189 research outputs found

    Learning Multimodal Structures in Computer Vision

    Get PDF
    A phenomenon or event can be received from various kinds of detectors or under different conditions. Each such acquisition framework is a modality of the phenomenon. Due to the relation between the modalities of multimodal phenomena, a single modality cannot fully describe the event of interest. Since several modalities report on the same event introduces new challenges comparing to the case of exploiting each modality separately. We are interested in designing new algorithmic tools to apply sensor fusion techniques in the particular signal representation of sparse coding which is a favorite methodology in signal processing, machine learning and statistics to represent data. This coding scheme is based on a machine learning technique and has been demonstrated to be capable of representing many modalities like natural images. We will consider situations where we are not only interested in support of the model to be sparse, but also to reflect a-priorily known knowledge about the application in hand. Our goal is to extract a discriminative representation of the multimodal data that leads to easily finding its essential characteristics in the subsequent analysis step, e.g., regression and classification. To be more precise, sparse coding is about representing signals as linear combinations of a small number of bases from a dictionary. The idea is to learn a dictionary that encodes intrinsic properties of the multimodal data in a decomposition coefficient vector that is favorable towards the maximal discriminatory power. We carefully design a multimodal representation framework to learn discriminative feature representations by fully exploiting, the modality-shared which is the information shared by various modalities, and modality-specific which is the information content of each modality individually. Plus, it automatically learns the weights for various feature components in a data-driven scheme. In other words, the physical interpretation of our learning framework is to fully exploit the correlated characteristics of the available modalities, while at the same time leverage the modality-specific character of each modality and change their corresponding weights for different parts of the feature in recognition

    Sparse Modeling for Image and Vision Processing

    Get PDF
    In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection---that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.Comment: 205 pages, to appear in Foundations and Trends in Computer Graphics and Visio

    CELL PATTERN CLASSIFICATION OF INDIRECT IMMUNOFLUORESCENCE IMAGES

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    HIV Drug Resistant Prediction and Featured Mutants Selection using Machine Learning Approaches

    Get PDF
    HIV/AIDS is widely spread and ranks as the sixth biggest killer all over the world. Moreover, due to the rapid replication rate and the lack of proofreading mechanism of HIV virus, drug resistance is commonly found and is one of the reasons causing the failure of the treatment. Even though the drug resistance tests are provided to the patients and help choose more efficient drugs, such experiments may take up to two weeks to finish and are expensive. Because of the fast development of the computer, drug resistance prediction using machine learning is feasible. In order to accurately predict the HIV drug resistance, two main tasks need to be solved: how to encode the protein structure, extracting the more useful information and feeding it into the machine learning tools; and which kinds of machine learning tools to choose. In our research, we first proposed a new protein encoding algorithm, which could convert various sizes of proteins into a fixed size vector. This algorithm enables feeding the protein structure information to most state of the art machine learning algorithms. In the next step, we also proposed a new classification algorithm based on sparse representation. Following that, mean shift and quantile regression were included to help extract the feature information from the data. Our results show that encoding protein structure using our newly proposed method is very efficient, and has consistently higher accuracy regardless of type of machine learning tools. Furthermore, our new classification algorithm based on sparse representation is the first application of sparse representation performed on biological data, and the result is comparable to other state of the art classification algorithms, for example ANN, SVM and multiple regression. Following that, the mean shift and quantile regression provided us with the potentially most important drug resistant mutants, and such results might help biologists/chemists to determine which mutants are the most representative candidates for further research

    Signal structure: from manifolds to molecules and structured sparsity

    Get PDF
    Effective representation methods and proper signal priors are crucial in most signal processing applications. In this thesis we focus on different structured models and we design appropriate schemes that allow the discovery of low dimensional latent structures that characterise and identify the signals. Motivated by the highly non-linear structure of most datasets, we firstly investigate the geometry of manifolds. Manifolds are low dimensional, non-linear structures that are naturally employed to describe sets of strongly related signals such as the images of a 3-D object captured from different viewpoints. However, the use of manifolds in applications is not straightforward due to their usually non-analytic and non-linear form. We propose here a way to `disassemble' a manifold into simpler components by approximating it with affine subspaces. Our objective is to discover a set of low dimensional affine subspaces that can represent manifold data accurately while preserving the manifold's structure. To this end, we employ a greedy technique that iteratively merges manifold samples into groups based on the difference of local tangents. We use our algorithm to approximate synthetic and real manifolds and to demonstrate that it is competitive to state-of-the-art techniques. Then, we consider structured sparse representations of signals and we propose a new sparsity model, where signals are essentially composed of a small number of structured {\it molecules }. We define the molecules to be linear combinations of a small number of atoms in a redundant dictionary. Our multi-level model takes into account the energy distribution of the significant signal components in addition to their support. It permits to define typical visual patterns and recognise them in prototypical or deformed form. We define a new structural difference measure between molecules and their deformed versions, which is based on their sparse codes and we create an algorithm for decomposing signals into molecules that can account for different deviations in the internal molecule structure. Our experiments verify the benefits of the new image model in various restoration tasks and they confirm that the development of proper models that extend the mere notion of sparsity can be very useful for various inverse problems in imaging. Finally, we investigate the problem of learning molecule representations directly in the sparse code domain. We constrain sparse codes to be linear combinations of a few, possibly deformed, molecules and we design an algorithm that can learn the structure from the codes without transforming them back into the signal domain. To this end, we take advantage of our structural difference which is based on the sparse codes and we devise a scheme for representing the codes with molecules and learn the molecules at the same time. To illustrate the effectiveness of our proposed algorithm we apply it to various synthetic and real datasets and we compare the results with traditional sparse coding and dictionary learning techniques. From the experiments, we verify the superior performance of our scheme in interpreting and recognising correctly the underlying structure. In short, in this thesis we are interested in low-dimensional, structured models. Among the various choices, we focus on manifolds and sparse representations and we propose schemes that enhance their structural properties and highlight their effectiveness in signal representations

