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Abstract

In 2003, Cavicchioli et al. corrected an omission in the statement and proof of Fiorini’s
theorem from 1983 on hypohamiltonian snarks. However, their version of this theorem
contains an unattainable condition for certain cases. We discuss and extend the results of
Fiorini and Cavicchioli et al. and present a version of this theorem which is more general
in several ways. Using Fiorini’s erroneous result, Steffen had shown that hypohamiltonian
snarks exist for some orders n ≥ 10 and each even n ≥ 92. We rectify Steffen’s proof by
providing a correct demonstration of a technical lemma on flower snarks, which might be
of separate interest. We then strengthen Steffen’s theorem to the strongest possible form
by determining all orders for which hypohamiltonian snarks exist. This also strengthens a
result of Máčajová and Škoviera. Finally, we verify a conjecture of Steffen on hypohamil-
tonian snarks up to 36 vertices.
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1 Introduction
A graph G is hypohamiltonian if G itself is non-hamiltonian, but for every vertex v in G,
the graphG−v is hamiltonian. A snark shall be a cubic cyclically 4-edge-connected graph
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with chromatic index 4 (i.e. four colours are required in any proper edge-colouring) and
girth at least 5. We refer for notions not defined here to [22] and [7].

Motivated by similarities between the family of all snarks and the family of all cubic hy-
pohamiltonian graphs regarding the orders for which such graphs exist, Fiorini [8] studied
the hypohamiltonian properties surrounding Isaacs’ so-called “flower snarks” [13] (defined
rigorously below). The a priori surprising interplay between snarks and hypohamiltonian
graphs has been investigated extensively—we now give an overview. Early contributions
include Fiorini’s aforementioned paper [8], in which he claims to show that there exist in-
finitely many hypohamiltonian snarks. (In fact, according to Máčajová and Škoviera [18],
it was later discovered that a family of hypohamiltonian graphs constructed by Gutt [12]
includes Isaacs’ snarks, thus including Fiorini’s result.)

Skupień showed that there exist exponentially many hypohamiltonian snarks [20], and
Steffen [22] proved that there exist hypohamiltonian snarks of order n for every even
n ≥ 92 (and certain n < 92)—we will come back to this result in Section 3. For more refe-
rences and connections to other problems, see e.g. [3, 18, 20, 23]. Hypohamiltonian snarks
have also been studied in connection with the famous Cycle Double Cover Conjecture [3]
and Sabidussi’s Compatibility Conjecture [9].

The smallest snark, as well as the smallest hypohamiltonian graph, is the famous Pe-
tersen graph. Steffen [21] showed that every cubic hypohamiltonian graph with chromatic
index 4 is bicritical, i.e. the graph itself is not 3-edge-colourable but deleting any two dis-
tinct vertices yields a 3-edge-colourable graph. Nedela and Škoviera [19] proved that every
cubic bicritical graph is cyclically 4-edge-connected and has girth at least 5. Therefore,
every cubic hypohamiltonian graph with chromatic index 4 must be a snark.

This article is organised as follows. In Section 2 we discuss the omission in Fiorini’s
theorem on hypohamiltonian snarks [8]—first observed by Cavicchioli et al. [5]—and its
consequences and state a more general version of this theorem. In Section 3 we first rec-
tify a proof of Steffen on the orders for which hypohamiltonian snarks exist which relied
on Fiorini’s theorem—this erratum is based on giving a correct proof of a technical lemma
concerning flower snarks, which may be of separate interest. We then prove a strengthening
of Steffen’s theorem, which is best possible, as all orders for which hypohamiltonian snarks
exist are determined. Our result is stronger than a theorem of Máčajová and Škoviera [17]
in the sense that our result implies theirs, while the converse does not hold. Finally, in Sec-
tion 4 we comment upon and verify a conjecture of Steffen on hypohamiltonian snarks [23]
for small orders.

2 Fiorini’s theorem revisited
We call two edges independent if they have no common vertices. Let G and H be disjoint
connected graphs on at least 6 vertices. Consider G′ = G− {ab, cd}, where ab and cd are
independent edges in G, put H ′ = H − {x, y}, where x and y are adjacent cubic vertices
in H , and let a′, b′ and c′, d′ be the other neighbours of x and y in H , respectively. Then
the dot product G ·H is defined as the graph

(V (G) ∪ V (H ′), E(G′) ∪ E(H ′) ∪ {aa′, bb′, cc′, dd′}).

Two remarks are in order. (1) Under the above conditions, the dot product may be discon-
nected. (2) In fact, there are eight ways to form the dot product for a specific ab, cd, xy.
For the computational results in Section 4 we indeed applied the dot product in all eight
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possible ways, but for the theoretical proofs in this paper we will perform the dot prod-
uct in one way, namely as follows. We always construct the dot product by adding the
edges aa′, bb′, cc′, dd′ and we will abbreviate this as “a, b, c, d are joined by edges to the
neighbours of x and y, respectively”.

The dot product was introduced by Adelson-Velsky and Titov [1], and later and in-
dependently by Isaacs [13]. Its original purpose was to obtain new snarks by combining
known snarks. Fiorini then proved that the dot product can also be used to combine two
hypohamiltonian snarks into a new one. Unfortunately, Fiorini’s argument is incorrect.
We shall discuss this omission within this section, and correct the proof of a lemma of
Steffen [22] which depended on Fiorini’s result in Section 3.

In a graph G, a pair (v, w) of vertices is good in G if there exists a hamiltonian path in
G with end-vertices v and w. Two pairs of vertices ((v, w), (x, y)) are good in G if there
exist two disjoint paths which together span G, and which have end-vertices v and w, and
x and y, respectively.

Claim 2.1 (Fiorini, Theorem 3 in [8]). Let G be a hypohamiltonian snark having two
independent edges ab and cd for which

(i) each of (a, c), (a, d), (b, c), (b, d), ((a, b), (c, d)) is good in G;

(ii) for each vertex v, exactly one of (a, b), (c, d) is good in G− v.

If H is a hypohamiltonian snark with adjacent vertices x and y, then the dot product G ·H
is also a hypohamiltonian snark, where ab and cd are deleted from G, x and y are deleted
fromH , and vertices a, b, c, d are joined by edges to the neighbours of x and y, respectively.

Cavicchioli et al. [5] point out the omissions in Claim 2.1: in order for the proof to
work, the given vertex pairs need to be good in G− {ab, cd} rather than in G. They give a
corrected statement of the theorem envisioned by Fiorini and give a new proof.

Claim 2.2 (Cavicchioli et al., Theorem 3.2 in [5]). Let G be a hypohamiltonian snark
having two independent edges ab and cd for which

(i) each of (a, c), (a, d), (b, c), (b, d), ((a, b), (c, d)) is good in G− {ab, cd};
(ii) for each vertex v, each of (a, b), (c, d) is good in G− {v, ab, cd}.

If H is a hypohamiltonian snark with adjacent vertices x and y, then the dot product G ·H
is also a hypohamiltonian snark, where ab and cd are deleted from G, x and y are deleted
fromH , and vertices a, b, c, d are joined by edges to the neighbours of x and y, respectively.

In above statements, the fact that the dot product of snarks is itself a snark had already
been shown [1, 13], so indeed only the hypohamiltonicity was to be proven.

We point out that the hypotheses in Claim 2.2 are unattainable for v ∈ {a, b, c, d}, since
(a, b) and (c, d) cannot both be good in G − {v, ab, cd} if v ∈ {a, b, c, d}. This is tied to
the fact that the requirements in (ii) are stronger than what is needed to prove the statement.

In [11, Theorem 1], we gave the following (second) restatement of Claim 2.1 which we
used to solve a problem of McKay. Note that in [11] the graphs are required to be cubic and
below we do not state this requirement—we do however need the two vertices which are
removed to be cubic. This allows us to use exactly the same proof as in [11, Theorem 1].
Nevertheless, we now give a sketch of the proof: first, we assume that G ·H does contain
a hamiltonian cycle. This however implies that at least one of the factors is hamiltonian,
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contradicting their hypohamiltonicity. Second, we prove that every vertex-deleted subgraph
of G · H is indeed hamiltonian. This is done with a careful case analysis (depending on
where the removed vertex lies) using the goodness of various pairs (and pairs of pairs) of
vertices in G− {ab, cd} and G− {v, ab, cd}.
Theorem 2.3. Let G be a non-hamiltonian graph having two independent edges ab and cd
for which

(i) each of (a, c), (a, d), (b, c), (b, d), ((a, b), (c, d)) is good in G− {ab, cd};
(ii) for each vertex v, at least one of (a, b) and (c, d) is good in G− {v, ab, cd}.

If H is a hypohamiltonian graph with cubic adjacent vertices x and y, then the dot product
G ·H is also a hypohamiltonian graph, where ab and cd are deleted from G, x and y are
deleted from H , and vertices a, b, c, d are joined by edges to the neighbours of x and y,
respectively.

If G and H are planar, and ab and cd lie on the same facial cycle, then the dot product
can be applied such that G · H is planar, as well. If g and h are the girth of G and H ,
respectively, then the girth of G ·H is at least min{g, h}. If G and H are cubic, then so is
G ·H.

Note that the fact that G is non-hamiltonian together with condition (ii) implies that G
must be hypohamiltonian.

In the following, we will call the pair of edges ab, cd from the statement of Theorem 2.3
suitable. The Petersen graph is the smallest snark, and the two Blanuša snarks on 18 ver-
tices are the second-smallest snarks. All three graphs are also hypohamiltonian. Due to
the huge automorphism group of the Petersen graph, it can be verified by hand that it does
not contain a pair of suitable edges. Although both Blanuša snarks are dot products of two
Petersen graphs, the Petersen graph does not contain a pair of suitable edges. Thus, in a
certain sense, Theorem 2.3 is not “if and only if”, i.e. there exist dot products whose factors
do not contain suitable edges.

Let us end this section with a remark which may prove to be useful in other applications.
Throughout its statement and proof, we use the notation from Theorem 2.3.

Observation 2.4. We have that G ·H + ab, G ·H + cd, and G ·H + ab + cd are hypo-
hamiltonian, as well.

