5,778 research outputs found

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    A low cost mobile mapping system (LCMMS) for field data acquisition: a potential use to validate aerial/satellite building damage assessment

    Get PDF
    Among the major natural disasters that occurred in 2010, the Haiti earthquake was a real turning point concerning the availability, dissemination and licensing of a huge quantity of geospatial data. In a few days several map products based on the analysis of remotely sensed data-sets were delivered to users. This demonstrated the need for reliable methods to validate the increasing variety of open source data and remote sensing-derived products for crisis management, with the aim to correctly spatially reference and interconnect these data with other global digital archives. As far as building damage assessment is concerned, the need for accurate field data to overcome the limitations of both vertical and oblique view satellite and aerial images was evident. To cope with the aforementioned need, a newly developed Low-Cost Mobile Mapping System (LCMMS) was deployed in Port-au-Prince (Haiti) and tested during a five-day survey in FebruaryMarch 2010. The system allows for acquisition of movies and single georeferenced frames by means of a transportable device easily installable (or adaptable) to every type of vehicle. It is composed of four webcams with a total field of view of about 180 degrees and one Global Positioning System (GPS) receiver, with the main aim to rapidly cover large areas for effective usage in emergency situations. The main technical features of the LCMMS, the operational use in the field (and related issues) and a potential approach to be adopted for the validation of satellite/aerial building damage assessments are thoroughly described in the articl

    Recent Developments and Future Trends in Volunteered Geographic Information Research: The Case of OpenStreetMap

    Get PDF
    User-generated content (UGC) platforms on the Internet have experienced a steep increase in data contributions in recent years. The ubiquitous usage of location-enabled devices, such as smartphones, allows contributors to share their geographic information on a number of selected online portals. The collected information is oftentimes referred to as volunteered geographic information (VGI). One of the most utilized, analyzed and cited VGI-platforms, with an increasing popularity over the past few years, is OpenStreetMap (OSM), whose main goal it is to create a freely available geographic database of the world. This paper presents a comprehensive overview of the latest developments in VGI research, focusing on its collaboratively collected geodata and corresponding contributor patterns. Additionally, trends in the realm of OSM research are discussed, highlighting which aspects need to be investigated more closely in the near future

    SECTOR: Secure Common Information Space for the Interoperability of First Responders

    Get PDF
    AbstractThe ever-growing human, economic and environmental losses due to natural and/or man-made disasters demand a systematic, holistic, inter-governmental and multi-disciplinary approach to the management of large-scale crisis. However, crisis management is usually coordinated by local authorities, supported by a variety of different national and international crisis management organizations, all acting relatively autonomously. Coordination actions usually adopt non-interoperable information management tools, due to the heterogeneity of the involved organizations, limiting or even hindering the coordination efforts. This paper introduces the efforts conducted in the context of the EU-funded project called SECTOR, which aims at establishing the foundations of future Collaborative Crisis Management (CCM) Information Spaces by expanding the European scientific knowledge base on (cross-border) multi-agency processes and their complications when setting-up and designing the enabling information systems

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efficient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identified synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth

    Interaction protocols for human-driven crisis resolution processes

    Get PDF
    This work aims at providing a crisis cell with process-oriented tools to manage crisis resolutions. Indeed, the crisis cell members have to define the crisis resolution process, adapt it to face crisis evolutions, and guide its execution. Crisis resolution processes are interaction-intensive processes: they not only coordinate the performance of tasks to be undertaken on the impacted world, but they also support regulatory interactions between possibly geographically distributed crisis cell members. In order to deal with such an interweaving, this paper proposes to use Interaction Protocols to both model formal interactions and ease a cooperative adaptation and guidance of crisis resolution processes. After highlighting the benefits of Interaction Protocols to support this human and collective dimension, the paper presents a protocol meta-model for their specification. It then shows how to suitably integrate specified protocols into crisis resolution processes and how to implement this conceptual framework into a service oriented architecture

    Leveraging Container Technologies in a GIScience Project: A Perspective from Open Reproducible Research

    Get PDF
    Scientific reproducibility is essential for the advancement of science. It allows the results of previous studies to be reproduced, validates their conclusions and develops new contributions based on previous research. Nowadays, more and more authors consider that the ultimate product of academic research is the scientific manuscript, together with all the necessary elements (i.e., code and data) so that others can reproduce the results. However, there are numerous difficulties for some studies to be reproduced easily (i.e., biased results, the pressure to publish, and proprietary data). In this context, we explain our experience in an attempt to improve the reproducibility of a GIScience project. According to our project needs, we evaluated a list of practices, standards and tools that may facilitate open and reproducible research in the geospatial domain, contextualising them on Peng’s reproducibility spectrum. Among these resources, we focused on containerisation technologies and performed a shallow review to reflect on the level of adoption of these technologies in combination with OSGeo software. Finally, containerisation technologies proved to enhance the reproducibility and we used UML diagrams to describe representative work-flows deployed in our GIScience project.This work has been funded by the Generalitat Valenciana through the “Subvenciones para la realización de proyectos de I+D+i desarrollados por grupos de investigación emergentes” programme (GV/2019/016) and by the Spanish Ministry of Economy and Competitiveness under the subprogrammes Challenges-Collaboration 2014 (RTC-2014-1863-8) and Challenges R+D+I 2016 (CSO2016-79420-R AEI/FEDER, EU). Sergio Trilles has been funded by the postdoctoral programme PINV2018 - Universitat Jaume I (POSDOC-B/2018/12) and stays programme PINV2018 - Universitat Jaume I (E/2019/031)

    Leveraging Container Technologies in a GIScience Project: A Perspective from Open Reproducible Research

    Get PDF
    Scientific reproducibility is essential for the advancement of science. It allows the results of previous studies to be reproduced, validates their conclusions and develops new contributions based on previous research. Nowadays, more and more authors consider that the ultimate product of academic research is the scientific manuscript, together with all the necessary elements (i.e., code and data) so that others can reproduce the results. However, there are numerous difficulties for some studies to be reproduced easily (i.e., biased results, the pressure to publish, and proprietary data). In this context, we explain our experience in an attempt to improve the reproducibility of a GIScience project. According to our project needs, we evaluated a list of practices, standards and tools that may facilitate open and reproducible research in the geospatial domain, contextualising them on Peng’s reproducibility spectrum. Among these resources, we focused on containerisation technologies and performed a shallow review to reflect on the level of adoption of these technologies in combination with OSGeo software. Finally, containerisation technologies proved to enhance the reproducibility and we used UML diagrams to describe representative work-flows deployed in our GIScience project
    corecore