
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

January 1995

Efficient Constraints on Possible Worlds for Reasoning About Efficient Constraints on Possible Worlds for Reasoning About

Necessity Necessity

Matthew Stone
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Matthew Stone, "Efficient Constraints on Possible Worlds for Reasoning About Necessity", . January 1995.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-97-10.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/200
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F200&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/200
mailto:repository@pobox.upenn.edu

Efficient Constraints on Possible Worlds for Reasoning About Necessity Efficient Constraints on Possible Worlds for Reasoning About Necessity

Abstract Abstract
Modal logics offer natural, declarative representations for describing both the modular structure of logical
specifications and the attitudes and behaviors of agents. The results of this paper further the goal of
building practical, efficient reasoning systems using modal logics. The key problem in modal deduction is
reasoning about the world in a model (or scope in a proof) at which an inference rule is applied - a
potentially hard problem. This paper investigates the use of partial-order mechanisms to maintain
constraints on the application of modal rules in proof search in restricted languages. The main result is a
simple, incremental polynomial-time algorithm to correctly order rules in proof trees for combinations of
K, K4, T and S4 necessity operators governed by a variety of interactions, assuming an encoding of
negation using a scoped constant ⊥. This contrasts with previous equational unification methods, which
have exponential performance in general because they simply guess among possible intercalations of
modal operators. The new, fast algorithm is appropriate for use in a wide variety of applications of modal
logic, from planning to logic programming.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-97-10.

This working paper is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/200

https://repository.upenn.edu/cis_reports/200

Efficient Constraints on Possible Worlds
for Reasoning about Necessity

MS-CIS-97-10
IRCS 97-07

Matthew Stone

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

Efficient Constraints on Possible Worlds for Reasoning about Necessity'
Matthew Stone

Department of Computer and Information Science
University of Pennsylvania

200 South 33rd St, Philadelphia PA 19104
matthew@linc.cis.upenn.edu

Summary

Modal logics offer natural, declarative representations for describing both the modular
structure of logical specifications and the attitudes and behaviors of agents. The results
of this paper further the goal of building practical, efficient reasoning systems using
modal logics. The key problem in modal deduction is reasoning about the world in a
model (or scope in a proof) at which an inference rule is applied-a potentially hard
problem. This paper investigates the use of partial-order mechanisms to maintain
constraints on the application of modal rules in proof search in restricted languages.
The main result is a simple, incremental polynomial-time algorithm to correctly
order rules in proof trees for combinations of K, K4, T and S4 necessity operators
governed by a variety of interactions, assuming an encoding of negation using a
scoped constant I. This contrasts with previous equational unification methods,
which have exponential perfomlance in general because they simply guess among
possible intercalations of modal operators. The new, fast algorithm is appropriate
for use in a wide variety of applications of modal logic, from planning to logic
programming.

Content area: Reasoning Techniques--deduction, efficiency and complexity.

1 Introduction
The necessity operator of modal logic provides a natural declarative construct for
specifying both content and search control: it can be used to describe change over
time, to specify attitudes of agents like knowledge and belief, or simply to enforce
modularity in complex specifications (Moore, 1985; Halpern and Moses, 1985;
Giordano and Martelli, 1994). Automatic interpretation of modal specifications
requires efficient reasoning mechanisms for modal logic. Despite recent advances
by (Wallen, 1990; Ohlbach, 199 1), efficient modal reasoning remains elusive. This
paper identifies important new opportunities for performing tractable inference in
modal logic. These results show for the first time how automatic systems for
program synthesis, planning, and logic programming can use modal logic as a
practical representation.

'Thanks to Mark Steedman for extensive comments and Tandy Warnow and Dale Miller for
helpful discussion. This work was supported by an NSF graduate fellowship, and an IRCS graduate
fellowship, as well as NSF grant IRI95-04372, ARPA grant N6601-94-C6043, and ARO grant
DAAH05-94-G0426. This paper has been submitted to the Journal of Logic and Computation. May
12, 1997.

2 MAITHEW STONE

As reviewed in section 2, the key difficulty in modal reasoning is to capture the
scope discipline on the use of formulas in modal proofs. Attempting to prove a
necessity truth, or to reason from a possible truth, creates a scope in a deduction in
which only other necessary truths can be used. Classic descriptions of these scopes,
as in e.g. (Chellas, 1980), lead to an explosion in the search space for automated
deduction. Systems using Hilbert-type axiom systems manage scope by a proto-
col that transfers valid inferences step-by-step from top-level into nested scopes;
Gentzen-type sequent calculi perform all inference in each scope inside a contigu-
ous region of a proof. These treatments of scope force proof-search algorithms
to guess among alternatives before they have the information to determine which
alternatives are possibly relevant. Some difficulties can be avoided by translating
modal formulas into classical logic using the worlds and accessibility relations of
Kripke semantics for modal logic (Kripke, 1963), but explicitly deriving full proofs
of accessibility between worlds is still often unmanageable.

This paper investigates another description of modal inference. This system,
pioneered by (Fitting, 1972; Smullyan, 1973; Wallen, 1990; Ohlbach, 1991), assigns
a proof-theoretic abstraction of scope explicitly to formulas. Each formula is labeled
by a string recording the sequence of embedded operators along the path to the
scope where the formula holds. By allowing the label of a formula to be partially
instantiated by unification as the formula is used during proof search, this procedure
avoids the most severe drawbacks of deduction in earlier systems. However, this
method involves complex and expensive equational unification processes which
limit its practical use.

In this paper, I show how significantly better results can be achieved for K,
K4, T and S4 modal logics by encoding negation and possibility in terms of a
scoped propositional constant I. With this encoding, becomes the only modal
connective: the encoding creates 0-only languages. By analyzing the unification
problems for proofs in 0-only languages, I show that solutions respect the order in
which terms representing scopes are introduced. In K, K4, T, and S4, this constraint
resolves all essential ambiguities in unification of paths of accessibility. Unifiability
can therefore be determined in polynomial time; moreover, the constraints encoun-
tered at any point in proof search can be represented by a partial-order mechanism
that avoids the need to backtrack among alternative unifiers. The same strategy
generally applies in logics with multiple modalities, although the correctness of
this strategy requires constraints on the interactions between modal operators. The
path-based explicitly-scoped proof system plays an integral role in the statements
and proofs of these results.

The organization of the rest of the paper is as follows. In the next section, I
give an introduction to the proof theory of modal logic, its motivations, pitfalls
and complexities. In section 3, I present the main proof-theoretic observation that
underlies my results. A constraint algorithm exploiting this observation is presented
in section 4. In section 5 , I finish by considering the impact of these algorithms

TREE CONSTRAINTS FOR NECESSITY 3

for a range of practical problems, including the synthesis of functional programs,
temporal reasoning and automatic planning, and reasoning about agents.

2 Proofs in Modal Logic
A variety of formal systems describe the proofs of modal logics; the choice of
proof system can have a profound impact on the difficulty of automatic proof
construction. The last decade has seen key developments in such systems, with
the result that modal deduction can now be shown to satisfy the advantageous
metatheory of classical logic in many respects, so that research and experience with
classical deduction now transfers to modal logic. These results are important and
deserve to be more widely known, but claims for their significance-"modal logic
is now as a result just as tractable from a deductive point of view as is ordinary
first-order logic" (Bibel, 1993), p. 167-have been misleadingly optimistic. The
purpose of this section is to review these results briefly, to connect the intuitions
behind new proof systems with the intuitions behind old ones, and to highlight the
distinctive complexities that remain in modal deduction and how those relate to
standard characterizations of the complexity of modal deduction. The reader may
consult (Mints, 1992) for a more thorough introduction to modern modal proof
theory and (Gallier, 1986) for an introduction to the connections between proof
theory and automated deduction.

I begin in section 2.1 with an informal example intended to motivate modal
scoping mechanisms and to introduce a key theme: how the meaning of modal
operators comes from assumptions about the relationships among the scopes these
operators introduce. Section 2.2 provides the inevitable technical necessities about
language and notation, and introduces the different proof systems for modal logic
concretely. Section 2.2.1 reviews the familiar axiomatic method for modal inference
and its computational limitations. Section 2.2.2 describes structurally-scoped proof
systems in the style of Gentzen, and the role of impemzutabilities of inference in these
systems in hindering automated deduction. Next, in 2.2.3, explicitly-scoped proof
systems are introduced by way of a ground system, which is then lifted to a system
using unification in 2.2.4. In this system, explicit scoping and unification frees
search engines from the unnecessary commitment inherent in structurally-scoped
proof methods or relational translations to classical logic. The lifted, explicitly-
scoped system will be our focus for the remainder of the paper.

As section 2.3 shows, the success of this system in supporting techniques from
classical theorem-proving is offset by the fact that the unification procedure it relies
on to resolve scopes is intractable both in principle and in practice. The intractability
of scope unification is a local problem that compounds the global intractability,
implicit in PSPACE-completeness results (Ladner, 1977; Halpern and Moses, 1985),
that proofs of propositional modal logic must in some cases be unreasonably large.
While global problems with the possible size of proofs are familiar from ordinary
first-order deduction without equality, this local problem has no analogue there. In

4 MAlTHEW STONE

fact, it is likely to be a more serious problem in practice. Even for a small putative
modal proof--containing one step for each symbol in the theorem to be derived-it
can be intractable to find a unifier that correctly assigns scopes to rules. Moreover,
the ambiguities involved arise as a result of the equational theory governing scope
terms, and are therefore difficult to avoid by judicious reformulation of logical
statements (of the sort familiar to Prolog programmers).

2.1 Motivation
Formulas in first-order classical logic specify information about ordinary entities,
while formulas in more expressive logics can also constrain how such information is
to be used in reasoning. Many proposals for such expressive logics start, informally,
by imposing a notion of scope on deductions. The force of this notion of scope
is that two formulas must lie in the same scope to be combined in reasoning.
Scopal restrictions on the use of formulas in inference play two important roles
in knowledge representation. First, the expressive power helps describe complex
domains concisely and correctly. For example, a scoped specification can describe
agents' propositional attitudes, by ensuring that two facts will be combined only
when they describe the content of a single attitude of a single agent. Each formula's
scope records the agent and attitude it describes. Similarly, a scoped specification
can describe multiple moments in time, by guaranteeing that only facts true at the
same time can be combined in inference. The time at which a fact holds determines
its scope. Second, the expressive power of imposing scopes in proofs offers a
method to ensure that scoped specifications are modular and reusable. In a scoped
language, when a body of knowledge forms a module, its logical interactions can
be limited to facts in the same or compatible modules. On this view, the scope of a
formula depends on the module in which it resides.

The different proposals of (Halpern and Moses, 1985; Morgenstern, 1987;
Ballim et al., 1991; McCarthy and BuvaE, 1994) offer methods to realize various
notions of scopes in deductions in a computational setting. Although formalized
differently (and to different degrees), the key feature of each is an operator that
defines scopes in deductions in which the use of formulas is restricted-variously,
necessity, quotation, boxes, and contexts-along with rules that govern the transfer
of formulas from one scope to another. These features achieve strikingly similar
effects across the different formalisms. It follows that reasoning about scopes is a
central problem in implementing any of them.

A concrete example, adapted from (McCarthy and BuvaE, 1994), illustrates the
motivation for and the behavior of scopes in proofs. We will use it to introduce
modal logic as a particular scoped representation, but at the same time to emphasize
that practical applications of modal logic depend on the availability of flexible
range of reasoning principles. That is why the discussion of modal proof systems in
section 2.2 is parametrized for different modal operators and reasoning principles
right from the start.

TREE CONSTRAINTS FOR NECESSITY 5

Example I . General Electric and the Navy have different ideas about what
the price of a component is. GE establishes base list prices for each component
separately. Navy specifications refer to prices that include not only the cost of the
individual component but also the cost of other equipment, such as spare parts, that
the Navy will purchase along with it. To determine the price of a component in
the Navy's specification, we start with its list price, and add the list price for its
specified spare components. To formalize this, one might choose a representation
like this:

In this formula, [LISTIA indicates that A is to be proved in a special scope where
only the information in the company's catalogue can be taken into account (and
likewise [SPEC] for the Navy's specifications). Similarly, we can represent that GE
and the Navy may have different, partial information about what is in the list and
the specification, by introducing operators [GE] and [NAVY]: [GEIA indicates that A
is to be proved taking only GE's information into account.

One way to model the operators [LIST], [SPEC], [GE] and [NAVY] is as necessity
operators in modal logic. As section 2.2 substantiates, if [LIST] is a necessity
operator, a modal proof of [LISTIA in the simplest modal logic, K, is precisely a
proof of A that takes only other [LIST] formulas into account.

The expressive power of scoped representations becomes particularly attractive
when we relate the information that can be used in different scopes. For purposes of
practical inferences in real applications, this streamlines the statement of common-
alities, facilitating maintenance and reuse. For knowledge representation, this may
make possible a range of natural inferences, including important inferences about
nested scopes, that would be difficult or impossible to describe otherwise.

For example, since both the list and the specification in the above example
represent kinds of accounting information, many parallel inferences may be required
both in the scope of [LIST] and in the scope of [SPEC]. These common inferences
motivate an operator [ACCT] for specifying facts about price that list and specification
share. One simple example might be the fact that prices are measured in dollars:

For such statements to play their intended role in reasoning, we need a way to to
transfer results from one scope to another. To draw inferences about the units in
which list and specification record prices using (2), we need to be able to infer
[LISTIA and [SPEC]A when we have [ACCTIA.

An operator [BOTH] that records information that GE and the Navy share will
also be needed to capture commonalities in [GE] and [NAVY]. It might be used, for
example, to record that the two organizations are aware of the method of calculating
prices described by (I):

6 MATTHEW STONE

(3) vxpyq [BOTH] ([LIST] price(x, p) A [SPEC] spares(x, y) A
[LIST] price(y, q) 3 [S~~C]price(x, p + q))

Again, to use (3) as intended, we need a way to infer [GEIA and [NAVYIA from
[B OTH]A.

With operators that interact this way, we can present needed generalizations
once, with an intuitive annotation that succinctly describes the range of contexts to
which the facts apply. They also give useful separate roles to the operators and to
the first-order components of formulas like [~IST]price(x, p) and [S~~C]price(x, p) .
This illustrates how a scoped representation can be more natural and convenient
than a corresponding complex first-order representation, such as list-price(x, p) and
spec-price(x, p), for which common generalizations like the measurement of price
in dollars must be spelled out explicitly and separately.

With modal operators, this kind of reasoning can be described formally and
investigated mathematically by introducing axiom schemas that can be applied in
constructing proofs. For example, the (INC) axiom relating mi to Oj by inclusion:

can capture the import of the [BOTH] and [ACCT] modalities; (INC) can relate [BOTH]

to the [GE] and [NAVY] operators and [ACCT] to [LIST] and [SPEC].
A different strategy for relating operators relies on establishing relationships

between outer scopes and more deeply nested scopes. The need for this strategy in
one direction is already present with (3). To use (3) as we would use (I), we need a
way to infer A from [BOTHIA. The need for this strategy in the other direction arises
in modeling the hypothetical reasoning of agents. For example, suppose what the
Navy knows is specified as in (4).

That is, the Navy knows it needs FX22 fan blades with its FX22 engine, and the
Navy has GE's list price as $3.6 million. From this, and (3), we might expect to
be able to conclude that the Navy could determine its specification price if it knew
the list price for FX22 fan blades. This requires hypothetical reasoning about the
reasoning of the Navy. The fact that must be derived is:

We would like to derive (5) as a consequence of (3), but our goal has the form
[NAVY] [NAVY] price(x, p), with a double embedding. Our strategy is appeal to an
inference from [NAVYIA to [NAVY] [NAVYIA-what the Navy knows, it knows that it
knows. This inference expresses a different, natural relationship between scopes.
We continue by establishing

TREE CONSTRAINTS FOR NECESSITY

(6) [NAVY] [NAVY] [LIST] priceCfx22-engine, 3600) A
[NAVY] [NAVY] [NAVY]spares@22-engine, fx22-fan-blades) A
[NAVY] [NAVY] elpr price P22-fan- blades, p)

The first two must be obtained indirectly from (4), by the same inference about
nested scopes. We get the third because it is assumed in proving the implication.
This establishes the result.