Proof. Put N(x) = {a′, b′, y} and N(y) = {c′, d′, x} such that the unique neighbour of
a′ (b′, c′, d′) in G is a (b, c, d). Assume G · H + ab + cd contains a hamiltonian cycle
h. Thus, at least one of ab and cd lies in h, say ab. We treat H − {x, y} as a subgraph
of G ·H . If aa′, bb′ ∈ E(h), then h ∩H ∪ a′xb′ ∪ c′yd′ gives a hamiltonian cycle in H ,
a contradiction. If aa′, bb′ /∈ E(h), then the cycle h ∩ G + cd yields a contradiction. So
w.l.o.g. aa′ ∈ E(h) and bb′ /∈ E(h). This implies the existence of a hamiltonian path in
H − {x, y} with end-vertices a′ and u ∈ {c′, d′}. But this path together with uyxa′ is a
hamiltonian cycle in H , a contradiction. It follows that G · H + ab and G · H + cd are
non-hamiltonian, as well.

3 On a theorem of Steffen on hypohamiltonian snarks
3.1 Rectifying Steffen’s proof

A snark is irreducible if the removal of every edge-cut which is not the set of all edges
incident with a vertex yields a 3-edge-colourable graph. Steffen’s article [22] is motivated
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by the following problem.

Problem 3.1 (Nedela and Škoviera [19]). For which even number n ≥ 10 does there exist
an irreducible snark of order n? In particular, does there exist an irreducible snark of each
sufficiently large order?

Steffen settled the second question of Problem 3.1 by giving the following main result
from [22].

Theorem 3.2 (Steffen, Theorem 2.5 in [22]). There is a hypohamiltonian snark of order n

(1) for each n ∈ {m : m ≥ 64 and m ≡ 0 mod 8},
(2) for each n ∈ {10, 18} ∪ {m : m ≥ 98 and m ≡ 2 mod 8},
(3) for each n ∈ {m : m ≥ 20 and m ≡ 4 mod 8},
(4) for each n ∈ {30} ∪ {m : m ≥ 54 and m ≡ 6 mod 8}, and

(5) for each even n ≥ 92.

Isaacs’ flower snark J2k+1, see [13], is the graph(
{ai, bi, ci, di}2ki=0, {biai, bici, bidi, aiai+1, cidi+1, dici+1}2ki=0

)
,

where addition in the indices is performed modulo 2k + 1.
However, the proof of [22, Lemma 2.3], which is essential for the proof of the theo-

rem, is erroneous, since it uses Fiorini’s erroneous Claim 2.1 (and it does not work with
Theorem 2.3). We here give a correct proof of that lemma.
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Figure 1: The flower snark J9. The suitable edges b0c0 and b4c4 are marked in bold red.
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Lemma 3.3 (Steffen, Lemma 2.3 in [22]). The flower snarks J9, J11, and J13 satisfy the
conditions of Theorem 2.3.

Proof. In [22], in each of the graphs J9, J11, and J13, the suitable edges were chosen to
be b0c0 and b4c4. However, in [22], for various vertices v, the hamiltonian paths did not
satisfy condition (ii) from Theorem 2.3, as the paths used one of the edges b0c0 or b4c4.
This was for instance the case for v ∈ {a0, a8, d0} in J9, for v ∈ {a0, a10, d0} in J11, and
for v ∈ {a0, c1, c12, d0} in J13, see Claims 6, 7, and 8 in the Appendix of [22].

We will now prove that b0c0 and b4c4 are indeed suitable edges for Theorem 2.3 for J9,
J11, and J13. For J9 the proof is given below (and partially in the Appendix), while the
technical details of the proofs for J11 and J13 can be found in the Appendix. The mapping
between the ai, bi, ci, di (used by Steffen) and the vertex numbers used in the proof is
shown in Figures 1–3. We use numbers as labels in the proof to make it easier to read these
graphs using a computer for verifying the results.

Proof that b0c0 and b4c4 are suitable edges for J9. Figure 1 shows the flower snark J9.
In J9, the edges b0c0 and b4c4 correspond to the edges (0, 26) and (11, 12), respectively.

The pairs (0, 11), (0, 12), (26, 11) and (26, 12) are good in J9−{(0, 26), (11, 12)} due
to the following hamiltonian paths, respectively:

• 11, 10, 5, 6, 7, 8, 9, 30, 29, 28, 27, 35, 24, 23, 22, 17, 16, 15, 32, 31, 12, 13, 14, 19,
18, 33, 34, 21, 20, 25, 26, 4, 3, 2, 1, 0

• 12, 13, 14, 15, 16, 11, 10, 5, 4, 26, 25, 20, 19, 18, 17, 22, 21, 34, 33, 32, 31, 30, 9, 8,
7, 6, 29, 28, 3, 2, 1, 23, 24, 35, 27, 0

• 11, 10, 5, 4, 3, 2, 1, 0, 27, 28, 29, 6, 7, 8, 9, 30, 31, 12, 13, 14, 19, 18, 17, 16, 15, 32,
33, 34, 35, 24, 23, 22, 21, 20, 25, 26

• 12, 13, 8, 7, 2, 3, 4, 5, 6, 29, 28, 27, 0, 1, 23, 22, 17, 18, 33, 32, 31, 30, 9, 10, 11, 16,
15, 14, 19, 20, 21, 34, 35, 24, 25, 26

Note that ((0, 26), (11, 12)) is good in J9 − {(0, 26), (11, 12)} due to the following
two disjoint paths with end-vertices 0 and 26, and 11 and 12, respectively, which together
span J9:

• 26, 25, 20, 19, 14, 13, 8, 7, 2, 1, 0

• 12, 31, 32, 15, 16, 17, 18, 33, 34, 21, 22, 23, 24, 35, 27, 28, 3, 4, 5, 6, 29, 30, 9, 10,
11

We showed by computer that at least one of (0, 26) or (11, 12) is good in J9−{v, (0, 26),
(11, 12)} for every v ∈ V (J9). In each case we verified that the path found by the com-
puter is indeed a valid hamiltonian path in the graph. Below we explicitly show this for
v = 0. The hamiltonian paths for the other choices of v can be found in the Appendix.

• v = 0: 12, 13, 14, 15, 32, 31, 30, 29, 6, 5, 10, 9, 8, 7, 2, 1, 23, 24, 25, 26, 4, 3, 28,
27, 35, 34, 33, 18, 19, 20, 21, 22, 17, 16, 11

Since Steffen’s statement of Lemma 3.3 remains intact, the proof and statement of his
main result, reproduced above as Theorem 3.2, are correct as given in [22]. Even though we
prove a stronger version of Steffen’s theorem in the next section, we think it is important to
fix the proof of Lemma 3.3 as there may be others who rely on this lemma, or might want
to rely on it in the future.
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Figure 2: The flower snark J11. The suitable edges b0c0 and b4c4 are marked in bold red.
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Figure 3: The flower snark J13. The suitable edges b0c0 and b4c4 are marked in bold red.
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3.2 Orders of hypohamiltonian snarks

We shall now prove a strengthening of Steffen’s theorem, which in a sense is strongest
possible since we will determine all orders for which hypohamiltonian snarks exist. We
emphasise that our proof’s mechanism contains significantly fewer “moving parts” than
Máčajová and Škoviera’s [17], and, as mentioned in the introduction, our theorem also
strengthens their result. We do need the following two easily verifiable lemmas.

Lemma 3.4. The second Blanuša snark B2 shown in Figure 4 has a pair of suitable edges.

Proof. Figure 4 shows the second Blanuša snark B2. By computer we determined that B2

has exactly three pairs of suitable edges: ((6, 8), (10, 16)), ((3, 9), (12, 17)) and ((4, 7),
(13, 15)). We will now prove by hand that ((6, 8), (10, 16)) is a suitable edge pair.

The pairs (6, 10), (6, 16), (8, 10) and (8, 16) are good in B2 − {(6, 8), (10, 16)} due to
the following hamiltonian paths, respectively:

• 10, 11, 12, 17, 16, 15, 13, 14, 0, 1, 5, 4, 7, 8, 9, 3, 2, 6

• 16, 15, 9, 8, 7, 17, 12, 13, 14, 10, 11, 1, 0, 2, 3, 4, 5, 6

• 10, 11, 1, 0, 14, 13, 12, 17, 16, 15, 9, 3, 2, 6, 5, 4, 7, 8

• 16, 15, 9, 3, 4, 5, 6, 2, 0, 1, 11, 10, 14, 13, 12, 17, 7, 8

Note that ((6, 8), (10, 16)) is good in B2 − {(6, 8), (10, 16)} due to the following
two disjoint paths with end-vertices 6 and 8, and 10 and 16, respectively, which together
span B2:

• 8, 7, 4, 5, 6

• 16, 17, 12, 11, 1, 0, 2, 3, 9, 15, 13, 14, 10

We now prove that at least one of (6, 8) or (10, 16) is good in B2−{v, (6, 8), (10, 16)}
for every v ∈ V (B2). By symmetry we only need to prove this for v = 0, 2, 4, 6, 7, 8.

• v = 0: 8, 7, 4, 5, 1, 11, 10, 14, 13, 12, 17, 16, 15, 9, 3, 2, 6

• v = 2: 8, 9, 3, 4, 7, 17, 16, 15, 13, 12, 11, 10, 14, 0, 1, 5, 6

• v = 4: 16, 15, 13, 14, 0, 1, 5, 6, 2, 3, 9, 8, 7, 17, 12, 11, 10

• v = 6: 16, 15, 9, 8, 7, 17, 12, 13, 14, 0, 2, 3, 4, 5, 1, 11, 10

• v = 7: 8, 9, 15, 16, 17, 12, 13, 14, 10, 11, 1, 0, 2, 3, 4, 5, 6

• v = 8: 16, 15, 9, 3, 2, 6, 5, 4, 7, 17, 12, 13, 14, 0, 1, 11, 10

Lemma 3.5. The first Loupekine snark L1 shown in Figure 5 has a pair of suitable edges.

Proof. Figure 5 shows the first Loupekine snark L1. By computer we determined that L1

has exactly six pairs of suitable edges: ((0, 1), (17, 20)), ((0, 2), (8, 17)), ((1, 5), (14, 20)),
((2, 3), (8, 10)), ((3, 4), (10, 12)) and ((4, 5), (12, 14)). We will now prove by hand that
((3, 4), (10, 12)) is a suitable edge pair.

