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Among the major natural disasters that occurred in 2010, the Haiti earthquake
was a real turning point concerning the availability, dissemination and licensing of
a huge quantity of geospatial data. In a few days several map products based on
the analysis of remotely sensed data-sets were delivered to users. This demon-
strated the need for reliable methods to validate the increasing variety of open
source data and remote sensing-derived products for crisis management, with the
aim to correctly spatially reference and interconnect these data with other global
digital archives. As far as building damage assessment is concerned, the need for
accurate field data to overcome the limitations of both vertical and oblique view
satellite and aerial images was evident. To cope with the aforementioned need, a
newly developed Low-Cost Mobile Mapping System (LCMMS) was deployed in
Port-au-Prince (Haiti) and tested during a five-day survey in February�March
2010. The system allows for acquisition of movies and single georeferenced
frames by means of a transportable device easily installable (or adaptable) to
every type of vehicle. It is composed of four webcams with a total field of view of
about 180 degrees and one Global Positioning System (GPS) receiver, with the
main aim to rapidly cover large areas for effective usage in emergency situations.
The main technical features of the LCMMS, the operational use in the field (and
related issues) and a potential approach to be adopted for the validation of
satellite/aerial building damage assessments are thoroughly described in the
article.

Keywords: Mobile Mapping System; building damage assessment; earthquake;
low cost; validation; crisis management; Digital Earth; geospatial data

1. Introduction

Among the major natural disasters that occurred in 2010, the Haiti earthquake was a

real turning point concerning the availability, dissemination and licensing of a huge

quantity of geospatial data. In a few days several damage assessment map products

based on the analysis of remotely sensed data-sets were delivered to users, confirming

that rapid impact assessment after a catastrophic event is crucial for initiating

effective emergency response actions (Brunner et al. 2010).
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The acquisition of field data, supporting the aforementioned impact assessment,

in areas hit by severe earthquakes is indeed a hard task, especially in the first hours

after the event. To overcome the accessibility and time constraint issues, the use of

earth observation (EO) data in earthquake contexts, especially for damage
assessment purposes, has been widely proposed and a number of results have been

presented after every event, mostly based on optical data and manual interpretation

(Polli et al. 2010). Furthermore, the availability of virtual globe geo-browsers allows

us to easily and quickly display EO data and perform integrated geospatial analysis,

going into the direction of a truly global, collaborative linking of systems, as

mentioned in the Digital Earth vision.

As far as satellite-based impact assessment is concerned, the main issue that

requires an in-depth investigation is the reliability of the provided information, i.e.
the expected accuracy of the damage assessment according to the technical features

of the available satellite/aerial imagery (e.g. sensor type, ground sample distance,

off-nadir angle and spectral resolution).

Recent studies (Saito et al. 2010) highlight that vertical imagery (and in certain

conditions also oblique ones) may be limited in discriminating the level of damage

of some buildings. Furthermore, in the summary1 of the ‘2nd International

Workshop on Validation of geo-information products for crisis management’

(JRC, Ispra�Italy, 12�13 October 2010), it is explicitly reported that a validation
of a joint damage assessment (using airborne images) performed with around 6000

geo-tagged photos collected in the field gave an overall accuracy of only 60%. It is

therefore crucial to rely also on information acquired in the field, especially by

means of Global Positioning System (GPS) devices that allow the acquired

information to be geo-tagged.

The goal of this article is to describe the technical features of a GPS-based device

Low-Cost Mobile Mapping System (LCMMS) aimed at acquiring movies and single

georeferenced frames. This is done according to three crucial keywords related to
crisis management activities: timeliness (data acquired in the shortest time possible

after the event), geo-localisation (acquisition of the geographical coordinates of the

data) and open access (data are distributed without licensing constraints). Apart

from the use of the LCMMS-acquired data for damage assessment purposes, the

article is focused on the potential use in validation protocols. The specific goal is to

estimate the accuracy of building damage assessments based on high-resolution

aerial images, performing a thorough comparison between field observations

(LCMMS) and remotely sensed ones. The results of a validation exercise carried
out on more than 150 buildings surveyed in Haiti after the January 2010 earthquake

will be shown and discussed.

