (i.e., w = A for every element A E r), then for some A in A, w A. 

To decide whether a formula A is an L-consequence of a set of formulae r, we attempt to prove the sequent 
r -, A using the proof system defined below. We take as axioms all sequents of the form: 

r,A-'A,A 
for atomic A; and as operational rules: 

r,A-B,A --+ A r -. A,t 
r - AFB, A 

- 
r, AFB A r --A r,A --+ O 

x 

0 r, A A 

where r =d f {B I B E r}. Derivations are defined as usual and a proof is a derivation whose leaves are 
axioms. The root of a derivation is called the end sequent. In practice we use the rules inverted, working 
backwards from the desired end sequent to the leaves. The application of a rule, inverted in this manner, will 
be called a reduction. 

It is easy to show that the above proof system is a characterisation of the consequence relation of L. 

3. Rule order and unification. 

Consider the following pair of derivations, where we have "boxed" the principal formula of each reduction 
(recall that derivations are being constructed from their root to their leaves): 

q 

r - A, 

q p, q 

p, (P:D q) -, 
p 

q 
(PDq) -, q 

P, 

x x 

q q 

PDq 
D q P 

-' q 

p, (pD q) - q 
We cannot obtain a proof from the derivation on the left because we are unable to close one of its leaves. This 
problem arises because the application of the -, rule restricted the formulae available for such a completion. 
We can influence the content of the set r p by changing the order of rule application so that more (or less) 

formulae of the form A occur in the antecedent at the application of the -' rule. This we have done in the 
proof on the right. The import for automated proof search is that we must consider all possible permutations 
of rule applications as potentially leading to a proof. 

We can overcome this type of problem in the following manner. An indexed formula is a pair A°` comprising 
a formula A and an element a of a set formed from the disjoint union of two alphabets C and V. Let r and A 
range over sets of indexed formulae and a, Q over indices. The basic idea is to index formulae rather than remove 
them from a sequent, construct a "proof" with no regard for rule order, then employ unification to ensure that 
an appropriate rule order could have been chosen that would result in a proof in the original sequent system. 
The operational rules of the new proof system are as follows: 

r, A°` -' B°`, O r, B° - A r - A°, O 

r -, (A B) a, A r, (A B) a A 

r -,Ab,A 
r _(A)°,0 

r, Ax A - 
r, (A)° , A 

- 

where we require that the elements a E C and x E V used to extend indices in the rules do not appear as 

indices of any other formula in the upper sequent. The axiom rule is: 

v 
r, A° - A#, A 
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for atomic A, where v: V I-4 C is such that v(a) = c (P). Derivations are defined as usual. Proofs, on the 
other hand, are derivations whose leaves are not only instances of the axiom rule, but for which the mappings 
associated with the set of leaves are consistent. To prove that A is an L-consequence of r we prove the sequent ra -+ A" for some arbitrary element a E C. (ra =df{Aa I A E r}.) 

A proof of our example is shown below. Notice how we have used the previously incorrect order for applying 
rules. 

po, 

{y -* b} 

qY 

po, 

qb 

{x-+b,y-+ b} 

pX - IpY,gb 

(p D 4)y 

po, 

qb 

((PD4))a qb 

pX, (0 (p D q))a - 
(P)a 

(q)a 
((pDq))a - (0 4)a 

We can use a simple unification algorithm to compute the appropriate mappings when we reach the leaves of 
derivations and a substitution table to check consistency. 

4. Representational redundancy 

We have successfully reduced the space to be searched for a proof by identifying derivations that differ only 
in the order in which the modal rules are applied. We shall remove remaining redundancies of a similar nature 
in the next section. In this section we deal with an issue of representation. 

First note that both the sequent systems we have discussed possess the so-called subformula property. That 
is, derivations are formed solely from subformulae of the end sequent. Consequently, every formula occurrence 
in a derivation has a unique image in the end sequent. 

In our search for a proof we need to represent trees of sequents which occupy large amounts of computer 
memory. We can improve this situation by storing the end sequent explicitly in memory once, but instead of 
storing new sequents generated by rule applications explicitly, we construct them out of pointers to subformulae 
in the end sequent. This is a principled application of structure-sharing [BM72]: a technique developed within 
the resolution community to cope with a similar problem. Here we see it arise naturally from proof-theoretical 
properties of our sequent system. 

5. Primary and incidental choices 

Although the new sequent system we have introduced successfully identifies derivations that differ only in 
the order in which the modal rules are applied, and with the use of structure-sharing we can reduce the memory 
requirements for individual derivations, an implementation of this system would still suffer from its emphasis 
on connectives. That is, although at all times we are working towards instances of the axiom schema the proof 
system does not reflect this. We could spend time and space reducing a formula in a sequent from which there 
is no hope of obtaining an axiom given the other formulae in that sequent. 

A derivation of an end sequent is said to be complete just when its leaves consist solely of atomic formulae; 
i.e., no more reductions are possible. The index of an atomic formula appearing in a derivation is chosen at 
the reduction of the modal operator that dominates its' image in the end sequent (if there is no such operator 
the index of the atomic formula is the index chosen at the start of the derivation for the formulae of the end 
sequent). If we ensure that two occurrences of modal operators that share the same image are reduced using the 
same index, then every complete derivation of that end sequent has the same set of leaves. Since the criterion 
for distinguishing a proof from a derivation is that all the leaves are axioms (under some mapping of indices) 
we have only to check whether every leaf in this set is an axiom. In other words, the order in which we apply 
the sequent rules is immaterial! The rules are merely a manner of enumerating this unique set of leaves which 
we shall call atomic paths. 

Based on these observations we can devise more efficient means of checking whether the atomic paths are 

axioms (under a given mapping of indices). 
First, we define positive and negative occurrences of formulae as follows: C occurs positively in C; C occurs 

positively (negatively) in A D B if it occurs negatively (positively) in A or positively (negatively) in B; C 
occurs positively (negatively) in A if it occurs positively (negatively) in A; C occurs positively (negatively) 

in r - A if it occurs positively (negatively) in A for some A E r or negatively (positively) in A for some 

AEO. 
Now notice that a formula occurs in an antecedent (succedent) within a derivation if and only if its image 

occurs positively (negatively) in the end sequent. This means that we can determine in advance whether a given 

3 



atomic subformula of the end sequent is constrained to occur in antecedents or succedents within derivations. A 
connection is a pair of atomic formula occurrences {A+, AO-} in an atomic path, where we have used subscripts 
to indicate whether the images of these formulae occur positively or negatively in the end sequent. Such a 
connection is said to be complementary just in case there is a mapping v such that v(a) = a(,0). If a connection 
is complementary then, the paths that contain it are axioms. Consequently we have: 

A formula A is an L-consequence of a set of formulae r if there is a mapping and a set of connections 
simultaneously complementary under that mapping, such that every atomic path for r -+ A contains a 
connection from the set. 

We can enumerate the atomic paths for a given end sequent by viewing the latter as a nested matrix. If 
A D B occurs positively (negatively) in the end sequent, we place the matrix representations of A and B in 
a 1 x 2 (2 x 1) matrix. For atomic formulae we indicate whether it occurs positively or negatively in the end 
sequent by means of a subscript. We also indicate the indices for atomic formulae which can be determined 
from their dominating modal operator. As a matrix therefore, our example reads: 

Py pEl 
qY 

qb 

Notice how the atomic formulae py and q+ of the middle column have the same index y. This is because they 
share the same dominating modal operator which occurs positively in the end sequent and hence will appear 
only in antecedents within derivations. 

The atomic paths for an end sequent are the horizontal matrix paths through its matrix representation. Our 
example matrix has a total of two atomic paths: {p+, py , qb } and {p+, q+, qb }. 

Our proof system has now changed drastically. No longer are we interested in connectives. To prove our 
example consequence we choose an atomic formula in the matrix, say p+, and then look for another occurrence 
of the propositional variable p occurring negatively. In this case there is only one, namely py. We then 
attempt to unify the indices obtaining the substitution x/y. All paths containing the connection {p+, py} are 
eliminated from consideration. Next we choose an atomic formula not on such a path, say q+, and repeat the 
process resulting in the addition of the connection {q+, qb } to our set and the component b/y to our current 
substitution. Since we have covered all atomic paths with our two connections and can construct a consistent 
mapping (from the consistent substitution), we conclude that q is an L-consequence of p and (p D q). 

6. Conclusions 

We have outlined some techniques that may be used to develop an efficient proof system for a given logic from 
a sequent proof system for that logic. These techniques have been applied successfully to develop efficient proof 
systems for a range of widely used first-order intensional logics [Wa187]. Implementation of one of these systems 

has been completed and tested [WW87]. This represents the most comprehensive application of theorem-proving 
techniques to non-standard logics yet achieved. 

Two further points are worth mentioning. Firstly, the resulting proof systems require no normal-forming of 
input. Secondly, due to their genesis from sequent systems it is possible to interpret the path-checking algorithms 
(i.e., proof search) as constructing derivations in indexed sequent systems similar to the one introduced above. 

This facilitates the use of the matrix systems within interactive environments. 
These techniques have their origin in the matrix methods of Andrews [And8l] and Bibel [Bib8l] for classical 

logics. In [Bib82], Bibel develops many path-checking algorithms for classical logic and relates them favourably 
to standard resolution systems. All of these algorithms may be used in the matrix proof systems for non- 

standard logics developed along the lines outlined above. Fitting [Fit83] develops tableau systems for various 
modal logics. His systems do not incorporate unification and are connective based. These tableau systems 

therefore suffer from the same redundancies as the sequent systems we started with. 

Acknowledgements 

This work was supported in part by SERC/Alvey grants GR/D/44874 and GR/D/44270. 

References 

[Abr84] J.R. Abrial. The mathematical construction of a program. Science of Computer Programming, 

4:45-86, 1984. 

4 



[And81] P.B. Andrews. Theorem-proving via general matings. Journal of the Association for Computing 
Machinery, 28(2):193-214, April 1981. 