The pairs (3, 10), (3, 12), (4, 10) and (4, 12) are good in L1 − {(3, 4), (10, 12)} due to
the following hamiltonian paths, respectively:

• 10, 7, 9, 6, 8, 17, 19, 21, 16, 13, 11, 0, 1, 5, 4, 18, 20, 14, 12, 15, 2, 3
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Figure 4: The second Blanuša snark. It has 18 vertices. The suitable edges (6, 8) and
(10, 16) are marked in bold red.

• 12, 14, 20, 18, 4, 5, 7, 10, 8, 17, 19, 21, 16, 9, 6, 1, 0, 11, 13, 15, 2, 3

• 10, 7, 5, 1, 0, 11, 13, 16, 9, 6, 8, 17, 20, 14, 12, 15, 2, 3, 19, 21, 18, 4

• 12, 14, 11, 0, 1, 6, 9, 16, 13, 15, 2, 3, 19, 21, 18, 20, 17, 8, 10, 7, 5, 4

Note that ((3, 4), (10, 12)) is good in L1 − {(3, 4), (10, 12)} due to the following
two disjoint paths with end-vertices 3 and 4, and 10 and 12, respectively, which together
span L1:

• 4, 5, 1, 6, 8, 17, 20, 18, 21, 19, 3

• 12, 14, 11, 0, 2, 15, 13, 16, 9, 7, 10

We now prove that at least one of (3, 4) or (10, 12) is good in L1−{v, (3, 4), (10, 12)}
for every v ∈ V (L1). By symmetry we only need to prove this for v = 1, 4, 5, 6, 7, 8, 9,
10, 16, 17, 18, 21.

• v = 1: 12, 15, 13, 16, 9, 6, 8, 17, 20, 14, 11, 0, 2, 3, 19, 21, 18, 4, 5, 7, 10

• v = 4: 12, 14, 20, 18, 21, 16, 9, 6, 8, 17, 19, 3, 2, 15, 13, 11, 0, 1, 5, 7, 10

• v = 5: 4, 18, 20, 17, 8, 10, 7, 9, 6, 1, 0, 2, 15, 12, 14, 11, 13, 16, 21, 19, 3

• v = 6: 4, 5, 1, 0, 2, 15, 12, 14, 11, 13, 16, 9, 7, 10, 8, 17, 20, 18, 21, 19, 3

• v = 7: 12, 14, 20, 17, 19, 3, 2, 15, 13, 11, 0, 1, 5, 4, 18, 21, 16, 9, 6, 8, 10

• v = 8: 12, 14, 20, 17, 19, 3, 2, 15, 13, 11, 0, 1, 6, 9, 16, 21, 18, 4, 5, 7, 10

• v = 9: 4, 5, 7, 10, 8, 6, 1, 0, 2, 15, 12, 14, 11, 13, 16, 21, 18, 20, 17, 19, 3

• v = 10: 4, 5, 7, 9, 16, 13, 11, 0, 1, 6, 8, 17, 19, 21, 18, 20, 14, 12, 15, 2, 3

• v = 16: 4, 5, 1, 6, 9, 7, 10, 8, 17, 19, 21, 18, 20, 14, 12, 15, 13, 11, 0, 2, 3

• v = 17: 4, 5, 1, 6, 8, 10, 7, 9, 16, 13, 11, 0, 2, 15, 12, 14, 20, 18, 21, 19, 3

• v = 18: 4, 5, 1, 6, 8, 10, 7, 9, 16, 21, 19, 17, 20, 14, 12, 15, 13, 11, 0, 2, 3

• v = 21: 4, 18, 20, 14, 12, 15, 2, 0, 11, 13, 16, 9, 6, 1, 5, 7, 10, 8, 17, 19, 3
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Figure 5: The first Loupekine snark L1. It has 22 vertices. The suitable edges (3, 4) and
(10, 12) are marked in bold red.

The following generalisation of Steffen’s Theorem 3.2 is strongest possible.

Theorem 3.6. A hypohamiltonian snark of order n exists if and only if n ∈ {10, 18, 20, 22}
or n is even and n ≥ 26.

Proof. For n = 10, it is well-known that the Petersen graph is hypohamiltonian and it is
also well-known that no snarks exist of order 12, 14 or 16.

In Lemma 3.4 we showed that the second Blanuša snark B2 (which has order 18) con-
tains a pair of suitable edges. In [3] it was proven that hypohamiltonian snarks exist for
all even orders from 18 to 36 with the exception of 24 (see Table 1). Let Sn denote a
hypohamiltonian snark of order n. Using Theorem 2.3, we form the dot product B2 · Sn

for n ∈ {18, 20, 22, 26, 28, 30, 32} and obtain hypohamiltonian snarks of all even orders
between 34 and 48 with the exception of 40 (recall that the dot product of two snarks is a
snark).

By Lemma 3.5 we know that the first Loupekine snark L1 (which has order 22) contains
a pair of suitable edges. Applying Theorem 2.3 to this snark and a 22-vertex hypohamilto-
nian snark, we obtain a hypohamiltonian snark of order 40.

We form the dot product B2 · Sn for all even n ∈ {34, . . . , 48} and obtain hypohamil-
tonian snarks of all even orders from 50 to 64. This may now be iterated ad infinitum, and
the proof is complete.

3.3 Hypohamiltonian and irreducible snarks

In [17] Máčajová and Škoviera proved the following theorem (which fully settles Prob-
lem 3.1).

Theorem 3.7 (Máčajová and Škoviera, Theorems A and B in [17]). There exists an irre-
ducible snark of order n if and only if n ∈ {10, 18, 20, 22} or n is even and n ≥ 26.
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Nedela and Škoviera [19] proved that a snark is irreducible if and only if it is bicritical,
and Steffen [21] showed that every hypohamiltonian snark is bicritical—while the converse
is not true, as will be shown in Table 1.

A graph G without k-flow is k-vertex-critical if, for every pair of vertices (u, v) of
G, identifying u and v yields a graph that has a k-flow; see [4] for more details. In [4]
Carneiro, da Silva, and McKay determined all 4-vertex-critical snarks up to 36 vertices and
Škoviera [24] showed that a snark is 4-vertex-critical if and only if it is irreducible.

Cavicchioli et al. [5] determined all hypohamiltonian and irreducible snarks on n ≤ 28
vertices. Later, Brinkmann et al. [3] determined all hypohamiltonian snarks on n ≤ 36
vertices. These counts can be found in Table 1 together with the number of irreducible
snarks from [4]. These graphs can also be downloaded from the House of Graphs [2] at
http://hog.grinvin.org/Snarks.

The number of hypohamiltonian cubic graphs on n ≤ 32 vertices can be found in [10].
As can be seen from Table 1, there is a significant number of irreducible snarks which are
not hypohamiltonian. The smallest such snarks have order 26. So Theorem 3.6 implies
Theorem 3.7, while the converse is not true.

Table 1: Number of irreducible and hypohamiltonian snarks (see [4, Table 1] and [3, Table
2]). λc stands for cyclic edge-connectivity. The counts of cases indicated with a ’≥’ are
possibly incomplete; all other cases are complete.

Order irreducible hypo. hypo. and λc = 4 hypo. and λc ≥ 5
10 1 1 0 1
18 2 2 2 0
20 1 1 0 1
22 2 2 0 2
24 0 0 0 0
26 111 95 87 8
28 33 31 30 1
30 115 104 93 11
32 13 13 0 13
34 40 328 31 198 29 701 1 497
36 13 720 10 838 10 374 464
38 ? ? ≥ 51 431 ?
40 ? ? ≥ 8 820 ?
42 ? ? ≥ 20 575 458 ?
44 ? ? ≥ 8 242 146 ?

The hypohamiltonian snarks on n ≥ 34 vertices constructed by the dot product in the
proof of Theorem 3.6 clearly all have cyclic edge-connectivity 4. By combining this with
Table 1 we obtain:

Corollary 3.8. Hypohamiltonian snarks of order n and cyclic edge-connectivity 4 exist if
and only if n ∈ {18, 26, 28, 30} or n is even and n ≥ 34.

As already mentioned, every hypohamiltonian snark is irreducible, thus Corollary 3.8
implies [17, Theorem A]. For higher cyclic edge-connectivity, the following is known.

http://hog.grinvin.org/Snarks
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Theorem 3.9 (Máčajová and Škoviera [18]). There exists a hypohamiltonian snark of or-
der n and cyclic connectivity 5 for each even n ≥ 140, and there exists a hypohamiltonian
snark of order n and cyclic connectivity 6 for each even n ≥ 166.

If we relax the requirements from hypohamiltonicity to irreducibility, more is known:

Theorem 3.10 (Máčajová and Škoviera [17]). There exists an irreducible snark of or-
der n and cyclic connectivity 5 if and only if n ∈ {10, 20, 22, 26} or n is even and
n ≥ 30, and there exists an irreducible snark of order n and cyclic connectivity 6 for each
n ≡ 4 (mod 8) with n ≥ 28, and for each even n ≥ 210.

Note that as every hypohamiltonian snark is irreducible, Theorem 3.9 also implies that
n ≥ 210 can be improved to n ≥ 166 in Theorem 3.10.

The smallest hypohamiltonian snark of cyclic edge-connectivity 5 has order 10 and is
the Petersen graph, and the second-smallest such graph has order 20. The flower snark J7 of
order 28 is the smallest cyclically 6-edge-connected hypohamiltonian snark. We conclude
this section with the following two problems motivated by Theorem 3.10 and results of
Kochol [14, 16].

Problem 3.11 (Máčajová and Škoviera [17]). Construct a cyclically 6-edge-connected
snark (irreducible or not) of order smaller than 118 and different from any of Isaacs’ snarks.

Problem 3.12. Determine all orders for which cyclically 6-edge-connected snarks exist.

4 On a conjecture of Steffen on hypohamiltonian snarks
Consider a cubic graph G. We denote with µk(G) the minimum number of edges not
contained in the union of k 1-factors of G, for every possible combination of k 1-factors.
If µ3(G) = 0, then G is 3-edge-colourable. In [23], Steffen made the following conjecture
on hypohamiltonian snarks.

Conjecture 4.1 (Steffen, Conjecture 4.1 in [23]). If G is a hypohamiltonian snark, then
µ3(G) = 3.

If true, this conjecture would have significant consequences, e.g. by Theorem 2.14
from [23], it would imply that every hypohamiltonian snark has a Berge-cover (a bridgeless
cubic graph G has a Berge-cover if µ5(G) = 0).