2. Geomatics supporting field data acquisition

Several methods and technologies can be adopted to acquire geospatial data in a

short time frame. That means recording not only the acquired information (i.e.

surface geometry, temperature and brightness) but also the spatial location of the
data. Among those technologies, modern mass market devices for navigation

purposes had a remarkable improvement in these last years with increased

performance in terms of raw data precision and quality. Devices such as GPS and

Inertial Measurement Unit (IMU) equipped mobile phones and digital cameras (e.g.

2 A. Ajmar et al.
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Ricoh G700SE2 and Sony DSC-HX9V3), personal GPS navigators, as well as more

professional devices integrating a rugged PDA, GPS, camera, laser range finder or

digital compass (e.g. ikeGPS4) are now available on the market, but they cannot be

used for systematic, continuous surveys on wide areas.
The commercial investment in mass market devices had a positive spillover on low-

cost GPS receivers and IMUs. Additionally, modern GPS receivers and IMU

platforms allow estimation of a real-time solution (e.g. PVT: Position Velocity and

Timing). Other possibilities include calculus algorithms such as the Kalman filter or

integration algorithm such as the loosely coupled algorithm. These modern GPS

receivers are also able to collect raw data to improve the positioning accuracy through a

post-processing step. This procedure, also known as ‘relative positioning’, could be

realised using different parts of the GPS signal: the pseudorange (i.e. C/A, the most
noisy part of the GPS signal) and the carrier-phase (i.e. L1, the least noisy part of the

GPS signal). A centimetric level of accuracy could be obtained if the carrier phase data

are used (Groves 2008a). This feature is particularly interesting since a reliable real-

time solution is provided (Piras et al. 2010). In confirmation of this trend, nowadays

several commercial off the shelf (COTS) digital cameras are equipped with GPS

receivers, adding geo-tagging capabilities to the device. Geographical identification

metadata are consequently stored along with the digital image itself.

2.1. Mobile Mapping Systems

One of the approaches recently developed to achieve the aforementioned goals is

based on Mobile Mapping Systems (MMS), terrestrial (usually) vehicles equipped

with several sensors as digital cameras, Terrestrial Laser Scanners, odometers,

GPS receivers and Inertial Navigation Systems (INS), to acquire georeferenced

data.
The aim of MMS is to acquire three-dimensional information using different

sensors, capturing all data at the same time by means of a triggering system.

GPS time is usually considered the reference time (El-Sheimy 1996, Groves 2008b).

The acquired data can be georeferenced through a GPS�INS integration approach

(Škaloud 1999) which allows estimation of the vehicle position and the attitude

epoch-by-epoch, storing a high number of georeferenced data in a short period.

Unfortunately, some features of traditional MMSs may be limiting for some

applications (including crisis management), specifically:

� high costs (�300 kt);

� skilled users are required;

� not easily adaptable to any vehicle.

The aforementioned considerations led the Geomatics group of the Politecnico di

Torino to start a new research line aimed at developing a proof-of-concept MMS,

using only low-cost sensors. The first output of such research was a low-cost version
of an MMS tailored to road cadastre requirements. Three geodetic Global

Navigation Satellite System (GNSS) receivers, two IMU and three webcams were

adopted for this solution, with the aim to keep the price lower than 30 kt and to

achieve a positioning accuracy better than 0.1 m (Piras et al. 2008). Response to

International Journal of Digital Earth 3

D
ow

nl
oa

de
d 

by
 [

Po
lit

ec
ni

co
 d

i T
or

in
o]

, [
${

in
di

vi
du

al
U

se
r.

di
sp

la
yN

am
e}

] 
at

 0
5:

20
 2

9 
Fe

br
ua

ry
 2

01
2 



natural disasters has different needs, especially in terms of horizontal positional

accuracy that is certainly less stringent than the aforementioned case. A metric level

of accuracy (B10 m) generally fits end user requirements: e.g. in the case of road

accessibility assessment after earthquake events, it is important to correctly identify
which element of the road network is not practicable, and not the exact location of

the cause of the impracticability (e.g. presence of debris). Immediately after a

disaster, the prompt availability of low-cost systems devoted to geometric surveys

that can easily be fit to almost any type of vehicle is crucial. Keeping the cost as low

as possible allows deployment of a larger number of systems, consequently increasing

the survey speed and minimising the cost implication of a potential loss of devices

(e.g. due to incidents or riots related to post-emergency situations).

