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Human beings are members of a whole,

In creation of one essence and soul.

If one member is afflicted with pain,

Other members uneasy will remain.

If you have no sympathy for human pain,

The name of human you cannot retain.

Saadi of Shiraz



Abstract

Autonomous multi-agent systems perform inadequately in time critical missions, while they tend to

explore exhaustively each location of the field in one phase with out selecting the pertinent strategy. This

research aims to solve this problem by introducing a hierarchy of exploration strategies. Agents explore

an unknown search terrain with complex topology in multiple predefined stages by performing pertinent

strategies depending on their previous observations. Exploration inside unknown, cluttered, and confined

environments is one of the main challenges for search and rescue robots inside collapsed buildings. In

this regard we introduce our novel exploration algorithm for multi–agent system, that is able to perform

a fast, fair, and thorough search as well as solving the multi–agent traffic congestion.

Our simulations have been performed on different test environments in which the complexity of the

search field has been defined by fractal dimension of Brownian movements. The exploration stages are

depicted as defined arenas of National Institute of Standard and Technology (NIST). NIST introduced

three scenarios of progressive difficulty: yellow, orange, and red. The main concentration of this research

is on the red arena with the least structure and most challenging parts to robot nimbleness.
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Chapter 1

Introduction

In this thesis we propose and evaluate an adaptive algorithm for a disaster scenario in which the buildings

of a major town or city have collapsed, major roads have become impassable and utility networks and

power lines have failed. Victims of the disaster must be rescued within 48 hours, after which their

chances of survival rapidly diminish, and the rescue becomes a recovery. Rescuers must make quick

decisions, they must verify the location and status of victims and attempt to get them to safety, often

endangering their own safety in the process. The initial rescue groups must ascertain the stability of

the remaining structures as quickly as possible to ensure that medics and fire–fighters have access to

the disaster area and the ability to perform their duties. These tasks are currently, mainly, performed by

human operatives and trained rescue dogs, who must perform their work in potentially life-threatening

circumstances. In many situations, rescue teams discover that even dogs trained and equipped for search

and rescue are unable to negotiate the rubble and detritus. In addition to physical obstacles, the dust

laden air diminishes the animals sense of smell, rendering much of their rescue capability useless. There

is, however, an increasingly available alternative. Recent technological advances make it possible for

certain practical and economic circumstances, robots can be sent into areas that are structurally unstable

or contaminated and therefore unsafe for navigation by humans and rescue animals. Exploratory robots

allow early penetration of a disaster site without placing the lives of human operatives at risk.

The 2008 earthquake in southern Sichuan (China) has shown that the number of trapped victims can

be extremely high in a densely populated area (Official figures state that 69,197 are confirmed dead, and

374,176 injured, with 18,222 listed as missing). The impact of disasters in urban areas therefore requires

the rapid response of specialist rescue teams, to locate victims within the rubble, devise an access route

to extract them, and provide them with stabilising medical treatment. In order to maximise efficiency

and effectiveness, one rescue team should be able to achieve all of these objectives, a possibility greatly

enhanced by the provision of adequate numbers of search and rescue robots.

1.1 Research Challenges
A team of exploration robots should overcome six important challenges during their exploration pro-

cedure inside structural collapses: 1) Size limitations for robots to send inside collapsed buildings; 2)

Urban Search and Rescue (USAR) has an extremely rugged terrain for smaller robots, therefore power
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limitation will be an issue; 3) Sensor limitation for navigation and exploration, the absence of a laser

range finder, and no accurate GPS data; 4) Transition errors, thus uncertainty in robot’s information

distribution; 5) Navigation inside completely unknown, and unstructured environments; 6) Traffic con-

gestion caused by multiple robots negotiating long narrow pathways.

In this thesis our contributions are focused on the challenges as follows:

a performance aware robot should overcome its positional uncertainty, caused by transition errors;

a team of robots should avoid the initial congestion while entering a cluttered and confined terrain.

1.2 Motivation
To avoid the redundancy of revisiting an explored region as much as possible, robot should move to the

boundary between open explored space and unexplored space. In such exploration techniques a robot

moves to a frontier, that can see into unexplored space and add new information to its memory and

constantly increase its knowledge of its world. However, the draw back of such techniques, for robots

that rely on odometry data, is the negative effect of transition uncertainty on the collected information.

This will lead the robot to an uncertainty that may cause dramatic errors in its positional understanding.

Therefore, we need to develop a look ahead model that can be used to deal with such uncertainty through

robot’s belief distribution.

In this regard, we believe that there is an absence of good solutions to this problem and a good

solution will be the key to improve the practical effectiveness of robot teams for urban search and rescue.

1.3 Research Hypothesis & Objectives
By undertaking mathematically established algorithm coupled with probabilistic information distribu-

tion (where beliefs of agents are included), a multi–agent system is able to reduce the redundancy of

revisiting a search field inside the narrow gaps and small voids of a pancake collapsed building.

In other words we want to reduce the overall victim(s) discovery time, independently of victim’s

position, by performing a fair search to reach a certain percentage of optimal discovery time, i.e. our

defined oracle search technique.

We detail our hypothesis as follows: To estimate the overall success of our hypothesis, for fast

localisation of trapped victims, we will measure metrics (output). Robots spread out as much as possible

to reach their goal (metric:‘discovery time’). Robots should also report back their findings (recorded

occupancy grid memory) to their base station. In this regard robots should cover the complete search

field (metric:‘coverage time’), since the number of trapped victims (in addition to their location) inside

pancake collapses are unknown to the search team.

Our main objectives are: 1) To reduce the positional uncertainty for a search robot and to reduce

search redundancies caused by revisiting explored areas; 2) How to prevent initial congestion inside

narrow pathways; 3) To identify a suitable number of agents, within a team, according to the exterior

size of a search terrain. Suitable number, is defined as the minimum number of agents that minimise the

discovery time.
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1.4 System Design & Implementation
To prove the effectiveness of our multi–agent exploration system we have designed and implemented

a simulation tool that is a able to generate various model of structural pancake collapses as well as

evaluating the system performances through a set of metrics.

We have designed an advanced frontier–based search agent that is aware of its positional uncertainty

as well as its performances. It optimises its time performance while minimising its uncertainty. The per-

formance of our developed system (metric: victim discovery time) is compared against other competing

algorithms, such as ANT, TREE, and Brick & Mortar. We also design an oracle algorithm, which robots

are aware of the victim’s location (as well as their own location), this is known as our best performance

in the case of discovery time. Finally, to avoid initial congestion when several agents are moving inside

a cluttered and confined search terrain, a team formation is defined.

1.5 Contributions
A hierarchical control system for a search and rescue team consisting of heterogeneous robots has been

designed, and is discussed in this thesis. It includes new aspects of area surveying, and exploration

strategies in order to address the special requirements introduced by a search hierarchy inside disaster

areas. We will address three main achievements through this thesis:

• We model our environment, to evaluate our exploration algorithms, even though there are no post–

disaster maps available to define our scenario. In this regard we discuss an algorithmic approach

to generate realistic after disaster test fields for search and rescue agents inside collapsed building.

This has been published in Electronic Engineering and Computing Technology Journal [SS10].

• We introduce an On–line metric that is used by the agent during its task to estimate its perfor-

mance against expectations and thus assist it to achieve its goal. This novel performance metric

can be assessed by the agent during each time step to estimate the expected action utility. The

performance of a frontier–based exploration algorithm can be improved when a reward function is

used to reward it according to this on–line metric during each time step. This has been presented

in IEEE international workshop on Safety, Security, and Rescue Robotics (SSRR09) [SSH09].

• We devise a multi–robot system, a novel path–planning algorithm for multi agent system in which

behaviour is an emergent property of the approximate solution of an underlying optimisation prob-

lem. This is a novel and advanced frontier–based exploration strategy, which considers transition

errors in to account, thus it is able to deal with agent’s positional uncertainty. In result, victim

discovery time and coverage time, for search fields of various complexity, has been reduced sig-

nificantly comparing to competing multi agent exploration algorithms.

Additionally, we are able to predict the single goal discovery time for Brownian Random Walk

algorithm according to the power spectral density of search fields. Therefore we manage to develop

a mathematical–based benchmarking technique. This has been presented in IEEE International Confer-

ence on Computational Intelligence and Software Engineering (CISE09) [SS09b]. We investigate several
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spreading techniques for a hybrid system of multi–agent. The spreading technique enables the system to

avoid any initial congestion inside our cluttered and confined voids.

1.6 Scope & Assumptions
When traditional tracked robots search voids inside structural collapses they are not always able to crawl

inside and look for survivors, size limitation. Therefore in our exploration system these robots send

in a team of limited sensing mini robots for fast victim localisation instead of using camera mounted

on the pole. To advance the state of the art in exploration strategy for these small and limited energy

robots, carrying a short range sensors: 1) we model such robots and evaluate their performances inside

simulated collapsed buildings, prior to implementation; 2) our simulated robot (agent) moves to collect

new information about the simulated environment while considering its uncertainty through its collected

belief points; 3) in turn, the collected information and the belief distribution provide clues to rescue

team about the most viable areas of exploration that will further increase knowledge of the environment;

4) mother robot in a heterogeneous robot team is able to merge the collected information from several

robots into a single global information to provide a more comprehensive view of the environment to the

rescue team.

Inside damaged and partially collapsed buildings within disaster areas, there are locations which

have not yet entirely collapsed, known as life safe voids [Mur04]. In USAR operations, robots are sent

inside these confined spaces, in order of 0.5 to 2 meter. A robot platform in order of 0.33 meter square, or

even less, is required to enter these voids. Furthermore, inside these confined and cluttered voids there are

obstacles with unknown sizes, orientations and locations. USAR operations demand high power, while

smaller robots carry smaller batteries. Unfortunately most of the energy might be spent getting to an area

of interest- i.e. life safe voids. As a result of these limitations we assume a ‘marsupial team’ [Bal98]

consists of a mother robot which transports and supports power for one or more ‘daughters’, much as

kangaroo carries a joey.

A multi–agent system is performing its exploration strategies inside various 2–dimensional static

simulated environments. These search environments are all divided into equal square cells. All the

passable cells (they are not occupied) inside the search environment are traversable by our agents.

Additionally, this research obeys practical assumptions; therefore we have limitation on internal re-

sources (ENERGY-LIM), sensor limitation (SENSOR-LIM), limitation on the number of mini robots

(NUMBER-LIM), and transition errors. Since we have a very limited observation view we assume that

this limited sensor readings are perfect (i.e. the minimum observation to avoid collision).

1.7 Thesis Structure
This thesis is organised as follows:

• Background and related works are discussed in Chapter 2. We discuss all the phases for the

search and rescue according to fire–fighters planning. In this Chapter we mainly focus on requirements

of an autonomous self–organised exploration system. We present an introduction for each contribution.

These are: an introduction on generating maze like search environment by agent’s chaotic trails and
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differentiating them by fractal dimension, introducing frontier–based algorithm and its disadvantages in

the presence of transition errors, how to solve positional uncertainty by applying POMDP techniques,

and finally team formations.

• Being able to compare different search strategies in various search fields is crucial to attain fast

victim localisation. Thus we discuss an algorithmic development and proliferation of realistic post–

disaster test fields for search and rescue simulated robots in Chapter 3. Additionally we introduce

indices to differentiate simulated search terrains and define their complexity.

• we discussed our online metric to develop a frontier–based exploration strategy in Chapter 4.

This expected utility will asset the agent to decide: i- how to move to the frontiers (regions on the

border between open space and unexplored space); ii- what to do in the face of uncertainty (odometry

errors that lead to positional uncertainties). Furthermore we have evaluated a random path–planning,

ANT algorithm benchmark, in order to compare our strategy to an unstructured technique. To design

our multi-agent system, we initially hope to develop an advanced technique for all agents individually,

involving no collaboration.

• In Chapter 5 we will examine the risk/utility relationship. In our mathematical frontier–based

search technique actions are executed according to their expected utility, their expected contribution to

the acquired knowledge, and the risk they carry. This exploration approach is called EDAEA; it handles

the problem of being stuck in local minima that affects traditional frontier–based algorithms when facing

positional uncertainties. Sensors such as GPS devices are often unreliable in indoor environments and

odometry data tend in practice to be noisy. In effect we have a problem of positional uncertainty, and in

literature Partially Observable Markov Decision Processes (POMDP) are proposed to address the issue

of goal pursuit in such environments. For kidnap robot problem we briefly point out some solution.

However, we set up an experiment to recover from this problem in the next chapter.

• In Chapter 6 we discuss how to develop our novel path–planning algorithms for multi–agent

systems in which behaviour is an emergent property of the approximate solution of an underlying opti-

misation problem. To explore an unknown environment, robots make use of their location and the history

of their observations accumulated inside a search field as the robot performs the search task. They are

therefore able to provide the rescue team, both human and robots, with a rough recorded grid memory

of the explored areas. Furthermore, we introduce a team formation to solve the traffic congestion in our

multi–agent systems.

• Our own model and strategies are evaluated against existing methods in Chapter 7. We also

improved the ANT algorithm extended ANT exploration algorithm (EANT) to enable the team of agents

to spread evenly inside a search terrain (adapting ANT algorithm to our scenario to avoid initial conges-

tion). By introducing EANT algorithm we reduce the redundancy of ANT agents and enable them to be

automatically aware of their full coverage of the search area, e.g. instead of exploring the field till they

run out of the battery. We furthermore apply odometry errors and sensor noises on our agents, through

Player/Stage tool, and test our superior multi–algorithm in more realistic experiments.

• Finally, Chapter 8 contains our conclusions and proposals for future works.



Chapter 2

Background

One of the challenges in disaster response is to get an overview of the degree of damage and to provide

this information, together with optimised plans for rescue missions, back to rescue teams in the search

and rescue field. Collapsed infrastructure, limited visibility due to smoke and dust, and overloaded com-

munication lines make it nearly impossible for rescue teams to report the total situation consistently. It

can be done by efficiently integrating data from many observers into a single consistent view. Therefore,

for an effective emergency response, many decision makers are required to work together.

Naturally, local rescuers are the first rescue group that reaches a disaster area. In most cases these

rescuers are emotionally attached to victims and they are not well qualified, to look for trapped victims

under piles of rubble. Therefore, their rescue operation might be chaotic, e.g. causing further collapses

and life threatening for both impatient rescuers and trapped victims. Nowadays with advanced technol-

ogy, we can rely on specialised robots to provide us with a situation and damage assessment overview

while exploring the entire disaster area accurately and completely to locate any survivors.

Promptness of response is a valuable quality when locating victims, since time is an important

factor in search and rescue operation and therefore, the use of multiple heterogeneous robotic vehicles

is an alternative way, to speed up the exploration process. However, it is unrealistic to think that a

human operators will remotely control each of these platforms. Not only more human operators will

be needed, the collaboration among human teams can also be a problematical issue, since in disaster

incidents human operator’s performances may be based on emotional rather than logical response.

The overall vision for disaster response is to have multiple heterogeneous robots operating mainly

autonomously and actively exchanging information. They should explore the entire search field to locate

all the trapped victims independent of their position. A designated rescue team should map out the search

field while exploring the disaster site so that the location of possible victims or hazardous areas can be

communicated among the rescue team during the search operation. Our research into heterogeneous

teams is conducted primarily in the domain of Urban Search and Rescue (USAR), characterised by

collapsed man–made structures with no controlled lighting. This terrain is often treacherous, requiring

the robots to have sufficient navigational sensors in addition to their mission sensors and for rescuers

wearing protective garments, and barrier materials to protect themselves while equipped with essential

devices and sensors. False negative (e.g. sensors not registering an event) have deadly consequences for
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a victim who goes undetected, while false positives might actively interfere with rescuers effectively in

accomplishing their jobs. That is why an advance systematic approach is urgently required to deal with

uncertainties, guide the rescue team and make the most of their equipment.

2.1 USAR Five–Phase Plan
Fire rescue departments are consistently responsible for responding to different USAR scenarios. Haz-

ardous material incidents, bomb threats, collapsed buildings, and trench rescue each have their own

specific requirements regarding tools and specialised tasks. Here we will focus on the rescue of trapped

victims from collapsed buildings and trench rescues.

In order to understand how a robotic exploration system can be useful to the rescue team, it is

helpful to review an existing rescue scenario for structural collapses. According to the Fire Department

of New York (FDNY) collapsed building rescue efforts should follow a Five–phase plan [Adm96]:

1) Global Survey of the site

2) Rescue of the casualties on the surface

3) Rescue of the lightly trapped casualties

4) Exploration of voids for trapped victims

5) Removal of selected debris

The goals of these phases of search and rescue operations are: to rescue the victims, and to survey

the site. Surveying the search field enables the rescuers for further safe investigation, safe rescue oper-

ation, and it also speeds up the search process significantly. A rescue team starts to survey the disaster

site globally for damage assessment, then they apply further local surveying inside collapsed buildings

to find trapped victims and locate all voids inside the rubble. They should explore all the located voids

exhaustively, since an unconscious wounded victim may be trapped some where in the middle.

2.1.1 Global Survey of the Site

Damage assessment is the process of determining the location, nature and severity of damage sustained

in a disaster situation. It includes global surveying of the affected area, estimating the amount of loss,

selecting the areas of interest for further exploration and surveying, estimating the risk of operation, and

determining the level of traversability inside the search field.

An aerial view provides a better perspective with the ability to cover a large area and it enables the

rescue team to focus their resources and efforts on the vital areas. Aerial vehicles have the advantage of

moving at higher speeds than ground vehicles, as most of the main roads will be impassable in disaster

areas. The small sizes of these vehicles also allows them to be carried around the disaster field by the

rescuers to deploy whenever it is deemed necessary. In addition unmanned vehicles have advantages

over manned vehicles as most of the functions and operations can be implemented at a much lower cost,

which is therefore faster, safer and less vulnerable.

When the global surveying is completed, rescue teams are sent inside the disaster field to provide

first aid for surface victims, the second phase of USAR, and explore the search field for trapped victims.

Their observations should be compared to auxiliary information from the disaster area (Deploying avail-
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able pre–disaster maps of the city and the national seismic hazard maps), for instance in the case of an

earthquake location of major population density like schools and shopping malls.

2.1.2 Local Surveying the Site

In the third phase of the rescue mission, the rescue team should save those victims that are lightly trapped

and can be rescued without further damage to the search site. Additionally, they should explore the search

field and look for more victims. Lightly trapped victims are those who can be removed by one or two

rescuers, usually by removing a piece of furniture or light rubble. Traditionally lightly trapped victims

are mainly localised by search dogs, acoustic devices, and thermal cameras [Adm96].

The use of robots for search and rescue had been discussed in the scientific literature since the early

1980s but no systems had been developed or fielded. The first known actual use of robots for urban

search and rescue was at the World Trade Centre disaster on the 11th of September 2001. Robots were

used here to search for victims, finding alternative routes that would be quicker to excavate by rescue

team, structural inspection, and the detection of hazardous materials.

One robot that is ideal for the third phase of USAR operations is the RAPOSA robot by Marques et

al. [MCL+06]. It is designed and built to operate in outdoor environments hostile to the human presence,

such as structural collapses. The robot is targeted for the tele–operated detection of potential survivors

using a set of sensors gathering information that is transmitted to a remote human operator. An innovative

feature of their work is the use of wireless communications, with an option for tethered operation. The

tether carries both power and communications, with an access point on its end, and can also be used to

suspend the robot inside a deep hole. The RAPOSAs mechanical structure consist of a main body and a

front body, whose locomotion is supported on tracked wheels, allowing motion even when the robot is

upside down. However, RAPOSA is incapable of transporting mini robots around the search field. This

should be added to its capabilities, to carry several mini robots and deploy them in areas inaccessible due

to size constraints.

Inside the collapsed buildings, where the roof is almost in contact with the ground, there are only

few narrow accessible sites and the search site is not stable and safe for rescue team. Victims are often

trapped under large pile of rubble, where even trained search dogs and infrared cameras are helpless to

locate them. There is also size limitation that prohibits traditional tracked robots from crawling inside

these small voids to look for survivors. Therefore these narrow entrances should be mapped carefully by

the rescue team, and further advance exploration should be applied.

2.1.3 Microscopic Surveying the Site

The forth–phase plan, search inside the void spaces, requires trained and especially equipped rescuers

working in conjunction with structural engineers. It is within these voids (i.e. life safe voids) that

causalities may have had enough room and air to survive [HB07]. Therefore when narrow but accessible

entrances are found they should be investigated thoroughly.

The potential number of victims are evaluated, search operations should commence in an orderly

manner, beginning with verbally calling out for victims to identify their location, and searching using

a systematic search pattern. Searchers should stop frequently to listen for noises or attempted commu-
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nication from victims; often this can involve all searchers stopping activity at specified periods of time

to listen. In situations where multiple structures are searched, the outside of buildings can be marked.

Marking systems indicate which buildings have already been searched, the results of the search, and to

avoid duplication of search efforts.

The conventional approach to searching under the rubble for survivors involves the use of ‘bucket

brigades’. In this traditional technique hundreds of rescue workers remove rubble by passing buckets

from hand to hand. This is a very time consuming task, it involves physically checking under all the rub-

ble; furthermore it may cause a second disaster by causing more collapses. Traditional search equipment

for structural inspection are cameras mounted on poles [Mur04]. Through this method rescue team are

able to speed up the operation to some extend, by limiting the available voids by removing debris. This

technology has limited function; the available poles are less than two meters long, and for deeper voids

they are not able to provide any useful information.

In this phase only mini robots are able to enter through confined access under the metal roof or

through breaches. They should explore overall maze of obstacles and debris to look for trapped victims

or even hazards. They are the rescuer’ eyes inside the dangerous structural collapses. When the casualties

are located inside unstructured and partially collapsed buildings, they can remotely assess and triage.

Figure 2.1 is an image of a ‘life safe void’ that is evident from outside, as you can see the victim is

observed easily by the rescue team. Unfortunately the majority of these unknown, and cluttered life safe

voids are unobservable from the surface.

Figure 2.1: An example of a life safe void

Structural collapses come in three different types: pancake collapse, lean–to collapse, and v–type

collapse [MCM01]. A pancake collapse is characterised by both supporting walls or the anchoring

system is failing and the supported roof or upper floor falling parallel to the floor below. Small voids

where victims can be found are created by debris. A lean–to collapse occurs when only one side of the

supporting walls or floor anchoring system fails. One side of the collapsed roof should be attached to the

remaining wall or anchoring system. The lean–to collapse creates a significant void near the remaining

wall. A v–type collapse can happen when there is a large load in the centre of floor or roof above. Both
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sides of the supporting wall are still standing but the centre of the floor or roof above is compromised

and thus collapsed in the centre. The v–type collapse usually leaves a void on each side of the supporting

walls. Knowing where the voids are located can help fire–fighters to locate survivors of the structural

collapse much faster and safer.

In this thesis, we concentrate mainly on the pancake collapses, since life safe voids location on the

other two types of collapses, are located next to the existing walls. However, in the pancake collapses

the locations of these voids are completely unknown.

2.1.4 Rescue Operation and Recovery

As discussed above, the majority of robotic research for rescue situations has in the area of search and

victim localisation [MJ07], or information gathering for the coordination of operators. Once victims

have been found, human rescue personnel are typically called in to assess and finish rescue personnel,

including victim ( Here, we refer to victims as people who cannot rescue themselves; they are typically

unconscious) manipulation. Manipulation here means moving the head, limbs or the whole body for

extraction from dangerous situations.

Rescue operations have generally been avoided by the robotic communities because an improper

manipulation often can result in further injury or death of the victim. Yim et al. [MY09] present some of

the issues and steps towards robotically aided victim manipulation including simulation and empirical

measurements for specifications of a robot, as well as solutions to components of this problem. Their

work specifically focused on an automatically deployed mechanism that could be used by rescuers to

quickly and easily drag victim or to attach a rope to them, so a personnel can pull the victim to safety

from a safe distance. As a rule of thumb, any situation which either a human or a robot can rescue a

victim, a human rescuer is usually a better option [MC09]. However, this might be different in situations

in which only a robot can affect a rescue. These situations are typically characterised by difficult to

access locations, or by the need for rapid deployment. The combination of proper equipment and trained

personnel allows an accurate and fast rescue operation. When trapped victims are located by rescuers

they can be removed (according to the provided data) and medical aid rendered as necessary. The removal

of victims should be done with care so as to avoid any further injury. Where any neck or back injury

is suspected, the cervical spine should be immobilised first before attempting to move victims, and

dragging should be avoided in situations where the presence of debris (e.g. broken glass) would cause

further injury.

After the last phase of the search and rescue mission is the recovery mission and cleaning up the

incident area commences. Recovery is different from rescue, where it is assumed that no one is left living

and rescuers are now removing bodies. However, there is a small chance that a live victim may be found.

The recovery mission is usually applied 40−48 hours after incident occurrence. Collapsed buildings can

be brought down either piece by piece, as in hand demolition, or more rapidly with heavy equipment.

In piece–by–piece wrecking, workers usually employ hand tools, either mechanical or thermal. Heavy

equipment, such as bulldozers and wrecking balls, are faster but may yield further collapses to unstable

buildings around.
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2.2 Simulated Search Fields
We evaluate the performances of search and rescue robots inside simulated collapsed buildings, prior

to implementation. Based on analysis of a variety of disaster site images and fire fighters re-

ports [JME01, Sch01], we identified the essential attributes of a simulated world. Inside a structural

pancake collapses there are pieces of material that are randomly composed. The robot is facing the

following set of exploration challenges within its search field: Maze–like environments, unstructured

environments, unknown environments, and narrow pathways.

These challenges also provide the basis for measuring performance according to the published

performance guide for Urban Search and Rescue robots by the US Department of Homeland Secu-

rity [oHS08]. In order to validate the functionality of the robot and its algorithms, robots must be

confronted with a number of unique challenges. Realistic simulation enables researchers to perform

experiments with defined conditions and to repeat these experiments.

The most complex and challenging arena defined by National Institute of Standards and Technol-

ogy (NIST) is the red arena, i.e. Heavy structural damage. To validate an optimum search strategy, for

the challenging parts of the red arena, we should test simulated millibots (selected robot in this activity)

functionality inside several different simulation environments with various level of complexity. In Chap-

ter 3 we generate various of these search fields by an agent(s) performing Brownian Random Walk. We

also introduce an index, Fractal Dimension of Pathways, to differentiate these generated fields by their

complexity. Complexity here is defined as the time to find a victim independent of its position, the larger

is this time the more complex is the search field.

Fractals are irregular geometric objects with an infinite nesting in all scales. In this thesis we will

verify that the fractal dimension of pathways inside the search fields, can be applied as a discriminative

index to characterise test arenas for exploration robots.

2.2.1 Fractal Dimension

Many natural phenomena like discharges of rivers and outline forms of coastlines are filled with

seemingly complex irregular shapes and random variations [Bur88]. We believe that we are living

in a world of three–dimensional objects bounded by two–dimensional surfaces and outlined by one–

dimensional lines. The mathematician Benoit Mandelbrot [Man93] pointed out that, clouds are not

spherical, mountains are not cones and coastline are not circles. In other words the dimension of the real

world does not come as tidy integers. Furthermore, in ecology there are several discriminative indices

that is able to differentiate these landscape patterns. In this regard, the fractal dimension is an index of

the complexity of shapes in landscapes. The fractal dimension provides an objective way to quantify the

fractal properties of an object and distinguish it from other similar objects.

One of the important characteristics of fractals is the concept of self–similarity. However, for natural

phenomena self–similarity refers to the statistical properties of the outline, trail or surface. For instance

if the landscape is composed of simple geometric shapes the fractal dimension will be small while for

a landscape that contains many patches with complex and convoluted shapes the fractal dimension will
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be large. Self-similarity is a characteristic of a form exhibited when a substructure resembles a super

structure: 1-growing from a unit object 2- subsequent division of original object.

Figure 2.2: Self-Similar Fractal: (a) lines are growing from a line (b) 3 triangles divided from a triangle

Figure 2.2 (a) is indicating a line that is replaced first with 4 lines, 1
3 of the original size, the fractal

dimension is estimated as: FD = log4
log3 = 1.26, and for the second replacement we have FD = log16

log9 =

1.26. This nesting can continue to grow while the fractal dimension of generated objects remains the

same as 1.26. In figure 2.2 (b) the fractal dimension is estimated as: FD = log3
log2 = 1.58, since we have

3 triangles half the size of their original triangle. This is an example for fractals that are generating by

dividing the original object.

The scale transformation described for self–similar fractals is isotropic, which means the dilation

increases the size of the system uniformly in every spatial direction. Fractal objects can also be rescaled

using an anisotropic transformation, e.g. self–affine fractals. Therefore in contrast to self–similar fractal,

their scaling properties are depending on the direction of space, these fractals does not look similar by

human eyes. We are interested in quantifying disorder surfaces (i.e. generated search fields by chaotic

movement trails), thus we apply the special subclass of anisotropic fractals that is described by a single–

valued (roughness) function called the self–affine function.

The analogue of the scaling relation for a self–affine function can be formulated as:

h(x) ∼ b−Hh(bx) (2.1)

Where H (H in honour of both Hurst and Hölder ) is the self–affine exponent and gives a quantita-

tive measurement of the roughness of the function h(x)- and x is defined on the interval of [0, 1].

Mandelbrot [BS95] estimated the relationship between the roughness and fractal dimension of self–

affine objects as follows:

The function 2.1 formulates the fact that a self–affine function should be rescaled both horizontally

and vertically. If we scale the function with a factor b (∀ b ∈ R+) horizontally, i.e. x → bx, then

we should scale the function with a factor bH vertically as well, h → bHh, in order to make sure the

resulting object overlaps the object obtained in the previous generation. For the special case H = 1, the

transformation become isotropic (instead of anisotropic) and the system therefore becomes self–similar

(instead of self–affine).

To associate the self–affine function for a surface, we cover that surface with boxes of size γ. Then

we divide the horizontal domain of the function into ns segments, so the width of each segment is
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estimated as γ = 1
ns

, when horizontal domain is assumed as x = 1.

In the horizontal interval of size γ, the height changes according to the power law, ∆ ∼ γH , thus

we require ∆
γ ∼ γ

H−1 boxes to cover the function. Since we need γH−1 boxes to cover the variation in

one segment, for ns segments the ni number of boxes is required, is approximated as:

ni ∼ ns × γH−1 ∼ γH−2 (2.2)

Now, to measure the fractality of an object, we measure its Hausdorf dimension. To define the

Hausdorff dimension [DDDD98] for a metric space X as a non–negative real number, we first consider

the number N(γ) of balls of radius at most ‘r’ are required to cover X completely. Clearly, as γ gets

smaller N(γ) gets larger. Very roughly, if N(γ) grows in the same way as γ−FD (as ‘r’ is squeezed

down towards zero), then we say X has dimension FD. In fact the rigorous definition of Hausdorff

dimension is somewhat round about, as it allows the covering of X by balls of different sizes.

Since, we haveN(γ) ∼ γ−FD, we define the fractal dimension (i.e FD) for very short length scale

∆� γ, from equation 2.2 as [BS95]:

FD = 2−H (2.3)

Thus, fractal dimension of self-affine objects are defined by their Hurst exponent, known as object

roughness. In Chapter 4 we deploy the Hurst exponent (H) to predict Brownian Random Walk behaviour

inside our generated search fields. To estimate the FD of self–affine fractals we deploy a systematic

technique called box–counting.

2.2.2 Box–Counting Dimension

The box–counting dimension proposes a systematic measurement, which applies to any structure (both

self–similar and self–affine) in the plane and can be readily adapted for structures in space. We put the

structure onto a grid with mesh size γ, and count the number of grid boxes which should contain at least

some of the structure. This gives a number, say N . The value of N is highly dependent on the size of the

box, i.e. γ. In this technique we should change the value of γ to progressively smaller sizes and count

the corresponding numbers, N(γ). Through the estimated values we make a log − to − log diagram,

that is the logarithms log(N(γ)) versus log( 1
γ ). We apply ridge regression to the collected data to fit

a straight line to the plotted points and then measure its slope, we refer to box–counting dimension as

FDbox. This estimated FDbox is the box counting dimension, another special form of Mandelbrot’s

fractal dimension [PJS04]. Note that in the case of self–similar object the FDbox, might slightly differs

from the real values of FD as estimated in the section 2.2.1.

Available tools that are able to compute box–counting dimension, such as MATLAB (boxcount),

FDbox is estimated as follows: 1- the tool applied several grid boxes with different sizes on the image

2- the spatial frequency, for each grid size is estimated, i.e. the total boxes that are covering at least

some part of the image (IB) over total number of grid boxes (TB), i.e. SF = IB
TB ; 3- the smallest spatial

frequency will be selected as SFL; 4- FD = D − logSFL
logγ , where D is selected by the user as 1D,

2D, or 3D box counting. For instance for 3D, FDbox = 3 − logSFL
logγ . The user should also select the
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minimum and maximum size of the grid cells, normally there are some limitations, for selecting these

values, which are defined by each tool.

In this activity we have selected FracLac [Kar] to estimate the fractal dimension of the search fields,

because of its ease-of-use. FracLac is an image analyse software, developed for image J tool. This tool

is used to objectively analyse complexity and heterogeneity as well as other measures of binary digital

images. It has a global binary grid scan option that applies box–counting technique across an image. It

calculates the fractal dimension of our maze–like search environments using the mathematical procedure

presented above.

On the contrary to MATLAB that we select the value of D, FracLac dimension is always set as

D = 3. Therefore the FDbox estimated by this tool is always between 2 and 3.

