
Sparse molecular image representation

Sofia Karygiannia, Pascal Frossarda

a Ecole Polytechnique Fédérale de Lausanne (EPFL), Signal Processing Laboratory
(LTS4), CH-1015, Lausanne, Switzerland

Abstract

Sparsity-based models have proven to be very effective in most image pro-
cessing applications. The notion of sparsity has recently been extended to
structured sparsity models where not only the number of components but also
their support is important. This paper goes one step further and proposes
a new model where signals are composed of a small number of molecules,
which are each linear combinations of a few elementary functions in a dictio-
nary. Our model takes into account the energy on the signal components in
addition to their support. We study our prior in detail and propose a novel
algorithm for sparse coding that permits the appearance of signal dependent
versions of the molecules. Our experiments prove the benefits of the new im-
age model in various restoration tasks and confirm the effectiveness of priors
that extend sparsity in flexible ways especially in case of inverse problems
with low quality data.

Keywords: sparsity, structure, linear combinations, deformations, pools,
structural similarity

1. Introduction

Most tasks in signal processing and analysis are significantly simplified
when the data is represented into its right form, especially for high-dimensional
signals like images. The quest for the right signal representation has fostered
the use of overcomplete dictionaries as tools for signal compression, denoising,
enhancement and various other applications. Dictionaries have the advan-
tage to have very few constraints in their construction, so that they can be
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finally adapted to the data processing task at hand. However, this flexibility
has a price: the representation of a signal is unfortunately not unique in over-
complete dictionaries, and finding the best such representation is generally
an ill-posed problem. As a result, well-chosen priors or models about the
signal representation become necessary in order to develop effective signal
processing algorithms with overcomplete representations.

The most common models in overcomplete signal representations are
based on sparsity priors. This means that the signal is well represented
by only a few components or atoms of the overcomplete dictionary. Sparsity
is a pretty intuitive prior that is also biologically plausible, as shown in the
pioneer work of Olshausen and Field [1] where it is suggested that sparsity
could be a property employed by the mammalian visual system for achieving
efficient representations of natural images. Vast research efforts have been
deployed in the last decades in order to design algorithms that solve the hard
problem of sparse decomposition of signals by effective approximation [2, 3]
or convex relaxation [4, 5].

While sparsity is a simple and generic model, it is not always a sufficient
prior to obtain good signal reconstruction, especially if the original data
measurements are compressed or inaccurate. More effective signal models
can therefore be built by considering the dependencies between the dictionary
elements that appear in the signal representation instead of their number
only. In that spirit, group sparsity has been introduced as a way to enforce
a pre-specified structure in the decomposition. Specifically, the components
of the dictionary are partitioned into groups and the elements of each group
are encouraged to appear simultaneously in the signal decomposition [6].
Alternatively, the atoms can also obey a predefined hierarchical structure [7].
Other approaches have considered additional flexibility by constraining the
signal decomposition to include elements from overlapping groups of atoms
[8, 9, 10]. The group sparsity structure is however not always appropriate for
modeling signal patterns as the groups are merely identified in terms of their
support. It is however not suitable for differentiating patterns with the same
support but different distributions, which could actually be very different
signal patterns. Such a case is presented in Figure 1 where we show how much
the image of a face can change when varying the coefficients of its sparse code
while keeping the same support.This ambiguity is unfortunately a serious
drawback in various applications such as signal recovery and recognition, for
example.

We propose here a new signal model to represent signal patterns and
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Figure 1: An example of the ambiguity related to the support of the sparse codes. In
(a) we show the image of a face and in (b) its sparse approximation with 60 atoms on a
dictionary of Gaussian atoms. The next two columns are produced by randomly choosing
the values of the coefficients on the same support. The final signal is then normalized.
The resulting images are quite different than the original face proving the importance of
the coefficients along with the support of the sparse code.

higher level structures. Our model builds on our previous work on struc-
tured sparsity [11] and represents signals as sparse set of molecules, which
are linear combinations of atoms from a redundant dictionary of elementary
functions. It permits to efficiently represent the signal structures as parts
or patterns; it builds richer priors than classical structured sparsity models
that merely focus on the support of the signal representation and not the
actual energy distribution. More specifically, we first form pools of similar
atoms in the dictionary, and assume all atoms in a pool carry similar infor-
mation. Then we define representative molecules that are prototype linear
combinations of atoms, or equivalently typical patterns in images. Finally,
we introduce the idea of molecule realizations in order to take into account
the variability of patterns in natural images. The molecule realizations are
slightly deformed versions of molecule prototypes, where atoms could be re-
placed by similar atoms from their respective pools. As a result, a given
molecule can take various forms that are controlled by the construction of
the atom pools. It provides flexibility in the representation of signals with
molecules, while preserving the main structural information in the sparse sig-
nal approximation. The molecule prototype is essentially expressing a main
visual pattern while its realizations allow for signal dependent versions of the
main pattern with possibly minor deformations.
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We study in details our new structured sparsity model and analyze the
recovery performance of molecule representations. We formally show that
our choice of the synthesis dictionary based on molecules realizations pro-
vides a good compromise between structure and flexibility. Then we propose
a novel constructive sparse coding algorithm of signals with our new struc-
tured sparsity model. We exploit the characteristics of atoms pools to design
effective similarity measures for detecting molecule realizations in signals.
Finally, we show the use of our new framework with illustrative experiments
in various applications such as compressed sensing, inpainting and denois-
ing. Our results show that the new structured sparsity prior leads to better
reconstruction performance than classical sparsity priors due to its flexible
molecule-based representation.

Our efficient structured sparsity model represents a quite unique frame-
work in the literature. In particular, the consideration of the coefficient
distribution and the atom pools, as well as the definition of both molecule
prototypes and realizations, are important characteristics of our new signal
representation model. The coefficients permit to differentiate structures with
distinct energy distributions on the same support and thus to facilitate the
proper recovery of image information in case of incomplete or inaccurate
observations. Another definition of molecule has been previously proposed
in [12] to describe a set of coherent atoms in a dictionary, but it is more
related to the notion of a group or a pool of atoms than to our original
definition of a molecule. Multi-level structures are also related to the con-
cept of double sparsity introduced in [13] where the authors learn structures
on top of a set of predefined set of atoms. It is however less flexible than
our model, where we include the notion of pools and molecules realizations
that enable the proper handling of minor structure deformation in the sig-
nals. Less close to our model, some recent works describe the statistical
dependencies between the atoms in a dictionary with graphical models. For
example, Markov Random Fiels (MRFs) are employed for modeling these
dependencies in [14, 15, 16]. The resulting structure model is a probability
distribution function that compares the different possible supports of atoms
in the signal representation. These models are quite powerful but unfortu-
nately quite complicated and highly parametric, such that they are difficult
to deploy and adapt to various applications. Next, the idea of pooling that
is used for defining molecules realizations is quite often used under different
forms to provide local invariance [17, 18] in the signal representation. In our
case however, it provides local invariance to small deformations of a set of
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atoms with higher resilience to sparse code variability in the identification of
typical patterns in images. Finally, the differentiation between the molecule
prototypes and molecule realizations in our new model leads to realizations
of structures that are signal dependent, like in [19, 20]. Hence, the signal rep-
resentation is flexible but nevertheless follows a pre-defined structure. The
specific characteristics of our scheme make it very suitable for various signal
processing tasks and especially signal denoising and inpainting.

