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ABSTRACT 

HIV/AIDS is widely spread and ranks as the sixth biggest killer all over the world. Moreover, due 

to the rapid replication rate and the lack of proofreading mechanism of HIV virus, drug resistance is 

commonly found and is one of the reasons causing the failure of the treatment. Even though the drug 

resistance tests are provided to the patients and help choose more efficient drugs, such experiments 

may take up to two weeks to finish and are expensive. Because of the fast development of the comput-

er, drug resistance prediction using machine learning is feasible. 

In order to accurately predict the HIV drug resistance, two main tasks need to be solved: how to 

encode the protein structure, extracting the more useful information and feeding it into the machine 

learning tools; and which kinds of machine learning tools to choose. In our research, we first proposed a 

new protein encoding algorithm, which could convert various sizes of proteins into a fixed size vector. 



This algorithm enables feeding the protein structure information to most state of the art machine learn-

ing algorithms. In the next step, we also proposed a new classification algorithm based on sparse repre-

sentation. Following that, mean shift and quantile regression were included to help extract the feature 

information from the data. Our results show that encoding protein structure using our newly proposed 

method is very efficient, and has consistently higher accuracy regardless of type of machine learning 

tools. Furthermore, our new classification algorithm based on sparse representation is the first applica-

tion of sparse representation performed on biological data, and the result is comparable to other state 

of the art classification algorithms, for example ANN, SVM and multiple regression. Following that, the 

mean shift and quantile regression provided us with the potentially most important drug resistant mu-

tants, and such results might help biologists/chemists to determine which mutants are the most repre-

sentative candidates for further research. 
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1 INTRODUCTION 

Decision making is everywhere in our daily lives. We use our past experience to make the deci-

sion. However, sometimes it is hard to make an optimal decision, sometimes we are uncertain about the 

correctness of our decisions, and sometimes it is not that straightforward to find the relations or useful 

information from our past experience, so on and so forth. Due to all those reasons, machine learning is 

one of the options to help us make decisions. Similar to our decision making procedure, machine learn-

ing methods also use the past experience to automatically make decisions. In this process, the past ex-

perience is called training data, while the new situation is called the testing data. The given results could 

be considered as the decisions. Machine learning approaches could be used almost everywhere, for ex-

ample, web search engine[1], stock market analysis[2], biomedical diagnosis[3], and so on. This disserta-

tion focuses on using machine learning tools to solve biomedical problems. 

In bioinformatics area, understanding the relationship between the protein sequence, structure 

and function renders a key component during the past decades[4, 5]. Traditionally, chemical/biological 

experiments, nuclear magnetic resonance (NMR) or X-ray crystallography, for instances, could be used 

to retrieve the relationship between them. However, even the minimal experiments are expensive and 

time consuming. Moreover, even with all the experiments and time, it is highly possible that no useful 

information could be obtained from the structure, or no good structures could be obtained. Nowadays, 

due to the rapid development and the wide spread of the computers, in silico experiments are intro-

duced to solve this problem. With the advance of the computational power, we are enabled to have ac-

cess to more and more knowledge of proteins.  

Since the first case of AIDS was found in United States in early 1980s, AIDS has become one of 

the most severe diseases all over the world. It is known that AIDS is caused by HIV. However, due to the 

characteristics of the retrovirus, drug resistance is commonly seen during the anti-AIDS treatment and 
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often causes the failure of the treatment. Therefore, computational method is necessary to shorten the 

patients’ waiting time, saving both time and money.  

In this study we are focusing on using machine learning methods to predict the mutants' drug 

resistance to certain drugs, and furthermore proposed new algorithms to identifying the most repre-

sentative drug resistant mutants among the whole drug resistance data. With these goals in mind, our 

research focuses on three aims:  

• Is there an efficient way to encode both protein sequence and structure information? 

• Is there an accurate method to predict whether a given mutant is drug resistant from 

sequence data? Does including structural data in the classification improve the accura-

cy? 

• Can machine learning be used to identify critical or important mutations and aid in the 

design of biological/chemical experiments? 

In order to achieve these three goals, our research starts from proposing a new encoding meth-

od to represent protein structure by using Delaunay Triangulation. In this method, the alpha carbon po-

sition is used to represent the whole amino acid residue, and the average distance of the same amino 

acid pairs were recorded to generate the adjacency matrix, and therefore based on these adjacency ma-

trices, the fixed size vector could be obtained to represent each protein structure. Following that, we 

further tested such encoding method on more data, and then performed this on the prediction of the 

drug resistance property of certain mutants of the HIV-1 protease. By utilizing the recent advances in 

the sparse signal representation and compressive sensing, we proposed a sparse dictionary technique 

for the purpose of the drug resistance prediction. The cross-validation shows high consistency by using 

the publicly available data set. Furthermore, mean shift algorithm is included to extract the most im-

portant feature from the categories. Such results might be able to guide the experimental design for the 

biological/chemical study of the HIV-1 drug resistance. 
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To meet the needs of predicting the potential mutants by using computational methods, our re-

search includes the following subjects: 

Chapter 2: HIV/AIDS Background and its drug resistance: In this part, the general background of 

the HIV-1 protease, reverse transcriptase and their inhibitors used during the HIV/AIDS treatment is in-

troduced. Moreover, the cause of the drug resistance, together with the importance of why this needs 

to be studied is also present in this part. 

Chapter 3: Justification of the research topics: we will demonstrate a brief literature review on 

computational drug resistance, protein representation, as well as the sparse representation, a new 

technique we used as a classifier in our study. 

Chapter 4 and chapter 5 on solving our first aim: finding new protein representation methods. In 

Chapter 4: Encoding protein structure with functions using Delaunay Triangulation: we proposed a new 

encoding method to represent the protein structure. Following that, in Chapter 5:  An application of new 

protein encoding methods using Delaunay Triangulation: one application of our new proposed protein 

encoding methods using Delaunay Triangulation is demonstrated. In this application, we tested on both 

HIV protease and HIV reverse transcriptase and included multiple linear regression as the classification 

tool. 

Chapter 6 and chapter 7 on solving our second aim: developing a new classification algorithm to 

distinguishing between the drug resistant and the non-drug resistant mutants. In Chapter 6: Sparse rep-

resentation for prediction of HIV-1 protease drug resistance, we focus on retrieving the protein charac-

teristics, including the property of drug resistance, and the folding information, from protein's sequence 

information. Specifically, we study the problem of HIV-1 protease drug resistant mutant prediction: We 

proposed a new classification algorithm based on sparse representation to predict the drug resistant 

property of the given HIV-1 protease mutant. In Chapter 7: Prediction of HIV drug resistance from geno-
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type with encoded three-dimensional protein structure, more results were demonstrated here to solve 

the classification problem using our newly developed algorithm. 

In Chapter 8: Identifying essential features for the representative mutants from drug resistance 

data. In this part of the research, we focus on finding out the most representative potential mutants 

which are resistant to certain drugs. The finding of such mutants might be a guide for biolo-

gists/chemists to select the most likely mutants for more research. 

In Chapter 9: Future work and summaries. In this chapter, we present some possible future di-

rections to improve/continue this work. After that, we summarize all the work presented in this disser-

tation, and make a conclusion based on this work. 
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2 HIV/AIDS Background and its drug resistance 

2.1 The Current Status of AIDS 

It has been almost three decades since the first case of AIDS was found in the United States in 

the early 80s, last century. At the end of year 2012, about 35.3 million people are living with HIV, and 

among them about 2.7 million people are newly infected[6]. Moreover, by the end of year 2011, nearly 

30 million people died because of AIDS[7]. Currently, there is no effective vaccine or cure for AIDS; how-

ever, because of the Highly Active Antiretroviral Therapy (HAART), which was proposed in mid-1990s 

and the idea is to use three or four different drugs with different targets during the treatment to obtain 

a successful therapy, the infected growth rate is stablized (as shown in Figure 1)[7] and the death rate 

decreased to 47% in 1997 only one decade after the first AIDS case was found (as shown in Figure 2)[8]. 

 

Figure 2.1.1.1 Global number of people living with HIV, by year[7] 



Figure 

 

Table 2.1.1.

Generic name Brand name

Zidovudine Retrovir

Didanosine Videx (tablet)

 
Videx EC (capsule)

Zalcitabine Hivid

Stavudine Zerit

Lamivudine Epivir

Saquinavir Invirase (hard gel capsule)

 
Fortovase (soft gel capsule)

Ritonavir Norvir

Indinavir Crixivan

Nevirapine Viramune

Nelfinavir Viracept

Delavirdine Rescriptor

Efavirenz Sustiva (USA)

 
Stocrin (Europe)

Abacavir Ziagen

 

Figure 2.1.1.2 AIDS Deaths Since 1987[8] 

 

.1 Approved antiretroviral drugs in the USA and Europe[

Brand name Manufacturer 

Retrovir GlaxoSmithKline 

Videx (tablet) Bristol-Myers Squibb 

Videx EC (capsule) Bristol-Myers Squibb 

Hivid Hoffmann-La Roche 

Zerit Bristol-Myers Squibb 

Epivir GlaxoSmithKline 

Invirase (hard gel capsule) Hoffmann-La Roche 

Fortovase (soft gel capsule) Hoffmann-La Roche 

Norvir Abbott Laboratories 

Crixivan Merck 

Viramune Boehringer Ingelheim 

Viracept Agouron Pharmaceuticals 

Rescriptor Pfizer 

Sustiva (USA) Bristol-Myers Squibb 

Stocrin (Europe) Merck 

Ziagen GlaxoSmithKline 

6 

 

[9] 

Approval Date 

03/19/1987 

10/09/1991 

10/31/2000 

06/19/1992 

06/24/1994 

11/17/1995 

12/06/1995 

11/07/1997 

03/01/1996 

03/13/1996 

06/24/1996 

03/14/1997 

04/04/1997 

09/17/1998 

09/17/1998 

12/17/1998 
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Amprenavir Agenerase GlaxoSmithKline 04/15/1999 

Lopinavir+ritonavir Kaletra Abbott Laboratories 09/15/2000 

 
Aluvia (developing world) Abbott Laboratories 09/15/2000 

Tenofovir disoproxil fumarate (TDF) Viread Gilead Sciences 10/26/2001 

Enfuvirtide Fuzeon Hoffmann-La Roche & Trimeris 03/13/2003 

Atazanavir Reyataz Bristol-Myers Squibb 06/20/2003 

Emtricitabine Emtriva Gilead Sciences 07/02/2003 

Fosamprenavir Lexiva (USA) GlaxoSmithKline 10/20/2003 

 
Telzir (Europe) GlaxoSmithKline 10/20/2003 

Tipranavir Aptivus Boehringer Ingelheim 06/22/2005 

Darunavir Prezista Tibotec Inc. 06/23/2006 

Maraviroc Celsentri (Europe) Pfizer 09/18/2007 

 
Selzentry (USA) Pfizer 09/18/2007 

Raltegravir Isentress Merck & Co. Inc. 10/12/2007 

Etravirine Intelence Tibotec Therapeutics 11/18/2008 

Fixed dose drug combinations 
   

Lamivudine and zidovudine Combivir GlaxoSmithKline 09/27/1997 

Abacavir,  zidovudine and lamivudine Trizivir GlaxoSmithKline 11/14/2000 

Abacavir and lamivudine Epzicom (USA) GlaxoSmithKline 08/02/2004 

 
Kivexa (Europe) GlaxoSmithKline 08/02/2004 

TDF and emtricitabine Truvada Gilead Sciences 08/02/2004 

Efavirenz, emtricitabine and TDF Atripla Bristol-Myers Squibb&Gilead Sciences 07/12/2006 

 

Up till now, researchers and scientists have worked hard, and developed a total of twenty-five 

Food and Drug Administration (FDA) approved antiretroviral drugs for the treatment of HIV/AIDS. All 

these drugs are categorized into six different classes: seven nucleoside reverse transcriptase inhibitors 

(NRTIs); one nucleotide reverse transcriptase inhibitors (NtRTIs); four non-nucleoside reverse transcrip-

tase inhibitors (NNRTIs); ten protease inhibitors (PIs); two cell entry inhibitors; and two integrase inhibi-

tors (INIs)[9]; and target on different steps in HIV-1 life cycle: viral entry, reverse transcription, integra-

tion, and viral maturation[10]. All the drugs are listed in Table 1. 
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2.1.1 HIV-1 life cycle 

AIDS is caused by human immunodeficiency virus type 1 (HIV-1), which is one of the retrovirus-

es. The life cycle of the HIV consists of two phases: the early phase and the late phase.  

The early phase includes three steps before the replication of the viral genome. The first step is 

binding: the virus recognizes the CD4 protein, which usually acts as an immune recognizer, and then 

binds to the host cell. Following that, the virus enters the host cell, and then HIV reverse transcriptase 

helps the genome RNA convert to DNA. After that, the genome DNA is transported into the nucleus and 

HIV integrase helps integrate it into the host DNA. 

In the late phase, HIV genomic materials and messenger RNA (mRNA) are created by the host 

cell RNA polymerase. Using these mRNAs, HIV polyproteins are translated. Then during budding, an out-

er envelope coats the new virus particles, and the new coated virus moves outside of the host cell. In 

the last step, maturation, HIV protease cleaves the HIV polyproteins into small pieces, and synthesizes 

the matured HIV virions, which are able to infect other healthy cells. All the steps are shown in Figure 3. 



9 

 
Figure 2.1.1.1 life cycle[11] 

2.1.2 HIV-1 protease and its inhibitors 

Among all the HIV-1 proteins, the structure of HIV-1 protease was first determined in 1989 [12, 

13]. It's a homodimer with two identical subunits, and each one has 99 amino acids. The structure of the 

HIV-1 protease could be considered as three parts: dimer interface, active site and flap region (as shown 

in Figure 4). The dimer interface connects two subunits, and helps to stabilize the structure of the HIV-1 

protease. The active site cavity is the place where the inhibitors bind to the HIV-1 protease. The sub-

strate binding is connected via hydrogen bonds and van der Waals interactions. The flap region is flexi-

ble and could change the conformation easily and is very important for the enzymatic activity of the HIV-

1 protease. Such character could enhance the binding between the protease and the inhibitor (or sub-

strate) at the active site[14]: without the inhibitor binding to the active site, the flaps are slightly open. 

Once the inhibitor binds to the protease, the flaps could fold down to improve the protease-inhibitor 

binding.  
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Figure 2.1.2.1 Structure of HIV protease dimer with saquinavir inside the active site. The α-helix is in 

red; the β-sheet is in yellow arrow in the left subunit. The right subunit is in magenta. 

 

HIV-1 protease inhibitors (PIs) were developed to bind to the active site, and prevent the matu-

ration of the virions. In this case, the newly synthesized viruses are unable to infect other cells. Since 

HIV-1 protease is crucial for the maturation of the HIV-1 polyproteins by catalyzing the hydrolysis of cer-

tain peptide bonds in them[15], the inhibitors of HIV protease have proved to be effective anti-viral 

drugs[16].  

The first PI was developed in year 1995, and after applying this treatment to the patients, the 

HIV death rate has decreased sharply[17] and the lifetime of the AIDS patients has been increased[8]. 

Up till now, a total of ten PIs have been approved by the US Food and Drug Administration (FDA). They 

are saquinavir, ritonavir, indinavir, nelfinavir, (fos)amprenavir, lopinavir, atazanavir, tipranavir and 

darunavir, listed chronologically by the FDA approval date. These PIs bind in the active site of HIV prote-

ase, and prevent the cleavage of the virus polyproteins. Therefore, the viruses cannot form mature par-

ticles to infect other host cells[18, 19]. 
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2.1.3 HIV-1 reverse transcriptase and its inhibitors 

The HIV-1 reverse transcriptase helps synthesizing the DNA based on the information given by 

mRNA using either RNA-dependent DNA polymerase or DNA-dependent DNA polymerase. The structure 

of HIV-1 reverse transcriptase was determined in 1995 at resolution 2.35 Å[20], 2.7 Å[21], and 3.2 Å[22]. 

HIV-1 reverse transcriptase is a dimer with two different monomers: one is p66 with the length of 560 

residues; and the other one is p51 with the length of 440 residues, and the structure is shown in Figure 

5[22, 23].  

The sequence of p51 is identical to the first 440 residues in p66; however, they differ variously in 

structural conformation. The structure of p66 is often considered as illustration of the right hand[22] 

and includes the fingers, a palm, a thumb and a RNAseH, which is the residues 441-660[23]. The poly-

merase active site is inside the palm region, and contains three aspartic acids, similar to that inside the 

HIV-1 protease active site. These three aspartic acids help to binding the polymerase to the active 

site[24]. The structure of p51 has no enzymatic function, but helps to stabilize the structure of p66[25]. 
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reduce the enzymatic activities of the HIV-1 reverse transcriptase[30]. The different characteristics of 

these two categories are summarized in Table 2[31].  

Table 2.1.3.1 Characteristics of HIV-1 RT inhibitors: NtRTIs and NNRTIs[31]. 

Characteristics NtRTIs NNRTIs 

Chemical struc-

ture 

Analogs of the natural substrates, 
i.e. nucleosides 

Chemically diverse, non-nucleoside 

Active form 
Metabolic conversion to 5'-
triphosphates by host-cell enzymes 

No metabolic conversion 

Mechanism of 

action 

Incorporate into growing DNA chain, 
terminate chain synthesis 

Induce conformational changes in RT, reduc-
ing catalytic activities 

Type of inhibition 
Competitive with the natural sub-
strates (dNTPs) 

Non-competitive/uncompetitive 

Binding site on 

the RT 
Catalytic site 

Allosteric (non-substrate) hydrophobic 
pocket 

Spectrum Broad spectrum antiretrovirals HIV-1 specific RT inhibitors 
Selectivity Low to moderate Very high 

. 