2.2.3 Related Work

Voshell, et al. [VW05a, VW05b] used path tortuosity measured by fractal dimension to compare the

effectiveness of two robot user interfaces. Its studies were shown that navigation through smoother paths

will be resulted in lower fractal dimension values. These papers suggest that the lower fractal dimension

(tortuosity) of the path indicates that the operators had higher situational awareness when using the folded

perspective display, thus were able to reach the goal quicker with less searching. A similar measure of

path complexity, the Lyapunov exponent, has been used to show how path complexity is related to the

performance of human searching a maze [CG07]. While fractal dimension is a scale–less measure of

path complexity in the spatial domain, the Lyapunov exponent is a scale–less measure of the rate of

divergence of two trajectories in a dynamical system. Generally the Lyapunov exponent is used to assess

the predictability of a system, in this case it is used to measure path tortuosity in the time domain (i.e.

measure if the path likely to stay on the same course). A positive Lyapunov exponent indicates a chaotic

path while a negative exponent indicates a smooth path. Clarke, et al.’s experiment [CG07] involved

120 participants who wore tracking equipment and searched a 5m× 7m maze constructed in a lab. The

results showed that the participants whose paths were most chaotic (positive Lyapunov exponent) were

able to find all of the hidden items in the maze in a much shorter period of time than the participants

whose paths were smooth (negative Lyapunov exponent).

At first glance it seems that the works of Voshell and Clarke contradict each other, one shows that

a less complex path is related to higher performance and the other shows that a more complex path is

related to higher performance. However, the works actually support each other. In the Voshell study the

operators were directed to go from point A to point B within the environment; the Clarke study asked

participants to completely search a maze for small tags. These goals are two sides of the same coin,

one rewarded travelling in a smooth path (direct travel between points) while the other rewarded chaotic

movement (complete coverage in a search).

As discussed above, the smoother recorded movements has a lower fractal dimension values while

the more chaotic paths have a larger fractal dimension. Narrow pathways inside maze environments are

chaotic and has a large fractal dimension compared to smooth paths.
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2.2.4 Maze Generation Technique

From Clarke et al. results we were convinced to apply chaotic movements (i.e. Brownian random walk)

to generate chaotic trails and we record these trails inside an empty field. This is how we are generating

maze terrains. In Chapter 3, we will investigate how to develop our cluttered and confined maze–like

search environments through these chaotic recorded movements. We estimate the fractal dimension of

the recorded chaotic trails inside each terrain.

Clarke et al. experiment evaluated that an agent performing a chaotic movement is able to solve

a maze terrain much faster than an agent performing smooth movement. Therefore, we later send in a

maze solver, performing chaotic movement, to move inside such a recorded trails looking for a randomly

located goal and we measure its average solving time, among 100 run times. We analyse the correlation

between the fractal dimensions of recorded trails, which is developed by a maze generator, to the average

solving time by a maze solver.

2.3 Exploration Strategies
When a robot functions in an unknown or partially known environment, it needs to acquire knowledge

about its surroundings. Robots gather information through their sensors as they move through the search

area. Sensors provide basic information that is required for localisation and navigation. Exploration has

been considered as a fundamental problem for mobile robots. It involves localisation, navigation, and

planning. An advanced exploration process allows the robot to efficiently, in terms of exploration time,

gain knowledge about its environment and facilitates higher–level functions such as goal navigation, and

modify its planning to reduce position uncertainty.

In this thesis we divide the exploration strategies in two categories: memory–based and memory–

less. We mainly focus on exploration techniques that can be applied in maze searching, since our milli-

bots are suppose to explore a maze like void inside a rubble (i.e. voids are cluttered and confined).

In the literature, famous motion planning in an unknown maze like environment techniques are:

• memory–based algorithms: Depth First Search (DFS), [Sed01], Spanning Tree [GR01], Frontier–

based [EP94, Yam97], ANT algorithms [KL01] , Brick & Mortar [FTL07].

• memory–less algorithms: Random Brownian Walk [ML05]

Brownian random walk (BRW) is an unstructured search technique, we deploy this random algo-

rithm to generate our search fields. Since this algorithm is following the Brownian motion, we are able to

differentiate the BRW agent movements by fractal dimension, this is completely discussed in Chapter 3.

We further use this algorithm as our upper limit time to discover a single goal. BRW algorithm has no

memory of what cells it has visited. In USAR applications memory–based algorithms can significantly

reduce the exploration time, however observation and transition errors can become very problematic.

Below we investigate the above memory–based algorithms (i.e. our competing algorithms), their

advantages and disadvantages. We eliminate the DFS algorithm, memory–based algorithms, since DFS

is also known as the classic spanning TREE algorithm.
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2.3.1 Advantages & Disadvantages

TREE, ANT (both discussed in chapter 3, Frontier–based, and B&M (both discussed 5) algorithms are

adapted to our simulation tool and simulated agent. We introduce these competing exploration techniques

completely in Chapters 3, and 5.

TREE algorithm has the tendency to revisit cells, e.g. going back to its parent cell. We definitely

need a more time efficient search technique for USAR applications than TREE algorithm. Agents run-

ning the ANT algorithm cannot determine when the exploration task is completed. Additionally this

algorithm does not take transition errors, caused by odometry errors, into account. Therefore, an ANT

agent might face dramatic errors in its understanding of its position and as a result it performs poorly.

Frontier–based algorithms are known as a very effective search algorithms, just like ANT long term

transition error is a problematic issue. Agent might not even be able to find its frontiers according to its

recorded data. Brick & Mortar(B&M) algorithm, which is vulnerable to odometry errors, might end up

trapping its agent inside the search field. However, Ferranti et al. [FTL08] purposed a Hybrid B & M

technique, this is a combination of B&M and ANT algorithm. This hybrid technique is able to rescue

an agent from trapping inside a search field, because of the transition errors, but it can not promise a full

coverage of the search terrain.

In this activity our frontier–based agent estimates and records its position belief distribution while

performing exploration to avoid uncertainty. This enables the agent to reduce its positional uncertainty

and therefore redundancy of revisiting a search field significantly.

2.3.2 Heuristic & Probabilistic Strategies

To create a representation of the environment based on sensory information, a robot must know where it

is. Conversely, a robot can only estimate where it is located, if it has some sort of world representation.

We are assuming a scenario where the robot has been placed into an unknown environment, thus it starts

exploring with neither a map nor any idea of where it is. In this scenario a robot should localise itself

while recording its location on its occupancy gird memory [Thr02].

Path planning algorithms can operate with different space representations. Most representations

use cell decomposition with a fixed number of cells to divide the search space. Most obvious is decom-

position into uniform grid cells. Additionally there are spaces consisting of multi points, with various

pathways (road map) that can connect these points together. Creating the essential framework of an ex-

isting memory, can serve as a pre–processing step and means the reduction of the search space for the

planning algorithm. Clearly, a reduced search space has performance advantages and offers an easier

application of existing path planning algorithms. Visibility graphs, Voronoi diagrams (e.g. Spanning

Tree) [GR01, GMAM06] and probabilistic roadmap are all belong to this category [RN03] and there are

able to generate road maps [SN04] through free space. We have selected an occupancy grid memory for

our agents, since our simulated environment is divided into uniform square cells.

In potential field motion planning technique, a robot navigates in an environment. It fills its working

space, e.g. occupancy grid memory, by empty or occupied information about the space. More impor-

tantly there is an artificial potential field that attracts a robot to a goal position. The potential field method



30 2.3. Exploration Strategies

is particularly attractive because of its mathematical elegance and simplicity, and has been studied exten-

sively for mobile robot motion planning [LWS07]. For instance Frontier–based exploration algorithms

is a very simple technique and widely tested [EP94, Yam97]. Using this exploration technique a robot

moves toward boundaries or frontiers between known and unknown environment. In this technique agent

is seeking to visit new areas without considering any uncertainties in its collected data. Frontier–based

exploration is relatively easy to integrate into most existing mobile robot architectures, although long

term uncertainty may cause dramatic errors in the robot’s understanding of its position.

The potential field motion planning techniques are categorised as: Heuristic planners and Proba-

bilistic planners. In general heuristic methods are used to rapidly come to a solution that is hoped to be

close to the best possible answer, or ‘optimal solution’. Heuristic planners [CKK96] have been devel-

oped that are able to solve particular difficult problems in impressively low running times. However, the

same planners may also fail or consume prohibitive time on seemingly simpler ones. The main problem

with basic heuristic planner is that it does not consider any uncertainty in its collected data. This has

lead to the design of a Probabilistic planner. A planner is called probabilistically complete if, given a

solvable problem, the probability of solving it converges to 1, as the running time goes to infinity. Such

a planner is guaranteed to solve any solvable problem within finite time. An advantage of such system is

that it can optimise plans during missions and thus deal robustly with information uncertainty [AK01].

2.3.3 Probabilistic Exploration Strategies

In unknown and complex terrain, like our USAR scenario, frequent re–planning will be necessary. A

predetermined path based on partial acquired knowledge may be too difficult to follow or reach a dead

end. Therefore, enforcing any deterministic strategy would slow down the exploration time significantly.

We investigate relevant non–deterministic exploration strategies for our scenario as below:

• Pareto Frontier–based exploration algorithm [Bal00] is presented that visualisation uncertainty

are taken into account. However, still errors in the robot transition are ignored. Freda and Oriolo [FO05]

introduced a frontier–based probabilistic technique based on Local Safe Region (LSR) to avoid creating

any map of the visited regions and solving transition errors. However, their technique is not applicable

on limited sensing agents as our millibot (it requires laser range finder).

• More sophisticated methods, take into account other factors such as environment uncertainty

and the knowledge gain potential of candidate locations for exploration. For instance, the Next–Best–

View (NBV) algorithm (also known as greedy exploration algorithms [Moo01]) evaluates new candidate

locations based on the expected information to gain, and the overlap between the current and candidate

safe region [GBL02]. Unlike the frontier–based technique, the robot may choose a more distant location

if that location have more information gain potential than closer places. In NBV overlap criterion is an

example of incorporating the requirements of the localisation and mapping system into the exploration

process. In this case, the robot will only move to new regions that overlap somewhat with the current

observable region, so it can remain localised.

In NBV algorithms agent is required to build an accurate map of its environment while exploring the

search field, performing SLAM [GBL02]. However, our agents are not able to create any accurate map
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with their sensing limited sensors, especially in the absence of laser range finders (laser range finders are

heavier and larger than our assumed robot platform).

• Another famous approach in multi–agent exploration strategies is to apply the reinforcement

learning (RL) for adaptive agents [SSH94]. The adaptive agent adapts its strategy according to the re-

wards received while interacting with other agents. A major problem with this approach is its slow con-

vergence. An effective interaction strategy is acquired only after processing a large number of interaction

examples. During the long period of adaptation the agent pays the cost of interacting sub–optimally. In

application such as search and rescue operations inside randomly generated maze–like environments

such a RL is not practical (computationally expensive algorithms).

• Caramel and Markovitch [CM97b] present a model–based approach that tries to reduce the num-

ber of interaction examples needed for adaptation. Their approach splits the learning process into two

separate stages. In the first stage, the learning agent infers a model of the other agents based on past

interaction. In the second stage the agent utilises the learned model for designing effective interaction

strategy for its future. The model–based approach gives priority to actions with the highest expected

utility, according to the current accumulated knowledge. Thus, there is no consideration of behaviour

effects of the agent on its learning process.

Later on Carmel and Markovich extended their model–based and introduced lookahead–based ex-

ploration strategy [CM97a, CM98] as a very interesting technique that have received significant at-

tentions in RL research. This technique is a combination of a frontier–based and RL algorithm. In

lookahead–based approach actions are executed according to their expected utility, their expected contri-

bution to the acquire knowledge, and the risk they carry. Thus instead of holding one model, the agent

maintains a mixed opponent model. Their presented work is only focussed on multi–agent decision mak-

ing in game theory, rather than multi–robot exploration system. However, through this technique we are

able to present an exploration strategy, which hold a practical solution among all other strategies, for our

complex and unknown environments that are required to be explored in a short time–frame.

In this thesis we conform to Caramel and Markovich technique and introduce a dual–mode explo-

ration system as follows:

• if the uncertainty of taking an action is lower than a predefined value it selects the action with the

highest utility.

• if the uncertainty of taking an action is higher than a predefined value the agent selects the action

with the lowest risk.

Where the risk is defined as a state of uncertainty where some of the possibilities involve undesirable

outcome. The undesirable outcomes, for our scenario, will be investigated and defined by this author

(through this thesis). Moreover, to estimate the above utility we introduce a novel on–line metric in

Chapter 4, that should be estimated by an agent at each time step while exploring a search field.
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2.4 Uncertainty
Imperfect sensors and approximate knowledge about the sensor readings leads the robot to uncertainty.

Different compensation techniques exist for dealing with uncertainty in this context. One commonly used

method is the Bayesian approach. For example the occupancy grid is commonly used in a combination

with a binary Bayes filter. We later address this uncertainty in agent’s memory by coverage grid memory,

this is by storing a belief posterior over each grid cell [SB03].

As argued by Halpern and Fagin [HF90] there are two useful and quite different ways of under-

standing belief functions. The first is as a generalised probability function and the second is as a way of

representing evidence. A belief function can be defined as a function that assigns to every subset of a

given set S (or events) a number between 0 and 1. If we view belief as a representation of evidence, then

it makes sense to combine them but not updating them.

In this thesis we view the belief as a representation of evidence, the more evidence we have to

support a particular proposition, the greater our belief in that proposition. For instance consider the

evidence that comes in the form of an observation of some event B, then this updating is typically done

by moving to the conditional probability. Starting with a probability function Pr, we update it to get

the conditional probability function Pr(.|B). This suggest that evidence can be viewed as a function

that takes as an argument a probability function and returns an updated probability function. For this

viewpoint of the belief function, we discuss two existing frameworks: Partially Observable Markov

Decision Process(POMDP) and Dempster–Shafer theory:

• Partially Observable Markov Decision Process: Markov decision processes (MDPs) provide a

principled mathematical framework for modelling decision–making that can be applied on an

agent making decisions in a system described by discrete set of states. In each state there are

several actions from which the agent must select. Depending on the chosen action the agent re-

ceives a reward. A limitation of using the MDP framework is the assumption of an ideal observer.

In particular it assumes the existence of an agent capable of observing directly the real states of a

given system, which in practice is infeasible because noises and sensors’ limited capabilities com-

promise the reading. This problem has been addressed by POMDP framework. A POMDP is a

generalisation of an MDP in which observation disturbances of the system state can be modelled.

A POMDP represents an agent taking a sequence of actions under uncertainty to maximise its

total reward. Although the policies resulting from solving POMDPs can handle the uncertainty

caused by agent’s observations, the problem of that is to find an optimal policy, which is computa-

tionally expensive. There are various techniques for ‘exploration robots’ to reduce the complexity

through POMDP planning . As a result, there have been a lot of work on computing approximate

POMDP solutions [Hau00a, Roy03, LCK95] specifically some number of approximate point–

based POMDP algorithms [NS04, ZZ01].

• Dempster–Shafer theory: This theory [Mor76] provides a framework for the mathematical repre-

sentation of uncertainty that is based on modelling ‘belief’ about a set of possibilities. Dempster–

Shafer differs from traditional probability theory in several key ways [BH04] as follows:
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The idea of belief function was first introduced by Dempster [Dem67, Dem68] and later put forth

as a framework for reasoning about uncertainty by Shafer. Shafer talks of belief as being a repre-

sentation of an evidence. Bel(A) = p is to say that, as a result of the evidence encoded by Bel,

the agent has a degree of belief p in the proposition represented by the set A.

The allocation of belief mass to set of mutually exclusive possibilities, not just individual possi-

bilities, is allowed. For this reason, Dempster–Shafer theory can represent ‘ignorance’, as belief

mass assigned to a set of multiple possibilities (reflecting lack of knowledge about which specific

possibility a piece of evidence supports). Because of its ability to represent ignorance, Dempster–

Shafer theory requires no a priori knowledge about the world; in the presence of no knowledge,

all belief mass is assigned to ignorance.

2.4.1 MDP and POMDP Preliminaries

When our agent is confronted with a decision, there are a number of different alternative actions from

that it can choose. Choosing the best action requires considering more than just the immediate effects of

its actions, e.g. one–step lookahead [CM97a]. The immediate effects are often easy to see, but the long

term effects are not always as transparent. Sometimes actions with poor immediate effects, can have

better long term ramifications. Ideally, you would like to choose the action that makes the right trade-off

between the immediate rewards and the future gains, to yield the best possible solution. People work

through this type of reasoning daily, and a Markov decision process might be a way to model problems

so that we can automate long term decision making for our agents without increasing their complexity.

MDPs provide the principal mathematical decision modelling framework to be applied on an agent

making decisions in a system described by discrete set of states. In each state there are several actions

from which the agent must select. Depending on the chosen actions the agent receives a reward. For-

mally, a MDP can be described by the tuple 〈S,A, T ,R〉, where S is a finite set of states of the world,A

is a finite set of actions, the state transition function T (s′, a, s) = Pr(s′|s, a) is the probability to reach

state s′ ∈ S while being in state s ∈ S and performing action a ∈ A. Finally,R(s, a) defines the reward

for choosing action a ∈ A in state s ∈ S . The agent goal is to maximise its expected total reward by

choosing a suitable sequence of actions.

Formally, a POMDP can be described by a tuple 〈S,A, T ,R,Z,O〉, where 〈S,A, T ,R〉 defines

an MDP, Z is a discrete set of observations and O(s′, a, z) = Pr(z|s′, a) is the probability of making

observation z ∈ Z , give some state s′ ∈ S after performing some action a ∈ A [KLC98]. To represent

the agents’ preference over future rewards, a discount factor γ ∈ [0, 1) is usually given, and the goal of

the agent is to maximise its expected future reward by choosing a suitable sequence of actions, given

the state. The expected future reward (V ) is defined as V = E [
∑∞
t=1 γ

tRt], where Rt is the reward

received by the agent at time step t.

In POMDP, the agent state is only partially observable, thus many algorithms are based on a value

called a belief, that is simply a probability distribution over S . A POMDP policy dictates an action for

every possible belief. The belief space is continuous and has a dimensionality of R|S|−1. An approximate

POMDP solution is therefore applied for solving POMDPs in a large state space. Because Markov chains
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have no memory, the next state is simply defined by the action and the state transition probability. There

are situations where the effects of an action might depend not only on the current state, but also on some

of the previous states. The MDP model will not let you model these situations directly therefore the state

transition probability matrix is given.

Definitions:

• States: When making a decision, we need to consider what are its immediate effect. The state is

the way the world currently exists and an action will have the effect of changing the current state.

The set of every possible way of the world will be defined as the set of states.

• Actions: The actions are a set of possible alternatives you can make. The problem here is to know

which of these actions to select, for a specific state of the world.

• Transitions: When we are deciding between different actions, we have some idea of how they

will affect the current state. The transitions specify how each of these actions might change the

state. Since each action could have different effects, depending on the state, we need to specify

the effect of each action. The most powerful aspect of the MDP is that the effects of an action are

probabilistic. Imagine we are specifying the effects of doing action ‘a1’ in state ‘s1’. We could say

that the effect of ‘a1’ is to leave the process in state ‘s2’, and there is no consideration about how

‘a1’ changes the world. However, many decision processes have actions that are not this simple.

For instance an action might usually results in state ‘s2’, while occasionally it might result in state

‘s3’. MDPs allow us to specify these more complex actions and specify a set of resulting states

and the probability that each state results.

• Immediate Rewards: If we want to automate the decision making process, then we should be

able to have some measure of value of action, by that we are able to compare different actions.

Thus we specify the immediate value for performing each action in each state.

Since POMDPs are difficult to solve, the most common approach up to this time, at least for real

time applications such as mobile robot navigation, is to use a heuristic approach to planning rather than

the full POMDP solution. Heuristic approaches can be divided into three categories: (a) those which do

not consider uncertainty at all, (b) MDP–based heuristics which consider stochastic actions but not future

uncertainty, and (c) those which can act in order to resolve uncertainty. While this section provides a

brief overview, more details are available in [CKK96], [Hau00a] and the references therein.

Heuristics Without Uncertainty Considerations – Re–plan is a simple strategy and probably the

most widely used in practice. It simply uses the assumption that the most likely state is true, and that the

world is deterministic. If, during plan execution, the most likely state drifts far enough from the plan, it

generates a new plan.

Our presented frontier–based DAEA search algorithm is following this heuristic technique, since

we have not considered the effects of odometry errors (uncertainty) on the agent memory grid.

MDP–Based Heuristics –If the discrete state–space is sufficiently small, the solution to the under-

lying MDP is relatively easy to obtain. Two common heuristics based on the MDP solution are MLS
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and QMDP . MLS, or Most Likely State, assumes that the most likely state is in fact the true state,

and takes the corresponding action from the MDP policy [NPB95]. This is a good approximation to

the full POMDP solution when distributions are compact, and the most likely state therefore never is

far from the true state. QMDP requires the entire MDP value function, and can be viewed as a voting

system [LCK95]. Given a belief over discrete states, each state votes on actions. The number of votes

a state si can cast is proportional to the probability that si is the true state. The state casts its allotted

votes by voting on actions in proportion to their MDP value. After voting, the agent selects the action

with the most votes. QMDP effectively assumes that all uncertainty will disappear after it takes its

action [CKK96]. Indeed, it would be optimal if this assumption was true. However, it can fail when

uncertainty is large, and it is unlikely to disappear after a single action. In highly uncertain scenarios,

QMDP will take an action that is reasonable (in terms of reward) in most states. If this action does not

resolve the uncertainty, QMDP will continue to take it ad infinitum.

The problem with the heuristics discussed so far is that they only act to seek reward, possibly taking

into consideration their current uncertainty and the uncertainty of their actions. Unfortunately, they will

never act to decrease their future uncertainty. This kind of behaviour can be extremely important for an

agent, that is supposed to operate robustly and autonomously.

Probabilistic With Uncertainty Considerations – Action entropy is an example of a probabilistic

that can help to reduce uncertainty [CKK96]. It switches between two distinct modes: seeking reward

and seeking information. Recognising that uncertainty is problematic only when it introduces uncer-

tainty about the appropriate action, action entropy uses the belief–optimality distribution as its switching

criterion. When the entropy of this distribution is above a given threshold, and the agent therefore is un-

certain about which action to take, the action entropy probabilistic takes the action that will best reduce

its belief uncertainty over a one–step horizon (when it is lower , it follows the MDP–based heuristic).

An example is Coastal navigation, presented by Roy and Thrun [RT99]. It plans a fixed path, but

then considers the quality of localisation along that path. It begins by calculating the information content

of each state, based on the extent to which an observation from that state would modify a fixed path. It

then assigns a cost to each state as: a weighted sum of an information–based cost and a goal–related cost.

These uncertainty–aware probabilistic can be an improvement over simpler heuristics, but they all have

short comings. Firstly, they are unable to make longer–term plans, reasoning about how uncertainty will

evolve over the course of a plan. Secondly, they rely on a human designer to decide on the importance of

certainty. This is a difficult parameter to specify, especially because it is not constant for a given problem

or environment.

In our scenario, uncertainty is not problematic unless it prevents a search agent from achieving

its goal, i.e. finding a trapped victim independent of its position in a minimum time. Thus, an agent

may sometimes be forced to persist with a high level of uncertainty, in a portion of the belief–space in

which uncertainty reducing actions are very expensive in terms of time. In this activity we present a

probabilistic approach that it deal with uncertainty only when it passes an uncertainty threshold, defined

by this author.
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Hierarchical Approaches –Hierarchical approaches aim to decrease computational requirements

by decomposing a large POMDP into a number of POMDP subsets. The cost of solving the constituent

sub–POMDPs can be significantly less than the cost of solving the original. Theocharous and Ma-

hadevan [TM02] have proposed a hierarchical model for robot navigation in an office environment.

A set of abstract states are posited, each of which encapsulates a set of underlying states. A macro–

action from an abstract state is equivalent to a set of actions through the underlying concrete state–space.

They show that the entropy of beliefs over abstract states is significantly less than the entropy over con-

crete states. Therefore they assume complete observability of the abstract states, and the application

of heuristics based on this assumption, provide a better approximation than for concrete states. While

experiments show that planning is simplified by this hierarchical approach, Theocharouss environment

is highly structured, consisting of corridors and junctions and resulting in interfaces between abstract

states that are tightly constrained. It is unclear how well the approach will generalise to problems that

exhibit less structure like those inside our unstructured search fields.

Rather than specifying a hierarchy of states, Pineau [PGT03] specifies a hierarchy of actions. A

set of abstract actions is posited, each of which consists of a number of sub–tasks. This approach is

much more applicable to problems involving discrete sets of actions. Foka [FT05] specifies a hierarchy

of both states and actions for robot navigation problems. The hierarchy of states is reminiscent of a

quad–tree decomposition [Sam84]. The discretisation of both states and actions is finer at levels deeper

in the hierarchy. Individual sub–POMDPs are solved using an MDP–based heuristic. While extensive

results of the computational requirements are presented, the effects on performance are not really clear.

The most serious problem limiting the application of hierarchical approaches is the requirement that the

hierarchy be specified by a human designer, based on the perceived structure of the particular domain. A

method for automating this process would be extremely expensive.

This thesis describes a scalable approach to POMDP planning which uses low–dimensional repre-

sentations of the belief space to deal with agent’s uncertainty. In this approach we are applying one–step

planning presented by Roy [Roy03]. In this planning process uncertain agent takes advantage of actions

that gather required information to reduce its uncertainty (known as low risk actions), even if the reward

function (reward function based on the agent’s utility) does not make immediate and explicit advantages

of gathering such information.

2.4.2 POMDP–Solver

There are different POMDP solver tools available on the web that enable us to solve POMDP problems to

some extent. For instance, Cassandra has written software [Cas] that solves problems that are formulated

as POMDPs. It uses a basic dynamic programming approach for all algorithms, solving one stage at a

time while working backwards in time. It is also able to solve finite horizon problems with or without

discounting.

For instance, in Chapter 5 we define a simple 24–state pomdp. In state s < n >, an agent wants to

perform action a < n >, which a < n > is a low risk action. Observation probability is set to 1, i.e.

perfect observation. At each step a belief distribution is adjusted for the agent, according to its recorded
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information during exploration procedure. This is a belief probability of 24 state cells around the agent,

as indicated below.

Table 2.1: Collected belief points, surrounding the agent:

s16 s15 s14 s13 s12

s17 s4 s3 s2 s11

s18 s5 s0 s1 s10

s19 s6 s7 s8 s9

s20 s21 s22 s23 s24

We define: 1- the states as: {s0, s1, s2, ..., s24}(agent is located in s0, the start point); 2- the actions

as: {a0, a1, a2, a3, a4, a5, a6, a7} (respectively are: sw, s, se, e, w, nw, n, ne); 3- the start point as s0; 4-

the end points as {s9, s10,...,s24}; 5- the transition probability for taking an action.

Then for each sequence of actions that enable the agent to reach an end point,we estimate its associ-

ated risk. Finally the tool is able to predict the lowest risk actions, according to the values that is defined

for it before any movement (in Chapter 5 that is selected as the action entropy).

2.5 Exploration Formation
Formation behaviours in nature such as flocking and schooling are able to benefit the animals that use

them in various ways. Each animal in a herd, for instance, benefits by minimising its encounters with

predators. By grouping, animals also combine their sensors to maximise the chance of detecting preda-

tors or to forage for food more efficiently. Studies of flocking and schooling show that these behaviours

merge as a combination of a desire to stay in the group and yet simultaneously keep a separation dis-

tance from other members of the group. Since groups of artificial agents could similarly benefit from

formation controls, robotic researchers and those in the artificial life community have drawn from these

biological studies to develop formation control for both simulated agents and robots.

Bahceci et al. [BSS03] presented a review of pattern formation and adaptation strategies in multi

robot systems. They divided pattern formation studies into centralised and decentralised pattern for-

mation categories. They claimed that having a central unit assumption in centralised pattern formation

might make the approach more costly, less robust to failures and less scalable, especially for a large num-

ber of individuals. However, in nature we have flock of wildebeest that are decentralised (since there are

large number of wildebeest in a flock, thus the rule of 5% creates a decentralised system) while pack

of wolves are centralised (the rule of 5% among small number of wolves in a pack makes the system

centralised, it involves a leader).

Formation control may be one of the fundamental problems in the control of multiple mobile robots.

Many interesting tasks and behaviours [CFKM95] can be demonstrated with multiple mobile robots that

move freely without strict constraints on their relative positions, and there are many important tasks that

require robots to closely coordinate their movements . For instance, an aircraft flying in a V–shaped

formation could maximise fuel efficiency by taking advantage of aerodynamics similar to the way flocks
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of birds use formation flying to increase their efficiency [LS70]. In addition, if formation control is

automated, multiple aircraft could be flown by one. Thus a single piloted aircraft could control a large

formation of semi–autonomous pilotless aircraft.

Approaches to formation generation in robots may be distinguished by their sensing requirements,

their method of behavioural integration, and their communication abilities. In general we can consider

four formations for the team of multi agents [ARM]:

1) Line: where the agents travel line–abreast, side by side

2) Column: where the agents travel one after the other

3) Coil: where the agents travel in a coils (e.g. school of fish)

4) Wedge: where the agents travel in a Wedge (e.g. flock of birds)

Line and Wedge movement formation provide larger line of sight for the multi–agent system, there-

fore it leads the system towards faster coverage. In these two formations all agents follow one direction.

However, following these formations and maintaining the implicit communication among all the agents,

inside a cluttered environment, is impossible. They are suitable only for open areas (e.g. high in the

sky). In contrary to above formations, Column and Coil are able to maintain their implicit communica-

tion. Since agents follow each other, they replace one another. However, during their team movement

their coverage is very small (e.g. for column line of sight, for unexplored area, is only one agent ). Coil

formation (i.e. multi column moving in a line) is like creating a larger agent from several smaller agents,

therefore they may not be able to enter narrow pathways. As we are dealing with narrow pathways in-

side our search fields, coil, wedge, and line are not practical formations for our confined and cluttered

maze–like environments. Therefore the best movement formation in these kinds of environments has

been selected as column.

Columns have been used for perimeter detection by mobile agents [FDS+02]. This technique has

been inspired by pack of wolves and their agents are able to track a dynamic perimeter, e.g. an oil spill

on the sea surface. Furthermore Feddema et al. [FLS02] introduced an outdoor perimeter surveillance

over an open large area using a swarm of agents that investigate alarms for intrusion detection sensors.

Dorigo and Nouyan [DN06] implemented column formation behaviour in a sensor–based simulation.

The robots had two states: explorer and chain member. In explorer state, the robots search for other

chain members or the nest. Whenever a robot finds the nest or a chain member, it tries to keep permanent

visual contact with it using an omni–directional camera. The aim of the robot is to create a chain that

connects the nest to a prey. Robots can distinguish other chain members according to the colour of their

equipped LED ring.

As indicated in figure 6.18 all agents, moving in a formation within their team, have a unique ID

tagged on them, i.e. a unique number. This enables all the member of team (or even other rescue team

operators) to distinguish these mini agents from each other. Furthermore, all agents have a limited line

of sight, i.e. indicated as blue circle around agents. Each agent inside the team should have at least one

other agent in its line of sight.

In this activity we are applying the column formation to send our agents inside the search field. This
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Figure 2.3: Formation for the team of robots: (a) Column (b) Line (c) Wedge (d) Coil

formation enables the team of agents to: 1- avoid any traffic congestion inside cluttered and confined

field; 2- divide the search field into smaller areas; 3- dedicate each subspace to one or more agents,

which agents will explore them exhaustively.

2.6 Summary
In a disaster scenario the goal of a search and rescue operation is to rescue the greatest number of victims

in the shortest amount of time, while minimising the risk to the rescuers. Rescue team should gather

essential data and make decisions on the course of action in ‘five’ phases. They must ascertain what types

of structures are involved, the extent of damage, the layout of the building(s) involved, what hazards are

present (such as downed power lines, natural gas leaks, flooding, animals, hazardous materials, or a

structure susceptible to additional collapse during the rescue).

Techniques to search for potential victims are based on identifying possible locations of victims, or

areas of entrapment. Areas of entrapment inside collapsed structures are called voids. There are several

types of voids, e.g. the pancake void (multiple floors of a building have collapsed diagonally onto

each other). Voids can also include spaces where victims may have entered for self–protection during

a disaster, such as under desks or in bathtubs or closets. Inside such a voids victims might find enough

space and air to survive. i.e. ‘life safe voids’. To identify the location of trapped victims a systematic

search pattern with special sensors and equipment is required. For more details of multi– robot in USAR

operations refer Roher’s thesis [Roe08].

We investigate exploration inside pancake collapses with limited sensing mini robots. We will

model such a pancake collapses in 2D simulation environments. We introduced the competing explo-

ration techniques, additionally their advantages and disadvantageous. To advance the state of the art in

exploration strategies (against the existed algorithms especially frontier–based techniques) our agents

record their belief distribution in addition to collected data (e.g. visited cells, and occupied cells). Thus,

the agents are able to reduce their uncertainty while performing an efficient exploration, in terms of

exploration time. Furthermore, we define a column formation for our team of agents to avoid initial

congestion while exploring a search field.



Chapter 3

System Simulation

Autonomous navigation inside unknown cluttered environments is one of the main challenges for search

and rescue robots inside collapsed buildings. Being able to compare different search strategies in various

search fields is crucial to attain fast victim localisation. Standardisation of the challenges, through the

use of simulated search terrains, can provide a meaningful comparison of exploration algorithms. In this

regard we are able to send our simulated robots inside these test terrains. They can proceed to assess

victim condition, initiate rescue, or attempt localisation (i.e. using odometry readings). We desire an

intelligent system that is able to autonomously fulfil its mission requirements. One of our goals, in

this thesis, is to evaluate the performance of several multi–robot search strategies inside the structural

collapses, for limited sensing mini robots, by reproducing various cluttered test fields. Therefore we

discuss an algorithmic development and proliferation of realistic after–disaster test fields for search and

rescue simulated robots.

How should we develop 2D cluttered and confined voids, to test our exploration algorithms, while

there are no systematic after–disaster search field generator to develop life safe voids? It seems rea-

sonable, from details described in Chapter 2, to describe them as a mixture of open space voids with

maze–like paths providing connectivity of adjacent places (connected cavities). Additionally a discrimi-

native index is needed to define the complexity of the search fields and grade reference modules through

performance metrics. In other words, this enables the researchers to create synthetic fields with which to

compare their search strategies.

In entomology, scientists distinguish tortuosity of the insect trails by their fractal dimension [DB98].

This is known as long memory Brownian motion, an example of random process with fractal properties.

