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Summary

Autoimmune Diseases (ADs) develop when the immune system of the body treats

some healthy cells as ‘foreigners’ and attacks them. ADs are among the top

ten leading causes of death in children and women in all age groups up to 64

years. Indirect Immunofluorescence (IIF) test is used to capture Human Epithelial

Type-2 (HEp-2) cells’ images, where the di↵erent staining patterns of HEp-2 cells

indicate the stage and type of the AD.

Automated classification of Hep-2 cells has attracted much research interest

in recent years. Despite the extensive recent work that has been done in this field,

there are still many challenges to be overcome. This thesis presents some e�cient

and practical methodologies that overcome the current limitations of state-of-the-

art HEp-2 cells classification methods. The key contributions include:

As the first step of the cell images classification approaches, features are ex-

tracted from the image patches. Because of the sparse nature of the image patches,

a dictionary learning and sparse coding scheme is then used. A challenging prob-

lem of these schemes is the choice of dictionary size, which should neither be too

large to increase the complexity, nor too small to increase the reconstruction error.

Currently, this parameter is selected manually in the literature. In this thesis, a
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non-parametric Bayesian method is proposed to estimate the optimal dictionary

size and simultaneously calculate the dictionary.

The high-dimensional dictionaries together with the high-dimensional features

not only reduce classification speed significantly, but also add to the computational

requirements. The complexities of these above methods make them impractical

for realizing real time systems to be used by physicians/clinicians. In this thesis,

we propose an adaptive distributed dictionary learning method which divides

the dictionary to N sub-dictionaries and build a network where each node is

responsible of updating its own sub-dictionary. This method addresses the HEp-2

cell classification problem in a computationally e�cient and less memory intensive

way compared to the other methods.

Another challenge is the huge number of overlapping image patches and con-

sequently, the need for tuning their sizes and shapes. The number of patches

exponentially increases with the image resolution, resulting in a dramatic increase

in computational complexity. On the other hand, the amount of information con-

tained in each patch highly depends on the size of the patch and the dataset.

To overcome these limitations in this thesis a superpixel approach is proposed.

This method can extract the image patches (superpixels) with di↵erent sizes and

shapes corresponding to the underlying patterns of the image.

In above mentioned approaches, the resulted sparse codes are not necessarily

discriminative. Additionally, concatenation of the di↵erent input features may

increase the redundancy and reconstruction error. To overcome these problems, a

feature fusion technique is suggested. The method forces the sparse codes to have

the same pattern for each class, resulting in more discriminative feature vectors.
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Chapter 1

Introduction

Autoimmune Diseases (ADs), which arise from abnormal immune responses of the

body against normally present substances and tissues, are in the list of top mortal-

ity causes according to the American Autoimmune Related Diseases Association

(AARDA). Early diagnosis of ADs plays a significant role in its treatment and

the demand for methods and procedures for fast, low-cost and repeatable diagno-

sis has become more and more indispensable [González-Buitrago and González,

2006]. Currently, there is an exponentially increasing demand for AD tests while

there is a lack of certified physicians to perform the tests. Another issue that

makes the AD diagnosis an even more challenging problem is the repeatability of

the test across di↵erent physicians. To address these challenges, automatic classi-

fication of the Human Epithelial Type-2 (HEp-2) cells has been attracting much

research interest in recent years.

Dictionary learning and sparse coding scheme is a main stage of the HEp-2 cell

classification (see Chapter 3). In dictionary learning methods, the input images
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CHAPTER 1. INTRODUCTION

are divided into small regions called ‘patches’. Then the features of the patches

are calculated and fed to an intervening procedure to combine them and provide

the final feature vectors for classifiers. Despite the extensive recent work that has

been done in this field, there are still many fundamental challenges to overcome.

For example, fine tuning the parameters (e.g. the number of patches and dictio-

nary dimension) and fusing the input features are open problems, that are highly

correlated to the obtained classification performance. Another challenging issue

faced is the large amount of image patches with di↵erent sizes and shapes which

in turns increase the complexity of the dictionary learning process. Addressing

these issues, form the basis of the research work presented in this thesis, which

are presented in the following sections.

1.1 Motivation

Most works in HEp-2 classification (see Section 2.2 for details) are based on ar-

tificial features such as Scale-invariant Feature Transform (SIFT), Local Binary

Pattern (LBP) and histograms that are extracted from di↵erent image patches.

These features have some parameters (such as size and number of patches, num-

ber of histogram bins, smoothing parameters, etc.) that are needed to be chosen

manually. This can potentially a↵ect the final classification performance and the

parameter tuning can be arduous. Moreover, the prior knowledge of the intensity

levels (positive and intermediate) and color data (RGB) of the input images are

very useful to the cell classification but largely ignored by previous methods.

The sparse nature of patch-based image classification (see Section 2.2) leads to

2



CHAPTER 1. INTRODUCTION

perform sparse coding and dictionary learning schemes on HEp-2 cells which are

used widely in the literature. However, one critical parameter is the dictionary size

and the optimal size depends heavily on the data as well as employing the visual

features. A dictionary is called critically complete when the dimension of the

features and dictionary are close to each other. On the other hand, biologically

inspired over complete dictionary with dimension much larger than the feature

dimension often gives better classification accuracy [Rehn and Sommer, 2007]

and is therefore widely adopted. Nevertheless, the high-dimensional dictionaries

use the high-dimensional features and codes which often reduce the classification

speed significantly. Thus, the objective is to build a dictionary with optimal

dimension. However, learning the dictionaries and working with large matrices is a

burden of load on CPU and memory of a machine which requires high memory and

computational resources. Therefore, splitting the dictionary into sub-dictionaries

and learning them in di↵erent machines can be beneficial for dictionary learning

procedure.

The other constraint of patch-based image classification technique is the high

computational cost due to a huge amount of overlapped image patches to be

processed and the tedious parameter tuning (for patch size, scanning step size,

etc.) for optimal cell classification performance. Therefore, the question is how the

patch sizes, shapes and positions can be found automatically such that decrease

the number of patches in one hand and increase the final classification accuracy

in other hand.

The majority of existing dictionary learning methods, can handle only single

source of data but fusion of information from di↵erent sensor modalities can be

3



CHAPTER 1. INTRODUCTION

more robust to single sensor failure. In the sparse coding method, the feature

fusion is imposed by concatenating all of features in one vector. The dimension of

this vector is high and su↵ers from curse-of-dimensionality while it does not even

contain the valuable information of correlations between feature types. Multiple

features can be combined using joint sparsity priors which makes them suitable for

reconstructing samples that originate from di↵erent sources. Therefore, combining

di↵erent features should lead to better classification results.

Chapter 2 presents a more detailed review of the current methods outlined in

this section.

1.2 Main Contributions

This thesis presents some new methods and solutions which address some of the

limitations of current and related approaches to the problem of HEp-2 cell im-

age classification as outlined briefly in Section 1.1. The overview of the proposed

methods is shown in Fig. 1.1. As evident in Fig. 1.1, a cell extraction method is

proposed to obtain the cells from the specimen images following the feature ex-

traction, di↵erent dictionary learning procedures and pooling strategies which are

discussed in corresponding chapters of the thesis. Here is a summary of the main

contributions, further details of which are presented in the indicated chapters:

• A HEp-2 cell image classification technique that exploits the sparse cod-

ing of the visual features together with the Bag of Words model (SBoW)

is proposed (see Chapter 3). In particular, Speeded Up Robust Features

(SURF) and SIFT features are specially integrated to work in a complemen-
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tary fashion, helping to greatly improve the cell classification accuracy. To

provide final feature vector, a hierarchical max-pooling method is proposed

that aggregates the local sparse codes in di↵erent layers. Furthermore, the

correlation between the iteration of the dictionary learning and the cell clas-

sification performance is investigated and the optimal iteration is identified

with superior cell classification accuracy.

• The dimension of the dictionary in SBoW model is essentially important

where a non-parametric Bayesian model is proposed to learn the optimal di-

mension with little human intervention. In particular, the ‘non-parametric’

here means that the dimension of the dictionary can intuitively extend to

infinity at the beginning of the learning process and leads to the correct and

most e�cient value at the end (see Chapter 4).

• An adaptive distributed dictionary learning is proposed (see Chapter 5)

which addresses the HEp-2 cell classification problem in a computationally

e�cient and less memory intensive way compared to the other methods

where, the dictionary matrix and the coding vector are partitioned into N

blocks/nodes and each block is associated with a sub-dictionary and a sub-

vector. Each node is connected to a number of neighboring nodes sharing

their information to update the sub-dictionaries. Essentially, we propose

to combine the information of neighboring nodes in an adaptive way which

enables the nodes to learn about the usefulness of the information received

from their neighbors which helps the nodes to ignore misleading information.

• A novel superpixel based HEp-2 cell classification technique based on the

5
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sparse coding scheme is proposed (see Chapter 6). To the best of our knowl-

edge, this is the first work that uses superpixels to guide the selection of

the right image patches to contain more ‘informative’ features. Addition-

ally, ‘extended superpixels’ are designed by dilating the boundary of each

superpixel to capture more discriminative gradient information across the

boundaries of the HEp-2 cell.

• Features fusion, rather than solely concatenating them, and building a multi-

modal dictionary are investigated (see Chapter 7). To utilize information

fusion between feature modalities, an algorithm is designed in which sparse

codes of each sample from all modalities share the same sparsity pattern.

The contribution of this work is two-fold. First, we propose a new framework

for multi-modal fusion at the feature level. Second, we impose an additional

constraint on consistency of sparse coe�cients among di↵erent modalities

of the same class.

Some concluding remarks and suggestions for further extending this research are

presented in Chapter 8.
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Chapter 2

Background and Literature

Review

The basic element of the body’s immune system is a ‘Y’ shape protein named

‘antibody’, which is produced by the plasma cells. The main role of antibodies is

to identify and mark the molecules of harmful agents, called ‘antigens’. Antigens

are foreign substances from the environment, such as chemicals, bacteria, viruses,

or pollen. In particular, the antibody uses its Y-shape tips to bind to the antigen

and tags it for neutralization by the other parts of the immune system. Sometimes,

the antibody may even neutralize its target directly; for instance by blocking a

part of a microbe that is essential for its invasion and survival [Mian et al., 1991].

When the immune system fails to recognize a body’s normal protein as ‘self’,

it produces another type of antibody, called ‘autoantibody’, directed against that

protein. This response of the immune system against individual’s own tissues is

called ‘autoimmunity’ and the related diseases are named ADs. ADs are broadly
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CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

classified into two categories; systemic, which are not tissue specific (e.g. rheuma-

toid and vasculitis diseases) and local syndromes which a↵ect a specific organ or

tissue (e.g. Diabetes and thyroiditis) [Cotsapas and Hafler, 2013].

Diagnosis of immune disorders di↵ers for each class. In systemic disorders

specific autoantibodies can be detected by serological assays (the scientific study

of serum). Localized disorders are best diagnosed by immunofluorescence (see

Section 2.1) of biopsy specimens. In both cases, the levels of autoantibodies are

measured to determine the progress of the disease.

Antinuclear Antibodies (ANAs), which are found in many disorders including

autoimmunity, cancer and infection, are kind of antibodies that bind to contents of

the cell nucleus. By screening the blood serum, presence of ANA can be confirmed

which in turn leads to diagnosis of some autoimmune disorders. According to

American College of Rheumatology, the golden standard test for detecting and

qualifying ANAs is called Indirect Immunofluorescence (IIF) which uses the HEp-

2 tissue.

2.1 Indirect Immunofluorescence Imaging

Immunofluorescence is an imaging technique which uses fluorescence microscope

on microbiological samples that are stained with fluorescent chemical compound.

This technique can be broadly divided into two categories, namely direct and

indirect.

The direct immunofluorescence uses a single antibody linked chemically to

a fluorphore (the fluorescent chemical compound). This antibody detects the

9
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antigen and binds to it which enables the fluorescent microscope to capture the

specific wavelength of emitted light excited from fluorphore. This technique has

two main limitations. First, due to use of a single antibody, it is less sensitive and

may result in false negatives. Second, many single antibodies are needed in the

experiment, which makes it very expensive.

The IIF uses two antibodies instead of single one, where the first antibody

is unlabeled and binds to the target antigen. The second antibody, labeled with

fluorphore, detects the first antibody and binds to it. One of the good properties

of IIF is that multiple secondary antibodies can bind to the primary one and

amplify the emitted light for each antigen, which results in high contrast of the

captured images [Storch, 2000].

The HEp-2 cell is a protein that contains hundreds of antigens used as an

ideal substrate for the IIF test. Antibodies are first stained in HEp-2 tissue and

then bound to a fluorescent chemical compound. Depending on the antibody

present in the blood serum and the localization of the antigen in the cell, the

patterns of fluorescence will be seen on the HEp-2 cells [González-Buitrago and

González, 2006]. These patterns are then classified to diagnose ADs. The patterns’

characteristics and their relations to specific ADs are studied in Section 3.3.

Image quality variation makes interpretation of fluorescence patterns very

challenging. To make the pattern interpretation more consistent, automated

methods for classifying the cells are essential.

The imaging of the IIF test consists of five stages [Hiemann et al., 2006], start-

ing with image acquisition with autofocus to reduce Photobleaching e↵ects [Soda

et al., 2006]. The second stage involves automated cell segmentation using meth-

10
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ods such as the similarity based watershed and adaptive edge-based segmenta-

tion [Huang et al., 2008a,Huang et al., 2008b]. This is followed by the mitotic cell

segmentation stage which has been investigated using morphological and textural

features and LBP [Foggia et al., 2010]. The fourth stage further classifies intensity

level images into three classes, namely, negative, intermediate and positive inten-

sities [Soda and Iannello, 2006]. Finally, the last stage classifies the cell staining

patterns into several classes corresponding to di↵erent ADs.

2.2 Literature Review

A number of HEp-2 cell classification techniques have been reported in recent

years. The technique by [Perner et al., 2002] is one of the earliest methods that

handles the HEp-2 cell classification problem, where Otsu’s global thresholding

[Otsu, 1975] is used for cell segmentation and texture features are exploited for

classification. [Huang et al., 2012] utilized the texture and statistical features

and classified the cells using Self-Organizing Maps. [Soda and Iannello, 2009]

aggregated the binary classifiers on spectral textural features and introduced a

reliability measure of the classification. Techniques on intensity level and staining

pattern classifications have also been reported by [Hiemann et al., 2007, Soda

et al., 2009,Sack et al., 2003].

Most works described above use their own datasets, which make a fair com-

parison of di↵erent methods a nearly impossible task. The need for e↵ective

benchmarking led to the first publicly available dataset “MIVIA HEp-2 images

dataset” [Foggia et al., 2013] referred to as ICPR2012 dataset as it was released

11
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for the HEp-2 Cells Classification Contest at the 2012 International Conference on

Pattern Recognition. At the 2013 International Conference on Image Processing,

an expanded dataset which is referred to as the ICIP2013 dataset1 was introduced

(see Section 3.3).

Several attempts have been made to facilitate the automatic HEp-2 cell clas-

sification by evaluating on these datasets. Di↵erent classifiers are designed includ-

ing k-NN, Random Forest, näıve Bayes, etc. However, Support Vector Machine

(SVM) is the most used classifier in the literature. It is shown in the literature

that the choice of classifier does not a↵ect the final classification result as much

as the type of features selected [Han et al., 2014,Foggia et al., 2014].

The features used in the literature can be categorized as follows:

• intensity-based : Grey Level Co-occurrence Matrix (GLCM), statistical and

morphological features including area, convex-hull, eccentricity, roundness,

etc.

• Feature engineering : LBP, Discrete Cosine Transform (DCT), Di↵erence of

Gradient (DoG), Histogram of Gradient (HoG), SIFT, Gabor wavelet, etc.

• Feature Learning : Bag of Words (BoW), unsupervised Dictionary Learning

and Deep neural networks feature descriptors.

2.2.1 intensity-based Features

Table. 2.1 summaries some methods which use intensity-based features. There

are three main drawbacks to these approaches. First, extracting large number of

1
http://i3a2014.unisa.it/?page_id=126
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Table 2.1: Intensity-based methods for HEp-2 cell classification.

name preprocessing Feature classifier

Ghosh? Grayscale Area, Eccentricity, GLCM SVM, linear
kernel

Gilbert† Green channel Pixel intensity, number
and size of blobs

SVM, RBF
kernel

Hassaine† RGB, HLS and lab Morphological features Logistic
regression

Kazanov‡ - Morphological features
and pixel intensities

Nave Bayes

Kovacs† - Pixel intensity, area SVM, k-NN and
Nave Bayes

Maree• Normalized RGB Pixel intensity SVM

Rezvani† Grayscale Eccentricity,
Compactness, Roundness,

etc.

RBF Kernels

Shen† - Histogram of RGB
channels

SVM, RBF
kernel

Snell⌥ Grayscale Shape, Di↵erent statistics SVM, RBF
kernel

Strandmark�Projection to
Principal

components

Geometrical, Pixel
intensity, GLCM

Random Forest

Wang† Intensity
normalization

Pixel intensity SVM, linear
kernel

Yang⇧ Projection to
Principal

components

Pixel intensity SVM, linear
kernel

? [Ghosh and Chaudhary, 2012] † [Foggia et al., 2013] ‡ [Ponomarev et al., 2014] • [Marée et al., 2013]
⌥ [Snell et al., 2012] � [Strandmark et al., 2012] ⇧ [Yang et al., 2014b]

various features does not necessarily result in representative and discriminative

ones. Second, the possibility of obtaining redundant features is very high and it

increases the curse-of-dimensionality problem [Friedman, 1997]. This in turn calls

13
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Table 2.2: Methods for HEp-2 cell classification using engineered features.

name prepro-
cessing

Feature classifier

Kastaniotis?Grayscale SIFT, Rotation invariant LBP SVM, RBF
kernel

Kuan† - LBP, DCT, Wavelet SVM, linear
kernel

Nosaka‡ Green
Channel

CoALBP SVM, linear
kernel

Stoklasa• Green
Channel

LBP, Color Structure, SIFT k-NN

Wafa⌥ - Pyramid of DoG k-NN

Xiangfei� - Frequency Histogram of Textons k-NN

Faraki⇧ - Covariance Descriptor from Gabor
filter response

SVM, linear
kernel

? [Theodorakopoulos et al., 2012] † [Li et al., 2012] ‡ [Nosaka and Fukui, 2014] • [Stoklasa et al., 2014]
⌥ [Bel Haj Ali et al., 2012] � [Foggia et al., 2013] ⇧ [Faraki et al., 2014]

for a post processing stage (e.g. PCA) to reduce the feature dimension and also

make it more discriminative. Lastly, there are two types of HEp-2 cell images in

terms of intensity levels (see Section 3.3). When dealing with intermediate level

images, where the pixel values are much lower than positive intensity images, the

intensity-based methods are prone to misclassification and need a preprocessing

stage to obtain representative features.

2.2.2 Feature Engineering

Engineered features are widely used in pattern recognition problems because they

are engineered for application independent processes. Table. 2.2 shows several

methods that have exploited such features.

14
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[Di Cataldo et al., 2014] used DCT features in several binary images, which

are obtained by thresholding the input image with di↵erent values. The LBP

[Ojala et al., 1996] and its modifications (Co-Occurrence among LBP and Rotation

Invariant LBP) are used in many works in the literature of the HEp-2 cell image

classification. [Nosaka and Fukui, 2014], the winner of the ICPR2012 contest,

introduced an extension of LBP for feature selection, into this problem. They

developed Co-Occurrence among LBPs to consider the spatial relation among the

LBPs. They claimed that their method is robust to rotation of the input cell

image.

The LBP operator for pixel position (x
i

, y
i

) with intensity value of I
i

is for-

mulated as:

LBP (x
i

, y
i

) =
7X

j=0

T
�
Ij
i

� I
i

�
⇥ 2j (2.1)

T (k) =

(
1, if k > 0

0, if k < 0

where Ij
i

, j 2 {1, 2, . . . , 7} are intensity values of eight neighboring pixels around

the pixel (x
i

, y
i

).

However, the main problem of LBP-based approaches is the possibility of

coding two very di↵erent local patterns into the same LBP value, and two similar

local patterns into very di↵erent LBP values. These problems are because of

assigning binary values according to the di↵erence of the center pixel value with

the ones of the surrounding pixels. For instance, it is evident in Fig. 2.1a, although

two patterns are totally di↵erent, the LBP values of their center pixels are the
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102 250 240

10 100 247

15 13 5

253 234 229

228 230 237

225 226 100

253 234 231

228 230 237

225 226 100

253 234 229

228 230 237

225 226 100

(a) LBP = 225 (b) LBP = 97

Figure 2.1: Shortcoming of LBP in assigning (a) similar binary values for two
di↵erent patterns and (b) di↵erent binary values for almost same patterns.

same (LBP = 225) for both patterns. On the other hand, the visual patterns

of right image in Fig. 2.1a and Fig. 2.1b are almost the same but their LBP

values for the center pixels are significantly di↵erent (225 versus 97). Therefore,

applying LBP operator on the images to represent the local structures could result

in non-discriminative features which degrades the final classification performance.

The performance of these methods dominates the intensity-based approaches

because the engineered features are specifically designed and tuned for the prob-

lem at hand. However, there is no intervening procedure between the feature

extraction stage and the classifier to make the features more representative and

discriminative.

2.2.3 Feature Learning and Sparse Coding

There are di↵erent methods for feature learning which are categorized into super-

vised and unsupervised. Neural Networks and their modifications, Convolutional

Neural Network (CNN) and deep learning are among supervised methods in which

features are learned with labeled input data [Guo et al., 2016]. On the other hand,
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Independent Component Analysis (ICA), Auto-encoders and dictionary learning

are examples of the unsupervised approaches [Khorsandi et al., 2015a]. The in-

put data for these methods are the raw data to induce the algorithm to learn

features from it. However, the input of such methods could be the engineered

features instead of raw values to help the algorithm learn new features on top of

the engineered ones and map the feature space to a higher/lower dimension.

Recently, there has been an increasing interest in sparse coding and dictionary

learning in computer vision and image processing research for classification tasks

[Mairal et al., 2012, Jiang et al., 2013b], which we will discuss more details in

Section 2.2.4. [Kong et al., 2014] used the HoG and responses of filter banks as

input features and learned a dictionary. The corresponding sparse codes are then

used to minimize the class reconstruction error. Additionally, [Manivannan et al.,

2014a] extracted variety of features such as multi-resolution Local Pattern (mLP),

SIFT, Random Projection (RP) and Intensity Histogram (IH). Then, the Locality-

constrained Linear Coding (LLC) is exploited to calculate the sparse codes.

Table. 2.3 shows di↵erent methods that are exploited the feature learning

procedures. The CNN and Deep learning methods required very large amount

of input data to perform reasonably and learn the features. This is problematic

when dealing with the HEp-2 cell datasets as they have limited number of images.

Additionally, the training procedure of CNNs is time consuming and complex.