[Bib81] W. Bibel. On matrices with connections. Journal of the Association for Computing Machinery, 
28(4):633-645, October 1981. 

[Bib82] W. Bibel. A comparative study of several proof procedures. Artificial Intelligence, 18:269-293, 1982. 

[BM72] R.S. Boyer and J.S. Moore. The sharing of structure in theorem-proving programs. In B. Meltzer 
and D. Michie, editors, Machine Intelligence 7, pages 101-116, Edinburgh University Press, 1972. 

[BM79] R.S. Boyer and J.S. Moore. A Computational Logic. ACM monograph series, Academic Press, 1979. 

[Con86] R.L. Constable et at. Implementing Mathematics with the Nuprl Proof Development System. Prentice 
Hall, 1986. 

[Far86] L. Farinas-del-Cerro. Resolution modal logics. Logique et Analyse, 110-111:153-172, 1986. 

[Fit83] M.C. Fitting. Proof methods for modal and intuitionistic logics. Volume 169 of Synthese library, D. 
Reidel, Dordrecht, Holland, 1983. 

[GMW79] M.J.C. Gordon, A.J. Milner, and C.P. Wadsworth. Edinburgh LCF - A mechanised logic of compu- 
tation. Volume 78 of Lecture Notes in Computer Science, Springer Verlag, 1979. 

[Gor85] M.J.C. Gordon. HOL: A machine oriented formulation of higher-order logic. Report 68, Computer 
Lab., Cambridge University, 1985. 

[HM84] J.Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed environment. In 
3rd ACM Conference on the Principles of Distributed Computing, pages 50-61, 1984. 

[Mar82] P. Martin-Lof. Constructive mathematics and computer programming, pages 153-175. Volume IV of 
Logic, Methodology and Philosophy of Science, North-Holland, Amsterdam, 1982. 

[Wa1871 L.A. Wallen. Matrix proof methods for modal logics. In J. McDermott, editor, 10th International 
Joint Conference on Artificial Intelligence, Morgan Kaufmann Inc., 1987. To appear. 

[WW87] L.A. Wallen and G.V. Wilson. A computationally efficient proof system for S5 modal logic. In 
J. Hallam and C. Mellish, editors, Advances in Artificial Intelligence, John Wiley & Sons, 1987. 

'oceedings of AISB87, Edinburgh, Scotland, April 1987, to appear. 

5 



A Computationally Efficient Proof System for S5 
Modal Logic 

Lincoln A. Wallen Gregory V. Wilson 
Department of Artificial Intelligence 

Edinburgh University 
Scotland 

Abstract 
We present a computationally efficient matrix proof system for S 5 modal logic. The sys- 

tem requires no normal-form and admits a natural implementation using structure-sharing 
techniques. In addition, proof search may be interpreted as constructing generalised proofs 
in an appropriate sequent calculus, thus facilitating its use within interactive environments. 
We describe features of an implementation developed from an existing implementation of 
a matrix proof system for first-order logic. 

1 Introduction. 

Modal logics are widely used in various branches of artificial intelligence and computer science 
as logics of knowledge and belief (eg., [Moo80,HM85,Kon84j), logics of programs (eg., [Pne771), 
and for specifying distributed and concurrent systems (eg., [HM84,Sti851). As a consequence, 
the need arises for proof systems for these logics which facilitate efficient automated proof 
search. 

The main hurdle to the application of resolution based techniques to non-standard logics is 
that the techniques are formulated under the assumption that the input formulae are in clausal 
form [CL73]. Most non-standard logics of interest fail to admit such a normal-form. 

Bibel's connection calculus [Bib8l,Bib82a] is a non-clausal proof system for first-order logic 
comparable in computational efficiency to the most efficient of the clausal techniques for that 
logic [Bib82b]. In [Wa186] it was shown that far from being an ad-hoc proof system for one 
particular logic, the connection calculus could be seen as a framework for implementing sequent. 
and tableau-based proof systems in a computationally efficient manner. Since most of the non- 
standard logics of interest admit such proof systems we can make use of this analysis to develop 
connection calculi for them. This paper fulfills an undertaking to present the details of such an 
application to S5 modal logic. 

We begin by presenting Kanger's sequent calculus for S 5 [Kan57] using a notation developed 
by Smullyan and Fitting [Smu68,Fit72]. Next, we develop a connection calculus from the 
sequent system using the techniques discussed in [Wa186]. In addition to the basic theory, 
we give details of an implementation developed directly from an existing implementation of 
the connection calculus for standard first-order logic. The adaptation from first-order classical 
logic to S5 proved quite straightforward. Further details of this implementation can be found 
in [Wil86]. 

Because we do not need to give up our sequent interpretation of the proof system, it is 
possible to view proof search within the modal connection calculus as a process which constructs 
a form of sequent proof tree. Brief details of this are given. Such a facility encourages the use 

of these techniques within interactive environments (cf. [BT751). 

Advancee in Artificial Intelligence, editors J. Hallam and C. Mellish, pages 141-153, John Wiley & Sons, 1987. 
Proceedings of AISB87, Edinburgh Scotland, April 1987. 



2 Preliminaries. 

2.1 Syntax, semantics and notation. 

Modal formulae are defined as usual by adding the formation rule: 

if A is a formula, then so are A and QA, 

to the formation rules for propositional formulae. We let A, B, C range over modal formulae. 
A signed modal formula is a pair (A, n), where A is a formula and n E {O, 11. We let X, Y, Z 

range over signed modal formulae. 
Following Smullyan [Smu68] and Fitting [Fit83] we classify signed modal formulae and their 

principal signed subformulae as follows: 

a al a2 Q al 02 V vo 

AAB,1) A,1) B,1) (AAB,0) (A,0) (B, 0) (A,1) (A,1) 
(A V B, 0) (A, 0) (B, 0) (A V B,1) (A,1) (B,1) (OA, 0) (A, 0) 
(A = B, 0) (A,1) (B, 0) (A = B,1) (A, 0) (B,1) 7r pro 

(- A, 1) (A, 1) (A, 1) (A,0) A,0 
(-A, 0) (A, 0) (A, 0) (<)A, 1) (A,1) 

We shall use a, al, a2, p, 01, 02.... to denote signed formulae and their components of the 
respective types. 

For example, a signed formula of the form (A A B, 1) is an a according to the first table 
above. Its components (A, 1) and (B, 1) are denoted by a1 and a2 respectively. 

An S 5-model structure is a pair (G, R) consisting of a set G and an equivalence relation R 
on G. An S 5-model is a triple (G, R, II-) where (G, R) is an S 5-model structure, and 

I - is a 

relation between elements of G and signed formulae which, for all w E G satisfies: 

1. exactly one of w II- (A, 1) or w II- (A, 0); 

2. w - a if w - a1 and w II- a2; 

3. w II-0iffw II-01 orw I[-02; 

4. w II- v iff for all v E G such that wRv, v II- vo; 

5. W II- 7r if for some v E G such that wRv, v II- 7ro. 

A formula A is S 5-valid in the S 5-model (G, R, II-) if for all w E G, w II- (A, 1). A formula is 

S 5-valid if it is S 5-valid in all S 5-models. 

2.2 A sequent calculus for S5. 

Let (Go, Ro) be an S 5-model structure, fixed for the rest of this section. We use p, q to denote 

elements of Go. We refer to these elements as prefixes. For p E Go, pX is called a prefixed 

signed formula. Prefixes are used to name possible worlds in some arbitrary model Ro is used 

to represent the relation of accessibility between prefixes and hence between possible worlds in 

that model. pX is satisfied by a model just when the world denoted by p, say c(p), satisfies X; 
i.e., a(p) II- X. 

For our purposes sequents are merely sets of prefixed signed formulae. We use S, pX to 
denote S U { pX }. Note that pX may occur in S. 

We now present Kanger's system for S 5 using this notation. The basic sequent is a sequent 

which contains both p(A, 1) and p(A, 0) for some atomic formula A, i.e., 

S, p(A,1), p(A, 0). 



The operational rules are stated concisely thus: 

Si Pal, Pa2 S, PQi S, P132 

S, pa a S, PQ 

S, qvo S, giro 
S, pv 

v 
S, Pi 

The ir-rule is subject to the following proviso- 

q must not occur in S (i.e., q must not prefix any other formula in S). 

Derivations and proofs are defined as usual. A formula A is a theorem if there is a proof of the 
sequent { p(A, 0) } for some (arbitrary) prefix p. This calculus is both sound and complete for 
S5 [Kan571. 

Remark. The usual representation of sequents can be recovered by introducing a sequent 
arrow -+ and placing those prefixed formulae signed 1 on the left of the arrow and those signed 
0 on the right. 

In practice we use the rules from conclusion to premises; i.e., we start with the sequent 
{ p(A, 0) } and build a proof tree backwards from this root to the leaves. Used in this way, the 
sequent system is equivalent to Fitting's prefixed tableau system for S5 [Fit721. The force of 
the proviso on the ir-rule is that the prefix q must be completely new to the upper sequent. 0 

3 A connection calculus for S5. 

As discussed in [Wa1861 the proviso on the ir rule introduces an order dependence in the search 
for a proof. If a prefix is introduced by the use of the v rule it cannot subsequently be introduced 
by the use of the ir rule. The path to an basic sequent may therefore be blocked by injudicious 
choices of the prefix q in both (inverted) modal rules. This fact, together with the blind 
connective-driven search for the appropriate pairs of atoms to form a basic sequent, makes 
direct implementation of the sequent system inefficient. In [Wa1861 we show how inefficiencies 
such as these are tackled in the case of first-order logic by Bibel's connection calculus. 