Although there are several tortuosity indices, the fractal dimension of Brownian motion has been known

as a quantitative discriminator with which to characterise tortuosity of the trails in a comparative ap-

proach. In this thesis we deploy Random Walk algorithm, which follows a chaotic Brownian movement,

to our agents and by their recorded trails we generate various confined search fields.

Our main contribution in this Chapter is the provision of the pre–requisite requirements to set up

our research experiments. These are the development of an algorithmic approach to the generation of

realistic after disaster test fields (i.e. search field generator) for multi agent search and rescue system. We

will also introduce the fractal dimension of agent’s movement trails as an index to differentiate simulated
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search terrains and define their complexity. This index is tested on various after–disaster search fields,

which was developed by our search field generator.

As discussed in Chapter 2, studies [VW05a, Cra09] ascertained that traditional robotic performance

measures for path planning were incomplete and inadequate for analysing control and exploration tasks

inside complex environments. They therefore introduced a novel analysis approach based on fractal path

tortuosity. This index shows how well a robot is able to handle the difficulties in an environment, from

its movement trails. For instance, the movement trails of the robot inside an environment with a high

density of obstacles and closed passages (dead ends) has a larger fractal path tortuosity than that of an

open space environment with few obstacles.

3.1 Agents
Our simulated robot should be able to navigate inside dense, cluttered and confined search fields. The

natural choice for motion inside such an environment is the obstacle avoidance methods. We consider a

high level and a low level design for our multi–agent system. The low level design is dealing with robot

control system (e.g. navigation and orientation) and localising system, while exploration strategies are

considered as the high level design. In this activity we mainly focus on the high level design and we

assume that the lower level design has been completed out by Mechatronic researchers, this has been

summarised as a handout by Mehmet Bodur [Bod07].

In our framework we have:

• only one type of robot, that is a model of millibot. Thus, there is only one size of agent (100mm)

and it is able to move only one cell in each time step.

• a SENSOR-SET that includes simulated Infrared, IMU, VGA camera directed towards a spherical

mirror to provide an omni directional view, laser barcode device, and NIDR sensors. The user is

able to reconfigure the SENSOR-SET.

• visual interaction among agents. Therefore, agents are always able to communicate with each

other with their equipped LEDs, restricted to a cell in each direction. Thus, they send visual

information by their triangular full colour LEDs.

• each agent has a unique ID. We assume small tags mounted on the back of each robot that is

readable through laser barcode devices. These tags use strips of 3M Scotchlite retroreflective tape,

arranged in n bit binary patterns. The laser barcode device requires the first and last bits to be 1s

(reflective), i.e. 2n−2 possible IDs [NPR+03]. Thus, for the m number of robots: n = log2m+2.

Moreover we are able to send different number of robots inside our simulated search fields, from

one robot to a team of hundred robots.

3.1.1 Eight Segmented Vision

An IR range finder provides the agent information concerning empty or occupied volumes in the space

subtended by the beam (45 degrees cone for the present sensors, which covers adjacent grid cells around
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the agent) in front of the sensor, illustrated in figure 3.1. Therefore, the agent performs a 360 degree

sensor sweep. It has been decided that each robot should have a view of eight cells in its surrounding

area (Window vision (Wv) ). Cells can be empty or occupied. Mobile agents can only move one cell in

any direction, if the chosen cell is empty. They are aware of their direction, e.g. North, South..., with

their equipped simulated miniature inertial measurement unit (IMU).

Figure 3.1: Modelled and Real observation view

Victims are assumed to be created as having parts that are detectable (e.g. uncovered head through

its temperature) and parts that are undetectable, they are covered. Undetectable parts of victims are

classed as obstacles. To distinguish live victims from other warm objects, the agent is equipped with a

NDIR (non dispersive infrared absorbance) sensor, which is able to recognise humans from their CO2

signature.

3.1.2 Agent Tasks

There are two main tasks defined for our agents inside the grid cell simulated environment:

Field Generator– They are used to create search fields, and generate life safe voids as described by

Murphy et al. [Mur04]. For this task agents perform the Brownian random walk (BRW), looking for

victim(s). Their trails across the field are recorded and defined as the pathways while unexplored cells

subsequently are selected as obstacles.

Field Explorer– They are used to evaluate the performance of search robots modelled inside a

simulation environment of various exploration algorithms.

3.1.3 Brownian Random Walk

The brownian random walk algorithm [SK04] is selected to generate simulation environments, test the

developed fields to introduce a discriminative index and also compare its performance against other

competing exploration algorithms. When agents are released at the entrance of the confined simulation

search field, they immediately start their random walk, inspired by “Brownian movement” [ML05].

We define the Brownian motion of our random walk , on a regular lattice, as follows: Suppose that

the agent executes a random walk by taking a time step on a d–dimensional lattice, agent starts at time

t = 0 from an arbitrary point of the lattice. The numbers of possible orientations are, φ = 3 for 1D chain
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(i.e. North, South, and Idle) and φ = 5 for 2D square lattice (i.e. grid cell). Our agent walks in each

direction with an equal probability, the probability of choosing any given walking direction is P = 1
φ at

each time step.

These agents follow a straight line of random length headed to some initial random direction. When

they reach the end of this segment, a new direction is selected. They can select one direction out of these

four directions { θE , θN , θW , θS }. Svennebring and Koenig [SK04] eliminated all the intermediate

directions, such as NE, to have equal steps. Agent selects one of the sensor directions randomly if it

reads empty space.

There are boundaries defined to limit the environment and set a bounded field for agents to navigate

within. Agents should change direction every time they meet the borders or occupied cells. This is also

known as the end of their initial segment. However there is a selected time limit for all agents. Every

time an agent reaches its time limit it chooses a random direction and resets the ω. These time segment

lengths (time limit i.e. ω) are derived, through the exploration procedure, from equation 3.1.

The generation of Brownian random walks, requires random numbers that fall into a Gaussian

distribution. The Box–Muller [BM58] method is used to generate a pair of Gaussian random numbers

(GRN) from a pair of uniform numbers. The generation of Brownian random walks, requires random

numbers that fall into a Gaussian distribution (e.g. a bell curve).

ω = | 1

GRN
×∆t|seconds (3.1)

The time delay and therefore the time step, is here assumed to be ∆t = 36 seconds- corresponding

to that of Millibot.

Figure 3.2(1-3) illustrates agent performing Brownian random walk to explore a search field. It

shows agent selecting another direction to avoid obstacle collision. While, 3.2(4), indicates the time

limit, whenever the agent meets this limit, it should select another direction to follow.

Figure 3.2: ANT behaviour inside our generated search field
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3.2 Simulated 2D Search Field
The main goal of generating any test bed is to facilitate the trial and evaluation of real world experiments.

As discussed before inside structural collapses there are confined voids connected through narrow path-

ways [JME01]. These life safe voids are the most demanding locations for exploration robots. Search

robots should explore the entire maze of obstacles and debris in search of victims and the appropriate

exploration technique must ensure that the overall victim discovery time is minimised.

Due to the limitation of mini agents, especially in their functionality, they are deployed by their

mother wherever it is required to perform an exhaustive search operation. Thus in our scenario there is

a mother robot [MAB+99] sitting at the start point, i.e. S = (0, 0), and sending in smaller robots (we

assumed larger robots discovered these narrow voids), one by one inside a pancake collapse.

By performing random brownian walk, our agents can generate various 2D simulated environments.

The generated simulation environment is divided into several equal square cells, length L. In all our

experiments, in this activity, we assume that the grid size is L = 100 mm. There are four states available

for our square cells inside the simulation search field.

1- Occupied by obstacle or undetectable victim’s body part

2- Occupied by victim’s detectable part i.e. only four adjacent cells, creating a square.

3- Occupied by other agent(s)

4- Empty

The first three states make the cell inaccessible to the agents. We assumed that each agent occupies

only one cell every time it moves. Any cell that is explored by our agent will be indicated on the

simulation field. Therefore empty and unexplored cells are white, while explored cells are coloured

grey. This feature demonstrates the time sliced evaluation of agents behaviour, e.g. how well the search

strategy is able to spread its agents inside a search field.

3.2.1 Search Field Generator

To generate various confined and cluttered 2D simulation environments we follow an algorithmic ap-

proach [SS09a], algorithm 1, which is precisely defined as follows:

i- a victim(s) is located randomly inside an empty field; ii- a restricted entrance to enter the empty

field is selected; iii- an agent(s) is sent inside, from the restricted entrance, the field to perform random

walk and locate a victim(s); iv- All the recorded trails taken by the agent(s) will be considered as path-

ways and untouched free cells will become obstacles. In this case we may have multi paths, with only

one leading to our victim. Therefore, by running our random walk algorithm several times we are able to

generate various search paths inside our empty field. We are also able to change the number of victims

and robots to generate even more simulation environments. The size of the search field (frame size) can

be increased up to 100× 100 grid cells.

One of the advantages of such a search field generator is that it creates an accessible space (i.e. all

free cells are reachable), with a complexity that is rigidly defined through its fractal dimension (Dis-

cussed in Chapter 2). Fractional Brownian motion is produced when the random steps taken by an agent

are correlated in equally spaced spatial. Since the search fields are generated through these motions, we
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investigate the relationship between the fractal dimension of the search fields and their complexity.

Algorithm 1 Search Field Generation
Input: (x,y):Search field frame size; v:No. of victims; a:No. of agents;

Output: S:Generated Search field;

1: Place v number of victims randomly inside an empty search field (x,y)

2: Select a narrow restricted entrance in the corner (start point (0,0)).

3: Send in the (a) :agent(s) through the narrow entrance

4: while no victim is located, by the agent, do

5: Perform Brownian random walk

6: Record explored cells as pathways (1s) & untouched cells as obstacles (0s) inside S.

7: end while

8: return S;

Figure 3.3 shows an overhead of an example environment generated by our search field generator.

This is a 33×33 frame size, with a single victim in a middle ( to generate such a field we have sent in two

agents to discover a victim, thus the pathways are the footprints of the two agents). The red single grid

cell is our agent that is sent inside the generated search field, to explore the field (i.e. Field explorer).

Figure 3.3: An image of a generated simulation search field

3.2.2 Discriminative Complexity Index

In literature, self–affine fractal dimensions have been used in various applications to indicate fractal

complexity. Every fractal has a numeric fractal dimension that can be used to indicate fractal figure

complexity. There are several methods to calculate fractal dimension. This method has been used in var-

ious applications such as graphic image processing [Jon87]. The Box counting technique superimposes

a regular box of length γ on the object and counts the number of occupied cells (ni) in every type of

cells. We follow the power law relationship defined by Voss et al. [Vos88] to calculate the box–counting

dimension of our generated search field. The Power–law relationship is derived as:
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ni = Kγ−D (3.2)

Where D is the box–counting dimension and K is the total number of grid cells on our field of all states:

K =

N∑
i=1

ni(γ) (3.3)

We have N states of cells where ni is the number of individuals belonging to the ith types of cells

(i ∈ I = {1, 2, ..., N}) with the size of γ. Here we consider only two types of cells (occupied and

free, N = 2), and to estimate the box–counting dimension of obstacles on the search field, we calculate

the noc (number of occupied cells). Also we estimate the box–counting dimension of pathways (path

tortuosity). npath is the number of free cells inside our search field that are used as pathways for the

exploration agents.

In the box counting method a non–overlapping scanning applies boxes to an image (boxes are

superimposed over an image) by counting the number of boxes required to cover the whole image it

determines its box–counting dimension. We should adjust the minimum and maximum size of the boxes

(i.e. the length of the square box) in advance. The minimum size can be selected as one grid cell and the

maximum size can be adjusted to: max size = 40% × (image size), where image size is the boundary

containing occupied cells. In this technique the most appropriate size for the boxes in the box counting

technique depends strongly on the complexity of an image. For instance, the more complex an image is

the smaller is the size of its selected box. The most efficient cover is generated from box counting data

over multiple grid positions using the least number of boxes that is required for covering an image. For

each size, only the box count that was most efficient (i.e. the smallest number of boxes) is selected from

the entire grid position collections, as indicated by an example in figure 3.4.

Figure 3.4: grid position in (a) requires 12 boxes to cover the image, while in (b) requires 6 boxes

From equation 3.4 we are able to calculate the box–counting dimension as:
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D =
log K − log ni(γ)

log γ
=
log( K

ni(γ) )

log γ
(3.4)

D is a metric dimension, therefore its definition depends on metric scaling properties. Although the

number estimated by the box–counting dimension differs from fractal dimension, this difference in aver-

age is less than 0.02, we will refer to this value as the estimated fractal dimension (FD) all through this

thesis.

Figure 3.5 illustrates the correlation between victim discovery time and the fractal dimension. 101

simulated search fields (generated by our search field generator) have been chosen to determine the most

suitable index for search terrain complexity. These fields are differentiated first by the FDO (Fractal

Dimension of Obstacles) and then by the FDP (Fractal Dimension of Pathways).

The default values in our experiments are: a frame size of 33 × 33 square grid cells, we vary the

environment according to their fractal dimension. The number of the agents in this experiment was set

as the best performance for random walk algorithm. Thus we selected 3 agents to run the experiment.

Search agents are sent inside a generated void, from its restricted entrance path, to explore the unknown

search environment, with its various branches of different lengths. The average time steps taken by a

single agent to locate the first trapped victim in each field, is recorded as ‘victim discovery time’. This is

our primary fitness metric applied to select a discriminative index for our generated search fields. Each

time step in our graphs (figure 3.5) is the average of running the random walk algorithm 100 times. It

indicates that:

• fractal dimension of the obstacles has a negative correlation to time steps (with some fluctuations),

in other words to search field complexity.

• on the other hand there is a positive correlation between fractal dimensions of the pathways (FDP)

and search field complexity. The larger the FDP, the larger is the victim discovery time. Therefore,

the more complex is our generated search terrain.

From the results of this experiment we were convinced to use the fractal dimension of path tortu-

osity as the complexity index in our search field generator. This index is able to differentiate between

random developed environments according to their path complexity, because they were distributed using

Brownian motion. Therefore, all users are able to produce various fields by our algorithmic approach

and save the image as a binary image (zero for obstacles and 1 for pathways), scan it and use FracLac/J

image to estimate the fractal dimension of the generated search fields.

The fractal dimension of pathways has no correlation with the number of agents (Field generators),

nor with the number of victims (i.e. located inside an empty search field) and the search field frame

size. For instance by applying an agent, two victims, and a frame size of 33× 33 we mange to generate

five environments with the complexities as follows: FDP = 2.45, FDP = 2.49, FDP = 2.53,

FDP = 2.58, and FDP = 2.62. Furthermore, we applied an agent, and two victims inside a frame

size of 50 × 50 and we manage to generate five different environments as follows: FDP = 2.51,

FDP = 2.55, FDP = 2.58, FDP = 2.60, and FDP = 2.64. We also generated a search field
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Figure 3.5: Fractal dimension of obstacles and pathways (one time step=36 sec.)

with FDP = 2.58, which was generated by three agents and two victims inside a 50 × 50 frame size.

However, no matter how these fields are generated, FDP is highly correlated to the victim discovery time.

We set a maximum number for the trapped victims (Maxvic) inside an empty search field according

to their frame size: i-frame size of 33 × 33,Maxvic = 3; ii- frame size of 50 × 50,Maxvic = 4; ii-

frame size of 100×100,Maxvic = 7. These settings enable our map generator to generate more realistic

pancake collapses.

3.2.3 Probability Mass Function

The probability mass function (pmf) for a discrete random variable X is a function (fX(x)) that assigns

probability to each value of X This function shows how much probability, or mass is given to each value

of the random variables. The total mass for a probability distribution is equal to one. The notation used

to denote the probability mass function for X is P (X). In general, by applying the probability mass

function we are able to calculate the long–term average outcome of a random variable, which is called

the expected value.

The figure 3.6 shows the discrete time steps of an agent inside three search fields, different fractal

dimensions as: (FDP0 = 2.658 < FDP = 12.581 < FDP = 22.494) The probability of visiting

(not revisiting) new cells, for every 100 time steps, average over 100 run, is known as P (X(t)).

fX(t)(x) :

P (X(t)) = x, if t ∈ Ti

P (X(t)) = 0, if t /∈ Ti
(3.5)

Where, T = {a, b, c, d, ..., q}: a = {0, ..., 100}, b = {101, ..., 200}, ..., q = {1601, ..., 1700}.

a is the first time slot of 100 time steps, b is the second 100 time steps,... . In this experiment we

have considered the total of 17 time slots of 100 time steps (in this experiment 1685 is the maximum

time steps taken by the agents).
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Figure 3.6: Probability mass function for three different search fields, FDP0 < FDP1 < FDP2

For instance to estimate the pmf of the agent time steps, to discover a single victim, we have: if

t1 ∈ a then we assign P (X(t1)) = x1, where P ({ti ∈ T ;X(ti)}) = {x1, ..., x17}.

• For FD0, we have T0 = {a, b}, the c− q are empty, e.g. c = ∅.

• For FD1, we have T1 = {a, b, ..., h}, the i− q are empty, e.g. m = ∅.

• For FD2, we have T2 = {a, b, ..., q}.

We apply pmf function(equuation: 3.5) to the search fields as illustrated in figure 3.6. The average

probability (expected value) of visiting new cells for each field with respect to its fractal dimension are:

0.05, 0.12, 0.5. To sum up, the larger the fractal dimension of a search field the smaller is the number of

new cells that are visited in an interval of 100 time steps.

3.3 Complexity Index Validation
In figure 3.8 we compare TREE and ANT exploration Algorithm to the random walk algorithm for a

range of fractal dimensions of pathways (i.e. 101 search fields). In this experiment we are investigating

the positive correlation between FDP and the victim discovery time for other well known exploration

algorithms. Through this experiment we validate our complexity index, FDP, and we apply it to differ-

entiate our generated search fields all through this thesis.

ANT– We define our ANT algorithm [KL01] as an agent that keeps count of the number of visits of

each cell and moves to the least visited free cell among the 8 cells that surrounds it. All the visited cells

are recorded in an occupancy grid memory, and for each cell inside this memory (Nr) we have allocated

a counter, C[Nr]. The number of steps taken by an agent to discover a single victim is recorded as Ns.

TREE– The TREE algorithm, is an implementation of the on–line STC (Spanning Tree Covering)

algorithm by Gabriely and Rimon [MT04]. In this algorithm agents run a Depth–first Search (DFS)

algorithm during the incremental spanning tree construction. We fix the size of sweep covering width to

the length of our grid cell, i.e. 100mm.

Figure 3.7 indicates the spanning tree. An agent scans its 4 neighbours (free cells) and compare
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them to its recorded data to differentiate visited cells from un–visited cells. Visited cells (old cells) are

those recorded in the agent’s memory (e.g. odometry records). In Chapter 5 we will introduce occupancy

grid memory to store cell data. During each step, the agent selects the first free cell (CCW) that is not

visited before, i.e. y in the algorithm 3. If all the neighbours were visited , y = NULL, it returns to

its parent and rechecks the neighbours (i.e. function A.goback-parent()), ‘flagparent’ are reset to one. If

the parent cell did not scan any new cell, it selects a random free cell around it. It moves forward until

it reaches an un–visited cell and then sets its ‘flagparent’ to 0 again. In environments like our maze–like

search fields, the agent must revisit some cells to escape a dead end and reach to an area with un–visited

cells.

All the freshly expanded nodes are added to an exploration stack array, through which we are able

to guide the agent back to its parent cell.

Figure 3.7: (a) Counter clockwise scanning the neighbours (b) selected new cell is our current cell

Algorithm 2 performANT
Input: Ns;Nr; C[Nr]; ogm:occupancy grid memory; x: current cell;

Output: Ns;Nr; C[Nr]; ogm:occupancy grid memory;

1: Ns = 0; MIN=2;Nr = 3; i = 0;

2: while true do

3: scan all four neighbour cells around the x(cell)

4: for each empty cell neighbour do

5: if C[Nr] = 0 and i = 0 then

6: Fill the ogm;

7: Nr + +;

8: C[i] + +;

9: i = Nr;

10: else ifMIN > C[Nr] then

11: MIN = C[Nr];

12: i = Nr;

13: C[i] + +;

14: end if

15: end for

16: Ns+ +;

17: i = 0;MIN = 2;

18: return Ns, C[i],Nr;

19: end while



51 3.3. Complexity Index Validation

Algorithm 3 performTREE
Input: A:agent; x: current cell; stack[ ]:stored cells to parent.

Output: x: current cell; parent flag; parent cell;Ns.

1: parent flag = 0; parent cell : (0, 0);Ns = 0

2: while true do

3: scan all four neighbour cells around the x cell

4: w = parent cell

5: if parent flag == 0 then

6: select first CCW un–visited free cell y = neigbourcell(x)

7: if y 6= NULL then

8: stack = x

9: x = y

10: else

11: parent flag = 1

12: A.goback parent()

13: end if

14: else

15: if x = w then

16: select first CCW un–visited free cell y = neigbourcell(x)

17: if y 6= NULL then

18: stack = x

19: x = y

20: parent flag = 0

21: else

22: select randomly a free cell x′ = neigbourcell(x)

23: stack = x

24: parent cell = x′

25: x = x′

26: end if

27: else

28: A.goback parent()

29: end if

30: end if

31: return x, parent flag, parent cell,Ns;

32: end while

Algorithm 4 performBrownian Random Walk
Input: A:agent; θ:agent movement angle;

Output: p:agent next position; ω:time limit; θ:agent movement angle;Ns;

1: withdraw an ω [equ: 3.1];

2: Ns = 0;

3: A:pos start(0, 0);

4: while true do

5: if ω 6= 0 AND cell.θ =‘FREE’ then

6: ω- -;

7: else

8: withdraw an ω [equ: 3.1]

9: select a free cell randomly, direction α

10: θ = α

11: end if

12: according to θ: select p=A.next position();

13: return p, θ, ω,Ns

14: end while
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The default values in this experiment are the same as in section 3.2.2 . Three agents are sent in to

discover a single trapped victim. In contrast to fractal dimension, which is independent of trapped victim

positioning, discovery time for all algorithms (except the random walk algorithm) is highly sensitive to

the position of trapped victims. Thus, for each field we perform 20 experiments with the trapped victim

(occupying 4 adjacent cells) placed in different, randomly selected, positions inside the fields. Thus, we

perform the TREE and ANT algorithms 20× 100 = 2000 times for each field. We have implemented an

omniscient oracle algorithm that knows the true status of all states, even the goal states. It is therefore

able to determine the optimal path to the goal.

Figure 3.8: Tree, ANT, Brownian Random Walk (BRW), and Oracle algorithms comparison

As expected, agents using the random walk algorithm, that was used to generate the environment,

repeat their behaviour. However, agents using the ANT algorithm are able to reduce the number of

revisits they make to cells. This reduction is largest in more complex search fields, FDP > 2.55.

Each data point shown for the ANT and TREE algorithm in figure 3.8 represents an average over 2000

experiments.

The larger is the fractal dimension of pathways (FDP), the more complex is the generated search

terrain. Thus random walk agents, with high redundancy behaviour, spend a much longer time to discover

a victim. For instance, from our additional test results, for a 10000 grid cell frame size with complexity

of FDP = 2.68 to test the BRW algorithm, running it for 100 times for each search fields (100 search

fields), has a run time of more than a day which makes this test inefficient in terms of exploration

time. Fortunately we are able to predict the time steps of the Brownian motion (discussed in chapter 4).

This feature allows us to avoid running this time consuming random algorithm and ease our comparing

process.

As discussed in Chapter 2 TREE algorithm has the tendency to revisit cells, e.g. going back to its

parent cell, and agents running the ANT algorithm cannot determine when the exploration task is com-

pleted. This is problematic when applying on a search field with unknown number of trapped victims.

The ANT agents are never aware when they have covered the complete search field. Additionally both
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of these algorithms do not take transition errors into account and this will have negative effect in the

discovery time. Later in this thesis, we introduce a predefined occupancy grid memory for all our search

agents. This enables the agents to be aware of their full coverage while performing their exploration

strategies. We assume that the size of the grid memory is estimated from the outside of the pancake

collapses, by the mother agent.

3.4 Discussion
The introduction to intelligent algorithms and cooperative behaviour for multi–robot systems enables the

researchers to improve the performance of their systems significantly. However, the subject is in need

of formal methods that will enable researchers to make objective comparisons between approaches and

evaluate their performance in a controlled environment. Above we have suggested an approach that can

lead to a most rigid classification of a wider range of search areas that introduced by the NIST courses.

We also demonstrated a formal approach that can classified generated search fields by a discriminative

index. In this regard the fractal dimension of pathways inside a generated search field has a positive

correlation to the goal discovery time, and we select this as the search field complexity index.

Our approach is not limited to two dimensional search fields. It is possible to use a similar proce-

dure to work on search fields composed of cubic cells. We can here apply “shape from shading”(SFS)

technique [TS94] to transform 3D into 2D. The “Fraclac” tool can then easily be applied to the 2D

search field as discussed in this chapter. The complexity will now be defined by two indices: FDP and

surface depth. SFS aims to derive a 3D scene description from a single monocular image. They re-

covered can be expressed in various ways including surface normal N = (x, y, z)T and depth Zx,y . A

surface normal is a unit vector perpendicular to the tangent plane at a point on the surface while depth

can be seen as the relative height of the surface from the xy–plane.



Chapter 4

Performance Metric Analysis

As mentioned previously, performance is a vital aspect of disaster exploration and it is essential for

researchers in the field to have benchmarks that allow them to compare the quality of their designs and

strategies against those of other developers. Benchmarks provide an opportunity to perform controlled

experiments under well defined conditions that can be produced with results that can be evaluated through

measurements. When they report their results, researchers must therefore provide detailed information

about their experiments regarding the types of scenarios, hardware requirements and underlying software

libraries. In the literature, there are a great number of autonomous exploration methods [CL04, BMSS05]

for multi agent systems and benchmarks that allow developers to compare their results, and to evaluate

which approaches are superior under which circumstances. According to Dillmann [Dil04] there are

three essential aspects of benchmarks for AI (Artificial Intelligence) and robotic research:

i- (Task) the agent has to perform a mission, e.g. a specific goal to achieve.

ii- (Standard) the benchmark has to be accepted by experts in the field.

iii- (Precise definition) the task should be described exactly, for instance:

the execution environment, performance metric, and limiting constraints.

Here we are aiming to further develop, respecting the above aspects, systematic benchmarking for

the exploration mini–agents that will allow results to better reported, assessed and compared. Bench-

marking relies on the evaluation and comparison of selected measurement based performance metrics.

Without that, it is only possible to decide whether or not a given system is able to perform a mission (i.e.

robustness). The use of a single measure is rarely possible. To evaluate and compare the performance

of all the aspects of exploration algorithms, we have therefore developed a set of metrics that allow

comparison between both homogeneous agents using a range of algorithms.

We divide the performance metrics into two distinct groups, Off–line and On–line. Off–line perfor-

mance metrics are estimated at the end of the task. They may include aspects such as speed (how fast

they can explore?) and success (is the desired result achieved?) and will allow the researchers to make an

overall evaluation of how well their algorithms perform. They enable us to select optimum search strate-

gies for the various search fields and are essential for evaluating the performance of a system against one

or more competing algorithms. This makes it possible to provide an experimental validation of the effec-

tiveness of a new algorithm. It will also allow researchers to optimise their algorithms. On–line metrics
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on the other hand are used by the agent during its task to estimate its performance against expectations

and thus assist it to achieve its goal. For this purpose, we here introduce effectiveness of coverage, a

novel performance metric that can be assessed by the agent during each time step to estimate the ex-

pected action utility. We will evaluate whether the performance of the exploration procedure improves if

a reward function is used to reward it according to its effectiveness of coverage during each time step.

In this chapter we will also evaluate the power spectral density of each search field from its fractal

dimension, and from this value we are able to predict the BRW algorithm behaviour. This predicted

time series dataset is used as the BRW algorithm benchmark, since BRW algorithm [ML05] is one of

the most popular random exploration techniques applied on search agents. This search technique is

highly reliable and robust and has the widest applicability to different types of environments among the

exploration procedures. However, its performance is poor because it is repetitive and redundant and

more effective and robust search strategies are therefore urgently required.

4.1 Preliminary Remarks about Metric
The main purpose of the USAR simulation competition is to provide emergency decision support by

integrating disaster information, prediction, planning, and human interfaces. The following presents

some of the ideas derived from past RoboCup competitions [Bal06]:

• Modify victim discovery requirements to include not only discovery, but also that a team provides

a data sheet for each discovered victim. In order to receive full score, this sheet would need to

include a path leading to the victim, information about the victim’s status, and information about

any hazards that exist along the route to the victim.

• Exploration may be based on the amount of areas that a robot clears. Here ‘clearing a given area’

means that all victims in the area have been located.

• Penalties will be assigned for failing to discover victims and reporting an area as clear that has

victims or hazards.

The Virtual Robot competition at RoboCup creates an excellent forum in which to discuss perfor-

mance metrics for search and rescue robotic systems. These metrics are defined in terms of mapping,

victim discovery, and exploration time based on the completely explored area. However, detailed map-

ping of the disaster area at the speeds that are required is impossible , especially from the current search

and rescue robot technology. The ultimate goal for search and rescue robots is to explore the entire

disaster area and make certain that the area is clear from any trapped victim.

4.2 Multi–Agent Exploration System Taxonomy
As indicated in figure 4.1 we divide the task of multi–agent exploration system in two categories:

Individual–level and team–level. In individual–level tasks, an agent should be able to fill its occupancy

grid memory with its collected data. It should also be able to return to its base station (mother robot ),

to report back its findings, i.e. the generated memory from its microscopic surveying. All these tasks
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are considered as agent’s individual higher level behaviours, while in its lower level an individual agent

should be able to avoid any collision with both, other agents and obstacles.

Figure 4.1: Taxonomy of our multi–agent exploration system

For team–level tasks, team of agents should be able to perform a formation (enable them to spread

much easier and more thorough, while avoiding the initial congestion). To maintain the formation while

moving, they should be able to communicate with each other. Additionally, lower level behaviours, such

as obstacle avoidance while following the team movement is essential. In this defined ‘team work’,

agents coordinate their activities with each other to satisfy group goals. They decompose the full cov-

erage of the search field among themselves and then distribute this data. This approach can reduce the

complexity of agents task while smaller sub–tasks require less capable agents and fewer resources.

We investigate our team exploration technique in Chapter 6, and our novel individual exploration

algorithm will be presented in Chapter 5.

4.2.1 Team–Level Metrics

In order to evaluate and compare the performance of a team of robot, we will develop a set of metrics.

Well defined metrics allow comparison between robot teams with different compositions, and algorithms.

The metrics introduced by Balch and Parker [BP02] to characterise the performance of a real robot team

are:

The time taken to perform the mission, the area explored per unit of time (coverage time), the

dimensional accuracy, and the power consumption. The dimensional accuracy is obtained by comparing

the distance between mapped features (e.g. two walls) with the actual distance. The energy consumption

normally is measured by comparing the battery charge for each robot before and after the experiment.

We have applied some of these metrics to compare various algorithms. For instance, in Chapter 6,

we use the ‘Coverage Rate’ metric to evaluate and compare the performance of various teams of our

simulated mini robots. Our goal in this activity is to enable the group of mini agents to estimate var-
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ious metrics on–line through the group exploration and perform urgent behaviours whenever it deems

necessary.

In order to quantify the results for multi agent system, we apply two additional met-

rics [XGCS07](i.e. off–line metric) to indicate how well an algorithm is able to spread its agents

inside a search field (see in Chapter 6), they are:

(i)- Exploration Area percentage pEA

pEA =
AAc
A
× 100 (4.1)

Where, AAc is the area covered by the search team and A is the total area of the search field. However,

here we will approximate AAc by the number of visited cells by the team of agents and set A = Nf

which is the total number of empty cells available inside the search field.

(ii)- Exploration Efficiency percentage QEE

QEE =
AAc∑tna
i=1 di

× 100 (4.2)

Here we define di as the number of steps taken by each agent.

Metrics, to some extent, are determined by the scenario in which agents are operating. Choosing the

right parameters requires understanding and careful analysis of the experimental setup. The criteria are

very dependent on the attributes of the robots and their environment. Experiments where the robots oper-

ate on an empty soccer field are very different from when they are in a crowded train station. Fortunately,

most experimental work involves measuring the effects of a small number of limited modifications to the

algorithms or parameter set while most of the experimental setup and infrastructure remains unchanged.

4.2.2 Individual–Level Metrics

In this activity we are deploying both off–line and on–line metrics to measure the performance of the

agents as follows:

– Off–line metric: i- Victim discovery time; ii- Full coverage time.

– On–line metric: Expected Utility.

The expected utility provides an agent, at each step, to act efficiently in terms of minimising the ex-

ploration redundancy. We investigate two expected utility for each agent movement : i- without transition

errors ii- with transition errors.

4.3 Expected Utility
The exploration performance is normally determined by a set of information metrics, each reflecting one

of the goals of the exploration task in an experiment. Therefore, as these exploration tasks become more

complex it may be necessary to increasing the number of information metrics. This is especially true

for on–line metrics. In order to perform a successful and efficient search, it is often desirable to obtain

advise from multiple metrics simultaneously during exploration. In Chapter 5 we introduce a novel

exploration technique that attempts to improve the efficiency of the explorer decision making by basing

it on an on–line metric derived from information collected on the fly. In this regard, the ideal method is
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that the explorer knows the relative importance of its information metric and weight them appropriately

when making decisions about where and how to look. More important in our scenario, the notion of

the expected utility of an action provides an agent with a method for deciding how to act in the face of

uncertainty.

In this activity agents are able to assign utility (or a value) to the situation in which they find

themselves and therefore, to the actions that they can perform. Given a general ability we are able to

order situations, and actions with definite probabilities that will yield to particular utilities. Imagine a

utility function as U(Oi|A), where Oi is the possible outcomes, and A is a particular action. We also

define a probability for each such outcome, as Pr(Oi|A), then we can compute the expected action

utility for action A.

Our agent expected action utility is defined below as the effectiveness of coverage. In this chapter

we only investigate a SISO system, single input and single output. Therefore, for taking each action

(movement ) we have only one possible outcome (i = 1). Later in Chapter 5, by considering transition

errors, we will further investigate 3 possible outcomes of an action.