Specially, by increasing the hidden layers and nodes in the network, the number

of parameters which should be learnt increases exponentially. To solve the prob-

lem of not having enough input data, the augmentation and synthesizing schemes

are suggested [Gao et al., 2014, Thibault and Angulo, 2012], but the final per-

17



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Table 2.3: The methods for HEp-2 cell classification problem by using feature
learning methods.

name preprocessing Feature classifier

Wang† Intensity normalization Pixel intensity + BoW SVM,
linear
kernel

Siyamalan?Intensity normalization LBP, SIFT, Intensity
Histogram + Sparse

Coding

SVM,
linear
kernel

Larsen‡ Green Channel Shape-index histogram +
BoW

SVM,
linear
kernel

Malon† Contrast stretching Pixel Intensity + CNN
features

CNN

Thibault⌥ - Pattern spectrum Neural
Network

Wiliem� - SIFT, DCT + Sparse
Coding

k-NN

Gao⇧ Contrast stretching, image
resized, image augmentation

CNN features CNN

† [Foggia et al., 2013] ? [Manivannan et al., 2014a] ‡ [Larsen et al., 2014] ⌥ [Thibault and Angulo, 2012]
� [Wiliem et al., 2013] ⇧ [Gao et al., 2014]

formance is not significantly improved because the synthesized images are only

the regeneration of the available data that can be ignored by the network. The

CNNs and deep learning algorithms require a large number of real data rather

than synthesized information.
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2.2.4 Compressed Sensing, Sparse Coding and Dictionary

Learning

One of the inseparable tasks of image/signal processing is acquiring and sampling

of signals in order to save, transmit and reconstruct them. The Shannon-Nyquist

sampling theorem stated that a signal can perfectly reconstructed if the sampling

rate is more than twice of the highest frequency of the signal. Compressed Sensing

(CS) theory is then proposed which stated that the signals can be reconstructed

by fewer samples than the sampling theorem in terms of having a prior knowledge

about the signal’s sparsity. a signal (s 2 Rn) is considered sparse, if it has small

amount of nonzero entries.

The CS method first takes the samples and then compresses the signal. The

sampling stage is consist of acquiring m weighted linear combination of samples

where m⌧ n. The m-measurements creates the m⇥n measurement matrix ( ),

y =  s (2.2)

and if the noise of the system is considered, the (2.2) can be written as y =  s+⌘

where ⌘ is the noise. Due to the lower number of equations than the signal

dimension, the CS faces an under-determined system of linear equations which

has either no solution or infinitely many solutions generally. However, the sparsity

constraints of the CS employs nonlinear optimization-based methods to search for

the sparsest signal.

By assumption of the CS, the input signal s has the sparsity property. There-

fore, it can be represented as a linear combination of dictionary bases D =
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[D1, D2, . . . , DK

]|.

s = Dz (2.3)

||z||0 ⌧ n

where n is the dimension of the input signal s and z is the coe�cients of the

dictionary bases, which is sparse.

By combining the (2.2) and (2.3) the formulation is as follows

y =  s =  Dz = ⇥z (2.4)

According to the CS theory, a signal (s) can be reconstructed by its coe�cients

(z) when ⇥ satisfies the restricted isometry property (RIP) [Candès et al., 2006].

A matrix ⇥ is said to satisfy the RIP of order k with constants �
k

2 (0, 1) if

(1� �
k

)||v||22  ||⇥v||22  (1 + �
k

||v||22) for any v such that ||v||0  k.

Normally, in the literature of CS, the `0-norm, which is simply the number of

non-zero elements of a signal, is used as sparsity measurement;

argmin
ŝ2Rn

||ŝ||0 (2.5)

s.t.  ŝ = y

However, the above equation is NP-hard and alternative `1-norm is suggested

to relax the problem.

Dictionary Learning - As can be derived from (2.4), an input signal can be

reconstructed by a linear combination of a few dictionary columns (words) as the
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weights are forced to be sparse.

One of the most popular unsupervised methods for dictionary learning is

Vector Quantization (VQ) by using k-means [Philbin et al., 2008]. Let F be a

set of features in a D-dimensional space, i.e. F = [F1, F2, . . . , FN

] 2 R(D⇥N), and

D = [D1, D2, . . . , DK

] 2 RD⇥K are K words (cluster centers) of the dictionary. In

VQ, the objective is to learn D by solving the following optimization problem:

min
D

NX

i=1

min
k=1...K

��F
n

� D
k

��2
(2.6)

where k.k denotes the `2-norm. In this formulation, all the feature points in

the feature space will become a member of only one of the K cluster centers. By

introducing an indicator function Z, which contains the weights of the cluster

centers Z = [z1, z2, . . . , zN ] 2 RK⇥N , the equation (2.6) can be reformulated as:

min
Z,D

NX

i=1

��F
n

� Dz
n

��2
(2.7)

s.t. Card(z
n

) = 1, |z
n

| = 1, z
n

� 0, 8n

The cardinality constraint on z
n

(Card(z
n

)) means that only one element of

z
n

can be nonzero. Moreover, this value should be nonnegative and the `1-norm

(summation of all elements) of Z should be equal to one. Because of the hard

constraints on cardinality and `1-norm of z
n

, this dictionary learning is compu-

tationally complex which a↵ects the reconstruction error. To relax these hard

constraints a sparse coding method is proposed [Yang et al., 2009]
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min
Z,D

NX

i=1

��F
n

� Dz
n

��2
+ �|z

n

| (2.8)

s.t. ||D
k

||  1, 8k = 1, 2, . . . , K

Here the `1-norm of weights is relocated to the objective function using La-

grange Multiplier and just an `2-norm of the dictionary is used as a constraint.

This constraint is to prevent all the elements of dictionary from becoming zero,

which is a trivial minimum of the objective function.

There are two simple iterative algorithms to calculate the dictionary; K-SVD

and Method of Optimal Directions (MOD). Because the problem in (2.8) is non-

smooth convex, it should be solved iteratively till a sparsest solution is obtained

[Zonoobi et al., 2011]. Firstly the values of the dictionary is initialized by using

k-means method which provide the cluster centers of the input features as the

dictionary words. Then the main procedure consists of the following two stages:

• Sparse Coding: In this step, the dictionary (D) is fixed and the (2.8) is

reformulated as:

min
Z

NX

i=1

��F
n

� Dz
n

��2
+ �|z

n

| (2.9)

This is a linear regression problem with `1-norm regularization on the coe�-

cients which is known as LASSO (least absolute shrinkage and selection oper-

ator) method [Tibshirani, 1996] in the literature. Other greedy methods in-
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cluding Orthogonal Matching Pursuit (OMP) [Mallat and Zhang, 1993,Pati

et al., 1993] is often employed due to its e�ciency [Tropp, 2004].

• Dictionary Update: In this step, the coe�cients are assumed fixed and the

dictionary updated by following formulation:

min
D

NX

i=1

��F
n

� Dz
n

��2
(2.10)

s.t. ||D
k

||  1, 8k = 1, 2, . . . , K

Two algorithms of K-SVD and MOD di↵er in this stage where in K-SVD,

the dictionary is updated atom-by-atom where MOD updates the whole

dictionary. Additionally, the MOD is computationally expensive rather than

K-SVD due to the matrix inversion operation in its algorithm [Patel and

Chellappa, 2011].

In this thesis, we proposed other dictionary learning methods by using Non-

Parametric Bayesian Method (see Section 4.2.1), Adaptive Distributed Dictionary

Learning (see Section 5.2) and Joint Multi-Cue Dictionary Learning (see Section

7.3).
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Chapter 3

Sparse Coding and Feature

Combination

3.1 Introduction

The idea of Sparse BoW (SBoW) for Hep-2 cell classification is investigated. This

chapter presents the latest development and improvements in several aspects.

First, a hierarchical pooling approach is proposed to perform the max-pooling

operator on the di↵erent image patch sizes according to the level of the regions

in the SPM. Second, di↵erent parameters are investigated and the optimal ones

are identified which lead to much higher cell classification accuracy. For example,

our study shows that the iteration of the dictionary learning is closely correlated

with the cell classification accuracy: a certain number of iterations give the best

accuracy which cannot be either too large or too small. Third, this work studies

di↵erent features including SIFT, SURF and the complementary combination of
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both features. Fourth, the work performs comprehensive evaluations on two public

benchmarking datasets as well as detailed analysis and discussion of di↵erent

selections of parameters and strategies. For example, di↵erent pooling strategies

are investigated and the best-performing max-pooling strategy is identified and

analyzed.

In [Ensafi et al., 2014a,Ensafi et al., 2014b] a dictionary learning method is

applied and the sparse codes of image patches are aggregated with Spatial Pyramid

Matching (SPM) [Lazebnik et al., 2006]. In particular, an image is first partitioned

in 1, 4 and 16 regions in three pyramid layers and the max-pooling operator is

then applied on the sparse codes of each region to form the final feature vector

by concatenation (see Fig. 3.3). One limitation of this approach is the mismatch

between the resolution of the regions and the size of the image patches. In other

words, certain local information will be lost when the large size image patches are

aggregated in a small image region. In this chapter, we use the pyramid of the

image patches with various patch sizes to alleviate this problem.

The rest of this chapter is organized as follows. Section 3.2 describes the pro-

posed HEp-2 cell classification technique. The Publicly available datasets which

are used for the experiments are described in Section 3.3. Experimental results

are then presented in Section 3.4. Several concluding remarks are finally drawn

in Section 3.4.3.
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3.2 Method

Figure 3.1 shows the framework of the proposed system [Ensafi et al., 2014b] which

is named Sparse Bag of Words (SBoW). In the preprocessing stage, if the bound-

ing box of the cells are not given, the cell extraction method (see Section 3.2.2)

is applied to get the masks and the bounding box of the cells in each specimen

image. Then, for each cell, multiple overlapping equal-distanced image patches

are determined. For each image patch, grid SIFT and SURF features are then ex-

tracted and concatenated to produce the patch-level features. During the training

stage, the extracted patch-level features are sampled to learn a dictionary of visual

words under the BoW framework, where the sparse coding scheme is adopted to

learn each visual dictionary word. Multi-scale and max-pooling strategies are im-

plemented to transform the visual features into feature vectors, which are further

fed to train a multi-class SVM classifier. Then for each test image, the SIFT and

SURF features are similarly extracted and transformed to feature vectors lever-

aging on the learned dictionary. The type of the HEp-2 cells can be identified by

using the pre-trained multi-class SVM classifier.

3.2.1 Preprocessing

To perform cell classification, the cells are first extracted from the specimen image

using the provided masks of the images. However, there are two problems with

these masks. First, the cell masks for images are not accurate and contain some

non-cell areas depending on the segmentation algorithm used. Second, those cells

that ‘touch’ each other in the provided masks cannot be extracted based on the
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Figure 3.1: The SBoW framework for HEp-2 cell classification CAD system.

provided masks. The two problems are illustrated in two sample images as shown

in Fig. 3.2.

The first problem originates from the mask preparation process. In particular,

a special dye is used to stain the cytoplasm of the cells and a global thresholding

technique is then applied to produce the cell masks [Foggia et al., 2014]. However,

this method fails in some cases and creates noisy masks, where some non-cell ele-

ments in the tissue are wrongly extracted as masks. These non-cell mask elements

are often very large (see Fig. 3.2b), and can be distinguished and discarded ac-

cording to their sizes. For the touched and overlapped cells problem, the majority

of cells are selected which are well segmented for the cell classification.

3.2.2 Cell Extraction

In the cell extraction stage, the goal of finding cells with similar shapes and

sizes is achieved using morphological operations which result in connected pixels

extracted from the image masks that are analyzed to select those that correspond
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(a)

(e) (f)

(b) (c)

(d)

Figure 3.2: Inaccurate masks of the cells in the ICIP2013 dataset in terms of
noisy segmentation and overlapping cells. (a) and (d) are the specimen images.
(b) and (e) are provided masks. (c) and (f) are the extracted cells by the proposed

method.

to real cells for cell classification as shown in the ‘Cell Extraction’ stage of Fig.

3.1. There is a need to distinguish those large connected pixels which could have

been wrongly segmented or represent overlapped cells.

The area and solidity morphological features are extracted from each con-

nected pixel for cell classification. The histogram of the area features are quan-

tized into bins and the maximum bin (b
mx

) is taken to represent the area for most

connected pixels that are likely to be proper cells with no overlaps with other

cells. We then proceed to select those cells with area that are close to b
mx

, based

on the standard deviation of the histogram (std) resulting in range (R
mx

;R
mn
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respectively) as follows:

R
mn

= max(0, b
mx

� std) (3.1)

R
mx

= min(b
mx

, b
mx

+ std)

The std is calculated by fitting a Gaussian probability distribution function on

the histogram. Only those connected pixels with areas more than a threshold

(A
t

) are considered as correctly identified cells. Next, cells with similar shape are

identified using the solidity, S, property which is related to the roundness of the

cells and is defined as follows:

S =
A

CA
(3.2)

where A is the area of the connected pixel and CA (Convex Area) is the number

of pixels in the convex hull of the area. The solidity S, would be close to one if

the cells are of circular shape.

As shown in Algorithm 1, in each iteration for one specimen image, the number

of bins (nb) and the values of S
mn

(minimum solidity) are decreased gradually to

select at least 5 cells in each image. By decreasing these values, we gradually relax

the constraints for selecting the cells, because in some mask images, the connected

pixels have irregular shapes rather than circular shapes. The initial values are

selected with a cross validation strategy: nb = 12; S
mn

= 0.98; A
t

= 45. This

helps choose those cells that of average size (i.e., area) and circular in shape.
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Algorithm 1: Cell Extraction Algorithm
Input: Specimen Images and Masks
Output: Extracted Cells

1 begin
2 nb = 12, S

mn

= 0.98, A
t

= 45;
3 foreach mask image do
4 Get the connected pixels;
5 Get the morphological properties (Area, Solidity);
6 Fit a Gaussian probability distribution on the histogram of the

areas with nb bins;
7 Calculate the standard deviation (std) of fitted Gaussian

distribution;
8 R

mn

 max(0, b
mx

� std);
9 R

mx

 min(b
mx

, b
mx

+ std);
10 # selected cells 0;
11 foreach area(cell) 2 [R

mn

, R
mx

] do
12 if solidity > S

mn

then
13 if area > A

t

then
14 if area \ boundary = {;} then
15 Get the cell;

16 if # selected cells < 5 then
17 S

mn

 0.95⇥ S
mn

;
18 nb nb� 1;
19 Go to 6;

3.2.3 Feature Extraction

Using intensity values of the images directly as features has some problems. First,

in each dataset, there are two intensity levels namely, positive and intermedi-

ate levels, which di↵er significantly. Particularly, the intensity values of positive

images are greater than that of intermediate images, where positive cells can be

easily seen by naked eyes but not for the intermediate cells. Second, the ICIP2013

dataset (sea Section. 3.3.2) has gray-scale values but the ICPR2012 dataset has
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color images. Finally, the noise in the images makes the intensity level analysis

inaccurate.

To this end, the SIFT [Lowe, 2004] and SURF [Bay et al., 2008] features are

utilized to capture the appearance characteristics of the di↵erent types of HEp-2

cells. In particular, SIFT features are computed by down sampling of the image

in di↵erent smoothed image levels and SURF features are computed using the

Hessian matrix. As a result, SURF provides better features in the presence of

illumination changes (in positive and intermediate intensity levels) whereas SIFT

performs better in the presence of image rotation and blur [Juan and Gwun, 2009].

The two types of features therefore complement each other and the combination of

them produces features with better representation and discrimination capability.

Grid SIFT and SURF features are used as illustrated in Fig. 3.1. The stan-

dard SIFT feature are not used because it first runs the corner detection [Harris

and Stephens, 1988,Shi and Tomasi, 1994] to capture the interest points and then

extracts the features of these points [Ensafi et al., 2014a]. But this approach

would not perform well for the cell classification problem because the HEp-2 cell

patterns within the immunofluorescence images are usually of a very small size.

In particular, the number of interest points for the Homogeneous cell with homo-

geneous visual pattern is much lower than that of Centromere class that contains

many shinny points as illustrated in Figs. 3.4 and 3.5. We therefore utilize grids

over the whole cell region to capture the visual features.

To produce these features, the entire cell image is divided to overlapping

patches. In each patch, the SIFT and SURF features are captured and combined

together. In this regard, 128 SIFT and 64 SURF features are extracted which

31



CHAPTER 3. SPARSE CODING AND FEATURE COMBINATION

creates the 192 features for each patch in total.

3.2.4 Descriptor Representation

To describe the input images, we adopted the idea of BoW which was originally

applied for the representation of text documents but recently used widely in image

classification and retrieval [Zhang et al., 2010]. The BoW learns a variety of visual

words that are literally the basements of the input images. Therefore, the images

can be reconstructed by assigning weights to the basements.

F = DZ (3.3)

where F is a set of features in a D-dimensional space extracted from images,

F = [f1, f2, . . . , fN ] 2 R(D⇥N), and D = [d1,d2, . . . ,dK

] 2 R(D⇥K) is K words of

the dictionary. Additionally, Z = [z1, z2, . . . , zN ] 2 R(K⇥N) is the coe�cients of

the features which indicates the specific words that are used to reconstruct the

input image.

Equation 3.3 does not have enough information to calculate a unique solution

and it is not a well posed problem [Tikhonov, 1963]. Moreover, some noise pa-

rameter is added to the formulation in reality because the information gathering

contains noise and the reconstruction of the images using the learned dictionary

is not perfect.

On the other hand, a sparse representation of codes are required to have as
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sparse as possible words to reconstruct the input image.

ẑ = argmin
z

||z||0 (3.4)

s.t. f = Dz+ e

where e is assumed to be zero mean Gaussian noise with �2 variance. Additionally,

the solution should be regularized, where the prior knowledge is needed about

the solution. Therefore, the equation can be perceived by using a probabilistic

approach. To this end, the Laplacian distribution can be chosen for the prior

information on codes.

p(z) =
KY

i=1

�

2
exp (�� |z

i

|) (3.5)

here the assumption is that the z elements are i.i.d and � is the regularization

parameter. By calculating the maximum a posteriori (MAP) estimate of z by

using the following Bayes’ theorem, the sparse representations of input images

can be calculated: [Amiri and Haykin, 2014]

ẑ = argmax
z

p(z|F,D) = argmax
z

p(F|z,D)p(z)

p(|D)
(3.6)

The negative logarithm of posterior can also be minimized instead of MAP,
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to come up to the sparse coding formulation.

min
z,D

NX

n=1

��F
n

�Dz
n

��2
+ �|z

n

| (3.7)

s.t. ||d
k

||  1, 8k = 1, 2, . . . , K

here the dictionary is also added to the parameters of the sparse coding formula-

tion to capture a good dictionary which can minimize the sparse codes as well.

Because the problem in Eq. 3.7 is non-smooth convex, it should be solved

iteratively till a sparsest solution is obtained [Zonoobi et al., 2011]. Firstly the

values of the dictionary is initialized by using k-means method which provide

the cluster centers of the input features as the dictionary words. By fixing these

values, the weights are learned by using conjugate gradient method. The weights

are then fixed and the dictionary words are optimized [Ensafi et al., 2014b].

A dictionary with dimensionality K is said to be critically complete if K

is close to the dimensionality of feature vectors (D). In practice, K should be

much larger than D to provide an over complete dictionary to insure a proper

representation of the input features. This fact is biologically inspired from human

visual cortex that is estimated to be over complete by a factor of 500. For example,

a 14⇥14 input patch is coded by 100 000 neurons. For the HEp-2 cell classification,

an optimal K of 1024 is selected based on extensive tests on a large amount of

cell images (Note that the dimension of SIFT and SURF features is 192) [Ensafi

et al., 2014b].

To this end, the features (sparse codes) of each patch of the input images

are extracted. The next issue is how to combine them to represent the features
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of whole image. Simply, concatenating the features of each patch together is not

feasible because of the di↵erent sizes of the images. A pooling strategy is therefore

needed to create feature vectors of the same size for each image.

Another issue is that by feature extraction of each patch separately, the spatial

information of the images may be ignored because the features are extracted

locally in each patch. Thus the scaled sparse codes is used, where the coded space

of an image is divided to equal regions in di↵erent levels. Then the histogram

of codes for each region is calculated with a fixed number of bins as shown in

Fig. 3.3. In this regard, the same size feature vector of the regions are calculated

although the input features and size of the regions are di↵erent. Finally, according

to the chosen pooling strategy, the final feature vector is calculated, which is a

concatenation of feature vectors of all regions.

However, the di↵erence between the sizes of the image patches and regions

in the SPM layers, will introduce the loss of the local information of the patches.

As all the image patches have the same size and would not change according to

the shrinking size of the regions in the SPM method, a hierarchical strategy is

proposed to use the information of the di↵erent size image patches for di↵erent

regions. To this end, three sizes of image patches are extracted to be used in

three levels of the SPM method. In particular, the patch size of 18⇥18 is used

in the first layer where all the image patches are pooled. In the second layer, the

image is divided to 4 regions where the information of the 12⇥12 image patches

is used. Finally, the 8⇥8 image patches are used for the third layer which has 16

regions. These image patches of three di↵erent sizes are employed by extensive

examination through cross-validation.
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Figure 3.3: The pooling strategy in SPM (Left) and Hierarchical (Right) for
capturing the final sparse codes.

There are di↵erent pooling strategies to obtain the final features of images

according to their sparse codes. These strategies, which are examined in Sec-

tion. 3.4.3, include one-hot encoding, average pooling and max-pooling. In one-hot

encoding, just one representative feature is selected for each region in the scaled

levels. But in average and max pooling, the average and maximum values for

each bin of histogram is selected for each region and all the final histograms are

concatenated.

3.2.5 Classification Process

A multi-class linear SVM is trained to classify the feature vector of input images.

To this end, a strategy of one-versus-all is adopted. In particular, L linear binary

classifiers are learned as specified in (3.8) and concatenated to form a multi-class

classifier. In this regard, the class label of an input image (the input image is
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converted to sparse feature vectors) is yc
i

= {+1,�1} where yc
i

= +1 means that

image i belongs to class c, c 2 Y = 1, . . . , L. Therefore, we have {(x
i

, y
i

)}n
i=1

input pairs for training sets [Yang et al., 2009,Ensafi et al., 2014a].

min
wc

⇢
J(w

c

) = kw
c

k2 + C

nX

i=1

`(w
c

; yc
i

;x
i

)

�
(3.8)

The optimization problem in (3.8) uses the hinge loss as the cost function,

which can be solved using the conjugate gradient method. As the hinge loss

function is not di↵erentiable in all the points, the quadratic hinge loss [Yang

et al., 2009] is used

`(w
c

; yc
i

;x
i

) = [max(0,w|
c

x.yc
i

� 1)]2 (3.9)

By learning the multi-class SVM model, the class of the sparse feature vector

is finally assigned as follows:

y = max
c2Y

< w
c

,x > (3.10)

Here, the maximum distance of each feature point with respect to L classifica-

tion lines is calculated in the feature space and the corresponding class is assigned

to the testing point [Ensafi et al., 2014b].

3.3 Datasets

The two publicly available datasets are ICPR2012 [Foggia et al., 2013] and ICIP2013

datasets [Foggia et al., 2014] which were used in two contests held with ICPR2012
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and ICIP2013 conferences. The ICPR2012 dataset has a training set and a test

set both available to the public, whereas ICIP2013 dataset has only a training set

public available. Both datasets have six classes in Cell Level. But at specimen

level, there are six classes for the ICPR2012 dataset and seven classes for the

ICIP2013 dataset, respectively. Cell masks are provided in order to classify the

cells without considering other neighboring cells for the specimen image.

