22 research outputs found

    Validation of robotic navigation strategies in unstructured environments: from autonomous to reactive

    Get PDF
    The main topic of this master thesis is the validation of a navigation algorithm designed to perform autonomously in unstructured environments. Computer simulations and experimental tests with a mobile robot have allowed reaching the established objective. The presented approach is effective, consistent, and able to attain safe navigation with static and dynamic configurations. This work contains a survey of the principal navigation strategies and components. Afterwards, a recap of the history of robotics is briefly illustrated, emphasizing the description of mobile robotics and locomotion. Subsequently, it presents the development of an algorithm for autonomous navigation through an unknown environment for mobile robots. The algorithm seeks to compute trajectories that lead to a target unknown position without falling into a recurrent loop. The code has been entirely written and tested in MATLAB, using randomly generated obstacles of different sizes. The developed algorithm is used as a benchmark to analyze different predictive strategies for the navigation of mobile robots in the presence of environments not known a priori and overpopulated with obstacles. Then, an innovative algorithm for navigation, called NAPVIG, is described and analyzed. The algorithm has been built using ROS and tested in Gazebo real-time simulator. In order to achieve high performances, optimal parameters have been found tuning and simulating the algorithm in different environmental configurations. Finally, an experimental campaign in the SPARCS laboratory of the University of Padua enabled the validation of the chosen parameters

    Research and development of a rescue robot end-effector

    Get PDF
    Includes abstract.Includes bibliographical references.This report details the research, design, development and testing of an end-effector system for use on an Urban Search and Rescue (USAR) robot which is in development in the Robotics and Agents Research Laboratory (RARL) at the University of Cape Town (UCT). This is the 5th generation Mobile Robot Platform (MRP) that UCT has developed ... codenamed ‘Ratel’. USAR robots used to be mainly of the observation type, but new robots (including UCT’s Ratel MRP) are being developed to deal with inherently dynamic, complex and unpredictable disaster response situations, particularly related to object manipulation and gripping. In order to actively interact with the environment, a flexible and robust gripping system is vital. [an] end-effector solution ... was developed for the Ratel manipulator arm to fulfil these functions

    Sparse Bayesian information filters for localization and mapping

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2008This thesis formulates an estimation framework for Simultaneous Localization and Mapping (SLAM) that addresses the problem of scalability in large environments. We describe an estimation-theoretic algorithm that achieves significant gains in computational efficiency while maintaining consistent estimates for the vehicle pose and the map of the environment. We specifically address the feature-based SLAM problem in which the robot represents the environment as a collection of landmarks. The thesis takes a Bayesian approach whereby we maintain a joint posterior over the vehicle pose and feature states, conditioned upon measurement data. We model the distribution as Gaussian and parametrize the posterior in the canonical form, in terms of the information (inverse covariance) matrix. When sparse, this representation is amenable to computationally efficient Bayesian SLAM filtering. However, while a large majority of the elements within the normalized information matrix are very small in magnitude, it is fully populated nonetheless. Recent feature-based SLAM filters achieve the scalability benefits of a sparse parametrization by explicitly pruning these weak links in an effort to enforce sparsity. We analyze one such algorithm, the Sparse Extended Information Filter (SEIF), which has laid much of the groundwork concerning the computational benefits of the sparse canonical form. The thesis performs a detailed analysis of the process by which the SEIF approximates the sparsity of the information matrix and reveals key insights into the consequences of different sparsification strategies. We demonstrate that the SEIF yields a sparse approximation to the posterior that is inconsistent, suffering from exaggerated confidence estimates. This overconfidence has detrimental effects on important aspects of the SLAM process and affects the higher level goal of producing accurate maps for subsequent localization and path planning. This thesis proposes an alternative scalable filter that maintains sparsity while preserving the consistency of the distribution. We leverage insights into the natural structure of the feature-based canonical parametrization and derive a method that actively maintains an exactly sparse posterior. Our algorithm exploits the structure of the parametrization to achieve gains in efficiency, with a computational cost that scales linearly with the size of the map. Unlike similar techniques that sacrifice consistency for improved scalability, our algorithm performs inference over a posterior that is conservative relative to the nominal Gaussian distribution. Consequently, we preserve the consistency of the pose and map estimates and avoid the effects of an overconfident posterior. We demonstrate our filter alongside the SEIF and the standard EKF both in simulation as well as on two real-world datasets. While we maintain the computational advantages of an exactly sparse representation, the results show convincingly that our method yields conservative estimates for the robot pose and map that are nearly identical to those of the original Gaussian distribution as produced by the EKF, but at much less computational expense. The thesis concludes with an extension of our SLAM filter to a complex underwater environment. We describe a systems-level framework for localization and mapping relative to a ship hull with an Autonomous Underwater Vehicle (AUV) equipped with a forward-looking sonar. The approach utilizes our filter to fuse measurements of vehicle attitude and motion from onboard sensors with data from sonar images of the hull. We employ the system to perform three-dimensional, 6-DOF SLAM on a ship hull