This discussion shows that we need two additional axiom schemas to formalize
this reasoning in modal logic: (VER) and (PI):

(VER) (veridicality) oiA 3 A
(PI) (positive introspection) oiA 3 OiOiA

End example.
In general, we may invoke a variety of axioms to augment the basic modal logic

K to better match modal operators and the common-sense notions they are meant to
model. In addition to the axioms (INC), (VER) and (PI) introduced above, the axioms
(CON) and (NI) are widely used:

(CON) (consistency) +(A A 1A)
(NI) (negative introspection) 1 oiA 3 o i l niA

(As we shall explain subsequently, these additional two axioms are not immediately
compatible with the framework developed in this paper.) For example, the combi-
nation of (CON) and (PI), known as KD4, has been argued to give rise to a sensible
model of belief, because a normative agent's beliefs are consistent (in keeping with
(CON)), and because an agent believes it believes any proposition it believes (in
keeping with (PI)). The combination of (VER) and (PI) known as S4, provides a
model of knowledge, because whatever an agent knows is true (in keeping with
(vER)). The modeling of the attitudes of agents in modal logics begins with (Hin-
tikka, 1962); subsequent work is reviewed in (Lenzen, 1978); (Fagin et al., 1995)
offers a recent introduction and case studies. Not surprisingly, the choice of which
axioms should be used to describe different kinds of attitudes are controversial. For
example, it may be appropriate to incorporate (NI) into models of belief or knowl-
edge over finite domains-giving KD45 and S 5 respectively; it may not always be
appropriate to incorporate (CON) into models of belief-giving K4. Modalities are
called D when governed just by (CON); T is for (VER).

2.2 The Range of Modal Proof Systems

This paper will consider a family of first-order modal languages, C:,,. Ci,, is
parametrized by a set of m paired operators of necessity, Eli, and possibility Oi, for
finite integer m; and by a theory T specifying relations between operators in terms
of (INC), (VER) and (PI) axioms. As usual, we presume a signature describing the
arity of functions and predicates, and thus a set of atomic formulas of the form

8 MATTHEW STONE

p(tl, . . . , t,). Schematizing such formulas as P, the formulas of L:,, are described
as A by the following grammar:

In formal manipulations, we will keep to the concise m i notation, but we will continue
to use the [NAME] notation seen in the example, in contexts where necessity operators
are profitably assigned intelligible and legible names. Note that although some of
these connectives may be defined in terms of others, we will refrain from doing so
as we will be interested not only in this language as a whole, but in fragments of
the language which can not express those definitions. Two fragments of particular
importance are the propositional fragment, which omits the quantifiers, and the
0-only fragment, which omits negation and all of the Oi.

The usual definitions of free and bound variables carry over to modal logic.
A[t/x] denotes the result of substituting t for x in A, with bound variables in A
renamed when the same variable appears free in t, to avoid capture. (We will treat
formulas differing only in the names of bound variables as identical.) In allowing
terms to be substituted freely inside oiA and OiA, we implicitly adopt the increasing
or cumulative domain constraint for modal logics, which allows formulas in nested
scopes to refer freely to objects introduced outside. Objects introduced in nested
scopes need not be available outside. Note however that many of the proof theoretic
devices presented in this section can be modified straightforwardly to handle the
alternative varying and constant domain systems.

2.2.1 Hilbert Systems
Inference in modal logic is most succinctly and intuitively characterized by Hilbert
Systems. In these systems, a proof is sequence of formulas where each formula
is either an instance of an axiom, or derivable from earlier formulas by the action
of simple inference rules. For the simplest propositional modal logic (K(i) from
(Halpern and Moses, 1985)), there are three axiom schemas:

A 1. Any tautology of classical propositional logic
A2. oiA A ni(A 3 B) 3 niB
A3. OiA E 1 0 i l A

These are combined by two rules of inference:

R 1 .(modus ponens) From A and A > B infer B.
R2. (necessitation) From A infer iA.

Principles relating scopes are accommodated by simply by adding the appropriate
additional axiom schemas.

It is relatively straightforward to see how this proof system imposes a scope
discipline on the modal operators, so that in any scope, logic can be used to combine
all and only informa.tion explicitly asserted there. In this system, each formula in

TREE CONSTRAINTS FOR NECESSITY 9

a proof is a theorem that holds in the real world, at root scope. Conclusions
cannot depend on additional assumptions made for the sake of argument; the rule of
necessitation should only apply to theorems. When a formula in a proof takes the
form UiA, it predicates A of the ith more-deeply nested scope. Any tautology can
be established in any nested scope, by introducing it at root scope as an instance of
axiom Al , and then applying R2 to introduce the necessary nestings. Axiom A2,
together with the rule of modus ponens, allows the action of modus ponens in nested
scopes. As a result, nested scopes are closed under logical consequence, the same
way the root scope is. On the other hand, A2 and R2 are the only logical means
of introducing formulas of the form oiA. To derive a contingent conclusions of
the form oiA (for example in the consequent of an implication), we must combine
explicit assumptions of the form oiA (made for example in the antecedent of the
implication) with the action of A2.

Hilbert Systems seem intuitive, and their use can sometimes facilitate mathemat-
ical study of modal systems, for example in proofs of soundness and completeness.
However, Hilbert Systems are computationally unattractive. A key difficulty is that
Hilbert Systems lack the subformula property common to proof systems used in
efficient classical theorem-proving methods. The subformula property guarantees
that if a result r is provable in a system, then there is a proof of r in the system
in which only instantiations of subformulas of r are used. In general, the use of
axioms and modus ponens runs counter to the subformula property, because it forces
the deduction of a formula B from a formula A to appeal to an explicit derivation
of a more complicated formula, A > B. In modal logic, in virtue of the nested
application of modus ponens (using A2), the more complicated formula that must
be derived to carry the inference forward-n(A > B)-is even more indirectly
related to premise (UA) and conclusion (UB).

In theorem-proving, the subformula property is crucial for controlling search,
because it allows a search engine to rule out options for extending a proof as soon
as those options would introduce non-subformulas. Such methods of ruling out
options are vital in allowing a theorem-prover to detect failure in one branch of
proof search and move on to another. The subformula property also streamlines
theorem-proving by enabling a variety of methods for improving space usage by
structure-sharing (Boyer and Moore, 1972).

2.2.2 Structurally Scoped Sequent Calculi
A modal proof system that does satisfy the subformula property is shown in Fig-
ure 1. This proof system extends the sequent calculus of classical logic with rules
governing modal operators; the modal rules are governed by parameters which vary
in order to encode relationships between scopes. This sequent calculus represents a
sound and complete inference system for the same semantics as the Hilbert System
characterizes: it is an equivalent system. However, this system respects the sub-
formula property, because reasoning can be performed directly inside the scope of
modal rules, without the mediation of rules like necessitation (R2) or axioms like

MATTHEW STONE

consequential closure (A2).
Proofs in this system are trees built in accordance with the inference rules in the

figure. The label of a. node in a proof-tree is a sequent of the form l? ---c A, where
r and A are multisets of formulas; this represents a derivation of the disjunction
of the A formulas, using the r formulas as assumptions. The label of the root of a
proof is called its end-sequent.

Any instantiation of the axiom rule T,A --t A, A is a proof (so a conclusion
A and any other facts can be derived from an assumption of A and any other facts).
Given proofs Dl and D2 with end-sequents --t A1 and T2 - A2, for any

that instantiates a (unary) inference rule of figure 1, the tree

is a proof; for any
r l - A l r2 -A2

r - A

that instantiates a (binary) inference rule, the tree

is a proof. There are no other proofs. Although it is convenient to define proofs
by this top-down characterization, it is typically more natural to read proofs from
bottom up, as a record of proof-search for an end-sequent. Read thus, each rule
decomposes the outer connective in a distinguished formula in the end-sequent,
called the principal fonnula of the rule. This yields new, typically smaller search
problems: the immediate subformulas of the principal formula, the side formulas
of the rule application, occur in the end-sequents of Dl (and 272) in place of the
principal formula. As written in figure 1, the inference rules also carry over the
principal formula from the end-sequent to higher sequents. This convention allows
formulas to be used repeatedly in proofs (without it, a structural rule of contraction
is required), but since the duplicated formulas clutter proofs I will occasionally
suppress them.

An informal justification of how this system creates and maintains scopes in
proofs is as follows. Each sequent appears in a scope that corresponds to its
position in the proof tree. In the proof, applications of (+ mi) and (Oi +) mark
the boundaries between scopes. The entire subproof above each application is more
deeply nested in scope, by the application of one U i operator. The (m i +) and
(+ Oi) rules represent applying necessary information in the current scope. In

TREE CONSTRAINTS FOR NECESSITY

axiom
T , A - A , A

I-, 3x.A, A[a/x] - A
T , 3 x . A - A 3 i t

Figure 1: Structurally-scoped, cut-free sequent calculus for modal logic. t For
(-+ V), and (3 +), a must not appear in the conclusion.

12 MATTHEW STONE

some cases these rules may introduce boundaries as well: in some logics, necessary
information can be applied only in nested scopes.

The restriction that only necessary information can be used in nested scopes-or
that necessary information can only be used in nested scopes-is achieved by filter-
ing the formulas in the sequent at scope transitions. This filtering is accomplished
by operators O', ", O', and 'O that relate sequents above and below modal
rules. The intent of filtering functions is this: Only those formulas that describe the
nested scope survive the transition from below the application of (+ mi) to above
it. Above the transition, surviving formulas are modified to reflect their strength in
the new, nested scope. The filtering functions are thus the distinctive feature of the
structurally-scoped modal proof system.

Filtering functions vary in a way that indirectly encodes the relationships be-
tween scopes as given in Hilbert Systems by axioms (INC)-(PI). For K modalities,
we take scopes at face value: necessary formulas are formulas that apply with ordi-
nary force in nested scopes. Thus, the (+ 0) and (0 +) transitions eliminate all
assumptions except those of the form UA and eliminate all (potential) conclusions
except those of the form OA. In the nested scope we remove the outer on assump-
tions and the outer 0 on conclusions. How do we apply necessary information in
K? K scopes need not be consistent-necessity does not imply possibility-so we
allow necessary information to be brought to bear only as a side effect of creating a
scope using (4 0) and (0 +). Thus, for K, we dispense with (U -+) and (+ 0)
rules.

Positive introspection and inclusion are modeled by changes in the (0 +) and
(0 +) filters. To achieve the effect of (PI), surviving assumptions appear both as A,
so they are true in the current scope, and as UA, so they will be true in future nested
scopes. Surviving conclusions likewise a.ppear both as A and as OA. In S4, UA
implies A, so in S4 the same effect is achieved by passing just OA and OA. When
(INC) relates modality i and modality j, it impacts the transition into a 0, scope. On
the one hand, any mi formula will be at least as strong entering a Dj scope as it
is entering a Oi scope. This means ensuring that the results of usual filter for ni
scopes appear above the transition. At the same time, the ni formula must also be
as strong entering the Uj scope as any Oj formula would be. This means applying
the usual Uj filter to the mi formulas and ensuring that the results are also available
in the nested scope.

Veridicality is modeled by changes in the (4 0) and (0 +) filters. With veridi-
cality, necessary assumptions can be used and possible conclusions demonstrated
in the current scope. Since there is no change in scope, the formulas above the rule
application are the same as those below: the (+ 0) and (0 +) filters for the (VER)

logics, T and S4, are identities.
A formal description of these filtering functions follows, for completeness. (As

the formal presentation plays little role in what follows, the uninterested reader may
safely skip ahead to the examples of structurally-scoped proofs.) We assume that

TREE CONSTRAINTS FOR NECESSITY

mi TO?' p n f '

K none {AIQA E r)
T I- {AJniA E r)

K4 none {AlQA E ~ ?) U { O ~ A ~ U ~ A E T)
S4 r {OiAlojA E I')

A-+o? A O ~ + mi
K none {AlOiA E A)
T A {A 1 OiA E A)

K4 none {AlOiA E A) U {OiA(OiA E A)
S4 A {OiA lOiA E A)

Figure 2: Primitive rules governing changes between scopes in structurally-scoped
modal logics.

each Oi is assigned a primitive type mi from among K, T, K4, and S4, and that the
modalities are related by a partial order > such that i > j whenever we have the
inclusion oiA > UjA for all formulas A. We start with the primitive functions shown
in figure 2, which show how to alter the sequent to build in particular modal theories.
Note that when the entry in the table is none, sequent rules which invoke the value of
that entry do not apply in the logic-regardless of what inclusions are available. To
determine an appropriate overall change for oi we combine the primitive functions
with the effects of inclusions, according to the following definition:

Example 2. Figures 3, 4 and 5 show proofs in this system of three sequents
involving a single S4 modality:

The theorems involve necessary assumptions that may be used in three different
scopes: not nested, once nested, and twice nested.

The key difference between the different proofs is the scope (and thus the order)
in which the lower (0 4) rule applies. This rule is highlighted by a box in
the proofs. In the first proof, this rule lies inside two nested scopes-above both

MA'ITHEW STONE

Figure 3: Example theorem 1 in a structural system.

Figure 4: Example theorem 2 in a structural system.

applications of (+ U). In the second, it lies inside one-above one application of
(-+ 0). In the third, it is used at root scope.

The scoped location of this application of (0 +) is crucial in each case to
allowing the proof to be completed. All three proofs rely on an application of (I+)
whose left branch consists of the axiom link a a. This (>+) application must
be performed in the scope in which a is introduced. On the one hand, the rule cannot
be used before a is assumed-and thus before the nested scope is introduced from
the formula to be proved. On the other, this assumption, once made, is contingent:
it can be used as an assumption only in the scope in which it is introduced, and will

Figure 5: Example theorem 3 in a structural system.

TREE CONSTRAINTS FOR NECESSITY

not pass the filtering of higher (+ 0) rules. End example.
The significance of the relative positions of rules in a proof represents a prob-

lematic departure from classical logic. In classical sequent calculi, rules can be
freely interchanged, as long as the structure of formulas is respected and quantifier
rules continue to introduce new variables as necessary (Kleene, 1951). Exploiting
this property in search is a key feature of classical theorem provers. For example,
tableau (Smullyan, 1968) and matrix (Andrews, 198 1 ; Bibel, 1982) theorem-proving
methods can be seen as optimizations of sequent calculi which eliminate this re-
dundancy. The difficulty that arises in the absence of free permutabilities is this.
Automated deduction engines must build sequent proofs from the root up, but can
only determine whether a move is helpful by matching atomic formulas at leaves.
Since rules must be introduced in the right scope-at the right time-automated
methods must be prepared to apply a rule before they know whether the application
will even be needed! The regime for imposing scope on proofs means that proofs
can no longer be constructed in a goal-directed manner.

2.2.3 Explicitly-scoped Sequent Calculi
To overcome this limitation, we must represent rules in a notation that can give rules
the same interpretation no matter where those rules appear in the proof. We achieve
this by labeling each formulaA in a proof with a distinguished term p that represents
the scope of the formula. In so doing, we capture the scope of each rule application
in the labels of its principal and side formulas. The technique goes back to Fitting's
use of prefixes (Fitting, 1972), and has since been considerably refined (Smullyan,
1973; Fitting, 1983; Wallen, 1990; Ohlbach, 199 1; Auffray and Enjalbert, 1992).
An explicitly-scoped sequent calculus is presented in figure 6.

In the calculus of figure 6, each sequent takes the form

The formulas in r and A are labeled with strings from a distinguished alphabet of
scope variables-terms composed from scope variables out of an associative binary
operation of concatenation with left- and right- identity 6 . (I will write annotation
variables a, ,8, etc.; I will use p, v etc. to represent strings.) Further, a multiset of
auxiliary premises C is associated with each sequent, and specifies the types of the
free scope and first-order variables in the sequent; I will call C a typing context. (The
D notation is common in programming language theory to identify premises used in
typing.) For a scope variable-which represents a transition of one level of nesting
of some modal operator-the type records which operator it is. For a first-order
variable-introduced by a quantifier rule at some scope-the type records the string
representation of that scope. Thus, C is a multiset of pairs of the form a : i for scope
variables and x : p for first-order variables. The information in C can be combined
to derive judgments that complex scope representations and first-order terms take
particular types. For scope terms, the judgment C D v : i indicate that v describes a

MATTHEW STONE

p = V axiom
C ~ r , A f i - A v , A

Figure 6: Path-based, explicitly-scoped, cut-free sequent calculus for modal logic.
t For (+ j), (Oj +), a must not appear in the conclusion. For (+ V), (3 +),
a must not appear in the conclusion.

TREE CONSTRAINTS FOR NECESSITY

Figure 7: Deriving the judgment C D v : i.

transition that modality i matches; such judgments are derived according to the rules
shown in Figure 7, which realize axioms (INC), (VER) and (PI) as rules of inference
amalgamating and reclassifying terms. Similarly, judgments of the form C D t : p
indicates that the first-order term t is available in scope p, and are determined by
the following definition:

Definition 1 C D t : p ifand only iffor every free variable x that occurs in t with an
assignment x : v E C, v is a preJix of p.

