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ABSTRACT

Progress in data science depends on the collection and storage of large volumes of reliable

data, efficient and consistent inference based on this data, and trusting such computations

made by untrusted peers. Information theory provides the means to analyze statistical

inference algorithms, inspires the design of statistically consistent learning algorithms, and

informs the design of large-scale systems for information storage and sharing. In this thesis,

we focus on the problems of reliability, universality, integrity, trust, and provenance in data

storage, distributed computing, and information processing algorithms and develop technical

solutions and mathematical insights using information-theoretic tools.

In unsupervised information processing we consider the problems of data clustering and

image registration. In particular, we evaluate the performance of the max mutual informa-

tion method for image registration by studying its error exponent and prove its universal

asymptotic optimality. We further extend this to design the max multiinformation method

for universal multi-image registration and prove its universal asymptotic optimality. We then

evaluate the non-asymptotic performance of image registration to understand the effects of

the properties of the image transformations and the channel noise on the algorithms.

In data clustering we study the problem of independence clustering of sources using mul-

tivariate information functionals. In particular, we define consistent image clustering algo-

rithms using the cluster information, and define a new multivariate information functional

called illum information that inspires other independence clustering methods. We also con-

sider the problem of clustering objects based on labels provided by temporary and long-term

workers in a crowdsourcing platform. Here we define budget-optimal universal clustering

algorithms using distributional identicality and temporal dependence in the responses of

workers.

For the problem of reliable data storage, we consider the use of blockchain systems, and

design secure distributed storage codes to reduce the cost of cold storage of blockchain

ledgers. Additionally, we use dynamic zone allocation strategies to enhance the integrity

and confidentiality of these systems, and frame optimization problems for designing codes

applicable for cloud storage and data insurance.
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Finally, for the problem of establishing trust in computations over untrusting peer-to-peer

networks, we develop a large-scale blockchain system by defining the validation protocols

and compression scheme to facilitate an efficient audit of computations that can be shared

in a trusted manner across peers over the immutable blockchain ledger. We evaluate the

system over some simple synthetic computational experiments and highlights its capacity in

identifying anomalous computations and enhancing computational integrity.
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CHAPTER 1

INTRODUCTION

We live in an age of explosive data acquisition rates, in a variety of forms such as pictures,

videos, text, and voice. By 2023, it is projected that the per capita amount of data stored in

the world will exceed the entire Library of Congress (1014 bits) based on when Shannon first

estimated it in 1949 [1, 2]. Availability and access to so much information has also paved

way for the creation of an environment of large-scale information processing. We constantly

use such information processing systems on a daily basis, such as mobile assistants and

recommendation systems. This big data era has also introduced us to a new set of problems

on reliability, universality, integrity, trust, and provenance in data and computations.

To be precise, the growth in machine learning has resulted in a plethora of increasingly

efficient information processing algorithms to better process complex, increasing volumes

of data better. Information processing algorithms are in fact increasingly used in fields

such as medicine [3], law [4], scientific discovery [5], automation [6], agriculture [7], and a

variety of day-to-day applications. However, AI often lacks concrete performance guarantees

for the task that they are applied for. With applications such as medicine and law that

have far-reaching consequences, it is critical that we have a strong characterization of the

reliability of the methods employed. In particular, it is important to develop clear theoretical

guarantees on the performance of machine learning algorithms in tasks such as classification,

recommendation, and prediction. Such guarantees go a long way in not only establishing

confidence in their adoption into practice, but also fuel the development of new and novel

information processing algorithms.

Data collected is also drawn from an increasingly diverse set of sources, varying both in the

type of data such as text, speech, images, and videos, but also in the statistical properties

governing the data [2]. This large diversity poses a problem in that it is increasingly dif-

ficult to develop information processing algorithms designed to address specific data types

and inference tasks. That is, it is important to be able to develop universal information

processing algorithms that can work on large classes of data sources. Further, most of the

learning carried out by people and animals is unsupervised—we largely learn how to think

by observing the unlabeled world. However machines have been far from universally capable
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of reliable unsupervised learning. A central problem of interest in data science has been the

design of efficient and reliable unsupervised learning algorithms.

Additionally, given the importance of data in current society, the veracity and provenance

of data, though often ignored, are crucial to reliable data analysis. Data collection and

sharing forms an important first step to learning, and the secure storage of these large

datasets, in a manner that the empirical samples are not corrupted is important. Further,

considering the interconnected and interdependent nature of data collection, management,

and processing, it is important to design efficient data storage and sharing mechanisms that

guarantee the integrity of the data. Not only do we require the data to be shared among

several entities, we also need to ensure that the cost of storage is minimized, and the system

protects against loss of data from adversarial and technical corruptions.

Another problem area of growing significance involves the issues of fairness, accountability,

and transparency in information processing systems [8, 9]. Individual agents do not process

the information on their own. Data is often communicated to cloud systems that perform

the inference task, rather than relying on on-device computations. Thus information pro-

cessing is very much a distributed task, in that several agents are involved in performing the

computation with data. In an adversarial environment, such distributed computing ends up

being untrusted. Guaranteeing validity of the computations performed by untrusting agents

can go a long way in the adoption of new and novel information processing systems. This is

particularly observed in scientific discovery and policy design where, owing to the participa-

tion of a large number of untrusted agents, one is unclear of what computational results are

valid and can be trusted. Establishing an environment of distributed computational trust

can improve scientific discovery and policy design.

The accountability requirement for computations also extends to the data. It is indeed

important that we have reliable knowledge of the data sources and can hold them accountable

for any possible misinformation or ethical violations in data shared [10]. We live in an

age of automated information generation systems that are capable of creating and sharing

misinformation [11], and such misinformation is having significant consequences on everyday

decision making. It is thus imperative that data storage and sharing pipelines establish data

provenance and a mechanism to trace data back to their source reliably, so as to hold them

accountable.

Thus, we are not only in need of efficient solutions for information storage, sharing, and

processing, but also require a clearer understanding and theoretical analysis of information

processing algorithms. This thesis is composed to two components that respectively focus on

addressing some of these issues in unsupervised learning, and through the use of blockchain

systems.
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1.1 Thesis Composition

The thesis is composed of two main parts. First, we explore the problems of reliability and

universality in information processing through information-theoretic analysis and design of

novel algorithms for clustering and registration. Next, we consider the problems of integrity

and reliability in data storage, sharing, and distributed computing through the use of scalable

blockchain systems. A brief outline of the thesis is given here.

1.1.1 Unsupervised, Reliable Information Processing Using Universal
Information Theory

Unsupervised information processing algorithms are critical for efficient data management

and statistical inference. Whether grouping behavioral traces into categories to understand

their neural correlates [12], or aligning medical images [13], or extracting independent fea-

tures from sensor measurements [14], the importance of unsupervised learning to data sci-

ence cannot be overstated. Making sense of such large volumes of data, e.g. for statistical

inference, requires extensive, efficient preprocessing to transform the data into meaningful,

readable forms.

Much research effort has been expended in finding natural mathematical notions that are

useful in developing/evaluating unsupervised learning algorithms in these terms, such as

clustering [15]. Recently the “strengths” of supervised learning have been preferred over

“subjectivity” of unsupervised learning [16, p. 159]. Deep learning has largely driven this

growth in interest in supervised learning. However, results for unsupervised learning pale

in comparison [17]. Is it possible to make sense of data without people to provide labels?

This question forms the backbone of artificial general intelligence [18]. To move beyond

data-intensive supervised learning methods, there is growing interest in unsupervised learn-

ing problems such as density/support estimation, clustering, and independent component

analysis. A careful choice and application of unsupervised methods often reveal structure in

the data that is otherwise not evident.

In this thesis, we draw on insights from universal information theory, to design and analyze

unsupervised learning algorithms from the perspective of image registration and data clus-

tering problems. By universality, we mean that the system does not have prior access to the

statistical properties of the data to be clustered, nor does it have a strong sense of the appro-

priate notion of similarity to measure which objects are close to one another. A wide variety

of universal encoders and decoders have been designed for the problems of compression, both

lossless [19–22] and lossy [23–25]. Likewise, several studies in information theory have also
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considered the problem of universal communication for a variety of channels [26–29].

In his Shannon lecture, Jorma Rissanen discussed the philosophical undertones of similar-

ity between data compression and estimation theory with a disclaimer [30]:

in data compression the shortest code length cannot be achieved without taking

advantage of the regular features in data, while in estimation it is these regular

features, the underlying mechanism, that we want to learn . . . like a jigsaw puzzle

where the pieces almost fit but not quite, and, moreover, vital pieces were missing.

This observation is significant not only in reaffirming the connection between the two fields,

but also in highlighting the fact that the unification/translation of ideas often requires closer

inspection and some additional effort. Drawing inspiration from this connection, we build

on results in universal information theory to design and analyze unsupervised information

processing algorithms.

First, in Chapter 2, we consider the task of image registration (aligning copies of an

image). We consider the max mutual information (MMI) method for image registration,

and use the method of types to prove asymptotic optimality of the method. We then extend

the method to design the max multiinformation method for multi-image alignment. We also

consider large-scale registration with limited image resolution and identify sample complexity

of consistent registration of images.

Then, in Chapter 3 we study the fundamental limits of channel-aware two-image reg-

istration in the finite-sample context. In particular, we use the Berry-Esseen central limit

theorem and strong large deviations analysis respectively to obtain achievable arguments

on the tradeoff between the sample size and the information content in the channel. We

also study the universal delay estimation problem, which is a simplified version of the image

registration problem, and use a tighter analysis of the method of types to understand the

performance of the MMI method with respect to the properties of the transformations of the

sequences.

Next, in Chapter 4, we explore unsupervised clustering of random variables. In par-

ticular, we study joint registration and clustering of images using multivariate information

functionals and study their consistency under various clustering criteria. We highlight the

role of multivariate information functionals in independence clustering. We also define and

introduce new multivariate information functionals, illum and sum information, and study

their functional and operational properties that inspire new information-based algorithms

for independence clustering.

We continue our explorations of the clustering problem in Chapter 5 where we study the

task of clustering objects based on crowdsourced responses. In particular we study responses
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generated by temporary and long-term workers, and design budget-optimal universal algo-

rithms that are unaware of the reliabilities of the workers. In particular, we highlight the cost

of clustering under the Hamming loss as a function of the number of objects to be clustered

and the difficulty of the clustering problem for both classes of responses that are independent

and dependent across tasks using distance and information functionals respectively.

1.1.2 Integrity and Provenance in Data and Computation Using
Blockchain Systems

As highlighted earlier, the veracity and provenance of data, though often ignored, are crucial

to reliable data analysis. Data collection forms an important first step to learning, and the

secure storage and sharing of these large datasets, in a manner that the samples are not

corrupted is important. Additionally we are also keen on establishing provenance of data to

have a reliable and trusted record of the data source, so as to hold agents accountable for

their data.

Blockchain systems have emerged as viable candidates for secure storage of information,

owing to the immutability property of the hash chains. Separate from their role in the cre-

ation of cryptocurrencies and a decentralized economy, blockchains hold significant potential

for establishing trust in information-sharing systems. This is precisely quoted in [31]:

blockchain . . . is a new organizing paradigm for the discovery, valuation, and

transfer of all quanta (discrete units) of anything for the coordination of all

human activity at a much larger scale than has been possible before.

Beside offering a secure storage mechanism, they also provide an avenue for data sharing

and thus an avenue for open data science and reproducibility. New mechanisms have been

developed for cloud storage [32], electronic heath records [33, 34], personal data [35], and

financial accounting [36].

However, blockchain systems also result in significant storage costs owing to the replicated

storage of all data at all peers in the network. This is particularly tedious for systems that

collect massive volumes of data [37–39]. Thus, any system developed for storing and sharing

large datasets also requires solutions to address the scaling problem such that the peers

participating in the network share the information securely.

Analogously, the digital trust that is created by blockchains in a distributed network

of untrusting peers can be leveraged in creating a platform for trusted collaboration and

computations. In particular, blockchain systems allow for provenance, accountability, and

trust [40, 41]. This is established by the consensus on the transactions, the availability of
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local copies of the set of all transactions, and cryptographic security enabled by the hash

chains. Creating scalable blockchain-based platforms and interaction protocols that limit

the cost of communication between the peers, and the storage on the blockchain ledger.

In Chapter 6 we address this issue using distributed storage codes in conjunction with

blockchain systems to reduce this storage cost. We use a novel combination of secret sharing,

private key encryption, and distributed storage codes to provide a secure storage scheme,

wherein each peer stores a fraction of the data. In addition, we study the tradeoffs between

integrity, confidentiality, recovery, repair associated with the choice of the parameters of the

coding scheme. We also highlight some practical applications of the codes in the form of

cloud storage and data insurance.

Finally, we also aim to establish transparency, accountability, and trust in distributed com-

putational systems. This problem is addressed in Chapter 7 where we study a blockchain

system that records frequent audits of the computation, after performing recomputation-

based validation using endorsers. This sequence of audits provides a secure, and simple

verification mechanism for the computational pipeline. In particular, we design a novel

compression schema and validation protocol to establish trust in iterative and enumerative

computational experiments over a large peer-to-peer network.
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CHAPTER 2

UNIVERSAL IMAGE REGISTRATION:
ASYMPTOTIC OPTIMALITY

Suppose you have an unlabeled repository of MRI, CT, and PET scans of a brain region from

different stages of the diagnosis. You wish to align these images to the right orientation. In

this section, we address this problem using novel multivariate information functionals.

Image registration is the task of geometrically aligning two or more images of the same

scene taken at different points in time, from different viewpoints, or by different imaging

devices. It is a crucial step in tasks such as medical diagnosis [42], target detection [43], cryo-

electron microscopy [44], image fusion, remote sensing [45] and multimodal image restoration.

Different digital images of the same scene can differ significantly from each other, e.g., im-

ages that are negatives of each other. Such factors make image registration harder. Further,

such meta-data about the digital images is often not available a priori. This emphasizes the

need for universality, the design of reliable registration algorithms that work without specific

knowledge of priors or channel models that govern image generation.

Supervised learning for computer vision has gained prominence through deep convolutional

neural networks and other machine learning algorithms. However, these methods require vast

amounts of costly labeled training data. Thus, unsupervised methods are always of interest.

Multi-image registration has been studied extensively [46]. Prominent region-based regis-

tration methods include maximum likelihood (ML) [47], minimum KL divergence [48], corre-

lation detection [49], and maximum mutual information (MMI) [13,50]. Several feature-based

techniques have also been considered [51,52].

Lower bounds on mean squared error for image registration in the presence of additive

noise using Ziv-Zakai and Cramer-Rao bounds have been explored recently [53], [54]. The

MMI decoder was originally developed in universal communication [26]. Correctness of the

method in image registration using both deterministic reasons [55] and information-theoretic

arguments [56] have been identified.

A problem closely related to image registration is multireference alignment. There the

aim is to denoise a signal from noisy, circularly translated versions of itself, usually under

Gaussian or binary noise models [57–59]. Unlike denoising, we consider only registration,

but for a wider class of noise models in a universal setting.
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Figure 2.1: Model of the image registration problem: Pixels of the underlying scene are jointly
corrupted by DMC W and images are transformed by rigid body transformations π1, π2.

Although MMI performs well in numerous empirical studies, concrete theoretical guaran-

tees are still lacking. In this work, we extend the framework of universal delay estimation [60]

to derive universal asymptotic optimality guarantees for MMI in registering two images un-

der the Hamming loss, under mild assumptions on the image models [61, 62]. Further, we

show that MMI is strictly suboptimal for universal multi-image registration. We define the

max multiinformation (MM) algorithm instead for multi-image registration, and prove that

it is universally asymptotically optimal. Finally, we show the results of some experiments of

image registration using the algorithms on the CAVE multispectral image database [63].

2.1 System Model

We consider a simple image model, wherein each image is a noisy version of a collection of

n pixels drawn independently and identically from an unknown prior defined on a finite set

of pixel values [r] = {1, . . . , r}, as depicted in Fig. 2.1.

Let the scene captured by an image be an n-dimensional random vector, R ∼ P⊗nR .

Consider a collection of m images, each of which is a noisy depiction (channel output) of

the scene (source), i.e., outputs of a discrete memoryless channel (DMC) whose input is the

scene:

P
[
X̃[m]

∣∣∣R
]

=
n∏

i=1

W
(
X̃

[m]
i

∣∣∣Ri

)
, (2.1)
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where for any set S, XS = {Xi : i ∈ S}, and [m] = {1, . . . ,m}. That is, images are jointly

corrupted by a DMC, and the pixels of the images are independent of each other. Without

loss of generality, we assume X̃ ∈ [r]n.

Remark 1. The model of the image considered here is simpler than real images as it ex-

cludes the inter-pixel correlations. Correctness of the forthcoming registration and clustering

schemes holds for ergodic sources, but the error exponents are much harder to analyze.

In this work we consider registration done at the pixel level for ease of description. How-

ever, the same methods have been adapted to work with image patches by using independence

component analysis (ICA) [52]. That work considers registration of images at the level of

small patches, each of which are represented in terms of their ICA basis. For the DMC

model, we can define a common ICA basis for the image set. Thus, each image patch is

represented by the coefficients of the linear combination. In that model, the i.i.d. assumption

translates to one on these coefficients. Thus, even if pixels are not i.i.d., the assumption

remains reasonable at the feature level, and the results of the analysis are broadly retained.

Since images are modeled with i.i.d. pixels, distinguishing between alignments is to perform

independence testing. The Type-1 and Type-2 error exponents of independence testing are

given by the mutual information and the lautum information [64] of the channel. Thus, we

exclude the trivial case of channels with unbounded lautum information.

Corrupted images are also subject to independent rigid-body transformations of rotation

and translation on the discrete Z2-lattice. Conventional methods consider transforming the

pixels by a rotation of angle θ ∈ [0, 2π) followed by a translation of [tx, ty]
′ ∈ R2. Then, the

discrete equivalent of these transformations for a pixel at location [x, y]′ is obtained as

π([x, y]′) = D
([

cos θ − sin θ

sin θ cos θ

][
x

y

]
+

[
tx

ty

])
,

where D : R2 → Z2 is the rounding function mapping the real space to the discrete pixel

lattice, Z2. In general such mappings are not bijective, owing to the rounding operation.

In practice however, they are considered to be invertible through the use of a standard

backwards mapping given by π−1 = D ◦ π−1 [65].

However, we work with the class of discrete rigid body transformations, Π, for ease of

mathematical exposition. This set of transformations has been well studied, and the number

of such transformations of an image with n pixels on the Z2-lattice is polynomial in n, i.e.,

|Π| = O(nα) for some α ≤ 5 [65]. We assume Π is known.

Remark 2. In this work we do not consider a continuous transformation and resampling

model for the image registration task. The permutation model of transformations however
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not only generalizes the set of all rigid-body transformations, but is also a better model for the

algorithms that work with the pixels of the images. This model gives strong universal, theo-

retical insights into the problem, but the modeling assumptions can certainly be generalized

in future studies.

Since images are vectors of length n, we represent the transformations by permutations

of [n]. Let πj ∼ Unif(Π) be the transformation of image j. Then, the final image is

X
(j)
i = X̃

(j)
πj(i)

, for all i ∈ [n]. Image X transformed by π is depicted interchangeably as

π(X) = Xπ.

We assume Π forms a commutative algebra over the composition operator ◦. More specif-

ically,

• for π1, π2 ∈ Π, π1 ◦ π2 = π2 ◦ π1 ∈ Π;

• there exists unique π0 ∈ Π s.t. π0(i) = i, for all i ∈ [n];

• for any π ∈ Π, there exists a unique inverse π−1 ∈ Π, s.t. π−1 ◦ π = π ◦ π−1 = π0.

Even though this is not exactly true of rigid-body transformations, this assumption again

helps simplify the mathematical results. Note that the assumption does not remove anything

from the problem as conventionally it is presumed that the images undergo a rotation phase

followed by a translation phase.

Definition 1. The correct registration of an image X transformed by π ∈ Π is π̂ = π−1.

Definition 2. We now define a set of terms related to the set of permutations.

• A permutation cycle of π ∈ Π is a subset {i1, . . . , ik} of [n], such that π(ij) = ij+1, for

all j < k and π(ik) = i1. Let the number of permutation cycles of π be κπ.

• Identity block of π ∈ Π is the inclusion-wise maximal subset Iπ of [n] such that π(i) = i,

for all i ∈ Iπ.

• A permutation π is simple if κπ = 1, Iπ = ∅.

• Any two permutations π, π′ ∈ Π are said to be non-overlapping if π(i) 6= π′(i) for all

i ∈ [n].

By the pigeonhole principle, κπ ≥ 1 for any π 6= π0.

Lemma 1. Let π be chosen uniformly at random from the set of all permutations of [n].

Then for any constants c ∈ (0, 1], C > 0,

P [|Iπ| > cn] . exp (−cn) , P
[
κπ > C n

logn

]
= o(1). (2.2)
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Proof. First, we observe that the number of permutations that have an identity block of size

at least cn is given by

νc ≤
(
n

cn

)
((1− c)n)! =

n!

(cn)!
.

Thus, from Stirling’s approximation,

P [|Iπ| ≥ cn] ≤ 1√
2π

exp
(
−(cn+ 1

2
) log(cn) + cn

)
.

Lengths and number of cycles in a random permutation may be analyzed as detailed

in [66]. In particular, we note that for a random permutation π, E [κπ] = log n+O(1). Using

Markov’s inequality, the result follows.

Following Lem. 1, we assume that for any π ∈ Π, κπ = o (n/ log(n)), i.e., the number of

permutation cycles does not grow very fast. Further, let |Iπ| = o(n) for any π ∈ Π.

We now introduce formal metrics to quantify algorithm performance.

Definition 3. A universal image registration algorithm is a sequence of functions, Φ(n) :{
X(1), . . . ,X(m)

}
→ Πm, designed in the absence of knowledge of W and PR. Here, n

corresponds to the number of pixels in each image.

We focus on the 0-1 loss function to quantify performance.

Definition 4. The error probability of an algorithm Φ(n) that outputs (π̂1, . . . , π̂m) ∈ Πm is

Pe(Φ
(n)) = P

[
∪i∈[m]{π̂i 6= π−1

i }
]
. (2.3)

Definition 5. Alg. Φ(n) is asymptotically consistent if limn→∞ Pe(Φ
(n)) = 0, and is expo-

nentially consistent if limn→∞− logPe(Φ
(n)) > 0.

Definition 6. The error exponent of an algorithm Φ(n) is

E(Φ(n)) = lim
n→∞

− 1
n

logPe(Φ
(n)). (2.4)

We use Φ to denote Φ(n) when clear from context.

2.2 Registration of Two Images

We first consider the problem of registering two images, i.e., m = 2. Thus the problem

reduces to registering an image Y obtained as a result of transforming the output of an
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Figure 2.2: Two image registration model: We register image Y to reference X.

equivalent discrete memoryless channel W , given input image (reference) X. The channel

model is depicted in Fig. 2.2.

This problem has been well-studied in practice using the MMI method defined as

π̂MMI = arg max
π∈Π

Î(X;Yπ), (2.5)

where Î(X;Y ) is the mutual information of empirical distribution (plug-in estimate) P̂ (x, y) =
1
n

∑n
i=1 1 {Xi = x, Yi = y}, where 1 {·} is the indicator function. Note that MMI is universal.

Since transformations are chosen uniformly at random, the maximum likelihood (ML)

estimate is Bayes optimal:

π̂ML = arg max
π∈Π

n∏

i=1

W
(
Yπ(i)|Xi

)
. (2.6)

We first show that the MMI method, and consequently the ML method, are exponentially

consistent. We then show that the error exponent of MMI matches that of ML.

2.2.1 Exponential Consistency

The plug-in estimates of mutual information, given i.i.d. samples, are exponentially consistent

[67, Lem. 7].

Theorem 1. MMI and ML are exponentially consistent.

Proof. Let ΦMMI(X,Y) = π̂MMI and let the correct registration be π∗. Then,

Pe(ΦMMI) ≤
∑

π∈Π

P
[
Î(X;Yπ) > Î(X; Ỹ )

]
(2.7)

≤
∑

π∈Π

P
[
Î(X;Yπ) + |Î(X; Ỹ )− I(X; Ỹ )| > I(X; Ỹ )

]
(2.8)

≤ 2|Π| exp
{
−Cn(I(X; Ỹ ))4

}
, (2.9)

where (2.7) and (2.8) follow from the union bound, and the triangle inequality respectively.

Here, we know that I(X;Yπ) = cI(X;Y ), for some constant c < 1, as the identity block size

is o(n). So using union bound and [67, Lem. 7], for a constant C � r−2 we get (2.9). Since
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|Π| = O(nα), MMI is exponentially consistent. Finally, Pe(ΦML) ≤ Pe(ΦMMI) and thus, the

ML estimate is also exponentially consistent.

Theorem 1 implies there exists ε > 0 such that

E(ΦML) ≥ E(ΦMMI) ≥ ε.

2.2.2 Whittle’s Law and Markov Types

We now summarize a few results on the number of types and Markov types which are

eventually used to analyze the error exponent of image registration.

Consider a sequence x ∈ X n. The empirical distribution qX of x is the type of the sequence.

Let X ∼ qX be a dummy random variable. Let T nX be the set of all sequences of length n,

of type qX . The number of possible types of sequences of length n is polynomial in n, i.e.,

O(n|X |) [68].

The number of sequences of length n, of type qX , is

|T nX | =
n!∏

a∈X (nqX(a))!
.

From bounds on multinomial coefficients, the number of sequences of length n and type q is

bounded as [68]

(n+ 1)−|X |2nH(X) ≤ |T nX | ≤ 2nH(X). (2.10)

Consider a Markov chain defined on the space [k]. Given a sequence of n+1 samples from

[k] we can compute the matrix F of transition counts, where Fij corresponds to the number

of transitions from state i to state j. By Whittle’s formula [69], the number of sequences

(a1, . . . , an+1) with ai ∈ [k], i ∈ [n+ 1], with a1 = u and an+1 = v is

N (n)
uv (F ) =

∏

i∈[k]

(
∑

j∈[k] Fij)!∏
j∈[k] Fij!

G∗vu, (2.11)

where G∗vu corresponds to the (v, u)th cofactor of the matrix G = {gij}i,j∈[k] with

gij = 1 {i = j} − Fij∑
j∈[k] Fij

.

The first-order Markov type of a sequence x ∈ X n is defined as the empirical distribution
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qX0,X1 , given by

qX0,X1(a0, a1) =
1

n

n∑

i=1

1 {(xi, xi+1) = (a0, a1)}.

Here we assume that the sequence is cyclic with period n, i.e., for any i > 0, xn+i = xi. Let

(X0, X1) ∼ qX0,X1 . Then, from (2.11), the set of sequences of type qX0,X1 , T nX0,X1
, satisfies

|T nX0,X1
| =

(∑

a∈X

G∗a,a

) ∏

a0∈X

(nq0(a0))!∏
a1∈X (nqx0,x1(a0, a1))!

.

From the definition of G, we can bound the trace of the cofactor matrix of G as

|X |
(n+ 1)|X |

≤
∑

a∈X

G∗a,a ≤ |X |.

Again using the bounds on multinomial coefficients, we have

|X |(n+ 1)−(|X |2+|X |)2n(H(X0,X1)−H(X0)) ≤ |T nX0,X1
| ≤ |X |2n(H(X0,X1)−H(X0)). (2.12)

The joint first-order Markov type of a pair of sequences x ∈ X n, y ∈ Yn is the empirical

distribution

qX0,X1,Y (a0, a1, b) =
1

n

n∑

i=1

1 {(xi, xi+1, yi) = (a0, a1, b)}.

Then given x, the set of conditional first-order Markov type sequences, T nY |X0,X1
(x) satisfies

[60]

(n+ 1)−|X |
2|Y|2n(H(X0,X1,Y )−H(X0,X1)) ≤ |T nY |X0,X1

(x)| ≤ 2n(H(X0,X1,Y )−H(X0,X1)). (2.13)

Definition 7 (Permutation Type). For any permutations π1, π2, and sequences x,y, the

permutation type, qXπ1 ,Xπ2
, and the joint permutation type qXπ1 ,Xπ2 ,Y

are defined as

qXπ1 ,Xπ2
(a0, a1) =

1

n

n∑

i=1

1
{

(xπ1(i), xπ2(i)) = (a0, a1)
}
,

qXπ1 ,Xπ2 ,Y
(a0, a1, b) =

1

n

n∑

i=1

1
{

(xπ1(i), xπ2(i), yi) = (a0, a1, b)
}
.

Lemma 2. Let π1, π2 ∈ Π. For any x,

|T nXπ1 ,Xπ2
| = 2n(H(qXπ1 ,Xπ2

)−H(qX)+o(1)).
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The proof is given in the Appendix A.1. Similar decomposition follows for conditional

types as well.

2.2.3 Error Exponent Analysis

We are interested in the error exponent of MMI-based image registration, in comparison to

ML. We first note that the error exponent of the problem is characterized by the pair of

transformations that are the hardest to compare.

Define Ψπ,π′ as the binary hypothesis testing problem corresponding to image registration

when the allowed transformations are only {π, π′}. Let Pπ,π′(Φ), Eπ,π′(Φ) be the correspond-

ing error probability and error exponent.

Lemma 3. If Φ is exponentially consistent, then,

E(Φ) = min
π,π′∈Π

Eπ,π′(Φ). (2.14)

Proof. The result follows from the fact the union bound and the fact that |Π| = O(nα).

Thus, it suffices to consider the binary hypothesis tests to study the error exponent of

image registration. We now bound the error exponent using the method of types.

Theorem 2. The error exponent of MMI satisfies

E(ΦMMI) ≥ ELB = min
q∈PX ,Y

I(X;Y ) +D(q‖PXY ). (2.15)

Proof. Consider any π1 6= π2. From symmetry, it follows that Bayes error in the binary

hypothesis tests is the same as the conditional error probabilities. Further, probabilities of

i.i.d. sequences are defined by their joint type,

Pπ1,π2(ΦMMI) = P [π̂MMI = π2|π∗ = π1]

=
∑

x∈Xn

∑

y∈Yn
P [x,y] 1 {π̂MMI 6= π∗}

=
∑

q

(∏

a∈X

∏

b∈Y

(P [a, b])nq(a,b)

)
νMMI(q), (2.16)

where the summation in (2.16) is over the set of all joint types of sequences of length n and

νMMI(q) is the number of sequences (x,y) of length n such that the joint type of (xπ1 ,y) is

q, and MMI makes an error in the binary hypothesis for π∗ = π1.
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If a sequence y ∈ T nY |Xπ1 ,Xπ2
(x) is in error, then all sequences in T nY |Xπ1 ,Xπ2

(x) are in error

as x is drawn from an i.i.d. source. Thus,

ν(q) =
∑

x∈Xn

∑

Tn
Y |Xπ1 ,Xπ2

⊆Tn
Y |X :error

|T nY |Xπ1 ,Xπ2
(x)|

=
∑

TnXπ1 ,Xπ2
⊆TnX

|TXπ1 ,Xπ2
|
∑
|T nY |Xπ1 ,Xπ2

|,

where the sum is taken over T nY |Xπ1 ,Xπ2
⊆ T nY |X such that there is a decision error, i.e.,

I(Xπ1 ;Y ) ≤ I(Xπ2 ;Y ). The final line follows from the fact that given the joint first-order

Markov type, the size of the conditional type is independent of the exact sequence x.

From Lem. 2, we then have

νMMI(q) �
∑

2n(H(Xπ1 ,Xπ2 ,Y )−H(Xπ1 )), (2.17)

where the sum in (2.17) is the same as in the definition of νMMI. Further, the probability of

a pair of sequences (xπ1 ,y) of joint type q is [68]

P [x,y] = 2−n(H(Xπ1 ,Y )+D(q‖PXY )). (2.18)

From (2.17) and (2.18), we have

Pπ1,π2(ΦMMI) �
∑

q

∑
2−n[D(q‖PXY )+H(Xπ1 ,Y )+H(Xπ2)−H(Xπ1 ,Xπ2 ,Y )]

=
∑

q

∑
2−n[D(q‖PXY )+I(Xπ2 ;Xπ1 ,Y )]. (2.19)

First, from the chain rule and non-negativity of mutual information, note that

I(Xπ2 ;Xπ1 , Y ) = I(Xπ2 ;Y ) + I(Xπ2 ;Xπ1 |Y )

≥ I(Xπ2 ;Y ) ≥ I(Xπ1 ;Y ),

which follows from the error criterion. Now, from (2.19), and the fact that the number of

types scales polynomially in the length of the sequence, the result follows.

Remark 3. The error exponent lower bound in Thm. 2 is in principle the same as the random

coding error exponent for universal communication using constant composition codes [68],

since registration effectively tries to differentiate between a set of possible permutations of

the same sequence. However, unlike in communication, we have no control over the design
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of a “codebook” of desired type. So our bound is smaller than in communication.

On the other hand, image registration is simpler since we only have a polynomial number

of possible hypotheses rather than the exponential number of messages in communication.

The balance between these two tradeoffs manifests in the form of the lower bound established

here.

Remark 4. To establish a universal bound on the error exponent, note that we have signif-

icantly loosened the bound from (2.19). Further information on the relationship between the

candidate permutations could help establish tighter bounds on the error exponent of the MMI

method.

Remark 5. The dominant error event is highlighted by the error exponent lower bound in the

form of the joint type that minimizes the sum of its distance from the true joint distribution,

and the information content in this type. We can directly observe that

ELB ≤ min {I(X;Y ), L(X;Y )} , (2.20)

where I(X;Y ), L(X;Y ) are the mutual information and lautum information [64] as governed

by the underlying true channel and source distributions.

In particular, from (2.19), we can note that the worst error event is the one that minimizes

the sum of the distance and the information that the pixels of the erroneous permutation hold

on those of the true permutation and the copy. That is, if the permutations are such that

this information content is naturally high when the sequences are close to the true joint

distribution, then the error exponent achieved is high as well.

Theorem 2 establishes a lower bound on the error exponent but its comparison to the

Bayes’ optimal ML estimate is not evident. We again use the method of types to show that

MMI is asymptotically optimal.

Theorem 3. For any π1, π2 ⊆ Π, π1 6= π2,

lim
n→∞

Pπ1,π2(ΦMMI)

Pπ1,π2(ΦML)
= 1. (2.21)

Proof. From (2.16),

Pπ1,π2(ΦMMI) =
∑

q

∏

a∈X

∏

b∈Y

(P [a, b])nq(a,b)νML(q)

[
νMMI(q)

νML(q)

]

≤ Pπ1,π2(ΦML) max
q

{
νMMI(q)

νML(q)

}
. (2.22)
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The result then follows from the forthcoming Lem. 4.

Lemma 4.

lim
n→∞

max
q

{
νMMI(q)

νML(q)

}
= 1. (2.23)

Proof. Observe that for images with i.i.d. pixels, MMI is the same as minimizing the joint

entropy:

max
π∈Π

Î(X; π(Y )) = max
π∈Π

Ĥ(X) + Ĥ(π(Y ))− Ĥ(X, π(Y ))

= Ĥ(X) + Ĥ(Y )−min
π∈Π

Ĥ(X, π(Y )).

Further we know there is a bijective mapping between permuted sequences and those of

the corresponding first-order Markov type from Lem. 2. Thus, the result follows from [60,

Lem. 1].

Theorem 4. E(ΦMMI) = E(ΦML).

Proof. This follows from Thm. 3 and Lem. 3.

Thus, we can see that using MMI for image registration is not only universal, but also

asymptotically optimal. We now obtain a simple upper bound on the error exponent of ML.

Theorem 5.

E(ΦML) ≤ EUB = I(X;Y ) + L(X;Y ). (2.24)

Proof. From Lem. 3 we know that the error exponent is the same as that of the worst binary

hypothesis test. Further, the Bayes error corresponding to binary hypothesis tests can be

lower bounded using the Kailath lower bound [70]. That is, for any π1 6= π2

Pπ1,π2(ΦML) ≥ exp (−D(p1‖p0)) , (2.25)

where p0, p1 are the conditional distributions of X,Y, given the underlying hypotheses π1, π2

respectively, i.e.,

p0(X,Y) =
n∏

i=1

P
[
Xπ1(i)

]
W (Yi|Xπ1(i)),

p1(X,Y) =
n∏

i=1

P
[
Xπ2(i)

]
W (Yi|Xπ2(i)).
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Then the KL divergence is given by

D(p1‖p0) = Ep1

[
log

p1(X,Y)

p0(X,Y)

]
(2.26)

� nEX,X̃∼P⊗2
X

[
D
(
W (Y |X)‖W (Y |X̃)|X, X̃

)]
(2.27)

= n
[
I(X;Y ) + EX,X̃∼P⊗2

X

[
D(PY ‖W (Y |X̃)|X, X̃

]]

= n [I(X;Y ) + L(X;Y )] , (2.28)

where the mutual and lautum information are defined by the source and channel distribu-

tions. Here (2.27) follows from the fact that |Iπ| = o(n). Thus the result follows.

Remark 6. The upper bound on the error exponent in Thm. 5 is the sum information [71]

in the channel defining the image pair. The information terms are the Type-1 and Type-

2 error exponents corresponding to the independence testing binary hypothesis test. Image

registration corresponds to identifying which of any pair of permutations results in a more

dependent configuration of the images. This problem can be equivalently viewed as the result

of two independence tests. Thus the probability of an error in both these tests results in an

error exponent of I(X;Y ) + L(X;Y ). Since this event is a subset of the error events, it

results in the upper bound.

To get a sense of the error exponent, in particular the lower bound, let us consider a

simple context. Let the source X
i.i.d.∼ Bern(ρ) and consider a binary symmetric channel with

crossover probability δ ∈ [0, 0.5]. First, we can solve the optimization problem in (2.15) for

BSC(δ) to obtain the error exponent. Let q,qx,qy be the vectors corresponding to the joint

distribution and the marginals. Then the optimization problem is

min
q,qx,qy

I(X;Y ) +D(q‖p)

s.t.
∑

x,y

q(x, y) = 1,

∑

y

q(x, y) = qx(x), for all x

∑

x

q(x, y) = qy(y), for all y.
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Then, solving the optimization problem using the Lagrangian

L(q,qx,qy) =
∑

x,y

q(x, y)

[
log

(
q(x, y)2

q(x)q(y)p(x, y)

)
− λ
]

−
∑

x∈X

µx

(∑

y

q(x, y)− qx(x)

)
−
∑

y∈Y

νy

(∑

x

q(x, y)− qy(y)

)
.

where λ, {µx}x∈X , {νy}y∈Y are Lagrange multipliers. Then, solving the optimization prob-

lem, we obtain

EBSC(π, δ) = 1− log2

(√
π +
√

1− π
)
− log2

(√
δ +
√

1− δ
)

bits. (2.29)

On the other hand, the mutual information in the channel is

I(X;Y ) = H2(π ∗ δ)−H2(δ),

where H2(·) is the binary entropy function and x ∗ y = x(1− y) + (1− x)y.

We plot Elb and the mutual information in the channel in Fig. 2.3. Note that we plot

the mutual information here instead of the sum information, as the mutual information is a

tighter upper bound on the error exponent, as discussed in more detail in Chapter 3.

As expected, the noisier the channel, the worse the error exponent. These error exponents

can be used to get a first-order sense of the necessary and sufficient sample complexities for

two image registration. Also, the more deterministic the source, the less information the

pixel pairs carry and in that sense reduce the error exponent.

Although the bounds on the error exponent are not tight, they provide insight into the

dominating error event and the fundamental connection to independence testing. Further

information on the nature of the transformation can lead to stronger characterization of the

error exponent. We next study the problem of registering multiple images.

2.3 Multi-Image Registration

Having universally registered two images, we now consider aligning multiple copies of the

same image. For simplicity, let us consider aligning three images; results can directly be

extended to any finite number of images. Let X be the source image and Y,Z be the noisy,
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Figure 2.3: Error exponent bounds for BSC: Variation in error exponent lower bound and mutual
information for varying crossover and source probability δ, π. Exponent and information decay with
increasing crossover probability, and decrease as source gets more deterministic as the images have
lesser information.