3.3.1 ICPR2012

This dataset is introduced as a contest in conjunction with International Confer-

ence on Pattern Recognition (ICPR) 2012 and is publicly available1. ICPR2012

dataset consists of 28 HEp-2 cell images where each image has a resolution of

1388⇥1038 pixels. The images are captured by using a fluorescence microscope

(40-fold magnification) that is coupled with a 50W mercury vapor lamp and a dig-

ital camera. Each of the 28 RGB images contains one of the six staining patterns,

which have following characteristics and figures:

Centromere (Ce): Contains several discrete small spots that are

scattered throughout the nuclei area. These speckled can be

observed in the nuclear chromatin.

1
http://nerone.diem.unisa.it/hep2contest/index.shtml
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Coarse Speckled (Cs): Contains coarse granular nuclear staining

pattern. Some holes are observed on the nuclei area and the

pattern is so close to Fine Speckled cell images.

Cytoplasmatic (Cy): contains a very fine dense resembling ho-

mogeneous staining which covering part or the cytoplasm.

Fine Speckled (Fs): Contains fine granular nuclear staining pat-

tern. In most of the cell images of this type, the patterns are

observed blurry.

Homogeneous (H): The staining pattern is spread out over the

interphase nuclei. These type of cell images have smooth dif-

fused characteristics all over the nuclei area.

Nucleolar (N): Small compact particles can be observed in the

cells’ nucleoli. Without these granules, this pattern is close to

Homogeneous class. At most six granules can be observed.
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CytoplasmaticCentromere
Coarse  

Speckled

Figure 3.4: The cell level images of ICPR2012 for positive (top two rows) and
intermediate (bottom two rows) intensity levels and their heat-maps to show the

underlying pattern.

For more information regarding the related AD to each staining patterns and

high resolution images, please refer to the Appendix.

The cell mask and cell label are provided for each image. In addition, there

are two levels of intensity images, namely, intermediate images and positive im-

ages as illustrated in Fig. 3.4. The heat map of the cells are also shown for better

understanding of underlying patterns. In particular, the intensity values of the

positive cells are more than intermediate cells, which can be easily investigated

by naked eye. The intensity values of foreground in intermediate cells are rela-

tively close to the background pixels, which makes the classification problem more

challenging for this type of cells.
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Table 3.2: The statistics of cell and specimen images in the ICPR2012 training and
testing datasets. The values in parentheses are the number of cells in specimen

images.
ICPR2012

Dataset

Training set Test set Total
Overall

Intermediate Positive Intermediate Positive Intermediate Positive

Centromere 2 (119) 1 (89) 1 (65) 2 (84) 3 (184) 3 (173) 6 (357)

Coarse speckled 1 (41) 1 (68) 1 (33) 2 (68) 2 (74) 3 (136) 5 (210)

Cytoplasmatic 1 (24) 1 (34) 1 (13) 1 (38) 2 (37) 2 (72) 4 (109)

Fine speckled 1 (48) 1 (46) 1 (63) 1 (51) 2 (111) 2 (97) 4 (208)

Homogeneous 1 (47) 2 (103) 1 (61) 1 (119) 2 (108) 3 (222) 5 (330)

Nucleolar 1 (46) 1 (56) 1 (66) 1 (73) 2 (112) 2 (129) 4 (241)

Total
7 (325) 7 (396) 6 (301) 8 (433) 13 (626) 15 (829) 28 (1455)

14 (721) 14 (734) 28 (1455)

Table. 3.2 shows the number of cells in each specimen image for di↵erent

patterns and intensities. In total, there are 1455 cells in the 28 images, including

14 specimen images (containing 721 cells) for training and 14 (containing 734

cells) for testing.

As can be seen in Table. 3.2 the distribution of cells for di↵erent patterns

are not the same. For instance, the number of Cytoplasmatic cells are almost

one-third of the number of Homogeneous cells. These kind of information can be

used as a prior knowledge in the experiment.

3.3.2 ICIP2013

This dataset is provided by Sullivan Nicolaides Pathology Laboratory. It contains

419 samples of patients, which were prepared on the 18-well slide of HEP-2000

IIF assay from Immuno Concepts N.A. Ltd. The images were captured using

a monochrome high dynamic range microscopy camera. Approximately 100-200

cell images were extracted from each patient serum. This dataset contains 252
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specimen images with the size of 2776⇥2080 pixels in seven classes. For ease of

computation, each image is divided to four parts and the mask of them are also

provided. In total there were 68,429 cell images extracted including 13,596 for

training (publicly available2) and 54,833 for testing.

Unlike the ICPR2012 dataset, this dataset contains gray-scale images and the

number of data is much more than previous dataset. The specimen level images

with di↵erent classes are described as:

Centromere (Ce): Discrete small spots that are observed in the

nuclear chromatin in a scattering fashion.

Golgi (G): Composed of irregular large granules which are

stained adjacent to the boundaries of nucleus and around chro-

mosomal material.

Homogeneous (H): The staining pattern is spread out over the

interphase nuclei. These type of cell images have smooth dif-

fused characteristics all over the nuclei area.

2
http://i3a2014.unisa.it/?page_id=126
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Mitotic Spindle (MP): staining only of the triangular or

“banana-shaped” pole area of the mitotic spindle in the

metaphase cells. This pattern is rare.

Nucleolar (N): Clustered particles can be observed in the cells’

nucleoli. Without these granules, this pattern is close to Homo-

geneous class. At most six granules can be observed.

Nuclear Membrane (NM): Contains a tube-like of smooth ho-

mogeneous fluorescence in the interphase cells.

Speckled (S): Contains two subcategories of fine- and coarse-

speckled. Various sized speckled can be observed densely dis-

tributed throughout nucleoplasm.

For more information regarding the related AD to each staining patterns and

high resolution images, please refer to the Appendix.

Each annotated cell image in this dataset contains information of cell pattern,

intensity level (positive or intermediate), mask and specimen image number. The

intensity level can be used as an informative prior knowledge in the experiments.
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Figure 3.5: The cell level images of ICIP2013 for positive (top two rows) and
intermediate (bottom two rows) intensity levels and their heat-maps to show the

underlying pattern.

The cell level classification in ICIP2013 dataset contains six classes which are

shown in Fig. 3.5. The top two rows are the positive cell images and the bottom

two rows are indicated the intermediate cell images. For both types, the heat

maps are also shown to understand the underlying patterns.

Table. 3.4 shows the number of cells in each image for di↵erent patterns and

intensities for this dataset. The numbers in parenthesis are the number of cells in

corresponding specimen image.

This number for ’Mitosis Spindle’ is zero, because this class is not considered in

the Cell level classification. As evident in Table. 3.4, the number of intermediate

cells are more than positive ones and the Golgi cell class has lower number of

images. These priors can also be considered in the experiments.
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Table 3.4: The statistics of cell and specimen images for the ICIP2013 training
dataset. The values in parentheses are the number of cells in specimen images.
ICIP2013

Dataset
Centromere Golgi Homogeneous

Mitosis

Spindle
Nucleolar

Nucleolar

Membrane
Speckled Total

Positive 26 (1378) 4 (349) 26 (1087) 5 (0) 17 (934) 7 (943) 25 (1457) 110 (6148)

Intermediate 25 (1363) 6 (375) 27 (1407) 10 (0) 33 (1664) 14 (1265) 27 (1374) 142 (7448)

Total 51 (2741) 10 (724) 53 (2494) 15 (0) 50 (2598) 21 (2208) 52 (2831) 252 (13596)

3.4 Experiments and Results

The proposed method is tested on two publicly available datasets. For each

dataset, two experiments on Cell Level and Specimen Level are designed to clas-

sify the individual cell and the specimen image, respectively. For evaluations,

the Mean Class Accuracy (MCA) is adopted as used in the ICIP2013 contest:

MCA = 1
K

P
K

k=1 CCR
k

where CCR
k

is the correct classification rate for class k

and K denotes the number of classes.

3.4.1 Evaluation on ICPR2012 Dataset

Cell Level Accuracy

The Cell Level classification is performed under the typical setup as describe in

Section 3.2, namely, SIFT and SURF feature concatenation for dictionary learn-

ing, 40 iteration dictionary learning with 2048 words produced, sparse coding with

max-pooling for SVM classification. Overall, a Cell Level accuracy of 78.2% is

obtained for the ICPR2012 dataset. This accuracy is 3.2% higher than the best

accuracy reported in [Theodorakopoulos et al., 2014] and almost 9% higher than

the winning accuracy in the ICPR2012 contest (Nosaka [Nosaka and Fukui, 2014]).

Table. 3.5 shows the accuracy of the proposed technique and ten state-of-the-art
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Table 3.5: The cell-level accuracy for the ICPR2012 dataset.

Name
Cell

Level
Positive Intermediate

Average

Accuracy

Specimen

Level

SBoW 78 82 65 74 93

Ensafi? 73 81 62 71 86

Kastaniotis⇤ 75 70 31 51 86

Shen† 74 27 7 17 86

DiCataldo⇧ 72 60 35 48 93

Kazanov‡ 71 62 41 52 100

Faraki� 70 - - - 79

Nosaka• 69 74 35 55 86

Wiliem⌥ 67 69 48 59 71

Xiangfei⌦ 67 78 48 63 93

Stoklasa~ 64 74 35 55 79

? [Ensafi et al., 2014a] ⇤ [Theodorakopoulos et al., 2014] † [Shen et al., 2014]

⇧ [Di Cataldo et al., 2014] ‡ [Ponomarev et al., 2014] � [Faraki et al., 2014]

• [Nosaka and Fukui, 2014] ⌥ [Wiliem et al., 2014] ⌦ [Kong et al., 2014]

~ [Stoklasa et al., 2014]

techniques as reported in the ICPR2012 contest [Foggia et al., 2013].

The dataset also contains the intensity information of the cells, namely positive

and intermediate classes. Our proposed technique obtains superior cell classifica-

tion accuracy of 82% and 65% for the positive and intermediate intensity level,

respectively, as shown in Table. 3.5. Table 3.6a further shows the confusion matrix

of Cell Level accuracy, which indicates high misclassification rate between Fine-,

Coarse-Speckled and Homogeneous classes due to the similar underlying patterns

of these classes.
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Additionally, the Fig. 3.6 and 3.7 show the comparison of cell level accuracies

on the test set with all the participants in the ICPR 2012 contest. As it is evident

we outperform other methods.
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Table 3.6: The confusion matrices for Cell Level (a) and Specimen Level (b) by
using SIFT+SURF for ICPR2012 dataset.

Confusion
Matrix

Ce CS Cy FS H N

Ce 89.93 0.67 0.00 0.00 0.00 9.40
CS 1.98 73.27 2.97 18.81 0.99 1.98
Cy 0.00 1.96 98.04 0.00 0.00 0.00
FS 5.26 15.79 2.63 52.63 23.68 0.00
H 2.22 1.67 0.00 18.33 75.00 2.78
N 10.07 5.76 0.72 1.44 1.44 80.58

(a) Cell Level

Confusion
Matrix

Ce CS Cy FS H N

Ce 100.0 0.0 0.0 0.0 0.0 0.0
CS 0.0 66.77 0.0 33.3 0.0 0.0
Cy 0.00 0.0 100.0 0.0 0.0 0.0
FS 0.0 50.0 0.0 50.0 0.0 0.0
H 0.0 0.0 0.0 0.0 100.0 0.0
N 0.0 0.0 0.0 0.0 0.0 100.0

(b) Specimen Level

Specimen Level Accuracy

For the Specimen Level classification, all cells in one specimen image are classified

and the maximum votes of the cell classes are taken as the specimen class. For

the specimen images, the proposed technique achieves an accuracy of 93% as

shown in Table. 3.5. The best specimen classification accuracy is achieved by

Kazanov [Foggia et al., 2013] but we have two misclassifications between Fine-

and Coarse-Speckled classes as can be seen in the confusion matrix in Table. 3.6b

due to the similar patterns of these two classes.

3.4.2 Evaluation on ICIP2013 Dataset

Cell Level Accuracy

This dataset has only a training set publicly available. To provide fair comparison

with other methods, we follow the evaluation method as reported in [Han et al.,

2014], where 600 cell images are randomly selected for each cell class as the train-

ing set (except Golgi class where 300 cell images are selected) and the rest for

testing. Then the Cell Level classification is performed 20 times on positive and
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intermediate cells and the average accuracy is reported. Table. 3.7 shows the clas-

sification accuracies in cell and specimen images. As Table. 3.7 shows, there are up

to 3% and 5% improvements for the positive and intermediate cell classification,

respectively. This much better accuracy is largely because of the sparse repre-

sentation of the input features and their combinations in di↵erent scales which

reduces the global information lost and provides better discriminative features.

Additionally, Table. 3.8a shows the confusion matrix which highlights the

misclassification between Homogeneous, Speckled and Centromere, Nucleolar-

Membrane classes. The misclassification is largely due to the very similar un-

derlying pattern of these classes especially in intermediate cells as can be seen in

Fig. 3.5.

Specimen Level Accuracy

The cells in each specimen image should be extracted and classified in order to

estimate the Specimen Level classification. We therefore extract cells by combining

several image feature instead of using the provided cell masks as described in

Section. 3.2.2. For the 252 specimens, our cell extraction method extract 5816

cells which is used as the Cell Level dataset as shown in Table. 3.9. For evaluation,

half of specimen images from each class is randomly selected for training and the

rest for testing. The evaluation is performed 10 times and the average accuracy

is reported as shown in Table. 3.7.

In this experiment, the results are compared using the extracted cells (see

Section. 3.2.2) versus the cells provided by the cell masks. As Table. 3.7 shows,

the proposed cell extraction method helps improve the classification accuracy
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significantly. Additionally, the time complexity of the proposed cell extraction

method is an order of magnitude lower than that considering all the cells in the

specimen images.

The confusion matrix of Specimen Level classification is shown in Table. 3.8b,

which shows high misclassification between Nucleolar Membrane and Homoge-

neous due to their very similar patterns. There is also high misclassification

between Golgi and Mitosis Spindle classes, which is largely due to the low num-

ber of training samples of these classes compared with other classes as shown in

Table. 3.9.

Table 3.7: Accuracy on the ICIP2013 dataset.

ICIP2013
Cell Level Specimen Level

Han? Ensafi† SBoW All Cells SBoW

Positive cell images 95.5% 95.8% 98.12% 89.21% 93.26%

Intermediate cell images 80.9% 87.9% 92.78% 88.43% 92.12%

Average 88.2% 91.9% 95.45% 88.82% 92.69%

? [Han et al., 2014] † [Ensafi et al., 2014b]

Table 3.8: The confusion matrices for Cell Level (a) and Specimen Level (b) by
using SIFT+SURF for ICIP2013 dataset.

Confusion
Matrix

Ce G H N NuMem S

Ce 96.34 0.00 0.00 0.00 2.17 1.49
G 0.00 98.47 1.12 0.00 0.00 0.41
H 0.00 0.97 96.14 0.91 0.00 1.98
N 0.00 1.14 2.12 96.19 0.00 0.55

NuMem 2.24 1.12 0.00 0.00 95.32 1.32
S 1.08 0.21 7.26 0.92 0.29 90.24

(a) Cell Level

Confusion
Matrix

Ce G H MitSp N NuMem S

Ce 94.61 0.00 1.12 0.00 0.00 0.00 4.27
G 0.00 93.21 0.03 6.76 0.00 0.00 0.00
H 0.00 0.44 93.78 0.00 0.00 0.00 5.78

MitSp 0.00 5.34 5.46 86.19 0.00 3.01 0.00
N 0.00 0.00 0.78 0.04 99.18 0.00 0.00

NuMem 0.00 0.00 14.74 0.00 0.00 85.26 0.00
S 1.70 0.00 1.73 0.00 0.00 0.00 96.57

(b) Specimen Level
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Table 3.9: The statistics of extracted cells for the ICIP2013 training database.
The values in parentheses are the number of cells in specimen images.

Extracted

Cells
Centromere Golgi Homogeneous

Mitosis

Spindle
Nucleolar

Nucleolar

Membrane
Speckled Total

Positive 26 (603) 4 (90) 26 (623) 5 (106) 17 (379) 7 (158) 25 (639) 110 (2598)

Intermediate 25 (523) 6 (124) 27 (664) 10 (211) 33 (766) 14 (294) 27 (649) 142 (3218)

Total 51 (1126) 10 (214) 53 (1287) 15 (317) 50 (1145) 21 (452) 52 (1288) 252 (5816)

3.4.3 Discussion

Dictionary Size

The performance of the proposed technique is closely related to the dictionary

size. We study this issue by doubling the dictionary size in each iteration starting

from 64. Fig. 3.8 shows the cell classification accuracy with di↵erent dictionary

sizes. As Fig. 3.8 shows, the classification accuracy first increases with dictionary

size and saturates when the dictionary size reaches certain number. One possible

explanation for this result is that dictionaries with a larger size produce more

discriminative sparse codes which lead to better classification accuracy.

Generally the accuracy of ICIP2013 dataset is clearly higher than that of

ICPR2012 dataset. The better accuracy is largely due to the large number of

available training cells in ICIP2013 dataset (see Section. 3.3.2), which helps learn

more discriminative features and better classifiers.

Pooling Strategy

Three types of pooling strategy are studied including one-hot encoding, average-

and max-pooling. The first strategy is performed on the sparse codes of di↵erent

regions in scaled images which measures only one maximum code in each region
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Figure 3.8: The study of di↵erent dictionary size and pooling strategy.

and concatenates to build the final feature vector. This method underestimates

the large amount of information which can be extracted from the input images

and results in poor performance as shown in Fig. 3.8. As a comparison, both

average-pooling and max-pooling outperform the one-hot encoding clearly, and

the max-pooling obtains the best accuracy.

The di↵erent performance can be explained that in one-hot encoding strategy,

important information could be lost by just focusing on the most representative

feature rather than a set of features. Additionally, by performing the average-

strategy, the sharpness of the histogram of features are blared which results in the

loss of important information of the input images.

SIFT, SURF and Learning Iteration

We study the complementation between the SIFT and SURF for the HEp-2 clas-

sification problem. Three di↵erent dictionaries and SVM classifiers are trained

by using SIFT, SURF and SIFT+SURF features, respectively. Fig. 3.9a shows
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Figure 3.9: Classification accuracy on ICPR2012 dataset by using di↵erent feature
sets (a) and correlation between the number of iterations in the dictionary learning

process (b).

experimental results on the ICPR2012 dataset by using the three di↵erent sets of

features.
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As Fig. 3.9a shows, SIFT and SURF perform similarly for Cytoplasmatic,

Coarse-speckled, and Centromere cells. Besides, SIFT outperforms SURF for

Nucleolar and Homogeneous cells and SURF outperforms SIFT for Fine-speckled

cells. On the other hand, the combination of SIFT and SURF outperforms the

SIFT greatly for Fine-speckled and Coarse-speckled and perform similarly to the

SIFT for the rest four cell types. Overall, the combination of SIFT and SURF

obtains an average accuracy of 78.2% over all six cell types, which is clearly

higher than 74.5% and 70.9% that are obtained by using the SIFT and SURF

alone, respectively.

To study the e↵ects of the iteration number on the performance of our algo-

rithm, we conducted a series of experiments and have three observations. First,

the iteration number does have certain e↵ects on the performance of our algorithm.

Second, the e↵ect is still within a constrained range where the classification accu-

racy changes within the range of 70% - 78% when the iteration number changes

as shown in Fig. 3.9b in the revised manuscript. Third, the experiments show

that the optimal classification accuracy is obtained when the iteration number

is around 30 - 50. This can be a useful reference for the ensuing research and

development on this topic. More interestingly, the proposed technique is capable

of obtaining state-of-the-art accuracy (around 75%) with the first iteration of the

dictionary learning. This is very important for the reduction of the computation

costs which is often heavy due to the extraction of the SIFT and SURF features

as well as the minimization problem involved.
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3.5 Summary

The BoW model on sparse coding scheme is proposed for the HEp-2 cell clas-

sification problem. The dictionary size, pooling strategy, e↵ects of integrating

the SIFT and SURF features and the optimal number of iterations for dictionary

learning are investigated. Our experiments show that a larger dictionary size usu-

ally leads to a better classification performance. Additionally, the max-pooling

strategy works better than both average-pooling and one-hot encoding method.

Experiments on two public benchmarking datasets show superior classification

accuracy at both cell level and specimen level.

Manually assigning the dictionary size increases the computational complexity

of dictionary learning procedure and tuning this parameter is done by try and error

scheme. In the next chapter a non-parametric Bayesian method is proposed to

estimate the dictionary size.
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Chapter 4

Non-Parametric Bayesian

Method for Dictionary Learning

4.1 Introduction

In this chapter we propose a Sparse Non-Parametric Bayesian (SNPB) model

and implement it for the HEp-2 cell classification problem, targeting applications

for computer-aided AD diagnosis. In the SNPB model, the dictionary learn-

ing exploits the non-parametric sparse factor analysis (NSFA) [Knowles et al.,

2011,Zonoobi et al., 2014a,Zonoobi et al., 2014b] that is capable of determining

the dimension of the dictionary words automatically. In particular, the “non-

parametric” here means that the dimension of the dictionary can be extended to

infinity at the beginning of the learning process and lead to the correct and most

e�cient value at the end. The learned sparse representation of the codes is used

as the final feature for the HEp-2 cell classification.
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Variety of methods are proposed to use the dictionary learning method where

most of them assigned manual values for the dictionary learning procedures and

nearest neighbors [Di Cataldo et al., 2014, Shen et al., 2014,Ensafi et al., 2014a,

Wiliem et al., 2014]. However, there is a trade o↵ between performance of the

system and the dimension of the dictionary [Ensafi et al., 2014b], where the large

values for dictionary dimension results in better accuracies but a↵ect the compu-

tational cost. To the best of our knowledge, there is no study of finding the best

low-dimensional dictionary for the HEp-2 cell classification problem, which is one

of the novelties of this work.

In the rest of the chapter, we describe the proposed CAD system in Section

4.2 and explain the experiments and results in Section 4.3 on two benchmarking

datasets.Finally, we have the discussion and summary sections in 4.3.3 and 4.4

respectively.

4.2 Method

The proposed SNPB method is depicted in Fig. 4.1. First the SIFT and SURF

features are extracted from the masked images in a grid manner. Then a dictionary

is learned by using the non-parametric Bayesian method, which can estimate the

dimension of the dictionary automatically. By transferring the input features to

sparse codes by means of the learned dictionary, we scaled them to three layers

and then the max pooling approach makes the output feature vectors.

In other words, three layers of codes are used. The first layer is the all sparse

codes, second one is the divided image to four regions and the last layer is divided
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Figure 4.1: The SNPB framework of the HEp-2 cell classification.

to 16 regions. Totally there are 21 regions where in each region the maximum bin

of the histograms of codes is calculated. Finally, the concatenated sparse code

of each region is used as the final feature vector for each image. By assuming

the dimension of each feature vector is D, the final feature vector dimension is

21⇥D. In training stage, these features are then fed to the multi class (One-

Versus-All) linear SVM to classify the input training images with their ground

truth labels. The same procedure is applied on the test images by using the

pre-learned dictionary and SVM classifier.

