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professor catedrático da Universidade de Aveiro

Prof. Doutor Joaquim Arnaldo Carvalho Martins
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Abstract When developing software for autonomous mobile robots, one has to in-
evitably tackle some kind of perception. Moreover, when dealing with agents
that possess some level of reasoning for executing their actions, there is the
need to model the environment and the robot internal state in a way that
it represents the scenario in which the robot operates.
Inserted in the ATRI group, part of the IEETA research unit at Aveiro
University, this work uses two of the projects of the group as test bed, par-
ticularly in the scenario of robotic soccer with real robots. With the main
objective of developing algorithms for sensor and information fusion that
could be used effectively on these teams, several state of the art approaches
were studied, implemented and adapted to each of the robot types.
Within the MSL RoboCup team CAMBADA, the main focus was the percep-
tion of ball and obstacles, with the creation of models capable of providing
extended information so that the reasoning of the robot can be ever more
effective. To achieve it, several methodologies were analyzed, implemented,
compared and improved.
Concerning the ball, an analysis of filtering methodologies for stabilization
of its position and estimation of its velocity was performed. Also, with the
goal keeper in mind, work has been done to provide it with information of
aerial balls.
As for obstacles, a new definition of the way they are perceived by the vision
and the type of information provided was created, as well as a methodol-
ogy for identifying which of the obstacles are team mates. Also, a tracking
algorithm was developed, which ultimately assigned each of the obstacles a
unique identifier. Associated with the improvement of the obstacles percep-
tion, a new algorithm of estimating reactive obstacle avoidance was created.
In the context of the SPL RoboCup team Portuguese Team, besides the in-
evitable adaptation of many of the algorithms already developed for sensor
and information fusion and considering that it was recently created, the ob-
jective was to create a sustainable software architecture that could be the
base for future modular development.
The software architecture created is based on a series of different processes
and the means of communication among them. All processes were created
or adapted for the new architecture and a base set of roles and behaviors
was defined during this work to achieve a base functional framework.
In terms of perception, the main focus was to define a projection model and
camera pose extraction that could provide information in metric coordinates.
The second main objective was to adapt the CAMBADA localization algo-
rithm to work on the NAO robots, considering all the limitations it presents
when comparing to the MSL team, especially in terms of computational
resources.
A set of support tools were developed or improved in order to support the
test and development in both teams.
In general, the work developed during this thesis improved the performance
of the teams during play and also the effectiveness of the developers team
when in development and test phases.





Resumo Durante o desenvolvimento de software para robôs autónomos móveis, é
inevitavelmente necessário lidar com algum tipo de perceção. Além disso,
ao lidar com agentes que possuem algum tipo de racioćınio para executar
as suas ações, há a necessidade de modelar o ambiente e o estado interno
do robô de forma a representar o cenário onde o robô opera.
Inserido no grupo ATRI, integrado na unidade de investigação IEETA da
Universidade de Aveiro, este trabalho usa dois dos projetos do grupo como
plataformas de teste, particularmente no cenário de futebol robótico com
robôs reais. Com o principal objetivo de desenvolver algoritmos para fusão
sensorial e de informação que possam ser usados eficazmente nestas equipas,
várias abordagens de estado da arte foram estudadas, implementadas e
adaptadas para cada tipo de robôs.
No âmbito da equipa de RoboCup MSL, CAMBADA, o principal foco foi a
perceção da bola e obstáculos, com a criação de modelos capazes de prov-
idenciar informação estendida para que o racioćınio do robô possa ser cada
vez mais eficaz. Para o alcançar, várias metodologias foram analisadas, im-
plementadas, comparadas e melhoradas.
Em relação à bola, foi efetuada uma análise de metodologias de filtragem
para estabilização da sua posição e estimação da sua velocidade. Tendo
o guarda-redes em mente, foi também realizado trabalho para providenciar
informação de bolas no ar.
Quanto aos obstáculos, foi criada uma nova definição para a forma como
são detetados pela visão e para o tipo de informação fornecida, bem como
uma metodologia para identificar quais dos ostáculos são colegas de equipa.
Além disso foi desenvolvido um algoritmo de rastreamento que, no final,
atribui um identificador único a cada obstáculo. Associado à melhoria na
perceção dos obstáculos foi criado um novo algoritmo para realizar desvio
reativo de obstáculos.
No contexto da equipa de RoboCup SPL, Portuguese Team, além da in-
evitável adaptação de vários dos algoritmos já desenvolvidos para fusão
sensorial e de informação, tendo em conta que foi recentemente criada, o
objetivo foi criar uma arquitetura sustentável de software que possa ser a
base para futuro desenvolvimento modular.
A arquitetura de software criada é baseada numa série de processos difer-
entes e métodos de comunicação entre eles. Todos os processos foram
criados ou adaptados para a nova arquitetura e um conjunto base de papéis
e comportamentos foi definido para obter uma framework funcional base.
Em termos de perceção, o principal foco foi a definição de um modelo
de projeção e extração de pose da câmara que consiga providenciar in-
formação em coordenadas métricas. O segundo objetivo principal era adap-
tar o algoritmo de localização da CAMBADA para funcionar nos robôs NAO,
considerando todas as limitações apresentadas quando comparando com a
equipa MSL, principalmente em termos de recursos computacionais.
Um conjunto de ferramentas de suporte foram desenvolvidas ou melhoradas
para auxiliar o teste e desenvolvimento em ambas as equipas.
Em geral, o trabalho desenvolvido durante esta tese melhorou o desempenho
da equipas durante os jogos e também a eficácia da equipa de programação
durante as fases de desenvolvimento e teste.
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Chapter 1

Introduction

Robotics is nowadays a trendy topic throughout the world and is becoming more and

more implanted in our society. There are a number of particular areas of robotics that are

already implemented in our daily lives, specially in industry production lines where robots

are already frequently used.

There are several categories of robots, both in terms of shape and type of control. In

terms of control, there are typically three types of machines: remote controlled, autonomous

or a fusion of both methods. In the research group where this work is included, the focus is

mainly on autonomous mobile robots. This means that the robots being developed need to

execute their tasks without human intervention.

1.1 Motivation

In many application scenarios (particularly those in which it is not possible or desirable to

simply react to the environment conditions) for a robot to be able to autonomously move, it

needs to have an internal representation of both its own body and abilities and of the ambient

around it. We will call this internal representation world model or worldstate.

Thus, one of the challenges of mobile robotics is defining, managing and updating the

robot internal world model. Sensor and information fusion techniques are widely used for

these tasks.

Generally, robots have access to partial and uncertain information of the environment

through a set of sensors. In dynamic environments, information fusion (of historical informa-

tion and information coming from different sensors) is essential for the world model to be as

precise as possible. Information fusion is usually addressed through the use of probabilistic

techniques such as Kalman or particle filters, sometimes conjugated with maximum likelihood

techniques.

Besides self localization, object localization and tracking, it is usually also important

for an autonomous mobile robot to be able to execute a given task. For both self and
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object localization, one needs to join information, not only from the surroundings but also

proprioceptive information about the robot state. This is particularly important for robots

which do not have a single shape, such as humanoid robots, since the positions of the sensors

relative to the world can vary significantly.

Within our research group, one of the scenarios used for development is robotic soccer.

This is a highly dynamic environment, with objects moving at high speed and several robots

interacting with each other, both cooperatively and competitively, creating a series of different

cases of perception particularities, such as occlusion or partial occlusion and discrimination

of objects.

The main question that motivates the research of this PhD is: how complete and reliable

can become the world model of an autonomous mobile soccer robot?

1.2 Objectives

The main objective of this thesis, which falls within the research area of robotics and

artificial intelligence, is to develop fast and effective methodologies for building representations

of the environment of multi-robot teams and make use of the representation of the state of

the world to infer knowledge useful for decision processes.

The objectives of the work are the following:

• Study and test of existing information fusion methodologies, both for single and multi-

robot team information fusion.

• Development of extensions for existing methodologies and creation of new ones, to

improve the performance of the integration of information.

• Development of information fusion methodologies capable of providing good information

about the ball in a robotic soccer scenario.

• Creation of a methodology for detection and recovery of robot lost situations.

• Development of information fusion methodologies that are able to provide information

about the other robots present on the field during a soccer game.

• Development of a world model that enables the mapping of obstacles as team mates

or opponents and tracking of the later, allowing high level coordination methodologies

that use, for example, opponent covering.

• Improvement of the CAMBADA reactive obstacle avoidance algorithm.

• Deployment of all the developed solutions on the code used for official competitions,

guaranteeing their full integration and execution within the existent restrictions.
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• Creation of a modular software architecture for the Portuguese Team.

• Definition of a methodology for mapping pixel coordinates provided by a humanoid

robot camera into robot centered metric coordinates.

The developed methodologies will be integrated and tested in the context of RoboCup,

mainly in the CAMBADA Middle Size League soccer team and also in the Portuguese Team

Standard Platform League team.

The proposed research work is in the area of robotics and artificial intelligence and focuses

in the construction/definition of the representation of the world state, information fusion and

low-level behaviors and software architecture for multi-robot platforms.

1.3 Contributions

During this PhD, several methodologies were developed and implemented to allow the

definition of a world model for robotic soccer as complete and precise as possible. The work

accomplished covers several topics and technologies used to estimate useful information about

all the elements that are part of a world model for robotic soccer. The main contributions of

this work are:

• A set of methods and techniques used to perform information fusion and build a world

model in the scenario of robotic soccer. These methods are balanced between precision

and computation time in order to respect the strict existent time constraints.

• An integrated methodology for estimation of information concerning the ball projection

on the ground which includes a filtering methodology, based on Kalman filter to provide

noise reduction and stabilize the position estimation while keeping it precise and a

linear regression approach for further estimation of the ball velocity. This integrated

solution includes a filter reset feature that is capable of detecting the degradation of the

estimations and perform a reset to both the position and the velocity filtering.

• A set of methodologies for detecting the ball when it is airborne, estimate its position

and integrate this information with the existing one on the ground plane. Three ap-

proaches were explored, starting with a single RGB camera approach based solely on

color detection. Following this approach, a new one was proposed that combined the

color detection with a circularity shape classifier, based on the analysis of a polar his-

togram of image regions containing the ball candidates. Finally, a third approach was

proposed that uses a Kinect sensor, taking advantage of its depth sensor for detection

of objects directly in the 3D space rather than just using projected information of RGB

cameras.
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• A methodology for detection of degradation of robot localization based on heading

discrepancy detection. The solution is configurable in terms of necessary fitness and is

sensor independent.

• A solution for merging visual information of individual points detected on obstacles

surfaces to infer the size and position that characterizes each of them.

• An integrated solution for identifying and characterizing all the robots on the field.

The solution includes a team mate matching methodology based on Euclidean distance

for unequivocally identifying each robot that is a team mate with the correspondent

robot identifier. The remaining obstacles are identified and tracked by means of a

multiple hypothesis tracking approach, working over a Kalman filter implementation.

Each tracked obstacle is unequivocally identified, allowing high level decision processes

to, for instance, cover a given opponent.

• An approach on reactive obstacle avoidance based on the decision of a new free direc-

tion that the robot should take. This approach follows a methodology that uses virtual

sonars, by iteratively searching around the robot for a free direction. This search, how-

ever, is not necessarily a pure angular search as is the case of the sonar, but follows

a set of heuristics to prioritize the selection of the most useful directions. The devel-

oped sonar solution is highly configurable to allow easy parameterizations for different

constraints, such as moving free or with the ball.

• An heuristic for generating robot trajectories that take the robot from an initial position

and velocity to a final position and velocity considering the robot’s acceleration con-

straints. This is achieved by generating a sequence of points representing the positions

where the robot should be in each control cycle. Additional parameters necessary are

the maximum allowed velocity and accelerations, which are defined by the robot model

or can be provided by the user if lower values are desired.

• A base modular software architecture for the Portuguese Team, that allows further

development to be more organized and effective, as well as more easily manageable.

• The application and evaluation of an adapted tribots localization algorithm to the Stan-

dard Platform League scenario.

• A methodology for estimating camera angles, relative to the ground, based on cross

product analysis of a set of base reference vectors. The step-by-step analysis allows

an understanding of each involved component which promotes the detection of possible

errors in a specific component estimation.

• A set of new and improved tools to help the management and development on the robotic

teams. The tools include remote control, configuration and monitoring applications, as
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well as applications for off line data analysis. Resulting from the analysis made possible

by one of the applications, a new methodology for estimating kick power was designed.

1.4 Publications

• João Silva, Nuno Lau, António J. R. Neves, João Rodrigues, and José Lúıs Azevedo.

Obstacle detection, identification and sharing on a robotic soccer team. In Portuguese

Conference on Artificial Intelligence (EPIA), volume 5816 of LNAI, pages 350-360,

Aveiro, Portugal, October 2009.

This paper presents a first approach for defining obstacle limits based on visually perceived

points on their surface and the general methodology for identifying team mate robots among

the resulting obstacles.

• João Silva, António J. R. Neves, and Nuno Lau. Identifying obstacles in RoboCup

Middle Size League. In Proc RecPad2009, Aveiro, Portugal, November 2009.

This paper is a short paper that provides a summary of the obstacle detection and team mate

identification solution.

• João Silva, Nuno Lau, João Rodrigues, José Lúıs Azevedo, and António J. R. Neves.

Sensor and information fusion applied to a Robotic Soccer Team. In RoboCup 2009:

Robot Soccer World Cup XIII, volume 5949 of LNAI, pages 366-377, Graz, Austria,

February 2010.

This paper provides a description of several sensor and information fusion methodologies

applied to the CAMBADA robotic soccer team. It presents a general overview of robot

localization and ball integration in terms of position and velocity estimation and information

sharing among the team. It further presents preliminary results on the team mate obstacle

identification matter.

• António J. R. Neves, José Lúıs Azevedo, Bernardo Cunha, Nuno Lau, João Silva, Fred-

erico Santos, Gustavo Corrente, Daniel A. Martins, Nuno Figueiredo, Artur Pereira,

Lúıs Almeida, Lúıs Seabra Lopes, Armando J. Pinho, João Rodrigues, and Paulo Pe-

dreiras. CAMBADA soccer team: from robot architecture to multiagent coordination.

In Vladan Papic, editor, Robot Soccer, pages 19-45. INTECH, January 2010.

This book chapter presents a global overview of the CAMBADA robots, covering hardware ar-

chitecture and control and software, from visual detection of objects to high level coordination

and communications, including an overview of sensor fusion for world modelling.

• João Silva, Nuno Lau, and António J. R. Neves. Ball identification in the RoboCup

Middle Size League. In Proc RecPad2010, Vila Real, Portugal, October 2010.
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This short paper presents the first approach for detecting airborne balls in the Middle Size

League by using a pure color identification methodology over the data from a RGB frontal

camera.

• João Silva, Nuno Lau, António J. R. Neves, João Rodrigues, and José Lúıs Azevedo.

World modeling on an MSL robotic soccer team. Mechatronics, 21(2):411-422, March

2011.

This article provides a summary of the world modelling of the CAMBADA team, concerning

ball position and velocity estimation based on the omni directional camera, wrong localization

recovery and team mate obstacle identification.

• Pedro Fonseca, António J. R. Neves, José Lúıs Azevedo, and João Silva. An heuris-

tic for trajectory generation in mobile robotics. In Emerging Technologies & Factory

Automation (ETFA), pages 1-4, Toulose, France, September 2011.

This paper presents the solution designed for generating trajectories defined by sequences of

points for a CAMBADA robot to follow.

• João Silva, Mário Antunes, Nuno Lau, António J. R. Neves, and Lúıs Seabra Lopes.

Aerial ball detection in RoboCup Middle Size League using polar histograms. In Proc

RecPad2011, Porto, Portugal, October 2011.

This short paper presents a second solution for detecting airborne balls in the Middle Size

League by applying a color/shape hybrid approach that measures the circularity of an objects

by analyzing the statistics of a polar histogram over the object image.

• João Silva, Nuno Lau, and António J. R. Neves. Estimating world coordinates in per-

spective vision systems for humanoid robots. In Proc RecPad2012, Coimbra, Portugal,

October 2012.

This short paper presents a model for estimating metric coordinates of a given point in an

image provided by a humanoid robot’s camera through its the projection from a camera

pinhole model. A methodology for calibration of camera mounting angles and validation of

the whole model is included.

• João Silva, Nuno Lau, and António J. R. Neves. Cooperative detection and identification

of obstacles in a robotic soccer team. In Calin Ciufudean and Lino Garćıa, editors,

Advances in Robotics - Modeling, Control and Applications, pages 219-235. iConcept

Press, January 2013.

This book chapter presents a second approach defining obstacle limits based on visually

perceived points on their surface and the general methodology for identifying team mate

robots among the resulting obstacles, as well as the methodology used for sharing obstacle

information among team mates.
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• João Silva, Mário Antunes, Nuno Lau, António J. R. Neves, and Lúıs Seabra Lopes.

Aerial ball perception based on the use of a single perspective camera. In 16th Por-

tuguese Conference on Artificial Intelligence (EPIA 2013), volume 8154 of LNAI, pages

235-249, Angra do Heróısmo, Açores, Portugal, September 2013.

This paper presents a global analysis and overview about the use of a single RGB frontal

camera to detect airborne balls by using a color/shape hybrid approach for detection and

validation of candidates and the methodology for estimating the ball position based on the

image detection as well as the integration of this information in the world model.

• Paulo Dias, João Silva, Rafael Castro, and António J. R. Neves. Detection of aerial

balls using a Kinect sensor. In RoboCup 2014: Robot Soccer World Cup XVIII, LNAI,

pages in-press, Springer, 2014.

This paper presents a third approach for detecting airborne balls in the Middle Size League

which makes use of a Kinect sensor to provide depth information, rather than using single

RGB camera information and projection. The presented work includes the detection of the

ball in 3D and the estimation of its trajectory.

1.5 Thesis structure

The remainder of this document is structured in 6 chapters. Chapter 2 presents the theme

of sensor and information fusion, as well as a review of some existent work in the area.

Chapter 3 presents a general overview of the RoboCup and two of its robotic soccer

leagues, both in terms of environment as in terms of common approaches used by the teams.

An overview of the robotic platforms used during the development of the presented work

is given, being one of them fully developed and constructed by the research group. Given

the application scenario used, this chapter also provides an insight about what we consider

necessary to be modeled and represented in the worldstate of a robot that plays soccer, as

well as a description of common points and modules developed during this work for both

presented leagues.

Chapter 4 then describes the work performed in the context of the MSL CAMBADA team,

with the analysis of the several different elements of their integration in the worldstate. The

elements analyzed include the ball which needs to have its visual raw information integrated

in the worldstate, whether the visual information comes from the omni directional main

camera or from an “extra” frontal sensor. The other robots on the field are also subject to

analysis and the integration of their information on the worldstate is presented, both in terms

of identification of team mates and tracking of opponents. A reactive obstacle avoidance

methodology is also presented, as well as an heuristic for generating trajectories for robot

movement based on sequences of points on the field.
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In chapter 5 the work performed in the context of the SPL Portuguese Team is described

and presented, including the proposed software architecture for the NAO robots, including

the definition of used processes and protocols and architecture of the agent. A projection

model for estimating metric coordinates from the pixel information provided by the camera

is presented, making use of the estimated robot body pose. The application of the tribots

localization algorithm in the context of the SPL is also presented.

For developing many of the proposed methodologies, a set of tools was created to assist

the developers. Chapter 6 present the new and improved developed applications, both in the

context of the MSL and in the context of SPL.

Finally, in chapter 7, a summary and discussion of the general results obtained during this

PhD is presented, as well as a small discussion and proposal of future work for the related

topics.
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Chapter 2

Sensor and information fusion

Sensor and information fusion is defined as the act of combining sensory data, or data

derived from sensory data, providing a resulting information that is in some sense better

than would be possible when the sources were used individually [1]. In information fusion,

better can mean more accurate, more complete, more dependable, or refer to the result of an

emerging view or combination of sources, such as the stereoscopic vision disparity image for

3D estimation.

A general overview of different methods of multi-sensor and information fusion is given

by Luo et al. [2], also with a brief description of application areas, such as robotics, mili-

tary, biomedical and transportation areas. The 25th chapter of the “Springer Handbook of

Robotics” [3] provides a general overview of methods and architectures for multi-sensor data

fusion [4].

In the context of this thesis, sensor fusion will be used to build a representation of the real

world surrounding a team of soccer robots. The main challenges will be the estimation of the

robot’s own position and velocity as well as the position and velocity of the ball (either on

the 2D or 3D space) and of the other robots on the field. In the case of the other robots, the

information available must be merged to deduce which of these should be identified as team

mates or opponents. These tasks must be explored both for single robot and for multi-robot

information.

The integration of information over time in order to filter sensor noise is essential to get

better estimates. This type of integration is mostly performed using Kalman filter based

approaches, Monte-Carlo methods or Markov approaches. Generally, Monte-Carlo [5] ap-

proaches have better performance in cases where great discontinuities of the output values

are expected, as the assumption of Gaussian probability density functions of the Kalman filter

[6] is less accurate. However, Kalman filtering is a very effective method if the assumptions

of Gaussian noise can be met and the system can be linearized. In this case, when the sys-

tem can be linearized, other common approaches are the use of the Extended and Unscented

Kalman filters [7], at the cost of more computational weight.
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When a mobile robot is autonomously performing its tasks, it gathers information with its

own noisy sensors and estimates its state and the state of the environment. This estimation

does not necessarily correspond to the true state of the robot and the environment. The state

that it keeps is thus called belief, as the robot believes it is in a particular state, but there is

no guarantee that it is really correct; it is an estimate. This belief, bel(X), can be represented

as a probability distribution function (in the discrete case) or a probability density function

(in the continuous case), where X is the estimated set of values for the state variables of

interest, independently of the type of data considered.

At some moments of the run, the robot gets information from sensors that are at its

disposal. These sensors can get information about the surroundings or the robot internal

state and that information has some degree of accuracy about the own and environment

states at that instant. A robot can be equipped with a variety of sensors to help its purposes

and the sensors provide measurements, Z, that are also not 100% accurate, as they have some

noise associated. The observations may be described by an observation model written as a

probability function, p(Z|X).

When using these kind of algorithms, we are facing mostly a probabilistic problem. We

need a state transition model which defines how the state evolves through time and is capable

of providing the beliefs for the robot. These beliefs can then be reinforced or hindered by

sensor measurements. We also usually have some kind of control over the evolution of the

state by actions that can be executed. These controls are denoted as U , and affect the output

of the system evolution from the state transition model.

The probabilistic algorithms are usually two step processes: first a forecast of the state

is made based on the evolution of the noisy dynamic system, an a priori estimate, and then

measurements from the robot sensors are combined with the forecast in order to produce a

final a posteriori probabilistic estimate of the system’s state, the belief. In some situations,

measurements may be unavailable. If no sensor readings are available, the belief generated by

the transition model tends to become more uncertain, because it relies only on the forecasts

of the state until a new measure can help correcting it.

2.1 Filters

There are several filtering techniques available on the literature, which can be used for

virtually any purpose one can imagine and need. In this section a small overview of a few of

the most popular filtering techniques is presented.

2.1.1 Bayes filter

Based on Bayes conditional probability rule, the Bayes filter is a recursive algorithm to

estimate the belief distribution from measurements and control data. Being recursive, it
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estimates the belief for current time t from the belief of last time t− 1.