The structured sparsity model proposed in this paper is essentially a two-
layer architecture with the first layer consisting of the dictionary atoms and
the second of the molecules. The benefits of such architectures over the flat
ones has been a subject of research for a long time in the feature extraction
and machine learning community. It has been validated experimentally in
the case of signal recognition in [21] while the mere existence of the field
of deep learning can argue in benefit of multistage architectures. The deep
learning systems consist of a hierarchy of features along with some pooling
and contrast normalization operators that sequentially transform the input
into a new representation [18, 22, 23, 20]. Although it is common to learn
the filters used in each layer from the data, there is recent work done also
in the case of predefined filters [24]. In both cases, the goal of the learning
is to uncover class invariant signal representations that are mainly used for
classification and not the learning of appropriate structure signal priors for
signal recovery. These works nevertheless support the idea that multiple
layers leads to better signal models, which is aligned with the ideas proposed
in this paper.

In summary, we propose and study a novel two-layer signal model built
on atoms and respectively molecules, where

• the inclusion of both the coefficients and the support in the structured
sparsity prior enables the differentiation of structures on the same sup-
port but with distinct energy distributions

• the association of atoms with pools permits to be resilient to variability
in the sparse codes

• the differentiation between the molecule prototypes and molecule re-
alizations allows for additional flexibility for pattern recovery from in-
complete or inaccurate observations

Besides the definition of a new structured sparsity model, this paper also
provides the following contributions
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• the design of new algorithm for sparse coding under our new structured
sparsity prior

• the development of illustrative experiments in image recovery applica-
tions that confirm the benefits of our new framework.

The rest of the paper is organized as follows. In Section 2 we describe
our model in detail. In Section 3 we compare the different choices for a
suitable synthesis dictionary for our model while in Section 4 we present the
associated coding problem in detail. Finally, in Section 5 we provide results
that validate our model for various signal restoration tasks.

2. Structured image model

2.1. Multi-level structure

We present now our new structured sparsity model for images whose
multi-level structure permits to represent visual patterns or typical signal
parts as combinations of elementary atoms in a dictionary. In other words,
we define molecules as linear combinations of atoms to represent groups of
structurally similar signal patterns. We define the concept of molecule pro-
totypes along with molecule realizations that are slightly deformed versions
of the prototypes aiming at capturing additional signal variability. We first
present our new model and then discuss in details the notion of pools of
atoms, which is central for computing molecule realizations. Then we intro-
duce a new structural difference function that is later used to compare visual
patterns when computing image representations.

We first provide an example to illustrate our structured sparsity model.
Our model is built on the concepts of molecule prototypes and realizations.
The prototype is a representative pattern for a group of molecule realiza-
tions, which are slightly deformed versions of a typical image part. The first
image in Figure 2a) shows a molecule prototype, which is an orthogonal an-
gle formed by two edge-like atoms from the dictionary of elementary atoms.
In other words, the molecule prototype is represented by a particular linear
combinations of atoms, as shown in the first energy distribution function in
Figure 2b. The molecule could however appear with small deformations in
actual images, and such molecules realizations are illustrated in the rest of
the images in Figure 2a. They look quite similar to the molecule prototype
and preserve to some extent its structural characteristics, but they are not
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constructed with the exact same atoms, as illustrated by their respective
energy distribution functions in Figure 2b.
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Figure 2: Illustrative example of a molecule prototype and its realizations. In (a) the
molecule prototype (on the left) represents a near orthogonal crossing of edges while the
molecule realizations describe visual patterns that are similar to the prototype. The l2
distance between the prototype and the realizations in the image domain is given on top
of each realization. In (b) we show the corresponding sparse codes of the images in (a).
The l2 distance of the sparse codes seen as vectors in <N is given on top of each figure.
As we can see, none of the metrics depicts accurately the structural similarity among the
patterns.

We know describe our new signal model in more details. We consider a set
of signals X ∈ RN×B and a base dictionary D ∈ RN×K of elementary func-
tions or atoms dk with 1 ≤ k ≤ K, whose linear combinations can effectively
represent the signals X. We assume that the occurrence of atoms in the
signal representation is not completely independent but that atoms rather
have the tendency to form typical visual patterns. In other words, there
are some linear combinations of atoms that tend to appear more frequently
than others, possibly with slight changes either in the energy distribution or
atom sets. The most frequent atom combinations are represented by a set of
molecule prototypes M = {ml, l ∈ {1, .., Q}} where each prototype is defined
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as a sparse set of atoms with specific coefficient values, i.e.,

ml =
K∑
k=1

cπ,l(k)dk = Dcπ,l, ||cπ,l||0 < n (1)

where n is the sparsity level of the molecules and cπ,l(k) > 0 only if the atom
dk belongs to the support Γπ,l of the molecule ml. The non-negativity of
coefficients will be explained in more detail in Section 2.2. We can further
write all the molecule prototypes in a matrix form as

M = DCπ, with Cπ = [cπ,1 cπ,2 · · · cπ,Q] . (2)

We consider that the molecules correspond to the most important parts in
the signals, but that they may appear as realizations that are similar but
not identical to the prototypes. Equivalently, we consider a signal x ∈ X
to be a sparse non-negative1 combination of molecules realizations plus some
bounded noise. We define cx,l as the vector of atom coefficients that expresses
the realization of the moleculeml in x. We further consider that the difference
between a molecule realization and the corresponding prototype is small, i.e.,
∆(cπ,l, cx,l) < t, ∀l, where the function ∆ measures the structural difference
between molecules. The parameter t is a threshold value on the structural
difference and its value permits to control the flexibility of our new multi-
level model in capturing the variability in typical visual patterns. The signal
can therefore be written as

x = DCxa+ η, with Cx = [cx,1 cx,2 · · · cx,Q] and ∆(cπ,l, cx,l) < t,∀l
(3)

We further consider that the approximation error is bounded (i.e., ||η||2 <
H), the atom and molecule coefficients are defined as ai ≥ 0,∀i and cx,i(k) ≥
0,∀(k, i) and the representation is sparse, i.e., ||a||0 ≤ s for some sparsity
threshold s.

The image model in Eq. (3) corresponds to a sparse decomposition of
x into molecule realizations, or equivalently the expansion of the signal x
into dictionary atoms whose coefficients are given by Cxa. The grouping of

1In this level, we consider only positive coefficients to simplify the development, without
loss of generality.
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atoms into representative molecules is driven by the choice of the structural
difference function ∆ that quantifies the deviation of molecule realizations
from the corresponding prototypes. In the rest of this section, we first in-
troduce the concept of atom pools, which are groups of similar atoms in the
dictionary, and eventually use atom pools to define the structural difference
metric ∆ that is used in our part-sparse signal model.

2.2. Pools of atoms

In our framework, the signal is represented as a linear combination of
atoms taken from a redundant dictionary. The redundancy of the dictio-
nary helps in building sparse representations but also leads to the fact that
many atoms may carry similar information. In particular, a specific image
feature can be well captured by a specific atom di in the dictionary. But
the same feature might also be well represented by atoms that are similar to
di, as illustrated in Figure 3. Depending on the actual image representation
method, the same visual feature can therefore be coded in various ways. We
would like to make sure that our part-sparse image model is able to take this
phenomenon into account.