We wrote a computer program for computing µ3(G) and tested Conjecture 4.1 on the
complete lists of hypohamiltonian snarks up to 36 vertices. This leads to the following
observation.

Observation 4.2. There are no counterexamples to Conjecture 4.1 among the hypohamil-
tonian snarks with at most 36 vertices.

The authors of [3] noted a huge increase (from 13 to 31 198) in the number of hy-
pohamiltonian snarks from order 32 to 34, see Table 1. Using a computer, we were
able to determine that 29 365 out of the 29 701 hypohamiltonian snarks with cyclic edge-
connectivity 4 on 34 vertices can be obtained by performing a dot product on a hypohamil-
tonian snark on 26 vertices and the Petersen graph. We also determined that the remaining
hypohamiltonian snarks with cyclic edge-connectivity 4 on 34 vertices are obtained by per-
forming a dot product on the Blanuša snarks. Intriguingly, our computations show that
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some hypohamiltonian snarks can be obtained by performing a dot product on a hypo-
hamiltonian snark on 26 vertices and the Petersen graph, as well as by performing a dot
product on the Blanuša snarks.

There is also a (slightly less dramatic) increase in the cyclically 5-edge-connected
case—these are obviously not dot products—and we believe it to be due to more general
graph products, for instance “superposition” introduced by Kochol [15]. It would be in-
teresting to further explore these transformations in order to fully understand these sudden
increases and decreases in numbers.

Using a computer, we determined that all hypohamiltonian snarks with cyclic edge-
connectivity 4 up to 36 vertices can be obtained by performing a dot product on two hypo-
hamiltonian snarks. This leads us to pose the following question.

Problem 4.3. Is every hypohamiltonian snark with cyclic edge-connectivity 4 a dot product
of two hypohamiltonian snarks?

In [6] Chladný and Škoviera proved that every bicritical snark with cyclic edge-connec-
tivity 4 is a dot product of two bicritical snarks. Since every hypohamiltonian snark is
bicritical, this implies that every hypohamiltonian snark with cyclic edge-connectivity 4 is
a dot product of two bicritical snarks.

Recall that in Theorem 2.3 the graphs G and H are hypohamiltonian, but the theorem
is not “if and only if”, since although the Petersen graph does not contain a pair of suitable
edges, the Blanuša snarks (which are dot products of two Petersen graphs) are hypohamil-
tonian. Despite the previous paragraph, we believe the answer to Problem 4.3 to be “no”
due to the following observation. In order to cover all cases, we would need to add to con-
dition (ii) of Theorem 2.3 the possibility of ((a, b), (c, d)) being good in G − {v, ab, cd}.
However, we would then need to require from H that it contains a 2-factor containing ex-
actly two (necessarily odd) cycles. Although we were unable to find a counterexample, we
believe that there exist hypohamiltonian snarks which do not possess such a 2-factor.

We also determined all hypohamiltonian snarks up to 44 vertices which can be obtained
by performing a dot product on two hypohamiltonian snarks. The counts of these snarks
can be found in the fourth column of Table 1. We also verified Conjecture 4.1 on these
snarks.

Observation 4.4. There are no counterexamples to Conjecture 4.1 among the hypohamil-
tonian snarks with at most 44 vertices which are a dot product of two hypohamiltonian
snarks.
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Appendix
Below we give the technical details which were left out in the proof of Lemma 3.3.

Proof that b0c0 and b4c4 are suitable edges for J9 (continued)
We will now prove that at least one of (0, 26) or (11, 12) is good in J9 − {v, (0, 26),
(11, 12)} for every v ∈ V (J9) except for v = 0, which we have already shown above in
the proof of Lemma 3.3.

• v = 1: 26, 4, 5, 6, 7, 2, 3, 28, 29, 30, 31, 12, 13, 8, 9, 10, 11, 16, 17, 18, 33, 32, 15,
14, 19, 20, 25, 24, 23, 22, 21, 34, 35, 27, 0

• v = 2: 12, 31, 32, 15, 14, 13, 8, 7, 6, 5, 10, 9, 30, 29, 28, 3, 4, 26, 25, 24, 23, 1, 0,
27, 35, 34, 33, 18, 19, 20, 21, 22, 17, 16, 11

• v = 3: 26, 4, 5, 6, 7, 2, 1, 23, 22, 21, 20, 25, 24, 35, 34, 33, 32, 15, 14, 19, 18, 17,
16, 11, 10, 9, 8, 13, 12, 31, 30, 29, 28, 27, 0

• v = 4: 26, 25, 20, 19, 18, 17, 22, 21, 34, 33, 32, 31, 12, 13, 14, 15, 16, 11, 10, 5, 6,
7, 8, 9, 30, 29, 28, 3, 2, 1, 23, 24, 35, 27, 0

• v = 5: 26, 4, 3, 2, 1, 23, 22, 21, 20, 25, 24, 35, 34, 33, 32, 15, 14, 19, 18, 17, 16, 11,
10, 9, 30, 31, 12, 13, 8, 7, 6, 29, 28, 27, 0

• v = 6: 26, 25, 20, 19, 18, 17, 22, 21, 34, 33, 32, 31, 12, 13, 14, 15, 16, 11, 10, 5, 4,
3, 2, 7, 8, 9, 30, 29, 28, 27, 35, 24, 23, 1, 0

• v = 7: 26, 4, 5, 6, 29, 30, 31, 12, 13, 8, 9, 10, 11, 16, 17, 18, 19, 14, 15, 32, 33, 34,
35, 24, 25, 20, 21, 22, 23, 1, 2, 3, 28, 27, 0

• v = 8: 26, 25, 20, 19, 18, 17, 22, 21, 34, 33, 32, 31, 12, 13, 14, 15, 16, 11, 10, 9, 30,
29, 28, 3, 4, 5, 6, 7, 2, 1, 23, 24, 35, 27, 0

• v = 9: 26, 4, 3, 2, 1, 23, 22, 21, 20, 25, 24, 35, 34, 33, 32, 15, 14, 19, 18, 17, 16, 11,
10, 5, 6, 7, 8, 13, 12, 31, 30, 29, 28, 27, 0

• v = 10: 12, 13, 14, 15, 32, 31, 30, 9, 8, 7, 2, 3, 28, 29, 6, 5, 4, 26, 25, 24, 23, 1, 0,
27, 35, 34, 33, 18, 19, 20, 21, 22, 17, 16, 11

• v = 11: 26, 4, 3, 2, 1, 23, 22, 21, 34, 35, 24, 25, 20, 19, 14, 15, 16, 17, 18, 33, 32,
31, 12, 13, 8, 7, 6, 5, 10, 9, 30, 29, 28, 27, 0

• v = 12: 26, 25, 20, 19, 18, 17, 22, 21, 34, 33, 32, 31, 30, 9, 8, 13, 14, 15, 16, 11, 10,
5, 4, 3, 2, 7, 6, 29, 28, 27, 35, 24, 23, 1, 0

• v = 13: 12, 31, 30, 29, 6, 5, 10, 9, 8, 7, 2, 1, 0, 27, 28, 3, 4, 26, 25, 20, 21, 22, 23,
24, 35, 34, 33, 32, 15, 14, 19, 18, 17, 16, 11

• v = 14: 26, 25, 20, 19, 18, 17, 22, 21, 34, 33, 32, 15, 16, 11, 10, 9, 8, 13, 12, 31, 30,
29, 28, 3, 4, 5, 6, 7, 2, 1, 23, 24, 35, 27, 0

• v = 15: 26, 4, 3, 2, 1, 23, 22, 21, 20, 25, 24, 35, 34, 33, 32, 31, 12, 13, 14, 19, 18,
17, 16, 11, 10, 5, 6, 7, 8, 9, 30, 29, 28, 27, 0

• v = 16: 12, 13, 8, 7, 2, 3, 28, 29, 6, 5, 4, 26, 25, 24, 23, 1, 0, 27, 35, 34, 33, 18, 17,
22, 21, 20, 19, 14, 15, 32, 31, 30, 9, 10, 11

• v = 17: 26, 4, 3, 2, 1, 23, 22, 21, 20, 25, 24, 35, 34, 33, 18, 19, 14, 13, 12, 31, 32,
15, 16, 11, 10, 5, 6, 7, 8, 9, 30, 29, 28, 27, 0
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• v = 18: 26, 25, 20, 19, 14, 15, 32, 33, 34, 21, 22, 17, 16, 11, 10, 9, 8, 13, 12, 31, 30,
29, 28, 3, 4, 5, 6, 7, 2, 1, 23, 24, 35, 27, 0

• v = 19: 26, 4, 3, 28, 27, 35, 34, 21, 20, 25, 24, 23, 22, 17, 18, 33, 32, 31, 12, 13, 14,
15, 16, 11, 10, 5, 6, 29, 30, 9, 8, 7, 2, 1, 0

• v = 20: 26, 25, 24, 35, 27, 28, 29, 6, 5, 4, 3, 2, 7, 8, 13, 12, 31, 30, 9, 10, 11, 16, 17,
18, 19, 14, 15, 32, 33, 34, 21, 22, 23, 1, 0

• v = 21: 26, 4, 3, 2, 1, 23, 22, 17, 18, 19, 20, 25, 24, 35, 34, 33, 32, 31, 12, 13, 14,
15, 16, 11, 10, 5, 6, 7, 8, 9, 30, 29, 28, 27, 0

• v = 22: 26, 25, 20, 21, 34, 33, 32, 15, 14, 19, 18, 17, 16, 11, 10, 9, 8, 13, 12, 31, 30,
29, 28, 3, 4, 5, 6, 7, 2, 1, 23, 24, 35, 27, 0

• v = 23: 26, 4, 3, 28, 27, 35, 24, 25, 20, 19, 18, 17, 22, 21, 34, 33, 32, 31, 12, 13, 14,
15, 16, 11, 10, 5, 6, 29, 30, 9, 8, 7, 2, 1, 0

• v = 24: 26, 25, 20, 19, 14, 15, 32, 33, 18, 17, 16, 11, 10, 9, 8, 13, 12, 31, 30, 29, 28,
3, 4, 5, 6, 7, 2, 1, 23, 22, 21, 34, 35, 27, 0