On the first phase, the prediction phase, it calculates a belief for state X based on the

prior bel(X)t−1 and the current control Ut. The value assigned to b̂el(X)t is obtained by the

integral (or sum in the discrete case) of two distributions: the distribution of bel(X)t−1 and

the probability with which control Ut creates a transition from previous state X ′ to current

state X. This belief is a temporary value obtained on this first phase. The final belief will be

updated afterwards based on this initial approach

b̂el(X)t =

∫
p(X|Ut, X ′)bel(X ′)t−1dX

′. (2.1)

On the second phase, the state belief is updated based on the available measurements.

The transitional belief is multiplied by the probability that the measurement Zt may have

been observed for every hypothetical posterior state X

bel(X)t = η p(Zt|X) b̂el(X)t,

where η is a normalization constant to guarantee a probability value.

2.1.2 Kalman filter

Presented by Rudolf E. Kalman in his 1960 paper [6], the Kalman filter is an optimal

recursive data processing algorithm that estimates the state of a dynamic system from a

series of noisy measurements [8, 9]. One aspect of this optimality is that the Kalman filter

processes all information that can be provided to it, regardless of its precision, to estimate the

current value of the variables of interest. It uses the knowledge of the system and measurement

devices dynamics, the statistical description of the system noises, the measurement errors,

the uncertainty in the dynamics model and any available information on initial conditions of

the variables of interest [9].

Kalman filters are based on linear dynamical systems discretized in time. It is assumed

that the system and the measures are affected by White Gaussian noise, meaning that the

noise is not correlated in time, and thus we can assume that at each discrete time, the noises

affecting the system and measures follow a Gaussian distribution and are independent of past

or future values [8].

The Kalman filter model assumes that the belief at time t is evolved from the state at

(t-1) according to the model of the system evolution, the action model :

Xt = FtXt−1 +BtUt + wt,

where

• Xt is the state at time t.
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• Ft is the state transition model applied to the previous state Xt−1.

• Bt is the control-input model which is applied to the control vector Ut.

• Ut is the control vector, over which the control-input model Bt is applied.

• wt is the process noise assumed to be a zero mean white Gaussian with covariance Qt

and independent of X

wt ∼ N(0, Qt).

At time t, a measurement Zt of the state Xt is made according to a model of the system

observation, the observation model,

Zt = HtXt + vt,

where

• Ht is the observation model that defines how the measurement variables are mapped

into the state variables.

• vt is the observation noise assumed to be zero mean white Gaussian noise with covariance

Rt

vt ∼ N(0, Rt).

Being a recursive estimator, the filter only needs the estimated state and correspondent

covariance from the previous time step and the current measurement to compute the estimate

of the current state, no other history of measurements or estimates are required. The filter

state is represented by two variables:

• X̂t, the estimate of the state at time t, the mean of the state values.

• P̂t, the error covariance matrix, an estimation of how accurate is the estimate state.

In the first step of the filter, the forecast, predictions of the two variables are made, based

on the previous estimated state, given the expressions

Predicted state: X̂tpredicted = FtX̂t−1 +BtUt ; (2.2)

Predicted estimate covariance: P̂tpredicted = FtP̂t−1F
T
t +Qt−1.

The second step updates the forecast by taking the current time step measure into account.

For that purpose, the measurement innovation or residual is calculated

Yt = Zt −HtX̂tpredicted .
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The residual reflects the discrepancy between the predicted measure and the actual measure.

A zero residual means the prediction and the actual measures have the same values. Having

the residual and the forecast, we need to estimate the Kalman gain at time t Kt.

The computation of the Kalman gain depends on the predicted covariance and the respective

residual:

Kt = P̂tpredictedH
T
t S
−1
t ,

where St is the residual of the covariance matrix, which takes into account the measurement

noise covariance matrix Rt:

St = HtP̂tpredictedH
T
t +Rt.

The updated state can then be computed by:

X̂t = X̂tpredicted +KtYt,

P̂t = (I −KtHt)P̂tpredicted .

The new updated variables represent the state as a belief bel(X)t that is a Gaussian function

represented by its mean (X̂t) and covariance (P̂t).

2.1.3 Monte Carlo (Particle) filter

The idea of using factored sampling to estimate a set of variable states was introduced by

Isard & Blake [10], with application to computer vision contour tracking.

Particle filter represents the belief bel(X)t by a set of M samples Xt = x
[1]
t , x

[2]
t , ..., x

[M ]
t

with associated weights. Each sample is one possible state of the system at the current time

t and the the computed estimations of the state, the final outputs of the system, are based

on these samples and weights.

In a first step, the previous state needs to be updated according to the system evolution

model imposed by the controls applied to the object. Each of the particles/samples in M is

propagated according to the defined system evolution model.

For all m ∈ [1..M ]

x
[m]
t ⇐ arg maxxt p(xt|Ut, x

[m]
t−1).

In a second step, and for each sample, its weight is calculated. The weights are used

to incorporate the measurement Zt into the particle set and they are interpreted as the

probability of the observation Zt under the state represented by the particle x
[m]
t . All the

particles are added into a “temporary set” with weighted samples.

For all m ∈ [1..M ]

w
[m]
t = p(Zt|x[m]

t )

X̂t = X̂t + 〈x[m]
t , w

[m]
t 〉.
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Finally, a resampling is made over the temporary set X̂t. This step draws the particles

of X̂t with a probability proportional to their previously assigned weight and adds them to a

new set Xt, thus creating the new set with the same number of particles but with a different

particle distribution, by focusing the particle set to regions of the state space with higher

probability.

For all m ∈ [1..M ]

draw i with probability ∝ w[i]
t

add x
[i]
t to Xt

The final representation of the state bel(X)t is usually estimated from the set of par-

ticles according to their weights and the estimation method depends on the application.

Laue et al. [11] present an analysis of some possible methods. As an example, one can sim-

ply accept the particle with higher weight as the best estimate of the true state or, more

commonly, use a weighted average of the particles.

A common extension to the Monte Carlo (MC) algorithm is the addition of an heuristic

to add random particles to the particle set. This is done because the particles at places other

than the most likely state gradually disappear. Since at some point they only “survive” near

a single state, there is no way to recover if this state is incorrect. This kind of approach

enables the MC algorithm to cope with sudden significant changes of state.

2.2 Localization problem

Self-localization and mapping are classic problems of intelligent mobile robotics, over

which research is still extremely active. These are part of the more general challenge of

defining, managing and updating the robot internal world model.

Given the abundance of published work that focus on this problem, most of the available

literature and examples concerning the presented filtering methods are presented within this

context, as well as variants and improvements for the base algorithms.

Thus, this section appears as context and as general presentation and exemplification of

the described methods, despite the fact that this work does not focus on self-localization.

Many of the concepts, however, are generalizable and are applied to the application of the

methods presented on this work.

When working with mobile autonomous robots, there are typically two scenarios. The

environment can be known or partially known and the robot needs to localize itself, or the

environment is unknown and the robot needs to build the map as it runs. The latest is

addressed as Simultaneous Localization And Mapping (SLAM) and it is another common

application of sensor fusion techniques [12, 3].
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The problem of mobile robots localization is to identify where a robot is, given a map of

the environment around it. The localization of a robot is usually defined as a pose, which

contains a position (given in some coordinate system) and an orientation (relative to the

defined coordinate system).

In this case the state of the robot, X, is its pose, either represented in 2D or 3D space.

When in a 2D scenario, the pose of the robot is given by its 2D ground projection (X,Y)

coordinates and its orientation, which results in a three variable state. In a 3D scenario,

usually we want to keep information about a specific point on the robot body, like its head,

and the pose is given by a six variable state, which are the robot reference point coordinates

(X,Y,Z) and the robot body orientation (or orientation of the body part containing the

reference point) given by the angles around each of the (X,Y,Z) axis, usually referred as roll,

pitch and yaw.

The localization problem is mostly a probabilistic problem. Robots must have models for

their movement (motion models) that are capable of providing the beliefs. These beliefs can

then be updated considering sensor measurements or, when they are not available, updated

based only on the motion model.

The localization problems are usually divided considering different aspects that are not

equally difficult to solve. There are four main aspects to consider [12]:

• Local versus global localization

This characterizes the problem by the type of knowledge available initially and at run-

time. Three different problems are distinguished, each with increasing difficulty.

– Position tracking. Position tracking assumes that the initial pose of the robot

is previously well estimated. That means that the localization algorithm has to

estimate the new pose based on the last one, which usually has a small error that

can be accommodated in the motion and sensor models with good results.

– Global localization. In this case, the initial pose is unknown. The robot is placed

somewhere in the environment and thus no assumptions on the limits of the pose

error can be made. Global localization includes the position tracking problem.

– Kidnapped robot problem. This is a variant of global localization with an

added difficulty: during operation, the robot can be kidnapped and teleported to

other location. The robot might believe that it knows where it is while it does not,

leading to subsequent wrong pose estimations due to false initial pose knowledge.

This leads to a new question of how can the pose estimation be validated and how

can a wrong pose be detected. In the global localization problem, this question is

not relevant, as the robot knows that it does not know where it is.

• Static versus dynamic environments

The environment dynamics also causes a substantial impact on localization difficulty.
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The environment is typically classified in two classes.

– Static environment. In this kind of environments, the robot is the only element

with motion, meaning the only state variable is the pose of the robot. All the other

objects in the environment remain at the same location forever.

– Dynamic environment. These environments have objects other than the robot

whose position and configuration may change over time. Some examples of more

significant changes are people, movable furniture, doors, or even light conditions

(daylight, night).

Working with dynamic environments creates more difficulties than working with static

ones. There are two main approaches for accommodating dynamics: one is to include

the dynamic entities in the model state vector. This approach also maps the environ-

ment, but it comes with a high burden of computational and model complexity. Another

approach is to filter the sensor data to correct the damage caused by unmodeled dy-

namics [12].

• Passive versus active approaches

This aspect of localization problem characterization pertains to the fact of whether or

not the localization algorithm can influence the control over the robot.

– Passive localization. The localization module only observes as the robot oper-

ates. The robot movement is defined and oriented to perform the robot given task,

not considering localization as a goal in its decisions.

– Active localization. On active approaches, the localization algorithms have di-

rect influence over the robot’s control and attempt to move it to a more favorable

position to reduce the error and obtain a better pose.

Active approaches tend to yield better and quicker results than passive ones since the

goal of the robot is to localize and thus it will search for the best information possible

for that task. An example is a robot located in a symmetric corridor where the global

localization can easily enter an ambiguous state (figure 2.1). The local symmetry makes

it impossible to localize the robot while in the corridor. It will only be able to eliminate

the ambiguity and determine its pose if it moves into a room (or if it gains access to

some other disambiguation source, like a true heading, for instance).

However, in practice, an active localization technique tends to be insufficient if applied

on its own. Most of the times, the robot has to be able to execute other tasks besides

localization. A common approach is to merge the localization goals with the task goals.

An example would be a robot moving from a point A to B taking a longer path, but

ensuring that the robot kept itself well localized along all the way.
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local maxima

Figure 7.3 Example situation that shows a typical belief state during global localiza-
tion in a locally symmetric environment. The robot has to move into one of the rooms
to determine its location.

Figure 2.1: Example situation with two possible ambiguous poses. The robot would need extra infor-
mation or to enter one of the rooms to determine its true location. Image from [12].

• Single-robot versus multi-robot

The fourth aspect of the localization problem is related to the number of robots involved

– Single-robot. This is the most typically studied approach, dealing with only one

robot. It is convenient that all the data comes from the same platform, and no

communication issues have to be dealt with.

– Multi-robot. When working with a team of robots, the problem can be addressed

as several single-robot localization problems and be solved in the same manner.

However, if the robots have the ability to detect each other, one robot’s beliefs can

be used to validate other robot’s beliefs if the relative location of both is available.

2.2.1 Localization algorithms

As localization is a probabilistic problem, most of the algorithms for mobile robot lo-

calization are based on Bayesian rules. Some algorithms will be briefly presented in this

section.

2.2.1.1 Markov localization

Markov localization is the straightforward application of a Bayes filter (section 2.1.1) to

the localization problem. It requires a map as input for the measurement model and often

the map is also incorporated in the motion model. It mainly transforms a probabilistic belief

at time t-1 into a belief at time t. Being a probabilistic belief at each instant, it maintains

the probability for every possible pose on the state space.

Markov localization addresses the global localization problem, tracking problem and the

kidnapped robot problem in static environments.
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Consider a scenario of a hallway with three identical doors and the robot is only able to

move along the hallway without rotating. It is a one-dimensional example (figure 2.2).
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Figure 7.4 Example environment used to illustrate mobile robot localization: One-
dimensional hallway environment with three indistinguishable doors. Initially the
robot does not know its location except for its heading direction. Its goal is to find
out where it is.

Figure 2.2: One-dimensional scenario for robot localization. Image from [12]

Figure 2.3 illustrates this one-dimensional example (presented by Thrun et al. [12]), where

a robot moves along a corridor with three identical doors. In an initial state, the belief

bel(X) = bel(X0) is uniform for all poses along the corridor (figure 2.3(a)).

In figure 2.3(b), the robot queries its sensors (modeled by a function p(Z|X)) and detects

that it is in front of a door. The belief is updated with that information, resulting in the

belief in the same image.

In a third moment, the robot moves right, and the model convolution (expression 2.1)

results in the belief depicted in figure 2.3(c), flattened by the assumptions of the motion

model uncertainty.

A new sensor query is made in figure 2.3(d) and the resulting belief now has a well defined

peak focused on the correct pose. At this point, the robot is quite confident that it has

localized itself. Figure 2.3(e) illustrates the robot’s belief after a new move to the right.

This illustration refers to the global localization problem. In a position tracking problem,

the initial position would be known and thus the initial state would be something like the

belief in figure 2.3(d).

A Markov localization approach has been explored in robotic museum tour guides [13].

The work described by Fox et al. [13] was tailored for dynamic environments and was de-

veloped to support both global localization and kidnapped robot problems (recovery from

location failures).

2.2.1.2 Kalman filter localization

Kalman filter localization is the application of the Kalman filter (section 2.1.2) to the

localization problem and typically requires that the starting position of the robot is known.

Thus, in its essence, it addresses the position tracking problem. Unlike Markov localization,

it maintains a belief bel(Xt) that is a Gaussian function and thus can be represented by its

mean and covariance.

In the corridor example of Thrun et al. [12] (depicted in figure 2.4), it is assumed that the

map is represented by a collection of features (where each one is identified by a correspondence

variable) and each feature identifier is known, thus, the doors of the hallway have now a unique

correspondence variable (1, 2 and 3). The need for these constraints is that the filter works
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Figure 7.5 Illustration of the Markov localization algorithm. Each picture depicts
the position of the robot in the hallway and its current belief bel(x). (b) and (d) ad-
ditionally depict the observation model p(zt | xt), which describes the probability of
observing a door at the different locations in the hallway.

Figure 2.3: Illustration of Markov localization algorithm. In each picture, the belief bel(X) function is
represented. In (b) and (d), also the observation model p(Zt|Xt) is represented, describing
the probability of observing a door at the different locations in the hallway. Image from [12].

on the assumption of Gaussian measurements and for this requirement to be met, each door

must be unequivocally identified by the observation model p(Z|X)

A second assumption, needed for the algorithm, is that the initial position is relatively

well known (the initial belief bel(X0) is represented by the Gaussian distribution shown in

figure 2.4(a), near door 1 and with a Gaussian uncertainty).

As the robot moves right (figure 2.4(b)), its belief is convolved with the Gaussian mo-

tion model (expression 2.2), resulting in an increase of the Gaussian width, as uncertainty

increases.

In another instant, the robot detects that it is in front of door number 2. In figure 2.4(c),

the observation function p(Z|X) is used to update the estimated pose, and the resulting belief

is presented in the same picture. The variance of the resulting belief is smaller than both

the previous belief and measurement variances, thus integrating two independent estimates

should make the robot more certain than each of the estimations separately.

As the robot continues to move along the hallway, the uncertainty in its pose increases
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Figure 7.6 Application of the Kalman filter algorithm to mobile robot localization.
All densities are represented by unimodal Gaussians.Figure 2.4: Illustration of Kalman filter localization algorithm. In each picture, the belief bel(X)

function is represented. In (c) also the observation model p(Zt|Xt) is represented. All
densities are represented by uni-modal Gaussians. Image from [12].

again, since the filter motion model continues to incorporate the system uncertainty in the

belief (figure 2.4(d)).

When the correspondence variables are unknown, the identity of the landmarks has to

be determined during localization. One of the most simple and used strategies is maximum

likelihood [14] correspondence, in which one first determines the most likely value of the

correspondence variable and then applies the filter as described, using the estimated corre-

spondence as granted. With this kind of approximations, the Kalman filter localization can

be extended for the global localization problem.

There are a number of works that try to use Kalman filters in various ways, to somehow

improve it so it can be adapted for some particular situations. One of them, a combina-

tion of Bayesian estimation with Kalman filtering for localization purposes is presented by

Roumeliotis et al. [15], allowing a better performance of the system by relaxing the Kalman

assumptions about the measurements noise.

A work described by Bekey et al. [16] applies the Kalman filter basis divided in several

smaller communication Kalman filters. Each of the robots has its own filter to process the data

from its own sensors. Information exchange between two individual filters is only necessary

when two robots detect each other and measure their relative position. In this case, a more
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comprehensive Kalman filter is used, capable of taking the new information into account.

In the work by Koyasu et al. [17], the authors present the use of Kalman filter to detect

and track moving obstacles.

Leonard et al. [18] make use of an extended Kalman filter to localize a mobile robot

based on environment landmarks that can be reliably observed and accurately described by

geometric parameterization (referred by the authors as geometric beacons).

2.2.1.3 Monte Carlo localization (MCL)

This is another popular algorithm for localization, which represents the belief bel(Xt) by a

set of M particles Xt = x
[1]
t , x

[2]
t , ..., x

[M ]
t . It is the application of a particle filter (described in

section 2.1.3) to the localization problem. The initial belief bel(X0) is obtained by randomly

generating M pose particles from the prior distribution p(X0) (usually uniformly over the

entire pose space) and assigning each of them a uniform importance factor of M−1.

This algorithm can address both position tracking and global localization problems.

Figure 2.5 illustrates the MCL in the one-dimensional hallway example. The initial belief

is a set of random pose particles uniformly generated for the entire pose space (figure 2.5(a)).

When the sensors are queried and a door is sensed, the MCL algorithm analyses each particle

and assigns it an importance factor considering the measurement model, which takes into

account the estimated particle, the current observation and the map.

In figure 2.5(b), the resulting particle set is shown, with the height of the particle repre-

senting its importance factor. At this stage, the set of particles is identical to figure 2.5(a),

being the importance the only modification. This importance is then used for the re-sampling

process, that, based on the set of figure 2.5(b), generates new particles more concentrated

around the most likely positions. These newly generated particles are once again assigned the

same importance factor, as each of them is basically one possible state. Figure 2.5(c) shows

the new set of particles, also after incorporating a motion.

Again, the new measurement assigns non-uniform importance weights to the particle set,

as depicted in figure 2.5(d). At this point, most of the cumulative probability mass is centered

on the second door, which is also the most likely location (and the correct one).

After a new re-sampling phase which creates a new set, a new motion updates the particles

again and we obtain the set represented in figure 2.5(e). Each motion step without measure-

ments tends to disperse the particles, but each motion step merged with measurements tends

to concentrate the particles around the correct pose.

MCL has the advantage of not being bound to assumptions about the system and mea-

surement noise (as is the case of Kalman filter, which assumes that the noise is Gaussian).

The accuracy of the estimated pose increases with the size of the particle set M , although

this parameter imposes a trade off between accuracy and computational weight.

As stated in the particle filter description, the addition of random particles into the
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Figure 8.11 Monte Carlo Localization, a particle filter applied to mobile robot local-
ization.Figure 2.5: Illustration of Monte Carlo localization algorithm. In each picture, the belief bel(X) func-

tion is represented. In (b) and (d) also the observation model p(Zt|Xt) is represented.
Image from [12].

particle set is a common, if not mandatory feature when applying it to localization. Without

the random particles spread around to act as seeds for new particles during eventual re-

localizations, the MCL could not effectively solve the kidnapped robot problem, as it would

keep focusing the particles on the old outdated pose and would most likely take a very long

time to converge to the new pose. With the random particles around, they usually do not

affect the global estimation when it is focused on the correct pose (as these stray particles

weight is usually negligible) but can be crucial for the algorithm in case the robot suddenly

moves near one of them.

The use of a Monte Carlo localization algorithm with a variable number of particles

is presented by Heinemann et al. [19], in an attempt to get a good (accuracy / time and

computational cost) balance of MCL, for use in a demanding environment like robotic soccer.

Montesano et al. [20] present a study of how vision-based bearings and motion can be
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used for pairs of robots to localize themselves using each other as landmarks. They try an

extended version of Kalman filter, a particle filter approach (MCL) and a combination of

both. They observed that the particle filtering approach tends to be more robust than the

Kalman filter to estimate the initial location. Once the filters converge to the true location,

all methods provide similar results. The combination of both seems to provide the best

compromise between robustness and efficiency.

Gutmann and Fox [21] present a comparison between Kalman filtering, Markov localiza-

tion, Monte Carlo localization and combinations of them in a landmark based scenario, and

present some results and comments on several strong and weak points of each approach. In

a general way, the combined methods yield better results than the standard versions.

Dellaert et al. present the use of MC algorithm for localization of mobile robots [22]

performing tasks as museum tour guides. In the work by Cabecinhas et al. [23], the authors

compare the utilization of both a Kalman filter and a MC method for self localization of a

soccer robot by fusing odometry and visual information and find them both suitable for their

application, both with improvement potential for the integration of more sensors.

2.2.1.4 Tribots localization

The Tribots algorithm was created in the scope of robotic soccer and is based on guided

update steps modeling the localization problem as an error minimization task [24]. However,

its application can be more general (an example is the work presented by Gouveia et al. [25]).

The robotic soccer scenario is composed by a soccer field with well known lines marking the

field. These include straight lines for the bounding boxes of the field and areas and curved

lines for the center circle and corner arcs. These lines define the map where the robot needs

to localize itself and are landmarks that can be detected by visual sensors.

The algorithm was created to work on environments where there are no uniquely identi-

fiable landmarks and relies on a Look Up Table (LUT) built over the map which, for each

position, keeps the minimum distance to the closer landmark.

The algorithm starts by assuming a given pose as true and estimates the error of that

pose related to the measured distances (distances of the considered pose to the landmarks

represented by the observation model, in the robotic soccer case, points on the field lines)

by comparing with the LUT distances to the existing landmarks (known distances of each

position to the defined map landmarks, which are, in the robotic soccer case, points on

the complete field lines). The objective is to maximize the fitness (minimize the error) of

the match between the detected landmarks and the known landmarks (from the map) by

gradually correcting the estimation. The pose that will be tested in the next step of the

process is given by applying a displacement to the current pose based on the gradient of the

current error, using an algorithm named RPROP [26].

Consider the example of its main application, localization of a soccer robot. The land-
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marks used on the soccer field are the white lines, which are known a priori, as they are

defined in the rules. The LUT of the map is then based on a representation of the distance

of each position to the closer line/landmark (figure 2.6).

Figure 2.6: Illustration of a LUT map used by the algorithm. Darker areas indicate positions where
the distance to the nearest line is large, while brighter areas indicate positions with smaller
distances.