2.2 Drug Resistance 

2.2.1 HIV-1 protease and reverse transcriptase drug resistance 

Due to the lack of proofreading[32, 33] and high mutation rate[34, 35], mutations are commonly 

seen in HIV-1 genome[36]. Drug resistance occurs during the treatment of the AIDS, which may cause 

the failure of the treatment. Surveys using conventional bulk sequencing in North America and Europe 

show that for the untreated patients, the primary drug resistance rate is 8-20%[10]. Most of the muta-

tions may decrease the susceptibility to certain drugs; however, in some rare cases, certain mutations 

may increase the drug efficiency, for instance N88S could increase the susceptibility of FPV[36].  HIV-1 

PI-resistant mutations were found in the active site, dimer interface, flap region as well as the surface of 

protease. Currently, twenty five or more residues out of ninety nine have been found in PI-resistance (as 

shown in Figure 6)[16]. 
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Figure 2.2.1.1 Crystal structure of HIV protease with sites of drug mutation. The active site aspartic acid 

residues (Asp25) of each monomer are shown in a stick representation. Positions of drug-resistant mutations are 

indicated in blue and green.[14] 

 

Currently, there are three proposed mechanisms for the drug resistance of HIV-1 protease inhib-

itors: one is that, because of the mutations, the structural conformation of the HIV-1 protease changes, 

and therefore directly affects the interactions between the inhibitors or substrate and the HIV-1 prote-

ase at the active site[37]. The second one is that those mutations indirectly change the ability of the pro-

tease to bind inhibitor[38, 39]. The third one is that the mutations at the dimer interface may decrease 

the stability of the protease [38-40], and thus weaken the enzymatic function of the HIV-1 protease. 

The drug resistance is also found for HIV-1 reverse transcriptase inhibitors in both NtRTIs and 

NNRTIs. Almost all the NtRTIs mutations were found to alter a direct interaction to the active site of the 

enzyme[41]. Over 40 amino acid mutations are found in the NNRTIs related mutants (as shown in Figure 

7)[42, 43], and more detailed explanation could be obtained in the review[10]. The mutants are found in 

the palm region[43, 44], p51 sub-unit[45], connection domain of p66 sub-unit[46], between the thumb 

region[47], as well as the RNAseH domains[48]. One mechanism of the drug resistance is that most the 
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mutations could decrease the RNAseH cleavage activities; while in some rare cases, such enzymatic ac-

tivities may increase due to the mutations[49]. 

 

Figure 2.2.1.2 Common NNRTI resistance associated mutations, and their impact on the susceptibility of 

HIV-1 to NNRTIs[10, 42, 43]. 
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3 JUSTIFICATION OF THE RESEARCH TOPICS 

3.1 Literature review on computational HIV/AIDS drug resistance prediction 

As mentioned in Chapter 2, due to the high replication rate and no proofreading mechanism, re-

sistant strains are commonly seen during the HIV/AIDS treatment. Because the importance of each mu-

tant is not equal to the drug resistance, and the mutation pattern is difficult to retrieve [50]. Moreover, 

even though the measurement of the genotype isolates obtained from the patients could determine the 

relative resistance to certain drugs using the genotypic and phenotypic assays[51],  such expensive ex-

periments may take up to two weeks to complete. Furthermore, due to the huge existing data nowa-

days, it is more convenient to introduce computer methods to predict the relative resistance to certain 

drugs, whose results could consider as the reference during the AIDS treatment, to shorten the assay 

time and provide a more rapid, cheap and proper treatment to the patients. Under this circumstance, 

predicting the phenotypes from the genotypes is a crucial research topic and many different kinds of 

methods have been used to solve this problem.  

3.1.1 Genotypic-resistance interpretation systems 

The genotypic interpretation algorithms, which could be considered as the knowledge based 

methods, are also used to predict the drug resistance. These kinds of algorithms either use a set of rules 

or a score of 'penalty' for each drug, which is provided by groups of HIV experts. The input of the algo-

rithms is the list of mutations, while the output is the drug resistance categories, for example suscepti-

ble, resistance, intermediate, or others[52]. The output categories of each algorithm differ from each 

other. Following two paragraphs present the details of each algorithm in both rule-based and score-

based systems. 
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The first kind of algorithms is also considered as the rule-based systems that infer drug-

resistance levels from sequence information such as Agence Nationale de Recherches sur le SIDA 

(ANRS)[53], Rega Institute version 5.5 (Rega-5.5)[54] and Visible Genetics version 6 (Toronto, Ontario, 

Canada) (VGI-6)[52]. All these three algorithms report three levels of the resistance: susceptible, re-

sistant, and intermediate. The rules used in these algorithms are sets of the Boolean expressions. These 

are "designed to provide reasonable interpretations for the large number of remaining possible muta-

tion combinations"[52]. 

The Stanford University HIV Drug Resistance Database (Stanford HIVdb)[55] and mutation rate 

based score[56] are examples of the second kind of the algorithms. The HIVdb algorithm reports a total 

of five levels of the resistance: susceptible, potential low-level resistance, low-level resistance, interme-

diate resistance, and high-level resistance. The penalty score used in the algorithm is defined as follows: 

for each mutation, a drug penalty score is assigned by the algorithm. Then to determine the drug re-

sistance category, the total scores are added and the sum is used to infer the final result. 

 Also, a combined rule-based and penalty-based method named AntiRetroScan (ANS) is pro-

posed and applied to both HIV-1 protease and reverse transcriptase inhibitors[57]. This system is devel-

oped at the University of Sienna and is maintained on the Italian Antiretroviral Resistance Cohort Analy-

sis Website. More frequently used genotypic-resistance interpretation systems are discussed and re-

viewed in[58]. 

The use of such genotypic resistance interpretation system helps the physicians during the 

treatment, and had better outcomes comparing to those who didn't use it[59]. However, these methods 

provide little insight on the genetic and molecular basis of drug resistance and often give inconsistent 

results when analyzing the same input mutation data[52, 58]. Furthermore, because different algo-

rithms use different rules, the outcome of drug resistance levels and the approach to deal with the data 

shortage, produces the inter-algorithm discordance[52, 58]. Moreover, it is a tedious work for experts to 
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provide the mutation information for each mutant. Meanwhile, due to the HIV-1's high mutation rate, it 

is difficult to interpret in such a time and energy consuming approach. Therefore, bioinformatics-

assisted anti-HIV therapy is needed and developed in a rapid speed. 

3.1.2  Bioinformatics-assisted anti-HIV therapy 

As mentioned in the last section, bioinformatics-assisted anti-HIV therapy is needed, and such 

algorithms have several advantages compared to the traditional systems: First, the results given by this 

kind of algorithms are more global and quantitative. Comparing to the results given by the experts, such 

results are less subjective. Second, the constructed computational models could be used for different 

data sets, and therefore limit the potential bias. Third, it is difficult for humans to deal with large num-

bers of variables, but computers are good at it. Computational approaches are good at revealing the 

patterns between the mutations.[60] 

In most common case, the input of the bioinformatics methods is the viral genotype; while the 

output of the algorithms is the resistance values of the virus to certain drug/inhibitor. The general pro-

cedure is as follows: first, the algorithm study the training data set of both the input and their corre-

spond output; then by using statistical, classification, or other algorithms, a computational model is 

learned and constructed for these data; finally, at the last step, a new viral genotype is given to the 

model, and the predicted resistance value is generated by the model. From this predicted resistance 

value, the given genotype could be predicted as drug resistant or not, or somewhere in between, to cer-

tain drug. The different algorithms used to construct the computational model could further classify as 

the statistical learning methods, classification methods together with the molecular structure based 

methods. The details of these methods are discussed in the following sections.  
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3.1.2.1 Statistical methods  

In the past decades, many statistical learning methods have been introduced in predicting the 

phenotypes from the genotypes [52, 58, 61-63]. These methods could be treated as the regression prob-

lems, and the resistance values are directly predicted. The cross-validation is included to assess the per-

formance of the algorithms. A reliable algorithm should have the squared correlation coefficients and 

mean-squared errors between the measured and the predicted resistance value between 0.7 to 0.8, and 

0.2 to 0.3, respectively[60]. 

In [50], Bayesian variable partition model is used to detect resistant mutation combinations and 

find the interaction patterns of drug resistance to certain inhibitors. Following that, molecular dynamics 

(MD) is introduced to explain how these mutations interact with each other on molecular basis.  

In [64], linear regression model is used to predict the in vitro susceptibility phenotype and virol-

ogy response during the treatment. The most significant mutations and interactions are given, and a 

high concordance with in vitro measurement is presented.  

In [65], cluster analysis, recursive partitioning, and linear discriminant analysis are applied on 

Adult AIDS Clinical Trials Group (ACTG) protocol 333. The results from the three methods show in con-

sistence that residues 10, 63, 71, and 90 have in vitro resistance to IDV and SQV. Similarly, in [66, 67], 

existing cluster analysis, discriminant analysis, and recursive partitioning techniques are used to con-

struct the model and test on IDV. 

Also, non-parametric methods are proposed to solve these high dimensionality data[68, 69]. 

3.1.2.2 Computational classification techniques 

Despite statistical learning methods, classification algorithms could also be used to solve this 

problem. By using this kind of methods, a resistance-factor cutoffs[63] is needed to categorize whether 

each mutant is drug resistant or not. A reliable algorithm should have the errors rates below 10% [60]. 
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In [62, 70, 71], the Geno2pheno system uses decision trees and support vector machines to pre-

dict the phenotypic drug resistance values. The output of it is the normalized predicted resistance value, 

together with the observed fold-changes among the untreated patients. 

In [72], artificial neural networks (ANN) was used to train, validate, and test on 1322 clinical 

samples, and two neural network models were established. The result shows that the predictor has the 

correlation coefficient with R2=0.88. In the same year, in [73], ANN was also used to test on SQV and 

IDV, with the accuracy of 60%-70%.  

3.1.2.3 Molecular structure based methods 

Fundamentally, the HIV drug resistance is caused by the change of the structure and the en-

zymes’ drug target sites. The molecular structure can also be used to predict the drug resistance value to 

the mutations to certain drug/inhibitor. This approach includes the molecular docking methods, the 

homology-based modeling methods[74], as well as the molecular dynamics simulations[75]. 

The computational structure-based methods used in molecular modeling are often used for 

structure optimization and scoring ligand-protein docking structure. Such procedures are similar to the 

drug resistance prediction, and could be used to solve this problem [74, 76, 77].  

Combined sequence-structure approaches are also included to solve the problem: a Delaunay 

tessellation derived four-body statistical potential mutagenesis method together with support vector 

machine (SVM) and random forest classification methods is applied to predict the drug resistance for 

HIV-1 reverse transcriptase inhibitor, Nevirapine (NVP) [78] and more inhibitors later [79]. More detailed 

information about the structure-based phenotyping is discussed in[76, 80]. 

3.2 Literature review on sparse representation 

In recent years, the compressive sensing/sparse representation[81], paper[82] provides a nice 

framework for the purpose of combining capacity and efficiency and solving the dilemma between 
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learning capacity and efficiency. In the sparse representation theory, it is observed that the natural (one 

or more dimensional) signals are often sparse when represented in certain non-adaptive basis or tight 

frames. As a result, compressive sensing has been employed to show that a very large class of signals 

can be accurately (or in some cases exactly) reconstructed from far fewer samples than suggested by 

conventional sampling theory. Classical signal processing techniques lead to sufficient sampling by em-

ploying the band-limitedness of signals. In the compressive sensing approach, one defines sufficient 

sampling conditions based on the compressibility of a signal relative to a given dictionary designed for 

the problem at hand. From an opposite perspective, given a set of signals of interest, an over-complete 

dictionary can be constructed so that the signals can be represented sparsely[83]. In particular, the idea 

of sparse representation has now drawn much attention in image restoration[84], denoising[85], 

deblurring[86], signal processing[87], face detection[88], texture modeling[89-92], etc. In them, the re-

dundancy in the over-complete dictionary gives rise to the sparse representation which enables both 

the efficiency in processing and the capacity of handling highly complex large data sets. 

3.3 Mean shift 

Mean shift clustering was first introduced in 1975 by Fukunaga and Hostetler[93] with the pur-

pose of seeking the mode of a density function in the given sample set. Fukunaga and Hostetler[93] also 

suggested that mean shift clustering is an instance of gradient ascent by using decreasing distance func-

tions, which often referred as kernel, from a given point to a point in the sample set. This algorithm was 

not widely used until 1995 when Cheng[94] developed a more generalized formulation of the algorithm. 

By clarifying the relationship between mean shift and the optimization, the algorithm could potentially 

be applied on clustering and global optimization problems. Applications of the mean shift algorithm 

range from image/video segmentation, image representation/retrieval, discontinuity-preserving 

smoothing[95, 96], higher level tasks like appearance-based clustering[97, 98], tracking including blob 

tracking[99] and face tracking[100], shape detection and recognition[101], so on and so forth. After-
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wards, applications extend to other fields like biology. These applications include analysis of structural 

variation in genome[102], DNA microarray analysis[103], time-warped gene expression analysis[104], 

with many other implementations. 
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AIM 1: Developing a new encoding algorithm to retrieve the protein structure information 

4 Encoding Protein Structure with Functions on Graphs[105] 

4.1 Abstract 

The application of machine learning and datamining to the analysis and prediction of protein 

structure is a research area with potentially high impact in both computer science and biology.  Proteins 

structures are inherently complicated objects with a mixture of crisp and fuzzy properties.  Therefore 

developing effective representations for them is a research problem in itself, while quantifying and pre-

dicting properties and structure is of immediate importance in structural biology.  This paper focuses on 

developing a compact, effective, efficient and accurate representation of protein structure that is com-

patible with widely used machine learning tools like the SVM.  Graphs based on Delaunay triangulation 

are used to represent the structure, and then functions are constructed from these graphs to develop 

constant-size representations of protein structure that are tightly bound to the amino acid sequence.   

The representations preserve sufficient information to be valuable for model vs. experimental structure 

classification and regression analysis of model quality. 

4.2 Introduction 

The accurate and predictive association of protein sequence, protein structure and protein func-

tion is one of the “holy grails” of structural bioinformatics.  Developing effective and efficient encoding 

of protein structure is a necessary step towards achieving this aim.  In this paper, we develop a novel 

class of encoding algorithms, based on Delaunay and related triangulations, for protein and other com-

plicated three-dimensional objects, which are highly effective and efficient.  Typically an atom or subset 

of atoms or centroid of atoms is chosen as a fiducial marker per amino acid residue.  These fiducial 

markers, after encoding, are then used as input for machine learning or data mining analyses. If there 
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voting algorithm for variable numbers of data can be problematic. Therefore it is important to find e

codings that can handle the whole protein fold, rather than pieces of it. 

Our encoding begins by calculating a graph based on critical contacts within a protein.  Following 

tion[109], we used the dual of the tessellation, Delaunay triangulation, 

to define a unique graph for each protein structure.  This is simpler than directly using volumes or su

face areas derived from Voronoi tesselation[110], but is still a fully rigorous description of protein stru

ture. Since Delaunay triangulation can be expensive to calculate, we also tested a “defective Delaunay” 

triangulation that is sparser than the Delaunay triangulation, faster to calculate, and which reproduces 

many of the same features.  As a control we also assessed the performance of distance cutoff based tr

angulation to test the importance of local structural geometry in defining an accurate encoding.  For this 

carbon atom as a fiducial, clearly other atoms or centroids could be used, but as 
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the functions and graphs.  The graphs are symmetric and undirected.  A weight consisting of the 

two kinds of amino acid and the distance between them is associated with each non

ment of the adjacency matrix or arc of the graph. 

in figure 3, where the adjacent points (those that would be non

Figure 3.1.2.3 The adjacency matrix for Delaunay triangulation of 2B0V is shown here.  The distances for 

points that are colored in this figure are selected from figure 1.  Note that features that are distant in sequence 

space but adjacent in 3-dimensional space are selected.  While similar to the features that are “close” in figure 1, 

the Delaunay triangulation selects a subset of the “close” distances as well as some longer

 

These graphs are an intermediate representation

still have a size dependence, but are already more space

are then calculated from these graphs that contain both sequence and structure information.  We eva

uated five functions, 1) the average distance per kind of arc (210 features corresponding to each unique 

pair of amino acids), 2) total distance per kind of arc (210 features), 3) number of instances of any given 

kind of arc (210 features), 4) frequency of each 

of average distance and number of instances (420 features).

One of the difficulties in assessing machine learning encodings is differentiating between the e

fect of the tuning and selection of the m
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carbon this is sufficient for evaluating the effects of differences in 

the functions and graphs.  The graphs are symmetric and undirected.  A weight consisting of the 

two kinds of amino acid and the distance between them is associated with each non

y matrix or arc of the graph. An example of an adjacency matrix is shown 

in figure 3, where the adjacent points (those that would be non-zero in the matrix) are shown.

 

The adjacency matrix for Delaunay triangulation of 2B0V is shown here.  The distances for 

points that are colored in this figure are selected from figure 1.  Note that features that are distant in sequence 

dimensional space are selected.  While similar to the features that are “close” in figure 1, 

the Delaunay triangulation selects a subset of the “close” distances as well as some longer

These graphs are an intermediate representation, of size O(N) instead of O(N2), and therefore 

still have a size dependence, but are already more space-efficient than the naïve approach.  Functions 

are then calculated from these graphs that contain both sequence and structure information.  We eva

five functions, 1) the average distance per kind of arc (210 features corresponding to each unique 

pair of amino acids), 2) total distance per kind of arc (210 features), 3) number of instances of any given 

kind of arc (210 features), 4) frequency of each kind of arc (210 features), and 5) the Cartesian product 

of average distance and number of instances (420 features).  

One of the difficulties in assessing machine learning encodings is differentiating between the e

fect of the tuning and selection of the machine learning tool and the effect of the representation of the 

data on the accuracy.  In order to remove this variability and to ensure that the differences in encoding 
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the functions and graphs.  The graphs are symmetric and undirected.  A weight consisting of the 

two kinds of amino acid and the distance between them is associated with each non-zero ele-

An example of an adjacency matrix is shown 

zero in the matrix) are shown. 

The adjacency matrix for Delaunay triangulation of 2B0V is shown here.  The distances for 

points that are colored in this figure are selected from figure 1.  Note that features that are distant in sequence 

dimensional space are selected.  While similar to the features that are “close” in figure 1, 

the Delaunay triangulation selects a subset of the “close” distances as well as some longer-range distances. 