We define the notion of atom pools in order to represent atoms that are
similar. More specifically, in a dictionary D, each atom di can be represented
as a unit norm vector in the signal space RN . Then, there might be other
atoms dj in D that are very similar to di, i.e., 〈di, dj〉 > 1 − ε, with ε the
approximation threshold on the similarity of two atoms. In this case, the
energy of the projection of dj on di is significant, so that a visual feature
may be equivalently well represented by the atoms di or dj. We characterise
this phenomenon by introducing the notion of pools of atoms: each atom di
is related to a pool P (di) of atoms dj ’s that are most similar to di. In other
words, a pool is defined as

P (di) = {dj, 1 ≤ j ≤ K, | 〈di, dj〉 > 1− ε} (4)

Equipped with this definition, we can now measure the difference between
alternative representations of the same visual features. In particular, we
can estimate the actual energy corresponding to the atom di in a signal
represented by the sparse code b that does actually not include the atom
di. In other words, looking at the sparse signal decomposition x = Db with
bi = 0, we would like to know how much of the energy is actually aligned
along the direction represented by the atom di. It mainly corresponds to the
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Figure 3: The representation of an atom di and its pool P (di) in RN . The pool is defined
by the atoms with cos φ > 1− ε. Then, bkdk + bjdj is one possible realization of the atom
di with energy ei = bk〈di, dk〉+ bj〈dj , dk〉.

energy captured by the coefficient of all the atoms in the pool P (di). We can
therefore approximate the energy of the signal in the direction of di as

ei(b) =
∑

j∈P (di)

bj〈di, dj〉 = Si b (5)

where

Si(j) =

{
〈di, dj〉 if dj ∈ P (di)

0 if dj 6∈ P (di)
(6)

The vector Si expresses essentially the pairwise relationships between the
atom di and the rest of the atoms in the dictionary D. The energy estimate
above is very useful in computing the structural difference between molecules
that is explained below. The value of ei(b) is essentially the length of the
projection of the vector vi(b) =

∑
j∈P (di)

bjdj, the realization of di, in the
direction of di. When the entries of b are non-negative, vi is guaranteed to
lie in the geometric space defined by the pool P (di) and as a result the error
||di − vi||22 is bounded (the proof is provided in Appendix A). In the rest,
we will adopt this assumption of non-negativity without loss of generality.
Finally, an example of the pool of an atom, as well as a possible non-negative
realization of the atom from its pool, is shown in Figure 3.
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2.3. Structural difference

Figure 4: Illustration of a molecule prototype and a possible realization. The vector
Wl is the indicator function of the support Γπ,l of the molecule prototype cπ,l. The
structural difference between cπ,l and cx,l is then ∆(cπ,l, cx,l) = ||Wl × (cπ,l − S cx,l))||22 =
(c2 − 〈d1, d2〉 b2)2 + (c21 − b21)2 + (c46 − 〈d46, d45〉 b45 − 〈d46, d47〉 b47)2

We now propose a measure of structural difference between molecule in-
stances that is based on the above definition of atom pools. Recall that a
molecule realization is similar to a molecule prototype and permits to cap-
ture the variability of visual patterns in actual images. It can be defined as
the deformation of a molecule prototype whose original atoms could be each
substituted by atoms from their respective pool. Equivalently, a molecule
realization is essentially a molecule prototype that can be realized through a
linear combinations of atoms in the pools of the initial prototype components.
As a result, a molecule realization has a similar energy as the prototype when
measured on atom pools but not necessary exactly the same coefficient val-
ues on the atoms. It makes it difficult to measure the similarity between the
actual visual patterns represented by the molecule prototype and its realiza-
tions. For example, the l2 norm in both the image and sparse code domain
fail to uncover the structural similarity between both molecules, as it does
not take into account the actual features represented by the atoms nor their
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interplay. The inability of the l2 norm in capturing the similarity of molecules
can be observed by checking the norms in Figures 2a and 2b.

As classical norm metrics are not appropriate for computing the similarity
in the structure of different molecule instances, we propose a new structural
difference ∆() for the signal model of Eq. (3). In particular, the deformation
in the structure of molecules is measured by the compatibility between a
sparse coefficient vector cx,l that represents the realization of the molecule
ml in the signal x, and the sparse coefficient vector cπ,l that represents the
corresponding molecule prototype. Since a molecule is identified by specific
energy levels on the pools of the atoms in its support, its realizations are
allowed to have non-zero values only in the union of the pools of these atoms,
i.e., Γx,l ⊆

⋃
dk∈Γπ,l

P (dk) where Γx,l and Γπ,l are the supports of cx,l and cπ,l
respectively. Then, the structural difference computes the energy in the
pools of cx,l and compares it to the ones expressed in cπ,l. If the energies are
comparable, the structural difference is considered to be small.

To be more specific, using the formula for the energy level of an atom
based on its pool given in (5), the structural difference ∆ is computed as:

∆(cπ,l, cx,l) =
∑

k|cπ,l(k)>0

(cπ,l(k)− ek(cx,l))2

=
∑

k|cπ,l(k)>0

(cπ,l(k)− Skcx,l)2

= ||Wl × (cπ,l − S cx,l))||22 (7)

where S = [S1 S2 · · · SK ], with Si from Eq. (6). The indicator vector Wl

denotes the inclusion of dictionary atoms in the support Γπ,l of the molecule
ml, i.e.,

Wl(k) =

{
1 if dk ∈ Γπ,l

0 if dk 6∈ Γπ,l
(8)

Note that atoms that participate in the same molecule are assumed to not
have overlapping pools which is equivalent to assuming that the atoms in a
prototype are quite incoherent. As we will see in Section 3 this is a desired
property that leads to lower coherence on the dictionary and thus better re-
covery guarantees. In general, the lower the structural difference ∆(cπ,l, cx,l),
the more compatible the molecule realization and its prototype. Finally, we
show an example of a molecule prototype and one possible realization in the
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atomic level in Figure 4 along with the corresponding structural difference
function.

3. Recovery Analysis

The proposed model presented in Eq. (1) defines signals to be be formed
as a composition of molecule prototypes with small, controlled deformations.
The molecules are further defined as linear combinations of a set of basic
atoms. According to this model, one could approximate signals in three
different ways, namely as linear combinations of elements in three different
dictionaries: the atomic dictionary D, the molecule prototype dictionary DC
and the dictionary of molecule realizations. In the rest of this section, we
analyze the pros and cons of each option in accurately representing signals.

On the one hand, the benefit of the atomic dictionary, is its flexibility
since it includes all possible atoms present in signals. However, the lack
of any structure makes it less appropriate for recovering signals under chal-
lenging conditions, in the presence of intense noise or when information is
missing, as the sparsity prior may prove to be insufficient for a satisfactory
reconstruction. On the other hand, it is known that the inclusion of more
structure in the dictionaries facilitates significantly the task of signal restora-
tion even under severe degradation. The dictionary of molecule prototypes
as well as that of molecule realizations have both the advantage of providing
structured priors. However, this advantage comes at a price in both cases.

The dictionary of molecule prototypes, might not be always sufficient for
retrieving the right structure in the signals. We can rewrite a signal given
from Eq. (1) as :

x = D Cx a+ η = D (C + Ex) a+ η ≈ D C a+D C ã+ η

= D C (a+ ã) + η

= D C b+ η

where DC ã is the best approximation of DEx ã in the dictionary of molecule
prototypes DC. The vector a is an exact sparse representation. However, Ex,
which is the structured deviation from the prototypes, can take various forms
so that the vector ã does not necessarily have a sparse nature. Therefore,
the structure of b can be significantly different from that of a resulting in
a false recovery of the signal structure. The source of the above problem is
the lack of flexibility in the dictionary DC: it defines patterns through the
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prototypes to assist the retrieval of degraded signals but at the same time
the dictionary elements are quite rigid and restrictive.