2.2. Low-Cost Mobile Mapping System

The system has been further developed to create a low-cost solution, decreasing

the accuracy of the acquired data (2�5 m but still in a range suitable for

emergency response purposes as well as for validation purposes) and focusing on

the ease of use of the device. The main technical features of the LCMMS are

listed below:

� compact device, easily transportable;

� fast installation on almost any terrestrial vehicle;

� user friendly (can be used also by local relief organisation with a few hours of

training);

� very low-cost (B2500 t) solution;

� suitable geometric accuracy (2�5 m);

� positioning is obtained in real-time (without GPS post-processing).

Specifically, the current version of the system is composed of four commercial

webcams (Logitech Quickcam C905 with Carl Zeiss lens) and one low-cost GPS

receiver (u-blox AEK 4 Antaris, which allows carrier phase on L1 to be collected).

All sensors are embedded in a beacon light with a magnetic support (Figure 1),

allowing a quick and easy installation over a vehicle’s roof. Manual rotation of each

camera allows the field of view to be corrected according to the vehicle’s roof shape

and specific goals of the survey.
The LCMMS requires a connection to a high-performance laptop during the

acquisition phase; technical features of the PC used during the test field are reported

in Table 1 (and can be considered the minimum requirements). The laptop represents

the most expensive component of the system.

2.2.1. Time synchronisation

As mentioned in the previous section, one of the MMS’ crucial characteristics is

to ensure a reliable time synchronisation between the installed instruments (e.g.

laptop and GPS receiver), allowing each measurement to be coupled with its

position in an absolute spatial reference system. To cope with the time

synchronisation issue, expensive triggering systems are adopted in commercial

4 A. Ajmar et al.
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MMSs, which are not suitable for a low-cost approach. An ad hoc solution was

therefore developed aimed at ensuring synchronisation between the two different

time scales of the LCMMS, specifically between the PC and GPS.

PC clock stability depends on the CPU, since a different RAM percentage is

allocated to the PC clock according to other ongoing CPU tasks, and is therefore far

less accurate than GPS time. Unfortunately an easy clock synchronisation carried

out at the beginning of the survey is not a suitable solution, since generally the time

offset is not constant, as is clearly shown in Figure 2.

The diagram highlights that the time offset average trend is approximately 2 s/h.

Considering for example a 2 hour survey, which is the minimum acquisition time of

the field test surveys, the maximum horizontal displacement caused by the time offset

error is about 56 m (when adopting a survey speed of 50 km/h). To minimise

displacements due to time delays it is necessary to synchronise the PC time to the

GPS. This issue was solved by implementing a software procedure that stores both

GPS time [broadcasted from the GPS receiver by a National Marine Electronics

Association (NMEA) message] and PC time with a sample rate equal to 1 Hz. The

time delay is estimated considering two consecutive GPS epochs. The PC acquisition

time for each frame is corrected considering the offset calculated for the current

epoch.

Figure 1. LCMMS system: four webcams and Global Positioning System (GPS) antenna

embedded in a beacon light with a magnetic support.

Table 1. Technical features of the PC used in the field test.

PC feature

CPU Intel Core (TM) 2 Extreme 32-bit
CPU clock 2.80 GHz

RAM 3.50 GB

Hard Disk 250 GB

Operating System Windows XP SP2

International Journal of Digital Earth 5
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2.3. LCMMS software

2.3.1. Acquisition software

The software devoted to the data acquisition (Figure 3), developed by ITHACA

(Lingua et al. 2009), has two main components: the Sample Grabber and GPS data

logger modules.

2.3.1.1. Sample Grabber module. The module is devoted to the acquisition of images

from each webcam, storing the acquired frames in the local drive.

The laptop graphics card acquires the data flow sent by the webcam via a USB

connection and converts it into a continuous video. The Sample Grabber module
intercepts the output of the graphics card and extracts single frames at a regular time

interval by means of DirectShow APIs,5 a multimedia framework that allows to

perform various operations with media files or streams; they were originally

distributed within the DirectX libraries (version 11, the MicrosoftAPI developed

for gaming purposes6). Each frame is stored on a local drive and is flagged with the

PC time and unique code of the webcam. Up to six instances of this module can run

at the same time, each one working with a different webcam linked to the same PC.