4.3.1 Effectiveness of Coverage

To explore an unknown environment, we make use of the location of a robot and the history of the

observations it accumulates inside a search field as it performs a search task. In this section we use syn-

thesised environments to evaluate the efficiency of various search techniques. To be effective a search

strategy should divert robots towards unobserved areas but during these efforts some areas may be revis-

ited frequently while others remain unexplored. So to measure the efficiency of each movement we will

introduce an ‘effectiveness of coverage’, our novel on–line metric.

As mentioned before, we use an agent with a 360 degree view, divided into 8 segments. As shown in

figure 3.1(Chapter 3), this view is mapped onto the eight cells that surround the agent. The agent is aware

that it is located in the centre of this field, and of state (empty or occupied) of each of the surrounding

cells. Every time the agent moves, its window vision shifts in each ordinal direction as well. A victim is

only observable when part of it occupies one of the eight cells.

Table 4.1: Effectiveness of Coverage parameters

Parameter Description

Ns Number of steps taken by the agent

Nr Number of visited cells, unique cells

NT Total number of accessible cells inside the search field (All the available free state cells).

Na Total number of grid cells inside each field, e.g. Na = 33× 33 = 1089.

Nik Number of times that cell k has been revisited

ni Expected number of visits to a cell.

n An upper limit for the number of times a cell can be visited.

P The probability that a cell is revisited.
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The “effectiveness of coverage” metric (U) is defined in equation 4.3 as:

U =
Ns∑Nr

k=1Nik +NT
(4.3)

Where
∑Nr
k=1Nik + NT is an estimate of the maximum number of steps that can be taken by

an agent. In order to optimise our exploration algorithm, we assume there is an upper limit (n) to the

number of times a cell can be visited. If all cells are considered equal, we can then derive an expression

for the expected number of visits (ni) from the probability (P) that a cell is revisited. We follow the same

technique that William Stallings applied to approximate the expected degree of improvement in data link

transmission, known as stop-and-wait ARQ (Automatic Repeat Request) [Sta04].

The probability that single cell will be visited exactly i times by the agent during the exploration

procedure is Pi−1(1− P), i.e. the cell is being revisited (i− 1) times. The probability of this occurring

is simply the product of the probabilities of the individual events. Then:

ni = Expected[ visiting a cell ] =

∞∑
n=1

n× Probability[n times visits] (4.4)

or

ni =

∞∑
n=1

n× Pn−1(1− P) = (1− P)

∞∑
n=1

n× Pn−1 (4.5)

Let us develop some approximation to determine the expected number of visits (ni), by applying the

infinite sum equality:
∑∞
i=1 i ∗ Xi−1 = 1

(1−X)2
, when− 1 < X < 1 it give us:

ni =
1

(1− P)
(4.6)

Approximating
∑Nr
k=1Nik to give us:

Nr∑
k=1

Nik ≈ Nr × ni = Nr × 1

(1− P)
(4.7)

we see that

U =
Ns

Nr
1−P +NT

=
Ns(1− P)

NT (1− P) +Nr
(4.8)

Because the agent has no prior knowledge of the number of free cells inside the search field, it needs

to estimate NT from the number of cells that it observes during the exploration procedure. At each time

step our agent can only see 8 cells that surrounds it. So it assumes that the maximum number of empty

cells, at each time step, is approximately 8 ∗ Nr. The effectiveness of coverage at time step t can then

be expressed as:

Ut =
Ns(1− P)

Nr(9− 8 ∗ P)
(4.9)

To enable our agent calculating above values, all the cells visited by the agent should be stored in

a matrix (Pos). Each time step, the ‘Pos matrix’ (odt=(xt,yt) ) is updated together with Ns and Nr. We
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assume that our agent is aware of its direction θt by its IMU to reduce the odometry error [Duc00] as

much as possible. In addition the robot has a counter vector C[Nr] to store the number of times each

cell has been visited. Therefore each element inside vector C [Nr] is representing one unique cell. We

introduce the maximum number of expected steps as mes = Nr(9−8∗P)
(1−P ) . This number is estimated by the

agent at each step. The value of mes only increases when a new cells is visited, a revisit to a cell causes

the value of mes to remain the same. U t enables our agent to switch to another behaviour . For instance

if 1 ≤ U t agent should terminate its performance (exploitation). In Chapter 5, we will use this metric to

define a reward function for our agents.

The search agent explores the environment by moving to a free cell among the 8 cells that surrounds

it and the environment then presents the agent with a reward provided by a task–dependent reward

function. If an agent always selects an action that maximises the value of the reward function it is said

that the agent is following a greedy policy, i.e. it exploits what it has learned during the exploration.

4.3.2 Parameter Evaluation

We should estimate the most suitable upper limit (n) to the number of times a cell can be visited and the

probability (P) that a cell is revisited during exploration. In this regard, we apply ANT agent to select

these numbers. As discussed in Chapter 3, ANT algorithm is attempting to visit least visited cells as

much as possible. Therefore, it is a suitable exploration algorithm to help us selecting the above values.

We set up two experiments, the default values are a search field of 50×50 grid cells, we change the

position of the goal 20 times and we run the algorithm 100 times for 70 search fields.

• to reduce the redundancy of revisiting the explored cells, and minimising goal discovery time we

need to set a limit of revisiting a cell. Revisiting some cells several times is inevitable during

exploration procedure, especially in our cluttered and confined fields. However, to avoid unneces-

sary revisiting as much as possible Ant agent estimates the largest number of revisiting each cell

in each run time. For the minimum discovery time of each search field, among 2000 times running

the ANT algorithm, we select its maximum number of revisiting a cell. The largest number among

all 70 search fields will be selected as our upper limit, n. From our result this is set to n = 7.

• now we should estimate the probability that a free cell inside a search field is revisited up to 7

times, we follow: i-recording the number of cells that they have been revisited up to 7 times (as

estimated above) to find a goal ( Rrevisit ); ii- recording the total number of free cells (Tfree); iii-

P = Rrevisit
Tfree

; this is estimated for all available runtimes; iv- estimate the average P̄ among all

estimated probabilities. From the result this is set to P̄ = 0.83.

The effectiveness of coverage for our Oracle algorithm remains the same all through the exploration

procedure, Uoracle = A. This is U = Ns
Nr ×A, where A = 9−8P

1−P , since the total number of steps and the

total number of unique cells are the same for finding a single known goal, Ns = Nr. However, for all

other algorithms, this value will increase in some point during the exploration. This is because the agent

starts revisiting some cells, Ns > Nr.
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4.4 Evaluated Benchmark
Benchmarking is a common scientific comparison instrument. A good example, in this regard, for a

successful performance measurement is the computer vision community. There are several projects that

aim to provide image data bases to other researchers [AoT]. These image databases are supplemented by

ground truth images and algorithms that calculate performance metrics. In doing so, the community is

able to make progress and to document this progress in fields like image segmentation and object recog-

nition. Unfortunately this kind of controlled performance monitoring is not widespread in the robotics

community. Even though there are several ways of comparing the performance of robotic algorithms

and their systems, a basic first step is to provide experimental data and results to a community of well

established research groups but up to now this has only been done by small projects [SFG] or individual

researchers.

There are several frameworks that are used as network servers for robot and sensor control and run

on the robot/sensor hardware as well as on the computer modelled hardware. For instance USARSim [Ut]

is a simulation tool that provides NIST sponsored reference test arenas for autonomous mobile robots.

It has the ability to model buildings in various stages of collapse and is intended to provide objective

performance evaluations for robots as they perform a variety of urban search and rescue tasks. It provides

users with the capability to build their own environments and robots. Its socket–based control is designed

to allow users to test their own control algorithms. However, they have yet to define any complexity index

that enables the users to differentiate and classify test fields.

The most popular options to compare robotic systems are competitions like RoboCup [Fed] (cov-

ering both inside simulation environment and real world replication), ELROB [TERT] or the Grand

Challenge [Cha]. Through these kind of competitions it is possible to measure the level of system inte-

gration and the engineering skills of a certain team, but it is not possible to evaluate the performance of

a subsystem or a single algorithm, especially in its early stage of development.

In addition to the fractal dimension introduced in Chapter 3, we are able to formally characterise the

Brownian random movement characteristics of the BRW algorithm, through its power spectral density

(PSD). This index characterises the random movements made by the mobile agents used to produce

the pathways for our simulation environments. Furthermore, the fractal dimension (of a time series) of

the Brownian random movement is directly related to the Hurst exponent “H”. H for the statistically

self–affine dataset (referred to as α in Chapter3) is defined for each search field as: H = 2−FD.

The power spectral density is:

P (f) ∝ f−λ (4.10)

with λ = 2H + 1. The Brownian motion has a spectrum of [Lo89]:

P (f) = Kf−2H−1 (4.11)

The spatial frequency for free grid cells in the search field is f =
Nf
Na

.
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Table 4.2: Power Spectral parameters

Parameter Description

f Spatial frequency

K Constant value

Nf Total number of empty grid cells inside each field

Na Total number of grid cells inside each field, e.g. Na = 33× 33 = 1089.

As shown in 4.2 the power spectral density of each search field is inversely proportional to the

number of time steps an agent spends searching before it discovers the first trapped victim. Each point

in this graph represents the average obtained from running the BRW algorithm 100 times.

Figure 4.2: Average victim discovery time steps for BRW algorithm

Furthermore, as x → 0 then y → ∞, and as x → ∞ (i.e. no empty cell to explore) then y → 0.

We are therefore able to express the relationship shown in figure 4.2 between the victim discovery time

measured in time steps y and power spectral density P (f), which x = P(f), by the approximation:

y ≈ β

x
, β ∈ R+ (4.12)

Using standard regression technique we can now determine the function that provides the best fit to

the data. This approximation technique is called regression. Roughly speaking regression is the exercise

of fitting a function to data (e.g. fitting function for one parameter is a line and for parameters is a plane).

In this regard defining an error measure and minimising this error usually estimate the parameter(s). The

measure of error used in standard linear regression [STC04] problem is the mean squared error.

4.4.1 Ridge Regression

Linear regression allows us to determine the best–fitting line for the set of data points (X, y), represented

in scatterplot in the figure 4.3. We define that, as the line that corresponds to the smallest residual. Let
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X be the data set matrix of dimension (2, q) and y the target matrix of dimension (1, q). The regression

line model is then given as:

ŷi = w0 + w1 ∗XT
i + ε (i ∈ Z+) (4.13)

Where ŷ is the predicted value of y, X , where X = 1
x (to have a linear system), ε ∼ (0, 0.5)

represents the Gaussian noise, and W (weightfactor) ∈ R [Gro03].

X =


1, X1

1, X2

: , :

1, Xq

 , y =


y1

y2

:

yq

 , ε =


ε1

ε2

:

εq

 W =

w0

w1

 (4.14)

The predicted weight constant Ŵ should be selected so the prediction error is minimised and be-

cause we have 100 search fields q = 100. We use the regression analysis to predict the time–series for

the BRW exploration algorithm. In this regard we use ridge regression least–square estimator [Cle08] to

estimate the weights as

Ŵ = (XTX)−1XT y; (4.15)

Where X and y are the training data obtained by running the BRW algorithm inside 100 search

fields. The goals of linear least squares are to extract predictions from the measurements and to reduce

the effect of measurement errors.

Figure 4.3: Best fitting line and average discovery time steps (scatter) for BRW algorithm

Using equation 4.15 we estimate the constant W as ŵ1 = 64 and ŵ2 = 421. This enables us to

develop a mathematical benchmark through equation 4.13 and users are then able to develop various

1There are estimated and plotted by MATLAB
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Algorithm 5 Benchmark Generation
Input: f:spatial frequency; fd:Fractal dimension; S: Generated Search field ;

Output: y;

1: K = 0.1;

2: W =

64

42

;

3: for S do

4: Calculate the PSD of S: PSD=compute(W , f, fd, K) [equ: 4.11]

5: X = 1
PSD

6: Calculate the time step y from [equ: 4.13]

7: end for

8: return y;

exploration search fields, according to our search field generator, calculate their fractal dimension using

the FracLac tool, and predict the victim discovery time steps required by the BRW exploration algorithm.

4.4.2 Predicted Time Series

Figure 4.4: Oracle against Predicted benchmark (BRW), TREE, and ANT (one time step=36 seconds)

The default values are: frame size of 50 × 50, 5 agents, and one single goal (the goal is removed

randomly inside the search field 50 times). The performance of a single Oracle agent, multi-agent TREE

and ANT algorithms are compared to our predicted benchmark for a range of fractal dimensions in fig-

ure 4.4. In an area as large as 50×50 the available algorithms perform poorly (in terms of discovery time)

comparing to our oracle agent. Therefore, in the next chapter we investigate frontier based exploration

algorithm. With no transition errors, this algorithm is able to reduce the discovery time significantly.

However, we managed to adapt this algorithm to deal with positional uncertainty (outcome of odometry

errors) by introducing Directed Ahead Exploration Agent (DAEA).
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4.5 Discussion

In previous chapters we have discussed how to model the dangerous, cluttered and confined parts

of the NIST red course through simulations. Our search field generator uses fractal path tortuosity to

differentiate its random generated confined fields. Furthermore, in this chapter, we have introduced

essential standard metrics that will be applied through this thesis to evaluate the multi–agent system

performances. Through our presented technique, we are able to predict the BRW algorithm according to

the power spectral density of the search fields. Therefore we manage to develop a mathematical–based

benchmarking technique.

Later on we deploy our on–line metric to develop an advanced frontier–based exploration strategy.

This expected utility will asset the agent to decide: i- how to move to the frontiers (regions on the border

between open space and unexplored space); ii- what to do in the face of uncertainty (odometry errors

that lead to positional uncertainties). Our goal is to reduce the discovery time (compared against other

competing algorithms) inside the narrow gaps and small voids of a collapsed building, by including

realistic transition errors.

In the next chapter we will introduce our novel directed path planning toward frontiers for narrow

pathways and small tunnels. Directed exploration methods utilise some exploration–specific knowledge

that increases the ‘knowledge gain’ and decrease the ‘knowledge uncertainty’ so that the value function

is learned faster or more completely (it is categorised as the greedy exploration). This advance search

technique will be tested in various complex and ambiguous test fields generated by our search field

generator. We compare our work to existing algorithms, as well as our evaluated benchmark, which is a

well–known search technique for autonomous mobile robots.



Chapter 5

Performance Aware Agents

Consider a scenario where the exploration robots are provided with the map of a search territory in ad-

vance. This map can either be metric, giving the exact locations of obstacles, or a graph representing the

connectivity between open spaces. However, even in this scenario most of the mobile robots are unable

to navigate efficiently when they are placed in an unknown position, even inside a known environment

(kidnapped robot problem). While many robots can navigate using maps, there are robots that can build

their own representation of the environment e.g. map, by recording information about their surrounding

in an unknown search field. In this chapter we refer to exploration as the act of filling an occupancy

grid memory while moving through an unknown environment. This memory grid can in turn be used to

approximately locate trapped victims or for the basis of further exploration.

A good exploration strategy is here one that is able to generate at least a nearly complete occu-

pancy grid memory of a search terrain in a reasonable amount of time. In real world scenarios it is a

challenging task to make such grid memory because odometry data in practice tend to be noisy and GPS

devices often are unreliable in an indoor environment. This means that we are facing a problem that

is not deterministic and in the literature, Partially Observable Markov Decision Process (POMDP) are

often proposed to address the issue of goal pursuit in such environments [KLC98]. Systems resulting

from solving POMDPs can handle the uncertainty such as agent observations (POMDP technique is

completely discussed in Chapter 2). However, to find an optimal policy is computationally expensive.

There are various techniques to reduce the complexity of POMDP planning for “exploration

robots”. This is by assuming a discrete environment (e.g. square grid) to explore rather than a

continuous search terrain. As a result, there has been a lot of work on computing approximate

POMDP solutions [Hau00b, Roy03, LCK95] and specifically approximate point–based POMDP algo-

rithms [SV05, ZZ01]. Roy [Roy03] has presented an algorithm to find a low–dimensional representation

of the belief space. Through dimension reduction, the planning process becomes much more tractable.

However, the algorithm relies on a rough metric map of the environment. Littman et al. [LCK95] intro-

duced a framework between POMDP and MDP (Markov Decision Process). They converted POMDP

belief space to MDP with a continuous state space. Their results are only satisfactory for up to 100

state cells. Spaan and Vlassis [SV05] introduced a randomised approximate point based value iteration

algorithm for solving POMDP for robot planning. Their algorithm first needs to collect a set of belief
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points by exploring the environment and based on this set of belief points a control strategy is learned.

Collecting belief points randomly is very time consuming and is not practical for time critical tasks such

as search and rescue. We are interested in the latter algorithm. However, in our approach the agent

collects belief points with one–step optimal planning instead of randomised procedure. In this chapter

we investigate agents performing ANT, TREE, Brick and Mortar, BRW, and frontier–based exploration

procedures with and without odometry errors. For agent that their performance is based upon its col-

lected data, accumulated errors will cause a dramatic positional uncertainty. We further investigate our

frontier–based algorithm as follows:

Without positional uncertainty- we design a mathematical model–based control approach to direct

an agent inside a search field toward the boundary between explored and unexplored regions. We deploy

our novel on–line metric, effectiveness of coverage (introduced in Chapter 4), that is assessed by the

agent for each time step through its limited sensor readings. This mathematical–model frontier–based

strategy, called Directed Ahead Exploration Agent (DAEA) algorithm, and we test its performance over

various search fields.

With positional uncertainty- after investigating our approach without transition errors, later we in-

vestigate the extended DAEA (EDAEA) by adding positional uncertainty. The EDAEA algorithm is a

mathematically established algorithm coupled with probabilistic information distribution, where the be-

liefs of agent regarding to its surroundings are included. These additional data will enable our search

agent to reduce its uncertainty through POMDP decision making.

In this chapter: i- We will assess whether an exploration procedure can be improved by responding

to such an on–line metric. In this regard, an agent is strictly rewarded according to its effectiveness of

coverage at each time step through a function reward. ii- We will investigate how an extended DAEA

algorithm enable our agents to reduce their uncertainty and therefore minimising the exploration redun-

dancy compared to other available strategies.

5.1 Reward Function
If an agent can be considered independent, i.e. its performance does not depend directly on the actions

of others, it may be desirable to reward the agent based on its performance. In this regard, we apply a

reward function (equ: 5.1) after each time step.

R(s) =

1− U t if Cr 6 n or U t < 1;

−1 otherwise
(5.1)

Where Ut is the effectiveness of coverage (U = Ns
mes & mes = Nr(9−8∗P)

(1−P ) ) of current cell. Except

in our new algorithm that t-1 refers to current cell and t represents the future cell selected by our agent to

move into, e.g. the immediate effectiveness of coverage. As defined in the previous chapter, Cr vector

stores the number of each unique cell that is visited by an agent while exploring a search field. We

consider an upper limit as n. To achieve a time efficient exploration, our agent should not revisit a cell

more than its adjusted limit. We have set n = 7, as discussed in Chapter 4.
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For all exploration algorithms (i.e. BRW, ANT, TREE, and Brick &Mortar algorithms), in this

chapter, the search agent receives reward after taking each step. Therefore their exploration task and

the reward function are treated separately. However, for DAEA algorithm, the exploration task is de-

fined by an on–line metric, and we build the reward function upon this on–line performance metric, see

equation 5.1. All the accessible cells around the agent have their immediate expected reward. Note that

among all the defined exploration strategies in this chapter only DAEA aims to maximise its reward in

each time step. In DAEA, action selection is designed to direct the agent through an effective coverage

procedure, will discuss further below, which is moving to frontier regions.

5.2 Frontier–Based Technique
A conventional control theory, tries to make a mathematical model to direct a system. In contrary to

rule–based control system, e.g. [Yam97], that produces a model of skilled agents, in the mathematical

control–model, e.g. [RK04], usually no agent is factored in the design. We present the basic frontier–

based algorithm [Yam97] in a mathematical model rather than its original rule–based control system,

because by this model we are able to:

1- define a systematic reward function for non–deterministic decision process to asset our agent

toward frontiers. A frontier is any known and unoccupied cell that is an immediate neighbour of an

unknown ( unexplored ) cell;

2- recognise problematic uncertainties, through a predefined threshold;

3- apply approximate–POMDP technique to reduce positional uncertainties (because of transition

errors). EDAEA agent reduces positional uncertainty, which prevents it from finding a trapped victim

independently of its position in a minimum time. Thus, an agent may sometimes be forced to persist

with a high level of uncertainty, in a portion of the belief–space in which uncertainty reducing actions

are very expensive in terms of time.

Basic Frontier–based– Using this exploration technique a robot moves toward boundaries or fron-

tiers between known and unknown environment. In this technique agent is seeking to visit new areas

without considering any uncertainties in its collected data. In occupancy grid memory an occupancy

probability value (Pom) of zero corresponds to a free cell and a value of one corresponds to a cell oc-

cupied by an obstacle. Initially all the available cells inside a predefined matrix memory are assigned a

value of 0.5, i.e. equally likely to be occupied or free.

• frontiers are detected within its occupancy grid memory this is by scanning probabilities stored

inside its grid memory. It marks them as its goal cells, and attempt to find them as fast as possible.

A set of simple rules are applied as follows:

• a path planner uses a depth-first search [Sed01] on the memory grid, starting at the agent’s current

cell and attempting to take the shortest obstacle–free path to the cell containing the goal location.

Among multi goal cells one will be selected randomly.

• if the agent is unable to make progress toward its destination for a certain amount of time, then
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the robot will determine that the destination is inaccessible, and its location will be assigned to 0

probability.

DAEA– There are two modes defined for DAEA technique( 5.2 ) : i- maximising the expected

reward, ii- Basic Frontier–based approach. This search technique implements immediate optimal plan-

ning by maximising the expected reward (E[(R(s)]). If there are more than one solution it selects one

randomly. When all eligible cells around the agent have R = −1 , the agent moves to a boundary be-

tween open space and unexplored space, performing frontier–based algorithm as discussed above. When

a robot moves to a frontier, it can see into unexplored space and add new information to its occupancy

grid memory. The agent follows frontier–based algorithm tillR 6= −1, then it switches to its first mode,

maximising the expected reward (by its on–line metric). Where a∗ is defined as the optimum action

selection for our agent, we present action selection:

Action selection :

a
∗ = maxE[R(s)], if R 6= −1;

a∗ = maxNr otherwise
(5.2)

We set up an experiment to compare the behaviour of DAEA performance aware algorithm to other

competing performance aware algorithms such as : B&M, ANT, and TREE. We also compare the result

with BRW, unaware performance. Performance aware algorithms are techniques that utilise recorded

odometry data. We later evaluate the importance of reducing positional uncertainty for such algorithms.

5.3 Exploration Without Positional Uncertainty
To test the performance of our DAEA algorithm and compare it to other available algorithms we set up

an experiment. The default values in this experiment are: frame size of the simulated environment is

33×33 state cells, they are differentiated according to their fractal dimension of search field’s pathways.

Three agents are sent in to perform a search algorithm to explore a single goal. They are rewarded after

their next cell selection to move into, according to the 5.1. The available algorithms in this experiment

are: Oracle, BRW, ANT, TREE, and B&M algorithms. The Brick and Mortar (B&M) exploration al-

gorithm [FTL07] is specifically designed for intelligent environments. However, it is possible to apply

some changes to the algorithm so that our mini robots can utilise it even inside a non intelligent environ-

ment such as ours. Through this algorithm, the agent is able to safely eliminate small regions and reduce

the size of its search field.

All agents fill an array of their visited cells and the number of times each cell is visited. Therefore

we define an occupancy grid memory for each search field, all the available cells inside it are assigned to

0.5 with 33× 33 cells. This grid memory will be filled through the exploration procedure by all agents.

There is no interaction among the agents (no team work). We run the experiments for all above search

strategies, and estimate their discovery time and their total earned reward to locate a single goal. Their

results are compared in figures 5.1, 5.2.

B&M– An agent performing B&M algorithm marks cells in the search field as visited by checking

the occupancy grid memory for walls and virtual walls in its surroundings. Agents create the virtual wall
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around their matrix cells in order to create a subspace and limit their explorations to within the subspace.

For instance, when an agent is moving west or south, it scans its south wall to check the cells to its

south–west and south, if they are occupied or marked as visited, then it marks the current cell as a visited

cell. To accomplish this each agent has to record two arrays, one of visited cells and another of explored

cells, as in algorithm 7. Explored cells are those that have been traversed at least once by the agent.

However, the agent might need to go through it again in order to reach unexplored cells. Visited cells are

cells that have already been explored and no longer are required to go through them again. Conceptually

these cells are equivalent to obstacles and we will refer to them as virtual walls.

If the robot reduces its search field correctly during exploration, the exploration time will be reduced

noticeably. The Brick &Mortar algorithm aims to progressively thicken the blocks of inaccessible cells,

whilst always keeping accessible cells connected. The latter can be achieved by maintaining corridors

of explored cells that connect all unexplored parts of the search area. The main rule that an agent must

obey locally is never to mark the current cell as visited if, by doing so, it blocks the path between two

accessible cells.

Figure 5.1: Agent’s time step to find a single goal, one time step=36 seconds

In figure 5.1, where we compare a goal discovery time of 6 different search techniques, B&M and

DAEA algorithms perform very closely to our oracle algorithm, i.e. our optimum search. This graph is

plotted with the corresponding standard deviation bar. Without considering any transition error B&M

agent has the best performance among all other 5 strategies. However, by adding odometry errors (i.e.

6.6 % odometry error) the Brick & Mortar approach only manages to complete its execution for 17 out

of 100 search fields. This is tested by an experiment, which all the free passable cells inside a search

field should be visited at least once by the B&M agent. If all available free cells are visited, the coverage

is known as 100% complete. This incomplete performance is the result of the virtual wall being bricked

wrongly by the agent and therefore erroneously blocking an area. Therefore, in the next section we apply

Hybrid B&M algorithm (i.e. combination of ANT and B&M algorithms) to deal with agent positional

uncertainty.
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Figure 5.2: Estimated reward, earned by a single agent

Algorithm 6 performDAEA
Input: Cr[]:number of times a cell is revisited; ogm:occupancy grid memory; A:agent

Output: ogm:occupancy grid memory,Ns,Nr;Cr;

1: while true do

2: A:pos start(0, 0); P = 0.83; n = 7;

3: for each cell inside the window do

4: Calculate the U:effectiveness of coverage, [equ: 4.9];

5: R=compute(U, n),[equ: 5.1];

6: end for

7: if R 6= −1 then

8: move toward cell with maximumR.

9: if there are more than one cell then

10: select one randomly

11: end if

12: else

13: move toward cell with maximum PCr

14: if there are more than one cell then

15: select one randomly

16: end if

17: end if

18: if the selected cell is not revisited then

19: Fill the ogm

20: Nr + +;

21: Cr + +;

22: end if

23: if ogm is completed then

24: return ogm

25: else

26: Ns++

27: return Ns,Nr, Cr

28: end if

29: end while
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Furthermore, in figure 5.2 the earned rewards, by an agent, are illustrated. Each time step and reward

point are the average of running the algorithms 100 times for BRW and 2000 (for all other algorithms we

change the position of a goal 20 times) for other algorithms. This figure demonstrates that, the rewards

earned by B&M (unaware of its reward function), when FDP > 2.6, is larger than rewards earned by

DAEA agent and all other exploration agents. This is because B&M agent is highly aware of its explored

and visited cells and handles these cells differently.

The results of the two last graphs indicates the correlation between goal discovery time and perfor-

mance awareness. It is possible to achieve performance, which approaches to our optimal goal discovery

time, through a function reward. DAEA discovery time reduction is statistically significant for complex

environments ( p-value < 0.008) compared to BRW (unaware algorithm). By applying an on–line met-

ric, prior to selecting the next cell, the agent is able to decrease its goal discovery time significantly

relative to a less aware search techniques (ANT, TREE) or completely unaware technique (BRW).

Algorithm 7 performBrick & Mortar
Input: A: agent ; V[ ]: visited cells;Nr; E[ ]:explored cells; ogm:occupancy grid memory

Output: ogm:occupancy grid memory, Ns,Nr;

Agent is released inside the search field at (0,0);

1: while true do

2: if A.chosenNextMovement ==“EAST” OR A.chosenNextMovement ==“NORTH” then

3: if A.scanSouthWall==“TRUE”AND A.scanWestWall==“TRUE” then

4: V[Nr]=currentcell

5: else

6: E[Nr]=currentcell

7: end if

8: end if

9: if A.chosenNextMovement ==“WEST” OR A.chosenNextMovement ==“SOUTH” then

10: if A.scanNorthWall ==“TRUE”AND A.scanEastWall==“TRUE” then

11: V[Nr]=currentcell

12: else

13: E[Nr]=currentcell

14: end if

15: end if

16: if the selected cell is not revisited then

17: Fill the ogm

18: Nr + +;

19: else

20: n++;

21: end if

22: if ogm is completed then

23: return ogm

24: else

25: Ns++

26: return Ns,Nr, n

27: end if

28: end while

In our next step we introduce an extended DAEA (EDAEA) agent. This agent is aware of the

amount of transition uncertainty that will face while exploring a search field (i.e. in addition to its action

utility awareness).
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5.4 Exploration With Positional Uncertainty
We have presented a time efficient algorithm that returns an almost optimal exploration strategy, among

competing algorithms, through a dual–mode controller. One of the problems with this frontier–based

agent is the use of the effectiveness of coverage function that assumes a stationary and noise free world

throughout the whole exploration procedure. This assumption is not rational for a learning agent that its

performance awareness is based on its odometry recorded data.

In order to develop a risk–sensitive exploration strategy we need a mechanism that allows the agent

to take into consideration the expected revision of its belief when computing the expected effectiveness

of coverage. Such a mechanism requires a method for representing the agents uncertainty regarding to

its noisy sensor data. The binary-occupied or not, representation of the explored environment by noisy

sensors is insufficient to represent the uncertainty the robot may have regarding to its state cells, thus we

address this uncertainty through a coverage grid memory.

The agent can move in 8 directions and looks for the presence of a cell with maximum reward.

We consider that, inputs from the move actions are imperfect while the IR sensor inputs are perfect

at detecting empty and occupied cells inside its eight segmented window vision O(s′, a, z) = 1. We

assume that the robot no longer necessarily will move in the intended direction. Rather, there is a 15%

probability that it will move into one of the neighbouring directions if they are free. For instance if the

robot is supposed to move north, it could move either north–east or north–west with probability of 0.15

provided they are free. From these data we generate the transition vectors T (s′, a, s), at each time step.

The values Nr and Cr recorded by the agent are now derived from the transition vector. The

resulting values Cr[Nr]×T (s′, a, s), and Nr×T (s′, a, s), so the number of visited a cell is no longer

a whole number. Nor, it is no longer, the actual number of visited unique cells since it is multiplied by

the probability of robot visiting it.

5.4.1 Belief System by Bayes Theorem

The belief, Bel(s′) = Pr(s′|z, a, s), is the probability that the robot has at time step t when it is in a

state s′, after taking action a and making observation z. Figure 5.3 describes a POMDP while future

observations and beliefs are conditionally independent from the past (Markov assumption is applied). In

another words we consider a POMDP as a belief state MDP, that is, an MDP with a state space defined

by set of beliefs [Roy03].

The probability distribution can be updated for each time step using a Bayes’ filter:

Pr(s′|z, a, s) =
Pr(z|s′, a)Pr(s′|a, s)

Pr(z|a, s)
(5.3)

=
Pr(z|s′, a)

∑
s∈Wvt

Pr(s′|a, s)Pr(s)
Pr(z|a, s)

(5.4)

= αO(s′, a, z)
∑

s∈Wvt

T (s′, a, s) Pr(s) (5.5)
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Figure 5.3: The graphical model of the POMDP, Markov assumption is applied on its belief system

Where α is the normalisation constant and Wvt is the window vision at time step t. We simply

refer to Pr(st−1) as the distribution over states at time t − 1. Thus we define it as Bel(s), the previous

belief inside the previous window Wvt−1. An initial belief is assumed to be known.

The next step is to define a threshold that allows the agent to switch between control modes, when-

ever it deems this to be necessary. This is usually a free parameter selected by the user that should

prevent problematic uncertainty, and let the agent act sub–optimally when its uncertainty is ineffective

to its performance. In this regard, we define Λ as the probability of selecting a free cell inside the current

window when it has been revisited:

Λ =
∑

s,s′∈Wvt

Cr × T (s′, a, s) (5.6)

We later apply Λ as our controller mode.

5.4.2 Dual–mode Controller

All the cells with values of Λ 6 n′ are categorised as a valid evidence, n′ = n × T (s′, a, s). However,

when Λ > n′, the defined evidence becomes invalid and our agent is no longer able to guide itself

through an effective exploration coverage (i.e. to maximise its reward). We therefore need to discuss

how the controller is able to deal with its confusion by minimising the Belief Entropy.

Action entropy is an example of a probabilistic which can act to reduce the uncertainty [CKK96].

It switches between two distinct modes: seeking reward and seeking information. When the entropy of

the belief–optimality distribution is above a given threshold, and the agent therefore is uncertain which

action to take, the action entropy algorithm selects the action that will best reduce its belief uncertainty

over a one set of actions.

Our dual–mode controller alternates between pursuing expected reward and gathering information

to refine the belief state. In this section we address how to trade off between maximising the expected

reward and minimising the belief entropy. The belief entropy distribution is given by:

H(b) = −
∑

Bel(s′) ∗ logBel(s′) (5.7)

where Bel(s′) ∗ logBel(s′) = 0 when Bel(s′) = 0
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The lower is the H(b) value, the more certain is the agent about its information distribution. When

the robot is confused, the entropy is high, and it will be reasonable to take actions to reduce the entropy

of the belief distribution. Furthermore we define the expected entropy of a belief stateBel(s′) and action

‘a’ as:

EE(a, b) = H(b′)T (s′, a, s) (5.8)

Estimating action entropy for a long sequence of actions might enable the agent to have the optimal

behaviour (i.e. a behaviour of an omniscient agent) . However, it quickly becomes quite expensive to

compute. In this thesis we have tested various length of action sequences and the best number of actions

for each sequence is selected, as we will discuss later.