    Neural function approximation on graphs: shape modelling, graph discrimination & compression

    Get PDF
    Graphs serve as a versatile mathematical abstraction of real-world phenomena in numerous scientific disciplines. This thesis is part of the Geometric Deep Learning subject area, a family of learning paradigms, that capitalise on the increasing volume of non-Euclidean data so as to solve real-world tasks in a data-driven manner. In particular, we focus on the topic of graph function approximation using neural networks, which lies at the heart of many relevant methods. In the first part of the thesis, we contribute to the understanding and design of Graph Neural Networks (GNNs). Initially, we investigate the problem of learning on signals supported on a fixed graph. We show that treating graph signals as general graph spaces is restrictive and conventional GNNs have limited expressivity. Instead, we expose a more enlightening perspective by drawing parallels between graph signals and signals on Euclidean grids, such as images and audio. Accordingly, we propose a permutation-sensitive GNN based on an operator analogous to shifts in grids and instantiate it on 3D meshes for shape modelling (Spiral Convolutions). Following, we focus on learning on general graph spaces and in particular on functions that are invariant to graph isomorphism. We identify a fundamental trade-off between invariance, expressivity and computational complexity, which we address with a symmetry-breaking mechanism based on substructure encodings (Graph Substructure Networks). Substructures are shown to be a powerful tool that provably improves expressivity while controlling computational complexity, and a useful inductive bias in network science and chemistry. In the second part of the thesis, we discuss the problem of graph compression, where we analyse the information-theoretic principles and the connections with graph generative models. We show that another inevitable trade-off surfaces, now between computational complexity and compression quality, due to graph isomorphism. We propose a substructure-based dictionary coder - Partition and Code (PnC) - with theoretical guarantees that can be adapted to different graph distributions by estimating its parameters from observations. Additionally, contrary to the majority of neural compressors, PnC is parameter and sample efficient and is therefore of wide practical relevance. Finally, within this framework, substructures are further illustrated as a decisive archetype for learning problems on graph spaces.Open Acces

    Face Image and Video Analysis in Biometrics and Health Applications

    Get PDF
    Computer Vision (CV) enables computers and systems to derive meaningful information from acquired visual inputs, such as images and videos, and make decisions based on the extracted information. Its goal is to acquire, process, analyze, and understand the information by developing a theoretical and algorithmic model. Biometrics are distinctive and measurable human characteristics used to label or describe individuals by combining computer vision with knowledge of human physiology (e.g., face, iris, fingerprint) and behavior (e.g., gait, gaze, voice). Face is one of the most informative biometric traits. Many studies have investigated the human face from the perspectives of various different disciplines, ranging from computer vision, deep learning, to neuroscience and biometrics. In this work, we analyze the face characteristics from digital images and videos in the areas of morphing attack and defense, and autism diagnosis. For face morphing attacks generation, we proposed a transformer based generative adversarial network to generate more visually realistic morphing attacks by combining different losses, such as face matching distance, facial landmark based loss, perceptual loss and pixel-wise mean square error. In face morphing attack detection study, we designed a fusion-based few-shot learning (FSL) method to learn discriminative features from face images for few-shot morphing attack detection (FS-MAD), and extend the current binary detection into multiclass classification, namely, few-shot morphing attack fingerprinting (FS-MAF). In the autism diagnosis study, we developed a discriminative few shot learning method to analyze hour-long video data and explored the fusion of facial dynamics for facial trait classification of autism spectrum disorder (ASD) in three severity levels. The results show outstanding performance of the proposed fusion-based few-shot framework on the dataset. Besides, we further explored the possibility of performing face micro- expression spotting and feature analysis on autism video data to classify ASD and control groups. The results indicate the effectiveness of subtle facial expression changes on autism diagnosis

    Sparse molecular image representation

    Get PDF
    Sparsity-based models have proven to be very effective in most image processing applications. The notion of sparsity has recently been extended to structured sparsity models where not only the number of components but also their support is important. This paper goes one step further and proposes a new model where signals are composed of a small number of molecules, which are each linear combinations of a few elementary functions in a dictionary. Our model takes into account the energy on the signal components in addition to their support. We study our prior in detail and propose a novel algorithm for sparse coding that permits the appearance of signal dependent versions of the molecules. Our experiments prove the benefits of the new image model in various restoration tasks and confirm the effectiveness of priors that extend sparsity in flexible ways especially in case of inverse problems with low quality data

    The application of spectral geometry to 3D molecular shape comparison

    Get PDF
    corecore