In this case, the sensor information is visual. At a given instant, the robot sees a set of

points over the field lines. These points (with known distance and position relatively to the

robot itself) are the landmarks used in the minimization error function. With a set of line

points as in figure 2.7a, the error function estimates a position by estimating the error and

error gradient on the current position according to the information on the LUT and iteratively

try new positions in the direction with the least error gradient until a position with error low

enough is found. Figure 2.7b plots the error function as gray levels, being dark areas the zones

where the error is larger and brighter areas the zones of smaller error. The most probable

position estimate (less error) is indicated by the black circle.

Filliat et al. [27] presents a review of localization strategies for map-based navigation, as

well as several mapping methodologies.

2.2.2 Simultaneous Localization And Mapping (SLAM)

In plain localization problems, a map of the environment is available for the robot to

observe and discover where it is. In SLAM problems, neither the map of the environment

or the robot pose are available. In this case, only measurements Z1:t and controls U1:t are

available and both the localization and the map need to be derived. It is a significantly more

difficult problem as the robot has to acquire a map of the environment while simultaneously

localizing itself within this map.

Mapping is the way the robot builds its representation of the world, its map. Typically,

the construction of these maps are based on two methods [28]:

Metric or grid-based mapping. It is a representation based on the measures of the space

24



a) b)

Figure 2.7: Left a): The set of line points (gray circles) and the field markings (solid lines) for a
localization estimate. The estimated pose for the robot is indicated by the “R” object;
Right b): A gray level plot of the error function considering the pose estimation of the left-
hand figure. Dark areas indicate positions with large error, bright areas indicate positions
with small errors. Image from [24].

they map. In an indoor metric map, the information included could be the length of

wall sections, widths of hallways, distances between intersections, and so on (figure 2.8).

With this approach, the robot has to be equipped with sensors capable of estimating

the distance to each detected object and it is usual to represent the mapped space with

an evenly spaced grid. This is a quantitative approach and a path plan that could

be applied over this kind of map could be “advance for X meters, turn θ degrees and

advance other Y meters”;

Figure 2.8: Illustration of a metric or grid-based map. All the known environment objects have known
measures and positions.

Topological mapping. The representation of the space is not based on precise measure-

ments but rather on landmarks (figure 2.9). In an indoor topological map, the informa-

tion could include doors, hallway intersections, or T-junctions of hallways. To build a

map based on landmarks, the robot would need to be equipped with sensors that could
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identify them, typically vision systems. This is the most intuitive approach for humans,

as we typically use path plans like “go straight till you see this landmark, turn left after

it and follow until you reach that landmark”;

Figure 2.9: Illustration of a landmark scenario that could be used to build a topological map. The
known landmarks are positioned relatively to each other, but no precise measures are
known, navigation is only possible by sighting of the landmarks.

From a probabilistic perspective, the SLAM problem has two main forms.

One is known as online SLAM, which consists of estimating the posterior probability over

the current pose along with the map: p(Xt,mt|Z1:t, U1:t). It involves the estimation of the

variables that persist at time t. It is common that online SLAM algorithms discard past

measurements and controls once they have been processed.

The other main form is full SLAM, which consists of estimating the posterior over the

entire pathX1:t along with the map, instead of just the current poseXt: p(X1:t,m1:t|Z1:t, U1:t).

Historically, the earliest SLAM algorithm designed is based on the extended Kalman filter

(EKF) [12]. The EKF SLAM algorithm applies the EKF for online SLAM by using maximum

likelihood data association. It is an approach that imposes a number of limiting assumptions:

(1) the map has to be composed of point landmarks, preferably with as little ambiguity as

possible, which may require significant attention to feature detectors; (2) as other Kalman

algorithms, the assumption of Gaussian noise for both the robot motion and perception

models needs to be met (or acceptable); (3) the algorithm can only process positive sightings

of landmarks, no processing can be made based on the absence of landmarks.

Another example of approach for SLAM presented by Thrun et al. [12] is the Extended

Information Form (EIF) algorithm. This EIF SLAM algorithm has in common with EKF

SLAM the fact that it represents the posterior estimation by a Gaussian. However, unlike EKF

SLAM, EIF SLAM solves the full SLAM problem. Thus, instead of defining the posteriors

over the map and the most recent pose, it defines the posteriors over the map and the entire

robot path. The EKF SLAM is therefore an incremental approach, it enables the robot to

update its map without memory concerns, while the EIF SLAM is best suited for problems
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where we want a map from an a priori known set size and we can afford to hold the data in

memory up to the time where the map is built.

Several other algorithms are currently available, like fastSLAM [29], Postponement [30],

relative map representations [31], submap methods [32] and Covariance Intersection (CI)

based methods [33].

Madhavan et al. [34] use a distributed extended version of Kalman filter for cooperative

multi-robot localization and mapping in outdoor environments, providing better estimates for

each robot localization based on relative information of other robots poses as well as increased

mapping capabilities since by sharing the own information, each robot can get unknown pieces

of the map to fit into its own map and, in case of overlapping pieces, merge the information

to get better estimates.

Some other algorithms and approaches for multi-robot simultaneous localization and map-

ping are presented by Rekleitis et al. [35], Mourikis et al. [36] and Thrun [37]. An application

of multi-robot localization but applied to object localization, rather than self localization is

presented by Stroupe et al. [38].

Julier et al. propose a hybrid approach on SLAM [39], with several filters implementing

their own SLAM algorithm and with the ability of exchanging information between them,

before generating the output.

2.3 Tracking problem

It is not uncommon in robotics to have the need to pinpoint and track a given mobile

object on the scenario, and even keep track of it for as long and as precise as possible when

it becomes undetected. This is usually addressed as a tracking problem.

Thus, using filtering techniques to track the state of a given object is a common appli-

cation. However, given the uncertainty associated to this problem, the possibility of similar

object states which can be ambiguous or even the need to track the state of several objects,

there may be a need to extend the state representation. Several techniques are described by

Bar-Shalom et al. [40] to address this problem.

2.3.1 Multiple Hypothesis Tracking

Multiple hypothesis tracking is explained by Bar-Shalom et al. [40] as the optimal solution

for the Multitarget Multisensor tracking problem, which consists on tracking various objects

states through the use of a set of sensors and dynamic models.

Being the objective of any filter to keep the internal state of one single given object, the

use of a single filter is not feasible for keeping the state of several objects. Thus, the idea of

multiple hypothesis tracking is to apply a framework of individual filters which keep several

hypothesis for the system state, according to the defined focus. Even though multiple hypoth-
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esis tracking is particularly fit for multitarget tracking, we may want to keep several possible

ambiguous states for a single object, for instance, until there is a better degree of certainty

available to disambiguate. Hypothesis can be either created or destroyed dynamically as new

sensor information becomes available that supports the operations.

This approach has been used successfully for mobile robot localization, by keeping track

of several possible poses for the robot while there is not enough data to understand which one

approximates the real robot pose [15, 41]. Multiple hypothesis tracking has also been applied

in human figure tracking by Cham et al. [42]. An application of multiple target tracking is

presented by Arambel et al. [43], where several ground targets must be tracked from a video

based sensor on board of an Unmanned Aerial Vehicle.

2.3.2 Multiple Model Tracking

Multiple model approaches are based on the fact that the behavior of a target varies

through time and thus cannot be characterized by a single model. However, one can have

different models to characterize the object in several situations. The idea of these approaches

is to possess a bank of different models of the object dynamics for different regimes and an

underlying switching function. The main difference to the multiple hypothesis methods is

that, in the later we have several instances of a same filter with the same models, both in

terms of system evolution model and sensor model. The multiple model approaches do not

have this limitation and allow the use of distinct modeled filters for distinct situations, at the

cost of a higher complexity for guaranteeing that each model is used in the correct situation

so that the output data is kept in coherent states.

Interacting Multiple Models (IMM), originally proposed by Blom et al. [44] is one such

algorithm, which achieves a good compromise between performance and complexity with a

Markovian switching function [45]. An application example of this algorithm is presented by

Vacher et al. for an aircraft control application [46], where it was proven to be a suitable

solution. Semerdjiev et al. test implementations of IMM for tracking of a maneuvering

ship, for both adaptive and non-adaptive switching functions [47]. Ceranka [48] analyses

the performance of an IMM in a pedestrian location problem, comparing it to an Extended

Kalman filter and an extension of that filter for colored noise. Furthermore, Civera [49]

successfully applied an Interacting Multiple Model to the Simultaneous Localization And

Mapping (SLAM) problem using a monocular vision system .

Although usually associated with Kalman filter and variants or Probabilistic Data Asso-

ciation [50], Wang et al. [51] presented an application of IMM using particle filters as the

algorithm building blocks. According to their results, IMM particle filtering can achieve even

better results than classical particle filter when visually tracking an object moving with very

distinct movement types through time.
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2.4 Fusing visual and inertial sensors

One recurrent problem is the fusion of visual and inertial sensors, where some results have

demonstrated that the visual tracking of objects may work at higher velocities and be more

robust if combined with information coming from inertial sensors [52] and also that ego-motion

estimation can be more precise and navigation more robust using these approaches [53]. This

is due to the fact that visual tracking can be very effective when moving at low speed, but

degrades for scenarios with increased velocity. Inertial sensors on the other hand, are not

effective for measuring movement at low speed, but can get accurate results at relatively high

speeds. Thus, the combination of inertial sensors with a visual system can improve the visual

identification, by keeping a better insight of how the system is moving and adapting the visual

algorithms accordingly.

Lobo and Dias [54] present a framework for combining visual and inertial sensor infor-

mation, by considering visual and inertial vertical features and combining their information.

Several papers of their work have been published [55, 56, 57] demonstrating several stages, re-

sults and approaches. Furthermore, Corke et al. present a description of the fundamentals of

inertial and visual perception as two important senses for biological and robotic systems [58].

For both, they present the principles, capacity and limitations as well as an analysis of how

both senses can complement themselves and the principles for their fusion.

Mirisola and Dias [59] describe the tracking of a ground target from an unmanned airship

equipped with a camera, an Inertial Measurement Unit and a GPS. They refer the application

of Kalman filter to the recovered trajectories of both the camera and the target.

2.5 Summary

In this chapter, an overview of several methodologies and algorithms for sensor and infor-

mation fusion were presented. Each presented filtering algorithm has examples of use within

several problems where sensor and information fusion is applied. Some of the presented prob-

lems were tackled during this PhD within specific robotic scenarios and the concepts will be

referred when needed.
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Chapter 3

Robotic soccer and worldstate

The test scenario chosen to implement and test the objectives of this PhD work is robotic

soccer, which is aligned with the development of teams of robots in our group. Particularly,

the initiative where we work to accomplish this is the RoboCup initiative.

Robotic soccer appears as a complex scenario for study and development of both software

architecture and sensor and information fusion, since one has to cope with a team of individual

mobile robots that autonomously need to build a model of their own world which should be

similar to the models of the team mate robots for them to work properly as a team.

In this chapter, a general overview of the target RoboCup environments is presented, as

well as an overview of the used robots. Focusing on the world model, an overview of general

approaches used by other teams is also presented, as well as an insight on the structure that

we find mot useful for scenarios of robotic soccer.

3.1 Robocup

The RoboCup is an international joint project intended to be used as a vehicle to pro-

mote robotics and AI research, by offering a publicly appealing, but formidable challenge.

One of the effective ways to promote engineering research, apart from specific application

developments, is to set a significant long term goal.

The ultimate goal of the RoboCup Initiative is:

By mid-21st century, a team of fully autonomous humanoid robot soccer players

shall win the soccer game, complying with the official rules of the FIFA, against

the winner of the most recent World Cup.

Although this goal may sound overly ambitious given the state of the art technology today,

the definition of an ambitious or even overly ambitious goal is common in several projects, to

foster the development of subgoals and technologies that, while not directly related with the

ultimate goal, will nevertheless be crucial for reaching it.
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Still within the RoboCup objectives, the initiative also aims to be a standard problem for

evaluation of various theories, algorithms, and architectures. The typical example provided

by RoboCup federation is the chess problem. It has been used for the last decades as a

standard problem to evaluate several algorithms and theories. Having reached its ultimate

goal of defeating a human champion of chess, this challenge is close to a finale. RoboCup

project aims to provide a new challenge to, such as chess did before, foster the development

of next generation technologies.

Despite the initial scenario being soccer, RoboCup currently counts with leagues in several

areas, such as search & rescue, domestic or factory leagues. RoboCup’s rules change in

order to promote advances in the science and technology of robots and to make the league

challenges closer to real world, rather than to impose artificial setups to improve league

specific performance. They are reviewed annually by each league technical committee, and

discussed with participants and other knowledgeable researchers in the field to draft out new

rules.

Even within the soccer domain, there are several leagues, each of them with the objective

of allowing development in more specific areas. Simulation leagues, for instance, are most used

to develop team play while the real robots are still not physically stable enough to explore

team play at its finest. The main leagues are currently the following:

• RoboCupSoccer

– Simulation League

– Small-Size League

– Middle-Size League

– Standard Platform League

– Humanoid League

• RoboCupRescue

– Rescue Simulation League

– Rescue Robot League

• RoboCup@Home

• RoboCupJunior

Most of the work presented in this document is applied within the RoboCup scenario,

particularly the Middle Size League and Standard Platform League.
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3.1.1 Middle Size League (MSL)

In this league, middle-sized robots with a maximum size of 52x52x80 cm play soccer in

teams of up to five robots with a regular size five FIFA soccer ball on a field similar to a

scaled human soccer field with 18x12meters (figure 3.1).

Figure 3.1: Picture of a MSL game in IranOpen2014.

All sensors are on-board and robots can use wireless networking to communicate among

them and with an external agent acting as a coach running on a base station PC, within

strict limitations on traffic volume. The coach, however, does not possess any type of sensor,

it may perform tasks and decisions but only based on the information provided by the field

robots. The referee team has a PC running a referee box application which is used to send

the game signals to the robots through the network. These signals, however, are not sent

directly to the robots, they are instead sent to the external PC of each team, the same that

can run the coach and is wired to the field network, and each team is responsible for relaying

the information to their robots. Additionally, there can be no ad hoc wireless networking,

all communications between robots and between robots and the base station PC must be

established through one of the field access points (figure 3.2).

The field is composed of several elements of known color. The floor is green, the lines are

white, the goals frames are also white and the robots must have a black band around them

at their lower level. The ball color may vary in each tournament, being defined a-priori by

the organization, with the restriction of having a saturated main color which is different from

the rest of the elements on the field.

The official field markers are presented in figure 3.3, drawn with official proportions for

all the dimensions, in meters.
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FIFA LAW 4 – THE PLAYERS’ EQUIPMENT 17

RoboCup Changes and Comments

RC-4.2.5:
Communications

Both the Referee Box and the team Base Stations must also be connected by
cable to the wired network.
Each team has to design their software in such a way that it is possible for
them to use only one Base Station to manage a game.
Commands from the Referee Box will be sent to the team’s Base Station using
the wired connection. It is the team responsibility to re-send these commands
to their robots on the field.
Network settings, during the competition, will be as follows:

• WEP encryption is turned off.

• Broadcast of SSID is turned on.

• Subnet mask normal PC: 255.255.255.0.

• Subnet mask of a PC connected to the RefBox: 255.255.0.0.

• Access Point Beacon Interval should be set to 20-30.

• Access Point DTIM Interval should be set to 2-3.

• Access Point power save mode is disabled.

Technical verifications and sanctions

During technical verifications teams must be prepared to demonstrate and ex-
plain their communication setup and software to the MSL Technical Commit-
tee. This will include network configuration and bandwidth usage. Further-
more, team robots must be placed in the field and respond to basic Referee
Box commands. The Network Monitor software will be used to verify that the
team communication setup is in accordance to the rules.
Teams that fail to comply with the current communications rules will be asked
by the Technical Committee to re-adjust their software and setup in order
to correct the detected incompatibilities. If the team fails a second technical
verification, it may be excluded from playing in the tournament by the league
organizing committee.

Figure 3.2: MSL networking diagram

The research focus is on full autonomy and cooperation at plan and perception levels,

generally using wheeled robots.

3.1.2 Standard Platform League (SPL)

In this league and for the rules of 2012, small humanoid robots play soccer in teams of

up to 4 robots with a street hockey red ball on a field similar to a scaled human soccer field

with 6x4 meters (figure 3.4).

As in MSL, all sensors are on board of the robot and they also can communicate among

them through a wireless network but no outside agent can communicate with the field robots.

All communications between robots must be established through the field access point and no

ad hoc connections are allowed. The refereeing team has a PC connected to the field network

running an application referred to as GameController which sends the referee commands

directly to the robots.

The floor is also green and the lines are white. The ball is red and the goal frames are

yellow.

The official field markers (2012 edition) are presented in figure 3.5, drawn with official

proportions for all the dimensions, in meters.

All teams use identical (i.e. standard) robots. Therefore the teams concentrate on software
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Figure 3.3: Official MSL field marker distances. All the presented values are in meters. The field
representation is with official proportions.

Figure 3.4: Picture of a SPL game in RoboCup2012.

development only, while still using state-of-the-art robots. Omni directional vision is not

allowed, forcing decision-making to manage vision resources between self-localization, ball

localization and general object localization (other robots, goals...).

Given the current state of technology concerning humanoid robots, the research focus of

this league is still mainly in body control and development of methodologies to allow the robots

to be able to move in a stable way in any action they take. The adoption of other league’s
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Figure 3.5: Official SPL field marker distances for 2012 edition. All the presented values are in meters.
The field representation is with official proportions.

cooperation methodologies has already occurred, as it is our own case, but the effectiveness of

such methodologies is understandably lower, due to the instability of the physical platform.

In 2008, the league replaced the highly successful Four-Legged League, based on Sony’s

AIBO dog robots, and is now based on Aldebaran’s Nao humanoids.

The dimensions and general regulations presented are in its 2012 edition version, since

that was the last participation of the Portuguese Team. In the 2013 edition there were changes

relative to the size of the field and the number of robots in a game.

3.2 Description of used robotic platforms

The work developed was mainly within the presented leagues of RoboCup, which use

different robots. The used platforms for both leagues are presented in some detail, with the

exposition of the more relevant characteristics, both in terms of hardware or software.

3.2.1 CAMBADA

CAMBADA, acronym for Cooperative Autonomous Mobile roBots with Advanced Dis-

tributed Architecture, is a Middle Size League Robotic Soccer team created by the ATRI1

1Actividade Transversal em Robótica Inteligente - Transverse Activity on Intelligent Robotics
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group, of the IEETA2. Created in 2003, it has been a project that includes many people’s

efforts in several areas, for building the mechanical structure of the robot, its hardware ar-

chitecture and controllers and the software development in areas such as image analysis and

processing, sensor and information fusion, reasoning and control. Operating in the RoboCup

competitive environment, several concepts on robot construction (at all levels: mechanic,

hardware and software) have been seen and discussed. This discussion of ideas promotes the

development of the involved teams. The CAMBADA robots have obviously evolved over the

years and for RoboCup2013 a new platform was built. Most of the work presented in this

document was accomplished mainly over the previous platform. Also, most of it is not depen-

dent on being run on the old or the new platform except when concerning to execution time

and processing performance, since the new platform has a more powerful processing unit. A

brief description of the general platform [60] is presented in this section, with some of the

differences between both platforms identified when relevant.

Some common structural approaches of MSL teams: The mechanical structure of

the MSL teams3 is variable. The shape itself is different among teams, as there are some

using robots with triangular [61, 62, 63, 64], circular [65] or squared [66, 67] shapes, but they

can assume any shape (as long as they stay within the allowed size).

The used locomotion method is one of the most important issues in this kind of robot.

Some teams use a differential movement approach while most use a holonomic approach. The

latter one has the great advantage of allowing the robot to move in any direction with any

orientation.

The kicking system is also known to have different approaches, either pneumatic [61],

electromagnetic [63] or electro mechanic (with springs) [62].

The vision system has several implementations as well, being the most popular and

adopted by most teams an omni directional system [61, 63, 67], implemented in several dif-

ferent ways but commonly with a camera pointed up to a convex mirror on the top of the

robot.

3.2.1.1 Physical structure

The CAMBADA robots were designed and completely built in-house. The base structure

of the robots is not very different from one platform to the other. With the old platform,

each robot was built upon a circular aluminium chassis (with roughly 485 mm diameter),

2Instituto de Engenharia Electrónica e Telemática de Aveiro - Aveiro’s Institute of Electronic and Telematic
Engineering

3MSL team description papers (TDP) describing their robots can be found in each of the MSL pre-
registration material, with pointers in:
http://wiki.robocup.org/wiki/Middle Size League/2014 Qualification Results
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which supported three independent motors (one for each holonomic wheel, allowing for omni

directional motion), an electromagnetic kicking device and three NiMH batteries (figure 3.6a).

The new platform has chassis based on a triangular shape where the motors and wheels

structure is supported by two aluminium plates, being the wheels now completely disconnected

from the motor axis. This “extra” layer allows a decoupling of the locomotion mechanics and

electronics from the rest of the mechanics and control electronics, which makes the new

platform even more modular. The main structure of the robot is basically the same, with all

the mechanics and control electronics inside the bottom base. The batteries are still three

but are now LiPo technology (figure 3.6b).

a) b)

Figure 3.6: Pictures of a): the old CAMBADA robot base, where the holonomic wheels, motors and
batteries are visible. b): the new CAMBADA robot base, where the motors are now
protected inside an intermediate layer and uncoupled from the wheels.

The remaining parts of the robot were placed in three higher layers, namely

• The first layer upon the chassis is used to place most of the electronic modules such as

kicker controller and the kicker and grabber mechanisms (figures 3.7a,b).

• The second layer contains the main computation unit, which was a PC, 13” notebook

based on an Intel Core2Duo processor with 2GHz clock speed, 1GB RAM that recently

changed to a notebook PC, 12” Intel Core i5 with a 2.7 GHz quad core processor, 8GB

RAM and the support tripod for the third layer (laptops visible in figure 3.8).

• On the top of the robots stands an omni directional vision system consisting of a camera

pointing to an hyperbolic mirror and an inertial unit, currently used for localization

purposes (figures 3.7c,d). In the old version there was also a frontal vision system,

consisting of a camera pointing forward.
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a) b)

c) d)

Figure 3.7: Pictures of a): the old version kicker and grabber systems. b): the new version kicker
and grabber systems. c): the vision systems of the old version, with both the omni and a
frontal camera. The compass is on the back of the frontal camera support. d): the vision
system of the new version, with the inertial unit board visible on the left of the mirror. In
both pictures, the camera and the hyperbolic mirror it points to are visible.

The mechanical structure of the robot is highly modular and was designed to facilitate

maintenance. It is mainly composed of two tiers: 1) the mechanical section that includes the

major mechanical parts attached to the aluminium plate (e.g. motors, kicker, batteries); 2)

the electronic section that includes control modules, the PC and the vision systems. These

two sections could be easily separated from each other, allowing an easy access both to

the mechanical components and to the electronic modules [68]. On the new version of the

robots, we can consider that the “mechanical layer” is further divided in two layers, separating

the locomotion hardware from the ball handling hardware (kicker and grabber), since the

maintenance interventions usually only target one type of components.
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A general overall picture of both platforms is presented in figure 3.8.

a) b)

Figure 3.8: The CAMBADA robots. a) The old platform. b) The new platform.

3.2.1.2 General architecture

The general architecture of the CAMBADA robots has been described in [69, 70, 71].