Figure 2.4: Model of three-image registration problem: Images Y,Z are to be registered with
source image X.

transformed versions to be aligned as shown in Fig. 2.4. Here, the ML estimates are

(π̂Y,ML, π̂Z,ML) = arg max
π1,π2

n∏

i=1

W
(
Yπ1(i), Zπ2(i)|Xi

)
. (2.30)

2.3.1 MMI Is Not Optimal

We know MMI is asymptotically optimal at aligning two images. Is pairwise MMI, i.e.

π̂Y = arg max
π∈Π

Î(X;Yπ), π̂Z = arg max
π∈Π

Î(X;Zπ), (2.31)
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optimal for multi-image registration? We show pairwise MMI is suboptimal even though

individual transformations are chosen independently and uniformly from Π.

Theorem 6. There exists channel W and prior, such that pairwise MMI is suboptimal for

multi-image registration.

Proof. Let Xi
i.i.d.∼ Bern(1/2), i ∈ [n]. Consider physically degraded images Y,Z obtained as

outputs of the channel W (y, z|x) = W1 (y|x)W2 (z|y). This is depicted in Fig. 2.5. Naturally,

the ML estimate is obtained by registering Z to Y and X to Y, instead of registering each

pairwise to X as evident from

(π̂Y,ML, π̂Z,ML) = arg max
(π1,π2)∈Π2

n∏

i=1

W1(Yπ1(i)|Xi)W2(Zπ2(i)|Yπ1(i)).

Since ML registers image Y to X and image Z to Y, the error exponent of ML is

EW (ΦML) = min {EW1(ΦML), EW2(ΦML)}.
Let EQ(ΦMMI) be the error exponent of MMI for this channel. Then, error exponent of

pairwise MMI is E(ΦMMI) = min {EW1(ΦMMI), EW1∗W2(ΦMMI)}. We know MMI is asymptot-

ically optimal for two image registration and so EW1(ΦMMI) = EW1(ΦML), EW1∗W2(ΦMMI) =

EW1∗W2(ΦML).

More specifically, let W1 = BSC(α) and W2 = BSC(β) for some α, β ∈ (0, 1/2). Let,

W1 ∗W2 = BSC(γ), where γ = α(1− β) + (1− α)β > max {α, β}. Then,

E(ΦMMI) ≤ EW1∗W2(ΦMMI) = EW1∗W2(ΦML)

< min {EW1(ΦML), EW2(ΦML)} = EW (ΦML). (2.32)

Suboptimality of pairwise MMI is due to the rigidity of the scheme in not considering that

images Y and Z are dependent conditioned on X. Thus, it behooves us to design universal

algorithms that account for such dependencies.

Figure 2.5: Three-image registration problem with image Z a physically degraded version of Y
and to be registered with source image X.
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2.3.2 Max Multiinformation for Multi-Image Registration

To consider all correlations across images, we use the multiinformation functional [72] which

is a more inclusive formulation of the underlying information in the system.

Definition 8. The multiinformation of {X1, . . . , Xn} is

IM(X1; . . . ;Xn) =
n∑

i=1

H(Xi)−H(X1, . . . , Xn). (2.33)

The chain rule for multiinformation is given by

IM(X1; . . . ;Xn) =
n∑

i=2

I(Xi;X
[i−1]). (2.34)

Let us define the max multiinformation (MM) estimate, defined for three images as

(π̂Y,MM, π̂Z,MM) = arg max
(π1,π2)∈Π2

ÎM(X;Yπ1 ;Zπ2), (2.35)

where ÎM(·) is the empirical estimate of multiinformation. This generalizes directly to any

finite number of images. When Y and Z are conditionally independent (empirically) given

X, this is the same as pairwise MMI.

Lemma 5. MM estimates are exponentially consistent for multi-image registration.

Proof. The proof is analogous to that of Thm. 1.

Again, this holds for ergodic sources. We restrict to the i.i.d. case to show asymptotic

optimality using type counting.

2.3.3 Error Exponent Analysis

We compare the error exponent of MM to that of ML. We again show the error exponent is

characterized by the pair of transformations of Y,Z that are the hardest to differentiate.

Let π̄, π̄′ ∈ Π2 and let ψ(π̄, π̄′) be the binary hypothesis test of three-image registration

when the set of transformations is {π̄, π̄′}. Let Pπ̄,π̄′(Φ), Eπ̄,π̄′(Φ) be the error probability and

the error exponent of Φ respectively.

Lemma 6. Let Φ be an asymptotically exponentially consistent estimator of three-image

registration. Then,

E(Φ) = min
π̄,π̄′∈Π2

Eπ̄,π̄′(Φ). (2.36)
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Proof. The proof is analogous to that of Lem. 3.

Lemma 7. Let π̄0 = (π0, π0). For any π̄1, π̄2 ∈ Π2, with π̄i = (πi, π
′
i), there exists π̄ = (π, π)

such that Eπ̄1,π̄2(Φ) ≥ Eπ̄0,π̄(Φ), for Φ ∈ {ΦML,ΦMM}.

Proof. We prove the result for ML; it extends directly for MM. Let π̃1 be the permutation

such that π̃1 ◦ π′1 = π1. That is, the application of the transformation π̃1 to an image that

has been transformed by π′1 results in an image that is effectively transformed by π1. Let

π̃2 = π̃1 ◦ π′2.

To obtain the ML decision for ψ(π̄1, π̄2), let

(π̂Y , π̂Z) = arg max
(πY ,πZ)∈{(π1,π1),(π2,π̃2)}

W (YπY ,Z
′
πZ
|X),

where Z′ = Zπ̃1 , is the received image, transformed by π̃1. Then, (π̂Y,ML, π̂Z,ML) = (π̂Y , π̃
−1
1 ◦

π̂Z).

Since the source is i.i.d. and the channel is memoryless, Eπ̄1,π̄2(ΦML) = E(π1,π1),(π2,π̃2)(ΦML).

Finally, if π−1
1 is the inverse π1, let π = π−1

1 ◦ π2, π
′ = π−1

1 ◦ π′2. Then,

(π̂Y , π̂Z) = arg max
(πY ,πZ)∈{(π0,π0),(π,π′)}

W (Y′πY ,Z
′
πZ
|X),

where Y′ = Yπ−1
1

and Z′ = Zπ−1
1 ◦π̃1

, then

(π̂Y,ML, π̂Z,ML) = (π1 ◦ π̂Y , (π−1
1 ◦ π̃1)−1 ◦ π̂Z).

We note now that

D(P(π0,π0)(X, Y, Z)‖P(π,π′)(X, Y, Z)) = IM(X;Y ;Z). (2.37)

Alternately,

D(P(π0,π0)(X, Y, Z)‖P(π,π)(X, Y, Z)) = I(X;Y, Z). (2.38)

From (2.34), it is evident that the binary hypothesis test in the second scenario is harder

than the first. That is, identifying if sequences are scrambled is easier if they are scrambled

by different transformations than by the same.

As the sequence of transformations is deterministic, the source i.i.d. and the channel

memoryless, the result follows. The same arguments hold for the MM decoder.

Lemma 7 implies that to study the error exponent of the multi-image registration, it

suffices to study those of binary hypothesis tests of the form ψ(π̄0, π̄), for all π ∈ Π. Now

we analyze error exponents of ψ(π̄0, π̄).
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Theorem 7. Let π̄ = (π, π) ∈ Π2. Then,

lim
n→∞

Pπ̄0,π̄(ΦMM)

Pπ̄0,π̄(ΦML)
= 1. (2.39)

Proof. The analysis is similar to that of Thm. 3.

Pπ̄0,π̄(ΦMM) ≤ Pπ̄1,π̄2(ΦML) max
q

{
νMM(q)

νML(q)

}
.

Here

νMM(q) =
∑

y,z

∑
|T nX|Yπ0 ,Zπ0 ,Yπ ,Zπ

(y, z)|

=
∑
|T nYπ0 ,Zπ0 ,Yπ ,Zπ

|
∑
|T nX|Yπ0 ,Zπ0 ,Yπ ,Zπ

|,

where the first sum is taken over the set of all types T nYπ0 ,Zπ0 ,Yπ ,Zπ
⊆ T nY,Z and the second

sum is over the set of all conditional types T nX|Yπ0 ,Zπ0 ,Yπ ,Zπ
⊆ T nX|Y,Z such that ΦMM gives a

decision error. Similarly, νML(q) is defined analogously for ML decision errors. The result

follows from the forthcoming Lem. 8.

Lemma 8. There exists a non-negative sequence {εn}n≥1 with limn→∞ nεn = 0, such that

max
q

{
νMM(q)

νML(q)

}
≤ 2nεn .

Proof. Note that maximizing multiinformation is the same as minimizing joint entropy.

Thus, it is the same as Lem. 4 with a larger output alphabet and so the result follows.

Theorem 8. E(ΦMM) = E(ΦML).

Proof. The result follows from Lem. 6 and 7, and Thm. 7.

These results directly extend to registering any finite number of images, indicating that

the MM method for multi-image registration is asymptotically optimal and universal.

Remark 7. The results for image models with i.i.d. pixels extend directly to memoryless or

exchangeable sources. That is, we can generalize the proofs of asymptotic optimality of the

MM method for image registration to image models where pixels are drawn from a memoryless

or an exchangeable distribution. This follows as the probabilities of sequences with the same

type are of equal probability for such sources.
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(a) High Prior: When the source is more
random, the error exponents are better
as there is more information in the image
triplet.

(b) Low Prior: When the source is more
deterministic, the error exponents are
worse as the pixels are harder to differ-
entiate.

Figure 2.6: Error exponent lower bounds for independent BSCs.

Corollary 1. The error exponents of multi-image registration satisfy

min
q∈PX ,Y,Z

I(X;Y ;Z) +D(q‖PXY Z) = E (m)
LB ≤ E(ΦMMI)

= E(ΦML) ≤ E (m)
UB = I(X;Y ;Z) + L(X;Y ;Z).

Proof. Proof is analogous to those of Thms. 2 and 5.

Again, although not tight, the bounds on the error exponent provide basic insight into the

nature of the error exponent, and the worst error event.

To understand the error exponents better let us consider a binary source X
i.i.d.∼ Bern(ρ).

First let us consider the independent noise channel

W (Y, Z|X) = W1(Y |X)W2(Z|X),

where W1,W2 are binary symmetric channels with crossover probabilities δ1, δ2 respectively.

Then, the error exponent lower bound as a function of the crossover probabilities is shown

in for prior probabilities ρ = 0.5, ρ = 0.05 respectively in Figs. 2.6a and 2.6b.

Since the channels are conditionally independent, the registration problem translates to

one of pairwise image registration with image X. The independence also results in the

symmetry in the error exponents as observed in the heatmaps. That is, Elb(ρ, δ1, δ2) =

Elb(ρ, δ2, δ1).

Further, note that the error exponents achieved in the case of ρ = 0.5 is far more than

that for ρ = 0.05. This is owing to the fact that more randomness in the source also
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(a) Independent BSC: Exponents and multiinformation in-
crease with prior and when noise is less, as image triplets
are more informative.

(b) Degraded BSC: Exponents and multiinformation are
improved with the use of better cascades, especially when
the prior of Y is close to uniform.

Figure 2.7: Error exponent variation with prior.

translates to more information in the information triplet. Thus it is easier to register when

the source generates on average an equal number of both kinds of pixels. This is further

evident in Fig. 2.7a which shows the variation of the error exponent lower bound and the

multiinformation with the prior probability.

Let us now consider the degraded channel model from Fig. 2.5 where W1 and W2 are binary

symmetric channels with crossover probability δ1, δ2 respectively. First, the error exponent

lower bounds for prior probabilities ρ = 0.5, ρ = 0.05 respectively are shown in Figs. 2.8a

and 2.8b respectively.

We first observe that in the case of ρ = 0.5, the error exponents are symmetric. This follows

since this context corresponds precisely to Fig. 2.6a as image Y can be considered as the
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(a) High Prior: When the source is
uniformly distributed the error expo-
nents are symmetric with respect to
the crossover probabilities.

(b) Low Prior: When source is more
deterministic, exponents are not sym-
metric and the most informative con-
text is the one in which the marginal
of Y is close to uniform.

Figure 2.8: Error exponent lower bounds for degraded BSC.

uniform source with independent BSCs generating images X,Z. Thus the error exponents

are not only symmetric, but also the same as in the previous example.

On the other hand, when ρ = 0.05, the source pixels are more deterministic therein

generating more pixels of one kind than the other. However, we have a degraded channel

and thus when the marginal corresponding to Y is uniform, registration becomes easier.

This is owing to the fact that the information in the triplet is higher, especially between Y

and Z. Thus the channels close to δ1 = 0.5 result in higher error exponents since it is easier

to register Y with Z. This is reflected in the maximum error exponent achieved by the pair

(δ1, δ2) = (0.5, 0).

The relationship of the error exponent to the prior probability of the source is similar to

the previous example and results in the variation shown in Fig. 2.7b. We can again note that

larger priors and less channel noise in the degraded model result in better error exponents.

Note, however, there is a non-trivial gap between the error exponent lower bound and the

multiinformation in the system that can be improved with a stronger understanding of the

set of transformations and type counting.

2.4 Large-Scale Registration of Images

Practical applications such as cryo-EM often have to work with massive datasets of images,

each having limited resolution. Especially, if the number of pixels in each image is sub-

exponential in the number of images, i.e., n = o
(
rm

m

)
, then, accurate computation of the

multiinformation of all images is not universally feasible [73].
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In such a context, it is important to understand the sample complexity of the problem and

design algorithms accordingly. We consider a divide and conquer approach to registration

here. Consider a set of corrupted and transformed images Y(1), . . . ,Y(m). Even though MM

is asymptotically optimal for image registration, it is not feasible due to limited availability

of pixels. We first establish necessary conditions on the sample complexity, before defining

an achievable scheme.

2.4.1 Necessary Conditions

Note that registering images is equivalent to clustering them by the transformations. We

thus use ideas from [74] to lower bound registration cost.

Theorem 9. Given a set of m copies of an image, channel-aware registration is feasible only

if n = Ω(logm).

Proof. Consider the simpler case where only two transformations exist, Π = {π0, π}. Group

the set of images into pairs at random. For ease, assume that m is divisible by 2. Define the

binary hypothesis tests given by

ψij :




H0 : πi = πj,

H1 : πi 6= πj.

Then, from the Kailath lower bound [70], we have

P [Error in ψij] ≥ exp
(
−1

2
(D(p0‖p1) +D(p1‖p0))

)
, (2.40)

where pi is the conditional distribution of the observation, given hypothesis Hi. Let ∆i,j =
1
2
(D(p0‖p1) +D(p1‖p0)) for each (i, j) ∈ ψ, and let ∆max = max(i,j)∈ψ ∆i,j.

Here, observations are transformed images; under H0,

p0(Y(i),Y(j)) =
n∏

k=1

P
[
Y

(i)
k

]
W̃ (Y

(j)
k |Y

(i)
k ),

where W̃ is the equivalent channel relating image Y(i) to Y(j); W̃ is specific to the pair (i, j)
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Algorithm 1 Blockwise Registration

k ← arg min2≤`≤(logn)/(log r) ` log |Π| − nc
r`
`4(log r)4 − log(` − 1), where c is a sufficiently

small constant
for i = 1 to dm−1

k−1
e do

Ti ← {(i− 1) ∗ (k − 1) + 1, . . . , i ∗ (k − 1)} ∪ {m}
Determine {π̂j : j ∈ Ti} using MM method

end for

and we have ignored the indices for simplicity. Similarly, under hypothesis H1

p1(Y(i),Y(j)) =
1

2

n∏

k=1

P
[
Y

(i)
π(k)

]
W̃
(
Y

(j)
k |Y

(i)
π(k)

)

+
1

2

n∏

k=1

P
[
Y

(i)

π−1(k)

]
W̃
(
Y

(j)
k |Y

(i)

π−1(k)

)
.

Let q(Y(i),Y(j)) =
∏n

k=1 P
[
Y

(i)
π(k)

]
W̃
(
Y

(j)
k |Y

(i)
π(k)

)
. Then,

D(p0‖q) � n
[
I(Y (i);Y (j)) + L(Y (i);Y (j))

]
= n∆max, (2.41)

which follows in the same way as in (2.28).

Correct registration implies correct inference in all the hypothesis tests ψij, and so

Pe(Φ) ≥ 1−
∏

(i,j)∈ψ

(1− P [Error in ψij])

& 1− (1− exp (−n∆max))m/2 , (2.42)

where (2.42) follows from (2.40). Finally, from (2.42), Φ is consistent only if n = Ω(logm).

2.4.2 Achievable Scheme

Having obtained necessary conditions for large-scale image registration, we now provide an

information-based registration algorithm that is order-optimal in the number of pixels.

We know MM is asymptotically optimal for a fixed and finite number of images. Thus,

we can register the images by splitting them into subsets of appropriate size, keeping one

reference common in all sets, Alg. 1.

The size of the subsets of images is essentially chosen to be a constant and for k = 2

reduces to pairwise MMI.

32



Theorem 10. For any channel W , and sufficiently large number of pixels n = O(logm),

Alg. 1 is consistent.

Proof. From Lem. 5, we know MM is exponentially consistent. In particular, for registering

k images with multiinformation γk, there exists a universal constant c such that

Pe(Φ
k) ≤ 2|Π|k exp

(
−n c

rk
γ4
k

)
.

From union bound and Lem. 5, error probability of Alg. 1 is

Pe(Φ) ≤ 2
m− 1

k − 1
|Π|k exp

(
−n c

rk
γ4
k

)
. (2.43)

For any fixed k, we note that the sufficient condition for consistency is n = O(logm).

From (2.43), we observe that a viable choice of k can be obtained by minimizing the upper

bound. Since γk is proportional to the minimum multiinformation of k images, and since

we have no additional knowledge regarding the scaling of such information, one choice is to

use the scaling of its trivial upper bound given by γk ≤ k log r and minimize the resulting

expression as in Alg. 1.

Thus, we note that using a blockwise MM method, we can perform order-optimal registra-

tion of a large number of images with the number of pixels scaling logarithmically with the

number of images. This scaling also explains the efficiency of simple pairwise MMI methods

in practice.

2.5 Experiments

We now present the results of some experiments of the pairwise MMI and MM image reg-

istration techniques applied to a set of multispectral images from the CAVE multispectral

image dataset [63, 75]. We choose multispectral images as they constitute a collection of

images of the same scene varying in terms of the constituent frequency patterns, resulting in

signals whose pixel distributions are quite divergent. However, the multispectral database

retains all the structural information in the images, thereby retaining a high mutual infor-

mation among aligned orientations of different images. Thus, the MMI and MM methods

are appropriate for such a context.

We consider the three images in Fig. 2.9, and add i.i.d. Gaussian noise to the image pixels,

reducing the SNR and making the registration harder. We then rotate the images at random,

and test both pairwise MMI and MM.
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We consider a simple set of rotations in the range of [−60◦, 60◦], uniformly quantized into

25 levels. We restrict the set of transformations owing to the computational complexity of

the registration algorithms. We also restrict to only three images to cater to the sample

complexity of the information estimates, beside the computational complexity. In practice,

efficient heuristics can be developed to solve the optimization problem without exhaustive

search over the space of permutations.

Further, evaluate the joint distributions of the corresponding pixels, we use Gaussian

kernel density estimates. This method significantly speeds up the process over the empirical

estimate, and when the number of pixels is large enough, proves to be a good approximation.

First consider the case where the SNR of the reference image (first image) is set to 40 dB.

As can be observed in Fig. 2.10a, the structural features of the images are well-retained in

the noisy images. Thus pairwise registration using MMI suffices in this case.

We saw in Sec. 2.3.1 that one setting where MM is better than MMI is when the noise

model sets up a Markovian relation in the images. So, we also consider a low SNR version

of 20 dB for the reference image, with a noise model such that the three images constitute

a Markov chain. This is shown in Fig. 2.10b, and it can be noted that the first image has

very few feature points that can be directly matched with the third. In particular, note

that the first and second images are closer to each other, while the second and third are

closer to each other. This is reflected in the results of the two methods. Since pairwise MMI

attempts aligning all images to the first, it fails. On the other hand, as MM exploits all

existing dependencies among the images, aligns the images better, as expected.

Registering low SNR images that may have such correlation is important especially for

applications such as cryo-electron microscopy where images are typically very noisy, and of

molecules in various orientations [44]. The efficiency of MM for image registration inspires

the design of various information-based efficient heuristics for multi-image registration.

Figure 2.9: Pre-registered multispectral image set.
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(a) High SNR: both pairwise MMI and MM work well as

the information structure in the images is well-retained.

(b) Low SNR and Markov relation: Here pairwise MMI

fails to perfectly compensate for the rotation, whereas

MM aligns accurately.

Figure 2.10: Image Registration using pairwise MMI and MM estimates.
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2.6 Discussion

This chapter studies the problem of universal joint image registration. In particular we

considered the class of rigid-body transformations of 2D images and studied the performance

of algorithms in terms of the error probability of perfect alignment. This chapter performs

a first-order analysis of universal algorithms in terms of their error exponents.

In Sec. 2.2 we studied the problem of registering a reference image to its misaligned noisy

copy corrupted by an unknown discrete memoryless channel W . We benchmark the Bayes’

optimal maximum likelihood decoder which is channel aware, to the max mutual information

decoder for image registration which is universal. We studied the error exponents of the

decoder by studying the class of permutation types and relating them to first order Markov

types using Whittle’s law. We showed the universal asymptotic optimality of the MMI

decoder and established lower and upper bounds on the error exponent. We also gave a

characterization of these exponents for the simplified context of a binary symmetric channel

(BSC).

In Sec. 2.3 we considered the problem of registering multiple images and observed that

the pairwise application of MMI is suboptimal. We then defined the max multiinformation

decoder for the registration of multiple images and extend the same type counting argument

to prove its universal asymptotic optimality. We also obtain a characterization of the error

exponent through the lower and upper bounds, which are evaluated for the independent and

degraded BSCs.

Finally we considered the problem of large-scale image registration and observed necessary

and sufficient conditions on the sample complexity as a function of the number of images to be

registered. The section essentially provides an asymptotic analysis for the image registration

by studying the error exponents and the sample complexity in the order sense. In Chapter 3

we consider the finite sample analysis of the image registration problem to get a stronger

understanding of algorithm performance for image registration using the Berry-Esseen style

results for the central limit theorem.
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CHAPTER 3

FINITE-SAMPLE ANALYSIS OF IMAGE
REGISTRATION

Conventional information-theoretic investigations of communications study the channel ca-

pacity (mean) and error exponent (large deviations) of communication over channels. Sim-

ilarly, our explorations in Secs. 2.2 and 2.3 focused on asymptotic optimality of universal

algorithms in terms of the error exponent. However, we noted that the analysis does not

provide us insight into the non-asymptotic regime where the image resolution is limited. The

subsequent analysis in Sec. 2.4 considered the other asymptotic, and obtained some insight

into the necessary and sufficient sample complexity for large-scale registration.

However, it would help to understand the tradeoff between the moments of information

density of the channel and the sample complexity using finite-sample performance analysis for

a finite number of images. Additionally, the performance in the image registration problem

is defined by the properties of the rigid-body transformations. Under our consideration of

such transformations as permutations, the sizes of the permutation cycles and the number

of fixed points define the ease and/or difficulty of aligning the images. On the one hand,

the more the fraction of fixed points between two permutations, the fewer the informative

pixels to differentiate between them. On the other side, the more the permutation cycles

between two permutations, the less informative each such cycle is. Thus it is important to

understand the tradeoff between the properties of such transformations and the fundamental

performance of algorithms in the image registration problem.

Going beyond the asymptotic analyses, information-theoretic studies have also been dedi-

cated to understanding second-order terms such as the bivariate information-theoretic quan-

tity called channel dispersion (variance) to allow better understanding of non-asymptotic

performance limits of communication [76–79]. The basic idea is to not just study the mean

and large deviations, but also to use the central limit theorem to study the second- and

higher-order terms of the performance analysis.

In particular, the Berry-Esseen version of the central limit theorem (CLT) [80,81] highlights

the fact that for a collection of n independent zero mean random variables X1, . . . , Xn, with
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variances σ2
i respectively,

sup
a∈R

∣∣∣∣∣P
[

1

σ
√
n

n∑

i=1

Xi > a

]
−Q(a)

∣∣∣∣∣ ≤
6T

σ3
√
n
,

where Q(·) is the tail probability (complementary cumulative distribution function) of the

standard normal distribution, and

σ2 =
1

n

n∑

i=1

σ2
i , and T =

1

n

n∑

i=1

Ti =
1

n

n∑

i=1

E
[
|ı(Xi;Yi)− I|3

]
.

Using such results, it has been observed that Gaussian approximations are good proxies to

the true non-asymptotic fundamental limits at moderate blocklengths and moderate error

probabilities for some channels and sources.

A large recent body of work has focused on the study of the higher-order error terms,

especially in the contexts of point-to-point compression and communication. In both lossless

and lossy compression, in the context of known source models, tight results on the higher-

order terms have been obtained [77,82–86]. Separate from compression rates given the source,

universal codes for compression are of interest as well. The set of results in this domain,

though limited, have recently established second- and third-order error terms for universal

lossless compression under fixed blocklength coding [87,88].

In the communication framework as well, there exists a large body of work that characterize

the non-asymptotic fundamental limits of communication [78,89–91]. Second-order methods

with sharp non-asymptotics have also been derived in designing constrained encoding and

decoding for communication [91, 92]. Of particular interest to us is the set of results on

non-asymptotic fundamental limits for constant composition coding [93–95].

Beside source and channel coding, a variety of finite-sample performance analyses have

also been performed for statistical inference [96–98]. In particular, the conditional error

probabilities for Neyman-Pearson (NP) binary hypothesis test in the finite-sample setting

have been studied in detail using the Berry-Esseen theorem [77,90]. Strong large deviations

analyses informed by the Cramer-Esseen theorem have also been used in deriving strong

converses in the finite-sample regime [94,99].

In this chapter we first consider the problem of universal delay estimation and use a

tighter analysis of the type counting argument to obtain a stronger characterization of the

upper bound on the MMI method in terms of the size of the permutation cycles. We then

build on the results in finite-sample analyses to study the fundamental performance limits

of image registration for the channel-aware context. In particular we establish achievability
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Figure 3.1: Delay Estimation Model: We estimate the cyclic delay π to align the sequence Y to
the source X.

arguments on the tradeoff between the moments of the information density in the channel

and the sample size.

3.1 Universal Delay Estimation: Relationship to Cycles

The universal version of the image registration problem is complicated by two aspects—the

growing number of hypotheses with sample size, and the complicated transformations (per-

mutations) applied to the images. In particular, understanding the functioning of the MMI

decoder is affected by the nature of these permutations and it is important to understand

the effect of the number of permutation cycles on the performance of MMI.

In order to understand this, here we consider the problem of universal delay estimation [60]

which is a simplified version of the image registration problem. It has been established that

the MMI estimator is asymptotically universally optimal in the error exponent in detecting

finite cyclic delays of memoryless sources. Here we perform a stricter analysis of the type

counting argument to better emphasize the effect of the number of permutation cycles.

3.1.1 System Model

Consider a source sequence of length n, X
i.i.d.∼ PX , and the output, Ỹ, of the sequence

generated by a discrete memoryless channel W . This output sequence undergoes a cyclic

shift of length π ∈ [κ], chosen uniformly at random. The objective is to estimate this delay

in the absence of knowledge of the statistics of the channel. The source and output are

presumed to be drawn from the discrete finite alphabet [r].

As shown by the system model in Fig. 3.1, the delay estimation problem is a simplified

version of the two-image registration problem. Consequently, note that γ = 0, and all

permutation cycles are of equal length. For ease, let us presume that n is divisible by κ.

We again consider the MMI estimate of the delay which is given by

π̂MMI = arg max
π∈[κ]

Î(X;Yπ), (3.1)

where Î(X;Y ) is the plug-in estimate of the mutual information. And again, the Bayes
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optimal estimator is the maximum likelihood (ML) estimate:

π̂ML = arg max
π∈[κ]

n∏

i=1

W
(
Yπ(i)|Xi

)
. (3.2)

We now evaluate and observe the gap in performance of the two decoders using the type

counting argument.

3.1.2 Size of Delay Types

Just as we defined permutation types, we now consider delay types given by the empirical

joint distribution of x,xπ. Corresponding conditional types can also be defined. We now

characterize the size of the delay types. Let κπ be the number of cycles created by the shift.

Then the length of each cycle is n
κπ

. Here we limit the delays just as in the image registration

problem, such that κπ = o
(

n
logn

)
.

Lemma 9. For cyclic shift π, and sequence x, we have

∣∣log2 |T nX0,Xπ
| − n (H(X0, Xπ)−H(X))− κπ log r

∣∣ ≤ κπr
2 log2

(
1 +

n

κπ

)
,

where κπ is the number of permutation cycles created by the cyclic shift π.

Proof. Recall the bounds of Whittle’s theorem from (2.12). Then, similar to Lem. 2, we

derive the upper bound by studying the first-order Markov types over the cycles of the delay

type. Let q be the joint permutation type of X. Let the first-order Markov type over cycle

i of the cyclic shift be qi. Then,

q(a0, a1) =
1

κπ

κπ∑

i=1

qi(a0, a1). (3.3)

Let q′, q′i be the marginals corresponding to the joint types q, qi respectively.

Then, the size of the type class is obtained by summing over all valid decompositions in
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(3.3) as

|T nX0,Xπ
| =

∑ κπ∏

i=1

|T n/κπqi
| (3.4)

≤
κπ∏

i=1

r

(
1 +

n

κπ

)r2

2
n
κπ

(H(qi)−H(q′i)) (3.5)

≤ 2

[
n( 1

κπ

∑κπ
i=1(H(qi)−H(q′i)))+κπ

(
log r+r2 log2

(
1+

n
κπ

))]
, (3.6)

where (3.4) follows from the fact that the joint type is composed of a sequence from each of

the first-order Markov types that compose the joint type in (3.3). Then, (3.5) follows from

the upper bound on the size of the first-order Markov types by Whittle’s law and from the

fact that the number of types is polynomial. Finally, we bound the average of the entropy

in (3.6) as in Lem. 2 to obtain the upper bound.

The lower bound is obtained by the observation that the number of sequences from (3.4) is

lower bounded by any one viable decomposition in (3.3). Thus, the lower bound is obtained

in the same manner as in the proof of Lem. 2.

Note that the result obtained here is essentially similar to Lem. 2, except that the lemma

makes the dependence on the number of cycles more explicit. Similar results can be obtained

for the conditional joint types as well, as shown below.

Lemma 10. For any delay π, and any x,y, we have

0 ≤ log2 |T nY |X0,Xπ
| − n (H(X0, Xπ, Y )−H(X0, Xπ)) ≤ κπr

3 log2

(
1 +

n

κπ

)
. (3.7)

3.1.3 Performance Analysis

The error probability of the MMI decoder can now be bounded more precisely as follows.

Theorem 11. Let the maximum number of permutation cycles, given the set of possible

delays, be κ. Then,

− 1

n
log2 Pe(ΦMMI) (3.8)

≥ E∗ − κ

n

(
r2(r + 1)

)
log2

(
1 + n

κ

)
− r3 log2(1 + n)

n
− κ

n
log r − 1

n
log κ, (3.9)

where E∗ is the error exponent.
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Proof. The result for the error in the binary hypothesis test with respect to the null hypoth-

esis and a delay of π is analogous to Thm. 2. The result can be obtained by substituting

the tighter bounds derived in Lems. 9 and 10, and the observation that the number of joint

types over X0, Xπ, Y are bounded by (n + 1)r
3
. Finally, using union bound results in the

upper bound shown here.

Similarly we can obtain the converse by studying the performance of the maximum likeli-

hood decoder.

Theorem 12. Let the maximum number of permutation cycles, given the set of possible

delays, be κ. Then,

− 1

n
log2 Pe(ΦML) ≤ E∗ +

κ

n

(
r2
)

log2

(
1 + n

κ

)
− κ

n
log r. (3.10)

Proof. The proof is analogous to that of Thm. 11 and follows from Lems. 9 and 10.

Corollary 2.

0 ≤ 1

n
[log2 Pe(ΦMMI)− log2 Pe(ΦML)]

≤ κ

n
(r2(r + 2)) log2

(
1 +

n

κ

)
+ r3 log2(1 + n)

n
+

1

n
log2 κ. (3.11)

Proof. The result is a direct consequence of Thms. 11 and 12.

Remark 8. We observe that the dominant higher-order term is O(κ log2 n) reinforcing the

fact that for κ = o
(

n
logn

)
, the exponents match that of the maximum likelihood decoder.

Further we observe that the error probability is worsened when the number of cycles generated

by the delay increases.

The result characterizes the loss in performance from the lack of knowledge of the statistics

of the channel, i.e., a bound on the cost of universality. Through a stricter analysis of

the type counting argument in order to characterize the effect of the number and size of

permutation cycles on the performance of the MMI method in universal delay estimation.

Whereas the finite-sample analysis for universal methods proves to be hard, such tighter

type counting arguments provide stronger insight into the relationship between the nature

of the transformations and algorithm performance.
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Figure 3.2: Two-image registration model: We register image Y to reference X.

3.2 Channel-Aware Image Registration

To establish the fundamental performance limits for image registration in the finite-sample

context we now consider the simplified context of two-image registration when the channel is

given. In particular, we define and study a likelihood ratio test for image registration based

on the Feinstein decoder.

3.2.1 Model

We adopt an image model similar to that of Chapter 2. We model the reference and copy

images X,Y by a collection of n pixels, and we treat the images as sequences. In partic-

ular, we presume that the reference image is drawn as X
i.i.d.∼ PX and let Ỹ be the output

corresponding to the discrete memoryless channel W . We presume the set of pixel values is

[r] = {1, . . . , r}. The final copy image Y is generated as a rigid-body transformation of Ỹ.

The image model is the same as in Chapter 2 and is depicted in Fig. 3.2. We consider the

same set of rigid-body transformations whose properties were introduced in Sec. 2.1.

Definition 9. The correct registration of an image X transformed by π ∈ Π is π̂ = π−1.

We focus on the 0-1 loss function to quantify performance.

Definition 10. The error probability of an algorithm Φ(n) that outputs π̂ is

Pe(Φ
(n)) = P

[
π̂ 6= π−1

i

]
. (3.12)

We use Φ to denote Φ(n) when clear from context.

3.2.2 Moments of Information Density

For this chapter we will characterize the performance in terms of the moments of information

density, and we introduce the moments here for reference.
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Definition 11. Given X, Y sampled according to the joint distribution p, and the corre-

sponding marginals px, py, the information density is defined as

ı(x; y) = log
p(x, y)

px(x)py(y)
.

The information density is also alternatively called the information spectrum. However,

we clarify that the quantity is different from the marginal information density (also called

the Bayesian surprise) [100,101] which is defined as

s(x) = D(p(Y |X = x)‖p(Y )).

That is,

s(x) = E [ı(x;Y )|X = x] .

Both the information density and the Bayesian surprise have the same expected value, which

is the mutual information. In fact, the moments of the information density are as follows:

1. Mutual information, I(X;Y ) = E [ı(X;Y )].

2. Dispersion, V (X;Y ) = E [(ı(X;Y )− I(X;Y ))2].

3. Third absolute moment, T (X;Y ) = E [|ı(X;Y )− I(X;Y )|3].

Several properties of these moments have been studied. In particular, we note that the infor-

mation density, mutual information, dispersion, and third absolute moments are continuous

over the probability simplex. Further, the dispersion and the third absolute moment are

bounded above as shown in [90].

3.2.3 An Achievable Method: Feinstein Decoder

The two-image registration problem has been well-studied and a variety of registration al-

gorithms have been defined, including the maximum mutual information decoder studied in

the last chapter. Since we consider the Hamming loss, the optimal algorithm is the max-

imum likelihood estimate. Whereas the ML decoder is Bayes optimal, to assist with the

analysis, we consider the Feinstein version of a likelihood ratio test to perform the regis-

tration [102]. To define this decoder, let us presume that the possible transformations are

ordered as Π = {πi : i ∈ [M ]}. Then the transformation is estimated as

π̂F = πi∗ , where i∗ = min {i ∈ [M ] : ı(X; Yπi) ≥ δ} . (3.13)
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We now derive upper bounds on the error probability of the Feinstein decoder for image

registration in the channel-aware, finite-sample context. In particular we characterize the

tradeoff between the sample size (image resolution) and channel properties (moments of

information density) under which the Feinstein decoder achieves an error probability of at

most ε.

Lemma 11. For any pair of images X,Y, and transformation π,

ı(X,Yπ) = Lπ(X,Y) + C(X,Y),

where Lπ(·) is the log likelihood ratio given the transformation π ∈ Π, and C(·) is a function

independent of the transformation.

Proof. From the definition of the information density and the memorylessness of the channel

and source,

ı(X; Yπ) =
n∑

i=1

log
p(xi, yπ(i))

p(xi)p(yπ(i))
= logLπ [X,Y]− log (p(X)p(Y)) .

Here C(X,Y) = − log (p(X)p(Y)) is independent of the permutation π owing to the mem-

orylessness of the source and channel.

Thus the Feinstein likelihood decoder in (3.13) is a version of the likelihood ratio test.

The performance of the decoder can be analyzed as follows.

Theorem 13. The error probability of the Feinstein decoder is bounded as

Pe(ΦF ) ≤ Pπ0 [ı(X; Y) ≤ δ] +
M − 1

2
Pπ [ı(X; Yπ) > δ] , (3.14)

where π is the transformation with the maximum number of fixed points.

Proof. First, we bound the conditional error probability, given the true transformation is

π∗ = πj. In this case, the decoder declares the wrong transformation if ı(X; Yπj) ≤ δ or
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there exists i < j such that ı(X; Yπi) > δ, i.e.,

Pe,j = P [π̂F 6= πj|π∗ = πj]

= P
[{
ı(X; Yπj) ≤ δ

}
∪i<j {ı(X; Yπi) > δ} |π∗ = πj

]

≤ P
[
ı(X; Yπj) ≤ δ|π∗ = πj

]
+
∑

i<j

P [ı(X; Yπi) > δ|π∗ = πj] (3.15)

= Pπ0 [ı(X; Y) ≤ δ] +
∑

i<j

P [ı(X; Yπi) > δ|π∗ = πj] (3.16)

≤ Pπ0 [ı(X; Y) ≤ δ] +
∑

i<j

Pπ0 [ı(X; Yπ)] (3.17)

= Pπ0 [ı(X; Y) ≤ δ] + (j − 1)Pπ0 [ı(X; Yπ) > δ] , (3.18)

where (3.15) follows from the union bound, (3.16) follows from the fact that the information

density between the correctly transformed pairs conditioned on the true transformation is

the same as that between the given image pairs under the null hypothesis. Finally, (3.17)

is obtained by bounding the conditional probabilities by the transformation with the most

fixed points with respect to the null hypothesis. This is since it has the least informative

samples, and thus serves as a bound for the probability.

Finally, (3.14) follows from (3.18) as

Pe(ΦF ) =
∑

j∈[M ]

1

M
Pe,j ≤ Pπ0 [ı(X; Y) ≤ δ] +

1

M

(
M

2

)
Pπ0 [ı(X; Yπ) > δ] .

Next, we bound the two probabilities in (3.14) in the following lemmas.

Lemma 12. Given n i.i.d. pairs (X,Y)
i.i.d.∼ pX,Y ,

P [ı(X; Y) ≤ δ] ≤ Q(τ) +
B√
n
, (3.19)

where

τ =
nI(X;Y )− δ√
nV (X;Y )

, and B =
6T (X;Y )

V (X;Y )3/2
.

Proof. Let Zi = ı(Xi;Yi). Then, ı(X; Y) =
∑n

i=1 Zi, and for any i ∈ [n],

µZ = E [Zi] = I(X;Y ),

VZ = var(Zi) = E
[
(Zi − µZ)2

]
= V (X;Y ),

TZ = E
[
|Zi − µZ |3

]
= T (X;Y ).
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Then, from the Berry-Esseen theorem, we have

P [ı(X; Y) ≤ δ] = P

[
n∑

i=1

Zi ≤ δ

]
≤ Q

(
nµZ − δ√
nVZ

)
+

6TZ√
n(VZ)3/2

,

and the result is obtained by substituting the values of the computed moments.

