236 research outputs found

    Exponential Strong Converse for Successive Refinement with Causal Decoder Side Information

    Full text link
    We consider the kk-user successive refinement problem with causal decoder side information and derive an exponential strong converse theorem. The rate-distortion region for the problem can be derived as a straightforward extension of the two-user case by Maor and Merhav (2008). We show that for any rate-distortion tuple outside the rate-distortion region of the kk-user successive refinement problem with causal decoder side information, the joint excess-distortion probability approaches one exponentially fast. Our proof follows by judiciously adapting the recently proposed strong converse technique by Oohama using the information spectrum method, the variational form of the rate-distortion region and H\"older's inequality. The lossy source coding problem with causal decoder side information considered by El Gamal and Weissman is a special case (k=1k=1) of the current problem. Therefore, the exponential strong converse theorem for the El Gamal and Weissman problem follows as a corollary of our result

    On the generality of symmetry breaking and dissipative freezing in quantum trajectories

    Full text link
    Recently, several studies involving open quantum systems which possess a strong symmetry have observed that every individual trajectory in the Monte Carlo unravelling of the master equation will dynamically select a specific symmetry sector to freeze into in the long-time limit. This phenomenon has been termed dissipative freezing, and in this paper we argue, by presenting several simple mathematical perspectives on the problem, that it is a general consequence of the presence of a strong symmetry in an open system with only a few exceptions. Using a number of example systems we illustrate these arguments, uncovering an explicit relationship between the spectral properties of the Liouvillian in off-diagonal symmetry sectors and the time it takes for freezing to occur. In the limiting case that eigenmodes with purely imaginary eigenvalues are manifest in these sectors, freezing fails to occur. Such modes indicate the preservation of information and coherences between symmetry sectors of the system and can lead to phenomena such as non-stationarity and synchronisation. The absence of freezing at the level of a single quantum trajectory provides a simple, computationally efficient way of identifying these traceless modes.Comment: Version 4 (mostly grammatical changes from previous version): 21 Pages, 4 Figures, 1 Tabl

    Decoding Protocols for Classical Communication on Quantum Channels

    Full text link
    We study the problem of decoding classical information encoded on quantum states at the output of a quantum channel, with particular focus on increasing the communication rates towards the maximum allowed by Quantum Mechanics. After a brief introduction to the main theoretical formalism employed in the rest of the thesis, i.e., continuous-variable Quantum Information Theory and Quantum Communication Theory, we consider several decoding schemes. First, we treat the problem from an abstract perspective, presenting a method to decompose any quantum measurement into a sequence of easier nested measurements through a binary-tree search. Furthermore we show that this decomposition can be used to build a capacity-achieving decoding protocol for classical communication on quantum channels and to solve the optimal discrimination of some sets of quantum states. These results clarify the structure of optimal quantum measurements, showing that it can be recast in a more operational and experimentally-oriented fashion. Second, we consider a more practical approach and describe three receiver structures for coherent states of the electromagnetic field with applications to single-mode state discrimination and multi-mode decoding at the output of a quantum channel. We treat the problem bearing in mind the technological limitations faced nowadays in the field of optical communications: we evaluate the performance of general decoding schemes based on such technology and report increased performance of two schemes, the first one employing a non-Gaussian transformation and the second one employing a code tailored to be read out easily by the most common detectors. Eventually we characterize a large class of multi-mode adaptive receivers based on common technological resources, obtaining a no-go theorem for their capacity.Comment: PhD thesis. 171 pages, 16 figure