The resolution of the acquired frames can be customised (up to 1280�1024
pixels) for each webcam independently, as well as the acquisition rate (up to 15 fps).

The best balance of resolution, acquisition rate and number of modules running

simultaneously has to be defined, mainly depending on the purpose of the

acquisition and on the laptop performance (in terms of CPU, RAM, graphic card

Figure 2. GPS-PC time offset trend (GPS time as reference).

6 A. Ajmar et al.
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Figure 3. Acquistion software graphical interfaces. (a) Sample grabber, (b) GPS Data Logger,

(c) Acquisition windows.

International Journal of Digital Earth 7
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features and hard disk latency). Based on field acquisition experience in an urban

environment, a set of pre-defined configurations have been identified: an application

set-up procedure guides the user step-by-step, allowing the parameters to be set in a

few minutes.

2.3.1.2. GPS data logger module. This module is devoted to the acquisition of the

NMEA navigational message transmitted by the GPS receiver to the PC through a
USB connection. Exploiting the availability of the GPS receiver drivers, the software

extracts the navigational string and stores it in a text file together with the timestamp

reporting the PC time (refer to Section 2.2.1 for details). The frequency of the

acquisition depends on the characteristics of the GPS receiver (1 Hz for the

LCMMS).

Specifically, raw GPS data acquisition is done using the U-blox software (U-blox

2011). This software allows data acquisition (including carrier phase on L1), to

monitor crucial parameters, e.g. satellite visibility, DOP and SNR.
The GPS data logger module also records specific, predefined information (tags)

during the survey that are expressed as a Boolean datum at the end of the standard

NMEA format together with the Point of Interest (PoI) category. This information

can be exploited in the post-processing phase.

2.3.2. Post-processing software

The post-processing step is independent from the acquisition. It is aimed at

extracting the value added information and the subsequent storage in a DBMS,

exploiting the PoI tagged during the survey, if available. This operation would

obviously benefit from the availability of an up-to-date digital map or remotely

sensed imagery used as a backdrop to display the position of the camera. It was
therefore a natural decision to develop the post-processing software in a GIS

environment.

In this specific case, the solution was developed by extending ESRI ArcMap base

functionalities exploiting ESRI ArcObjects through C# scripts (Zeiler 2001). Similar

post-processing tools can be developed in an open source environment, with the

benefit of reducing software-related costs. The application implemented a specific

window devoted to managing the acquired data, displaying the data on a map,

extracting the features of interest (automatically georeferencing the camera position)
and storing the selected information in an ESRI feature class.

From an operational point of view, a single window (which can be opened from

the ArcMap toolbar) is sufficient for the management of the aforementioned

operations. The working window (Figure 4) has the following main elements:

� four Image Boxes showing the acquired frames;

� several buttons to navigate the frames forward and backward or to activate

the animation mode;
� different Text Boxes to fill and store details and notes.

From a logical point of view, the software executes instructions at different levels:

from simple image management with a pan/zoom option to the creation of point

features in a feature class and filling the attribute table with details and notes entered

8 A. Ajmar et al.
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by the user. The core of the software is the determination of the coordinates of the

camera position for each acquired frame. This goal is achieved by estimating a linear

regression of the spatial coordinates acquired by the GPS data logger module, which

are time-dependent variables. The time synchronisation between the GPS and PC

time is carried out by calculating the time offset as described in Section 2.2.1.

An additional capability of the software is to generate the geometry of the track

followed by the vehicle during the survey, by means of point interpolation and line

simplification ESRI tools.

3. LCMMS field test. The 2010 Haiti earthquake experience

On 12 January 2010, Haiti was hit by a catastrophic earthquake of magnitude 7.0

Mw, with an epicentre near the town of Léogâne, approximately 25 km west of Port-

au-Prince, Haiti’s capital. The earthquake caused major damage in Port-au-Prince,

Jacmel, Léogâne and other settlements in the region. Amongst the widespread

devastation and damage throughout Port-au-Prince and elsewhere, vital infrastruc-

tures necessary to respond to the disaster were destroyed or severely damaged.

A few weeks after the earthquake, UN WFP requested that ITHACA make

available a small team of experts to be deployed in Port-au-Prince. The duty of the

Figure 4. Post-processing software interface.