), and therefore 

efficient than the naïve approach.  Functions 

are then calculated from these graphs that contain both sequence and structure information.  We eval-

five functions, 1) the average distance per kind of arc (210 features corresponding to each unique 

pair of amino acids), 2) total distance per kind of arc (210 features), 3) number of instances of any given 

kind of arc (210 features), and 5) the Cartesian product 

One of the difficulties in assessing machine learning encodings is differentiating between the ef-

achine learning tool and the effect of the representation of the 

data on the accuracy.  In order to remove this variability and to ensure that the differences in encoding 
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were reflected rather than our ability to choose parameters for a software tool, a single SVM engine, 

svm_light[111] was used with a linear kernel and default parameters.  In the future we can tune param-

eters and choose other machine learning tools and to improve the accuracy of the classification and re-

gression. The focus of this paper is the comparison between different representations and therefore we 

did not vary the machine learning approach as that would invalidate the comparison. We also believe 

that it is important to demonstrate that the encoding is sufficiently linear to work with simpler machine 

learning tools.  Svm_light was able to classify and regress the data with other kernels like polynomial 

and radial basis kernels, but the linear kernel worked well and therefore was used. 

4.3 Methods 

4.3.1 Datasets:  

For classification a set of 1447 protein structures with internal sequence identities of less than 

25% was downloaded from the Pisces culling server[112].  Benchmark data sets were generated by shift-

ing the sequence by one residue and by reversing the sequence.  Small sequence shifts are typical in 

low-identity homology models[113] and protein structures have been determined with the sequence 

completely reversed (in error) so these benchmarks are representative of realistic errors.   

   For regression analysis the MOULDER benchmark suite defined by[114] was downloaded.  This 

dataset consists of 20 individual proteins with 300 miss-aligned homology models each.  Both RMS error 

and the fraction of residues within 3.5Å of correct positions are associated with each data point in the 

MOULDER dataset.  We found that regression against the fraction of residues within 3.5Å of correct po-

sitions performed much better than regression against RMS errors, which reflects the fragility of RMS as 

a measure of model quality [115]. 

4.4 Delaunay Triangulation: 
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The Delaunay triangulation is defined by sets of points which lie on a sphere with no other 

points within that sphere[116, 117].  The naïve direct iteration algorithm was used to identify the trian-

gulation, although inter-atomic distances larger than 10Å were excluded to speed it up.  Since van 

derWaals contacts and hydrogen bonds, the closest non-bonded distances, are much shorter than 10Å 

and the structures are densely packed, the use of such a cutoff is justified on chemical and structural 

grounds. 

4.5 Defective Delaunay Triangulation: 

  An approximate Delaunay triangulation can be performed by finding the closest atom to a giv-

en atom and then using the plane of the perpendicular bisector to eliminate atoms that are further 

away.  This is then applied recursively until all the atoms are either excluded or identified as contacts.   

This algorithm produces an asymmetric graph, so the graph was forced to be symmetric by requiring 

that all atoms identified as belonging to the contact set of atom A, had atom A as a member of their 

contact set.  This produces a sparse subset of the Delaunay graph.  It also produces a convex hull around 

the central atom, although not necessarily the smallest convex hull. 

4.6 Distance Only Triangulation: 

In order to demonstrate the importance of using a triangulation algorithm, rather than a simple 

distance cutoff, a limited number of calculations were performed using a distance-based triangulation.  

The distances between all pairs of amino acids in the decoy and experimental structures were calculated 

and if the distance was less than 6Å the pair was added to the graph.  6Å was chosen based on the dis-

tribution of distances in the Delaunay contacts, as most of the Delaunay contacts were shorter than this 

value. 



29 

4.7 Machine Learning:  

The tool svm_light was downloaded from http://svmlight.joachims.org/, compiled and used.   N-

fold cross validation tests were performed in addition to the leave one out tests implemented in 

svm_light.   Care was taken to insure that all positive and negative instances of a given protein were re-

moved from either a training or testing dataset when generating a set for cross-validation.  This avoided 

the potential problem of having negative instances associated with a positive test item or positive in-

stances associated with a negative test item and thus generating systematically optimistic (and incor-

rect) assessments of the training accuracy. 

Five related functions were calculated from the triangulations.   Since the adjacency matrices as-

sociated with each of the triangulations are symmetric, there are 210 unique pairs of amino acids.   The 

sum of the distances for each kind of pair and the numbers of each kind of pair were directly summed 

from the adjacency matrices.  Normalizing the sum of distances by the numbers of each kind produced 

the average distance, and normalizing the numbers of each kind by the total number of arcs produced a 

frequency measure.  Finally, appending the numbers of each kind to the average distance produced a 

Cartesian product that was useful for probing the importance of normalization. 

4.8 Results 

4.8.1 Classification 

The classification accuracy, assessed with 5-fold cross-validation, on the shifted and reversed 

sequence benchmarks is shown in table 1.  The variance between samples ranged between 0.5 and 1.5% 

indicating the  magnitude of difference that is significant.   
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Table 4.8.1.1 Classification results in percent.  Results are from 5-fold cross-validation.  The abbrevia-

tion in the model type dd stands for defective Delaunay, and the abbrevation cl stands for close where the graph 

was selected purely on distance criteria.  Shift refers to using the decoys where the sequence has been shifted 

by one residue, and reverse refers to the decoys where the sequence has been reversed.  Accuracy is 

(TP+TN)/(all data).  Precision is (TP)/(FP+TP).  Recall is (TN)/(FN+TN). 

Model Decoy Accuracy Precision Specificity  

frequency shift fail fail fail 

frequency reverse fail fail fail 

average shift 75.6 75.2 76.2 

average dd shift 73.7 75.5 71.6 

average cl shift 65.7 67.5 60.6 

average reverse 73.2 71.6 76.9 

number shift 89.7 96.5 82.4 

number dd shift 89.1 94.5 83.0 

number cl shift 70.0 74.4 61.4 

number reverse 91.1 96.1 85.8 

Total length shift 90.0 96.6 83.0 

Total length dd shift 87 95.9 77.3 

Total length cl shift 73.7 75.5 70.1 

Total length reverse 91.9 96.7 86.7 

Cartesian  shift 90.4 92.6 88.0 

Cartesian dd shift 88.3 92.0 83.9 

Cartesian cl shift 70.7 73 65.8 

Cartesian reverse 91.8 94.15 89.2 

 

Since svm_light can easily perform leave one out estimates they were performed as well and the 

leave one out estimates are identical within the estimated variation to the 5-fold cross-validation esti-

mates.  The best results are seen with un-normalized data.   Normalizing numbers of types of arcs to 

frequencies produced data sets where no  SVM model could be found, and normalizing the total lengths 

along kinds of arcs to average lengths reduced the accuracy by about 15%.  The Delaunay graph and the 

defective Delaunay graph produced essentially equivalent results.  Using a graph constructed solely 

based on distances produced results that were worse than either the Delaunay or defective Delaunay 
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graph.   Simply knowing the identities of the residues associated with the adjacency matrix (the number 

case below) was sufficient to accurately classify the data.  Adding distance information to the number 

information improved results slightly. 

4.8.2 Regression 

Each of the 20 individual protein structures used in the Moulder benchmark[114] was removed 

and the system trained on the remaining structures and then evaluated on the removed structure re-

sulting in a 20-fold cross validation.  The fraction of residues with errors less than 3.5Å was used as a 

regression target.  The results are shown in table 2.  The difference between using the average distance 

and non-normalized distances is more pronounced with regression than with classification, and the av-

erage distance trained very poorly. The high variance in the correlations reflects that 20 structures are 

not enough to span the space of protein folds.  However, the best correlation factors (77-79% for R2) 

demonstrate that system can be quite accurate when the training data are sufficient.  The defective De-

launay triangulation performs slightly worse than the Delaunay triangulation, which we believe is due to 

the greater degree of information that is dropped with the sparser graph. 

Table 4.8.2.1 Accuracy of regression analysis on the Sali dataset. The abbreviation dd refers to the de-

fective Delaunay graph.  The R
2
 correlation coefficient is shown in percent. 

Model Average R2 Standard Deviation Best R2 

average 12.6 13.1 43.9 

number 53 18.7 79.3 

Total distance 52.1 16.5 77.4 

Cartesian 51.2 18.7 79.3 

number dd 40.8 21.6 71 

Total distance dd 38.7 20.4 65.4 

Cartesian dd 43.3 21.7 70.7 

4.9   Discussion 

Encoding protein folds with a function applied to a triangulation derived graph results in an ef-

fective, compact, constant-sized code that is suitable for machine learning and data mining.  The fact 
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that a simple linear SVM could be effectively trained for both classification and regression shows that 

the encoding is highly linear and effectively represents the features in the structure.  It should be point-

ed out that this work only encoded  structural features of the proteins, and no additional information 

such as hydrogen bonding, solvent exposure, measures of structural quality, sequence homology or pro-

file information or knowledge based potential functions was used to assist the machine learning.  Un-

doubtedly, with careful selection and training other features could be added to this model and improve 

its performance. 

One conclusion of this work is highly suggestive.  Normalizing the data to protein size, either by 

finding average distances or (worse) by converting from numbers of arcs to frequencies resulted in deg-

radation of both classification accuracy and regression.  This strongly suggests that the optimal encoding 

of protein structure should include a measure of protein size.  Indeed, simply appending the numbers of 

arcs to the average distances (the Cartesian product above) restored the performance, although this 

could simply reflect the sufficiency of the numbers as a type of data.  This suggests, as well, that deriving 

a highly accurate knowledge based potential to distinguish between native and non-native protein mod-

els without including terms that reflect protein size is likely to be very difficult, if not impossible. 

4.9.1 Necessity of the Triangulation 

Since the calculation of a triangulation is an extra, and potentially expensive, step in the encod-

ing, It may be asked if the distances could simply be summed for each kind of residue pair in the model 

and this used as a measure for training.  This may work for distance information, but it will be sub-

optimal because it includes more information that is needed. Indeed, when tested, the performance of a 

simple distance based triangulation was significantly worse at classification than either the Delaunay or 

defective Delaunay triangulations.  This strongly suggests that exclusion of interactions from the triangu-

lation based on the local molecular geometry is important for defining effective and accurate encodings. 
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The easiest way to see the importance of the intermediate triangulation step is to examine the 

accuracy of the measure based on the numbers of each kind of pair of residues in an arc of the graph.  

Simply knowing the numbers of each kind of residue pairs associated with an arc of the graph or non-

zero element of the adjacency matrix of the triangulation is sufficient to give accurate results for both 

classification and regression.  Adding distance information improved the results, but only by a small 

amount.  Without the triangulation step the total numbers of inter-residue pairs is a function of the pri-

mary sequence and not the three-dimensional structure. Failing to use some form of triangulation re-

sults in data that cannot be used for classification or regression against structural metrics because the 

identical data could be derived in the absence of structure information.  In essence, the triangulation 

binds the sequence information to the encoding so that the association between amino acid sequence 

and structure is established in the data. 

4.9.2 Are the Triangulations Pseudo-Kernels? 

Kernels in SVM's are distance measures or inner products in Hilbert space that are tuned to 

measure important distances in the data[118]. An encoding or representation of the data that is also a 

distance measure and therefore suitable for use with a linear SVM kernel can be thought of as a “pseu-

do-kernel” and may indeed be a candidate for inclusion as a “user-defined” kernel in an SVM package.   

Since the linear kernel worked well with our encoding, it is worth examining the metric properties of the 

encodings. 

The adjacency matrices associated with the triangulations cannot solely by themselves be met-

rics, since the measure of distances between matrices depends on the definition of an appropriate 

norm.  If the functions of the adjacency matrices that we define for use with the SVM are norms then 

they will obey triangle or transitive ordering rules (i.e. a>b and b>c implies a>c) and thus the triangula-

tions will define, via functions applied to the graphs, linear “pseudo-kernels”.   Since the functions de-

fined in this paper output a vector containing solely positive elements by collapsing the adjacency matrix 
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based on the labels associated with each non-zero point in the matrix, and the norms of vectors are 

well-defined in terms of the properties of individual elements of the vectors, we need only examine the 

properties of the elements of the vectors to establish metric properties. 

The number of arcs of each kind or the ordinality of the matrices obeys transitive ordering.  If 

the number of XY arcs for a given pair X,Y  for a is N and for b N-1 and c N-2, then  both a>b, b>c and a>c.    

Similarly if for XY a>b and a=c and for ZQ b>c (but a = b), then a>c.   Adding the distances to the number 

terms does not break this transitive ordering since the distances are all positive real numbers.   There-

fore most of the functions we have defined obey a metric structure.  Interestingly, the normalized func-

tions do not obey this ordering which may partly explain they do not perform as well as the 

unnormalized functions. 

4.10 Conclusion 

Triangulation-based encodings are an effective approach to reducing large complicated three-

dimensional objects, like protein structures, to small and constant-sized representations suited for ma-

chine learning.  With protein structures, simply knowing the kinds of residues which are adjacent in the 

triangulation is sufficient for accurate classification and regression analysis.  Adding information about 

distances along the arcs of the triangulation increased the accuracy for classification, but was less im-

portant.  It was surprising how small the effects of distance information were.  Normalizing the data de-

rived from the triangulation degraded the quality of the results.  While the Delaunay triangulation per-

formed the best of the three triangulations examined, the exact details of the triangulation algorithm 

are probably not critical as long as the triangulation uses local geometry to remove redundant or irrele-

vant features.   
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5 HIV DRUG RESISTANCE PREDICTION USING MULTIPLE REGRESSION: AN APPLICATION OF A NEW 

SEQUENCE/STRUCTURE HYBRID PROTEIN ENCODING METHOD[119] 

5.1 Abstract 

Drug resistance is commonly encountered during treatment for HIV/AIDS, and decreases the ef-

ficacy of the antiviral drugs. Genotyping the infecting virus gives sequence data for computational pre-

diction of resistance, which is more efficient than performing experimental assays for resistance. Cur-

rent predictions rely on simple rules with modest accuracy; therefore, a prediction method with high 

accuracy is needed to improve drug selection for therapy. Here, we apply a hybrid sequence/structure 

protein representation in conjunction with multiple regression for predicting resistance to drugs. The 

algorithm was tested on genotype-phenotype data for HIV-1 protease (PR) and HIV-1 reverse transcrip-

tase (RT). The overall cross-validated regression R2-values were 0.51-0.72 for predicting resistance to 

four PR inhibitors; and 0.76-0.91 for three RT inhibitors demonstrating successful predictions. 

5.2 Introduction 

HIV-infections have spread all over the world in the three decades since the first case of AIDS 

was found. Current treatment is highly active antiretroviral therapy (HAART), which combines at least 

three drugs. Drugs inhibiting HIV-1 reverse transcriptase (RT) or protease (PR) target two important viral 

enzymes. Both enzymes play an essential role for effective replication of the virus. However, mutations 

in drug targets causing resistance to the drugs rise commonly causing a challenge in therapy[120]. Mul-

tiple mutations accumulate over time, resulting in a huge number of possible combinations of muta-

tions. Accurate and fast computational prediction of resistance is needed urgently for better drug selec-

tion instead of expensive experimental assays. 
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Many machine learning methods have been tested for predictions of drug resistance: linear re-

gression, decision trees[62], neural networks[72], support vector regression[70, 121], and Bayesian net-

works[122].  

We have introduced a hybrid sequence/structure representation using Delaunay triangulation 

for efficient encoding of inter-residue contacts within 3-dimensional structural data[123]. Previous ap-

plication of this encoding to PR genotype-phenotype data gave superior accuracies over other methods 

for prediction of drug resistance[124]. Results for predicting sequences with resistance to 4 PR inhibitors 

gave a high classification accuracy of >0.95 with 5-fold cross-validation using either support vector ma-

chine (SVM) or artificial neural networks and >0.97 using the sparse dictionary. This accuracy is signifi-

cantly higher than values of 0.60-0.87 obtained for the same set of sequences and inhibitors using other 

prediction methods [125, 126]. We have applied this hybrid sequence/structure representation to en-

code the HIV PR and RT protein structures, and used multiple regression to predict the relative re-

sistance for selected drugs: SQV, TPV, IDV and LPV inhibiting HIV PR; and AZT, Delavirdine (DLV) and 

Efavirenz (EFV) inhibiting HIV RT.  

5.3 Methods 

5.3.1 Datasets 

Genotype-Phenotype Data are from the Stanford HIV drug resistance database[36] 

(http://hivdb.stanford.edu/cgi-bin/GenoPhenoDS.cgi). Data were used for 4 PR inhibitors SQV, TPV, IDV 

and LPV, and 3 HIV RT inhibitors AZT, DLV and EFV. All the genotypes were expanded to produce indi-

vidual unique amino acid sequences because more than one possible amino acid was shown at some 

positions in the sequence.  
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5.3.2 Hybrid sequence/structure protein representation using Delaunay triangulation 

A hybrid sequence/structure protein representation method was used[105, 124]. Only the se-

quences of the mutated proteins are needed and only one protein structure is necessary. Hence, all mu-

tants are represented as vectors of the same dimensionality, which is a desired property for most of the 

pattern recognition algorithms.  

Two structure templates were used: 3OXC for HIV-1 PR, and 2WOM for HIV-1 RT (from 

www.pdb.org). The amino acid residues in each structure were represented by their alpha carbon posi-

tions. Delaunay triangulation was performed as described[124] resulting in a vector of 210 independent 

values, which is used as a feature vector to represent the protein structure in learning and classification. 

5.3.3 Regression analysis for drug resistance prediction and cross validation 

The 210-dimensional vector representing each mutant is used in regression analysis. The drug 

resistance value from the Phenosense assay for each genotype is given in the datasets. The mutations 

relative to a standard sequence are analyzed with the assayed resistance value to find a linear model. 

Then, a k-fold regression test was performed. The training set of size N  is randomly divided into k  

groups. Among them, 1−k  groups are utilized for constructing the linear model. Then, the linear model 

is used to predict the drug resistance for the remaining group with kN / mutations. The predicted re-

sistances are compared with the measured ones and the R2 values are recorded. Finally, the average and 

standard deviation of the k  R2 values are computed. 