Basically, the robots architecture is based on a main processing unit that controls the higher-

level coordination, i.e. the coordination layer. A PC is used as this main processing unit,

that processes visual information gathered from the vision systems, executes high-level con-

trol and coordination functions and communicates with the other robots. This unit also gets

the sensing information and sends actuating commands to control the robot actions using a

distributed lowlevel sensing/actuating system. The PC runs the Linux operating system. The

communication among team robots is guaranteed by an adaptive TDMA transmission proto-

col [72, 73] on top of IEEE 802.11, built to reduce the probability of packet collisions between

team mates, becoming more efficient. The protocol is used to support a Real Time DataBase

(RTDB) that allows team mates to share information on some variables of interest [74].

Hardware control The low-level sensing/actuation system of the CAMBADA robots (fig-

ure 3.9) is implemented through a set of microcontrollers interconnected by a network. Con-

troller Area Network (CAN) [75], a real-time fieldbus typical in distributed embedded systems,

has been chosen for the task.

The low-level sensing/actuation system executes five main functions, namely, Motion con-

trol, Kicking, Grabbing control, System monitoring and Inertial unit. These functions are

distributed over a series of controller boards that may be dedicated for a single task or not.

The Motion control function provides holonomic motion using 3 DC motors actuating over

40



holonomic wheels. The Kick function performs the control of an electromagnetic kicker and

the Grabbing control is responsible for a ball handler to dribble the ball. The System monitor

function monitors the robot batteries as well as the state of all nodes in the low-level layer.

Finally, the Inertial unit function reads the angle from magnetic north given by the electronic

compass and the accelerations and angular velocities provided by the accelerometers and

gyroscopes and estimates the robot orientation. The low-level control layer communicates

with the coordination layer through a gateway, which relays the messages between the several

modules to the PC [74].

IMU

node

Gateway

node

CAN BUS

Motor1

node

Enc1 M1

Motor2

node

Enc2 M2

Motor3

node

Enc3 M3

Kicker

node

Kicking 

device

Ball handling 

node

Ball handling 

device

Figure 3.9: Hardware control architecture diagram.

Software The software system in each robot is distributed among the various computational

units. High level functions are executed on the PC, while low level functions are executed on

the micro controller network described before. A cooperative sensing approach based on a

Real-Time Database (RTDB) [69, 72, 76] has been adopted. The RTDB is a data structure

where the robots share their world models. It is updated and replicated in all players in real-

time. The high-level processing loop starts by integrating perception information gathered

locally by the robot, namely, information coming from the vision system and information

coming from the low-level layer. The available information (both the one directly gathered

and the one estimated through processing) is afterwards stored in the local area of the RTDB.

The next step is to integrate the robot local information with the information shared by team-

mates, disseminated through the RTDB. The RTDB is then used by another set of processes

that define the specific robot behaviour for each instant, generating commands that are sent

down to the low-level control layer [74]. Several processes are running on the PC, each with a

given responsibility. These processes communicate among them by using specific RTDB data

structures in a black board approach, and are depicted in figure 3.10.

The processes interacting with the RTDB are:

41



Vision Agent

RTDB

Comm

Vision Agent

RTDB

Comm

...
Robot 1 Robot N

HWcomm HWcomm

Monitor Monitor

Figure 3.10: Running processes diagram.

• vision is the first one to be executed at each cycle. It is actually the process that

defines the cycle time, as it is limited to the omni directional camera frame rate. It is

responsible for retrieving the cameras frames and make all the image processing. The

process has several steps, from color segmentation to object identification and relative

position estimation. The processed values are then injected in the RTDB.

• hwcomm is the hardware comunication process. It runs with two threads, one to get

information from the hardware micro controllers and one to send commands to those

micro controllers so they execute them through the actuators in the low-level.

• comm is the wireless communication process, responsible for transmitting the RTBD

information relevant for and from team mates. It also runs with two threads, one for

sending information, one for receiving.

• agent, control process that integrates the information and decides which actions to take

and which orders to send to the actuators.

• monitor is a monitoring process running with a lower cycle and is constantly verifying

if all the other processes are still running, both by checking if the processes themselves

exist and by verifying if they have been active writing on the RTDB. In case any of

the processes have failed, it starts them again so that the whole system keeps working.

This process is used during the games only, when it is of best interest that the robots

keep working without having to take them out for manual restart.
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3.2.1.3 CAMBADA vision overview

The vision process analyzes the current image and fills its RTDB structures with the

positions of the detected objects relative to the robot. Since the analysis is made for 3D object

on a 2D image, a projection of the object center to the ground plane must be considered.

This process is responsible for handling the omni directional camera, which is the main sensor

of the robots. Although the vision process is a well defined piece of existent software, it will

be subject to further analysis in section 4.1, as some changes to information provided by this

process were introduced during this PhD.

Examples of frames by both the omni directional and frontal vision systems are presented

in figure 3.11.

a) b)

Figure 3.11: Vision frames a): Omni directional vision frame; b): Frontal vision frame.

The frontal vision system is a “secondary” system, used only for checking for the ball when

it is not visible by the omni directional system, particularly when it is not on the ground.

A frontVision process is responsible for using the extra camera, which runs on best effort

over the base processes. Thus, this process is not represented in the base diagram, as it is

completely optional. The frontVision process is analyzed in section 4.3.3 since it is being

introduced on the team as part of this PhD work.

3.2.1.4 CAMBADA agent overview

The CAMBADA agent is the process that, at each cycle, is responsible for the high-level

control, which is divided in several stages. The first stage is the sensor fusion, executed by

the Integrator, with the objective of gathering the noisy information from the sensors and

from its team mates and update the state of the world that will be used by the high-level

decision and coordination.
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The strategic positioning on the field is then defined, in order for the robots to be able to

maintain a given formation.

The third stage is for the agent to decide how to act given the state of the world he built.

At the higher level, it assumes a Role, and operates on the field with a given attitude, for

example, as role Striker. The actions it can take are defined by lower level Behaviors, which

define the orders to be sent down to the actuators in order to fulfill a task, for example, a

Move behavior, to get to a given point on the field.

All the measures of the field, controller parameters on the behaviors and several configu-

ration values are available in a file cambada.conf.xml. This allows a quick, easy and organized

way to reconfigure many aspects on the agent, for example, the field size.

The movement controller is an implementation of a PID controller. However, some be-

haviors may introduce some restraints to the output of the PID, to guarantee a movement

as desired, in the form of acceleration and deceleration ramps. The restrictions are mainly

applied in movements in which the robot needs to control the ball and thus cannot turn too

fast or brake too abruptly, for example, so that it won’t loose control over the ball.

3.2.1.5 Basestation

In a game of the Middle Size League, besides the agents of the 5 robots on the field, there

is an additional agent outside the field which is connected to the referee box application and

is responsible for managing the team as a whole. It is responsibility of this agent to relay the

signals sent by the referee to the team robots. Additionally, a coach agent may also run on

this agent and take decisions and communicate with the field agents, but it can only work

with information gathered and sent by the field agents, it cannot possess any type of sensor.

In our team, we refer to the PC that is connected to the referee box as basestation.

However, this PC runs three or four processes during a game, which are:

• comm is the same process that runs on the field robots but in this PC using the wired

interface.

• coach, the process that performs an analysis of all the information provided by the field

robots. Currently, the coach estimates the cover positions for all the players during the

execution of set pieces from the opponent team.

• basestation is a control, configuration and debug graphical tool for the team. Further

details will follow.

• logger is a process that reads and saves all the information gathered by the basestation

PC. Tipically it is used to log the games for further analysis but, being a completely

independent software, it can be run at anytime to save the information received.
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From the processes previously described, the basestation is worth a further mention and

description, given the importance it plays on the team.

The basestation is a graphical application created with the purpose of being the main

interface of the team (figure 3.12). It is a tool used both in game and during development, as

it is a necessary piece to configure and activate the robots. The definition of the team color

and goal side are the main configuration parameters that must be provided by the basestation,

as well as a “virtual ON switch”. The team strategic positioning can also be defined manually

through this application, from the set of formations available at the time.

Figure 3.12: The basestation application.

Additionally, and during development and testing, we can define a fixed role for each robot

and simulate the referee signals to test and evaluate all the possible game situations.

In any of the situations, the basestation is constantly displaying the information exchanged

by the robots in a visually clear way, by drawing all the relevant information of the robots on

a field and also by displaying the individual information of each robot, so that the users can

detect any anomaly in their states.

3.2.2 NAO

NAO is a programmable humanoid robot developed by Aldebaran Robotics, a French

robotics company headquartered in Paris. The robot’s development began with the launch

of Project Nao in 2004, but it was in 2007 that Aldebaran won the contest for providing
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the robots for RoboCup Standard Platform League teams. The NAO robots replaced the

previous discontinued Sony AIBO platform in this league.

Since 2008, year of the public release of the robots, it has been used by the SPL teams

in a robotic soccer scenario and by research units all around the world. Aldebaran produces

several versions of these robots, some only with torso and arms, for interaction purposes. The

Nao was used in RoboCup 2008 and 2009, and the NaoV3 was chosen as the platform for

the SPL at RoboCup 2010. The Nao Academics Edition was developed for universities and

laboratories for research and education purposes. It was released to institutions in 2008, and

was made publicly available by 2011. In December 2011, Aldebaran released the Nao Next

Gen, featuring enhanced software, a more powerful CPU and HD cameras.

3.2.2.1 Physical structure

The version of the NAO robots over which the work described in this document was done

is version 3. Its body has a total weight of 4.5 kg and a total height of 0.57 m and uses a

Lithium-ion battery as power source. It is equipped with a series of sensors and actuators

which features:

• 21 DoF

• 2 VGA cameras

• 4 microphones

• 2 speakers

• 2 sonar sensors

• 1 inertial unit (3 accel, 2 gyro)

• 2 bumpers (1 each foot)

• 8 pressure sensors (4 each foot)

• A processing unit placed on the robot’s head with a 500MHz geode processor and 256

MB RAM, running a Linux based Operating System from a USB memory stick.

The previously listed features are the ones from the RoboCup version of the NAO, which

is not a “full” version, since the Academic Edition has a few more sensors and actuators.

A general overall picture of a NAO robot is presented in figure 3.13a, with some of its

features highlighted, and a schematic of its kinematic structure in figure 3.13b
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Fig. 2. Detailed kinematics of NAO. Wrist joint not represented.

its height to weight ratio or body mass index (BMI). NAO
has a BMI of about 13.5[kg/m2], which means that it is
very light compared to other existing robots of the same
height. Table I gives the BMI for different functional humanoid
robots. The quest for NAO performance is different from the
objectives followed by teams of robotics laboratories who
focus on a particular research subject. One subject concerns
the development of walking gaits on biped or humanoid
prototypes, like the ETL-humanoid [8], the BIP biped [9], the
2D Rabbit biped [10], or the Johnnie and LOLA humanoid
robots [11]–[13]. Other studies aim at designing robots with
artificial limbs for disabled people, like the Robian biped [14],
or at exploring natural dynamics of flexible actuators, like the
series of robots designed at MIT [15].

First, the performance targets for NAO are smooth walking
gaits even when changing speed and direction, and a rich panel
of movements that the robot must execute with smoothness and
precision. The walking speed must be similar to the walking
speed of children of the same size, that is about 0.6[km/h].
These objectives of performance involve building strong and
reliable hardware together with precise joint control. The robot
was equipped with high quality brush DC motors and high
precision magnetic sensor devices. For each motor the gear
reduction mechanism was carefully optimized.

Further, the robot must be equipped with cognition and
artificial intelligence capabilities, but above all, interactive
autonomy. This supposes that the robot is able to recog-
nize features and human faces in the environment, to self-
localize and to operate in this environment. One of the big
challenges for a legged robot consists of self-localizing and

TABLE I
CHARACTERISTICS OF FUNCTIONAL HUMANOIDS.

Height (h) Weight (w) BMI
Price

(m) (kg) (kg/m2)

KHR-2HV 0.34 1.3 10.9 1K US $

HOAP 0.50 7.0 28.0 50K US $

NAO 0.57 4.5 13.5 10K euros
QRIO 0.58 6.5 19.0 NA

ASIMO 1.30 54.0 32.0 NA
REEM-A 1.40 40.0 20.4 NA

HRP-2 1.54 58.0 24.5
400K US $

(5 year lease)

Human 1.5-2 50-100 18-25 NA

BMI: body mass index = w/h2, NA: not available

recognizing moving objects while walking. This is one of the
preoccupations of the participants to the RoboCup competition
legged league [16]. Some research teams have already built
humanoids dedicated to studying autonomous interaction with
humans and the environment, such as the Japanese JSK-H7 hu-
manoid [17], or the recent REEM-A and REEM-B humanoids
[18] [19]. For NAO to interact with its environment, the head
was equipped with interactive sensors (see table II). It is clear
that the cognitive capabilities of the robot will depend on the
quality of the embedded software.

Modularity is the third guideline followed by the French
designers of NAO. Firstly, modularity refers to actuator mod-
ules that could be used for different joints. This was also the
concern of designers of the LOLA bipeds [13] or the QRIO
humanoid [20]. For NAO, there are four kinds of actuator
based on two types of brush DC motor and two types of gear
reduction for each motor. Secondly, the modular design of the
robot’s limbs is also very useful to promote further evolution.
Modular design was used by SONY for the ERS-2xx versions
of AIBO quadrupeds [21] used in RoboCup. Legs and head
could be changed quickly in case of trouble. Legs could also be
replaced by wheels or other limbs. In the case of NAO the head
can be easily unplugged and replaced by a more specialised
one. Hands and forearms can also be changed. Thirdly the
problem of maintenance is not negligible, especially in the
case of human-size robots such as HRP-2 [6], or small-size
sophisticated humanoids such as SDR-4x/QRIO [22]. Since
NAO will be for sale on a large scale, its maintenance must
be optimized so that spare parts can be changed quickly. The
modular design should help maintenability and increase the
robot’s reliability.

The last guideline refers to open architecture. Open architec-
ture means that the robot must be easy to get started with and
to handle. This involves ergonomic software for a maximum of
people to access and understand the programming functions,
even for people who are not experts at programming. Some
existing humanoid robots suffer from this lack of ergonomy
The software proposed with NAO is user-friendly and relies
on a distributed architecture that allows interfacing with em-
bedded and remote applications that are useful for debug and
development. Open architecture also means that the majority
of the embedded software including the operating system can

a) b)

Figure 3.13: In a) a picture of a NAO robot with some highlighted features. In b) a schematic of the
kinematic structure of the motor actuators of the NAO. Image from [77].

3.2.2.2 General architecture

The general architecture of the NAO robots is based on a main processing unit located on

the head that, like in the CAMBADA, processes visual information gathered from the vision

systems, executes high-level control and coordination functions and communicates with the

other robots. It also gets sensing information and sends actuating commands to the robot

through a lower level sensing/actuating system.

Hardware control The control layer of the NAO is based on an ARM7-60MHz, located

in the torso, that distributes information to all actuator modules through a RS485 bus. The

actuator module microcontrollers are based on Microchip 16 bit dsPICs and are divided into

two buses, one for the upper part of the body and one for the lower part. The ARM7 controller

communicates with the main CPU through a USB-2 bus [77] (figure 3.14).

The actuator modules are responsible for servo control, bus control, sensor management

and power converters. Each circuit can drive up to two actuators and each actuator is

equipped with a magnetic rotary encoders (MRE) that yield absolute outputs. Besides the

main servo motors, there are some more dsPIC controllers managing other elements of the

robot. There is also a pair of them on the RS485 bus controlling the feet LEDs and acquiring

47



7

x2

CPU board 
(head)

USB 2

ARM-7 micro-
controller (chest)

IR transmitter/receiver)

CMOS videocamera

i2C
CCIR

micros

speakers

Codecs
(x2)

dsPIC

dsPIC

Shoulder: 2 motors + MRE

dsPIC

dsPIC

RS 485

Inertial sensor, 3 acc. + 2 gyros

Ultrasonic sensors 
(transmitter/receiver)

Battery (level)

RS 485

dsPIC
I2C

LEDS, 16 RGB

x2

x2

Ethernet port

WiFi

RS 232 port

Head: 2 motors + MRE

Elbow: 2 motors + MRE

Wrist: 1 motor + MRE

dsPIC

dsPIC

Hip: 1 motor+ MRE

dsPIC

x2
dsPIC

x1

x1

x2

Pelvis: 1 motor + MRE

Knee: 1 motor + MRE

Ankle: 2 motors + MRE

dsPIC
x2

4 FSR RGB LED

I2C

I2C

USB 2

x4AC'97

dsPIC

PSoC

LEDS, 2x10
LED driver

USB Key
1Gb

x2

x1

x2

x2

I2C

I2C

Hand: 1 motor + MRE

Hip: 1 motor+ MRE

Hip: 1 motor+ MRE

Fig. 12. Electronic architecture of NAO. MRE stands for magnetic rotary
encoder.

a RS485 bus (throughput of 460[Kbits/s]). There are two
RS485 buses, one that connects the ARM7 microcontroller to
the dsPICS modules of the upper part of the body, and the
other that connects the ARM7 to the dsPICS modules of the
lower part of the body. This bus partition permits to increase
the data throughput.

The ARM-7 microcontroller communicates with the CPU
board through a USB-2 bus with a theoretical throughput of
11[Mbits/s]. It can be used to control the robot’s stability
using the inertial unit. The operating system is based on Linux,
but the whole system can be modified.

B. Electronic system
Custom designed integrated circuits based on Microchip

16 bit dsPICs microcontrollers were designed to control the
actuators. These circuits are responsible for servo-control,
bus control, sensor management, and power converters. Each
circuit can drive up to two actuators. Each actuator is equipped
with magnetic rotary encoders (MRE) that yield absolute
outputs. Figure 12 shows the overall electronic architecture
of the system.

One dsPIC based circuit, connected to the ARM7 board
through I2CTM bus, is devoted to the signal acquisition from
two gyrometers and three accelerometers. Signals issued from
accelerometers and gyrometers can be combined to get an
acceptable feedback of the robot’s trunk orientation [12], [30].

Another dsPIC based circuit manages an infrared transmit-
ter/receiver and a series of LEDS.

For vision purposes the head of NAO houses a CMOS
videocamera. It is a 30 FPS camera with a 640x480 resolution.
It can be controlled through the I2CTM bus.

The robot is also equipped with two ultrasonic sensors, four
FSRs per foot (force sensitive resistors), four microphones,
two loudspeakers, Ethernet, serial and USB ports, 1 Gb USB
key, WiFi interface through USB-2 bus, and a series of 20
LEDS.

Low level control is updated every millisecond. The high
level decision loop can be executed every 20[ms]. Sensor data
is refreshed every cycle of 20[ms].

Fig. 13. NaoQi architecture concept.

IV. SOFTWARE ARCHITECTURE

A. NaoQi distributed architecture

NaoQi is the Aldebaran Robotics software framework, that
is registered for patenting [31]. It is a modular and distributed
environment that can deal with a variable number of executable
binaries, depending on the user’s architectural choices. The
architecture is event-driven. Figure 13 illustrates the concept
of the NaoQi architecture. A lot of effort was required to make
the architecture support both parallel and sequential calling
methods. The NaoQi architecture appears to be more user
friendly than Corba-based architectures such as open-hrp used
for HRP-2 [32].

The advantages of a distributed environment are manyfold.
It allows the user to run behaviours locally or remotely. Robot
functionalities such as motion, vision, text-to-speech, etc., can
be run on a robot in the same executable or in a standalone
executable that interacts with other modules on other comput-
ers. Development is made easier in a distributed environment
since the same code can be compiled on different platforms
and cross-compiled for embedded execution. A distributed
environment also allows the user to look at variables and
running methods on any real or simulated robot from the
programming interfaces.

The functionalities of NaoQi are listed below.

• Programming in many languages. Users can control the
real robot or simulate it with C++, Ruby, or Urbi [33].
Programming in C#, python, Matlab,and Java will be
possible in a future version.

Figure 3.14: NAO hardware control architecture. MRE stands for Magnetic Rotary Encoder. Image
from [77].

the data from the force. Finally there is one, connected to the ARM7 board through I2C bus,

which is devoted to the signal acquisition from two gyrometers and three accelerometers and

another one manages an infrared transmitter/receiver and a series of LEDS.

Software The software architecture of the NAO robots is based on an underlying embedded

software framework, the NAOqi. It is a modular and distributed environment that can deal

with a variable number of executable binaries, depending on the users architectural choices,

and is event-driven [77].

This framework is running on the Operating System and includes a whole set of modules

provided by Aldebaran to control and interact with several features of the robot. These

modules are divided in several categories like Core, Motion, Audio, Vision, Sensors, Trackers,

DCM, among others.

Like many of the teams which aim to research in several topics of humanoid robotics, we

have custom software for most of the needed tasks. In our work version most of the modules

from NAOqi are not used, only Core NAOqi and some monitoring modules which need to be

running just to allow interaction through the power button and guarantee some security for

the motors. The main module used is the Device Communication Manager (DCM) which is

a NAO real time module that is part of the NaoQi system, and is linked as a library. It is

in charge of the communication with the electronic devices of the robot except sound sensors

and video cameras.
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The DCM and other modules/processes deliver information to each other through the

ALMemory, a shared memory of the NAOqi. The actuating commands are placed on the

shared memory with an absolute time value based on the system time and the DCM will

synchronously compute the appropriate command to send to each actuator using linear in-

terpolation. The sensor information is, likewise, periodically placed in the shared memory by

the DCM for the remaining modules to access. The period of information update of these

modules is 10 ms.

3.2.2.3 Vision overview

The architecture of the vision system can be divided into three main parts: access to

the device and image acquisition, calibration of the camera parameters and object detection

and classification [78]. Moreover, apart from these modules, two applications have also been

developed either for calibrating the colors of interest (NaoCalib) or for debugging purposes

(NaoViewer). These two applications run on an external computer and communicate with

the robot through a TCP module of the client-server type that we have developed. The

current version of the vision system represents the best trade-off that the team was able to

accomplish between processing requirements and the hardware available in order to attain

reliable results in real time.

Having the possibility of running the vision module as a server, the two applications that

we have developed, NaoCalib and NaoViewer can act as clients that can receive, display and

manipulate the data coming from the robot. Thus, NaoViewer is a graphical application

that allows the display both of the original image as well as the corresponding index image

containing the validation marks for each object of interest that was found. This application

is essential in terms of understanding what the robot “sees” since NAO does not have any

interface to allow the connection of a monitor, all display related operations must be per-

formed remotely by a PC with graphical processors and monitor. NaoCalib is a very helpful

application that we developed for the calibration of the colors of interest (figure 3.15).

The vision final results are the positions of the several items of interest (ball center, points

on field lines, goal posts) in pixel coordinates on the acquired image. This information is then

used by the agent.

3.2.2.4 Agent overview

Prior to this PhD work, the agent architecture was a monolithic approach, with a set

of functions. It would start by getting the information provided by the vision and start a

decision function that would execute a series of actions.

The behaviors executed were only relative to the ball, using directly its pixel coordinates,

by trying to move in a direction that kept the horizontal coordinate at half the image size.
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a) b) c)

Figure 3.15: In a), an image captured by the NAO camera. In b), the same image with the colors
of interest classified. The marks over the color blobs represent the detected objects. In
c), an example of the classification of the colors of interest, by means of the NaoCalib
application.

The agent process and architecture and the general software architecture, were object of

development during this PhD and thus will be analyzed and described in detail in section 5.1.

3.3 Worldstate for robotic soccer

A representation of the world state is a need in almost every scenario with autonomous

robots that do not work based on a reactive architecture. In robotic soccer, as in many other

scenarios involving any kind of object manipulation, the need for a deliberative architecture

is evident.

When building a representation of the surroundings of a robot in the scenario of robotic

soccer, and although the work described in this document was applied to different leagues,

there are some basic entities that will exist and must be considered for the robots to be able

to play.