4.2.1 Dictionary Learning

The dictionary learning method which is used is based on non-parametric Bayesian

method [Gershman and Blei, 2012] that makes use of the sparse prior knowledge

on coe�cients of dictionary words based on Indian Bu↵et Process (IBP) [Gri�ths

and Ghahramani, 2011]. The graphical model of this method is shown in Fig. 4.1

in the dictionary part [Knowles et al., 2011].
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Let F be a set of features in a D-dimensional space, F = [f1, f2, . . . , fN ] 2

R(D⇥N), and D = [d1,d2, . . . ,dK

] 2 R(D⇥K) are K words of our dictionary to be

estimate. We can write:

f
n

= Dz
n

+ e
n

, D = � �B (4.1)

where �
k

is the precision (inverse variance) of the kth word in dictionary and B is

a binary matrix. The indicator function Z = [z1, z2, . . . , zN ]T contains the weights

of the words in the dictionary and we need it to be as sparse as possible and e is

the noise vectors for each dictionary words, usually assumed to be Gaussian with

diagonal covariance matrix ⌃
e

for each dimension. Here we assume both indicator

function Z and dictionary D are hidden variables of our non-parametric model

and we want to infer the posterior distribution given the input feature vectors.

Now we can model our dictionary by “spike and slab” distribution as

P (D
dk

|B
dk

, �
k

) = B
dk

N (D
dk

; 0, ��1
k

) + (1�B
dk

)�0(Ddk

) (4.2)

where �0 is the delta function. In this model we want to estimate the number

of dictionary words K. Therefore, the B matrix should have infinite columns in

initial step. To do so, we make use of IBP, which provides a sparse matrix of

intuitively infinite dimension. In this regard, we can assume that we have finite

K model and then take the limit to K ! 1. To provide the B matrix by IBP,

we assume that the rows are generated separately and a probability of source k
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contributing to any dimension is ⇡
k

. Then we can write

P (B|⇡) =
KY

k=1

DY

d=1

P (B
dk

|⇡
k

) =
KY

k=1

⇡mk
k

(1� ⇡
k

)D�mk (4.3)

where m
k

is the number of nonzero elements of column k in B. Because the prod-

uct is the binomial distribution, we can use the conjugate Beta(r,s) distribution

for ⇡
k

. We can assume ↵ as the strength parameter in r = ↵

K

and s = 1. Then

we can define the model as

B
dk

|⇡
k

⇠ Bernoulli(⇡
k

) (4.4)

⇡
k

|↵ ⇠ Beta
⇣ ↵

K
, 1
⌘

(4.5)

By integrating out ⇡ we have

P (B) =
KY

k=1

↵

K

�(m
k

+ ↵

K

)�(D �m
k

+ 1)

�(D + 1 + ↵

K

)
(4.6)

where �(.) is the Gamma function. By defining the method proposed by [Gri�ths

and Ghahramani, 2011] we can have the infinite limit of equation (4.6) as

P (B) =
↵K+

Q
h>0

K
h

! exp(�↵HD)
K+Y

k=1

(D �m
k

)!(m
k

� 1)!

N !
(4.7)

where K+ is the number of non-zero column of B, HD =
PD

j=1
1
j

is the Dth

harmonic number and K
h

is the number of rows whose entries correspond t the

binary number h.

To provide a sparse matrix with the distribution in (4.7), the Indian Bu↵et
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Process starts from the first row and samples Poisson(↵) columns. To generate

the i
th

row, IBP samples from the columns which have been sampled in previous

rows with the probability of mk
i

and samples Poisson(↵
i

) from the new columns.

Here m
k

is the number of nonzero elements of column k in B. The large values

of ↵ produce the matrix with relatively large number of columns.

For inference, the Markov Chain Monte Carlo (MCMC) method is used, which

defines a Markov chain on the hidden variables (B, Z) and maximizes the pos-

teriors. In other words, in each iteration the B, Z matrices are sampled using

Gibbs sampling strategy (which is a simple form of MCMC) and the posterior

probability is maximized.

Additionally, we can sample the hyper-parameter of IBP (↵) as well using

conjugate Gamma(a1, a2) prior by the likelihood term of equation (4.7),

P (↵|B) / P (B|↵)P (↵) = Gamma(K+ + a1, HD + a2). (4.8)

where a1 and a2 are constant values [Knowles et al., 2011].

4.2.2 Sparse Coding

Next stage after calculating the optimal dictionary is to code the input images

sparsely [Zonoobi and Kassim, 2013]. We use the e�cient sparse coding scheme

[Lee et al., 2006] by fixing the dictionary words, which results in (4.9),

min
z

NX

n=1

��f
n

�Dz
n

��2
+ �|z

n

| (4.9)
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However, if we know the sign of each code in z
n

then we can replace it with

either z
n

or �z
n

, then the resulting formulation will change to a simple Quadratic

optimization Problem (QP). By guessing the initial values, we can refine it by

solving this QP using least squares.

4.3 Experiments And Results

Datasets

Two publicly available datasets namely MIVIA HEp-2 (ICPR2012) and ICIP2013

are used in this experiment. The former dataset has training and test sets in

six classes but the latter one has huge number of cells in its training set and the

test set remained as an evaluation set for the organizers, which is not published

so far. Both datasets contain IIF images with several cells in them. The maskS

of the cells are provided in order to classify the cells without considering other

neighboring cells named cell level classification (see Chapter 3.3). Additionally,

it is assumed that the cells in each image belong to one class, which defines the

image level classification problem.

4.3.1 Optimizing the Dimension of Dictionary

The proposed non-parametric Bayesian method is used to estimate the optimum

dictionary dimension in both datasets. As can be seen in Fig. 4.2, the dimension

of dictionaries (K), increase in the starting iterations and finally converge to their

optimums. By this method, the dimension of the positive and intermediate in-

tensity level dictionaries in ICPR2012 are calculated 28 and 18, respectively. For
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Table 4.1: The MCA on test set of ICPR2012 dataset [Foggia et al., 2013]. The
Values in the parentheses are dictionary dimensions.

ICPR2012 SNPB-(D) Ensafi-(D)?

S
h
en

⇤

D
iC
at
al
d
o†

K
az
an

ov
⇧

S
ir
am

‡

N
os
ak
a�

W
il
ie
m

•

X
ia
n
gf
ei

⌥

S
to
kl
as
a~

Cell Level 75 (38) 72 (1024) 74 72 71 62 69 67 67 64
Image Level 93 (38) 86 (1024) 86 93 100 86 79 71 93 79
Positive 82 (28) 81 (1024) 27 60 62 63 74 69 78 74

Intermediate 59 (18) 62 (1024) 7 35 41 60 35 48 48 35
Average Accuracy 69 72 17 48 52 62 55 59 63 55
? [Ensafi et al., 2014a] ⇤ [Shen et al., 2014] † [Di Cataldo et al., 2014] ⇧ [Foggia et al., 2013]
‡ [Sriram et al., 2014] � [Nosaka and Fukui, 2014] • [Wiliem et al., 2014] ⌥ [Han et al., 2014]
⌦ [Foggia et al., 2013] ~ [Foggia et al., 2013]

ICIP2013 datasets, these values are estimated 139 and 123 respectively. Whereas,

these values are manually selected to 1024 as the state-of-the-art results in [Ensafi

et al., 2014a,Ensafi et al., 2014b]. The increasing slope of the charts in Fig. 4.2

proves that the size of the dictionary matrix is intuitively infinite and by optimiz-

ing the model, it decreases to a minimum value in its steady state. Additionally,

by having low dimensional dictionaries, the dimension of final sparse codes and

complexity of calculating them are decreased as well.

4.3.2 Evaluation

To evaluate the method, the MCA (see Section 3.4) is used. Additionally, in all

the evaluation procedures, the dictionaries are learned on the training set only.

For the ICPR2012 dataset, the test set is available for evaluation. Table. 4.1

shows the accuracies of ICPR2012 dataset versus the other methods. As can be

seen in this table, although we have learned a low dimension dictionary, a better

accuracy is achieved in cell level and positive intensity level in comparison with
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Figure 4.2: The dictionary dimensions for ICIP2013 and ICPR2012 datasets ver-
sus the iteration of the algorithm.

other methods.

For the ICIP2013 dataset, in order to compare our results with the method

of [Han et al., 2014], the accuracies are achieved using 600 randomly selected

images for training and the rest for testing. This evaluation is performed on

positive and intensity level images as well and the results are stated in Table.

4.2. Additionally, the method of [Ensafi et al., 2014b], which we call it Sparse

Coding (SC) method is evaluated using the same randomly selected images. In

this method the dictionary dimension is manually defined to 1024 as the authors

suggest. As we can see in the TABLE 4.2, the SNPB results are better than the

SC method by having low dimensional dictionaries as well.
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Table 4.2: The MCA of ICIP2013 dataset.
ICIP2013
Dataset

Accuracy
SNPB-(Dimension) SC-(dimension) [Han et al., 2014]

Positive images 96.8% (139) 95.1% (1024) 95.5%
Intermediate images 88.8% (123) 87.9% (1024) 80.9%

Average 92.8% 91.5% 88.2%

4.3.3 Discussion

The SNBP model obtained state-of-the-art result in Cell Level (75.2%) and pos-

itive intensity cells (82.6%) respectively in comparison with other methods for

ICPR2012 dataset. Additionally, the dimension of the learned dictionary for pos-

itive and intermediate intensity levels are 28 and 18 respectively, which are more

than 36 times smaller than the other dictionary based models as in [Ensafi et al.,

2014a], which is manually selected to 1024. This dominant reduction of dictionary

size is a great beneficial for calculating the sparse codes and classifying the test

images.

For the ICIP2013 dataset, the state-of-the-art accuracies are obtained with

comparing to [Han et al., 2014] and [Ensafi et al., 2014b] by considering the 600

randomly selected images for training and the rest for testing. Additionally, the

advantage of the proposed method is its lower dimension of the learned dictionary,

139 and 123 for positive and intermediate intensity level dictionaries respectively,

which are almost 8 times smaller than the previous models.
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4.4 Summary

A Sparse Non-Parametric Bayesian (SNPB) model is proposed for automatic clas-

sification of the HEp-2 cell images. The prevalent approach uses sparse coding

and Bag of Words models which depends highly on the dictionary size that is

usually selected in a manual manner. The Indian Bu↵et Process provides prior

knowledge of sparse codes and takes advantage of intuitively infinite matrix di-

mension which is exploited to produce an optimal dictionary size automatically.

Experiments show that the dimension of the proposed model is 28 and 8 times

smaller than the similar BoW methods in ICPR2012 and ICIP2013 datasets re-

spectively. Additionally, the lower dimension of learned dictionary leads to lower

computational time in the test procedure.

One bottleneck of this method is the large amount of overlapped image patches

which are participated in the dictionary learning procedure. Additionally, the

size and shape of the patches correlate the amount of information carried by

the patches. Therefore, an e�cient method is needed to locate and shape the

patches to satisfy the problems. In the next chapter, a distributed dictionary

learning method is proposed to addresses the HEp-2 cell classification problem in

a computationally e�cient and less memory intensive way.
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Chapter 5

Adaptive Distributed Dictionary

Learning

5.1 Introduction

In this chapter, we propose Adaptive Distributed Dictionary Learning (ADDL)

method which addresses the HEp-2 cell classification problem in a computationally

e�cient and less memory intensive way compared to the other methods. To the

best of our knowledge, this is the first time that a distributed dictionary learning

method has been successfully implemented for image classification. In our pro-

posed method, the dictionary matrix and the coding vector are partitioned into N

blocks where each block is associated with a sub-dictionary and a sub-vector. Con-

sidering these blocks, we form a connected network of N nodes where each node is

in charge of updating its own sub-dictionary. Each node is connected to a number

of neighboring nodes sharing their information to update the sub-dictionaries. Es-
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sentially, we reformulate the dictionary learning problem as a distributed learning

task over the network and use the di↵usion adaptation strategy [Sayed, 2014,Tu

and Sayed, 2012] to solve this distributed problem. Moreover, we propose to com-

bine the information of neighboring nodes in an adaptive way which results in

superior performance. This adaptive approach enables the nodes to learn about

the usefulness of the information received from their neighbors which helps the

nodes to ignore misleading information.

The rest of this chapter is organized as follows. We introduce dictionary

learning in a distributed manner in Section 5.2. The experiments and results

obtained by testing the method on two datasets are provided in Section 5.3. The

chapter is concluded in Section 5.4.

5.2 Overview of the ADDL Method

Fig. 5.1 shows our proposed ADDL method which extracts SURF (speeded-up

robust features) and SIFT features of the images and uses them as inputs to the

distributed dictionary learning. The learned dictionary is then used for HEp-2 cell

classification where the sparse coding of image patches are combined with spatial

pyramid matching (SPM) [Lazebnik et al., 2006]. As can be seen in Fig. 5.1,

each input image is divided into 1, 4 and 16 regions within three pyramid layers

and max-pooling is applied to the sparse codes of each region to obtain the final

feature vector. Then SVM is learned to classify the cell images. Further details of

the dictionary learning which is performed in a distributed manner is presented

in the following sub-sections.
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SIFT
SURF

SVM 
Model

Dictionary LearningInput images 
grid points

Histogram of 
each region

Sparse
codes

Sparse 
Coding

Final Features

21 Regions

Figure 5.1: The proposed ADDL framework.

5.2.1 Dictionary Learning

By extracting the features of each image patch the input feature vector F
t

for the

dictionary learning algorithm is calculated. The dictionary learning problem can

then be formulated as:

min
zt,D

(kF
t

�Dz

t

k22 + �kz
t

k1 +
�

2
kz

t

k22) (5.1)

where F
t

is the M ⇥ 1 input feature vector at time t, D is an M ⇥K dictionary

matrix, z
t

is the K⇥1 sparse code vector, and � and � are the adjustable penalty

(regularization) terms. It should be noted that the role of the `1-norm term kz
t

k1
is to promote sparsity of the code vector while the Euclidean norm kz

t

k2 ensures

that the estimated values are small. To solve the optimization problem in (5.1),

we introduce the distributed learning method.

5.2.2 Distributed Dictionary Learning

To learn the dictionary in a distributed manner we adopt the recently proposed

approach presented in [Chen et al., 2015b]. In this method, the dictionary matrix
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D and the coding vector z are partitioned into block forms:

D = [D1 . . .DN

], z = col{z1, . . . , zN

} (5.2)

where D
k

is a sub-dictionary matrix of size M ⇥N
k

and z

k

is a sub-vector of size

N
k

⇥1. Moreover, the summation over the sizes of sub-dictionaries is equal to the

total size of the dictionary:

N1 + · · ·+N
N

= K (5.3)

Now we form a connected network of N agents where each agent k in the

network is responsible to update its own sub-dictionary D
k

that is distributed

over the network. As shown in Fig. 5.2, each agent in the network has a number

of neighboring agents that it can interact with. Moreover, the input features F
t

can only be presented to a subset of agents represented by NI . Our experiments

show that (see Section 5.3) providing the input data only to a subset of agents

is computationally e�cient while retaining comparable performance with other

methods. This is due to the distributed nature of the network where the agents

are allowed to interact and cooperate with their neighbors, resulting in dispersion

of information over the network.

Considering (5.2) in the dictionary learning problem we can reformulate (5.1)

as:

min
z,D

(kF
t

�
NX

k=1

D
k

z

k

k22 +
NX

k=1

(�kz
k

k1 +
�

2
kz

k

k22)) (5.4)

The linear combination of the sub-dictionaries D
k

represents the input features
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Figure 5.2: In this connected network, each agent k is responsible for learning a
sub-dictionary D

k

and is able to share information with its neighbors represented
by N

k

. Also, input data F
t

is presented to a subset of agents represented by NI .

F
t

. It should be noted that the first term of (5.4) ensures that the reconstruction

error is small while the role of the second term is to make the code vector sparse

and small.

To solve the optimization problem of (5.4) in a distributed manner, the cost

function should have a “sum-of-costs” form. Specifically, in order to apply dis-

tributed methods to tackle the problem at hand, the global cost function of the

optimization problem, Jglob(!), should be the aggregation of individual cost func-

tions of the agents J
k

(!):

Jglob(!) =
NX

k=1

J
k

(!) (5.5)
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It has been shown in [Chen et al., 2015b] that the problem in (5.4) does not

follow the form in (5.5) as it is “cost-of-sums” and not “sum-of-costs”. There-

fore, it is not feasible to use distributed techniques for solving the problem in

(5.4) directly. However, it has been shown that the dual problem of (5.4) has a

distributed form similar to (5.5) and the optimal primal variables {D
k

} and z

can be recovered from the solution of the dual problem (see (5.14) and (5.15)).

According to [Chen et al., 2015b], the dual problem can be formulated as:

min
⌫
�g(⌫,F

t

) = k⌫k22 � ⌫
TF

t

+
NX

k=1

S�
�
(
DT

k

⌫

�
) (5.6)

where ⌫ is the auxiliary vector variable of size M ⇥ 1 in the dual problem, � and

� are the regularization coe�cients in (5.1), and S�
�
(x) is a function defined as:

S�
�
(x) , ��

2
· kT�

�
(x)k2

2
� � · kT�

�
(x)k2

1
+ � · xTT�

�
(x) (5.7)

Here T
�

(x) is the entry-wise soft-thresholding operator on vector x that can be

formulated for the n
th

element as:

[T
�

(x)]
n

, (|[x]
n

|� �)+sgn([x]n) (5.8)

where (x)+ = max(x, 0) and sgn(x) represents the signum function.

We can consider the dual function in (5.6) as the global cost function. There-

fore, the individual cost function of each node k can be defined as (please see [Chen
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et al., 2015b,Chen et al., 2014] for details):

J
k

(⌫;F
t

) ,

8
><

>:

�⌫TFt
|NI | +

1
N

k⌫k22 + S�
�
(
DT

k ⌫

�

), k 2 N
I

1
N

k⌫k22 + S�
�
(
DT

k ⌫

�

), k /2 N
I

(5.9)

where |NI | is the cardinality of NI .

It should be noted that the summation over the individual cost functions

J
k

(⌫;F
t

) is equal to the cost function in (5.6) and the dual problem for estimating

the optimal solution ⌫o can be rewritten as:

⌫

o = min
⌫

NX

k=1

J
k

(⌫;F
t

) (5.10)

Therefore, according to (5.5) the dual problem can be solved using distributed

learning strategies and the optimal primal variables {D
k

} and z can be recovered

afterwards (see (5.14) and (5.15)).

Several distributed learning methods have been proposed in the literature

such as incremental strategies [Bertsekas, 1997,Nedic and Bertsekas, 2001], con-

sensus strategies [Xiao and Boyd, 2004,Nedic and Ozdaglar, 2009], and di↵usion

adaptation strategies [Sayed, 2014,Chen and Sayed, 2012,Monajemi et al., 2014].

It has been shown that di↵usion strategies have superior performance and sta-

bility compared to the other methods while being robust, scalable, and capable

of real time adaptation and learning [Tu and Sayed, 2012]. The details of the

di↵usion strategy adapted to solve the distributed optimization problem in (5.10)

is explained in the next sub-section.
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5.2.3 Di↵usion Adaptation Method

In the di↵usion adaptation strategy, there is a network of N nodes where each

node k is connected to its neighboring nodes represented by N
k

shown in Fig. 5.2.

Each node can share information with and receive information from its neighbors.

Each node also has an individual cost function to minimize and the global cost

function of the network is the aggregation of all these individual costs similar to

(5.5). The di↵usion adaptation method consists of two steps: the adaptation step

and the combination step. In the adaptation step, each node k updates its own

estimate for the optimization problem via a gradient descent step. This estimate

is considered as an intermediate estimate,  
k,i

, which is further updated in the

combination step. During the combination step, the neighboring nodes share their

intermediate estimates. Afterwards, each node k updates its own final estimate,

⌫

k,i

, by combining the intermediate estimates received from the neighbors in the

ith time instant (further explanation can be found in [Sayed, 2014]). Therefore,

the di↵usion adaptation strategy can be formulated as:

 

k,i

= ⌫
k,i�1 � µr⌫Jk(⌫k,i�1;Ft

) (Adaptation step) (5.11)

⌫

k,i

=
X

`2Nk

a
`k

(i) 
`,i

(Combination step) (5.12)

where ⌫
k,i

is the estimate of node k of the optimal solution ⌫o

t

at iteration i,  
k,i

is the intermediate estimate, and µ > 0 is the updating step-size selected to be

su�ciently small. The weights a
`k

(i) in (5.12) are called combination weights and

as seen in Fig. 5.3, each a
`k

(i) is the weight that node k assigns to the information

received from node ` at time instant i. The combination weights a
`k

(i) must
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Figure 5.3: An example of a connected network where the neighboring nodes share
information with each other. The combination weight a

`k

(i) is the weight that
node k assigns to the information received from node ` at time instant i.

satisfy:

X

`2Nk

a
`k

(i) = 1, a
`k

(i) > 0 if ` 2 N
k

, a
`k

(i) = 0 if ` /2 N
k

(5.13)

It should be noted that there are several ways to design the combination

weights which can have a significant impact on the performance of the algorithm

[Monajemi et al., 2015,Chen et al., 2015a]. In Section 5.2.4 we discuss the role of

these weights and introduce an adaptive method to learn the weights over time.

After the optimal dual variable ⌫o

t

is estimated by (5.11) and (5.12), the

optimal primal variables of the dictionary learning problem, including the sparse
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codes zo

t

and the sub-dictionaries D
k,t

, can be obtained by [Chen et al., 2015b]:

z

o

k,t

= arg max
zk

[(DT

k

⌫

o

t

)
T

z

k

� (�kz
k

k1 +
�

2
kz

k

k22)] (5.14)

D
k,t

= ⇧Dk
(D

k,t�1 + µ · ⌫o

t

z

o

k,t

) (5.15)

where ⇧Dk
[·] is the projection operator onto the constraint set D

k

.

In the next section, we propose an adaptive approach to design the combi-

nation weights in (5.12). These weights play an important role in combining the

information received from the other nodes of the network which can a↵ect the

performance of the algorithm.

5.2.4 Selection of the Combination Weights

Selection of the combination weights in (5.12) can a↵ect the performance of the

network in solving the optimization problem. Here, we propose to use an adap-

tive approach for estimating the weights to tackle the dictionary learning task.

In the previously proposed distributed dictionary learning methods, the combina-

tion weights are determined in a static manner where the nodes allocate the same

weights to their neighbors without considering the reliability of the received in-

formation [Chen et al., 2015b,Chen et al., 2014,Towfic et al., 2014]. For instance,

consider the case where uniform weights are selected and the combination step

(5.12) is simply an averaging over all the estimates:

a
`k

=
1

|N
k

| if ` 2 N
k

(uniform combination weights) (5.16)
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Figure 5.4: The proposed adaptive di↵usion method to solve the dual of the dic-
tionary learning problem where each node combines the estimates of its neighbors

by the adaptive weights.