On the other hand, Sanov’s theorem results in the following upper bound on the tail

probability of the information density.

Lemma 13. Given, n i.i.d. samples (Xi, Yi)
i.i.d.∼ p, then for any constant λ > 0,

P [ı(X; Y) ≥ nδ] ≤ (n+ 1)|X ||Y| exp (−n [λI(X;Y )− logE [exp (λı(X;Y ))]]) . (3.20)

In particular, the tightest upper bound is obtained by using the constant

λ∗ = arg max
λ>0

λI(X;Y )− logE [exp (λı(X;Y ))] .

Proof. The proof uses Sanov’s theorem. For simplicity, let Zi = ı(Xi;Yi). Then, from

Sanov’s theorem, we have

P [ı(X; Y) ≥ nδ] ≤ (n+ 1)|X ||Y| exp (−nD(q∗‖p)) ,

where

q∗ = arg max
q:Eq [ı(X;Y )]≥δ

D(q‖p).

Using Lagrange multiplier λ > 0, consider the Lagrangian

L(q) = D(q‖p)− λEq [ı(X;Y )]

=
∑

(x,y)∈X×Y

q(x, y)

[
log

q(x, y)

p(x, y)
− λ log

p(x, y)

p(x)p(y)

]
.

To maximize the Lagrangian, we set the partial derivatives to 0, and have

∂

∂q(x, y)
= 0⇔ log

q(x, y)

p(x, y)
− λ p(x, y)

p(x)p(y)
+ 1 = 0

⇔ q(x, y) =
1

Z
p(x, y)

[
p(x, y)

p(x)p(y)

]λ
,
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where

Z = E

[(
p(x, y)

p(x)p(y)

)λ]
,

is the normalization constant. Since the optimization is over a convex objective with linear

inequality constraints, from KKT conditions, it is evident that

δ = Eq∗ [ı(X;Y )] =
1

Z
Ep

[(
p(X, Y )

p(X)p(Y )

)λ
log

(
p(X, Y )

p(X)p(Y )

)]
.

Thus, we can compute the maximum KL divergence as

D(q∗‖p) = Eq∗
[
log

q∗(x, y)

p(x, y)

]

=
1

Z
Ep

[(
p(X, Y )

p(X)p(Y )

)λ
log

(
1

Z

(
p(X, Y )

p(X)p(Y )

)λ)]

= λδ − logZ

= λδ − logE [exp (λı(X;Y ))] .

Now, let X̃ = exp (λı(X;Y )). Then, we have

λδ =
E
[
X̃ log X̃

]

E
[
X̃
] .

Since the function f(x) = x log x is convex, using Jensen’s inequality, we have

λδ ≥
E
[
X̃
]

logE
[
X̃
]

E
[
X̃
] ≥ log (exp (λE [ı(X;Y )])) = λI(X;Y ).

Thus, for any λ > 0, δ ≥ I(X;Y ) and so the result follows.

Finally, let us consider the information density generated by pairs of pixels in a derange-

ment by using the Berry-Esseen theorem.

Lemma 14. Consider n i.i.d. pairs (Xi, Yi)
i.i.d.∼ p and let π be a derangement of [n]. That

is, for all i ∈ [n], π(i) 6= i. Then, for ı(X,Yπ) =
∑n

i=1 ı(Xi;Yπ(i)), the tail probability is

bounded as

P [ı(X,Yπ) ≥ δ] ≤ 6
√

3

(
log 2√

2π
+ 2B(X;Y )

)
1√

nV (X;Y )
exp

(
−δ

3

)
. (3.21)
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Proof. Note that for any i, (Xi, Yπ(i)) ∼ pXpY . However, note that the samples themselves

are dependent as we are considering permutations of the sequence. So we first split the

samples into sets of independent pairs. First construct a graph based on the permutation π

on the set of vertices V = [n] with edges (i, π(i)), for all i ∈ [n]. Since the permutation is a

derangement, the resulting graph is composed of a set of disjoint cycles, each of length at least

two. Thus the vertices are 3-colorable. By uniformly distributing the three colors among

the nodes, divide the set as [n] = V1 ∪ V2 ∪ V3, according to the colors of the corresponding

nodes in the graph. It is easy to see that there exists a coloring such that |Vi| ≥
⌊
n
3

⌋
for all

i ∈ [3]. For simplicity, we assume that n is a multiple of 3 and that |Vi| = n/3. The results

generalize trivially.

Since Vi includes nodes of the same color, for any j, k ∈ Vi, it is evident that π(j), π(k) /∈
Vi. Consequently, (Xj, Yπ(j)) and (Xk, Yπ(k)) are independent. More generally, the pairs

corresponding to the indices in any Vi are mutually independent and (Xj, Yπ(j))
i.i.d.∼ pXpY ,

for any j ∈ Vi.
We first note that

P [ı(X,Yπ) ≥ δ] (3.22)

= p⊗nX,Y


∑

i∈[n]

ı(Xi, Yπ(i)) ≥ δ




≤
∑

i∈[3]

p⊗nX,Y


∑

j∈Vi]

ı(Xj, Yπ(j)) ≥
δ

3


 (3.23)

= 3pXp
⊗n

3
Y


 ∑

i∈[n/3]

ı(Xi;Yi) ≥
δ

3


 (3.24)

= 3E
p
⊗
n
3

X,Y


pX(X)pY (Y)

pX,Y (X,Y)
1




∑

i∈[n/3]

ı(Xi;Yi) ≥
δ

3






 (3.25)

= 3E
p
⊗
n
3

X,Y


exp


−

∑

i∈[n/3]

ı(Xi;Yi)


1




∑

i∈[n/3]

ı(Xi;Yi) ≥
δ

3






 , (3.26)

where (3.23) follows from the union bound, (3.24) follows from the fact that the probabil-

ities are the same across the three color sets and that samples from each set are sampled

independently according to the product distribution. Then, we change the distribution over

which the expectation is computed to the joint distribution by appropriately scaling the

indicator random variable, and finally, (3.26) follows from the definition of the information
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density. Thus we have upper bounded the tail probability of the information density of the

derangement by an indicator-weighted moment of the information density of samples drawn

according to the joint distribution pX,Y .

From [90, Lemma 47], given n independent random variables Z1, . . . , Zn, and if VZ =∑
j∈[n] Var(Zj) 6= 0, and TZ =

∑
j∈[n] E [|Zj − E [Zj] |3] <∞, then for any δ,

E


exp


−

∑

j∈[n]

Zj


1




∑

j∈[n]

Zj > δ






 ≤ 2

(
log 2√

2π
+

12TZ
VZ

)
1√
VZ

exp (−δ) .

Thus, if Zi = ı(Xi;Yi), the term in the upper bound in (3.26) is bounded as

E
p
⊗
n
3

X,Y


exp


−

∑

i∈[
n
3

]

ı(Xi;Yi)


1




∑

i∈[
n
3

]

ı(Xi;Yi) ≥
δ

3








≤
(

log 2√
2π

+ 2B(X;Y )

)
2
√

3√
nV (X;Y )

exp

(
−δ

3

)
,

which proves the lemma.

Remark 9. Note that the constant in Lem. 14 can be reduced to 4
√

2 from 6
√

3 if we knew

the permutation cycles generated by π were all of even length. This is because even length

cycles can be vertex colored using two colors, resulting in two sets of size n/2.

Theorem 14. Let M = 2cnα + 1 and δ ≥ 3α log n + γnnI(X;Y ) + 3 log c. Then, the

probability of error achieved by the Feinstein decoder is upper bounded as

Pe(ΦF ) ≤ Q

(
nI − δ√
nV

)
+

B√
n

+
6
√

3√
(1− γn)n

(
log 2√

2π
+ 2B

)
(3.27)

+
M − 1

2
(γnn+ 1)|X ||Y| exp (−γnnD∗) , (3.28)

where

I = I(X;Y ) = E [ı(X;Y )] ,

V = V (X;Y ) = Var (ı(X;Y )) ,

T = T (X;Y ) = E
[
|ı(X;Y )− I|3

]
,

B = B(X;Y ) =
6T

V
,

D∗ = λ∗I(X;Y )− logE [exp (λ∗ı(X;Y ))] .
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Proof. From Thm. 13, we know that

Pe(ΦF ) ≤ Pπ0 [ı(X; Y) ≤ δ] +
M − 1

2
Pπ [ı(X; Yπ) > δ] .

From Lem. 12, we have

Pπ0 [ı(X; Y) ≤ δ] ≤ Q

(
nI − δ√
nV

)
+

B√
n
.

Next, from the union bound, we have

Pπ [ı(X; Yπ) > δ] = Pπ


∑

j∈[n]

ı(Xj;Yπ(j)) > δ




= Pπ


∑

j∈Iπ

ı(Xj;Yj) +
∑

j∈Icπ

ı(Xj;Yπ(j)) > δ




≤ Pπ

[∑

j∈Iπ

ı(Xj;Yj) ≥ δ1

]
+ Pπ


∑

j∈Icπ

ı(Xj;Yj) > δ2


 , (3.29)

where δ1 + δ2 = δ, and δ1 ≥ γnnI(X;Y ), δ2 ≥ 3α log n+ 3 log c.

From Lem. 13, for δ1 ≥ γnnI(X;Y ),

Pπ

[∑

j∈Iπ

ı(Xj;Yj) ≥ δ1

]
≤ (γnn+ 1)|X ||Y| exp (−γnnD∗) .

Next, from Lem. 14, for δ2 ≥ 3α log n+ 3 log c,

Pπ


∑

j∈Icπ

ı(Xj;Yj) > δ2


 ≤ 2

M − 1

6
√

3√
(1− γn)n

(
log 2√

2π
+ 2B

)
.

Substituting the probabilities, the result follows.

Corollary 3. If log(1+γnn)
γnn

≤ D∗

2|X ||Y| , and

(1− γn)nI(X;Y ) ≥
√
nV (X;Y )Q−1(ε) + 3α log n+ ∆, (3.30)

where ∆ is a constant independent of the sample size n, but is dependent on the dispersion of

the channel V (X;Y ), then, there exists a threshold δ such that the Feinstein decoder achieves

an average error probability less than ε.
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Proof. First, from Thm. 14 we know that if δ1 ≥ γnnI(X;Y ), δ2 ≥ 3α log n + 3 log c, then

the probability of error of the Feinstein decoder is upper bounded as in (3.27). Thus,

δ ≥ γnnI(X;Y ) + 3α log n+ 3 log c. (3.31)

Next, we note that if

γnn
(
D∗ −O

(
log(γnn)
γnn

))
≥
(
α + 1

2

)
log n, (3.32)

then
M − 1

2
(γnn+ 1)|X ||Y| exp (−γnnD∗) ≤

c√
n
.

Since an achievability criterion for a larger γn is also one for a smaller worst-case number

of fixed points, it suffices to consider the case where γnn ≥
2
(
α+

1
2

)
D∗

log n. Since log(1+γnn)
γnn

≤
D∗

2|X ||Y| , (3.32) is satisfied. Thus,

Pe(ΦF ) ≤ Q

(
nI − δ√
nV

)
+

B√
n

+
6
√

3√
(1− γn)n

(
log 2√

2π
+ 2B

)
+

c√
n
.

Thus, Pe(ΦF ) ≤ ε, if

δ ≤ nI −
√
nV Q−1

(
ε−

[
B√
n

+
6
√

3√
(1− γn)n

(
log 2√

2π
+ 2B

)
+

c√
n

])

= nI(X;Y )−
√
nV (X;Y )Q−1(ε) + ∆, (3.33)

where

η

(
ε−

[
B√
n

+
6
√

3√
(1− γn)n

(
log 2√

2π
+ 2B

)
+

c√
n

])
≤

∆

B
√
V + 6

√
3√

1−γn

(
log 2√

2π
+ 2B

)
+ c
≤ η(ε),

where η(·) is the derivative of the inverse Q-function. Here (3.33) follows from the differen-

tiability of the Q−1 function.

Thus, from (3.31) and (3.33), it is evident that an optimal threshold δ can be chosen

provided (3.30) holds.

Corollary 3 characterizes the tradeoff between the channel properties, in terms of the

moments of information density, and the sample size. For instance, let us consider the
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Figure 3.3: Sufficient sample size N(ε, δ) for BSC(δ) and error probability ε. The sufficient sample
size increases with a decrease in target error probability, and with increasing crossover probability.

simple case of a binary symmetric source X
i.i.d.∼ Bern(0.5) and binary symmetric channel

with crossover probability δ. For simplicity let us presume that γn = n−1/2 and let M = n5.

The minimum sample size, NBSC(ε, δ), that satisfies (3.30) as a function of the error prob-

ability ε and the crossover probability δ is shown in Fig. 3.3. As expected, with decreasing

target error probability, the sufficient sample size increases. Similarly as the channel gets

noisier, that is, as the crossover probability increases, the sufficient sample size increases.

3.3 Discussion

In this chapter we studied the image registration problem with a focus on tighter performance

analyses from two angles. First, we considered the simplified problem of universal delay

estimation using the max mutual information decoder to understand the effect of the number

of permutation cycles on the error probability. Having observed the asymptotic optimality

for finite delays in [60], this analysis provides an insight into delays that can scale with

n and therein characterizing the sample complexity of universal delay estimation better.

Considering the similarity of the image registration problem to the delay estimation problem,

such studies inform us better regarding the problem difficulty given a set of transformations.

We then considered the problem of channel-aware image registration using likelihood ratio
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tests to study their finite-sample performance. Using the Feinstein decoder we obtained

achievable sample sizes given the moments of the channel information density and the target

error probability ε. This study helps us establish some preliminary results on the fundamental

achievable finite-sample performance of image registration. Future work can build on strong

large deviations and central limit theorems to obtain converse criteria for image registration.

Improved analyses through strong large deviations informed by a better characterization

of the set of transformations help obtain tight sample complexity bounds. On the other

hand, we believe the universal image registration problem can be better understood by ob-

taining strong finite-sample performance characterization of plug-in estimates of information

functionals. To this end, studying the convergence of functions of types to the function of

the true distribution would prove handy [103].
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CHAPTER 4

MULTIVARIATE INFORMATION FUNCTIONALS
FOR CLUSTERING

Chapters 2 and 3 considered the unsupervised information processing task of image regis-

tration in considerable detail with an emphasis on information-based methods for aligning

images. In this chapter we explore another problem in unsupervised information processing—

clustering. Unsupervised clustering forms a significant component of machine learning, data

analytics, and information processing at large. At its core, unsupervised clustering seeks to

work with minimal or no contextual information, much in the same spirit of how humans

learn without a teacher. For this reason, design of good unsupervised clustering algorithms

is also crucial to our search for artificial general intelligence.

In this chapter we specifically consider the problem of clustering using information-based

algorithms, particularly from the standpoint of joint image clustering and registration. We

then highlight the role that multivariate information functionals can play with clustering

in particular, and dependence structure recovery in general by studying their functional

and operational properties, with an emphasis on illum information, multivariate information

functional defined later in this chapter.

Unsupervised clustering has been studied under numerous optimality and similarity cri-

teria [104, 105]. Popular techniques for unsupervised image clustering include affinity prop-

agation [106], expectation maximization [107], independent component analysis [108], and

orthogonal subspace projection [109]. The focus here is on information-based clustering al-

gorithms [71,110–112], as the information functionals are ubiquitous in universal information

processing.

We now consider the task of clustering a set of n objects {X1, . . . , Xn}. The term object

here is defined broadly to encompass a variety of data types such as images, object labels,

and more generally random variables. Let P be the set of all partitions of the index set

[n]. Given a set of constraints to be followed by the clusters, as defined by the problem, let

Pc ⊆ P be the subset of viable partitions satisfying the system constraints. We presume a

framework wherein each object has a true label associated with it.

Definition 12 (Clustering). A clustering of a set of n objects is a partition P ∈ Pc of the

set [n] that satisfies the set of all constraints. A cluster is a set in the partition and objects
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Xi and Xj are in the same cluster when i, j ∈ C for some cluster C ∈ P .

A clustering is said to be correct if all objects with the same label are clustered together,

when such a unique solution, P ∗, exists. Otherwise, we might be interested in a hierarchical

clustering of the objects using relative similarity structures. The performance of a cluster-

ing algorithm is characterized by distance metrics such as the symbol or blockwise error

probabilities.

Here we focus on universal clustering algorithms that are defined as follows.

Definition 13 (Universal Clustering). A clustering algorithm Φ is universal if it performs

clustering in the absence of knowledge of the source and/or channel distributions and param-

eters defining the data samples.

The specific source or channel models that define the data samples are application-specific.

The space of partitions includes a natural ordering to compare the partitions, and is defined

as follows.

Definition 14 (Partition Ordering). For P, P ′ ∈ P, P is finer than P ′, if the following

ordering holds

P � P ′ ⇔ for all C ∈ P, there exists C ′ ∈ P ′ : C ⊆ C ′.

Similarly, P is denser than P ′, P � P ′ ⇔ P ′ � P . If P ′ 6� P 6� P ′, then the partitions are

comparable, P ∼ P ′.

We aim to identify the finest clustering maximizing the similarity criteria. Alternatively,

in the context of designing hierarchical clustering structures (also known as taxonomies),

algorithms identify sequentially finer partitions to construct the phylogenetic tree.

We now study the problem of joint image clustering and registration using mutivariate

information functionals.

4.1 Joint Image Clustering and Registration

Consider the problem of joint clustering and registration of multiple images. That is, group-

ing images according to the underlying scene and aligning images within each cluster. Having

identified asymptotically optimal registration algorithms using multiinformation, we now de-

sign universal algorithms to also perform clustering.

We extend the image and transformation models defined in Sec. 2.1. Consider a finite

collection of ` distinct scenes (drawn i.i.d. according to the prior) R =
{
R(1), . . . ,R(`)

}
.
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This is the collection of different scenes and each image is a noisy depiction of an underlying

scene.

Now, given the correct clustering P ∗ = {C∗1 , . . . , C∗K}, let j1, . . . , jK be the labels of the

scenes corresponding to the clusters. That is, the scene corresponding to cluster C∗k is

R(jk). The images are outputs of a discrete memoryless channel (DMC) whose inputs are

the underlying scenes:

P
[
X̃[m]

∣∣∣R, P ∗
]

=
K∏

k=1

n∏

i=1

W
(
X̃
C∗k
i

∣∣∣Rjk
i

)
, (4.1)

where for any set S, XS = {Xi : i ∈ S}. That is, images of the same scene are jointly

corrupted by a DMC, while the images corresponding to different scenes are independent of

each other. Here we assume X̃ ∈ [r]n.

Finally, image i is transformed by the rigid body transformation πi, for each i ∈ [m]

resulting in the image Xi. Thus, we know that images corresponding to different scenes are

independent, and we use this as the notion of similarity to perform clustering.

In this case it is worth noting that ML estimates are not Bayes optimal unless the partitions

are uniformly likely. Thus, the Bayes optimal test is the likelihood ratio test, i.e., maximum

a posteriori (MAP) estimate ΦMAP given by

(
P̂MAP, π̂MAP

)
= arg max

P,π̄
P [P ∗ = P ]

∏

C∈P

n∏

i=1

P
[
X

(C)

π(C)(i)

]
, (4.2)

where the probability is computed by averaging over scene configurations and the corre-

sponding channel model. Both ML and MAP require knowledge of the channel and the

prior, and are also hard to compute. Hence we design computationally efficient, exponen-

tially consistent algorithms.

4.1.1 Multivariate Information Functionals for Clustering

Clustering random variables using information functionals has been well studied [111, 112].

Here we adopt an approach similar to the minimum partition information (MPI) framework.

For the problem at hand, let X(i) be the random variable representing a pixel of image

i. Let us define a multivariate information functional called cluster information to quantify

intra-cluster information.

Definition 15. The cluster information (CI) of Z [n] for partition P = {C1, . . . , Ck} of [n]
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is

I
(P )
C (Z1; . . . ;Zn) =

∑

C∈P

IM(ZC). (4.3)

Lemma 15. If the images are self-aligned, i.e., π̄∗ = π̄0, then the correct clustering is the

finest partition that maximizes the cluster information.

Proof. Since images in different clusters are independent,

P ∗ ∈ arg max
P∈P

I
(P )
C (X [m]),

from the chain rule and non-negativity of multiinformation.

For any P 6� P ∗, there exist clusters C1, C2 ∈ P such that there exist images in each

cluster corresponding to the same scene. This indicates that I(XC1 ;XC2) > 0, i.e.,

I
(P ∗)
C (X [m]) > I

(P )
C (X [m]).

This indicates that the set of all partitions that minimize the partition information is the

set {P : P � P ∗}. Hence the finest such partition is the correct clustering.

We refer to the finest partition maximizing the cluster information as the fundamental

partition.

Lemma 16. Let π̄ = (π1, . . . , πm) be the estimated transformations and let π̄∗ be the correct

registration. Then, if π̄ 6= π̄∗, then the fundamental partition P̂ of {X(1)
π1 , . . . , X

(m)
πm } satisfies

P̂ ≺ P ∗, where P ∗ is the correct clustering.

Proof. We first note that images that correspond to different scenes are independent of each

other, irrespective of the transformation. Second, an image that is incorrectly registered

appears less dependent of any other image corresponding to the same scene. This in turn

yields the result.

These properties provide a natural estimator for joint clustering and registration, provided

the information values can be computed accurately.

Corollary 4. Let P̂π̄ be the fundamental partition corresponding to the estimated transforma-

tion vector π̄. Then (P ∗, π̄∗) is the densest partition in {P̂π̄ : π̄ ∈ Πm} and the corresponding

transformation vector.

Proof. This follows directly from Lems. 15 and 16.

We now consider the computational complexity of identifying the partition that maximizes

the cluster information.
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Lemma 17. The clustering information of a set of random variables {Z1, . . . , Zn} is super-

modular.

Proof. The cluster information may be decomposed as

I
(P )
C (Z1; . . . ;Zn) =

n∑

i=1

H(Zi)−
∑

C∈P

H(ZC).

Since entropy is submodular, the result follows.

Supermodular function maximization can be done efficiently in polynomial time using the

Dilworth truncation lattice [62, 112]. From Lem. 17 we see that given the distribution, we

can obtain the fundamental partition efficiently.

Lemma 18. The plug-in estimates of cluster information are exponentially consistent.

Proof. The result for the cluster information estimate follows from (4.3), the union bound,

and the exponential consistency of plug-in estimates of multiinformation as

P
[∣∣∣Î(P )

C

(
X [m]

)
− I(P )

C

(
X [m]

)∣∣∣ > ε
]
≤ C exp (−nδε) ,

where C = 2m, δε = ε4

32m4|X |2m log 2
+ o(1) = θε4 + o(1).

We now use these observations to define clustering algorithms using plug-in estimates,

under various criteria.

4.1.2 Clustering Criteria

Designing any unsupervised clustering algorithm requires a similarity criterion. Here, we

know that the similarity criterion is dependence of pixel values among images of the same

cluster. Thus we consider the following criteria.

(B1) ε-likeness: A given source and channel model for images, X[m], is said to satisfy ε-

likeness criterion if

min
P ∗∈P

min
P 6�P ∗,P 6�P ∗

IP
∗

C (X [m])− IPC (X [m]) ≥ ε.

(B2) Given number of clusters: Given the number of clusters k in the set of images, we can

define an exponentially consistent universal clustering algorithm.
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Algorithm 2 ε-like Clustering, ΦC

(
X(1), . . . ,X(m), ε

)

for all π̄ ∈ Πm do
Compute empirical pmf p̂

(
X

(1)
π1 , . . . , X

(m)
πm

)

Ĩ = maxP∈P Î
(P )
C (X

(1)
π1 , . . . , X

(m)
πm )

Pπ = Finest
{
P : Î

(P )
C (X

(1)
π1 , . . . , X

(m)
πm ) ≥ Ĩ − ε

2

}
, where Finest {·} refers to the finest

partition in the set.
end for
(P̂ , π̂) =

{
(P, π̄) : P = P̂π̄ � P̂π̄′ , for all π̄′ 6= π̄

}

(B3) Non-exponentially consistent: Any two images X,Y that belong to different clusters

are independent, i.e., I(X;Y ) = 0. Hence, using a threshold γn, decreasing with

n, we can define a consistent clustering algorithm which however lacks exponential

consistency, cf. [74].

(B4) Hierarchical clustering: If it suffices to create the tree of similarity among images

through hierarchical clustering, then we can define a consistent algorithm that deter-

mines such topological relation among images.

Criterion (B1) restricts the priors and channels, and may be interpreted as a capacity. On

the other hand (B2) restricts the space of partitions much like k-means clustering. Criterion

(B3) focuses on the design of fully universal clustering algorithms albeit with sub-exponential

consistency. Finally, criterion (B4) aims to develop a topology of independence-based simi-

larity relations among images. We address the clustering problem for each of these criteria.

4.1.3 ε-Like Clustering

We define ε-like clustering, Alg. 2, using the fact that CI is maximized by the correct clus-

tering.

Lemma 19. Let the source and channel be ε-like. Then, ΦC is exponentially consistent.

Proof. First, let us assume that the estimated transformation is correct, π̂ = π∗. Let Ĩ =

maxP∈P Î
(P )
C (X

(1)
π1 , . . . , X

(m)
πm ), P̃ the maximizing partition. Then, there are constants c, δε

such that

P
[
Î

(P ∗)
C (X(1)

π1
, . . . , X(m)

π1
) ≤ Ĩ − ε

2

]
≤ P

[
|Ĩ − Î(P ∗)

C (X(1)
π1
, . . . , X(m)

πm )| ≥ ε
2

]

≤ P
[
|Î(P̃ )
C − I(P̃ )

C |+ |Î
(P ∗)
C − I(P ∗)

C | ≥ ε
2

]
(4.4)

≤ 2c exp
(
−nδε/4

)
, (4.5)
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where (4.4) follows from the triangle inequality and the fact that the multiinformation is

maximized by the correct clustering, and (4.5) follows from the union bound and Lem. 18.

Here in (4.4) the information measures are computed for the random variables X
[[m]
π̄ ,

(X
(1)
π1 , . . . , X

(m)
πm ).

Further, for any P ∈ P such that P 6� P ∗ and P 6� P ∗

P
[
Î

(P )
C (X(1)

π1
, . . . , X(m)

π1
) ≥ Ĩ − ε

2

]
(4.6)

≤ P
[
Î

(P ∗)
C (X(1)

π1
, . . . , X(m)

πm )− Î(P )
C (X(1)

π1
, . . . , X(m)

πm ) ≤ ε
2

]
(4.7)

≤ P
[∣∣∣
(
Î

(P ∗)
C − I(P ∗)

C

)
−
(
Î

(P )
C − I(P )

C

)∣∣∣ ≥ ε
2

]
(4.8)

≤ 2c exp
(
−nδε/4

)
, (4.9)

where (4.7) follows from the fact that Ĩ is the maximum empirical cluster information and

(4.8) follows from the ε-likeness criterion. Finally, (4.9) follows from the triangle inequality,

union bound and Lem. 18. Here again, in (4.8) the information measures are computed for

X
[m]
π̄ .

From (4.5), (4.9), and the union bound we know that

P
[
P̂π̄ 6= P ∗

]
≤ 4c exp

(
−nδε/4

)
. (4.10)

Now, invoking Lem. 16, we know from similar analysis, that the densest fundamental

partition is exactly P ∗. More specifically, for any π̄ 6= π̄∗, the equivalent fundamental

partition is finer than P ∗. This in turn indicates that

Pe(ΦC) ≤ 4c|Π| exp
(
−nδε/4

)
, (4.11)

owing to the union bound and (4.10).

4.1.4 K-Info Clustering

Under (B2), i.e., given number of clusters K in the set of images, let PK ⊂ P be the set

of all partitions consisting K clusters. Then, much in the spirit of K-means clustering, we

define the K-info clustering estimate as

(P̂ , π̂) = arg max
P∈PK ,π̄∈Πm

Î
(P )
C (X(1)

π1
, . . . , X(m)

π1
). (4.12)

Lemma 20. Given the number of clusters K in the set, the K-info clustering estimates are
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Algorithm 3 Thresholded Clustering, ΦT

(
X(1), . . . ,X(m), α

)

γn ← c1n
−α, for some constant c1 > 0

for all π̄ ∈ Πm do
Compute empirical pmf p̂

(
X

(1)
π1 , . . . , X

(m)
πm

)

Ĩ = maxP∈P Î
(P )
C (X

(1)
π1 , . . . , X

(m)
πm )

Pπ = Finest
{
P : Î

(P )
C (X

(1)
π1 , . . . , X

(m)
πm ) ≥ Ĩ − γn

}

end for
(P̂ , π̂) =

{
(P, π̄) : P = P̂π̄ � P̂π̄′ , for all π̄′ 6= π̄

}

exponentially consistent.

Proof. Let Pπ̄ = arg maxP∈PK I
(P )
C (X

[m]
π̄ ) and P̂π̄ = arg maxP∈PK Î

(P )
C (X

[m]
π̄ ). Then, for any

π̄ ∈ Πm,

P
[
P̂π̄ 6= Pπ̄

]
= P

[
Î

(P̂π̄)
C (X

[m]
π̄ ) > I

(Pπ̄)
C (X

[m]
π̄ )
]
≤ 2(|PK | − 1)c exp (−nδεπ̄) , (4.13)

where, for επ̄ = I
(Pπ̄)
C (X

[m]
π̄ )−maxP 6=Pπ̄ I

(P )
C (X

[m]
π̄ ), (4.13) follows from the union bound and

Lem. 18.

Next, for any π̄ 6= π̄∗, we have

P
[
Î

(Pπ̄)
C (X

[m]
π̄ ) > Î

(Pπ̄∗ )
C (X

[m]
π̄∗ )
]

(4.14)

≤ P
[∣∣∣Î(Pπ̄)

C − I(Pπ̄)
C − Î(Pπ̄∗ )

C + I
(Pπ̄∗ )
C

∣∣∣ ≥ I
(Pπ̄∗ )
C − I(Pπ̄)

C

]
(4.15)

≤ 2c exp (−nδε̃π̄) , (4.16)

where ε̃π̄ = I
(Pπ̄∗ )
C (X

[m]
π̄∗ )− I(Pπ̄)

C (X
[m]
π̄ ). In (4.15), I

(Pπ̄∗ )
C , Î

(Pπ̄∗ )
C are the information measures

computed for X
[m]
π̄∗ , while I

(Pπ̄)
C , Î

(Pπ̄)
C are computed for X

[m]
π̄ . Finally, the result follows from

(4.13), (4.16), and the union bound.

4.1.5 Clustering with Sub-Exponential Consistency

Under criterion (B3) we seek a universal clustering algorithm that is unaware of parameters

such as ε and K. Since dependence characterizes similarity, given a source and channel,

there exists ε > 0 such that the images are ε-like. However, the decoder does not know ε.

Since plug-in estimates are exponentially consistent, we adapt Alg. 2 to work with a dynamic

threshold dependent on n. The threshold-based clustering algorithm is given in Alg. 3.

Lemma 21. Let α ∈ (0, 1
4
). Then, the thresholded clustering algorithm, ΦT is asymptotically
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Algorithm 4 Hierarchical Clustering, ΦH

(
X(1), . . . ,X(m)

)

π̂ = arg maxπ̄∈Πm ÎM(X
[m]
π̄ )

Y[m] ← X
[m]
π̂

P ← {[m]}, P̂ (1)← P
for k = 2 to m do

for all C ∈ P do
JC ← maxP̃∈P2(C) I

(P̃ )
C (Y C)

P̃C ← arg maxP̃∈P2(C) I
(P̃ )
C (Y C)

end for
C̃ ← arg maxC∈P JC
P ← P\C̃
P ← P ∪ P̃C̃
P̂ (k)← P

end for

consistent.

Proof. Let the given source and channel be ε-like. Since γn decreases with n, there exists

Nε < ∞ such that for all n > Nε, γn < ε. The proof now follows analogous to that of

Lem. 19, as nδγn →∞ as n→∞.

At the expense of exponential consistency, we define a consistent universal algorithm only

using independence.

4.1.6 Hierarchical Clustering

Finally we consider clustering according to criterion (B4). Here, we aim to establish the

hierarchical clustering relation among images to establish a dendrogram for the images.

From the nature of independence among dissimilar images, we design a natural algorithm

for hierarchical clustering, Alg. 4. Fundamentally, at each stage, the algorithm splits a cluster

into two such that the resulting clusters are most independent.

Lemma 22. Consider a set of images with K clusters. Then, the partition at iteration

k = K of ΦH is almost surely the correct clustering. Further, the transformation estimates

are exponentially consistent.

Proof. The proof follows directly from exponential consistency of the other algorithms.
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4.1.7 Computational and Sample Complexity

Although not the principal focus, we briefly note the computational and sample complexity

of the algorithms. We have established that the fundamental partitions of CI may be ob-

tained efficiently for any chosen transformation vector, given the joint distribution. However,

exploring the neighborhood of the maximizing partition, for empirical estimates is a harder

problem to address and it is not clear if there is an efficient algorithm, other than exhaustive

search, to do this.

Further, identifying the transformation involves an exhaustive search in the absence of

additional information on transformations, dependency across images, or underlying inter-

pixel correlations. Since |Π| = O(nα), the complexity is O(nαm), i.e., exponential in the

number of images. For a constant number of images to be clustered and registered, this

method is efficient.

With regard to sample complexity, as we deal with the computation of information func-

tionals of m random variables, we require n = O(rm) samples [73] highlighting the need for

high-resolution images. Additional information on image model or transformations could

reduce this.

4.1.8 Large-Scale Joint Registration and Clustering

One can directly extend Alg. 1 to incorporate clustering as well. In particular, we partition

the images into subsets of a fixed size k and depending on the context of clustering, we

perform the appropriate joint registration and clustering algorithm defined in Sec. 4.1. Then,

representative images of each cluster in each subset are collected and the process is repeated

to merge clusters across the subsets. Direct analysis similar to Thms. 9 and 10 shows that

consistent clustering and registration requires n = Θ(logm).

The reduction to blockwise registration and clustering also implies that the exhaustive

searches are limited. For any k = O(1), the exhaustive search for registration in each subset

costs O(nαk) = O
(
(logm)αk

)
computations. Similarly, clustering involves searching over

O(exp(ck)) = O ((logm)c) partitions for some constant c. Aggregation of subsets requires

O(m) block computations. Thus the overall computational cost scales as O(m(logm)β), for

some β > 0, i.e. polynomially with number of images. However this is computationally

expensive in practice and needs appropriate heuristic adaptations.
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4.2 Multivariate Information Functionals and Clustering

As highlighted in Sec. 4.1, multivariate information functionals form a potent tool for

independence-based clustering of random variables. A variety of algorithms that determine

the dependence structure and perform clustering accordingly.

As observed with multiinformation in Sec. 4.1, the multiinformation quantifies the de-

pendence among a set of random variables. The multiinformation satisfies several opera-

tional and informational properties, as shown in diverse application areas such as psychol-

ogy [113,114], machine learning [72,115], image processing [116–118], cybernetics [119,120],

neuroscience [121], and multiterminal communication [122–124].

The purpose of this section is to provide some operational characterizations and useful

properties for an alternative measure of dependence where the roles of the joint and product-

of-marginal distributions are reversed. In this section we study the Csiszár conjugate of the

multiinformation, what we call illum information1 [71].

Definition 16. Given a set of random variables (X1, . . . , Xn) ∼ p, their Illum information

is defined as

L(X1; . . . ;Xn) := D (PX1 . . . , PXn‖PX1,...,Xn) . (4.17)

It is the multivariate extension of the lautum information [64] and has similar functional

and operational characteristics. Let us define the sum of multiinformation and illum infor-

mation, which we refer to as sum information:

S(X1; . . . ;Xn) = I(X1; . . . ;Xn) + L(X1; . . . ;Xn). (4.18)

4.2.1 Basic Properties

Since illum information is the multivariate extension of lautum information and the Csiszár

conjugate of multiinformation, several informational features extend naturally. Some such

properties are the following.

1. Non-negativity: Illum information, L(X1; . . . ;Xn) ≥ 0 with equality if and only if

P [X1, . . . , Xn] =
∏n

i=1 P [Xi]. This follows directly from the fact that illum information

is a relative entropy.

2. Monotonicity: For any n > m ≥ 2, L(X1; . . . ;Xn) ≥ L(X1; . . . ;Xm). This follows from

the chain rule and non-negativity of relative entropy as discussed later (4.23).

1Illum (“that” in Latin) is the reverse spelling of multi, if we do not cross our ts. We leave that, and
working through the appropriate Radon-Nikodym derivatives to the interested reader, especially since this
section is largely restricted to discrete alphabets.

65



3. Data processing inequality: If X1 ↔ X2 ↔ · · · ↔ Xn forms a Markov chain, then the

data processing inequality of lautum information [64] extends to illum information as

L(X1; . . . ;Xn−1) ≥ L(X1; . . . ;Xn−2;Xn). The data processing inequality also extends

to tree-structured Bayesian networks.

4. Convexity: Directly extending the results from [64], the illum information is

(a) a concave function of P [Xi] for any i ∈ [n], for a given P
[
X\i|Xi

]
,

(b) a convex function of P
[
Xi|X\i

]
for any i ∈ [n], for a given P

[
X\i
]
.

5. Invariance under bijection: Let f : X n → Yn be a bijective mapping and let (Y1, . . . , Yn) =

f(X1, . . . , Xn). The illum information is invariant to such bijective transformations,

i.e.,

L(X1, . . . , Xn) = L(Y1, . . . , Yn).

6. Lower and upper bounds: Let the variational information for random variablesX1, . . . , Xn

be defined as

V (X1, . . . , Xn) = Df (pX1 . . . pXn‖pX1,...,Xn),

for the convex function f(x) = 1
2
|x − 1|. Using Pinsker’s [125] and reverse Pinsker’s

[126] inequalities, the illum information can be bounded in terms of the variational

information as

L(X1; . . . ;Xn) ≥ log2 e

2
V 2(X1, . . . , Xn), (4.19)

L(X1; . . . ;Xn) ≤ log2 e

pmin

V 2(X1, . . . , Xn), (4.20)

where pmin = minx1,...,xn p(x1, . . . , xn), if pmin > 0.

4.2.2 Chain Rules

Not all informational characterizations of multiinformation extend to illum information. In

particular, multiinformation satisfies the chain rule given by

I(X1; . . . ;Xn) =
n∑

i=2

I(X i−1;Xi). (4.21)
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Table 4.1: Joint distribution p of (X,Y, Z) for which clustering the random variables does not
reduce illum information.

(X, Y, Z) p(X, Y, Z) (X, Y, Z) p(X, Y, Z)
(0, 0, 0) 0.04 (1, 0, 0) 0.34
(0, 0, 1) 0.29 (1, 0, 1) 0.12
(0, 1, 0) 0.01 (1, 1, 0) 0.06
(0, 1, 1) 0.11 (1, 1, 1) 0.03

Let X be a random vector drawn according to a Bayesian network where Ai is the set of

parents of node i. Then, the multiinformation decomposes as

I(X1; . . . ;Xn) =
n∑

i=1

I(Xi;XAi).

In particular, if P = {C1, . . . , Ck} is a partition of [n], then

I(X1; . . . ;Xn) ≥ I(XC1 ; . . . ;XCk).

However, such decompositions do not necessarily hold for the case of illum information.

For instance, consider (X, Y, Z) ∈ {0, 1}3 drawn as follows. Let X ∼ Bern(1/2),

Y ∼





Bern(ε), if X = 0

Bern(ε̄), if X = 1,
and Z ∼





Bern(ε), if X = Y

Bern(ε̄), if X 6= Y,

for ε̄ = 1− ε. Then, for ε < 1/2,

L(X;Y ;Z) > L(X;Y ) + L(X, Y ;Z).

On the other hand, for the distribution p given in Table 4.1,

L(X;Y ;Z) < L(X;Y ) + L(X, Y ;Z).

In fact, L(X;Y ;Z) < L(X, Y ;Z), i.e., clustering random variables does not necessarily

decrease illum information as it does for multiinformation. Hence in general, the illum

information does not satisfy a chain rule of the form of (4.21).