3.3.1 Common approaches

Different leagues may have different typical approaches, on world modeling methods. We

can, however, find a limited number of base techniques for the several world modeling prob-

lems, being localization the most documented of these problems.

Many teams use Kalman filter, Particle filter and their common variations as base for their

work and implement some specific tweaks in order to obtain better results. By better, in this

case, we do not mean necessarily more precise, but usually with a better precision/runtime

relation.

In the MSL, concerning localization, several teams use the tribot algorithm as a base,

as reported in their Team Description Papers [79, 80]. There are some teams that use dif-

ferent approaches, such as a combination of Monte Carlo Localization (through the use of a
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Particle filter) and dead reckoning used by the Hibikino team [81]. Mu Penguins state that

they use Hough transform and pattern matching to perform localization [82]. The SocRob

team [65] proposed a method to cooperatively perform localization based on visually shared

obstacles [83] that have recently been extended by applying the Mixture Proposal Distribu-

tion [84].

In terms of modeling the moving objects of the game, some examples of methodologies

are presented by several teams:

ISePorto states that they combine two methods: the Maximum Likelihood method which

provides them with an initial estimate of the trajectory and the Extended Kalman filter which

is able to recursively update the trajectory using new information [85]. Aiming to make use

of the information that should be available and shared through the team robots, SocRob

presented a method to perform cooperative tracking of the ball based on a particle filter [86].

Furthermore, the MRL team state in their 2013 TDP that they have implemented a

Kalman filter followed by a linear regression to filter ball positions and estimate its veloc-

ity [87], based on our own work [88].

In the SPL, despite the significantly higher number of teams, we find a number of base

methodologies falling in the class of particle based filters and Kalman type filters including

its extended and unscented versions.

We can also verify that it is currently not possible to state which approach is definitely

better, as it is common for teams to change from one kind of approach to another in a balanced

relation.

Concerning the localization problem, Molen presents a summary of the used algorithms

by each SPL team in the 2011 edition [89].

Through the analysis of the 2013 team description papers, there are several teams that

report to be using particle filter approaches, most of them reporting also some kind of extra

modules.

B-Human team uses a particle filter approach [90, 91], complemented with an unscented

Kalman filter module [92]. The Cerberus team opted to extend the particle filter with a x-mcl

approach [93]. Furthermore, the Dutch Team [94] applies the same method but keeps both

short and long term averages to improve their results [95]. SPQR team tries to apply the

method in a distributed way [96].

Both Uchile and NorthernBites teams report to have changed from an extended Kalman

filter to a particle filter approach for localization [97, 98] and team Dainamite changed from

a multi model Kalman filter to a particle filter approach [99].

Another set of teams report to solve the same localization problem by using Kalman filter

approaches, in several of their most common versions.

AustinVilla was one of the teams reporting to change from the particle filter approach to

an unscented Kalman filter [100, 101] and Edinferno and Kouretes also changed to a multiple
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hypothesis extended Kalman filter [102, 103]. Bembelbots [104] report to also use a multiple

hypothesis approach, but using a pure Kalman filter instead of its extended version [105].

The RoboEireann team [106] base their localization algorithm on a single model unscented

Kalman filter, but changed it to include a covariance intersection (CI) version to remove the

traditional independent noise restriction, in an effort to achieve better robustness to correlated

measurement errors [107, 105].

The rUNSWift team [108] have been evolving their Kalman filter over the years, and

currently report a multi model version of the filter, with distributed data fusion between the

team robots. The latest innovation was to include a variation of the Iterative Closest Point

(ICP) algorithm to the matching of not only field lines but also other visual features and

objects [109].

The Humboldt team [110] tries to move away from classical Bayesian approaches and

invest on constraint based techniques as alternative [111, 112]. They claim that these tech-

niques are computationally cheap and, despite having to handle inconsistent data, they can

be advantageous when ambiguous data is available (as is the case, due to the field symmetry).

The team NTURoboPAL [113], although not describing the core methodology underneath

the approach, report to use a simultaneous localization and tracking (SLAT) algorithm [114]

that integrates information from multiple team mate robots and provides the estimates of the

team mate robot poses and the opponent robot positions simultaneously.

The probabilistic approaches are also commonly used for improving the world model

estimations of the game objects, such as the ball or opponent robots.

In the SPL, teams Cerberus and Kouretes report to use Kalman filter and extended

Kalman filter, respectively, to estimate the state/belief of the world model objects [115, 103].

Several teams report to use a multiple model Kalman filter to have a better estimation of the

ball state, such as B-Human [116], NorthernBites [98] and Dainamite [101].

3.3.2 General overview of worldstate entities

Within a soccer scenario, some elements are part of the game and can be a part of or

are necessary for building the world representation, either directly perceived or estimated by

each robot:

• Ball: For a team of agents to be able to play soccer, the most important entity that

they need to know about is probably the ball. It is the main object of the game, through

which the main objective of scoring goals is accomplished.

• Goals: The two goals present on the field are also important entities to know about,

since they are the structures where the robots need to “place” the ball to score and

defend against opponent shots.
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• Players: Since soccer is a team game, there are several robots involved and inside

the field during a game. These players can be divided in two categories: team mates

and opponents. Since the teams are usually allowed to use communication between the

robots, much team mate information is commonly acquired through direct sharing of

data.

• Field: The field of play, defined typically by white lines on a green surface, is an

important aspect of the worldstate, as they define a known layout that the robots must

respect and take into consideration while playing.

• Internal state: For a robot to be able to perform any task, it should be aware of its

own internal state so that its decisions and outputs make sense according to its task.

This state can include basic information such as battery levels or configuration values in

cases where those are available (such as team definition in the robotic soccer scenario).

3.3.3 Our worldstate structure

In the robotic soccer teams used as test beds for the work developed during this thesis

period, we try to have a base structure for representing the necessary information. Of course

that in both MSL and SPL leagues, being so different from each other, there are some aspects

that may be particular for one or the other. Most of these aspects will be referred to in the

respective item:

• Robot is a data structure that includes all the necessary data for characterizing the

robot in the game. It includes most of its perception and coordination data necessary

for the correct working of the team. This includes:

– ID is the number that identifies a given robot.

– Role is the role that the robot chose to perform.

– Behavior is the current action that the role decided to take.

– Colors, both team and goal (since we use a color name to distinguish the field

side).

– Pose which is the 2D ground position of the robot represented on the field axis

and the angle it has, measured from the opponent goal.

– Velocity is a representation of the robot linear velocity on the ground plane and

its angular velocity, measured around itself.

– Internal info is a set of flags and values used for decision making and management

of the robot internal state, such as flags that mark the robot as running, having a

role remotely defined or being coached. As for values, usually some coordination

values and points are present in the robot structure, to allow communication of

decisions that need cooperation.
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– Ball is a data structure with some basic attributes for the ball, which include

its position on the ground both relative to the robot and in the field absolute

coordinates, its velocity and a boolean flag of visibility. In the MSL context, since

there is the concept of ball engaged on the robot, there is also a flag to signal this.

– Obstacles is a sublist of obstacles visually detected by the robot. Each obstacle

is represented by its position on the ground and an ID, which is the team mate ID

if it was identified as a team mate or another value outside the team IDs.

• List of Robot is a list with the Robot information of all the agents in the game,

updated regularly via wifi.

• Coach is a structure with coaching information, which is defined by a separate coach

agent, which is not a robot. The information it uses is the one gathered by the robots

and its data is shared to all other agents.

• Obstacle is a list of all the obstacles that the robot is considering. This list may have

obstacles not directly seen by the robot.

• Field is a class that keeps all the measures of the field of play, as well as methods to

extract landmark information of the field, such as the metric position of specific lines

or goals.

3.3.3.1 Integration processes and phases

On the software architecture of both leagues, the first step to take on each cycle is the

integration of all the available information and manage it so that we can have a representation

of the robot and surroundings as complete and precise as possible. The integration process

executes several tasks with the information gathered from several sources. We will call the

executors of the tasks as modules, whether it is an individual process or a block of the

integrator. Figure 3.16 is a schematic of these modules, represented by rectangular boxes.

The ellipsoid shapes represent the information that is provided or consumed by the modules.

The modules presented in figure 3.16 are briefly explained.

• Proprioception

– Body Joints Sensors: Specifically on the NAO robot, each of the joints has a

position sensor. This module is the one responsible to read the sensor data of the

robot body and provide normalized angles of the joints.

– Kinematic analysis: Again on the NAO robot, a kinematic model is needed to

take the angles of the joints and estimate the complete pose of the robot. This

pose allows to know the position and orientation of any part of the body with
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relation to another part, usually the head, which is the body part that contains

the camera.

– Camera Pose Analysis: For the robot to be able to transform its perception

from pixel coordinates to metric coordinates, it has to know what is the pose of

the camera in relation to the ground plane, where all the objects of the game are

standing on. In the CAMBADA robot case, since the robot body is not articulated,

the camera pose relative to the vertical is assumed to be always the same. In the

NAO robot, this module uses the body pose and torso angles estimated by the

inertial unit and estimates the necessary transformations.

– Inertial Unit: The robots of both teams are equipped with an inertial unit

composed of accelerometers and gyroscopes. The CAMBADA robot inertial unit

has also a compass which can measure the orientation of the robot. The inertial

measurements are used, in the NAO case, mainly to extract the angles of the robot

torso relative to the vertical, which are necessary for estimating the camera pose

relative to the vertical. In the CAMBADA robot, it is used mainly to measure

displacements of the robot, based on the analysis of the accelerometers.

– Odometry Estimator: The odometry module is responsible for “measuring”

how much the robot should have moved based on the movements performed by its

actuators. Since this is an internal analysis, it is prone to errors on the long run.

The external interactions with the environment, such as slips and hits, deviate the

supposed trajectory estimated by the module.

• Perception

– Image Analysis: The perception of the robots is achieved through the use of

cameras which are managed by a dedicated vision process, responsible for per-

forming the image analysis and produce information about the objects of interest

on the image, represented in terms of pixel coordinates on the image.

– Robot-centered Coordinate Estimator: After having the pixel coordinates,

we need to estimate the correspondence of those coordinates in the real world,

relative to the robot point of view. The estimation of the real world metric co-

ordinates is done by trigonometric projection calculations which are based on the

known pose of the camera relative to the vertical and the known parameters of the

camera hardware. By the end of this task, all the objects of interest are represented

in metric positions relative to the robot center.

– Robot Localization: After having the metric information of points over the field

white lines and the odometry estimation of the last movement, the first task that

the robot needs to perform is the localization. This step is crucial, since most of

55



Figure 3.16: Diagram of information fusion tasks performed by the soccer agent on CAMBADA and
NAO robots.
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the representation of the world will need to be related to the field of play, rather

than relative to the robot. The localization on both robots is similar, it uses mainly

points over the white lines of the field seen by the robot to match with the known

layout and thus estimate the robot pose on the field, by using adapted versions of

the tribots algorithm [24].

– Goals Evaluation: In the case of the NAO robot, and since it is not equipped

with any absolute sensor capable of estimating an orientation, such as the compass

of the CAMBADA inertial unit, the goal evaluation module is used to visually

search for the goals use also this information for localization purposes. This can

be done due to strict rules of robot placement which enable estimation of the robot

orientation given the relative distance of the goals.

– Obstacle Building: The visual information of the obstacles is a set of points on

the periphery of the robots that are, on this phase, a set of metric coordinates.

This module is responsible for clustering the points for each object, creating a list

of obstacles represented by its limit points and center point. It is also responsible

for dividing visually large objects, which occur frequently when several robots are

clustering together, and create a separate obstacle for each of the robots present.

– Obstacle Identification: Of all the visually detected robots, some of them may

be the other CAMBADA robots on the field. This module is responsible for crossing

the information shared by the team mates with the obstacles just created and

classify each of them as an opponent or a particular team mate. This information

may be used by the decision layer to make different approaches depending on the

obstacle being a team mate or an opponent.

– Obstacle Tracking: After ruling out which obstacles are team mate robots and

which are not, the opponents that are visible may have just entered the robot field

of view or they may already have been visible before. This module is responsible

for keeping track of each opponent robot by keeping historical information about

each of them. This module will keep an identifier of each obstacle as long as it

is visible and within the robot field of view, thus allowing the decision layers to

unequivocally identify each robot on the field, being it CAMBADA or opponent.

– Ball Position Filtering: Given the noisy measurements available, the ball is an

object that deserves a specific and individual treatment, since it is the main object

of the game. After having the estimation of its position on the current cycle, this

integration module is responsible for applying a filter to the ball position, taking

into account its history and the new measurement, as well as the uncertainties

involved in both the measuring and the historical information.

– Ball Velocity: After having a more stable and reliable position for the ball, it is
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necessary to estimate its velocity. This step takes into account the history of the

ball positions over time to estimate its velocity.

3.4 Summary

This chapter addressed the practical scenarios that were used during the work of this

PhD and presented the two leagues where the work over robotic soccer was directly applied,

introducing the context that may be necessary to grasp some of the work descriptions.

The robots used in the two leagues are completely different and thus some details about

each platform were presented. These concepts about the robots are important for the pro-

duced work, since the advantages and limitations that the robots present directly condition

the methodologies that need to be implemented.

Finally, and since most work is focused on perception, an overview of the concept of world

model or worldstate for robotic soccer is presented, with the description of entities that we

consider important to exist and a general overview of the modules that are implemented on

the robotic soccer teams covered by this work.
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Chapter 4

World model for CAMBADA

During a game of robotic soccer in the MSL each robot, as previously described in sec-

tion 3.2.1, is running a series of processes with different responsibilities. The main focus of

this PhD work is related with the agent process and its relation to the vision process. The

agent can be considered the main process in the sense that it is the one that gathers all the

information available, builds the world model and then acts according to it.

The omni directional vision process, vision, is the main source of individual information

available to the robot, since it is through the omni directional camera that the main elements

of the field are “seen”.

In this chapter we will present a general overview of the omni directional vision process

as well as an overview of the CAMBADA team world model. The work developed during this

PhD is presented in several sections referring to each element and approach in particular.

The ball is one of the elements addressed and, being it the best reference object in a soccer

scenario due to the fact that there should be only one in the field, it is used as reference for

analyzing and estimating the precision of the visual information. One of the addressed tasks

related to the ball is the analysis of the uncertainty/noise involved in its detection by the

omni directional vision and development of effective methodologies to provide a more stable

and precise representation of both position and velocity. Another task addressed concerning

ball is the development of new vision processes to provide reliable information of the ball

position when it is in the air and thus unseen by the main omni directional vision.

The localization algorithm is explained and the improvements made for detecting lost

situations are presented. The method for detecting a lost situation is independent of the

used sensor and a comparison of the results obtained with two different sensors is presented,

which represent a hardware change to the CAMBADA robots in order to achieve more reliable

information.

The detection and identification of other robots on the field is another of the addressed

issues. For this issue, the work developed includes the redefinition of the raw information

provided by the vision, in order to obtain better results in the individualization of each
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and every robot, as well as methodologies for unequivocally identifying each of those robots,

specially concerning the differentiation between team mates and opponents.

The improvements on the several elements of the worldstate allowed to extend its func-

tionalities and provide it with new and improved features and methods to provide information

to the decision layer. One of the features improved during this PhD was a new approach to

estimate a new direction to move the robot to reactively avoid collisions.

4.1 The omni directional camera

The main source of information for a CAMBADA robot is its omni directional camera.

The vision process is responsible for processing the images from the camera and for detecting

all the objects of interest which are currently the ball, the other robots and the lines.

All these objects start as blobs of pixels at some position on the 2D image and the center

of each of those blobs represent its coordinates on the image, represented in pixels. The

image coordinates of each element are converted to real world metric coordinates relative to

the robot center through a mapping of each pixel to a given metric coordinate at ground

level [117].

Several objects of interest on the field have specific colors: the green field, the white lines,

the black robots and the previously defined colored ball. Besides the color differences, they

are also within a known context at the ground level and the detection of each of them takes

that context into account.

The vision process is thus divided in several stages:

• A color segmentation is performed, searching for all the calibrated colors and storing

the information of each one as binary information using an 8 bit “image”. Each color is

associated to one bit and the bit is true or false either if the respective color is present on

that pixel or not. This allows a pixel to be associated with several colors simultaneously.

• Points over the white lines are detected by searching for green→white→green transi-

tions.

• Points over the robots are detected by searching for green→black transitions.

• Blobs of the ball color are constructed by clustering together pixels that are segmented

as having the ball color.

• Each blob is analyzed to select which of them can actually be ball candidates. The

analysis includes width and height proportions, solidity of the blob, general size of the

blob according to its coordinates, among others.
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None of the operations previously described are performed over all the image pixels. This

is done both to improve the performance of the algorithms and to avoid processing pixels

with no useful information.

The first method to select which pixels to ignore and which should be processed is an

overlapping of a binary mask. This mask marks which ones should be processed and which

should be ignored. There are two sets of pixels which obviously should be ignored since they

do not possess any information about the robot surroundings:

• Pixels that are outside the mirror. These pixels are the excess of the square image

that captures the reflection of the surroundings on the round mirror and represent the

bottom part of the robot’s top plate.

• Pixels on the mirror image that reflect the robot’s own body. These pixels do not

possess any information about the surroundings and are thus ignored. The reflected

body parts are the camera and robot base itself and the support bars on the top of the

robot, which connect this part of the mask to the outside part of the mask covering the

non mirror zone.

This method is designed to avoid processing pixels that possess no useful information, as is

the case of the robot’s own body. While this obviously reduces the processing weight by

reducing the number of processed pixels, the number of remaining pixels is still high and can

be further reduced without compromising the precision of the detections.

A second method for reducing the number of processed pixels is based on analyzing the

pixels over a defined direction. From the center of the robot on the image, previously estimated

by a configuration tool, radial “sensors” are created around the robot, each sensor represented

by a line with a given angle. These lines are called scanlines [118] and the transitions detection

and clustering operations previously described are executed only over these lines. Figure 4.1a

exemplifies a small subset of the radial scanlines overlapped with the camera image. Currently

some auxiliary circular scanlines are also used along with the main radial ones.

The transitions detection over a given scanline yields a point in pixel coordinates which

will then be transformed into metric coordinates.

In the end, the blob detection algorithm also yields a point in metric coordinates. How-

ever, the point is the mass center of the given blob. To build a blob, the scanlines are

sequentially analyzed and the colored pixels of a given scanline are clustered with the ones

from neighboring scanlines according to a set of heuristics. These heuristics include analysis

both in term of angular limits and separation (for blocks of pixels of neighboring scanlines)

and limits and separation in terms of length from the scan center (for blocks of pixels in the

same scanline). Details of this algorithm can be found in Alina et al. work [119].

Since the size of the objects on the image vary with the distance to the robot, it is

advantageous to know the relation of that variation. The omni vision system is a non-SVP
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a) b)

Figure 4.1: a) Picture representing the binary mask which excludes pixels with no useful information
from processing. The colors on the remaining image are already segmented. b) Picture
representing a small subset of scanlines, which work as a mask overlapped with the seg-
mented camera image. Only the pixels on that mask will be analyzed.

hyperbolic catadioptric system. Through an inverse distance map calculation, by exploring

a back-propagation ray-tracing approach and the physical properties of the mirror surface

[117], the relation between the coordinates of each pixel and the coordinates of the ground

points that each pixel represent in the real world, relative to the physical robot center, is

known (figure 4.2).

Thus, the estimation of the objects positions on the field of play is obtained by retrieving

the value from a Look Up Table (LUT), which is pre estimated and to which we call Distance

Map. This is done because in the CAMBADA robots the camera is fixed on the robot body

and always in the same position relative to the ground.

However, this Distance Map is created under specific conditions on the robot physical

state. Since the structure is not completely rigid, small deviations on the camera and the

mirror occur, some caused by collisions, others caused by trepidation as a consequence of

having the robot running around the field. Due to this fact, one must keep in mind that the

Distance Map is a source of uncertainty for the objects positions calculated by the vision.

Just by looking at figure 4.2, it is obvious that farther distances are evaluated worse, since

the distance represented by each pixel increases, non-linearly, as the pixel is farther from the

center of the image.

An analysis of the uncertainty involved in the visual detection is presented in the ball

analysis section.
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Figure 4.2: Relation between pixels and metric distances of the omni directional vision system. The
center of the robot is considered the origin and the metric distances are considered on the
ground plane.

4.2 CAMBADA worldstate

In the CAMBADA team, the worldstate structure is updated every cycle of the agent

with any new information that becomes available. This structure keeps information about

each element of the game with as much information as possible. Among the properties of

each object, the most important one is probably the position.

Each point in the field of play is thus well defined and represented by a Cartesian coor-

dinate system with origin on the field center and with the YY axis positive in the direction

of the opponent goal (figure 4.3). This coordinate system is referred as absolute, since it is a

static referential common to all team robots.

On the other hand, the visual perception of a robot is based on information gathered

by the omni directional camera on the robot body. This implies that the information can

only be represented from the robot’s own point of view. The metric coordinates at ground

plane estimated by the vision process, as referred in section 4.1 are thus represented in what

we call the relative coordinate system. This is also a Cartesian coordinate system which is

centered on the robot center and with the YY axis positive in the direction of the robot front

(figure 4.4).

The Integrator module is responsible for updating the worldstate information, by per-

forming a series of operations with all the available data. The integration itself is divided

into several tasks executed in a specific order. For most of the tasks, the execution order is

important, as later tasks depend on data produced by earlier tasks. A brief description of

these tasks is presented next and represented in figure 4.5.
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Figure 4.4: CAMBADA robot centered relative coordinate system.

• Read the information from the several available data fields of the RTDB, both the local

data from the sensors (vision information and robot platform information) and shared
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Figure 4.5: Integration tasks sequence diagram.

data from the coach and other team mate robots.

• Update player configuration values defied by the basestation. These configuration values

include the current team and goal, the role that the robot should assume (if we want

to force it for testing purposes) and an activation flag that defines the agent as running

or not.

• The first task is to use the white points over the field lines that were detected by the

vision process and the heading information provided by the robot platform. Both data

are used by the localization algorithm to estimate the pose of the robot on the field.

This pose is composed by a 2D Cartesian coordinate and an angle, both relative to the

field coordinate system, thus representing the absolute position of the robot.

• Now that the current position in the world is estimated, the robot uses the historical

information of its positions to estimate its velocity. The process used for this estimation

is an egomotion algorithm, presented by Lauer [120].

• After knowing its own position in the world and the correspondent velocity, it is now

time to estimate the positions of the field objects. These objects are the ball and the

obstacles. The update methods for these objects are subject of further analysis in the

next subsections.

• The game state is another important update to execute, which is basically an analysis

of the history of the referee signals and detection of changes to the state of the world
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according to the rules. As an example, the update game state code is responsible for

detecting that the ball has moved in an opponent set piece and update the state to free

play so that the robot can act accordingly.

4.3 Ball perception

The ball is one of the most important objects on a soccer game. In this scenario, we aim

to have a precise estimation of the ball position and velocity inside the field, especially at

ground level. To be able to achieve that, we need to filter the ball position perceived by the

vision process, considering the inherent noise, and contextualize the data according to the

newly available information.

Each agent cycle, following one vision frame, we have a list of possible candidates for the

ball. The reason for having several candidates is that, in a scenario such as the MSL, we must

assume that false positives can exist, since the environment around the field is completely

uncontrolled and several balls, or objects that can be perceived as ball, can be around. The

vision process itself should not discard an object that is successfully evaluated as a ball

considering its heuristics briefly presented in section 4.1, since there is no context information

on that level. As described in the previous section, when the ball integration is performed,

the robot/player information has already been updated, which means that the current pose

and velocity of the robot is already estimated, being these the most important values for

subsequent analysis.