The explicitly-scoped calculus imposes the same scope discipline as the earlier
systems by its manipulation of terms. The rules for the connectives of ordinary
first-order logic identify the scopes of principal and side formulas. The axiom rule
in this system requires the labels of formulas to match, as well as the formulas
themselves. Thus, an atomic conclusion can be established in a nested scope only
in virtue of an assumption introduced into that scope by some lower modal rule:
The (m i +) and (-+ Oi) rules apply a result in a nested scope by appending an
additional term v to the label of the side formula. These terms are constrained
to match the strength of the principal formula by imposing a judgment C D v : i.
Meanwhile, the (+ m i) and (Oi +) rules create a new nested scope by appending a
new variable (representing the next type of nesting) to the label of the side formula.
Since the new variable introduced at a (-+ mi) rule does not appear in any scope
fixed to that point, necessary assun~ptions will have to be instantiated by this new
variable for the new scope to figure in an axiom. This strategy for isolating nested
formulas from outer formulas is subtler but ultimately similar to the strategy used in
the structurally-scoped sequent calculus. Finally, to ensure that first-order terms do
not escape their scopes, we require the judgment C D t : p when (+ 3) and (V -+)
are applied in scope p with instantiation t.

Because of its explicit scoping, this new system is somewhat more expressive
than either of the two previous modal proof systems. The correspondence between
them is stated as follows: there is a derivation with end-sequent r -+ A in the

18 MATTHEW STONE

structurally-scoped sequent calculus of figure 1 if and only if there is a derivation
with end-sequent 0 D r --+ A in the explicitly-scoped sequent calculus (ie., every
assumption and conclusion is labeled with 6) .

This result is typically established by showing that the explicitly-scoped calculus
is also sound and complete for the usual semantics of modal logic (Kripke, 1963).
Recall that a modal frame consists of a set W of worlds and binary relations Ri for
each pair of operators oi and Oi; the axiom schemas correspond to properties which
the relations must satisfy (e.g., for (VER), reflexivity; for (PI), transitivity). The
truth of a formula is relativized to a world w; in particular, oiA is true at w if and
only if A is true at every v such that Ri(w, v). Since the explicitly-scoped system
labels formulas with the point where they are to be evaluated, and manipulates
those scopes using logical rules analogous to quantifiers, it is obviously quite close
to the semantics. In fact, the annotations can be thought of as paths of accessibility
between possible worlds. Ohlbach has devised a model-theory for modal logic that
takes paths as primitive: the idea is to replace every relation Ri with a set of functions
AFi such that Ri(u, v) if and only if 3f E AFi.v = flu). For this model-theory, the
explicitly-scoped sequent calculus is nothing more than the translation of modal
logic into classical logic given by the semantics (Ohlbach, 1991; Ohlbach, 1993).

Nevertheless, the explicitly-scoped calculus offers a number of advantages for
deduction over reasoning with a traditional semantics-so called reiiied methods
for modal deduction (Moore, 1985; Jackson and Reichgelt, 1987; Frisch and Scherl,
1991). First, it is more expressive: equations between terms can encode axioms
about necessity which cannot be captured using first-order axioms about accessibility
relations (van Benthem, 1983; Ohlbach, 1993). (We will not consider such cases
here.) Second, it is more efficient. Encoding scopes as terms and reasoning by
equality makes proofs more compact and search more constrained than reasoning
about relations. As we shall see in the next section, equational unification makes
it relatively simple to work with partially-specified paths of accessibility; working
simply and efficiently with worlds and partially-specijied proofs of relatedness is
much more involved. Such advantages are well-known from general uses of equality
in theorem-proving (Plotkin, 1972).

Moreover, the use of an explicitly-scoped calculus need not be regarded as a
semantic method, despite the apparent similarity. (Stone, 1996) considers intu-
itionistic logic, where the proofs of a structurally-scoped sequent calculus derive
independent interest because of their interpretation as programs (Howard, 1980),
and shows that an explicitly-scoped sequent calculus describes exactly the same
proofs as the structurally-scoped system. By this result (which is stronger than
mere equivalence of provability or semantics), that explicitly-scoped calculus can
be considered a purely proof-theoretic optimization. Further, as in this paper, the
explicitly-scoped calculus can be studied fruitfully as a proof-theoretic object in its
own right (see (Schmidt, 1996) for another example).

Example 3. Consider again the three theorems of example two. Proofs identical

TREE CONSTRAINTS FOR NECESSITY

" P = crp axiom
" P = aP axiom DaaP) bop - hap

-+ q
~ a ~ p --c aap t>aaP, 0baP -+ bop

I-+
aaaP , a > q bap - bap

rzaaP, u (a > q b) + bap m
-+>

ao (a > o b) a 3 bap
-+ q

 DO(^> o b) - 0 (a > b)@
1 q

 DO(^ 3 Db) - UO(a > b)

Figure 8: Example theorem 1 in an explicitly-scoped system.

ap = crP axiom
aa")bap - bop -+

a=cr a a a , ~ b a --c hap + q axiom
rzaa --C aa aaa. Oba -+ Uba -

Figure 9: Example theorem 2 in an explicitly-scoped system.

in structure to those presented earlier can be worked out in the explicitly-scoped
calculus, by adding appropriate labels to formulas throughout the proofs. Such
proofs are presented in figures 8 ,9 and 10. Note how the labels encode the scopes
of the different (0 +) applications. In figure 8, the side formula of the lower
(0 +) gets a@, indicating the double nesting; likewise, in figure 9, it gets a ; and
in figure 10, the empty string. As with the structurally-scoped system, these (0 -+)
rules cannot be permuted down across the remaining (+ 0) rules. Otherwise, they
would violate the eigenvariable condition that says that when a scope is introduced
by a (+ 0) rule, it cannot appear anywhere in the sequent. On the other hand, in
the explicitly-scoped system, the proof can still be constructed if the (0 +) rules
are permuted higher. The assumption of a, in whatever scope, remains available on
the left of the sequent until the leaves of the proof tree. End example.

2.2.4 A Lifted System
Using general proof-theoretic techniques (as in eg. (Lincoln and Shankar, 1994)),
the explicitly-scoped sequent calculus can be lifted to use unification. The use
of unification streamlines search in two ways. First, the choice of instantiated
terms is delayed until formulas containing them appear as axioms. This is of
course when information becomes available about which values might be useful.

MA'ITHEW STONE

, _, U

E = E axiom Da,ob-obff +,,
DU - a Da, o b - nub

3-
p a , a 3 nb - nub
~ a , O (a > nb) mob IOil -3

 DO(^ 3 nb) - a 3 nub

Figure 10: Example theorem 3 in an explicitly-scoped system.

Second, requirements for variables to be new are replaced by the use of Herbrand
(or Skolem) terms. Herbrand terms contain as subterms all values that would have
to appear on the sequent where the variable was introduced, taking into account
possible permutations. By ruling out circular terms by an occur-check in unification,
we ensure that a variable can be chosen in place of the Herbrand function and
the proof reordered so that the variable is new. This eliminates the remaining
impermutabilities of the calculus.

Figure 11 shows the final, lifted system, LEO, which the remainder of this
paper addresses. In this system, the inference rules describe not proofs but simply
derivations or proof-attempts. Each derivation is associated with a set of equations
which must be solved to obtain a proof.

More precisely, each sequent is of the form:

(as always, formulas in r and A are labeled by terms explicitly indicating scope).
Because terms and variables are introduced globally, the typing context must grow
throughout the proof: C represents an input context, while C' represents an output
context enriched to describe the new variables and terms introduced in the subproof
above. Similarly, we accumulate a list of equations indicating constraints on the
values of variables: C is the input list of equations and C is the output list of
equations. Note that binary inferences propagate this listjrst to the right subproof,
and second to the left subproof. Later sections will exploit the overall ordering
of equations that results, in which equations from left subproofs always follow
equations from right subproofs.

Each formula in a sequent is associated with a list of free variables schematized
by a subscript X in the inference rules of figure 1 I; quantifier and modal rules
which introduce a variable add the variable to this list. Herbrand terms involve
function symbols associated uniquely with quantifiers and modal operators (as
indicated by subscripting); we build a Herbrand term as a placeholder for a fresh
eigenvariable by applying this function symbol to the list of free variables on the

TREE CONSTRAINTS FOR NECESSITY

axiom
C/C;C/C,A= ~ , p = v ~ r , A ; -Bf;,A

Z/E~;C/CD~,(AAB); ,A; ,B; - A A +

x/xl; c/cl D r, (A A B); -+ A

~ l / ~ ; c l / c l l ~ r - - (~ ~ B) g , A ; , A Z / Z ' , c / c ' ~ r ~ (A A B) ~ , ~ ; , ~ + A
2/E1'; C/C1 D T - (A A B):, A

C 1 / 2 1 1 ; ~ 1 / c 1 ~ r , (A ~ ~) g , A ; - A Y Z ' ; C / C D ~ , (A V B) ; , B ~ - A v +
C/EII; CICII I, r, (A v B); - A

xjzl ; c/cl D r - (A v B):, A;, B;, A _
c / c l ; C / C D r - (A v B);,A

z1/z1l; C'/C1' D r, (A 3 B); --C A;, A YZ1; C/C1 D r7 (A 3 B);, B; - A ,,
C/E1'; C/C1' D r , (A 3 B); + A

E /x ' ;C /C~DT,A~ --C (A 3 B);,B;,A _,
c /c l ; c/cl D r - (A 3 B);, A

Z1/2"; cl/cl' D r , (1 ~) ; -+ A;, A ,
z1/211; cl/cll r, (TA); - A

Z'/Zrl; C1/C" D r,Ag -F (TA);, A ,
C~/CII; cl/cll I- -+ (l~);, A

C, x : i/C1; C/C1 D I?, (0 j~):, --c A
c / c l ; c/cl D r , (o i ~ > ; -* A mi +t

Figure 1 1 : Lifted path-based, explicitly-scoped, cut-free sequent calculus for modal
logic, LEO. t The variables u and x may not appear in X.

MATTHEW STONE

Figure 12: Example theorem 1 in the lifted system.

formula. The resulting system is necessarily rather dense in notation, but operates
straightforwardly.

A proof of r - A is pair consisting of a derivation with end-sequent

where every formula in r and A is labeled with c, together with a substitution 0-a
finite map from scope variables to scope terms and from first-order variables to
first-order terms-satisfying certain conditions. As usual, we write to to describe
the action on term t of the term homomorphism induced by 0. Further, we abbreviate
by CO the set of modal assignments of the form a0 : i for a : i E C and cr a Herbrand
term-EO thus gives the types of exactly the ground scope transitions introduced in
the proof. In this notation, the conditions 0 must satisfy are the following. First, for
every declaration of a first-order variable x : p in C and for every Herbrand term
t with t : Y in C and to a subterm of xB, we must have that YO is a prefix of PO.
This ensures that the values of first-order variables respect the scopes where the
variables are introduced. Second, for every declaration of a modal variable x : i in
E, we can derive CO D x0 : i using the inference rules of figure 7. This ensures that
the transitions made at modal rules respect the strengths of the modal statements.

The correctness theorem for this system states that r -+ A is provable in the
lifted system if and only if it is provable in the ground system. When presented
in the style of Herbrand's theorem for classical logic, as in (Lincoln and Shankar,
1994), the proof gives explicit transformations between the derivations of the two
systems (cf. also (Frisch and Scherl, 1991)).

Example 4. Proofs in the lifted system of our three S4 theorems appear in
figures 12, 13 and 14. The figures present uniform proofs (Miller et al., 1991),
as an illustration of how the lifted system facilitates systematic, goal-directed proof
search. In all three proofs, we proceed by performing all possible left rules, so as
to decompose the formula to be proved into the atomic goal baP. We then apply
right rules strategically to the assumption O(a > Ob) so as to match the literal b in
the assumption with the goal. This generates an equation xy = a,B and a new goal
2. This goal is established by matching it against the assumption of a in the right

TREE CONSTRAINTS FOR NECESSITY

/ ; / x y = a p ~ b ~ - b " ' + O

/ ; x y = af3/xy= a f 3 , a = x r > a f f - a X /; /xy = af3 D (Ob)X -+ b"p > -+ /; /xy = ap, a = x D a f f , (a 3 Ob)' -+ bay q 1

/; /xy = af3, a = x D a", O(a > Ob) - b f f p
1

/; /xy = a@', a = x D aa , U(a > Ob) - (Opb)"
q b)"

+>
/ ; / x y = a p , a = x ~ n (a > O b) - (a > p 1 q

/; /xy = ap, a = X D O(a > Ob) -+ O,(a > Opb)

Figure 13: Example theorem 2 in the lifted system.

/ ; / x y = a f 3 ~ b q - baB
+

/ ; x y = a P / x y = a p , ~ = x ~ a - + d C / ; / x y = a f 3 ~ (n b) X - b a p
3-

/ ; / x y = @,a = x ~ a , (a > 0b)X bop 0 1
/; /xy = a b , E = x D a , O(a > o b) -+ bap

1 q
/; /xy = a p , E = X D a , o (a > o b) -+ (Opb)"

1

/ ; / x y = a p , ~ = x D a , O (a > Ub) -+ n f f U p b
-3 /; /xy = a@, E = X D O(a > Ub) - (a > 0" n p b)

Figure 14: Example theorem 3 in the lifted system.

subtree of each proof. In the lifted system, the different theorems can be proved
using rules in the same order-because of the permutabilities, only this order need
be considered in proof search. The different scopes of rules are represented by the
values of variables and are determined by unification. Here, the lower application
of (0 t) is scoped by the value of x. As always, the scope is identical to the scope
of the assumption of a: either E , a, or a/?. End example.

2.3 The Problem
Using this system, modal inference is as tractable as classical logic in the following
sense: just as in classical logic, proof search can be carried out modulo permutations
of rules, using unification. In particular, unification rather than explicit choice can be
used to determine the scoped locations at which modal operators must be introduced.

However, these results do not make modal logic practical, because the unification
involved is not ordinary unification, but string unijcation. General algorithms exist
for such problems (see (Schulz, 1993) and references therein). These procedures
typically extend transformation-based algorithms for ordinary unification (Martelli
and Montanari, 1982) by guessing inclusion relations between initial free variables
in equal strings and possibly backtracking. Existing modal inference systems use
nondeterministic equational unification algorithms of this sort (Debart et al., 1992;
Otten and Kreitz, 1996). These methods are extremely expensive.

MATTHEW STONE

For example, in constructing the proofs shown in figures 12, 13 and 14, a search
engine will likely begin by constructing the right branch, and solving the equation
xy = crp in all cases. For this problem, string unification algorithms will return
unifiers corresponding to the three different solutions exhibited in the three proofs.
Which possibility is needed is resolved only when the next axiom is reached and the
final equation processed. Branching among the possible unifiers is prohibitive (it is
easy to see the number may be exponential in the length of the strings being unified).
Yet there is also no effective way to exploit unifiability as a constraint. Because of
the backtracking internals of equational unification algorithms, they frequently fail
to solve systems of equations more efficiently than would a backtracking program
that called the algorithm in sequence on each equation in the system.

As we shall see in this section, resolving scopes in modal deduction by unifica-
tion is in fact an intractable problem. Before presenting this result, I observe that
this problem is quite different in nature and origin from the well-known space com-
plexities of modal logic. Although classical propositional logic is co-NP complete,
Ladner (Ladner, 1977) and Halpern and Moses (Halpern and Moses, 1985) have
shown that a number of propositional modal logics, including all those considered
here, are PSPACE-complete. The proof that these logics are PSPACE-hard relies
on describing large objects concisely using modal theories. Such descriptions apply
the same formula across a number of scopes in a modal proof; when statements of
possibility create different scopes, a proof may have to proceed by applying neces-
sary information in each. First-order quantifiers provide a good point of reference
in interpreting these results about quantifiers over worlds. In first-order logic, the
number of instantiations of a universal statement needed to complete a proof cannot
be bounded at all. This makes first-order logic undecidable.