    On the information theory of clustering, registration, and blockchains

    Get PDF
    Progress in data science depends on the collection and storage of large volumes of reliable data, efficient and consistent inference based on this data, and trusting such computations made by untrusted peers. Information theory provides the means to analyze statistical inference algorithms, inspires the design of statistically consistent learning algorithms, and informs the design of large-scale systems for information storage and sharing. In this thesis, we focus on the problems of reliability, universality, integrity, trust, and provenance in data storage, distributed computing, and information processing algorithms and develop technical solutions and mathematical insights using information-theoretic tools. In unsupervised information processing we consider the problems of data clustering and image registration. In particular, we evaluate the performance of the max mutual information method for image registration by studying its error exponent and prove its universal asymptotic optimality. We further extend this to design the max multiinformation method for universal multi-image registration and prove its universal asymptotic optimality. We then evaluate the non-asymptotic performance of image registration to understand the effects of the properties of the image transformations and the channel noise on the algorithms. In data clustering we study the problem of independence clustering of sources using multivariate information functionals. In particular, we define consistent image clustering algorithms using the cluster information, and define a new multivariate information functional called illum information that inspires other independence clustering methods. We also consider the problem of clustering objects based on labels provided by temporary and long-term workers in a crowdsourcing platform. Here we define budget-optimal universal clustering algorithms using distributional identicality and temporal dependence in the responses of workers. For the problem of reliable data storage, we consider the use of blockchain systems, and design secure distributed storage codes to reduce the cost of cold storage of blockchain ledgers. Additionally, we use dynamic zone allocation strategies to enhance the integrity and confidentiality of these systems, and frame optimization problems for designing codes applicable for cloud storage and data insurance. Finally, for the problem of establishing trust in computations over untrusting peer-to-peer networks, we develop a large-scale blockchain system by defining the validation protocols and compression scheme to facilitate an efficient audit of computations that can be shared in a trusted manner across peers over the immutable blockchain ledger. We evaluate the system over some simple synthetic computational experiments and highlights its capacity in identifying anomalous computations and enhancing computational integrity

    Shannon Information and Kolmogorov Complexity

    Full text link
    We compare the elementary theories of Shannon information and Kolmogorov complexity, the extent to which they have a common purpose, and where they are fundamentally different. We discuss and relate the basic notions of both theories: Shannon entropy versus Kolmogorov complexity, the relation of both to universal coding, Shannon mutual information versus Kolmogorov (`algorithmic') mutual information, probabilistic sufficient statistic versus algorithmic sufficient statistic (related to lossy compression in the Shannon theory versus meaningful information in the Kolmogorov theory), and rate distortion theory versus Kolmogorov's structure function. Part of the material has appeared in print before, scattered through various publications, but this is the first comprehensive systematic comparison. The last mentioned relations are new.Comment: Survey, LaTeX 54 pages, 3 figures, Submitted to IEEE Trans Information Theor

    Learning to compress and search visual data in large-scale systems

    Full text link
    The problem of high-dimensional and large-scale representation of visual data is addressed from an unsupervised learning perspective. The emphasis is put on discrete representations, where the description length can be measured in bits and hence the model capacity can be controlled. The algorithmic infrastructure is developed based on the synthesis and analysis prior models whose rate-distortion properties, as well as capacity vs. sample complexity trade-offs are carefully optimized. These models are then extended to multi-layers, namely the RRQ and the ML-STC frameworks, where the latter is further evolved as a powerful deep neural network architecture with fast and sample-efficient training and discrete representations. For the developed algorithms, three important applications are developed. First, the problem of large-scale similarity search in retrieval systems is addressed, where a double-stage solution is proposed leading to faster query times and shorter database storage. Second, the problem of learned image compression is targeted, where the proposed models can capture more redundancies from the training images than the conventional compression codecs. Finally, the proposed algorithms are used to solve ill-posed inverse problems. In particular, the problems of image denoising and compressive sensing are addressed with promising results.Comment: PhD thesis dissertatio