International Journal of Digital Earth 9
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team was to join the UN WFP staff and, in general, support the whole humanitarian

mission with specific competencies on data acquisition, processing, analysis and

output.

The team was requested to be, as far as possible, autonomous in terms of

instruments (hardware and software), with only electricity, network connectivity and

printing facilities being granted in the Log Base, the place inside the fenced-in Port-

au-Prince International Airport area where most of the agencies and NGOs were

concentrated. The ITHACA team, composed of three experts, left Italy on 14

February 2010 with:

� three laptops with GIS/RS software installed7;

� GPS devices, standalone or integrated with a digital camera; and

� two complete LCMMS sets, including dedicated laptops.

Safe storage, weights and volumes of the instruments were a major constraint

because of the long travel, especially on the connection from Santo Domingo,

Dominican Republic, to Port-au-Prince, granted by UN flights allowing only a

limited freight weight (20 kg per person, including personal items). Exceeding that

limitation would imply a longer stay in Santo Domingo, limiting the operational

support capabilities of the team.

The team arrived in Port-au-Prince on 17 February and in condition to be

operational starting from the following day. One of the main tasks was to acquire

geospatial data in the field, mainly aimed at assessing the damage to buildings.

Two months after the earthquake, at the end of the field mission, it was still

common to see groups of civil engineers walking on the streets of Port-au-Prince

escorted by fully-armed soldiers, compiling files on each single building and

deciding if it should be demolished. A semi-automated general survey of the city

would have helped in better prioritising the assessment zones (in respect to the

initial satellite-based damage maps) and consequently optimising efforts during

such surveys.

As far as the LCMMS use is concerned, system flexibility and ease of use indeed

represented a great advantage. The only way to travel around the city was to use the

car rental service provided by UN WFP, reserving it a day in advance (with no

possibility to have the same car or the same driver always assigned). So, the

adaptability of the LCMMS to almost any type of vehicle was crucial (Figure 5).

The system was used during a five-day survey in Port-au-Prince and nearby

localities (Figure 6); thanks to it, it was possible to acquire about 490,000

georeferenced frames (�39 GB, 4 webcams at 960�720 pixels at 7 fps) and 58,000

GPS points (1 Hz). Table 2 shows the survey calendar and the technical details of the

acquired data, while Figure 7 shows some samples of the acquired frames.

The survey was carried out by a team of two people: one in charge of the

LCMMS operational status (controlling the system, acquiring tags, starting and

stopping it) and one providing route indications to the driver and acquiring

complementary georeferenced data by means of a stand-alone GPS device and a

camera with an embedded GPS.

10 A. Ajmar et al.
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3.1. Main field test outcomes

As far as the acquisition phase is concerned, there are three main comments:

� limitations in survey capability must be considered, not only in relation to

what can be surveyed from the road (normally limited to one or two building
facades) but also with specific conditions that are quite common while

operating in emergency situations, such as blocked or impracticable roads due

to physical or security limitations. Several Port-au-Prince areas were accessible

only accompanied by military escort (not easy to obtain);

� accurate planning of each survey was required maximise survey efficiency and

avoid excessive data redundancy;

� natural illumination conditions may strongly affect the quality of surveyed

data and the capability of controlling the acquisition, since some areas of the
image may be saturated, not allowing information extraction from the affected

pixels. The limitation particularly evident in Port-au-Prince was generally

strong illumination conditions, with high variability related to cloud coverage

variability. If a pre-defined, fixed camera sensitivity configuration is employed,

it has to be regularly adapted during the survey*not an easy task in a

Figure 5. LCMMS device installed on a WFP car in Port-au-Prince.

International Journal of Digital Earth 11
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Figure 6. LCMMS survey tracks in Port-au-Prince.

1
2

A
.

A
jm

a
r

et
a

l.

D
ow

nl
oa

de
d 

by
 [

Po
lit

ec
ni

co
 d

i T
or

in
o]

, [
${

in
di

vi
du

al
U

se
r.

di
sp

la
yN

am
e}

] 
at

 0
5:

20
 2

9 
Fe

br
ua

ry
 2

01
2 



continuously shaking, 4-wheel drive car on unpaved or damaged roads.

Automatic adaptation to light conditions may result in inhomogeneous colour
saturation of frames acquired by the four webcams.