However, the chain rule does hold for tree-structured Bayesian networks. In particular, if

the n-dimensional random vector, X is distributed according to a tree-structured Bayesian

67



network such that the parent of node i is Ai, then

L(X1; . . . ;Xn) =
n∑

i=1

L(Xi;XAi). (4.22)

Let X ∼ p and let pi be the marginal distribution of Xi. Let q(X) =
∏n

i=1 pi(Xi). Using

the chain rule of relative entropy, we have

L(X1; . . . ;Xn) =
n∑

i=2

D
(
pi(Xi)

∥∥p(Xi|X i−1)
∣∣q(X i−1)

)
. (4.23)

4.2.3 Operational Characterizations: Independence Testing

Here, we identify the operational significance of multiinformation and illum information in

multivariate independence testing problem defined as




H0 : (X1, . . . , Xm) ∼ p

H1 : (X1, . . . , Xm) ∼ p1 × · · · × pm,
(4.24)

where pi is the marginal distribution of Xi corresponding to p. That is, the null and alternate

hypothesis correspond to the cases of mutual independence and dependence among the ran-

dom variables. For ease, let Y = (X1, . . . , Xm), and let Y1, . . . , Yn be drawn independently

and identically according to the underlying hypothesis. Let

α = P [Decide {Y1, . . . , Yn} ∈ H1|H0] ,

β = P [Decide {Y1, . . . , Yn} ∈ H0|H1] .

From [127], we have

d(α‖1− β) ≤ nI(X1; . . . ;Xm), (4.25)

d(β‖1− α) ≤ nL(X1; . . . ;Xm), (4.26)

where d(a‖b) = a log
(
a
b

)
+ (1 − a) log

(
1−a
1−b

)
, a, b ∈ (0, 1). It may be noted that (4.25) and

(4.26) yield upper bounds on the receiver operating characteristic (ROC) for the indepen-

dence testing problem.

Let L(X1; . . . ;Xm) and I(X1; . . . ;Xm) < ∞. In the asymptotic setting, Stein’s lemma

[128] gives an estimate of the maximum conditional error exponents in the Neyman Pearson
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formulation. In particular, for the best hypothesis test such that α < δ,

lim
n→∞

1

n
log(β) = −I(X1; . . . ;Xm), (4.27)

and similarly, for the best hypothesis test such that β < δ,

lim
n→∞

1

n
log(α) = −L(X1; . . . ;Xm). (4.28)

That is, we note that the Type I and Type II error exponents of independence testing are

given by the illum information and multiinformation respectively.

In the Bayesian setting, let π0 and π1 = 1−π0 be the prior probabilities of hypotheses H0

and H1 respectively. Then, the log-likelihood ratio of samples Y1, . . . , Yn is

`n(Y1, . . . , Yn) = log

(
π1

π0

)
+

n∑

i=1

log

(
P [Yi|H1]

P [Yi|H0]

)
.

Then, from the law of large numbers, we have

1

n
`n(Y1, . . . , Yn)

a.s.→




I(X1; . . . ;Xm), if H0

−L(X1; . . . ;Xm), if H1

(4.29)

if the information values are finite.

Under the sequential testing framework, the sequential probability ratio test (SPRT) tracks

the log-likelihood ratio which is given by

Sn =
n∑

i=1

log
P [Yi|H1]

P [Yi|H0]
,

and declares one of {H0, H1} once the sum crosses an appropriately chosen threshold. Let

D be the mean drift of Sn. Then,

D =




−I(X1; . . . ;Xm), if H0

L(X1; . . . ;Xm), if H1.

Consequently, Wald’s approximation indicates that the expected sample size, N , required
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for independence testing with Type I and Type II error levels α and β, is given by

N ≈




d(α‖1− β)/I(X1; . . . ;Xm), if H0

d(β‖1− α)/L(X1; . . . ;Xm), if H1.

Observing the role played by the multivariate information functionals, we can observe that

both multiinformation and illum information serve as two sides of the same coin with regard

to the independence testing problem. As highlighted in this chapter, a variety of information-

based clustering mechanisms have been defined recently to separate random variables into

clusters which have minimal inter-cluster dependence [62, 111, 112]. These formulations use

multivariate information functionals such as partition information and multiinformation to

perform clustering, especially in universal settings. However, one practical issue in imple-

menting such algorithms is that these information functionals are upper-bounded by entropy

terms. In practice, these quantities could potentially be arbitrarily small, thereby making

the clustering process very difficult.

However, we note that the illum information has no such generic upper bound in terms of

entropy. Let X ∼ p, where the joint distribution p is a product over clusters in a partition

P of [n]. That is, p(X) =
∏

C∈P pC(XC). Then for any partition P ′ = {C ′1, . . . , C ′|P ′|},

L(XC′1
; . . . ;XC′|P ′|

) ≥ 0, (4.30)

with equality if and only if P ′ � P .

For any partition P = {C1, . . . , C|P |}, define IP (X) = I(XC1 ; . . . ;XC|P |) and LP (X) =

L(XC1 ; . . . ;XC|P |). Then, the correct clustering of the given set of random variables, P ∗,

minimizes IP (X) + LP (X) over all partitions P . Additionally, due to non-negativity of the

information functionals, it is easier to resolve between two possible partitions. Hence we

claim that clustering using the sum information functional may be more robust for universal

clustering than multiinformation or partition information.

However, at the same time, illum information is sensitive to simple corner cases as it can

diverge to infinity. This in turn also calls for the need for stable and efficient estimators

of illum information. A potential approach to computation could be through importance

sampling, kernel, and nearest neighbor methods. It has been observed that the empirical

estimation of information functionals for samples from non-parametric distributions is com-

plicated by its computational and sample complexities [73, 129]. However, the estimation

of the functionals is easier and more practical when the samples are drawn from restricted

families of distributions. To exploit such distributional restrictions on the data, we now

study the information functionals for some common distributional classes.
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4.2.4 Information for Exponential Family

Consider an n-dimensional exponential family of distributions, {pθ,θ ∈ Rn}, of the form

pθ(X) = h(X) exp
{
θTT (X)− A(θ)

}
, X ∈ X n, (4.31)

where θ is the vector of parameters, T : X n → Rn is the function of sufficient statistics,

h : X n → R, and A(θ) is the log-partition function. Let X ∼ pθ be the n-dimensional

random vector X = (X1, . . . , Xn). Let pi(·) be the marginal distribution of Xi and q(X) =∏
i∈[n] pi(Xi).

The multiinformation of pθ is given by

I(X1; . . . ;Xn) =
n∑

i=1

H(Xi)− A(θ)− Epθ [log h(X)] + θT∇A(θ), (4.32)

where ∇A(θ) is the gradient of the log-partition function. This follows from the fact that

Epθ [T (X)] = ∇A(θ).

On the other hand, the illum information is given by

L(X1; . . . ;Xn) = A(θ)−
n∑

i=1

H(Xi) + Eq [log h(X)]− θTEq [T (X)] . (4.33)

Consequently, we note that the sum information

I(X) + L(X) = θT [∇A(θ)− Eq [T (X)]] + [Eq [log h(X)]− Epθ [log h(X)]] . (4.34)

In particular, consider an n-dimensional jointly Gaussian random vector, X ∼ N (0,Σ).

Consider the eigendecomposition of the covariance matrix as

Σ =
n∑

i=1

λiuiu
T
i ,

where {λi, i ∈ [n]} are the eigenvalues and {ui, i ∈ [n]} are the corresponding orthonormal

eigenvectors. Without loss of generality, let λi > 0 for all i. Then,

I(X1; . . . ;Xn) =
1

2

n∑

i=1

log

(
σ2
i

λi

)
, (4.35)

L(X1; . . . ;Xn) =
1

2

n∑

i=1

[
uTi Σ̂ui
λi

− log

(
σ2
i

λi

)
− 1

]
, (4.36)
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where Σ̂ is the diagonal matrix of variance values.

Let Yi = Xi/σi and let Σ̃ be the covariance matrix of the normalized Gaussian random

variables such that Σ̃ =
∑n

i=1 λ̃iũiũ
T
i is the orthonormal eigendecomposition. Since infor-

mation is invariant to bijective transformations, we have L(X) = L(Y) and I(X) = I(Y),

where

I(Y1; . . . ;Yn) =
1

2

n∑

i=1

log

(
1

λ̃i

)
, (4.37)

L(Y1; . . . ;Yn) =
1

2

n∑

i=1

[
1

λ̃i
− log

(
1

λ̃i

)
− 1

]
, (4.38)

I(Y) + L(Y) =
1

2

n∑

i=1

[
1

λ̃i
− 1

]
, (4.39)

L(Y)− I(Y) =
n∑

i=1

1

2λ̃i
− 1

2
− log

(
1

λ̃i

)
. (4.40)

For n = 2, L(X) ≥ I(X) [64]. However the result does not extend for n > 2. For instance,

consider the 3-dimensional jointly Gaussian vector with covariance matrix

Σ =




1 0.25 0.25

0.25 1 −0.25

0.25 −0.25 1


 . (4.41)

Then, L(X)− I(X) = −0.0032.

4.2.5 Information for Pairwise Markov Random Fields

Consider an undirected graph G = (V,E) and the pairwise Markov random field (MRF)

defined on G, parametrized by the node potential functions {ψi(·), i ∈ V } and edge potential

functions {ψij(·), (i, j) ∈ E}, given by

pG(X) = exp


∑

i∈V

ψi(Xi) +
∑

(i,j)∈E

ψij(Xi, Xj)− A(ψ)


 , (4.42)

where A(ψ) is the log-partition function. Again, let pi be the marginal distribution of Xi

and q(X) =
∏

i∈V pi(Xi).
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Then, we have

L(X) = A(ψ)−
∑

i∈V

H(Xi)−
∑

i∈V

E [ψi(Xi)]−
∑

(i,j)∈E

Eq [ψij(Xi, Xj)] , (4.43)

I(X) =
∑

i∈V

H(Xi)− A(ψ) +
∑

i∈V

E [ψi(Xi)] +
∑

(i,j)∈E

EpG [ψij(Xi, Xj)] . (4.44)

This in turn indicates that the sum information

L(X) + I(X) =
∑

(i,j)∈E

EpG [ψij(Xi, Xj)]− Eq [ψij(Xi, Xj)] , (4.45)

which is equivalent to the cumulative potential difference across edges owing to independence.

Note that the sum information is independent of node potentials and the partition function.

This indicates that the “effective information” or the symmetric distance from independence

is quantified entirely by the edge effects of the MRF. Additionally it may be noted that this

sum information may be estimated easily from data, given the edge potentials.

In particular, let us consider the Ising model defined on a graph G = (V,E), with parame-

ter set {θi, i ∈ V }∪{θij, (i, j) ∈ E}. For an Ising model, X ∈ {−1,+1}|V | and the potentials

are defined as

ψi(Xi) = θiXi, and ψij(Xi, Xj) = θijXiXj.

Let the log-partition function be A(θ).

Then,

L(X) = A(θ)−
∑

i∈V

(
H(Xi) + θiX̄i

)
−
∑

(i,j)∈E

θijX̄iX̄j, (4.46)

I(X) =
∑

i∈V

(
H(Xi) + θiX̄i

)
− A(θ) +

∑

(i,j)∈E

θijE [XiXj] . (4.47)

It may be noted here that the information functionals depend only on the mean and entropy

of the nodes, and the correlation across the edges. In particular,

L(X) + I(X) =
∑

(i,j)∈E

θijCij, (4.48)

where Cij = E
[
(Xi − X̄i)(Xj − X̄j)

]
is the covariance corresponding to edge (i, j). This

indicates that the sum information is effectively the sum of edge covariances weighted by the

edge potential parameters. Using the Cauchy-Schwarz inequality and the non-negativity of
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multiinformation, we note that for generic Ising models,

L(X) ≤
∑

(i,j)∈E

θijσiσj ≤
∑

(i,j)∈E

θij, (4.49)

where σ2
i is the variance of Xi. That is, the illum information is bounded in terms of the

variance values for Ising models, and more loosely by just the edge potential weights. Note

that this upper bound holds for the multiinformation as well.

Remark 10. Result (4.45), suggests a simple thought experiment. Let the graph G = (V,E)

represent a network of friends who are out to vote for a dinner restaurant from a list X .

Let us additionally assume that the self choice is reflected in node potentials {ψi(·), i ∈ V },
and that homophily additionally increases the likelihood of similar responses among friends

through edge potentials {ψij(·), (i, j) ∈ E} of the form

ψij(Xi, Xj) = 1 {Xi = Xj}, for all (i, j) ∈ E,

where 1 {·} is the indicator function.

Friendships are strained when any two friends vote for different restaurants. To this end,

a fair cost function to consider would be the cumulative strain reflected by

C(X) =
∑

(i,j)∈E

1 {Xi 6= Xj}.

From (4.45) and the non-negativity of information, we observe that

EpG [C(X)] ≤ Eq [C(X)] , (4.50)

which indicates that the effective strain on a social group that colludes in taking a decision

is less than the strain on a group with matching marginals, but that answers independently.

This indicates the need for discussion in a social group to achieve cohesive decision making.

4.2.6 Distribution Approximation Problem

Analytically approximating (as opposed to sampling) a target distribution is common in

variational inference, where the true yet intractable posterior is to be approximated by a

distribution that is easy to handle. This is typically done by restricting the distributions

under consideration to a class that has certain properties, e.g. assuming that the class of

distributions factorize in a particular way or that they all have a specific parametric form such
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as Gaussian. As a consequence, the approximation problem reduces to finding a distribution

in the restricted class that best approximates the target distribution, i.e., a projection of the

target distribution onto the restricted class.

Consider the problem of projecting a probability distribution p onto a set S of probability

distributions. We define the projection of p onto the set S as the “closest” distribution to

p among all distributions in S, where “closeness” between two distributions is measured in

the following two ways:

PS(p) = arg min
p′∈S

D(p‖p′) (4.51)

P ′S(p) = arg min
p′∈S

D(p′‖p) (4.52)

where we have taken the two forms of relative entropy. In general, PS(p) 6= P ′S(p), due

to the asymmetry of relative entropy. However it is trivial to see that for any p ∈ S, we

have PS(p) = P ′S(p) = p, which shows that both PS(·) and P ′S(·) are indeed projections

(idempotent).

Now we consider a special class of distributions, which all factorize over a given directed

acyclic graph (Bayesian network). Formally, let G be a Bayesian network over random

variables X1, . . . , Xn, and SG be the set of distributions that factorize over G, then one can

show that

PSG(p) =
∏

i

pi|Ai ,

where inferred from p, pi|Ai is the conditional distribution of Xi given its parents in G. In an

extreme case, let G0 be the Bayesian network containing no edges (every node is independent

of the others), then

PSG0
(p) =

∏

i

pi,

i.e. the product of marginals.

In addition, one can show that

I(X1; . . . ;Xn) = D
(
p‖PSG0

(p)
)

(4.53)

= D (p‖PSG(p)) +
n∑

i=1

I(Xi;XAi), (4.54)

where Ai denotes the parents of Xi in G. Note that both terms in (4.54) are nonnegative,

which implies that I(X1; . . . ;Xn) ≥ D (p‖PSG(p)), where equality holds if and only if G =

G0; and I(X1; . . . ;Xn) ≥∑n
i=1 I(Xi;XAi), where equality holds if and only if p ∈ SG. This
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Figure 4.1: Project a distribution p onto SG and SG0 , respectively. Note that: Gp ⊃ G ⊃ G0, in
which the numbers of independence conditions are getting larger and larger.

additive projection property of multiinformation is depicted in Fig. 4.1.

On the other hand, such projection properties do not hold for illum information, when the

other projection operator P ′S(·) is adopted. To see this, let us consider the specific example

of projecting a distribution onto the set of distributions that are product-of-marginals, i.e.

the mean-field approximation of a distribution into the product distribution. Specifically,

let SG0 be the set of all distributions of the form q(X) =
∏n

i=1 qi(Xi). Then, the mean-field

approximation,

q? = P ′SG0
(p) = arg min

q∈SG0

D(q‖p), (4.55)

is given by the recursive formulation:

q?i (xi) = exp
(
Eq?
[
log p(X i−1, xi, X

n
i+1)
]
− λi

)
, (4.56)

where λi is the log-partition function.

Such mean field approximation characterizes an analytical version of the independence

clustering problem for distributions of random variables. In particular, the clustering ob-

tained from multiinformation and illum information cost functions characterize different

approximations for the joint distribution.
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4.3 Discussion

In this chapter, we considered the problem of clustering using multivariate information func-

tionals from two viewpoints. In the first part we studied the role of multivariate information

functionals in clustering by studying the problem of joint clustering and registration of im-

ages. In the second part, we explored new multivariate information functionals of illum and

sum information, and explored their operational and functional properties that inspire its

use in independence clustering.

In particular, the first part of the chapter explores a variety of joint registration and

clustering algorithms using clustering information. We highlighted the fact that the two

tasks are not separate, and that one can invoke novel multivariate information functionals

in order to perform joint image clustering and registration universally. Further, we also

studied the consistency of the algorithms in the respective criteria, and the computational

and statistical complexities involved. Finally, we explored the setting of large-scale clustering

and registration, and briefly studied the computational complexity of the problem.

In the second half of the chapter we defined the illum information functional and studied its

operational and functional properties. We also studied the information function for common

distributional families such as the exponential family and pairwise Markov random fields. In

these forms we observe the potentially efficiency of the illum and sum information functionals

in performing independence clustering over data. We also considered the problem of mean

field approximation with respect to the illum information, therein exploring an analytical

version of the independence clustering problem.

The algorithms and the properties of multivariate information functionals highlight the

potency of information-based methods in unsupervised clustering. The ubiquitous nature of

information inspires the design of a variety of heuristic algorithms for the independence clus-

tering problem. Future work on independence clustering would thus benefit from consistent

information estimators and efficient clustering algorithms to use them.
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CHAPTER 5

BUDGET-OPTIMAL CLUSTERING FOR
CROWDSOURCING

In Chapter 4 we considered the problem of clustering using multivariate information func-

tionals. In this chapter we consider the problem of clustering objects based on crowdsourced

responses in a universal setting [74]. Crowdsourcing has grown in recent times as a potent

tool for performing complex tasks using human skill and knowledge. It is increasingly being

used to collect training data for novel machine learning problems. Almost a fortiori, there

is no prior knowledge on the nature of the task and so the use of general human intelligence

has been needed [130]. As such, this setting requires processing human-generated signals in

the absence of prior knowledge about their properties; this setting requires universality.

Because crowdsourcing often employs unreliable workers, the signals they generate are

inherently noisy [131]. Hence, responses of crowd workers are modeled as outputs of a noisy

channel. Although these channels are unknown to the employer, crowdsourcing techniques

have thus far made assumptions on either the channel distribution or structure to design

appropriate decoders. We define an alternative approach—universal crowdsourcing—that

designs decoders without channel knowledge, and develop achievability and converse argu-

ments that demonstrate order-optimality.

The emergence of diverse online crowdsourcing platforms such as Amazon Mechanical Turk

and Upwork has created the option of choosing between temporary workers and long-term

workers. That is, tasks can be completed by either soliciting responses from a large number

of workers performing small parts of a large task, or a specialized group of employees who

work long-term on the task at hand.

The trade-off between reliability and cost of each type of worker pool warrants system-

atic study. Whereas temporary workers are inexpensive and easily available, some labor

economists argue the excess cost of long-term employment is worthwhile due to the reliabil-

ity and quality of work it ensures [132]. However, no quantitative characterization for this

conjecture exists. As we will see, the results of this work allow such comparisons.

Since workers are human, they are subject to several factors that affect human decision

making, as identified in behavioral economics [133]. A standard assumption in crowdsourcing

and in universal clustering [134,135] has been independent and identically distributed (i.i.d.)
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worker responses across time/tasks. However, empirical evidence argues against temporal

independence for individual worker responses [136].

Due to the availability heuristic, worker responses may rely on the immediate examples

that come to a person’s mind, indicating memory in responses across tasks/time. Further,

this influence may be more due to salient (vivid) information rather than full statistical

history. Due to the anchoring and adjustment heuristic, people tend to excessively rely on

a specific trait of an object in decision making and further due to the representativeness

heuristic, people tend to assume commonality among objects. These traits indicate there is

a notion of distance among the response distributions corresponding to different objects.

To capture memory and distance, we define a unified model of worker responses, and then

study two limiting cases [74]. First we consider responses of temporary workers who respond

independently across tasks and across workers. We then consider responses of long-term

workers with object-specific memory. Specifically, we consider a Markov memory model

wherein the response to an object is dependent on the most recent response and the re-

sponse to the most recent occurrence of an object of the same class; generalizations to other

Markov models follows readily. In both cases, we address questions of universality and

sample complexity for reliable clustering, providing benchmarks for worst-case performance.

The presence of memory in responses, however, demands an approach that differs from past

crowd algorithms defined for i.i.d. models [134]. Notwithstanding [137], in the crowdsourcing

framework herein, encoding is not feasible. This calls for a treatment different from past

work in universal clustering [135].

There is a vast and rich literature on crowdsourcing and clustering; we describe a non-

exhaustive listing of particularly relevant prior work.

Algorithm design for crowdsourcing typically focuses on minimizing the cost of reliabil-

ity. In particular, algorithms with order-optimal budget-reliability trade-offs have been de-

signed for binary classification with unknown (but i.i.d.) crowd reliabilities [134]. Efficient

algorithms for multi-class labeling have been proposed in [138] albeit without cost optimal-

ity guarantees. More recently, non-parametric permutation models of crowd workers were

considered for binary classification [139]. Classification using crowdsourced responses in a

clustering framework, followed by a labeling phase performed by a domain expert has been

studied experimentally [140].

Separate from crowdsourcing, the problem of clustering has been widely studied. Al-

gorithms such as k-means clustering and its generalization to other Bregman divergence

similarity measures [105] are popular methods that incorporate distance-based clustering.

The problem of universal clustering was considered in a communication setting [135, 141],

such that messages communicated across an unknown channel, after encoding using a ran-
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Figure 5.1: Model of the crowdsourcing system.

dom codebook, are clustered by exploiting dependency among outputs of similar messages.

Particularly the decoder uses the minimum partition information functional [112] to perform

optimal clustering. Similar information-based agglomerative clustering schemes have also

been explored [110].

Some other studies on crowdsourcing have also considered clustering using comparative

evaluations of objects. Varied types of comparative queries yield different cost-reliability

tradeoffs [142]. Information-theoretic bounds on query complexity under this model have

been established recently [143]. Multi-class labeling by decomposing the task into simpler

subtasks, and introduce redundancy through error control codes have also been considered

[137,144].

5.1 System Model

We consider the problem of crowd workers employed to perform classification of objects.

For instance, consider the task of classifying images of dogs according to their breeds. The

workers observe images and respond with the breed of the dog in the image. Since worker

responses are noisy, in the absence of knowledge of worker channels it is not feasible to

identify the labels (breeds of dogs) accurately. Thus, we aim to cluster the dogs according

to their breeds and determine the labels of each cluster by using a domain expert. The

crowdsourcing system model is depicted in Fig. 5.1.

Let T = [τ ] = {1, . . . , τ}, where τ <∞ is a constant, be the set of labels. LetX ∈ X be the

object viewed by crowd workers and let its label be T . Let the set of objects to be clustered

be {X1, . . . , X`} with Ti, the label of object Xi. That is, the objects are manifestations of

the labels and we seek to cluster according to the labels. Let us assume that these labels are

drawn according to an unknown prior PT (·).
For each object Xi, the crowdsourcing system solicits n worker responses, Y n

i , with Y
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being the matrix of responses. Let W ∈ W be the index of a worker and let SW ⊂ [`]× [n]

be the index set of the responses offered by W .

Let Q be the set of all conditional probability mass functions (PMFs) that characterize

worker responses. Then, YSW ∼ Q(W )(YSW |T `) for each worker w ∈ W . Models of these

distributions are detailed later.

In practice, it is not essential for a worker to answer each assigned query. Thus we assume

that the workers either respond with an answer in T or offer a “null” response ξ [145] i.e.,

Yij ∈ Y = T ∪ {ξ}, for all i ∈ [`], j ∈ [n].

5.1.1 Universal Clustering Performance

Definition 17 (Correct Clustering). A clustering of a set of objects X1, . . . , X` is a partition

P of [`]. The sets of a partition are referred to as clusters. The clustering is said to be correct

if

Ti, Tj ∈ C ⇔ Ti = Tj,

for all i, j ∈ [`], C ∈ P . For a given set of object labels, T `, let P ∗
(
T `
)

be the correct

clustering.

Let P be the set of all partitions of [`].

Definition 18 (Partition Ordering). A partition P is finer than P ′, if the following ordering

holds

P � P ′ ⇔ for all C ∈ P, there exists C ′ ∈ P ′ : C ⊆ C ′.

Similarly, a partition P is said to be denser than P ′ if P � P ′ ⇔ P ′ � P .

Definition 19 (Universal Clustering Decoder). A universal clustering decoder is a sequence

of functions Φ(n) : Y → P that are designed in the absence of knowledge of Q and PT . Here

the index n corresponds to the number of crowd responses collected per object.

We now define how to characterize decoder performance.

Definition 20 (Error Probability). Let Φ(n)(·) be a universal decoder. Then, the error

probability is given by

Pe(Φ
(n)) = P

[
Φ(n)(Y) 6= P ∗

(
T `
)]

= EP⊗`T
[
E
[
1
{

Φ(n)(Y) 6= T `
}
|T `
]]
, (5.1)

where P⊗`T (t`) =
∏`

i=1 PT (ti) and 1 {·} is the indicator function.

81



Definition 21 (Asymptotic Consistency). A sequence of decoders Φ(n) is said to be univer-

sally asymptotically consistent if

lim
n→∞

Pe(Φ
(n)) = 0, for all PT ∈M(T ),

where M(·) is the space of all prior distributions on the set of objects, T .

Definition 22 (Sample Complexity). Let ε > 0 be the permissible error margin. Then the

sample complexity of the universal clustering problem is

N∗(ε) = min

{
n ∈ N : max

PT∈M(T )
Pe(Φ

(n)) < ε

}
,

where the minimum is taken over the set of all sequences of universal decoders Φ(n).

For simplicity, we will use Φ to denote Φ(n) when it is clear from context.

5.1.2 Workers

We now define the unified worker model. Let us assume the crowdsourcing system employs

n crowd workers, [n] ⊆ W , chosen at random. We assume that each worker responds to

every object Xi, i ∈ [`] and Sj = {(1, j), . . . , (`, j)}, j ∈ [n].

Incorporating the availability and representativeness heuristics, we assume responses of

each worker depend on prior responses in a Markov sense. In particular, define the neighbor

set as Ni = {i− 1} ∪ {max{k ∈ [i− 1] : Tk = Ti}}, for all i ∈ [`] i.e., the most recent object

and the most recent occurrence of a similar object. Then for any j ∈ [n], k ≤ `

P
[
(Y1,j, . . . , Yk,j) = yk|T k = tk

]
=

k∏

i=1

Q(j)(yi|yNi , ti). (5.2)

Additionally we assume that for any j ∈ [n], i ≤ `, t ∈ T ,

P [Yi,j = y|Ti = t] = Q(j) (y|t) . (5.3)

That is, marginals are invariant across permutations of objects (anchoring and adjustment

heuristic). We also assume that, given the object, responses are independent across workers:

P
[
(Yi,1, . . . , Yi,k) = yk|Ti = t

]
=

k∏

j=1

Q(j) (yj|t) . (5.4)
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Figure 5.2: Universal distance-based clustering model: Here we cluster ` sources with labels
(T1, . . . , T`) = (1, 2, 2, . . . , τ), as highlighted by the indices of their source distributions. True labels
define the source distributions and for each source, n i.i.d. samples are drawn to generate the
observation vectors.

We assume temporary workers do not retain memory of prior responses and so are in-

dependent across time as well. In order to solicit such responses, we may assume that the

platform delegates each task to a sequence of n workers selected at random from a sufficiently

large pool to ensure temporal independence. That is,

P
[
YSw = ySw |T ` = t`

]
=

∏

(i,j)∈Sw

Q(w)(yi,j|ti). (5.5)

In addition, the responses also satisfy (5.4).

The second special class of workers we consider is long-term workers with Markov memory

whose responses are characterized by (5.2) and (5.4). This model is inspired by the fact that

long-term workers in the system are typically influenced by their prior responses as they

tend to learn or get bored of the task. Thus the responses offered are dependent not only

on the object label, but also the most recent instance of its sighting by the worker.

5.2 Temporary Workers

Let us first consider the case of temporary workers. The universal clustering problem for

this context is depicted in Fig. 5.2. As depicted, the objects are equivalently defined by

the sources that characterize the responses and thus clustering them translates to grouping

identical distributions.

We test this distributional identicality in terms of an appropriately chosen f -divergence
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between response distributions. In this section we elaborate the algorithm design and the

results first with respect to total variational distance, and then show the extension to a much

larger class of f -divergence functionals as detailed in [67].

Let Q1, . . . , Qτ be defined as

Qi(y) , P [Y = y|T = i] = E
[
Q(W )(Y = y|T = i)

]
, (5.6)

where the expectation is taken over W ∈ W . Since the workers assigned to tasks are chosen

i.i.d. from the worker pool, the empirical distribution of the responses for an object with

label i converges to the distribution Qi almost surely. The quality of the given worker pool

and assignment policy is characterized by the distance between the response distributions

for objects with different labels. Let us thus define the difficulty of the clustering problem,

and equivalently the quality of the crowd, in terms of the distance quality in the problem.

Definition 23 (Distance Quality). For a given pool of temporary workers, the difficulty of

the tasks is quantified by the distance quality,

θd , min
{i,j∈T ,i 6=j}

dTV(Qi, ‖Qj). (5.7)

The operational significance of this informational definition of distance (Definition 23) will

emerge in coding theorems Lem. 24 and Thm. 17.

Clustering is performed using the maximum likelihood estimates of the f -divergence be-

tween distributions corresponding to responses to objects. Let us first provide a brief intro-

duction to f -divergences and the family of divergences we employ here for clustering.

5.2.1 f -Divergence

To measure the separation among the conditional distributions of crowd responses to different

object classes, we use the Csiszár f -divergence [146,147].

Definition 24 (f -divergence). Let p, q be discrete probability distributions defined on a space

of m alphabets. Given a convex function f : [0,∞)→ R, the f -divergence is defined as:

Df (p‖q) ,
m∑

i=1

qif

(
pi
qi

)
. (5.8)

The function f is said to be normalized if f(1) = 0.
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Some specific f -divergences are the KL divergence D(p‖q) and the total variational dis-

tance dTV(p‖q). Specifically, the KL divergence and the total variational distance are the

f -divergences corresponding to the functions f(x) = x log x and f(x) = |x− 1| respectively.

We now state some bounds for f -divergences.

Theorem 15 ( [148, Chapter II.1]). Let p, q be discrete probability distributions on a space

of m alphabets such that there exist r, R satisfying 0 ≤ r ≤ pi
qi
≤ R ≤ ∞ for all i ∈ [n]. Let

f : [0,∞)→ R be a convex and normalized function satisfying the following criteria:

1. f is twice differentiable on [r, R], and

2. there exist real constants c, C <∞ such that

c ≤ xf ′′(x) ≤ C, for all x ∈ (r, R).

Then, we have

cD(p‖q) ≤ Df (p‖q) ≤ CD(p‖q). (5.9)

For ease, we refer to the constraints on f in Thm. 15 as smoothness constraints. If f

is twice differentiable in [r, R], then we know that there exists a constant L such that f is

L-Lipschitz.

Theorem 16 ( [148, Chapter II.3]). Let f : [0,∞) → R be convex, normalized, and L-

Lipschitz on [r, R]. Then,

0 ≤ Df (p‖q) ≤ LdTV(p‖q). (5.10)

Further, Pinsker’s inequality lower bounds the KL divergence D(p‖q) with respect to the

total variational distance as

D(p‖q) ≥ (2 log2 e)δ
2(p‖q). (5.11)

Corollary 5. For any convex and normalized function f that satisfies the smoothness con-

straints and is L-Lipschitz,

κd2
TV(p‖q) ≤ Df (p‖q) ≤ LdTV(p‖q), (5.12)

where κ = 2c log2 e.

Proof. The result follows from Thm. 15 and 16, and (5.11).

The maximum likelihood (plug-in) estimates of the divergences are asymptotically consis-

tent.
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Algorithm 5 Clustering with temporary workers, Φtemp(Y)

γn ← c1n
−α, where c1 is a constant and α ∈ [0, 1/2]

Determine empirical distributions qj, j ∈ [`]
Create G = ([`], E), s.t., (i, j) ∈ E if dTV(qi‖qj) ≤ γn
C = {C : C is a maximal clique in G}
Select minimal weight partition of [`] from C

Lemma 23. If p and p̂ are the true and empirical distributions respectively, then

P [dTV(p̂‖p) ≥ ε] ≤ (n+ 1)|Z| exp
(
−c0nε

2
)
, (5.13)

where c0 = 2 log2 e. Further, for any convex function f satisfying the smoothness constraints,

P [Df (p̂‖p) ≥ ε] ≤ (n+ 1)|Z| exp (−nε/C) , (5.14)

where C <∞ is a constant such that xf ′′(x) < C.

Proof. The results follow from Pinsker’s inequality (5.11), Thm. 15, and Sanov’s theorem.

These inequalities and relationships among the f -divergences are used to design universal

clustering algorithms and prove their consistency.

5.2.2 Universal Distance Clustering Algorithm

Responses to objects of the same class are identical in distribution. Thus, we perform

universal clustering, Φtemp(Y), according to Alg. 5.

The algorithm first computes the empirical distributions corresponding to the responses

for each object. Then, the plug-in estimates of the f -divergences between these empirical

distributions are used to generate a weighted graph G where the nodes are the objects and

the edges are weighed by the distance between them. Then the clusters are identified as

the maximal cliques in the graph obtained by thresholding the f -divergence between the

corresponding empirical distributions. The functioning of the algorithm is depicted in Fig.

5.3.

When the empirical distributions are sufficiently close to the true distributions, Φtemp

outputs P ∗ as highlighted by the following lemma.
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Figure 5.3: Distance-based clustering: The graph is obtained by thresholding the f -divergences
of empirical distributions of responses to objects. The clustering is then done by identifying the
maximal clusters in the thresholded graph.

Lemma 24. For f(x) = |x − 1| and γn = c1n
−α, α ∈ [0, 1/2] let γn < θd/2. For any other

convex function f satisfying the smoothness constraints let

γn = c1n
−β <

κ

2L
θ2
d + 2

κ

L2

(
1−

√
1 +

Lθ2
d

2

)
,

where κ = 2c log2 e and the function f is L-Lipschitz.

Define the ball of radius ρ centered at p as

Bf (p, ρ) = {q : Df (p‖q) ≤ ρ} .

If for all i ∈ [`], the empirical distribution of responses qi ∈ Bf (Qti , γn/2) then, Φtemp(Y) =

P ∗(t`), the correct clustering of the set of objects.

Proof. Let us first consider f(x) = |x− 1|. Since qi ∈ Bf (Qti , γn/2) for all i ∈ [`], we have

max
{i,j∈[τ ]:Ti=Tj}

dTV(qi‖qj) ≤ γn ≤
θd
2
≤ min
{i,j∈[τ ]:Ti 6=Tj}

dTV(qi‖qj).

Let Ci = {j ∈ [`] : Tj = i}, for any i ∈ [τ ]. Then, for j, k ∈ Ci, Df (qj, qk) < γn and so

(j, k) ∈ E. Thus, Ci is a clique of G.

Further, this observation also implies that for any i ∈ Ct, j ∈ Ct′ , t 6= t′, Df (qi, qj) > γn

and so (i, j) /∈ E. Thus, any set C ⊆ [`] such that there exist i, j ∈ C, with Ti 6= Tj, is not

a clique in G. Thus Ci is a maximal clique in G for all i ∈ [τ ]. Thus Φtemp(Y) = {Ci : i ∈
[τ ]} = P ∗(t`), the correct partition.
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For the second part of the lemma, from (5.12), we note that the condition on γn guarantees

max
{i,j∈[τ ]:Ti=Tj}

Df (qi‖qj) ≤ γn < min
{i,j∈[τ ]:Ti 6=Tj}

Df (qi‖qj).

Thus the result follows from a very similar argument.

Using this result, we derive the sample complexity of the algorithm.

Theorem 17. If f(x) = |x− 1|, then for any α ∈ (0, 1/2) and constant c1, for

n & max

{(
2c1

θd

)1/α

,

(
4 log `

c0c2
1

)1/(1−2α)
}
, (5.15)

sufficiently large, Φtemp(·) achieves arbitrarily low clustering error probability. For fixed `

and θd, it is universally asymptotically consistent.

For any other convex, normalized function f satisfying the smoothness constraints, for any

β ∈ (0, 1) and constant c1, for

n & max

{(
2c1L

2

κ
µθd

)1/β

,

(
C log l

c1

)1/(1−β)
}
, (5.16)

where

µθd =


Lθ2

d + 4κ

(
1−

√
1 +

Lθ2
d

2

)−1

 ,

with sufficiently large constant c1, Φtemp(·) achieves arbitrarily low clustering error probabil-

ity. For fixed ` and θd, it is universally asymptotically consistent.

Proof. For f(x) = |x− 1| and n ≥
(

2c1
θd

)1/α

, γn ≤ θd/4. Thus, when f(x) = |x− 1|, we can

bound the error probability as follows

Pe(Φtemp) ≤ EP⊗lT [P [∃i ∈ [l] : qi /∈ B(Qti , γn/2)]]

≤ `

[
(n+ 1)|Y| exp

(
−c0n

γ2
n

4

)]
(5.17)

= exp

((
log `+ (τ + 1) log(n+ 1)− c0c

2
1

4
n1−2α

))
,

where (5.17) follows from the union bound and Lem. 23. Thus, the cost conditions given in

(5.15) and asymptotic consistency follow.

Using a similar argument and Lem. 24, we obtain (5.16).
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Corollary 6. Given T = [τ ] with τ <∞ a constant:

1. for a constant θd > 0, N∗temp(ε) = O
(
(log `)1/(1−β)

)
and taking β → 0, we observe that

N∗temp(ε) = O (log `) for any of the similarity metrics;

2. for a constant `, for f(x) = |x − 1|, N∗temp(ε) = O
(
θ
−1/α
d

)
and taking α → 1/2,

N∗temp(ε) = O(θ−2
d ). On the other hand, for other convex functions f satisfying the

smoothness constraints, N∗temp(ε) = O(θ
−1/β
d ) and specifically, taking β → 1, N∗temp(ε) =

O(θ−1
d ).

Proof. The results follow directly from Thm. 17.

Note that this result, analogous to Thms. 9 and 10, indicates that N∗temp = O
(

log `
θ2
d

)
.

Having obtained sufficient conditions on the sample complexity by defining a simple distance-

based clustering algorithm, we now study the necessary conditions on the sample complexity

of the clustering problem.

5.2.3 Lower Bound on Sample Complexity

Here we will establish lower bounds on the sample complexity for universal clustering.

Theorem 18. Let mini,j∈[τ ] dTV(Qi‖Qj) = θd. Then the sample complexity of universal

clustering satisfies

N∗temp = Ω

(
log `− log ε

θ2
d

)
.

Proof. Consider the prior distribution PT such that PT (1) = PT (2) = 0.5. Let ψij be the

binary hypothesis testing problem given by:

ψij :




H0 : Ti = Tj

H1 : Ti 6= Tj
. (5.18)

There exists
(
`
2

)
such binary hypothesis tests. Choose a set of tests ψ̃ ⊂ {ψij : i, j ∈ [`], i 6= j}

of cardinality `/2 such that no two tests in the set share a common object. This indicates

that the binary hypothesis tests are independent of each other owing to the independence

across objects.