In the context of modal logic the key techniques are: 

connection driven search: putative instances of the basic sequent are identified using 
structural properties of the formula. 

delayed choice of prefix: the symbols introduced as prefixes during use of the v rule 
are considered as "variables." The prefixes introduced by applications of the ir rule 
are considered as "constants." The instantiation of the variable prefixes is driven by 
the choice of connection (basic sequent) which requires the prefixes of the distinguished 
atomic formulae to be identical. 

reduction ordering: the substitution mentioned above is considered admissible if a correct 
(partial) proof tree can always be constructed from the current set of connections. In par- 
ticular this means respecting the proviso on the ir-rule. This property of the substitution 
is checked directly rather than by actually constructing such a proof tree. 

structure sharing: the intermediate states of the proof are encoded using pointers into the 
original formula. No new formulae need be considered. In particular, multiple instances 
of subformulae (in this case instances of formulae dominated by modal operators) are 
obtained by an indexing method rather than explicit copying. 



3.1 Formula trees. 

A formula tree for a signed modal formula is a variant of its formation tree containing additional 
information as to the polarity of its subformulae. It is best explained by example. Figure 1 

shows the formula tree for the formula ( ((A A B) A QC Q(A A C)), 0). The piece of 

(A, 1) a3 (0, 0) as 

(A, 1) a4 (0, 1) a7 (A, 0 a1o 

(A, 1) a5 (B, 1) a6 (C, 1) as (A, 0) all (C, 0) a12 

Figure 1: A formula tree. 

concrete syntax associated with a node or position in the tree is called the label of that position. 
We classify the positions of a formula tree according to the classification of the subformula 

rooted at that position. Thus if the subformula is an a, then the position is an a; if it is a /9, 

the position is a /9, etc. Additionally, we classify the root node of the formula tree as a 7ro. 

Notice that each position has two types: its principal type (eg., a, /9, v, ...) is determined 
by its label and polarity, while its secondary type (eg., al, a2) 01, ...) arises from the type of 
its parent. 

For a given formula tree we use k, 1, possibly subscripted, to denote positions and Lo and 
11o denote the sets of positions of type vo and 7ro respectively. 

3.2 Modal multiplicity. 

The inverted rule enables any prefix q to be introduced into a sequent to prefix formulae rooted 
at vo-type positions. Within the context of a sequent proof this is the mechanism by which one 
works towards instances of the basic sequent to complete a branch. 

The definitions of this section are introduced for a given formula tree for a given signed 
formula X. A function µM from Lo to the positive integers is called a modal multiplicity for X. 
A modal multiplicity serves to encode the number of distinct instances of vo-type (sub)formulae 
used within a putative proof. 

If µM is a modal multiplicity for X we define the (indexed) formula tree for the indexed 
formula XIIM as a tree of indexed positions of the form k", where k is a position of the basic 
formula tree for X and ,c is a sequence of positive integers defined as follows: if k1 < k2 < < 
kn < k, 0 < n, are those vo-type positions that dominate k in the basic formula tree for X, 
then 

cE{(.7172...jn) I 1<ii 5p(ki), 1<i<n}. 
The ordering in the indexed tree <I'm is defined in terms of the ordering on the underlying 
tree. For indexed positions k" and 1" 

k" <I'm lT if k < 1 and r = r.0, 

where 0 is some sequence of positive integers. The polarity and label of an indexed position 
k" is taken to be the same as the polarity and label of its underlying position. Consequently, 
indexed positions inherit the type of their underlying position. 



We let u, v, possibly subscripted, range over indexed positions when we are not interested in 
the index, and omit the superscript on <. We abuse our notation and let Vo, 11o, etc., denote 
the sets of indexed positions of an indexed formula tree of the appropriate types. Henceforth 
we shall refer to indexed positions simply as positions. 

Figure 2 shows the indexed formula tree for our example formula with a modal multiplicity 
of 11M(alo) = 2 and 1 otherwise. As a convention we omit empty indices. 

(A, 1) as 0) as 

(A, 1) a4 (<>,1) a7 (A, 0) a10 (A, 0) a10 

(A, 1) ab (B, 1) a6 (C, 1) as (A, 0) a(111) (C, 0) a112 2 (A, 0) a121 (C 0) a(2) 11 12 

Figure 2: An indexed formula tree. 

3.3 Paths and connections. 

A path through XµM is a subset of the positions of its formula tree. We shall use s, t, possibly 
subscripted, to denote these paths, and adopt the notation s[u] for a path s with an occurrence 
of the position u. The set of paths through X1`-, is the smallest set such that: 

1. { ko } is a path, where ko is the root node of the formula tree for XµM; 

2. if 3[a"] is a path, so is (s - {a"U {al", a2"}; 

3. if s[Q"] is a path, so are (s - {Q"}) U {Ql"} and (s - {Q"}) U 

4. if s[v"] is a path, so is s U {vowa}, 1 < j < AM(vo); 

5. if s[lr"] is a path, so is s U {lro"}. 

The path (s - {a"U {al", a2"} is said to have been obtained by reduction on a" from s; 
similar terminology is used in the other cases. 

Each path s through XµM determines a set (or sequent) of positions as follows: 

S(s)={xIx<y for some yEs}. 

A path s through XµM is atomic if for every k" in s either 

(a) k is labeled by an atomic formula, or 

(b) k is a v and for all j, 1 < j < /M(vo), vo" E S(s). 

Remark. Our definition of path differs from Andrews' [And8l] and Bibel's [Bib81] defini- 
tion so as to demonstrate the relationship between the matrix methods and sequent/tableau 
methods. Their paths correspond roughly to our atomic paths. Each clause in our definition, 
when interpreted as operating on the sequent associated with the path, corresponds to an (in- 
verted) rule of Kanger's system. Furthermore, for a given multiplicity, the sequent associated 

with an atomic path is complete in the sense that its membership cannot be increased by the 

application of further rules. These relationships are discussed in more detail in [Wa1861. 



We can see the atomic paths through an indexed formula by writing the components of 
an a-type subformula side by side and the components of a /3-type subformula one above the 
other to form a nested matrix. Multiple instances of vo-subformulae are treated as multiple 
components of an a-type parent. The matrix representation of the indexed formula of Figure 2 
is shown in Figure 3. The atomic paths through the formula are then (roughly) the horizontal 

(,(A)_",(A 
(A-A-B) - A - (OC)- - p- A A 

C C 

Figure 3: Matrix representation of a formula. 

matrix paths that consist of atomic formulae. There are four such paths in our example. One 
s shown as a dotted line in the figure. 

A connection in Xl`M is an unordered pair of positions of its formula tree labeled by the same 
atomic formula but of different polarities. In terms of the sequent system we wish to interpret 
a connection as an instance of a basic sequent. A set of connections is said to span XI`M just 
when every atomic path through XlIM contains a connection from the set. For example, the 
connections { a5, ail) } and { as, ail } span our example formula. 

3.4 Complementarity. 

In order to interpret a connection as an instance of a basic sequent we must ensure that the 
two atomic formulae represented by the positions of a connection have the same prefix. These 
prefixes are determined when the modal operator dominating the atomic formula is reduced 
using the inverted modal rules. 

Let T denote the set Lo U Ho. We use pre(u) to denote the <-greatest T-element that 
dominates u in the formula ordering. pre(u) is called the prefix of u. Note that since the root 
node of a formula tree is a T-element this notion is well-defined. We shall use p, q, to denote 
positions when we are considering them as prefixes. In our ongoing example, the prefix of ab is 
a2, whereas the prefix of a(') is aio 

The next step is to notice that we are free to choose the prefix introduced when we use the 
v-rule, but must introduce arbitrary new prefixes when utilising the 7r-rule. We have indicated 
that the two positions that constitute a connection must have the same prefix. Consequently 
we treat vo-type prefixes as variables and lro-type prefixes as constants and build a modal 
substitution a: Lo -+ T under which the required prefixes are identical. 

For example, the modal substitution a = { am 
io 

+- a2 } renders the connection { a5, a1(i) } 

complementary. Recall that a2 is a 7ro-type positon and hence a constant whereas a(') is a 
vo-type position and therefore a variable. We cannot build a consistent substitution that also 
makes the connection { as, ail } complementary since this would have to involve the component 

a10 +- as and a2 and as are distinct constants. 
The substitution of a 7ro prefix for a vo prefix entails that the former is introduced in place 

off the latter with the v-rule. But this means that 7ro prefixes may be introduced into a sequent 
before the use of the 7r rule that introduced them from their parent and hence the proviso on 
the rule would not be met. We must ensure that this never happens. 

A modal substitution a: Uo -+ T induces an equivalence relation -M and a relation EM on 
T X T as follows: 

1. If a(u) = v for some v of vo-type, then u ^'M v. 

2. If a(u) = v for some v of lro-type, then v CM u. 



3. If v CM u and u ^'M u', then v CM u'. 

The substitution o is S 5-admissible provided the reduction ordering C 
aet (< U CM)+ is 

irreflexive. 
The relation v CM u between a 7ro and a vo position indicates that the formula rooted at 

the parent of v (a 7r-type formula) should be reduced using the 7r rule to introduce the prefix 
v before the parent of u (a v-type formula) is reduced using the v rule to introduce the prefix 
u, the value of which is also v under the modal substitution. The equivalence relation ^'M 
indicates that the two vo-type prefixes must take the same value under the substitution. 

Let o be an S5-admissible mapping for XMM. A connection { x, y } in XµM is said to be 

o-complementary if o(pre(x)) = o(pre(y)). A set of connections is said to be o-complementary 
if all its elements are o-complementary. 

We are now in a position to state our extension of Bibel's connection theorem to S5 modal 
logic. 

Theorem 3.4.1 A formula A is S5-valid if there is a modal multiplicity p m, an S5-admissible 
mapping o and a set of o-complementary connections that spans (A, 0)µ"M 

We omit the proof of this theorem due to lack of space. Correctness follows directly from 
the correctness of Kanger's sequent system together with the argument that the irreflexivity 
of Q ensures the existence of a correct sequent proof respecting the proviso on the 7r rule. 
Completeness is obtained by showing that a modal multiplicity can be constructed such that 
the sequent associated with an atomic path containing no complementary connection forms an 

S5-Hintikka set which is realizable (see [Fit831). 