5.4 Results 

5.4.1 Predicting HIV protease inhibitor resistance 

We performed k-fold (k=5) regression analysis on the sequence and resistance data. The real 

relative resistance values were included for the multiple regression. The regression gave R2 values of 
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0.5141-0.7212 for four different drugs as shown in Table I, which demonstrates that resistance can be 

predicted successfully by the hybrid sequence/structure encoding method.  

Table 5.4.1.1 Multiple Regression On Predicted Relative Resistance FOR PR INHIBITORS 

R2 values, mean R2 values, stddev 
IDV 0.5141 0.0306 
LPV 0.7212 0.0158 
TPV 0.5208 0.0543 
SQV 0.5758 0.0254 

5.4.2 Predicting HIV reverse transcriptase inhibitor resistance 

Multiple regression analysis was performed similarly for HIV RT and its inhibitors AZT, DLV and 

EFV. The regression results gave very high R2 values of 0.7622-0.9164 for the three different inhibitors, 

as shown in Table II. Therefore, the hybrid sequence/structure method gave excellent success in predict-

ing resistance to RT inhibitors.  

Table 5.4.2.1 Multiple regression on predicted relative resistance FOR RT INHIBITORS 

 
R2 values, 
mean 

R2 values, 
stddev 

AZT 0.7622 0.0237 
DLV 0.9088 0.0073 
EFV 0.9164 0.0079 

5.5 Discussion 

We have evaluated a new method to predict the drug resistance for both HIV-1 PR and HIV-1 RT 

antiviral inhibitors from genotype data using a hybrid sequence and structure protein representation 

and multi-regression analysis. This method was tested on four HIV PR inhibitors and three HIV RT inhibi-

tors and produced high accuracy. Regression analysis, determined from existing mutational data, can 

then be used to estimate the relative resistance value of novel mutants to drugs. In contrast, more 

standard methods only assess the presence of known resistance mutations in the sequence. The overall 

cross-validation regression R2 was 0.51-0.72 for four PR inhibitors; while even higher values of 0.76-0.92 

were obtained for three RT inhibitors. Therefore, this new method is able to predict drug resistance with 
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high accuracy and has promise for selecting the most effective drugs when resistance arises during AIDS 

therapy.  
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AIM 2: Developing a new classification algorithm to distinguishing between the drug resistant and the 

none drug resistant mutants 

6 SPARSE REPRESENTATION FOR PREDICTION OF HIV-1 PROTEASE DRUG RESISTANCE[124] 

6.1 Abstract 

HIV rapidly evolves drug resistance in response to antiviral drugs used in AIDS therapy. Estimat-

ing the specific resistance of a given strain of HIV to individual drugs from sequence data has important 

benefits for both the therapy of individual patients and the development of novel drugs. We have de-

veloped an accurate classification method based on the sparse representation theory, and demonstrate 

that this method is highly effective with HIV-1 protease. The protease structure is represented using our 

newly proposed encoding method based on Delaunay triangulation, and combined with the mutated 

amino acid sequences of known drug-resistant strains to train a machine-learning algorithm both for 

classification and regression of drug-resistant mutations. An overall cross-validated classification accura-

cy of 97% is obtained when trained on a publically available data base of approximately 1.5×104 known 

sequences (Stanford HIV database http://hivdb.stanford.edu/cgi-bin/GenoPhenoDS. cgi). Resistance to four 

FDA approved drugs is computed and comparisons with other algorithms demonstrate that our method 

shows significant improvements in classification accuracy. 

6.2 Introduction 

Since the disease of AIDS (Acquired Immunodeficiency Syndrome) was first recognized in the US 

in the early 1980s, it has become a severe worldwide epidemic[127]. Based on the life cycle of the infec-

tious agent human immunodeficiency virus (HIV), many inhibitors were constructed to treat AIDS. These 

inhibitors can retard the entry, replication or maturation of the virus. Therefore all of them are effective 

as anti-AIDS drugs. 



The inhibitors of HIV protease have pro

plays an important role in the maturation of the virus

have been approved by the FDA (Food and Drug Administration): amprenavir (APV), indinavir (IDV), 

lopinavir (LPV), nelfinavir (NFV), ritonavir (RTV), saquinavir (SQV), atazanavir (ATV), tipranavir (TPV) and 

darunavir (DRV).  

The structure of the HIV-1 protease is shown in 

monomer has 99 residues. The inhibitors bind inside the active site in the center of the dimer by hydr

gen bonds and van der Waals interactions and prevent the cleavage of viral precursor proteins. Ther

fore, the virus cannot form mature particles and thus cannot infect other host cells

Figure 5.4.2.1 The structure of HIV

 

However, because HIV has deficient proofreading

tions evolve rapidly in its genome. Such mutations lead to drug resistance or decreased susceptibility to 

certain drugs, though in some rare cases the drug efficacy was observed to increase for certain mut

tions[132]. Hence, resistance testing is recommended for AIDS patients due to the decreased suscept
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bility for certain drugs[133] Mutations associated with resistance are found in almost half the protease 

residues. They are located around the active site of the protease where they can alter the interactions 

with inhibitors and throughout the structure[134]. Multiple mutations accumulate over time. Due to the 

huge number of possible combinations of mutations, it is a challenge to predict which protease se-

quences will cause resistance to specific inhibitors.  Accurate predictions would be valuable for prescrib-

ing the most effective drugs for infections with resistant HIV. 

Most existing approaches to predict HIV drug resistance from sequence data use only the se-

quence data and often only selected sets of mutation sites, such as geno2pheno[135], REGA[136], Stan-

ford HIVdb[137], ANRS[138], and HIV-GRADE[125]. In this paper we incorporate structural data into the 

predictions. The structural information improves the quality of the predictions by representing interac-

tions between physically adjacent mutation sites that are not adjacent in sequence unlike other meth-

ods. 

The resistance can be assessed for HIV strains by experiments growing the infected cells in the 

presence of different drugs. However, even minimal wet lab experiments to measure the antiviral effi-

cacy of individual inhibitors are time consuming and expensive. Therefore, it would be valuable develop 

computer methods to predict whether a mutant is drug-resistant or not. 

In the field of extracting information, the sparse signal representation has emerged in recent 

years as a promising research area. Indeed, the sparsity is a hidden prior information for most of the 

signals in the physical world and the related philosophy and algorithms have been applied in a diverse 

areas[82, 139]. Sparse signal representation can be visualized as a technique for extracting the essential 

features from the data while simultaneously minimizing the effects of the noise in the data. For exam-

ple, a sparse signal representation of audio data would extract the continuous sound waves while sup-

pressing the uncorrelated and non-continuous background noise. 
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Therefore, in this paper, we apply the sparse signal technique in the prediction of HIV-1 prote-

ase drug resistance from sequences. In the BACKGROUND section, a brief background of the sparse sig-

nal representation is presented; in PREVIOUS WORK, we briefly review the area; in METHODS section, 

the details of our proposed classification algorithm are introduced. Following that, the RESULTS and 

DISCUSSION sections describe the outcomes and related discussions.   

6.3 Background 

Compressive sensing uses sparse signal representations to eliminate noise and non-critical fea-

tures from the data[82, 139]. The data are expanded in terms of an orthogonal basis – often a Fourier or 

wavelet basis for conventional signals – and the critical features extracted based on the magnitudes of 

the coefficients of the expansion. A classical expansion, like the Fourier transform, is not always the op-

timal basis for expansion and therefore the choice of an optimal basis is done using optimization[139]. 

The optimal basis for machine learning with protein sequence and structure data is defined in terms of a 

dictionary of exemplars which are determined with the singular value decomposition KSVD[140] as de-

scribed in the methods below. 

The idea of the above compressive sensing and sparse signal representation has achieved very 

exciting results in many areas such as signal acquisition[141], signal representation[140], pattern classi-

fication[142], and image processing[86]. In this work the idea of dictionary learning and classification is 

extended and applied in the problem of predicting drug resistance from HIV-1 protease sequence data. 

6.4 Methods 

In this section, we first provide a vector representation for the protein structure, and then the 

sparse dictionary is used to perform the classification task. 
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6.4.1 Data sets 

A total of 11731 phenotype results from 1727 isolates were obtained from Genotype-Phenotype 

Datasets on the Stanford HIV drug resistance database[137] (http://hivdb.stanford.edu/cgi-

bin/GenoPhenoDS.cgi).  

In this experiment, four protease inhibitors, SQV, TPV, IDV and LPV, were tested.  

For SQV, IDV and LPV, among all these genotype sequences, those mutants with the relative re-

sistant fold < 3.0 were classified as non- resistant, denoted as 0; while those with the relative resistant 

fold ≥ 3.0 were classified as resistant, denoted as 1[143]. 

For TPV, those mutants with the relative resistant fold < 2.0 were classified as non-TPV resistant, 

denoted as 0; while those with the relative resistant fold ≥ 2.0 were classified as TPV resistant, denoted 

as 1[144]. 

6.4.2 Preprocessing of the datasets 

In order to unify the data in the original datasets, those sequences with an insertion, deletion, or 

containing a stop codon relative to the consensus have been removed so that the data represent prote-

ases of 99 amino acids.  

Due to the limitations of the sequencing assay or presence of multiple viral sequences in the 

same sample, many of the sequences in the dataset have multiple mutations at the same sites yet share 

the same drug-resistance characteristics. An individual protein molecule can only have one type of ami-

no acid at one location. Therefore, we need to expand the data to multiple sequences with single amino 

acids at each location. For instance, among the 99 letters of a sequence, 97 of them have a single amino-

acid. However, at one site there are two different types of amino-acids, and another site has three. In 

this case, this record must be expanded to a total of )32(6 ×=  different sequences, each of which has 

only one amino-acid for each of its 99 residues, sharing the same drug resistance of the original se-
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quence. In this work, we designed a fast way to perform this expansion, which significantly enriches the 

test data. 

Without loss of generality, for a sequence in the original data set, we denote the number of var-

iations on each of its 99 sites to be .99,...,2,1, =iJ i
 Therefore, this sequence can be expanded to a total 

number of ∏
=

=

99

1i

iJP different sequences, each of which has only one type of amino acid at each posi-

tion. In order to generate them all, equivalently, for any },...,2,1{ Pp∈ , we need to pick a unique combina-

tion among the 99 positions. 

This choice can be done with a simple recursive implementation. Unfortunately, it has so high a 

complexity that in practice, we only obtain roughly 5k sequences within 24 hours on an Intel Core i7 

workstation. In order to improve this speed, we designed a new method for this expansion by analogy to 

the base-conversion problem. For a simple example, assume Ji=2 for all .99,...,2,1=i  Then, the task of list-

ing all the 299 sequences, though a huge number, can be done by simply finding the representation of 

each }2,...,2,1{
99∈p under base 2 and picking the 1st (resp. 2nd) amino acid on each site if a 0 (resp. 1) is 

encountered on that digit. By analogy, in this task, we need to convert a decimal number p to a mixed-

base number: its i-th digit is a Ji-based number. 

This can be done, similarly to the decimal-binary conversion, by successive short division. How-

ever, the difference is that instead of dividing by 2, here Ji should be used for the i-th division. The short 

division is repeated and the remainders are recorded in a reversed order, which finally gives a 99-digit 

mixed-base representation of p, denoted as π. Then, for each site, we just pick the amino acid according 

to the i-th digit of π. 

With this new scheme, we generated a total of 1.5×105 sequences in less than 10 seconds on the 

same machine. This significantly enriches the available data for the subsequent analysis. 
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6.4.3 Protease structure representation 

 It is necessary to use a representation of the structure that is invariant with respect to the arbi-

trary choice of origin and orientation of the molecule. Therefore, the procedure in[145] was used to 

convert the HIV-1 protease structure into a 210-dimensional vector. 

The structure of wild type (consensus) HIV protease with SQV (PDBID: 3OXC[146]) was obtained 

from the Protein Structure Database at www.pdb.org. Then, the position of each residue was represent-

ed by its alpha carbon position. Because the wild-type HIV-1 protease has 198 residues in the dimer, the 

α-carbon positions consist of 198 three-dimensional vectors, }
3

:198,...,2,1{ ℜ∈= iCCCCC
v

. The Delaunay 

triangulation is then performed on the C
v

and a graph >=< ECG ,
v

is obtained. Then, for the edge Ee∈ , 

the two residues it connects are denoted as Ai and Aj where Α∈jAiA ,
 
being the set of all the 20 amino-

acids. We then recode the distance between Ci and Cj as d(Ai, Aj). This process is repeated for all the 

edges in G and the distances computed for the same pair of amino-acids are averaged. Finally, the aver-

aged values are filled into the corresponding positions of a matrix 2020 ×ℜ∈D . For example: D(1, 2) and 

D(2, 1) contains the average distance between the amino-acids A1 and A2  
appearing in the graph G. 

Evidently, the matrix D is symmetric. Therefore, it has a total of 210 degrees of freedom (upper 

triangular part plus the diagonal). Those 210 values are concatenated in a row-wise manner to form a 

210-dimensional vector, which will be termed “structure vector” for short. The subsequent learning and 

classification are based on such structure vectors. 

6.4.4 Sparse dictionary classification 

From the brief introduction of the compressive sensing/sparse representation, it can be seen 

that for a more accurate signal reconstruction, rather than using some existing fixed basis/frames such 

as the Fourier basis, it is very important to find a suitable basis/frame Ψ, so that the signals of interest 

have sparse representations in Ψ. In the signal processing community, such a frame is also called a dic-
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tionary. Given a group of signals, the task of finding a dictionary that can represent the group of signals 

sparsely is called the dictionary construction. 

The use of the signal dependent frame, as opposed to the generic frames/basis such as Fourier, 

wavelet, etc., gives us a new approach to the signal reconstruction problem. Indeed, one can view the 

construction of the signal dependent frame (dictionary) as a process of building a sparse, nonlinear 

model for the signals at hand. As a result, the fidelity of reconstructing a new signal from the dictionary 

can then be considered as a measure of how the new signal fits the model represented by the diction-

ary. Therefore, this can be used under a classification framework: Assume we have n groups of signals, 

for example (but not limited to) n=2 in our drug-resistant/non-resistant case. Then, we can construction 

two dictionaries as the models for the resistant/non-resistant groups, respectively. After that, a new 

signal (the “structure vector” described in the above section), is fit to the two models by reconstructing 

it using the two dictionaries. The reconstruction errors using different dictionaries are compared and the 

smaller error indicates that the signal fits to that specific dictionary better than to the other. As can be 

observed, there is no limitation on n being 2 and therefore the proposed method can be viewed as a 

nonlinear multi-group classification scheme. In addition, the sparsity of the representation makes the 

classification more efficient. In what follows, we present the details of the proposed algorithm.  

Denote MvvvMuuu ,...,2,1,,...,2,1 as the training sets and 

NMvMvMvNMuMuMu ++++++ ,...,2,1,,...,2,1 as the testing sets. In order to learn and encode the infor-

mation of the vectors belonging to SQV group (resistant to SQV), we construct an over complete dic-

tionary J from Muuu ,...,2,1 . To that end, the K-SVD algorithm is employed and shown in Algorithm 1. 

The dictionary J records the information of the SQV group and similarly, the other over-

complete dictionary K, which learns and encodes the information of non-SQV group, is constructed from 

mvvv ,...,2,1  also with the K-SVD algorithm. 
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Algorithm 1 K-SVD Dictionary Construction[140] 

1:  Initialize J by the discrete cosine transformation matrix 
2:  repeat 
3:    Find sparse coefficients )'( siλΛ  using any pursuit algorithm. 

4:    for j=1, 2, ..., update ji, the j-th column of J, by the following process do 
5:      Find the group of vectors that use this atom: }0)(,1:{: ≠≤≤= jiMiii λζ  

6:      Compute ∑ ≠ Λ−= ji
i
TijQjE :  where i

TΛ  is the i-th row of Ë 

7:      Extract the i-th columns in Ej, where 
ji ζ∈ , to form R

jE   

8:      Apply SVD to get VUR
jE ∆=   

9:       ji  is updated with the first column of U 

10:  The non-zeros elements in j
T

Λ  is updated with the first column of )1,1(∆×V   

11:    end for 
12:  until Convergence criteria is met 

 

In this work, we used the orthogonal matching pursuit algorithm to find the sparse coeffi-

cients[147]. The two dictionaries encode the information in either group of vectors. Therefore, intuitive-

ly, a vector belonging to the SQV group could be represented by J with high fidelity and vice versa for 

the non-SQV group. Formally, a new vector 210ℜ∈w
v with unknown category, is reconstructed by both 

dictionaries J and K. To that end, the orthogonal match pursuit algorithm is used to find a sparse coeffi-

cient Λ and Γ, such that 

Λ≈ Jw
v

 s.t. k<Λℜ∈Λ 0||||,
210  

Γ≈ Kw
v

 s.t. k<Γℜ∈Γ 0||||,
210  

However, the two dictionaries could represent w
v  with different accuracy. The representation 

errors are recorded as: 

2|||| Λ−= JwSQVe
v

 

2|||| Γ−=− KwSQVnone
v

 

and finally 

SQVnoneSQVee −−=  
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Therefore, if 0>e , the new vector w
v  could be represented better by the dictionary constructed 

from the vectors of the SQV group. Hence, it is classified to be resistant to the SQV. The overall algo-

rithm is listed in Algorithm 2 

Algorithm 2 Drug resistance classification algorithm 

1:  repeat 
2:    Randomly choose m vectors from SQV group, the rest n being training data   
3:    Construct dictionary J  using Algorithm 1 
4:    Randomly choose m vectors from none group, the rest n being training data 
5:    Construct dictionary K using Algorithm 1 
6:    for each vector v in testing data do 
7:        computing the sparse representation of v using both dictionaries J and K 
8:        computing the representation errors using the two dictionaries 
9:        if the error of using J is larger then 
10:        v is resistant to SQV 
11:      else 
12:        v is NOT resistant to SQV 
13:      end if 
14:    end for 
15:    Compute the confusion matrix 
16:  until For 9 times 

6.5 Experiments and results 

6.5.1 k-fold validation 

In order to fully use all the data, a k-fold cross-validation was performed in all the experiments 

for all the four drugs. Specifically, 
k

k 1−  of all the sequences are used for training the classifier and the 

remaining 
k

1  data are used for testing. We pick k to be 5 for all the tests. For each of the four types of 

the drugs, we then have approximately 10k “structure vectors”, half are resistant and the other half are 

non-resistant. Accordingly, there is about 2k testing vectors for each drug. 