Let Φ be a decoder for the clustering problem. Then a correct solution to the clustering

problem implies a correct solution to ψij, for all i, j ∈ [`], i 6= j. This implies that an instance
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of correct clustering translates to correct decisions in all tests in ψ̃. Thus,

Pe(Φ) ≥ 1−
∏

{i,j∈[`]:ψij∈ψ̃}

(1− P [error in ψij]) (5.19)

≥ 1−
∏

{i,j∈[`]:ψij∈ψ̃}

(
1− 1

4
exp (−2nBij)

)
(5.20)

≥ 1−
(

1− 1

4
exp (−2nBmax)

)b`/2c
(5.21)

=
b`/2c

4
exp (−2nBmax) + o (exp (−4nBmax)) , (5.22)

where (5.19) follows from the independence of the binary tests and (5.20) follows from

the Kailath lower bound [70]. Here Bij is the Bhattacharyya distance corresponding to

the hypotheses of the test ψij and considering non-triviality, there exists a test such that

Bij > 0. Thus bounding from below by the test with maximum distance (5.21), Bmax =

max{i,j∈[`]:ψij∈ψ̃}Bij > 0 and using the binomial expansion, we obtain (5.22).

Now, using Jensen’s inequality, we have Bij ≤ 1
2

(D(Q1‖Q2) +D(Q2‖Q1)). This follows

from the definition of the binary hypotheses tests and the independence of samples.

From Pinsker’s inequality and reverse Pinsker’s inequality [149], we have

(2 log2 e)d
2
TV(P‖Q) ≤ D(P‖Q) ≤

(
4 log2 e

Qmin

)
d2

TV(P‖Q),

where Qmin = minx∈supp(P ) Q(x) and supp(·) is the support of the distribution. Since we are

concerned with the sample complexity in the worst case when δ(P,Q) → 0, it suffices to

consider Qmin > 0. Thus, the above bounds indicate that

D(Q1‖Q2) � D(Q2‖Q1) � θ2
d,

where it is said g � h, if there exists constants a, b > 0 such that ah ≤ g ≤ bh.

Thus, we have

Pe(Φ) ≥ 1

8
exp

(
log `− n(cθ2

d)
)
,

where c is the constant scaling based on Pinsker’s and reverse Pinsker’s inequalities.

From this we observe that N∗temp = Ω
(

log `−log ε
θ2
d

)
.

Corollary 7. Let f(·) be a convex function satisfying the smoothness constraints. Further,

let mini,j∈[τ ] Df (Qi‖Qj) = θd. Then for constant `,

N∗temp = Ω(θ−1
d ).
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Figure 5.4: Bayesian network model of responses to a set of 7 objects chosen from a set of 3 types.
We observe that the most recent response and the response to the most recent object of the same
type influence every response.

Proof. The result follows directly from (5.12) since

min
i,j∈[τ ]

dTV(Qi‖Qj) .
√
θd.

Remark 11. It is worth noting that the quantity θ2
d is equivalent in definition to the crowd

quality defined in [134] and matches the lower bound obtained on the cost for binary classi-

fication using crowd workers biased toward giving the right label. The factor of log ` in the

cost per object arises since error probability studied here is the block (blocklength `) error

probability whereas [134] studies the average symbol (classification) error probability.

Note that Φtemp achieves the lower bound up to constant factor in sample complexity, i.e.,

our simple clustering algorithm is asymptotically order optimal in the number of objects to

be clustered and the distance quality. We will now study the context of clustering using

responses of long-term workers.

5.3 Workers with Memory

Now consider long-term workers with Markov memory. Recall that in Sec. 5.1 we defined

the structure of the stochastic kernel that determines the responses of workers with memory.

In particular, we considered a Markov memory structure (5.2). This structure is represented

in the Bayesian network depicted in Fig. 5.4.

Specifically, we assume that the response Yi,j to an object Xi by worker j is dependent on

the response to the most recent object, Xi−1, and the response to the most recent object of

the same class. This set of indices for any object Xi is given by Ni.
Let Q be the set of such Markov-structured distributions representing the worker pool.

Then, the conditional distribution of the response vector for a random worker is

P
[
Y ` = y`

∣∣T ` = t`
]

= E
[
QW

(
y`
∣∣t`
)]

= Q̄
(
y`
∣∣t`
)
,
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where the expectation is taken over W ∈ W .

We know that a sufficient statistic of the worker responses is the empirical distribution.

Asymptotically, we know that the empirical pmf converges to Q̄ by the strong law of large

numbers. It thus suffices to study the decoder with regard to this characteristic worker

response pmf that retains the assumed memory properties.

Throughout the section, for any i ∈ [`], denote by ı̃ the index such that ı̃ ∈ Ni, Ti = Tı̃.

Definition 25 (Memory Quality). The memory quality in a given pool of long-term workers

is

θm =
1

2

(
min
i∈[`]

I(Yi;YNi)− max
i∈[`],j<i,j /∈Ni

I(Yi;Yi−1, Yj)

)
. (5.23)

That is, the memory quality is defined by the difference between the information provided

by the neighbors of the object and that provided by two other objects.

Since the crowd responses are defined by conditional independence across objects, we

quantify the quality of the crowd in terms of the amount of memory retained by the workers.

The above definition can be equivalently viewed as the task difficulty for a given pool of

long-term crowd workers.

This informational definition finds operational significance in the coding theorems, Thm. 20

and 21.

5.3.1 Information Clustering Using Neighbors

From the model of worker responses, we know that identifying the parents of each node is

critical to cluster.

Lemma 25. Let G = (V,E) be the Bayesian network representation of the worker responses.

Let νi = {j ∈ V : (j, i) ∈ E}. If |νi| = 1, then either Ti−1 = Ti or Tj 6= Ti for all j < i. If

|νi| > 1, νi\{i− 1} is in the same cluster as i.

Proof. The results follow directly from the model definition.

We use the data processing inequality to obtain the following property that motivates the

algorithm definition.

Lemma 26. Let C = {c1, . . . , ck} and without loss of generality, let c1 < c2 < · · · < ck.

Given (5.2), C ∈ P ∗ if and only if for all j ∈ [k],

cj = arg max
i<cj+1

I(Ycj+1
;Yi, Ycj+1−1).
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Proof. Let i, j ∈ [`] such that j < i. Then, the result follows from the data processing

inequality:

I(Yi;Yi−1, Yı̃, Yj) = I(Yi;YNi) + I(Yi;Yj|YNi)
= I(Yi;Yi−1, Yj) + I(Yi;Yı̃|Yi−1, Yj).

For the given model, I(Yi;Yj|YNi) = 0. In the non-trivial problem it is natural that

I(Yi;Yı̃|Yi−1, Yj) > 0. That is, the most recent object of the same class has residual in-

formation, given any other pair from the past. This in turn implies that for all j < i, j 6= ı̃,

I(Yi;Yi−1, Yj) < I(Yi;YNi).

The result thus follows.

It is evident that the partition can be obtained through a careful elimination process using

mutual information values. Maximum likelihood estimates of the mutual information can be

obtained from the samples using and asymptotically consistent estimators. Note that such

estimators converge exponentially; convergence rates are detailed in Appendix B.1.

5.3.2 Information Clustering Algorithm

We now describe the clustering algorithm in two stages. First we describe an algorithm

that, given the set of objects and mutual information values, outputs a partition that is

possibly denser than the correct partition. We then describe an algorithm that overcomes

this shortcoming by identifying sub-clusters within the identified clusters recursively. We

then show correctness of the algorithm and prove it is asymptotically consistent when the

ML estimates of mutual information are used.

From the directed acyclic graph (Bayesian network) corresponding to the given set of

objects, we know that identifying the parents of each node is sufficient to identify clusters

such that objects of the same type are in the same cluster. From Lem. 26, for any i ∈ [`],

I(Yi;Yi−1, Yj) < I(Yi;YNi). Thus identifying the parents of node i is equivalent to solving

ηi = arg max
j≤i−1

I(Yi;Yi−1, Yj).

Using this feature we design Algorithm 6, Φinfo(I).

The algorithm outputs the partition of a set of objects when the corresponding mutual

information values are given as input. The algorithm starts from the last object and iterates
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Algorithm 6 Clustering given MI, (P ) = Φinfo(I)

F (i)← 0 for all i ∈ [m]
P ← ∅
Mc ← 0
γn = c1n

−α, where c1 is a constant and α ∈ (0, 1/2)
for i = m to 1 do

if F (i) = 0 then
F (i)→ 1
Mc ←Mc + 1, C(i)←Mc

end if
Imax,i ← maxk≤i−1 I(Yi;Yi−1, Yk)
ηi = max{j < i : I(Yi;Yi−1, Yj) ≥ Imax,i − γn}
if F (ηi) = 0 then
C(ηi) = C(i), F (ηi) = 1

end if
end for
P = {{i : C(i) = k} : k ∈ [Mc]}

backward while finding the parents of each node. Upon identification, the parent is added

to the same cluster as the object.

Theorem 19. Given a set of objects T ` and the corresponding set of mutual informations

{I(Yi;Yi−1, Yj) : i ∈ [`], j < i}, the output of Alg. 6 satisfies P = Φinfo(I) � P ∗.

Proof. From Lem. 26, I(Yi;Yi−1, Yj) ≤ I(Yi;YNi) for all j < i with equality if and only if

j ∈ Ni. Thus, the parents of every node i ∈ [`] in the Bayesian network can be determined,

given the mutual information values.

For P = Φinfo(I), for every object t ∈ T , there exists C ∈ P such that {i ∈ [`] : Ti = t} ⊆
C. Hence the result follows.

Theorem 19 indicates that, given the mutual information values, the objects of the same

type are clustered together. The maximizer ηi in Alg. 6 is clustered only if it is not assigned

a cluster before the iteration. Thus object i is not paired with i − 1 unless it has not been

assigned a cluster. This particular scenario is depicted in the Bayesian network in Fig. 5.5a.

However, the algorithm fails in a specific scenario. When there exists clusters C1 and C2

such that i < j for every i ∈ C1, j ∈ C2, and, max{i ∈ C1} = min{j ∈ C2} − 1, then the

resulting partition consists of the single cluster C1∪C2 rather than the two individual clusters.

This is because objects of C1 have not yet been encountered and thus the immediate neighbor

of the first object of C2 is clustered along with C2 due to the Markov memory structure.

This particular scenario is depicted in Fig. 5.5b.
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(a) Alg. 6 outputs P = {{1, 5}, {2, 3, 6}, {4, 7}} = P ∗. Here, object
4 of type 3 is not clustered with object 3 of type 2 as it is already
assigned a cluster.

(b) Alg. 6 outputs P = {{1, 4, 5, 7}, {2, 3, 6}} � P ∗. Here object 5
is clustered with 4 as objects of Type 1 are not encountered before.

Figure 5.5: Functioning and shortcoming of Alg. 6.

Algorithm 7 Clustering with memory, P = Φmem(T `)

Choose constant k = d − log ε
(log `−2 log τ)

e
for i = 1 to k do

Choose a permutation ξ([`]) uniformly at random
Collect responses Y(i) for the sequence T ξ([`])

I ← {Î(Yj;Yj−1, Yk) : k < j, j ∈ [`]}, Pi = Φinfo(I)
end for
Choose finest partition P such that P � Pi for all i ∈ [k]

Such shortcomings of the algorithm however happen with low probability when ` � τ .

Thus, if the finest partition in a collection of permutations of a given set of objects, chosen

uniformly at random, is obtained using Φinfo, then with high probability, the correct partition

is obtained. Thus the algorithm can be refined by repeating the clustering process as in Alg. 7

for Pe(Φmem) ≤ 2ε.

That is Φmem repeats Φinfo for different permutations of the objects and selects the finest

partition. For each permutation of the objects, n responses are obtained for each object

from the workers. Thus, the overall number of samples per object obtained is kn.

Theorem 20. Let T ` be the set of objects, ` ≥ τ 2, and, let Y be the set of responses. Let

k ≥ d − log ε
(log `−2 log τ)

e be the number of permutations chosen in Alg. 7. Then, for

n & max
{

(log `− log ε)
1

(1−2α−β) , (log `− log ε)
1

(1−4α) , θ
−1
α
m

}
, (5.24)

for 0 < α < 1/2 and 0 < β < 1 such that log2
2 n ≤ nβ, Pe(Φmem) ≤ 2ε, for any ε > 0.

Further, for constant ` and θm, the algorithm is asymptotically consistent.

Proof. We first observe that when |Î(Yi;Yi−1, Yj)− I(Yi;Yi−1, Yj)| < θm for all i ∈ [`], j < i,
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Φinfo(Î) = Φinfo(I). That is, when the empirical mutual information values do not deviate

from the actual values significantly, the clustering algorithm works without error.

For n ≥ (c1/θm)1/α, γn < θm. Let Iij = I(Yi;Yi−1, Yj). Then,

P
[
Φinfo(Î) 6= Φinfo(I)

]
≤
∑

i∈`,j<i

P
[
|Îij − Iij| > γn

]
(5.25)

≤
(
`

2

)
exp

( −nγ2
n

18 log2
2 n

+ o(1)

)
(5.26)

≤ exp

(
2 log `− c2

1

18
n(1−ν) + o(1)

)
,

implying asymptotic consistency. Here ν = 2α + β, (5.25) follows from the union bound,

and (5.26) follows from Lem. 39.

Additionally, we note that

P
[
Φinfo(Î) 6= Φinfo(I)

]
≤
∑

i∈`,j<i

P
[
|Îij − Iij| > γn

]

≤ 3

(
`

2

)
(n+ 1)τ

2

exp
(
−c̃nγ4

n

)
(5.27)

≤ exp
(
2 log `− c̃c4

1n
(1−4α) + o(1)

)
,

where (5.27) follows from (B.6).

To obtain the correct partition, we use the responses generated for several uniformly

random permutations of the given set of objects and select the finest partition. The correct

partition may not be recovered when there exists t, t′ ∈ T , such that max{i ∈ [`] : Ti = t} =

min{i ∈ [`] : Ti = t′} − 1 in every chosen partition.

Let Kt = |{i ∈ [`] : Ti = t}|, t ∈ [τ ] and let Mt = max{i ∈ [`] : Ti = t} and mt = min{i ∈
[`] : Ti = t}. Thus, the probability that P = Φmem(T `) � P ∗ is bounded as:

P [P � P ∗] = P [∃t 6= t′ : Mt = mt′ − 1]
k

≤
( ∑

t,t′∈T ,t6=t′
P [Mt = mt′ − 1]

)k

.

The total number of possible permutations of the given set of objects is given by

κpermut =
`!∏

t̃∈T Kt̃!
.

The number of sequences such that Mt = mt′−1 can be determined by choosing Kt+Kt′−1
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locations out of `− 1 locations to fill the objects of type t and t′ and permute over the other

objects. Thus,

κt,t’ ≤
(

`− 1

Kt +Kt′ − 1

)
(`−Kt −Kt′)!∏

t̃∈T \{t,t′}Kt̃!
.

Since the permutations are chosen uniformly at random,

P [mt′ −Mt = 1] ≤ κt,t′

κpermut

=
1

`

Kt!Kt′ !

(Kt +Kt′ − 1)!
≤ 1

`
, (5.28)

where (5.28) follows from the fact that

Kt!Kt′ !

(Kt +Kt′ − 1)!
≤ 1, (5.29)

as Kt, Kt′ ≥ 1.

Thus, we have

P [P � P ∗] ≤
((

τ

2

)
2

`

)k
≤ exp (−k(log `− 2 log τ)) . (5.30)

Thus, for k ≥ d − log ε
(log `−2 log τ)

e, P [P � P ∗] ≤ ε.

Now we prove consistency of Alg. 7. Using the union bound, we observe that the proba-

bility of error is bounded as

Pe ≤ P [P � P ∗] + kP
[
Φinfo(Î) 6= Φinfo(I)

]

≤ exp (−k(log `− 2 log τ + log 2))

+ exp

(
2 log `−max

{
c2

1

18
n(1−ν), c̃c4

1n
(1−4α)

}
+ o(1)

)
(5.31)

≤ 2ε

for a large enough n. Here (5.31) follows from the two concentration bounds on empirical

mutual information described in Appendix B.1.

Thus, for any ε > 0, there exists n, k sufficiently large, such that Pe < ε. Hence the

consistency result follows. The sample complexity is obtained from the error exponent in

(5.31).

We observe from the proof that there is a trade-off between the values of k and n needed to

achieve a certain level of accuracy. In particular, we observe that when ` is large, it suffices
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to consider a small number of permutations of the set of objects, while each permutation

requires a larger number of samples. On the other hand, when ` is relatively small, one needs

a large number of permutations while each permutation requires far fewer samples.

We restrict focus to the case where `� τ 2 and under this scenario find the following result

on sample complexity.

Corollary 8. Given T = [τ ] with τ <∞ a constant and `� τ 2,

N∗mem(ε) = O

(
(log `− log ε)min{1/(1−2α−β),1/(1−4α)}

θ
(2/(1−β))
m

)
.

Proof. Using Thm. 20 and the fact that the total number of samples used is kn (since

clustering with n samples is done k times) per object, we obtain the result.

For large `, we can thus observe that N∗mem(ε) = O
(

log `
θ2
m

)
. Note that under the Markov

memory model for long-time workers, the sufficient number of samples per object is the same

in order as for temporary workers.

5.3.3 Lower Bound on Sample Complexity

We now provide matching lower bounds by studying the probability of error of a problem

which is a reduction of the universal clustering problem.

Theorem 21. The sample complexity of universal clustering using workers with memory

satisfies

1. for a fixed θm > 0, N∗mem = Ω (log `), and

2. for a fixed ` <∞, N∗mem = Ω (θ−1
m ).

Proof. Choose a prior, parametrized by the size of the problem ` as PT (1) = 1− 1
`
, PT (2) = 1

`

such that 1
`

= 1
`
. Let E be the set of all vectors of objects with at most one object of type

2. Then,

P
[
T ` ∈ E

]
=

(
2− 1

`

)(
1− 1

`

)`−1
`→∞−→ 1.

In particular, we note that P
[
T ` ∈ E

]
is an increasing function of ` and is at least 1

2
for any

` > 3.

For a given constant θm, consider the special case of the problem where Ni = {ı̃}. That

is, consider the problem where any two objects are dependent if and only if they are of the
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same type. Clearly, any algorithm that solves the universal clustering with memory problem

solves this simplified problem as well. Thus, following the convention established, we have




I(Yi;Yı̃) ≥ 2θm, for all i ∈ [`]

I(Yi;Yj) = 0, for all i, j ∈ [`], Ti 6= Tj
.

Define

W = [Wij]1≤i,j≤2 =

[
1
2

+ ε 1
2
− ε

1
2
− ε 1

2
+ ε

]
.

Consider the scenario where worker responses are inertial over time and characterized as:

P [Yi = k|Yı̃ = j] = Wkj,

for any k, j ∈ {0, 1} and i ∈ [`]. Additionally, assume that the marginals of the responses are

uniform (that is, the response to the first object of each type is distributed as Bern(1/2)).

The information constraint implies

1

2
− h−1(1− 2θm) ≤ ε <

1

2
,

where h(·) is the binary entropy function and h−1(·) is its inverse. Let ε = 1
2
−h−1(1− 2θm).

From the definition of the error probability,

Pe ≥
1

2
P
[
P̂ 6= P ∗|T ` ∈ E

]
. (5.32)

Now consider the set E of vectors. Identifying the correct partition for a vector of objects from

this space is equivalent to identifying the objects. Thus consider the (` + 1)-ary hypothesis

testing problem defined by




H0 : Tj = 1, for all j ∈ [`]

Hi : Ti = 2, Tj = 1, for all j 6= i
. (5.33)

We seek to compute the average error probability of (5.33) corresponding to the prior PT .

Due to symmetry, note that the optimal decoder accrues the same probability of error under
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Hi for any i > 0. Thus

P [error in (5.33)] = P [H0]P [error in (5.33)|H0]

+ P [error in (5.33)|H1]


∑

i∈[`]

P [Hi]


 .

Now, note that

∑

i∈[`]

P [Hi] =

(
1− 1

`

)`−1

, P [H0] =

(
1− 1

`

)`
.

Thus, for ` > 1,
1

2
P [{Hi : i > 0}] ≤ P [H0] ≤ P [{Hi : i > 0}] .

Thus, P [{Hi : i > 0}] � P [H0]. This indicates that the average error probability is lower-

bounded by a constant factor of the minimax error probability lower bound for (5.33).

Let Qi be the distribution of the set of responses corresponding to the hypotheses defined

in (5.33):

Qi(Y
`) =





1
2

∏`
k=2WYkYk−1

, i = 0

1
4

∏i−1
j=2 WYjYj−1

∏`
k=i+1WYkYk−1

, i ∈ [`]
. (5.34)

Lemma 27. For all `, D (Qi‖Qj) = O(1).

Proof. See Appendix B.2.

Having bounded the KL divergences between the hypotheses, we obtain a lower bound on

the error probability of (5.33) using the generalized Fano inequality [150].

Let β = maxi,j∈[`]∪{0},i 6=j D(Qi‖Qj). The loss function considered here is the 0-1 loss.

Hence,

P
[
P̂ 6= P ∗|T ` ∈ E

]
= P [error in problem (5.33)]

� max
0≤i≤`

P [error in problem (5.33)|Hi]

≥ 1

2

(
1− nβ + log 2

log(`+ 1)

)
. (5.35)

Hence, for a constant θm > 0, the sample complexity of universal clustering satisfies

N∗mem = Ω(log `).
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Now, when ` is fixed, we seek to understand the sample complexity with respect to the

memory quality of the crowd. To this end, we note that any consistent clustering algorithm

is also consistent for the binary hypothesis test

ψ :




H0 : I(Y1;Y2) = 0

H1 : I(Y1;Y2) ≥ 2θm
. (5.36)

That is, if Φ is a decoder for the universal clustering problem, then Φ also solves ψ.

Since the sufficient statistics for detection of the binary hypothesis testing above are the

responses to T1, T2, it suffices to consider Y n
1 , Y

n
2 . Let the prior here be PT (1) = PT (2) = 1/2.

Let the corresponding distributions of worker responses be p(Y n
1 , Y

n
2 ) and q(Y n

1 , Y
n

2 ) under

H0 and H1 respectively. Here,

p(yn1 , y
n
2 ) =

1

2

n∏

i=1

P [y1,i, y2,i|T1 = T2 = 1] +
1

2

n∏

i=1

P [Y1,i, Y2,i|T1 = T2 = 2] ,

and

q(Y n
1 , Y

n
2 ) =

1

2

n∏

i=1

P [Y1,i|T1 = 1]P [Y2,i|T1 = 2] +
1

2

n∏

i=1

P [Y1,i|T1 = 2]P [Y2,i|T1 = 1] .

Let p
(i)
j (y) = P [Yi = y|Ti = j], q

(i)
j (y) = P [Yi = y|Ti = j], under H0 and H1 respectively.

Without loss of generality, we assume Ip(Y1, Y2) = 2θm.

Since the distributions satisfy the information constraints, we have,

D(p‖q) ≤ n

4


4Ip(Y1;Y2) +

∑

i,j,k∈[2]

D(p
(i)
j ‖q(i)

k )


 (5.37)

= 2nθm,

when the marginals under the two hypotheses are equal as was the case in the inertial worker

response channel. Here (5.37) follows from convexity. Thus the minimum upper bound on

the KL divergence between the hypotheses is 2θm. Since we consider the worst case with

respect to θm, it suffices to consider this upper bound.
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Thus,

Pe(Φ) ≥ P [error in ψ] ≥ 1

4
exp (−2B(p, q)) (5.38)

≥ 1

4
exp (−2D(p‖q)) ≥ 1

4
exp (−4nθm) , (5.39)

where (5.38) follows from the Kailath lower bound [70]. Then, using Jensen’s inequality, we

obtain (5.39). Thus N∗mem = Ω (θ−1
m ).

We observe from Thm. 21 that the universal clustering algorithm is order optimal in

terms of the number of objects, `. However, there is a gap between the lower bound and the

achievable cost in terms of the crowd quality θm. This gap is exactly the well-known gap for

entropy estimation [73, Cor. 2].

5.3.4 Reductions to Other Clustering Algorithms

There exist several clustering paradigms based on mutual information. Here we describe two

such algorithms and reductions of our model under which they are the same as Φinfo.

Recall the minimum partition information [112] based clustering described in Sec. 4.2.

Consider the Markov memory model such that Ni = {ı̃}, that is, if Yi is conditionally

dependent on an object only if it is of the same type. Then, if |P ∗| > 1, then

I(Y `) = IP ∗(Y
`) = 0.

That is, the correct partition is the finest partition that minimizes the partition information.

The following reduction indicates that minimizing the partition information is the same as

our algorithm, and so [112] is equivalent to our approach.

First, we have

H(Y `) =
∑̀

i=1

H(Yi|Yı̃).

Similarly,

H(YC) =
∑

i∈C

H(Yi|Yj(i)),

102



Figure 5.6: Bayesian network model of responses of to a set of 10 objects chosen from a set of 3
types with ζ = 2. We observe that the most recent response and the response to the two most
recent object of the same type influence every response.

where j(i) = max{k < i : k ∈ C}. This implies that

IP (Y `) =
1

|P | − 1

(∑̀

i=1

(I(Yi;Yı̃)− I(Yi;Yj(i)))

)
,

where j(i) = max{k < i : i, k ∈ C}. This indicates that minimizing the partition information

is equivalent to Φinfo(I).

Another information-based clustering strategy is the mutual information relevance network

(MIRN) clustering [111]. Here, for a given threshold γ, the clustering strategy determines

the connected components of G = ([`], E) such that (i, j) ∈ E ⇔ I(Zi;Zj) > γ. For the

Markov memory model, under the restriction that

min
{i,j∈[`]:Ti=Tj}

I(Yi;Yj) > γ ≥ max
{i,j∈[`]:Ti 6=Tj}

I(Yi;Yj),

MIRN outputs the correct partition.

However, in the universal clustering scenario, the decoder is not aware of γ and thus,

it may not be feasible to implement MIRN clustering optimally. Nevertheless. under the

restriction that Ni = {ı̃} and γ = 0, the MIRN clustering algorithm is equivalent to Φinfo(I).

5.3.5 Extended Worker Memory

While the model defined above considers the dependence of responses on just the most

recent object of the same kind, our results hold for any fixed, finite-order Markov memory

as well. In particular, consider the scenario where worker responses are dependent on the

set Ni = {i− 1}∪Mi, whereMi ⊆ {j < i : Tj = Ti} such that it contains at most the most

recent ζ indices of the same type of object. That is, the response to an object is dependent

not only on the most recent response, but also a number of prior responses to objects of the

same type as in Fig. 5.6.

Then the algorithm and sample complexity can be extended to this scenario. More specif-
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Algorithm 8 Clustering under unified worker model, Φu(T `)

Pinfo ← Φmem(T `)
for C ∈ Pinfo do
PC ← Φtemp(TC)

end for
P ← ∪C∈Pinfo

PC

ically, the parents of node i can be determined using

I(Yi;YNi) > I(Yi;YS),

for any index set S ⊆ [i− 1] such that |S| ≤ ζ. Then for any constant ζ and n & (τ + 1)2ζ ,

the consistency of the algorithm holds. That is, as long as ζ = O(1), the sample complexity

results follow.

5.4 Unified Worker Model

While we studied two distinct classes of worker models in temporary workers and workers

with memory, these two scenarios are limiting cases of a unified worker model described here.

After all, it is reasonable to characterize practical crowd worker decisions as influenced by

both aspects—memory of individual responses and task difficulty with respect to objects.

For the unified model, we provide an achievable scheme that makes use of the algorithms

defined earlier. Further, we prove consistency and order optimality of the scheme. As

in Sec. 5.1, consider worker model (5.3), where each worker is characterized by a Markov

memory model subject to fixed conditional marginal distributions. Worker quality in the

unified worker model is a combination of the distance and memory quality parameters θd, θm.

5.4.1 Unified Clustering Algorithm

We now provide the universal clustering strategy for the unified worker model, Alg. 8, drawing

on achievable schemes from before. First perform the memory-based clustering defined in

Alg. 7; then for every cluster in the partition output by the algorithm, perform distance-based

clustering. We now show the consistency of the algorithm.
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Theorem 22. Let T ` be the set of objects and ` > τ 2. Then, for

n & max
{

(log `− log ε)
1

(1−2α−β) , (5.40)

(log `− log ε)
1

(1−4α) , (θm + θd)
−1
α

}
, (5.41)

for 0 < α < 1/2 and 0 < β < 1, Pe(Φu) ≤ 2ε, for any ε > 0.

Proof. First we note that for n ≥ (c1/(θm + θd/4))1/α, γn ≤ θd/4 + θm. Thus, at least one of

γn ≤ θd/4 or γn ≤ θm is true. This in turn indicates that at least one of Φmem or Φtemp is

consistent.

Next, from Theorem 19, we note that the output Pinfo � P ∗. Thus, subsequent clustering

of the individual clusters is sufficient. This in turn indicates the correctness and asymptotic

consistency of Alg. 8.

We now observe that the sample complexity with respect to the number of objects to be

clustered is still O(log `) while that with respect to the quality parameters is O((θm+θd)
−2).

Corollary 9. Given T = [τ ] with τ <∞ a constant,

1. for a constant θm, θd > 0, N∗u (ε) = O (log `);

2. for a constant `, N∗u (ε) = O((θd + θm)−2).

It is worth noting the limiting cases of the unified worker model. In particular, when

θm → 0, the problem reduces to clustering with temporary workers as do the achievable

scheme and sample complexity requirements. On the other hand, θd → 0 corresponds to a

particular case of clustering using workers with memory.

5.4.2 Lower Bound on Sample Complexity

We now derive the lower bound on sample complexity by extending the proof of the converse

for workers with memory.

Theorem 23. Sample complexity of universal clustering under the unified worker model

satisfies

1. for a fixed θ > 0, N∗u = Ω (log `), and

2. for a fixed ` <∞, N∗u = Ω ((θm + θ2
d)
−1).
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Proof. We proceed in similar fashion to the proof for the case of workers with memory. Again,

consider the prior parametrized by the size of the problem ` as PT (1) = 1 − π, PT (2) = π

such that π = 1
`
. Again, we will use the generalized Fano’s inequality over the space E of

vectors of objects. We again consider the case of Ni = {̃i}.
Consider workers such that marginals of responses to an object satisfy

P [Y = i|T = j] =




p, i = j

1− p, i 6= j

irrespective of the order of occurrence. Define the matrices

W (1) = [W
(1)
ij ]1≤i,j≤2 =

[
a 1− a

1− b b

]
,

and

W (2) = [W
(2)
ij ]1≤i,j≤2 =

[
b 1− b

1− a a

]
.

Let the worker responses be characterized by

P
[
Yi = k

∣∣∣Yı̃ = k̃, Ti = Tı̃ = j
]

= W
(j)

kk̃
.

From the constraint on distance quality, we have 2p−1 ≥ θd. The constraint on the nature

of the marginals establishes ap − b(1 − p) = p. The restriction on the information quality

implies:

h(p)− ph(a)− (1− p)h(b) ≥ 2θm.

Let us consider the case when both inequalities hold with equality. This yields a specific

worker channel that satisfies the memory and distance quality requirements. We analyze the

error probability on this worker channel.

Again, using analysis similar to the proof of Lem. 27, we observe the KL divergences

between the hypotheses in the (` + 1)-ary hypothesis testing problem are O(1). Hence

there exists a constant β such that (5.35) holds. Thus, for constant θm and θd, the sample

complexity of universal clustering satisfies:

N∗u = O(log `).

Now, when ` is fixed, we study the necessary sample complexity of universal clustering

with respect to θm, θd. We know that a consistent universal clustering algorithm also solves
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the binary hypothesis test

ψ :




H0 : I(Y1;Y2) = 0

H1 : I(Y1;Y2) ≥ 2θm.

Following the analysis from the proof of Theorem 21, from (5.37), we have

D(p‖q) ≤ n

(
2θm + θd log

(
1 + θd
1− θd

))
. n(θm + θ2

d).

Finally, using the Kailath lower bound, we obtain

Pe(Φ) ≥ 1

4
exp

(
−4cn(θm + θ2

d)
)
. (5.42)

Thus, for constant `,

N∗u = Ω((θm + θ2
d)
−1).

From the theorem, we note the universal clustering algorithm is order optimal in sample

complexity in terms of the number of objects, for a crowd of given quality. However, for a

given number of objects, there exists an order gap between achievable sample complexity

and the converse. As expected, the gap follows from the gap in the case of workers with

memory, which in turn is from the gap in estimating entropy [73].

In particular, we observe that as θd → 0, the problem reduces to the case of workers with

memory, and on the other hand as θm → 0, it reduces to the problem of clustering using

temporary workers without memory.

A finer point in the analysis to be noted is that the worst-case channels considered in the

converse proofs is the inertial channel considered in the proof of Thm. 21, which is also the

solution to the set of constraints for the channel in the unified scenario under the limit of

θd → 0.

Thus, temporary and long-term workers with memory are indeed closely related through

the unified worker model, and are limiting cases.

5.5 Discussion

This chapter establishes an information-theoretic framework to study the universal crowd-

sourcing problem. We designed universal clustering algorithms using distributional iden-

ticality for temporary workers without memory, and response dependence for workers with
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memory. We also derived necessary and sufficient conditions on the sample complexity, prov-

ing budget-optimality in terms of the number of objects. We then integrated the limiting

cases to develop an budget optimal universal clustering algorithm for the unified worker

model. Further behavioral experiments using crowd workers can be performed to gain in-

sight into the performance of the algorithms in practice and to validate the unified worker

models.

Our results provide a way to compare costs between crowdsourcing platforms, allowing

us to choose the right task-dependent worker pool. Further, they provide a window into

more general studies of the computational capabilities and complexities of human-based

information systems. In particular, the work sheds light on the influence of various attributes

of crowd workers such as object-specific memory. In essence, the work studies a space-time

tradeoff for human computation systems and to the best of our knowledge is the first of its

kind.
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CHAPTER 6

STORAGE ON BLOCKCHAINS

The invention of bitcoin [151] almost a decade ago brought blockchains into prominence in

the business world. Blockchains maintain a shared version of a transaction ledger with each

peer in the network storing a copy, reducing the friction in financial networks caused by

intermediaries using different technology infrastructures. The technology has created a new

environment of business transactions and self-regulated cryptocurrencies [152,153].

Owing to their favorable properties, blockchains are being adopted extensively outside

cryptocurrencies in a variety of novel application domains such as medicine [154], supply

chain management, global trade [155], and government services [31, 156]. Blockchains are

expected to revolutionize the way financial/business transactions are done, such as through

smart contracts [157, 158]. More recently, cloud storage systems such as STORJ and SIA

have been designed using blockchain, offering heightened security guarantees and a new

approach to decentralized storage.

However, blockchain works on the premise that every peer stores the entire transaction

ledger as a hash chain, even though the data is meaningless to peers that are not party to

the transaction. Consequently, individual nodes incur a significant, ever-increasing storage

cost [37, 159] as shown in Figs. 6.1a and 6.1b. Note that secure storage may be much more

costly than raw hard drives, e.g. due to infrastructure and staffing costs. With storage costs

expected to saturate due to the ending of Moore’s law, storage is a pressing concern for the

large-scale adoption of blockchain.

In current practice, the most common technique to reduce the storage overload is to prune

old transactions in the chain. However, this mechanism is not sustainable for blockchains that

have to support a high arrival rate of transaction data. Hence the blockchain architecture is

not scalable owing to the heavy storage requirements.

For instance, consider the bitcoin network. Bitcoin currently serves an average of just

under 3.5 transactions per second [37]. This number is low for a variety of reasons including

the economics involved in maintaining a high value for the bitcoin. However, even at this rate,

storage requirements average 160 MB per day [159], i.e., about 60 GB per year. SETL, an

institutional payment and settlement infrastructure based on blockchain, claims to support
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(a) Blockchain size (b) Average number of transactions
per day

(c) Hash-rate

Figure 6.1: Increase in transactions, storage, and hash-rate in bitcoin. Data obtained from [159].

1 billion transactions per day. This is dwarfed by the Federal Reserve, which processes 14

trillion financial transactions per day. If cryptocurrencies are to become financial mainstays,

they would need to be scaled by several orders. Specifically, they will eventually need to

support about 2000 transactions per second on average [37]. Note that this translates to an

average storage cost of over 90 GB per day. This is to say nothing about uses for blockchain

in global trade and commerce, healthcare, food and agriculture, and a wide variety of other

industries. With storage cost expected to saturate soon due to the end of Moore’s law,

storage is emerging as a pressing concern for the large-scale adoption of blockchain.

This impending end to Moore’s law also results in a saturation of computational speeds.

Notwithstanding new efforts [160], block validation (mining) in bitcoin-like networks involves

an expensive hash computation stage that requires high-end hardware and much energy—a

demand that has only grown with the increasing hash rates as shown in Fig. 6.1c. Recent

studies have estimated that global energy consumption of bitcoin is of the order of 700 MW

[161] – enough to power over 325,000 homes, and over 5000 times the energy per transaction

on a credit card.

Distributed storage schemes have been considered in the past in the form of information

dispersal algorithms (IDA) [162,163] and in the form of distributed storage codes [164,165].

In particular [163] considers an information dispersal scheme that is secure from adaptive

adversaries. We note that the coding scheme we define here is stronger than such methods

as it handles active adversaries. Secure distributed storage codes with repair capabilities

to protect against colluding eavesdroppers [166] and active adversaries [167] have also been

considered. The difference in the nature of attacks by adversaries calls for the new coding

scheme described here.

To address rising storage costs and increasing transaction volumes [37], we proposed secure,
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distributed storage [168]. In particular, we design a distributed storage scheme for the cold

storage of the blockchain ledger in the presence of active adversaries. This work uses a novel

combination of distributed storage codes [164], private key encryption, and secret key sharing

[169], inspired by [170], to distribute data among peers. Alternative coding approaches

through Lagrange coded computing have been explored for hot distributed storage of the

transactions [171,172]. More recently new protocols and blockchain systems have also been

designed to address the concern of scalability of blockchain systems [173].

The construction of such a code results in tradeoffs not only between storage and recovery

costs, but also among the associated integrity and confidentiality guarantees of the system.

Here we describe the coding scheme, highlighting the flexibility of the code choice and the

resulting applications of blockchain toward data insurance and cloud storage. We also study

the effects of denial of service and targeted corruptions on data loss and compute the prob-

abilities of such corruptions. We also study the confidentiality of the data stored by the

system, determining the minimum extent of collusion under which a data leak is feasible.

We elaborate how the storage and recovery costs depend on the coding parameters.

6.1 System Model

We now abstract blockchain systems by a mathematical model for the peer network and

hash chain. The model described here is mainly based on the Hyperledger Fabric [174].

6.1.1 Ledger Construction

The blockchain comprises a connected peer-to-peer network of nodes, where nodes are placed

into three primary categories based on functionality:

1. Clients: nodes that invoke or are involved in a transaction, have the blocks validated

by endorsers, and communicate them to the orderers.

2. Peers: nodes that commit transactions and maintain a current version of the ledger.

Peers may also adopt endorser roles.

3. Orderer: nodes that communicate the transactions to the peers in chronological order

to ensure consistency of the hash chain.

Note that the classification highlighted here is only based on function, and individual nodes

in the network can serve multiple roles.
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Figure 6.2: Architecture of a blockchain network: Here the network is categorized by functional
role into clients Ci, peers Pi, and orderers O. As mentioned earlier, the clients initialize transactions.
Upon validation, the transactions are communicated to peers by orderers. The peers maintain an
ordered copy of the ledger of transactions.

The distributed ledger of the blockchain maintains a current copy of the sequence of trans-

actions. A transaction is initiated by the participating clients and is verified by endorsers

(select peers). Subsequently, the verified transaction is communicated to the orderer. The

orderer then broadcasts the transaction blocks to the peers to store in the ledger. The nodes

in the blockchain are as depicted in Fig. 6.2. Here nodes Ci are clients, Pi are peers, and O

is the set of orderers in the system, categorized by function.

A transaction and the nature of the data associated with it is application-specific such as

proof of fund transfer across clients in bitcoin-like cryptocurrency networks, smart contracts

in business applications, patient diagnoses/records in medical record storage, and raw data

in cloud storage. We use the term transaction broadly to represent all such categories.

A transaction is initiated by participating clients, verified by endorsers (select peers), and

broadcast to peers through orderers. The ledger is stored as a (cryptographic) hash chain.

