6,890 research outputs found

    SymbioCity: Smart Cities for Smarter Networks

    Get PDF
    The "Smart City" (SC) concept revolves around the idea of embodying cutting-edge ICT solutions in the very fabric of future cities, in order to offer new and better services to citizens while lowering the city management costs, both in monetary, social, and environmental terms. In this framework, communication technologies are perceived as subservient to the SC services, providing the means to collect and process the data needed to make the services function. In this paper, we propose a new vision in which technology and SC services are designed to take advantage of each other in a symbiotic manner. According to this new paradigm, which we call "SymbioCity", SC services can indeed be exploited to improve the performance of the same communication systems that provide them with data. Suggestive examples of this symbiotic ecosystem are discussed in the paper. The dissertation is then substantiated in a proof-of-concept case study, where we show how the traffic monitoring service provided by the London Smart City initiative can be used to predict the density of users in a certain zone and optimize the cellular service in that area.Comment: 14 pages, submitted for publication to ETT Transactions on Emerging Telecommunications Technologie

    What Can Wireless Cellular Technologies Do about the Upcoming Smart Metering Traffic?

    Full text link
    The introduction of smart electricity meters with cellular radio interface puts an additional load on the wireless cellular networks. Currently, these meters are designed for low duty cycle billing and occasional system check, which generates a low-rate sporadic traffic. As the number of distributed energy resources increases, the household power will become more variable and thus unpredictable from the viewpoint of the Distribution System Operator (DSO). It is therefore expected, in the near future, to have an increased number of Wide Area Measurement System (WAMS) devices with Phasor Measurement Unit (PMU)-like capabilities in the distribution grid, thus allowing the utilities to monitor the low voltage grid quality while providing information required for tighter grid control. From a communication standpoint, the traffic profile will change drastically towards higher data volumes and higher rates per device. In this paper, we characterize the current traffic generated by smart electricity meters and supplement it with the potential traffic requirements brought by introducing enhanced Smart Meters, i.e., meters with PMU-like capabilities. Our study shows how GSM/GPRS and LTE cellular system performance behaves with the current and next generation smart meters traffic, where it is clearly seen that the PMU data will seriously challenge these wireless systems. We conclude by highlighting the possible solutions for upgrading the cellular standards, in order to cope with the upcoming smart metering traffic.Comment: Submitted; change: corrected location of eSM box in Fig. 1; May 22, 2015: Major revision after review; v4: revised, accepted for publicatio

    Reliable machine-to-machine multicast services with multi-radio cooperative retransmissions

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11036-015-0575-6The 3GPP is working towards the definition of service requirements and technical solutions to provide support for energy-efficient Machine Type Communications (MTC) in the forthcoming generations of cellular networks. One of the envisioned solutions consists in applying group management policies to clusters of devices in order to reduce control signaling and improve upon energy efficiency, e.g., multicast Over-The-Air (OTA) firmware updates. In this paper, a Multi-Radio Cooperative Retransmission Scheme is proposed to efficiently carry out multicast transmissions in MTC networks, reducing both control signaling and improving energy-efficiency. The proposal can be executed in networks composed by devices equipped with multiple radio interfaces which enable them to connect to both a cellular access network, e.g., LTE, and a short-range MTC area network, e.g., Low-Power Wi-Fi or ZigBee, as foreseen by the MTC architecture defined by ETSI. The main idea is to carry out retransmissions over the M2M area network upon error in the main cellular link. This yields a reduction in both the traffic load over the cellular link and the energy consumption of the devices. Computer-based simulations with ns-3 have been conducted to analyze the performance of the proposed scheme in terms of energy consumption and assess its superior performance compared to non-cooperative retransmission schemes, thus validating its suitability for energy-constrained MTC applications.Peer ReviewedPostprint (author's final draft

    Costs and benefits of superfast broadband in the UK

    Get PDF
    This paper was commissioned from LSE Enterprise by Convergys Smart Revenue Solutions to stimulate an open and constructive debate among the main stakeholders about the balance between the costs, the revenues, and the societal benefits of ‘superfast’ broadband. The intent has been to analyse the available facts and to propose wider perspectives on economic and social interactions. The paper has two parts: one concentrates on superfast broadband deployment and the associated economic and social implications (for the UK and its service providers), and the other considers alternative social science approaches to these implications. Both parts consider the potential contribution of smart solutions to superfast broadband provision and use. Whereas Part I takes the “national perspective” and the “service provider perspective”, which deal with the implications of superfast broadband for the UK and for service providers, Part II views matters in other ways, particularly by looking at how to realise values beyond the market economy, such as those inherent in neighbourliness, trust and democrac
    • 

    corecore