4. Potential use of LCMMS data for building damage assessment validation

Apart from the use of LCMMS field data for damage assessment purposes, one of

the goals of the research is to verify the potential use in a validation protocol context.

The specific goal was to estimate the accuracy of building damage assessments based

on high-resolution aerial images, performing a thorough comparison between field
and remotely sensed information.

Reliable estimates of the semantic accuracy of remote sensing-based assessment

will allow extrapolation of the expected accuracy of the damage assessment vs. the

technical features of the available satellite/aerial imagery (e.g. sensor type, ground

sample distance, off-nadir angle, spectral resolution).

4.1. High-resolution aerial imagery damage assessment

A subset of the data acquired with LCMMS in Haiti has been used to set up a
possible approach for the validation of assessments based on high-resolution aerial

images. This imagery, characterised by a 0.15 m spatial resolution, was acquired on

17 January 2010 and made immediately and universally accessible as base layers in

Google earth and Google Maps by the Google Crisis Response Team.

A few blocks of Port-au-Prince covered by both the LCMMS survey and the

high-resolution aerial imagery were chosen (Figure 8). Given the nature of LCMMS

imagery, only buildings facing the roads were taken into account. Those buildings

have been analysed by an operator in a GIS environment and classified according to
the EMS-98 damage grades. The European Macroseismic Scale (EMS) is the basis

for evaluation of seismic intensity in European countries and is also used in a number

of countries outside Europe. Damage grades in the range of 1�5 should ideally

represent a linear increase in the strength of shaking. They do this only

Table 2. Acquisition survey in Haiti � Statistics.

Date No. of frames No. of GPS points Size (GB)

24 February 2010 (am) 49,578 3689 3.03

24 February 2010 (pm) 53,529 5432 4.10

27 February 2010 (am) 86,952 9807 7.33

27 February 2010 (pm) 43,846 5897 2.23

28 February 2010 (am) 27,107 8171 2.37

1 March 2010 (am) 93,737 9563 6.95

2 March 2010 (am_1) 14,377 1511 1.32

2 March 2010 (am_2) 69,975 7186 6.95

2 March 2010 (pm) 50,980 6600 4.80

Total 490,081 57,856 39.08 GB
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approximately, and are heavily influenced by the need to describe classes of damage

which can be readily distinguished by the operator.

Specifically, the following damage grades, adapted to an interpretation based on
vertical imagery, have been adopted in the aerial imagery classification step:

� Grade 1: negligible damage

� Grade 3: substantial to heavy damage

� Grade 4: very heavy damage

� Grade 5: destruction

In detail, ‘Grade 2-moderate damage’ has been excluded since it was not possible to
detect this type of damage using vertical imagery. As far as the ‘Grade 3: substantial

to heavy damage’ is concerned, an a priori classification approach was adopted,

attributing all buildings attached to heavily damaged buildings (classified as Grade 4)

to the Grade 3 category.

The output of the high-resolution imagery classification step consists of a point

features data-set, as shown in Figure 8.

4.2. LCMMS data analysis

The same analysis carried out on the high-resolution images had to be carried out on

the LCMMS datasets. Exploiting the functionalities of the post-processing software

described in a previous section, the vehicle position and related frames were overlaid

Figure 7. Examples of LCMMS georeferenced frames acquired during the survey.

(a) Collapsed building, (b) Restricted road, (c) Temporary shelter.
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onto the aerial orthoimages. The information about the heading of the vehicle is

derived automatically by the post-processing software module and is exploited to

change the orientation of the vehicle symbol on the screen. Such an approach

supports the georeferencing of the features of interest identified by means of visual

interpretation, matching the elements on the pictures to the same elements on the

orthoimages.

To better navigate through the LCMMS images, a set of checkpoints was created

and used as a ‘bookmark’ to easily move from a specific road to another. Only a few

checkpoints were actually needed to efficiently move through the sample area. A

visual comparison of the LCMMS images and the orthoimages allows common

points to be identified and consequently to verify if the data integration was carried

out correctly.

The damage assessments based on aerial images and LCMMS were compared

adopting the same aforementioned EMS-98 damage grades and considering only the

buildings that are present on both assessments. The LCMMS survey is therefore

limited to roadside buildings.