The expected gained reward (V ) is estimated by V = E [
∑∞
t=1 γ

tRt], where γ is set to 0.95

(as discussed in Chapter 2). The dual–mode controller is given by two sub–optimal action selection

(n′ = n× T (s′, a, s)) :

Action selection :

a
∗ = argmax[V (s′)], if Λ 6 n′;

a∗ = argminE[E(a, b)], otherwise
(5.9)

When Λ is above a threshold, the agent is in a state of maximum confusion (invalid evidence).

However, the controller is able to direct the agent in a direction that will minimise the belief entropy. In

this regard the agent will be directed toward respectively: 1- unvisited areas; 2- areas with larger belief

distribution.

We have tested three different lengths of actions: 2, 3, 4 action sequences. These are respectively

24, 48, and 80 belief points around an agent. Larger number of the belief points give more possibility

to the agent to reach its desire endpoint, i.e. frontiers. However, as discussed before the computation

will become very expensive. For instance for 80 states POMDP agent has to estimate 192 possibilities

of performing a sequence of 4 actions. This is causing a noticeable delay ( approximately an average of

160 seconds) for our agent at each step to select its next movement. We describe a 24 states POMDP

with details in an example in the next section. However, in all our experiments we have applied 48

belief points, with a sequence of 4 actions. This sequence length setting enables the agent to reach to

its frontiers in %77.6 of 2000 run times, when tested on 100 different search fields. The average delay

caused by this length is less than a minute, i.e. 49 seconds.

5.4.3 24 States Approximate–POMDP

We describe how to solve a 24 states approximate POMDP by an example as follows:

Selecting the required belief points– For each neighbouring cells, we select the previously collected

belief points as the collected transition probability, equation 5.5. Since we assume that the observation

is complete therefore, we approximate our belief points as: Bel(st) ≈ T (s′, a, s). Furthermore, in

addition to the agent’s observation window, we define a frame size of 16 neighbour cells surrounding the

agent’s window vision.
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e.g. Collected belief points (T ) :

0.85 1.50 2.00 0.85 0.70

0.70 0.70 1.50 0.85 0.85

0.70 0.70 -S- 2.00 2.00

0.70 0.70 0.70 0.85 0.85

0.15 0.70 0.70 0.70 0.70

There are a set of rules defined for our agents collecting transition probabilities (belief points), while

exploring a field, as follows:

• in the reward and information seeking procedures (as discussed in DAEA algorithm) for each

cell, no matter how many time it has been revisited, we store the largest number of its transition

probability, and we refer to it as (T ).

• in information seeking procedure for each cell with minimum entropy that is revisited by our agent,

its transition probability is changed to 1.5, H(1.5) > 1, while for all b < 1, H(b < 1) < 1. Thus,

agent will avoid to revisit them, as much as possible.

• transition probabilities for observed occupied cells are set as 2 and this has the largest action

entropy and it is always avoided by the agent (H(2) > H(1.5)).

Estimating the transition function for all actions– To estimate the expected entropy for each neigh-

bouring cell, , EE(a, b) = H(b′)T ′(s′, a, s), we investigate the transition probability for each action

(e.g. SW) inside agent’s observation window as follows:

T ′ : SW T ′ : S T ′ : SE T ′ : W

0 .00 0.00 0.00 0 .00 0.00 0.00 0 .00 0.00 0.00 0.15 0.00 0.00

0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.70 0.00 0.00

0.70 0.15 0.00 0.15 0.70 0.15 0.00 0.15 0.85 0.15 0.00 0.00

T ′ : NW T ′ : N T ′ : NE T : E

0 .70 0.00 0.00 0.15 0.7 0.15 0.00 0.15 0.85 0.00 0.00 0.00

0.15 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00

0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Estimating the action entropy– E(entropy)< an >:< startpoint >:< endpoint >: H(b)

The procedure described is general for all the available sequence of actions that enable the agent to

reach to its defined end points. our endpoints are, as discussed in Chapter 2:{s9, s10, ..., s24}.

e.g.

E:SW and SW : s0 : s20 : H(Ts0, Ts20)

E:SW and S : s0 : s21 : H(Ts0, Ts21)

E:SW and W : s0 : s19 : H(Ts0, Ts19)

E:S and SW : s0 : s21 : H(Ts1, Ts21)

E:S and S : s0 : s22 : H(Ts1, Ts22)

E:S and SE : s0 : s23 : H(Ts1, Ts23)
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In this regard we have 27 different possibilities, the pomdp–solver will select the minimum expected

entropy among all available possibilities. Thus, we follow that sequence of actions, which lead us to the

expected minimum entropy.

We estimate the entropy of the belief distribution as: H(b) =
∑
|Bel(s′) ∗ logBel(s′)|

e.g. H(Ts0, Ts21) = |Ts0log(Ts0)|+ |Ts20log(Ts20)|

= |0.7(log0.7)|+ |0.15(log0.15)| = 0.108 + 0.123 = 0.231

and finally the expected action entropy as: E = H(Ts0, Ts21)× T ′(aSW )

= 0.231× 0.7 = 0.162

5.4.4 Exploration Evaluation

As discussed before, odometry errors may cause confusion in real scenarios. Our next step is therefore

to set up an experiment, identical to experiment in section 5.3, to test the vulnerability of all the above

exploration techniques to odometry errors. We do this by randomly selecting a cell (i.e. error cell) in the

frontier regions, that might be an occupied cell, after every 15 steps and add it to the list of visited and

explored cells. These error cells have not visited by the agent before but they have at least a neighbour

cell that has been visited.

Through this technique we try to model the effect of a 6.6% odometry error on our agents.

Figure 5.4: victim discovery time steps with 6.6% odometry error, 30× 30 cells

As figure 5.4 is indicating that: i- transition uncertainty have no effect on the behaviour of BRW

algorithm, unaware performance; ii- the discovery time for all performance aware algorithms has in-

creased due to transition uncertainties (negative effect of transition uncertainty on the discovery time);

iii- Hybrid B&M algorithm cannot deal with agent’s positional uncertainty as efficient as EDAEA.

Hybrid B&M agent does not behave to overcome the uncertainty, instead it acts as an ANT agent

to keep off from being trapped. All other performance aware exploration algorithms in some point will

stuck in local–minima when facing positional uncertainty, since in their technique positional uncertainty

are not taken into account. However, EDAEA agent will measure its uncertainty against its threshold,

whenever it deems necessarily it performs sub–optimal actions in order to acquire a better model com-

pared to the competing algorithms and this will generate a better utility in a long run.
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EDAEA switches between the highest expected reward and the lowest expected entropy:

• if the uncertainty of taking an action is lower than a predefined threshold (Λ 6 n′) it selects an

action with the highest expected reward.

• if the uncertainty of taking an action is higher than a predefined threshold (Λ > n′) the agent

selects an action with the lowest expected entropy.

Thus, EDAEA technique is able to present an exploration strategy, which holds a practical solution

among all other competing strategies, for our complex and unknown environments that are required to be

explored in a short time–frame. In Chapter 6 we will investigate the EDAEA search field ‘full coverage’

, and how to fill a memory grid, which is defined in advance for all agents, as accurate as possible.

Algorithm 8 performEDAEA
Input: Λ[ ]:number of times a cell is revisited; ogm:occupancy grid memory; A:agent;

Pr: probability of selecting free cell; T :transition vector; R:reward function ; U:effectiveness coverage;

Output: ogm:occupancy grid memory, Ns,Nr;Λ;

1: while true do

2: O = 1; γ = 0.95; n = 7; P = 0.83; b0 = 1;

3: for each cell inside the window vision do

4: b:compute(T ,O, P , Λ))[equ: 5.5]

5: V :compute(γ, R);(expected reward)

6: E:compute(H(b), T );[equ: 5.8]

7: end for

8: if Λ 6 n then

9: move toward cell with maximum V .

10: if there are more than one cell then

11: select one randomly

12: end if

13: else

14: move toward cell with minimumE

15: if there are more than one cell then

16: select one randomly

17: end if

18: end if

19: if the selected cell is not revisited then

20: Fill the ogm

21: Nr + +;

22: else

23: Λ = T (s′, a, s) + Λ;

24: end if

25: if ogm is completed then

26: return ogm

27: else

28: Ns+ +

29: return Ns,Nr, Λ

30: end if

31: end while

Note that, the basic frontier–based technique (or even DAEA), is not able to complete its task

(exploration with odometry errors ) in most of the above tests, like B&M algorithm. Therefore, we

did not mange to compare its performance to other algorithms. However, just like Hybrid-B&M, ANT

algorithm can help this technique to deal with its positional uncertainty and complete its exploration.
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5.5 Frame Size Setting
Whenever our agent fills its occupancy grid memory, it switches from exploration mode to exploitation

mode, and when this happens the agent must return to its mother and report back its grid memory. It

therefore selects an angle that will direct it toward the start point of its occupancy grid memory and from

there it tracks a path to the wall that will direct it to its mother (backward Wall–Following). Since all the

grid cells visited by the agent are recorded, moving backward is just following the tracks. In Chapter 7

we introduce EANT algorithm that is able to direct the agent optimally toward a wall.

To investigate the best frame size for agent’s grid memory, while performing EDAEA algorithm to

find a single goal, we increase the size of the search field to 50× 50 and proceed to compare the perfor-

mance when a single robot, four robots and eight robots are employed (with odometry error of %6.6).

In this experiment we want to learn the best frame size for our agents to fill in during their exploration

procedure. After filling this predefined memory they will terminate and return to their mother.

Figure 5.5: Average coverage time steps for Multi–agent EDAEA, 50× 50 cells

As indicated in figure 5.5, the performance improvement resulting from an increase in the number

of agents is small. This is because there is no collaboration among the agents. To improve the perfor-

mance, we will therefore introduce local grid memories to our agents (smaller than 50×50), and apply a

technique aimed at spreading the agents inside the search field in order to fill their local grid memories.

For our multi–agent exploration system (to be discussed further in Chapter 6) we divide the search

field to subspaces, and distribute them among the agents. Each subspace, which is normally connected to

the wall that was followed by the multi–agent team, forms a local grid memory of an agent, as indicated

in figure 5.6.

5.6 Initial Congestion
Teams of robots offer a promising new way to perform search and rescue in environments where it is

dangerous or difficult for human rescuers to enter. These robots will typically enter a building at a single
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or a small number of points and spread out from there. This can potentially lead to significant initial

congestion for the robots, especially if there are only a small number of exits from the room to the rest

of the building. However, strategies that allow teams of robots quickly overcome this initial congestion

and spread out sufficiently to begin their mission have received little attention in literature. This section

will give a brief overview of possible ways to solve traffic congestion in multi–agent systems.

Figure 5.6: Generating a local grid memory of subspaces

In MARTHA [AFH+98] a token–based approach was applied, that allowed a very small number, of

robots to move one at a time, therefore slowing the overall efficiency. Some robotic swarm approaches

appear relevant to this problem, but are usually focused on keeping the swarm together, not spreading it

out [KDFA+04]. In general, swarms are often relatively inefficient around tight openings, like doorways.

Potential fields and other physic inspired models initially seem to show some promise but, in a congested

room, spreading out might not be possible until some of the robots manage to leave the packed room.

Thus, the potential field approaches are generally ineffective until the initial congestion is cleared. Note

also that clearing the congestion will be very difficult and time consuming for even the most skilled

human operators, because the robots have localised viewpoints that provide poor information of their

surroundings. Thus, while we do not believe this problem represents a fundamental road block to robot

teams, we believe that there is an absence of good solutions to the problem and that a good solution

will be the key to improve the practical effectiveness of robot teams for urban search and rescue. In

this activity we introduce a technique that prevents the team movement from creating any congestion by

forcing them to move in a formation. Our solution is a chain formation, inspired by army ants in the

nature.

A species of army ant, Ection burcelli, creates very long trails, which consist of a central path used

by ants to bring food back to their nest and two parallel outer paths for the ants that are fanning out into

the forest looking for prey. The three–stream traffic system is the result of some basic principles in the

ant–biology. Each of the ants in this species leaves a trail of pheromones behind as it moves, attracting

other ants and eventually marking the path. Large numbers of ants will naturally follow the existing
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route to store food, and they will in turn reinforce the scent of that. If an ant is about to collide with the

ant ahead, it moves slightly to the side and walks more slowly.

The ants typically move very quickly, guided by their acute sensitivity to the pheromones. If one ant

stopped abruptly, it would hinder the progress of the ants marching behind it. According to biologist ‘Iain

Couzin’ [Cou09], ants turn off the path every time they are about to collide. Outbound ants automatically

turn far more than ants returning to the nest with food. This reduces congestion on the trails and may

also be a way of giving priority to those bringing food to the colony.

This idea can be applied on multi robot USAR systems. Here robots move inside a confined area

searching for trapped victims or hazards and when they locate any they return along, follow their own

path to report their findings. Other robots that are in danger of colliding with and hinder the return of

robots and their important findings, should automatically move out of the way to give priority to the

returning robots.

5.7 Kidnap Recovery
The kidnap robot problem or re–localisation problem (e.g. catastrophic localisation failures) occurs

when the robot has generated a false belief of its most likely location, which must then be identified

before it can re–localise. The kidnapped robot has significant issues with its localisation system, and

only a subset of localisation algorithms can successfully deal with the uncertainty created. We assume

this problem arises when the robot is located in an environment of which it has a partial or complete

occupancy grid memory. For instance, if the kidnapped robot moves from point A to point B with

changes in its direction, at a given moment and based on sensory information, it has to decide where

it is located within its occupancy grid memory. In the kidnapped robot case, the robot thinks it is lost

because its sensor readings temporarily do not seem to fit with its notion of where it is and it therefore

has to update a sharply peaked distribution.

A basic technique to deal with this problem in robotic is to let the kidnapped robot wander until

it encounters a familiar scene or a landmark. A lot of effort has been invested in solving this problem

during the last few years by using different tools such as Monte Carlo simulation [FBDT99], graph the-

ory [BNRDW00], search in interpretation trees [CT00], RANSAC [NT03], or string matching technique.

The last technique takes panoramic pictures of the environment by means of a mobile robot, and then

extract features that are converted into strings [GBC04] and topological representations [CN01].

The DAEA algorithm applied on our agents inside life safe voids does not consider any land mark-

ing since the dark voids with their maze of obstacles makes this approach impractical. Instead we use

the agents belief vector. It will continue to compare the belief vector, which is its recorded position

including the uncertainties, to the new observed position and try to match them. The introduction of new

samples from the transition function means that the process eventually should converge. Unfortunately,

the time it takes for such convergence to materialise may be unacceptably long.

Since our agent has no image camera, the most practical solution is to leave some tracks as land-

marks. Therefore we consider an agent that is programmed to follow the internal walls of a search field

with a predefined step limit of Pebsteps. When they reach the Pebsteps limit, they sit next to the wall
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that they were following. The kidnap agent can now find its way to the wall according to its belief, try to

reach to one of the static agents and re–localise. We will evaluate the recovery procedure in Chapter 6.

Wake–up robot problem is also a special case of the kidnapped robot problem. The wake–up robot

knows that, it has no idea where it is because its clock has just started and this knowledge is reflected in

a uniform distribution over locations, which provides a good start point for localising.

5.8 Discussion
In this chapter we have introduced an advanced frontier–based exploration technique for individual

agents. As the results indicate this technique performs closely to the oracle technique inside small spaces

with a frame size of 33× 33 cells.

The EDAEA exploration method is later developed to handle the problem of being stuck in local–

minima that affects traditional frontier–based algorithms when facing positional uncertainties. An

EDAEA agent performs sub–optimal actions in order to acquire a better model of the opponent and

this will generate a better utility in the long run. However, in a large number of state cells, e.g. 50× 50

cells, EDAEA agent will also lead to a poor state where even optimal play generates low utility, i.e.

gaining knowledge become too expensive.

In this regard, for larger search fields, we divide the area among multi agents and apply the EDAEA

technique for each subspace. The method used to divide a large search area among a team of multi–agent

will discuss in chapter 6. Figure 5.6 is an overview of our multi–agent system. It shows how a team of

agents is sent in, forming a chain, to explore a large search field. In pre–defined steps the last agent in

the chain is released from the chain and proceeds to explore the local subspace by itself. This individual

search technique is the basis for our EDAEA algorithm. When the subspace is explored and a local grid

memory is generated, the robot returns to its mother, located at the start point, and report its recorded

memory.



Chapter 6

Architectural Design of Multi Agent System

The field of single autonomous robot has now reached a point where practical solutions become avail-

able. Mathematically well–defined and experimentally proven solutions can be found to the problems

of mapping [TBF00, EP03], exploration [BMS02, BMSS05], and localisation [FBKT00]. Quite a lot of

experiments have been carried out in these fields and well–elaborated exploration algorithms for exact

and detailed comparison exist. However, in the field of Multi–agent Systems (MAS), the situation is

somewhat different even though MAS exploration performance might be highly superior to single agent

performance in most of the robotic applications.

The improved flexibility and robustness resulting from the inherent parallelism of multi–robot sys-

tems gives them potential advantages over single–robot systems and the additional payload capability

that becomes available when heterogeneous systems are introduced can significantly increase their abil-

ity to handle situations where the resource requirements are too substantial to be met by a single robot.

However, the use of multi–robot also pose additional challenges that must be addressed if multi–robot

technology is to present a viable and effective alternative to single–robot methodology. The most impor-

tant challenges for MAS are:

1. The system complexity increase is associated with the use of several robots.

2. Most of the single robot strategies cannot simply be scaled to MAS.

3. Access to larger real world MAS or adequate simulation is difficult.

4. MAS are far more dynamic, simply because changes potentially can occur simultaneously in so

many locations.

5. MAS can be self–defeating if agents collide or block the progress of each other.

6. Team collaboration and negotiation requires a reliable communication among the team members.

These challenges explain why only a limited amount of research deals with systematic experiments

in the field of MAS, especially real world applications. In this chapter we introduce our collaborative

multi–agent system. It consists of a team of agents that has distinct advantages over single robots, as

well as other available MAS, with respect to sensing actuation. One of the important aspects in our

introduced multi–agent exploration is that the team members are able to speed up the operation by

breaking the exploration area up into subspaces and distribute these among themselves. A policy of

formation progress is also defined for our MAS. This enables the system to keep its team members away
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from each other and should result in the reduction of exploration redundancies.

In general, a team of collaborative agents can perceive their environment from multiple disparate

viewpoints. In such a system, a single robot does not complete a task but instead by a team of collabo-

rative robots. A single robot, on the other hand, can only sense its environment from a single viewpoint

even when it is equipped with a large array of different sensing modalities. For robotic missions in an

unknown environment, mapping, exploration, and movement are a coordinated effort (as discussed in

Chapter 2). As our robots move, they collect information about the environment that surrounds them and

from this information they will construct composite maps. The incrementally constructed maps emerg-

ing from this collaboration will in turn provide clues about the most promising areas of exploration and

this will aid further path planning. The information will enable the robots to spread out inside the search

field in order to speed up the exploration while using less energy. It will also help them to keep in touch

with each other (directly or indirectly) in order to maintain their exchange of local memory grids.

As discussed in Chapter 2 our agents have a direct visual interaction. For instance, when they

are performing wall following they have implicit visual interaction among the team. When there is no

implicit communication among the agents, agents are not able to interact with each other at all time.

However, since they are in the same environment, they can have explicit communication every time

they are within sensor range of each other. Both types of communication techniques (IMPLICIT-COM

or EXPLICIT-COM) allow an agent, whenever it is deemed necessary, to influence the behaviour of

another agent or be influenced by it.

In this chapter we also introduce our TeSLiSMA exploration algorithm for self–organising MAS,

which is a combination of several exploration tasks. Agents are able to change their behaviour by switch-

ing among these tasks. A set of logical conditions allows the agent to determine when it is advisable

to switch to what behaviour. All the agents are fully autonomous and decentralised at the task levels.

They receive task assignments, which they transform into sequences of behaviour using their prede-

fined interpretation and planning capabilities. Tasks are therefore a temporal and logical composition

of elementary behaviour able to achieve an objective in a context dependant way. It is also possible

for our MAS robots to switch to a predefined corrective behaviour in a case of unsuccessful execution.

The process of merging local, often overlapping, memory grids into a single global memory grid that

provides a more comprehensive view of the environment is an important task for our MAS. Building

an occupancy grid memory using a Bayesian update rule performs this task. [Mor88]. The process we

propose, to create both the local memory grid and the global memory grid, is based solely on the direct

communication among agents. It involves no communication with their mother. The system is therefore

completely decentralised and does not require human intervention, which is why it has been introduced

as self–organised exploration MAS.

6.1 Emergent and Self–Organised System
Generally speaking, a MAS is a complex system consisting of several locally interacting agents per-

forming very simple tasks. Their interactions can nevertheless lead to a macroscopic, a system–level

behaviour that has not explicitly been designed into the behaviour of the individual agents. Such a col-
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lective conduct is referred to as emergent behaviours or phenomena [MM01]. These emergent properties

cannot be directly inferred from the local behaviours of individual agents, due to complex interactions

among the agents. Thus our agents are simply following the local rules that guide their movement in-

side search fields. However, as the collective behaviours of individual agents, the system will exhibit a

complex behaviour, which will considerably reduce the time it takes for covering a maze–like complex

search field.

We will here refer to the global, system–level properties as Macro–Level and the individual, agent–

level behaviours and performances as Micro–level. A MAS consisting of simple and limited–function

individuals can only accomplish complex tasks autonomously if it is able to exhibit emergent be-

haviour [WH05]. Steels [Ste95] pointed out two advantages of emergent behaviour for autonomous

multi–agents when compared against directly programmed behaviour:

• No additional structure is needed inside the whole system to get additional capabilities. Therefore,

there is no need for any centralised decision making and additional explanations for a special

behaviour.

• Emergent behaviour tends to be more robust because firstly it is less dependent on accurate sensing

or action and secondly it makes fewer assumptions about its environment.

Emergence without self–organisation is certainly possible for most of the systems. In some systems

the interaction among individuals are sufficient to exhibit emergent properties and through this behaviour

the system is directed towards its goal. However, if we allow our agents a large number of states and also

allow them constantly to switch between these states, the result can be chaos. Therefore, it is important

to make sure the system is able to organise itself and develop coherent behaviour at the macro–Level and

promotes the required functionalities.

A self–organising system [SWGC04] is defined as a system with members that are able to organise

themselves without external direction, or control. Collaboration and group formation are key factors

when creating such systems. Additionally, it maintains functional structure through its individuals. A

well known example of such self–organised systems is the ad–hoc networks where individual members

of the system collaborates to create and maintain its own network.

The term ‘functional structure’ is referring to the division of tasks in an organisation, which is

grouped by the main functions that need to be performed within their organisation. Also, the term

without external direction, refers to the absence of any direction, manipulation, interference, pressures

or involvement from the outside of the system. Thus external inputs are ignored, as long as they are not

macroscopic control instructions.

6.2 Tethered Search of Limited–Sensing Multi–agent (TeSLiSMA)
The self–organised and emergent multi–agent exploration technique introduced in this thesis is the

Tethered Search of Limited–Sensing Multi–Agent (TeSLiSMA) algorithm. This exploration algorithm

consists of macro–level and micro–level actions for MAS. The behaviour performed by the MAS using

the TeSLiSMA exploration algorithm (appendix E) are:
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Figure 6.1: Self–organised and Emergent System

performHeadBehaviour Al. 11, performFollowerBehaviour Al. 12, performTailBehaviour Al. 13,

performIdleBehaviour Al. 14, brokenChain Al. 16, noChain Al. 15, moveForwardNextToWall, stuck

Al. 17, and performEDAEA Al. 6.

In order to explain the TeSLiSMA algorithm more intelligible, we arrange it into Macro–Level and

Micro–Level behaviour:

i) Macro–Level behaviour: Chain–Formation, Wall–Following, and Implicit–Connection.

ii) Micro–Level behaviour: Obstacle–Avoidance, Stay–Away, EDAEA–Performance, and Return

to–Mother, as illustrated clearly in figure 6.2.

Figure 6.2: TeSLiSMA performance taxonomy

6.2.1 Macro–Level Behaviours

As discussed before the Macro level behaviours are:

a) Wall–Following (Algorithms: moveForwardNextToWall, stuck Al. 17): During this task agents

should sit next to a wall and follow the wall to explore the search environment, they should look for

trapped victims, while checking their Implicit–Connection.
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b) Chain–Formation (Algorithms: performFollowerBehaviour Al. 12, performIdleBehaviour

Al. 14, noChain Al. 15): Agents should form a chain while they follow the wall. This enables the

team to spread easily inside the search field without blocking the paths of other agents (congestion

avoidance).

c) Implicit–Connection (Algorithms: performHeadBehaviour Al. 11, performTailBehaviour Al. 13,

brokenChain Al. 16): This task maintains the connectivity of the chain. The agents at the Head and Tail

should be in line of sight of at least one other agent, while the rest of the chain members should have

two agents in their line of sight. If not, they should try to reconnect the chain. In this task the agent

that realise the chain is broken will attempt to reconnect it by moving to its previous position. It should

inform the connected agents to follow it in this action. If the broken chain is reconnected during that

one step, the agents will switch to the Wall–Following algorithm, otherwise they will either apply the

EDAEA search algorithm (less than 3 agents) or they create a new chain and perform the wall–following

behaviour.

During the wall–following procedure, a chain of multi–agents are moving next to a wall or pile

of obstacles. The first agent to enter the search area is designated as the Head and will be located at

the head of the chain. The head moves forward, and waits till it observes another agent in its line of

sight. Followers, perform the same movement constantly and check to see if of two agents are available

and the Tail checks for an agent in its line of sight. The key factor in the wall–following behaviour

is to maintain the implicit connection among all members of the chain. The head continues to move

close to a wall, all through our generated confined and cluttered internal walls till it reaches a victim

or reaches back to the entrance (where the mother is situated). By the wall–following, the head is able

to estimate the internal size of the search terrain and report it back to its mother (For mini robots with

small ENERGY-LIM, performing wall–following we select a maximum frame size, i.e. safe frame).

This enables the rescue team to automatically aware of their full coverage. Additionally, agents that are

performing wall–following avoid obstacles by moving next to them, exactly like they move next to a wall

and they avoid collision with other team members (all should be defined as their low–level behaviour).

The line formation is very useful when the team is passing through corridors or passing to some

confined places [BS07]. Normally the head is chosen as the team commences the search. However,

whenever it is deemed necessary, our chain is able to select another agent as the head of the formation.

That means the head does not control the team, since the formation is decentralised. The agents are able

to perform this procedure because they have the capability to interact visually and convey there states to

other agents via their RGB LEDs. The association between the LED colours and states is indicated in

table 8.1.2.

Figure 6.3, an example that demonstrates how agents squeeze inside a search field through a narrow

entrance. Because it is possible for the head to get stuck in a narrow dead end, other agents (Followers

and Tail) must have the option to reconfigure in order to redirect the chain out of the dead end. An

example of this situation is shown in figure 6.4. Here, the head initially realises that it is stuck in a dead

end and therefore turns its LED to purple (State=Idle). Consequently, the LED of the agent immediately
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Table 6.1: Study of various states for team members by their defined states

State Definition RGB LED

Head The first agent on the head of chain RED

Tail The agent at the end of the chain YELLOW

Follower All the agents on the chain following the Loop-Closer GREEN

Lost The agent that lost IMPLICIT-COM within its chain BLUE

Filler The agent performing DAEA exploration algorithm OFF

Idle The Head that has been stuck PURPLE

next to it in the chain becomes RED as it takes over the job of head. It sees the previous head as an

obstacle that should be avoided. Now, if it has a free cell available, it starts to move the chain in the

usual manner. However, if there are several agents trapped this process, the job as head is passed along

the line until it reaches an agent that is able to move. Then, as the agents trapped in the dead end start to

move out, the idle agent will find a free space in its line of sight and follow the chain as its tail.

Figure 6.3: Wall–following behaviour inside a search field

Figure 6.4: A Head is stuck while following a wall (left to right)

6.2.2 Micro–Level Behaviours

performDAEA: After reaching a predefined number of steps, the tail of the chain will sever its connection

with the chain and change its state to “filler”. Another will immediately replace its status as tail agent.

Under the DAEA search algorithm, Fillers should fill their predefined local occupancy grid memory.

They are able to increase the frame size of the local memory when for instance they are in an area with

a high density of obstacles. This is part of the provided predefined corrective behaviour that can be

launched in a case of unsuccessful execution.
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Figure 6.5: Wall–following behaviour while keeping the IMPLICIT-COM

Figure 6.6: A Follower loses its connection with its chain (Left to right)

As illustrated in 6.7 , a follower should turn its LED off whenever it changes its state to filler. Thus

the agent ahead of the filler immediately recognise that it should replace the tail, and not report the chain

has broken. Other essential micro–level behaviour for all kind of mobile agents like collision avoidance,

both obstacles and other agents, are also developed for all agents.

Figure 6.7: Filler leaving its chain (Left to right)

In the next section we define how a chain of agents, following a wall, is able to create a local

memory grid of the subspace inside a search field.

6.2.3 Local Memory Grid Generation

Teams of agents can divide an area into subspaces and assign each subspace to two or more agents. In

this regard each agent has two matrices to fill in. One when it performs wall–following and the other

when it performs DAEA algorithm:

• A (M ×N ) matrix grid memory, which is expected to fill with information as to whether cells are

occupied by obstacles or not according to its sensor readings (we refer to M ×N grid memory as

the search terrain interior memory). If the area is larger than its grid memory, the head creates a

virtual wall and avoids going beyond it. However, inside its interior grid memory it will distinguish



90 6.2. Tethered Search of Limited–Sensing Multi–agent (TeSLiSMA)

the real walls from virtual walls.

• A (M ′ ×M ′) matrix grid memory (where M ′ < M,N ), as agent’s predefined local memory for

each subspace.

As discussed in Chapter 5, in occupancy grid memory the environment is divided into homogeneous

cells, we set a probability of occupancy for each grid cell. This probability is stored in the matrices by

each agent, at each step. An occupancy value of zero corresponds to a free cell and a value of one

corresponds to a cell occupied by an obstacle. Initially all the available cells inside a predefined matrix

memory grid, for all agents, are assigned a value of 0.5, i.e. equally likely to be occupied or free.

The agent assigns its local memory grid as: Xrobot position = Xf − x0 and Yrobot position = Yf − y0,

figure 6.8. Where (Xrobot position, Yrobot position) is the start point for our agent as the ‘Filler’. x0, y0 should

be set for the robot, in all our experiments both are equal to 6.

Figure 6.8: A local memory grid (Xf , Yf ) assign to an agent to explore a subspace

We now go through the memory grid creation process in more details. Every ‘nns’ steps ‘nnr’ of

agents (known as Fillers) are released from the end of the chain and dispatched for extended exploration.

They start to fill their own internal memory grid frame, by exploring the search field according to the

EDAEA exploration strategy. Both the Head and the Fillers mark the release point, as the merging point

inside their grid cell memory and when the filler has filled its grid memory it returns to the extended

exploration point (start point) through the recorded paths. It should report back its local memory grid to

the base station (mother robot) at the start point. Since we assume that all mini agents are released by

their mother at the entrance to the void, as discussed in Chapter 2, the loop will be closed when the head

meets its mother and, after unloading its internal memory grid frame, it changes its state to filler. As

filler, it continues to perform EDAEA searches to fill its local grid memory with additional information.

There is a possibility that a head may not be able to go back to its start point and thereby close the

loop. One example of this is shown in figure 6.9 where the narrow entrance leads the chain of agents

to a dead end. Under such circumstances the head should inform the chain that it must reverse back to

the start point. To accomplish this it changes the colour of its LED to blue and rotates its heading 180

degree. When the neighbouring agent sees LED colour change in the head, it changes its own LED to
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red and reverse the direction of its heading the same way, waits ω seconds and then changes it’s LED to

blue. This process continues down the chain until the last agent, which has only one agent in its line of

sight. The LED of this agent remains red and it now starts to follow the wall back to the starting point.

Figure 6.9: An example of a chain stuck inside a narrow pathway

In order to deal with odometry errors in real scenarios, we need to add an extra feature to our

present filler behaviour. Figure 6.10(a) illustrates an agent that is filling its local memory grid. The

correct occupancy memory grid for the agent is shown in figure 6.10(b). However, if the agent has

odometry errors due to slippage, it could fill its memory grid as shown in figure 6.10(c) and therefore

end up completing a false memory and missing parts of the search area. To prevent this from happening,

the agent should perform a wall following procedure before it resorts to automatic filling. Automatic

filling happens when the agent closes a wall inside its local memory and consequently starts to fill

the sealed area with data indicating it is occupied (Agent changes behaviour from performEDAEA to

automatic filling whenever it meets a wall or virtual wall). This makes the agent think its memory grid

is completely filled and that it therefore should terminate the exploration. Therefore, when the agent has

closed an area inside its memory grid it should perform a wall following procedure around it to make

sure that no entrance remains (a very similar technique to loop–closing in SLAM [EP03]). If the area

actually is sealed, the agent will fill it with 1s, otherwise it will enter the sub–void for further exploration.

Figure 6.10: (a) : local memory grid, (b) : true local memory grid , (c) : false local memory grid

When the agent starts to search its sub–region, it assumes that a virtual wall indicates a border

around it and cannot go beyond that. As illustrated in figure 6.11(a, b) these borders can potentially

create confusion for robots because they are unable to apply wall following around it and fill the sealed

area. The agents therefore fill such cells with the value 0.75 as shown in figure 6.11(c). This indicates
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that the probability that these cells are occupied is 75%. However, the mother robot still needs to decide

if such cells are occupied or free when it merges local memory grids through Bayesian update. Extra

data must therefore be provided from another agent covering the area on the other side of the virtual

wall.