The information provided by the vision about the ball comes in the form of an array of

2D positions, representing the ground coordinates of each ball relative to the robot center.

Thus, when updating the worldstate ball information, the first step is to verify which of

the ball candidates must be used. The main concern is to discard any ball that is outside of

the field, since this is a recurrent situation during competitions.

The measurements of the ball position provided by the robot camera are noisy, due to the

nature of the sensors and dynamics of the environment. In order to achieve better performance

on the posterior decision of the robot movement, we need to apply a filter to the ball position

to achieve a more precise position estimation and thus a more steady trajectory when it is

moving, but also allow reactivity to abrupt direction changes.

4.3.1 Ball filtering

The information of the ball state (position and velocity) is, perhaps, the most important,

as it is the main object of the game and it is the base over which most decisions are taken.

Thus, its integration has to be as reliable as possible. To accomplish this, a Kalman filter im-

plementation was created to filter the estimated ball position given by the visual information,

and a linear regression was applied over filtered positions to estimate its velocity [121, 122, 88].

66



4.3.1.1 Ball position

It is assumed that the ball velocity is constant between cycles. Although that is not

true, due to the short time variations between cycles, around 40 milliseconds, and given

the noisy environment and measurement errors, it is a quite acceptable model for the ball

movement. Thus, no friction is considered to affect the ball, and the model doesn’t include

any kind of control over the ball. Therefore, given the Kalman filter formulation (described

by Welch et al. [8]), the assumed state transition model is given by

Xk =

[
1 ∆T

0 1

]
Xk−1

where Xk =

[
Pos

V el

]
is the state vector containing the position and velocity of the ball in a

given direction component. The state is kept for both direction components, (x,y) coordinates.

This velocity is only internally estimated by the filter, as the robot sensors can only take

measurements on the ball position. After defining the state transition model based on the

ball movement assumptions described above and the observation model, the description of

the measurements and process noises are important issues to attend. The measurements

noise can be statistically estimated by taking measurements of a static ball position at known

distances.

In practice, measurements of the static ball were taken while the robot was rotating around

its vertical axis and this was done with the ball placed at several distances, measured with

metric tape. Although real game conditions are probably more adverse, we lack the means

to externally know the position of the elements on the field. For that reason, to know the

real distance between the robot and the ball, we opted to use the described setup. Captures

were made with the ball at 1, 2 and 3 meters, measured by tape, with the robots rotating at

90o/s and at 4 meters rotating at 45o/s since the robot could not detect the ball at 4 meters

when rotating faster than 45o/s. At 5 meters the robots could not detect the ball under any

conditions. Some of the results are illustrated in figure 4.6.

Figure 4.6: Noisy position of a static ball taken from a rotating robot.
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The standard deviation of those measurements can be used to calculate the variance and

thus define the measurements noise parameter.

A relation between the distance of the ball to the robot and the measurements standard

deviation can be modeled by a 2nd degree polynomial best fitting the data set in a least-

squares sense. Depending on the available data, a polynomial of another degree could be

used, but we should always keep in mind the computational weight of increasing complexity.

As for the process noise, this is not trivial to estimate, since there is no way to take

independent measurements of the process to estimate its standard deviation. The process

noise is represented by a matrix containing the covariances correspondent to the state variable

vector.

Based on the Kalman filter functioning, one can verify that forcing a near null process

noise causes the filter to practically ignore the read measures, leading the filter to emphasize

the model prediction. This makes it too smooth and therefore inappropriate. On the other

hand, if it is too high, the read measures are taken too much into account and the filter

returns the measures themselves.

To face this situation, one has to find a compromise between stability and reaction. Since

we assume an uniform movement for the ball, there are no frictions or other external forces

considered. This means that accelerations are not considered in our model and thus, the

position and velocity components are quite independent of each other. Since acceleration is

the main element of relation between position and velocity, we considered that the errors

associated to the process position and velocity estimations do not correlate.

Because we assume an uniform movement model that we know is not the true nature

of the system, we know that the speed calculation of the model is not very accurate. A

process noise covariance matrix was empirically estimated, based on several tests, so that a

good smoothness/reactivity relationship was kept. These empirically estimated values were

made dependent on the measurement noise so that the Kalman filter predictions are also less

accurate when the distance to the ball is too large. This was done so that the filter does not

smooth the positions too much.

In practice, the developers team observed that using this approach improved the estima-

tion of the ball position. Since we do not possess the means to externally know the positions

of the elements on the field, a capture was made with the ball fixed at a known position on

the field (0.0, 2.0) (measured with metric tape). The robot was moving around the ball with a

speed of 1.3±0.5 m/s and the ball position measured at each moment was recorded. The ball

position measured by the robot was (−0.01, 2.03)± (0.05, 0.06) meters. Figure 4.7 illustrates

the capture results.

This experiment gives an idea of the noise associated with the ball position detection. Note

that during the experiment the distance between the robot and the ball is around 2 meters.

Comparing the ball position cloud with the one obtained at 2 m in figure 4.6 one can verify
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Figure 4.7: Plot of a robot movement around a fixed ball position. The ball positions measured by
the moving robot form a cloud of points (green) in the area of the real ball position (black
X) near coordinates (0.0, 2.0).

that they are similar, which is consistent with the previous experiment setup to simulate

robot movement by rotation on the spot and thus, this static ball with rotating robot setup

became the standard setup for estimating the visual noise of the CAMBADA robots.

With the presented setup experiments, the existence of noise in ball measurements became

clear. With that existent noise in mind, several tests were made to validate the use of the

Kalman filter to reduce it. Figure 4.8 represents a capture of one of those tests, a ball

movement, where the black dots are the ball positions measured by the robot visual sensors

and thus are unfiltered. Red stars represent the position estimations after applying the

Kalman filter. The robot position is represented by the black star in its center and its

respective radius. The ball was thrown against the robot and deviated accordingly. It is

easily perceptible that the unfiltered positions are affected by much noise and the path of

the ball after the collision is composed of positions that do not make much physical sense.

Although we lack the means to externally provide a ground truth for the ball position during

its movements, the filtered positions seem to give a much better approximation to the real
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path taken by the ball, as they provide a path that physically makes more sense.

Figure 4.8: Plot of a ball movement situation.

After producing the a-priori estimation of the ball position, this estimation is compared

with the read measure to detect if the variation between them is too great. If the difference

between them is greater than a given threshold (estimated empirically) for more than a few

cycles (currently 3 cycles), the filter can indicate that the ball suffered a hard deviation

(figure 4.9 illustrates this concept).

Figure 4.9: Situation where a hard deviation would be detected by the filter. Positions R4,5,6, are
the measured positions after the ball hits an obstacle, P4,5,6 are the predicted filtered
estimations, which did not consider that something might alter the ball path.

Although hard deviations are not a serious problem for the filter (as it quickly converges

to the new positions), they are used for velocity convergence (as described in the next sub-

section).

70



4.3.1.2 Ball velocity

The calculation of the ball velocity is a feature becoming more and more important over

time. It allows that better decisions can be implemented based on the ball speed value and

direction. Assuming the same ball movement model described before, constant ball velocity

between cycles and no friction considered, one could theoretically calculate the ball velocity

by simple instantaneous velocity of the ball with the first order derivative of each component
∆D
∆T , being ∆D the displacement on consecutive measures and ∆T the time interval between

consecutive measures. However, given the noisy environment, it is also predictable that this

approach would be greatly affected by that noise and thus its results would not be satisfactory.

Figure 4.10 shows a ball movement capture where the ball was moving from left to right,

as indicated by the arrow in the top of the figure, and was then deviated into a downward

movement near the “1st deviation” tag. While moving downward, the ball was deviated again

near the “2nd deviation” tag and started to move from right to left. Finally, in the end of the

capture, a new deviation occurred near tag “3rd deviation” where the ball started to move

upward. The estimated ball positions are represented by the blue dots. Red lines represent

the velocity vectors estimated based on consecutive positions displacement. It is clear that

the velocity estimates hardly give an acceptable insight of the ball movement.

Figure 4.10: Velocity representation using consecutive measurements displacement.

To keep a calculation of the object velocity consistent with its displacement, an imple-
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mentation of a linear regression algorithm was chosen. This approach based on linear regres-

sion [123] is similar to the velocity estimation described by Lauer et al. [124]. By keeping a

buffer of the last m measures of the object position and sampling instant (in this case buffers

of 9 samples were used), one can calculate a regression line to fit the positions of the object.

Since the object position is composed by two coordinates (x,y), we actually have two linear

regression calculations, one for each dimension. This is made in a transparent way, so the

description is presented generally, as if only one dimension was considered.

When applied over the positions estimation, the linear regression velocity estimations are

much more accurate than the instant velocities calculated by ∆D
∆T , and allow a better insight

of the ball movement. The same ball movement capture described earlier is represented in

figure 4.11, this time with the velocity vectors estimated by the linear regression applied over

the position estimations provided by the Kalman filter.

Figure 4.11: Velocity representation using linear regression over Kalman filtered positions.

In order to try to make the regression converge more quickly on deviations of the ball path,

a reset feature was implemented, an idea similar to the one presented by Veloso et. al. [125].

This allows deletion of the older values, keeping only the n most recent ones, and provides

control of the buffer size. By keeping the most recent values after a hard deviation, we reduce

outliers of the previous path, thus promoting faster convergence. This reset results from the

interaction with the Kalman filter described earlier by querying it for the existence of a hard

deviation on the ball path.
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The obtained values were tested to confirm if the linear regression of the ball positions was

more precise and would converge faster than the internal velocity estimated by the Kalman

filter. Tests showed that the velocity estimated by the Kalman filter has a slower response

than the linear regression estimation when deviations occur. Given this, the linear regression

was used to estimate the velocity because quickness of convergence was preferred over the

slightly smoother approximation of the Kalman filter in the steady state. That is because in

the game environment the ball is very dynamic, it constantly changes its direction and thus

a convergence in less than half the cycles is much preferred. Figure 4.12 shows the results for

a theoretical velocity scenario where the ball was moving at a constant speed of 2m/s and

suddenly dropped to a constant 1m/s speed. The speed estimated by the Kalman filter and

the one estimated by the linear regression are presented.

Figure 4.12: Comparison between the velocity estimated by the linear regression (blue solid line, faster
convergence) and internally by the Kalman filter (red dashed line, smoother, but of slow
convergence).

4.3.2 Noise analysis

Over time, as the algorithms of the team change and evolve, some aspects of the models

also need to be updated. The noise associated with the positions measured by the omni

directional camera is one of those aspects.

The noise level of the ball position, at the time of the writing of this document, is measured

through a series of experiments where the ball is standing still and the robot is moving. These

still ball scenarios are used due to our impossibility to measure the position of a moving ball

without any noise.
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In order to reflect the improvements that the vision hardware and algorithms have been

suffering over the years on the robot’s perception, the capture scenario presented before in

section 4.3.1.1 was repeated using the new robots and the new algorithms. The same captures

were made with the ball at 1, 2, 3 and 4 meters, measured by tape, with the robots rotating

at 90o/s. While currently the robots can detect the ball farther than before, the capture

scenario was kept almost under the same conditions, so that the results comparison is as

direct as possible. The only difference is that, for the new robots, the captures were made all

with a rotation speed of 90o/s, even at 4 meters, for simplification of the capture process and

because the ball can now be detected at that distance and angular velocity.

The measurements of the relative ball position for each of the robots at each of the

distances, while rotating at 90o/s is presented in figure 4.13.

To have an idea of the noise associated with a ball position measured by the vision, which is

represented in relative coordinates, we use the length of the vector between the robot (origin

of the axis) and the ball position. By estimating the standard deviation of the measured

distances, we get an approximation of the uncertainty of those measures and consider this

uncertainty value as the measurement noise associated with the given distance. Table 4.1

presents the results for the distance → standard deviation relation measured for the new

robots.

Robot 2 Robot 3 Robot 4 Robot 5 Mean
Distance (m) StdDev (m) StdDev (m) StdDev (m) StdDev (m) StdDev (m)

1.0 0.0179 0.0172 0.0154 0.0180 0.0171

2.0 0.0418 0.0277 0.0265 0.0299 0.0315

3.0 0.0600 0.0528 0.0428 0.0539 0.0524

4.0 0.0881 0.0814 0.0803 0.0781 0.0820

Table 4.1: Standard deviation results for each robot.

In the first experiments with the old robots, the option taken at the time was to estimate

a mean of standard deviation of all the robots and estimate a single fitting function for the

measured set points. The obtained function was estimated using the Matlab polyfit function,

which estimates the best fit over a least-squared distance method. The estimated relation

was given by the mean of all the standard deviations for the distance d between the robot

and the ball, σ̂1.

σ̂1 = 0.04d2 − 0.02d+ 0.016 (4.1)

Prior to RoboCup2012, still with the old robots but with changes to the algorithms of the

vision process, a new analysis was made and the noise function was updated to σ̂2.

σ̂2 = 0.01d2 − 0.01d+ 0.039 (4.2)
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Figure 4.13: Noisy position of a static ball taken from rotating robots.

With the more recent data of table 4.1 from the capture scenario described before, a new

noise function was estimated, σ̂3.

σ̂3 = 0.0038d2 − 0.0026d+ 0.0109 (4.3)

The three noise functions are represented in figure 4.14 and from the visualization of the

curves, the effectiveness of the improvements becomes clear.
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Figure 4.14: Evolution of the polynomial functions used for estimation of the sensor noise present on
the visual measurements.

From the analysis of figure 4.14, one can easily verify that, although the evolution of the

vision software greatly improved the precision of the detection even with the old platform,

the current vision software on the new platform further improved the precision.

4.3.3 Detection of airborne balls

An overview of how the ball is perceived by the omni directional vision when it is on the

ground has been presented and we have methods to estimate both its position and velocity

with satisfactory reliability. However, another problem arises when the ball is kicked off the

ground. In this situation, the omni directional vision is unable to detect it, since the ball

on the image is projected to positions that are not in a useful part of the image, such as

being above the horizon, and eventually disappears completely, when it becomes higher than

the robot height and thus outside of the area perceived by the convex mirror of the omni

directional vision. This problem is of significant interest in the MSL because most teams kick

the ball through the air, since aerial balls are generally harder for goal keepers to defend.

The detection of airborne balls is thus particularly important for goal keepers. To tackle this

problem on the CAMBADA team, we installed a frontal camera on the goal keeper robot.

Since the ball in the MSL has a known predominant color for each tournament, most

teams take advantage of this restriction while the ball is on the ground, since in that case,

the environment is relatively controlled (green floor with some white lines and black robots)

and the ball candidates can be expected to be surrounded by this reduced set of colors. In

the air, these restrictions are completely lost and thus the approach should be more shape

based. The existing shape based approaches on our team are mainly aiming at detecting a ball

through shape on the omni directional camera [126], specially because they are dependent

on the knowing the size that the ball should have when its center is in any given pixel of

the image, which is a relation known only at the ground plane through the already referred

distance map (section 4.1).
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Several teams already presented preliminary work on 3D ball detection using information

from several sources, either two cameras or other robots information [127, 128]. However,

these approaches rely on the ball being visible by more than one source at the same time,

either two cameras with overlapping visible areas or two robots, and then triangulate it. This

is not possible if the ball is above the robot omni directional camera.

The detection of balls in the air is usually very aligned with the problem of detecting

unknown color balls, or balls with an arbitrary color, which implies that they are detected

mostly through shape analysis. Regarding the detection of arbitrary balls, the MSL league

is the most advanced one. Many of the algorithms proposed during previous research work

showed promising results but, unfortunately, in some of them, the processing time does not

allow its use during a game, being in some cases over one second per video frame [129].

Hanek et al. [130] proposed a Contracting Curve Density algorithm to recognize the ball

without color labeling. This algorithm fits parametric curve models to the image data by

using local criteria based on local image statistics to separate adjacent regions. The author

claims that this method can extract the contour of the ball even in cluttered environments

under different illumination, but the vague position of the ball should be known in advance.

The global detection cannot be realized by this method.

Treptow et al. [131] proposed a method for detecting and tracking the ball in a RoboCup

scenario without the need for color information. It uses Haar-like features trained by an

Adaboost algorithm to get a colorless representation of the ball. Tracking is performed by a

particle filter. The author claims that the algorithm is able to track the ball with 25 fps using

images with a resolution of 320×240 pixels. However, the training process is too complex and

the algorithm cannot perform in real time for images with higher resolutions. Moreover, the

results still show the detection of some false positives.

Mitri et al. [132] presented a scheme for color invariant ball detection, in which the edged

filtered images serve as the input of an Adaboost learning procedure that constructs a cascade

of classification and regression trees. This method can detect different soccer balls in different

environments, but the false positive rate is considered too high by the authors for the problem

at hand, and although it is supposedly real-time, execution times are never presented or

analyzed.

Lu et al. [133] considered that the ball on the field can be approximated by an ellipse.

They scan the color variation to search for the possible major and minor axes of the ellipse,

using radial and rotary scanning, respectively. A ball is considered if the middle points of

a possible major axis and a possible minor axis are very close to each other in the image.

However, this method has a processing time that can achieve 150 ms if the tracking algorithm

fails.

More recently, Neves et al. [60] proposed an algorithm based on the use of an edge detector,

followed by the circular Hough transform and a validation algorithm. The average processing
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time of this approach was approximately 15 ms. However, to use this approach in real time

it is necessary to know the size of the ball along the image, which is simple when considering

the ground plane in a omni directional vision system. This is not the case when the ball is in

the air, in a completely unknown environment without a reference over which the estimation

of the ball size on the image can be calculated.

4.3.3.1 Frontal RGB camera

The used camera contains a CCD of 6.26×5.01 mm and pixel size 3.75 µm. The maximum

resolution is 1296×964 and the used lens has a 4 mm focal length. The camera is fixed to

the robot in such a way that the axis normal to the CCD plane is parallel to the ground

(figure 4.15).

frontal camera focal axis

robot center axis

Figure 4.15: Illustration of the frontal camera positioning on the robot. It is placed in such a way that
the camera focal axis is parallel to the ground and the focal point is slightly displaced
from the robot center axis.

Based on the CCD size and the focal length, we can derive the opening angle, both along

the horizontal and vertical axis. We will use α to identify the horizontal opening angle and

β to identify the vertical opening angle.

Given α and β, we can also estimate the theoretical relation of the field of view (FOV) of

the camera at different distances (these calculations do not take into account any distortion

that may be caused by the lens). For a given distance, we can then estimate the width of the

plane parallel to the camera CCD (as illustrated in figure 4.16) by:

tan(α) =
1

2

hFOV

Y
⇒ hFOV = 2× Y × tan(α) (4.4)

where:

• α is the horizontal opening angle of the vision system;

• hFOV is the width of the FOV plane at a given distance;

• Y is the distance of the considered FOV plane to the camera focal point.
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For the height of the same plane, the analysis is similar in every way, now considering the

CCD height and a β angle.

CCD horizontal
      plane

6.26
mm

  4
mm

α

α
Y

hFOV

Figure 4.16: Scheme of the relation between the CCD width and focal length with the opening angle.
The geometric relation is used for estimating the FOV at a given distance.

The positioning of the camera relative to the robot allows a direct application of this

analysis of the FOV and the associated geometric characteristics. This happens because

there is no angle distorting the FOV relative to the front of the robot, which means that

the planes of detection remain parallel to the camera CCD. The idea of this application is

to provide an approximation of the ball position mainly when it is in the air. The camera

captures the images using format7, which allows the camera to capture the images using a

specific ROI within full resolution of the camera. For the objectives of the described work,

we opted to use the full horizontal size of the image, while the vertical size was cropped to

the first 500 lines. This value was defined to cope with the choice that the camera is used

to detect aerial balls and thus it only needs the image above the horizon line. Since the

maximum vertical resolution is 964, we use the top of the image, with a small margin.

4.3.3.2 Ball visual detection and validation using a RGB camera

The first step that must be performed is the detection of the ball in the camera images.

This task was tackled in two phases. On a first phase, the used detection approach was purely

color segmentation based [134]. After preliminary results and analysis of existing scenarios,

a second approach was developed and tested [135, 136].

Initial approach

It is visible and easily understandable that the ball on camera images does not appear as

a homogeneous blob of the given color, but has three distinct regions. The central region of

the ball is the one closer to the expected aspect. The bottom part of the ball is usually darker

than the expected color and the top part is brighter (figure 4.17). This is due to the fact
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that light comes from above, thus brightening the top of the ball while keeping its bottom in

shadow.

The method to calibrate the colors and camera parameters is the same as the one used

for the team omni directional camera and is described by Neves et al. [137].

a) b)

Figure 4.17: Screenshot of a frontal camera frame showing a ball in typical conditions. Left a): original
image; Right b): Segmented image.

The algorithm to identify the ball is based on the analysis of blobs of the defined ball

color. After segmenting the image searching for the defined ball color, several blobs can exist

and each of them is a potential ball. There is the need to induce which blobs can effectively

be a ball.

The algorithm (algorithm 1) uses horizontal scanlines and each time a ball color pixel is

intersected the number of consecutive horizontal pixels of that color is incremented.

All the scanlines, represented by their start and end points in pixel coordinates and their

length, are kept in a list which is fed to the blob clustering algorithm. The creation of blobs

from the scanlines is performed by a clustering methodology based on euclidean distance

between the pixels classified with ball color.

Each of the resulting blobs is then analyzed to verify if they have the necessary charac-

teristics of a ball:

• The blob must have a minimum global size to be consistent with the size of a ball on

the image. We consider 200 pixels as the minimum size, which was verified through

testing that it is the average size of the ball at around 7 meters.

• The solidity of the blob must also have a minimum value. We consider 20% as the

minimum solidity value to accept a ball. There are two main reasons for the use of a

low threshold. The first one is to relax the need for a precise color calibration since the

ball in the air is subject to different lighting and a calibration that is more “open” has

better chance to detect some parts of the ball in the several conditions. The second

reason is that the balls being used in the RoboCup always have some pattern or letters

with colors other than the main one, which inevitably reduce the segmented area.
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Algorithm 1 Algorithm used for detecting ball candidate based on the search over horizontal
scanlines and blob analysis.

Input: segmented image
Output: ballCandidates → list to hold the ball candidates

1: scanlineList.clear()
2: for row = 0 to maxImageRow do
3: for col = 0 to maxImageColumn do
4: if pixel(row, col) not “ballColor” then
5: skip to next pixel
6: end if
7: nPixels = 0
8: while pixel(row, col) has “ballColor” do
9: nPixels ++

10: col ++
11: end while
12: if nPixels > 2 then
13: currentScanline = computeScanlineLimits(row, col, nPixels)
14: scanlineList.add(currentScanline)
15: end if
16: end for
17: end for
18: blobList = estimateBlobs(scanlineList)
19: ballCandidates.clear()
20: for idx = 0 to blobList.size() do
21: currentBlob = blobList[idx]
22: if size(currentBlob) > minSize and solidity(currentBlob) > minSolidity and min-

WHRel < WHRel < maxWHRel and colorGradient < 0 then
23: currentBall = computeBallFromBlob(currentBlob)
24: ballCandidates.add(currentBall)
25: end if
26: end for

• The relation between width and height must be within a set of limits, since the ball

is a proportional object. However, given the characteristics of a typical segmentation

(figure 4.17b) the relation is usually not as proportional as a ball should be and thus we

accept blobs with a relation of up to 4 times the width over the height. To cope with

ball dragging on the image, which creates vertical artifacts, we also accept a minimum

relation of 0.75.