Definition 26. Let M be a set of messages of arbitrary lengths, H the set of (fixed-length)

hash values. A cryptographic hash function family is a function h : I ×M → H, where I
is the set of parameters that dictate the deterministic map that is employed.

Good hash functions hold several salient properties [175] such as

1. Computational ease: Hash values are easy to compute.

2. Pre-image resistance: Given H ∈ H, it is computationally infeasible to find M ∈M
such that h(M) = H. To be precise, given a randomized and computationally limited

adversary who samples the messageM ′ = A(H, I), we consider the pre-image resistance
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in terms of the hitting probability

Ppre−image = P [h(I, A(H, I)) = H] . (6.1)

3. Collision resistance: It is computationally infeasible to find M1,M2 ∈M such that

h(M1) = h(M2). Again, to be precise, given a randomized and computationally limited

adversary who sample messages (M,M ′) = A(I), we consider the always collision

resistance in terms of the hitting probability

Pcollision = P [{M 6= M ′} ∩ {h(I,M) = h(I,M ′)}] . (6.2)

A hash chain is a sequence of data blocks such that each block includes a header, which is

the hash value of the previous (header included) block.

To be precise, the clients can invoke the following operations on the blockchain:

• WRITE(B): initiate a block B of data that include transaction data which are verified

and appended to the blockchain ledger.

• READ(t): call with index t to recover block Bt from the blockchain ledger.

The endorsers on the other hand perform the following operations:

• VERIFY(B): check the details of the transaction and verify authenticity.

• MINE(B, t): recover hash value Ht−1 and use B to compute hash Ht and report to

orderer to include block in blockchain ledger.

The operations of the orderer are:

• VALIDATE(B,H, t): validate block and hash value reported by endorser.

• APPEND(B,H, t): encode data and hash blocks and communicate to peers, to append

block at index t in the ledger.

Bitcoin-type blockchains use the hash chain structure but store the individual transaction

data as a Merkle tree, with the hash chain constructed using the Merkle root as the data

in the block [37]. We consider a simple form of this as shown in Fig. 6.3. Let Bt be

the data block corresponding to the tth transaction. Let g, h be two hash functions. Let

Wt = (Ht−1, g(Bt)) be the concatenation of the previous hash and a hash of the current

data. Then, Ht = h(It,Wt) is the hash value stored with the (t+1)th block, where the index

It is sampled uniformly.
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Figure 6.3: Hash chain structure for the ledger. The chain is constructed by hashing a hash value
of the data for easier recovery and consistency verification.

Using such a hashed form to construct the chain simplifies consistency verification and

reduces recovery costs, while retaining all the salient features of the hash chain that directly

hashed block values would have. In more general forms, the data block can be replaced by

a Merkle tree structure with the results extending directly.

For all t, let Bt ∼ Unif(Fq) and g(Bt), Ht ∈ Fp, where q, p ∈ N and Fq,Fp are finite fields of

order q and p respectively. Thus, the cost of storage per peer per transaction in conventional

implementation is

R̃s = log2 q + 2 log2 p bits. (6.3)

In practice, data blocks can be of varying sizes and the results follow mutatis mutandis. For

the uniform random oracle model, the pre-image and collision resistance characteristics of

the hash family in use is

Ppre−image ≈
1

p
, Pcollision ≈

1

p
.

We perform the analysis with respect to the random oracle model [176].

Transactions stored in the ledger may at a later point be recovered in order to validate

claims or verify details of the past transaction by nodes that have read access to the data.

Different implementations of the blockchain invoke different recovery mechanisms depending

on the application. One such method is to use an authentication mechanism wherein select

peers return the data stored in the ledger and the other peers validate (sign) the content.

Depending on the application, one can envision varying the number of authorization checks

necessary to validate the content. For convenience, we restrict this work to one form of

retrieval which broadly encompasses a wide class of recovery schemes. Specifically, we assume

that in order to recover the tth transaction, each peer returns its copy of the transaction and

the majority rule is applied to recover the block.
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6.1.2 Blockchain Security

Two aspects of security are of interest in blockchains—integrity and confidentiality. Whereas

an integrity property guarantees that the stored data cannot be corrupted unless most of the

peers are corrupted, a confidentiality property ensures that local information from individual

peers does not reveal sensitive transaction information.

Corruption of data in the blockchain requires corrupting a majority of the peers in the

network to alter the data stored in the distributed, duplicated copy of the transaction ledger.

Thus, the blockchain system automatically ensures a level of integrity in the transaction data.

Conventional blockchain systems such as bitcoin enforce additional constraints on the hash

values to enhance data integrity. For instance, in the bitcoin network, each transaction block

is appended with a nonce which is typically a string of zeros, such that the corresponding

hash value satisfies a difficulty target i.e., is in a specified constraint set. The establishment of

such difficulty targets in turn implies that computing a nonce to satisfy the hash constraints

is computationally expensive. Thus data integrity can be tested by ensuring the hash values

are consistent as it is computationally infeasible to alter the data.

The hash chain, even without the difficulty targets, offers a mechanism to ensure data

integrity in the blockchain. Specifically, note that the pre-image resistance of the crypto-

graphic hash function ensures that any change to Ht−1 or Bt would require recomputing Ht

with high probability as it is computationally infeasible for an adversary to determine Wt

such that h(It,Wt) = Ht. To be precise, owing to collision resistance, any alteration of data

in Wt results in an alteration of Ht with probability at least 1− 1
p
.

Thus storing the ledger in the form of a hash chain ensures that corrupting a past transac-

tion not only requires the client to corrupt at least half the set of peers to change the majority,

but also maintain a consistent hash chain following the corrupted transaction. That is, say

a participating client wishes to alter transaction B1 to B′1. Let there be T transactions in

the ledger. Then, corrupting B1 implies that the client would also have to replace H1 with

H ′1 = h(I1,W
′
1) at the corrupted nodes. This creates a domino effect, in that all subsequent

hashes must in turn be altered with high probability as well, to maintain integrity of the

chain. This strengthens the integrity of the transaction data in blockchain systems.

Confidentiality of information is typically guaranteed in these systems through the use of

private key encryption methods, where the key is shared with a select set of peers are autho-

rized to view the contents of the transactions. Note however that in such implementations,

a leak at a single node could lead to a complete disambiguation of the information. One

approach to enhance data confidentiality would be to distribute the data so that a single

point of leakage does not divulge all the information.

In this chapter we design distributed storage codes with these two aspects of security in
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mind. We first establish the adversary model considered.

6.1.3 Active Adversary Model

In this work, we explore the construction of a distributed storage coding scheme for the

cold storage of the blockchain ledger that ensures heightened confidentiality and integrity

of the data, even when the mining process is computationally inexpensive. Let us assume

that each transaction Bt also has a corresponding access list, which is the set of nodes that

have permission to read and edit the content in Bt. Note that this is equivalent to holding

a private key to decrypt the encrypted transaction data stored in the ledger.

In this work, we primarily focus on active adversaries who alter a transaction content Bt

to a desired value B′t. Let us explicitly define the semantic rules of a valid corruption for

such an adversary. If a client corrupts a peer, then the client can

1. learn the contents stored in the peer;

2. alter block content only if it is in the access list of the corresponding block; and

3. alter hash values as long as chain integrity is preserved, i.e., an attacker cannot inval-

idate the transaction of another node in the process.

The active adversary in our work is assumed to be aware of the contents of the hash chain

and the block that it wishes to corrupt. We elaborate on the integrity of our coding scheme

against such active adversaries. We also briefly elaborate on the data confidentiality guar-

anteed by our system against local information leaks.

Another typical attack of interest in such blockchain systems is the denial of service attack

where an adversary corrupts a peer in the network to deny the requested service, which in

this case is returning the data stored in the ledger. We also briefly describe the vulnerability

of the system to denial of service attacks owing to the distributed storage.

Before we describe the code construction, we first give a preliminary introduction to coding

and encryption schemes that we use as the basis to build our coding scheme.

6.2 Preliminaries

This work uses a private key encryption scheme with a novel combination of secret key

sharing and distributed storage codes to store the transaction data and hash values. We

now provide a brief introduction to these elements.
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6.2.1 Shamir’s Secret Sharing

Consider a secret S ∈ Fq that is to be shared with n < q nodes such that any subset of size

less than k get no information regarding the secret upon collusion, while any subset of size

at least k get complete information. Shamir’s (k, n) secret sharing scheme [169] describes a

method to explicitly construct such a code. All the arithmetic performed here is finite field

arithmetic on Fq.
Draw ai

i.i.d∼ Unif(Fq), for i ∈ [k − 1] and set a0 = S. Then, compute

yi = a0 + a1xi + a2x
2
i + · · ·+ ak−1x

k−1
i , for all i ∈ [n],

where xi = i. Node i ∈ [n] receives the share yi.

Since the values are computed according to a polynomial of order k− 1, the coefficients of

the polynomial can be uniquely determined only when we have access to at least k points.

Recovering the secret key involves polynomial interpolation of the k shares to obtain the

secret key (intercept). Thus, the secret can be recovered if and only if at least k nodes

collude.

In this work, we presume that each secret share is given by (xi, yi), and that the unique

abscissa values are chosen uniformly at random from Fq\{0}. That is, {xi : i ∈ [n]} are

drawn uniformly at random without replacement from Fq\{0}. Then, given any k−1 shares

and the secret, the final share uniformly likely in a set of size q − k.

It is worth noting that Shamir’s scheme is minimal in storage as the size of each share

is the same as the size of the secret key. Shamir’s scheme however is not secure to active

adversaries. In particular, by corrupting n−k+1 nodes, the secret can be completely altered.

Secret key sharing codes have been widely studied in the past [177–179]. In particular, it

is known that Reed-Solomon codes can be adopted to define secret shares. Linear codes for

minimal secret sharing have also been considered [180]. In this work however, we restrict to

Shamir’s secret sharing scheme for simplicity.

6.2.2 Data Encryption

Shannon considered the question of perfect secrecy in cryptosystems from the standpoint of

statistical security of encrypted data [181]. There, he concluded that perfect secrecy required

the use of keys drawn from a space as large as the message space. This is practically unusable

as it is difficult to use and securely store such large key values. Thus practical cryptographic

systems leverage computational limitations of an adversary to guarantee security over perfect

statistical secrecy.
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We define a notion of encryption that is slightly different from that used typically in

cryptography. Consider a message M = (M1, . . . ,Mm) ∈ M, drawn uniformly at random.

Let K ∈ K be a private key drawn uniformly at random.

Definition 27. Given message, key, and code spaces M,K, C respectively, a private key

encryption scheme is a pair of functions Φ : M×K → C, Ψ : C × K → M, such that for

any M ∈M,

Φ(M;K) = C, such that, Ψ(C, K) = M,

and it is ε-secure if it is statistically impossible to decrypt the codeword in the absence of the

private key K beyond a confidence of ε in the posterior probability. That is, if

max
M∈M,C∈C

P [Ψ(C, K) = M ] ≤ ε. (6.4)

The definition indicates that the encryption scheme is an invertible process and that

it is statistically infeasible to decrypt the plaintext message beyond a degree of certainty.

We know that given the codeword C, decrypting the code is equivalent to identifying the

chosen private key. In addition, from (6.4), we observe that the uncertainty in the message

estimation is at least log2

(
1
ε

)
. Thus,

log2

(
1
ε

)
bits ≤ H(M|C) ≤ log2 |K| bits.

For convenience, we assume without loss of generality that the encrypted codewords

are vectors of the same length as the message from an appropriate alphabet, i.e., C =

(C1, . . . , Cm).

Since we want to secure the system from corruption by adversaries who are aware of

the plaintext message, we define a stronger notion of secure encryption. In particular, we

assume that an attacker who is aware of the message M, and partially aware of the codeword,

C−j = (C1, . . . , Cj−1, Cj+1, . . . , Cm), is statistically incapable of guessing Cj in the absence

of knowledge of the key K. That is, for any M,C−j,

P [Φ(M;K) = C|M,C−j] ≤
1

2
, for any Cj. (6.5)

A more general requirement would bound the probability of recovering the key, given in-

complete cipher text, by a parameter δ. In this description, for ease of description let us

work with the factor 1
2
. The generalization of the analysis to a parameter δ is straightfor-

ward. Note that this criterion indicates that the adversary is unaware of at least 1 bit of
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information in the unknown code fragment, despite being aware of the message, i.e.,

H(C|M,C−j) ≥ 1 bit.

6.2.3 Distributed Storage Codes

This work aims to reduce the storage cost for blockchains by using distributed storage codes.

Distributed storage codes have been widely studied [164,182] in different contexts. In partic-

ular, aspects of repair and security, including explicit code constructions have been explored

widely [165–167,183,184]. In addition, information dispersal algorithms [162,163] have also

considered the question of distributed storage of data. This is a non-exhaustive listing of

the existing body of work on distributed storage and most algorithms naturally adapt to the

coding scheme defined here. However, we consider the simple form of distributed storage

that just divides the data evenly among nodes.

6.3 Coding Scheme

For this section, assume that at any point of time t, there exists a partition Pt of the set

of peers [n] into sets of size m each. In this work we presume that n is divisible by m. Let

each set of the partition be referred to as a zone. Without loss of generality, the zones are

referred to by indices 1, . . . , n
m

. At each time t, for each peer i ∈ [n], let p
(i)
t ∈ [ n

m
] be the

index that represents the zone that includes peer i. We describe the zone allocation scheme

in detail in Sec. 6.5.

6.3.1 Coding Data Block

In our coding scheme, a single copy of each data block is stored in a distributed fashion across

each zone. Consider the data block Bt corresponding to time t. We use a technique inspired

by [170]. First a private key K is generated at each zone and the data block is encrypted

using the key. The private key is then stored by the peers in the zone using Shamir’s secret

key sharing scheme. Finally, the encrypted data block is distributed amongst peers in the

zone using a distributed storage scheme. The process involved in storage and recovery of a

block, given a zone division is shown in Fig. 6.4.

More generally we can allow the zone sizes at time t to be chosen by the client. For ease

however, we describe the coding scheme for constant zone sizes m. To customize the storage,
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Figure 6.4: Encryption and decryption process for a given zone allocation. The shaded regions
represent individual zones in the peer network. The data is distributed among peers in each zone
and the data from all peers in a zone are required to recover the transaction data.

Algorithm 9 Coding scheme for data block

for z = 1 to n
m

do

Generate private key K
(z)
t ∼ Unif(K)

Encrypt block with key K
(z)
t as C

(z)
t = Φ(Bt;K

(z)
t )

Distribute Ct and store among peers in {i : p
(i)
t = z}

Use Shamir’s (m,m) secret sharing on K
(z)
t and distribute shares (K

(z)
1 , . . . , K

(z)
kt

)
among peers in the zone

end for

we just need to replace the zone sizes by kt and use a corresponding key space Kkt . The

coding scheme is given by Alg. 9. In this discussion we will assume that the distributed

storage scheme just distributes the components of the code vector Ct among the peers in

the zone. The theory extends naturally to other distributed storage schemes.

To preserve the integrity of the data, we use secure storage for the hash values as well. In

particular, at time t, each zone Z ∈ Pt stores a secret share of the hash value Ht−1 generated

using Shamir’s (m,m) secret sharing scheme.

The storage per transaction per peer is thus given by

Rs =
1

m
log2 |C|+ 2 log2 |K|+ 2 log2 p bits, (6.6)

where |C| ≥ q depending on the encryption scheme. In particular, when the code space of

encryption matches the message space, i.e., |C| = q, the gain in storage cost per transaction

per peer is given by

Gain in storage cost = R̃s −Rs =
m− 1

m
log2 q − 2 log2 |K| − log2 p bits. (6.7)

Thus, in the typical setting where the size of the private key space is much smaller than the
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Algorithm 10 Recovery scheme for data block

N ← [n]

Compute K
(z)
t , for all z, by polynomial interpolation

Decode blocks B
(z)
t ← Ψ

(
C

(z)
t ;K

(z)
t

)
, for all z ∈ [ n

m
]

if |{B(z)
t : z ∈ [ n

m
]}| > 1 then

for τ = t to min {t+ dt, T} do

Compute H
(z)
τ , for all z, by polynomial interpolation

Determine W
(i)
τ =

(
g(Bi

τ ), H
i
τ−1

)
, for all i ∈ [n]

I ←
{
i : h(W

(i)
τ ) 6= H

(z)
τ , z = p

(i)
τ+1

}

N ← N\I
if |{B(p

(i)
t )

t : i ∈ N}| = 1 then
break

end if
end for

end if

return Majority in {{B(p
(i)
t )

t : i ∈ N}}

size of the blocks, we have a reduction in the storage cost.

6.3.2 Recovery Scheme

We now describe the algorithm to retrieve a data block Bt in a blockchain system comprising

a total of T transactions. However, instead of exploring the entire length until we identify

a unique consistent version, we provide the client the freedom to choose the depth dt of

transactions that follow in the hash chain, and return the majority consistent version. The

algorithm to recover block Bt is described in Alg. 10.

According to Alg. 10, each peer first communicates the codeword corresponding to the

data block and the secret share of the encryption key. This corresponds to 1
kt

log2 q +

kt(2 log2 kt + 1) bits. Additionally, each peer also communicates the secret shares of hash

values corresponding to the next d blocks, each of which contributes 2 log2 p bits, and the

corresponding data blocks for consistency check. Thus the total worst-case cost of recovering

the tth data block is

R(t)
r = Cr

(
1
m

log2 q + log2 |K|+ 4dt log2 p
)
, (6.8)

where Cr is the cost per bit of communication.

The recovery algorithm exploits information-theoretic security in the form of the coding
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scheme, and also invokes the hash-based computational integrity check established in the

chain. First, the data blocks are recovered from the distributed, encrypted storage from

each zone. In case of a data mismatch, the system inspects the chain for consistency in

the hash chain. The system scans the chain for hash values and eliminates peers that

have inconsistent hash values. A hash value is said to be inconsistent if the hash value

corresponding to the data stored by a node in the previous instance does not match the

current hash value. Through the inconsistency check, the system eliminates some, if not all

corrupted peers. Finally, the majority consistent data is returned.

In the implementation, we presume that all computation necessary for the recovery al-

gorithm is done privately by a black box. In particular, we presume that the peers and

clients are not made aware of the code stored at other peers or values stored in other blocks.

Specifics of practical implementation of such a black box scheme are beyond the scope of

this work.

6.3.3 Feasible Encryption Scheme

The security of the coding scheme from corruption by active adversaries depends on the

encryption scheme used. We first describe the necessary condition on the size of the key

space.

Lemma 28. A valid encryption scheme satisfying (6.4) and (6.5), has

|K| ≥ 2m.

Proof. First, by chain rule of entropy,

H(K,C|M) = H(K) +H(C|M, K) = H(K), (6.9)

where (6.9) follows from the fact that the codeword is known given the private key and the

message.

Again using the chain rule and (6.9), we have

H(K) = H(C|M) +H(K|C,M)

≥
m∑

j=1

H(Cj|C−j,M) (6.10)

≥ m, (6.11)
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Algorithm 11 Encryption scheme

T ← Unif(T ), K ← Key(T ); b← Binom(n, 1/2)
Assign peers to vertices, i.e., peer i is assigned to node θi
For all i 6= v0, C̃i ← Bi ⊕Bµi ; flip bits if bi = 1.

C̃v0 ←
(
⊕j 6=v0C̃j

)
⊕Bv0

if bv0 = 1 then
Flip the bits of C̃v0

end if
Store Ci ← C̃θi at each node i in the zone
Store (K, θ) using Shamir’s secret sharing at the peers
Store the peer assignment θi locally at each peer i

where (6.10) follows from non-negativity of entropy and the fact that conditioning only

reduces entropy. Finally, (6.11) follows from the condition (6.5). Since keys are chosen

uniformly at random, the result follows.

More generally, if δ = 1
2`

, then |K| ≥ 2`m.

We now describe an encryption scheme that is order optimal in the size of the private key

space upto log factors. Let T be the set of all rooted, connected trees defined on m nodes.

Then, by Cayley’s formula [185],

|T | = m(m−1).

Let us define the key space by the entropy-coded form of uniform draws of a tree from T .

Hence in the description of the encryption scheme, we presume that given the private key

K, we are aware of all edges in the tree. Let V = [m] be the nodes of the tree and v0 be the

root. Let the parent of a node i in the tree be µi.

Consider the encryption function given in Alg. 11. The encryption algorithm proceeds by

first selecting a rooted, connected tree uniformly at random on m nodes. Then, each peer is

assigned to a particular node of the tree. For each node other than the root, the codeword

is created as the modulo 2 sum of the corresponding data block and that corresponding to

the parent. Finally, the root is encrypted as the modulo 2 sum of all codewords at other

nodes and the corresponding data block. The bits stored at the root node are flipped with

probability half. The encryption scheme for a sample data block is shown in Fig. 6.5. We

refer to Alg. 11 as Φ from here on.

The decryption of the stored code is as given in Alg. 12. That is, we first determine the

private key, i.e., the rooted tree structure, the bit, and peer assignments. Then we decrypt

the root node by using the codewords at other peers. Then we sequentially recover the other

blocks by using the plain text message at the parent node.
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Figure 6.5: Encryption examples for a zone with six peers. The data block, parameters, tree
structure, and corresponding codes are shown. The two cases consider the same rooted tree with
varying peer assignments. The corresponding change in the code is shown.

Algorithm 12 Decryption scheme

Use polynomial interpolation to recover (K,b, θ)
Define θ̃i ← j if θj = i
Flip the bits of Cθ̃v0

, if bv0 = 1
Bv0 ← Cθ̃v0

⊕j 6=θ̃v0 Cj
For all i ∈ [n]\{v0}, flip bits of Ci if bi = 1
Iteratively compute Bi ← Cθ̃i ⊕Bµi for all i 6= v0

return B

Lemma 29. The encryption scheme Φ satisfies (6.4) and (6.5).

Proof. Validity of (6.4) follows directly from the definition of the encryption scheme as the

message is not recoverable from just the encryption.

To check the validity of (6.5), note that given the data at all peers other than one node,

the adversary is unaware of the parent of the missing node. Since this is uniformly likely,

the probability that the adversary can guess the encrypted data is at most 1/2, with the

maximum being if the root is not recovered.

Lemma 30. The storage cost per peer per transaction under (Φ,Ψ) is

Rs(Φ,Ψ) =
1

m
log2 q +m (2 log2m+ 1) + 2 log2 p bits. (6.12)

Proof. First note that C = Fq. Next, the number of rooted, connected trees on m nodes is

given by Cayley’s formula as m(m−1). The peer assignments can be stored locally and so cost

only log2m bits per node per transaction. Thus, the result follows.
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From Lem. 30, we can see that the encryption scheme guarantees order-optimal storage

cost per peer per transaction up to log factor in the size of the key space. The security of the

encrypted data can be enhanced by increasing the inter-data dependency by using directed

acyclic graphs (DAGs) with bounded in-degree in place of the rooted tree. Then, the size of

storage for the private key increases by a constant multiple.

If we work with the Merkle tree representation of the hash chain, then each peer stores

two hash values per block, the Merkle root, and the hash header for the block. Thus, the

storage cost in (6.12) is increased by 2 log2 p bits additional bits for the Merkle root which

is also stored as a secret using Shamir’s secret sharing.

6.4 Performance of Coding Scheme

We now evaluate the data integrity and confidentiality that arise from the coding scheme

described here.

6.4.1 Individual Block Corruption

We now establish the security guarantees of individual blocks in each zone from active

adversaries. First, consider an adversary who is aware of the hash value Ht and wishes to

alter it to H ′t.

Lemma 31. Say an adversary, aware of the hash value Ht and the peers in a zone z, wishes

to alter the value stored in the zone to H ′t. Then, the probability of successful corruption of

such a system when at least one peer is honest, is O(1/p).

Proof. Assume the adversary knows the secret shares of k − 1 peers in the zone. Since the

adversary is also aware of Ht = a0, the adversary is aware of the coding scheme through

polynomial interpolation. However, since the final peer is honest, the adversary is unaware

of the secret share stored here. Hence the result follows.

This indicates that in order to corrupt a hash value, the adversary practically needs to

corrupt all nodes in the zone.

To understand corruption of data blocks, we first consider the probability of successful

corruption of a zone without corrupting all peers of the zone.

Lemma 32. Consider an adversary, aware of the plain text B and the peers in a zone. If

the adversary corrupts c < m peers of the zone, then the probability that the adversary can
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alter the data to B′ is at most c2

m2 , i.e.,

P [B→ B′ in zone z] ≤ exp
[
2 log c

m
−
(
1− 2

m

) (
1− c

m

)]
, (6.13)

for all B 6= B′, z ∈ [ n
m

].

Proof. For ease, let us assume that θi = i for all i ∈ [m]. From the construction of the

encryption scheme, we note that if Bi → B′i is to be performed, then all child blocks of i are

to be altered as well. Further, for any change in the block contents, the root is also to be

altered.

Thus, a successful corruption is possible only if all nodes in the next level and the root

have been corrupted. However, the adversary can only corrupt the peers at random and

has no information regarding the structure of the tree. Thus, the corruption is successful

only if the adversary samples the root, the node to be altered, and its set of children. Let

the number of children in the random tree be given by the random variable K. Thus, the

probability of corruption can be bounded by the probability of corrupting these nodes, when

only one block is to be altered in the data, as follows:

P [B→ B′ in zone z]

≤ EK [P [Pick root, node, children in c draws w/o replacement from [m]]]

= EK
[(
m−K − 2

c− k − 2

)
/

(
m

c

)]

≤ EK
[
cK+2

mK+2

]
(6.14)

= EK
[
exp

(
(K + 2) log c

m

)]
. (6.15)

Now the degree of a fixed node in a random labeled rooted tree is given by the bino-

mial distribution, Binomial(m − 2, 1
m

) [186]. Then, error probability essentially caters to

computing the moment generating function of the binomial distribution. Thus,

P [B→ B′ in zone z]

≤
( c
m

)2
(

1− 1

m

(
1− c

m

))m−2

(6.16)

≤ exp
[
2 log c

m
−
(
1− 2

m

) (
1− c

m

)]
, (6.17)

where (6.17) follows from the fact that 1− x ≤ exp(−x).

A consistent corruption of a transaction by an active adversary however requires corruption
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of at least n
2m

zones. This in turn characterizes the probability of successful correction as

shown below.

Theorem 24. Consider an active adversary who corrupts c1, . . . , cn/2m peers respectively in

n/2m zones. Then, the probability of successful corruption across the set of all peers is

P [Successful corruption B→ B′]

≤ exp

(
n

m

[
log

(
2
∑n/2m

i=1 ci
n

)
−
(

1− 2

m

)(
1

2
−
∑n/2m

i=1 ci
n

)])
, (6.18)

for all B 6= B′.

Proof. From Lem. 32 and independence of the encryption across zones, we have

P [Successful consistent corruption B→ B′]

≤
n/2m∏

i=1

exp
[
2 log c

m
−
(
1− 2

m

) (
1− c

m

)]

= exp


2

n/2m∑

i=1

log ci − 2
n

2m
logm−

(
1− 2

m

)(
n

2m
−
∑n/2m

i=1 ci
m

)


≤ exp

(
n

m

[
log

(
2
∑n/2m
i=1 ci
n

)
−
(

1− 2

m

)(
1

2
−
∑n/2m

i=1 ci
n

)])
, (6.19)

where (6.19) follows from the arithmetic-geometric mean inequality.

Note that
n/2m∑

i=1

ci ≤
n

2
,

and thus the upper bound on successful corruption decays with the size of the peer network

if less than half the network is corrupted. From Thm. 24, we immediately get the following

corollary.

Corollary 10. If an adversary wishes to corrupt a data block with probability at least 1− ε,
for some ε > 0, then the necessary condition on the total number of nodes to be corrupted

satisfies
n/2m∑

i=1

ci ≥
n

2
(1− ε)

m
n . (6.20)

Corollary 10 indicates that when the network size is large, the adversary practically needs

to corrupt at least half the network to have the necessary probability of successful corruption.
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Thus we observe that for a fixed zone division, the distributed storage system loses an

arbitrarily small amount of data integrity as compared to the conventional scheme.

In Sec. 6.5, we introduce a dynamic zone allocation scheme to divide the peer network

into zones for different time slots. We show that varying the zone allocation patterns over

time appropriately yields even better data integrity.

6.4.2 Alternative Corruption Check

One method to increase the strength of the encryption is to generalize the scheme using

directed acyclic graph with constant in-degree. Instead of encrypting the data prior to

distribution, in this section we propose a hashing idea to enable a consistency check within

each zone.

Given a block Bt to be distributed among the peers of the zone z, sample a nonce Nz ∼
Unif(N ), and compute the hash value Gt = h(I, (Bt, Nz)), where I ∼ Unif(I). Then, we

share the nonce and the hash value as a secret among the peers of the zone. Then, the block

Bt is stored according to a distributed storage code among the peers of the zone as plaintext.

When recovering the data, note that each zone can verify the integrity of the data by

recovering the secret nonce, padding it with the data, and checking the consistency of the

stored hash value. Note that the storage cost of this scheme is characterized by

R′s =
1

m
log2 q + 2 (log2 |N |+ 2 log2 p) bits.

When |N | � p, the probability that an active adversary, who corrupts only c < m peers of

a zone, can successfully corrupt a data block B is essentially the same as finding a collision in

the hash value. This is owing to the fact that the adversary has no way to recover the nonce

and hash value stored as a secret in the zone, and so has to essentially guess a transformation

to the data that happens to share the same hash value. This is the same as the probability

of collision and so for any zone z, and any block B,

P [Successful corruption of zone z] ≤ Pcollision.

Thus, the probability of successful data corruption by adversary who corrupts fewer than

n/2 peers is upper bounded owing to the independence across zones as

P [Successful corruption] ≤ exp

(
− n

2m
log

1

Pcollision

)
≈ exp

(
− n

2m
log p

)
.
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6.4.3 Data Loss

A data block is lost when some peers undergo a DoS attack and a sufficiently large number

incur random data loss. Consider an adversary that wishes to prevent the recovery of a block

B distributed according to the parameter k. Let r = n/k be the number of copies of the

data in the peer network. The data is lost when there exists at least one node failure or DoS

attack in each zone.

The adversary picks a random number C ∼ Pdl and performs a DoS attack on C uniformly

random peers. Let the number of peers corrupted in zone i be Xi and Yi be the number

that undergo data loss. Thus, (X1, . . . , Xr) are distributed according to the multivariate

hypergeometric distribution with n objects, C draws, and k objects of each of the r types.

The probability of data loss given the adversary attacks C peers is

P [Data Loss|C] = P [Xi + Yi > 0, for all i ∈ [r]|C]

= P [Yi > 0, for all i ∈ [r] s.t. Xi = 0|C]

= E
[
(1− ρ̄k)(r−

∑r
i=1 1{Xi>0})|C

]
, (6.21)

where (6.21) follows from the independence of nodal failure and the expectation is taken over

the multivariate hypergeometric distribution described above. Here 1 {·} is the indicator

function. The probability of data loss is then obtained by averaging (6.21) over C.

Then, for a DoS adversary limited by a budget Bdl of the expected number of peers it can

corrupt, Pdl can be determined by solving the following linear program (LP)

Pdl ∈ arg max
p

n∑

c=0

p(c)E
[
(1− ρ̄k)(r−

∑r
i=1 1{Xi>0})|C = c

]
(6.22)

s.t.
n∑

c=0

cp(c) ≤ Bdl,

n∑

c=0

p(c) = 1, and p(c) ≥ 0, for all c.

Computing the conditional expectation in (6.22) requires knowledge of the probability

mass function (pmf) of the number of zones with non-zero corruption, given by

P

[
r∑

i=1

1 {Xi > 0} = r̃

]
=

(
r

r̃

)
P

[
r̃∑

i=1

Xi = c

]
(6.23)

=

(
r

r̃

)(
r̃k

c

)/(
n

c

)
, (6.24)

where (6.23) follows from the symmetry in the zones. Then, the random variable
∑r̃

i=1Xi

follows the hypergeometric distribution with parameters n, c, and r̃k representing size of
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population, number of draws, and number of successes respectively. This results in (6.24).

Solving the LP (6.22) gives us an idea of the budget-limited DoS adversary and so the

data loss probability can be subsequently computed from (6.21). The optimal design choice

to account for the worst-case DoS adversary would then be to pick k such that it minimizes

the worst-case data loss probability, i.e.,

k∗ = arg min
k

max
Pdl

P [Data Loss] .

However, the design choice is more nuanced and application-specific as it has to also account

for other costs.

6.4.4 Data Confidentiality

We earlier stated that the two aspects of security needed in blockchain systems are data

integrity and confidentiality. We addressed the question of data integrity in the previous

subsection. We now consider confidentiality of transaction data.

Consider the situation where a peer i in a zone is compromised. That is, an external

adversary receives the data stored by the peer for one particular slot. This includes the secret

share of the private key Ki, the encrypted block data Ci, and secret share corresponding to

the hash of the previous block.

From Shamir’s secret sharing scheme, we know that knowledge of Ki gives no information

regarding the actual private key K. Thus, the adversary has no information on the rooted

tree used for encryption.

We know that the transaction data are chosen uniformly at random. Since the adversary

is unaware of the relation of the nodes to one another, from the encryption scheme defined,

we know that given the entire encrypted data C, the probability of recovering the block

B is uniformly distributed on the set of all possible combinations obtained for all possible

tree configurations. That is, each possibly rooted tree yields a potential candidate for the

transaction data.

This observation implies that

H(B|C) ≤ H(K,B|C) = H(K) +H(B|K,C) = m log2m. (6.25)

We know that the entropy of the transaction block is actually H(B) = log2 q > m log2m.

That is, the adversary does learn the transaction data partially and has a smaller set of

candidates in comparison to the set of all possible values, given the entire codeword.
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Figure 6.6: Dynamic zone allocation over time: Iterate the zone allocation patterns among the
peers so that increasing number of peers need to be corrupted to maintain a consistent chain
structure.

However, in the presence of just Ci, the adversary has no way to determine any of the

other stored data, nor does it have any information on the position of this part of the code in

the underlying transaction block. Thus, local leaks reveal very little information regarding

the transaction block. Thus, we observe that the coding scheme also ensures a high degree

of confidentiality in case of data leaks from up to m− 1 peers in a zone.

6.5 Dynamic Zone Allocation

In the definition of the coding and recovery schemes, we presumed the existence of a zone

allocation strategy over time. Here we make it explicit.

Corollary 10 and Lem. 31 highlighted the fact that the distributed secure encoding process

ensures that corrupting a transaction block or a hash requires an adversary to corrupt all

peers in the zone. This fact can be exploited to ensure that with each transaction following

the transaction to be corrupted, the client would need to corrupt an increasing set of peers

to maintain a consistent version of the corrupted chain.

In particular, let us assume a blockchain in the following state

(H0,B1)− (H1,B2)− · · · − (Ht−1,Bt).

Let us assume without loss of generality that an adversary wishes to corrupt the transaction

entry B1 to B′1. The validated, consistent version of such a corrupted chain would look like

(H0,B
′
1)− (H ′1,B2)− · · · − (H ′t−1,Bt).
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If the zone segmentation used for the encoding process is static, then the adversary can

easily maintain such a corrupted chain at half the peers to validate its claim. If each peer is

paired with varying sets of peers across blocks, then, for sufficiently large t, each corrupted

peer eventually pairs with an uncorrupted peer.

Let us assume that this occurs for a set of corrupted peers at slot τ . Then, in order

to successfully corrupt the hash Hτ−1 to H ′τ−1, the adversary would need to corrupt the

rest of the uncorrupted peers in the new zone. On the other hand, if the client does not

corrupt these nodes, then the hash value remains unaltered indicating the inconsistencies of

the corrupted peers.

Thus, it is evident that if the zones are sufficiently well distributed, corrupting a single

transaction would eventually require corruption of the entire network, and not just a majority.

A sample allocation scheme is shown in Fig. 6.6.

However, the total number of feasible zone allocations is given by

No. of zone allocations =
n!

(m!)
n
m

≈
√

2πn
(√

2πm
) n
m

( n
m

)n
, (6.26)

which increases exponentially with the number of peers and is monotonically decreasing

in the zone size m. This indicates that naive deterministic cycling through this set of all

possible zone allocations is practically infeasible.

To ensure that every uncorrupted peer is eventually grouped with a corrupted peer, we

essentially need to ensure that every peer is eventually grouped with every other peer. Fur-

ther, the blockchain system needs to ensure uniform security for every transaction and to

this end, the allocation process should also be fair.

In order to better understand the zone allocation strategy, we first study a combinatorial

problem.

6.5.1 K-Way Handshake Problem

Consider a group of n people. At each slot of time, the people are to be grouped into sets of

size m. A peer gets acquainted with all other peers in the group whom they have not met

before. The problem can thus be viewed as an m-way handshake between people.

Lemma 33. The minimum number of slots required for every peer to shake hands with every

other peer is n−1
m−1

.

Proof. At any slot, a peer meets at most m−1 new peers. Thus the lower bound follows.
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Algorithm 13 Dynamic Zone Allocation Strategy

Let ν2 . . . , ν2n′ be the vertices of a 2n′ − 1 regular polygon, and ν1 its center
for i = 2 to 2n′ do

Let L be the line passing through ν1 and νi
M ← {(νj, νk) : line through νj, νk is perpendicular to L}
M ←M ∪ {(ν1, νi)}
Construct zones as {νj ∪ νk : (νj, νk) ∈M}

end for
restart for loop

Figure 6.7: Dynamic zone allocation strategy when n = 4m. The zone allocation scheme cycles
through matchings of the complete graph by viewing them in the form of the regular polygon.

Remark 12. Note that each such grouping of nodes constitutes a matching (1-factor) of an

m-uniform complete hypergraph on n nodes, Kn
m. Baranyai’s theorem [187] states that if n

is divisible by m, then, there exists a decomposition of Kn
m into

(
n−1
m−1

)
1-factors. However,

we do not require every hyperedge to be covered by the allocation scheme, but only for every

node to be grouped with every other node eventually.

Note that for m = 2, it shows that we can decompose a graph into n−1 different matchings.

In this case, the handshake problem is the same as the decomposition of the graph into

matchings. Thus Baranyai’s theorem in this case gives us the exact number of slots to solve

the problem.

We use the tightness observed for the two-way handshake problem to design a strategy

to assign the peers in zones. Let n′ = n
m

. Partition the peers into 2n′ sets, each containing

m/2 peers. Let these sets be given by ν1, . . . , ν2n′ . Then, we can use matchings of K2n′ to

perform the zone allocation.

Consider Alg. 13. The algorithm provides a constructive method to create zones such that

all peers are grouped with each other over time. The functioning of the algorithm is as in

Fig. 6.7.

Lemma 34. The number of slots required for every peer to be grouped with every other peer

is 2n′ − 1.
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Proof. The result follows directly from the cyclic decomposition and Baranyai’s theorem for

m = 2.

We see that the scheme matches the lower bound on the number of slots for coverage in the

order sense. Thus we consider this allocation strategy in the following discussion. In addition

to the order optimality, the method is also fair in its implementation to all transactions over

time.

6.5.2 Security Enhancement

From Alg. 10, we know that inconsistent peers are removed from consideration for data

recovery. While Lem. 34 guarantees coverage in 2 n
m

slots, we are in fact interested in the

number of slots for all uncorrupted peers to be paired with corrupt peers. We now give

insight into the rate at which this happens.

We know that an adversary who wishes to corrupt a block corrupts at least n/2 nodes

originally.

Lemma 35. Consider an adversary who successfully corrupts Wt to W ′
t . Further, let us

assume the adversary requires successful corruption with probability at least 1 − ε, where

1− ε > 1
p
. Then under the cyclic zone allocation scheme, the adversary needs to corrupt at

least m new nodes with probability at least 1− 1
p
, in order to successfully alter Ht.

Proof. From the cyclic zone allocation strategy and the pigeonhole principle at least two

honest nodes in the graph are paired with corrupt nodes in each slot. These nodes are to be

corrupted by the adversary in order to preserve hash consistency if the corresponding hash

value changes.

By the collision resistance property of the hash family, the probability that the corruption

of a block Wt corrupts Ht is at least 1− Pcollision = 1− 1
p
. Thus the result follows.