Figure 6.11: (a) : local memory grid filling, (b) : cell status are unknown , (c) : filled by 0.75s

6.2.4 Multi–Agent Spreading Techniques

Filler agents start to fill their M ′ ×M ′ local grid memory. The start point for the filler is the merging

point where it is disconnected from the chain. The mother should merge the memory grids provided by

the agents into a global memory grid. After merging the local memory grids, it should select attractive

cells for additional investigation and, after a battery recharge, dispatch the agents back into the area for

further investigation with the global memory grid of the explored environment loaded into their memory.

This will allow the new team to continue the search towards full coverage using a topological memory

grid of the environment built on top of the grid based, occupancy memory. Such a topological map will

guide the team towards the attractive points much faster, and from there it can continue to fill in more

local memory grids.

Table 6.2: Memory Grid Filler parameters

Variable Definition

NFmax the maximum length of the frame size of the search field

tna Total number of agents that has been sent inside the search field

nns Number of steps taken by the Tail in the chain

nnr Number of agents from the chain has been sent inside as a filler

ana Number of available agents in the chain of robots

M,N Interior memory grid lengths, i.e. frame size of (M ×N ) matrix

M ′ Local memory grid length, i.e. frame size of (M ′ ×M ′) matrix

i.e. total number of the cells that is occupied.

Two techniques are used in this thesis to spread filler agents:

Technique 1- dispatches two agents after nns time steps. One of these is a Filler and the other



93 6.2. Tethered Search of Limited–Sensing Multi–agent (TeSLiSMA)

one the Head. We always assume that NFmax ≥ 50 and tna < 100, so 2 × NFmax > tna and also

nns < M ′, thus we have:

2×NFmax ×M ′ > tna× nns (6.1)

2×NFmax ×M ′ = k × tna× nns (6.2)

Experimental results indicate the best k is selected as k = 12.

nns =
NFmax ×M ′

6× tna
(6.3)

We define a minimum number of steps for our multi–agent system when M ′ = 33, i.e. nns = 20,

to avoid any congestion inside a search field. If ‘20 < nns < 33’, thus :

NFmax × 33

120
> tna >

NFmax
60

(6.4)

Technique 2- let the head release nnr agents every time it reaches a point beyond its local memory

length (M ′). One of the released agents becomes a head and the rest will remain followers. They create

a new chain of agents for further exploration.

nnr =
ana

2
(6.5)

6.2.5 Local Memory Merging

When fillers report back their local memory grid, their mother merges the information from the provided

memory grids. Since all the local memories were built using an occupancy grid, the mother can apply

a simple Bayesian update rule to merge several memory grids. The mother applies Bayesian update

rule [BP02], [Sta06]on all provided occupancy grid memory.

PrOcc(cell|Se(1), . . . , Se(t)) = (6.6)

1−
(

1 +
PrOcc(cell|Se(t))

1−PrOcc(cell|Se(t))
× PrOcc(cell|Se(1), . . . , Se(t−1))

1−PrOcc(cell|Se(1), . . . , Se(t−1))

)−1

Equation 6.6 [Mor88] updates the occupancy probability for each cell, PrOcc(cell|Se(1), . . . , Se(t)),

this is based on the current sensor reading, PrOcc(cell|Se(t)), and the a priori probability,

PrOcc(cell|Se(1), . . . , Se(t−1)), where Se(t) is the sensor readings at time t (current time). If we

can convert the output from a sensor into the probability that a particular cell is occupied or not, it

is therefore possible to merge this information into our global memory grid. Through this technique,

mother is then able to generate a composite memory of a search field.

When a mother is merging the local memory grids there is possibility to find a memory grid un-

reported. That is because the filler is stuck inside its subspace and not able to report to its mother.
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However, the mother is able to identify which agent in which subspace has been stuck. In this regard

more sophisticated agents are required to send in, for that subspace, for further investigation (e.g. agents

with on–line image camera).

Thrun and Bucken [TB96] have presented a technique that enables us to extract a topological map

from the global memory grid that we have generated. They use thresholding, voroni diagram, critical

points, critical lines, and finally generating a topological graph. The key idea of the above technique

is that the free space of an occupancy grid memory grid can be partitioned by critical lines in to small

number of regions. Critical lines correspond to narrow passages such as doorways. The partitioned map

is then mapped into an isomorphic graph. Since all our local memory grids have already assigned values

of 0 and 1, we can skip the thresholding and continue to Voronoi diagrams. The technique is illustrated

by the example in figure 6.12. Using the resulting topological graph map the mother is able to estimate

the optimal path the mini robots should follow to reach the selected attractive point. For instance, we

can implement a standard search, such as Dijkstra’s Algorithm [ZN98], to find a ‘best’ path, which is a

subset of the Voronoi diagram. The method generates a route that gives the robot a relatively safe path

along which to travel to reach its goal.

Figure 6.12: Extracting the topological graph from an example occupancy grid map

6.2.6 Spreading Techniques Evaluation

In this section we evaluate the performance of our MAS in relation to full coverage of the search field.

In this experiment we select 72 different search fields with frame size of 50× 50 cells. We assume that

the indoor search field is sized from outside, so we have a rough estimation of the MAX-SIZE of the

search field. We set up two experiments, first by applying Technique 1 to send fillers into a search field.

Second we apply Technique 2 and compare their results. Furthermore for each experiment we test the

performance of our multi–agent system with two different numbers of agents within their team.

As discussed before, all the filler agents have a local memory grid with fixed frame size to explore.

Since we want to test the MAS performance in one experiment we add an extra feature for these agents.
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During the exploration an agent may have been allocated a subspace that has only a very limited amount

of free space to explore. This would lower its performance and we therefore require that every agent

fills more than 50% of the available cells in its predefined local memory before it returns to its mother

(automatic filling is excluded). While the number of explored cells remains less than half the total

number of cells inside the predefined memory grid, it should instead expand its local memory grid by

adding 10 cells to both the width and height of its frame size. It then continues to explore this extended

subspace. This increase in frame size can be performed several times until it manages to meet the

minimum requirement. This feature enables the team to attain full coverage faster. The rules can in

practice be implemented as the number of grid cells explored before agents can return to their base

station to inform their local memory grid. Therefore they are able to perform the second stage of the

exploration only in those areas that require further investigation.

Figure 6.13: Average coverage time steps for TeSLiSMA exploration Al.-Tech. 1, 50× 50 cells

Figure 6.14: Average coverage time steps for TeSLiSMA exploration Al.-Tech. 2, 50× 50 cells
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Figures 6.13, 6.14, and 6.15 are plotted with the corresponding standard deviation bar. In figure 6.13

we compare the performance of a single agent using only the EDAEA algorithm to MAS teams of 4 and

12 agents using the TeSLiSMA algorithm. The agents are using technique 1 as discussed above. The

results from a similar set of experiments using technique 2 are shown in figure 6.14, where we observe

very similar results. However, in more complex environments, technique 1 is able to cover the search

field faster than technique 2. If the mother that releases its mini agents is not able to estimate the

approximate size of the search field from outside the spreading technique is restricted to technique 2

since this technique only requires knowledge of the number of mini robots inside a chain. Otherwise, it

should always use technique 1.

There is one more approach, Technique 3, for spreading agents inside a search field. If
‘External area’

ana×M ′2×10−2 ≥ 1, where the External area is the approximate size (m2) of the field from outside.

we can apply Technique 3 for our system. This involves ‘nnr’ fillers (from technique 2) being released

from the end of the chain every ‘nns’ (from technique 1) steps.

6.3 Exploring a Large Area with One Team
In the next experimental set up we investigate how well our MAS is able to cover an area as large as

100m2. This is an area 10000 larger than the size of our deployed agent.

In this experiment all the defaults value are as described in previous experiment, except for the

search field frame size ,which is now 100 × 100 grid cells. In contrast to previous experiment, we

have not here compared the MAS performance to that of a single agent since one agent takes more than

18000 time steps to cover areas with complexity of FD > 2.67. From the results of this experiment, as

indicted in figure 6.15, we estimate the average time will take 30 agents to search an area of 100m2 to be

approximately 12 hours. However, in practice, when each agent fills its local memory grid, it will return

to report to the mother instead of extending the frame size. Thus, if further teams of agents are required,

they will be dispatched for further investigation, according to the generated global memory grid.

Figure 6.15: Average coverage time steps for TeSLiSMA exploration Al.-Tech. 1, 100× 100 cells
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The operation may be made faster if the rescue team could find another entrance for agents on

other sides of the debris, send in additional teams from those entrances and merge all the local memory

grids. This would enable the rescue team to speed up their operation and find better routes for the

rescue team to dig for trapped victims. In this regard, to explore an area such as a large warehouse, e.g.

1000m2 (100000 times larger than our mini robot), it is not possible to use only one entry and apply the

TeSLiSMA algorithm, since the mini robots have very limited battery power and some of these agents

will have no battery power left to continue when they reach their start point as the filler. Thus, we need

either to search for multiple entrances from different directions of a pancake area or the rescue team

need to start digging and create access every 80m2. This would enable our mini robots to continue their

search operation. Moreover, the potential located victim(s) will be rescued much faster than if they were

to wait for the full coverage of a large area.

6.3.1 RF Communication

As discussed in Chapter 2, RF communication inside the structural collapses is not a reliable tech-

nique for agents to interact. However, we can assume that every time this communication link is

available the agents can take advantage and update their local memory grid according to data col-

lected by other agents. This significantly speeds up the exploration operation for MAS (especially

inside a large and very complex search area) when a sufficient number of mobile or fixed agents is

employed [FT09], [FTL09], [KL09].

A mobile agent will here send state queries to agents in its communication range, and from their

respond it is able to update its local memory grid according to the Bayesian update rule every time the

RF communication link becomes available. In addition we are able to define a Negotiation Algorithm

that will allow the agent with more power source to be selected to continue for further investigation. For

instance when more than two fillers meet, which it can establish a RF communication link, the agents

change their state to Link. In this state one agent continues its exploration as filler (the one with less

battery power) and the other two agents one as the Head (the smaller ID) and the other as the follower,

thus they are able to create a chain.

6.3.2 Pebble Tracking

We have introduced Pebble–Tracks, in Chapter 5, as agents that act as a static node inside a search

field. This enables kidnapped robots to re–localise themselves when they reach these tracks. For every

Pebsteps(equ: 6.7), a Pebble–Track will be left next to the wall, while the chain of agents continues

its wall–following progress. Thus a kidnapped agent can always use its belief to find its way toward a

wall and subsequently move along the wall until it reaches the Pebble–Track and is able to localise itself

according to the pebble. In addition, if the kidnapped robot meets another member of its team and they

are able to establish RF communication, it can localise itself according to the fellow team member since

they are from a homogeneous set and both have the same start point. The mother that has released the

agents at the entrance consider that 20% (i.e. set as the best number according to experimental results

on the search fields equal and smaller than 100 × 100 cells) of the agents inside the chain will be used

as Pebble–Tracks number of agents, pna = 20%× tna and will set their state to ‘Pebble’.
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Pebsteps =
3×Ns
pna

(6.7)

We set up an experiment with 20 different search fields of frame size of 50× 50 and FDP > 2.58.

Randomly we select a time limit tlimit ( i.e. {15, 25, 35, ..., 145}) for our search agents within a team

(Pebble-Tracks are excluded). When the agent reaches that time limit, automatically 10 last recorded data

are deleted from its memory. The kidnap agent should localise itself by the help of available information

distribution and Pebble–Tracks.

Figure 6.16: Recovery time steps for a kidnap agent, search fields 50× 50

Figure 6.16 is illustrating the average time for a kidnapped agent to re–localise. The recovery

time is larger for the filler agent (filling its local grid memory). However, after increasing the time

limit (125), where almost all the agents are spread inside the search field an performing as the filler, the

average recovery time remains unchanged (an average of 47 time steps (28 minutes)). From the result the

maximum time step for an agent to re–localise is 54 steps that is equal to 32 minutes, which is counted

as an acceptable time.

6.4 Area Percentage Coverage
Although complete coverage is considered an important metric for exploration procedures, performance

measures such as percentage coverage are often neglected in search and rescue operations. Through this

metric we are able to see how well the team of robots is able to spread its agents inside the search field.

Here we first consider a frame size of 50×50 and three environments with three levels of complexity,

FDmin = 2.53 < FDav = 2.61 < FDmax = 2.681. We then test the coverage percentage of a team

of 8 agents. Secondly, we consider a frame size of 100 × 100 and three environments with three level

of complexity, FDmin = 2.56 < FDav = 2.64 < FDmax = 2.73 and test the coverage percentage of

our team of 26 agents.

60% of all the search fields are covered in less than 530 time steps, which correspond to a search

time of less than 6 hours for our millibots. This is a very desirable timing for a limited number of very

small agents, i.e. 100mm, to explore areas ranging from 25m2 (which approximates average size for a
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room in a residential area) to 100m2. This proves how well our team is able to spread its agents inside a

search field.

Figure 6.17: Percentage Coverage of three level of complexity for search fields, 50× 50

Figure 6.18: Percentage Coverage of three level of complexity for search fields, 100× 100

6.5 Exploration Efficiency Coverage
Another important metric is the exploration efficiency coverage. We here create an experiment to com-

pare exploration algorithm efficiency of the TeSLiSMA against that of the TREE exploration algorithm.

This experiment indicates how well is our collaborative MAS performing when compared to a well–

known collaborative multi–agent methodology. As discussed in Chapter 4 we define exploration effi-

ciency coverage as QEE = AAc∑tna
i=1 di

. In this experiment we approximate this value as QEE = AAc
tna×rt .

Where rt stands for required time to cover the search field completely, 100% coverage. Furthermore, we

estimate the system coverage rate defined as RSC = tna × QEE as well. Experimental defaults are as
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follows:

– A frame size of 100 × 100 with average level of complexity, FDav = 2.65 and total number of

agents send inside the search field ‘tna = 24’.

Table 6.3: Experiment data, frame size:100× 100

Exploration Algorithm Exploration Efficiency Coverage Rate System Average Coverage Rate

TeSLiSMA QEE = 2.48 m2\hour RSC = 59.52 m2\hour

TREE QEE = 1.37 m2\hour RSC = 32.88 m2\hour

– A frame size of 50× 50 with average level of complexity, FDav = 2.61 and ‘tna = 8’.

Table 6.4: Experiment data, frame size: 50× 50

Exploration Algorithm Exploration Efficiency Coverage Rate System Average Coverage Rate

TeSLiSMA QEE = 2.61 m2\hour RSC = 20.88 m2\hour

TREE QEE = 1.24 m2\hour RSC = 9.92 m2\hour

As the results in the above tables indicate, our MAS is far more efficient than the traditional collab-

orating TREE system [MT04].

6.6 Discussion
After the mother has merged all the local memory grids that has received from its agents and created

a composite memory grid of the search field, the rescue team should check the merged global memory

grid. They need to compare the size of this composite memory grid to the size of the search field frame

size. If the memory grid points to passable borders and the main frame size is larger than the composite

memory grid, which happens when less than 95% of the passable search environment is explored, more

agents should be sent inside the exploration field to continue the exploration procedure. This is when

0.95 × MAX-SIZE ≤ SizeGlobal Memory Grid . However, the agents used for further explorations will

receive a topological global map of the explored environment. Thus they are able to find their way

through the search field much faster and reach the points of interest from where they continue their

exploration as discussed in this chapter. Therefore, when these explorer agents are dispatched, we are

able to send a team of agents for further exploration with one used to mark the start point and the others

as a chain of agents.

.



Chapter 7

Multi Agent System Evaluation

In this chapter we will describe an experiment aimed at testing how well our team of agents perform

compared to teams using other multi–agent techniques. We will compare the performance of several

competing algorithms such as ANT, TREE, EANT, Hybrid B&M, and TeSLiSMA when they are applied

to limited sensing multi–agent systems. After focusing on the advantages and disadvantages of our

TeSLiSMA algorithm, we will present some thoughts regarding future work. The introduction of an

intelligent monitoring technique is urgently required to test and monitor the exploration algorithms. The

ideal monitoring in this regard is using the same kind of agents, same size and capability, as well as to

study the behaviour emergent from the exploration agents as they perform their search task. They are

able to recognise undesirable emergent behaviours much faster and easier than human tester. It is also

possible that they could end up adding previously unrecognised emergent behaviour and thus improve

the MAS performance.

According to Eric Berger, co–director of personal robotic program at Willow Garage [Tea], if we

want to develop the robotic system equivalent of Twitter, i.e., available for all web users, we do not start

by constructing a computer: “We build the thing that is new”. Therefore, although we have developed our

own simulation environment to expedite our testing and comparison process, we should be able to apply

our novel exploration technique on existed robots as well as, well known, available software interfaces.

At the end of this chapter we attempt to prepare TeSLiSMA so it can be applied to real robots through

the Player interface. We suggest future work that could improve the search performance of TeSLiSMA,

especially when searching very complex fields.

7.1 Multi–Agent Exploration Comparison
The default values in our experiments are: a frame size of 50 × 50 squared grid cells with 70 level of

complexity. We also send in 10 agents to perform different exploration algorithms. In this experiment we

compare the discovery time for TeSLiSMA against the discovery times for other competing algorithms

that can continue with their performance with the presence of odometry errors . In this experiment 6.6%

odometry error is included.

The ANT algorithm used in this thesis suffers several limitations. In addition to its redundancy,

the ANT agents are not automatically aware if they have managed to cover the entire search field. In
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practice they are therefore forced to continue the exploration phase until they run out of energy and this

makes them unsuitable for time critical operations like USAR unless there are equipped with extra func-

tionalities like records of explored cells. We therefore introduce the Extended ANT (EANT) exploration

algorithm, which differs from the ANT algorithm by using a weight factor for each vision segment. An

exploration agent, using the EANT algorithm, calculates a vision segment weight factor at each time step

for each of the eight segments around it and, using Algorithm 9, it selects among the free segments the

one with minimum weight. In an attempt to avoid revisiting explored areas as much as possible, the

weight of the most recent selected angles is increased by applying our weight function, as defined in the

equation 7.4.

Table 7.1: Weight Factor parameters for agent segmented vision

Variable Definition

anglet agent’s angle ∈ {−180, ...,+180} at time step t

anglep agent’s predefined angle ∈ {−22, ..., 0, ...,+113}

Nθi number of times that segment i is visited by the agent

Wti weight factor at time t for segment i

NP Number of steps that agent follows anglep

Ns Number of steps taken by the agent

i i = {1, 2, 3, 4, 5, 6, 7, 8} respectively represent

{NE,N,NW,E, SE, S, SW,W}

Wit =
Nθit
Ns

(7.1)

The Exponentially Weighted Moving Average (EWMA) [Wika] is a form of average that weights

data and decreases the applied weight as the time pass. The formula for calculating the EWMA at time

t > 2 is:

EWMA = λL+ (1− λ)Wit−1
(7.2)

where L is an observed value of the variable measured at a given point at time t, and λ is a constant

between 0 and 1 that determines the inertia of the EWMA. The closer λ is to one, the more weight is

given to a current observation.

EANT– The EANT exploration algorithm uses the EWMA function to reduce the ANT algorithm

redundancy. It scatters the agents inside the search field. Assigning a default angle selected from the set

θi ∈ {N,NE,E} to each agent leads to the initial spreading of agents. The agent follows the default

angle (anglep), to which it has been assigned for a number of predefined steps. If it encounters an

obstacle before it reaches this limit, it tries to avoid it by using the BRW algorithm, where its time limit

is ω = PRE DEFINED STEPS×36. Once the obstacle has been avoided it continues to follow the

default angle assigned to it until it reaches the pre–define step limit (NP ). It then switches to the EANT
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Table 7.2: Function:opposite()

anglet opposite(anglet)

anglet ∈ θNW θSE

anglet ∈ θSE θNW

anglet ∈ θN θS

anglet ∈ θS θN

anglet ∈ θW θE

anglet ∈ θE θW

anglet ∈ θNE θSW

anglet ∈ θSW θNE

algorithm and randomly selects another angle, i.e. anglet 6= opposite(anglep). Even if the agent is able

to move in any direction, the default angle will still affect its trajectory because the EANT algorithm

prevents the agent from moving in the opposite direction of its default angle as much as possible. We

introduce the opposite angle as θn = opposite(anglep), and if the agent has to select the opposite angle

(e.g. stuck in a narrow dead end) it should weight it with the weight given in equation 7.3:

Wit =
NP +Nθit

Ns
(7.3)

Then we apply EWMA function 7.2 to weight the direction of EANT agent as follow (applied, in

algorithm 9) :

EWMA function :

Wst = λ× Nθi
Ns + (1− λ)Wit−1

, if θn 6= opposite(angelp);

Wot = λ× NP+Nθn
Ns + (1− λ)Wit−1 , if θn = opposite(angelp);

(7.4)

Figure 7.1: Discovery time of multi–agent exploration algorithms, (one time step = 36 sec.)

We set up another experiment. As we expected from the results in Chapter 6, figure 7.1 shows

that the performance of the TeSLiSMA multi–agent algorithm is superior to that of the other multi–
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agent algorithms (ANT, EANT, Hybrid-B&M and TREE). EANT performs very closely to Hybrid B&M

team of agents. Nevertheless, for environments with complexity larger than 2.65 (FDP > 2.65) the

performance of the TeSLiSMA team is still not desirable in the context of search and rescue operations

with an elapsed time of more than 20 hours. A group of agents using the TeSLiSMA algorithm can

achieve goals that are well beyond what can be expected if we just add up their individual abilities.

However, we sometimes find that their emergent behaviour can turn out to be undesirable. The detection

of unwanted emergent behaviour of the system in this activity was the sole responsibility of human tester

who was monitoring it with very limited tool support. We believe a more intelligent way is strongly

desired as part of the testing and monitoring

A potential solution in this regard is to use testing and monitoring techniques from soft computing.

An interesting approach in this direction has been put forward by Denzinger and Kidney [DK06, KD06],

who propose to use evolutionary learning methods to search for unwanted emergent behaviours in MAS

has put an interesting approach in this direction forward. The general idea is to employ another group

of cooperating agents (testers) that interact with our multi–agent system. Testers use learning methods

to adapt their behaviour based upon observations made of the MAS. This process will continue until the

testers recognise the unwanted behaviour. Therefore, by removing the undesired emergent behaviour we

are able to reduce the exploration time and improve our search technique. In the future we have to con-

centrate more on learning how to detect and intelligently monitor these unwanted emergent behaviour,

through a tester team, and use this information to improve the performance of the TeSLiSMA algorithm

for the very complex search fields.

Figure 7.2: Discovery time of multi–agent exploration algorithms, (one time step = 36 sec.)

We select a search field, with the complexity of FDP = 2.622, and we vary the number of agents

for the team of agents from 5 to 20. As figure 7.2 is indicating all algorithms except Hybrid-B&M

(with no information sharing among the team) and EANT algorithms have a very little changes in their

performances when we increase the number of agents. For other algorithms, their performances have

improves when we change the number of agents from 5 to 10. However, for BRW, TREE, and ANT

after increasing the number of agents, from 10 to 20, their average performances remains unchanged
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(or a very little changes). For TeSLiSMA technique when the number of agents are increased till 15 we

see improvement in team performances. However, when we increase the number of agents to 20, their

discovery time increase (disimprovement in the performance). This is also increased for the hybrid-

B&M for the 20 number of agents. This is because of the traffic congestion caused by the large number

of agents inside a search field. That is why it is very important to estimate the maximum number of

agents which are sent inside a search field according to the frame size (from the outside).

Algorithm 9 performEANT
Inputs: anglep;NP ;Nθi ;Wit ; anglet; ogm:occupancy grid memory; A:agent

Outputs: Nθi ;Wit ; anglet; ogm:occupancy grid memory; NP

1: Wmin = 1;W0 = 0;λ = 0.7;

2: while true do

3: %if the agent is scatter inside the field, after moving NP steps

4: ifNP >= PRE DEFINED STEPS then

5: %scanning all 9 cells around our agent inside its window vision

6: for i = 1; i < 9; i+ + do

7: %recognise the opposite direction, agent should avoid it

8: θn = opposite(angelp)

9: %if scanned cell is not the opposite direction and free then

10: if i 6= n AND θi = “FREE′′ then

11: Wo[equ: 7.4]

12: if Wmin > Wit then

13: Wmin = Wit

14: AN = i

15: end if

16: %else if scanned cell is the opposite direction and free then

17: else if i == n AND θi = “FREE′′ then

18: Ws[equ: 7.4]

19: if Wmin > Wit then

20: Wmin = Wit

21: AN = i

22: end if

23: end if

24: end for

25: for i = 1; i < 9; i+ + do

26: ifWmin == Wit then

27: Fill the ogm

28: Nθi + +

29: anglet = θAN

30: NP + +

31: return NP,Nθi , anglet, ogm

32: else

33: return ogm

34: end if

35: end for

36: else

37: ω = PRE DEFINED STEPS × 36

38: performBrownian Random Walk algorithm

39: end if

40: end while



106 7.2. Multi–agent Performance Improvement

7.2 Multi–agent Performance Improvement
Furthermore this chapter is an introduction to our future work, applying Soft computing (i.e. fuzzy

systems, neural networks, and genetic algorithms) to controlling robots [KR95]. There are some attempts

in the literature to integrate soft computing methods in order to improve the overall performance. This

means the advantages of some components compensate the disadvantages of the others.

The motivation to apply fuzzy neural network is to develop more efficient methodology for gen-

eral goal–directed navigation in generic indoor environments. In this approach a navigator is proposed

that should travel to a pre–defined task goal safely and efficiently without any prior map of the environ-

ment. There are core techniques, for directing autonomous agents, such as neural competition [HR97]

and fuzzy logic [SM89]. These rule–based goal–directed control techniques are popular computational

intelligences in the field of robot control.

From the viewpoint of goal–directed systems, neural networks are superior to fuzzy systems, since

they are more flexible in their handling of input–output relation. However, a practical weakness is

that it can be hard to train neural networks for complex control problems, particularly if evolutionary

techniques have not been employed to optimise the process. Usually, autonomous exploration robots

are not required to obtain complete and exact information for moving in their unknown environment.

Therefore, fuzzy logic based controllers for autonomous robots present a more promising approach, but

the challenging problem is to improve the fuzzy system via learning.

A recently proposed approach is to build a model with fuzzy operation through the learning of a

neural network (Fuzzy Neural Network, FNN). For this model, if X = xi and Y = yj represent the

input and output of the system, the weights W = wij describes the relationship between X and Y . Based

on fuzzy inference in figure 7.3 the definition is Y = X ◦W , where (◦) is a compositional operator and

generally should be defined in the form of a transform function. In FNN a neural network architecture

finds a solution to a fuzzy relation equation. Furthermore A is defined as the fuzzy set of the FNN system

and estimated by training the system with various sensor samples inside the environment.

Figure 7.3: The control block diagram of the autonomous mobile robot

Genetic algorithms (GA) have also used to find near global values of the neural fuzzy logic con-

troller (NFLC) [IFSA95]. There is a new approach to evolutionary algorithms called LEGA [SL01] that

optimises the controller algorithm during the learning period. LEGA combines the standard genetic

technique with numerical optimum seeking for a limited number on elite individuals in each generation.

What makes this technique superior to other available techniques in robot control is that it can lead the

robot to a global optimum in only a few generations.
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7.3 Toward Real Robot Testing

Our presented simulations cannot completely reflect the complexity and noise available in the real world.

Simulated sensor sets, even if degraded in order to avoid being unrealistically ideal, do not represent

the type of input that a system will encounter from a sensor in the real world. In general, it is almost

impossible to capture the level of detail of an environment and the physical interactions that occur due

to the modelling efforts and the resulting strain on the processing power of the computer running the

simulation. Similarly, the actuation of the robot cannot be completely modelled. Lags in response

time, backlash in gears, and other physical symptoms, are difficult to characterise and accurately model.

Therefore, we should be aware of the limits of the simulation in validating and verifying the robotic

system performances. Although simulation techniques provide an important and effective first step,

more testing will be required before a real system can be built.

Urban Search and Rescue Simulation (USARSim) [Bal06] was developed under a National Science

Foundation grant to study Robot, Agent, and Person Teams in Urban Search and Rescue. It has since

been adopted, modified and extended by researchers around the world. This simulation package builds

on a set of modifications to the Unreal Tournament game engine that enables actors in the game to be

controlled through a TCP/IP socket. USARSims interface is designed to mimic the low–level robotic

interfaces that are commonly found in USAR and Explosive Ordnance Disposal (EOD) robotics system.

This provides the robotic developers with the embodiment needed for the development and testing of

autonomous systems. For debugging and development of USARsim a test control interface is provided

to control the robot(s). Robot control programs can be written using the GameBot interface [GSaf],

MOAST System [MSf], and Player interface [PSs].

Player is available on a wide range of platforms and is used throughout the world. It was an interna-

tional group of robotics researchers that developed the platform and continue to improve it. Player runs

on Linux, Solaris, BSD and Mac OS X. Some users have worked with Player using Cygwin, a Linux en-

vironment running under Windows. The official language interfaces include C, C++ and Python, while

third parties support Java. Player defines the robot device interface. It operates at the network level

allowing robot remote control over a sockets interface, and is designed to work with a variety of robot

and sensor hardware. Player uses a client/server model so each side can be written in any programming

language. The system supports multiple, concurrent client connections. Application programs are linked

to Player client libraries that provide a connection to a Player server. The Player server normally resides

on the target robot and is linked to Player device drivers. The device drivers map to logical, abstract

drivers that a client normally sees. There are sufficient simulated devices and robots for use with Stage

and Gazebo so a user can easily experiment with Player.

Writing device drivers for a new robot and its peripherals is relatively straightforward. As with

many OS device drivers, a single driver can handle many numbers of physical devices. For example,

a standard driver is available for the SICK LMS200 laser range finder that matches the abstract “laser”

interface. An actual connection might be specified as ‘localhost:6665:laser:0’ for port 6665, logical laser

interface device 0. In addition to the Player server and interface standards, the Player project includes a
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number of modules (e.g. Playernav is a multi–robot localisation, and navigation GUI).

7.3.1 Player/Stage

Here we deploy the Player interface and test it on the 2D Stage server prior to Unreal Tournament

(3D simulation environment). We propose the use of Player/Stage, a middle-ware commonly used as

a standard by the robotics community, and a backbone of a heterogeneous ubiquitous system. Stage

supports 2D sensing with various sensor models including sonar, scanning laser range finder, and pan-

tilt-zoom cameras with colour blob detection. It is able to support simulated robots that utilise the Player

framework. It has visual tracking capabilities that can be handy when viewing the simulation. The

implementation is relatively simplistic but very useful. The initial environment is setup via a text-based

world file with details such as:

position

(

name “millibot1”

pose [1 1 90]1

sonar()

range return 1

)

The entity definition describes the properties of the entity. This includes the interfaces that will

be supported. Control is in the client that you supply or you can use one of the standard Player user

interfaces. Robots can also be free running as well. The Stage interface is relatively simple. You can

pan, zoom and examine entities. It is possible to view almost all data related to the system.

The configuration file (below) is relatively simple but it shows the various interfaces for the PC–

Bot [Roba].

driver

(

name “wbr914”

provides [ “position2d:0” “ir:0” “aio:0” “dio:0”]

port “/dev/ttyUSB0”

)

It is just a matter of starting up the Player server and then Playerv to control the system. Player runs

on the PC–Bot but Playerv uses port 6665 and can be on a networked PC. It is then a matter of selecting

the interfaces that will be controlled just as when using Stage. The client side consists of a collection of

C++ class definitions that essentially match all the standard interfaces provided by Player. This includes

things like LaserProxy, GripperProxy and SpeechProxy. Movement is done using the PositionProxy that

has methods such as SetSpeed and SetMotorSpeed as well as GetPosX and GetYaw.

The Player Project provides the basics needed for multiple robot control and simulation. It is easy

to incorporate new devices and, therefore, new robots, because the system just deals with the basics. It

1[x, y, angle (degree)]
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is not as ambitious as Microsoft Robotics Studio although the two are comparable. Microsoft Robotics

Studio has a much more sophisticated underpinning though and the might of Microsoft behind it. Still,

there is much to be said for open source and simplicity. The Player Project may be just what you need

for robotic control. In the next section we corroborate TeSLiSMA superior performance by deploying

an experiment on Player/Stage.

7.3.2 Applying TeSLiSMA al. on Player/Stage

Owen [Owe09] explains the Player/Stage tool, process of setting up a new simulation environment and

how to deploy the simulation environment and control for robotic systems. Player, is a Hardware Ab-

straction Layer, which means that it talks to the bits of hardware on the robot (like a claw or a camera)

and lets the user control them with their own code. Stage is a plug–in to Player, which listens to what

Player is telling it to do and turns these instructions into a robot simulation. It also simulates sensor data

and sends this to Player which in turn makes the sensor data available to your code.

We have tested the TeSLiSMA exploration algorithm performance on Player/Stage to enable us to

challenge other exploration techniques in Robocup–Rescue Simulation Competition (through USAR-

sim). Player can also be run on real robots in addition to the Stage simulation system. , e.g. running

Player on the White box Robotics PC–Bot. In future we are able to move to next stage, which is testing

our multi–robot exploration technique on real robots. Figures 7.4 and 7.5 show a comparison between

Player/Stage and our tool, which is based on the CLOWN formalism. The environments generated by

our search field are used as the bit maps applied on Player/Stage. However, to make it more realistic we

altered a little, for instance we remove some sharp edges and instead add some smooth obstacles. Below

is an example of loading a bitmap environment inside World file:

map

(

bitmap “bitmaps/BIG28.png”

size [16 16]2

name “BIG28”

)

The area of the search field frame used with our tool is 25m2(i.e. (50× 50)0.01m2) and that used

with the Player/Stage system is 25.6m2(i.e. (16× 16)0.1m2).

In the Player/Stage setup we are able to define the LED colours for the robots and therefore the

Followers have a “LED=green” and the Leader has a “LED=red”. Also all the agent’s positions should

be defined in advance. We are therefore not able to send them inside one by one, as in our tool. There are

three robots in both tests. Similar to the agents inside the CLOWN formalism, each robot in Player/Stage

is equipped with a camera “range max 0.38” and eight IR sensors “sview [0.001, 0.24, 45]” (For each

IR sensor we define [range min(m), range max(m), view angle(degree)]). The observation view of

these sensors is clearly indicated Player/Stage figures 7.4 and 7.5, where the robot size is 0.11m×0.11m.