By designing the combination weights in a uniform manner the nodes assign the

same weight to all of their neighbors without considering the reliability of the

information they receive from them.
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It has been shown that it is important to design the weights such that the

nodes can learn about the reliability of the information received form their neigh-

bors over time [Monajemi et al., 2015, Chen et al., 2015a]. Therefore, the com-

bination weights must be estimated in a manner that helps the nodes to ignore

misleading information and cooperate only with neighbors that share the same

objective. We do so following the approach proposed in [Zhao and Sayed, 2012]

which minimizes the instantaneous Mean Square Deviation (MSD) of the network

defined as:

MSD(i) , 1

N

NX

k=1

Eke⌫
k

(i)k2, (5.17)

where e
⌫

k

(i) , ⌫

o

t

� ⌫
k

(i) is the error vector at node k at iteration i. Then,

the combination coe�cients a
`k

(i) can be obtained by solving the optimization

problem:

min
{a`k(i)}

MSD(i) =
1

N

NX

k=1

Eke⌫
k

(i)k2 (5.18)

It is shown in [Zhao and Sayed, 2012] that the optimal solution can be approxi-

mated by:

a
`k

(i) ⇡

8
><

>:

k⌫k(i�1)� `(i)k�2
P

n2Nk
k⌫k(i�1)� n(i)k�2 , ` 2 N

k

0, otherwise
(5.19)

One important observation from (5.19) is that the combination weight a
`k

(i)

is inversely proportional to the distance between the estimate of node k and the

intermediate estimate  
`

(i) of node `. In other words, the combination weights

are estimated such that the nodes allocate higher weights to neighbors with similar

objectives while learning to ignore misleading information. As a result, using this
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Algorithm 2: The proposed Adaptive Distributed Dictionary Learning
(ADDL) method for HEp-2 cell classification.

Input: Sub-dictionaries D
k

are initialized randomly and projected onto the
constraint set. The dual solution is initialized as ⌫

k,0 = 0 for all
k = 1, . . . , N .

Set the values for �,�, and µ.
1 begin
2 foreach input feature sample F

t

do
3 calculate the optimal dual variable ⌫o

t

until convergence by
 

k,i

= ⌫
k,i�1 � µr⌫Jk(⌫k,i�1;Ft

)

a
`k

(i) ⇡
(

k⌫k(i�1)� `(i)k�2
P

n2Nk
k⌫k(i�1)� n(i)k�2 , ` 2 N

k

0, otherwise
4 ⌫

k,i

=
P

`2Nk
a
`k

(i) 
`,i

5 foreach agent k do
6 Calculate the sparse codes zo

k,t

by

7 z

o

k,t

= argmaxzk
[(DT

k

⌫

o

t

)
T

z

k

� (�kz
k

k1 +
�

2kzk

k22)] Obtain the
sub-dictionaries D

k,t

by:
8 D

k,t

= ⇧Dk
(D

k,t�1 + µ · ⌫o

t

z

o

k,t

)

9 Obtain the dictionary D and sparse codes z by:
10 D = [D1 . . .DN

] z = col{z1, . . . , zN

}

combination method enables the nodes to continuously learn about the objective

of their neighbors so that they can distinguish between the useful and misleading

information. Estimating the combination weights in this manner helps the agents

to benefit from the cooperation with their neighbors. Moreover, for exploiting the

similarity among the nodes with similar objectives, this method results in a more

discriminative dictionary which leads to better classification results (Section 5.3).

A schematic of the di↵usion adaptation method to solve the dictionary learning

problem is shown in Fig. 5.4. The summary of the proposed ADDL method is

given in Algorithm 1.
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5.3 Experiments and Results

5.3.1 Evaluation Methods

Two publicly available datasets including ICPR2012 [Foggia et al., 2013] and

ICIP2013 [Foggia et al., 2014] are used for evaluation. Both datasets contain

many cells in each specimen image as discussed in Section 3.3.

ICPR2012. Two evaluation strategies have been performed in the litera-

ture for this dataset including “test set” evaluation and “leave-one-specimen-out”

(LOSO). The “test set” evaluation uses the provided training and test set, while

the LOSO method uses all the cells in one specimen image for test and the rest

of the cells for training.

ICIP2013. Due to the lack of a test set, two evaluation methods are used in

the literature. The first is the HSM method reported in [Han et al., 2014], where

600 cells (300 for Golgi class) from each class are used for training and the rest

for test. The other method is LOSO as performed for the ICPR2012 dataset.

5.3.2 Classification Results

ICPR2012. Table 5.1 shows the classification results for the proposed ADDL

and the comparison with other dictionary and non-dictionary based methods. The

ADDL results are reported in two forms of adaptive and uniform weights according

to (5.19) and (5.16) respectively, where adaptive weights (72%) outperform the

uniformly weighted (69%) by 3% on average based on the “Test set” evaluation.

The best accuracy in positive images is reported by SNPB method (82%) but

for the intermediate level, the ADDL with adaptive weights outperforms other
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Table 5.1: The classification accuracies for the ICPR2012 dataset by using Test
Set and LOSO evaluation methods.

ICPR2012 (%)

ADDL Other DLs Others

A
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ve
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?

S
N
P
B

�

K
as
ta
n
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ti
s†

N
os
ak
a⇧

D
iC
at
al
d
o‡

Test

set

Cell

Level

Positive 80 78 81 82 70 79 60

Intermediate 63 59 62 59 31 58 35

Average 72 69 72 70 51 69 48

Specimen Level 86 79 86 93 86 79 93

LOSO

Cell

Level

Positive 94 91 91 92 72 80 95

Intermediate 83 78 72 70 55 60 80

Average 89 85 82 81 64 70 88

Specimen Level 93 79 79 86 79 86 93
? [Ensafi et al., 2014a] � [Ensafi et al., 2015] † [Theodorakopoulos et al., 2014]
⇧ [Nosaka and Fukui, 2014] ‡ [Di Cataldo et al., 2014]

methods with 63%. The specimen level accuracy is also comparable with other

methods at 86%.

With the “LOSO” evaluation method, 89% and 85% accuracies are obtained

for adaptive and uniformly weighted ADDL respectively, where the adaptive

method outperforms other performances. At the specimen level the accuracy

is 93% which is also obtained by [Di Cataldo et al., 2014].

It should be noted that due to the low number of input images in the ICPR2012

dataset (28 images in total) the obtained accuracies are comparable with other

methods. However, by increasing the number of input images, as in the case of

ICIP2013, the advantage of ADDL method can be seen clearly which is described

in the next sub-section.
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ICIP2013. Table 5.2 shows the experimental results for the ICIP2013 dataset.

The proposed ADDL method with adaptive weights outperforms other methods

significantly. By using the HSM evaluation method the ADDL with adaptive

weights obtained 93.7% accuracy which is 2% higher than ADDL with uniform

weights and other dictionary learning (DL) methods. Additionally, it outperforms

non-DL methods by 5%.

With the LOSO evaluation method, ADDL with adaptive weights obtained

81.6% accuracy on average which is 4% higher than that achieved by ADDL with

uniform weights. This performance is better than the other DL based methods and

4% higher than other classification methods. Additionally, the performance in the

specimen level is better than other methods o↵ering 90.4% accuracy. The superior

classification accuracy can be largely explained by the use of combination wights in

the di↵usion adaptation method that enables the nodes to share information and

solve the optimization problem in a cooperative manner. Note that accuracies

on the ICPR2012 and ICIP2013 datasets are di↵erent because the quality and

amount of images within the two datasets are very di↵erent.

5.3.3 Computational cost

Dictionary learning is a computationally expensive and time consuming task. Ta-

ble 5.3 shows di↵erent dictionary learning procedures with their computation

times. These measurements were done on a machine with Intel Core i7 CPU

2.6GHz and 16 GB RAM with 64-bit operating system. As shown in Table 5.3,

the proposed ADDL method, by giving the information to a single node, takes

less time (56.64 sec) than the other methods. This is 2 and 5 times better than
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Table 5.2: The classification accuracies for the ICIP2013 dataset by using HSM
and LOSO evaluation methods.

ICIP2013 (%)
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HSM
Cell

Level

Positive 97.9 95.4 95.8 96.8 - - 95.5 -

Intermediate 89.4 87.6 87.9 88.8 - - 80.9 -

Average 93.7 91.5 91.9 92.8 - - 88.2 -

LOSO

Cell

Level

Positive 88.5 84.2 83.4 83.8 - - - -

Intermediate 74.7 71.4 71.2 72 - - - -

Average 81.6 77.8 77.3 77.9 81.1 80.3 - 78.7

Specimen Level 90.4 86.7 88 89.2 86.7 89.9 - -

? [Ensafi et al., 2014b] � [Ensafi et al., 2015] † [Gragnaniello et al., 2014]
⇧ [Manivannan et al., 2014a] ‡ [Han et al., 2014] 5 [Larsen et al., 2014]

the methods of [Ensafi et al., 2014b] and SNPB [Ensafi et al., 2015], respectively.

The proposed method takes 15 seconds more when the information is given to all

nodes to process.

For the ICIP2013 dataset, the proposed method takes 286.21 seconds to cal-

culate the dictionary when the information is given to a single node to process.

This is 47 seconds lower than passing information to all nodes to process but

significantly better than the results of other dictionary methods. For example,

ADDL is 9 and 20 times better than the [Ensafi et al., 2014b] and SNPB [Ensafi

et al., 2015], respectively. Therefore, it can be seen clearly that the proposed

method can enhance the performance of dictionary learning task significantly in

both computational cost and classification accuracy.
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Table 5.3: Computation times of di↵erent dictionary learning methods.

Dictionary Learning

Computation time (sec)

ADDL
Ensafi? SNPB�

All Nodes Single Node

ICPR2012 71.63 56.64 126.34 354.38

ICIP2013 333.73 286.21 2751.91 5742.64

? [Ensafi et al., 2014b] � [Ensafi et al., 2015]

5.4 Summary

In this chapter, we proposed an adaptive distributed dictionary learning method

that benefits from lower computational cost with lower number of tuning param-

eters which is an important advantage in solving classification problems. The

ADDL method is applied to HEp-2 cell images and obtained state-of-the-art re-

sults for both public datasets. The proposed method enhances the accuracy of the

cell classification problem compared to other methods while reducing the compu-

tational time significantly as the dictionary is learned in a distributed manner.

Moreover, learning the combination weights adaptively is an important contri-

bution for the proposed method which makes it capable of adjusting itself for

di↵erent datasets according to the input images. This approach is also a foun-

dation for big data analysis where the information is available on the nodes of a

computer cluster or cloud.
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Chapter 6

Superpixel Approach versus

Patch Base Classification

6.1 Introduction

Although some success has been achieved for HEp-2 cell classification as re-

ported in the recent benchmarking tests at ICPR2012 [Foggia et al., 2013] and

ICIP2013 [Foggia et al., 2014], the best accuracy obtained is generally lower than

what physicians can provide. The major constraints of these image patch based

techniques include the high computational cost due to a huge amount of over-

lapped image patches [Wang et al., 2016] to be processed and the tedious param-

eter tuning (for patch size, scanning step size, etc.) for optimal cell classification

performance.

In this chapter we propose a novel superpixel based HEp-2 cell classification

technique by using sparse coding scheme. We call our proposed method the Sparse
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Coding of Superpixels (SCS).

In the superpixel approach which is widely used in segmentation problems

[Lucchi et al., 2010], the input image is divided to relatively small and non-

overlapped regions. Each superpixel contains many connected pixels which have

similar features. In segmentation problems, the features of each superpixels are

used to decide whether the superpixel should aggregate with the neighboring

superpixels to make a bigger region and the process continues until the final

segmentation result is obtained. However, for classifying images, not only the

features of pixels within the superpixels but also superpixels boundaries which are

usually aligned with the high gradient regions should be analyzed. Sparse Coding

technique is widely used in di↵erent machine learning problems [Khorsandi et al.,

2015b, Taalimi et al., 2015b,Wang et al., 2013,Wang et al., 2014, Zonoobi and

Kassim, 2014], where image patches are used to calculate the features to train the

dictionary and the classifiers.

We designed a novel superpixel technology for the HEp-2 cell classification

problem. To the best of our knowledge, this is also the first work that uses

superpixel to classify the HEp-2 cells (see Section 6.2.1). Our major contributions

can be summarized as follows:

• Superpixels are used (instead of regular sampling of overlapped image patches)

to guide the selection of the right image patches that contain more ‘infor-

mative’ features.

• “Extended superpixels” are designed by dilating the boundary of each su-

perpixel which capture more discriminative gradient information across the

boundaries of the HEp-2 cell.
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• A cell extraction method is designed which extracts better-quality cells than

the originally provided ones.

The rest of this chapter is organized as follows. The proposed SCS method

is described in Section 6.2, including the cell extraction, superpixel and dictio-

nary learning scheme. In Section 6.3 the experiments on two publicly available

datasets are investigated and validation on the parameters of the proposed super-

pixel method is discussed. Finally, we provide our conclusions in Section 6.4.

6.2 Sparse Coding of Superpixels (SCS)

Our proposed SCS technique comprises the following four stages as illustrated

in Fig. 6.1: cell extraction, superpixel extraction, dictionary learning and cell

classification. The cell extraction stage is specially needed when the bounding

boxes of the cells are not provided (as in specimen classification of ICIP2013).

Given a cell image, the superpixels are first extracted to determine informative

image patches. SIFT and SURF features are then extracted from each superpixel

to learn an over-complete dictionary. Finally, a linear SVM classifier is trained

for HEp-2 cell classification.

Cell Extraction

The cell extraction method (see Section 3.2.2) is used where morphological features

(area, solidity, etc) are exploited to select the cells which are of the same shape

(roundness) and size. This method first uses the histogram of the area of the

connected components to estimate the range of typical size of the cells and then

88



CHAPTER 6. SUPERPIXEL APPROACH VERSUS PATCH BASE
CLASSIFICATION

Classification

SVM 
Model

Class 
Labels

Dictionary Learning

Dictionary

Sparse

Codes

Max Pooling

Superpixel Extraction

SIFT

 
SURF

SIFT

 
SURF

Training Set

Test Set

Adapted Superpixels Extended Superpixels

Cell Extraction
Masks of 

Specimens

Extracted 
masks

Figure 6.1: Framework of the proposed HEp-2 cell classification technique.

selects cells in the specimen image according to their roundness property. This

method helps reduce the number of required cells for specimen classification and

improves performance by removing noisy segments.

6.2.1 Superpixel Extraction

We extract the superpixels based on the Simple Linear Iterative Clustering (SLIC)

[Achanta et al., 2012] due to its distinct properties of low computational cost

and close adherence to the object boundaries in comparison with similar meth-

ods [Levinshtein et al., 2009,Felzenszwalb and Huttenlocher, 2004]. The original

SLIC method, places grid points (P points) to be the initial superpixel centers. If

an initial superpixel center lies along the cell boundary, another cell image pixel

with the minimum gradient value lying within the 3⇥3 neighborhood of the orig-

inal center is selected as the initial superpixel center. k-means clustering is then

performed to calculate the distance between the cluster centers and the neighbor-

ing pixels according to their intensity (color or gray scale) values and positions.

The distance calculation is accomplished in the 2W⇥2W window size (W denotes

the superpixel size which can be determined by
p
s, where s is the number of
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desired pixels in each superpixel) to find similar neighboring pixels instead of the

whole image area in order to increase the speed of the algorithm.

This method tries to minimize the distance of the color and pixel positions

with the cluster centers [l, a, b, x, y]T , where the first three elements are the CIELAB

color space parameters and the last two are the position of pixels. These di↵erent

distances are normalized in order to be aggregated together in one formulation as

in equation 6.1.
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(6.1)

where N
c

and N
s

are color and spatial proximities by their maximum distances

within a cluster [Achanta et al., 2012].

Our modifications to the SLIC superpixel algorithm are as follows.

i. besides the color and spatial proximities, we added the gradient information

to also enable the algorithm to evaluate the texture information resulting

in the following extended set of parameters: [l, a, b, x, y, g]T ; where g is the

magnitude of gradient in each pixel. The gradient distance (d
g

) is normalized

with N
g

which is the maximum gradient distance between the pixels and the

cluster center in one cluster as formulated in equation 6.2
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(6.2)
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where d
g

is

d
g

= |g
j

� g
i

| (6.3)

ii. while the SLIC uses the number of the desired superpixels P to control the

superpixel size which does not work well as di↵erent images have di↵erent

sizes and accordingly very di↵erent superpixel sizes s (the number of pixel

within a superpixel), we use the superpixel size s as the input parameter

to ensure that superpixels from images of di↵erent sizes will have a similar

superpixel size. Note that the superpixel size s can be translated to the

number of superpixels P by P = [N/s], where N denotes the number of

pixels within the image.

iii. the SLIC method adheres to the boundaries (i.e., high gradient regions)

which is desirable for object segmentation but for HEp-2 cell classification,

it could cause serious problem as many discriminative features lie across the

high gradient regions. We solve this problem by introducing an “extended

superpixel” which is derived by dilating the original superpixel to include

the “cross-boundary” information. We extend each superpixel to include

the high gradient information to be discussed in Section 6.3.3.

The proposed superpixel extraction method is applied on the cells, before

convolving with masks. Then those superpixels which are outside of the masks,

are omitted. The extended superpixels can then be used for dictionary learning

and cell classification.
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6.2.2 Dictionary Learning

SIFT and SURF are used as visual features for dictionary and classification

model learning. In particular, SIFT and SURF features are first extracted from

each extracted superpixel patch and then processed through the max-pooling

of the extracted feature histograms. The processed features are then concate-

nated to form the feature description. The features of the superpixels are finally

sampled from each input image and creates the D-dimensional feature matrix

F= [f1, f2, . . . , fN ]| 2 R(N⇥D) as illustrated in Fig. 6.1. The dictionary learning

and classification method is explained in Sections 3.2.4 and 3.2.5, respectively.

6.3 Experiments and Results

6.3.1 Evaluation Metric and Protocol

The proposed technique is evaluated by using the MCA (see Section 3.4) as sug-

gested by the contest organizers. For the ICPR2012 dataset, the Leave-One-

Specimen-Out (LOSO) strategy is adopted for the fair comparison with the state-

of-the-art results which are reported by the dataset organizers [Foggia et al., 2014].

In LOSO strategy all the training and test images are used. Separately, the accu-

racies on ‘test set’ is also evaluated by training the classification model using the

training image set.

In the ICIP2013 dataset, because we only have access to the training set,

two protocols which are used in the literature are exploited including Leave-One-

Specimen-Out strategy as used in [Manivannan et al., 2014a,Larsen et al., 2014]
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and the evaluation protocol used in [Han et al., 2014], which we named HSM

representing the title of the paper (High-order Statistics of Microtexton for HEp-

2 Staining Pattern Classification) for cell classification problem. All the training

cells which are provided by the ICIP2013 dataset are extracted from 83 specimen

images. In the first method, Leave-One-Specimen-Out strategy, in each run, the

cells of one specimen image is used for testing and the rest cells of 82 specimen

images are used for training. In the second evaluation method, HSM [Han et al.,

2014], 600 cells are randomly selected from each of the classes (except 300 cell

images for Golgi class) for training and the rest for testing. This task is performed

20 times and the average accuracies of all iterations are reported. Particularly, in

each iteration, 5 ⇥ 600 + 300 = 3300 cells are selected for training and 13596 �

3300 = 10296 cells for testing (13596 is the total number of training cells in the

ICIP2013 dataset).

To obtain the image level classification result, a modification of the masks

should be applied to get the correct cell information from the images as described

in sect. 6.2. By performing the proposed cell extraction method on 252 specimens

(1008 images), 5012 cells are extracted. The Leave-One-Specimen-Out strategy is

also used where all the cells from one specimen image are used for testing and the

rest cells of 251 specimen images are used for training. To obtain the class label

of each specimen image, maximum voting is performed on the cell labels of that

specimen image.

In our experiments we extract superpixels of size 100 pixels and extend them

for 9 and 12 pixels from each side for ICPR2012 and ICIP2013 datasets respec-

tively, which results in better accuracies as shown in Fig. 6.2. It should be noted,
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because the ICIP2013 dataset contains gray scale images, the intensity values

of the pixels are used instead of CIELAB color space values to calculate color

distance (d
c

) in (6.1).

6.3.2 Classification Results

ICPR2012 - Table. 6.1 shows experimental results on the ICPR2012 dataset.

As Table. 6.1 shows, our method obtains the best accuracy among other methods

as reported in [Foggia et al., 2014]. For the Cell Level classification, an accu-

racy of 79% is obtained when the model is trained by using all training images

including positive and intermediate images and then evaluated on the test set as

shown in second column of Table. 6.1. For the Leave-One-Specimen-Out evalu-

ation strategy, an interesting result is obtained for the intermediate level images

(forth column) where 92% accuracy is obtained which is 12% higher than other

methods. On average, we got an accuracy of 93% which is 5% higher than the-

state-of-art based as shown in fifth column of Table. 6.1.

The intermediate cell classification plays an important role in HEp-2 cell clas-

sification problem. As the intensity values of intermediate cells are much lower

than positive cells, they may a↵ect the final evaluation if they are considered to-

gether when training the classifier. In fact, those methods which have separate

models for these two categories, usually perform better than those which use both

categories simultaneously. Although there is an increased number of training data

in the Leave-One-Specimen-Out strategy, improved accuracies were not observed

because the intensity levels in the test set are ignored.

We also measured the e↵ect of our modified superpixel extraction method
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Table 6.1: Accuracy on all training and test images of the ICPR2012 dataset
based on Leave-One-Specimen-Out and accuracy when the model is trained by

the training set and applied to the test set [Foggia et al., 2013].
ICPR2012

Dataset

Accuracy (%)

Cell Level Image Level

Test set
Leave-One-Specimen-Out

Leave-One-Specimen-Out
Positive Intermediate Average

SCS 79 95 92 93 93

SCS (no Gradient) 76 90 86 88 85

SBoW 78 82 65 74 93

Kastaniotis 75 72 55 64 78

Shen 74 71 65 68 78

DiCataldo 72 95 80 88 93

Kazanov 71 63 49 51 75

Faraki 70 81 59 70 78

Nosaka 69 80 60 70 85

Wiliem 67 63 49 56 71

Xiangfei 67 89 74 82 89

Stoklasa 64 80 44 62 71

which incorporates the gradient information (see Section 6.2.1). TABLE 6.1 shows

the results when our method without gradient information named ‘SCS (no Gra-

dient)’ is applied on the dataset. Despite the high accuracies for some scenarios,

the average accuracy is lower than that of using the gradient information in our

method.

From the confusion matrices of Image Level, Intermediate and Positive im-

ages in ICPR2012 obtained using Leave-One-Specimen-Out method shown in Ta-

ble. 6.2, it is evident that the two Fine- and Coarse-speckled classes are hard

to classify because of the similar patterns that they have as can be seen in the

heat-map show in Fig. 3.4.

ICIP2013 - Table. 6.3 and 6.4 show experimental results on the ICIP2013

dataset. For Cell Level classification task, the HSM [Han et al., 2014] and Leave-
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Table 6.2: The confusion matrices for Positive (a) and Intermediate (b) images
and image level (c) by using Leave-One-Specimen-Out method.

Ce CS Cy FS H N
Ce 100.0 0.0 0.0 0.0 0.0 0.0
CS 0.0 66.7 0.0 33.3 0.0 0.0
Cy 0.0 0.0 100.0 0.0 0.0 0.0
FS 0.0 0.0 0.0 100.0 0.0 0.0
H 0.0 0.0 0.0 0.0 100.0 0.0
N 0.0 0.0 0.0 0.0 0.0 100.0

Ce CS Cy FS H N
Ce 100.0 0.0 0.0 0.0 0.0 0.0
CS 0.0 100.0 0.0 0.0 0.0 0.0
Cy 0.0 0.0 100.0 0.0 0.0 0.0
FS 0.0 50.0 0.0 50.0 0.0 0.0
H 0.0 0.0 0.0 0.0 100.0 0.0
N 0.0 0.0 0.0 0.0 0.0 100.0

(a) Positive Cells (b) Intermediate Cells

Ce CS Cy FS H N
Ce 100.0 0.0 0.0 0.0 0.0 0.0
CS 0.0 80.0 0.0 20.0 0.0 0.0
Cy 0.0 0.0 100.0 0.0 0.0 0.0
FS 0.0 25.0 0.0 75.0 0.0 0.0
H 0.0 0.0 0.0 0.0 100.0 0.0
N 0.0 0.0 0.0 0.0 0.0 100.0

(c) Image Level

One-Specimen-Out method (see Section 6.3.1) are used. In the first method, as

shown in Table. 6.3, where all the reported methods have used HSM [Han et al.,

2014] evaluation method, we obtained 97.73% and 90.54% accuracies for positive

and intermediate level images which are higher than the state-of-the-art results.