Therefore, it appears that building a dictionary with all possible molecule
realizations, denoted as DCx, could be a better and more flexible alterna-
tive with a compromise between structure and flexibility. However,building
a dictionary with all possible molecule realizations results in a very coherent
representation. As we have seen in Section 2.1, the molecule realizations are
essentially small deformations of a molecule prototype. Therefore, all realiza-
tions of the same prototype are highly similar. The recovery performance of
a dictionary is known to deteriorate as the sparsity of the signals decreases
and the coherence of the dictionary increases. To put it more formally, a
known recovery constraint for BPDN (Basis Pursuit Denoising) [25] or OMP
(Orthogonal Matching Pursuit) [3] is given by

k ≤ 1

2
(

1

µx
+ 1). (9)

where µx is the coherence of the underlying dictionary and k is the sparsity
of the signal, i.e., the number of elements in the signal. Therefore, the more
coherent the dictionary DCx , the more sparse the signals should be in order
to be able to recover them.

We can analyze how the coherence µx of the dictionary DCx is affected
by the presence of multiple realizations for each molecule prototype. Since
the realizations of the same molecule prototype are very similar, µx can be
lower bounded using the maximum distance r between any realization and
the corresponding molecule prototype. The theoretical bound, Lx ≤ µx, is
given by

Lx = 1− 2r2 (10)

To quantify this result, we can compare the molecule realization dictionary
with the case of a dictionary DCu that contains only one molecule realization
per molecule prototype. The restriction on the allowed number of instances
per prototype allows for a theoretical upper bound on the coherence µu of
the dictionary DCu, i.e., Uu ≥ µu with

Uu = µ(1− 2r2) + 2r
√

(1− µ2)(1− r2) (11)

where µ is the coherence of the dictionary of molecule prototypes DC. In
practice the coherence µu is expected to be close to µ. Both theoretical
bounds depend on the distance r which is driven by the characteristics of the
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atoms pools as well as the internal structure of the molecules. The latter is
measured by the maximum similarity between atoms belonging to the same
molecule, denoted as µM . To improve the readability of the section we have
moved the exact expressions for r as well as the proofs for the bounds in the
Appendix B.

From the expression for Lx we can see that the smaller the r is, the worse
the µx is expected to be. On the other hand, when r is small, Uu gets closer to
µ. In order to present these dependencies more concretely, we show in Figure
5 some plots of µx and µu for various settings. At the first row, we present
the bounds Lx and Uu computed based on Eq. (10) and (11) respectively
while at the second row we show the mean values of µx and µu computed
experimentally for different values of the molecule prototype coherence µ over
random generations of the dictionaries DCu and DCx. For simplicity, in our
calculations we have assumed that the number of atoms in all molecules is
the same, denoted as n. The pool angle φ was set to 10 degrees while we
varied the maximum in-molecule atomic similarity µM . In both rows, the
red line refers to the coherence of the DCx dictionary, the blue line to the
coherence of DCu and the yellow to that of molecule prototypes DC.

From the figures, according to the values of the bounds Lx and Uu, the
benefit of the use of DCu over DCx is more prominent when the molecule
prototypes are not very coherent (lower values of µ). In this case, the lower
bound for µx, Lx, is higher than the upper bound for µu, Uu, so that µu
is guaranteed to be lower than µx. This benefit depends also on the coher-
ence of the atoms belonging to the same molecules: it is larger when µM is
low. However, the analysis of the experimental mean shows that in practice
the coherence µu of the dictionary DCu lies very close to the coherence of
the initial molecule prototype dictionary DC, while µx lies always close to
1. Therefore, we observe that restricting the number of realizations in the
dictionary to one per molecule prototype preserves the dictionary coherence
quite well while the inclusion of more than one molecule realizations per
prototype pushes the dictionary coherence towards 1.

To sum up, from the above discussion we can see that deciding which dic-
tionary to use for signal decomposition is not trivial. The underlying atomic
dictionary D lacks structure, the dictionary of molecule prototypes DC lacks
flexibility while the dictionary of all molecule realizations suffers from ineffi-
cient size and high coherence. To alleviate this issue, we propose an iterative
decomposition scheme that searches for the best molecule realizations using
at each iteration a synthesis dictionary with strictly one molecule realization
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Figure 5: Comparison plots for the coherence of the dictionaries DCx and DCu containing
many VS one realizations per molecule prototype respectively. The plots are for different
values of the number of atoms per molecule n, the size of the atoms pools φ as well as
the maximum similarity of atoms in the same molecule µM . In the first row we plot
the theoretical bounds while in the second the average coherence observed over random
generations of the dictionaries DCx and DCu.

per molecule prototype, denoted as DCu above. In this way, at each iteration
we have a guarantee for the coherence of the used dictionary while through
the iterations we expect to recover the right signal structure. The details of
the exact problem formulation as well as the proposed solution are presented
in the next Section.

4. Adaptive molecule coding algorithm

We now formulate the problem of decomposing a signal into a sparse
set of molecule realizations. We assume that the signal x follows the model
in Eq. (3), or equivalently that the signal can be well approximated by a
sparse linear combination of molecule realizations represented by Cx along
with their respective coefficients a. Each molecule realization in Cx is a
small deformation of the corresponding molecule prototype in C. The signal
approximation can then be computed by solving the adaptive molecule coding
problem written as follows:
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{â, Ĉx} = argmin
a,Cx

[
||x−DCxa||22 + λ1||a||1

+
∑

l,a(l)>0

(λ2∆(cπ,l, cx,l) + λ3||cx,l||1)

]
(12)

where each cx,l is a molecule realization for the molecule prototype cπ,l
and a(l) ≥ 0, Cx(k, l) ≥ 0 ∀l, k. The first term in the objective function
in Eq. (12) is the error of the approximation of the signal with a sparse
set of molecule realizations. The second term favors a sparse approximation
with the l1 norm of the coefficient vector a. The last term drives the form
of the molecule realizations: the term ∆(cπ,l, cx,l) tends to favor molecules
realizations that are close to prototypes while the l1 norm on the molecules
realizations codes cx,l ensures their sparsity. The weight parameters λi’s
permit to balance the different terms of the objective function.