Figure 8. Car survey ground track (red lines) and building damage assessment (based on high-

resolution aerial imagery) considered for the validation test.
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Figure 9. Comparison of a building damage classification on the aerial orthoimage and on the

LCMMS frames � Classification agreement example.

Figure 10. Comparison of a building damage classification on the aerial orthoimage and on

the LCMMS frames � Erroneous classification example.
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Figure 9 shows a clear example of a building whose damage estimate was shown

to be accurate, with the LCMMS data interpretation and the aerial image

classification being the same (Grade 5 � Destruction).

Figure 10 shows an example of an erroneous classification of a building. The two
concrete-roof buildings have been classified as completely destroyed. By means of a

thorough analysis of LCMMS data, it is clear that the perception was completely

obscured by the left house’s shadow. What looked like a collapsed roof was in fact an

irregular shadow on an otherwise still standing building. Obviously only exploiting

the point of view from the ground, as provided by the LCMMS system installed on a

car, it was possible to determine the wrong classification which otherwise would have

been unnoticed.

In some cases, high fences or other obstacles blocking the view from the car made
it impossible to verify the damage and validate the remotely sensed data. This

intrinsic limitation of the LCMMS could be partially overcome by means of a system

upgrade (i.e. using a higher point of view and lenses with a wider field of view), but

this approach contrasts with some of the system requirements (ease of use and low

cost) as well as with its applicability in an emergency response context.

4.3. Validation outcomes

The comparison between the LCMMS and aerial assessments was carried out by

calculating a confusion matrix (Table 3).

Generally speaking, a confusion matrix contains information about actual and

predicted classifications done by a classification system. In our case, a four-class

confusion matrix was built. Each column represents classes derived from remotely
sensed images while each row represents classes derived using LCMMS data. The

main diagonal contains information about the number of damaged buildings

correctly assessed while the rest of the values are erroneously predicted cases.

The Class Accuracy (CA) was calculated using Equation (1):

CAi ¼ ai;i � 100
� �

=
Xn

j¼1

ai;i (1)

Table 3. Low Cost Mobile Mapping System (LCMMS) vs. aerial assessments confusion

matrix.

Aerial assessment

Grade 5 Grade 4 Grade 3 Grade 1 Total

LCMMS-based Grade 5 34 2 0 1 37

assessment Grade 4 1 1 0 2 4

Grade 3 0 0 1 0 1

Grade 1 7 7 32 80 126

Total 42 10 33 83 168

Class Accuracy

(%)

80.95 10.00 3.03 96.39 69.05 (global)
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where:

a�matrix element

i�matrix column index

j�matrix row index
n� number of matrix columns�number of matrix rows (square matrix)

As can be seen from the confusion matrix, damage Grade 1 (negligible damage)

was extremely accurate (96%) with only three cases where an aerial-based assessment

turned out to be wrong. Also, damage Grade 5 (destruction) had an 80% accuracy

rate, with only a few building damage grades overestimated. Almost all the buildings

that were predicted to have sustained Grade 3 damage as described in Section 4.1

presented on LCMMS data inspection little or no damage at all. It is therefore
confirmed that Grade 3 damages are almost impossible to detect using vertical

imagery and it can be highlighted that an a priori approach (to automatically assign

Grade 3 to all the buildings attached to Grade 4 ones) is not feasible. In fact, in the

present case it would have been better to ‘declassify’ all the buildings marked as

damaged to the third grade to first grade damage, considering in the analysis stage

that about 5% of the Grade 1 buildings presented some damage.

A similar consideration can be made for Grade 4, which was highly overestimated

and again confirms that incompletely collapsed buildings are difficult to detect from
vertical imagery.

The Equations (2) and (3) allow calculation of Damage Underestimation (DU) as

well as Damage Overestimation (DO):

DU ¼

Pn
i¼1

Pn
j¼iþ1

ai;j

 ! !
� 100

Pn
i¼1
j¼1

ai;j

(2)

DO ¼

Pn
i¼2

Pi�1

j¼1

ai;j

 ! !
� 100

Pn
i¼1
j¼1

ai;j

(3)

where:

a�matrix element

i�matrix column index

j�matrix row index

n� number of matrix columns�number of matrix rows (square matrix)

The confusion matrix shows that the upper diagonal is almost empty, meaning

that there was no significant underestimation of damage (DUB3%), or, differently

said, except in a few rare cases, the damage grade assigned on the aerial images

turned out to be accurate or with a lower level of damage. About 28% (DO) of the

building have been overestimated, i.e. assigned to a greater damage grade.
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5. Conclusion

The main goal of the article was to show the result of an operational field test of a

newly developed LCMMS device as well as to use the acquired data for damage

assessment validation purposes.