    Self–organised multi agent system for search and rescue operations

    Get PDF
    Autonomous multi-agent systems perform inadequately in time critical missions, while they tend to explore exhaustively each location of the field in one phase with out selecting the pertinent strategy. This research aims to solve this problem by introducing a hierarchy of exploration strategies. Agents explore an unknown search terrain with complex topology in multiple predefined stages by performing pertinent strategies depending on their previous observations. Exploration inside unknown, cluttered, and confined environments is one of the main challenges for search and rescue robots inside collapsed buildings. In this regard we introduce our novel exploration algorithm for multi–agent system, that is able to perform a fast, fair, and thorough search as well as solving the multi–agent traffic congestion. Our simulations have been performed on different test environments in which the complexity of the search field has been defined by fractal dimension of Brownian movements. The exploration stages are depicted as defined arenas of National Institute of Standard and Technology (NIST). NIST introduced three scenarios of progressive difficulty: yellow, orange, and red. The main concentration of this research is on the red arena with the least structure and most challenging parts to robot nimbleness

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems

    Perceção e arquitectura de software para robótica móvel

    Get PDF
    Doutoramento em Ciências da ComputaçãoWhen developing software for autonomous mobile robots, one has to inevitably tackle some kind of perception. Moreover, when dealing with agents that possess some level of reasoning for executing their actions, there is the need to model the environment and the robot internal state in a way that it represents the scenario in which the robot operates. Inserted in the ATRI group, part of the IEETA research unit at Aveiro University, this work uses two of the projects of the group as test bed, particularly in the scenario of robotic soccer with real robots. With the main objective of developing algorithms for sensor and information fusion that could be used e ectively on these teams, several state of the art approaches were studied, implemented and adapted to each of the robot types. Within the MSL RoboCup team CAMBADA, the main focus was the perception of ball and obstacles, with the creation of models capable of providing extended information so that the reasoning of the robot can be ever more e ective. To achieve it, several methodologies were analyzed, implemented, compared and improved. Concerning the ball, an analysis of ltering methodologies for stabilization of its position and estimation of its velocity was performed. Also, with the goal keeper in mind, work has been done to provide it with information of aerial balls. As for obstacles, a new de nition of the way they are perceived by the vision and the type of information provided was created, as well as a methodology for identifying which of the obstacles are team mates. Also, a tracking algorithm was developed, which ultimately assigned each of the obstacles a unique identi er. Associated with the improvement of the obstacles perception, a new algorithm of estimating reactive obstacle avoidance was created. In the context of the SPL RoboCup team Portuguese Team, besides the inevitable adaptation of many of the algorithms already developed for sensor and information fusion and considering that it was recently created, the objective was to create a sustainable software architecture that could be the base for future modular development. The software architecture created is based on a series of di erent processes and the means of communication among them. All processes were created or adapted for the new architecture and a base set of roles and behaviors was de ned during this work to achieve a base functional framework. In terms of perception, the main focus was to de ne a projection model and camera pose extraction that could provide information in metric coordinates. The second main objective was to adapt the CAMBADA localization algorithm to work on the NAO robots, considering all the limitations it presents when comparing to the MSL team, especially in terms of computational resources. A set of support tools were developed or improved in order to support the test and development in both teams. In general, the work developed during this thesis improved the performance of the teams during play and also the e ectiveness