By substituting the structural difference function from Eq. (7) in Eq.
(12) we get:

{â, Ĉx} = argmin
a,Cx

[
||x−DCxa||22 + λ1||a||1 + λ2

∑
l,a(l)>0

(||Wl × (cπ,l − S cx,l)||22

+ λ3

∑
l,a(l)>0

||cx,l||1

]
(13)

where Wi is given in Eq. (8) and the set of λi’s are weight parameters. For
a given dictionary D, a set of pools represented by S and a set of molecule
prototype written as Cπ, the objective function FD,S,Cπ is minimized when
the variables a and Cx form a part-sparse approximation of x. However,
the above optimization problem cannot unfortunately be solved easily for
both variables ax and Cx at the same time. Clearly, the problem is not
jointly convex for both variables. However, when one of the variables is
fixed, the problem is convex with respect to the other one. Therefore, we
adopt an alternating optimization technique with two steps for solving the
optimization problem in Eq. ( 13). The two steps are computed as follows.
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1. We first fix the set of molecules realizations, and solve the sparse coding
problem for the coefficient vector a. Given Cx, the solution for a can
be found as:

â = argmin
a

[
||x−DCxa||22 + λ1||a||1

]
, with a(i) ≥ 0,∀i (14)

2. Then, we fix the coefficient vector, and find the set of molecule real-
izations that minimize the objective function of the coding problem.
Given a, the solution for Cx can be found as

Ĉx = argmin
Cx

[
||x−DCxa||22 + λ2

∑
l,a(l)>0

(||Wl × (cπ,l − S cx,l)||22

+ λ3

∑
l,a(l)>0

||cx,l||1

]
, (15)

with cx,l(k) ≥ 0,∀l, k

The first problem is essentially an l1 regularized sparse coding problem
which is convex with a. It can be solved with many different algorithms, e.g.,
[2, 26]. In our case we have chosen to solve it with the method of alternating
direction method of multipliers (ADMM) [27]. Following the findings in [28],
we also employ the method of reweighted l1-minimization as it leads to a
sparser solution. Note that, at the very first iteration of the global algorithm,
Cx is initialized with Cπ, while it is later updated during the solution of the
second step of the alternating algorithm.

The second problem is also convex. As for the first problem, we have
chosen to solve it with ADMM [27]. In order to solve it more efficiently, we
however rewrite it so that it is optimized for one vector of coefficients b instead
of the matrix Cx. As explained in Section 2.3, the support of each molecule
realization is restricted to the union of the pools of the active atoms in the
corresponding molecule prototype. Therefore, many of the entries in matrix
Cx are constrained to be zero. The vector b represents the possible non-zero
entries in Cx, i.e. the coefficients of the atoms that are part of the pools of
the active atoms in the molecules that compose x (given in a). Essentially it
expresses the flexibility that is allowed in the molecule realizations once the
molecules are chosen.

To complete our problem transformation, we further introduce the vec-
tor C̃ that expresses the expected energy in the atoms pools. It is created
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by concatenating into a vector form the entries in C that correspond to the
energy expected in each pool of active atoms.Then, we also create a corre-
sponding dictionary of atoms D̃ by concatenating the atoms in each of the
active pools. Finally, the new vector of relationships S̃ between atoms in D̃
replaces the vector S. With these modifications, the problem in Eq. (15)
can be equivalently expressed as:

b̂ = argmin
b
||x− D̃ b||22 + λ2||C̃ − S̃ b||22 + λ3||b||1 with b(k) ≥ 0,∀k (16)

The solution of this problem is much less time consuming than the one of
the equivalent problem in Eq. (15) as the size of the vector b is usually much
smaller than that of the whole dictionary D.

Finally, we iterate between the two optimization problems until the value
of the signal reconstruction doesn’t change much. Although this alternate
optimization technique does not have any optimality guarantee, it gives good
results in practice and therefore offers an effective constructive solution to the
sparse coding problem of Eq.(13). Since the algorithm has several constraints
on the structure and sparsity the final molecule realizations cannot be com-
pletely different from the predefined molecule prototypes and as a result the
quality of the signal reconstruction depends significantly on the initialization
of the molecule structure. However, the design and learning of good molecule
prototypes is beyond the scope of this paper which is mainly focused on the
sparse coding step and remains as interesting future work. Finally, as long
as the parameters of the algorithm are concerned, the values for the λ’s were
chosen according to each specific task based on a small validation set. The
value for the parameter r required for the ADMM method was set to 1 for
all the experiments. The pseudocode of the complete sparse coding scheme,
called Adaptive Molecule Coding (AMC), is presented in Algorithm 1.

5. Experimental results on signal restoration

Next, we have evaluated the effectiveness of our model for various image
restoration tasks on both synthetic data and real data. In signal restora-
tion, a high quality signal x needs to be reconstructed from its degraded
measurements y. The problem can be modeled in a generic form as

y = Hx+ v (17)

where H is a degrading operator and v is additive noise.
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Algorithm 1 Adaptive molecule coding (AMC)

Input: x,D,Cπ, S, λ1, λ2, λ3, ε
1: â = argmina [||x−D Cπ a||2 + λ1||a||1] , a ≥ 0 . Initialize a
2: while true do . Alternate optimization
3: (D̃, S̃, C̃) = transform(D,C, S, â) . Create new variables for Eq.

(16)

4: b̂ = argminb

[
||x− D̃ b||22 + λ2||C̃ − S̃ b||22 + λ3||b||1

]
, b ≥ 0 . Solve

for b
5: Ĉx = transform−1(b̂, C, â) . Reconstruct Cx from b
6: w = 1./â . Set new weights for re-weighted l1

7: â = argmina

[
||x−D Ĉx a||2 + λ1||w. ∗ a||1

]
, a ≥ 0 . Solve for a

8: if Ĉxâ− Cp ap < ε then return . If signal coding did not change
significantly, stop

9: else
10: ap = â, Cp = Ĉx
11: end if
12: end while
Output: â, Ĉx
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5.1. Synthetic Data

To be more specific, we have used a dictionary of gaussian anisotropic
atoms to create signals of size 10×10. The mother function of the dictionary
can be written as φ(x, y) = A exp(−(x/2)2 − y2) and we have sampled the
image plane for two scale levels [0.5 1] with a step size 1 for translation
and π/6 for rotation. The atoms of the dictionary were combined according
to 10 predefined molecules contained in C. Each molecule was randomly
constructed to contain 2, 3 or 4 atoms of equal energy. Then each signal
was created as a random combination of a few molecule realizations (2,3 or
4). To produce a molecule realization we used the following procedure: for
each atom in the molecule prototype we produced an approximation using
the atoms in the atom’s pool. The atoms were chosen randomly, their total
number drawn from a geometric distribution with p = 0.7 (so that the ap-
proximation is a sparse combination of atoms) while their coefficients were
adjusted so that the projection of their combination to the atom direction is
close to the original coefficient value. Finally, for each restoration task, the
appropriate operator was applied to get the testing data.

We compare our method with the l1-l2 group norm (the algorithm is de-
noted as A12 in this paper) [10]. Each group gi ∈ G is defined according
to the support of the corresponding molecule mi. If an atom doesn’t be-
long to any group, then it is a considered a group by itself. The equivalent
optimization problem is:

b̂ = argmin
b
{||y −H D b||2 + λ

∑
gi∈G

||bgi ||} (18)

The vector of coefficients b is the signal decomposition in the atomic level
and bgi is its restriction on gi. The decomposition â in groups ( or equiva-
lently molecules in our case) is computed as the l2 norm of the coefficients
in each group i.e., âi = ||b̂gi ||. As we have discussed before, one alternative
for the synthesis dictionary is the dictionary of molecules prototypes. This
approach is similar to the sparse coding step in [13]. In the following, we
also compare our scheme with sparse coding with l1 regularization on the
molecule dictionary (we denote this algorithm as Am), i.e., the outcome of:

â = argmin
a
{||y −H ∗Dm ∗ a||2 + λ||a||1} (19)

where Dm = DC is the molecule dictionary. Finally, we also compare against
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simple sparse coding on D, i.e.,

â = argmin
a
{||y −D ∗ a||2 + λ||a||1} (20)

This approach is denoted as A1 in the rest of the paper.
The performance of the algorithms is compared using various measures.