• v = 25: 26, 4, 3, 2, 1, 23, 24, 35, 34, 33, 18, 17, 22, 21, 20, 19, 14, 13, 12, 31, 32,
15, 16, 11, 10, 5, 6, 7, 8, 9, 30, 29, 28, 27, 0

• v = 26: 12, 13, 8, 7, 2, 3, 4, 5, 6, 29, 28, 27, 0, 1, 23, 22, 21, 34, 35, 24, 25, 20, 19,
14, 15, 16, 17, 18, 33, 32, 31, 30, 9, 10, 11

• v = 27: 26, 4, 5, 6, 7, 2, 3, 28, 29, 30, 31, 12, 13, 8, 9, 10, 11, 16, 17, 18, 19, 14, 15,
32, 33, 34, 35, 24, 25, 20, 21, 22, 23, 1, 0

• v = 28: 12, 13, 14, 15, 32, 31, 30, 29, 6, 5, 10, 9, 8, 7, 2, 3, 4, 26, 25, 24, 23, 1, 0,
27, 35, 34, 33, 18, 19, 20, 21, 22, 17, 16, 11

• v = 29: 26, 4, 5, 6, 7, 8, 13, 12, 31, 30, 9, 10, 11, 16, 17, 18, 19, 14, 15, 32, 33, 34,
35, 24, 25, 20, 21, 22, 23, 1, 2, 3, 28, 27, 0

• v = 30: 26, 25, 20, 19, 18, 17, 22, 21, 34, 33, 32, 31, 12, 13, 14, 15, 16, 11, 10, 9, 8,
7, 2, 3, 4, 5, 6, 29, 28, 27, 35, 24, 23, 1, 0

• v = 31: 12, 13, 8, 7, 6, 5, 10, 9, 30, 29, 28, 27, 0, 1, 2, 3, 4, 26, 25, 20, 21, 22, 23,
24, 35, 34, 33, 32, 15, 14, 19, 18, 17, 16, 11

• v = 32: 26, 25, 24, 23, 1, 2, 7, 6, 5, 4, 3, 28, 29, 30, 31, 12, 13, 8, 9, 10, 11, 16, 15,
14, 19, 20, 21, 22, 17, 18, 33, 34, 35, 27, 0

• v = 33: 26, 4, 3, 28, 27, 35, 34, 21, 20, 25, 24, 23, 22, 17, 18, 19, 14, 13, 12, 31, 32,
15, 16, 11, 10, 5, 6, 29, 30, 9, 8, 7, 2, 1, 0

• v = 34: 26, 25, 24, 35, 27, 28, 29, 6, 5, 4, 3, 2, 7, 8, 13, 12, 31, 30, 9, 10, 11, 16, 17,
18, 33, 32, 15, 14, 19, 20, 21, 22, 23, 1, 0

• v = 35: 26, 4, 3, 2, 1, 23, 24, 25, 20, 19, 18, 17, 22, 21, 34, 33, 32, 31, 12, 13, 14,
15, 16, 11, 10, 5, 6, 7, 8, 9, 30, 29, 28, 27, 0

Proof that b0c0 and b4c4 are suitable edges for J11

Figure 2 shows the flower snark J11 and here b0c0 and b4c4 correspond to the edges (0, 32)
and (11, 12), respectively.

The pairs (0, 11), (0, 12), (32, 11), and (32, 12) are good in J11 − {(0, 32), (11, 12)}
due to the following hamiltonian paths, respectively:
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• 11, 10, 5, 6, 7, 8, 9, 36, 35, 34, 33, 43, 30, 29, 28, 23, 22, 17, 16, 15, 38, 37, 12, 13,
14, 19, 18, 39, 40, 21, 20, 25, 24, 41, 42, 27, 26, 31, 32, 4, 3, 2, 1, 0

• 12, 13, 14, 15, 16, 11, 10, 5, 4, 32, 31, 26, 25, 24, 41, 42, 27, 28, 23, 22, 17, 18, 19,
20, 21, 40, 39, 38, 37, 36, 9, 8, 7, 6, 35, 34, 3, 2, 1, 29, 30, 43, 33, 0

• 11, 10, 5, 4, 3, 2, 1, 0, 33, 34, 35, 6, 7, 8, 9, 36, 37, 12, 13, 14, 19, 18, 17, 16, 15, 38,
39, 40, 41, 24, 25, 20, 21, 22, 23, 28, 29, 30, 43, 42, 27, 26, 31, 32

• 12, 13, 8, 7, 2, 3, 4, 5, 6, 35, 34, 33, 0, 1, 29, 28, 23, 22, 17, 18, 39, 38, 37, 36, 9, 10,
11, 16, 15, 14, 19, 20, 21, 40, 41, 24, 25, 26, 27, 42, 43, 30, 31, 32

We have that ((0, 32), (11, 12)) is good in J11−{(0, 32), (11, 12)} due to the following
two disjoint paths with end-vertices 0 and 32, and 11 and 12, respectively, which together
span J11.

• 32, 31, 26, 25, 20, 19, 14, 13, 8, 7, 2, 1, 0

• 12, 37, 38, 15, 16, 17, 18, 39, 40, 21, 22, 23, 24, 41, 42, 27, 28, 29, 30, 43, 33, 34, 3,
4, 5, 6, 35, 36, 9, 10, 11

The following hamiltonian paths show that at least one of (0, 32) or (11, 12) is good in
J11 − {v, (0, 32), (11, 12)} for every v ∈ V (J11).

• v = 0: 12, 13, 14, 15, 38, 37, 36, 35, 6, 5, 10, 9, 8, 7, 2, 1, 29, 30, 31, 32, 4, 3, 34,
33, 43, 42, 41, 24, 23, 28, 27, 26, 25, 20, 19, 18, 39, 40, 21, 22, 17, 16, 11

• v = 1: 32, 4, 5, 6, 7, 2, 3, 34, 35, 36, 37, 12, 13, 8, 9, 10, 11, 16, 17, 18, 19, 14, 15,
38, 39, 40, 41, 24, 23, 22, 21, 20, 25, 26, 31, 30, 29, 28, 27, 42, 43, 33, 0

• v = 2: 12, 37, 38, 15, 14, 13, 8, 7, 6, 5, 10, 9, 36, 35, 34, 3, 4, 32, 31, 30, 29, 1, 0,
33, 43, 42, 41, 24, 23, 28, 27, 26, 25, 20, 19, 18, 39, 40, 21, 22, 17, 16, 11

• v = 3: 32, 4, 5, 6, 7, 2, 1, 29, 28, 27, 26, 31, 30, 43, 42, 41, 40, 21, 22, 23, 24, 25,
20, 19, 14, 15, 38, 39, 18, 17, 16, 11, 10, 9, 8, 13, 12, 37, 36, 35, 34, 33, 0

• v = 4: 32, 31, 26, 25, 24, 23, 28, 27, 42, 41, 40, 39, 18, 17, 22, 21, 20, 19, 14, 13,
12, 37, 38, 15, 16, 11, 10, 5, 6, 7, 8, 9, 36, 35, 34, 3, 2, 1, 29, 30, 43, 33, 0

• v = 5: 32, 4, 3, 2, 1, 29, 28, 27, 26, 31, 30, 43, 42, 41, 40, 21, 22, 23, 24, 25, 20, 19,
14, 15, 38, 39, 18, 17, 16, 11, 10, 9, 36, 37, 12, 13, 8, 7, 6, 35, 34, 33, 0

• v = 6: 32, 31, 26, 25, 24, 23, 28, 27, 42, 41, 40, 39, 18, 17, 22, 21, 20, 19, 14, 13,
12, 37, 38, 15, 16, 11, 10, 5, 4, 3, 2, 7, 8, 9, 36, 35, 34, 33, 43, 30, 29, 1, 0

• v = 7: 32, 4, 5, 6, 35, 36, 37, 12, 13, 8, 9, 10, 11, 16, 17, 18, 19, 14, 15, 38, 39, 40,
41, 24, 23, 22, 21, 20, 25, 26, 31, 30, 29, 28, 27, 42, 43, 33, 34, 3, 2, 1, 0

• v = 8: 32, 31, 26, 25, 24, 23, 28, 27, 42, 41, 40, 39, 18, 17, 22, 21, 20, 19, 14, 13,
12, 37, 38, 15, 16, 11, 10, 9, 36, 35, 34, 3, 4, 5, 6, 7, 2, 1, 29, 30, 43, 33, 0

• v = 9: 32, 4, 3, 2, 1, 29, 28, 27, 26, 31, 30, 43, 42, 41, 40, 21, 22, 23, 24, 25, 20, 19,
14, 15, 38, 39, 18, 17, 16, 11, 10, 5, 6, 7, 8, 13, 12, 37, 36, 35, 34, 33, 0

• v = 10: 12, 13, 14, 15, 38, 37, 36, 9, 8, 7, 2, 3, 34, 35, 6, 5, 4, 32, 31, 30, 29, 1, 0,
33, 43, 42, 41, 24, 23, 28, 27, 26, 25, 20, 19, 18, 39, 40, 21, 22, 17, 16, 11

• v = 11: 32, 4, 3, 2, 1, 29, 28, 27, 26, 31, 30, 43, 42, 41, 40, 21, 20, 25, 24, 23, 22,
17, 16, 15, 14, 19, 18, 39, 38, 37, 12, 13, 8, 7, 6, 5, 10, 9, 36, 35, 34, 33, 0
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• v = 12: 32, 31, 26, 25, 24, 23, 28, 27, 42, 41, 40, 39, 18, 17, 22, 21, 20, 19, 14, 13,
8, 9, 10, 11, 16, 15, 38, 37, 36, 35, 34, 3, 4, 5, 6, 7, 2, 1, 29, 30, 43, 33, 0

• v = 13: 12, 37, 36, 35, 6, 5, 10, 9, 8, 7, 2, 1, 0, 33, 34, 3, 4, 32, 31, 26, 27, 28, 29,
30, 43, 42, 41, 40, 21, 22, 23, 24, 25, 20, 19, 14, 15, 38, 39, 18, 17, 16, 11

• v = 14: 32, 31, 26, 25, 24, 41, 42, 27, 28, 23, 22, 17, 18, 19, 20, 21, 40, 39, 38, 15,
16, 11, 10, 9, 8, 13, 12, 37, 36, 35, 34, 3, 4, 5, 6, 7, 2, 1, 29, 30, 43, 33, 0