In the Leave-One-Specimen-Out method, higher accuracies were achieved in com-

parison with other state-of-the-arts as shown in Table. 6.4 in Cell Level columns.

We have also studied the e↵ect of using gradient information to our superpixel

extraction method. As can be seen in the Table. 6.3, the accuracy is lower with-

out gradient information (SCS(no Gradient)) than when this information is used.

Although the achieved average accuracy of 91.1% is higher than by HSM [Han

et al., 2014] method, it is 3% lower than the SCS proposed method.

For the Image Level classification task, when we compare our proposed SCS
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Table 6.3: Accuracy on ICIP2013 dataset for Cell Level by using HSM [Han et al.,
2014] evaluation method.

ICIP2013 (%)
Cell Level

HSM [Ensafi et al., 2014b] [Ensafi et al., 2015] SCS (no Gradient) SCS

Positive 95.5 95.8 96.8 95.4 97.73

Intermediate 80.9 87.9 88.8 86.8 90.54

Average 88.2 91.9 92.8 91.1 94.14

Table 6.4: Accuracy on ICIP2013 dataset for Cell and Image Level by using
Leave-One-Specimen-Out evaluation method.

ICIP2013 (%)

Leave-One-Specimen-Out

Cell Level Image Level

Larsen? manivannan† SCS Gragnaniello⇧ manivannan‡ All Cells SCS

Positive - - 86.79 - - 87.36 92.38

Intermediate - - 76.87 - - 74.16 88.74

Average 78.70 80.25 81.83 86.87 89.93 80.76 90.56

? [Larsen et al., 2014] † [Manivannan et al., 2014a] ⇧ [Gragnaniello et al., 2014] ‡ [Manivannan et al., 2014b]

results with two other state-of-the-art methods including [Gragnaniello et al.,

2014] and [Manivannan et al., 2014b] by using Leave-One-Specimen-Out evalua-

tion strategy, we achieved higher accuracies for the Image Level part as seen in

Table. 6.4. We also evaluated our proposed cell extraction method by comparing

the results of proposed SCS ‘with’ and ‘without’ cell extraction stage; the latter

is called ‘All Cells’ strategy. In the ‘All Cells’ strategy, all connected pixels of

the specimen images are extracted by using the provided masks without filtering

based on area and solidity as explained in Section 6.2. This gives around 110,000

cells in total. Then the proposed SCS method (without cell extraction part) is

performed. As can be seen from the last two columns of Image Level part in

Table. 6.4, the cell extraction method achieves significantly better results. Specif-

ically, we obtained an average accuracy of 90.56%, which is 10% higher than that

of using all cells of the specimen images. Additionally, the time complexity of the
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Table 6.5: The confusion matrices for Cell Level by using HSM [Han et al., 2014]
evaluation method (a), Leave-One-Specimen-Out method (b) and Image Level by

using Leave-One-Specimen-Out method (c).

Ce G H N NuMem S
Ce 95.11 0.00 0.42 0.00 2.56 1.92
G 0.00 96.67 2.47 0.00 0.00 0.87
H 0.00 2.44 94.44 1.64 0.00 1.49
N 0.00 2.27 2.39 95.08 0.00 0.26

NuMem 2.63 1.36 0.00 0.00 94.24 1.78
S 1.58 0.20 7.55 0.89 0.51 89.29

Ce G H N NuMem S
Ce 87.88 0.00 1.25 0.00 6.33 4.54
G 4.78 60.33 15.67 6.91 5.22 7.09
H 1.67 3.15 85.63 2.92 2.30 4.33
N 0.67 0.00 3.89 90.71 1.33 3.40

NuMem 6.33 1.04 0.98 0.90 89.01 1.74
S 6.55 1.33 7.12 6.33 1.25 77.42

(a) Cell Level
HSM method

(b) Cell Level
Leave-One-Specimen-Out

Ce G H MitSp N NuMem S
Ce 94.65 0.00 0.00 0.00 0.00 0.00 5.35
G 0.00 93.24 0.00 6.76 0.00 0.00 0.00
H 0.00 0.00 94.80 0.00 0.00 0.00 5.20

MitSp 0.00 5.47 5.13 86.23 0.00 3.17 0.00
N 0.00 0.00 0.00 0.00 100.00 0.00 0.00

NuMem 0.00 0.00 15.86 0.00 0.00 84.14 0.00
S 2.00 0.00 2.00 0.00 0.00 0.00 96.00

(c) Cell Level
Leave-One-Specimen-Out

proposed method on extracted cells is an order of magnitude lower than using all

the cells due to the lower amount of training data.

The confusion matrices for Cell and Image Levels by using HSM [Han et al.,

2014] and Leave-One-Specimen-Out methods are shown in Table. 6.5. For the Cell

Level classification, the Homogenous and Speckled classes are misclassified more

than the others due to their similar patterns as evident from Table 6.5a and 6.5b.

For the Image Level classification, where one new class (MitSp) is added to the

dataset, the confusion matrix in Table. 6.5c shows that the misclassification rate

between MitSp, NuMem and Speckled are high. To achieve better results, more

informative features are needed which is an interesting topic for further research.

The superior cell classification accuracy can be largely explained by the use

of informative patches of cell images that are obtained by proposed superpixel
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method. Note that accuracies on the ICPR2012 and ICIP2013 datasets are very

di↵erent because the quality and amount of images within the two datasets are

very di↵erent.

6.3.3 Superpixel Parameters

In this sub-section, we present our study on the robustness of the proposed method

to changes in superpixel size and extension using the test set of the ICPR2012

dataset and the evaluation set of ICIP2013 (see Section 6.3.1). As evident from

Fig. 6.2, the accuracy increases from very small superpixel sizes to a value which

performs the best (100 pixels in one superpixel). In contrast, the accuracy de-

creases when larger superpixels are extracted. In other words, when the superpixel

size is very small, it contains less information for classification. Therefore, the ac-

curacy is not acceptable for very small size superpixels. On the other hand, the

large superpixels contains many informative features but categorizing them by the

dictionary learning process may increase the reconstruction error. Additionally,

when the large superpixels are used, the number of superpixels will decrease.

The correlation of training and test accuracies are shown in Fig. 6.2a and 6.2b,

when the superpixel size is increased. For example in ICIP2013 dataset, where we

have enough representing data, the training accuracy is also drops by increasing

the superpixel size. This study shows that the proposed technique prefers a larger

number of small superpixels instead of a smaller number of larger superpixels.

In addition, applying the extension to the superpixel improves the cell classi-

fication accuracy clearly which can be observed when the superpixel boundaries

extend from 0 pixel to 3 pixels (see Fig. 6.2c and 6.2d). It shows that using the
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Figure 6.2: Cell classification accuracy for ICPR2012 (left graphs) on the ‘test set’
and ICIP2013 (right graphs) by using HSM [Han et al., 2014] evaluation protocol,
where superpixel sizes (a, b) and di↵erent superpixel extensions (c, d) are applied.

original superpixels (with no extension) results in low accuracy as the informa-

tive features of the superpixels are the edges of the images which now overlap

with the boundaries of superpixels and are thus omitted in the feature extraction

process. Therefore, by extending the superpixel sizes, we bring these important

information into the superpixels and provide better image patches for classifica-

tion purposes. At the same time, the accuracy stabilizes when the extension lies

around 6-14 pixels.
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Table 6.6: E�ciency improvement for both model training and cell classification.

Timing
Dictionary Learning Time (sec) Testing Time (sec)

Superpixels Overlapping Patches Ratio Superpixels Overlapping Patches Ratio

ICIP2013 10725 137595 12.83 1505 3048 2.03

ICPR2012 924 6317 6.84 145 324 2.23

6.3.4 Timing

The proposed superpixel based technique is much faster than the traditional over-

lapped patched based methods for both training and testing tasks. As Table 6.6

shows, the dictionary learning is around 12 and 6 times faster for ICIP2013 and

ICPR2012 dataset, respectively. In addition, the testing time for feature sparse

coding and SVM classification is around 2 time fast. These measurements are

accomplished in a machine with Intel Core i7 CPU 2.6GHz and 16 GB of RAM

with 64-bit operating system.

6.4 Summary

This chapter presents a superpixel based HEp-2 cell classification technique. Un-

like traditional image patch based approaches, the proposed technique makes use

of superpixels to select image patches in a more intelligent way. In addition, sev-

eral adaptations of the superpixel such as the minimizing the gradient distance

and extension idea have been carefully introduced for the optimal cell classifi-

cation. Extensive experiments on two public datasets show superior HEp-2 cell

classification performance.

This method is based on the unsupervised dictionary learning which does

not necessarily result in discriminative sparse code. Additionally, the di↵erent
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features in each superpixel are concatenated which can increase the redundancy.

To facilitate these problem a supervised dictionary learning which satisfies the

feature fusion, is proposed and studied in the following chapter.
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Chapter 7

Joint Multi-Cue Dictionary

Learning

7.1 Introduction

The majority of existing dictionary learning methods, supervised or unsupervised,

can handle only single source of data [Jiang et al., 2013a,Ramirez et al., 2010,Yang

et al., 2014a, Ensafi et al., 2014b]. Fusion of information from di↵erent sensor

modalities can be more robust to single sensor failure. For example, in [Shekhar

et al., 2014] the classification results of using face, fingerprint, and hand signatures

are fused using a majority vote to achieve better performance in identity verifi-

cation. The information fusion happens in feature level or classifier level [Ruta

and Gabrys, 2000]. In feature fusion, di↵erent types of features are combined to

make one representation while in classifier fusion, for each modality one classifier

is trained independent of others and their decisions would be fused. While clas-
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sifier fusion has been well-studied in research papers, fusion at feature level is a

relatively less-studied problem, specifically for fusing di↵erent modalities [Rattani

et al., 2007] mostly because feature modalities are not in the same size. In Bag-of-

Words, feature fusion is imposed by concatenating all of the features in one vector.

The dimension of this vector is high and su↵ers from curse-of-dimensionality while

it does not contain the valuable information of correlation between feature types.

In this chapter, we use “modality”, “source”, “cue” and “feature” interchangeably.

Joint sparsity with fix dictionary Joint sparsity prior can do fusion be-

tween multiple features which makes them suitable to reconstruct samples origi-

nated from di↵erent sources [Shekhar et al., 2014,Bahrampour et al., 2014,Minaee

et al., 2015]. The dictionary in [Shekhar et al., 2014], is predefined and is made

by putting together all training samples. In other words, their method is de-

signed to answer the following question: Given a multimodal signal and a set of

modality-specific dictionary, how we can find the multimodal sparse codes while

joint sparsity is applied. That is, the only optimization variable is the multimodal

sparse codes and they neglect the significant role of designing dictionary for the

task. We believe that, to get a proper representation of the signals, the design

of the dictionary has a significant role. Hence, we design our method to learn a

dictionary for each modality that is “good”at reconstructing the pure signal and

“bad” at modeling the noise, while at the same time the sparse decomposition

coe�cients of all modalities have the similar sparsity pattern.

In [Taalimi et al., 2015a] multi-modal dictionary learning and classifier train-

ing is proposed. The proposed joint optimization problem is formulated as task-

driven dictionary learning [Mairal et al., 2012] and solved using LC-KSVD [Jiang
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et al., 2013b]. However, the basic idea of task driven dictionary learning is to

learn optimal parameters (dictionary) to make the coe�cients fit the task. So

it needs to solve a bi-level optimization problem to make the coe�cients consis-

tent with the training and testing phase. While LC-KSVD does not utilize the

bi-level strategy, the algorithm in LC-KSVD can not guarantee the optimal solu-

tion, in which modality-based sparse representations are the solution of another

optimization problem.

While calculating the sparse codes of each image patch provides the local

information stored in the patches, the spatial information is also essential for

classification and this is obtained by aggregating the local information. A naive

approach is to concatenate the features of all patches in each image to obtain

a long vector of sparse codes. However, the final feature vector size for each

image would be di↵erent due to the various number of patches for each image

according to the image size. To this end, we introduced a novel pooling strategy

to combine the patches’ sparse codes that benefit from two important properties

of small size feature vector and wisely selected image regions where their patches

should be aggregated. This is performed by dividing the image into three layers

as in Spatial Pyramid Matching (SPM) [Lazebnik et al., 2006] (see Section 7.3.3)

including whole image, a tube around the cell boundary and the inner side of

the tube. The last two layers are then divided to 4 regions and the max-pooling

operator is performed to combine the information of the image patches.

Our main contributions to solve the above limitations are the following pro-

posals:

• A new multi-modal dictionary learning method that produces discrimina-
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tive dictionaries with few atoms from many training samples, where one

dictionary is trained in all-vs-all fashion for each modality.

• Our target is to show that in the presence of multi-modal data where each

sample is seen from highly related feature modalities with various sizes (here,

SIFT and SURF), we can get better classification accuracy by encoding the

a priori known correlation between feature modalities in space of sparse

codes. The correlation (or relation) between di↵erent features/modalities is

translated in space of sparse codes as the similarity between zero/nonzero

pattern of the channels. This is done using the notion of grouping in space of

sparse codes and applied with the joint sparse regularization to enforce the

multi-modal sparse representations of each class to share the same sparsity

patterns at the column level.

• A novel pooling strategy that combines the information of the image patches

in certain regions. The regions are adaptively produced according to the

boundary of the cell in the image.

The optimization problem over multi-modal dictionaries and multi-modal

sparse representations is solved jointly. This method can combine information

from di↵erent feature types and force them to have common sparsity patterns for

each class, which is presented in Fig. 7.1.
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Figure 7.1: Joint sparse modeling for two classes with two modalities and color
coded dictionaries (a). The joint sparsity regularizer (b) imposes high correlation
between the sparse representations. Modality-based sparse codes of all classes (c)
updates dictionaries followed by sparse codes pooling and training SVM classi-

fier(d).

7.2 Sparse representation classification

7.2.1 Fixed dictionary

The SRC method is proposed in [Wright et al., 2009] for the face recognition

problem. Let C represent the number of classes, training data as {Y
i,c

}N
i=1,c2

{1, · · · , C} and N =
P

C

c=1 Nc

training samples where each class c has N
c

samples

as Y
i,c

|Nc
i=1. The class specific dictionary D

c

is made by concatenating all training

samples as D

c

= [Y 1,c, . . . ,Y Nc,c] 2 Rn⇥Nc where n is the dimension of the

feature modality. The final dictionary is made by putting together all class-specific
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dictionaries as D = [D1, . . . ,DC

] 2 Rn⇥N . The task is to identify the label of

test sample y
t

2 Rn. In SRC it is assumed that the test sample y
t

lies in the space

formed by D

c

and can be approximated using few number of training samples of

the c-th class:

y

t

= D↵

t

+ e (7.1)

where ↵
t

is the N ⇥ 1 sparse representation of test signal using D. Assume

�
c

2 RN as an operator that is applied on ↵ and it only keeps coe�cients that

are corresponding to atoms of the c-th class and makes the rest coe�cients zero.

To obtain the class label of y
t

the above equation should be solved such that ↵
t

is sparse:

argmin
↵
k↵k

`1
s.t. ky �D↵k

`2
 ✏ (7.2)

The test data is reconstructed using atoms that belong to the c-th class: ŷ

c

=

D�
c

(↵
t

) and it belongs to the class with minimum reconstruction error: min
c

ky�

ŷ

c

k
`2 .

The dictionary in SRC scheme is made by concatenation of all training samples

hence the atoms are not designed carefully for the desired task. This issue limits

the usage of the SRC method to cases with a huge amount of training samples.

The number of training samples should be high enough so that we can be sure

that the probability distribution of the data is sampled enough.

7.2.2 Joint sparse representation classification

So far the classification was based on a single source of feature. In this section,

we go through the classification using multiple feature types. The idea is to
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exploit all the available sources of information and their correlation for the desired

classification task.

argmin
�=[↵1

t ,↵
2
t ,...,↵

M
t ]

f(�) + �⌦(�) (7.3)

where f(�) , 1
2

P
M

m=1 kym

t

�D

m

↵

m

t

k2
`2

is a convex loss function to calculate the

reconstruction error and ⌦(�) is the non-smooth regularization function with �

being the regularization parameter [Bach et al., 2012]:

k�k1,2 =
pX

r=1

(
MX

c=1

|�
r,c

|2
)1/2

(7.4)

where �
r,c

is the r-th row and c-th column element of �. The `1,2 is the summation

over the `2 norm of each row of � and it results in a matrix � that has a few nonzero

rows [Nguyen et al., 2011]. The test signal Y
t

= {ym

t

,m 2M} is assigned to the

class c based on minimization of reconstruction error of all M modalities:

min
c

MX

m=1

kym

t

� ŷ

m

c

k
`2 (7.5)

where ŷ

m

c

= D

m�
c

(↵m

t

) and the sparse representations ↵m

t

are the m-th column

of the solution of Eq.(7.3).

7.3 Dictionary Learning

As noted in Section 7.2, the dictionaries that are fixed and made by horizontally

concatenating the training samples without any “learning” phase involved are
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sub-optimal for reconstructive and discriminative tasks [Mairal et al., 2009]. To

achieve high classification accuracy we need a su�cient number of training samples

from each class which leads to a large dictionary with a lot of atoms and therefore

an optimization process of high complexity to estimate sparse codes.

Recent studies reported promising results through the use of dictionary learn-

ing methods in the reconstructive task like image restoration [Mairal et al., 2008],

discriminative tasks like face recognition [Yang et al., 2010] and object track-

ing [Taalimi et al., 2015c, Taalimi and Qi, 2015]. The learning process usually

leads to a compact dictionary with a fewer number of atoms compared to the fixed

dictionary scheme [Mairal et al., 2010a,Aharon et al., 2006, Sani and Vosoughi,

2014]. With unsupervised dictionary learning [Elad and Aharon, 2006,Yang et al.,

2010,Amini et al., 2014], the resulting dictionary is adapted to the data by mini-

mizing reconstruction error. The learned dictionary outperforms fixed dictionary

methods in reconstructive and discriminative tasks. We define the multi-modal

dictionary learning and joint sparsity model as the following optimization prob-

lem:

argmin
D,�

1

2

X

m2M

kym �D

m

↵

mk2
`2
+ �1⌦(�) +

�2

2
k�k2

F

(7.6a)

D , {Dm|m 2M, s.t. 8j 2 {1, . . . , p}, kdm

j

k
`2 6 1} (7.6b)

where �1 and �2 are regularization parameters and the D = {Dm|m 2M} is a

compact set of the unit-norm ball. The constraint (7.6b) forces all dictionaries

D

m|M
m=1 to have unit norm in column level. We solve optimization problem (7.6)

by splitting it into parts: first, we obtain multi-modal sparse representation of

each class �
c

= [↵1
c

, . . . ,↵M

c

] while multi-modal dictionaries D = {Dm|M
m=1}
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are initialized by training samples of all classes, Y m = [Y m

1 , . . . ,Y
m

C

]. This is

elaborated in Section 7.3.1. Then, from the solution of the first step, we construct

sparse representation of all classes in m-th modality �m = [↵m

1 , . . . ,↵
m

C

] and use

it to update dictionary of m-th modality, Dm. We express the details of this step

in Section 7.3.2.

7.3.1 Estimate Multi-modal Sparse Representation

We use the alternating direction method of multipliers (ADMM) [Parikh and

Boyd, 2013] to obtain multi-modal sparse codes, �
c

2 Rp⇥M = [↵1
c

, . . . ,↵M

c

] of

training samples of c-th class, Y
c

= {ym

c

| m 2M} (Fig. 7.1.b). In this step, the

dictionary of m-th modality D

m is initialized by training data of m-th modality

from all classes (Fig. 7.1.a). We make sure that the dictionary has at least %
c

atoms from c-th class:
P

C

c=1 %c = p to guarantee that su�cient representation of

each class exists in the dictionary. To obtain multi-modal sparse representations,

the optimization problem (7.6) is reorganized as follows:

argmin
�

1

2

X

m2M

kym �D

m

↵

mk2
`2
+ �1⌦(�) +

�2

2
k�k2

F

(7.7)

To solve (7.7), let us assume Z 2 Rp⇥M = [z1, . . . , zM

] and U 2 Rp⇥M =

[u1, . . . ,uM

] and both initialized as zero. We denote the proximal operator asso-

ciated with the norm ⌦ as prox
�⌦ that maps its domain, vector p, to the vector

q, both in RM : prox
�⌦(p) , argminq

1
2kp�qk22+�⌦(q). Then in iteration k we

have:
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�̃
(k+1)

= prox
↵f

(Z(k) �U

(k)) (7.8a)

Z

(k+1) = prox
↵⌦(�̃

(k+1)
+U

(k)) (7.8b)

U

(k+1) = U

(k) + �̃
(k+1) �Z

(k+1) (7.8c)

where �̃
k

is the optimization solution of Eq.(7.7) at iteration k. The function f in

Eq.(7.8a) is defined same as the Eq.(7.3) and hence it is smooth and di↵erentiable

while the function ⌦ in Eq.(7.8b) represents `1,2 regularization of Eq.(7.4). The

optimization variable Zk is the solution of minimizing the non-smooth joint spar-

sity regularization and �̃
k

and is the solution of minimizing the reconstruction

error; the solution is designed so that Zk and �̃
k

will eventually converge to each

other, (U (k+1) = U

(k)). The proximal step of Eq.(7.8a) is defined as:

prox
↵f

(V ) = argmin
�

✓
f(�) +

1

2↵
k�� V k2

F

◆
(7.9)

Since f is smooth, we can calculate its gradient as: @f/@� = �D|
Y +D

|
D�.

Therefore, the solution of the optimization problem (7.9) in iteration k + 1 is:

�k+1 =

✓
D

|
D +

1

↵
I

◆�1 ✓
D

|
Y +

1

↵
V

◆
(7.10)

where I is identity matrix. Equation (7.8b) represents the proximal step over Z:

prox
↵⌦(V ) = argmin

Z
⌦(Z) +

1

2↵
kZ � V k2

F

(7.11)
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Substituting ⌦ by Eq.(7.4), we obtain:

prox
↵⌦(V ) = argmin

Z

pX

r=1

✓
kz

r!k2 +
1

2↵
kz

r! � v

r!k2
`2

◆
(7.12)

where z

r! and v

r! are the r-th row of the Z and V , respectively. The ↵ in

the problem (7.12) and � in Eq.(7.3) have an inverse relation. The optimization

problem (7.12) is solved in p independent optimization, corresponding to p atoms,

while each optimization is done on an M -dimensional vectors, z
r!. We solve

the proximal step of inducing joint sparsity regularization of Eq. (7.3) using the

SPArse Modeling Software (SPAMS) [Jenatton et al., 2010,Mairal et al., 2010b].