• Finally, given the characteristics of lighting from above, the color gradient of the blob

is also analyzed and only blobs with a zero or less than zero gradient are considered.

The blobs that fulfill the criteria are added to a list of ball candidates, represented by

their pixel coordinates and the width and height.

This approach for detection works on a very controlled environment, where the background

81



of the ball on the image did not possess any element of the same color as the ball. However,

it proved to be unreliable when several objects of the same color as the ball are present in the

image (figure 4.18). During games, the surroundings of the field are completely uncontrolled

and there is a high probability that elements of the same color of the ball are present.

a)

b)

Figure 4.18: Results of the initial purely color approach. All the segmented objects selected in b) by
blue bounding boxes fulfill the criteria previously described and thus would be candidates
passed to the agent.

Second approach

To try to generalize the air ball detection for uncontrolled environments, we use a hybrid

approach of color segmentation and statistical analysis of a global shape context histogram.

On a first phase, the color approach described before is applied, although the color range

is relaxed so that the color classification also takes into account the lighter and darker areas

of the ball.
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Each of the blobs that pass the criteria previously defined is used to select a ROI in the

original image which contains the possible candidate (figure 4.19b).

These images are then analyzed by a modified global shape context classifier [138]. Each

image is pre-processed with an edge detector and a polar histogram is created. This histogram

is then statistically analyzed and returns a measure of circularity of the candidate. The

edges image is divided in n layers and m angles, creating the polar histogram, as defined by

Mario et al. [139]. The result of this division creates several areas on the image, as exemplified

in figure 4.19c, which are called slices.

The analysis of the histogram is made layer by layer, covering all the angles. An estimation

of the average number of edge points on each slice and its standard deviation allows to

discriminate between circular and non-circular contours, as exemplified in figure 4.19c. A

ratio of edge points is also part of the statistics of the candidate.

a) b)

c)

Figure 4.19: a) image from the camera with a ROI around the ball, which is the portion of the image
used for the histogram analysis; b) the ROI created based on the correspondent color
blob; c) rough representation of the polar histogram. The histogram creation fits its
radius with the outer points of the edge image, which is not fully represented in these
pictures. Left : A perfect circular edge on the polar histogram would look something like
this. All the edge points are on the same layer and each of its slices have a similar number
of points; Right : A square on the polar histogram. Due to the fitting properties of the
histogram itself, the square edge points should be divided in more than one layer, which
would not yield good statistics as circles.

The statistics of a layer are the average value of contour pixels per slice, the standard

deviation of that same count and the ratio of total edge points on the layer relative to the

area of the image. The histogram analysis always returns the layer with the best statistics,
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which is currently considered the layer that has higher average of contour pixels per slice

with minimum standard deviation. This should represent the layer with the most consistent

number of edge pixels and thus should be the rounder layer. The next step must then select

which of these statistics make sense. Currently, three characteristics are analyzed:

• The ratio of edge points on the layer must be within a given range. This range was

empirically estimated through testing of several examples of ball and no ball candidates.

• The order of magnitude of the mean should be greater than or equal to the order of

magnitude of the standard deviation.

• The candidate diameter estimated by color segmentation and the diameter estimated

by the classifier must be coherent. Since the radius of the histogram is dependent on the

number of layers, the coherence between the measures is dependent on an error margin

based on the histogram radius.

Experimental results

Several experiments were performed on which the robot was stationary observing the ball

with the frontal camera. The experiments consisted on throwing the ball through the air from

a position approximately 6 meters away from the camera and in its direction. In the acquired

videos the ball is always present and performs a single lob shot.

As expected, since the ball is moving almost directly to the camera, the variation of the

ball center column on the image is very small (figure 4.20). The row of the ball center,

however, was expected to vary. Initially the ball was being held low on the image (meaning

the row of the image was a high value) and as it was thrown, it was expected that it went

up on the image, then down again. Figure 4.20 allows us to verify that this behavior was

observed as expected.

On the other hand, since the ball is coming closer to the camera every frame, it was also

expectable that its size on the image would be constantly growing. The correct evaluation of

the width of the ball is important for the position estimation described in the next section.

The main contribution of this color/shape hybrid approach, however, is the reliability of

the acquired data, respecting the real time constraints of the application. A test scenario

was created, where the ball was thrown in such a way that it was visible in every frame of

the videos, and several runs were made. Although the results are strongly affected by the

environment around the ball, we obtained promising results with relatively high precision,

even if the recall has shown low results. Table 4.2 presents a summary of the detection results

for two different configuration parameters:

• Center is the coordinates used to consider the center of the polar histogram. The two

possibilities are to use the center of the image or the center of the contour detected by
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Figure 4.20: Results from the image analysis of a ball being thrown in the camera direction: values of
the row (Blue dots) and column (Red stars) where the ball center was detected on the
image.

the shape analysis prior to histogram creation.

• Layers is the number of layers used for building the polar histogram. The two presented

values are 2 and 3 layers.

The results correspond to the analysis of six different ball launches saved to video. The

videos names are on the top column of each table section, “Kick<BallColor>N”, followed by

the total number of frames of the video. The numbers of true positives, false positives and

false negatives are presented, as well as the number of frames where there was no ball on the

image. Finally, the precision and recall achieved for each situation is presented. Red and green

numbers indicate worst and better results, respectively. The decision of the configurations

to use were based on the generally higher recall between the 2 layer configurations, since the

3 layer configuration has a huge amount of false positives. Excluding one situation, using

the contour center provided lower recall values and fewer true identifications, thus the image

center was chosen.

A pure color approach yielded better results in a very controlled environment, but in a

more uncontrolled environment we obtained a very low precision. We consider that having

a higher precision is more advantageous, even when facing the loss of some recall. The

processing time for the algorithm was 11.9±2.8 ms which is still within our time restrictions.

The frontal vision process runs on a best effort processor scheduler and the used laptop has

two processors. Despite the fact that the remaining processes run with top priority, only a

small part of the vision process is divided into the two processors and thus the frontal vision

process runs with little delay.

On the same frame presented in figure 4.18, this second approach based on circularity

only validated one of all the candidates produced by the initial color approach. In this case,
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KickRed01(16) KickRed02(28) KickRed03(28)

Center: image contour image contour image contour

Layers 2 3 2 3 2 3 2 3 2 3 2 3

True pos 6 9 3 6 11 13 3 8 7 16 7 9

False pos 0 0 0 0 1 0 0 2 0 0 0 2

no ball 0 0 0 0 0 0 0 0 0 0 0 0

False neg 10 7 13 10 17 15 25 20 21 12 21 19

Precision 1 1 1 1 0.92 1 1 0.8 1 1 1 0.82

Recall 0.38 0.56 0.19 0.38 0.39 0.46 0.11 0.29 0.25 0.57 0.25 0.32

KickYellow01(26) KickYellow02(33) KickYellow03(31)

Center: image contour image contour image contour

Layers 2 3 2 3 2 3 2 3 2 3 2 3

True pos 7 9 3 9 2 8 7 11 4 6 2 7

False pos 3 31 1 26 6 38 3 25 7 35 0 32

no ball 9 9 9 9 14 14 14 14 13 13 13 13

False neg 10 8 14 8 17 11 12 8 14 12 16 11

Precision 0.7 0.23 0.75 0.26 0.25 0.17 0.7 0.31 0.36 0.15 1 0.18

Recall 0.41 0.53 0.18 0.53 0.11 0.42 0.37 0.58 0.22 0.33 0.11 0.39

Table 4.2: Color/shape hybrid detection algorithm results. The green values on the Recall lines indi-
cate the chosen parameterization (histogram with 2 layers centered on the image). See text
for details.

presented in figure 4.21, only that one candidate (surrounded in the image by the yellow

circle) would be sent to the agent for processing.

Figure 4.21: Results of the color/shape hybrid detection algorithm. In this case, the shape step selected
a single color candidate from the several possibilities.
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4.3.3.3 Ball position estimation

After having the candidates selected as balls, there is the need to estimate their position.

To accomplish that, we first analyze the candidate radius in pixels. The size that each pixel

represents at each distance increases with distance to the camera focal point. This is due to

the fact that the resolution is constant but the horizontal FOV at any given distance is not.

We can estimate the theoretical horizontal FOV at any given distance through expression 4.4.

Table 4.3 presents the expected FOV at several distances, from one to nine meters, in

steps of 1 meter.

Distance to camera 1 2 3 4 5 6 7 8 9

Expected width 1.56 3.13 4.69 6.26 7.82 9.39 10.95 12.52 14.08

Expected Height 1.25 2.50 3.75 5.01 6.26 7.51 8.76 10.02 11.27

Table 4.3: Table with the theoretical Field Of View at some setpoint distances. Values are in meters.

With the FOV width relation, we can estimate the size that each pixel represents at each

given distance, by a relation of the estimated distance and the horizontal resolution

pS =
hFOV

hR
(4.5)

with:

• pS is the pixel size in the plane with the defined horizontal FOV (hFOV );

• hR is the CCD horizontal resolution;

and thus, since we know that the ball has 0.22 m, we can estimate the number of pixel

expected for the blob width at a given distance:

pW =
0.22

pS
(4.6)

where:

• pW is the expected ball width, in pixels, for the plane with the given pixel size.

For the same setpoint distances, from 1 to 9 meters, the ball width in pixels was estimated.

Table 4.4 presents those results.

From this analysis, Equation 4.6 can be developed using Equations 4.5 and 4.4, resulting

in an inverse relation function of pixel width, pW , and distance to camera focal point, Y .

pW =
0.22× hR
hFOV

=
0.22× hR

2× Y × tan(α)
(4.7)
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Distance to camera 1 2 3 4 5 6 7 8 9

Expected ball width 182 91 61 46 36 30 26 23 20

Table 4.4: Table with the theoretical ball width at several distances. Distances are in meters, ball
widths are in pixels.

Given the known distance of the ball candidate and the linear relation of the pixel size,

we can estimate the XX coordinate. This is true due to the camera positioning on the robot

that, besides having the focal axis parallel to the ground, is also coincident with the robot YY

axis. To accomplish the estimation of the XX coordinate we have to analyze the horizontal

pixel coordinate of the ball center from the image center and apply the calculated pixel size.

We can thus obtain the XX and YY coordinates of the ball on the ground plane, relative

to the frontal camera, from which we know the relative coordinates from the center of the

robot. Since the camera is aligned with the YY robot axis, the XX coordinate is direct, while

the YY coordinate is a simple displacement of +5 cm, since the camera is just this distance

away from the robot center (figure 4.15).

Experimental results

An experimental analysis was performed to verify the relation between the detected ball

width in pixels and the distance it is from the camera.

Unfortunately, it was verified that the expected theoretical values of the ball pixel width

according to the distance was not verified in practice. Through the experimental setup, a

more appropriate relation was found by taking measurements.

The experiment was performed by placing the robot such that the camera had its axis

along a field line and placing the ball in front of it. The ball was on top of a support,

which maintained ball height, and was iteratively placed at several setpoint distances from

the camera (from one to nine meters). These distances were measured with tape and used

as ground truth data. The ball pixel width was measured by manually stopping the video

at frames corresponding to the setpoint distances and verifying the estimate width of the

detected ball. The results are presented in Table 4.5.

Distance to camera 1 2 3 4 5 6 7 8 9

Measured ball width 200 110 72 52 42 32 28 22 26

Table 4.5: Table with the measured ball width at several distances. Distances are in meters, ball width
are in pixels.

Based on the values for the measured relation between the ball pixel width and the distance

to camera, a 3rd degree polynomial function was found to better fit most of the setpoints
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The function input is a ball blob’s width and the result is the estimation of its distance to

camera (the YY coordinate). This relation is different from the theoretical relation presented

in Equation 4.7, maybe due to factors like lens distortion that were not accounted in the

previous analysis, misinformation about the hardware characteristics or even assembly factors

that may affect the output image, even if the hardware characteristics are exactly the ones

described in the products data sheet.

The estimation of the distance of a ball candidate to the camera is then achieved by a

function that, given a pixel width of a given candidate, returns the distance at which that

candidate is from the camera.

To achieve the desired polynomial function, several were tested to visually verify the

fitness of each of them. Figure 4.22a shows the results for the second, third and fourth degree

polynomial functions. It is observable that the second degree polynomial clearly unfit for the

setpoints. The third and fourth degree functions both have a satisfactory fit for most of the

points, becoming unusable for the last two setpoints on the XX axis (larger width at shorter

distances). Given the need for a different approach for these shorter distances, we opted to

use the third degree function, for the sake of a lower complexity.

For shorter distances, a linear approximation was found to fit the two points and thus was

used to “complete” the distance estimation function (figure 4.22b). The chosen separation

point was the ball width of 100, which is the lowest point of the used decreasing part of the

third degree function.

In the same experiment of throwing the ball from 6 meters away from the camera, described

in Section 4.3.3.2, the results of the positions evaluated by the previously described algorithm

were captured. Figure 4.23 depicts these results. The path formed by the estimated XY

positions approximates the path of the ball arc through the air, projected on the ground.

This data allows a robot equipped with such camera to estimate the path of the incoming

airborne ball and place itself in front of the ball, for intercepting it with its body and defend

from a possible goal, in the case of the goal keeper. Given the nature of this main goal keeping

task, we can cope with just a general direction of the ball, even if the position estimation does

not have a very high precision. However, it is clearly visible in the image that the detection

and position estimation result in a straight line, as expected.

The frontal vision process, from capture to the production of the XX and YY coordinates

took an average time of around 12.5 ms to execute in a computer with an Intel Core 2 duo

at 2.0 GHz. The tests were made for the frontal camera process running standalone at 30

frames per second. These times should be enough to obtain readings from the frontal camera

with minimum loss of camera frames due to the fact that currently only the vision process

uses separate threads and thus the frontal vision process should have a free processor to use

for more than 20 ms since the omni vision process takes a mean of 12 ms to run.
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a)

b)

Figure 4.22: Left a): Several degree polynomials fitting the setpoints. It is clear that the 2nd degree
does not fit properly any point. The 3rd and 4th fit similarly below 100 pixels width; Right
b): Third degree polynomial function (red line) fitting the defined experimental setpoints
(blue dots) and linear polynomial function (green dashed) for the sizes corresponding to
closer distances.

Figure 4.23: Picture of a data capture of a ball kicking test. The ball was thrown by the air from a
position around (-0.5, 6.0) in the approximate direction of the camera (which is the origin
of the referential). The blue dots represent the estimated ball positions, the red dashed
line is the linear approximation obtained with the measured points. The kick direction is
indicated by the black arrow.
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4.3.3.4 Frontal camera ball integration

Being the ball the main element of a soccer game, its information is very important and

needs to be as precise as possible. Failure on its detection can have very negative impact on

the team performance. Probably even worse than failing to detect the ball (situation on which

the robots can strategically move in search for it) is the identification of false positives on

the ball. This can deviate the attention of a robot or even the entire team from the real ball,

which can be catastrophic. To avoid false positives and keep coherence on the information of

the ball, several contextual details are taken into account.

Given the several possible sources of information, the priority source for ball position is

the position given by the omni directional camera. Details about the visual ball detection

and validation on the omni directional camera can be found in [137]. The next source to use

is the shared information between team mates, because if they see the ball on the ground,

there is no need to check the frontal camera information. Finally, the agent tries to fit the

information from the frontal camera into the worldstate (figure 4.24).
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Figure 4.24: Ball integration diagram when using a frontal RGB camera.

The integration of the perspective camera data must take into account some historical and

context information. The integration process, responsible for handling and filtering the ball

information as presented before, analyzes the list of candidates available by the perspective

vision process. Some validations are performed to filter the information and select a suitable

candidate from the perspective balls list.

• The first analysis to make is whether the ball candidate is inside the field or not. If it

is outside the field of play, there is no need to use it, as even if it is truly the ball, the

game would be stopped.

• To maintain coherence between the perspective vision ball and the omni vision ball, an

analysis of the last omni camera ball positions is made and a perspective ball candidate

is considered only if that candidate position is within a given vicinity of the last omni
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camera ball position. When the ball rises from the ground, the omni camera position

is affected, as the projection on the ground will evaluate the ball further than it is in

reality. For that reason the angular difference is the measure considered for defining the

vicinity, since the direction of the omni detection should not be affected by the projection

effect. A candidate from the perspective camera is only accepted if the difference to the

last omni camera ball position is bellow a few degrees. This validation is performed on

the first detections by the perspective camera, when the ball has also just became or is

becoming not visible for the omni directional camera.

• After “choosing” the perspective camera ball candidate, it should be visible in the next

few frames. Thus, after fixing on a candidate, further frames are analyzed based on

that candidate last position, meaning that the choice of a candidate is made based on

a vicinity of the last perspective camera ball position. This vicinity, contrary to the

omni camera one, is based on distance. The reason for tracking the same perspective

camera ball is that, when detected by the perspective camera, the ball should very

soon become invisible to the omni camera. The cameras work in an almost exclusive

way, since the omni directional camera is very limited in terms of ball height, not being

able to detect any ball that is above 50 to 60 cm. However, the ball position from the

omni directional camera has some persistence that is useful for many decision aspects

and to guarantee that a few frames without detecting the ball will not cause a gap in

the robot’s knowledge and decision. Frames without detecting the ball easily happen

because of, for instance, a photography flash or the ball passing behind a robot. Thus,

when the ball becomes visible by the perspective process, it is still persistent on the

omni directional information.

• Another filtering performed is an analysis of the number of cycles with the ball visible

on the perspective camera. Again, the objective of the perspective camera is to detect

aerial balls. During the game, the ball leaves the ground only when it is kicked by a

robot and the ball trajectory takes no more of no more than 2 seconds. When a kick

raises the ball, it will inevitably be in the air for only those few instants, which can be

periodic if the ball bounces several times, but still the appearances are short. A ball

constantly detected for more than a pair of seconds is then discarded, since it is probably

a false positive or, for instance, a stop game situation and the referee is holding the ball

on his hands.

4.3.3.5 Ball visual detection and validation using a Kinect sensor

The analysis of the performance of the previously described approach showed that there

are some limitations to its use on a real game scenario, mainly due to the fact that the ball,

moves at a very high speed. In many frames of a video capture, it is verified that the distortion

92



blur is very high and thus, the shape analysis is compromised, forcing us to wide the range of

detection, thus lowering the effectiveness of the algorithm. Also, as visible in table 4.2, the

recall and in some situations the precision of the approach were rather low.

In an effort to achieve a more effective solution, a different approach was designed [140].

Given the restrictions of an RGB camera within the “ball on any background” scenario

and considering the extremely difficult task of getting a good shape detection within useful

processing times, we are now using a depth sensor instead of a color camera.

As 3D sensor, a Kinect was chosen given its low price, its ability to directly provide 3D

depth information and its refresh rate of 30 fps similar to most of the RGB cameras available.

Besides the sensor availability factor, the software availability was also a decisive factor.

The Kinect sensor counts with a wide variety of software drivers and utilities for various

platform, provided by the huge community working with it. The driver used by our approach

is the libfreenect, which is one of the most commonly used drivers for using Kinect sensors. In

our application, the acquisition of the 3D data from the Kinect is done using a C++ wrapper

for libfreenect that transforms depth images into and OpenCV matrix. The transformation

from raw data to metric is done using a formula found in an online manual [141]. The type of

data that we get with a point cloud is represented in figure 4.25, in this case with the RGB

camera pixel data mapped to the visual model.

Figure 4.25: Representation of a kinect point cloud captured by the depth sensor with the RGB camera
pixel data mapped into the cloud.
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Ball detection algorithm

Despite the limitations inherent from the discretization of the space, more visible at higher

distances, the use of this information still seems to be a good option.

The approach we opted to use for detecting aerial balls using the Kinect is to detect flying

objects within the Kinect field of view. To achieve this, given the properties of a flying ball in

the MSL environment, we decided to voxelize the space to work in an occupancy voxel space

rather than considering the whole cloud of points.

This step, besides allowing an increase of the process speed by reducing computation, also

allows us to define a flying object as an object that occupies a given number of voxels with

a minimum number of points and whose surrounding voxels are empty. It can be thought as

a 3D mask with the inside voxels non empty (containing a minimum number of points) and

the outside voxels empty. Figure 4.26 presents an example of such a mask.

Figure 4.26: Example of 3D Mask used for flying object identification.

The values used for the grid and the mask obviously depend on the size of the ball to

detect. However, they have to be defined taking into consideration two main aspects: 1) the

grid size must be small enough to allow that a real flying ball, when voxelized, does not become

smaller than the space between any two planes, which could make us loose the information of

the ball. This issue becomes more hazardous at farther distances; 2) the grid mask must be

large enough to accommodate a volume larger than the ball, since some blurring is inevitable

due to the high speeds achieved by the ball.
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With this mask approach, we rule out false positives from any good detection of other

objects on the field of play, since all other artifacts during a game can only be a robot or a

human. Since all of them have a clear “connection” with the ground, the mask will not allow

a valid detection. Of course false positives can still happen due to noise on the Kinect sensor

detection.

Also, any object that could effectively be identified, at this point, as a ball by the mask

can be outside the field of play. Since this is a complementary vision system for our robots

and since they know their position inside the field of play, further integration steps will be

responsible for handling these possible false positives.

Detection results

To validate the detection methodology and estimate its effectiveness, a series of captures

were performed on a static setup, so that all the distances and positions evaluated were known

through measurements with a tape.

The setup was composed by a kinect sensor with its center at 0.65 m and with its focal

axis parallel to the ground and a ball fixed by a thin wire at a height of 1.2 m. The kinect

vision process, in each cycle, registered the 3D position of the detected ball to a file and one

file was created for each distance from 2 m to 7 m in steps of 1 m. The kinect measurements

are based on an axis where the YY is the distance to the sensor along its focal axis, XX is to

the right of the sensor and ZZ is to the top of the sensor.

Each capture has some hundreds of instances and, given the static scenario, it is known

that the ball was present in every frame of the capture. The detection rate obtained was good

for the several distances involved up to 6 m. At 7 m, a lower detection rate was verified which

makes us assume it to be the limit distance to use in the detection algorithm. During these

captures, there was a single false positive in the 7 m capture. Table 4.6 shows a summary of

the experiment, with the mean position measured at each distance and the standard deviation

of those measurements, as well as the detection rates and false positives at each distance.

Setup position Mean Std Detection rate False pos
XX YY ZZ XX YY ZZ XX YY ZZ

0.0 2.0 1.2 0.04 1.98 1.18 0.001 0.004 0.001 100% 0

0.0 3.0 1.2 0.06 3.00 1.19 0.004 0.005 0.001 100% 0

0.0 4.0 1.2 0.06 3.96 1.20 0.004 0.009 0.002 100% 0

0.0 5.0 1.2 0.05 4.94 1.20 0.010 0.012 0.004 97% 0

0.0 6.0 1.2 0.00 5.90 1.19 0.004 0.019 0.005 86% 0

0.0 7.0 1.2 0.03 6.82 1.21 0.007 0.039 0.006 17% 1

Table 4.6: Summary of the ball detection algorithm for static ball. All values are represented in meters.
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The measured height (ZZ coordinate) is the total height of the ball from the ground,

meaning it is compensated with the height of the sensor to the ground, which is, as already

mentioned, 0.65 m.