• v = 15: 32, 4, 3, 2, 1, 29, 28, 27, 26, 31, 30, 43, 42, 41, 40, 21, 22, 23, 24, 25, 20,
19, 14, 13, 12, 37, 38, 39, 18, 17, 16, 11, 10, 5, 6, 7, 8, 9, 36, 35, 34, 33, 0

• v = 16: 12, 13, 8, 7, 2, 3, 34, 35, 6, 5, 4, 32, 31, 30, 29, 1, 0, 33, 43, 42, 41, 24, 25,
26, 27, 28, 23, 22, 17, 18, 39, 40, 21, 20, 19, 14, 15, 38, 37, 36, 9, 10, 11

• v = 17: 32, 4, 3, 2, 1, 29, 28, 27, 26, 31, 30, 43, 42, 41, 40, 21, 22, 23, 24, 25, 20,
19, 18, 39, 38, 37, 12, 13, 14, 15, 16, 11, 10, 5, 6, 7, 8, 9, 36, 35, 34, 33, 0

• v = 18: 32, 31, 26, 25, 24, 23, 28, 27, 42, 41, 40, 39, 38, 15, 14, 19, 20, 21, 22, 17,
16, 11, 10, 9, 8, 13, 12, 37, 36, 35, 34, 3, 4, 5, 6, 7, 2, 1, 29, 30, 43, 33, 0

• v = 19: 32, 4, 3, 2, 1, 29, 28, 27, 26, 31, 30, 43, 42, 41, 40, 21, 20, 25, 24, 23, 22,
17, 18, 39, 38, 37, 12, 13, 14, 15, 16, 11, 10, 5, 6, 7, 8, 9, 36, 35, 34, 33, 0

• v = 20: 32, 31, 26, 25, 24, 41, 42, 27, 28, 23, 22, 21, 40, 39, 38, 15, 14, 19, 18, 17,
16, 11, 10, 9, 8, 13, 12, 37, 36, 35, 34, 3, 4, 5, 6, 7, 2, 1, 29, 30, 43, 33, 0

• v = 21: 32, 4, 3, 2, 1, 29, 28, 27, 26, 31, 30, 43, 42, 41, 40, 39, 18, 17, 22, 23, 24,
25, 20, 19, 14, 13, 12, 37, 38, 15, 16, 11, 10, 5, 6, 7, 8, 9, 36, 35, 34, 33, 0

• v = 22: 32, 31, 26, 25, 24, 23, 28, 27, 42, 41, 40, 21, 20, 19, 14, 15, 38, 39, 18, 17,
16, 11, 10, 9, 8, 13, 12, 37, 36, 35, 34, 3, 4, 5, 6, 7, 2, 1, 29, 30, 43, 33, 0

• v = 23: 32, 4, 3, 2, 1, 29, 28, 27, 26, 31, 30, 43, 42, 41, 24, 25, 20, 19, 18, 17, 22,
21, 40, 39, 38, 37, 12, 13, 14, 15, 16, 11, 10, 5, 6, 7, 8, 9, 36, 35, 34, 33, 0

• v = 24: 32, 31, 26, 25, 20, 21, 22, 23, 28, 27, 42, 41, 40, 39, 38, 15, 14, 19, 18, 17,
16, 11, 10, 9, 8, 13, 12, 37, 36, 35, 34, 3, 4, 5, 6, 7, 2, 1, 29, 30, 43, 33, 0

• v = 25: 32, 4, 3, 2, 1, 29, 28, 27, 26, 31, 30, 43, 42, 41, 24, 23, 22, 17, 18, 19, 20,
21, 40, 39, 38, 37, 12, 13, 14, 15, 16, 11, 10, 5, 6, 7, 8, 9, 36, 35, 34, 33, 0

• v = 26: 32, 31, 30, 29, 1, 2, 7, 6, 5, 4, 3, 34, 35, 36, 37, 12, 13, 8, 9, 10, 11, 16, 17,
18, 19, 14, 15, 38, 39, 40, 41, 24, 25, 20, 21, 22, 23, 28, 27, 42, 43, 33, 0

• v = 27: 32, 4, 3, 2, 1, 29, 28, 23, 24, 25, 26, 31, 30, 43, 42, 41, 40, 39, 18, 17, 22,
21, 20, 19, 14, 13, 12, 37, 38, 15, 16, 11, 10, 5, 6, 7, 8, 9, 36, 35, 34, 33, 0

• v = 28: 32, 31, 26, 27, 42, 41, 40, 21, 22, 23, 24, 25, 20, 19, 14, 15, 38, 39, 18, 17,
16, 11, 10, 9, 8, 13, 12, 37, 36, 35, 34, 3, 4, 5, 6, 7, 2, 1, 29, 30, 43, 33, 0

• v = 29: 32, 4, 3, 34, 33, 43, 30, 31, 26, 25, 24, 23, 28, 27, 42, 41, 40, 39, 18, 17, 22,
21, 20, 19, 14, 13, 12, 37, 38, 15, 16, 11, 10, 5, 6, 35, 36, 9, 8, 7, 2, 1, 0

• v = 30: 32, 31, 26, 25, 20, 21, 22, 23, 24, 41, 40, 39, 38, 15, 14, 19, 18, 17, 16, 11,
10, 9, 8, 13, 12, 37, 36, 35, 34, 3, 4, 5, 6, 7, 2, 1, 29, 28, 27, 42, 43, 33, 0

• v = 31: 32, 4, 3, 2, 1, 29, 30, 43, 42, 41, 24, 23, 28, 27, 26, 25, 20, 19, 18, 17, 22,
21, 40, 39, 38, 37, 12, 13, 14, 15, 16, 11, 10, 5, 6, 7, 8, 9, 36, 35, 34, 33, 0
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• v = 32: 12, 13, 8, 7, 2, 3, 4, 5, 6, 35, 34, 33, 0, 1, 29, 28, 27, 26, 31, 30, 43, 42, 41,
40, 21, 20, 25, 24, 23, 22, 17, 16, 15, 14, 19, 18, 39, 38, 37, 36, 9, 10, 11

• v = 33: 32, 4, 5, 6, 7, 2, 3, 34, 35, 36, 37, 12, 13, 8, 9, 10, 11, 16, 17, 18, 19, 14, 15,
38, 39, 40, 41, 24, 23, 22, 21, 20, 25, 26, 31, 30, 43, 42, 27, 28, 29, 1, 0

• v = 34: 12, 13, 14, 15, 38, 37, 36, 35, 6, 5, 10, 9, 8, 7, 2, 3, 4, 32, 31, 30, 29, 1, 0,
33, 43, 42, 41, 24, 23, 28, 27, 26, 25, 20, 19, 18, 39, 40, 21, 22, 17, 16, 11

• v = 35: 32, 4, 5, 6, 7, 8, 13, 12, 37, 36, 9, 10, 11, 16, 17, 18, 19, 14, 15, 38, 39, 40,
41, 24, 23, 22, 21, 20, 25, 26, 31, 30, 29, 28, 27, 42, 43, 33, 34, 3, 2, 1, 0

• v = 36: 32, 31, 26, 25, 24, 23, 28, 27, 42, 41, 40, 39, 18, 17, 22, 21, 20, 19, 14, 13,
12, 37, 38, 15, 16, 11, 10, 9, 8, 7, 2, 3, 4, 5, 6, 35, 34, 33, 43, 30, 29, 1, 0

• v = 37: 12, 13, 8, 7, 6, 5, 10, 9, 36, 35, 34, 33, 0, 1, 2, 3, 4, 32, 31, 26, 27, 28, 29,
30, 43, 42, 41, 40, 21, 22, 23, 24, 25, 20, 19, 14, 15, 38, 39, 18, 17, 16, 11

• v = 38: 32, 31, 26, 25, 24, 23, 28, 27, 42, 41, 40, 39, 18, 17, 22, 21, 20, 19, 14, 15,
16, 11, 10, 9, 8, 13, 12, 37, 36, 35, 34, 3, 4, 5, 6, 7, 2, 1, 29, 30, 43, 33, 0

• v = 39: 32, 4, 3, 2, 1, 29, 28, 27, 26, 31, 30, 43, 42, 41, 40, 21, 20, 25, 24, 23, 22,
17, 18, 19, 14, 13, 12, 37, 38, 15, 16, 11, 10, 5, 6, 7, 8, 9, 36, 35, 34, 33, 0

• v = 40: 32, 31, 26, 25, 24, 41, 42, 27, 28, 23, 22, 21, 20, 19, 14, 15, 38, 39, 18, 17,
16, 11, 10, 9, 8, 13, 12, 37, 36, 35, 34, 3, 4, 5, 6, 7, 2, 1, 29, 30, 43, 33, 0

• v = 41: 32, 4, 3, 2, 1, 29, 28, 27, 42, 43, 30, 31, 26, 25, 24, 23, 22, 17, 18, 19, 20,
21, 40, 39, 38, 37, 12, 13, 14, 15, 16, 11, 10, 5, 6, 7, 8, 9, 36, 35, 34, 33, 0

• v = 42: 32, 31, 26, 27, 28, 23, 22, 21, 20, 25, 24, 41, 40, 39, 38, 15, 14, 19, 18, 17,
16, 11, 10, 9, 8, 13, 12, 37, 36, 35, 34, 3, 4, 5, 6, 7, 2, 1, 29, 30, 43, 33, 0

• v = 43: 32, 4, 3, 2, 1, 29, 30, 31, 26, 25, 24, 23, 28, 27, 42, 41, 40, 39, 18, 17, 22,
21, 20, 19, 14, 13, 12, 37, 38, 15, 16, 11, 10, 5, 6, 7, 8, 9, 36, 35, 34, 33, 0

Proof that b0c0 and b4c4 are suitable edges for J13

Figure 3 shows the flower snark J13 and here b0c0 and b4c4 correspond to the edges (0, 38)
and (11, 12), respectively.