4 Implementation. 

An implementation of this connection calculus for S 5 has been developed from an existing 
implementation of a connection calculus for first-order logic [Wa1831. The implementation 
language chosen was Quintus PROLOG since we were more concerned with the techniques used 

to implement the proof system than in absolute efficiency. This section describes some of the 
interesting features of the implementation, a more comprehensive description can be found in 
[Wil861. 

4.1 Static data structures. 

4.1.1 Formula tree representation. 

Each position of the formula tree must be stored in some space-efficient way which permits 
a time-efficient lookup mechanism. It is important that this storage method also allow the 
program to manipulate portions of the formula tree without actually making copies of those 
portions, so that demands on storage space do not become excessive. The formula tree forms 
the basis for an implementation utilising structure sharing. 

For both implementations (first-order and S5) each position is stored as a tuple in the 
PROLOG database. While there are three conceptually distinct tuple types for representing 
quantifiers or modal operators, connectives, and atomic formulae, the same overall structure is 

used throughout. 
The data fields in these tuples record such things as the polarity of the position, its descen- 

dents in the formula ordering, its label (the concrete syntax at that point in the formula tree), 

a pointer to its parent position, and a pointer to its next sibling in the formula tree. (Recall 

that the label of a position will be either a connective, a quantifier or modal operator, or an 

atomic formula.) These tuples are constructed and placed in the database as the formula is 

read in, and, with one exception described in the next section, are never modified thereafter. 

Each tuple is assigned a unique numeric identifier as it is constructed. 



All references to tuples by the theorem prover are made through the use of pointers. A 
pointer consists of a numeric identifer together with an index indicating the particular instance 
of the tuple being referenced. 

This representation allows formula tree nodes to be accessed in a variety of ways other than 
by reference to their identifiers. For example, all occurrences of nodes containing a particular 
proposition or connective, or having a particular polarity, can be retrieved using the same sort 
of database lookup which retrieves the tuple associated with a particular identifier. 

The assignment of numeric identifiers to tuples is done depth-first and left-to-right, so as to 
facilitate various frequently performed operations. For instance, if n and m are two position 
identifiers, and n' is the next sibling of n then m is dominated by n just in case (a) n < m 
and (b) m < n' (i.e., dominance can be determined using just two integer comparisons). For 
example, the signed modal formula (D ((A A B) A OC O(A A C)), 0), represented by the 
tree shown in Figure 1, would be stored in the PROLOG database as shown in Figure 4. 

Identifier Syntax Polarity Type Descendents Next Sibling 

(1, D, 0, 7r, (2), 13) 
(2, =>., 0, a, (3,9), 13) 
(3, A, 1, a, (4,7), 9) 
(4, A, 1, a, (5,6), 7) 

(5, A, 1, -, -, 6) 
(6, B, 1, 8) 
(7, O, 1, ir, (8), 10) 
(8, C, 1, -, 11) 
(9, O, 0, v, (10), 13) 
(10, A, 0, a, (11,12), 13) 

(11, A, 0, -, -, 12) 
(12, C, 0, -, -, 13) 

Figure 4: Example modal database. 

4.1.2 Multiplicity and prefixes. 

The modal multiplicity records the number of distinct instances of subformulae dominated by a 
v type modal operator allowed within the (partial) proof at any given point in time. Positions 
are always considered indexed as described in section 3.1. The modal multiplicity is represented 
as a table with one entry for each vo position in the formula tree. Indices are therefore stored as 
lists of positive integers. For S 5, prefixes are simply positions which represent modal operators. 

4.1.3 Proof Tree Representation 
The proof state within a connection calculus is represented by a record of the connections made 
so far, the substitution constructed and the paths through the formula still to checked for the 
current multiplicity. OR choices arise when there is more than one possible connection that 
makes a given path complementary (see Section 4.2.1). The OR choices are maintained as a 
tree. 

In this implementation, each node of the tree is stored in the database as it is constructed 
and identified by a string of bits. The identifier for a node N is constructed according to the 
following rules: 



1. The identifier of the root node is 1. 

2. If N is the right descendent of a node M and the identifier of M is B, the identifier of N 
is 1B. 

3. If N is the left descendent of a node M (or only descendent, if M is a unary node), and 
the identifier of M is B, the identifier of N is OB. 

When these rules have been followed, the node whose identifer is Il is an ancestor of the node 
whose identifier is 12 if Il is a right-adjusted substring of 12. This test can be done directly on 
the identifiers themselves, without requiring any database lookups or tree traversals. However, 
this test is more complicated, and hence slower, than the corresponding integer comparison test 
used to determine ancestry of formula tree nodes. 

Storage of node identifiers is also more complicated for the dynamic proof trees than for 
the static formula trees. A node at depth D requires a bit-string D bits long to identify it. 
For trees of reasonable depth, D exceeds the length of the standard PROLOG integer, and so 
the bit string must be split across several such integers. In practise, identifiers and pointers 
are recorded using a three-place data structure, "code (X, Y, Z) ", in which "Z" is a list of 16-bit 
integers, and "X" and "Y" identify the word and bit position containing the bit most recently 
added to the identifer. 

Considerable savings in space could have been obtained if the search strategy was confined 
to depth-first, left-to-right through the space of possible connections. (Such a procedure resem- 
bles the search strategy of standard PROLOG interpreters.) However the original program was 
designed to investigate aspects of heuristic search, so a more flexible representation of partial 
proofs was required. 

4.1.4 Connection graphs. 

The last static data structure of interest is the connection graph. Since only a single copy of 
the formula tree is kept, the positions in which a particular atomic formula may be found with 
a particular polarity can be tabulated as the formulae are being input. This table is called a 
"connection graph", and by referring to it while constructing proofs the theorem prover never 
needs to search the formula tree to find complementary propositions. The connection graph is 
propositional but could be extended to include unification information. 

Note that the use of a connection graph is distinct from the use of connection graph resolution 
[Kow75] in which alterations to this data structure are a part of the inference mechanism. The 
connection graph used here is not manipulated or changed in any way once the proof process 
is initiated. 

Remark. However the two systems are in some interesting sense complementary. Connec- 
tion graph resolution could be used to make permanent alterations in the formula tree so as to 
"compile" certain inferences and cut down on search within a run of the connection method. 
To our knowledge, this potential has not been exploited. 0 

4.2 Dynamic features. 

4.2.1 Path checking and goal representation. 

The connection theorem (in the case of S5, Theorem 3.4.1) underlying a given connection 
calculus expresses the validity of a formula in terms of a condition on the set of atomic paths 
through the formula. The main component of that condition is that a set of connections 
can be found such that every atomic path contains at least one connection from that set. 
Checking a formula for validity therefore reduces in part to a process of path checking. Indeed, 
many resolution based proof procedures can be interpreted in this way and a comparison made 
between them [Bib82b]. 



This path checking process can best be expressed using the matrix representation of the 
formula introduced above in which the components of a ,0-type formula are displayed one above 
the other in the plane whilst the components of an a-type formula are displayed side by side. 

The algorithm we use to check the atomic paths through a formula is based on that presented 
in [Bib82a]. A partial proof is represented by a set of goals. Each goal represents a set of atomic 
paths which have not yet been fully examined, but which share the same initial segment. 
The initial segment itself is divided into two parts, the active path and the expansion. The 
active path is a set of atomic formulae amongst which no connections exist. When choosing 
between possible connections, those involving the atomic formulae referenced in the active 
path are preferred over all others. This is equivalent to the unit preference heuristic [CL73]. 
The expansion is a set of references to partially examined subformulae. These references are 
generated by the reduction of a-type nodes, and correspond to dynamically created hypotheses 
which may contain extra problem-specific information in the form of variable instantiations not 
present in the original axioms. When choosing between possible connections, those involving 
the subformulae referenced in the expansion are preferred over those involving uninstantiated 
axioms. This is similar to the "set-of-support" heuristic used in resolution based systems. 

4.2.2 Unification. 

The reduction ordering is represented by a graph whose nodes are prefixes and whose arcs 
indicate precedence and/or equivalence of nodes. When a connection is formed, and two prefixes 
are unified, one new arc is added to this graph to show the effect on reduction order of the 
unification, and zero or more arcs added to show any new precedence information introduced 
by formula ordering. (Recall that the reduction ordering a is the transitive closure of the union 
of the substitution relation and the formula ordering.) If at any point this graph becomes cyclic 
as a result of the introduction of arcs and/or nodes to represent a particular unification, the 
connection inducing that unification is inadmissible. 

The unification of prefixes in S5 is equivalent to unification in a subset of first-order logic 
containing only constants and variables, and not functions or terms. Consequently, the rep- 
resentation used for prefixes, and the way in which they are unified, can be simpler than the 
corresponding mechanisms within the implementation for first-order logic. For example, a sub- 
stitution table must be maintained when performing unification in first-order logic to allow the 
two unifications x +--+ f (a, b) and x +--+ f (b, a) to be distinguished. No such table is needed when 
unifying prefixes in S 5 on the other hand, because all such unification is one-to-one. Similarly, 
unification of S 5 prefixes is non-recursive, since there is never any need to "unpack" a term so 

as to unify its subterms. 

4.2.3 Reporting proof search. 

In [Wa186] it was shown how a connection-based search for first-order logic could be interpreted 
as constructing a generalised form of sequent (or tableau) proof. The derivations are "gener- 
alised" because the choice of prefix at the reduction of a v type position is delayed until a later 
date via the process of unification. The derivations are similar in spirit to those constructed 
using Jackson and Reichgelt's sequent systems [JR87], or modal versions of Reeves' tableau 
system [Ree87]. 

In the implementation, this correspondence was exploited by reporting the search for con- 
nections as a sequence of applications of Kanger's sequent rules. 

Remark. It is important to realize that the search is conducted at the level of connections. 
The use of sequent rules for proof output is simply a matter of "pretty-printing" to provide 
informative output. This should be contrasted with sequent based systems that search a much 
larger space, full of redundancies, in order to obtain such "natural" reporting facilities [BT75]. 