6.5.2 Support vector machine 

The support vector machine (SVM) is a framework for the supervised learning and classifying 

task. After its proposal by Vapnik[118], the SVM has been used widely in the machine learning/pattern 

classification filed.  
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When feeding the encoding result into SVM, 5-fold cross validation tests were performed im-

plemented in MATLAB SVM toolbox[148, 149]. We tested several choices for the SVM kernel and the 

linear kernel has the best performance, as reported in Table 5 (choice of kernel is further discussed in 

Section 2.4.8). Care was taken to insure that all positive and negative instances of a given protein were 

removed from either training or testing dataset when generating a set for cross-validation.  This avoided 

the potential problem of having negative instances associated with a positive test item or positive in-

stances associated with a negative test item and thus generating systematically optimistic (and incor-

rect) assessments of the training accuracy.  

Table 6.5.2.1 Mean accuracy, specificity and sensitivity using SVM 

 IDV LPV SQV TPV 
Accuracy 0.961 0.959 0.950 0.961 
stddev ( 2

10× ) 0. 233 0. 251 0. 249 0. 402 
Sensitivity 0.951 0.947 0.947 0.958 
stddev ( 2

10× ) 0. 469 0. 348 0. 424 0. 463 
Specificity 0.971 0.973 0.953 0.964 
stddev ( 2

10× ) 0. 368 0.341 0. 325 0. 369 

6.5.3 Artificial Neural Networks 

The same testing strategy was applied with the Artificial Neural Networks (ANN) to classify data. 

Specifically, the three-layer feedforward network was used in Matlab[149-151]. The network had one 

hidden layer of 20 nodes and was trained with backpropagation with a maximum of 50 training epochs.  

Similar to SVM, 5-fold cross validation was also used for ANN and the result is shown in Table 6.  

Table 6.5.3.1 Mean accuracy, specificity and sensitivity using ANN 

 IDV LPV SQV TPV 
Accuracy 0.961 0.963 0.957 0.951 
stddev( 2

10× ) 0.857 0.641 0. 723 1.27 
Sensitivity 0.960 0.965 0.958 0.953 
stddev( 2

10× ) 1.16 0.741 0.483 1.89 
Specificity 0.963 0.961 0.956 0.950 
stddev( 2

10× ) 0.981 0.598 1.06 0. 672 
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6.5.4 Proposed sparse dictionary classifier 

Following the approach described in METHODS, the sparse representation was also implement-

ed and 5-fold cross validation was performed. The result is shown in Table 7.  

Table 6.5.4.1 Mean accuracy, specificity, and sensitivity using sparse representation 

 IDV LPV SQV TPV 
Accuracy 0.969  0.974  0.970  0.990 
stddev( 2

10× ) 0.151  0. 292 0.139 0.277  
Sensitivity 0.951  0.957 0.959  0.984  
stddev( 2

10× ) 0.529  0.494  0.604  0.423  
Specificity 0.989 0.992 0.981 0.995 
stddev( 2

10× ) 0.297 0.361 0.692 0.199 
 

 

Figure 6.5.4.1 Comparison of accuracy, specificity and sensitivity of sparse dictionary, SVM, and ANN 

 

For clarity, the mean accuracy of all the above methods is compared in Figure 16. From it we can 

observe that the mean accuracy of the proposed dictionary classifier is higher than for other methods.  

While Figure 16 visualizes the comparison among the mean accuracies, sensitivities and specific-

ities, we further conducted statistical tests for all the 5-fold cross validation results. At the significant 

level of 0.01, the accuracy, sensitivity and specificity of the proposed method are higher than for both 

SVM and ANN. 

6.5.5 Comparison with other methods  

Furthermore, we have tested several state-of-the-art methods including HIV-GRADE (Version 

12-2009), ANRS-rules (Version 7/2009), Stanford HIVdb (Version 6.0.6), Rega (Version 8.0.2), and 

geno2pheno (version December 13, 2000), which are available at http://www.hiv-grade.de/cms/grade/, 
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using the same datasets described above. Since the original dataset obtained from Stanford HIVdb are 

all protein sequences, and all these servers take nucleotide sequence, the sequence manipulation 

suite[152] was used to convert the protein sequences into nucleotide ones. When parsing the output of 

these methods, the output term with “susceptibility”, is considered as non-resistant, whereas output of 

“resistance” is considered as being resistant. Accuracies are presented in Table 4. For the HIV-grade, 

there are outputs termed “Intermediate”. When calculating the accuracies, "Intermediate" is considered 

as resistant, and the result is shown in the table 4. In the table, N/A indicates that there is no output for 

this method-inhibitor.  

Table 6.5.5.1 Accuracy compared to other methods 

 IDV LPV SQV TPV 
HIV-grade 0.851 0.805 0.802 0.728 
ANRS 0.851 0.870 N/A 0.597 
HIVdb N/A 0.839 N/A 0.768 
Rega 0.856 0.840 0.693 N/A 
Sparse 0.969 0.974 0.970 0.990 

 

From the comparison we can observe the high accuracy achieved in our proposed sparse meth-

od. The consistent high level of accuracy demonstrates that including structural information and sparse 

encoding is a promising new alternative approach to only using sequence information for this important 

task of predicting drug resistance. 

6.5.6 Mean accuracy with respect to different sparsity 

The parameters of the algorithm, in particular the sparsity and the dictionary size, affect the fi-

nal classification outcome. The sparsity controls how many atoms are used to re-construct a given vec-

tor. If it is large, then both dictionaries would give smaller representation errors. Therefore, it is a pa-

rameter that can be tuned. By varying from 7 to 12, we repeated the learning and classification steps. 

Then the mean accuracy was measured and plotted in Figure 17. It is noted that for all the tests here, 

the dictionary size is fixed at 250. 
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Figure 6.5.6.1 The accuracy changes with respect to the change of the sparsity. The lines are the mean 

accuracies of the k tests with different sparsity. The dictionary size is fixed at 250. 

6.5.7 Mean accuracy with respect to dictionary size 

 

Figure 6.5.7.1 The accuracy changes with respect to the change of the dictionary size. The lines are the 

mean accuracies of the k tests with different dictionary sizes. The sparsity is fixed at 9. 

 

The dictionary is an over-complete set of vectors (atoms) and the number of atoms in it is also a 

parameter that affects the learning and classification performance. Therefore, similar to the tests for the 

sparsity above, tests with different dictionary sizes were conducted (varying from 250 to 500) and the 

resulting accuracies are recorded in Figure 4. Moreover, for these tests, the sparsity value was fixed at 9. 

From the tests we can observe that with further parameter tuning, the proposed algorithm has 

the potential of reaching even higher accuracy. 
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6.5.8 Computational Performance 

As mentioned in Section 4.1, we have approximately 10k training “structure vectors” and 2k 

testing vectors for each single classification task. As can be seen in Table 9, although the proposed algo-

rithm achieves better classification accuracy, it also takes longer to finish. For the SVM, any choice of 

kernel other than the linear one does not lead to convergence within 104 seconds.  

Table 6.5.8.1 Running times for training 

Method SVM (linear) SVM (non linear) ANN proposed 
Training Time (Sec) 20.6 no convergence (>104) 21.9 358 
Testing Time (Sec) 0.4 N/A 0.1 2 

6.6 Discussion 

Given a mutant strain of HIV-1, in order to establish whether it is resistant to certain drugs, wet 

lab biological experiments are conducted. However, this process is both time and resource consuming. 

Therefore, performing such experiment in silico will save much time and resources. Hence, in this work 

we propose an algorithm to predict the drug resistance property of the mutant HIV-1 protease from its 

sequence. It is based on the signal sparse representation theory. Essentially, we learn the characteristics 

of resistant and non-resistant mutants of the HIV-1 protease by constructing two over-complete diction-

aries. Then, given the sequence of a new mutant, we measure how accurately this new sequence can be 

represented by the two dictionaries. The category of the dictionary with smaller error is assigned to the 

new mutant. The algorithm is tested on different sequences, and the result was compared with the 

common classification tools SVM and ANN. The result shows that the proposed sparse dictionary classi-

fier can distinguish between drug resistant and non-resistant sequences significantly better than the 

other methods. Moreover, this new method outperforms existing approaches in terms of accuracy. This 

method for in silico prediction of resistance may be a promising way to select effective drugs in AIDS 

therapy without performing the actual biological experiments. In our on-going and future research, we 

will be extending the bi-partition algorithm to multiple class classification. This would enable grouping 

the proteins in finer divided and more accurate sub-categories. 
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7 PREDICTION OF HIV DRUG RESISTANCE FROM GENOTYPE WITH ENCODED THREE-DIMENSIONAL 

PROTEIN STRUCTURE[153] 

7.1 Abstract 

Background: Drug resistance has become a severe challenge for treatment of HIV infections. 

Mutations accumulate in the HIV genome and make certain drugs ineffective. Prediction of resistance 

from genotype data is a valuable guide in choice of drugs for effective therapy. 

Results: In order to improve the computational prediction of resistance from genotype data we 

have developed a unified encoding of the protein sequence and three-dimensional protein structure of 

the drug target for classification and regression analysis. The method was tested on genotype-resistance 

data for mutants of HIV protease and reverse transcriptase. Our graph based sequence-structure ap-

proach gives high accuracy with a new sparse dictionary classification method, as well as support vector 

machine and artificial neural networks classifiers. Cross-validated regression analysis with the sparse 

dictionary gave excellent correlation between predicted and observed resistance. 

Conclusion: The approach of encoding the protein structure and sequence as a 210-

dimensional vector, based on Delaunay triangulation, has promise as an accurate method for predicting 

resistance from sequence for drugs inhibiting HIV protease and reverse transcriptase. 

7.2 Background  

HIV/AIDS is a pandemic disease and more than 35 million people are infected worldwide[154]. 

There is no effective vaccine; however, the long-term survival of many patients has been enabled by 

drug therapy. Highly Active Antiretroviral Therapy (HAART) using three or four different drugs with dif-

ferent viral targets is very effective in stabilizing the infection[155]. These antiviral drugs target different 

stages in the viral life-cycle. Two important drug targets are the HIV protease (PR) and reverse transcrip-



57 

tase (RT), which have essential roles in viral replication. HIV RT converts the viral RNA genome into DNA, 

which is translated by the host cell machinery into the viral precursor proteins. HIV PR functions to 

cleave the large viral precursor proteins into individual enzymes and structural proteins, which produces 

infectious viral particles. Among the 23 approved drugs in current clinical use, there are seven nucleo-

side RT inhibitors (NRTIs), four non-nucleoside RT inhibitors (NNRTIs), and eight PR inhibitors (PIs)[156]. 

The approved PIs were designed to bind in the active site of HIV PR, and prevent the processing of viral 

precursor proteins (Figure 1A). NRTIs are chemical analogs of the natural nucleoside substrates of the 

HIV RT that bind to the protein active site and block its activity in synthesizing DNA from viral RNA. The 

inhibitors in the NNRTI class also decrease the enzymatic activities of RT, however, they bind in an allo-

steric site in the palm domain of the p66 subunit instead of the active site of RT (Figure 1B).  
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Structures of HIV-1 PR and RT. (A) The structure of HIV-1 PR dimer in complex with 

. The two subunits of HIV-1 PR are shown in green and red, and the PI darunavir is 

colored blue. (B) The structure of HIV-1 RT dimer in complex with DNA and bound NNRTI and NRTI

the p51 subunit is shown in purple. NRTI is colored blue, NNRTI is red, and 

double stranded DNA is orange. 
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tive site of PR while the majority alter residues in distal regions of the enzyme structure
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1 PR dimer in complex with 

1 PR are shown in green and red, and the PI darunavir is 

1 RT dimer in complex with DNA and bound NNRTI and NRTI[26, 27]. The 

the p51 subunit is shown in purple. NRTI is colored blue, NNRTI is red, and 

Despite the success of HAART, current therapy is limited by the rapid emergence of drug re-

. The virus can mutate to acquire resistance during therapy due to the lack of  proofreading 

. These resistance mutations alter the drug targets such as PR and 

. Some of the 35 mutations associated with resistance to PIs alter amino acids located in the ac-

of the enzyme structure[134]. Similarly 
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for RT, several of the mutations associated with resistance to NRTIs alter amino acids in the active site of 

the enzyme while others are located in more distal regions. The amino acid mutations occurring in asso-

ciation with resistance to the NNRTIs tend to cluster around the inhibitor binding site[42, 43]. The mo-

lecular mechanisms for these antiviral drugs are described in the review[10].  

The resistance mutations lower the effectiveness of specific drugs and may cause failure of the 

treatment. Infections with resistant HIV are prevalent; surveys in North America and Europe show that 

8-20% of HIV infections in untreated people contain primary drug resistance mutations[10]. Over time, 

multiple mutations can accumulate giving a huge number of possible combinations of mutations in each 

protein. This persistent problem led to the recommendation for resistance testing to guide the choice of 

drugs in AIDS therapy [133, 159, 160]. Fast sequencing of the genome of the infecting virus can be com-

bined with computational predictions of resistance to guide the choice of effective antiviral drugs[160]. 

Accurate and fast computational predictions are desirable to avoid the expense, limited availability and 

time involved for performing an experimental cell-based assay for resistance where results can take four 

weeks. 

Accurate predictions can be valuable for prescribing the most effective drugs for infections with 

resistant HIV. Most genotype interpretation algorithms in clinical use are knowledge based[161]. These 

interpretation algorithms apply a set of rules or scores for each mutation and drug. The performance of 

several commonly used interpretation algorithms: Stanford HIVdb[126], HIV-grade[125], REGA and 

ANRS (www.hivfrenchresistance.org/) has been compared[125].  In addition, many computational classi-

fication techniques have been evaluated for predicting drug resistance from the genotype data. The 

standard classification techniques of artificial neural networks (ANN)[63, 72, 73, 162, 163], decision 

tree[62, 63], random forests[163], support vector machine (SVM)[163] [70] and regression analysis[63] 

have been applied in HIV drug resistance predictions. Statistical methods can also be applied to analyze 

the relationship between genotype and phenotype.  The association of mutations with resistance to the 
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PIs saquinavir (SQV) and indinavir (IDV) was determined using cluster analysis, recursive partitioning, 

and linear discriminant analysis[65]. These methods are limited by the high dimensionality of the geno-

type data, hence non-parametric methods were proposed and tested on resistance data for the PI 

amprenavir (APV)[68, 69]. Protein structural information has also been used to generate four-body sta-

tistical potentials of mutants for training with classification and regression statistical learning algorithms 

and tested in predicting resistance to RT and PR inhibitors[79].  

We have evaluated an efficient encoding of information from the three-dimensional protein 

structure for the prediction of resistance from genotype. The structural encoding via Delaunay triangula-

tion improves the quality of the predictions by representing interactions between amino acid neigh-

bours in the three-dimensional structure unlike the linear sequence representation of other methods. 

This unified sequence-structure representation was used in supervised training with SVM, ANN, and a 

new sparse dictionary classification method. The compressive sensing/sparse dictionary representa-

tion[81] [82] has been applied successfully in image analysis to enhance learning capacity and efficiency. 

Sparse representation has been employed for image restoration[84, 164], denoising[85], deblurring[86], 

signal processing[165], and face detection[88].  Initial tests of this procedure for classifying resistance to 

4 PIs was presented in[124]. Here, the structural encoding has been expanded to include regression 

analysis and classification of genotype-phenotype data for seven PIs, six NRTIs and three NNRTIs. 

7.3 Results  

We combined structural information with genotype for regression analysis and supervised learn-

ing on resistance data. The new graph based sequence-structure encoding was tested with the Geno-

type-Phenotype Data from the Stanford HIV drug resistance database[137] (http://hivdb.stanford.edu/cgi-

bin/GenoPhenoDS.cgi). Data were available for two different protein targets: HIV-1 PR and HIV-1 RT. For 

HIV-1 PR, eight PR inhibitors atazanavir (ATV), IDV, nelfinavir (NFV), ritonavir (RTV), lopinavir (LPV), 

tipranavir (TPV) and SQV were tested. While for the study of HIV RT inhibitor resistance, NNRTIs 
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nevirapine (NPV), delaviridine (DLV), efavirenz (EFV), and NRTIs lamivudine (3TC), abacavir (ABC), 

zidovudine (AZT), stavudine (D4T), didanosine (DDI) and tenofovir (TDF) were tested. The data include 

the protein sequence and resistance value from the Phenosense assay for each virus isolate. Genotype-

phenotype data were available for 744 to 1674 isolates for different inhibitors of HIV PR, while RT was 

represented by 353 to 746 records for the 9 different NRTIs and NNRTIs. The preprocessing of the se-

quence and resistance data are detailed in Methods. Genotypes were expanded to unique protein se-

quences due to the presence of more than one amino acid at some positions. This expansion resulted in 

a total of 10,228 to 17,545 unique sequences of HIV PR mutants and 2,004 to 11,367 RT mutants for the 

various inhibitor resistance values.  

7.3.1 Graph based protein sequence/structure representation using Delaunay triangulation  

The sequences were combined with information from the three-dimensional protein structures 

by employing a graph generated by Delaunay triangulation as described in[105]. Two structure tem-

plates were used: 3OXC[146] for HIV-1 PR, and 2WOM[166] (from www.pdb.org). Only one structure 

vector is needed for each protein. In other words, all PR mutant sequences are combined with a single 

210-dimensional vector derived from one PR structure, and similarly, a single structure vector is used for 

the RT mutants in subsequent regression and classification of resistance data. As a result, all mutants are 

represented as vectors of constant dimensionality, which is a desirable property for most of the pattern 

recognition algorithms. This structure vector was combined with sequences in regression analysis and 

classification for resistance. 