To quantify the performance in terms of the signal recovery we compute both

the mean square error of the signal approximation (MSE), i.e.,
∑
i ||xi−x̂i||2

N

where x̂ is the signal reconstruction and N is the number of signals , as
well as the mean sparsity ratio of the recovered representations where the
sparsity ratio is computed as the l0 norm of the recovered representation over
D over the l0 norm of the true atomic representation. Moreover, we are also
interested in how effective are the schemes in detecting the correct molecules.
Therefore, we also provide results for the accuracy of the molecule detection,
which is the ration of the correctly categorized molecules (TP + TN) over
all the molecule instances (P +N).

5.1.1. Denoising

Firstly, we have tested the performance of the schemes under noise. In
this case, H = I and v is white gaussian noise. The results, for different noise
levels, are shown in Figure 6. For each noise level, the results were averaged
over 5 different molecule matrices and 1000 signal instances per matrix. The
parameters for each algorithm, chosen based on a small validation set, were:
l1 = 0.01, l2 = 1, l3 = 0.1 for AMC and l1 = 0.1 for all the rest. From Figure
6 we can observe that as the noise increases the effectiveness of the structure
is more prominent: the MSE of A1 progressively deteriorates compared to
the other 3 schemes that use a structured prior. Moreover, for the highest
noise level the Am scheme which is the one with the least flexible structure
prior, almost reaches the best performance. However, our scheme manages
to perform best for all the noise levels by uncovering signal representations
with small MSEs, accurate molecule detection, and satisfactory sparsity (Am
has a fixed sparsity level for each molecule, therefore it is expected to have
the lower value as the most constrained one).

5.1.2. Inpainting

Next, we have tested the performance of the schemes for inpainting. In
this case, we have created a set of signals by omitting the signal values in a
randomly chosen square region. We have tried three different sizes for the
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Figure 6: Results for denoising
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Figure 8: Results for CS

region: 3 × 3, 4 × 4 and 5 × 5. Then, the signals were divided into 4 sets
based on their SNR. The signal recovery problem was solved over the known
regions of the signals: each signal x was expressed as x′ = Px. ∗ x where Px
is the mask denoting the known region. In this case, H = Px. ∗ I resulting
in masking each dictionary atom. No extra noise was added to the data.
The values for the parameters were l1 = 0.001, l2 = 1, l3 = 0.1 for AMC
and l1 = 0.01 for all the rest. The results are shown in Figure 7. Again,
we can observe the benefits from the flexible prior that our scheme provides
compared to the rest: the MSE is always the lowest, the accuracy is the
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highest while the sparsity ratio is satisfactory, usually the lowest after Am
which is the most constrained one. In case of highly disturbed signals (lowest
SNR) the Am also outperforms the rest, proving the importance of structure
in applications were there is a significant amount of missing information.

5.1.3. Compressed Sensing

Finally, we have compared the recovery performance of the schemes for
compressed sensing. The measurement process was performed by settingH =
Φ where Φ is a random projection matrix. The entries of Φ were independent
realizations from a standard normal distribution. We have checked three
different sizes for Φ namely 25, 15 and 8 measurements. For each number of
measurements the results were averaged over 5 different instances of matrix
Φ. The values of the parameters were l1 = 0.01, l2 = 10, l3 = 0.01 for
AMC and A1 while l1 = 1 for Am and l1 = 0.01 for A12. The results for
the different number of measurement are shown in Figure 8. Our scheme
significantly outperforms the rest as the number of measurements decreases
while keeping a high accuracy on molecule detection. The sparsity ratio is
almost stable for all sizes of measurement matrix and quite close to 1 which
is the desired value.

5.2. Denoising of digit images

Next, we have used our adaptive molecule coding scheme to perform
denoising on MNIST images [29]. The images have been downsampled to
14×14 and normalized. In order to better fit the signal model the digits were
further coarsely pre-aligned to avoid big discrepancies in the position and
the orientation. The molecule prototypes were extracted using the algorithm
presented in [13] from 1000 examples per digit while for the testing we used
100 examples per digit. The denoising performance was tested over different
noise levels and measured by the mean squared error and the mean sparsity
ratio. The parameters were fixed according to a small validation set and
their values were l1 = 0.001, l2 = 0.01, l3 = 0.01 for AMC and l1 = 0.01 for
the rest of the schemes.

The results of our experiments are presented in Figure 9. We have exper-
imented with both denoising each digit separately using molecules extracted
only for its class as well as denoising with molecules extracted from many
classes simultaneously. In the first two columns we show the results we ob-
tained for digits 0 and 9 separately while in the third column we plot the
results for the case of denoising digits 0, 1, 2 and 3 with molecules extracted
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Figure 9: Results for denoising on data from MNIST digits for various levels of noise. On
the first row we plot the MSE and on the second the sparsity ratio of the results. In the first
two columns we present the results obtained when each digit was treated separately while
on the third row we simultaneously denoised digits from different classes. The number of
used molecules M is written in the title of each figure.

for all 4 digits together. From the plots we can see that AMC is the scheme
that manages to perform well for all different noise levels. As expected the
benefits from rich structure priors are more prominent in the presence of
severe noise, where Am, the scheme with the most restrictive prior, outper-
forms A1 and A12 that have loser priors. However, for lower noise levels the
performance of Am is not sufficiently good due to the rigidity of its prior.
Our scheme on the other hand performs well in all cases as it adapts to the
signals almost as succesfully as A1 in the less noisy cases, while preserving
the structure as Am in the more noisy cases. Finally, it is also important
to note that AMC is the scheme that achieves on average a sparsity ratio
close to one, meaning that it is highly efficient as it achieves a good signal
restoration using only as many components as it is necessary.

5.3. Restoration of image patches

Finally, in image restoration it is often the case that the non-local simi-
larities that different regions of the image may exhibit are used to enhance
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the restoration process [30, 31]. The idea of ‘nonlocally centralized’ sparse
codes is not very far from the idea of molecule prototypes. Therefore, we
have followed the same intuition to define molecules prototypes based on the
non-local similarity of patches and use their deformed versions to further
enhance the image recovery from compressed measurements

To be more specific, when only sparsity is used as a prior for the recovery
of the patches xi of an image X the recovery problem for each patch can be
written as:

â = argmin ||yi − ΦD ai||22 + λ1||ai||1 (21)

where ai is the decomposition of the patch xi in the dictionary D and yi is
the measurements acquired for this patch. The recovered image created by
the recovered patches x̃i is then X̃.

However, taking into account the non-local similarity of the patches one
can extract a molecule prototype for every patch and further enhance the
recovery by restricting the code of the each patch to be a realization of the
prototype. The corresponding coding problem is then:

ˆcx,i = argmin ||yi − ΦD cx,i||22 + λ2||Wi × (cπ,i − S ∗ cx,i)||22 + λ3||cx,i||1
(22)

where cπ,i is the molecule prototype for x̃i and cx,i is the patch dependent
molecule realization. In order to obtain cπ,i we search the image X̃ for the
most similar patches to x̃i and we build a set Ωi as in [30]. Then, based on
the sparse codes of the patches in Ωi we extract a molecule prototype for x̃i.
The prototype extraction algorithm is a greedy procedure that identifies a
small number of atoms to account for most of the energy in the sparse codes
in Ωi while taking into account the atoms pools. It is an iterative procedure
that at each step adds in the support of the molecule prototype the atom
with the most energy in its pool. The energy of the atoms falling in the
already chosen pools is considered covered and the algorithm iterates until a
sufficient amount of the energy is covered. In this way, we extract a molecule
prototype cπ,i that accepts as realizations all the patches in Ωi.