In the Player/ Stage model we are furthermore able to add odometry errors as well as errors for the

2[x, y]
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Figure 7.4: Wall–following multi–agent by Player/Stage (right) and CLOWN formalism (left)

sensor readings. In contrast to our tool where the cells are the same size as the agents and the agents

move one cell at a time, the steps of the Player/Stage robot are not as big as its size. This makes the

comparison between these simulation tools harder. In this regard we record the time it takes our team

to locate an object, discovery time, inside both tools. We change the position of the object 10 times,

randomly, to avoid any sensitivity to the position of the object.

Figure 7.5: TeSLiSMA algorithm by Player/Stage (right) and CLOWN formalism (left)

In figure 7.6 we compare the elapsed time from three different random environments (each run

100 times). We test the performance of three agents through the Player/Stage simulation with the same

bit maps applied by our tool. The comparison is not exact. The robot movements are quite realistic

in the Player/Stage system where the robot can get stuck unless it has sufficient space to turn and we

consequently have to make small changes to some narrow pathways. However, the results indicate that

the performance is quite similar. We believe that, our technique therefore seems very promising if applied

on real robots in future.
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Figure 7.6: Performance Comparison

7.4 Conclusion & Future work
As we were expecting further traffic congestion might occur inside our search terrain, because of the

narrow pathways and several number of agents. Therefore, we should set a maximum number of agents,

in addition to the minimum number of agents, that can be sent inside a search terrain according to

the search terrain external frame size. In all experiments TeSLiSMA algorithm proves its significant

performance compared to other competing algorithms. Furthermore, to make this algorithm ready for

real experiments we have tested its performance with Player interface

We summarise the USARSim tool motivations as:

1) it is an interesting tool for academic and industrial prototyping. New robotics algorithms and

approaches can be safely and cost efficiently tested before carrying them over to real world systems.

2) it allows performance evaluations of systems as well as algorithms and procedures. Standardised

scenarios with known parameter settings are especially suitable as the basis for a fair and reproducible

comparison. Also, important nontrivial comparison bases are available in USARSim for quantitative

performance analysis.

3) simulation environment like USARSim are very helpful for training purposes. End–users typi-

cally have too limited time scales and financial budgets to engage in training activities with real systems.

Independently from how sophisticated simulation frameworks have became, the human tester is

not able to monitor and visualise all the weaknesses of exploration techniques. Furthermore setting

up various experiments can only verify if we reach our goal or not, it does not clarify the problem.

Therefore, it is important that we develop an additional feature for our simulation tool, known as a

multi–agent tester group. The tester group is an intelligent tester inside the simulation environment that

should recognise unwanted emergent behaviour in MAS.



Chapter 8

Conclusion

This thesis was inspired by the need to discover trapped victims rapidly inside pancake collapses of a

building, mainly in earthquake affected areas. The aim has been to establish an advanced, autonomous

exploration strategy that will enable rescue workers to perform fast but thorough searches of cluttered and

confined regions during USAR operations. There are three factors expected for an advanced exploration

strategy in this thesis: Efficiency (e.g. minimising victim discovery time), Thoroughness, Robustness

and Fairness.

To evaluate the performance of such a complex system, it was necessary to create a simulation

environment that would enable us to test their behaviour in a variety of controlled operations. The

simulation allowed us to study of the system dynamics and limitations of the millibot team including

aspects like team collaboration and interaction. The proposed architecture is based on two different

types of robots: mother as a base station and its minis. Each is designed to fulfil a special task in the

search and rescue scenario. The single mother allows high level and centralised control whenever this

is deemed necessary. It also transports its minis to the narrow entrance of areas that are inaccessible to

the mother agent due to size constraints. It is responsible for providing power to its millibots as well

as computational tasks like the merging the local memory grids to a global representation of the search

area. Meanwhile, the mini robots are intended to penetrate inside the narrow pathways of the maze–like

environment to explore the operation area looking for trapped victims. They should be able to deal with

their positional uncertainty and traffic congestion inside unexpected long narrow pathways.

8.1 Critical Evaluation
We fulfil our thesis objectives, introduced in Chapter 1, as follows:

1- Frontier–based exploration agent moves toward boundaries or frontiers between known and un-

known environment. In this technique agent is seeking to visit new areas without considering any tran-

sition error in its collected data. This technique is efficient, in terms of time, and relatively easy to

integrate on any kind of robot and independent from the search terrain. However, long term uncertainty

will cause dramatic errors in the agents understanding of its position. This prevents the agent to reach to

its frontiers (in most cases the agent have to switch to ANT behaviour to find its frontiers). We developed

an advanced frontier–based exploration strategy that is able to reduce agent’s positional uncertainty. We
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evaluated that the redundancy of revisiting of unnecessary visited regions is reduced significantly, in this

regard:

1-1- We introduced DAEA, a mathematical model for frontier-based algorithm. This model will

enable our agent to: 1-1-1- apply the effectiveness of coverage (our on-line metric) to asset it to-

ward frontiers; 1-1-2- recognise problematic uncertainties, through a predefined threshold; 1-1-3- apply

approximate–POMDP techniques to reduce positional uncertainties (because of transition errors).

1-2- We added approximate POMDP-solver to deal with agent’s positional uncertainty, whenever it

stops the agent from performing efficiently. For EDAEA approach we define a dual mode controller: 1-

2-1- a mathematical model of frontier-based that directs the agent toward frontiers (as discussed above);

1-2-2- to reduce positional uncertainty we applied approximate POMDP technique.

2- Sending several agents inside a confined and cluttered search terrain, leads the system to initial

congestion. We introduced TeSLiSMA a technique that enables its agents to squeeze inside a search

terrain while moving in a chain formation and able to divide the area among themselves. Each agent

released from the chain of agents performs EDAEA inside its subspace.

3- Further traffic congestion might occur inside our search terrain, because of narrow long pathways.

Therefore we should estimate a maximum number of agents, in addition to the minimum number of

agents, which are allowed to send inside a search terrain according to the search terrain external frame

size. A formula is defined and discussed in this thesis to enable a search group prevent any further

congestion while performing exploration.

In this activity we manage to develop an efficient, thorough, robust, and fair search strategy for

a team of limited sensing simulated robots. We analyse the experimental results for this development

considering both its merits and its shortcomings while comparing it against the most competing available

algorithm, Hybrid-B&M algorithm.

8.1.1 Efficiency

TeSLiSMA efficiency overcomes the performances of other strategies inside complex maze–like en-

vironments. We have estimated the average discovery time of Hybrid-B&M algorithm (second best

algorithm) and TeSLiSMA algorithm (the best algorithm) in three levels of complexities.

Level 1 Level 2 Level 3

Search Field Complexity 2.53 < FDP ≤ 2.58 2.58 < FDP ≤ 2.63 2.63 < FDP ≤ 2.68

P-Value <0.2 <0.023 <0.042

For Level 2 and Level 3 the estimated p-value is less that 5% (statistical significance), which indi-

cates the significant efficient performance of our novel search technique for search fields with complexity

of FDP > 2.58.

8.1.2 Thoroughness

Agent performing TeSLiSMA is able to cover large environments completely in an acceptable time for

the USAR operation. From the experimental results, the average time to cover a complete search area
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with 144 various level of difficulties is less than 13 hours.

Summary of the results:

• When it is 10000 times larger than a mini robot (i.e. frame size of 100× 100),

Strategy AverageTime No. of Agents MAXTime MINTime

TeSLiSMA 12 and 380 seconds 24 23 hours 72 seconds

• When it is 2500 times larger than a mini robot (i.e. frame size of 50× 50),

Strategy AverageTime No. of Agents MAXTime MINTime

TeSLiSMA 7 and 174 second 8 12 hours and 779 seconds 83 seconds

Hybrid-B&M agents failed to cover the complete search area in more than %40 of the tests, because

of odometry errors. In this regard, Hybrid-B&M agents believed that they filled their occupancy grid

memory completely, however they filled their memory with incorrect data that misled them to a wrong

conclusion. This problem might be solved by adding a technique such as loop–closing in SLAM [EP03].

8.1.3 Fairness

To evaluate the fairness of our developed strategy we sent in various number of agents inside different

search fields with a range of complexities.

• From the experimental results, 60% of all the search fields, with 245 various difficulties and three

frame sizes, are covered in less than ‘6’ hours.

• By changing the place of a single goal randomly inside the search field the average standard

deviation of goal discovery time is estimated as 2 hours (MAX 7 hours and 131 seconds, MIN 72

seconds) .

8.1.4 Robustness

To evaluate the robustness of TeSLiSMA multi agent system we investigated: losing a team mate (e.g.

replacing the leader); the immediate agent that detect the lost team mate informs the team by changing

its LED colour; kidnapped robot (e.g. the average recovery time for our agents was 28 minutes), and for

Leader stuck inside a dead end there is an emergent behaviour defined for the team members.

In all these circumstances our agents manage to perform the desirable emergent behaviour and

capable of continue to their exploration without any failure.

8.2 Practical Limitation
TeSLiSMA exploration algorithm will face some limitations, when is applied in practice, as follows:

• TeSLiSMA has only tested inside static environments, since this technique is based on agent’s

recorded data. To deal with dynamic environments extra behaviours should be included. For

instance the agent should be able to distinguish odometry errors from the environment changes

(e.g. further collapses);
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• TeSLiSMA agents cannot provide an accurate topological map of its search field. It only creates an

approximate occupancy grid memory of its search field. However, through this limited information

by the small millibots (platform of 100× 100 mm2) the rescue team are able to identify victim’s

location approximately, and estimating the position of points of interest (e.g. a narrow pathway

that might lead the agent to a life safe void) for further exploration ;

• We have tested the performance of the TeSLiSMA agent inside 2D simulation environment. For

real scenarios (working in 3D exploration) TeSLiSMA agent requires extra emergent rules and

behaviours, for instance it requires a behaviour to enable the agent to perform wall following if

there are pathways not only on the ground level but also higher inside the wall;

• Form the experimental results TeSLiSMA agent performances inside the search fields with com-

plexity larger than 2.65 , FDP > 2.65, are undesirable. This is in the context of search and rescue

operations with an elapsed time of more than 20 hours for a search field as large as 100m2. Note

that the discovery time is not decreasing by adding more agents, it might also increase because of

the traffic congestion inside the cluttered and confine search area.

8.3 Future Work
To improve the performance of our self–organised exploration system we have identified solutions for

the future work both in the hardware and software of the robots.

• Adding extra hardware feature– Swarm–bots or ‘S–bots’ [Wikb], has been created in a project

headed by the Artificial Intelligence Laboratory at the Free University of Brussels, Belgium. In this

project they are a group of mini robots that are able to connect to one another through their gripper arms.

Therefore, each s–bot is not only equipped with essential sensors, and limited computational (as our

millibot), it is also equipped with a gripper arm that can connect it to another s–bot. S–bots follow a few

basic rules: If you see another robot with red light, connect to it. This connection can help the system to

pass over gaps and steps where individual bot would have fail. No central control commands the whole

swarm. The goal of s–bot project is that they can someday be used autonomously to explore at sea, in

space, or infectious environment.

We are able to apply the gripper arm on our millibots in practice, for instance while they are per-

forming wall following they can easily create a connected chain by connecting to each other. In this

case we are able to speed up the operation even more, since there is no need for a robot to check the

availability of other robot(s) in its line of sight. This enables us to reduce the number of LED colours

applied to the multi–agents. Thus, it can reduce the chance of failure in colour readings for the MAS.

Additionally the agents in the middle use less battery, therefore they can spare battery for filling their

occupancy grid map.

• Improving Software techniques– As discussed in chapter 7, we might be able to improve our

multi–agent system by applying soft computing techniques, such as LEGA or FNN. The idea is that

to enable our system to learn, through limited sensing agents, new essential emergent behaviours, in a

short time, for different situations to optimise the system. In this regard we should develop an additional
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feature for our simulation tool, known as tester multi–agent group. The intelligent tester should learn the

unwanted emergent behaviours while learning new essential behaviours for our MAS.

In the literature Denzinger and Kidney [DK06, KD06], used evolutionary learning methods to search

for unwanted emergent behaviours. The general idea is to employ another group of co-operating agents

(testers) that interact with our multi–agent system. Testers use learning methods to adjust their behaviour

based upon observations made of the MAS. This process will continue until the testers recognise the

unwanted behaviour. Therefore, by removing the undesired emergent behaviour we are able to reduce

the exploration time and improve our search technique. In the future we have to concentrate more on

learning how to detect and intelligently monitor these unwanted emergent behaviour, through a tester

team, and use this information to improve the performance of the TeSLiSMA algorithm for the very

complex search fields.

Additional features, as indicated through the thesis, can be added to the Simulation tool (e.g. 3D

cubic cell, discussed in Chapter 3), as well as exploration algorithms (e.g. RF communications to upload

other agents local memories, discussed in Chapter 6).



Appendix A

Sensor Selection

If robots are to detect victims trapped under the rubble of a collapsed building, they need to be outfitted

with sensors. There is a great variety of sensors available and this appendix involves the selection, circuit

design and implementation of sensors needed to accomplish a search and rescue mission. Each sensor

has certain capabilities and limitations, thus to choose the correct sensor, one must first properly define

the application. The important criteria to select sensors for this project are:

Low cost

Small size

Lightweight

Easy to interface

Robustness

Low power consumption

USAR explain that video cameras are essential for their robot missions because they permit the

workers to navigate and see the site via teleportation. However for the purpose of victim identification,

digital thermal cameras appear a much better choice. FLIR (Forward-Looking Infrared camera) for

human heat detection has therefore been chosen for this project. In real scenarios Sonar might also be

very useful for obstacle avoidance. Microphones, speakers, and sensors for motion detection might be

added to this model later in the project.

A.1 Robot perception

Robots gain information about their environment by perception. Once information has been perceived,

it can be processed and analysed to allow appropriate actions to be taken. What a robot can perceive is

defined by its set of sensors and USAR missions deal with a robot type that is equipped with infrared

range finders, an inertial measurement unit, wheel encoders, a camera and a localisation unit. Robot

perception is critical when a robot has to act autonomously, considering that every action is based on

the information perceived. Therefore, autonomous mobile robots are a great challenge, even more when

operating in complex environments.
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A.2 Sensors for Victim Detection

A.2.1 Vision

Vision sensors are the most common type of sensors used for human detection so far. There are different

forms of vision sensors available in the industry: linear cameras, colour cameras, stereovision, and

infrared cameras

Linear Camera: The linear camera is the cheapest vision sensor, but it is not very effectual to

detect people, since more than one line of pixels is required for detection.

Colour Camera: Colour camera like low cost USB cameras (webcam) or even more expensive

cameras with CCD (Change Coupled Device) sensors (good optics used in professional systems) might

be very useful. The disadvantage of these types of cameras is that an operator must be employ to find

victims, or an advance image processing software should applied (very time consuming). However, if

robots are communicating with full colour LED, it is desirable to have ‘VGA camera’ [NGD+05]. For

instance DCSG is a monocular VGA camera for machine vision tasks for scenes in motion. This is an

ideal camera for our project since it has a size of: 38 mm high×66 mm long ×25 mm deep, low weight,

and low power consumption.

Stereo Vision: This is one of the most expensive device for this purpose, because two colour

cameras must be deployed to take images of the scene. The difference between the two images provides

the depth information. This method is known as disparity and enables the operator to evaluate the

distance of the object from the camera.

Infrared Camera: The most efficient sensor for detecting humans is the infrared camera. This

device gives a picture of the environment heat. Normally Pan and Tilt capabilities are added. In this case

two servos are required for this new system operation; panning servo and tilt servo is a nice compact

sub-miniature servo. Pan, tilt, and zoom cameras are some of the most versatile cameras in the market.

They can pan (move left and right), tilt (move up and down), and zoom in or out.

A.2.2 Heat sensor

Heat sensors like Thermopiles and Pyroelectric detectors can easily sense a live human.

Pyroelectricity the ability of certain materials to generate an electrical potential when they are

heated or cooled. Very small changes in temperature can produce an electric potential due to the materials

Pyroelectric properties. Motion detection devices are often designed around Pyroelectric materials, as

the heat of a human or animal from several feet away is sufficient to generate a difference in charge.

Any material that has a natural charge separation (even in the absence of an electric field) is called a

polar material. All polar crystals are Pyroelectric. The infrared Pyroelectric system has the potential

optical power (that is received) to an electrical output signal. Though they provide adequately high

output signals to permit an easy interface with a measurement or control circuits [HBSS95].

Thermopiles are a widely used type of remote , contact–less temperature sensing and can also be

used as a way to convert thermal potential difference into electric potential difference. They are cheap,

interchangeable, use standard connectors, and can measure a wide range of temperatures. Perkin–Elmer

offers thermopile detectorz equipped with two or four channels and infrared spectral band pass filters.
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These types of thermopiles are used for gas detection via IR absorption. Prominent gases to be detected

are CO2, hydrocarbons and CO [Ele]. Therefore human detection can be done either by temperature or

even from their exhaled gasses.

A.2.3 Microphone

Inevitably survivors under the rubble will call for help. Therefore sound is a very accessible parameter

to detect. A microphone can be attached on the robot to find victims who have been buried alive. A

filtering system is highly recommended, to remove sounds outside human speech frequencies. They

allow an operator or even more practical an intelligent program to alert the search team to the existence

of a survivor under the rubble. Microphones are very low cost but additional data and signal processing

is required.

A.2.4 CO2 Sensor

Medical sensors like carbon dioxide sensors might help rescuers determine if a victim is still alive (by

estimating human breathing cycle) and in need of rescue, therefore it improves the rescue operation.

Most of these sensors are bulky (their monitoring equipment like screen and case) because they are

usually used in hospitals. However, NDIR (non-dispersive infrared absorbance) sensors are able to

monitor CO2 emissions. It determines the amount of CO2 absorbance; while CO2 absorbance band

is unique, and highly selective [Rsa]. CO2 sensor chip is low cost and highly integrated with MEMS

device [SCs].

A.2.5 SpO2 Sensor

SpO2 (Spot Oxygen saturation) [Mgs] sensor is a medical sensor that it senses blood oxygen content.

It needs direct contact with the persons body (bare skin). Although this sensor has the extra ability to

separate live humans from other living animals (because of the unique blood oxygen) it is a bulky system

and thus is not suitable for this scenario.

A.3 Sensors for Navigation

A.3.1 Range Finders

Ultrasound is a sound with a frequency greater than the upper limit of human hearing (16 − 20KHZ).

A common use of ultrasound is in range finding; this use is also called SONAR (Sound Navigation and

Ranging). For robot movement, its microcontroller sends a signal to activate the sonar. Sonar emits a

mostly inaudible sound and detects the return echo. By keeping track of the delay it can then calculate

the distance of the detected objects. Sharp IR Ranger Finder is probably the best technology to deploy

for this scenario. This method works by the process of triangulation. A pulse of light is emitted and then

reflected back (or not reflected at all). When the light returns it comes back at an angle that depends

on the distance of the reflecting object. Triangulation works by detecting this reflected beam angle.

Therefore, by knowing the angle, the distance can be determined. These methods can only provide the

distance between obstacles and the robot but cannot make the distinction between a human or non-human

presence. Thus their most important application is 2D mapping. The ARC (Angle Range Compensation)



120 A.3. Sensors for Navigation

laser range finders designed by Bushnell Scout, not only give an accurate distance reading, but also

displays the angle to the detected target. This compact and lightweight device can provide the search

robots with both gyroscope and range finder.

Precise and accurate range-to-target information is readily provided by the laser range finders. How-

ever, currently available laser range finders are bulky, heavy, expensive and very difficult to mount. The

US Army CECOM RDEC NVESD is addressing these laser range finder issues in the development of a

Micro-Laser Range Finder (mLRF) [NBSL99]. Their motivation to build such a range finder is to mount

it on the weapons for the soldiers. However these laser range finders are still very expensive to apply on

search and rescue multi-robot systems.

A.3.2 Radar

Radar is appropriate for motion detection. Millimeter –wave radar is efficient for long distance motion

measurement. This type of radar works on very high frequency (5 − 24GHZ) and are able to operate

through smoke, dust, fog or rain. These small and low power radars can detect motion up to 6 meters.

However, they are very expensive to use on multi robots project [Bur04]. Laser Radar (LADAR) or

LIDAR (Light Detection And Ranging) can be deployed under circumstances similar to millimeter wave

radar, but uses laser beams to scans and process the signal echoed from targets. A Laser Radar (LADAR)

seeker can detect objects and identify specific features with very high definition of up to 15cm resolution

from a distance of 1,000 meters.

A.3.3 Electrical Compass

The vehicles heading contain the most significant navigation parameters (x, y, θ) in relation to the impact

on accumulated deadreckoning errors. Therefore, sensors that are able to measure absolute headings

accurately become extremely important in supporting the navigation needs of autonomous platforms.

However, the magnetic field of the earth can be distorted near power lines or steel structures. This

makes the straightforward use of geomagnetic sensors difficult for indoor applications (instead we deploy

gyroscopes as equipped in IMU). For outdoor and large scale environments an electrical compass is a

very suitable device to find directions. There are different sensor systems available to use:

• Mechanical magnetic compasses

• Fluxgate compasses

• Hall-effect compasses

• Magnetoresistive compasses

• Magnetoelastic compasses

However, the best suited compass for mobile robot application is the fluxgate compass. This elec-

tronic sensor measures the magnetic field of the earth directly. Therefore problems like spin, swirl,

overshoot and sluggishness are eliminated. Fluxgate compass has these features: low power consump-

tion, no moving parts, intolerance to shock and vibration, rapid start-up, and relatively low cost. If the
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robot with fluxgate compass is expected to operate over uneven terrain, the sensor coil should be gimbal–

mounted and mechanically dampened to prevent serious errors introduced by the vertical component of

the geomagnetic field [OB00].

A.3.4 Gyroscope

For robots that have to crawl inside the rubble or even climb a ramp or steps indoor, a gyro sensor is

crucial. This sensor is used to determine the angle of the main body of the analogue robot with respect to

the horizon. It is a piezoelectric sensor, which detects speed of rotation and sends out an analogue voltage

that is about 0.67mV/deg/sec. In this case, by taking a base angle for robots main body, the angle of the

main body with respect to horizon can be determined at every moment. By deploying two gyro sensors

for each robot the stability of the robot can easily be determined [AAE+05]. Currently, search robots

usually use only rate gyros for correcting rotation and simplified schemes for gyro-compensation. Future

configurations may integrate inertial measurement units (IMUs), tiltroll, and triaxial inertial sensors to

measure and compensate for the many real-world conditions that confound the odometry, especially on

hilly and rough outdoor terrain. The advanced algorithms provided by Kalman filtering, which extract an

erratic signal from noise, may also be used to refine and fuse the various mobility-related sensor inputs

into a better odometry.

A.3.5 3DM

3DM uses three orthogonal MEMS accelerometers and three orthogonal magnetoresistive magnetome-

ters. It measures orientation over 360 degrees about any axis, but it is suitable for static and quasi-static

environments only (roll over 360 degrees over one axis), because the accelerometers cannot accurately

measure inclination in the face of inertial influences. Heavy low pass filtering can be used to alleviate

this problem but it introduces a lag in the response to angular change [Sen]. However, there are more

advanced devices in MicroStrain like 3DM–G that has a 9 total sensors and allows a 360 degrees range

over all three axes (pitch, roll, and yaw). The combination of multiple MEMS sensors with proprietary

software algorithms (running on tiny microprocessors) allows this company to enhance performance and

simplify their sensors outputs while keeping things small. Bear in mind that 3DM and compasses are

complementary and working together enables them to determine the direction of the robot.

A.3.6 GPS

By using the global positioning system (GPS, a process used to establish a position on the globe) the

following two values can be determined anywhere on earth:

1) Ones exact location accurate to within a range of 20m to approx 1mm

2) The precise time accurate to within a range of 60ns to approx 5ns

GPS receivers are used for positioning, locating, navigating, surveying and determining the time

and are employed both in civil and military fields. A GPS system has been implemented for global

positioning on the search robots for outdoor navigations. This system might prevent large faults in the

localisation. Thus, if the position detected by other sensors differs considerably from the GPS position,

robots location can be updated via GPS data. To convert the longitude and latitude data from GPS to
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Cartesian coordinate, a microcontroller is required. This method has the most effect on localisation on

outdoor and large-scale environments. A minimum of four satellites has to be detected by the receiver to

give an accurate position estimate. Errors in an uncorrected GPS signal come in many forms and arise

from a variety of different sources. These errors are high frequency noise and long-term drift. High

frequency noise or spikes are easily identifiable on a 2D plot of the GPS track recorded from a moving

platform. Although, no attempt has been made to formulate an explicit definition of what constitutes

noise. For instance one of the methods to recognise these noises are epoch jumps in the GPS position.

An epoch is one GPS cycle (milliseconds). Therefore if the new positions received form GPS maintained

for more than approximately 30 seconds, then it is no longer considered noise but lies in the grey area

between the two categories. The difficulty arises from the fact that in some instances the position can

jump several meters and then either jump back on the next epoch or maintain that new position for a few

seconds or indefinitely. Experiences have shown that the two main causes of GPS noise are satellites

coming in and out of the view of the GPS receiver and multi–path effects. The magnitude of these errors

varies from a few feet to hundreds of feet. Long term drifts are much more difficult to see on a track plot,

since they change over a period of hours on the contrary to noise that occurs over a period of seconds.

It is also difficult to determine the exact cause of these types of errors, but they are typically attributed

to atmospheric effects in the ionosphere, troposphere and satellite geometry. The magnitude of these

errors can vary from no error at all to thirty feet or more. The most common solution for solving GPS

noise problem is to deploy other sensors and Kalman filter. An inertial sensor is an ideal companion

for the GPS. Also by using Kalman filtering almost all the spikes in GPS seems to be smoothed out.

Unfortunately, it does not do any good for the long-term drift errors. Here other techniques, like dead

reckoning, may provide better solutions.

A.3.7 Inertial System

An Inertial System is a sensor package that measures the inertial forces generated by the movement of an

object. The most frequent applications for an inertial system are navigation, attitude measurement and

platform stabilisation. The system mostly measures accelerations and rotations about the three primary

axes X, Y, and Z. Crossbow offers a wide range of inertial products based on MEMS and FOG (Fiber

Optic Gyro) technologies [Tec]. All of its inertial systems are designed to operate without the need for

external aiding. However, some of them do accept aiding signals such as GPS or Air Data to offer an

even higher level of performance. When Inertial Navigation System is combined with GPS, it provides

high quality measurements, including obscured-sky speed measurements, in environments where GPS

alone struggles.

A.4 Noisy sensor measurements
Sensing devices do not operate perfectly, i.e., the measurements they produce do not always reflect the

real state of the world, due to noise in the environment and to certain characteristics of the sensing

technology. Therefore if we are modelling these sensors inside a simulated environment we should be

aware of this and try to add a set of realistic errors as well.
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Incorrect measurements from an active range sensor (e.g. IR) can be caused by reflective surfaces

or ambient lighting conditions and can also depend on the distance to an object [Jon04]. The real world

will not deliver perfect measurements as a simulation might do. Therefore, for a realistic scenario, it is

important to integrate noise and error sources into the simulation.

There are different ways to simulate noise. The most simplistic way is to base noise simply on ran-

dom numbers. But usually, when noise cannot be classified, a specific noise distribution is assumed. For

a situation with no additional information, a Gaussian distribution (normal distribution) is the common

choice. Only looking at the data sheet error specification of a specific robots perception devices, supports

the application of a Gaussian error distribution. This only characterises the sensor error itself and the

noisy environment still needs to be accounted for. Thrun et al. [SBD05], however, suggest a model for

range finders, which takes the existence of four different types of measurement errors into account:

• small measurement noise

• errors cause by unexpected objects

• errors based on the failure to detect objects

• random noise

They create a probability distribution for each of the mentioned situations and mix those distribu-

tions, to finally reproduce the most likely measurement. This means that the measurement model is based

on four different densities. So instead of using a pure Gaussian distribution, this offers a better represen-

tation of world noise and sensor errors. In order to produce a noisy measurement, the process takes an

actual measurement (from the simulation) to create the appropriate mixed distribution and sample from

it. At the end this sample becomes the final measurement.
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Robot–Robot Interaction

There are several advantages associated with using a group of robots instead of a single one. An im-

mediate advantage is that a robot group is more fault-tolerant, because one robot can repair or replace

another in case of failure. Furthermore, a group of robots can overcome the limitations of a single robot

and solve tasks that are too complex for a single robot to solve. The coordination among the robots is

achieved, in this thesis, through self–organised behaviour within the system. This self–organisation is

the result of local interactions among the robots, as well as between the robots and their environment.

One such cooperative and collective robot group is known as a swarm. In the swarm each robot is con-

trolled by simple strategies, and complex behaviour is achieved only at the colony level. Exploration

swarm robotic applications have been inspired by social insects like ants. Ants collaborate by leaving

a pheromone trail that attracts other ants toward a food source. This idea has been used in the devel-

opment of robot search teams to allow individuals to interact and direct the team toward the localized

victim. According to the reports from earthquake sites, quake survivors are frequently trapped in very

close proximity to each other. Thus when a robot finds a survivor it is highly probable that there will be

more survivors in close proximity to the first located victim, but it is only possible to take advantage of

such occurrences if robots are able to inform each other of their findings.

Imagine a convoy of robots comprising a leader followed by several relay robots. Each relay robot

is programmed to follow the one immediately in front of it. However to perform this movement they

need to follow some sort of a trail. This trail can be a communication link or even a path guide. Having

a reliable communications link between members of the robot team consequently plays a vital role In

hazardous environments. Analogue radios have limited bandwidth and suffer greatly from multi–path

fading. Wireless broadband digital communication, on the other hand, has proven to be much more

robust and versatile. However, due to their high operating frequency, they need to maintain line of

sight (LOS) contact with the base station and this is a requirement that is extremely difficult to achieve,

especially in urban environments.

Pezeshkian et al. [PNB06] proposed a solution to this by using relay systems. Their proposed

system includes several relay radios, known as Relay Bricks, that are carried by the mobile robots as

payload. These Relay Bricks are plug–and–playable, and can be attached to many unmanned vehicles

requiring long–range and non–LOS operational capability. Steele et al. [FS07] also devised a Stigmergic
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search and rescue system that has been inspired by food foraging behaviour of ants. The robots in their

system generate a stigmergic system by communicating directly or indirectly with each other. Among

insects we find similar direct and indirect interactions as well. Direct interactions among the insects are

the obvious interactions like, the exchange of food or liquid (trophallaxis), mandibular contact, visual

contact, chemical contact, etc. [BDT99]. Two individuals interact indirectly when one of them modifies

the environment and later the other insect responds to the new environment. In an ant colony, each ant

will leave a chemical pheromone trail toward the food source, which is traceable to the other ants. This

indirect interaction explains stigmergy, a method of communication in which each individual affects

the emergent behaviour of its group. The same idea has been employed for stigmergic search system.

Therefore each robot informs other robots of its achievement and vice versa. This positive feedback

allows the system to improve its performance. Osherovich et al. [OBY06] also presented an ant inspired

algorithm for covering continues domains by primitive robots that are only able to mark visited areas

with pheromone and sense pheromone in their neighbourhood. They show that despite the simplicity of

the robots in their team, they are able to cover their search environment efficiently.

B.1 Tether
The tether can act as a conduit for any subset of the following: power, data communication, gases or flu-

ids supply [KJ97]. The tether can also be used as a safety line in cases such as a power failure, mechanical

malfunctioning, or when a robot is deployed through small and narrow vertical openings [R.M04]. Teth-

ers can be categorised as active and passive. Passive tethered robots have a tendency to drag and catch

on obstacles. Many tethered robots are stopped before they complete their task by having their tether

caught on an obstacle. Tethers also limit the depth to which the robot can be deployed because a tether

has a finite length. Furthermore, in search and rescue robot team applications, robots have been known

to cross paths and tangle in each other tethers. However, active tethers [YVLP09] a new research area

for tethered robot systems. It provides a continuously distributed form of actuation that results from

the water hammer effect. It reduces the friction of the tether by the jerks that are created by the water

hammer effects.

Figure B.1: Active tether for a robot , University of Denver
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B.2 Guide path following
In this section different methods of indirect interaction among robots are introduced. They provide

the ability to mark visited places and produce a path guide to interact with each other. Apart from this,

robots have no means of communication. They have no global information such as a domain map, global

positioning, and coverage percentage.

B.2.1 U/V Stimulated Emission

The U/V guide path stripe is composed of fluorescent particles suspended in water–based hardener that

permeates the floor surface for extended durability, and dries in approximately eight hours. An active

ultraviolet light source irradiates the guide path, causing the embedded fluorescent particles to reradiate

with a fairly narrow spectral output in the blue–green visible spectrum. The lateral position sensor that

detects this stimulated response is insensitive to ultraviolet wavelengths, and thus sees the fluorescent

stripe as a path with a fairly high signal-to-noise ratio relative to the surrounding floor surface. The Bell

and Howell Mailmobile robot uses three discrete photo-detectors to track the glowing guide path [BH].

However, one of the disadvantages of this method is the potential interference from direct sunlight,

which makes this path guide suitable only for indoor search applications. The guide path technology

also requires a fairly smooth floor to ensure reasonable performance and is therefore not a practical

solution in search scenarios involving significant amounts of rubble.

B.2.2 Heat and Odour paths

Early work in this area was based on a short–lived heat trail laid down by a lead robot equipped with

a quartz–halogen projector bulb configured to raise the floor temperature beneath the unit during the

course of transit [KR93]. Other robots would simply follow the temporary trail of the leader in convoy

fashion. A standard Pyroelectric sensor as is commonly used for passive motion detection in security

applications was modified to sense the residual thermal energy imparted to the floor. However due to

interference problems associated with hot water and heating pipes embedded in the floor, as well as

localized hot spots created by shafts of sunlight, this method was not really practical. In addition the 70

watt halogen heater placed considerable energy demands on the limited storage capacity of the onboard

battery, which encouraged the scientists to improve this method.