of the developers team when in development and test phases.Durante o desenvolvimento de software para robôs autónomos móveis, e inevitavelmente necessário lidar com algum tipo de perceção. Al em disso, ao lidar com agentes que possuem algum tipo de raciocínio para executar as suas ações, há a necessidade de modelar o ambiente e o estado interno do robô de forma a representar o cenário onde o robô opera. Inserido no grupo ATRI, integrado na unidade de investigação IEETA da Universidade de Aveiro, este trabalho usa dois dos projetos do grupo como plataformas de teste, particularmente no cenário de futebol robótico com robôs reais. Com o principal objetivo de desenvolver algoritmos para fusão sensorial e de informação que possam ser usados eficazmente nestas equipas, v arias abordagens de estado da arte foram estudadas, implementadas e adaptadas para cada tipo de robôs. No âmbito da equipa de RoboCup MSL, CAMBADA, o principal foco foi a perceção da bola e obstáculos, com a criação de modelos capazes de providenciar informação estendida para que o raciocino do robô possa ser cada vez mais eficaz. Para o alcançar, v arias metodologias foram analisadas, implementadas, comparadas e melhoradas. Em relação a bola, foi efetuada uma análise de metodologias de filtragem para estabilização da sua posição e estimação da sua velocidade. Tendo o guarda-redes em mente, foi também realizado trabalho para providenciar informação de bolas no ar. Quanto aos obstáculos, foi criada uma nova definição para a forma como são detetados pela visão e para o tipo de informação fornecida, bem como uma metodologia para identificar quais dos obstáculos são colegas de equipa. Além disso foi desenvolvido um algoritmo de rastreamento que, no final, atribui um identicador único a cada obstáculo. Associado a melhoria na perceção dos obstáculos foi criado um novo algoritmo para realizar desvio reativo de obstáculos. No contexto da equipa de RoboCup SPL, Portuguese Team, al em da inevitável adaptação de vários dos algoritmos j a desenvolvidos para fusão sensorial e de informação, tendo em conta que foi recentemente criada, o objetivo foi criar uma arquitetura sustentável de software que possa ser a base para futuro desenvolvimento modular. A arquitetura de software criada e baseada numa série de processos diferentes e métodos de comunicação entre eles. Todos os processos foram criados ou adaptados para a nova arquitetura e um conjunto base de papeis e comportamentos foi definido para obter uma framework funcional base. Em termos de perceção, o principal foco foi a definição de um modelo de projeção e extração de pose da câmara que consiga providenciar informação em coordenadas métricas. O segundo objetivo principal era adaptar o algoritmo de localização da CAMBADA para funcionar nos robôs NAO, considerando todas as limitações apresentadas quando comparando com a equipa MSL, principalmente em termos de recursos computacionais. Um conjunto de ferramentas de suporte foram desenvolvidas ou melhoradas para auxiliar o teste e desenvolvimento em ambas as equipas. Em geral, o trabalho desenvolvido durante esta tese melhorou o desempenho da equipas durante os jogos e também a eficácia da equipa de programação durante as fases de desenvolvimento e teste

    Modular high maneuverability autonomous underwater vehicle

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009.Includes bibliographical references (p. 111-115).The design and construction of a modular test bed autonomous underwater vehicle (AUV) is analyzed. Although a relatively common stacked-hull design is used, the state of the art is advanced through an aggressive power plant, with capability to support azimuthing thrusters and a 2DOF front sensor assembly. Through an application of lean principles to developmental hardware, the notion of a delayed differentiation is isolated as a key to minimizing rework and creating essentially transparent electronic hardware. Additionally, the use of bus-modular structural and electronic interconnects facilitates reconfiguration of the vehicle across a large range of components, allowing the rapid development of new sensors, control algorithms, and mechanical hardware. Initial wet tests confirm basic data acquisition capabilities and allowed sensor fusion of scanning sonar returns at the beam level with data from an IMU for an orientation-corrected sonar mosaic.by Daniel G. Walker.S.M

    Routes for extending the lifetime of wind turbines

    Get PDF

    A survey of the application of soft computing to investment and financial trading

    Get PDF
    corecore