While this is a powerful result, many problems remain. We shall mention two. 



Firstly, the naive translation of connections into sequent derivations (partial proof trees) 
does not produce an intuitively satisfying sequent proof (even though this proof is correct). 
The problem lies in the fact that although each individual connection can be reported as an 
intelligible derivation, the juxtaposition of derivations corresponding to successive connections 
does not necessarily result in any recognisable pattern. 

Attempts were made to change the order in which reduction steps were displayed so as to 
make the resulting output more comprehensible, including printing some sequences bottom-up 
and others top-down, but no simple solution was found. Some ad hoc mechanisms incorporated 
into the theorem prover were useful. For example, when a position representing an implication 
is reduced, the theorem prover will print either 

Rule: - >C or Rule:A- > 

depending on whether the consequent or antecedent branch of the formula tree is being pursued. 
Work by Andrews and his colleagues [And80,Mil84] may prove useful in this context even 

though these authors are concerned with the presentation of a complete proof expressed in terms 
of connections as a natural deduction or sequent calculus proof. Here we are concerned with 
the reporting the proof search directly. 

The second problem concerns S 5 and modal logics in general. For these logics even well- 
formed sequent proofs are not intelligible since propositions may be true in one context and 
false in another; sequent proofs are not appropriate for the display of these contexts. A display 
facility based on the box diagrams of [HC68] is one possible approach. 

5 Related work. 

A number of authors have developed computationally oriented proof systems for S 5. Some are 
based on clausal resolution (eg., [Far83]) since S5 does admit a modal clausal form. Bibel's 
comparison of the classical connection calculus with classical clausal techniques in [Bib82b] 
suffice to demonstrate the benefits of our approach. 

Abadi and Manna [AM86] develop a system based on non-clausal resolution. Their system 
suffers from various combinatorial problems due to the fact that the modal operators are ma- 
nipulated by special deduction rules. The application of resolution is severely restricted. Our 
use of prefixes and unification removes the need for the special rules and liberates the use of 
the basic resolution operation (making a connection). 

Konolige system [Kon86] involves the construction of multiple tableaux. Resolution is re- 
stricted to operate within each tableau. Again the combinatorics of his system are not ideal; 
indeed the construction of an auxiliary tableau is only justified in retrospect introducing many 
sources of redundancy. Our use of prefixes eliminates the need to consider multiple tableaux. 

6 Conclusions. 

We have presented the theory and some details of an implementation of a computationally 
efficient proof system for S 5 modal logic. The system is a variant on Bibel's connection calculus 
for first-order logic. The implementation was developed in a straightforward manner from a 
previous implementation of the connection calculus for first-order logic. 

The basic techniques, summarised at the beginning of Section 3.1 were: 

The search should be confined in the first instance to selecting instances of the basic 
sequent schema of the appropriate sequent calculus. A process of unification together 
with a reduction ordering should be used to ensure that a correct sequent proof could 
be constructed at every stage without overcommitting the system to choices of particular 
values for the "variable" constructs. (In the case of first order systems these variable 
constructs are universally quantified variables. In the modal case the constructs are 
prefixes denoting possible worlds.) 



It was suggested in [Wa186] that the techniques applied here to what is in effect the simplest 
modal logic could be used to produce computationally efficient proof systems for more compli- 
cated logics. We have succeeded in constructing a generalised connection calculus for the modal 
logics K, K4, D, D4, T, S4 and S5, as well as both constant- and varying-domain versions 
of their first-order variants. The details can be found in [Wa187]. In the latter case we can 
deal with versions of the logics in which the so-called "monotonicity" condition holds between 
worlds and versions in which no such condition holds. The generalised connection calculus is 
specialised to a particular version of a particular logic by altering the admissibility conditions 
on the modal substitution. All other details (including the methods for proof search) remain 
the same. 
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Abstract 
We present matrix proof systems for both constant- and varying-domain versions of the 

first-order modal logics K, K4, D, D4, T, S4 and S5 based on modal versions of Herbrand's 
Theorem specifically formulated to support efficient automated proof search. The systems 
treat the full modal language (no normal-forming) and admit straightforward implementations 
using structure-sharing techniques. A key feature of our approach is the use of a specialised 
unification algorithm to reflect the conditions on the accessibility relation for a given logic. The 
matrix system for one logic differs from the matrix system for another only in the nature of this 
unification algorithm. In addition, proof search may be interpreted as constructing generalised 
proof trees in an appropriate tableau- or sequent-based proof system. This facilitates the use 
of the matrix systems within interactive environments. 

1 Introduction. 

Modal logics are widely used in various branches of artificial intelligence and computer science as 
logics of knowledge and belief (eg., [Moo80,HM85,Kon84]), logics of programs (eg., [Pne77]), and 
for specifying distributed and concurrent systems (eg., [HM84,Sti85b]). As a consequence, the need 
arises for proof systems for these logics which facilitate efficient automated proof search. 

Traditional proof systems for modal logics, such as tableau- or sequent-based systems are readily 
available (eg., [Kan57,Nis83,Fit83]). While these systems are to some extent human-oriented, the 
proof rules form an inadequate basis for automated proof search since they generate search spaces 
that contain considerable redundancies. The redundancies arise mainly from the characteristic 
emphasis on connectives and the proof rules for modal operators and quantifiers. 

The matrix methods for first-order classical logic, pioneered by Prawitz [Pra60], and further 
developed by Andrews [And8l] and Bibel [Bib8l], have been demonstrated to be less redundant 
than the most efficient of the resolution based methods for that logic [Bib82b]. The methods 
combine an emphasis on connections (drawn from the resolution methods) with an intensional 
notion of a path. 

In this paper we present matrix proof systems for the modal logics K, K4, D, D4, T, s4 and s5, 
based on modal versions of Bibel's "computationally improved" Herbrand Theorem for first-order 
classical logic [Bib82c]. We consider both constant- and varying-domain versions of the first-order 
modal logics. 

The major features of our approach may be summarised as follows. Validity within a logic is 
characterised by the existence of a set of connections (pairs of atomic formula occurrences: one pos- 
itive, one negative) within the formula, with the property that every so-called atomic path through 
the formula contains (as a subpath) a connection from the set (§ 2.4). Such a set of connections 
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is said to span the formula. For classical propositional logic this condition suffices [And8l,Bib8l]. 
For first-order logic a substitution (of parameters or terms for variables) must be found under 
which the (then propositional) connections in the spanning set are simultaneously complementary. 
Conditions are placed on the substitution that ensure amongst other things that a proof within a 
particular tableau- or sequent-based proof system is constructable from the connections and the 
substitution [Bib82c,Wa186]. This basically amounts to ensuring that the restrictions found on the 
traditional quantifier rules can be met. 

For the propositional modal logics we keep the basic matrix framework but define a notion 
of complementarity for atomic formulae that ensures the existence of a proof in one of Fitting's 
prefixed tableau systems [Fit72,Fit83]. This amounts to ensuring that, semantically: the two 
atomic formulae of a connection can be interpreted as inhabiting the same "possible world," and 
proof-theoretically: that they can be given the same prefix (§ 2.5.1). The key observation is that 
this can be established by noting the position of the atoms relative to the modal operators in the 
original formula and utilising a specialised unification algorithm operating over representations of 
these positions. Clearly, this notion of complementarity is logic-dependent, a dependence which 
is reflected in the choice of unification algorithm. Lifting these results to first-order constant- 
domain modal logics is simply a matter of combining this modal notion of complementarity with 
the first-order notion (§ 2.5.2). 

For the varying-domain versions we index individual variables with the prefix of their quantifier. 
The substitution of one variable for another is permitted provided their prefixes can be unified 
(§ 2.5.2). 

Checking a formula for validity within a modal logic is therefore reduced to a process of path 
checking and complementarity tests performed by a specialised unification algorithm (§ 3). During 
this process extra copies may need to be considered of universally quantified formulae and/or 
formulae dominated by a modal operator of "necessary" () force. The duplication in both cases 
is managed by an extension of Bibel's indexing technique or multiplicity [Bib82a] which supports 
the implementation of the matrix systems using structure-sharing techniques [BM72]. The notions 
of multiplicity, substitution and spanning sets of connections form the basis of the relationship 
with Herbrand's Theorem. 

A number of authors have attempted to adapt computationally oriented proof systems for first- 
order logic to the modal logics considered here (eg., [Far83], [AM86a], [Kon86]). We compare our 
approach favourably to theirs in Section 4. 

2 The modal matrix systems. 

2.1 Preliminaries. 

We assume familiarity with the usual definition of the modal language and formulae. We let A, B 
range over formulae and P, Q range over atomic formulae. 

A pair (G, R), comprising a non-empty set G and a binary relation R on G is called a frame. 
Let D be some non-empty set. A first-order frame over D is a triple (G, R, P) where (G, R) is a 
frame and P is a mapping from G to non-empty subsets of D. P(w) can be interpreted as the set 
of individuals that "exist" in the world w. 

We can obtain different versions of the first-order logics by restricting the way in which P 
varies from world to world. For example, we could require the constant-domain condition: for 
w, w' E G, P(w) = P(w'). Axiomatically, constant-domain modal logics are obtained by including 
the so-called Barcan formula Vx Ax = VxAx as an additional axiom. Our purpose here is not 
to choose between these possibilities but to develop matrix proof systems for each of the variants. 

If we restrict R to satisfy the conditions outlined in Table 1, we say that (G, R, P) is an L-frame 
over D, where L is the logic associated with the conditions. The "idealization" condition is that 
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£ 
K 
K4 
D 

D4 
T 
s4 
S5 

Condition on R 
no conditions 
transitive 
idealization 
idealization, transitive 
reflexive 
reflexive, transitive 
equivalence 

Table 1: Conditions on accessibility relations. 

for every element w E G there is some element w' E G such that w R w'. Once again our purpose 
is not to choose between these logics but to develop matrix proof systems for each. 