The pairs (0, 11), (0, 12), (38, 11), and (38, 12) are good in J13 − {(0, 38), (11, 12)}
due to the following hamiltonian paths, respectively:

• 11, 10, 5, 6, 7, 8, 9, 42, 41, 40, 39, 51, 36, 35, 34, 29, 28, 23, 22, 17, 16, 15, 44, 43,
12, 13, 14, 19, 18, 45, 46, 21, 20, 25, 24, 47, 48, 27, 26, 31, 30, 49, 50, 33, 32, 37,
38, 4, 3, 2, 1, 0

• 12, 13, 14, 15, 16, 11, 10, 5, 4, 38, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 47, 24, 23,
28, 27, 26, 25, 20, 19, 18, 17, 22, 21, 46, 45, 44, 43, 42, 9, 8, 7, 6, 41, 40, 3, 2, 1, 35,
36, 51, 39, 0

• 11, 10, 5, 4, 3, 2, 1, 0, 39, 40, 41, 6, 7, 8, 9, 42, 43, 12, 13, 14, 19, 18, 17, 16, 15, 44,
45, 46, 47, 24, 23, 22, 21, 20, 25, 26, 31, 30, 29, 28, 27, 48, 49, 50, 51, 36, 35, 34,
33, 32, 37, 38

• 12, 13, 8, 7, 2, 3, 4, 5, 6, 41, 40, 39, 0, 1, 35, 34, 29, 28, 23, 22, 17, 18, 45, 44, 43,
42, 9, 10, 11, 16, 15, 14, 19, 20, 21, 46, 47, 24, 25, 26, 27, 48, 49, 30, 31, 32, 33, 50,
51, 36, 37, 38
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The pair of pairs ((0, 38), (11, 12)) is good in J13 − {(0, 38), (11, 12)} due to the fol-
lowing two disjoint paths with end-vertices 0 and 38, and 11 and 12, respectively, which
together span J13.

• 38, 37, 32, 31, 26, 25, 20, 19, 14, 13, 8, 7, 2, 1, 0

• 12, 43, 44, 15, 16, 17, 18, 45, 46, 21, 22, 23, 24, 47, 48, 27, 28, 29, 30, 49, 50, 33,
34, 35, 36, 51, 39, 40, 3, 4, 5, 6, 41, 42, 9, 10, 11

The following hamiltonian paths show that at least one of (0, 38) or (11, 12) is good in
J13 − {v, (0, 38), (11, 12)} for every v ∈ V (J13).

• v = 0: 12, 13, 14, 15, 44, 43, 42, 41, 6, 5, 10, 9, 8, 7, 2, 1, 35, 36, 37, 38, 4, 3, 40,
39, 51, 50, 49, 30, 29, 34, 33, 32, 31, 26, 25, 24, 23, 28, 27, 48, 47, 46, 45, 18, 19,
20, 21, 22, 17, 16, 11

• v = 1: 38, 4, 5, 6, 7, 2, 3, 40, 41, 42, 43, 12, 13, 8, 9, 10, 11, 16, 17, 18, 19, 14, 15,
44, 45, 46, 47, 24, 23, 22, 21, 20, 25, 26, 31, 30, 49, 48, 27, 28, 29, 34, 35, 36, 37,
32, 33, 50, 51, 39, 0

• v = 2: 12, 43, 44, 15, 14, 13, 8, 7, 6, 5, 10, 9, 42, 41, 40, 3, 4, 38, 37, 36, 35, 1, 0,
39, 51, 50, 49, 30, 29, 34, 33, 32, 31, 26, 25, 24, 23, 28, 27, 48, 47, 46, 45, 18, 19,
20, 21, 22, 17, 16, 11

• v = 3: 38, 4, 5, 6, 7, 2, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49, 48, 27, 26, 31, 30, 29,
28, 23, 22, 21, 20, 25, 24, 47, 46, 45, 44, 15, 14, 19, 18, 17, 16, 11, 10, 9, 8, 13, 12,
43, 42, 41, 40, 39, 0

• v = 4: 38, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 47, 24, 23, 28, 27, 26, 25, 20, 19,
18, 17, 22, 21, 46, 45, 44, 43, 12, 13, 14, 15, 16, 11, 10, 5, 6, 7, 8, 9, 42, 41, 40, 3, 2,
1, 35, 36, 51, 39, 0

• v = 5: 38, 4, 3, 2, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49, 48, 27, 26, 31, 30, 29, 28, 23,
22, 21, 20, 25, 24, 47, 46, 45, 44, 15, 14, 19, 18, 17, 16, 11, 10, 9, 42, 43, 12, 13, 8,
7, 6, 41, 40, 39, 0

• v = 6: 38, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 47, 24, 23, 28, 27, 26, 25, 20, 19,
18, 17, 22, 21, 46, 45, 44, 43, 12, 13, 14, 15, 16, 11, 10, 5, 4, 3, 2, 7, 8, 9, 42, 41, 40,
39, 51, 36, 35, 1, 0

• v = 7: 38, 4, 5, 6, 41, 42, 43, 12, 13, 8, 9, 10, 11, 16, 17, 18, 19, 14, 15, 44, 45, 46,
47, 24, 23, 22, 21, 20, 25, 26, 31, 30, 29, 28, 27, 48, 49, 50, 51, 36, 37, 32, 33, 34,
35, 1, 2, 3, 40, 39, 0

• v = 8: 38, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 47, 24, 23, 28, 27, 26, 25, 20, 19,
18, 17, 22, 21, 46, 45, 44, 43, 12, 13, 14, 15, 16, 11, 10, 9, 42, 41, 40, 3, 4, 5, 6, 7, 2,
1, 35, 36, 51, 39, 0

• v = 9: 38, 4, 3, 2, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49, 48, 27, 26, 31, 30, 29, 28, 23,
22, 21, 20, 25, 24, 47, 46, 45, 44, 15, 14, 19, 18, 17, 16, 11, 10, 5, 6, 7, 8, 13, 12, 43,
42, 41, 40, 39, 0

• v = 10: 12, 13, 14, 15, 44, 43, 42, 9, 8, 7, 2, 3, 40, 41, 6, 5, 4, 38, 37, 36, 35, 1, 0,
39, 51, 50, 49, 30, 29, 34, 33, 32, 31, 26, 25, 24, 23, 28, 27, 48, 47, 46, 45, 18, 19,
20, 21, 22, 17, 16, 11
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• v = 11: 38, 4, 3, 2, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49, 48, 27, 26, 31, 30, 29, 28,
23, 22, 21, 46, 47, 24, 25, 20, 19, 14, 15, 16, 17, 18, 45, 44, 43, 12, 13, 8, 7, 6, 5, 10,
9, 42, 41, 40, 39, 0

• v = 12: 38, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 47, 24, 23, 28, 27, 26, 25, 20, 19,
18, 17, 22, 21, 46, 45, 44, 43, 42, 9, 8, 13, 14, 15, 16, 11, 10, 5, 4, 3, 2, 7, 6, 41, 40,
39, 51, 36, 35, 1, 0

• v = 13: 12, 43, 42, 41, 6, 5, 10, 9, 8, 7, 2, 1, 0, 39, 40, 3, 4, 38, 37, 32, 33, 34, 35,
36, 51, 50, 49, 48, 27, 26, 31, 30, 29, 28, 23, 22, 21, 20, 25, 24, 47, 46, 45, 44, 15,
14, 19, 18, 17, 16, 11

• v = 14: 38, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 47, 24, 23, 28, 27, 26, 25, 20, 19,
18, 17, 22, 21, 46, 45, 44, 15, 16, 11, 10, 9, 8, 13, 12, 43, 42, 41, 40, 3, 4, 5, 6, 7, 2,
1, 35, 36, 51, 39, 0

• v = 15: 38, 4, 3, 2, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49, 48, 27, 26, 31, 30, 29, 28,
23, 22, 21, 20, 25, 24, 47, 46, 45, 44, 43, 12, 13, 14, 19, 18, 17, 16, 11, 10, 5, 6, 7, 8,
9, 42, 41, 40, 39, 0

• v = 16: 12, 13, 8, 7, 2, 3, 40, 41, 6, 5, 4, 38, 37, 36, 35, 1, 0, 39, 51, 50, 49, 30, 29,
34, 33, 32, 31, 26, 25, 24, 23, 28, 27, 48, 47, 46, 45, 18, 17, 22, 21, 20, 19, 14, 15,
44, 43, 42, 9, 10, 11

• v = 17: 38, 4, 3, 2, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49, 48, 27, 26, 31, 30, 29, 28,
23, 22, 21, 20, 25, 24, 47, 46, 45, 18, 19, 14, 13, 12, 43, 44, 15, 16, 11, 10, 5, 6, 7, 8,
9, 42, 41, 40, 39, 0

• v = 18: 38, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 47, 24, 23, 28, 27, 26, 25, 20, 19,
14, 15, 44, 45, 46, 21, 22, 17, 16, 11, 10, 9, 8, 13, 12, 43, 42, 41, 40, 3, 4, 5, 6, 7, 2,
1, 35, 36, 51, 39, 0

• v = 19: 38, 4, 3, 2, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49, 48, 27, 28, 29, 30, 31, 26,
25, 20, 21, 46, 47, 24, 23, 22, 17, 18, 45, 44, 43, 12, 13, 14, 15, 16, 11, 10, 5, 6, 7, 8,
9, 42, 41, 40, 39, 0

• v = 20: 38, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 47, 24, 25, 26, 27, 28, 23, 22, 21,
46, 45, 44, 15, 14, 19, 18, 17, 16, 11, 10, 9, 8, 13, 12, 43, 42, 41, 40, 3, 4, 5, 6, 7, 2,
1, 35, 36, 51, 39, 0

• v = 21: 38, 4, 3, 2, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49, 48, 27, 26, 31, 30, 29, 28,
23, 22, 17, 18, 19, 20, 25, 24, 47, 46, 45, 44, 43, 12, 13, 14, 15, 16, 11, 10, 5, 6, 7, 8,
9, 42, 41, 40, 39, 0

• v = 22: 38, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 47, 24, 23, 28, 27, 26, 25, 20, 21,
46, 45, 44, 15, 14, 19, 18, 17, 16, 11, 10, 9, 8, 13, 12, 43, 42, 41, 40, 3, 4, 5, 6, 7, 2,
1, 35, 36, 51, 39, 0

• v = 23: 38, 4, 3, 2, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49, 48, 27, 28, 29, 30, 31, 26,
25, 24, 47, 46, 45, 18, 17, 22, 21, 20, 19, 14, 13, 12, 43, 44, 15, 16, 11, 10, 5, 6, 7, 8,
9, 42, 41, 40, 39, 0