Because what matters for the proof is the sheer number of instantiations, modal
provability can be PSPACE-complete even when resolving scopes by unification
is easy. For example, since K variables can only be instantiated to single terms,
scope equations for K can be solved using ordinary (linear-time) unification. But
K provability is PSPACE-complete. Moreover, as in first-order logic, the number
of instantiations and size of proof depends greatly on the logical theory, and often
much better bounds can be easily derived-arguably in most cases of interest. Pro-
log programmers can analyze theories to ensure efficient proof-search; (Kanovich,
1990) reports an application of a PSPACE-complete deduction system for intuition-
istic logic in which proof size corresponds to the number of interacting subtasks and
is rarely problematic. When bounds on proof-size are known for a given theory,
general PSPACE-completeness results have nothing to add. However, complexity
results for unifying scopes continue to apply. In fact, the complexity of scope uni-
fication is likely to pose the most significant obstacle to the use of modal logic in
practical applications, because alternatives for unifying scopes arise because of the
very axioms for relating scopes that make modal logic attractive as a representation
in the first place.

TREE CONSTRAINTS FOR NECESSITY 25

It is also noteworthy that the complexity of resolving scopes by unification cannot
be established by the usual encodings of hard problems using string unification, such
as those presented in (Kapur and Narendran, 1986; Kapur and Narendran, 1992).
These encodings repeat variables in different contexts to enforce constraints. Such
repetitions are unavailable because of the unique prejix property on occurrences
of variables in equations between modal scopes (cf. (Wallen, 1990; Auffray and
Enjalbert, 1992)). For each scope variable or Herbrand term p (other than 6) there
is a term 7rp such that each occurrence of p in an equation is in a term of the form
n-,pv; .rr, is the unique prefix associated with p. The unique prefix property means
that the equations that arise in proof search describe a tree in which variables and
Herbrand terms occur uniquely; equating terms means identifying the nodes the
terms designate. In fact, the unique prefix property may be imposed on ground
proofs as well without loss of generality. Too see why this is, observe that we can
obtain a new ground proof from any other ground proof by of substituting a fresh
scope eigenvariable cr for all and only those occurrences of a scope variable P that
are preceded by a given prefix p.

The unique prefix property makes reasoning about annotation equations much
easier than reasoning about string equations in general. A polynomial amount of
information specifies the tree corresponding to any unifier; therefore, annotation
equations have only a finite number of most general solutions, which is not guar-
anteed in the general case. Moreover, since an efficient algorithm can determine
whether a set of strings are equal under a polynomial size substitution, the problem
of resolving scopes by unification is in NP.

Nevertheless, the problem is hard.

Theorem 1 In LEU, the problem of deterinining whether there is aproof containing
a given derivation as itsjirst component is NP-hard.

Proof. We proceed by reduction from three-partition, a standard NP-complete
problem defined as follows (cf. (Garey and Johnson, 1979) p. 96). We are given a
finite set A containing 3m elements, a positive integer B and a size function s such
that B/4 < s(a) < B/2 for each a E A, and such that Ca,, s(a) = mB. We are to
determine whether A can be partitioned into m disjoint sets such that the sizes of the
elements of each set sum to B.

We proceed in two steps. The first is to construct a unification problem that
corresponds to the instance of three-partition; the second is to describe a modal
sequent r -+ A such that a proof attempt for r - A gives rise to this unification
problem.

First, the unification problem is this. For each element a E A, we construct a
string Qa of the form XaCaYa. Xa and Ya are strings containing m(B $ 1) variables;
Ca is a string containing s(a) constants. We also construct a string G containing
m successive sequences of B variables Zi followed by a constant Ki. All of the
variables in Xa7 Ya and Zi are .distinct, as are all of the constants in C, and Ki.

26 MAlTHEW STONE

The typing context will contain p : 1 for each, assigning each to a T modality 1
(governed by the introspection axiom niA > A). The unification problem is the set
of equations Q, = G for each a E A.

Three-partition is NP-complete in the strong sense, which means there is a
polynomial p in the length of the problem specification such that the problem remains
NP-complete when the values of the bound and the size function are bounded by p.
Our encoding depends on this, because we represent the size s (a) of each element as
a string of length s(a) . Since we can bound s(a) by a polynomial in the length of the
three-partition instance, the length of the unification problem is also a polynomial
in the length of the instance.

The unification problem has a solution if and only if the original three-partition
problem has a solution. Suppose there is a solution 0. Note that each variable
can be bound to a string containing either zero or one constant, and that all the
constants of the Q, must appear in GO. Since there are mB constants in the Q, and
mB variables in G, each variable in G must be bound to exactly one constant, and
each constant appears exactly once in GO. Now look at Zi. If ZiO contains any
of the constants from Qa, it must contain all of them, because the constants in Qa
are adjacent, and Zi is bordered by the beginning of the string, or by Kj constants.
Thus, the needed partition is given by taking for each i the set of elements of A
whose constants appear in ZiO. Meanwhile, suppose the three-partition problem
has a solution. Naming the elements of each Si Sil, Si2 and Si3, we can construct a
unifier 0 such that GO = QS,, Qs,2QS13K1 . . . QSml QSmz Qsm,Km. Solutionhood ensures
that we can let ZiO = Qsi, Q,, Q,, : we assign the jth variable in Zi to the jth constant
in Q,, Q,, Q,, . Now let l (a) be the prefix of Q, in this string, and let r (a) be the
suffix of Q,, and let p(a) be the length of l (a) . To complete 0, we assign the first
p(a) variables in X, to l (a) and the remainder the empty string; we assign the last
p(a) + s (a) variables in Ya to the empty string, and the remainder to r(a) .

Now, the second step: designing a proof attempt which gives rise to this problem.
We assign a distinct proposition letter pa for each element a of A. We prove the
formula

(The notation Ofy represents a formula in which p is preceded by k nested Oi
operators; and similarly for mi and sequences of operators.) Each O1 introduces
a fresh variable, while each 0 1 introduces a Herbrand term with a unique head
function constant. Thus, proving this formula ensures that each p, is established
in a scope denoted by the string G. For each a, we include available the following
assumption in r:

,,m(B+l) s(a) m (B + l)
1 0 1 0 1 Pa

Each axiom makes available an assumption of p, in a scope that can be represented
by Q,, as the 0, and 0, operators will introduce the correct sequence of variables
and distinct constants represented as Herbrand terms. Now proving r + A

TREE CONSTRAINTS FOR NECESSITY 27

generates a proof attempt in which each goal pa in scope G is matched with the
assumption of pa in scope Q,. This is precisely the unification problem considered
above.

3 -only Logic and Variable Introduction
The recent proof systems reviewed in section 2 make possible streamlined deduction
procedures, but their efficiency is limited by the inherent ability of modal theories
to express hard problems. Building a proof requires choosing the right intercalation
of modal operators among an exponential number of possibilities; in some cases,
such choices make for intractable search problems. To support efficient, sound and
complete inference, modal specifications must avoid the expressive features that
give rise to these problems.

This section identifies possibility and classical negation as the problematic fea-
tures of modal logic. In the absence of possibility and negation-in 0-only logics-
a simple rule suffices to determine the order of modal Herbrand terms in unifiers:
When either a must nest in P or P must nest in a , the one that nests is the one
that is introduced later in the proof. This theorem is presented in section 3.1. The
restriction on negation is not as dire as it may seem, as shown in section 3.2: in K,
K4, T and S4, negation can be encoded using a scoped constant I. The effect of
this encoding is to transform certain alternatives for unifying scopes into alternative
axiomatic links in proof search, so that the remaining scope alternatives can be
managed efficiently.

Why does the invariant on the introduction of terms hold? The formal argument
is given in section 3.1, but informally, the invariant is combined effect of two
properties of 0-only proofs in LEO. First, the terms representing the scope of a
formula can only grow through the application of modal rules. Accordingly, all the
terms labeling the scope of a formula will appear in the label of any formula derivable
from it. This is a property of the equational theory and typing rules governing scope
paths, and can fail in accounts of additional axiomatic relationships between scopes.
For example, adding the (NI) axiom OA > UOA to S4 gives the system S 5 in which
a necessary formula (irrespective of its own label) can be applied in any scope
whatsoever.

Second, when alone appears in the proof, variables are introduced on anno-
tations precisely when annotations change in left rules, while Herbrand terms are
introduced on annotations only when annotations change in right rules. This fails
if possibility is added to the language. Moreover, only the left > rule allows new
variable positions to be transferred to the right of a sequent from the left. But the
left > rule leaves these positions on the left of the sequent also. In contrast, the
sequent rule for classical negation simply moves a formula from right to left.

Together, these two conditions propagate variables so that the first occurrence
of a variable in an equation appears in a left term. From this, we can conclude using
induction that each left term can only be unified with the corresponding right term

28 MATTHEW STONE

using a ground string of Herbrand terms introduced earlier in the proof. Herbrand
terms, meanwhile, are introduced only on right terms, so there is no way for a newer
Herbrand term to represent a scope in which an older one is nested. This constraint
rules out or resolves search ambiguities such as those investigated in section 2.3.

3.1 Theorem on Variable Introduction
The proofs of this section require three easy corollaries of the simple structure of
LEO.

Lemma 1 (weakening) For any LEU derivation D with end-sequent

we can obtain another LEO derivation D' with end-sequent

by adding the formulas I" to the left-hand side of each sequent in V; we can likewise
add additional conclusions to A.

Lemma 2 (contraction) For any LEO derivation D with end-sequent

we can obtain another LEO derivation V' with end-sequenl

by eliminating one occurrence of A; on the left throughout 2); we can likewise
eliminate duplicate formulas from A.

Lemma 3 (monotonicity) For any LEO derivation 2) with end-sequent

for any set C1 containing only elements of C and list C1 containing only elements of
C, we can obtain a derivation (like D) with end-sequent:

where: C{ contains all the elements of Cl and only elements of C'; and C; contains
all the elements of C1 and only elements of C.

Proof. Straightforward induction on the structure of derivations.

TREE CONSTRAINTS FOR NECESSITY 29

Lemma 4 (simplicity) For any LEO derivation D, there is another 2)' with the
same end-sequent such that every rule-application in D' has a different principal
formula or diflerent side-formulas from every lower rule-application.

Proof. We can eliminate any higher application identical to some lower one using
the contraction lemma: observe that the side formulas of the lower application are
available by preservation, and thus the side formulas of the higher application are
duplicates.

Let C be a list of annotation equations resulting from a LEO proof attempt D,
numbered in increasing order. (Recall that equations in C generated by axioms in
right branches of a proof precede those on left branches.) Denote the term in Ci
coming from the right formula of the ith axiom as ri and that coming from the left
formula as li. We have the following definition:

Definition 2 2) has the variable introduction property if and only if every variable
x that is introduced by a (0 +) rule in 2) and occurs in some term ri also occurs in
some lj for some j < i.

The variable introduction theorem states the key observation true of all derivations
in LEO, regardless of whether there is a solution to the list of equations associated
with them.

Theorem 2 (variable introduction) Given any LEO derivation 2) with end-
sequent

c /c l ; C/C t> r -+ A

we construct a derivation 2)' with end-sequent

where C" contains only elements from 2, C" contains only elements from C, and
r' contains only elements from T, and where Dl enjoys the variable introduction
property.

Proof. Consider a proof attempt D with end-sequent:

We say a formula Ap is linked in D if Ap occurs in r and there is some formula B"
in A such that p is a prefix of v. If Ap occurs in r but is not linked, we say Ap is
unlinked in 23. If an occurrence of an equation 1 = r appears in C but not in C, we
say V gives rise to C.

Induction on the structure of LEO proof attempts shows that there is a proof
attempt 27' corresponding to D satisfying the conditions of the statement of the
lemma, and where one of two further properties holds of each unlinked Ap in D.
Either (1) 2)' gives rise to no equation li = ri in which p is a prefix of li and Ap

30 MATTHEW STONE

does not occur in the end-sequent of 23'; or (2) , the end-sequent of D' includes AP,
and 23' contains aJirst left use of p-in other words 2)' gives rise to some equation
lj = r, where p is a prefix of lj and p is not a prefix of any right equation term ri
with i 5 j. The intuition behind these conditions is that any problematic formula
that starts out "unlinked" in 23 should "fall off" of Dl.

For the base case, we start from an instance of the axiom rule:

We construct the axiom:

Here rl consists of the formulas D7 of r such that either D7 is linked in the axiom
or 71 is a prefix of p. Axioms introduce no variables, so any axiom satisfies the
variable introduction property. The equations and typings are unchanged. Unlinked
formulas whose annotations are not prefixes of p do not appear in any left equation
term. They are correctly eliminated in the new derivation. The labels of the other
unlinked formulas appear first on the left here, because by definition their labels are
not prefixes of v.

Now suppose the claim is true for derivations of height h or less, and consider
derivations of height h+l . The fi ve right rules that do not alter annotations are
straightforward. In each case, we apply the induction hypothesis to the immediate
subderivation(s), observe that the principal and side formulas are available in the new
derivation(s), and apply the right rule to the new results. The induction hypothesis
and the monotonicity lemma ensure that the resulting derivation meets the needed
conditions. This takes care of cases for (+ A), (+ v), (+>), (t V), and (+ 3).

The five left cases that do not alter annotations are somewhat more involved.
(The rules are (A +) , (V +), (> -+), (V +), and (3 +) .) We consider the case of
(>+) in detail as a key illustration. Consider a derivation V ending in (I+), as
below:

The same multiset of formulas A appears above the rule-application in the right
subderivation and below the rule-application. Hence the unlinked formulas in the
whole derivation are all unlinked in right subderivation. We apply the induction
hypothesis to the right subderivation; we thereby eliminate or find first left uses
for all these unlinked formulas. In particular, if our principal formula (A > B); is
unlinked, either we will eliminate it and its side formula in the subderivation, or we
will find a first left use for all formulas labeled by a prefix of p. If we eliminate it,
we obtain a new subderivation, in which the end-sequent is of a form

TREE CONSTRAINTS FOR NECESSITY 3 1

in which neither (A > B); nor its subformula appears. The monotonicity lemma
ensures that C1 contains only elements of C" and that C1 contains only elements of
C', so the new subderivation satisfies the needed conditions.

Otherwise, we have two cases (principal formula linked, principal formula
unlinked but preserved in the right subderivation) with parallel structure. We apply
the induction hypothesis to the left subderivation-observing that it applies only to
those unlinked formulas in the overall derivation that are not labeled by prefixes of
p. We apply the weakening lemma to each new derivation and the unlinked formulas
that appear in the other new derivation but not in it. The two subderivations then
agree on a multiset r2 of formulas that survive. These two derivations can be
combined into the needed overall derivation using (3 +) , as below:

The annotations of formulas weakened onto either subderivation are first used in
equations on the left in this overall deduction, by the induction hypothesis (these
annotations have a first left use in one subderivation and no use in the other).
Meanwhile, for any unlinked formula C b h e r e v occurs in equations from both
new subderivations, u has a first left use-even with v a prefix of p, if applicable.
For, in the new B subderivation, there is a first equation-term involving u on the left;
this term will precede all equation-terms involving v from the A subderivation as
well. The monotonicity lemma again ensures that C?_ and C2 contain only elements
of Cff and C".

Two cases remain. First, suppose the proof attempt ends in (+ oi):

Observe that the unlinked formulas in the immediate subderivation are exactly those
that are unlinked in the overall derivation. For, consider any unlinked formula Bu
in the overall derivation. By definition, u is not a prefix of p. Thus, the only way
we could could have v a prefix of pa(X) is if v = P ~ (X) . Now, a(X) is a unique
Herbrand function application associated with this occurrence of the formula UA.
Since labels are preserved or extended by all sequent rules, by monotonicity, if
u = pa(X) then B must be a descendant of a lower occurrence of ~f;"('). By the
simplicity lemma, we may assume this is not so without loss of generality.

So the induction hypothesis applies to the subderivation with the same unlinked
formulas. Applying (t 0) to the result (as below) gives a derivation with the
needed properties:

MATI'HEW STONE

Finally, consider (Eli +):

Here x is a fresh scope variable, different from other variables and Herbrand terms.
In the immediate subderivation, A;> is unlinked, because px cannot be the prefix
of the annotation of any A formula. Apply the induction hypothesis. .If Arx
disappears, the subderivation suffices. Otherwise, use the new subderivation to
construct a derivation ending:

C ,X: i/C1;C/C~ D ~ ~ , (o ~ A) ; , A ? ~ + A
+

C/CI; c/c D r,, (0 ,~) ; -+ A

Here, px-along with all surviving unlinked formulas-appears last on a left equa-
tion, by the induction hypothesis. Thus the overall deduction has the variable
introduction property and witnesses the needed properties of the unlinked formulas.

The variable introduction property represents a strong constraint on equations,
as the following result shows.