7.3.2 Multiple regression on HIV protease inhibitor resistance 

After each of the mutated sequences was represented by a 210-dimensional vector, we per-

formed the regression analysis for the drug resistance data. We performed k-fold (k=5) regression analy-

sis on the sequence and resistance data. The predicted values for relative resistance were plotted 
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against the experimental values as shown in (Figure 2) for the PR inhibitors ATV, NFV, RTV, IDV, LPV, TPV 

and SQV.  
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Figure 7.3.2.1 Multiple regression on the predicted and observed resistance for HIV-1 PR inhibitors. The 

predicted resistance is plotted against the observed value as blue dots. The trend line is shown. Plots show re-

gression for drug resistance: (A) IDV, (B) LPV, (C) TPV, (D) SQV, (E) ATV, (F) NFV, (G) RTV 
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The multiple regression gave high R2 values of 0.579-0.783 and very low standard deviations as 

listed in Table 1. The values are the average of all the R2 values from k-fold regression. The excellent cor-

relations demonstrate that relative resistance to PIs can be predicted successfully from genotype by the 

new sequence/structure encoding method. In order to avoid training to an “optimal” n-fold set for cross 

validation, cross validation sets are chosen independently for each training run. Therefore, there is al-

ways a small variation in the results. 

Table 7.3.2.1 Multiple regression on predicted relative resistance to HIV-1 PR inhibitors 

 IDV LPV TPV SQV ATV NFV RTV 
R2 values, mean 0.579 0.783 0.632 0.762 0.670 0.769 0.778 
R2 values, stddev 0.037 0.014 0.045 0.018 0.035 0.029 0.016 

7.3.3 Multiple regression on HIV reverse transcriptase inhibitor resistance 

Multiple regression analysis was performed similarly on genotype-phenotype data for drugs in-

hibiting HIV-1 RT.  The predicted and observed values are compared for resistance to the RT inhibitors 

including NRTIs 3TC, ABC, D4T, DDI, TDF and AZT (Figure 3), and NNRTIs NPV, DLV and EFV for NNRTIs 

(Figure 4).   
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Figure 7.3.3.1 Multiple regression on the predicted and observed resistance for HIV-1 NRTIs. The predicted re-

sistance is plotted against the observed value as blue dots. The trend line is shown for (A) 3TC, (B) ABC, (C) D4T, 

(D) DDI, and (E) AZT. 
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Figure 7.3.3.2 Multiple regression on the predicted and observed resistance for HIV-1 NNRTIs. The predicted 

resistance is plotted against the observed value as blue dots. The trend line is shown for (A) NPV, (B) DLV and (C) 

EFV. 
 

The regression results gave high R2 values of 0.614-0.975 for the different RT inhibitors, as 

shown in Tables 2 and 3. The resistance to NRTIs was predicted with excellent R2 values of 0.85-0.90 and 

very low standard deviations, while resistance predictions for NRTIs gave R2 values in the larger range of 

0.61-0.98.  Larger standard deviations were obtained for analysis of ABC and DDI, possibly because the 

range of values in the dataset was smaller than for the others. Therefore, graph based encoding had ex-

cellent success in predicting resistance to RT inhibitors.  

Table 7.3.3.1 Multiple regression on predicted relative resistance for NNRTIs 

 DLV EFV NPV 
R2 values, mean 0.904 0.897 0.850 
R2 values, stddev 0.015 0.012 0.015 
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Table 7.3.3.2 Multiple regression on predicted relative resistance for NRTIs 

 AZT 3TC ABC D4T DDI 
R2 values, mean 0.770 0.975 0.614 0.767 0.707 
R2 values, stddev 0.023 0.004 0.253 0.061 0.146 

7.3.4 Classification of Resistance with Support vector machine 

The support vector machine (SVM) was proposed by Vapnik[118], and is widely used as a super-

vised learning classifier. In this experiment, 5-fold cross validation tests were performed by implement-

ing in MATLAB SVM toolbox[148, 149] and the linear kernel was used. The results are shown in Tables 3-

5 for HIV-1 PR inhibitors (PIs), HIV-1 RT inhibitors NRTIs and NNRTIs. This classification shows high accu-

racy, sensitivity and specificity for all inhibitors. For PIs the accuracy values range from a low of 0.93 to a 

high of 0.96, while sensitivity and specificity range from 0.92-0.96 and 0.94-0.98, respectively.  Re-

sistance to NRTIs is classified with even higher accuracies of 0.97-0.99, sensitivities of greater than 0.98 

and specificities of 0.95-0.99, while for NNRTIs the classification performance was superior with all val-

ues of over 0.97 for accuracy, sensitivity and specificity. The excellent performance with the linear SVM 

kernel demonstrates conclusively that the novel encoding using Delaunay triangulation separates the 

resistant and non-resistant data into two distinct categories. 

Table 7.3.4.1 Classification using SVM for Resistance to PIs 

 ATV IDV NFV RTV LPV SQV TPV 
Accuracy 0.955 0.960 0.933 0.946 0.962 0.946 0.961 

Stddev (
2

10× ) 0.400 0.510 0.350 0.580 0.220 0.580 0.290 

Sensitivity 0.943 0.951 0.923 0.945 0.952 0.945 0.957 

Stddev (
2

10× ) 0.600 1.00 0.400 0.910 0.270 0.910 0.410 

Specificity 0.968 0.970 0.943 0.947 0.972 0.947 0.965 

Stddev (
2

10× ) 0.450 0.290 0.820 0.890 0.280 0.890 0.410 
 

Table 7.3.4.2 Classification using SVM for Resistance to NRTIs 

 3TC ABC AZT D4T DDI TDF 
Accuracy 0.987 0.981 0.984 0.992 0.965 0.975 

Stddev (
2

10× ) 0.484 0.234 0.390 0.371 0.289 0.914 

Sensitivity 0.984 0.981 0.984 0.991 0.977 0.979 

Stddev (
2

10× ) 0.613 0.379 0.627 0.417 0.436 1.21 

Specificity 0.991 0.982 0.984 0.993 0.954 0.970 

Stddev (
2

10× ) 0.510 0.397 0.470 0.505 0.625 1.76 
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Table 7.3.4.3 Classification using SVM for Resistance to NNRTIs 

 NPV DLV EFV 
Accuracy 0.982 0.983 0.991 

Stddev (
2

10× ) 0.254 0.473 0.316 

Sensitivity 0.972 0.976 0.986 

Stddev (
2

10× ) 0.490 0.600 0.618 

Specificity 0.992 0.991 0.996 

Stddev (
2

10× ) 0.397 0.787 0.301 

7.3.5 Classification with Artificial Neural Networks 

As in the SVM experiment, the 5-cross validation test was applied to the Artificial Neural Net-

works (ANN) to classify genotype-phenotype data for resistance. Specifically, the three-layer 

feedforward network was used in Matlab[149-151]. The network had one hidden layer of 20 nodes and 

was trained with backpropagation with a maximum of 50 training epochs. The results are shown in Ta-

bles 6-8 for HIV-1 PR inhibitors, and RT inhibitors NRTIs and NNRTIs. The values calculated for accuracy, 

sensitivity and specificity for resistance to PIs have a low of 0.91 and reach 0.97. Improved performance 

was achieved for classifying resistance to RT inhibitors compared with PIs. Results for NRTIs gave values 

of accuracy, sensitivity and specificity of 0.96-0.99, while for NNRTIs all values were greater than 0.98.  

Table 7.3.5.1 Classification using ANN for Resistance to PIs 

 ATV IDV NFV RTV LPV SQV TPV 
Accuracy 0.958 0.944 0.917 0.934 0.963 0.957 0.951 

Stddev (
2

10× ) 0.320 1.25 1.38 1.44 0.641 0. 723 1.27 

Sensitivity 0.959 0.940 0.913 0.935 0.965 0.958 0.953 

Stddev (
2

10× ) 0.460 1.56 2.46 1.13 0.741 0.483 1.89 

Specificity 0.957 0.947 0.922 0.933 0.961 0.956 0.950 

Stddev (
2

10× ) 0.440 0.944 1.05 1.97 0.598 1.06 0. 672 
 

Table 7.3.5.2 Classification using ANN for Resistance to NRTIs 

 3TC ABC AZT D4T DDI TDF 
Accuracy 0.982 0.984 0.987 0.983 0.965 0.970 

Stddev (
2

10× ) 0.469 0.525 0.164 0.452 0.176 1.21 

Sensitivity 0.984 0.978 0.988 0.980 0.973 0.965 

Stddev (
2

10× ) 0.994 0.700 0.428 0.983 0.434 1.67 

Specificity 0.980 0.991 0.986 0.986 0.957 0.975 

Stddev (
2

10× ) 0.835 0.474 0.490 0.687 0.168 1.00 
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Table 7.3.5.3 Classification using ANN for Resistance to NNRTIs 

 NPV DLV EFV 
Accuracy 0.983 0.986 0.986 

Stddev (
2

10× ) 0.524 0.488 0.503 

Sensitivity 0.979 0.985 0.982 

Stddev (
2

10× ) 0.507 1.24 0.955 

Specificity 0.987 0.987 0.990 

Stddev (
2

10× ) 0.554 0.448 0.462 

7.3.6 Classification using sparse dictionary  

The sparse dictionary classifier was also implemented using the 5-fold cross validation tests us-

ing the approach described in[124]. The results are shown in Tables 7-9 for HIV-1 PR inhibitors, HIV-1 RT 

NRTIs and NNRTIs. High values were obtained for accuracy, sensitivity, and specificity. Accuracies ranged 

from 0.95-0.99 for resistance to PIs, 0.82-0.92 for NRTIs and 0.81-0.84 for NNRTIs.  The sensitivities were 

all greater than 0.93 for the calculations on resistance to PIs, and specificities were greater than 0.96. 

Lower values were obtained for calculations on some of the RT inhibitors where values for sensitivity 

ranged from 0.75 to 0.96, while high specificity values from 0.86 to 1.00 was calculated.  These perfor-

mance measures are somewhat poorer than for the standard SVM and ANN classifiers. It is not surpris-

ing; however, that more development may be necessary for applying the new sparse dictionary as a 

classifier since previously it has been employed primarily for image processing. 

Table 7.3.6.1 Classification using sparse dictionary for resistance to PIs 

 ATV NFV RTV IDV LPV SQV TPV 
Accuracy 0.973 0.946 0.962 0.969 0.974 0.970 0.990 

Stddev (
2

10× ) 0.262 0.602 0.269 0.151 0. 292 0.139 0.277 

Sensitivity 0.961 0.927 0.968 0.951 0.957 0.959 0.984 

Stddev (
2

10× ) 0.244 0.635 0.976 0.529 0.494 0.604 0.423 

Specificity 0.986 0.967 0.958 0.989 0.992 0.981 0.995 

Stddev (
2

10× ) 0.661 1.44 1.23 0.297 0.361 0.692 0.199 
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Table 7.3.6.2 Classification using sparse dictionary for resistance to NRTIs 

 3TC ABC AZT D4T DDI TDF 
Accuracy 0.918 0.915 0.932 0.879 0.816 0.852 

Stddev (
2

10× ) 3.44 3.14 4.20 5.06 7.63 7.20 

Sensitivity 0.963 0.872 0.947 0.814 0.801 0.789 

Stddev (
2

10× ) 2.60 5.08 4.73 6.81 6.11 8.45 

Specificity 0.888 0.973 0.933 0.987 0.860 0.972 

Stddev (
2

10× ) 6.78 0.185 8.75 1.02 12.1 4.19 

 

Table 7.3.6.3 Classification using sparse dictionary for resistance to NNRTIs 

 NPV DLV EFV 
Accuracy 0.826 0.844 0.811 

Stddev (
2

10× ) 2.46 2.49 6.43 

Sensitivity 0.761 0.773 0.753 

Stddev (
2

10× ) 3.48 3.82 8.43 

Specificity 0.938 0.973 0.935 

Stddev (
2

10× ) 2.87 2.11 3.55 

7.3.7 Comparison with standard genotype interpretation methods  

Finally, we compared our methods with the standard drug resistance prediction methods HIV-

GRADE, ANRS-rules, Stanford HIVdb, and Rega, which are available at http://www.hiv-

grade.de/cms/grade/, using the same genotype-phenotype datasets described in Methods. The proce-

dure discussed in[124] was used to convert the protein sequences into nucleotide sequences. Other 

methods usually give resistance interpretations in three categories of “resistance, “intermediate” and 

“susceptible”. Since multiple classification is difficult with SVM and ANN, only two classes were consid-

ered for calculating the accuracy. Both "resistant" and "intermediate" are considered as "resistant"; 

while "susceptible" is considered as "non-resistant". The results are shown in Tables 10-12 for HIV-1 PR 

inhibitors, HIV-1 RT NRTIs and NNRTIs. N/A means that no output was obtained from the server for this 

dataset.  
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Table 7.3.7.1 Accuracy (%) compared to other methods for HIV-1 PR inhibitors 

 ATV NFV IDV LPV SQV TPV 
HIV-grade 84.7 81.2 85.1 80.5 80.2 72.8 
ANRS N/A 78.1 85.1 87.0 N/A 59.7 
HIVdb N/A 83.4 N/A 83.9 N/A 76.8 
Rega 84.4 82.2 85.6 84.0 69.3 N/A 
SVM 95.5 96.0 94.6 96.2 94.6 96.1 
ANN 95.8 94.4 93.4 96.3 95.7 95.1 
Sparse dictionary 97.3 94.6 96.9 97.4 97.0 99.0 

 

Table 7.3.7.2 Accuracy (%) compared to other methods for HIV-1 RT NRTIs 

 3TC ABC AZT D4T DDI TDF 
HIV-grade  91.5 89.7 94.6 88.1 89.7 80.7 
ANRS  92.0 83.9 94.4 87.7 73.3 72.7 
HIVdb  94.3 95.0 94.5 86.2 87.6 79.7 
Rega  95.9 86.0 94.0 92.2 88.3 73.8 
SVM 98.7 98.1 98.4 99.2 96.5 97.5 
ANN 98.2 98.4 98.7 98.3 96.5 97.0 
Sparse dictionary  91.8 91.5 93.2 87.9 81.6 85.2 

 

Table 7.3.7.3 Accuracy (%) compared to other methods for NNRTIs 

 NPV DLV EFV 
HIV-grade  98.7 N/A 98.1 
ANRS  94.8 N/A 97.9 
HIVdb  98.4 N/A 98.7 
Rega  98.6 96.8 98.7 
SVM 98.2 98.3 99.1 
ANN 98.3 98.6 98.6 
Sparse dictionary  82.6 84.4 81.1 

 

The accuracies demonstrate that classification with our structural encoding significantly outper-

forms other state of the art methods for predicting resistance to PIs for the three tested classifiers SVM, 

ANN and the sparse dictionary. Accuracies of 93.4-99.0% were obtained with structural encoding com-

pared to 59.7-87.0% for the standard methods. The highest accuracies of greater than 95% were 

achieved with the sparse dictionary method.  The prediction accuracy for resistance to the NRTI class of 

RT inhibitors also showed the advantages of our structural encoding with values of 81.6-99.2% com-

pared with 72.7-95.9% for standard methods. In this case, the SVM and ANN classifiers performed bet-

ter than the new sparse dictionary giving accuracies of at least 97%. For the NNRTIs, the structural en-
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coding with SVM or ANN gave higher accuracies of 98.3-99.1% compared with 94.8-98.7% for standard 

methods. The sparse dictionary, however, showed lower performance with accuracies of 81.1-84.4% for 

NNRTI resistance, indicating some improvements may be needed for the new classifier.  

7.4 Discussion  

The serious problem of drug resistance arising during therapy of HIV-infected individuals can be 

tackled by sequencing the HIV drug targets to identify mutations followed by computational prediction 

of resistance to guide the choice of effective therapy.  Computational predictions of the most effective 

drugs for the mutated HIV provide a major advantage of low cost and speed relative to experimental 

assays for resistance. Most standard prediction methods are knowledge based methods, such as the 

genotype interpretation algorithms. These algorithms either use a set of rules, for example, the Visible 

Genetics/Bayer Diagnostics genotype interpretation rules[167], to generate the susceptibility of the in-

fecting virus for each drug; or apply a score or 'penalty' for each drug such as the Stanford HIV data-

base[168] and mutation rate based score[56]. Also, a combined rule-based and penalty-based method 

has been proposed and applied to both HIV-1 PR and RT inhibitors[57]. Although these methods are fast, 

they suffer from the major disadvantage of relying on specific known mutations strongly associated with 

resistance and cannot identify newly appearing resistance mutations, or assess the effects of many mu-

tations more weakly associated with resistance.  

Various machine learning and statistical methods have been applied to this problem, including 

the widely used classifiers, ANN[72, 73], decision tree[62], and SVM[70].  Statistical methods such as 

cluster analysis, recursive partitioning, and linear discriminant analysis have been evaluated[65], and 

non-parametric methods proposed for high dimensionality data[68, 69]. Most of these methods are 

based on the linear protein sequence and omit potentially valuable information from the three-

dimensional protein structure. Additional information has been introduced in the form of 544 physico-

chemical descriptors for the amino acid mutations leading to correlation coefficients of 0.75-0.94[162]. 
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Other groups have included structural features such as PR-drug contacts in the binding site with majority 

voting 18. In another example, Delaunay triangulation of RT and PR structures was used as input to a 

four-body statistical potential to predict resistance to inhibitors. The four-body statistical potential was 

derived from 1375 non-redundant structures in the PDB to assess protein structural quality. This proce-

dure gave mean accuracies of 0.68-0.83 for PIs, 0.70-0.89 for NRTIs and 0.75-0.82 for NNRTIs[79]. These 

accuracies are significantly lower than we obtain with a single structure vector (Tables 13-15). Our pro-

cedure uses Delaunay triangulation to directly encode the structure and sequence for machine learning 

without the extra step of calculating a potential.  Our direct encoding is likely responsible for the higher 

accuracy in our results. 

Another energy based approach uses molecular mechanics calculations on the PR-drug structure 

have been used to predict resistance of mutants, and high correlation (R2 of 0.76-0.85) was reported 

between calculated value and IC50 from the experimental assay51.  However, these calculations must be 

performed for each individual mutant-drug combination and will be slow for assessing large numbers of 

mutants for resistance.  

We have developed a simple graph representation of protein structure for fast classification. 