An £-model over D is a pair ((G, R, P), II-) where (G, R, P) is an £-frame over D and [I- is a 

relation between elements of G and sentences such that: for all w E G 

1. W II-AABiffwll- Aandwll- B. 

2. w II- A V B iff either w ll- A or w Il- B. 

3. w - A B if either wII74A or w Il- B. 

w - A if wIIVA. 

w I- A iff for all v E G with w R v, v II- A. 

w II- QA if for some v E G with w R v, v ll- A. 

w II- VxA if for all d E P(w), w II- A[d/x]. 

8. w II- 3xA if for some d E P(w), w II- A[d/x]. 

Satisfaction in a model and validity are defined as usual. 
A signed formula is a pair (A, n) where A is a formula and n E { 0,1 }. We let X, Y range over 

signed formulae. Informally, the signs "1" and "0" should be interpreted as the qualifiers "is true" 
and "is false" respectively. For ease of exposition we use a uniform notation due to Smullyan and 
Fitting that classifies signed formulae according to their sign and major connective/operator as 
shown in Table 2. 

2.2 Formula occurrences. 

A formula tree for a signed formula is a variant of its formation tree containing additional informa- 
tion as to the polarity of its subformula occurrences (i.e., whether an occurrence of a subformula 
is negative or positive within the formula). It is best explained by example. A formula tree for 
the signed formula (X Vx (QPx A Qx) = Q(VyPy A VzQz), 0) is shown in Figure 1. Following 
Bibel [Bib82c], we name the nodes or positions of the tree (ao-a14) so as to distinguish different oc- 

currences of the same subformula. With each position we associate the polarity of the subformula 
rooted at that position and a label consisting of the major connective/operator of that subformula, 
or the subformula itself when that is atomic. We use < to denote the (partial) ordering in the 
formula tree. Positions form the basis for implementations of the matrix systems using structure- 
sharing techniques [BM72]. A position should be interpreted as a pointer to a single copy of the 
main formula stored in computer memory. Unlike resolution-based methods, these matrix methods 
do not require the explicit generation of intermediate formulae. 
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a a1 a2 I/ vo It 'Yo 

AAB,l A,1 B,1 DA,1) (A,1) `dxA, l A,1 
(A V B, 0) (A, 0) (B, 0) (QA, 0) (A, 0) (3xA, 0) (A, 0) 

(A = B, 0) (A, 1) (B, 0) 

(-,A,1) (A, 0) (A, 0) 
(-A, 0) (A,1) (A, 1) 

Q 

AAB,O 
(A V B,1) 
(A = B,1) 

Nl 
A,0) 

(A,1) 
(A, 0) 

/92 7r 

(B, o) (D -AO) 
(B, 1) (<:>A, 1) 

(B,1) 

70 6 

(A,0) `xA,0 
(A, 1) (3xA, 1) 

Table 2: Classification of signed formulae. 

ao (= , 0) 

ao 

A, 0 

(A,1) 

(,1) a2 alo (A, 0) 

(Vx, 1) as (Vy, 0) all a13 (`dz, 0) 

(A, 1) a4 (Py, 0) a12 a14 (Qz, 0) 

(,1)a5 a7(D,1) 

(Px,1) a6 as (Qx,1) 

Figure 1: Formula tree for (Q )Vx (QPx A D Qx) Q(VyPy A VzQz), 0). 

(,1) al ag (0, 0) 
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In terms of analytic tableau systems [Smu68,Fit83], the polarity of a position determines the 
sign with which the subformula rooted at that position will occur on any analytic tableau which 
has the main (signed) formula as root [Wa186]. Therefore, the classification of signed formulae can 
be extended to the positions of a formula tree by defining the type of a position to be the type of 
the signed formula rooted at that position in the tree. In addition, we consider the root node of 
the formula tree to be of lro type. 

Notice that each position has two types: its principal type (eg., a, ,Q, v, ...) is determined by its 
label and polarity, while its secondary type (eg., all a2, ,Ql, ...) arises from the type of its parent. 

For a given formula tree we use k, 1, possibly subscripted, to denote positions and Lo, no, ro 
and Do to denote the sets of positions of type vo, lro, yo and 6o respectively. 

2.3 Multiplicities. 

The semantic clauses for interpreting formulae whose major symbol is a modal operator of "nec- 
essary" force (i.e., v-type) or a quantifier of "universal" force (i.e., -y-type) indicate that we must 
consider multiple instances of the principle subformula of such a formula occurrence (i.e., formulae 
rooted at vo- and -10-type positions respectively within a formula tree). In the modal case we 
intend different instances to inhabit different worlds; in the case of a quantified formula, we form 
different instances by the substitition of different parameters for the (universally) bound variable. 

The following definitions are introduced for a given formula tree for a given signed formula X. 
A function µM from Vo to the positive integers is called a modal multiplicity for X; it serves to 

encode the number of instances of subformulae of X in the scope of a modal operator of necessary 
force considered within a putative proof. 

A function uQ from ro to the positive integers is called a first-order multiplicity for X; it serves 
to encode the number of instances of subformulae of X in the scope of a quantifier of universal 
force considered within a putative proof. 

A multiplicity p for X is the combination of a modal and first-order multiplicity thus: for a 
position k of the formula tree 

I FPM (k), k E Lo; 

lu(k) = uQ(k), k E ro; 
undefined, otherwise. 

If A is a multiplicity for X we define the (indexed) formula tree for the indexed formula Xµ as 
a tree of indexed positions of the form k", where k is a position of the basic formula tree for X 
and rc is a sequence of positive integers defined as follows: if ki < k2 < < kn < k, 1 < n, are 
those vo- and -10-type positions that dominate k in the basic formula tree for X, then 

XG1(31i2... n) 11<7i<_IL(ki), 1<i<n}. 
The ordering in the indexed tree <1` is defined in terms of the ordering on the underlying tree: for 
indexed positions k" and IT 

k" <1` IT iff k < l and r = xO, 

where 0 is some sequence of positive integers. The polarity and label of an indexed position k" is 

taken to be the same as the polarity and label of its underlying position k except that, in the case 

of atomic formulae, individual variables are indexed with the index of the child of their quantifier 
position (i.e., a yo or 6o position) so as to distinguish the different instances. Consequently, indexed 
positions inherit the type of their underlying position also. 

Figure 2 shows the indexed formula tree for the example formula of Figure 1 with a multiplicity 
of UQ(a4) = 2 and constant (i.e., 1) otherwise. As a convention we omit indices consisting of the 
empty sequence. 
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Figure 2: Indexed formula tree 

We let u, v, possibly subscripted, range over indexed positions when we are not interested in 
the index, and drop the superscript on <. We abuse our notation and let Lo, lIo etc, denote the 
sets of indexed positions of an indexed formula tree of the appropriate types. Henceforth we shall 
refer to indexed positions simply as positions. 

Remark. Bibel's notion of a multiplicity [Bib82a] corresponds to our notion of a first-order 
multiplicity. We have altered his definition slightly to support the symmetry between the treatment 
of modal operators and quantifiers obtained above. Notice that, for an indexed formula, the set 
ro and the set of distinct universally quantified variables, and the set Ao and the set of distinct 
existentially quantified variables in the formula are in 1-1 correspondence. We shall make use of 
this observation in the sequel. a 

2.4 Paths and connections. 

Let X" be an indexed formula. A path through X" is a subset of the positions of its formula tree 
defined below. We shall use s, t, possibly subscripted, to denote paths, and adopt the notation s[a"] 
to denote a path s with an occurrence of a distinguished a-type position with index rc. Similarly 
for the other types. The set of paths through X", is the smallest set such that: 

1. { ko } is a path, where ko( is the root position of the formula tree for X"; 

2. if s[a"] is a path, so is (s - {a"}) U {al", a2"}; 

3. if s[/j"] is a path, so are (s - {p"}) U {Ql"} and (s U 102r-}; 

4. if s[v"] is a path, so is s U {vo"i }, 1 < j < PM(vo); 

5. if s[7r"] is a path, so is s U {7ro"}. 

6. if s[ry"] is a path, so is s U {ryo"y}, 1:5 j < PQ(-to); 

7. if s[d"] is a path, so is s U {do"}. 

I 
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The path (s - {a"}) U {a1", a2"} is said to have been oozazned by reduction on a" from s[a" ]. 
Similarly in the other cases. 

Each path s through X determines a set (branch or sequent) of positions as follows 

S(s)={xI x<y for some yEs}. 
A path, s, through XI` is an atomic path if for k' E s, either 

(a) k is labelled by an atomic formula; or 

(b) kEL,andforall j, 1<j</LM(vo), vo"1ES(s);or 

(c) k E I', and for all j, 1 < j < /LQ(ryo), io"1 E S(s). 

Remark. Our definition of path differs from Andrews' [And8l] and Bibel's [Bib8l] definition 
so as to demonstrate the relationship between the matrix methods and tableau/sequent methods. 
Each clause in the definition, when interpreted as operating on the branch associated with the 
path, corresponds to an analytic tableau rule [Smu68,Fit83]. A path is a representation of the 
unused formulae on a branch. Furthermore, for a given multiplicity, the branch associated with 
an atomic path is complete. These relationships are discussed in more detail in [Wa186]. 0 

Consider our example (signed) formula: 

(OOVx (OPx A O Qx) O(VyPy AVzQz), 0) 

indexed as in Figure 2. If we distinguish its a-type subformulae from its /3-type subformulae by 
placing the components of the former side-by-side and the components of the latter one above the 
other, we obtain a nested matrix thus: 

O Vb (py(1)) 
OObx C O (Px(1)) A (Qx(1))/ l ( \ O (Px(2)) 

A 0 (Qx(2))) A 
Vz (Qz(1)) 

Notice that the two instances of the subformula Px A Qx are considered to be the components of 
an implicit a-type formula. This follows from the ry clause (6) of the definition of paths above. If 
we omit the connectives and operators we are left with the skeleton matrix: 

(Px(1) Qx(1)) (Px(2) Qx(2)) 

py(1) 

Qz(1) 

which corresponds in part to the so-called "deep formula" in the expansion tree approach of Miller 
[Mil84]. 