• v = 24: 38, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 47, 46, 21, 22, 23, 28, 27, 26, 25,
20, 19, 14, 15, 44, 45, 18, 17, 16, 11, 10, 9, 8, 13, 12, 43, 42, 41, 40, 3, 4, 5, 6, 7, 2,
1, 35, 36, 51, 39, 0
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• v = 25: 38, 4, 3, 2, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49, 48, 27, 26, 31, 30, 29, 28,
23, 24, 47, 46, 45, 18, 17, 22, 21, 20, 19, 14, 13, 12, 43, 44, 15, 16, 11, 10, 5, 6, 7, 8,
9, 42, 41, 40, 39, 0

• v = 26: 38, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 27, 28, 23, 22, 21, 20, 25, 24, 47,
46, 45, 44, 15, 14, 19, 18, 17, 16, 11, 10, 9, 8, 13, 12, 43, 42, 41, 40, 3, 4, 5, 6, 7, 2,
1, 35, 36, 51, 39, 0

• v = 27: 38, 4, 3, 2, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49, 48, 47, 24, 23, 28, 29, 30,
31, 26, 25, 20, 19, 18, 17, 22, 21, 46, 45, 44, 43, 12, 13, 14, 15, 16, 11, 10, 5, 6, 7, 8,
9, 42, 41, 40, 39, 0

• v = 28: 38, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 27, 26, 25, 20, 21, 22, 23, 24, 47,
46, 45, 44, 15, 14, 19, 18, 17, 16, 11, 10, 9, 8, 13, 12, 43, 42, 41, 40, 3, 4, 5, 6, 7, 2,
1, 35, 36, 51, 39, 0

• v = 29: 38, 4, 3, 2, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49, 30, 31, 26, 25, 24, 23, 28,
27, 48, 47, 46, 45, 18, 17, 22, 21, 20, 19, 14, 13, 12, 43, 44, 15, 16, 11, 10, 5, 6, 7, 8,
9, 42, 41, 40, 39, 0

• v = 30: 38, 37, 32, 31, 26, 27, 28, 29, 34, 33, 50, 49, 48, 47, 46, 21, 22, 23, 24, 25,
20, 19, 14, 15, 44, 45, 18, 17, 16, 11, 10, 9, 8, 13, 12, 43, 42, 41, 40, 3, 4, 5, 6, 7, 2,
1, 35, 36, 51, 39, 0

• v = 31: 38, 4, 3, 2, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49, 30, 29, 28, 23, 24, 25, 26,
27, 48, 47, 46, 45, 18, 17, 22, 21, 20, 19, 14, 13, 12, 43, 44, 15, 16, 11, 10, 5, 6, 7, 8,
9, 42, 41, 40, 39, 0

• v = 32: 38, 37, 36, 35, 1, 2, 7, 6, 5, 4, 3, 40, 41, 42, 43, 12, 13, 8, 9, 10, 11, 16, 17,
18, 19, 14, 15, 44, 45, 46, 47, 24, 23, 22, 21, 20, 25, 26, 31, 30, 49, 48, 27, 28, 29,
34, 33, 50, 51, 39, 0

• v = 33: 38, 4, 3, 2, 1, 35, 34, 29, 30, 31, 32, 37, 36, 51, 50, 49, 48, 47, 24, 23, 28,
27, 26, 25, 20, 19, 18, 17, 22, 21, 46, 45, 44, 43, 12, 13, 14, 15, 16, 11, 10, 5, 6, 7, 8,
9, 42, 41, 40, 39, 0

• v = 34: 38, 37, 32, 33, 50, 49, 48, 27, 26, 31, 30, 29, 28, 23, 22, 21, 20, 25, 24, 47,
46, 45, 44, 15, 14, 19, 18, 17, 16, 11, 10, 9, 8, 13, 12, 43, 42, 41, 40, 3, 4, 5, 6, 7, 2,
1, 35, 36, 51, 39, 0

• v = 35: 38, 4, 3, 40, 39, 51, 36, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 47, 24, 23, 28,
27, 26, 25, 20, 19, 18, 17, 22, 21, 46, 45, 44, 43, 12, 13, 14, 15, 16, 11, 10, 5, 6, 41,
42, 9, 8, 7, 2, 1, 0

• v = 36: 38, 37, 32, 31, 26, 27, 28, 29, 30, 49, 48, 47, 46, 21, 22, 23, 24, 25, 20, 19,
14, 15, 44, 45, 18, 17, 16, 11, 10, 9, 8, 13, 12, 43, 42, 41, 40, 3, 4, 5, 6, 7, 2, 1, 35,
34, 33, 50, 51, 39, 0

• v = 37: 38, 4, 3, 2, 1, 35, 36, 51, 50, 49, 30, 29, 34, 33, 32, 31, 26, 25, 24, 23, 28,
27, 48, 47, 46, 45, 18, 17, 22, 21, 20, 19, 14, 13, 12, 43, 44, 15, 16, 11, 10, 5, 6, 7, 8,
9, 42, 41, 40, 39, 0

• v = 38: 12, 13, 8, 7, 2, 3, 4, 5, 6, 41, 40, 39, 0, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49,
48, 27, 26, 31, 30, 29, 28, 23, 22, 21, 46, 47, 24, 25, 20, 19, 14, 15, 16, 17, 18, 45,
44, 43, 42, 9, 10, 11
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• v = 39: 38, 4, 5, 6, 7, 2, 3, 40, 41, 42, 43, 12, 13, 8, 9, 10, 11, 16, 17, 18, 19, 14, 15,
44, 45, 46, 47, 24, 23, 22, 21, 20, 25, 26, 31, 30, 29, 28, 27, 48, 49, 50, 51, 36, 37,
32, 33, 34, 35, 1, 0

• v = 40: 12, 13, 14, 15, 44, 43, 42, 41, 6, 5, 10, 9, 8, 7, 2, 3, 4, 38, 37, 36, 35, 1, 0,
39, 51, 50, 49, 30, 29, 34, 33, 32, 31, 26, 25, 24, 23, 28, 27, 48, 47, 46, 45, 18, 19,
20, 21, 22, 17, 16, 11

• v = 41: 38, 4, 5, 6, 7, 8, 13, 12, 43, 42, 9, 10, 11, 16, 17, 18, 19, 14, 15, 44, 45, 46,
47, 24, 23, 22, 21, 20, 25, 26, 31, 30, 29, 28, 27, 48, 49, 50, 51, 36, 37, 32, 33, 34,
35, 1, 2, 3, 40, 39, 0

• v = 42: 38, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 47, 24, 23, 28, 27, 26, 25, 20, 19,
18, 17, 22, 21, 46, 45, 44, 43, 12, 13, 14, 15, 16, 11, 10, 9, 8, 7, 2, 3, 4, 5, 6, 41, 40,
39, 51, 36, 35, 1, 0

• v = 43: 12, 13, 8, 7, 6, 5, 10, 9, 42, 41, 40, 39, 0, 1, 2, 3, 4, 38, 37, 32, 33, 34, 35,
36, 51, 50, 49, 48, 27, 26, 31, 30, 29, 28, 23, 22, 21, 20, 25, 24, 47, 46, 45, 44, 15,
14, 19, 18, 17, 16, 11

• v = 44: 38, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 47, 24, 25, 26, 27, 28, 23, 22, 17,
18, 45, 46, 21, 20, 19, 14, 15, 16, 11, 10, 9, 8, 13, 12, 43, 42, 41, 40, 3, 4, 5, 6, 7, 2,
1, 35, 36, 51, 39, 0

• v = 45: 38, 4, 3, 2, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49, 48, 27, 28, 29, 30, 31, 26,
25, 20, 21, 46, 47, 24, 23, 22, 17, 18, 19, 14, 13, 12, 43, 44, 15, 16, 11, 10, 5, 6, 7, 8,
9, 42, 41, 40, 39, 0

• v = 46: 38, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 47, 24, 25, 26, 27, 28, 23, 22, 21,
20, 19, 14, 15, 44, 45, 18, 17, 16, 11, 10, 9, 8, 13, 12, 43, 42, 41, 40, 3, 4, 5, 6, 7, 2,
1, 35, 36, 51, 39, 0

• v = 47: 38, 4, 3, 2, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49, 48, 27, 26, 31, 30, 29, 28,
23, 24, 25, 20, 19, 18, 17, 22, 21, 46, 45, 44, 43, 12, 13, 14, 15, 16, 11, 10, 5, 6, 7, 8,
9, 42, 41, 40, 39, 0

• v = 48: 38, 37, 32, 31, 30, 49, 50, 33, 34, 29, 28, 27, 26, 25, 20, 21, 22, 23, 24, 47,
46, 45, 44, 15, 14, 19, 18, 17, 16, 11, 10, 9, 8, 13, 12, 43, 42, 41, 40, 3, 4, 5, 6, 7, 2,
1, 35, 36, 51, 39, 0

• v = 49: 38, 4, 3, 2, 1, 35, 34, 33, 50, 51, 36, 37, 32, 31, 30, 29, 28, 23, 24, 25, 26,
27, 48, 47, 46, 45, 18, 17, 22, 21, 20, 19, 14, 13, 12, 43, 44, 15, 16, 11, 10, 5, 6, 7, 8,
9, 42, 41, 40, 39, 0

• v = 50: 38, 37, 32, 33, 34, 29, 28, 27, 26, 31, 30, 49, 48, 47, 46, 21, 22, 23, 24, 25,
20, 19, 14, 15, 44, 45, 18, 17, 16, 11, 10, 9, 8, 13, 12, 43, 42, 41, 40, 3, 4, 5, 6, 7, 2,
1, 35, 36, 51, 39, 0

• v = 51: 38, 4, 3, 2, 1, 35, 36, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 47, 24, 23, 28,
27, 26, 25, 20, 19, 18, 17, 22, 21, 46, 45, 44, 43, 12, 13, 14, 15, 16, 11, 10, 5, 6, 7, 8,
9, 42, 41, 40, 39, 0


	Introduction
	Fiorini's theorem revisited
	On a theorem of Steffen on hypohamiltonian snarks
	Rectifying Steffen's proof
	Orders of hypohamiltonian snarks
	Hypohamiltonian and irreducible snarks

	On a conjecture of Steffen on hypohamiltonian snarks