The protein structure is a three-dimensional object that has many physical and chemical factors poten-

tially effecting stability and activity. Previously, we showed that Delaunay triangulation was the best of 

several graph-based encodings of protein structure and sequence37. The graph-based encoding algo-

rithm condenses a complicated three-dimensional object, a protein structure, into a relatively small 

hash function with 210 unique values per sequence and structure. One critical outcome is that the 

graph-based encoding results in a linearly separable data set that can be used readily by several differ-

ent machine learning algorithms. Similarly, the encoding is sufficiently linear that straightforward multi-

ple linear regression can be performed on the training data. The hash value maintains enough infor-

mation about the complicated object to provide useful information for machine learning and regression. 
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This unified sequence-structure encoding gave high accuracy in initial tests on four PRIs[124]. 

Here, we demonstrate successful application of the structure vector in multiple regression analysis and 

classification on resistance data for seven inhibitors of HIV PR and nine inhibitors of RT. The 5-fold vali-

dated regression analysis gave excellent correlation between predicted and observed resistance with 

excellent R2 values of 0.58-0.78 for PIs, 0.61-0.98 for NRTIs and 0.85-0.90 for NNRTIs. Classification with 

SVM, ANN or a new sparse dictionary method gave high accuracies for predicting the resistance for PR 

and RT inhibitors. The structure vector encoding had superior accuracy to predictions on the same se-

quences using standard interpretation algorithms. The sparse dictionary classifier was the best of tested 

classifiers for prediction of resistance to PIs, whereas SVM classification gave the best performance on 

resistance prediction for RT inhibitors. This structure vector encoding of genotype data has the ad-

vantage of using a single 210-dimensional vector for each protein target. The algorithm has one slow 

step for preparing the encoding from a single protein structure that can be applied to all genotypes in a 

fast calculation, in contrast to molecular mechanics calculations that must be set up in a non-trivial 

manner for each individual protein sequence. The entire protein sequence is combined with the struc-

ture vector, so there is the potential for accommodating new mutations or combinations of mutations 

with weak but concerted effects on resistance. The procedure can be extended easily in future calcula-

tions for resistant mutants with insertions in the protein sequence, which occur commonly in RT[156]. 

The new sparse dictionary classification approach can be extended to multiple classifiers by using more 

than two dictionaries, which is a significant advantage over the tested standard SVM or ANN classifiers, 

and may permit accurate predictions for different levels of resistance.  

7.5 Conclusions  

The simple unified encoding of structural information with genotype gives high accuracy for 

prediction of resistance to HIV PR and RT inhibitors as well as excellent correlation coefficients in regres-

sion analysis. The improvement over algorithms using only linear sequence information suggests the 
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importance of local interactions between mutated residues in the protein structure, which is consistent 

with the correlated local changes observed in the crystal structures of a highly resistant PR mutant with 

20 substitutions[169]. Graph-based encoding of sequence and structure holds promise for fast and accu-

rate predictions of resistance from sequence in order to guide the choice of effective drugs for treat-

ment of HIV infections. In future, this approach can be expanded to predict resistance for other drugs 

and more diverse types of data.  

7.6 Materials and Methods 

7.6.1 Data sets and data preparation 

All the datasets were retrieved from Genotype-Phenotype Data on the Stanford HIV drug re-

sistance database[106] (http://hivdb.stanford.edu/cgi-bin/GenoPhenoDS.cgi). In this experiment, the 

proposed algorithm was tested on two different systems: HIV-1 PR and HIV-1 RT resistance data. For 

HIV-1 PR, eight PR inhibitors atazanavir (ATV), nelfinavir (NFV), ritonavir (RTV), IDV, lopinavir (LPV), 

tipranvir (TPV) and SQV were tested. While for the study of HIV RT inhibitor resistance, NNRTIs NPV, 

delaviridine (DLV), efavirenz (EFV), and NRTIs lamivudine (3TC), abacavir (ABC), zidovudine (AZT), 

stavudine (D4T), didanosine (DDI) and tenofovir (TDF) were tested.  

All positive and negative instances of a given mutant were removed from either training or test-

ing dataset before the cross-validation. This may avoid the potential problem of having negative in-

stances associated with a positive test item or positive instances associated with a negative test item, 

and thus assure the training accuracy.  

7.6.2 Pre-processing of the datasets 

In order to unify the data in the original datasets, those sequences with an insertion, deletion, or 

containing a stop codon relative to the consensus have been removed so that the data represent pro-

teins of identical size.  
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Many of the sequence records in the dataset have multiple residues at the same sites yet share 

the same drug-resistance value, which may be due to sequencing limitations or to the existence of mul-

tiple viral strains in the same isolate. In order to represent a single amino acids sequence for each mu-

tant protein, we need to expand the data to multiple sequences with single amino acids at each loca-

tion. For instance, in one 99-amino acid mutant of HIV PR, at one site there are two different types of 

amino-acids, and another site has three. In this case, this record must be expanded to a total of 

)32(6 ×=  different sequences, each of which has only one amino-acid for each of its 99 residues, sharing 

the same drug resistance. We designed a fast method to perform this expansion as detailed in[124], 

which significantly enriches the test data. 

The results of the expansion for each of the HIV-1 PR inhibitors were: a total of 16846 sequences 

were obtained from 1622 isolates with assays for IDV resistance; a total of 16269 sequences from 1322 

isolates for LPV; a total of 10228 sequences from 744 isolates for TPV; a total of 17118 sequences from 

1640 isolates for SQV; a total of 12084 sequences from 1012 isolates for ATV; a total of 17545 sequences 

from 1674 isolates for NFV; and a total of 16652 sequences from 1589 isolates for RTV. 

For each of the HIV-1 RT inhibitors the expansion resulted in: a total of 11367 sequences were 

obtained from 746 isolates with assays for NPV resistance; a total of 11299 sequences from 732 isolates 

for DLV; a total of 11354 sequences from 734 isolates for EFV; a total of 4850 sequences from 633 iso-

lates for 3TC; a total of 4846 sequences from 628 isolates for ABC; a total of 4847 sequences from 630 

isolates for AZT; a total of 4845 sequences from 630 isolates for D4T; a total of 4849 sequences from 632 

isolates for DDI; and a total of 2004 sequences from 353 isolates for inhibitor TDF. 

7.6.3 Cutoffs for resistance/susceptibility for each drug 

For the HIV-1 PR inhibitors: ATV, IDV, NFV, and RTV, the genotype sequences giving the relative 

resistance fold < 3.0 were classified as non-resistant (susceptible), denoted as 0; while those with the 

relative resistance  fold ≥ 3.0 were classified as resistant, denoted as 1[63]. 
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With the HIV-1 RT inhibitors: for ABC and TPV, those mutants with the relative resistant fold < 

2.0 were classified as non-resistant, denoted as 0; while those with the relative resistant fold ≥ 2.0 were 

classified as resistant, denoted as 1; for 3TC, AZT, NPV, DLV, EFV, SQV, IDV and LPV those mutants with 

the relative resistant fold < 3.0 were classified as non-resistant, denoted as 0; while those with the rela-

tive resistant fold ≥ 3.0 were classified as resistant, denoted as 1; for D4T, DDI and TDF, those mutants 

with the relative resistant fold < 1.5 were classified as non-resistant, denoted as 0; while those with the 

relative resistant fold ≥ 1.5 were classified as resistant, denoted as 1[63].  

7.6.4 Encoding structure and sequence with Delaunay triangulation  

The sequence and structure of the protein were represented using a graph-based encoding as 

described in[124]. Delaunay triangulation was used to define a graph which spanned the protein struc-

ture and defined adjacent pairs of amino acid residues. Adjacent pairs of amino acids were summarized 

into a vector of the 210 unique kinds of amino acid pairs by calculating the distance for each adjacent 

pair in the structure and tabulating by the types of amino acids in that adjacent pair. Only the sequences 

of the mutated proteins are needed and only one protein structure is necessary. As a result, all mutants 

are represented as vectors of the same dimensionality, which is a desired property for most of the pat-

tern recognition algorithms. The structures 3OXC[146] for HIV-1 PR, and 2WOM[166] for HIV-1 RT (from 

www.pdb.org) were used as templates for Delaunay triangulation.  

7.6.5 k-fold validation 

In order to fully use all the data, a k-fold cross-validation was performed in all the experiments 

for all the drugs. Specifically, we randomly choose (k-1)/k of all the sequences (some are drug resistant, 

while others are non-drug resistant) for training the classifier and the remaining 1/k data are used for 

testing. These tests used k=5. Independent randomly selected k-folds were chosen throughout the study 

to avoid bias in the results. The apparent polymorphism in the original sequence data requires extra 
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care when generating k-fold data sets for testing or training. When a sequence was removed from a k-

fold in generating a testing or training dataset, all derived instances of that sequence were removed as 

well. This ensures that the individual k-fold datasets are truly independent from each other and thus 

ensures that the estimated accuracies are meaningful.  

7.6.6 Regression analysis for drug resistance prediction 

The Genotype-Phenotype Datasets provide a drug resistance value, with respect to a certain 

type of drug, with each genotype. The mutations relative to a standard sequence are denoted as 

210
21 ... ℜ∈iN x;x,x,x  where N  is the total number of mutations and R210 is the structure vector. Also the 

corresponding drug resistance values are denoted as the real numbers ℜ∈y;y,,y,y N...21  including 

0 for the resistance value of the wild type virus. We then seek a linear model between the ix ’s and iy ’s 

by minimizing the cost function E : 

∑ −⋅−
N

=i

ii b)xA(y=E
1

2
:                  (1) 

with respect to the 210 dimensional vector A and scalar b. 

Furthermore, in order to better utilize the available data set, we performed a k -fold cross-

validation (in this work, k=5). Specifically, the training set of size N  is randomly divided into k  groups. 

Among them, 1−k  groups are utilized for constructing the linear model as in Equation (1). Then, the 

linear model is used to predict the drug resistance for the remaining group with kN / mutations. The 

predicted resistances are compared with the measured ones and the R2 values are recorded. Finally, the 

average and standard deviation of the k  R2 values are computed. 
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7.6.7 Sparse dictionary classification 

In this experiment, we applied our newly proposed method described in[124] on both HIV-1 PR 

and HIV-1 RT data sets. In this case, the sequences of the mutants are considered as the group of sig-

nals, and given these signals, we would like to construct a dictionary to represent them sparsely.  

The construction of a dictionary can be considered as finding a suitable over-complete basis 

(frame), in which the signals of interest would be represented with far fewer non-zero coefficients, than 

in an arbitrary fixed basis such as a Fourier basis. The newly constructed basis is also called a dictionary. 

This dictionary can be used to assess how well the new signal fits the model represented by the diction-

ary, and therefore, it can be used as a new classification method. 

In our experiment, we assume there are two groups of signals: one for drug resistant mutants, 

while the other group is non-drug resistant mutants. We construct two dictionaries which could be con-

sidered as the models for the resistant and non-resistant groups, respectively. Then, given a new signal 

(mutant, in our case), both dictionaries are used to represent this signal. By calculating and comparing 

the reconstruction error, the dictionary with the smaller error indicates that the signal belongs to this 

category. Theoretically, more than two groups of signals could be treated by defining more than two 

dictionaries, and such a procedure could be used as a multi-group classification method. The two dic-

tionaries for each set of drug resistance data were constructed and the classification performed as de-

scribed in[124].   
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AIM 3: Retrieving essential features which might determine whether a mutant is resistant or not to 

certain drugs 

8 IDENTIFYING ESSENTIAL FEATURES FOR THE REPRESENTATIVE MUTANTS FROM DRUG RESISTANT 

DATA 

8.1 ABSTRACT  

Drug resistance is one of the most important reasons causing the failure of anti-AIDS treatment. 

Since the first case of AIDS was found in US in early 1980s, it has been almost three decades now and 

many scientists and researchers are working on discover its mechanisms. Currently, X-ray crystallog-

raphy and NMR are two most widely used methods for biologists/chemists to study the structures of the 

protein-inhibitor complexes. However, due to the HIV virus’ rapid replication rate and the lack of proof-

reading mechanisms, and moreover, the mutations could be accumulated, there are a large number of 

different kinds of mutants to study on. Furthermore, since the minimal wet experiment are time and 

labor consuming, it’s necessary to discover a better method to guide biologist/chemists choosing the 

most potential mutants to research on. In order to solve this problem, we have developed a new algo-

rithm to reveal the most potential mutants from the whole drug resistant mutant database based on our 

newly proposed unified protein sequence and 3D structure encoding method. This algorithm was tested 

on genotype-resistance data for mutants of HIV protease and reverse transcriptase and successfully 

chooses around 200 mutants out of 10K from the whole database. 

8.2 Introduction 

AIDS (Acquired Immunodeficiency Syndrome) is one of the most severe diseases all over the 

world and approximately 35.5 million people are living with it by the year 2012[170]. It has been almost 

three decades since the first case of AIDS was found in US and it’s known that the cause of AIDS is HIV 



81 

(Human Immunodeficiency Virus)[171]. With thirty years’ study, the biological mechanism of the disease 

is better understood, and more efficient treatment could be offered during the anti-AIDS therapy.  

Currently, total of 26 licensed drugs are used in anti-AIDS therapy[9]. All these drugs target to 

different steps during the HIV life cycle, including entry, reverse transcription, integration and matura-

tion. During the life cycle, HIV protease is the enzyme that is essential for the production of infectious 

virus[172]. Its inhibitors help blocking the proteolytic activity of the protease, preventing the maturation 

of the virus[173, 174]. HIV RT functions as converting the viral RNA genome into DNA during the HIV life 

cycle. It was the first drug target, and the nucleoside analog zidovudine (AZT) was the first FDA approved 

anti-AIDS drug [175, 176]. During the anti-AIDS treatment, which is often referred as highly active an-

tiretroviral therapy (HAART), three or more antiretroviral drugs choosing from different categories are 

given to patients during the treatment. The study shows that such treatment could extend the lifespan 

of the patients[177]. 

However, since HIV is a member of retrovirus family[178], it has all the characteristics of the ret-

roviruses, and RNA carries its genomic information[178, 179]. Due to the lack of  proofreading by re-

verse transcriptase[33] and high replication rate as many as 109 daily[35], drug resistance is one of the 

most severe problems during the treatment of the AIDS[120, 180]. Moreover, during the anti-viral 

treatment, drug pressure could cause the selection of the drug resistant strains, and replacement of the 

wild-type virus[181, 182]. This might cause the failure of the treatment. In this case, understanding the 

mechanism of the drug resistant is important and could help improve the current anti-AIDS therapy. 

Nowadays, several possible mechanisms are studied to explain the drug resistant [183-188]. 

Most commonly used methods to study the mechanisms are X-ray crystallography and NMR. After ob-

taining the 3D structure of the protein, scientists study and compare the mutant structure with the wild 

type to reveal the possible drug resistant mechanisms. However, since HIV has a high mutation rate at 

about 10-4 to 10-5 mutations per nucleotide and cycle of replication[189] and the polymorphous gene of 
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HIV protease and reverse transcriptase, a huge number of mutants are exists. Take HIV protease as an 

example, even without the inhibitors, mutations of more than thirty different residues associated with 

protease inhibitors has been reported[120]. Moreover, mutations could be accumulated[190, 191]: sin-

gle site mutations could combine together to contribute to more drug resistant. For instances, PR20 is 

the mutant with 20 substitutions of Q7K, L10F, I13V, I15V, D30N, V32I, L33F, E35D, M36I, S37N, I47V, 

I54L, Q58E, I62V, L63P, A71V, I84V, N88D, L89T and L90M exhibits. It is resistant 1000 folds more than 

wild type protease to darunavir (DRV) and saquinavir (SQV)[192]. Therefore, a natural request would be: 

having all those mutants, which ones are the most meaningful mutants for biologists/chemists to study 

with? By answering this question, it could save both time and money, and faster the process of the study 

of the drug resistant mechanism. 

Mean shift clustering is first introduced in 1975 by Fukunaga and Hostetler[93] in the purpose of 

seeking the mode of a density function in the given sample set. Fukunaga and Hostetler[93] also sug-

gested that mean shift clustering is an instance of gradient ascent by using decreasing distance func-

tions, which often referred as kernel, from a given point to a point in the sample set. This algorithm 

started widely used until 1995 when Cheng[94] developing a more generalized formulation of the algo-

rithm. By clarifying the relationship between mean shift and the optimization, the algorithm could po-

tentially be applied on clustering and global optimization problems. Applications of the mean shift algo-

rithm range from image/video segmentation, image representation/retrieval, discontinuity-preserving 

smoothing[95, 96], higher level tasks like appearance-based clustering[97, 98], tracking including blob 

tracking[99] and face tracking[100], shape detection and recognition[101], so on and so forth. After-

wards, applications extend to other fields like biology. These applications include analysis of structural 

variation in genome[102], DNA microarray analysis[103], time-warped gene expression analysis[104], 

with many other implementations. 
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In this paper, we proposed a new algorithm based on the non-parametric iterative mean shift 

and our recently proposed protein encoding method to extract the most representative drug resistant 

mutants from the database.  

8.3 Experiments and results 

Mean shift clustering, multiple regression and quantile regression were performed on the data 

for both HIV-1 protease and reverse transcriptase whose sequences and structures were encoded by 

Delaunay triangulation.  

8.3.1 Mean shift clustering on HIV protease inhibitor resistance 

After each of the mutated sequences was represented by a 210-dimensional vector, we per-

formed the mean shift clustering on the drug resistance data to select the most representative mutants. 

The result shows that the larger the bandwidths set, the smaller number of mutants is selected (Figure 

23). 
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(G) 

Figure 8.3.1.1 The relationship between the bandwidths and the number of selected mutants. The bandwidth is 

plotted against the number of selected mutants. The trend line is shown in blue. Plots show regression for drug 

resistance: (A) ATV, (B) NFV, (C) RTV, (D) IDV, (E) LPV, (F) TPV, and (G) SQV. 