The atomic elements of an atomic path are simply the horizontal matrix paths through such 
a matrix. In this case there are two atomic paths through the formula, one with atomic elements 
{ Px(1), Qx(1), px(2), Qx(2), Py(1) } and one with elements { Px(1), Qx(1), px(2), Qx(2), Qz(1) }. 
More precisely, we should express these sets as positions thus: 

1 
a(1) a(1) a(2) a(2) a(1) } and 

1 
a(1) a(1) a(2) a(2) a(1) 6 8 6 8 12 a6 8 6 x 8 14 

A connection in an (indexed) formula is a subpath of a path through the formula consisting 
of two positions labelled by an atomic formula with the same predicate symbol but of different 
polarities. A set of connections is said to span the formula just when every atomic path through 
it contains a connection from the set. 

For example, the two connections { a61), a12) } and { a81), a14) } span the indexed formula 

}. displayed above. So does the connection pair 
1 

a6 l), a12) 
1 

and { a82), a14 (1) 
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2.5 Complementarity. 

As remarked above, for a given multiplicity, the atomic paths through an indexed formula serve 
to represent the branches of a complete analytic tableau with the main formula at its root. In the 
same spirit, we wish to interpret connections as the two formula occurrences that atomically close 
the branches on which they occur. 

For propositional logic, connections are complementary by definition. Since there is no need for 
multiplicities (no modal operators or quantifiers) this observation leads to a simple characterisation 
of validity. 

Theorem 2.5.1 (Andrews [And8l], Bibel [Bib8l]) A propositional formula A is valid if there 
exists a set of connections that spans (A, 0). 

This theorem is the matrix counterpart to the following theorem for analytic tableaux: 

Theorem 2.5.2 (Smullyan [Smu68]) A propositional formula A is valid iff there exists an 
atomically closed analytic tableau for (A, 0). 

The matrix theorem is more appropriate as a basis for automated proof search because there 
is no need to actually construct a tableau. The spanning condition simply ensures that a tableau 
of the appropriate form can be constructed; we search for a spanning set of connections directly 
rather than via the connective oriented tableau rules [Wa186]. 

In the presence of modal operators and quantifiers we must be more careful. We deal with 
modal operators first. 

2.5.1 Propositional modal systems. 

Informally we must ensure that the two atomic formulae represented by the positions of a con- 
nection can be considered to inhabit the same possible world. In terms of tableaux, this involves 
synchronising the choices of possible worlds made during the reduction of the modal (sub)formulae 
that contain these atomic formulae as subformulae; or, in terms of positions, the reduction of the 
v- and 7r-type positions that dominate the positions of the connection in the formula tree. 

The following definitions are introduced for a given (indexed) formula tree for a given (indexed) 
formula Xµ. 

Let TM denote the union of 1/o and llo. We associate a sequence of positions called a prefix, 
denoted pre(u), with each position u of the formula tree as follows: if u1 < u2 < < u,a < u, 
1 < n, are those TM-elements that dominate u in the formula tree, then 

(ul u2 un), K, K4, D, D4, T, S4; pre(u) (un), S5. 

The prefix of a position encodes its modal context within the formula tree. We shall use p, q to 
denote prefixes. 

For example, the prefix of a6ll is (aoa2a3aG1)) while the prefix of a1(l2) 
is aoaM 

We can place various conditions on a binary relation Ro C TM x TM as shown in Table 3. 

Such a relation is an £-accessibility relation provided it satisfies the properties associated with £ 
in Table 4. 

Remark. These definitions are adapted from Fitting [Fit72,Fit83]. Each prefix "names" a 
possible world. Since the positions of the (indexed) formula tree correspond to signed subformulae 
of Xµ, a position taken together with its prefix corresponds to his notion of a prefixed signed 

(sub)formula. The prefix identifies the world in which the subformula is taken to be true or false 
depending on its sign. Binary relations on prefixes are thus used to represent the properties of the 
accessibility relation for a given logic. 0 
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Property 
general 
reflexive 
transitive 

L 
K, D 

T 
K4, D4 

S4 

S5 

Condition: For p, q E TM 
pR0pq, Iq =1 
pRop 
pRopq, lqI? 1 

Table 3: Prefix conditions. 

Properties of R0 
general 
general, reflexive 
general, transitive 
general, reflexive, transitive 
every prefix accessible from every other prefix 

Table 4: Accessibility on prefixes. 

We have indicated that the two positions that constitute a connection must be interpreted 
as inhabiting the same possible world; i.e., have the same prefix. We ensure this by building a 
modal substitution am under which the prefixes of the positions are identical. The discussion below 
motivates the ensuing definitions. 

Consider a v-type position u with prefix p. The semantic clause for the subformula rooted at u 
allows us to conclude that the subformula rooted at the child of u, say v, has the same truth value 
(sign) in any world accessible from the world denoted by p. By definition, the prefix of v is (pv) 
since v is of v0-type. Tables 3 and 4 give us the conditions under which a prefix can be considered 
to be accessible from p. 

Take D4 for example. Any prefix of which p is a proper initial subsequence will be accessible 
from p. Consequently, if we consider v to be a "variable" and allow it to be instantiated under 
some mapping am: VO -+ Tj to any non-empty sequence we can guarantee that the image of 
(pv) under (the homomorphic extension of) am will be accessible from the image of p under (the 
homomorphic extension of) am. In the case of S4, we allow v to be instantiated with any sequence 
including the empty sequence to reflect the reflexivity of the S4 accessibility relation. For S5, since 
our notion of prefix is different, we need only consider unit sequences as possible instantiations for 
such "variables." 

Now consider a 7r-type position u with prefix p. The semantic clause for the subformula rooted 
at u allows us to conclude that the subformula rooted at the child of u, say v, has the same truth 
value (sign) as u in some world accessible from the world denoted by p. Again, by definition, the 
prefix of v is (pv) since v is of a 7ro-type. From the tables we can see that (pv) itself is accessible 
from p by virtue of the fact that accessibility relations on prefixes for all of the logics satisfy the 
general condition. Consequently we consider 7ro-type positions as "constants" under the mappings 
am introduced above. In the context of a tableau proof, the choice of this possible world must be 
arbitrary; i.e., the prefix (pv) must be new to the tableau. The "constant" v can only be introduced 
in a prefix by the reduction of v's parent u, or by the reduction of a v-type position introducing a 
"variable" (a v0-type position) whose image under am contains v. To preserve soundness therefore, 
we must ensure that the former can occur before the latter. 

A modal substitution am: VO -+ TM induces an equivalence relation "'M and a relation CM on 
TM x TM as follows: 

1. If QM (u) = v for some v of vo-type, then u ^'M v. 

2. If am(u) = p and p is not a unit sequence consisting of a vo-type position, then for all v p, 
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v cm u; where -< is the subsequence relation on TM. 

3. IfvCMuandu -MU', then v EM U'. 

A modal substitution am is £-admissible provided 

1. am respects ,-accessibility relations R0i i.e., for all p, q E TM, 

p R0 q implies o'M(p) R0 a' (q) 

where a# M: TM - TM is the homomorphic extension of am to TM. 

2. (K-logics only) u ^'M u' implies v CM u (and hence v CM u') for some position v. 

3. 1 = (< U CM)+ is irreflexive, where CM is the relation induced by am described above. 

The appropriate notion of complementarity for the propositional modal logics under consider- 
ation is as follows: (for an indexed formula X") if am is an £-admissible modal substitution for 
X" a connection { u, v } in X1' is said to be am -complementary iff 

1. am#(pTe(u)) = a#it(pTe(v)). 

Remarks. The relation v CM u should be interpreted as a prescription that "position v should 
be reduced before position u," in the sense of tableaux. The relation a is called the reductio 
ordering. Its irreflexivity ensures that we could construct an analytic tableau with X as root usin, 
the generic prefixes instantiated by am, so that all of the restrictions on prefixes mentioned abovo 
are met. This method of representing the restrictions on traditional modal tableau rules is an 
adaptation of the method used by Bibel [Bib82a] for the classical quantifier rules. 

Suitable mappings can be computed using variants on a string-unification algorithm. In all 
cases the set of most general unifiers is finite but not necessarily a singleton [Sie84]. For S5 the 
standard unification algorithm suffices. The admissibility check is an check for acyclicity if < is 
interpreted as a directed graph. 

The extra condition for the K-logics is a translation into the current setting of Fitting's notion 
of a used prefix. Basically, since these logics are not idealizable we must ensure that each prefix 
(under am) of a v0-type position (formula) has been introduced by the reduction of a it-type 
position (formula) beforehand. 

We have proved the following theorem: 

Theorem 2.5.3 A propositional modal formula A is £-valid iff there is a modal multiplicity 11M, 

an £-admissible modal substitution arm and a set of arm -complementary connections that spans the 
indexed formula (A, 0)1A". 

The proof involves showing that starting from a tableau with (A, 0) at its root we can con- 
struct an atomically closed prefixed tableau by following the reduction ordering induced by the 
substitution, and prefixing each subformula with the image under the substitution of the prefix of 
its root position. The multiplicity indicates the number of times a given v-type formula is reduced 
to form the tableau. Completeness involves showing that a suitable modal multiplicity µM can 
be constructed to form a modal Hintikka set from the set associated with any non-complementary 
atomic path (i.e., unclosed branch) through (A, 0)"" 

Although we have used tableau systems to motivate the definition of the matrix systems, no 
tableau construction is actually performed in the use of such methods. The theorem above is 
utilised directly. (See Section 3.) 
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2.5.2 First-order modal systems. 

Extending the propositional matrix systems presented above to first-order modal logics is straight- 
forward. We consider both constant- and varying-domain versions. 