7.3.2 Update dictionary atoms

In Section 7.3.1 we obtain multi-modal and joint sparse representations of each

class, �
c

= [↵1
c

, . . . ,↵M

c

] while multi-modal dictionaries are initialized by the

training data. In this section, the proposed method is extended to include unsu-

pervised multi-modal dictionary learning, Dm|M
m=1, while collaboration between

di↵erent features are enforced using the joint sparsity model (7.4). As it is

shown in Fig. 7.1.c, we construct sparse representation of m-th modality by

horizontally concatenating sparse codes of all classes from the same modality:

�m = [↵m

1 , . . . ,↵
m

C

]. The dictionary D

m = [dm

1 , . . . ,d
m

p

], will be updated by

solving the optimization (7.6) using the Iterative Projection Method proposed

in [Rosasco et al., 2009]. Since �m is fixed, the problem of (7.6) is changed to

(7.13).

argmin
Dm

kY m �D

m�mk2
F

s.t Dm 2 D (7.13)
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Now, the dictionary is updated atom by atom. The q-th dictionary atom is

updating and the problem is rewritten to (7.14).

argmin
dm
q

Tr(Dm

|
D

m�m�m

| � 2Dm

|
Y

m�m

|) s.t kdm

q

k
`2 6 1 (7.14)

Let ⇥ = �m�m

|, ⌥m = Y

m�m

|. The q-th dictionary atom is updated and the

problem is reformulated as follows.

argmin
dm
q

Tr(Dm

|
D

m⇥m � 2Dm

|⌥m) s.t kdm

q

k
`2 6 1 (7.15)

where d

m

q

is the q-th column vectors of Dm. Let ⇥m

q,q

be the element in q-th

column and q-th row of ⇥m, ⇥m

q

be the q-th column vectors of ⇥m, and ⌥
q

m be

the q-th column vectors of⌥m. According to the algorithm of dictionary updating

proposed in [Mairal et al., 2010a], dictionary atom d

m

q

with corresponding ⇥m

q,q

>

0, is updated and is normalized to have unit l2-norm as follows:

d

m

q

=
⌥

q

m �D

m⇥
q

m

⇥m

q,q

+ 1/↵
(7.16a)

⇧D = {dm

q

}p
q=1 =

8
>><

>>:

d

m

q

if kdm

q

k
`2 < 1

dm
q

kdm
q k`2

otherwise

(7.16b)

which will converge after several iterations. Algorithm 3 shows the steps required

to learn the multi-modal unsupervised dictionary and the joint sparse modeling

using joint sparsity regularization.
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Algorithm 3: Multimodal dictionary learning and joint sparse modeling

Input: Y m 8m 2 {1 · · ·M}, iter
1 begin
2 Initialize D

m with samples of m-th modality of all classes.
3 foreach k = 1 to iter do
4 Fix D

m|M
m=1 and estimate �m|M

m=1 of each class
5 foreach Class c 2 {1, . . . , C} do
6 Obtain multi-modal �

c

= [↵1
c

, . . . ,↵M

c

] using joint sparse
modeling (Section 7.3.1).

7 foreach Modality m 2 {1, . . . ,M} do
8 Construct �m = [↵m

1 , . . . ,↵
m

C

].
9 Update dictionary D

m (Section 7.3.2)

7.3.3 Sparse Codes Pooling

Patch based approach of calculating features and corresponding sparse codes result

in obtaining local texture features, but we also need the spatial information for

each image by aggregating the information of local patches. A naive solution is

to concatenate the features of all patches in each image but this results in a long

vector of sparse codes, which has two main problems. Firstly, the neighboring

patch information is lost and secondly, the final size of the feature vector varies

depending on the number of patches for each image. We describe how this issue

is addressed in the proposed method in Fig. 7.1.d and Fig. 7.3.

Fig. 7.2 shows the Spatial Pyramid Matching (SPM) [Lazebnik et al., 2006]

method that divides the image into 1, 4 and 16 non-overlapping regions (21 regions

in total) and performs max-pooling on the sparse codes in each region to finally

produce a feature vector of size (1+4+16)⇥p, where p is the number of atoms in

the dictionary. A limitation of this approach is that the image is blindly divided
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Figure 7.2: SPM method.

Cell Image (Layer 1)
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Distance Image

Layer 2 (4 Regions)

Layer 3 (4 Regions)

Figure 7.3: Proposed SCP method.

into di↵erent layers without taking into account the underlying information in the

image. As evident from Fig 7.2, the information pertaining to the cell boundary

and inside cells are totally di↵erent but the SPM combines them nevertheless.

Moreover, the SPM results in a large regions (e.g. 21 regions) and concatenating

them all, produces a long feature vector for classification.

To alleviate these limitations, we propose a Sparse Codes Pooling (SCP)

method which is shown in Fig. 7.3. ‘Layer 1’ is the whole cell image and the

information of all the image patches are pooled. The distance transform is ap-

plied on the cell mask, which assigns a value to each image pixel with the Euclidean

distance to the nearest cell boundary pixel. As can be seen in Fig. 7.3, two bound-

aries are extracted from the distance image, which are shown in blue circles in

‘Layer 2’ and create the tube-shape region around the cell boundary. This layer

is then divided to four regions as in SPM. ‘Layer 3’ is created by using the inner

circle of the ‘Layer 2’ and also divided to four regions. The pooling strategy is
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then applied on the regions and all the feature vectors concatenated.

This approach benefits two main advantages; first, the final feature dimension

vector is 9⇥p, which is around 57% lower than 21⇥p in SPM. Second, the most

informative area of the cells are near cell boundaries (e.g. Golgi and Nucleolar

Membrane classes) and inner area of cells (e.g. Nucleolar and Speckled classes) as

is evident in Fig. 3.5. By focusing on these two important areas, we can obtain

more informative and discriminative feature vectors.

By considering the three image layers l 2 {0, 1, 2}, a pooling function F is

applied on the sparse codes h

l = [sl1, s
l

2, · · · , slnl
] in each layer, where sl

i

is the

sparse codes of image patch i in layer l and n
l

is the number of image patches in

layer l. The final feature vector for layer l is xl.

x

l = F(hl) (7.17)

The one-hot encoding, mean- and max- pooling functions are studied. In one-hot

encoding, just one representative atom from dictionary is selected by having only

one non-zero element in the final sparse code vector which is calculated as follows:

T

l

= max{hl} (7.18a)

x

l

j

=

(
0 if h

l

ji

< T
l

T
l

if h

l

ji

> T
l

i = {1, 2, · · · , n
l

} (7.18b)

where T
l

is the maximum sparse code of all patches in layer l and x

l

j

is the j-th

element of final feature vector.

For mean- and max-pooling, the average and maximum values for each row
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of hl is selected. For instance, the max-pooling function is:

x

l

j

= max{hl

ji

}, i = {1, 2, · · · , n
l

} (7.19)

The e↵ect of pooling function on the final classification performance is dis-

cussed in 7.4.4.

7.4 Experiments and Results

7.4.1 Feature Extraction

We extract gradient based features of SIFT with size 128 and SURF with size 64

from each sample in an overlapping patches. The patch size is 12⇥12 and the

distance between patches is 4 pixels. According to the size of the images, the

number of patches is di↵erent. However, to train the dictionaries, we randomly

select 100 patches from each image to get the balanced distribution of patch

samples from all the input images.

7.4.2 Evaluation Strategies

The HEp-2 classification problem is divided into two categories, Cell and Spec-

imen Level. In the Cell Level classification, each cell is classified solely without

considering other neighboring cells. In contrast, the Specimen Level classification

focuses on classifying whole specimen image containing many cells. As described in

Section 3.3, two HEp-2 datasets are publicly available (ICPR2012 and ICIP2013)

where the following experimental scenarios are exploited to evaluate the proposed
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method:

i ‘Test set’ evaluation, which can be done only on ICPR2012, for which the

test set is publicly available but not for ICIP2013 for which a test set is not

provided.

ii ‘Leave-One-Specimen-Out’ (LOSO), where all the cells from one specimen

image are used for test and the rest of the specimen cells for training. This

scenario is applied to both datasets.

iii ‘HSM’ evaluation method proposed by [Han et al., 2014], 600 cells from each

class (300 cells from Golgi class) are randomly selected for training and the

rest of the cells are used for the test set. This strategy is only applied on

ICIP2013 for comparison with other methods.

It should be noted that the cell masks for both datasets are provided but

the masks are inaccurate specifically for the Specimen Images in ICIP2013. For

instance, some masks contain non-cell areas and ‘touching cells’ are not accurately

divided. Therefore, to get the correct cell masks, the cell extraction method that

is described in [Ensafi et al., 2014b] is used, where morphological features are

exploited to extract those cells with similar curvature (Solidity property) and

area.

To report the classification results, the MCA (see Section 3.4) is used.

7.4.3 Results

The proposed JMCDL classification method is evaluated and the results are dis-

cussed in this section. We compare the proposed algorithm with the state-of-the-
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Table 7.1: The MCA accuracy on ICPR2012 dataset by using two evaluation
strategies ‘Test set’ and ‘Leave-One-Specimen-Out’ (LOSO).

ICPR2012 (%)

Proposed DL-based

Methods

Other

Methods

JM
C
D
L

JM
C

SCDL

S
IF
T
S
U
R
F

S
IF
T

S
U
R
F

E
n
sa
fi
?

S
N
P
B

⇤

K
as
ta
n
io
ti
s†

N
os
ak
a⇧

D
iC
at
al
d
o‡

Test

set

Cell

Level

Positive 82 78 76 74 72 81 82 70 79 60

Intermediate 79 72 69 67 66 62 59 31 58 35

Average 80 75 73 70 69 72 70 51 69 48

Specimen Level 93 86 86 79 64 86 93 86 79 93

LOSO

Cell

Level

Positive 96 92 90 86 82 91 92 72 80 95

Intermediate 84 80 77 74 71 72 70 55 60 80

Average 90 86 84 80 77 82 81 64 70 88

Specimen Level 93 88 86 79 64 79 86 79 86 93
? [Ensafi et al., 2014a] ⇤ [Ensafi et al., 2015] † [Theodorakopoulos et al., 2014]
⇧ [Nosaka and Fukui, 2014] ‡ [Di Cataldo et al., 2014]

art HEp-2 cell classification methods that demonstrates the significant influence

of enforcing di↵erent modalities to have similar sparsity pattern while learning

multi-modal dictionaries. We also investigate the e↵ect of proposed SCP pooling

strategy on the classification performance.

ICPR2012. Table. 7.1 shows the accuracies on ICPR2012 by using ‘Test

set’ and ‘LOSO’ evaluation methods for both tasks of Cell and Specimen Level

classifications.

The proposed JMCDL has two major components: 1. dictionary learning

method and, 2. joint sparsity regularization. We evaluate the performance of each

novel components of the proposed method and the whole system on Table. 7.1.

We express the performance of JMCDL once without joint sparsity regularization
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to observe the e↵ect of proposed dictionary learning. Since this scenario is equal to

have only one feature modality, we call it Single-Cue Dictionary Learning (SCDL)

and it includes three scenarios: surf only (‘SURF’), sift only (‘SIFT’) and ‘SIFT-

SURF’ that is made by putting together sift and surf features in one vector. The

impact of joint sparsity regularization while dictionary is learned by [Mairal et al.,

2009] is reported as JMC and finally, the JMCDL reflects the performance of the

whole system of joint dictionary learning and multi-modal sparsity regularization.

We compare classification accuracy of JMCDL with three state-of-the-art

HEp-2 classifiers that are based on dictionary learning (DL) in ‘DL-based Meth-

ods’ part of the Table: [Ensafi et al., 2014a] use SIFT, [Ensafi et al., 2015] (SNPB)

exploit both SIFT and SURF and [Theodorakopoulos et al., 2014] consider mod-

ified version of Local Binary Patterns (LBP) features. We also bring the per-

formance of two state-of-the-art and non-sparse based representation methods to

compare with the JMCDL; the winner of the ICPR2012 contest1 [Nosaka and

Fukui, 2014] and [Di Cataldo et al., 2014], that exploit LBP, morphological and

textural features.

Table. 7.1 shows that the proposed dictionary learning outperforms other

methods. Learning dictionary by elastic-net (JMC column) [Zou and Hastie,

2005] while enforcing multi-modal joint sparse regularization outperforms SCDL

on average by 5% and 4% in ‘Test set’ and ‘LOSO’ evaluation methods. In ‘Test

set’ evaluation strategy, JMCDL increases the accuracy of SIFT and SURF more

than 10% and enhances SIFTSURF around 7%. Also, JMCDL shows superior

results comparing to the DL-based and other methods particularly in Cell Level,

1
http://mivia.unisa.it/hep2contest/index.shtml
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where 80% and 90% accuracies are obtained in ‘Test set’ and ‘LOSO’ strategies,

respectively. These results are 8% better than other DL-based methods in both

evaluation strategies and 11% and 2% above the other methods.

Additionally, a significant achievement is obtained on intermediate intensity

level classification, where more than 10% in ‘Test set’ and 4% accuracies in LOSO

strategies are improved.

For the Specimen Level classification 93% accuracy is obtained, which is simi-

lar to other best performances and this is mostly because the number of specimen

images is limited to 28. It is expected to achieve better results in comparison with

other methods by increasing the number of images, as it happened in ICIP2013

dataset, which we will discuss later in this section.

ICIP2013. Comparison of results for ICIP2013 dataset is shown in Ta-

ble. 7.2. The ‘HSM’ and ‘LOSO’ evaluation strategies are used (see section. 7.4.2)

for both Cell and Specimen Level classification tasks where for the Cell Level clas-

sification task, the positive and intermediate intensity level images are exploited.

The JMCDL method is compared with SCDL, DL-based and other methods.

This is also compared with [Manivannan et al., 2014c], the winner of I3A con-

test2 (Pattern Recognition Techniques for Indirect Immunofluorescence Images)

hosted by International Conference on Pattern Recognition (ICPR) 2014, which

is performed on ICIP2013 dataset.

The performance of proposed dictionary learning using ‘SIFTSURF’ is promis-

ing since it performs slightly better than HSM and it can get close result to the

SNPB based on HSM measurement. However, based on LOSO standard, SCDL

2
http:\i3a2014.unisa.it
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Table 7.2: The MCA accuracy on ICIP2013 dataset by using two evaluation
strategies ‘HSM’ [Han et al., 2014] and ‘Leave-One-Specimen-Out’ (LOSO).

ICIP2013 (%)

Proposed DL-based

Methods

Other

Methods

JM
C
D
L

JM
C

SCDL

S
IF
T
S
U
R
F

S
IF
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F
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n
sa
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S
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an
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an

n
an
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H
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5

HSM
Cell

Level

Positive 98.5 96.9 96.1 92.3 84.3 95.8 96.8 - - 95.5 -

Intermediate 93.2 88.7 87.4 86.8 69.7 87.9 88.8 - - 80.9 -

Average 95.9 92.8 91.8 89.6 77 91.9 92.8 - - 88.2 -

LOSO

Cell

Level

Positive 87.6 86.8 86.1 82.8 78.2 83.4 83.8 - - - -

Intermediate 77.5 76.9 76.4 68.4 63.4 71.2 72 - - - -

Average 82.6 81.8 81.3 75.6 70.8 77.3 77.9 81.1 80.3 - 78.7

Specimen Level 91.6 89.2 88 84.3 77.1 88 89.2 86.7 89.9 - -

? [Ensafi et al., 2014b] ⇤ [Ensafi et al., 2015] † [Gragnaniello et al., 2014]
⇧ [Manivannan et al., 2014c] ‡ [Han et al., 2014] 5 [Larsen et al., 2014]

using ‘SIFTSURF’ outperforms all the state-of-the-art methods. Learning dictio-

nary by elastic-net (JMC column) [Zou and Hastie, 2005] while enforcing multi-

modal joint sparse regularization outperforms SCDL. The whole system reported

in JMCDL obtains better classification accuracy than SCDL using ‘SIFTSURF’

on average by 4.1% and 1.3% based on HAM and LOSO, respectively.

Table. 7.2 also shows other DL-based methods, where JMCDL outperform

2.3% from the I3A contest winner [Manivannan et al., 2014c] and 1.5% from

[Gragnaniello et al., 2014]. JMCDL achieved more than 5% accuracies better

than [Ensafi et al., 2014b,Ensafi et al., 2015], which have used SIFT and SURF

features in their methodologies. This comparison clearly shows the e↵ect of multi-

modal dictionary learning and joint sparse model, which is applied on a large

dataset ICIP2013.

For Specimen Level classification, the JMCDL outperforms other state-of-
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Figure 7.4: Representation coe�cients generated by proposed regularization for
SIFT, SURF and SIFTSURF features. There are six columns corresponding for

six classes.

the-art results by improving 1.7% accuracy in comparison with the I3A contest

winner [Manivannan et al., 2014c] and 4.9% from [Gragnaniello et al., 2014].

7.4.4 Sparse Representation With Similar Pattern

The imposed joint sparsity model in this scheme, makes sparse codes more dis-

criminative and hence produces better classification results. The similar patterns

are shown in Fig. 7.4, where the first row shows cell sample of the six classes.

The sparse representation of each cell class is provided for various features: SIFT,

SURF and SIFTSURF. Also, the pattern of the sparse codes imposed by regu-

larization function are presented in the last row. It is evident from Fig. 7.4 that

the sparse codes’ patterns for di↵erent modalities are similar as this is imposed

by `1,2 regularization term on the multimodal sparse codes (see Section 7.2.2).
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Table 7.3: The comparison of proposed SCP with SPM strategy by using di↵erent
pooling functions and using LOSO evaluation method.

JMCDL+SCP JMCDL+SPM SPM

One-hot Mean Max One-hot Mean Max One-hot Mean Max

ICPR2012 66.7 84.2 90.0 61.3 80.2 86.7 58.1 78.6 82.1

ICIP2013 54.8 76.8 82.6 51.4 73.8 78.4 50.5 73.6 77.3

7.4.5 SCP Versus SPM

The e↵ect of proposed SCP pooling strategy is studied and compared with SPM

method for two datasets as shown in Table. 7.3. The first two parts of the Ta-

ble. 7.3 compares the JMCDL with applying SCP and SPM, where the sparse cod-

ing and dictionary learning schemes are the same but di↵ers in pooling method.

It is evident that the max-pooling strategy outperforms others in both methods

however, the combination of JMCDL and SCP obtains better results than other

methods. The last part of the Table. 7.3 shows the sparse coding scheme combined

with SPM that is used by [Ensafi et al., 2014a] where, JMCDL+SCP outperforms

SPM by 7.9% and 5.3% on ICPR2012 and ICIP2013 datasets, respectively.

7.4.6 Parameter Study

In this section, two main parameters of the proposed method are analyzed. In

particular, the dimension of the dictionary p plays a significant role where a

larger number of atoms with much higher feature vector dimension creates an

over complete dictionary. Such over complete dictionary is biologically inspired

from human cortex and often gives better classification accuracy [Rehn and Som-

mer, 2007]. On the other hand, calculating the over complete dictionaries are
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(a) (b)

Figure 7.5: The accuracy of ICPR2012 positive test set versus di↵erent dictionary
atoms (a) and �1 values (b).

computationally expensive. Fig. 7.5.a shows the classification performance with

di↵erent dictionary dimensions. It is obvious from Fig. 7.5.a that the performance

keeps improving with the increase of the dictionary dimension until the dictionary

dimension reaches 120 where the best performance is obtained.

The other most impactful parameter is regularization coe�cient �1 in equa-

tion 7.6. Fig. 7.5.b shows the classification performance versus the regularization

parameter. When the �1 is near zero, the reconstruction error influences more

and provides non-sparse codes. By increasing �1 value, the sparsity of the weights

helps increase the accuracy. However, by further increasing the �1 value, the

sparseness of the codes dominates the reconstruction error that reduces the clas-

sification accuracy. This study shows that the �1 = 0.1 performs better than the

other values.
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7.5 Conclusion

The HEp-2 cell classification task is studied in the sparsity scheme and a method

is proposed to learn the multi-modal dictionaries while obtaining multi-modal

sparse representation of each class using joint sparsity model. The imposed joint

sparsity enabled the algorithm to fuse information at feature-level by forcing their

sparse codes to have similar basis. This is done using `1,2 regularization that

enforces high amount of correlation between di↵erent modalities of each cell class.

In other words, we know a priori that the modality configuration (here, SIFT and

SURF) induces a strong group structure that is encoded in the optimization using

`1,2 regularization (joint sparsity). That is because joint sparsity gives a strong

statistical co-occurrence structure: if a sample belongs to the c-th class most of

its modalities should have the same label, so knowing the label of one source can

act as a strong prior for inferring the label of others.

Additionally, the SCP pooling strategy method is proposed to intelligently

combine the sparse codes of the image patches by estimating the type of underlying

information according to boundary and inner-side of the cells. JMCDL obtained

better performance in comparison with other state-of-the-are results in both Cell

and Specimen Level HEp-2 classification.
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Conclusions and Future Works

This thesis presents new methods and solutions for HEp-2 cell classification prob-

lem with the aim of diagnosing ADs. The dictionary learning and sparse coding

scheme with their challenges including preparing informative image patches, esti-

mating dictionary size, distributed and joint multimodal dictionary learning are

investigated and the proposed new methods have been shown to improve the final

classification result.

First, instead of traditional image patches we proposed a novel superpixel

method that requires fewer patches while resulting in increased information in

each superpixel. Then, we addressed the challenge of finding an optimal dictio-

nary dimension, which is very crucial to the performance of the learning procedure.

To this end, a non-parametric Bayesian approach is proposed to automatically

obtain the optimal dictionary size. Furthermore, we reduced the computational

cost and memory requirements of the dictionary learning stage, using an adap-

tive distributed learning method. This proposed method e�ciently divides the
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dictionary learning procedure into di↵erent nodes of a network. Finally, a feature

fusion method is proposed to obtain informative and discriminative features for

HEp-2 cell classification problem.

A summary of the accomplishments are presented below together with sug-

gestions for possible future directions for the research.

8.1 Feature Selection and Sparse Coding Repre-

sentation

The BoW model on sparse coding scheme is proposed to the HEp-2 cell classifica-

tion problem, where the e↵ects of integrating the SIFT and SURF features and the

optimal number of iterations for dictionary learning are investigated. Experiments

on the datasets show that superior classification accuracy is obtained across cell,

specimen, positive intensity, and intermediate intensity level images. The e↵ect

of pooling strategies including max-, average-pooling and one-hot encoding is also

extensively studied. This is evident from the study that the max-pooling strategy

outperforms other pooling strategies. Moreover, a novel algorithm is proposed to

extract the cells from their inaccurate masks. This stage is essentially important

for specimen level classification where all the cells in one specimen represent the

final pattern category of the image.

Beyond the SIFT and SURF features, the e↵ect of other features to the fi-

nal performance could be an initial future work. Specifically, these features are

extracted from the image patches which are dependent on the size and shape of

the patches. A challenging problem would be to develop an automatic method
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to initialize the size and shape of the patches to gain more discriminative and

representative features. Moreover, developing a cell segmentation approach can

be an interesting problem to extract cells from the specimen images, rather than

working on provided inaccurate cell masks.

8.2 Learning Dictionary Dimension

The size of the dictionary in the sparse coding scheme is highly correlated with the

classification performance and is essential to be chosen wisely. To avoid choosing

the dictionary size manually, a non-parametric Bayesian approach is proposed.