Lemma 5 (substitution ordering) Suppose V is a LEU proof attempt that enjoys
the variable introduction property, and suppose the end-sequent of V is

Let 8 be a substitution that uniJies the strings in each equation of C (whether or not
0 respects the typings in C). Then for any variable x appearing in C, first used in
lj, xB is a string of Herbrand terms, and i f x8 contains Herbrand term c there is a
Herbrand term f in some term ri such that i 5 j and f0 = c.

Proof. By induction on the number of equations in C.
In the base case, there are no equations and nothing to show.
Suppose the proposition is true for the first i - 1 equations of C and consider a

solution 8 for the first i equations of C. Naturally, 0 is a solution to the first i - 1
equations, so by the induction hypothesis, variables introduced in the last i - 1
equations are bound to earlier Herbrand terms. But the proposition on variable
introduction asserts that any variables of ri all occur earlier. Therefore rit9 is a string
of Herbrand terms; 0 must associate any new variable in li with some of them; and
lie can contain no new Herbrand terms.

With these two results, we can establish the main result:

Theorem 3 (constant ordering) For any proof D, 0 in LED there is a proof Vt, 0
where V1 enjoys the variable introduction property and satisfies the substitution
ordering property.

TREE CONSTRAINTS FOR NECESSITY 33

Proof. By the variable introduction theorem, we can construct a D' satisfying
the variable introduction property from D. The only difficulty is to show that in
obtaining the smaller 27' we have not eliminated any premises needed to show that
6' respects types. Since 6' unifies the scope equations imposed in 27, and a subset
of these equations are imposed in 0, 6' also unifies the scope equations imposed
in V'. By the substitution ordering lemma, 6 assigns strings of Herbrand terms to
each scope variable (that appears in the equations of D'). Every scopal Herbrand
term and variable 6' mentions is introduced in 27' and therefore assigned identical
types in 27 and 27'. And, as for first-order variables, eliminating typing premises
only eliminates typing requirements. It follows from this that D', 6 is a proof.

In 0-only logics, a number of proof strategies allow all modal Herbrand terms
to be represented as constants that are distinguished before unification (even though
they technically are function applications with free variables). The mating theorem-
proving method does this via multiplicities (Andrews, 198 1; Bibel, 1982). Uniform
proof search (Miller et al., 1991; Miller, 1994), an abstraction of backward chaining,
does this by applying left rules only when right rules are not applicable. Modal
Herbrand functions must be unified only when applications of (+ 0) must be
permuted lower in the proof and collapsed; this is never needed in uniform proof
search because right rules already apply as early as possible.

These techniques allow the definition of an ordering on Herbrand constants in
advance of solving unification equations:

Definition 3 (E) Let the equations corresponding to a proof attempt be ordered as
before, and let c and d be arbitrary constants appearing in these equations. c c d
if and only if

I . c 's jrst occurrence is in term Cil and d's is in term Cjl with i < j, or

2. Both c and d Sjrst occurrences are in term Eil, in which c precedes d.

c is a total order on constants. Moreover, the substitution ordering property entails
that for any solution 6 for C, if (r,c)O is a proper substring of (rdd)6', then c c d.
For this can occur only if d follows c in the same term in some equation, or d appears
in a term after some variable x such that x6' includes c.

3.2 Encoding Negation
In general, we can describe 1 A as A > I using a propositional constant I governed
by the inference below:

C t > T , I P - A

If A is the original formula, we denote by A' the result of recursively replacing
its subformulas 1 B by B > _L and its subformulas OB by U(B > I) > 1.
(We return to ground, explicitly-scoped modal sequent calculi. Lifting these rules is

34 MAlTHEW STONE

straightforward; presenting the lifted versions, distracting.) The encoding ' describes
a correspondence between proofs. The original rule-instances:

match encoded rule-instances:

The right subproof is an instance of the new I rule. Meanwhile, the encoding puts
rule-instances:

C P T , A ~ - l A p , A +

C D ~ - i A p , A

in correspondence with patterns:

Since the I rule is in fact the only rule that can establish I on the right and it can
establish anything, the addition of I on the right does not change the provability of
the end-sequent of the immediate subderivation. The new constant I is unscoped.
Because it can establish any A, it breaks the invariant used in the variable introduction
theorem.

However, for K, K4, T and S4 scopes, it in fact suffices to introduce a scoped
constant I governed by the rule:

The use of this rule is clearly sound, because it is a specialization of the more general
unscoped I rule. The completeness of the rule is a consequence of the fact that any
provable sequent in K, K4, T and S4 has a proof where all modal rules extend scopes
by strings of eigenvariables introduced lower. Under this circumstance, whenever
we establish Ip on the left, there will in fact be some formula A@ on the right.
Therefore no generality is lost by the scoped I rule. However, with the scoped I
rule, .the variable introduction theorem goes through, and the hence the algorithms
of section 4 may be correctly applied.

I present presently a formal proof of correctness of the encoding of K, K4, T and
S4 proofs using a scoped constant I. But first I want to show that there is no magic
involved in the translation. In the original proof, there are ambiguities in which
scope constants are nested under which. The translation does not eliminate these
ambiguities. Instead, it recodes them at the level of proof search as ambiguities in
which rule inferring I is used to deduce which conclusion of I. In accordance with

TREE CONSTRAINTS FOR NECESSITY 3 5

the constant ordering theorem, the scope constants introduced by whichever rule is
used first appear first.

The proof search in S4 for the sequent below illustrates this point:

There are two kinds of proof. In the first, we first apply sequent rules to establish
UA", then establish UB"~. From this follows A " ~ and B"@ and hence O(A A B).
The other proof is similar, but we instantiate O B ~ , and then A@".

The translation of this sequent is:

Consider proof search now. We reduce the end-sequent by (+>) to

o (o (o A 3 I) 3 I), U(U(0B 3 I) 3 I), U(A A B 3 I) - I
At this point, we may use either the A-formula or the B-formula to establish I. If
we use the A-formula, we can simplify to:

O(O(OB > I) 3 I), O(A A B > I), OA" -+ I"

Now we use the B-formula:

O(A A B 3 I), OA", OB"@ -+ IffP

Finally, we use the negation of possibility at cup, and the remainder of the proof
becomes clear:

UA", ~ B " P - A A g a p

It is clear how this proof corresponds to the original proof with A first. We can
likewise find a translated proof with B first. Note that by translating the deduction
problem we have introduced a number of new dead-ends for proof search, corre-
sponding to early instantiation of the negation of possibility. Here these can be
quickly dispensed with, since early on there are no possibilities for establishing A
or B. As translation of possibility and negation proliferates, we will obviously start
to need faster mechanisms for identifying and ruling out these new alternatives.

Translation of negation using the scoped I rule is not without its pitfalls, but is is
correct. Informally, what underlies its correctness is the following observation. K,
K4, T and S4 proofs need never instantiate necessary formulas at arbitrary accessible
annotations. In T and S4, this is because the current annotation can always serve
as a witness possibility at which to apply a necessary formula. In K and K4, this
is because there need not be such a possibility, and hence such instantiation would
actually be incorrect. This is a property of the scopes in these particular logics.
Note that in KD and KD4 logics, which support consistency but not veridicality,

36 MATTHEW STONE

one sometimes must instantiate necessary formulas at new, arbitrary accessible
points.

This informal observation falls out formally as follows. Suppose V is deduction
in an explicitly-scoped ground sequent system for Lz,,, with end-sequent DT - A.
Consider any rule-application of (0 +) or (-+ 0) in V. The rule extends the modal
annotation of the principal formula p by a string a , where a is a string of modal
variables introduced at lower (+ 0) and (0 +) rules in V. This observation
is a consequence of the sequent rules, which extend the typing contexts only by
declarations of variables and only at (+ 0) and (0 +) rules; and of the rules of
figure 7, which only combine the terms declared in I: into longer strings. Because
of the unique prefix property (cf. section 2.3), we can assume that p a in fact
annotates some lower formula. Then, because lower formulas are preserved as
logical rules are applied, p a must be the label of some formula on the sequent itself.
So whenever we apply a necessary formula, we apply it in a scope that is already
under consideration.

We exploit this observation in the following lemma.

Lemma 6 (encoding negation) To any proof 23 with end-sequent - A in the
ground, explicitly scoped system ofjigure 6, there corresponds a proof of T' - A'
using the scoped I rule.

Proof. We define a translation T (V , E, F) recursively on the structure of V; the
end-sequent of V must be C D I? - A, where every r annotation and every E
annotation is a prefix of some A or F annotation-E specifies additional formulas
to add to r, F additional translated formulas to add to A.

We consider 0 and 1 rules explicitly. (The other cases are straightforward in
light of these cases.) If 2, ends by applying (+ 1) with principal formula l A p and
subderivation V', T(D, E, F) is:

Observe that, even in a system with a contraction rule instead of preservation, the
presence of I@ ensures that the annotation of the r side formula Ap is OK.

If V ends by applying (1 +) to principal formula l A p and subderivation Dl,
T (V , E, F) is:

By assumption, p appears on some A or F formula, so the right subderivation
is an instance of the scoped I rule. (Since no new left formulas appear in the
subderivation, the translation applies there.)

TREE CONSTRAINTS FOR NECESSITY 37

If D ends by applying (Oi -+) to O i A p with subderivation D', T (D , E, F) is:

T (D t , E7 (F , o i (A 2 I) " , A > I'", 1'")) +I
C , a : i r > r t , E , o i (A > I) 3 I p - A > I p " , A t , F

+

D I-', E, n i (A > I) > I" - O i (A > I) @ , A', F C p L p - A t , F ,+
C D r t , E, O i (A I) I) > I ' , - At, F

The final step follows from the assumption that p appears on some A or F formula;
as with (4 l), even with contraction replacing preservation, the root invocation of
T satisfies the needed invariant.

Finally, if D ends in an application of (+ 0) to OiAp with subderivation Dt,
T (D , E, F) is:

T(D', (E , U ~ (A 3 I) ' , A > I '") , (F , I P)) ED I P " --C A', F, I P ,4
C D rt, E, n i (A 3 I j p , A > I p " - At, F, I p O +

C D r t , E, n i (A > I)" --c At, F , 1'
C D rt, E At, u i (A 3 I) p , F

-+ I)

The key step here is to establish that pa occurs on some A formula. But a is a
string of eigenvariables introduced by lower modal rules, by our observation. Thus,
by the unique prefix property of annotations, pa must be the annotation of some
formula used lower-which remains in A because of preservation.

4 Constructing lkees from Constraints
With the constant ordering theorem, we have established an invariant that eliminates
one source of nondeterminism in the unification of scope equations. Given Herbrand
terms cu and ,f3 which appear on scope terms that must be equal, the one that is
introduced first into the proof must appear first in the unified term. However, even
in 0-only proofs, scope equations may still have an exponential number of unifiers;
the constant ordering theorem leaves open how strings of Herbrand terms should be
partitioned among matching variables. We have already seen a concrete example
of this, in the unification problem common to the proofs of figures 12, 13 and 14:
xy = cup. In order to complete those proofs, we need to be able to assign any of the
possible prefixes of ap to x. So there are still too many possibilities for brute force
search.

This section develops a constraint algorithm that finds representative unifiers
for a set of equations efficiently, and which allows additional equations to be added
incrementally. This algorithm relies on viewing the set of equations as describing
a tree in terms of simple relationships between nodes. These constraints are op-
erationalized as simple, local rules. The rules enforce constraints by making the
smallest possible changes to the structure of the tree and to the representation of
variables and constants within it. We develop the algorithm in three steps, deferring
some technical complications so that the essentials of the algorithm can be presented
as accessibly as possible. In 4.1, we present and analyze a basic version of the algo-
rithm which solves constraints over a single modal operator; we illustrate the action

3 8 MATTHEW STONE

of this algorithm on the proofs of figures 12, 13 and 14 in 4.2. The complications
come in 4.3, where it is observed that inclusion axioms may introduce hard prob-
lems even into variable ambiguities. Accordingly, in 4.4 we consider restrictions
on interaction axioms to rule out the problematic cases observed in 4.3, and provide
a constraint solver for multimodal logics under these restrictions which uses the
algorithm from 4.1 as a subroutine.

4.1 Monomodal Languages
Our strategy will be to recast the unification problems for K, T, K4 and S4 in terms
of constructing a tree to satisfy three types of constraints:

1. The relation u 5 v, meaning that u is an ancestor of v in the tree representation
(corresponding to the constraint that x,u be a prefix of T,V as a string equation).

2. The relation u $ v, meaning that u is not an ancestor of v.

3. The relation u +- v, meaning that the parent of u is an ancestor of v.

The encoding depends on the assumption introduced in the last section that equality
of Herbrand terms can be determined in advance of unification, as in the matrix or
uniform proof methods. The encoding consists of a way to describe annotations
and substitutions, a way to impose equalities between annotations, and a way to
manage the domain constraints on the values of first-order variables. The encoding
is described and justified as follows.

Substitutions. The set of images of prefixes of equations under 0 describes a
tree by the unique prefix property. We associate each scope Herbrand term or logic
variable u is mapped to a node in the tree 2.

To derive a substitution from a tree, we identify each node n in the tree with
some canonical symbol c such that n = 2. By reading the canoncial symbols along
the path in t l~e tree from the root to a, we obtain the value of r u u under 0; the path
from the node D representing xu to ii (not including 9 itself) therefore encodes u0.

A first set of constraints ensures that Herbrand terms are mapped to themselves
under this induced substitution. We impose on t constraints of the form d $ c
whenever c c d (as earlier c refers to the order of introduction of Herbrand terms
in the proof). Since c is a total order, these constraints ensure that any pair of
Herbrand terms are associated with distinct nodes in the tree. The constant ordering
theorem allows us to impose this constraint on trees and substitutions without loss
of generality. For, the constant ordering theorem says that it is indeed impossible in
any solution 0 for a path (xdd)8 to be a prefix of (xCc)0 when c c d.

We may now assume that the symbol identifying each node n in t is the unique
Herbrand term c for which 2 = n (if one exists). This ensures that c0 takes the form
xc. To ensure that x is the empty string, we add further constraints. To describe
the node for constant c with prefix T,, we find the node u representing rc and add
the constraint u < I c, meaning that c is a child of u. u < v-meaning u is a proper

TREE CONSTRAINTS FOR NECESSITY 39

ancestor of v-can be defined as the conjunction of u < v and v $ u. Then u <I v
can be defined as the conjunction of u < v and v + u. With this constraint, 2 must
be the unique node on the path from the node representing T, to 2.

A similar constraint manages the values of variables. To introduce a node for
variable v with prefix T,, we find the node u representing T, and we add a constraint
appropriate to the logic: u <I v for K, u < v for K4, u < v for S4 and u - v for
T. u - v-meaning v is u or a child of u-can be represented as the conjunction
ofu < vandv* u.

As a final step, we should stipulate arbitrary symbols to correspond to each node
in the tree to which no Herbrand term is assigned. In fact, however, the constant
ordering theorem ensures that any substitution that solves the equations includes no
such arbitrary symbols. This step is therefore superfluous; the constraints identified
thus far describe only trees t that encodes possible solution substitutions of values
to variables.

Equations. The equations themselves that 8 must solve are likewise realized as
simple constraints on t. To equate n,u and T,V, we add the constraint u = v-u = v
is equivalent to the conjunction of u < v and v < u.

Domain constraints. Modal constraints on first-order unification are represented
by associating a node u, with each first-order variable or term t. Each first-order
Herbrand term f is introduced at some scope p, as recorded in an typing pair f : p.
Because the arguments off are introduced from the same formula as f at wider
scope, the arguments will be associated with prefixes of p. Thus, uj is just the
node corresponding to p. Meanwhile, each first-order variable x is associated with
a new node ux which represents the least-nested scope in which the value of x is
defined. The typing pair x : p is represented by the constraint ux < v, if v is the
node corresponding to p. This constraint may also be represented as an equation,
given access to S4 variables: for ux 5 v we introduce a new variable 1, and add the
equation uxl, = v. The variable 1, has a unique occurrence in the resulting set of
equations. For proofs analyzing unification problems in terms of equations, it will
be convenient to adopt this representation and give domain constraints and scope
equations the same treatment.

Now, to impose the correct domain constraints, we simply extend any ordinary
first-order unification algorithm so that when first-order terms t and s are unified, the
corresponding nodes u, and u, are constrained to be equal. If modal variables appear
as arguments of first-order Herbrand terms, they can also be unified by imposing
equality constraints. When the overall unifier is computed, the domains of definition
of all unified terms will refer to the same, correct nodes in the tree; and necessary
constraints on the values of variables will be respected.