For constant-domains, a pair of atomic formulae labelling the positions of a connection can 
be interpreted as complementary if we can find a first-order substitution vq of parameters for 
individual variables that render the two atoms identical. 

For varying-domains, the modalities and quantifiers interact. Universally quantified variables 
only range over those individuals that "exist" in the world denoted by the prefix of their quantifiers. 
Existential quantifiers express the existence of individuals only in the world denoted by their 
prefixes. Consequently, our first-order substitution vq must respect the modal substitution 0M. 

Instead of introducing an explicit set of parameters we note that there is a 1-1 correspondence 
between ro and the set of distinct universally bound variables, and Oo and the set of distinct 
existentially bound variables within the indexed formula. Consequently first-order substitutions 
are considered over these positions rather than individual variables. Notice that the position 
corresponding to the individual variable x quantified at a position u is the child of u in the formula 
tree. 

More formally, let Tq denote the set ro u Do. A first-order substitution is a mapping vq: ro -- 
Tq. For soundness, we must place restrictions on first-order substitutions to ensure that the 
positions representing parameters introduced for existentially bound variables (Do) are indeed ar- 
bitrary. In terms of tableaux, we must ensure that such positions are introduced (by the reduction 
of their parent) before the introduction of any position representing a universally bound variable 
which receives the same parameter under the substitution vq. The similarity between these restric- 
tions on quantifier reductions and the restrictions on modal operator reductions is not accidental 
[Smu70]. 

A first-order substitution vq: ro -- Tq induces an equivalence relation --q and a relation Cq 
on Tq x Tq as follows: 

1. If vq(u) = v for some v of -yo-type, then u --q v. 

2. If vq(u) = v for some v of bo-type, then v Cq u. 

3. If v Cq u and u --q u', then v Cq u'. 

A combined substitution is a pair consisting of a modal substitution and a first-order substitu- 
tion. A combined substitution (arm, vq) is £-admissible provided 

1. aM respects .C-accessibility relations, as before. 

2. (K-logics only) u ..,M u' implies v CM u (and hence v CM u') for some position v. 

3. d = (< U CM U Cq)+ is irreflexive, where CM and Cq are the relations induced by arm 

and vq respectively as described above and in § 2.5.1. 

For constant-domains the appropriate notion of complementarity is as follows: (for an indexed 
formula Xµ) if or is an £-admissible combined substitution for Xµ, a connection { u, v } in X," is 
or-complementary iff 

1. orm* (pTe(u)) =or* (pTe(v)). 

2. aq(label(u)) = vq(label(v)). 

For varying domains complementarity is defined in the following way: (for an indexed for- 
mula Xµ) if or is an £-admissible combined substitution for Xµ, a connection { u, v } in X'" is 
or-complementary iff 
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1. C3* (pre(u)) = QM(pre(v)). 

2. QQ(label(u)) = QQ(label(v)). 

3. If QQ(u') = v', then a' (pre(u')) = of (pre(v')). 

Note the addition of the third clause by which the modal and first-order substitution interact. 
Remark. We have blurred the distinction between an individual variable and the position that 

represents it in order to state the second condition. 
Consequently we have: 

Theorem 2.5.4 A (first-order) modal formula A is L-valid iff there is a multiplicity 14, an 
admissible combined substitution a and a set of a-complementary connections that spans the indexed 
formula (A, 0)µ. 

Once again we utilise tableau techniques to prove this theorem. 

3 Proof search in the matrix systems. 

The matrix systems presented above reduce the task of checking a modal formula for validity 
to one of path checking and complementarity tests. The path checking is performed by adding 
connections to a set and eliminating all those atomic paths that contain the new connection. If all 
atomic paths can be eliminated in this manner, the formula is valid. Complementarity tests are 

performed as each connection is added. Bibel [Bib82b,Bib82a] shows how some of the standard 
resolution search strategies can be utilised for this process. His results carry over to our modal 
systems without change. 

Consider the example (indexed) formula of Figure 2. Ignoring the first-order features for the 

moment, the connection { a61), a12) } gives rise to the problem of unifying the prefixes (aoa2a3ae1)) 

and (aoa o ), where we have overlined the vo-type ("variable") positions. We can immediately see 

that such a connection cannot be made (propositionally) complementary (condition 1) unless the 
accessibility relation of the logic is transitive. If this is the case, the (most general) unifier sends 

a o to the sequence 
a2a3a61) 

The second connection { a8(l)3 a14 } gives rise to the problem of unifying the prefixes (aoa2a3a81) ) 

and (aoa o ). Since a ti has the value a2a3a61) under the current modal substitution, we can make 

the two connections (propositionally) complementary if we send as1) to a61) . 

Consider now the first-order features of our example formula. In addition to the modal substi- 
tution we must build a first-order substitution which unifies the labels of the connections. 

For the first connection we must unify PxM with Py(l). This gives rise to the problem of 

unifying a41) with a12) . The most general unifier simply maps the former position to the latter. 
So far so good. Consider now the second connection. That gives rise to the problem of unifying 
Qx(1) with Qz' ', i.e., a41) with a14 . Clearly we cannot build a consistent mapping for 41) which 
unifies both labels. 

Due to the multiplicity of a4 there is an alternative connection { a(2), a14 } which together with 

the first also forms a spanning set (§ 2.4). Propositionally, this connection gives us the problem of 

unifying (aoa2a3a82) and I aoa o) which is easily accomplished by mapping a82 to a611 (recall 

that a10 is already mapped to a2a3a61)). At the first-order level we must unify Qx(2) and Qz('), 

i.e., a42) with a14 which can now be accomplished. 
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41) 

Connection 
1. a(1) a(i) 6 12 

2. asl), ai4 

2'. a(.2), ai4 

(1) _(1) 
ag as ar, as 

Figure 3: Reduction relation for connections 1 and 2'. 

M-prefix 
aoa2a3a 

1 ,aoa1 

6 io 

aoa2a3a81), aoaio 

aoa2a3as2), aoaio 

QM QQ Q-prefix 
41 (1) 4 (1) ) alo --, a2a3a6 a4 , a12 

aoa2a O 

aa8 a(o1) _(1) 
a4 

(1) , a14 aoa2a3, aoaio 

as2) a6l) -(2) 
a4 

(1) , a14 aoa2a3, aoaio 

propositional: o-(pre(u)) = a* (pre(v)) II 

constant-domain: oQ(IabeI(u)) = oQ(Iabel(v)) 

varying-domain: foroQ(u') = v', o -(pre(u')) = am(pre (v')) 

Table 5: Connections and unification problems. 

The reduction ordering induced by these substitutions is shown as a graph in Figure 3. Notice 
that it is cyclic. It is easy to show that no increase in multiplicity can overcome this. Consequently 
we conclude that the formula is not valid in the first-order constant domain versions of the transitive 
logics. 

We can also check the third condition to determine the status of the formula with respect to 
the varying-domain logics. Our first-order substitution mapped a41) to a12 and a(2) to a14). The 

1 prefix of a() is (aoa2a3 while the prefix of a12 is (aoio ). Under the modal substitution this 4 

latter prefix becomes (aoa2a3ag1)). Since these two prefixes cannot be unified the connections 

are not complementary in the varying-domain logics. (Notice that we do not even get as far as a 
cyclicity check in this case.) The prefixes and unifiers are summarised in Table 5. 

The path checking process may be interpreted as constructing proof trees in a prefixed tableau 
or sequent based proof system where the prefixes contain "Skolem" variables and are interpreted 
as "Skolem" functions. The appropriate systems are similar in spirit to those of Jackson and 
Reichgelt [JR87]. This has been utilised in implementations to provide a human oriented interface 
to the search [WW87]. Note that we are concerned with an interface to the search itself rather 
than the presentation of an already constructed proof for which the techniques of [And80,Mi184] 
are applicable. 
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4 Related work 

There are two main approaches for extending resolution techniques to modal logics. The first 
is to restrict the syntactic form of formulae, so that an appropriate modal clausal-form may be 
defined, and apply clausal resolution techniques (eg., [Far83]). Bibel's comprehensive comparison 
of clausal resolution-based methods and his matrix method for first-order logic [Bib82b] suffices 
to demonstrate the advantages of proof search based on the matrix approach for modal logics 
presented above. 

The second approach is to restrict the application of the resolution rule to modal contexts in 
which it is sound. In semantic terms this means utilising resolution within each possible world. 
Inference across possible worlds is performed by another mechanism. Abadi and Manna's systems 
[AM86a,AM86b], based on non-clausal resolution [MW80,Mur82], form perhaps the most com- 
prehensive extension of resolution techniques to modal logics along these lines. The mechanism 
they employ to manage modalities are Hilbert-style deduction rules which are used to conjoin new 
formulae. For example, the modal deduction rules for S5 are: 

Ml: A, QB --Q ( A A B) M3: A --, A 
M2: QA, QB --' Q(QA A B) M4: A --' A. 

While hand proofs using these systems can be short, the search spaces they generate are quite 
redundant due to the connective-based rules for manipulating modalities. Combinations of M3 
and M4 must be aplied to facilitate the application of M1 and M2. Only when complementary 
subformulae are moved into the same modal context in this manner can the resolution rule be 
applied. Moreover, since the systems are generative, rules remain applicable to old formulae 
throughout the proof. This should be compared with our connection-based approach and the 
calculations used to establish validity illustrated in the previous section. In the example there, the 
propositional structure of the formula defined the space to be searched (four possible connections). 
The modal operators were dealt with using a unification algorithm. 

Konolige's systems [Kon86] are based on tableau systems (one tableau for each possible world). 
Ordinary resolution is utilised within each tableau and a version of Stickel's Theory-resolution 
[Sti85a] used to manipulate modalities by creating new tableaux. Search is complicated by the 
need to choose suitable sets of formulae to form these new tableaux. The use of theory resolution 
is not effective, in the sense that an arbitrary amount of search must be performed to determine 
that the generation of a given resolvent is indeed sound. Konolige proposes the use of multiple 
refutation procedures to overcome these problems. 
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