To show that our proposed coding scheme is suitable for enhancing the
recovery of the original image, we have compared it to the l1 based sparse
coding presented in Eq. (21) which only imposes sparsity as structure. More-
over, following the ideas in [30], we have also implemented a scheme where
the imposed structure is defined as the mean sparse code over similar patches.
The corresponding optimization problem is then:

â = argmin ||yi − ΦD ai||22 + λ2||âi − ai||22 + λ3||ai||1 (23)
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Figure 10: Results for image recovery with compressed measurements. The values of the
parameters were set to l1 = 10 and l2 = l3 = 1000.

where âi is the mean sparse code obtained from the sparse codes of the
patches in Ωi.

We have tested the performance of the above schemes on the images
‘House’ and ‘Barbara’. Each image was divided in 10× 10, non-overlapping
patches. As a base dictionary D we have used a DCT overcomplete dictio-
nary with 256 atoms. For solving the coding problem in Eq. (22) we have
used the Algorithm 1, namely the part that solves for Cx given a, as in this
case for each patch there is only one molecule prototype and as result the
vector of molecule coefficients is set to 1. The entries of Φ were independent
realizations from a standard normal distribution. We have checked two dif-
ferent size for Φ, namely 30 and 50 measurements, while for each number
of measurements the results were averaged over 5 different instances of the
matrix Φ. The measurements were further corrupted with noise.
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In the Figure 10 we show the PSNR of the recovered images based on
the three different schemes for various levels of noise and the two different
number of measurements. From the results we can verify that the non-local
similarity of the patches is very helpful for the image restoration as the l1
sparse coding has a much lower PSNR than the other two schemes. Moreover,
our molecule based coding scheme manages to extract more effectively the
structural similarities of the patches than the mean sparse code as it achieves
better PSNR results for the majority of settings. Therefore it is proven that
the idea of molecule prototypes and realizations based on atoms pools is a
powerful one providing correct priors for patch based restoration of images.

6. Conclusions

In this paper we have presented a new two-layer structure model for sig-
nals. We have defined our structural elements, the molecules, as linear com-
binations of atoms and we have distinguished between molecule prototypes
and molecule realizations based on the notion of pools of atoms. The addition
of coefficients in the structure permits a better modeling of higher level pat-
terns while the definition of molecule realizations results in extra invariance
to small deformations of patterns. We have presented our new algorithmic
scheme for adaptive molecule coding (AMC) and we have conducted exper-
iments on both synthetic and real data that proved the effectiveness of our
model for various restoration tasks.
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Appendix A. Bound on error of atom realization

Figure A.11: An example of the realization of the atom di from vector vi = b1d1 + b2d2 +
b3d3 with d1, d2, d3 ∈ P (di) and b1, b2, b3 > 0.

As we have mentioned in Section 2.2, if we constrain the atoms that
participate in the realization of the atom di to lie in its pool P (di) and have
non-negative coefficients we can guarantee that the resulting approximation
has a bounded error, i.e., ||di− vi||22 ≤ L . To see why, let vi =

∑
j∈P (di)

bjdj.
Then, from Figure A.11 we have:

||di − vi||22 = ||ri||2 = ||pi||2 + (1− ei)2 = e2
i tan2 φui + (1− ei)2 (A.1)

However for the angle between vi and di we have:

cosφui =
〈vi, di〉
||vi||

=

∑
j∈P (di)

bj〈dj, di〉
||
∑

j∈P (di)
bjdj||

≥
(1− ε)

∑
j∈P (di)

bj∑
j∈P (di)

|bj|
= 1− ε

if bj ≥ 0,∀j ∈ P (di). Therefore, when we allow only non-negative coefficients
in the approximation, vi belongs in P (di).

Moreover, since cosφui ≥ 1 − ε, then sinφui ≤
√
ε(1− ε) and therefore

tanφui ≤
√

ε
1−ε . Finally, from Eq. A.1 we get:

||di − vi||22 ≤ (1− ei)2 + e2
i

ε

(1− ε)
(A.2)
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Figure B.12: An example of the approximation of the atom di from vector vi deviating by
φv in direction. The desired energy level is cli while the projection of vi gives an energy
of ei.

Appendix B. Recovery analysis supplementary material

We now present the theorems that provide the lower and upper bounds
on the coherence of dictionaries DCx and DCu discussed in Section 3. The
dictionary DCx is a dictionary that contains more than one realizations per
molecule prototype while the dictionary DCu is restricted to one realization
per prototype. To evaluate their coherences denoted as µx and µu respectively
we will first need to examine the distance between a molecule prototype
mπ,l = D cπ,l and its possible realizations mx,l = D cxi,l. The corresponding
upper bound is presented in the next Theorem.

Theorem 1
Let ||mπ,l||0 ≤ n,∀l and φ = acos(1− ε) where ε is the parameter used in the
pool definition in Eq. (4). Moreover, let the error |cπ,l(i) − ei| between the
energy in an atom di of a molecule prototype and the energy on its pool on any
of the molecule realizations be bounded by |cπ,l(i)− ei| ≤ E cπ,l(i), ∀l, i ∈ Γπ,l
where E is a positive constant. Finally, let µM to stand for the in-molecule
coherence defined as the maximum coherence between the atoms that belong to
the same molecule, i.e., µM = maxl

(
maxi,j∈Γπ,l,i 6=j| < di, dj > |

)
and assume

that µM ≤ 1
n−1

. Then, the distance between any molecule prototype mπ,l and
any of its realizations mx,l is bounded by

||mx,l −mπ,l|| ≤

√
((1 + E)2tan2φ+ E2)n

1− (n− 1)µM
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Proof. For the molecule prototype mπ,l =
∑

i∈Γπ,l
cπ,l(i)di a molecule realiza-

tion can be written as :

mx,l =
∑
i∈Γπ,l

vi =
∑
i∈Γπ,l

(ei di + pi) = mπ,l +
∑
i∈Γπ,l

(pi − [cπ,l(i)− ei] di)

where an example of an approximation vector vi for an atom di is show in
Figure B.12. Therefore:

||mx,l −mπ,l|| = ||
∑
i∈Γπ,l

(pi − [cπ,l(i)− ei] di) || ≤
∑
i∈Γπ,l

||pi − (cπ,l(i)− ei)di||

(B.1)
by the triangle inequality. However, pi is vertical to the direction of di.
Therefore:

||pi−(cπ,l(i)−ei)di|| =
√
||pi||2 + ||(cπ,l(i)− ei)di||2 =

√
e2
i tan

2φv + (cπ,l(i)− ei)2

Substituting in Eq. (B.1), we get:

||mx,l−mπ,l|| ≤
∑
i∈Γπ,l

√
e2
i tan

2φv + (cπ,l(i)− ei)2 ≤
√

(1 + E)2tan2φ+ E2||cπ,l||1

(B.2)
since |ei| ≤ E cπ,l(i),∀l, i ∈ Γπ,l and cπ,l(i) ≥ 0,∀l, i. For the ||cπ,l||1, given
||cπ,l||‘n, we have :

||cπ,l||1 ≤ ||cπ,l||2
√
n (B.3)