The problem of unifying annotations is therefore equivalent to the problem of
solving a set of simple tree constraints. I now present an efficient algorithm to solve
this problem. The algorithm extends the tree construction algorithm of (Aho et al.,

40 MATTHEW STONE

1981), which handles 5 and g.2 In the algorithm, the node corresponding to a
variable or constant u is represented as the least common ancestor of a distinct pair
of leaves ul and u2, denoted (u l , u2). The tree is constructed by grouping leaves
into sets according to the constraints. A set of disjoint sets is constructed for each
depth in the tree; nodes in the same set at depth n indicate leaves that must be
descendants of the same node at depth n in any tree that solves the constraints. In
this process, we need only consider N levels of partitions, where N is the number
of leaves of the tree. If a tree satisfying the constraints exists, a tree satisfying the
constraints exists that has only branching nodes-because all constraints refer to
least common ancestors, which must be branching nodes. So the tree has depth at
most N. Correspondingly, should we discover the need to merge two cells at depth
N, we will know that the constraints have no solution.

Given a set of constraints C, algorithm A computes a tree by applying the
following rules for merging partitions:

1. Initial. All leaves are in the same cell at depth 0.

2. (i, j) 5 (k, 1). If i and j are in the same cell at depth n, then i, j, k and 1 are in
the same cell at depth n.

3. (i, j) $ (k, 1) . If i, j, k and I are in the same cell at depth n, then i and j are in
the same cell at depth n+ 1.

4. (i, j) + (k, 1) . If i and j are in the same cell at depth n+l, then i, j, k and 1 are
in the same cell at depth n.

These rules respect the following natural property:

Lemma 7 (sanity) If i and j are in the same cell at depth n+l (because of a proof
of length h), then i and j are in the same cell at depth n (because of a proof of length
at most h).

Proof. By induction on the length of the proof that i and j are in the same n+l cell.

Accordingly, A ends by building an internal node at depth n+l for each non-unit
cell there, and making it a child of the internal node at depth n which it is a subset of.
(The sanity lemma ensures that there will be at least one such node; the disjointness
of partitions ensures that there will be at most one.) Leaves attach to the greatest
depth nonunit cell to which they belong.

Theorem 4 (correctness) Any tree t so constructed satisfies the constraint set C.

* ~ e warned: (Aho et al., 1981) use u 5 v with the opposite sense I do; their notation conflicts
with the present intuition that the tree represents a collection of paths from the root to leaves, ordered
by the prefix relation.

TREE CONSTRAINTS FOR NECESSITY 4 1

Proof. As in (Aho et al., 1981), by consideration of constraints. For example, for a
constraint (i, j) + (k, I), let S be the partition associated with (i, j) in t. Rule 4 must
have fired, putting i, j, k and 1 in the partition of the parent of (i, j). Since (k, 1) must
be a descendant of this node, the constraint is satisfied. w

We prove that the algorithm is complete by means of a lemma:

Lemma 8 (descendants) Let t be any tree satisfying constraint set C, and let S be
a cell a t depth n containing more than one lea$ Then there is a node b in t of depth
n such that every leaf in S is a descendant of b.

Proof. As in (Aho et al., 1981), by induction on the number of steps of rule-
application in constructing partitions. For example, consider a step for (i, j) + (k, 1)
causing i, j, k and 1 to be in the same cell at depth n. By induction hypothesis, there
is a node bl at depth n+l in t which dominates all leaves in i and j's cell in S at
depth n+l. Moreover, nodes in t at depth n must dominate the unmerged cells of
i, j, k, and 1 in S. Now we can show that it must be a single node that dominates
all of them: the parent bo in t of node bl. Since t satisfies the constraints, (k, 1) is a
descendant of the parent of (i, j) in t; since bl 5 (i, j) , bo 5 (k, I) in t. w

In fact, the proof of the descendants lemma is straightforwardly extended to the
following least commitment property. Let T be any set of trees satisfying constraint
set C. Initialize algorithm A with nodes i and j in the same cell at depth d according
to any relation r(i, j, d) which holds only if every tree in T assigns (i, j) to a node
at depth d or greater, and run algorithm A to completion. Then for any cell in S
containing more than one leaf at any depth n, there is in every tree in T some node
b of depth n such that every leaf in S is a descendant of b.

Theorem 5 (completeness) If algorithm A returns no tree, no tree satisfies the
constraints.

Proof. The procedure succeeds unless two nodes are in the same partition at depth
N-in which case we terminate the algorithm and report failure. By the descendants
lemma, this means that any solution has two nodes together at depth N-so any
solution has depth greater than N. But we've already observed that if there is a
solution, there is a solution with depth at most N, so in this case there must in fact
be no solution.

Algorithm A can be performed in time O(MN log N), where M is the number of
constraints and N is the number of leaves in the tree. Cells are represented using a
union-find algorithm (Hopcroft and Ullman, 1973); each cell stores not only a set of
nodes but also a set of productions that may be triggered when this set is merged with
another set. Considering only the shorter list when two cells are merged ensures that
only O(M1og N) productions are considered in merges of cells at any given depth
in the tree.

If a proof attempt V contains K rule-applications, this means that algorithm
A contributes time O (K ~ log K) toward constructing a unifier under which V is a

42 MATTHEW STONE

proof. There can be no more modal constants and variables than rule applications,
since each has its origin in some rule application, so N is O(K). Likewise, there
are O (K) first-order variables, which can be unified by imposing a linear number
of equalities between terms by standard algorithms (Martelli and Montanari, 1982).
There are O(K) equalities between scopes imposed by axioms. However, the simple
presentation of algorithm A above requires adding o(K,) constraints to enforce the
distinctness of constants.

This running time can be brought down to O(K, log K) by a specialized represen-
tation of the distinctness constraints. Only the distinctness constraints corresponding
to the C-least constant pair in a cell need be triggered at each step. The other dis-
tinctness constraints will only duplicate their effects. If we can identify the relevant
constraints, we can ensure that only O(K) production-firings are needed to keep
constants distinct. But the C-least constant pair in each cell is easily maintained,
since c is given and inspection of the rules shows that a pair (c l , c2) are together in
any cell dominating cl and any other leaf.

In algorithm A, constraints corresponding to additional equations can be added
dynamically, because the trees this algorithm produces make the least possible
commitment. This is a consequence of the (generalized) descendants lemma. The
only commitments the algorithm makes are that strings ruu and nvv share a prefix
of a given length. That is, if ul, 2.42, v1, and v:! are members of a common cell at
depth k in the tree, we know the value of ruu and rVv share a prefix of length at
least k. Other features of the tree, for example the ancestor or command relation of
prefixes nuu and nvv, may be changed if possible by merging the appropriate cells
later. Now, because of the descendants lemma, we know that any nodes in the same
cell at depth k in algorithm A are children of some node of depth k in every tree
that satisfies the constraints. That means that if algorithm A constructs a unifier that
assigns nuu and nvv a common prefix of length k, every unifier assigns r,u and n,v
a common prefix of length at least k.

4.2 An Example
Let us return to the simple example of figures 12, 13 and 14. We start with the
equation xy = a@. In S4, this corresponds to the following constraints, if (r l , r2)
names the root (or real world):

(71, 7 2) <I (a1 , a2) (a,, ~ 2) <I (P I , P 2)

(7 1 7 2) I (~ 1 , ~ l) (~ 1 7 ~ 2) I (Y,,Y2) (Y, ,Y2) = (P 1 , P 2)

The algorithm computes the tree shown in figure 15. The first <I constraint causes
a1 and a2 to merge at depth 1; then the second <I constraint causes PI and ,B2 to
merge under crl and a2 at depth 2; finally, the = constraint merges y, and y, with
this cell at depth 2. At this point, the tree satisfies all the constraints, and solves the
needed equation. Note that x is provisionally identified with the root, in keeping
with the algorithm's policy of leaving the endpoints of path variables as close to the
root as possible.

TREE CONSTRAINTS FOR NECESSITY

Figure 15: Tree for xy = ap.

Recall that we had to impose one of three equations on x to finish .the proof:
x = 1, x = a, or x = crp. Each of these can be imposed by adding additional
constraints to the problem in progress. The first causes no further merges; the
second merges XI, x2 and at depth 1 ; the third merges XI, x2 and PI at depths 1
and 2.

4.3 Problematic Interactions in Multimodal hnguages
Efficient multimodal deduction requires some limitations on introspection axioms,
because some combinations introduce ambiguities that allow hard problems to be
encoded into unifications of modal indices. These ambiguities are not associated
with the problem of determining what types a string has. As the following result
shows, the type interactions in the multimodal language remain quite simple.

Lemma 9 (subset lemma) I f a : j is derivable, and a' is a nonempty string con-
taining only symbols that appear in a , then a' : j is also derivable.

Proof. By induction on the height of derivations of typing judgments. For (AX,)

and (vER,), there is nothing to prove, since only atomic strings are involved. For
(INC,), we derive a : j from a : i. Apply the induction hypothesis to the derivation
of a : i to show a' : i . Then reapply (INC,) to show a' : j. For (PI,), a has the form
pv and we derive a : j from p : j and v : j. Each symbol a in a' appears either in p
or v, so by applying the induction hypothesis to the appropriate subderivation, we
may derive a : j. The new proofs, one for each symbol in a', may be combined in
the appropriate order by successive applications of (PI,).

Instead, the problematic ambiguities of multimodal deduction arise in logical
theories which force a modal path to have several diflerent types because of the
different formulas which must apply along the path. As a characteristic example,

44 M A m E W STONE

consider the following interaction axioms:

These axioms relate K modalities YT and YF to a more specific K modality Y and to
a still more specific S4 modality Y*. The following theory provides an illustration
of an associated ambiguity:

To prove A, we backchain against [YT] B > A, introducing constant a. Applying
the second clause introduces a two variable string uv that must match a and a new
goal C to be proved in scope up. The first clause introduces variables yz that reach
this scope. Thus, the proof attempt for A gives rise to equations:

These equations are governed by the typing context:

There are two solutions:

In these solutions, the variable y must be bound to exactly one of a and P. In
a monomodal language, there is no problem with such ambiguities in values; as
long as different values of a variable have the same length, the only way to force a
particular resolution of the ambiguity is to impose an equation that specifies exactly
which value the variable should have. These explicit equations can be included
straightforwardly into a set of constraints. In the multimodal language, we have
a more general method of forcing such ambiguities to be resolved. Since a has
type YT and P has type YF, we can think of y as encoding a boolean variable whose
value is determined by the type of the string unified with y. If we add additional
conditions for establishing C, the multimodal language could allow us to impose new
equations that test which kind of value y has. Interaction axioms allow these tests to
impose disjunctive constraints on the values of several variables at once. We obtain
the following result by following this strategy of describing possible assignments of
values to a variable using types, and by using types to impose disjunctive constraints
on those values:

Theorem 6 It is NP-hard to determine whether there is a solution to the equations
resulting from a proof attempt in a -only modal where S4 and K modalities interact
by unrestricted (I N C) axioms.

TREE CONSTRAINTS FOR NECESSITY 45

Proof. By reduction from 3-SAT. In 3-SAT, we are given a set of disjunctions,
each containing three propositional literals (letters or negations of letters). The
problem is to determine whether there is an assignment of true or false to the letters
under which each disjunction is true. As with the proof of Theorem I , we describe
the proof in two steps, giving first a set of equations corresponding to the 3-SAT
instance, then a proof search problem that gives rise to these equations.

The string equations first construct a string a constrained so that its possible
values encode assignments of truth-values to proposition letters. Meanwhile, each
disjunction is associated with a string Si which unifies with a if and only if the
disjunction is true on the assignment a represents. Thus, the unification problem is
completed by equating a with each Si.

In particular, tlie encoding uses the following definitions of modalities. For
each proposition letter y, we have modalities YT, YF, Y and Y* related by the axiom
schemata described in the previous example. An additional S4 modality * has
inclusions to all of these modalities. For each disjunct i, we introduce add a K
modality I with inclusion axioms to the modal types corresponding to the cases
when i is true. For instance, if the ith disjunct is (u V F V y), we get:

Given these inclusions, we can represent 6; by a string uitiv;, where u;, ti and vi are
fresh variables governed by the typings:

For any string a that contains no constants of type I, Si is unifiable with a if and
only if a is a string containing a constant whose type characterizes an assignment,
specifying truth or falsehood for a literal, under which the ith disjunction is true.

To construct a single, overall assignment string, we repeatedly invoke the equa-
tions of the preceding example. If a k - l is an assignment to the first k- l proposition
letters, we can extend the assignment to the kth letter by adding the equations:

Under the typing context:

For the reasons described above, mk2yk includes the string a k - 1 as the value of mkz,
followed by either a k or Pk as the value of y,. This establishes an assignment a and
completes the construction of a unification problem that corresponds to the 3-SAT
instance.

We now present a logical theory where proof search for r + G gives rise to
this equational unification problem. The theory refers to propositions A,, By and C,

46 MAmHEW STONE

for each variable y and a proposition Di for each conjunct i. For the first variable,
we add Ay > G. For consecutive variables y and z, add statements of the following
form:

For the last variable, for which there is no successive z, replace A, with the conjunc-
tion of the Di. Finally, for each disjunct i, add:

In this theory, the proof attempt for G gives rise to the unification problem observed
above. The successive proofs for A,, By and Cy chain together to construct an
assignment as outlined in the example; the need to prove each Di in the ultimate,
nested scope introduces equations Si = a.

The practical relevance of this result is unclear, as the axioms involved in
this construction are rather pathological. Example 1, involving the Navy and
GE, is a typical example of a useful modal representation that exercises a variety
of introspection axioms on related modalities without introducing the kinds of
pathologies that Theorem 6 exploits-a point which we justify more carefully
presently. Because of the rarity of problematic examples, the response of (Debart
et al., 1992; Baldoni et al., 1993) would seem natural: they provide a complete
solution and to trust that programmers will never unwittingly hack hard problems
into manipulations. However, since algorithm A exploits an invariant that no
longer holds in this domain, it is problematic to make it complete for these cases
without spoiling its performance for easy problems. The next section adopts a
different approach: it gives broad syntactic conditions on the interaction axioms for
modalities and axioms about those modalities that ensure that unification of modal
paths remains easy.

4.4 Restrictions for Multimodal Languages
Problems arise in multimodal languages when the same variable may be unified
with constants of different types under different unifiers. Under these conditions,
variables can take on binary values, and a constraint algorithm that computes a
simplest unifier becomes impossible.

I have found that the theories needed for many practical applications have
syntactic characteristics that eliminate such ambiguities. This section explores two
such characteristics. In the first, typing conditions in fact reduce to length conditions;
this is representative of typing in planning representations. In the second, conditions
can be satisfied by relaxation; this is representative of typing in logic programming
representations.

4.4.1 Typing by Length Constraints
We first observe that a simple but useful syntactic restriction of homogeneity on
the multimodal language allows algorithm A to be used directly. The restriction

TREE CONSTRAINTS FOR NECESSITY 47

starts from a distinguished negative modality ON. The theory T specifying relations
between modal operators is homogeneous just in case it contains an inclusion
Ui A 2 ON A for every modality Oi. Further, the sequent r -+ A to be proved
is homogeneous just in case the r formulas have P-syntax and the A formulas have
N-syntax according to the definitions below:

(A schematizes over atomic formulas.) Thus, any modality may appear in positive
positions, but only ON may appear in negative positions.

If r -+ A is homogeneous, then all modal Herbrand terms in the proof must
represent arbitrary ON transitions. If also T is homogeneous, then each of these
Herbrand terms match variables of any modal type whatsoever. The different types
of modal operators may therefore be specified completely in terms of the length
of sequences of ON operators they match. There are only four possibilities for
introducing a node for variable v with prefix T,, depending on whether the variable
matches sequences of ON variables of length 0 and length 2. (In any demonstration
that the variable matches a sequence of length 2, we must have applied (PI,); we can
repeat the step to match any longer sequence.) To represent the variable, therefore,
we find the node u representing T, and add: (I) u < I v (only length 1); (2) u < v
(only length 1 or greater); (3) u < v (any length); and (4) u <<, v (only length 1 or
less). Thus, we again obtain a sound and complete specification of the unification
problem by incorporating first-order and distinctness constraints as in section 4.1.
Algorithm A computes a solution or reports that none exists in time O(K* log K).