 

8.3.2 Mean shift clustering on HIV reverse transcriptase inhibitors resistance 

Similarly, mean shift clustering was performed on the drug resistance data for HIV-1 reverse 

transcriptase inhibitors. The bandwidth and the selected mutants numbers are compared to the reverse 

transcriptase inhibitors including NRTIs 3TC, ABC, D4T, DDI, TDF and AZT (Figure 24), and NPV, DLV and 

EFV for NNRTIs (Figure 25).   
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Figure 8.3.2.1 The relationship between the bandwidths and the number of selected mutants. The bandwidth is 

plotted against the number of selected mutants. The trend line is shown in blue. Plots show regression for drug 

resistance: (A) 3TC, (B) ABC, (C) D4T, (D) DDI, (E) TDF and (F) AZT. 
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Figure 8.3.2.2 The relationship between the bandwidths and the number of selected mutants. The bandwidth is 

plotted against the number of selected mutants. The trend line is shown in blue. Plots show regression for drug 

resistance: (A) NPV, (B) DLV and (C) EFV. 
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8.3.3 Multiple regression on HIV protease inhibitor resistance 

Afterwards, a multiple regression was applied to the selected mutants to evaluate the selected 

results. The R2 values for relative resistance were plotted against the number of selected mutants as 

shown in (Figure 26) for the PR inhibitors ATV, NFV, RTV, IDV, LPV, TPV and SQV.  
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(G) 

Figure 8.3.3.1 The relationship between the multiple regression results and the number of selected mutants. The 

R
2
 is plotted against the number of selected mutants. The trend line is shown in blue. Plots show regression for 

drug resistance: (A) ATV, (B) NFV, (C) RTV, (D) IDV, (E) LPV, (F) TPV, and (G) SQV. 

8.3.4 Multiple regression on HIV reverse transcriptase inhibitor resistance 
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NPV, DLV and EFV for NNRTIs (Figure 28). 
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Figure 8.3.4.1 The relationship between the multiple regression results and the number of selected mutants. The 

R
2
 is plotted against the number of selected mutants. The trend line is shown in blue. Plots show regression for 

drug resistance: (A) 3TC, (B) ABC, (C) D4T, (D) DDI, (E) TDF and (F) AZT. 
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Figure 8.3.4.2 The relationship between the multiple regression results and the number of selected mutants. The 

R
2
 is plotted against the number of selected mutants. The trend line is shown in blue. Plots show regression for 

drug resistance: (A) NPV, (B) DLV and (C) EFV. 
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8.3.5 Bandwidth selection and multiple regression on HIV-1 PR inhibitor resistance 

Based on the above experiments, the relationships between the bandwidth, the number of se-

lected mutants and the multiple regression results are shown. Following experiments were performed 

to find the balance of the number of selected mutants and the R2 results. The results show that for both 

HIV-1 PR and HIV-1 RT, about 200~300 mutants are needed to represent all the drug resistance data 

(Table 25~27). 

Table 8.3.5.1 The bandwidth, number of selected mutants and R2 on HIV-1 PR 

 Bandwidth Number of selected mutants R2 
ATV 22 344 0.7284 
NFV 23.75 288 0.6993 
RTV 23.75 270 0.7922 
IDV 23 321 0.7791 
LPV 23.50 284 0.7623 
TPV 19 412 0.7114 
SQV 23.75 278 0.7391 

 

Table 8.3.5.2 The bandwidth, number of selected mutants and R2 on HIV-1 RT NRTIs 

 Bandwidth Number of selected mutants R2 
3TC 13.75 26 0.8317 
ABC 7 255 0.7507 
D4T 6.75 266 0.6534 
DDI 5.75 343 0.6651 
TDF 4.75 286 0.6914 
AZT 6.75 254 0.7809 

 

Table 8.3.5.3 The bandwidth, number of selected mutants and R2 on HIV-1 RT NNRTIs 

 Bandwidth Number of selected mutants R2 
NPV 6.75 307 0.6693 
DLV 6.75 298 0.7276 
EFV 7.75 242 0.6733 

8.3.6 Quantile information analysis on HIV-1 PR inhibitor resistance 

In order to further analysis the mutants selected by mean shift, all the drug resistant mutants 

were grouped and separated into 10 bins based on their drug resistance value. Both the total number of 

mutants and the selected number of mutants are counted and recorded in each corresponding table. 
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For ATV, their resistant values are ranging from 0 to 700. Therefore, those mutants with re-

sistant value between 0 and 70 were put into bin I, those with resistant value between above 70 and 

below 140 were put into bin II, and so on. 

For NFV, their resistant values are ranging from 0 to 600. Therefore, those mutants with re-

sistant value between 0 and 60 were put into bin I, those with resistant value between above 60 and 

below 120 were put into bin II, and so on. 

For RTV, their resistant values are ranging from 0 to 800. Therefore, those mutants with re-

sistant value between 0 and 80 were put into bin I, those with resistant value between above 80 and 

below 160 were put into bin II, and so on. 

For IDV, their resistant values are ranging from 0 to 500. Therefore, those mutants with resistant 

value between 0 and 50 were put into bin I, those with resistant value between above 50 and below 100 

were put into bin II, and so on. 

For LPV, their resistant values are ranging from 0 to 500. Therefore, those mutants with re-

sistant value between 0 and 50 were put into bin I, those with resistant value between above 50 and 

below 100 were put into bin II, and so on. 

For TPV, their resistant values are ranging from 0 to 200. Therefore, those mutants with re-

sistant value between 0 and 20 were put into bin I, those with resistant value between above 20 and 

below 40 were put into bin II, and so on. 

For SQV, their resistant values are ranging from 0 to 1000. Therefore, those mutants with re-

sistant value between 0 and 100 were put into bin I, those with resistant value between above 100 and 

below 200 were put into bin II, and so on.  

The table 4-10 shows the total number of mutants in the bin before and after selection. 
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Table 8.3.6.1 Comparison of number of selected ATV mutants in each bin 

Bin Number of total mutants Number of selected mutants 
I 9454 189 
II 1179 36 
III 844 18 
IV 200 9 
V 39 10 
VI 3 1 
VII 34 3 
VIII 129 1 
IX 0 0 
X 202 24 

 

Table 8.3.6.2 Comparison of number of selected NFV mutants in each bin 

Bin Number of total mutants Number of selected mutants 
I 13711 183 
II 2126 55 
III 540 22 
IV 357 7 
V 21 4 
VI 256 1 
VII 2 0 
VIII 0 0 
IX 9 1 
X 523 15 

 

Table 8.3.6.3 Comparison of number of selected RTV mutants in each bin 

Bin Number of total mutants Number of selected mutants 
I 12220 151 
II 1589 34 
III 918 11 
IV 300 6 
V 304 7 
VI 0 0 
VII 22 2 
VIII 0 0 
IX 0 0 
X 1299 59 
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Table 8.3.6.4 Comparison of number of selected IDV mutants in each bin 

Bin Number of total mutants Number of selected mutants 
I 14885 246 
II 1101 35 
III 511 10 
IV 216 14 
V 14 4 
VI 0 0 
VII 8 1 
VIII 12 1 
IX 0 0 
X 99 10 

 

Table 8.3.6.5 Comparison of number of selected LPV mutants in each bin 

Bin Number of total mutants Number of selected mutants 
I 11630 152 
II 2087 62 
III 1393 31 
IV 200 13 
V 333 8 
VI 26 1 
VII 153 3 
VIII 3 2 
IX 0 0 
X 444 12 

 

Table 8.3.6.6 Comparison of number of selected TPV mutants in each bin 

Bin Number of total mutants Number of selected mutants 
I 9921 366 
II 87 16 
III 0 0 
IV 0 0 
V 1 1 
VI 0 0 
VII 0 0 
VIII 0 0 
IX 0 0 
X 219 29 
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Table 8.3.6.7 Comparison of number of selected SQV mutants in each bin 

Bin Number of total mutants Number of selected mutants 
I 14746 223 
II 910          19 
III 107           0 
IV 28           3 
V 94          2 
VI 132 2 
VII 0 0 
VIII 1 1 
IX 0 0 
X 1100 28 

8.3.7 Quantile information analysis on HIV-1 reverse transcriptase inhibitor resistance (NRTIs) 

In order to further analysis the mutants selected by mean shift, all the drug resistant mutants 

were grouped and separated into 10 bins based on their drug resistance value. Both the total number of 

mutants and the selected number of mutants are counted and recorded in each corresponding table. 

For 3TC, their resistant values are ranging from 0 to 200. Therefore, those mutants with re-

sistant value between 0 and 20 were put into bin I, those with resistant value between above 20 and 

below 40 were put into bin II, and so on. 

For ABC, their resistant values are ranging from 0 to 170. Therefore, those mutants with re-

sistant value between 0 and 17 were put into bin I, those with resistant value between above 17 and 

below 34 were put into bin II, and so on. 

For D4T, their resistant values are ranging from 0 to 26. Therefore, those mutants with resistant 

value between 0 and 2.6 were put into bin I, those with resistant value between above 2.6 and below 

5.2 were put into bin II, and so on. 

For DDI, their resistant values are ranging from 0 to 28. Therefore, those mutants with resistant 

value between 0 and 2.8 were put into bin I, those with resistant value between above 2.8 and below 

5.6 were put into bin II, and so on. 
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For TDF, their resistant values are ranging from 0 to 500. Therefore, those mutants with re-

sistant value between 0 and 50 were put into bin I, those with resistant value between above 50 and 

below 100 were put into bin II, and so on. 

For AZT, their resistant values are ranging from 0 to 400. Therefore, those mutants with re-

sistant value between 0 and 40 were put into bin I, those with resistant value between above 40 and 

below 80 were put into bin II, and so on. 

The table 11-16 shows the total number of mutants in the bin before and after selection. 

Table 8.3.7.1 Comparison of number of selected 3TC mutants in each bin 

Bin Number of total mutants Number of selected mutants 
I 2711 11 
II 14 0 
III 1 0 
IV 1 0 
V 73 0 
VI 57 0 
VII 54 1 
VIII 45 0 
IX 88 0 
X 1806 14 

 

Table 8.3.7.2 Comparison of number of selected ABC mutants in each bin 

Bin Number of total mutants Number of selected mutants 
I 4780 241 
II 65 13 
III 0 0 
IV 0 0 
V 0 0 
VI 0 0 
VII 0 0 
VIII 0 0 
IX 0 0 
X 1 1 
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Table 8.3.7.3 Comparison of number of selected D4T mutants in each bin 

Bin Number of total mutants Number of selected mutants 
I 3791 188 
II 948 51 
III 23 10 
IV 14 7 
V 37 4 
VI 17 2 
VII 1 1 
VIII 4 2 
IX 8 1 
X 2 0 

 

Table 8.3.7.4 Comparison of number of selected DDI mutants in each bin 

Bin Number of total mutants Number of selected mutants 
I 4603 314 
II 194 17 
III 25 5 
IV 4 1 
V 7 2 
VI 9 2 
VII 2 0 
VIII 1 0 
IX 3 1 
X 1 1 

 

Table 8.3.7.5 Comparison of number of selected TDF mutants in each bin 

Bin Number of total mutants Number of selected mutants 
I 2001 265 
II 1 1 
III 0 0 
IV 0 0 
V 0 0 
VI 0 0 
VII 0 0 
VIII 0 0 
IX 0 0 
X 2 1 
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Table 8.3.7.6 Comparison of number of selected AZT mutants in each bin 

Bin Number of total mutants Number of selected mutants 
I 4079 142 
II 94 19 
III 253 13 
IV 27 4 
V 7 3 
VI 30 5 
VII 19 5 
VIII 164 3 
IX 6 0 
X 168 35 

8.3.8 Quantile information analysis on HIV-1 reverse transcriptase inhibitor resistance (NNRTIs) 

In order to further analysis the mutants selected by mean shift, all the drug resistant mutants 

were grouped and separated into 10 bins based on their drug resistance value. Both the total number of 

mutants and the selected number of mutants are counted and recorded in each corresponding table. 

For NPV, their resistant values are ranging from 0 to 400. Therefore, those mutants with re-

sistant value between 0 and 40 were put into bin I, those with resistant value between above 40 and 

below 80 were put into bin II, and so on. 

For DLV, their resistant values are ranging from 0 to 200. Therefore, those mutants with re-

sistant value between 0 and 20 were put into bin I, those with resistant value between above 20 and 

below 40 were put into bin II, and so on. 

For EFV, their resistant values are ranging from 0 to 400. Therefore, those mutants with re-

sistant value between 0 and 40 were put into bin I, those with resistant value between above 40 and 

below 80 were put into bin II, and so on. 

The table 17-19 shows the total number of mutants in the bin before and after selection. 
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Table 8.3.8.1 Comparison of number of selected NPV mutants in each bin 

Bin Number of total mutants Number of selected mutants 
I 9898 157 
II 157 17 
III 114 9 
IV 56 7 
V 94 9 
VI 169 7 
VII 1 1 
VIII 293 30 
IX 1 0 
X 584 66 

 

Table 8.3.8.2 Comparison of number of selected DLV mutants in each bin 

Bin Number of total mutants Number of selected mutants 
I 9476 198 
II 241 24 
III 587 12 
IV 35 7 
V 155 4 
VI 20 3 
VII 0 0 
VIII 73 3 
IX 9 3 
X 703 43 

 

Table 8.3.8.3 Comparison of number of selected EFV mutants in each bin 

Bin Number of total mutants Number of selected mutants 
I 9907 172 
II 116 14 
III 166 10 
IV 24 1 
V 42 2 
VI 132 2 
VII 26 4 
VIII 48 6 
IX 2 1 
X 891 32 

8.4 DISCUSSION 

The serious problem of drug resistance arising during therapy of HIV-infected individuals can 

caused the failure of the treatment. Many scientists are working on revealing the drug resistant mecha-
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nism using X-ray crystallography or NMR. However, since there are a large number of mutants, it is diffi-

cult to choose which mutant to research on. 

In this experiment, we have developed new selection algorithm based on a simple graph repre-

sentation of protein structure to solve this problem. The protein structure is 3-D and could be efficiently 

represented by Delaunay triangulation37. Based on this encoding method, a mean shift was applied to 

select the most representative mutants. Multiple linear regression was performed to evaluate the selec-

tion results.  

This selection algorithm works well on selecting drug resistant mutants from both HIV protease 

and reverse transcriptase inhibitors drug resistant mutants. Among all the mutants, around 200 most 

potential mutants were selected. The multiple linear regression was applied on these selected mutants’ 

drug resistant value, and most of the R2 were above 0.70.  
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9 Future work and summaries 

9.1 Future work 

This research work presented the study of two interesting questions: first, is there a possible 

way to predict drug resistance directly from protein sequence; second, are there more important drug 

resistant mutants among all the datasets? In order to solve these two questions, Delaunay triangulation, 

sparse representation as well as mean shift were applied and the according results were demonstrated 

in the above sections. In the future, more possible directions could be further studied to continue this 

research work. More details would be discussed in the following. 

Speed Up Of Sparse Representation Based Classifier: In this study, the sparse dictionary algo-

rithm was coded using Matlab. As we already known that, Matlab has the strength of visualization and 

matrix calculation. However, it has some limitation on processing speed improvement. As we’ve already 

discussed in Chapter 6, the running time of sparse dictionary is about 300 seconds, comparing to around 

20 seconds for those of SVM linear and ANN. In order to speed up the algorithms, C++ could be used. 

Moreover, parallel computing methods could also be included to further speed up the algorithm, CUDA 

or OpenMP for instances.  

Multi-Class Classifier: Based on the concepts of the sparse dictionary based classifier, multi-class 

classifier could be further developed. In order to solving this problem, more dictionaries could be 

trained based on the training data. After obtaining these dictionaries, given one testing data, the error 

could be calculated for each dictionary. The testing data might belong to the dictionary with the smallest 

the error.   

Sparse based mutant selection algorithm: When representing the encoded mutants in sparse 

basis, only very few items in this basis are non-zero. For those non-zero items in the basis, we could con-

sider them are important features of the encoded mutants.  If we further calculate the most frequent 
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appeared items in the basis, the items with the most frequency would be the most important mutants. 

Therefore, if we trace back to the original mutants, those might be the potential ones which could be 

further research on.  

9.2 Summaries 

Drug resistance is one of the most important reasons causing the failure of anti-AIDS treatment. 

Normally during the treatment, the patients are tested to choose the more efficient combination of 

drugs. However, such experiments need two weeks before the results could be obtained. In order to 

shorten patients’ waiting time and money, computational methods could be used to predict the drug 

resistance to certain inhibitors.  

In this work, we first proposed an effective triangulation-based encoding method. By applying 

this method, three-dimensional protein structures could be reduced to small constant-sized representa-

tions which are suitable for most machine learning algorithms.  When using this method to encode pro-

tein structures, the information of the kinds of adjacent residues in the triangulation is sufficient for ac-

curate classification and regression analysis. This encoding method was applied to predict of resistance 

to HIV PR and RT inhibitors and gave high accuracy. Moreover, the results of correlation coefficients in 

regression analysis are also impressive.  

Following that, incorporated with the triangulation-based encoding method, we proposed and 

evaluated a new classification method to predict the drug resistance for both HIV-1 PR and HIV-1 RT an-

tiviral inhibitors from genotype data. This classification algorithm is based on the sparse representation 

theory. In this algorithm, we learn the characteristics of resistant and non-resistant mutants of the HIV-1 

protease by constructing two over-complete dictionaries. Then, given the sequence of a new mutant, 

we measure how accurately this new sequence can be represented by the two dictionaries. The catego-

ry of the dictionary with smaller error is assigned to the new mutant. This classification method was 

tested on four HIV PR inhibitors and three HIV RT inhibitors and produced high accuracy. According to 
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the results, this new method is able to predict drug resistance with high accuracy and can distinguish 

between drug resistant and non-resistant sequences significantly better than the other methods.  

After that, among all the drug resistant mutants, mean shift algorithm was applied to retrieve 

most important drug resistant mutants. The result successfully selected around 300 mutants out of 10k. 

Furthermore, when quantify all the mutants, for the most drug resistant group, around 30 mutants were 

selected. These most important drug resistant mutants are more interesting for biologists/chemists to 

further research on.  

In this work, we presented some evidence obtained by our experimental study. This may indi-

cate that by using more efficient protein encoding algorithm and more accurate predicting methods, 

drug resistance could be determined directly from protein sequences. Moreover, more important drug 

resistance mutants could be retrieved from the drug resistant database. 
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