Suppose the adversary corrupts a peer independently with probability Ptc ∈ (0, 1). This

probability represents the ability of the adversary to corrupt other peers in the network.

Theorem 25. Let the depth explored for consistency to return a data block be d. The

probability of successful targeted corruption of such a system is

P [Targeted Corruption] ≤
(
r

r/2

)
P

(n2 +2m)
tc

[
1− (P 2m

tc (1− 1/p))
d
]

p [1− (1− 1/p)d]
, (6.27)

where r = n/m.
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Proof. Note that the adversary successfully corrupts only if it manages to corrupt as many

as n
2

+ 2Km peers where K is the random variable that represents the depth at which the

hash value is not altered by a change to the previous block. From Lem. 35 and the fact

that K ≤ d, it is evident that K is distributed according to the geometric distribution with

parameter Pcollision, and truncated at d.

Thus, the probability of successful targeted corruption is given by

P [Targeted Corruption] = EK
[(

r

r/2

)
(Ptc)

n
2

+2Km

]

=

(
r

r/2

)
(Ptc)

n
2 EK [exp ((2m logPtc)K)] . (6.28)

Finally, the result is obtained by noting that the moment generating function of the geometric

random variable with parameter ρ is

M(t) =
ρet

1− (1− ρ)et
,

and that for the truncated random variable is

M ′(t) = M(t)

[
1− (et(1− ρ))

d

1− (1− ρ)d

]
.

Naturally this implies that in the worst-case, with n
2m

transactions, the data becomes

completely secure in the network. That is, only a corruption of all peers (not just a majority)

leads to a consistent corruption of the transaction.

6.6 Data Recovery and Repair

6.6.1 Recovery Cost

As highlighted in the scheme, the recovery process of a transaction block or hash value

requires the participation of all peers in the zones. Thus the cost of data recovery using the

(Φ,Ψ)-encryption scheme is

R(t)
r = Cr

(
1
m

log2 q +m(2 log2m+ 1) + 4dt log2 p
)
. (6.29)
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However, practical systems often have peers that are temporarily inactive or undergo data

failure. In such contexts the recovery of the data from the corresponding zone becomes

infeasible.

Thus it is of interest to know the probability that it may not be feasible to recover an old

transaction at any time slot. Consider a simple model wherein the probability that a peer is

inactive in a slot is ρ, and peer activity across slots and peers is independent and identically

distributed.

Theorem 26. For any δ > 0, probability of successful recovery of a data block at any time

slot is at least 1− δ if and only if m = Θ(log n).

Proof. First, the probability that the data stored can be recovered at any time slot is bounded

according to the union bound as follows:

P [Recovery] = P [there exists a zone with all active peers]

≤ n

m
(1− ρ)m.

Thus, to guarantee a recovery probability of at least 1− δ, we need

n

m
(1− ρ)m ≥ 1− δ (6.30)

=⇒ m ≤ 1

log
(

1
1−ρ

) (log n− log(1− δ)) . (6.31)

Next, to obtain sufficient conditions on the size of the zones, note that

P [Failure] = P [at least one peer in each zone is inactive]

= (1− (1− ρ)m)
n
m ≤ exp

(
−(1− ρ)m

n

m

)
,

where the last inequality follows from the fact that 1 − x ≤ exp(−x). Hence a sufficient

condition for guaranteeing an error probability of less than δ is

exp
(
−(1− ρ)m

n

m

)
≤ δ

=⇒ m ≤ 1

log
(

1
1−ρ

) (log n− log log(1/δ)) . (6.32)

Thus the result follows.

Theorem 26 indicates that the zone sizes have to be of the order of log n to guarantee a

required probability of recovery in one slot when node failures are possible.
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6.6.2 Data Repair

The distributed secure storage ensures that individual entries stored at each peer can not be

recovered from the knowledge of other entries in the zone. Thus it is not feasible to repair

nodes locally within a zone. However, it suffices to substitute a set of bits such that the code

structure is retained.

A node failure indicates that the private key is lost. Thus repairing a node involves

recoding the entire zone using data from a neighboring zone. Thus owing to the encryption,

it is difficult to repair nodes upon failure.

Thus, the transaction data is completely lost if one peer from every zone undergoes failure.

That is, the system can handle up to n/m node failures. This fact emphasizes the need to

ensure that m is small in comparison to n, so as to avoid data loss from node repair.

6.7 Blockchain-Based Cloud Storage

As mentioned earlier, parameter design for individual clients is influenced by the variety of

tradeoffs established here. Blockchain-based storage systems are of interest owing to the

immutability guarantees on stored data. Using the tradeoffs established here, we describe a

scheme selection mechanism by which the client can opt for a service that best serves the

data being stored, details of which are given in [188]. Additionally it is important to note

that the clients can inherently value different data blocks differently by appropriately varying

the design choices.

6.7.1 Security-Based Scheme Selection

Consider a cloud storage system that implements our code to store data on the blockchain.

Without loss of generality, let us assume that the cost of storing one unit of data at all peers

per unit time is one. The communication cost for data recovery, Cr is priced in relation to

this. Let the frequency of data retrieval be ν, and let the parameters be k, d. Then, the

storage cost per unit time is

Service Cost = Rs + νRr (6.33)

=
(

1
k

log2 q + k(2 log2 k + 1)
)

(1 + νCr) + 2 log2 p(1 + dνCr), (6.34)

which is obtained from (6.6) and (6.8).

Naturally, given the set of parameters, the probability of data loss, targeted corruption,
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and the fraction of colluding peers for information leak are determined by the maximum

value of the LP (6.22), (6.27), and fil respectively.

Thus, the client can choose the design parameters by solving the following integer program

(k∗, d∗) ∈ arg min
k,d

Rs + νRr (6.35)

such that

P [Data Loss] ≤ δdl, (6.36)

P [Targeted Corruption] ≤ δtc, and (6.37)

fil ≥ δil. (6.38)

Note that (6.35) is a non-linear integer program and presumes knowledge of the parameters

that define the adversary strength.

6.7.2 Data Insurance

Distributed storage on blockchain systems provide us with an interesting opportunity to

offer data insurance [189] for saved blocks of data owing to the security guarantees. Here, we

briefly describe parameter selection (storage code design) to store data valued at a certain

level such that the service provider on average obtains a certain desired profit margin.

Consider storing a data block valued by the client at V . Let µ ∈ [0, 1] be the profit

margin desired by the service provider. Let w1 ∈ [0, 1] be the fraction of DoS adversaries,

and w2 = 1− w1 be the fraction of active adversaries. Here we do not consider information

leak through collusion. Now, in any slot, the probability that the data is lost or successfully

corrupted in a slot is given by

θ = w1P [Data Loss] + w2P [Targeted Corruption] .

Let R = Rs+νRr be the service cost per unit time. The time T for data loss or successful

corruption is distributed geometrically with the parameter θ. Then the expected time for

payout of the insured data upon losing it is 1
θ
. Thus, the service provider can select the

storage parameters by solving the following problem

(k∗, d∗) ∈ arg min
k,d

C, such that C ≥ (1 + µ)V p. (6.39)

Again this is a non-linear integer program that is to be solved to obtain the desired profit

margin on insured data blocks.
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Thus, the code provides the opportunity to design efficient data storage and insurance

mechanisms over the blockchain. A variety of other applications may also be developed by

studying the corresponding tradeoff in operational costs, required security and privacy, and

the requirements of the application.

6.8 Discussion

This chapter introduced a simple mathematical model of blockchain systems and leveraged

information theoretic secrecy, distributed storage coding, and a novel grouping mechanism to

allow efficient storage of the blockchain ledger among the peers. In the process we addressed

the associated cost in recovery, and also the guarantees provided by the system on the

security and privacy of the data. In particular we designed secure distributed storage codes

for the cold storage of the blockchain ledger in the presence of active adversaries.

Whereas we adopt a system-theoretic framework here to design the coding scheme, a closer

analysis of the requirements of the system through coding theory can help develop efficient

codes for the dynamic distributed storage scheme. We have recently developed a coding

scheme with a view on sharing several local and a global secret among peers [190], that

proves to be an efficient code for the dynamic distributed system.

Exploring other coding schemes that might be conducive for implementing the dynamic

distributed storage scheme could yield more practical solutions. In particular, incorporating

features of error and erasure tolerance, and local repair capabilities, through the use of

appropriate locally repairable codes (LRC) [191–193] can enhance the recovery and repair

costs in the network, making the storage scheme more robust.

More efficient implementations of the proposed scheme in practice also require a care-

ful exploration of network costs and performing resource allocation in accordance to these

network costs. In particular, it is important to group nodes into zones such that they can

communicate easily with each other. At the same time however we also need to ensure that

such familiar grouping does not facilitate the corruption of peers by adversaries. Accounting

for such costs in the zone allocation algorithm can lead to better practical methods.

This work establishes the feasibility of enhancing blockchain performance and reducing

associated costs through novel use of coding-theoretic techniques. We believe such methods

enhance the ability of blockchain systems to scale to address practical applications in a

variety of industries.
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CHAPTER 7

TRUSTED MULTI-PARTY COMPUTATIONS USING
BLOCKCHAIN SYSTEMS

Machine learning, data science, and large-scale computation in general has created an era

of computation-driven inference, applications, and policymaking [194, 195]. Technological

solutions and policies with far-reaching consequences are increasingly being derived from

computational frameworks and data. Multi-agent sociotechnical systems that are tasked

with working collaboratively on such tasks function by interactively sharing data, models,

and results of local computation.

However, when such agents are independent and lack trust, they might not collaborate

with or trust the validity of reported computations of other agents. Quite often, these

computations are expensive and time consuming, and thus recomputation by the doubting

peer is infeasible as a general course of action. In such systems, creating an environment

of trust, accountability, and transparency in the local computations of individual agents

promotes collaborative operation.

For instance, consider training a deep neural network with a given architecture using

stochastic gradient descent (SGD). Here, the model and computations are deterministic

given the data used for gradient computation. Applications are primarily interested in using

the trained model represented by the weights of the trained network. But, if there is lack

of trust in the training agent, there is no simpler way to verify the network than to retrain

it. This is often impractical since the (re)training process consumes extensive amounts of

time and tends to require the use of specialized hardware like GPUs or TPUs. It is thus

important to establish trust in the computations involved in the training phase.

To emphasize the importance of trust in multi-agent systems, let us also consider the

case of policy design for malaria. OpenMalaria (OM) [196] is an open source simulation

environment, collaboratively developed to study malaria epidemiology and the effectiveness

of control mechanisms. It is used extensively to design policies to tackle the disease. Here,

individual agencies propose hypotheses regarding the disease and/or intervention policies,

and study them by simulating them under specific environments [197]. Considering the

potential impact of such work in designing disease control policies, it is important to establish

accountability and transparency in the process, so as to facilitate trusted adoption of results.
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Calls have been made for accountability and transparency in multi-agent computational

systems, especially in high impact fields such as health [198]. A framework for decision

provenance helps track the source of results, transparent computational trajectories, and a

unified, trusted platform for information sharing. In fact, the US Centers for Disease Control

and Prevention [199] states that:

. . . public health and scientific advancement are best served when data are re-

leased to, or shared with, other public health agencies, academic researchers,

and appropriate private researchers in an open, timely, and appropriate way.

The interests of the public . . . transcends whatever claim scientists may believe

they have to ownership of data acquired or generated using federal funds.

This call implicitly assumes an inherent trust in the shared material. However, significant

disparity and inconsistency in current information-sharing mechanisms not only hinder ac-

cess, but also lead to questionable informational integrity [200]. Here, trust and transparency

are critical, but absent in current practice.

Establishing trust in computations translates to guaranteeing correctness of individual

steps of the simulation, and the integrity of the overall computational process leading to

the reported results. Importantly, when computational models and parameters along with

intermediate results of individual steps are shared, these steps can be validated by other

agents who can recompute them, thereby validating the entire computation in a distributed

manner.

Blockchain is a distributed ledger (database) technology that enables multiple distributed,

potentially untrusted agents to transact and share data in a safe, secure, verifiable and

trusted manner through mechanisms providing transparency, distributed validation, and

cryptographic immutability [37]. As such, blockchain provides a viable platform to establish

this type of trust for complex, long running computations of interest. In fact, blockchain-

based platforms for trusted clinical trials have been proposed recently [201]. In this chapter

we use blockchain to record, share, and validate frequent audits (model parameters with the

intermediate results) of individual steps of the computation. We describe how blockchain-

based distributed validation and shared, immutable storage can be used and extended to

enable efficient, trusted, and verifiable computations.

A common challenge arising in blockchain-based solutions is its scalability [188,202, 203].

The technology calls for significant peer-to-peer interaction and local storage of large records

that include all the data generated in the network. These fundamental requirements result

in significant communication and storage costs respectively. Thus, using the technology for

large-scale computational processes over large multi-agent networks may be prohibitively
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expensive. Here, we address this scalability challenge by developing a novel compression

schema and a distributed, parallelizable validation mechanism that is particularly suitable

for such large-scale computation contexts.

Allowing validation and verification of computations not only creates an environment

of trust among agents, but also enforces a higher degree of conformation and consistency

in experiments. Necessitating validation and verification also implies a shared common

mechanism for model and data sharing, enabling scientific reproducibility. The setup also

facilitates well-defined processes for distributed and derived computing, wherein the former

involves a computational framework performed piecewise at multiple nodes, and the latter

concerns deriving new experiments using checkpoints drawn from the intermediate audits

of prior computational experiments. The specifics of the system design described in this

chapter can be found at [204,205] and are also presented in [206–208].

7.1 Prior Work

We now provide a brief summary of prior work in related areas.

A variety of applications with widespread impact are being designed with the help of

improved computational capabilities, easier access to data, and machine learning algorithms.

Taking the context of malaria, as studied through OpenMalaria simulations, new pipelines for

integrating AI tools and algorithms have been considered [209]. Regression-based methods

for better policy search have also been integrated with the open-source platform [210].

Considering the impact of such simulations, researchers have recently raised alarm over

their lack of reproducibility. Reproducing results from research papers in AI have been found

to be challenging as a significant fraction of hyperparameters and model considerations

are not documented [211]. In another paper focused on reproduction of results in deep

learning [212], the authors explore the possible reasons, and cite variability in evaluation

metrics and reporting among different algorithms and implementations. More recently efforts

have been made at coupling the data with the processes involved to facilitate scientific

reproducibility [213].

Accountability and transparency are being increasingly sought after in large-scale compu-

tational platforms, with particular focus on establishing tractable, consistent computational

pipelines. The problem of establishing provenance in decision-making systems has been con-

sidered [214] through the use of an audit mechanism. Distributed learning in a federated

setting with security and privacy limitations has also been considered recently [215]. Ac-

countability in peer-to-peer, cloud, and distributed computating systems in the presenc of
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Byzantine faults have also been considered [216–219].

The notion of trust has been considered from a variety of standpoints [220] and has con-

textually varied definitions as described in depth in [221]. A qualitative definition of trust

in multi-agent computational systems can be adapted from [222,223] as:

Trust is the belief an agent has that the other party will execute an agreed upon

sequence of actions and reports an accurate representation of computed result

(being honest and reliable).

We provide a more specific characterization of trust in Sec. 7.2.

In fact, the problem of trust in multi-agent computational systems was considered at the

beginning of the 20th century from the viewpoint of reducing errors in complex calcula-

tions performed by human workers [224]. Large-scale computational problems were solved

using redundant evaluation of smaller sub-tasks assigned to human workers, and verified

using computational checkpoints. We can draw significant insight into reliable distributed

computing from these practices.

Blockchain systems have brought forth the means for creating distributed trust in peer-

to-peer networks for transactional systems [174]. A variety of applications that invoke in-

teractions and transactions among untrusting agents have benefited from the trust enabled

by blockchains [156,157,225]. More recently, blockchains have been used in creating secure,

distributed, data sharing pipelines in healthcare [226] and genomics [227]. This trust can

also be leveraged in creating trusted distributed computing systems, as highlighted in this

work.

7.2 Computation and Trust Model

Let us now mathematically formalize the computation model, and validation and verification

requirements under consideration. We consider an iterative computational algorithm.

Consider a computational process that updates a system state, Xt ∈ Rd, over iterations

t ∈ {1, 2, . . .}, depending on the current state and an external source of randomness θt ∈ Rd′ ,

according to an atomic operation f : Rd × Rd′ → Rd as follows

Xt+1 = f(Xt, θt). (7.1)

For simplicity we assume that θt is common randomness that is shared by all agents. This

can easily be generalized as elaborated later. We also assume that the function f(·) is L-

Lipschitz continuous in the system state under the Euclidean norm without loss of generality,
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for all θ ∈ Rd′ i.e.,

‖f(X1, θ)− f(X2, θ)‖ ≤ L ‖X1 −X2‖ . (7.2)

That is, minor modifications to the inputs of the atomic operation result in correspondingly

bounded variation in the outputs. This is expected off physical or biological processes as

most physical systems governing behavior in nature are smooth. This is also reflected in the

epidemiological and meteorological simulations that are used. For instance, with respect to

the OpenMalaria example, the requirement implies that minor changes in policies result in

minor changes in outcomes.

In this context we decompose trust into two main components:

• Validation: The individual atomic computations of the simulation are guaranteed

and accepted to be correct.

• Verification: The integrity of the overall simulation process can be checked by other

agents in the system.

The two elements ensure local consistency of computation and post-hoc corroboration of

audits. Their mathematical characterization is provided in Sec. 7.2.

We consider a multi-agent system where one agent, referred to as the computing client

(client in short), runs the computational algorithm. The other agents in the system, called

peers, are aware of the atomic operation f(·) and share the same external randomness and

hence can recompute the function. Validation of intermediate states is performed by inde-

pendent peers referred to as endorsers through an iterative recomputation of the reported

states from the most recent validated state using the atomic operation f(·). The process of

validation is referred to as an endorsement of the state. A reported state, X̃t is valid if it

lies within a margin, ∆val, of the state X̂t as recomputed by the endorser, i.e.,

∥∥∥X̃t − X̂t

∥∥∥ =
∥∥∥X̃t − f(X̃t−1)

∥∥∥ ≤ ∆val. (7.3)

The validation criterion (7.3), without loss of generality, associates equal weight to each

component of the state, and can be easily generalized to weighted norms or other notions of

distance.

Verification involves checking for integrity of the computational process, which is enabled

through the storage of frequent audits of validated states. Thus, if the audits record the

states
{
Ỹ1, Ỹ2, . . .

}
, then verification corresponds to ensuring that the recomputed version,

Ŷt, of the state is within a margin, ∆ver, of the recorded version, i.e.,

∥∥∥Ŷt − Ỹt
∥∥∥ ≤ ∆ver. (7.4)
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Without loss of generality, requirements for validation are stricter than for verification, i.e.,

∆val ≤ ∆ver. We now construct a system to address these two trust requirements.

7.3 Multi-Agent Blockchain Framework

A naive solution is to validate each step (iteration) of the process using independent recom-

putation by validating agents. The integrity of the computational process can be verified

from an immutable record of validated intermediate states. However, practical simulations

are long and involve a large number of iterations. Validation requires communication of the

iterates to the endorsers, and recording the validated state on the immutable data structure.

This results in significant communication and storage overhead if every state is reported

and stored as is, in addition to the computational cost of validation. Such costs limit the

adoption of the method to large-scale systems.

It is thus important to make use of the computational struture to reduce the inter-peer

communication and storage, and the recomputation costs. In this section we elaborate the

design of the Multi-agent Blockchain Framework (MBA), starting with the functional catego-

rization of the network. We then elaborate each functional unit, including the compression at

the client, the validation by endorsers, and the role of orderers in adding blocks to the ledger.

For ease, let us consider a deterministic iterative algorithm for computation, Xt+1 = f(Xt).

7.3.1 Peer-to-Peer Network—Functional Decomposition

The peer-to-peer network is functionally categorized into clients, endorsers, and orderers,

which function together in computing, validating, ordering, and storing the simulated states

on the blockchain ledger. Note that the sequence of operations is analogous to those involved

in the Hyperledger Fabric as indicated in Chapter 6. Their functions are:

1. Client runs the computations to iteratively compute states {Xt : t ≥ 1}.

2. The client groups a sequence of states into a frame, compresses, and communicates the

frame to a set of endorsers.

3. The endorsers decompress frames, validate states by recomputing them iteratively, and

report endorsements to orderers.

4. The orderers subsample and add the frame to the blockchain if it has been validated,

and if all prior frames have been validated and added.
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Figure 7.1: Functional categorization of peer-to-peer network: Clients run the iterative algorithm;
multiple independent frames are validated in parallel by non-overlapping subsets of endorsers;
orderers check consistency and append valid frames to the blockchain.

5. The peers update their copy of the ledger.

This is depicted in Fig. 7.1. The classification is only based on function and each peer can

perform different functions across time. Since states are grouped into independent frames,

they can be validated by non-overlapping subsets of endorsers in parallel.

7.3.2 Client Operations

Clients performs the computations, construct frames of iterates, compress, and report them

to endorsers. We assume there exists an endorser assignment policy.

Owing to the Lipschitz continuity,

‖Xt+1 −Xt‖ ≤ L ‖Xt −Xt−1‖ .

Thus state updates (differences) across iterates are bounded to within a factor of the devi-

ation in the previous iteration. This property can be leveraged to compress state updates

using delta encoding [228], where states are represented in the form of differences from the

previous state. Then, it suffices to store the state at certain checkpoints of the computational

process, with the iterates between checkpoints represented by the updates.

We describe the construction inductively, starting with the initial state X0, the first check-

point. Let us assume that the state reported at time t is X̃t and the true state is Xt. Then,
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Figure 7.2: Structure of frames: Each frame includes a header followed by compressed updates of
successive iterates.

if Xt+1 = f(Xt), define the update as

∆Xt+1 = Xt+1 − X̃t.

The cost of communication (for validation) and storage (for verification) of these updates

is reduced by performing lossy compression (vector quantization [229]). Let the quantizer

be represented by Q(·) and let the maximum quantization error magnitude be ε, i.e., if the

client reports ∆̃Xt = Q(∆Xt), then,

∥∥∥∆̃Xt −∆Xt

∥∥∥ ≤ ε. (7.5)

Additionally, the checkpoints can also be compressed using a Lempel-Ziv-like dictionary-

based lossy compressor. Here, a dictionary of unique checkpoints are maintained. For each

new checkpoint, we first check if the state is within a margin ε from an entry in the dictionary,

and the index of this entry is reported. If not, the state is added to the dictionary and its

index is reported. Other universal vector quantizers can also be utilized for compressing

checkpoints, and we denote this quantizer by Q̃(·).
Let ∆quant be the maximum magnitude of a state update within a frame, i.e., if ‖∆Xt‖ >

∆quant, the client creates a checkpoint at t + 1 and reports X̃t+1 = Q̃(Xt+1). Then Xt+1 is

reported as

X̃t+1 =




Q̃(Xt+1), if t+ 1 is a checkpoint

X̃t + ∆̃Xt+1, o/w
. (7.6)

The resulting sequence of frames is as shown in Fig. 7.2.

Separate from creating new checkpoints adaptively, the system also restricts the maximum

size of a frame by a constant M̄ to limit the computational overhead of its validation.

Figure 7.3 summarizes the tasks performed by the computing client.

The choice of design parameters, ε,∆quant, are to be made such that the reports are

accurate enough for validation. The optimal design choice is shown in the following results.

Theorem 27. If f(·) is L-Lipschitz continuous, and ε ≤ ∆val

L+1
, then, a state X̃t is invalidated
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Figure 7.3: Operations performed by the client within a frame. The client computes the states
according to the iterative algorithm, performs delta encoding, and communicates the compressed
state updates to the endorsers in frames.

by an honest endorser only if there is a computational error of magnitude at least ε, i.e.,∥∥∥X̃t −Xt

∥∥∥ ≥ ε.

Proof. Let us assume that X̃t is a valid state. Then,

∥∥∥X̂t+1 − X̃t+1

∥∥∥ ≤
∥∥∥X̂t+1 −Xt+1

∥∥∥+
∥∥∥Xt+1 − X̃t+1

∥∥∥

≤ L
∥∥∥X̃t −Xt

∥∥∥+
∥∥∥∆̃Xt −∆Xt

∥∥∥ (7.7)

≤ L
∥∥∥∆̃Xt−1 −∆Xt−1

∥∥∥+ ε (7.8)

≤ (L+ 1)ε ≤ ∆val, (7.9)

where (7.7) follows from the Lipschitz continuity of the atomic operation, (7.8) is from the

definition of the compressed state updates, and (7.9) follows from the quantization error

bound.

Corollary 11. If
∥∥∥X̃t −Xt

∥∥∥ ≥ ∆val + Lε, then X̃t is invalidated.

The necessary and sufficient conditions for invalidation in Thm. 27 and Cor. 11 highlight

the fact that computational errors of magnitude less than ε are missed, and any error of

magnitude at least ∆val + Lε is certainly detected. When the approximation error is made

arbitrarily small, all errors beyond the tolerance are detected. A variety of vector quantizers,

satisfying Thm. 27 can be used for lossy delta encoding—one simple choice is lattice vector

quantizers [230].

Theorem 28. Let B(∆quant) =
{
x ∈ Rd : ‖x‖ ≤ ∆quant

}
and let ∆Xt ∼ Unif(B(∆quant)).

Then, the communication and storage cost per state update is O
(
d log

(
∆quant

ε

))
bits.
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Proof. This follows directly from the covering number of B(∆quant) using B(ε) balls [231]; a

similar cost is incurred for other standard lattices.

Theorem 29. For any frame n, with checkpoint at Tn, the maximum number of states in

the frame, Mn, is bounded as

Mn ≤ min

{
log (∆quant − ε)− log δn

logL
, M̄

}
, (7.10)

where δn = ‖XTn+1 −XTn‖, is the first update in the frame.

Proof. Without loss of generality, let us consider the first frame, i.e., n = 1, Tn = 0. Then,

Mn = t implies that

∆quant ≤ ‖∆Xt‖ =
∥∥∥Xt+1 − X̃t

∥∥∥

≤ ‖Xt+1 −Xt‖+
∥∥∥Xt − X̃t

∥∥∥ (7.11)

≤ Lt ‖X1 −X0‖+ ε = Ltδ1 + ε, (7.12)

where (7.11) follows from the triangle inequality, and (7.12) follows from the Lipschitz con-

tinuity and the quantization error. Thus the result follows, for any frame, by direct exten-

sion.

This provides a simple sufficient condition on the size of a frame, in terms of the magnitude

of the first iteration in the frame. Naturally a small first iterate implies the possibility of

accommodating more iterates in the frame. This lower bound can be used in identifying the

typical frame size and the corresponding costs of communication and computation involved,

prior to the design of the scheme. We describe a generalization of the compressor to the

parameter-unaware setting in Sec. 7.5.

Note that longer frames imply fewer frames communicated to endorsers for validation and

storage. This in turn reduces the communication delays, and the storage and communication

overheads. However, if a frame is long, then it also implies that all subsequent states in that

frame need to be recomputed if the frame is invalidated. Additionally, longer frames also

imply larger delays for validation. Shorter frames on the other hand do not make efficient

usage of the communication bandwidth.

7.3.3 Endorser and Orderer Operations

We now define the role of an endorser in validating a frame. A summary of the operations is

depicted in Fig. 7.4. For preliminary analysis, we assume that endorsers are honest and are
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Figure 7.4: Operations performed by the endorser for a single frame: The endorser sequentially
validates the states reported by the client by decoding the updates and recomputing the state from
the atomic operation.

homogeneous in terms of communication latency and computational capacity. A more refined

allocation policy can be designed to account for the case of variabilities in communication

and computational costs.

Each endorser involved in validating a frame sequentially checks the state updates by

recomputing from the last valid state, i.e., to validate the report X̃t+1, the endorser computes

X̂t+1 = f(X̃t) and checks for the validity criterion (7.3). The frame is reported as valid if all

updates are valid in the frame. The endorsements are then reported to the orderer.

Individual update validations can also be performed in parallel and finally verified for

sequential consistency. Such parallelism can be performed either at the individual endorser-

level, or in the form of the distribution of the sub-frames across endorsers through coded

computing. This results in a reduction of the time required for validating a frame.

Upon receiving the endorsements for frames, the orderer checks for consistency of the

checkpoints and adds a valid frame to the ledger if all prior frames have been added, and

broadcasts it to other peers as in Fig. 7.5.

Since the state updates are stored on the immutable data structure of the blockchain,

they provide an avenue for verification of the computations at a later stage. As described in

(7.4), the verification requirements are not as strict as the validation requirements. Thus it

suffices to subsample the updates in a frame and store only one for every K = ∆ver

∆val
iterates.

Then, the recorded state updates are the sum of the K intermediate updates.

A block stored on the blockchain now contains audits that are either the checkpoints or the

cumulative updates corresponding to K successive iterates. The audits Ỹτ are then defined

150



Figure 7.5: Operations performed by the orderer for frames. The orderer sequentially adds valid
frames to the blockchain after checking for consistency.

by

Ỹτ+1 =




Ỹτ +

∑
∆̃Xt+1, if no checkpoint in next K iterates

X̃t′ , otherwise,
(7.13)

where the sum is over the intermediate iterates, and t′ is the next checkpoint. These audits

are grouped into blocks as in Fig. 7.2 and added to the ledger.

Theorem 30. For subsampled storage at frequency 1/K according to (7.13), Lipschitz con-

stant L of f(·), and quantization error ε,

∥∥∥Ŷτ+1 − Ỹτ+1

∥∥∥ ≤
(
LK + 1

)
Kε, (7.14)

where Ŷτ+1 = fK(Ỹτ ).

Proof. First, fK(·) is LK-Lipschitz continuous. Then,

∥∥∥Ŷτ+1 − Ỹτ+1

∥∥∥ ≤
∥∥∥fK(Ỹτ )− fK(Yτ )

∥∥∥+
∥∥∥Yτ+1 − Ỹτ+1

∥∥∥ (7.15)

≤ LK
∥∥∥Ỹτ − Yτ

∥∥∥+

∥∥∥∥∥
∑

t∈Tτ

(
∆̃Xt −∆Xt

)∥∥∥∥∥ (7.16)

≤ (LK + 1)Kε,

where (7.15) follows from the triangle inequality, and (7.16) follows from the Lipschitz in-

equality and (7.13).

Thus, a viable subsampling frequency can be determined by finding a K such that (LK +

1)K ≤ ∆ver

ε
. This reduces the storage cost on the blockchain at the expense of accuracy of

151



Figure 7.6: Overall computational system model.

recorded audits. If the agents are interested in increasing accuracy of the records over time,

then the quantizers can be dynamically adjusted accordingly.

7.3.4 Example Application

Let us now elaborate the design, as shown in Fig. 7.6, from the context of a synthetic example.

Consider an agent, the client, in a network that wishes to address a simple classification

problem using training data that it has access to. The client aims to train a neural network

using backpropagtion based on mini batch stochastic gradient descent (SGD) to solve this

classification problem and subsequently share the trained network with other agents that are

also interested in the solution.

However, the client is limited by the amount of computational resources available for train-

ing, and also does not wish to share the private data used for training. Since it has limited

resources for computing gradients, it uses small batch sizes to get faster estimates. However,

the peers do not trust the computations performed by the client, not just because of its

proclivity toward errors arising from computational limitations, but also possible malicious

intent. The peers themselves have access to private datasets, drawn from the same source,

but much smaller in size such that they can not train a network on their own.

In such a context, we establish distributed trust using MBA as follows:

1. The client sets up the training with parametric inputs (network architecture, learning

rates, batch sizes etc.) and shares them over the blockchain with other peers.
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2. The client runs the training algorithm, reports network weights using lossy compression

to endorsers for validation.

3. The endorsers rerun steps of mini batch SGD from the validated prior architecture.

They compute deviation in network weights, endorse according to (7.3), and commu-

nicate validated frames to the orderer.

4. MBA orderer checks for consensus among endorsers, reconstructs subsampled blocks

and add blocks sequentially to the blockchain ledger.

5. Client reports the network to peers at the end of training.

Since the experiment is run on the MBA platform, peers are assured of validity of steps of the

training, and also have access to the blockchain to verify the computations. Since the private

training data is not shared across peers, the endorsement process for revalidation needs to

be appropriately adjusted. This is described in Sec. 7.5, and a detailed experimental study

of this problem, adapted to the MNIST dataset, is done in Sec. 7.6.

7.4 Design Advantages and Costs

We now perform a cost-benefit analysis of the design. We benchmark the system costs

against simpler implementations to emphasize the importance of the different components

of the system.

Let us first identify the advantages of the platform.

• Accountability: MBA guarantees provenance through the immutable record of com-

putations. Thus, we can not only detect the source of potential conflicts, but also to

trace ownership of computations.

• Transparency: MBA establishes trust among agents through a transparent record of

the validated trajectories of computation.

• Adaptivity: The frame design, endorsement, and validation methods adapt accord-

ing to the state evolution. Further, the validity margins can be altered across time

by dynamically varying the quantizers. In convergent simulations/algorithms, the sys-

tem can thus use monotonically decreasing margins to obtain stricter guarantees at

convergence.

• Generality: The platform uses fairly general building blocks, and can be easily im-

plemented using existing methods.
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• Computation universality: The design is agnostic to computational process specifics

and can be implemented as long as it is composed of reproducible atomic computations.

• Scientific reproducibility: By storing intermediate states MBA guarantees reliable

data and model sharing, and collaborative research, facilitating scientific reproducibil-

ity in large-scale computations.

To compare system costs, let us consider three different modes:

1. Transaction Mode: Here we treat each iteration as a transaction, and validate and

store each state transition as a block on the blockchain.

2. Streaming Mode: Here each state is independently compressed according to a uni-

versal compressor, validated, and stored on the blockchain.

3. Batch Mode: This corresponds to the MBA design described here.

Let us assume that the average number of endorsers per frame is Ē, the average frame

size is M̄ , and the subsampling frequency is ν = 1/K in the batch mode. We benchmark

costs relative to this average set of M̄ iterations, and the same computational redundancy.

First, let us consider the computational overhead involved. Each mode performs (1 +E)-

times as many computations as the untrusted simulation. The streaming and batch modes

additionally incur the cost of compression and decompression of states. The batch mode

also includes the cost of subsampling the frames. Thus we can see that the transaction mode

incurs the least computational overhead, while the batch mode incurs the most. Informally,

the batch mode incurs a cost of

C
(comp.)
batch = (1 + E)C

(comp.)
sim + C

(comp.)
compression + C

(comp.)
sampling, (7.17)

where C
(comp.)
sim , C

(comp.)
compression, C

(comp.)
sampling are the computational costs of the simulation, compres-

sion and decompression, and subsampling respectively.

The communication overheads include the state reports and metadata used for validation

and coordination respectively. In the transaction mode, as states are uncompressed, the

communication cost is significant and is not scalable. On the other hand, the streaming

and batch modes reduce these costs through lossy compression. Assuming a bounded set of

states, X , such that maxX∈X ‖X‖ = B � ∆quant, the worst-case sufficient communication

cost in streaming mode using vector quantization for M̄ iterations is

C
(comm.)
transaction = O

(
M̄d log2

(
B

ε

)
+ M̄C

(comm.)
meta

)
, (7.18)
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where C
(comm.)
meta is the average metadata cost per communication instance. On the other hand,

the batch mode reduces both compression cost, and the metadata, as

C
(comm.)
batch = O

(
M̄d log2

(
∆quant

ε

)
+ d log2

(
B

ε

)
+ C

(comm.)
meta

)
. (7.19)

Costs expressed are sufficient costs in the order sense and more precise estimates can be

computed given the compressor and state evolution statistics.

The storage cost for the transaction and streaming modes are the same as their communi-

cation costs. The batch mode not only incurs less metadata for storage but also fewer state

updates due to subsampling when compared to the streaming mode. To be precise,

C
(storage)
batch = O

(
νM̄d log2

(
∆quant

ε

)
+ d log2

(
B

ε

)
+ C

(storage)
meta

)
. (7.20)

Thus the batch mode reduces communication and storage overheads at the expense of

added computational cost. Through careful tradeoff analyses we can adopt optimal com-

pression and subsampling mechanisms.

7.5 Extensions of Design

We now describe a couple of avenues for generalization.

7.5.1 Parameter Agnostic Design

In Sec. 7.3 we used vector quantizers based on the Lipschitz constant L. In practice, such

parameters of the computation are unknown a priori. Underestimating L can result in

using a larger quantization error that could cause errors in validation even when the client

computes correctly. In such cases, it is essential to be able to identify the cause for the

error. One option is to estimate L from computed samples. This translates to estimating

the maximum gradient magnitude for the atomic operation, which might be expensive in

sample and computational complexity, depending on the application. Thus, we propose an

alternative compression scheme.

We draw insight from video compression strategies, and propose the use of successive

refinement coding [232] of the state updates. That is, a compression bit stream is generated

for each state update such that the accuracy can be improved by sending additional bits

from the bit stream. Successive refinement allows the clients to update the reports such
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that the state accuracy can be iteratively improved, in the event of invalidation. That is,

if a frame is invalidated, the client has two options—checking the computations, and/or

refining the reported state through successive refinement. Depending on the computation-

communication tradeoff, the client appropriately chooses the more economical alternative.

Through successive refinement, the client provides more accurate descriptions of the state

vector, and thus reduces the possibility of validation errors caused by report inaccuracy.

One possible efficient compression technique uses lattice vector quantizers [233, 234] to

define successive refinement codes. This also reduces the size of the codebook, if the re-

finement lattices are assumed to be of the same geometry, because the client only needs to

communicate the scaling corresponding to the refinement. This allows for improved adapt-

ability in the refinement updates. More efficient quantizers can also be defined if additional

information regarding the application and state updates are available.

7.5.2 Computations without Common Randomness

As described in Sec. 7.2, such computational algorithms in practice typically evolve iteratively

as a function of the current state Xt, and an external randomness θt. When this randomness

is not shared across agents, and is inaccessible to the client, reproduction of the reported

results by an endorser becomes infeasible and so is validating local computations. This could

also emerge in cases where the client is unwilling to share private data associated used by

the algorithm with other agents [215].

For instance, in simulations of disease spread using black box models, each run of the

simulation adopts a different outcome, depending on the underlying random elements intro-

duced by the model to mimic societal and pathological disease spread factors. Quite often,

the client does not have access to all of these random elements. However, the source of such

randomness is often common, i.e., θt
i.i.d.∼ Pθ, and Pθ is known. In this context, we redefine

validation as guaranteeing (7.3) with probability at least 1− ρ, i.e.,

P
[∥∥∥X̃t − X̂t

∥∥∥ ≥ ∆marg

]
≤ ρ. (7.21)

This requirement removes outliers in the computation process and only allows trajectories

close to the expected behavior.

Then, we can exploit the law of large numbers to validate reports by their deviation from

the average behavior observed across independent endorsers,

X̂t+1 =
1

m

m∑

i=1

f(X̃t, θi),
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where θi
i.i.d.∼ Pθ. By choosing a sufficiently large number of endorsers, depending on ρ, we

can assure (7.21). The role of the endorsers is appropriately modified and the system calls

for higher coordination among the endorsers.

We derive a sufficient condition on the number of endorsers using multi-variate concentra-

tion inequalities.

Theorem 31. Let ε < ∆marg

L+1
. For a state at time t, if the average of m endorsers is used for

validation,

P
[∥∥∥X̃t − X̂t

∥∥∥ ≥ ∆marg

]
≤ 2dλ̃2

(∆marg − (L+ 1)ε)2

(
1 +

1

mλ̃

)2

, (7.22)

where λ̃ is the maximum eigenvalue of covariance matrix of the quantized state vector.

Proof. Given a d-dimensional random variableX with mean µ = E [X] and covariance matrix

V = E
[
(X − µ)(X − µ)T

]
, by the multidimensional Chebyshev inequality [235],

P [‖X − µ‖V −1 > t] ≤ d

t2
.

Then, using the fact that λmin ‖x‖ ≤ ‖x‖A ≤ λmax ‖x‖, for any vector x and matrix A with

minimum and maximum eigenvalues λmin, λmax, we have

P [‖X − µ‖ > t] ≤ λ2d

t2
, (7.23)

where λ is the maximum eigenvalue of V .