    Cryptology in the Crowd

    Get PDF
    Uhell skjer: Kanskje mistet du nøkkelen til huset, eller hadde PIN-koden til innbruddsalarmen skrevet på en dårlig plassert post-it lapp. Og kanskje endte de slik opp i hendene på feil person, som nå kan påføre livet ditt all slags ugagn: Sikkerhetssystemer gir ingen garantier når nøkler blir stjålet og PIN-koder lekket. Likevel burde naboen din, hvis nøkkel-og-PIN-kode rutiner er heller vanntette, kunne føle seg trygg i vissheten om at selv om du ikke evner å sikre huset ditt mot innbrudd, så forblir deres hjem trygt. Det er tilsvarende for kryptologi, som også lener seg på at nøkkelmateriale hemmeligholdes for å kunne garantere sikkerhet: Intuitivt forventer man at kjennskap til ett systems hemmelige nøkkel ikke burde være til hjelp for å bryte inn i andre, urelaterte systemer. Men det har vist seg overraskende vanskelig å sette denne intuisjonen på formell grunn, og flere konkurrerende sikkerhetsmodeller av varierende styrke har oppstått. Det blir dermed naturlig å spørre seg: Hvilken formalisme er den riktige når man skal modellere realistiske scenarioer med mange brukere og mulige lekkasjer? Eller: hvordan bygger man kryptografi i en folkemengde? Artikkel I begir seg ut på reisen mot et svar ved å sammenligne forskjellige flerbrukervarianter av sikkerhetsmodellen IND-CCA, med og uten evnen til å motta hemmelige nøkler tilhørende andre brukere. Vi finner et delvis svar ved å vise at uten denne evnen, så er noen modeller faktisk å foretrekke over andre. Med denne evnen, derimot, forblir situasjonen uavklart. Artikkel II tar et sidesteg til et sett relaterte sikkerhetsmodeller hvor, heller enn å angripe én enkelt bruker (ut fra en mengde av mulige ofre), angriperen ønsker å bryte kryptografien til så mange brukere som mulig på én gang. Man ser for seg en uvanlig mektig motstander, for eksempel en statssponset aktør, som ikke har problemer med å bryte kryptografien til en enkelt bruker: Målet skifter dermed fra å garantere trygghet for alle brukerne, til å gjøre masseovervåking så vanskelig som mulig, slik at det store flertall av brukere kan forbli sikret. Artikkel III fortsetter der Artikkel I slapp ved å sammenligne og systematisere de samme IND-CCA sikkerhetsmodellene med en større mengde med sikkerhetsmodeller, med det til felles at de alle modellerer det samme (eller lignende) scenarioet. Disse modellene, som går under navnene SOA (Selective Opening Attacks; utvalgte åpningsangrep) og NCE (Non-Committing Encryption; ikke-bindende kryptering), er ofte vesentlig sterkere enn modellene studert i Artikkel I. Med et system på plass er vi i stand til å identifisere en rekke hull i litteraturen; og dog vi tetter noen, etterlater vi mange som åpne problemer.Accidents happen: you may misplace the key to your home, or maybe the PIN to your home security system was written on an ill-placed post-it note. And so they end up in the hands of a bad actor, who is then granted the power to wreak all kinds of havoc in your life: the security of your home grants no guarantees when keys are stolen and PINs are leaked. Nonetheless your neighbour, whose key-and-pin routines leave comparatively little to be desired, should feel safe that just because you can’t keep your house safe from intruders, their home remains secured. It is likewise with cryptography, whose security also relies on the secrecy of key material: intuitively, the ability to recover the secret keys of other users should not help an adversary break into an uncompromised system. Yet formalizing this intuition has turned out tricky, with several competing notions of security of varying strength. This begs the question: when modelling a real-world scenario with many users, some of which may be compromised, which formalization is the right one? Or: how do we build cryptology in a crowd? Paper I embarks on the quest to answer the above questions by studying how various notions of multi-user IND-CCA compare to each other, with and without the ability to adaptively compromise users. We partly answer the question by showing that, without compromise, some notions of security really are preferable over others. Still, the situation is left largely open when compromise is accounted for. Paper II takes a detour to a related set of security notions in which, rather than attacking a single user, an adversary seeks to break the security of many. One imagines an unusually powerful adversary, for example a state-sponsored actor, for whom brute-forcing a single system is not a problem. Our goal then shifts from securing every user to making mass surveillance as difficult as possible, so that the vast majority of uncompromised users can remain secure. Paper III picks up where Paper I left off by comparing and systemizing the same security notions with a wider array of security notions that aim to capture the same (or similar) scenarios. These notions appear under the names of Selective Opening Attacks (SOA) and Non-Committing Encryption (NCE), and are typically significantly stronger than the notions of IND-CCA studied in Paper I. With a system in place, we identify and highlight a number of gaps, some of which we close, and many of which are posed as open problems.Doktorgradsavhandlin
    corecore