4.4.2 Typing for Least Commitment
A different kind of restriction is to enforce a strict uniformity in solutions that allows
a unifier to be constructed by local modifications of a prospective solution. The
central notions involved in this restriction are those of forced modalities and separate
modalities. Given a theory T specifying relations between modal operators, we say
a modality i is forced if i is not governed by (PI), or equivalently that E : i cannot be
derived. By extension, we say constants and variables are forced when they can be
assigned a forced modality as a type. Forced variables are the ones that may insist
on binary values. Modality i is separate from j (under 7') if for every typing context
C, there are no terms c and d for which we can derive c : i, d : j , and cd : i. The
significance of separate modalities is this. Given variables u of type i and v of type
j with i separate from j, there is at most one solution of any equation uv = a. For
suppose we had u0 a proper prefix of u8' for two unifiers 0 and 8'. Then v0 has a
nonempty overlap d with u0'; by the subset lemma d : j. And now u0 : i, d : j and
u0d = u0' : i. Separate modalities are to be distinguished from disjoint modalities:
i and j are disjoint if there is no context C and term c for which c : i and c : j.

We apply forcedness and separateness in three auxiliary notions. First, a modal-
ity i is simple if i is separate from i. A simple modality looks like a K modality even

48 MAlTHEW STONE

taking possible inclusions into account. Second, a modality i is clean if whenever
niA > UjA for forced j, then j is separate from i. A clean modality can never
be responsible for ambiguities in the number and identity of forced constants on a
string: it either always matches none or always matches exactly one. Finally, given
the goal of proving r - G, modality i is unambiguous if G is a G-formula and r
is a multiset of D-formulas, according to the following grammar:

G ::= P (G v G I G A G I D > G (~ ~ G (V X . G I ~ X . G
D ::= P (D V D I D A D 1 G > D I mi Di,o I D [k # i] 1 Vx.G 1 3x.G

Di,S ::= P I Di,sV Di,s (Di,sA Di,s I G > Di,s 1 VX.G I3x.G
Ok D [i separate from k, each j in S disjoint from k] I

k Di,S"{k} [K simple]

(P schematizes over atomic formulas.) An unambiguous modality is one whose
interactions might be problematic in general, but happen not to be, given the ma-
nipulations of modalities in the particular logical theory in question.

Given interactions T and desired end-sequent r -- G, we will require every
modality to be either clean or unambiguous. Intuitively, because of the role of
separateness in the definitions, by imposing the restriction, we ensure that the
forced Herbrand terns do not vary across unifiers. In turn, this ensures that forced
variables have the same values across all unifiers; ambiguous forced variables are
impossible. It is a consequence of this that equations have simplest solutions-not
just in terms of lengths of values of variables but also in terms of the constants
that appear on the values of variables. This result is in fact stronger than the least
commitment result for monomodal languages. Formally, we have:

Theorem 7 (agreement) Let 0 and 0' be two substitutions that solve the equations
arising from 0-only proof search for l? - G with interactions T, where every
modality is either clean or unambiguous. Then for every forced Herbrand term c,
n,ud contains c ifand only if (n,u)dr does.

Proof. By induction on the number n of equations. For the base case, there are no
equations, no Herbrand terms, and nothing to prove.

Suppose the claim is true for the first n - 1 equations and consider solutions d
and 0' for the first n equations. Apply the induction hypothesis to show 8 and 0'
agree on the forced Herbrand terms in the the first n - 1 equation, and consider the
nth equation, E. By the variable introduction theorem, E has the form 1.2 = rc', where
1 and r contain only terms which appear earlier, x'is a sequence of new variables and
c' is a sequence of new Herbrand terms. From the induction hypothesis, we know
that the same forced Herbrand terms appear on 16 and lo', and likewise for rd and
rd': SO Ed has the same such terms as Ed'. If E is an equation representing a domain
constraint we are done: there is a unique new variable x and hence no new prefixes.

For other equations, we show by contradiction that there cannot be a Herbrand
term c , a forced modality j such that c : j , and a variable x of type i such that

TREE CONSTRAINTS FOR NECESSITY 49

c appears in (rxx)O but not in (rXx)O1. Suppose otherwise, and consider the first
counterexample; we have two cases according to whether i is clean or unambiguous.

Suppose i is clean. Then j is separate from i, and since c : i and c : j we cannot
have e : i. So i is forced. This means x0' includes a forced Herbrand term c', which
precedes c since c does not appear in (.rr,x)O1. By the constant ordering theorem, c'
must precede c in (%x)O also. But x0 cannot include both c' and c, since j is separate
from i. And .ir,O cannot contain c': if so, some earlier variable would contain c' on
one substitution but not the other, and we know c is first. Thus, if i is clean, our
assumptions about c are incoherent.

Suppose i is unambiguous; this ensures that x is followed by a string v'z where
z is a variable of type h with i separate from h, and v' is a sequence of n variables
vk each of simple type Mk disjoint from h. Why is this? The sequence of variables
followingx is constrained by the sequences of modalities permitted in DIi) formulas;
the only alternative Cz is for the equation to end before any z. But since c does not
appear in (rxx)O1 and appears in r0, x cannot be final. Nor can any vk be final: since
each matches exactly one Herbrand term, any (.rr,xC)O must contain forced Herbrand
terms that (7rXxC)O1 does not.

So, given this string of variables xv'z, we compare (xv'z)O with (xCz)d'. Observe
that v,O1 = c since vlOt must be forced and c is the first forced Herbrand term from
x0 not to appear in xd'. Continuing, we find 3' = c', for some string of n Herbrand
terms c', and z0' begins with some constant d. By separateness, d cannot appear in
x0, so it must appear afterward. By disjointness, d cannot appear in 3, so it must
appear later still. But CO must include n constants following c; d must be one of
them. This is absurd: we conclude that no counterexample can exist.

Theorem 8 (least commitment) Given a set of equations U arising from a El-only
proof attempt for l- G without possibility or negation, and with every modality
clean or unambiguous. Then if E has a solution, it has a solution 0 such that if c
appears on (r,u)O then c appears on (r,u)O1for any other solution 0'.

Proof. The proof to a relation < between unifiers; 0 5 0' holds if and only if any c
that appears in (r,u)O also appears in (r,u)B1. This relation is well-founded, since
each unifier assigns values to only a finite number of variables, and those values are
finite strings. Thus, it suffices to show that for any two unifiers 0' and 0" there is a
unifier 0 with 0 < 0' and 0 5 0".

We show this by induction on the number of equations in U; we show simultane-
ously that for any u, (ruu)O = (7ruu)01 n (.nuu)0". That is, under 0, (7ruu) contains
exactly the constants it has both under 0' and under O", in the order dictated by the
constant ordering theorem.

For the base case, zero equations, there is nothing to show.
Now, suppose we have constructed such a 0 for the first n - 1 equations, and

consider equation n, E, which involves k additional variables. As before, for each

50 MATTHEW STONE

xi : i, construct the value xi@ inductively as follows:

xiO = ((1x1 . . . xi)O1 n (lxl . . . xi)OU) minus (1x1 . . . xi-l)O

xiO either only contains Herbrand terms from xiO1 or only contains Herbrand terms
fromxiOU. Otherwise there would be a Herbrand term a that appears in (lxl . . . xi-1)s
but not (lxl . . .xi-1)01 and a Herbrand term b that appears on (kcl . . .xi-l)Ot but
not (1x1 . . . x i - ~) 0 , and where moreover a and b appear in both (1x1 . . . xi)O and
(lxl . . .xi)O1. This means that a precedes b in the 8' solution but b precedes a in
the 0' solution-in conflict with the constant ordering theorem. So as long as xiO is
nonempty, the subset lemma shows that xiO has type I . Meanwhile, if xiO is empty
then I cannot be forced. If I is forced, the value of xO1 shares the forced Herbrand
terms with xiOn; this follows by the previous result. These will appear onxiO. Again,
EO is the intersection of EO1 and EO1l, and 0 solves E.

4.4.3 Relaxation for Least-Commitment Multimodal Languages
This section outlines a relaxation algorithm for computing modal matches that
repeatedly performs algorithm A and modifies the result to make progress toward
typechecking. This progress is achieved using a straightforward procedure that
computes the next-larger well-typed modal match for a particular equation. The
arguments of section 4.4 show why an overall simplest global solution exists and
are easily adapted to show why local improvements toward it are always possible.

We begin by presenting an algorithm for computing small well-typed modal
matches. In principle, we will need to match the left term 1 and right term r of
an equation. The value of r and the match for the variables and constants from 1
that appear in earlier equations will already be determined; this fixes a final string
of Herbrand terms from r that are unaccounted for. We need only match the final
string of new variables in 1 against these constants, subject to any constraints on
the values of those variables that we have already identified. Thus, we have the
following task: we are given a string v' of variables and a string Z of Herbrand terms,
and a base substitution O0 with = Z. The problem is to find a unifier 8 where
for each variable vi, viO is well-typed and (.rr,,vi)0 is as short as possible while still
including (s,vi)OO as a prefix. As in the proof of the least commitment theorem, an
argument from intersecting substitutions shows that if any match exists, one match
assigns fewer Herbrand terms to each prefix than any other; so we describe 6' as the
least match above O0 of v' against Z-lm(OO, v', Z) . Observe that 0 restricted to the
first i variables must be the least match above Oo of .n,,vi against (.rr,,vi)O. Otherwise
we could use 0 and the smaller prefix match to construct an smaller match on the
whole string.

Thus, we characterize lm(Oo, n,,vi, Z) as follows. No match exists unless (7rVivi)OO
is a prefix of 2. If this prefix condition is met, let 2 be the lon~es t string of
constants matching the type of vi such that there is a p where Z = pd and a O i - l =

lm(Oo, s,, p) . If no such iexists, there must be no match. Otherwise, lm(Oo, s,,vi, I?)

TREE CONSTRAINTS FOR NECESSITY 5 1

is the substitution that sends vi to 2 and otherwise agrees with 8i-l. Given Bo,
this characterization can be operationalized directly as a dynamic programming
algorithm that maintains a table of lm(OO, T , p) values for prefixes n of v' and
prefixes p of c'.

This procedure can be combined with algorithm A to construct unifying trees
for multimodal languages. The combination, algorithm B, goes as follows:

Construct constraints for the input equations U and the domain restrictions on
first-order variables as in algorithm A and propagate the consequences of those
constraints. Then, while changes occur: consider the equations in order until some
sequence of variables lies lower than their next least match against the constants to
which they are bound; perform merges of cells in A so as to bump those variables
up into the least match configuration; and recompute A. Whenever some sequence
of variables has no next least match, fail.

Theorem 9 (correctness and completeness) If algorithm B produces a tree, it is
the least solution to its input equations U and the associated domain constraints; if
there is a solution, B produces it.

Proof. Any tree that algoritlim B produces corresponds to a correct unifier 8 of U.
The fact the tree is a fixpoint of algorithm A means that a substitution that solves
U and satisfies the domain constraints can be extracted from the tree. Since the
algorithm terminates only when every sequence of variables matches a path of the
appropriate type, this substitution respects the types of variables and constants.

Moreover, any other correct unifier 8' assigns no prefix n a string n8' shorter than
T O ; and if B returns failure, there is no unifier. We establish this using a somewhat
stronger claim and induction on the number of equations k so far solved.

Call a relation r conservative for U when r(T, n', n) entails that T O and n'8 share
a common prefix of length n in any solution 8 of U. As remarked in section 4.1, the
proof of correctness of algorithm A can be adapted to show that if A is initialized
with leaves of nodes put in common cells according to a conservative relation
and run to completion, then the output relation includes the input one but remains
conservative. Given any conservative relation that solves the first k equations, we
will show that the new relation induced by bumping up a sequence of variables x'
from equation k+l to match c' (by match 8) also includes the old one and remains
conservative.

We use the claim to show by induction that input a conservative relation for U,
algorithm 23 returns a conservative relation that includes the input and represents a
solution to the first k equations. For 0 equations, there is nothing to show. Suppose
the claim is true when running B on k - 1 equations and consider solving k equations.
Following algorithm B, we first use this induction hypothesis to solve the first k - 1
equations and extend the input relation conservatively. Then, we bump up the
variables in the kth equation as dictated by the least match; by the claim, also
extends the relation conservatively. We continue this process as needed until a fixed

52 MATTHEW STONE

point is reached or until we discover the need to place a variable impossibly deep
in the tree. Since the relations remain conservative, we lose no solutions. As no
variable can be bumped past depth N in the tree, we must reach a fixed point which
gives a least solution extending the input relation for the k+ 1 equations, if a solution
exists.

We are left with the claim that including the match of ?against c'by 0 keeps the
relation conservative. Consider an arbitrary solution 8' in which ?is matched against
some different string 2. Because the d terms must appear in the first k equations,
which have been solved conservatively, 2 must include at least the constants of 2 in
order. Further, 2 must contain exactly the same forced constants that appear in Z, by
the agreement theorem. We now know enough about the string c' and the match 0'
against 2 to construct a match of? against c' at least as small as Of, by intersection (as
in the least commitment theorem). Thus, if no match against c'exists, there can be no
other solution to the earlier equations which allows a match in this equation; so local
progress is complete. Meanwhile, since we compute 0 as the least match against 2,
we can conclude 0 is smaller than 0' as needed, so local progress is conservative.

Algorithm B runs in time worst case ~ (p) , where N is the number of variables
and constants in U. The analysis given earlier is general enough to show that
the multiple invocations of A require total time only O (N ~ logN). Meanwhile,
algorithm B requires no more than o(N~) iterations to converge (otherwise some
node must be bumped to depth N+l), and in each iteration there are at most O(N)
nodes to check. There are two kinds of checks; we shall see that these have
different complexities. The first case, the easy case, is when the input substitution
00 is identical to the output substitution 0. All but the last of the O(N) checks
that we perform fall into this class, since they introduce no changes. In the other
case, we compute a new 8 different from 00. Thus, if the time of an easy check
is AN) and the time of a hard check is g(N), algorithm B takes O (N ~ logN +
N ~ ~ (N) + N ~ ~ (N)) . To compute the time each check takes, observe that successive
variables must originate in the same formula occurrence. Thus the maximum
number k of successive variables needed to be matched in each equation is bounded
statically by the complexity of axioms. For current purposes, k can be considered
constant. Likewise, since the possible interactions between modalities must be
specified in advance (and hence can be computed in advance), we may assume
that the relationship between the type of a constant and the type of a variable can
be computed in constant time. Meanwhile, the string of constants matched has
worst-case length O(N). In principle, given these bounds on the input, computing 0
requires filling a table of size O(kN), where each entry may require checking O(N)
earlier entries. So g(N) is O(N~). On the other hand, if the table is filled in by
demand and the input match 80 is well-typed, we access (and compute) only O(k)
entries of the table. The easy checks thus require time O(N). Thus, we conclude
that algorithm B has worst-case complexity ~ (p) .

TREE CONSTRAINTS FOR NECESSITY

5 Conclusion and Applications
Previous research on efficient deduction in modal logic devised an explicitly-scoped
calculus describing modal provability. The calculus has nice formal properties but
checking the axioms link in the proof represents an intractable problem. This paper
has identified a new invariant for deduction problems in modal logic, and shown
how this invariant leads to fast algorithms for correctly applying axioms in modal
proofs. Presentations of modal logic in terms of scope equations thus provide both
a theoretical tool for analyzing proofs and proof search in new ways and a practical
tool for implementing fast deduction.

Adding scope to logical representations is an important goal for this paper has
developed tractable solutions. The algorithms described here apply in a variety
of domains that call for natural means of describing modular inference, time, and
agents. To conclude, I briefly sketch the role of the three algorithms from sections
4.1,4.4.1 and 4.4.3 in developing practical applications of deduction.

5.1 Automatic Synthesis of Functional Programs
Intuitionistic theorem proving and the related problem of automated synthesis of
functional programs represents a natural domain in which to apply the constraint
algorithm from section 4.1. The problem and application relies on the following
observations. Functional programs can be characterized in terms of the types of
their inputs and the types of their outputs. These types can in turn be represented as
formulas in a logical language: the formulap + q represents the type of functions
from objects of typep to objects of type q. The correspondence between propositions
and types-known as the Curry-Howardisomorphism (Howard, 1980)-at the same
time identifies programs with proofs. For example, application of a function to an
argument is recorded in the inference from the type p += q of the function and the
type p of the argument to the type q of the result. This parallel underlies a number
of systems for the synthesis of functional programs (Martin-Lof, 1982; Constable
et al., 1986).