To bound the l2 norm, we use the Rayleigh quotient R(M,x) = xTMx
xT x

and
its bound λmin(M) ≤ R(M,x). In our case, M = DT

Γπ,l
DΓπ,l where DΓπ,l is

the matrix of the atoms participating in molecule mπ,l. Then, for x = cπ,l we
have :

λmin(DT
Γπ,l

DΓπ,l) ≤
1

||cπ,l||2
⇔ ||cπ,l|| ≤

1√
λmin(DT

Γπ,l
DΓπ,l)

(B.4)

where λmin is the minimum eigenvalue of DT
Γπ,l

DΓπ,l . Finally, from the Ger-

shgorin circle theorem applied on DT
Γπ,l

DΓπ,l , which is the Gram matrix of
DΓπ,l and has as entries the inner products of the atoms in Γπ,l, we get:

|λ− 1| ≤ maxiΓπ,l
∑

j 6=i,j∈Γπ,l

| < di, dj > |
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Since µM = maxl
(
maxi,j∈Γπ,l,i 6=j| < di, dj > |

)
we get that ∀l:

1− (n− 1)µM ≤ λmin(DT
Γπ,l

DΓπ,l)

Assuming 1− (n− 1)µM > 0⇔ µM ≤ 1
n−1

and substituting in Eq. (B.4) :

||cπ,l|| ≤
1√

1− (n− 1)µM
(B.5)

Combining Eq. (B.3),(B.5) and (B.2) we finally get that :

||mx,l −mπ,l|| ≤

√
((1 + E)2tan2φ+ E2)n

1− (n− 1)µM

Now that we have established a bound for the distance ||mx,l − mπ,l||
between a molecule prototype and its realizations we can prove the following
theorem providing a lower bound for the coherence µx of any dictionary DCx
with more than one realizations per prototype.

Theorem 2
With the distance between any molecule prototype and its realizations be
bounded by ||mx,l − mπ,l|| ≤ r with r <

√
2

2
, the coherence µx of any dic-

tionary DCx with more than one molecule realizations per molecule is

µx ≥ 1− 2r2 = Lx (B.6)

Proof. The coherence of a dictionary DCx with more than one molecule
realization per molecule is :

µx = maxx,l,y,k
| < mx,l,my,k > |
||mx,l|| ∗ ||my,k||

= maxx,l,y,k| cosφmx,l,my,l|

where mx,l,my,l are realizations of the molecules mπ,l and mπ,k respectively
and φmx,l,my,l is the angle between the two vectors. A lower bound to µ̃ can
be found by computing the maximum angle between two realizations of the
same molecule, i.e. l = k. Then, µx ≥ |maxx,y cosφmx,l,my,l|.
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Figure B.13: The geometry of the molecule prototypes and the region of their realizations
restricted on the plane Omkml defined by the center of the axis and the two prototypes.
The region of the realizations is restricted by a sphere, (depicted as a circle on the pro-
jection plane) of radius r. The angle φs shows the maximum angle between the molecule
prototype and any of the realizations, while φ is the angle between the two prototypes.

From the Figure B.13 we can see that since all the molecule realizations
live in a sphere of radius r around the prototype mπ,l, the angle between any
two realizations mx,l,my,l has to be less than or equal to 2φs. For the bound
to be different than zero, we need that 2φs < π/2⇔ r <

√
2/2. Then, from

the Figure B.13, we have:

cosφs =
||OC||
||Om2||

=

√
1− r2

1
=
√

1− r2

since ||Om2|| = ||mπ,l|| = 1. Therefore:

φφmx,l,my,l ≤ 2φs ⇔

cosφmx,l,my,l ≥ cos 2φs, φs ≤
π

4
⇔

cosφmx,l,my,l ≥ 2 cos2 φs − 1, φs ≤
π

4
⇔

cosφmx,l,my,l ≥ 2(1− r2)− 1, r <
√

2/2⇔
cosφmx,l,my,l ≥ 1− 2r2, r <

√
2/2⇔

| cosφmx,l,my,l| ≥ 1− 2r2, r <
√

2/2⇔
µx ≥ 1− 2r2, r <

√
2/2 (B.7)
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Finally, we will use the same bound on the distance ||mx,l−mπ,l|| between
a molecule prototype and its realizations to establish an upper bound for the
coherence µu of any dictionary DCx with more than one realizations per
prototype. The following theorem provides the details.

Theorem 3
Let the coherence of the molecule prototype dictionary DC be µ. Given the
bound on the distance between any molecule prototype and its realizations
||mπ,l−mx,l|| ≤ r with r <

√
2

2
, the coherence µu of any dictionary DCx with

at most one molecule realization per molecule is

µu ≤ Uu = µ(1− 2r2) + 2r
√

(1− µ2)(1− r2) (B.8)

Proof. We have:

µu = maxx,y,l,k,l 6=k
| < mx,l,my,k > |
||my,l|| ∗ ||mx,l||

= maxx,l,y,k| cosφmx,l,my,l | (B.9)

where mx,l,my,l are realizations of the molecules mπ,l and mπ,k respectively
and φmx,l,my,l is the angle between the two vectors. In the rest, we will restrict
ourselves in the case where the angle φmx,l,my,l that maximizes the Eq. (B.9)
is less or equal to π

2
. In the opposite case, a similar analysis can be followed

and the final bound on µu is the same. Under this assumption,

µ̂ = maxl,k,l 6=k cosφm̃l,m̃k (B.10)

Moreover, we can assume that the indices l, k that maximize Eq. (B.10)
are the same with the ones that maximize the equation µ = maxl,k| <
mπ,l,mπ,k > | = maxl,k cosφmπ,l,mπ,k . In other words, we assume that the
molecule prototypes that are the most coherent are also the ones that give
rise to the most coherent realizations. Therefore, we will continue our analysis
for the case where cosφmπ,l,mπ,k = µ. Whats more, it is sufficient to restrict
the rest of the analysis on the plane defined by the molecules prototypes
mπ,l,mπ,k. This is possible because we model the space occupied by each
prototype’s realizations as a sphere, and as a result the plane defined by the
centers of spheres is the space where the minimum distance and angle points
between the spheres live.

The geometry on this plane is shown in Figure B.13. From the Figure we
have that:

φ ≤ φmπ,l,mπ,k ⇔ φlk − 2φS ≤ φmx,l,my,k ⇔ cos (φlk − 2φS) ≥ cosφmx,l,my,k
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Therefore, using Eq. (B.10), we have:

µu ≤ cos (φlk − 2φS) (B.11)

However, from trigonometry we have :

cos (φlk − 2φS) = cosφlk cos 2φS + sinφlk sin 2φS (B.12)

Since cosφlk = µ, we also have sinφlk =
√

1− cos2 φlk =
√

1− µ2. More-
over from the triangle OCmπ,l we have cos 2φS = 1 − 2r2 and sin (2φS) =√

1− cos2 (2φS) =
√

1− (1− 2r2)2 = 2r
√

1− r2. Substituting the above in
Eq. (B.12) we get:

cos (φlk − 2φS) = µ(1− 2r2) + 2r
√

(1− µ2)(1− r2)

Substituting this expression in Eq. (B.11), we get :

µu ≤ µ(1− 2r2) + 2r
√

(1− µ2)(1− r2)
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