Further, from the bound on the quantization error, we can observe that for X̃t+1 = Xt+1 +

Zt, where Zt ∈ B(ε). Here, B(ε) =
{
x ∈ Rd : ‖x‖ ≤ ε

}
. Then,

∥∥∥E [Xt+1]− E
[
X̃t+1

]∥∥∥ ≤ ε.

Then,

∥∥∥E
[
X̃t+1

]
− E

[
X̂t+1

]∥∥∥ =
∥∥∥E
[
X̃t+1

]
− E

[
f(X̃t, θ)

]∥∥∥

≤
∥∥∥E [Xt+1]− E

[
X̃t+1

]∥∥∥+
∥∥∥E
[
f(Xt, θ − f(X̃t, θ)

]∥∥∥ (7.24)

≤ ε+ L
∥∥∥E [Xt]− E

[
X̃t

]∥∥∥ (7.25)

≤ (L+ 1)ε, (7.26)

where (7.24) follows from the triangle inequality, and (7.25) follows from the quantization

error bound, the fact that E [‖X‖] ≥ ‖E [X]‖, and Lipschitz continuity.
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Finally, for any α ∈ (0, 1),

P
[∥∥∥X̃t+1 − X̂t+1

∥∥∥ ≥ ∆marg

]

≤ P
[∥∥∥X̃t+1 − E

[
X̃t+1

]∥∥∥ ≥ α(∆marg − (L+ 1)ε)
]

+ P
[∥∥∥X̂t+1 − E

[
X̂t+1

]∥∥∥ ≥ (1− α)(∆marg − (L+ 1)ε)
]

(7.27)

≤ d

(∆marg − (L+ 1)ε)2

(
λ̃2

α2
+

1

m2(1− α)2

)
(7.28)

≤ 2dλ̃2

(∆marg − (L+ 1)ε)2

(
1 +

1

mλ̃

)2

, (7.29)

where (7.27) follows from the triangle inequality and the union bound, and (7.26), and (7.28)

from (7.23). Finally, (7.29) is obtained by maximizing the bound over α ∈ (0, 1).

Corollary 12. To guarantee validation with probability at least 1− ρ, for a margin of devi-

ation of ∆marg, where ρ ≤ 2d
(∆marg−(L+1)ε)2 , it suffices to use

m =

⌈[(√
ρ
2d

(∆marg − (L+ 1)ε)− λ̃
)]−1

⌉
(7.30)

endorsers.

This sufficient condition follows directly from Thm. 31.

7.5.3 Enumerative Experiments

Whereas MBA was designed with iterative computations in mind, quite a few computational

experiments are enumerative in nature, such as hyperparameter tuning of neural networks

and doing “what-if analyses” with various choices of interventions that affect disease spread.

Consider an enumerative computational experiment, where we evaluate outputs of a black-

box function f : Rdi × Rd′ → Rdo over a set of inputs
{
Xi ∈ Rdi : i ∈ [n]

}
. Let Yi =

f(Xi, θi), for i ∈ [n], where Yi ∈ Rdo is the output, and θi ∈ Rd′ is an external source of

randomness (noise) used in the computation.

We adopt a similar function model and assume f(·) is L-Lipschitz continuous in the input,

for all θ ∈ Rd′ i.e.,

‖f(X1, θ)− f(X2, θ)‖ ≤ L ‖X1 −X2‖ . (7.31)

The input-output pairs, (Xi, Yi), are referred to as states. We aim to ensure the computa-

tional validity of the outputs.
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Algorithm 14 Frame construction, T = Φ ({Z1, . . . , Zn} ,∆q)

Wi,j ← d(Zi, Zj), for i 6= j ∈ [n]
Construct weighted complete graph G = ([n],W )
Choose v1 ∈ [n]; T1 ← ({v1} , ∅) , T ← {T1}, V ← {v1}
for r = 2 to n do
dmin ← min {Wj,k : j ∈ V , k ∈ [n]\V}
(ũ, ṽ, T̃ )← arg min {Wj,k : j ∈ V ∩ Ti, k ∈ [n]\V}
if dmin ≤ ∆q then

Add vertex ṽ and edge (ũ, ṽ) to tree T̃ ; V ← V ∪ {ṽ}
else

Construct tree T|T |+1 = ({ṽ} , ∅); T ← T ∪ {T|T |+1}
end if

end for
return T

In the iterative experiment the successive states are close to each other, which facilitated

delta encoding and lossy compression of the state updates. However, in the enumerative

experiments, we only have a set of input-output pairs without any predetermined ordering

among them. Thus efficient compression of states requires the construction of good frames

that include states that are close to each other. Hence we formulate a frame construction al-

gorithm that sequentially organizes the states into frames that can be compressed efficiently.

From the Lipschitz continuity of f(·), we know that any two inputs X1, X2 that are close

result in spatially close outputs, Y1, Y2. This property is leveraged to construct frames of

spatially close states, that can be compressed efficiently using a similar lattice-based com-

pression of state differences.

Each frame comprises an ordering of different states and a compressed representation of

the differences according to this order. Consider a set of states {Z1, . . . , Zn} and let the

distance function be d(·, ·). The algorithm for frame construction is described in Alg. 14.

The pairwise distances between the states are used to construct a forest of trees with the

minimum cumulative weight (distances). The algorithm uses a modified version of Prim’s

algorithm for minimum spanning tree construction.

Lemma 36. Given the number of frames, the frame construction algorithm Φ minimizes the

cumulative weight of the spanning forest for a given ∆q.

Proof. By the definition of the greedy frame construction algorithms, the minimum weight

trees that constitute the forest minimize the sum of the distances between the data points.

Thus the result follows.

This also naturally implies the following result.
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Algorithm 15 Compressor, F = ENC ({Z1, . . . , Zn} , T , ε)
for all i ∈ |T | do

Choose a root r ∈ Ti, ∆̃
(i)
r = ENCLZ(Zr, ε)

while Depth First Scan(Ti) do
Let scanned edge be (u, v) where u is the parent node
Delta encode along edge, ∆Zv ← Zv − Zu
Lattice code difference ∆̃

(i)
v = ENCL(∆Zv, ε)

end while
Compressed frame, Fi ←

{
Ti,
{

∆̃
(i)
v : v ∈ Ti

}}

end for
return F ← {Fi : i ∈ [|T |]}

Corollary 13. For a given set of states {Z1, . . . , Zn}, Φ minimizes the number of frames,

subject to the distance constraint imposed by ∆q.

Proof. The result follows from the observation that the algorithm constructs the frames by

removing the edges with weight exceeding the threshold from the minimum spanning tree,

and thus minimizes the number of frames.

The compression, with approximation error ε, is then performed according to Alg. 15.

Each tree is compressed into a frame by first choosing a root as checkpoint at random,

compressing the checkpoint using the lossy Lempel-Ziv compressor of [204], ENCLZ(·), as

shown in Fig. 7.7. The algorithm then scans edges of the tree using depth first search,

delta encodes the states along the edges, and compresses the differences using a successive

refinement lattice vector quantizer, according to the lattice L, ENCL(·). The compressed

frames are then composed of the tree structure and the set of compressed differences.

A direct extension of Thm. 27 indicates that the optimal choice of approximation error

for deterministic, L-Lipschitz continuous computations is ε ≤ ∆val

L+1
. The representation of

inter state dependency as trees is optimal as it minimizes the number of bits required to

communicate the relationship.

Lemma 37. If the difference vectors are uniform in B(∆q) = {x : ‖x‖ ≤ ∆q}, then the

maximum expected cost of representing a single frame of size M is

Ccomm = O

(
d log

B

ε
+ (M − 1)d log

∆q

ε
+ (M − 1) logM

)
, (7.32)

where d = di + do and for any state Z, ‖Z‖ ≤ B.

The result follows analogous to the cost analysis for the iterative case. We note that the

representation cost of frames as trees incurs a cost of (M − 1) logM bits, as the number
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Figure 7.7: Structure of state update frames: Each frame is represented by a rooted tree. Root
acts as the checkpoint and is quantized using lossy LZ compression. Other states are compressed
using delta encoding and successive refinement lattice vector quantization with respect to their
parent node.

of rooted trees on M nodes is given by Cayley’s formula as MM−1 [185]. This, along with

Lem. 36 and Cor. 13 highlights the efficiency, need, and choice of the frame construction

algorithm.

The endorser and orderer operations remain as in the iterative case and the overall system

model is shown in Fig. 7.8. We perform some experimental evaluation of MBA and the frame

construction algorithm in Sec. 7.5.3

7.6 Experiments

To evaluate the system performance and costs of communication and computation, we now

consider some simple iterative and enumerative experiments. Since adversarial models for

the experiments are not obvious, we consider a simpler computational model under which

the agents are noisy but honest. That is, the agents are individually honest but their

computations are corrupted by noise. Thus we evaluate the ability of the validation scheme

to eliminate the noise in such computations, and identify the tradeoff in costs incurred.

7.6.1 Iterative Experiments with MNIST Training

In this section, we run some simple synthetic experiments using the MNIST database [236],

for the scenario described in Sec. 7.3.4, to understand the distributed trust environment
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Figure 7.8: Block diagram of computational trust policy.

design, the costs involved, and the benefits of the enforcement. These synthetic experiments

were selected to evaluate the efficacy of our approach with a domain that is familiar, and

the process of training neural networks that is common in the research community.

Let us consider a simple three-layer neural network, trained on the MNIST database,

with 25 neurons in the hidden layer. Consider a client training the neural network using

mini-batch SGD, with limited resources such that it is constrained in computing gradients

and so uses a small batchsize of 10 samples per iteration and 1000 iterations. The average

precision of such a neural network trained with gradient descent is 97.4%. We now wish to

establish trust in the training process owing to the limited resources of the client. Whereas

this configuration is far from the state of the art on the database, it does help understand

the trust environment better.

Since the training process uses stochastic gradients, exact recomputation of the iterates

is infeasible. Hence, we compare deviations from the average across m = 5 endorsers per

state for validation. We evaluate the computation and communication cost of validation as a

function of the tolerance chosen for validation. Since the neural network converges to a local

minimum according to SGD, we use a tolerance for iteration t as ∆val(t) = ∆max

log(t+1)
. That is,

the validation requirements are made stronger with the iterations.

We consider three main cases of the simulation:

1. Base Case: Compression error is less than validation tolerance, i.e., ε ≤ ∆max, and

maximum frame size is 10% of the total number of iterations.

2. Coarse Compression: Large compression error, i.e., ε ≥ ∆max for at least some
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instances, and same base M̄ .

3. Large Frames: Same base compression error, and maximum frame size is 20% of

total number of iterations.
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(a) Avg. recomputation cost tradeoff: Plot depicts the average

number of recomputations of gradients per iteration for varying val-

idation requirements.
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(b) Avg. communication cost tradeoff: Plot depicts average bits

per dimension communicated by clients to endorsers for varying

validation tolerance.

Figure 7.9: Cost tradeoff with validation requirements.
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In the base case, invalidation from approximation errors are more frequent in later iter-

ations when the tolerance is also lower. However, with increasing iterations, the network

weights are also closer to the minima. Thus approximation errors can be eliminated by

successive refinement, as gradients estimates by the client also get more accurate. The pres-

ence of outliers and smaller batch sizes impact the initial iterations much more, which are

reported with comparatively better accuracy, as required by the weaker validation criterion,

therein only invalidating computational errors.

In comparison, in the case of coarse compression, approximation errors of the gradients

are much more likely, therein resulting in more instances of invalidation. This translates

to a higher number of gradient recomputations at the expense of reduced communication

overhead on the compressed state updates. On the other hand, in the case of the extremely

large frames, the endorsers validate longer sequences of states at once. Thus, each invali-

dation results in a recomputation of all succeeding states, therein increasing the number of

recomputations from the base case. This case however reduces the number of frames and

checkpoints, therein reducing the average communication cost in comparison to the base

case.

In Fig. 7.9a, the average number of gradient recomputations per iteration is shown for

these three cases. As expected, this decays sharply as we increase the tolerance. Note that

at either extreme, the three cases converge in the number of recomputations. This is owing

to the fact that at one end all gradients are accepted whereas at the stricter end, most gra-

dients are rejected with high probability, irrespective of the compression parameters. In the

moderate tolerance range, we observe the tradeoffs as explained above. The corresponding

communication cost tradeoff is shown in Fig. 7.9b.

Figure 7.10 shows the precision of the neural network trained under the validation require-

ment as compared against the networks trained with standard mini batch SGD of batch sizes

10, 30, and 50. We note that the network trained with trust outperforms the case of vanilla

SGD with the same batch size as it eliminates spurious gradients at validation. Increasing

trust requirements (decreasing tolerance) results in improved precision of the model. In par-

ticular, it is worth noting that the strictest validation criterion results in performance that is

almost as good as training with a batch size of 50. This is understandable as the endorsers

validate only those gradients that are close to that of the case with mini batch of size 50.

In fact, even when the trust requirements are fairly relaxed, just eliminating outliers in the

gradients enhances the training significantly.
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Figure 7.10: Accuracy of neural network vs trust: Plot depicts accuracy of the trained neural
network satisfying the local validation criterion. Eliminating spurious gradients through validation
enhances training process.

7.6.2 Enumerative Experiments: Openmalaria Simulations

In this section we study the enumerative version of MBA through the example of the Open-

Malaria simulation framework [196,210]. In particular, we consider the experiment of identi-

fying the optimal disease intervention policy in terms of the proportion of insecticide treated

nets distributed and the fraction of geographical area covered by indoor residual spraying.

The client evaluates efficacy of policies in terms of cost-normalized disability adjusted life

years, which we refer to as the reward.

Consider a set of policies {X1, . . . , Xn} sampled i.i.d. uniformly at random from [0, 1]2

and let the corresponding mean rewards be {Ȳ1, . . . , Ȳn}. The compressed frames are val-

idated, according to (7.3), by subsets of m endorsers. For these experiments we adopt an

approximation error of 30% of the maximum deviation, and a maximum frame size of 100.

To understand the importance of frame construction toward efficient compression, we con-

sider the communication and compression costs for varying validation tolerance and com-

pression accuracy in Fig. 7.11. For the analysis of costs of trust, we consider validations

across m = 10 endorsers for each state. First, we note that the baseline is set by the un-

compressed communication that incurs significant number bits that effectively amount to

communicating an unsigned float per dimension.

We also consider fine and coarse compression as determined by the approximation error

using the MST-based frame construction and just sequential framing of states. We observe
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that for fine compression, the frame construction algorithm significantly reduces the cost

of compression as sequential framing results in more checkpoints and smaller frames. Since

approximation error is low, the average number of bits per state, per dimension, per instance

of communication also increases with each new uncompressed checkpoint. On the other hand,

the frame construction algorithm groups states more efficiently, and the delta encoding and

vector quantization functions more efficiently. This however is much less pronounced under

coarse compression. When the approximation error is large, the Lempel-Ziv compression [19]

of checkpoints suffices to represent frames in terms of prior states, and so the need for frame

construction is much less pronounced.

(a) Communication costs of framing.

(b) Computation costs with framing.

Figure 7.11: Communication and computation cost tradeoff with tolerance.

166



The cost of communication is benchmarked against the corresponding cost of computation

expressed in terms of the average number of computations across the client and endorsers

for validation of a state in Fig. 7.11. The baseline for the computational cost is established

by the uncompressed communication case, and as observed in the figure, decreases with

increasing validation tolerance magnitude. We note that a fine compression, both with and

without frame construction results in comparable computation costs, indicating that the

communication costs can be reduced without an increase in the number of computations.

(a) Type errors by deviation: plot of T0 vs T1.

(b) Gains from validation.

Figure 7.12: Error performance with and without validation.

On the other hand, in the case of coarse compression, whereas the communication costs
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are significantly reduced, the number of computations per state also increases, especially for

smaller validation tolerance magnitudes. This is understandable as the coarse compression

results in an increased number of invalidations resulting from compression error. Naturally,

when the validation tolerance is comparable to the approximation error, the error from the

compression is effectively mitigated, resulting in similar computational cost as that of fine

compression. Comparing the compression with and without frame construction, we note

that the computational cost with the frame construction is larger as the coarse compression

error accounts for coarse errors in the deviations across states, therein implying that the

deviation in output is comparatively higher, especially when the standard deviation across

outputs is small.

To study the effect of the validation scheme on computational accuracy, let us define δ0
i =∥∥Yi − Ȳi

∥∥ and δ1
i =

∥∥∥Ỹi − Ȳi
∥∥∥, where Ȳi is the expected output, Ỹi is the validated output,

and Yi is the output generated by the client prior to validation. Define T0 = P [δ1
i > δ0

i ] and

T1 = P [δ1
i < δ0

i ], i.e., T0 is the probability that the validation results in larger deviation from

the mean reward, and T1 is the probability with which this deviation from the mean reward

is reduced.

In Fig. 7.12a we plot the variation of T0 with T1 for different sizes of endorser sets and

differing validation tolerance. As the tolerance reduces, the validation mechanism reduces

the deviation from the expectation more often. This is observed in Fig. 7.12a and we note

that T1 > T0 implies that the validation improves the computation more often than not.

When the tolerance ∆val is large, the number of instances of invalidation is far fewer and so

the fraction of computations that are altered are also much fewer.

As the number of number of endorsers increases, the average of recomputed outputs is a

robust estimator of the mean of the computation and thus an alignment with these averages

for validation also implies reduced deviation from the mean. Thus T1 � T0 when m is large,

as seen in Fig. 7.12a, highlighting the returns from the investment in more endorsers for

validation.

Another metric to study the computational gains from validation is the probability that

the output, as compared against the expected output would be invalidated, with and without

the validation framework. To this end, let us define ρ0 = P [δ0
i > ∆val] and ρ1 = P [δ1

i > ∆val].

Naturally we would like to ensure that ρ1 < ρ0, and in fact make it as small as possible.

Figure 7.12b compares ρ1 with ρ0 as achieved by the system for various numbers of en-

dorsers and various tolerance levels. In each case, the validation mechanism ensures that

ρ1 < ρ0. Furthermore, the gains from the validation are far more pronounced upon the use

of more endorsers. This is again expected as the average of more independent endorsers

is a more robust estimate of the expected rewards. The gains in terms of ρ0

ρ1
reduce with
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increasing tolerance ∆val as the system is more accommodating to deviations from the mean

and from the endorser averages.

7.6.3 Anomaly Detection: OpenMalaria Simulations

Since the endorsers check the reports of the client in the validation cycle, it is possible to

track anomalous computational sources using the validation statistics corresponding to the

agents. To study this feasibility, we again consider the OpenMalaria simulation experiments.

The experiment was designed with 144 workers running OpenMalaria executable models

distributed across different clusters on IBM Cloud. Each worker performs eight OpenMalaria

simulations generating a total of 1152 sources for OpenMalaria results.

Of these sources, a randomly sampled subset of 10% of the sources are anomalous and

generate noisy rewards such that they return a reward that is the true reward plus a noise

N ∼ N (cσ(ITN − IRS), σ). Here c is a scaling constant and σ is the standard deviation

of the computations. This represents workers who are biased toward promoting the use of

ITNs over IRS, and the extent of this bias is characterized by c. The noise model is inspired

by the central limit theorem and proves to be a simple benchmark for the noisy/adversarial

agents.

The experiment samples 500 policies, (ITN, IRS) ∈ [0, 1]2 and queries the system for the

corresponding reward. The system employs a worker to evaluate the reward corresponding to

the policy and the rewards are validated using MBA. Over the course of the experiment, for

each source, j ∈ [1152], we keep track of the validation statistic Vj and the deviation record

∆j as follows. Let us assume that the output generated by a source i is being validated by

an endorser set Ei. Then, for each j ∈ Ei∪{i}, if the output is valid, update Vj ← Vj−1 and

if it is invalid, Vj ← Vj + 1. Also, for each j ∈ Ei ∪{i}, record the deviation, ∆j ← ∆j ∪{δ},
where

δ =

∥∥∥∥∥Ỹi −
1

m

∑

j∈Ei

Ŷj

∥∥∥∥∥ , (7.33)

is the endorsement deviation. That is, it is the Euclidean distance between the state by the

client i Ỹi, and the average state recomputed by the validating agents, Ŷj, for j ∈ Ei. The

higher the deviation, the less reliable the reported state, and therein the more likely of an

erroneous report.

We run multiple batches of this experiment and collect the average validation statistics

and deviation records for the sources across these batches. We then estimate the probability

mass function of the average validation statistic PVj and that of the deviation PDj for each

source j. We use these distributions to detect anomalous sources. We observe the difference
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(a) CDF of average invalidation reward per worker
call.

(b) CDF of average deviation per worker call.

Figure 7.13: Invalidation statistics of agents.

Table 7.1: Kolmogorov-Smirnov test statistics between honest and anomalous workers.

Unbiased, c = 0 Biased, c = 10

KS stat for PV 0.11 0.344
p-value for PV 0.13 1.9 ∗ 10−11

KS stat for PD 0.108 0.407
p-value for PD 0.165 3.4 ∗ 10−16

in the invalidation statistics for the honest and adversarial agents in the form of a separation

of the corresponding CDFs, as shown in Figs. 7.13a and 7.13b.

We quantify the distributional dissimilarity using the Kolmogorov-Smirnov (KS) for two

main types of anomalies: biased sources (c > 0) and unbiased, input-independent anomalies

(c = 0). The KS test statistic is used to compute the p-value corresponding to the binary

hypothesis test with null hypothesis that the two sources are identical and the alternate that

they are statistically different sources, as shown in Table 7.1.

We can observe here that in the biased case, both the validation and deviation profiles

are starkly different for honest and anomalous workers, as highlighted by the extremely low

p-value. On the other hand, for the unbiased anomalies case, we note that the p-values

are comparatively much higher, indicating that whilst different, the statistical confidence in

separating the two sources is much lower. This is understandable as detection of anomalies

with bias is much easier than unbiased anomalies who just behave like noisy sources.

Next, we consider the task of detection of anomalies using {(PVj , PDj) : j ∈ [1152]} as

the feature representations. Treating the problem of anomaly detection as clustering into

two clusters, we used the k-NN classifier to determine honest and anomalous workers. In

particular, we used the total variational distances between the probability distributions as
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Figure 7.14: Performance of anomaly detection using k-NN classifier.

the notion of distance in the k-NN classifier. Other notions of divergence between probability

measures can easily be used without loss of generality.

Let us now study the performance of the classifier for different types of anomalies. The

false alarm and miss detection probabilities in percentages is represented in Fig. 7.14. The

plot considers the anomaly detection performance for unbiased (c = 0) and varying degrees

of bias (c > 0).

A variety of important characteristics are to be noted:

1. First for c = 0, the anomalous sources behave like unbiased noisy compute nodes

and thus are harder to detect, as indicated by its high miss detection and false alarm

probabilities.

2. For small amounts of bias, such as c = 2, the false alarm probability worsens with

minimal to no improvement in miss detection probability. This is owing to the fact that

the biased anomalies create few more invalidations among honest sources, making the

classifier misclassify them as anomalies. However, the small bias also implies that the

classifier does not get much more information about the anomalies than the unbiased

case—hence the comparable miss detection probabilities.

3. Next, as the bias increases to c = 5, we observe that the anomaly detection gets

significantly easier as the bias becomes more recognizable through the invalidation

profiles.

4. However, when the bias becomes significantly large, for instance c ∈ {10, 15}, the

anomalous sources are so heavily biased that they end up creating more invalidations,
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which make the classifier categorize honest sources as anomalies. Thus, the false alarm

probability increases. The miss detection probability also grows as the anomalies are

now well-hidden among more honest sources with similar invalidation profiles.

Thus, these simple experiments not only highlights the role of trust in guaranteeing local

and global consistency in the computational process, but also the cost tradeoffs involved in

establishing them. Appropriate coding schemes can be adopted based on a careful study of

these cost-benefit tradeoffs. Additionally, we also note that simple classification algorithms

using the invalidation profile can be used to identify anomalous sources.

7.7 Discussion

In this work we considered a multi-agent computational platform and the problem of estab-

lishing trust in the computations performed by individual agents in such a system. Using

a novel combination of blockchains and distributed consensus through recomputation, we

assured validity of local computations and simple verification of computational trajectories.

Using efficient, universal compression techniques, we also identified methods to reduce the

communication and storage overheads concerned with establishing trust in such systems,

therein addressing the scalability challenge posed by blockchain systems.

Creation of such trusted platforms for distributed computation among untrusting agents

allows for improved collaboration, and efficient data, model, and result sharing that is critical

to establish efficient policy design mechanisms. Additionally they also result in creating

unified platforms for sharing results, and in ensuring scientific reproducibility.
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CHAPTER 8

CONCLUSION

Data has been called in various venues as the new oil of the current economy, and for good

reason. The big data era has ushered in a new age wherein we have been able to collect,

interpret, infer, and integrate data-driven learnings into everyday life. In particular, a variety

of information processing algorithms have been defined to solve a diverse set of problems

in machine learning. Further, large-scale data sharing pipelines have also been designed to

store and share data between peers.

In this context, this thesis tries to build understanding of existing algorithms, design new

information processing methods, and develop protocols and systems for trusted sharing of

data and computations. In particular, the thesis explores three main problems of image

registration, unsupervised clustering, and blockchain systems, through the lens of informa-

tion theory. We develop theoretical insight and practical solutions by drawing on prior

information-theoretic studies.

In particular, we considered the image registration problem in Chapters 2 and 3. Here

we developed theoretical guarantees on universal image registration algorithms by studying

the error exponent using the method of types, and designed multi-image registration algo-

rithms using multivariate information functionals. We built further on the two-image regis-

tration problem to establish the finite-sample fundamental limits on the sample complexity-

information tradeoff in the channel-aware context. In essence, this part of the thesis considers

conventional information-theoretic methods to identify the fundamental requirements for the

image registration problem.

Then we consider the problem of unsupervised clustering of random sources in Chapters 4

and 5. Here we considered the clustering problem from three contexts—image registration

and clustering, crowdsourced clustering, and analytical independence clustering of sources.

We saw the role of multivariate information functionals in such independence clustering prob-

lems, defined new and novel multivariate information functionals, and distance and memory

properties for universal clustering. This part of the thesis highlights the role of information

functionals and develops information processing algorithms with strong theoretical perfor-

mance guarantees.
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Finally in Chapters 6 and 7 we considered the use of blockchain systems in establishing

provenance and integrity in data and computations. In particular, in each study we devel-

oped the peer-to-peer interaction protocols and compression schema to reduce the costs of

communication and storage. In the process we were able to design large-scale blockchain

systems that share trusted data and computations between peers in a network. This part

of the thesis aims at the more practical side of designing implementable large-scale systems

that we have prototyped over the Hyperledger Fabric.

The three parts of this thesis are held together by two main threads. Firstly, the big data

era establishes a new set of problems in a variety of fields, interconnected by the interplay

of data procurement, storage and sharing, and information processing algorithms that work

with such data. Secondly, the thesis also highlights the ubiquitous nature of information

theory in the digital age as the mathematics of communication and compression provides

theoretical insight into a wide array of problems, and lastly also inspires the design of new

and novel methods for practical systems.

8.1 Future Directions

The efficacy of mutual information-based image registration was observed in Chapter 2. The

method requires estimation of information and optimization of this estimate over the set of

transformations. The variational definition of divergence is given by a maximization over the

set of functions of the random variable according to the Donsker-Varadhan characterization

[237] and can be used to define mutual information estimation methods [238, 239]. Thus,

we can pose the image registration problem as one of joint maximization over the set of

transformations and functions of the random variables. To this end, one could propose

the use of alternating maximization of the proposed problem to perform image registration.

More generally, we could define efficient and consistent image registration algorithms that

integrate the optimization over the set of transformations with the information estimation

algorithm [240,241].

Chapter 3 characterizes achivable sample complexities in the channel-aware context. Fu-

ture explorations could consider converse arguments to establish the necessary conditions

on sample sizes by extending strong large deviations results on constant composition codes

for communication [94] or extending the Berry-Esseen central limit theorem for hypothesis

testing [90]. In the case of universal image registration, future explorations can establish

necessary and sufficient conditions on the sample complexity by establishing non-asymptotic

results for the estimates of functions of types [103].
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The role of multivariate information functionals in clustering problems inspire future ex-

plorations on the definition, estimation, and use of multivariate information functionals. In

particular, through the study of illum and clustering information, we observed that the func-

tional properties of information can be used to define statistically consistent independence

clustering algorithms. An interesting line of study to explore is that of defining computation-

ally efficient clustering algorithms using the submoduularity of entropy [112, 242]. Another

direction for future exploration is on the consistent estimation of such multivariate informa-

tion functionals from data [243–245]. The definition of universal budget-optimal clustering

algorithms for crowdsourcing in Chapter 5 examines the fundamental costs of crowdsourcing

and future explrations can focus on the definition of efficient clustering algorithms.

The study of distributed storage techniques for blockchain systems in Chapter 6 reveals the

potential of coding theory in designing scalable blockchain systems. Further studies directed

toward the design of codes that allow repair and fault tolerance would create more efficient

blockchain systems [190]. Another interesting direction of exploration would be along the

network costs associated with the blockchain system as designing codes cognizant of such

costs enhance the capabilities of blockchain systems.

Finally, Chapter 7 reveals the importance of trust in distributed computing systems and

how blockchain systems could create the platform for such trust. Further explorations on

adaptive compression schemes that are consistent over the distributed network could reduce

the costs of the trust. Additionally, exploring cryptographic validation methods, built with

specific contexts in mind can help create efficient colloborative computational societies.

Information theory has proven to be the mathematical language for a sound theoretical

basis upon which the information age can be built. It certainly inspires many more fun-

damental theoretical limits, algorithm and large-scale system design, and systemic protocol

definitions for the future.
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APPENDIX A

PROOFS FOR CHAPTER 2

A.1 Size of Permutation Types

Here we prove Lem. 2, starting with simple permutations.

Lemma 38. Let π1, π2 ∈ Π be any two non-overlapping permutations and let xπ1 ,xπ2 be the

corresponding permutations of x. Let π−1
1 ◦π2 ∈ Π be a simple permutation. Then, for every

x, there exists x̃, such that

|T nXπ1 ,Xπ2
| = |T nX0,X1

|, |T nY |Xπ1 ,Xπ2
(x)| = |T nY |X0,X1

(x̃)|.

Proof. Since permutations are non-overlapping, there is a bijection from T nXπ1 ,Xπ2
to T nX0,X1

,

where (X0, X1) ∼ qXπ1 ,Xπ2
. Specifically, consider π ∈ Π defined iteratively as π(i + 1) =

π2(π−1
1 (π(i))), with π(1) = π1(1). Then, for any x ∈ T nXπ1 ,Xπ2

, the sequence xπ ∈ T nX0,X1
.

Further, this map is invertible and so the sets are of equal size.

Result for conditional types follows mutatis mutandis.

Lemma 38 implies |T nXπ1 ,Xπ2
| and |T nY |Xπ1 ,Xπ2

(x)| satisfy (2.12) and (2.13) respectively. We

now show that the result of Lem. 38 can be extended to any two permutations π1, π2 ∈ Π.

Proof of Lem. 2. Let π = π−1
1 ◦ π2 and κ = κπ. For i ∈ [κ] let the length of permutation

cycle i of π be αin for αi ∈ (0, 1]. Further,
∑κ

i=1 αi ≤ 1. Let Iπ be the identity block of π

and let γ = γπ. Then we have the decomposition

qXπ1 ,Xπ2
(a0, a1) =

κ∑

i=1

αiqi(a0, a1) + γqI(a0, a1), (A.1)

for all (a0, a1) ∈ X 2. Here, qi is the first-order Markov type defined on the ith permutation

cycle of π and qI is the zeroth-order Markov type corresponding to the identity block of π.

From (A.1), we see that given a valid decomposition of types {qi}, qI , the number of
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sequences can be computed as a product of the number of subsequences of each type, i.e.,

|T nXπ1 ,Xπ2
| =

∑
|T γnqI |

κ∏

i=1

|Tαinqi
|,

where the sum is over all valid decompositions in (A.1).

Additionally, from Lem. 38 we know the number of valid subsequences of each type. Let

q′i be the marginal corresponding to the first-order Markov type qi.

Thus, we upper bound the size of the set as

|T nXπ1 ,Xπ2
| ≤

∑
2γnH(qI)

κ∏

i=1

|X |2αin(H(qi)−H(q′i)) (A.2)

≤ |X |κ(γn+ 1)|X |
κ∏

i=1

(αin+ 1)|X |
2

2nM(qXπ1 ,Xπ2
), (A.3)

where

M(qXπ1 ,Xπ2
) = max γH(qI) +

κ∑

i=1

αi(H(qi)−H(q′i)),

the maximum taken over all valid decompositions in (A.1). Here, (A.2) follows from (2.10)

and (2.12), and (A.3) follows since the total number of possible types is polynomial in the

length of the sequence. Since κ = o
(

n
log(n)

)
,

|T nXπ1 ,Xπ2
| ≤ 2n(M(qXπ1 ,Xπ2

)+o(1)).

Now, let q′′i (a0, a1) = 1
|X |q

′
i(a1), for all i ∈ [κ], and (a0, a1) ∈ X 2. And let q = qXπ1 ,Xπ2

.

Since γ = o(1), using Jensen’s inequality, we have

κ∑

i=1

αi(H(qi)−H(q′i)) =
κ∑

i=1

αi [log(|X |)−D (qi‖q′′i )]

≤ log(|X |)−D (q‖q′′)
= H(q)−H(q′).

Thus,

|T nXπ1 ,Xπ2
| ≤ 2n(H(q)−H(q′)+o(1)).

To obtain the lower bound, we note that the total number of sequences is at least the

number of sequences obtained from any single valid decomposition. Thus from (2.10) and
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(2.12),

|T nXπ1 ,Xπ2
| ≥ 2n(M(qXπ1 ,Xπ2

)+o(1)).

Now, for large n, consider S = {i ∈ κ : αin = Ω(nβ)} for some β > 0. Any other cycle

of smaller length contributes o(1) to the exponent due to Lem. 1. One valid decomposition

of (A.1) is to have qi = q, for all i ∈ [κ]. However, the lengths of the subsequences are

different and q may not be a valid type of the corresponding length. Nevertheless, for each

i ∈ S, there exists a type qi such that dTV(qi, q) ≤ |X |
2αin

, where dTV(·) is the total variational

distance. Further, entropy is continuous in the distribution [246] and satisfies

|H(qi)−H(q)| ≤ |X |
αin

log (αin) = o(1).

This in turn indicates that

|T nXπ1 ,Xπ2
| ≥ 2n(H(q)−H(q′)+o(1)).
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APPENDIX B

PROOFS FOR CHAPTER 5

B.1 Estimating Mutual Information from Samples

Here we briefly describe the maximum likelihood (ML) estimate of mutual information and

its convergence properties.

Let X ∼ p be a random variable on a discrete space X . Let X1, . . . , Xn
iid∼ p and let p̂ be

the corresponding empirical distribution. The ML estimate of entropy of X is given by

Ĥ(X) = Ep̂ [− log(p̂(X))] .

The ML estimate of mutual information between random variables X, Y is then given by

Î(X;Y ) = Ĥ(X) + Ĥ(Y )− Ĥ(X, Y ).

The ML estimates of entropy and mutual information have been widely studied [73, 129,

246,247]. In particular, the following results are notable:

1. For all n, from Jensen’s inequality, E[Ĥ(X)] < H(X) [247]. For all n, ε > 0,

P
[
|Ĥ(X)− E[Ĥ(X)]| > ε

]
≤ 2 exp

( −nε2
2 log2

2 n

)
, (B.1)

from McDiarmid’s inequality.

2. ML estimate, Ĥ is negatively biased [129]:

bn(Ĥ) , Ep
[
Ĥ(X)

]
−H(X) = −Ep [D(p̂‖p)] < 0.

Further,

−|X |
n
≤ − log

(
1 +
|X | − 1

n

)
≤ bn(Ĥ) ≤ 0.

3. From [73], we know that the lower bound on sample complexity for estimating entropy
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up to an additive error of ε is |X |
ε log |X | .

4. From [246], we observe that the deviation of the empirical entropy from the entropy of

X ∼ P , is bounded in terms of the total variational distance as

|Ĥ(X)−H(X)| ≤ −2δ(P̂ , P ) log
2δ(P,Q)

|X | . (B.2)

Since we deal with finite, constant alphabet sizes, it suffices for us to consider the ML

estimates with sufficiently large n, such that the bias is negligible.

Lemma 39. For fixed alphabet sizes, |X |, |Y|, the ML estimate of entropy and mutual in-

formation are asymptotically consistent and satisfy

P
[
|Ĥ(X)−H(X)| > ε

]
≤ 2 exp

( −nε2
2 log2

2 n
+ o(1)

)
(B.3)

P
[
|Î(X;Y )− I(X;Y )| > ε

]
≤ 6 exp

( −nε2
18 log2

2 n
+ o(1)

)
. (B.4)

Proof. The convergence of entropy follows directly by applying the triangle inequality, union

bound, and (B.1). The result follows from the fact that the alphabet is of finite, constant

size. This implies the convergence result for mutual information.

Lemma 40. For fixed alphabet sizes, |X |, |Y|, the ML estimate of entropy and mutual in-

formation are asymptotically consistent and satisfy

P
[
|Ĥ(X)−H(X)| > ε

]
≤ (n+ 1)|X | exp

(
−cnε4

)
, (B.5)

P
[
|Î(X;Y )− I(X;Y )| > ε

]
≤ 3(n+ 1)|X ||Y| exp

(
−c̃nε4

)
, (B.6)

where c = (2|X |2 log 2)
−1

, c̃ = (32 max{|X |, |Y|}2 log 2)
−1

.

Proof. We first observe that for all x > 0, log x <
√
x. Thus, for any X ∼ P , from (B.2), we

have

|Ĥ(X)−H(X)| ≤
√

2|X |δ(P̂ , P ).

Using this and (5.13), the first inequality is obtained. Subsequently, using the triangle

inequality and union bound, we obtain the convergence of the empirical mutual information.

These rates of convergence are used to prove consistency.
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B.2 Proof of Lem. 27

In this section we describe the proof of Lem. 27.

Proof. We first note that

D(Qi‖Qj) = EQi
[
log

(
Qi(Y

`)

Qj(Y `)

)]

= EQi
[
log

(
WYi+1Yi−1

WYjYj−1
WYj+1Yj

WYi+1YiWYiYi−1
WYj+1Yj−1

)]

= EQ`−i

[
log

(
WY`−i+1Y`−i−1

WY`−jY`−j−1
WY`−j+1Y`−j

WY`−i+1Y`−iWY`−iY`−i−1
WY`−j+1Y`−j−1

)]

= D(Q`−i‖Q`−j).

Then we note that

D(Q0‖Q1) =
∑

y`

1

2

∏̀

i=2

Wyiyi−1
log (2Wy2y1)

= 1− h(1/2− ε),

where h(·) is the binary entropy function. Similarly

D(Q1‖Q0) = −1

2
log
(
1− 4ε2

)
.

For any 1 < i < `,

D(Q0‖Qi) = EQ0

[
log

(
2WYiYi−1

WYi+1Yi

WYi+1Yi−1

)]

= 1 +

(
1

2
+ 2ε− ε2

)
log

(
1

2
+ ε

)

+

(
1

2
− 2ε+ ε2

)
log

(
1

2
− ε
)
.

Similarly,

D(Qi‖Q0) = −
(

1

2
− ε
)

log

(
1

2
+ ε

)
+

(
1

2
+ ε

)
log

(
1

2
− ε
)
.

Having computed these distances, we make one additional observation. For 1 ≤ i, j ≤ `,
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i 6= j,

D(Qi‖Qj) = EQi
[
log

(
WYi+1Yi−1

WYi+1YiWYiYi−1

)
+ log

(
WYjYj−1

WYj+1Yj

WYj+1Yj−1

)]

= D(Q0‖Qj) +D(Qi‖Q0).

Since ε is bounded, D(Q0‖Qi) = O(1) and D(Qi‖Q0) = O(1). This in turn proves that

the KL divergences between any two hypotheses is a constant independent of `.
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