As far as the LCMMS field test is concerned, the system proved to be suitable for

operational use during crisis situations, mainly thanks to its portability, versatility

and ease of use. Some issues were related to the fact that the test was performed in a

real emergency scenario, with blocked or impracticable roads. The integration of a

road navigator in the acquisition software, showing in real-time the vehicle position

and the pre-defined survey plan, will definitively optimise the survey efficiency in

terms of time vs. the covered area’s size. The main limitation that emerged during the

test in Port-au-Prince was the influence of natural illumination conditions that may

strongly affect the quality of the acquired imagery. To cope with this issue

specifically, the research team is testing low-cost digital sensors with wider lenses

and improved automatic light balance capabilities, to replace the webcams currently

adopted.

Furthermore, the potential use of new GPS receivers able to track new signals

and constellations (e.g. GLONASS, GALILEO, new L5 GPS) will ensure better

georeferencing performance than the current receiver.

From an operational emergency response point of view, on the basis of the field

experience it could be advised to deploy similar systems immediately after the Search

and Rescue (SAR) phase, to make updated geospatial data available to the

humanitarian community as soon as possible but without interfering with the

SAR operations. Such data can be used for different purposes, providing information

for both emergency Response and Recovery phases, such as prioritising the areas to

be assessed on the ground by expert teams as well as providing reference maps for the

reconstruction plan.

As for the use of LCMMS data, the building damage assessment exercise

highlights that a point of view on the ground is crucial, especially for earthquake

emergency response and recovery purposes, overcoming the limit of vertical satellite/

aerial imagery. In some cases vertical imagery does not allow verification of the

presence of damage on building facades or identification of vertical movements of

the buildings, even if their magnitude has an order of a few meters (the case of soft

storey collapse or ‘pancake’ effect). LCMMS imagery has indeed a very high spatial

resolution which allows better recognition of objects and their shape, but on the

other side the LCMMS does not allow performance of a complete survey of all

the affected buildings because of accessibility issues when mounted on a vehicle (e.g.

the internal side of a city block, a courtyard or simply parts of the city isolated by

inaccessible roads).

The identification and interpretation of features of interest, e.g. buildings and

their damage grade, on LCMMS frames is a task that can be carried out by an

average PC user familiar with the EMS-98 classification grades. The georeferen-

cing of such information requires a visual comparison with the available map used

as a backdrop in the GIS environment, though it is facilitated by the automatic

positioning of the camera centre on the map. To facilitate this step, ad hoc

procedures, based on photogrammetric procedures, have been developed by the

Politecnico di Torino group. The new version of the post-processing software will
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allow 3D measurements (points, distance, angle, etc.) on the acquired frames and

consequently to automatically georeference the features of interest identified on

the LCMMS imagery, avoiding the manual identification of the same on the

reference map/orthoimage. Specifically, with each element (e.g. damaged building)

captured in several sequential frames, it is possible to apply a photogrammetric

approach exploiting the availability of different images covering the same area

(along-track overlapping). Furthermore it is possible to generate a rectified image

(e.g. a geometrical projection on a defined plane) applying a homographic

transformation.

The field data analysis step is indeed time consuming: each single framed building

has to be visually interpreted, allowing grade damage assessment of a few buildings

per minute. According to the Haiti earthquake experience, it is clear that, in major

events, only a volunteer-based approach allows delivery of the damage assessment

information within a few days after image availability.

Finally, the validation exercise conducted on more than 168 buildings highlighted

that the overall semantic accuracy of a building damage assessment based on high-

resolution aerial orthoimages is approximately 70% considering a four-grade damage

classification. The confusion matrix shows that the main issue when analysing

vertical images is the identification of intermediate-level damages, while the accuracy

related to the identification of destroyed or undamaged buildings is, respectively, 81%

and 96%.
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