5 research outputs found

    On hypohamiltonian snarks and a theorem of Fiorini

    Get PDF
    In 2003, Cavicchioli et al. corrected an omission in the statement and proof of Fiorini's theorem from 1983 on hypohamiltonian snarks. However, their version of this theorem contains an unattainable condition for certain cases. We discuss and extend the results of Fiorini and Cavicchioli et al. and present a version of this theorem which is more general in several ways. Using Fiorini's erroneous result, Steffen had shown that hypohamiltonian snarks exist for some orders n >= 10 and each even n >= 92. We rectify Steffen's proof by providing a correct demonstration of a technical lemma on flower snarks, which might be of separate interest. We then strengthen Steffen's theorem to the strongest possible form by determining all orders for which hypohamiltonian snarks exist. This also strengthens a result of Macajova and Skoviera. Finally, we verify a conjecture of Steffen on hypohamiltonian snarks up to 36 vertices

    Planar hypohamiltonian oriented graphs

    Get PDF
    In 1978 Thomassen asked whether planar hypohamiltonian oriented graphs exist. Infinite families of such graphs have since been described but for infinitely many it remained an open question whether planar hypohamiltonian oriented graphs of order exist. In this paper we develop new methods for constructing hypohamiltonian digraphs, which, combined with efficient graph generation algorithms, enable us to fully characterise the orders for which planar hypohamiltonian oriented graphs exist. Our novel methods also led us to discover the planar hypohamiltonian oriented graph of smallest order and size, as well as infinitely many hypohamiltonian orientations of maximal planar graphs. Furthermore, we answer a question related to a problem of Schiermeyer on vertex degrees in hypohamiltonian oriented graphs, and characterise all the orders for which planar hypotraceable oriented graphs exist.Research Foundation Flanders; VSC(Flemish Supercomputer Center);DST‐NRF Centre of Excellence in Mathematical and Statistical Sciences.http://wileyonlinelibrary.com/journal/jgthj2023Mathematics and Applied Mathematic

    Hypohamiltonian and almost hypohamiltonian graphs

    Get PDF
    This Dissertation is structured as follows. In Chapter 1, we give a short historical overview and define fundamental concepts. Chapter 2 contains a clear narrative of the progress made towards finding the smallest planar hypohamiltonian graph, with all of the necessary theoretical tools and techniques--especially Grinberg's Criterion. Consequences of this progress are distributed over all sections and form the leitmotif of this Dissertation. Chapter 2 also treats girth restrictions and hypohamiltonian graphs in the context of crossing numbers. Chapter 3 is a thorough discussion of the newly introduced almost hypohamiltonian graphs and their connection to hypohamiltonian graphs. Once more, the planar case plays an exceptional role. At the end of the chapter, we study almost hypotraceable graphs and Gallai's problem on longest paths. The latter leads to Chapter 4, wherein the connection between hypohamiltonicity and various problems related to longest paths and longest cycles are presented. Chapter 5 introduces and studies non-hamiltonian graphs in which every vertex-deleted subgraph is traceable, a class encompassing hypohamiltonian and hypotraceable graphs. We end with an outlook in Chapter 6, where we present a selection of open problems enriched with comments and partial results

    Novel procedures for graph edge-colouring

    Get PDF
    Orientador: Dr. Renato CarmoCoorientador: Dr. André Luiz Pires GuedesTese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa : Curitiba, 05/12/2018Inclui referências e índiceÁrea de concentração: Ciência da ComputaçãoResumo: O índice cromático de um grafo G é o menor número de cores necessário para colorir as arestas de G de modo que não haja duas arestas adjacentes recebendo a mesma cor. Pelo célebre Teorema de Vizing, o índice cromático de qualquer grafo simples G ou é seu grau máximo , ou é ? + 1, em cujo caso G é dito Classe 1 ou Classe 2, respectivamente. Computar uma coloração de arestas ótima de um grafo ou simplesmente determinar seu índice cromático são problemas NP-difíceis importantes que aparecem em aplicações notáveis, como redes de sensores, redes ópticas, controle de produção, e jogos. Neste trabalho, nós apresentamos novos procedimentos de tempo polinomial para colorir otimamente as arestas de grafos pertences a alguns conjuntos grandes. Por exemplo, seja X a classe dos grafos cujos maiorais (vértices de grau ?) possuem soma local de graus no máximo ?2 ?? (entendemos por 'soma local de graus' de um vértice x a soma dos graus dos vizinhos de x). Nós mostramos que quase todo grafo está em X e, estendendo o procedimento de recoloração que Vizing usou na prova para seu teorema, mostramos que todo grafo em X é Classe 1. Nós também conseguimos resultados em outras classes de grafos, como os grafos-junção, os grafos arco-circulares, e os prismas complementares. Como um exemplo, nós mostramos que um prisma complementar só pode ser Classe 2 se for um grafo regular distinto do K2. No que diz respeito aos grafos-junção, nós mostramos que se G1 e G2 são grafos disjuntos tais que |V(G1)| _ |V(G2)| e ?(G1) _ ?(G2), e se os maiorais de G1 induzem um grafo acíclico, então o grafo-junção G1 ?G2 é Classe 1. Além desses resultados em coloração de arestas, apresentamos resultados parciais em coloração total de grafos-junção, de grafos arco-circulares, e de grafos cobipartidos, bem como discutimos um procedimento de recoloração para coloração total. Palavras-chave: Coloração de grafos e hipergrafos (MSC 05C15). Algoritmos de grafos (MSC 05C85). Teoria dos grafos em relação à Ciência da Computação (MSC 68R10). Graus de vértices (MSC 05C07). Operações de grafos (MSC 05C76).Abstract: The chromatic index of a graph G is the minimum number of colours needed to colour the edges of G in a manner that no two adjacent edges receive the same colour. By the celebrated Vizing's Theorem, the chromatic index of any simple graph G is either its maximum degree ? or it is ? + 1, in which case G is said to be Class 1 or Class 2, respectively. Computing an optimal edge-colouring of a graph or simply determining its chromatic index are important NP-hard problems which appear in noteworthy applications, like sensor networks, optical networks, production control, and games. In this work we present novel polynomial-time procedures for optimally edge-colouring graphs belonging to some large sets of graphs. For example, let X be the class of the graphs whose majors (vertices of degree ?) have local degree sum at most ?2 ? ? (by 'local degree sum' of a vertex x we mean the sum of the degrees of the neighbours of x). We show that almost every graph is in X and, by extending the recolouring procedure used by Vizing's in the proof for his theorem, we show that every graph in X is Class 1. We further achieve results in other graph classes, such as join graphs, circular-arc graphs, and complementary prisms. For instance, we show that a complementary prism can be Class 2 only if it is a regular graph distinct from the K2. Concerning join graphs, we show that if G1 and G2 are disjoint graphs such that |V(G1)| _ |V(G2)| and ?(G1) _ ?(G2), and if the majors of G1 induce an acyclic graph, then the join graph G1 ?G2 is Class 1. Besides these results on edge-colouring, we present partial results on total colouring join graphs, cobipartite graphs, and circular-arc graphs, as well as a discussion on a recolouring procedure for total colouring. Keywords: Colouring of graphs and hypergraphs (MSC 05C15). Graph algorithms (MSC 05C85). Graph theory in relation to Computer Science (MSC 68R10). Vertex degrees (MSC 05C07). Graph operations (MSC 05C76)
    corecore