In the type p =+ q, + denotes the implication of intuitionistic logic, where the
assumption p must be used only to derive q. This scope discipline can in fact be
characterized by a correspondence between intuitionistic formulas and proofs and
formulas and proofs of a modal logic, S4 (Godel, 1986; Rasiowa and Sikorski, 1953;
Maehara, 1954). The correspondence is achieved by translating an intuitionistic
formulap to an S4 formula T(p) as follows:

T(A) = UA A atomic
T(P A q) = T(P) A T(q)
T(P v q) = T(P) v T(q)
T(P + q) = WP) 3 T(q))
T(\JXP) = O\Jx(T(p))
T(3xp) = 3x(T(p))

54 MATTHEW STONE

The correspondence between programs and proofs also holds in explicitly scoped
proof system based on semantic translation, such as the one this paper has in-
vestigated (Stone, 1996). Explicitly-scoped S4 deduction, together with the basic
O (N ~ log N) constraint algorithm described in section 4.1, can thus be used to derive
proofs and programs.

5.2 Constraint Reasoning for Branching Time
The constraint technique proposed in section 4.4.1, meanwhile, applies in a variety
of problems in temporal and causal reasoning, including typical ways of deriving
particular predictions about the future on the basis of causal generalizations. The
use of constraints to represent the ordering of intervals and events is a well-known
technique in A1 (Sacerdoti, 1975; Allen, 1983; Dean and Boddy, 1988), but has
focused on linear models of time, where all events must ultimately be temporally
ordered. A1 theorists, however, have often preferred to work in terms of branching
models of time, such as the situation calculus (McCarthy and Hayes, 1969). The
algorithm described in section 4.4.1 can be taken as a description of a range of
cases where efficient constraint methods can check consistency of conjunctions of
ordering constraints between points in branching-time causal reasoning.

The ontology for causal theories consists of a homogeneous theory (cf. section
4.4.1) involving a pair of modal operators 0 and 0 . The negative operator is 0;
0 P represents that P is true after the next event occurs. Without further constraints
on this operator, time can branch. Persistence of effects is captured by the modal
operator 0 ; q P represents that P holds, and will continue to hold until further
notice. Thus, is described by the axioms U P > P, U P > O O P and U P > OP.
Meanwhile, the predicate ha gives a way to talk about the occurrence of actions:
ha is true if the next event will include an action that can be characterized as an a.

This setup allows us to represent a prediction as a modal deduction with end-
sequent R, H - G. R is the causal theory of the world, expressed in terms of 0,

and h; H is a series of statements describing future events; and G is a formula
ensuring that some prediction holds after a series of events. Such deductions encode
a homogeneous problem as long as q is only needed in positive positions, to allow a
proposition established at one time to be propagated forward in time in a single step
of instantiation to the later time when the proposition is needed. This is the typical
case in planning, prediction and explanation in AI. Because of the simplicity of the
deductive framework, the results of section 4.4.1 can be used to solve the modal
equations in these deductions efficiently-in time O (N ~ log N).

(In fact, the proof theory of simple modal languages can continue to be leveraged
in an interesting way even in the presence of defeasible inertia (Stone, 1997a). Using
defeasible argumentation (Pollock, 1992; Dung, 1993) permits proofs to retain a
simple form that omits the disjunctive and negative conditions needed to handle
inertia in classical logic (Schubert, 1990; Reiter, 1991).)

TREE CONSTRAINTS FOR NECESSITY

5.3 Executing Spec$cations of Agents
Finally, we return to the example of section 2.1: executing modal specifications of
agents. The specification described in 2.1 is representative of a broad and useful
class of formal theories in which the multimodal constraint algorithm of section
4.4.3 applies. In this class, we specify a set of S4 modalities interacting with
one another, and a set of K modalities interacting with one another, but have no
interactions linking the two kinds of modalities. I will call these S41K specifications.

Recall that section 4.4 identified restrictions on multimodal reasoning: Every
modality is required to be either clean or unambiguous, according to a technical
definition characterizing the modal interactions T and the sequent l- - A to be
proved. In the technical language of section 4.4, the K modalities are clean because
they are simple; the S4 modalities are clean because they have no inclusions to
forced modalities. For S41K specifications, no further restrictions on interactions
or formulas are needed to ensure that scope equations are easy to solve by the
techniques of section 4.4.3. Nevertheless, S4/K specifications describe the key
reasoning problems needed for specifications like the NavyIGE specification of
section 2.1.

In the NavyIGE example, the S4 family consists of operators [GE] describing
GE's knowledge, [NAVY] describing the Navy's knowledge, and [BOTH] describing
the organizations' shared knowledge. The K family consists of operators [LIST] de-
scribing GE's list, [SPEC] describing the Navy's specification, and [ACCT] describing
accounts in general.

The S4 family allows for efficient specifications not just of agents' knowledge
but also of their common knowledge. Common knowledge is a crucial component
of coordination and agreement (Fagin et al., 1995). Inclusion axioms model shared
knowledge in the GEINavy example of section 2.1: the modality [BOTH] in the
example was subjected to inclusion axioms [BOTHIA 3 [NAVYIA and [BOTHIA 3
[GEIA. These inclusions allow any nesting of [NAVY] and [GE] operators to be derived
from a single [BOTH] operator. Thus [BOTH] in fact describes common knowledge
to GE and the Navy.

The K family of operators provides a complementary tool to structure specifi-
cations. Following (Giordano and Martelli, 1994; Baldoni et al., 1993), K modal
operators in some cases provide a good description of modularity in logic pro-
grams. As with the [LIST], [SPEC] and [ACCT] modalities in the NavyIGE example,
modal operators can allow concepts to be described as distinct (like [~ ~ S ~ l p r i c e and
[S~~C]price) while compactly describing bodies of knowledge that apply uniformly
to both concepts. In fact, as (Schild, 1991) shows, a similar use of K modal operators
can provide a general encoding of terminological knowledge.

Thanks to the constraint algorithms described in section 4.4.3, specifications
combining these features can be designed like Prolog programs to offer both effi-
cient execution and declarative semantics. For, logic programs have a restricted
syntax and a restricted proof procedure that ensures that problematic scope ambi-

56 MATTHEW STONE

guities never arise. Without scope ambiguities, modal logic programs will define
search problems whose nondeterminism depends solely on the number of alterna-
tive clauses that could establish a goal, just as in Prolog programs. (Stone, 1997b)
extends the general framework from (Miller et al., 1991) to develop a modal logic
programming language, DIALUP, using the partial-order mechanisms described in
section 4. DIALUP provides a concrete environment in which to explore the algo-
rithms described in this paper and the efficient specifications of agents they make
possible.

References
Aho, A. V., Sagiv, Y., Szymanski, T. G., and Ullman, J. D. (1981). Inferring a

tree from lowest common ancestors with an application to the optimization of
relational expressions. SIAM Journal of Computation, 10(3):405-42 1.

Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communica-
tions of the ACM, 26(11):832-843.

Andrews, P. B. (1981). Theorem proving via general matings. Journal of the
Association for Computing Machinery, 28(2): 193-214.

Auffray, Y. and Enjalbert, P. (1992). Modal theorem proving: an equational view-
point. Journal of Logic and Computation, 2(3):247-295.

Baldoni, M., Giordano, L., and Martelli, A. (1993). A multimodal logic to define
modules in logic programming. In ILPS, pages 473-487.

Ballim, A., Wilks, Y., and Barnden, J. (199 1). Belief ascription, metaphor, and
intensional identification. Cognitive Science, 15: 133-1 7 1.

Bibel, W. (1982). Automated Theorem Proving. Vieweg, Braunschweig.

Bibel, W. (1993). Deduction: Automated Logic. Academic Press, London.

Boyer, R. S. and Moore, J. S. (1972). The sharing of structure in theorem-proving
programs. In Meltzer, B. and Michie, D., editors, Machine Intelligence 7,
pages 101-1 16. Edinburgh University Press.

Chellas, B. F. (1980). Modal Logic: An Introduction. Cambridge University Press,
Cambridge.

Constable, R. L. et al. (1986). Implementing Mathematics with the Nuprl Proof
Development System. Prentice-Hall, Englewood Cliffs N.J.

Dean, T. and Boddy, M. (1988). Reasoning about partially ordered events. ArtiJicial
Intelligence, 36:375-399.

TREE CONSTRAINTS FOR NECESSITY 57

Debart, F., Enjalbert, P., and Lescot, M. (1992). Multimodal logic programming us-
ing equational and order-sorted logic. Theoretical Computer Science, 105: 141-
166.

Dung, P. M. (1993). On the acceptability of arguments and its fundamental role in
nonmonotic reasoning and logic programming. In ZJCAI, pages 852-857.

Fagin, R., Halpern, J. Y., Moses, Y., and Vardi, M. Y. (1995). Reasoning About
Knowledge. MIT Press, Cambridge MA.

Fitting, M. (1972). Tableau methods of proof for modal logics. Notre Dame Journal
of Formal Logic, 13(2).

Fitting, M. (1983). Proof Methods for Modal and Intuitionistic Logics, volume 169
of Synthese Library. D. Reidel, Dordrecht.

Frisch, A. M. and Scherl, R. B. (1991). A general framework for modal deduction.
In Proceedings of KR, pages 196207. Morgan Kaufmann.

Gallier, J. H. (1986). Logic for Computer Science: Foundations of Automated
Theorem Proving. Harper and Row, New York.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: a guide to
the theory of NP-completeness. W. H. Freeman, San Francisco.

Giordano, L. and Martelli, A. (1994). Structuring logic programs: A modal ap-
proach. Journal of Logic Programming, 2159-94.

Godel, K. (1986). Eine interpretation des intuitionistischen Aussagenkalkiils. In
Feferman, S., editor, Kurt Godel Collected Works, volume 1, pages 296-303.
Oxford. With introduction by A. S. Troelstra.

Halpern, J. Y. and Moses, Y. (1985). A guide to the modal logics of knowledge and
belief: preliminary draft. In 9th International Joint Conference on ArtiJicial
Intelligence, pages 480490.

Hintikka, J. (1962). Knowledge and Belief. Cornell University Press.

Hopcroft, J. E. and Ullman, J. D. (1973). Set merging algorithms. SIAM Journal of
Computation, 2:294-303.

Howard, W. A. (1980). The formulae-as-types notion of construction. In To H. B.
Curry: essays on combinatory logic, lambda calculus, and formalism, pages
479490. Academic Press, New York.

Jackson, P. and Reichgelt, H. (1987). A general proof method for first-order modal
logic. In Proceedings of ZJCAZ, pages 942-944.

5 8 MATTHEW STONE

Kanovich, M. I. (1990). Efficient program synthesis in computational models.
Journal of Logic Programming, 9: 159-177.

Kapur, D. and Narendran, P. (1986). NP-completeness of the set unification and
matching problems. In CADE 8.

Kapur, D. and Narendran, P. (1992). Complexity of unification problems with
associative-commutative operators. Journal of Automated Reasoning, 9:26 1-
288.

Kleene, S. C. (1951). Permutation of inferences in Gentzen's calculi LK and LJ.
In Two papers on the predicate calculus, pages 1-26. American Mathematical
Society, Providence, RI.

Kripke, S. A. (1963). Semantical analysis of modal logic. I. Normal modal propo-
sitional calculi. Zeitschrift fur Mathematische Logik und Grundlagen der
Mathematik, 9:67-96.

Ladner, R. E. (1977). The computational complexity of provability in systems of
modal propositional logic. SIAM Journal on Computing, 6(3):467-480.

Lenzen, W. (1978). Recent work in epistemic logic. Acta Philosophica Fennica,
30(1): 1-219.

Lincoln, P. D. and Shankar, N. (1994). Proof search in first-order linear logic and
other cut-free sequent calculi. In LICS, pages 282-291.

Maehara, S. (1954). Eine Darstellung der intuitionistischen Logik in der Klassis-
chen. Nagoya mathematical journal, 7:45-64.

Martelli, A. and Montanari, U. (1982). An efficient unification algorithm. ACM
Transactions on Programming Languages and Systems, 4(2):258-282.

Martin-Lof, P. (1982). Constructive mathematics and computer programming. In
Cohen, L. J., editor, Logic, Methodology and Philosophy of Science VI, pages
153-175, Amsterdam. North-Holland.

McCarthy, J. and BuvaE, S. (1 994). Formalizing context (expanded notes). Technical
Report STAN-CS-TN-94- 13, Stanford University.

McCarthy, J. and Hayes, P. (1969). Some philosophical problems from the stand-
point of artificial intelligence. In Meltzer, B. and Michie, D., editors, Machine
Intelligence, volume 4, pages 473-502. Edinburgh University Press, Edin-
burgh.

TREE CONSTRAINTS FOR NECESSITY 59

Miller, D. (1994). A multiple-conclusion meta-logic. In Abramsky, S., editor,
Proceedings of the International Symposium on Logics in Computer Science,
pages 272-28 1.

Miller, D., Nadathur, G., Pfenning, F., and Scedrov, A. (1991). Uniform proofs
as a foundation for logic programming. Annals of Pure and Applied Logic,
51:125-157.

Mints, G. (1992). A Short Introduction to Modal Logic. Number 30 in CSLI Lecture
Notes. CSLI.

Moore, R. C. (1985). A formal theory of knowledge and action. In Hobbs, J. R.
and Moore, R. C., editors, Formal Theories of the Commonsense World, pages
3 19-358. Ablex, Norwood NJ.

Morgenstern, L. (1987). Knowledge preconditions for actions and plans. In Pro-
ceedings of the 10th International Joint Conference on Artijicial Intelligence,
pages 867-874, Milan Italy.

Ohlbach, H. J. (1991). Semantics-based translation methods for modal logics.
Journal of Logic and Computation, 1 (5):69 1-746.

Ohlbach, H. J. (1993). Optimized translation of multi modal logic into predicate
logic. In Voronkov, A., editor, Logic Programming and Automated Reasoning,
volume 698 of LNCS, pages 253-264. Springer, Berlin.

Otten, J. and Kreitz, C. (1996). T-string-unification: unifying prefixes in non-
classical proof methods. In TABLEAUX 96, volume 1071 of LNAI, pages
244-260, Berline. Springer.

Plotkin, G. (1972). Building in equational theories. Machine Intelligence, 7:73-90.

Pollock, J. L. (1992). How to reason defeasibly. Artijicial Intelligence, 57(1): 1-42.

Rasiowa, H. and Sikorski, R. (1953). Algebraic treatment of the notion of satisfia-
bility. Fundamenta mathematicae, 40:62-95.

Reiter, R. (1991). The frame problem in the situation calculus: a simple solution
(sometimes) and a completeness result for goal regression. In Lifschitz, V.,
editor, Artijicial Intelligence and Mathematical Theory of Computation, pages
359-380. Academic Press.

Sacerdoti, E. D. (1975). The nonlinear nature of plans. In Proceedings of IJCAI,
pages 206-2 14.

Schild, K. (199 1). A correspondence theory for terminological logics: preliminary
report. In IJCAI, pages 46647 1.

60 MA'ITHEW STONE

Schmidt, R. A. (1996). Resolution is a decision procedure for many propositional
modal logics. In AiML.

Schubert, L. IS. (1990). Monotonic solution of the frame problem in the situation
calculus: an efficient method for worlds with fully specified actions. In Kyburg,
H. E., Loui, R. P., and Carlson, G. N., editors, Knowledge Representation and
Defeasible Reasoning, pages 23-67. Kluwer, Boston.

Schulz, K. U. (1 993). Word unification and transformation of generalized equations.
Journal of Automated Reasoning, 1 l(2): 149-184.

Smullyan, R. M. (1968). First-order Logic, volume 43 of Ergebnisse der Mathe-
matik und ihere Grenzgebeite. Springer-Verlag, Berlin.

Smullyan, R. M. (1973). A generalization of intuitionistic and modal logics.
In Leblanc, H., editor, Truth, Syntax and Modality, pages 274-293. North-
Holland, Amsterdam.

Stone, M. (1996). Representing scope in intuitionistic deductions. Submitted,
University of Pennsylvania.

Stone, M. (1997a). Partial order reasoning for a nonmonotonic theory of action. In
AAAI Workshop on Theories of Action, Providence, RI.

Stone, M. (1997b). Reasoning in natural language generation through fast modal
logic programming. Submitted, University of Pennsylvania.

van Benthem, J. F. A. K. (1983). Modal Logic and Classical Logic. Bibliopolis,
Naples.

Wallen, L. A. (1990). Automated Proof Search in Non-Classical Logics: EfJi-
cient Matrix Proof Methods for Modal and Intuitionistic Logics. MIT Press,
Cambridge.

	Efficient Constraints on Possible Worlds for Reasoning About Necessity
	Recommended Citation

	Efficient Constraints on Possible Worlds for Reasoning About Necessity
	Abstract
	Comments

	tmp.1182971484.pdf.x5yBK