With the help of IBP, the intuitively infinite sized dictionary is initialized and

iteratively decreases the dictionary size such that to minimize the cost function.

Experiments show the classification performance is improved with the dictionary

dimension much lower than their equivalent methods that used manual dictionary

sizes. The lower dictionary dimension also decreases the computational time in

the test stage.

Although the testing stage performs fast because of the low dimensional dic-

tionary, the training stage is computationally complex. A possible future work

could be to facilitate this process. Parallelizing the procedure or applying greedy

algorithms could be beneficial. Additionally, it is evident from the plot of the dic-

tionary size versus the number of iterations that the dictionary dimension increases

in first steps and finally decreases to its steady state. This trend of convergence

seems interesting and can be mathematically investigated.
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8.3 Adaptive Distributed Dictionary Learning

The proposed adaptive distributed dictionary learning method benefits from lower

computational cost with lower number of tuning parameters which is an important

advantage in solving classification problems. Moreover, learning the combination

weights adaptively is an important contribution for the proposed method which

makes it capable of adjusting itself for di↵erent datasets according to the input

images. The ADDL method divides the dictionary in a network to N nodes, where

each node is responsible of updating itself according to the input data. Moreover,

we propose to combine the information of neighboring nodes in an adaptive way

that enables the nodes to learn about the usefulness of the information received

from their neighbors.

This approach is a foundation for big data analysis where the information is

available on the nodes of a computer cluster or cloud. The way that each node

communicate with the neighboring node can reduce the burden of information in

each cluster by ignoring misleading information.

8.4 Superpixels as Image Patches

In the patch-based image processing scheme, unlike the overlapping fixed-size im-

age patches, a superpixel method is proposed to capture the regions with high level

of information. Because the boundaries of superpixels align with the high gradient

pixels, the superpixels are then dilated to capture this important information of

the images. By applying the proposed method, the number of patches reduces ex-

ponentially in contrast to previous patch based techniques and the information in
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the patches are maximized. In this method, the number of patches (superpixels)

is dramatically decreased, which reduces the dictionary learning computational

complexity.

In the superpixel algorithm, the intensity and gradient values are used to

group the pixels. A natural next step of this work is to modify the superpixel

algorithm by adding more characteristics of images. For example, a variety of

engineered features including SIFT, HoG, LBP, etc. can also be added not only

forcing the algorithm to capture high gradient information but also gathering the

high-level characteristics in one superpixel.

8.5 Feature Fusion and Joint Sparsity Model

A multi-modal dictionary learning is proposed by applying label consistency con-

straint to learn discriminative and reconstructive sparse codes. The algorithm

fuses the input features to obtain similar patterns of the sparse codes for all the

modalities in each class which is called joint sparse coding. The similarity patterns

of obtained sparse codes make the final classification procedure more accurate.

A natural extension of this work is to add more complex and well-designed

features to the system. One of the challenges on HEp-2 cells classification is on

the illuminance variance, where a feature which is robust on illumination changes

can be beneficial. Recently, Spatial Shape Index Descriptor (SSID) and Local

Orientation Adaptive Descriptor (LOAD) features are proposed [Qi et al., 2016].

These features could increase the amount of informative knowledge of the images

leading to more representative sparse codes.
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8.6 Other Databases

The extension of the proposed methods in this thesis can also applied to other

databases including handwriting, texture, natural scenes, etc. by some modifi-

cations. The feature selection methods should be modified to capture relevant

features however, the classification method can remain the same. Specifically, in

image patch analysis methods, the superpixel method can help to capture image

patches with high amount of information. These experiments are remained for

future work.
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illumination robust descriptors for human epithelial type 2 cell classification.

Pattern Recognition, page in Press. 132

[Ramirez et al., 2010] Ramirez, I., Sprechmann, P., and Sapiro, G. (2010). Classi-

fication and clustering via dictionary learning with structured incoherence and

147



BIBLIOGRAPHY

shared features. In Computer Vision and Pattern Recognition (CVPR), 2010

IEEE Conference on, pages 3501–3508. 103

[Rattani et al., 2007] Rattani, A., Kisku, D., Bicego, M., and Tistarelli, M.

(2007). Feature level fusion of face and fingerprint biometrics. In Biometrics:

Theory, Applications, and Systems, 2007. BTAS 2007. First IEEE Interna-

tional Conference on, pages 1–6. 104

[Rehn and Sommer, 2007] Rehn, M. and Sommer, F. T. (2007). A network that

uses few active neurones to code visual input predicts the diverse shapes of

cortical receptive fields. Journal of computational neuroscience, 22(2):135–146.

3, 125

[Rosasco et al., 2009] Rosasco, L., Verri, A., Santoro, M., Mosci, S., and Villa,

S. (2009). Iterative projection methods for structured sparsity regularization.

Technical Report MIT-CSAIL-TR-2009- 050 CBCL-282. 113

[Ruta and Gabrys, 2000] Ruta, D. and Gabrys, B. (2000). An overview of classi-

fier fusion methods. Computing and Information systems, 7(1):1–10. 103

[Sack et al., 2003] Sack, U., Knoechner, S., Warschkau, H., Pigla, U., Emmrich,

F., and Kamprad, M. (2003). Computer-assisted classification of hep-2 im-

munofluorescence patterns in autoimmune diagnostics. Autoimmunity Reviews,

2(5):298–304. 11

[Sani and Vosoughi, 2014] Sani, A. and Vosoughi, A. (2014). Resource allocation

optimization for distributed vector estimation with digital transmission. In 2014

148



BIBLIOGRAPHY

48th Asilomar Conference on Signals, Systems and Computers, pages 1463–

1467. 110

[Sayed, 2014] Sayed, A. H. (2014). Adaptation, learning, and optimization over

networks. Foundations and Trends in Machine Learning, 7(4-5):311–801. 69,

74, 75

[Shekhar et al., 2014] Shekhar, S., Patel, V., Nasrabadi, N., and Chellappa, R.

(2014). Joint sparse representation for robust multimodal biometrics recog-

nition. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

36(1):113–126. 103, 104

[Shen et al., 2014] Shen, L., Lin, J., Wu, S., and Yu, S. (2014). Hep-2 image

classification using intensity order pooling based features and bag of words.

Pattern Recognition, 47(7):2419–2427. 46, 58, 64

[Shi and Tomasi, 1994] Shi, J. and Tomasi, C. (1994). Good features to track.

In Computer Vision and Pattern Recognition (CVPR), IEEE Conference on,

pages 593–600. IEEE. 31

[Snell et al., 2012] Snell, V., Christmas, W., and Kittler, J. (2012). Texture and

shape in fluorescence pattern identification for auto-immune disease diagnosis.

In Pattern Recognition (ICPR), 2012 21st International Conference on, pages

3750–3753. 13

[Soda and Iannello, 2006] Soda, P. and Iannello, G. (2006). A multi-expert sys-

tem to classify fluorescent intensity in antinuclear autoantibodies testing. In

149



BIBLIOGRAPHY

Computer-Based Medical Systems, 2006. CBMS 2006. 19th IEEE International

Symposium on, pages 219–224. IEEE. 11

[Soda and Iannello, 2009] Soda, P. and Iannello, G. (2009). Aggregation of clas-

sifiers for staining pattern recognition in antinuclear autoantibodies analysis.

Information Technology in Biomedicine, IEEE Transactions on, 13(3):322–329.

11

[Soda et al., 2009] Soda, P., Iannello, G., and Vento, M. (2009). A multiple ex-

pert system for classifying fluorescent intensity in antinuclear autoantibodies

analysis. Pattern Analysis and Applications, 12(3):215–226. 11

[Soda et al., 2006] Soda, P., Rigon, A., Afeltra, A., and Iannello, G. (2006). Auto-

matic acquisition of immunofluorescence images: Algorithms and evaluation. In

Computer-Based Medical Systems, 2006. CBMS 2006. 19th IEEE International

Symposium on, pages 386–390. IEEE. 10

[Sriram et al., 2014] Sriram, A., Ensafi, S., Roohi, S. F., and Kassim, A. A.

(2014). Classification of human epithelial type-2 cells using hierarchical seg-

regation. In Control Automation Robotics Vision (ICARCV), 2014 13th Inter-

national Conference on, pages 323–328. 64

[Stoklasa et al., 2014] Stoklasa, R., Majtner, T., and Svoboda, D. (2014). E�-

cient k-nn based hep-2 cells classifier. Pattern Recognition, 47(7):2409 – 2418.

14, 46

[Storch, 2000] Storch, W. B. (2000). Immunofluorescence in clinical immunology:

a primer and atlas. Springer. 10

150



BIBLIOGRAPHY

[Strandmark et al., 2012] Strandmark, P., Ulen, J., and Kahl, F. (2012). Hep-

2 staining pattern classification. In Pattern Recognition (ICPR), 2012 21st

International Conference on, pages 33–36. 13

[Taalimi et al., 2015a] Taalimi, A., Ensafi, S., Qi, H., Lu, S., Kassim, A. A., and

Tan, C. L. (2015a). Multimodal dictionary learning and joint sparse represen-

tation for hep-2 cell classification. In Medical Image Computing and Computer-

Assisted Intervention–MICCAI, pages 308–315. Springer. 104

[Taalimi et al., 2015b] Taalimi, A., Khorsandi, R., and Qi, H. (2015b). Online

multi-modal task-driven dictionary learning and robust joint sparse represen-

tation for visual tracking. In Advanced Video and Signal Based Surveillance

(AVSS), 2015 12th IEEE International Conference on. 87

[Taalimi et al., 2015c] Taalimi, A., Khorsandi, S., and Qi, H. (2015c). Online

multi-modal task-driven dictionary learning and robust joint sparse representa-

tion for visual tracking. 2015 12th IEEE International Conference on Advanced

Video and Signal Based Surveillance (AVSS), 0:539–546. 110

[Taalimi and Qi, 2015] Taalimi, A. and Qi, H. (2015). Robust multi-object track-

ing using confident detections and safe tracklets. In Image Processing (ICIP),

2015 IEEE International Conference on. 110

[Theodorakopoulos et al., 2012] Theodorakopoulos, I., Kastaniotis, D.,

Economou, G., and Fotopoulos, S. (2012). Hep-2 cells classification via

fusion of morphological and textural features. In Bioinformatics &amp;

151



BIBLIOGRAPHY

Bioengineering (BIBE), 2012 IEEE 12th International Conference on, pages

689–694. IEEE. 14

[Theodorakopoulos et al., 2014] Theodorakopoulos, I., Kastaniotis, D.,

Economou, G., and Fotopoulos, S. (2014). Hep-2 cells classification via

sparse representation of textural features fused into dissimilarity space.

Pattern Recognition, 47(7):2367 – 2378. 45, 46, 82, 120, 121

[Thibault and Angulo, 2012] Thibault, G. and Angulo, J. (2012). E�cient statis-

tical/morphological cell texture characterization and classification. In Pattern

Recognition (ICPR), 2012 21st International Conference on, pages 2440–2443.

17, 18

[Tibshirani, 1996] Tibshirani, R. (1996). Regression shrinkage and selection via

the lasso. Journal of the Royal Statistical Society. Series B (Methodological),

58(1):267–288. 22

[Tikhonov, 1963] Tikhonov, A. (1963). Solution of incorrectly formulated prob-

lems and the regularization method. In Soviet Math. Dokl., volume 5, pages

1035–1038. 32

[Towfic et al., 2014] Towfic, Z. J., Chen, J., and Sayed, A. H. (2014). Dictionary

learning over large distributed models via dual-admm strategies. In Machine

Learning for Signal Processing (MLSP), 2014 IEEE International Workshop

on, pages 1–6. IEEE. 77

152



BIBLIOGRAPHY

[Tropp, 2004] Tropp, J. A. (2004). Greed is good: algorithmic results for sparse

approximation. IEEE Transactions on Information Theory, 50(10):2231–2242.

23

[Tu and Sayed, 2012] Tu, S.-Y. and Sayed, A. H. (2012). Di↵usion strategies out-

perform consensus strategies for distributed estimation over adaptive networks.

Signal Processing, IEEE Transactions on, 60(12):6217–6234. 69, 74

[Wang et al., 2014] Wang, W., He, L., Markham, P., Qi, H., Liu, Y., Cao, Q., and

Tolbert, L. (2014). Multiple event detection and recognition through sparse

unmixing for high-resolution situational awareness in power grid. IEEE Trans.

on Smart Grid, 5(4):1654–1664. 87

[Wang et al., 2013] Wang, W., Luo, J., and Qi, H. (2013). Action recogni-

tion across cameras via reconstructable paths. In Distributed Smart Cameras

(ICDSC), 2013 Seventh International Conference on, pages 1–6. 87

[Wang et al., 2016] Wang, W., Taalimi, A., Duan, K., Guo, R., and Qi, H. (2016).

Learning patch dependent random kernel forest for person re-identification. In

Applications of Computer Vision (WACV), 2016 IEEE Winter Conference on.

86

[Wiliem et al., 2014] Wiliem, A., Sanderson, C., Wong, Y., Hobson, P., Minchin,

R. F., and Lovell, B. C. (2014). Automatic classification of human epithelial

type 2 cell indirect immunofluorescence images using cell pyramid matching.

Pattern Recognition, 47(7):2315–2324. 46, 58, 64

153



BIBLIOGRAPHY

[Wiliem et al., 2013] Wiliem, A., Wong, Y., Sanderson, C., Hobson, P., Chen, S.,

and Lovell, B. C. (2013). Classification of human epithelial type 2 cell indirect

immunofluoresence images via codebook based descriptors. In IEEE Workshop

on Applications of Computer Vision (WACV), pages 95–102. 18

[Wright et al., 2009] Wright, J., Yang, A., Ganesh, A., Sastry, S., and Ma, Y.

(2009). Robust face recognition via sparse representation. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 31(2):210–227. 107

[Xiao and Boyd, 2004] Xiao, L. and Boyd, S. (2004). Fast linear iterations for

distributed averaging. Systems & Control Letters, 53(1):65–78. 74

[Yang et al., 2009] Yang, J., Yu, K., Gong, Y., and Huang, T. (2009). Linear

spatial pyramid matching using sparse coding for image classification. In Com-

puter Vision and Pattern Recognition (CVPR), IEEE Conference on, pages

1794–1801. IEEE. 21, 37

[Yang et al., 2014a] Yang, M., Dai, D., Shen, L., and Van Gool, L. (2014a). Latent

dictionary learning for sparse representation based classification. In Computer

Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages

4138–4145. 103

[Yang et al., 2010] Yang, M., Zhang, L., Yang, J., and Zhang, D. (2010). Metaface

learning for sparse representation based face recognition. In Image Processing

(ICIP), 2010 17th IEEE International Conference on, pages 1601–1604. 110

[Yang et al., 2014b] Yang, Y., Wiliem, A., Alavi, A., Lovell, B. C., and Hobson,

P. (2014b). Visual learning and classification of human epithelial type 2 cell

154



BIBLIOGRAPHY

images through spontaneous activity patterns. Pattern Recognition, 47(7):2325

– 2337. 13

[Zhang et al., 2010] Zhang, Y., Jin, R., and Zhou, Z.-H. (2010). Understanding

bag-of-words model: a statistical framework. International Journal of Machine

Learning and Cybernetics, 1(1-4):43–52. 32

[Zhao and Sayed, 2012] Zhao, X. and Sayed, A. H. (2012). Clustering via di↵usion

adaptation over networks. In Cognitive Information Processing (CIP), 2012 3rd

International Workshop on, pages 1–6. IEEE. 79

[Zonoobi and Kassim, 2013] Zonoobi, D. and Kassim, A. A. (2013). On the re-

construction of sequences of sparse signals–the weighted-cs. Journal of Visual

Communication and Image Representation, 24(2):196–202. 62

[Zonoobi and Kassim, 2014] Zonoobi, D. and Kassim, A. A. (2014). A compu-

tationally e�cient method for reconstructing sequences of MR images from

undersampled k-space data. Medical image analysis, 18(6):857–865. 87

[Zonoobi et al., 2011] Zonoobi, D., Kassim, A. A., and Venkatesh, Y. V. (2011).

Gini index as sparsity measure for signal reconstruction from compressive sam-

ples. Selected Topics in Signal Processing, IEEE Journal of, 5(5):927–932. 22,

34

[Zonoobi et al., 2014a] Zonoobi, D., Roohi, S. F., and Kassim, A. A. (2014a).

Dependent nonparametric bayesian group dictionary learning for online recon-

struction of dynamic mr images. arXiv preprint arXiv:1408.5667. 57

155



BIBLIOGRAPHY

[Zonoobi et al., 2014b] Zonoobi, D., Roohi, S. F., and Kassim, A. A. (2014b).

Low-rank and sparse matrix decomposition with a-priori knowledge for dynamic

3d mri reconstruction. arXiv preprint arXiv:1411.6206. 57

[Zou and Hastie, 2005] Zou, H. and Hastie, T. (2005). Regularization and variable

selection via the elastic net. Journal of the Royal Statistical Society. Series B:

Statistical Methodology, 67(2):301–320. 121, 123

156



List of Publications

The contents of this thesis are based on the following papers that have been

published, accepted, or submitted to the peer-reviewed journals and conferences.

Journal Publications

[1] S. Ensafi, S. Lu, A. A. Kassim, and C. L. Tan, “Accurate HEp-2 Cell Classifi-

cation Based on Sparse Coding of Superpixels,” Pattern Recognition Letters,

2016 (In Press).

[2] S. Ensafi, A. Taalimi, S. Lu, A. A. Kassim, H. Qi, and C. L. Tan, “Joint

Multi-Cue Dictionary Learning for HEp-2 Cell Classification,” Pattern Recog-

nition, 2015 (under review).

[3] S. Ensafi, S. Monajemi, S. Lu, A. A. Kassim, C. L. Tan, S. Sanei, and S-H.

Ong, “Adaptive Distributed Dictionary Learning for HEp-2 Cell Classifica-

tion,” Artificial Intelligence in Medicine, 2016 (under review).

[4] S. Ensafi, S. Lu, A. A. Kassim, and C. L. Tan, “Accurate HEp-2 Cell Clas-

sification Based on Sparse Bag of Words Coding,” Computerized Medical

Imaging and Graphics, 2015 (under review).



BIBLIOGRAPHY

Conference Publications

[1] A. Taalimi, S. Ensafi, H. Qi, S. Lu, A. A. Kassim, and C. L. Tan, “Mul-

timodal dictionary learning and joint sparse representation for hep-2 cell

classification,” in Medical Image Computing and Computer Assisted Inter-

vention (MICCAI), pp. 308 - 315, Springer, 2015.

[2] S. Ensafi, S. Lu, A. Kassim, and C. L. Tan, “Sparse non-parametric bayesian

model for hep-2 cell image classification,” in Biomedical Imaging (ISBI),

2015 IEEE 12th International Symposium on, pp. 679 - 682, April 2015.

[3] S. Ensafi, S. Lu, A. A. Kassim, and C. L. Tan, “Automatic cad system for

hep-2 cell image classification,” in Pattern Recognition (ICPR), 2014 22nd

International Conference on, pp. 3321 - 3326, IEEE, 2014.

[4] S. Ensafi, S. Lu, A. A. Kassim, and C. L. Tan, “A bag of words based ap-

proach for classification of hep-2 cell images,” in Pattern Recognition Tech-

niques for Indirect Immunofluorescence Images (I3A), 2014 1st Workshop

on, pp. 29 - 32, IEEE, 2014.

[5] S. Monajemi, S. Ensafi, S. Lu, A. Kassim, C. L. Tan, S. Sanei, and S-H.

Ong “Classification of HEp-2 Cells Using Distributed Dictionary Learning,”

in Signal Processing (EUSIPCO) 2016 24th European. IEEE. (Accepted)

[6] A. Siram, S. Ensafi, S. Faghihroohi, and A. A. Kassim, “Classification of

human epithelial type-2 cells using hierarchical segregation,” in Control Au-

tomation Robotics Vision (ICARCV), 2014 13th International Conference

on, pp. 323 - 328, IEEE, 2014.

158



Appendix

ICPR2012 Dataset

Centromere (Ce): Contains several discrete small spots that are scattered

throughout the nuclei area. These speckled can be observed in the nuclear chro-

matin.

Related AD: CREST Syndrome (calcinosis, Raynaud’s, esophageal dysfunction,

sclerodactyly and telangiectasia).
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Coarse Speckled (Cs): Contains coarse granular nuclear staining pattern.

Some holes are observed on the nuclei area and the pattern is so close to Fine

Speckled cell images.

Related AD: Titers>1:160 suggest SLE (Anti-Sm) or mixed connective tissue

disease (MCTD) (Anti-RNP).

Cytoplasmatic (Cy): contains a very fine dense resembling homogeneous stain-

ing which covering part or the cytoplasm.

Related AD: Alcoholic liver disease, rheumatoid arthritis, psoriasis and normal

individuals.
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Fine Speckled (Fs): Contains fine granular nuclear staining pattern. In most

of the cell images of this type, the patterns are observed blurry.

Related AD: Sjögren’s (Anti-SSB), Sjögren’s sicca complex (Anti-SSA), SLE,

sub-acute cutaneous lupus erythematosus and scleroderma.

Homogeneous (H): The staining pattern is spread out over the interphase nuclei.

These type of cell images have smooth di↵used characteristics all over the nuclei

area.

Related AD: Titers>1:160 are highly suggestive of systemic lupus erythematosus

(SLE) or other connective tissue diseases.
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Nucleolar (N): Small compact particles can be observed in the cells’ nucleoli.

Without these granules, this pattern is close to Homogeneous class. At most six

granules can be observed.

Related AD: Polymyositis/scleroderma, polymyositis and scleroderma.

ICIP2013 Dataset

Centromere (Ce): Discrete small spots that are observed in the nuclear chro-

matin in a scattering fashion.

162



BIBLIOGRAPHY

Related AD: CREST Syndrome (calcinosis, Raynaud’s, esophageal dysfunction,

sclerodactyly and telangiectasia).

Golgi (G): Composed of irregular large granules which are stained adjacent to

the boundaries of nucleus and around chromosomal material.

Related AD: SLE and Sjögren’s syndrome.

Homogeneous (H): The staining pattern is spread out over the interphase nuclei.

These type of cell images have smooth di↵used characteristics all over the nuclei

area.

Related AD: Titers>1:160 are highly suggestive of systemic lupus erythematosus

(SLE) or other connective tissue diseases.
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Mitotic Spindle (MP): staining only of the triangular or “banana-shaped” pole

area of the mitotic spindle in the metaphase cells. This pattern is rare.

Related AD: Infectious mononucleosis, Hashimotos’s disease, thyrotoxicosis and

other chronic diseases.

Nucleolar (N): Clustered particles can be observed in the cells’ nucleoli. With-

out these granules, this pattern is close to Homogeneous class. At most six gran-

ules can be observed.

Related AD: Polymyositis/scleroderma, polymyositis and scleroderma.
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Nuclear Membrane (NM): Contains a tube-like of smooth homogeneous fluo-

rescence in the interphase cells.

Related AD: Smooth staining of the entire nuclear membrane with cytoplasmic

staining of the mitochondrial organelles.

Speckled (S): Contains two subcategories of fine- and coarse-speckled. Various

sized speckled can be observed densely distributed throughout nucleoplasm.

Related AD: Systemic Sclerosis with di↵use cutaneous involvement or sclero-

derma.
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