Deveza et al [DRTMS94] devised a solution using a wide trail of camphor for the slave (follower

robot) to detect and follow. The camphor is dissolved in alcohol and applied with a felt–tip applicator.

The alcohol evaporates in seconds, leaving a trail of camphor particles on the floor. The choice of

camphor was based on its ease of detection and the fact that it is inoffensive to humans, slowly subliming

over a period of several hours into a harmless vapour. Camphor sensors should be equipped on the

follower track team. These sensors are based on the gravimetric microbalance technique, employing a

quartz crystal coated with silicone. Camphor molecules are absorbed into the crystal coating, adding

to the effective mass of the crystal and thus lowering the resonant frequency in direct proportion to

the odour concentration. So far discussions of both of these methods as path guides among robots

are centralized because they have leader that provides them with the path. To make sure their system
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provides a comprehensive search of the search field we require an operator to direct the leader and the

system therefore becomes semi–autonomous. In a known environment (for instance one that has been

mapped by other exploration robots before) the leader could guide its team to their localized goal for

further assistance.

B.2.3 Environment Electrical Tagging

In this indirect interaction method, robots are able to communicate only by reading and updating the

state of their local cell. In this method of communication the search environment should be instrumented

with uniformly distributed miniature devices (e.g. motes or RFIDs). These devices have a memory and

they are therefore able to store information regarding the environment. Robots visit the unvisited cells

and tag them. This causes the cells to change states. For instance, when they are visited they will change

their state from 0 to 1. This kind of environment, known as Intelligent Space (iSpace), has ubiquitous

distributed sensory intelligence [LH02].

The iSpace propagates mobile robots and they will in turn change the state of the space. The

intelligent iSpace has the capability of performing situation evaluation inside the space. There are two

main process on the evaluated situation in iSpace. One is the sense–think–act loop, where the evaluated

behaviors are applied directly by the mobile agent control system to produce intelligent response to the

instantaneous situation. The other is the sense–learn–conclude loop, where new behaviors are learned

and given to the control system. The sense-think-act loop of the iSpace is updated with behaviors what

is derived from the sense-learn-conclude loop [SH04]. For instance Ferranti et al. [FTL07] present a

system where all the robots within the system are able to read the tags (equipped by tag readers) and

therefore able to understand the state of each cell and act accordingly. However, this method cannot

provide a practical solution for robot–robot interaction in our search and rescue scenario. The method

requires the environment to be definitely charted and for each cell an electrical device should be installed.

This makes the technology suitable only for certain types of indoor environments, making it a specific

rather than general solution.

B.3 Communication link

The approach to multiple robots denotes the advantage of the distribution of the risk, and the simplicity

of the design. However when we choose to use multiple robots instead of a single robot a new problem

might occur, communication. When multiple robots must cooperate and coordinate in order to complete

a task, communication plays an important role. Some tasks may not even be able to be completed without

communication. For example if robot R1 knows which task needs to be completed and can not complete

the task by itself this robot needs to find a way to communicate this information to the other robots (e.g.

R2 or R3) in order for the task to be accomplished. Here in this section direct method of interaction is

discussed. On contrary to the indirect method, the search field remains untouched all the way through

the search operation.
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B.3.1 RF communication

Examples of conventional communication architectures are broadcast communication and point-to-point

communication. Additionally, in complex systems, a hierarchical architecture is required to allow the

team of robots to communicate effectively. The most important characteristics of suitable communication

architectures are: adaptability, response, extensibility, and fault tolerance [TFU94]. These characteristics

have a great effect on the abilities of the multiple robotic systems. Robots can easily carry miniature

wireless devices that in turn can be used to create wireless, mobile, ad-hoc networks (MANET) using

hop-by-hop routing along shortest paths to reach the controller from many sensor sources.

Wireless networks can be classified into two categories: Infrastructure–based wireless and Ad–

Hoc wireless networks. In Infrastructure–based wireless networks there are usually some fixed nodes

(base station) that are connected to wired backbone. These nodes provide communication between the

wireless nodes and moreover provide gateways to other networks. Typical examples of this kind of

communication are GSM networks, WiMax, and building wireless networks. While in wireless ad-hoc

networks, nodes communicate directly with each other by means of a short–range wireless medium (e.g.

WiFi, Bluetooth, Zigbee, etc.) [KL09]. Between the infrastructure–based mobile networks and ad–hoc

networks, there are the hybrid networks where fixed infrastructure is used where it is available and ad–

hoc communication where it is not. In Mobile Ad–hoc networks, nodes are free to move however they

will disconnect and reconnect elsewhere. The disconnection is in the most cases unpredictable and lead to

intermittently mobile connected ad–hoc networks. Therefore here, a new category of wireless networks

has introduced which as Opportunistic Networks (ON). Because of the unreliability and short range of

wireless communications in indoor environments, it is preferable for the system to use an additional

interaction method. While inside a collapsed building the RF link (e.g. 2.45 GHz Zigbee) range often

drops to a few meters or even blocked. Pan and Lowe [PL07] introduced RF communication via power

cable transmission line. They used power line network of a building as an auxiliary signal transmission

medium, which guide that weak signals from inside to get to the rescue team outside.

B.3.2 Visual communication

Lack of interoperability in radio communications is an urgent problem that affects every level of search

operation. To avoid any disruption among the agents as the result of communication faulty two types

of communication strategies can be implemented as introduced by other authors [VPnLO92]. Therefore

one of the communication methods is an auxiliary method that might be used in cases of any faulty in

communication system during the operation. For instance in some cases the second auxiliary method is

that each robot emits a signal to indicate its position to other robots [GJ92, DFF92]. Visual communi-

cation among robots in an autonomous system is consistently via camera. Therefore robots should be

marked and distinguished from other objects within the search field.

Dorigo et al [DN06] equipped their robots (s-bot) with RGB-LED ring and VGA camera. The ring

emits a colour, each colour indicates robots mode. Other robots can distinguish these colours via their

developed program, thus they can interact with other robots with different colours. For instance when

a robot reaches an obstacle it changes its colour from green (wandering mode) to blue, which informs
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other robots of its observation. This kind of visualisation is with active–beacon emitters. Visualisation

method can also be done via passive retroreflective targets. Therefore robots can be coded with unique

binary identifications. These robots are fitted with a retroreflective bar code. Bar codes are readable with

LADAR, which each robot is equipped with this laser. Based on this bar code each robot obtains range,

bearing, and orientation information of the robot in its laser range [PNB06].



Appendix C

Localisation

Inside a simulated environment, no localisation is necessary, because the exact position of the robot is

known. However all real localisation techniques have errors, and therefore the simulation should have

a realistic error added to the actual position. In this appendix we describe different passive localisation

techniques:

C.1 Dead Reckoning
The dead reckoning (DR) method identifies robot positions by calculating the amount of travel from its

starting point. It does this by integrating rotations of the right and left wheels, such as on wheel driven

vehicles. This method is simple and is easily implemented. It can also identify robot positions in an

uncharted environment because it only employs internal sensors.

agents are storing their pose (xt, yt, θt) at each time step. The simplest method for Dead Reckon-

ing [Bor94, Rei91] in real application is to adjust a pair of encoders (drive wheels) on each nose wheel.

The location of the agent is constantly updated using the following formula:

xt = dis ∗ sin(θ) + xt−1 and yt = dis ∗ cos(θ) + yt−1 (C.1)

The distance that robot has travelled since the last position calculation (dis), are calculated as (the

current heading of the robot (θ) is estimated by compass) :

dis = (leftencoder + rightencoder)/2.0; (C.2)

WHEEL–BASE is the distance between the two differential drive wheels.

However this technique might have some serious errors while wheel slippage causes measurement

errors, which is accumulated as the vehicle movements. Robots often use dead reckoning to estimate

their position without a map, but its errors accumulate over time, and the dead reckoning position es-

timate becomes increasingly inaccurate. Therefore this popular method is not a reliable positioning

method for long distances or uneven surfaces because of variations in wheel diameter and slippages.

To reduce the dead reckoning errors as much as possible, different additional methods have been

devised. The search and rescue scenario causes the worst kind of localisation problems such as the

kidnapping problem. A robot moving in such areas can experience unexpected and sudden position
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changes. Odometry will be useless in such situations and only an inertial measurement system can help

as an internal sensor. The internal position error correction scheme has been known as one of the clever

ways to reduce errors [Rei91].

A smart encoder trailer is able to detect and quantify the instantaneous orientation errors. From

Borenstein [Bor94] experimental results, rotary encoders (for error cancellation) improve DR perfor-

mance in a perfect manner. However odometric drifts become more sever problem in certain situations

when the robots environment contains a variety of ground surface types. Duckett et al. [Duc00] in-

troduces self–localisation through dead reckoning while determining robots orientation using compass.

This had the effect of removing the accumulated rotational drift affecting the robot’s raw odometry.

Feng–Ji et al. [FJHJA04] devise an efficient method for estimating long distance navigation of a mobile

robot in an unknown terrain, by fusing dead reckoning, IR, and Sonar sensors.

Unfortunately, pure dead-reckoning methods are still prone to errors that grow without bound over

time, so some additional method is necessary to periodically correct the robot position. It is common to

combine the additional localization technique, such as triangulation from landmarks or map matching,

with dead-reckoning using an extended Kalman filter to update the robot position probabilistically. In

addition to deal with noisy odometric data and incomplete information, Partially Observable Markov

Decision Process (POMDP) [LCK95] are often proposed to address the issue of goal pursuit in such

environments.

C.2 Land marking

Landmark based navigation is intended to greatly improve robot position estimation over dead reckoning

by tracking visual features in the environment and using them as landmarks. Therefore it uses the known

or currently acquired knowledge about the robot ’s environment (observed data) to improve the position

estimation. Many other approaches reviewed in [BEF96] are limited in that they require modification of

the environment. For instance some require artificial landmarks such as bar–code reflectors [eDWGS94],

reflecting beacons, or visual patterns that are easy to recognise, such as black rectangles with white

dots [Bor87]. Oussalah et al [OMB99] opened up a landmark–based method in which landmarks are

composed of a set of infrared LEDs that help the mobile robots to accurately increase the accuracy of

their estimation.

Some of the more advanced approaches use available landmarks- do not require modifications of

the environment. Kortenkamp and Weymouth [KW94] and Mataric [Mat90] use gateways, doors, walls,

and other vertical objects to determine the robot’s position. The Helpmate robot uses ceiling lights to po-

sition itself [KW90]. Additionally Dark/Bright regions and vertical edges are used in [CC85, WFW95],

and hallway and openings, and doors are used by the approaches described in [SK97, SK95]. The land-

mark method, which estimates current position relative to landmarks, cannot be used in an uncharted

environment. Furthermore in landmark localisation predefined features are required, thus they are not

as robust as necessitate in our research scenario. In literature landmark localisation is one of he most

popular techniques for navigation inside explored or known environments [HGS00, SD98].
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C.3 Cooperative positioning
In this context, most work on localisation has focused on the question how to reduce the odometry

error using a cooperative team of robots. Kurazume et al. [KH96] introduced Cooperative Positioning

System (CPS) by dividing robots in to two groups, A and B. Group A stands still and act as a landmark

while group B moves. Later on, group B become landmark for moving group A. This dance is repeated

until they reached a target position. In this positioning system they have proposed triangle multi–robot

localisation [Eve95] method in which three or more robots form a triangle and each robot moves in

turn while being located by the others. This positioning is a mixture of dead reckoning and landmark

positioning techniques. It uses multiple robots, which each are equipped with sensors to measure their

positions relative to one another1 . CPS is able to reduce the odometry error in an uncharted environment

or even in indoor environment and underground where GPS cannot be used. However, their technique is

not able to recover from significant sensor errors.

Other researchers work in this area, CPS, and try to improve this technique [RDM97, Bor95]. None

of these techniques incorporates environmental feedback into the estimation. Even if the initial position

of robots are known , they ultimately will get lost. Navarro-Serment et al. [NSCPK99] have developed

a novel method that combines aspects of GPS, land-mark based localization, and dead reckoning. The

method uses synchronised ultrasound pulses to measure the distances between all the robots on a team

and then determines the relative positions of the robots through trilateration- i.e. determination of

the position based on distance measurements to known landmarks or beacons. Their leap–frogging

algorithm allows the team of robots to move over large distances while maintaining accurate position

estimates with respect to the initial reference frame. Simulation results indicate that this localisation

system has the potential to be an order of magnitude more accurate than traditional dead reckoning

systems. This technique is not a very suitable technique for avoiding obstacles and entering narrow

pathways, furthermore it has no assurance for a fairness search. The problem arises when agents have

to share their recorded data at each step, to create their coverage map. Thus it is not a very suitable

technique for this project by itself, while in search and rescue operations we need a comprehensive

search method and implicit communication among agents, inside voids, is a problematic issue.

C.4 Greedy Localisation
These kinds of localizations usually are designed for the agent centred search to restrict planning strate-

gies. Agent centred search methods decide on the local search space (adjacent cells around the robot)

and determine which moves to execute within it. Here robots with short–range sensors operate in a grid

world (a chess board) with no knowledge about their terrain. Available equipments (sensors on board)

provide the robots with information about their neighbouring cells. Occupied cells and defined borders

(border cells) are all un-traversable. Robots are allowed to move one cell in any direction unless it is

not traversable. In some case this method of localization determines how to move the robot until it

knows its current position- according to its available knowledge about environment (i.e. map). In the

1for more details about relative localisation refer [Roe08]
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literature similar self–localisation has been discussed [DRW95, Sch97]. However it might be known as

a very specific landmark technique. Researchers have extended this technique by applying probabilistic

localisation methods.

C.5 Probabilistic Localisation
To accommodate the noise and ambiguity arising in real–world domains probabilistic localisation meth-

ods have been developed to obtain robust estimate of the location of the robots. These methods generally

incorporate some observation model that gives the probability of the sensor measurement given the lo-

cation of the robot and the parameterisation of the environment map. Sometimes this parameter vector

describes explicit properties of the environment, such as position of landmarks [FWS98] or occupancy

values [KC99]. It might describes an implicit relation between sensor pattern and location, such as neural

networks [Oor97], or look–up tables [FWS98].

There are several high level localization methods based on probabilistic modeling of pose uncer-

tainty, motion, and perception. It is commonly assumed that the environment is Markovian (Defined

in [SBF+98] as “past and future data are conditionally independent if the current state is known”). Due

to the soundness in theory and ease of implementation, the Markov assumption is popular for research

and practical applications. At any point in time, Markov localization maintains a probability density

(belief) over the entire configuration space of the robot; however, it does not provide an answer to: how

to control the robot’s actuators?

A well–known implementation is Monte Carlo localisation which is based on particle fil-

ters [DFBT99]. One advantage of this approach is that, if global localisation of the robot is possible, then

particles are allowed to be uniformly spread over the entire free space. Some variants were designed to

track multiple targets [SBFC01] and multiple robots [FBKT00]. Kalman filters are also widely used due

to their ability to optimally track the path in the presence of Gaussian noise [Rou00]. It was mentioned

in [GF98] that according to experiments, general grid–based Markov localisation is more robust than

Kalman filtering while the latter can be more accurate than the former. A fundamental weakness of

Kalman filters is that the initial state must be known within a given error range.

Smith and Cheesman [SC86] proposed a stochastic map to model geometrical location errors. Their

technique has been widely used in mobile robotics for processing geometrical information coming for

a range of different sensors, odometry, laser range finder, sonar, and vision among others [MD06]. Ad-

ditionally the standard approach to simultaneous localisation and mapping (SLAM) is initially based on

their technique.
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Robot Selection

Search–and–Rescue using robotic systems is a very hot research topic in both academia and industry. In

this appendix different research teams, industry productions, and robot competitions and workshops are

discussed.

The Science and Technology (S &T) directorate of the Department of Homeland Security (DHS)

has initiated an effort with the National Institute of Standards and Technology (NIST) to develop com-

prehensive standards related to the development, testing, and certification of effective technologies for

Urban Search and Rescue (USAR) robots. These USAR robotic performance standards cover sensing,

mobility, navigation, planning, integration, and operation control in order to ensure that the robots can

meet operational requirements under the extremely challenging conditions that rescuers are faced with,

including long endurance missions. There will be annual workshops to monitor progress as well as

several events that allow responders to work with emerging robotic equipment in realistic environments

while helping to refine proposed test methods.

The USAR robotic standards effort also focuses on fostering collaboration between first responders,

robot vendors, other government agencies, and technology developers to advance consensus standards

for task specific robot capabilities and interoperability of components.

The National Institute of Advanced Industrial Science and Technology (the new AIST) is a newly

formed research organization that is the result of an amalgamation of the 15 research institutes previ-

ously under the former Agency of Industrial Science and Technology (the former AIST) in the Ministry

of International Trade and Industry and the Weights and Measures Training Institute. It becomes Japans

largest public research organization with many research facilities. AIST (as same as NIST) engages in

world level research and development using local technological resources. It also helps the local indus-

trial technology by strengthening the cooperation among local industries, academia, and governments.

D.1 Standards for USAR robots
This catalogue allows the comparison of robot performances in competitions and at the same time, gives

a brief insight into the motivations and real challenges of robotic search and rescue. The tasks of teams

of robots involved in search and rescue defined by the National Institute of Standards and Technology as

part of the Department of Homeland Security and relevant for this project are: negotiating compromised
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and collapsed structures autonomously finding victims (and reporting their condition) produce a human

readable (practical) map of victim locations identify hazards. The aspects mentioned here are mainly

part of a pure search task, while the catalogue definitions are broader and cover the topic of physical

rescue as well. The Department also stresses that currently performance metrics exist only for the above

mentioned aspects, but future versions of the catalogue will incorporate metrics for rescue. The following

list is an extract of the performance metrics list [oHS08] considered to be relevant for this project:

1) In the category of mobility and locomotion: Sustained speed, endurance and tumble recovery

(considering none, self–righting and invertible continuous operations) are the main metrics. They are

measured during the traversal of different terrain types, e.g. plane but obstructed areas or an inclined

terrain.

2) For the design quality of human–system interaction: The time for initial training to control the

robots and a proficiency education are measured in hours and years. Furthermore the usability (e.g.

remotely controlling the robot) is a metric based on an effectiveness evaluation, but assistive elements

such as automatic notifications or path tracing are simply tested on their existence.

3) Sensing metrics: Performance evaluation in this category concentrate on the fact, that the robot

provides spatial modeling and allows or provides a waypoint annotation.

For performance evaluation, some of these aspects are applied to different types of environments

or specific situations, e.g. measuring sustained speed while moving over a step or alternatively over

rough, inclined terrain. The given evaluation gives the basic motivation and criteria to enhance, develop

and measure robotic control and also suggest a basic operator interface. This project will not be able

to extensively measure its approach against all the given criteria. Instead it will provide the simulation

environment to do so.

D.2 University Research
Urban Search and Rescue robots work with rescuers (Policeman, Fire-fighters and medical assistance) in

a disaster environment of man made structure, like collapsed buildings. There are several teams working

on USAR robotics. In this regard Carnegie Mellon University is being founded by the National Science

Foundation to investigate the use of semi–autonomous robots for urban search and rescue. These robots

will assist firemen, police, and disaster agencies with exploration, site evaluation, and human detection.

The goal of this research is to develop an interface and coordination module to support these tasks. There

are three most advanced research teams, CRASAR University of South Florida, Utility Vehicle for Search

UVS Kobe University of Japan, and Kohga University of Tokyo [Bur04].

The most recent academic projects in Europe that involves both hardware and software development

for robotic research are:

-I–Swarm :The I–SWARM [IS] project was awarded in December 2003 under the European Union

Information Society Technologies (IST) 6th framework programme. It is a follow–up of the MiCRoN

project. The I–SWARM project involves ten leading academic organisations throughout Europe. There

are many potential benefits of such a project including greater flexibility and adaptability of the sys-

tem to the environment, robustness to failures, etc. Moreover, their collective behaviour opens up new
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application fields that cannot be solved with todays tools. With a suitable sophisticated positioning sys-

tem, possibly based on that used by insects and incorporating tactile sensors and a small but effective

vision system, the individual agents will be able to communicate between themselves and thus enable

and promote the desired swarm effect.

-FP6 :The European FP6 Advanced Robotics projects [Pro] has developed a swarm of autonomous

robots that is able to adequately assist and safeguard fire fighters in the event of fire. These robots detect

plume sources and reconstruct the map of the destroyed building. The aim of these robots is to conduct

fire fighter safety assessments. Their Guardian is a Hi–tech miniature robot. It works in a large team of

thirty robots. The swarm of guardians gleans information while searching for fires, human dangers and

obstacles. Collected information will be report back to the fire fighters.

-SUAAVE :SUAAVE, stands for Sensing, Unmanned, Autonomous Aerial VEhicles, [SUA]. It is

an EPSRC project funded for 3.5 years from 2008. The SUAAVE consortium focuses to investigate

the principle underlying the control of clouds of networked resource–limited unmanned aerial vehi-

cles(UAVs) acting as sensor platform. Its main focus is on search and rescue operation. The novelty of

these mobile sensor systems is that their movement is controlled by fully autonomous tasking algorithms

with two important objectives: i) to increase sensing coverage, ii) to maintain network connectivity to

enable real–time communication.

-ISLab Intelligent System Lab The driving theme of the Intelligent Systems Laboratory is Re-

search and Development of Decentralized Systems, including Multi-Robot, Multi-Agent and Manage-

ment systems [Lab].

D.3 Industry Efforts
There are many companies that develop mobile robots. Some of their products might be useful for this

project (e.g. mini Whegs). However there are only few companies that commercially designed robots

for USAR. NASA and the United States Department of Defense also have ongoing efforts with various

universities to develop intelligent robots with a variety of sensors. The most advanced projects in industry

are listed below:

-iRobot :The US government finances iRobot company and they develop some robots that can be

used in small and dangerous areas. One of the robots is called Packbot robot. This robot has different

sensors like, cameras, microphone, laser range finders, sonar and IR sensors. They are also working on a

project called Deployer. Deployer has a team of little robots that can be placed where it wants [imoGr].

-Mobilerobots :Mobilrobots is a designer and manufacturer of mobile robots since 1995. They

have great variety of robots especially for localisation and mapping. They mainly produce autonomous

robots for different autonomous operations [dmopr].

-Inuktum :There are originally designed for pipe and tank inspection. The Nanomag is designed

to adhere magnetically to metal surfaces: horizontally, vertically, and even upside down. The system is

extremely effective in areas that are too small or toxic for human inspection. Their robots have some

applications that might be useful to deploy them in urban search and rescue field.
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-Nasa :In the NASAs Jet Propulsion laboratory, some research on USAR field has been done. They

have tested different sensors like stereo camera, IR, GPS... All these sensors were outfitted on different

type of robots and their performance in different situations have been tested [Bur04].

-ISD :The Intelligent system Divisions research and development focuses on measurements, stan-

dards infrastructure for the intelligent systems and intelligent control. However its main aspect is dis-

tributed control among multiple autonomous robots rather than limited individual sensing or control

model [ISD].

-K-team :K-team cooperation is a Swiss company that develops, manufactures and markets high

quality mobile robots for use in advanced education and research. The Khepera Linecard is now a

standard for academic research, while the Hemisson robot is designed for teachers and hobbyists. This

company has produced a number of robots that are very suitable for autonomous robotic missions as

well. This includes their latest product Khepera III, which is a very advanced robots in this regards.

E-puck is also one of their simple robots that has been used for search and rescue operations many times

before. Khepera has a simulator, which is a freeware package that allows developers to create controllers

for the mobile robot using the C or C++ languages. It includes an environment editor and a graphical

user interface. With that we are also able to switch very easily between the simulated robot and the real

one [coo].

-SuperDroid robots :At SuperDroid robot they provide a wide range of robot kits [Robb]. Their

Speciality is building custom robots and robot related projects, such as ATR(All terrain robots). The

robots can house a variety of wheels, motors and frames. The different wheels will allow All-Terrain

travel. The Omni wheels can be used for vectoring in any direction without turning. The motors can be

regular size or super–sized for climbing over rocks.

D.4 IEEE International Workshops and Conferences
The International Workshop on Safety, Security, and Rescue Robotics (SSRR) is dedicated to identifying

and solving the key issues necessary to field capable robots across a variety of challenging applications.

The most interesting topics that are concerned with the Self-organized Multi–robot Systems project

are the perception for navigation, hazard detection, victim identification, Human–robot interfaces for

improved remote situational awareness. The Performance Metrics for Intelligent Systems (PerMIS)

workshop is in a series targeted at defining measures and methodologies of evaluating performance of

intelligent systems. In this workshop applications of performance measures and practical problems in

commercial industrial, homeland security, and military are examined. These two workshops usually

share plenary presentations, robot demonstrations, technology exhibits, and social events.

The IEEE Robotics and Automation Society [RSb] is interested in both applied and theoretical is-

sues in robotics and automation (e.g. IROS, ICRA. and ROBIO). In this society Robots are defined as

intelligent machines and systems used, for example, in space exploration, human services, or manufac-

turing; whereas automation includes the use of automated methods in various applications, for example,

factories, offices, homes, laboratory automation, or transportation systems to improve performance and

productivity.
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D.5 Competitions and Events
Disasters that can serve as field settings for evaluating robot (and human-robot) performance are rare

and unpredictable. Therefore, every year urban search and rescue competitions should be speed up the

development of research, to learn from one another, and to forge connections to the search and rescue

community. USAR Robocop competition promotes collaboration among the researchers,in both software

and hardware.

The DARPA Grand Challenge [Cha] is a prize competition for driverless cars, sponsored by the

Defense Advanced Research Projects Agency (DARPA), the most prominent research organization of

the United States Department of Defense. Congress has authorized DARPA to award cash prizes to

further DARPAs mission to sponsor revolutionary, high-payoff research that bridges the gap between

fundamental discoveries and their use for national security. DARPA has technologies needed to create

the first fully autonomous ground vehicles capable of completing a substantial off-road course within a

limited time.

The European Land-Robot Trial (ELROB) [TERT] is a European event which demonstrates the

abilities of modern robots. The ELROB is no competition, like for example the US DARPA Grand

Challenge, but a pure demonstration of what European robotics is able to achieve today. The scenarios

are designed to simulate real world missions, be it military or civilian ones. There are no artificial

constraints set to these scenarios to ease the task for the robots like e.g. very visible road markings.

These forces the participating teams and systems to fulfill the high requirements set by the real world

scenarios.



Appendix E

TeSLiSMA Algortihm

In this appendix we will present the TeSLiSMA algorithm. First, we describe the required agent be-

haviour and then the algorithms implementing this behaviour.

E.1 Behaviours

Here we define three aspects of the behaviour:

-moveForwardNextToWall: If followedwall=NULL, the ‘moveForwardNextToWall’ behaviour

causes the robot to move forward from its current configuration until one of its sensors detect a wall,

then robot turns to align itself so that its ‘wall–follow sensor’ (one left side sensors that is define as wall–

following sensor as well) faces the wall. That wall is named according to agent direction, for instance if

the wall is in north direction followedwall= ‘north’.

-moveDirection: The ‘moveDirection’ (e.g. moveEast) behaviour causes the robot to move for-

ward, maintaining a range r0 ∈ [rmin, rmax] to the wall with its wall–follow sensor (e.g. followedwall=

‘north’). Where [rmin, rmax] is define as the safe wall–following range for each agent.

Figure E.1: The ‘safe’ Wall–following range

The wallfollowing terminates when the agent detects a welldefined corner. In this case a wall

defined exterior occurs when the wall falls away. This happens when the robots distance from the wall

is larger than rmax− r0. Likewise, a welldefined interior corner occurs when the wall just inwards more

than r0 − rmin. In both cases the agent should fix its distance and then continue with moving forward

next to the wall. The safe range will be adjusted for the agents according to their sensor range, agents

size, and their environment.
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We applied moveDirection behaviour only when applying on Player/Stage1. Additionally we de-

fined ‘turnSpeed’. This speed should be ajusted through several experiments inside different fields. It is

the speed at which the robot can safely change direction to avoid collisions.

E.2 Algorithms

Algorithm 10 performTeSLiSMA
Input: agents[ ]: an array of robots, ogm:occupancy grid memory; A:agent

Output: ogm:occupancy grid memory

1: MR=0; % MR=0, flag set for the Leader

2: for MR==0 do

3: if A.state == “Head” then

4: A.led.colour = “red”

5: A.behaviour = performHeadBehaviour

6: if A.masterReached( ) then

7: MR=1; % MR=1, flag set for the Filler

8: A.behaviour = performEDAEA

9: Break;

10: end if

11: else if A.state == “Follower” then

12: A.led.colour = “green”

13: A.behaviour = performFollowerBehaviour

14: else if A.state == “Tail” then

15: A.led.colour =“yellow”

16: A.behaviour = performTailBehaviour

17: else if A.state == “Filler” then

18: A.led.colour =“off”

19: A.behaviour = performEDAEA

20: else if A.state == “Idle” then

21: A.led.colour =“purple”

22: A.behaviour = performIdleBehaviour

23: else if A.state == “Link” then

24: A.led.colour =“green”

25: A.behaviour = performLinkBehaviour

26: else if A.state == “Pebble” then

27: A.led.colour =“white”

28: A.behaviour = performPebbleBehaviour

29: end if

30: result = A.behaviour()

31: if result == NO CHAIN then

32: result = noChain(A)

33: if result == EDAEA NEEDED then

34: return result

35: end if

36: else if result == BROKEN CHAIN then

37: result = brokenChain(A)

38: end if

39: return ogm

40: end for

2

//

1It was not required for CLOWN formalism
2Algorithm 18 is a procedure
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Algorithm 11 performHeadBehaviour
Input: AH: the head of the robot chain.

Output: errorCode

1: robots = AH.getRobotsInLineOfSight() %agent checks the connection to its chain

2: for each A in robots do

3: if robots.count == 0 then

4: return NO CHAIN

5: else if A.led.colour == “red” then

6: return MULIT HEAD

7: end if

8: AH.moveForwardNextToWall(0)

9: if AH.nextToMaster() then

10: AH.masterReached()

11: end if

12: end for

13: return SUCCESS

Algorithm 12 performFollowerBehaviour
Input: A: a follower robot.

Output: errorCode

1: robots = A.getRobotsInLineOfSight()

2: for each A in robots do

3: if robots.count< 2 then

4: return BROKEN CHAIN

5: else if A.led.colour == “purple” then

6: A.state == “Head”

7: end if

8: moveForwardNextToWall(A)

9: end for

10: return SUCCESS

Algorithm 13 performTailBehaviour
Input: A: the tail robot.

Output: errorCode

1: robots = A.getRobotsInLineOfSight()

2: for each A in robots do

3: if robots.count == 0 then

4: return NO CHAIN

5: else if A.led.colour == “purple” then

6: A.state == “Head”

7: end if

8: moveForwardNextToWall(A)

9: end for

10: return SUCCESS

Algorithm 14 performIdleBehaviour
Input: A: the tail robot.

Output: errorCode

1: robots = A.getRobotsInLineOfSight()

2: if robots.count == 0 then

3: return NO CHAIN

4: end if

5: moveForwardNextToWall(A)

6: return SUCCESS
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Algorithm 15 noChain
Input: A: a robot in the chain.

Output: errorCode

1: A.led.colour = “blue”

2: A.moveBackward()

3: result = A.behaviour()

4: if result == NO CHAIN then

5: A.led.state = “off”

6: return EDAEA NEEDED

7: end if

8: return SUCCESS

Algorithm 16 brokenChain
Input: A: a robot in the chain.

Output: errorCode

1: A.led.colour =“blue”

2: A.moveBackward()

3: result = A.behaviour()

4: if result == BROKEN CHAIN then

5: if A.hasRobotInFront() then

6: A.state =“Tail”

7: else

8: A.state = “Head”

9: end if

10: end if

11: return SUCCESS

Algorithm 17 stuck
Input: A: a robot in the chain.

Output: errorCode

1: A.state = “Idle”

2: moveForwardNextToWall(A)

3: return SUCCESS
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Algorithm 18 moveForwardNextToWall
Input: A: a robot in the chain, counter default = 0.

Output: p: agent next position

1: if A.followedWall = null then

2: if A.scanWestWall() then

3: A.followedWall = “west”

4: else if A.scanSouthWall() then

5: A.followedWall = “south”

6: else

7: throw AssertionError

8: end if

9: end if

10: if counter > 3 then

11: throw StuckException

12: end if

13: if A.followedWall == “west” then

14: if A.scanNorthWall() then

15: A.followedWall = “north”

16: A.moveForwardNextToWall( counter+1)

17: else if A.scanEastNorthWall() then

18: A.moveNorth()

19: else

20: A.moveNorthWest()

21: A.followedWall = “south”

22: end if

23: else if A.followedWall == “south” then

24: if A.scanWestWall() then

25: A.followedWall = “west”

26: A.moveForwardNextToWall(counter+1)

27: else if A.scanSouthWestWall() then

28: A.moveWest()

29: else

30: A.moveSouthWest()

31: A.followedWall = “east”

32: end if

33: else if A.followedWall == “east” then

34: if A.scanSouthWall() then

35: A.followedWall = “south”

36: A.moveForwardNextToWall(counter+1)

37: else if A.scanSouthEastWall() then

38: A.moveSouth()

39: else

40: A.moveSouthEast()

41: A.followedWall = “north”

42: end if

43: else if A.followedWall == “north” then

44: if A.scanEastWall() then

45: A.followedWall = “east”

46: A.moveForwardNextToWall(counter+1)

47: else if A.scanNorthEastWall() then

48: A.moveEast()

49: else

50: A.moveNorthEast(counter+1)

51: A.followedWall = “west”

52: end if

53: end if

54: p=A.next position()

55: return p
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Functions: A.state[the state of the agent], A.led.colour[the LED colour of the agent],

A.behaviour[ agent changes its behaviour to], A.masterReached[Head agent reaches its master],

A.moveForwardNextToWall[ agent in a chain should move next to a wall], A.followedWall[ which

wall the agent is following], A.scanSouthWestWall[ agent should check for other available walls, while

performing wall following, for instance when following East wall it should check if cells in its south,

south east and east are occupied by an obstacle(a cell occupied by obstacle equals to wall)].
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