Figure 4.27 illustrates the results of these captures. For simplification of the perception

of the 3D positions, two separate views are presented. A side view is presented, with the

projection of the ball positions on the YoZ plane, which is the distance of the ball to the

sensor and the height of the ball to the ground. Also a top view is presented with the

projection of the ball positions on the XoY plane, which is the distance of the ball to the

sensor and the sideways distance of the ball to the center of the sensor focal axis.

a)

b)

Figure 4.27: Results of the detection of a static ball with the Kinect. a) Coordinates of the ball
projected on the YoZ plane. b) Coordinates of the ball projected on the XoY plane.

Given the results obtained, specially when taking into account the low deviation of the

measurements, we consider the approach fit for use. One must also consider that the mean and

standard deviation for the 7 m distance was estimated without considering the false positive.

The reason for this was that we consider that a false positive (which is more than 1 m away)

is detectable by the integration module and thus is not considered as a noisy position and

would be discarded.

Ball trajectory estimation

Ball detection allows us to have information about its whereabouts in any given instant,
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but we must use this raw information to improve our robot perception. In robotic soccer for

example this algorithm might be useful as long as the goalkeeper can estimate the trajectory

of the ball to move in a position to prevent a goal.

For flying objects, and considering that air resistance is negligible, the trajectory can be

approximated by a simple ballistic trajectory. To perform this evaluation, we keep trace of

the last ball positions. Since during a kick the ball is on the air for about 1 second and given

the obtained detection results with a mean of 10 detections per kick, we are currently keeping

a history of the previous 10 positions for estimating the trajectory.

Each time a new ball is detected, we verify the Euclidean distance between the current

point and the existing trajectory. If the point supports the trajectory by being close enough

(currently 0.25 m, which means closer than the distance equivalent to one ball) a new trajec-

tory is estimated by using the last supporting ball positions, including the one that was just

added to the list.

The general algorithm for managing the estimated trajectory is presented in algorithm 2.

Algorithm 2 Algorithm used for managing trajectory estimation.

Input: ballPos → position of the candidate
positionsList → circular buffer list of last positions detected by the Kinect partOfTra-
jectoryList → circular buffer list to flag the correspondent positions as part of trajectory
Output: trajectory → an updated or empty trajectory

1: if ballPos.exists() then
2: positionsList.add(ballPos)
3: if trajectory.exists() then
4: if trajectory.distanceTo(ballPos) < minDistance then
5: partOfTrajectoryList(ballPos) = true
6: else
7: partOfTrajectoryList(ballPos) = false
8: end if
9: else

10: partOfTrajectoryList(ballPos) = false
11: end if
12: end if
13: if not partOfTrajectoryList(currentCycle) and not partOfTrajectoryList(lastCycle)

then
14: trajectory.reset()
15: trajectory.initializeFromLastPoints()
16: else
17: if trajectory.exists() then
18: trajectory.refineTrajectory()
19: end if
20: end if

Figure 4.28 shows the results of the trajectory estimation for a flying ball. The history of

balls used for the computation is presented as large red spheres and the parabolic trajectory
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estimated is represented by the small blue spheres.

Figure 4.28: Example of trajectory estimation where the small blue spheres represent the trajectory
computed from the balls in the history (large red spheres).

With the trajectory estimated, we can easily give the agent data about the current pro-

jection of the ball position on the ground and even the predicted touchdown point of the

ball.

The integration of this information is similar to the previously described in section 4.3.3.4

for a RGB perspective camera. However, given the obtained results, we have a higher confi-

dence in the detections by this new sensor and thus most cross validations performed should

be simplified and the priority of the integration sources should change (figure 4.29).
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Figure 4.29: Ball integration diagram when using a Kinect sensor.
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4.4 Localization

Self-localization of the agent is an important issue for a soccer team, as strategic moves

and positioning must be defined by positions on the field. In the MSL, the environment is

partially known, as every agent knows exactly the layout of the game field but does not know

the position of any other elements, either itself, other robots or the ball. Given the known

map, the agent has then to locate itself.

The CAMBADA team localization algorithm is based on the detected field lines, with

fusion of information from the odometry sensors and an electronic orientation sensor [122]. It

is based on the approach described by Lauer et al. [24] and presented in section 2.2.1.4, with

some adaptations. It can be seen as an error minimization task, with a derived measure of

reliability of the calculated position so that a stochastic sensor fusion process can be applied

to increase the estimation accuracy [24].

From the center of the robot in the image, radial sensors are created around the robot,

each one represented by a line with a given angle. These are called scanlines. The image

processing, in each cycle, returns a list of positions relative to the robot where the scanlines

intercept the field line markings [118].

The idea is to analyze the detected line points, estimating a position and, through an

error function, describe the fitness of the estimation. This is done by reducing the error of

the matching between the detected lines and the known field lines (figure 4.30). The error

function must be defined considering the substantial amount of noise that affects the detected

line points which would distort the representation estimation [24].

a) b)

Figure 4.30: Captures of an image acquired by the robot camera and processed by the vision algo-
rithms. a) the image acquired by the camera. b) the same image after processing with
magenta dots over the detected field lines.
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In normal operation mode, the localization is done over a limited set of base positions

from which tracking is maintained. Since it is an algorithm based on optimization and since

there are many local minima, the tracking only works satisfactorily if the estimations are

near the solution. In situations where the robot does not possess a valid estimation, a global

localization algorithm estimates the robot position on the field using a much wider set of

initial estimations over which the already referred error minimization process for optimization

is applied. However, this global localization algorithm is computationally heavy and time

consuming. For that reason, after having an initial position, the simpler tracking localization

handles the cyclic relocation, performing the error minimization process over a base pose,

predicted by applying current cycle odometry to the last pose, and another four poses around

the base one in four opposing directions, at distances equivalent to one robot.

Although the odometry measurement quality quickly degrades with time, within the re-

duced cycle times achieved in the application, consecutive readings produce acceptable results

and thus they are used to produce an initial approximation of the new position of the robot.

The fusion is based on the application of the odometry displacements directly to the previous

robot pose thus providing a prior estimation of the current pose which will then be updated

by the visual information. The minimization performed over the odometry estimated pose

will generally converge quicker, since this is closer to the current pose than the previous cycle

pose. This approach also allows the agent to estimate its position even if no visual information

is available. However, it is not reliable to use only odometry values to estimate the position

for more than a few cycles, as sliding and frictions on the wheels produce large errors on the

estimations in short time.

Due to the nature of the approach, this algorithm works acceptably with a relatively low

number of points over white lines, like a few tens of points, as long as they are representative

of the surroundings. Consider the case of matching a 90 degrees corner. If the algorithm had

access to 200 points all over the same line, it would not be capable of matching the corner.

On the other hand, with only 20 or 30 points scattered over both lines, the algorithm would

be capable of detecting the match. Even in situations where the points are over the same line,

the merging with odometry and position tracking provide a good robustness to the algorithm

[24], as long as the situation is temporary, which is usually the case.

The visually estimated orientation can be ambiguous, i.e. each point on the soccer field

has a symmetric position, relatively to the field center, where the robot detects exactly the

same field lines. To disambiguate the symmetry problem and to detect wrong estimations,

an electronic orientation sensor is used [88]. The orientation estimated by the localization

algorithm using the visually detected line points is compared to the orientation given by the

sensor and if the error between them is larger than a predefined threshold, actions are taken.

If the error is really large (i.e. around ± 180 degrees), it means that the robot estimated

orientation is symmetric to the real one, so it should assume the mirror position. On the
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other hand, if the error is larger than the acceptance threshold (i.e. a 90 degrees acceptable

area), a counter is incremented (figure 4.31).

0º

180º / -180º

45º -45º

135º -135º

mirror area

acceptance area

error counter area error counter area

Figure 4.31: Illustration of the compass error angle intervals.

This counter will be incremented every cycle in which the error is greater than the thresh-

old. If a given number of consecutive cycles with high errors is reached (i.e. the counter

reaches a given number, currently 10), the robot considers itself “lost”, meaning that it will

not continue to track its position but will instead consider the initial situation, with no a-priori

knowledge and thus executes the global localization algorithm. Figure 4.32 shows situations

where the threshold was reached and relocation was forced after some cycles.

4.4.1 Robot heading sensor

When the field became symmetric the need for a heading sensor to facilitate agent initial-

ization and recovering from drift situations became clear. The use of this heading sensor has

already been presented in section 4.4 and its effectiveness shown. The sensor, however, has

not been the same since the work started, as new issues emerged over time.

Initially, the used sensor was a single electronic compass placed near the top of the robot

that provided an angular measurement. This approach proved to be effective and robust and,

with it, the previously defined localization recovering algorithm was implemented. However,

given the variety of fields and venues where the team plays, it was detected that, in some of

the competition sites, the presence of magnetic fields around the field of play make the use

of the compass impossible, since the values returned by the sensor are not coherent. This

eventually became a problem and the sensor was changed.

Currently, the robot is equipped with an Inertial Measurement Unit (IMU) composed by

accelerometers, gyroscopes and a compass. The current approach for measuring the heading

of the robot is to use the yaw value of the IMU. This value tends to be more steady than the

compass value, even when there are no magnetic fields hindering its measurements.

101



a) b)

Figure 4.32: Illustration of two situations where relocation was forced. Dashed line represents the
angle given by the orientation sensor, solid line represents the angle estimated by the
localization algorithm, red lines represent the cycles on which the error between the two
angles is greater than the threshold. a) the camera was covered while the robot moved.
The estimated orientation error degrades progressively and after getting higher than a
threshold, the cycle count starts and forces relocation. b) the robot tilted. The estimated
orientation error is immediately affected by more than a threshold and the cycle count
starts and forces relocation.

To understand the real effect of the magnetic fields on the compass and how the IMU yaw

value can be more stable than the compass, a test scenario was created. In this scenario, the

robot moves around the field while keeping its orientation fixed. During the movement, the

robot localization algorithm was running normally and the heading sensors were not taken

into account so that there was no chance of a re-localization to occur. The robot orientation

was visually confirmed to be the expected one and constant throughout the movement.

This allows us to estimate the variation that the orientation sensors measure in several

places around the field. The trajectory performed by the robot is represented in figure 4.33

and the complete tour took a total of 70 seconds.

The captures were made in our lab field, which turned out to be one of the fields where the

effect of magnetic fields on the compass is more substantial. In figure 4.34a, the raw values

of the compass along the capture tour are presented. It is clearly visible that the value of

the robot orientation is completely unreliable throughout the field, with huge variations that

even include more than 360o in two occasions. Considering the algorithm presented before in

section 4.4, even if the acceptance margin of figure 4.31 was greatly increased, the algorithm

would not work and would consider the robot lost in many occasions.
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Figure 4.33: Tour performed by the robot while capturing the raw values of both the electronic compass
and the IMU yaw angle. The orientation of the robot during all the capture was facing
the left goal, as shown in the figure. The represented tour was performed in 70 seconds.

On the other hand, in figure 4.34b we have the representation of the raw values of the yaw

measured by the IMU. By looking at the figure, we can easily verify that the variation of the

robot orientation is very stable throughout the field. With these values, we can estimate a

meaningful mean which is, in this case, −6.29± 1.92. With the IMU yaw, we get a maximum

variation of less than 10o from the mean value, which is well within the acceptance margins

of the robot orientation.

Thus, the current heading sensor software takes advantage of the stability of the IMU

yaw and uses this value as orientation reference. However, the compass is still an important

piece for the system, as it must be used as reference for calibrating the yaw sensor, so that

the values measured are the angle relative to our north, which is one of the field goals.

The procedure takes into consideration that, during a match, the robots are turned on

and initialized in a preferential area of the field, which is near the center line and near the

side line of the team base stations. Given this procedure, it is important that the compass

raw value is stable and measurable in that area of the field so that, when the IMU board is

turned on, the reference value of the compass is a good value.

In an attempt to reduce the drift effect of the IMU yaw angle measurement, a recalibration

of the imu during robot operation is possible, under specific conditions. Each agent cycle, the

robot’s orientation estimated by the localization algorithm is stored on the RTDB and sent to
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a)

b)

Figure 4.34: Robot orientation measured by both a) the compass and b) the IMU yaw during the
tour represented in figure 4.33. The dashed red line is the mean value of the data.

the IMU micro controller. When a discrepancy occurs (i.e. when the angle difference between

localization and heading sensor does not fall under the acceptance margin of figure 4.31), a

preset value is sent to signal the situation.

The IMU micro controller software is implemented in such a way that, when the orientation

of the robot estimated by the localization algorithm is coherent with the compass values

for a long time (currently 10 seconds is the minimum matching time), then it readjusts its

calibration based on the current compass value.

4.5 Obstacle detection and identification

In the CAMBADA team, visual information about the obstacles is gathered by the omni

directional camera, which is the only sensor that all robots have to gather information about

their surroundings. According to RoboCup rules, the robots are mainly black. Since in a
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game robots play autonomously, all obstacles in the field are the robots themselves (and

occasionally the referee, who is recommended to have black/dark pants). The CAMBADA

vision algorithm takes advantage of this fact and detects the obstacles by evaluating blobs of

black color inside the field of play [142], by detecting transitions from green to black over the

scanlines.

After identifying the points on the image where such transitions occur, the way to deal

with them has been changed over the course of this PhD work.

4.5.1 Previous definition

In a first approach on this PhD work, the black points on the image were clustered into

blobs and an analysis similar to the ball analysis was performed, to estimate the obstacle

blobs limits and lengths. To define the limits of the clustering, a pair of thresholds were used

to decide when the space between black points was enough to consider another obstacle or to

consider the point as part of a given existing cluster [143, 144].

Since each black point is the point on the image where the first transition from green

to black occurred over a scanline and since the used scanlines are the main radial ones, the

points are analyzed angularly around the image center.

The pair of thresholds that were verified were the number of scanlines that separated

two consecutive black points and the length from the center of each of the consecutive black

points. At this stage of the vision process, all the information and thresholds are defined in

pixels and pixel coordinates.

The separation offsets of a blob close to the robot were bigger than the ones at a high

distance, to maintain coherent precision, estimated by a function with a curve similar to

the distance map relation of figure 4.2. The angular separation offset was considered for

situations where robots were side-by-side, at the same distance, but there was no visual

contact between each blob; the length separation offset was checked for situations where, on

sequential scanlines, there were blobs with visual contact but the robots were actually at

different distances, meaning the considered point was at a different length on the scanline.

Figure 4.35 presents an example of several situations that we wish to obtain, using only a very

small number of scanlines and examples of 1 and 2 scanlines separation thresholds which is

obviously just a crudely approximated example for illustration of the problem.

The results of this approach were very dependent on a polynomial function for defining the

pixel variation on the image. In practice, it was verified that at higher distances (correspond-

ing in the image to some tens of pixels from the mirror border), as the distance difference

between pixels tended to very high values, the offset definition in pixels was not accurate.

Since the offsets cannot be fixed and need to depend on the inter-pixel distance, when

maintaining an acceptably accurate threshold relation for shorter distances, the offset at longer

distances would not be applicable. This caused the merging of blobs which were clearly part
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Figure 4.35: Illustration of black points detected on scanlines. Some limit situations for clustering the
points on the image are presented:
- Situation 1: The distance from center of the point on scanline 2 and scanline 3 should
be enough to consider that the later is a point on a different obstacle.
- Situation 2: Contrary to the previous situation and given the general distance of the
points to the center, the scanline 11 should be considered as part of the same obstacle of
scanline 10.
- Situation 3: From scanline 19 to 20, although the distance from the center is high, the
points are far enough to be separated in different obstacles.
- Situation 4: Although there is only one scanline separating 22 from 24, they are farther
from the center and thus the radial distance should be enough for separating them.
- Situation 5: Contrary to the previous situation, the radial distance from scanline 28 to
30 should be small enough to consider both points on the same obstacle.

of different objects (figure 4.36) or in some situations, even well segmented obstacles would

be discarded at longer distances, when segmented by few scanlines, because the separation

threshold was too high.

Moreover, in the vision process, there is no information about the position of the robot and

thus, from the vision process point of view, any black blob should be considered. However,

we do not need to consider any obstacle that is outside the field, as it will not interfere with

the game.

4.5.2 New definition

To avoid the situation previously described, a new way of determining the obstacles center

and limits was implemented [145]. Thanks to the known relation between pixel and distance,

the relative coordinates of each point is known and can be made available for the integration

process. Changes to the vision algorithm were made so that the relative position of each

detected black point (the first black point on each scanline) is passed over to the integration

process, instead of a visual estimation of the obstacle center and limits. The passed points

are angularly ordered according to the scanlines angular definition.

The integration process takes the points in metric coordinates and builds the obstacles.
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a)

b) c)

Figure 4.36: Capture of a camera frame with an incorrect visual obstacle detection as described. Top
a) Original frame. b) Color segmented image. c) Blob image obtained from segmentation.
Obstacles are represented by the estimated visual limits (brown squares) and by its center
(cyan square). The bottom left part of the image is merged within a single obstacle
(surrounded by the red line which was drawn over the images to highlight the detail).

This is made by an iterative process which starts by acquiring the first black point of the list

(corresponding to the radial scanlines zero angle) and define it as the limits of an obstacle.

Iteratively, each black point is tested to be within a given neighborhood of the previous one.

If it is within a given threshold metric distance, it is added to the currently obstacle being

built and is assumed as the left limit. The neighborhood value is redefined by a mean of

distances between all the points of the current obstacle under construction. When a black

point appears that does not belong to the neighborhood of the previous, the current obstacle

is put on the obstacle list and a new obstacle is considered, starting with the current black

point. After iterating all the points, the first and last obstacles limits are tested. If they are

closer than the initial neighborhood value, they are considered as part of the same obstacle,
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which was divided by the start scanline of the search algorithm and thus they are merged

(see algorithm 3).

Algorithm 3 Algorithm for building obstacles from the visual points.

Input: points → list of black points
Output: obstacleList → list of obstacle objects

1: numberOfCreatedObstacles = 0
2: obstacleList.clear()
3: temporaryObstacle.leftLimit = points[0]
4: temporaryObstacle.rightLimit = points[0]
5: nPointsOnCurrent = 1
6: threshold = defaultMaxSeparationOffset
7: for p = 1 to totalNumberOfPoints.size() do
8: if distance(points[p], points[p-1]) < threshold then
9: temporaryObstacle.leftLimit = points[p]

10: nPointsOnCurrent ++
11: threshold = averageCurrentPoints(points[p], nPointsOnCurrent)
12: else
13: obstacleList.add(temporaryObstacles)
14: temporaryObstacle.leftLimit = points[p]
15: temporaryObstacle.rightLimit = points[p]
16: nPointsOnCurrent = 1
17: numberOfCreatedObstacles ++
18: end if
19: end for
20: last=numberOfCreatedObstacles
21: if distance(obstacle[0].rightPoint, obstacle[last].leftPoint) < threshold then
22: merge(obstacle[0], obstacle[last])
23: end if

This algorithm allows that obstacles at higher distances are evaluated in the same way as

obstacles near the robot, without the need to estimate any additional relation function as it

was the case of the previous definition, since the general distance map used by the vision is

the one used to project, at ground plane, each one of the detected black points.

Additionally, since at the integration level the robot already knows its location, we can

easily eliminate the black field borders or any other obstacle on the field vicinity by ignoring

the obstacle points that are outside the field by more than a given distance threshold. This

field context information allows us to, in algorithm 3, consider that a point too far from the

field border lines is not in the neighborhood of the currently obstacle being built.

In the same situation depicted in figure 4.36, this new approach would visually provide all

the points represented in figure 4.37a),b) by the yellow squares and the result of the algorithm

on the integration process would consider different obstacles, surrounded in the images by

red lines. This separation of obstacles is more accurate than the previous pixel separation,

as the integration process knows the context of the black points and the individual Cartesian
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coordinates of each one. In our case, the Cartesian distances are easier and more accurate to

evaluate than pixel distances.

a) b)

Figure 4.37: Capture of a camera frame with the new visual information provided by the vision process.
Left a): Color segmented image; Right b): Blob image obtained from segmentation. All
the detected valid black points are marked by yellow squares. All these points are provided
to the integration which considers several obstacles (the red lines surround the obstacles
created based on the described algorithm.

Having a precision as high as possible on the obstacle positions is very important for the

next step of obstacle treatment, which is their selection and classification as team mates or

opponents.

With the objective of refining the information of the obstacles, and have more meaningful

and human readable information, the obstacles are selected and a matching is attempted, in

order to try to identify them as team mates or opponents [122, 88].

Due to the weak precision at long distances, a first selection of the obstacles is made

by selecting only the obstacles closer than a given distance as available for identification

(currently 6 meters). Also, obstacles that are smaller than 10 centimeters wide or outside

the field of play margin are ignored. This is done because the MSL robots are rather big,

and in game situations small obstacles are not present inside the field. Also, it would be

pointless to pay attention to obstacles that are outside the field of play, since the surrounding

environment is completely ignorable for the game development.

To be able to distinguish obstacles, identifying which of them are team mates and which

are opponent robots, a fusion between the own visual information of the obstacles and the

shared team mates positions is made. By creating a circle around the team mate positions

with the robot radius (considered 22 cm plus an error margin defined by the visual noise

relation, equation 4.3), a matching of the estimated center of visible obstacle area is made

(figure 4.38), and the obstacle is identified as the corresponding team mate in case of a positive
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matching (figures 4.39c) and 4.40c)). This matching consists on the existence of interception

points between the team mate circle and the obstacle circle or if the obstacle center is inside

the team mate circle (the obstacle circle can be smaller, and thus no interception points would

exist).

Cambada

Other 

Estimated obstacle center

Estimated obstacle center

Scanlines to center of viewed obstacles

Cambada observer

Figure 4.38: When a CAMBADA robot is on, the estimated centers of the detected obstacles are
compared with the known position of the team mates and tested; the left obstacle is
within the CAMBADA acceptance radius, the right one is not.

Since the detected obstacles can be large blobs, the above described identification algo-

rithm cannot be applied directly to the visually detected obstacles. If the detected obstacle

fulfills the minimum size requisites already described, it is selected as candidate for being a

robot obstacle. Its size is evaluated and classified as robot if it does not exceed the maximum

size allowed for MSL robots (figures 4.39a) and 4.39b)).

If the obstacle exceeds the maximum size of an MSL robot, a division of the obsta-

cle is made, by analyzing its total size which is used to estimate how many robots are in

that obstacle. This may be a common situation, robots clashing together and thus creat-

ing a compact black blob, originating a big obstacle if they are sufficiently lined up (fig-

ures 4.40a) and 4.40b)).

4.5.3 Experimental results

To assert the effectiveness and precision of the proposed algorithms, a series of tests were

performed. The laboratory used for the tests receives natural light which can affect the vision

processing algorithms. The presented results are not treated in any way to diminish the

effects of natural light, as we are interested in understanding if the algorithms can cope with

those conditions which can be found in real situations.
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a) b)

c)

Figure 4.39: Illustration of single obstacles identification. In a) image acquired from the robot camera
(obstacles for identification are marked); In b) the same image after processing; In c)
image of the control station. Each robot represents itself and robot 6 (the lighter gray)
draws all the 5 obstacles evaluated (squares with the same gray scale as itself). All team
mates were correctly identified (marked by its corresponding number over the obstacle
square) and the opponent is also represented with no number.

In the first test situation, a robot was positioned on the field at a stationary position.

It was running the normal processes and thus localizing by itself on the field, while sharing

its information as it would in a game situation. The position estimated by the localization

algorithms was stable at (−0.05, 1.88) and that position was shared with any other team

mate. This robot will be referred to as pivot. Another robot was moving on a rectangular

path around the pivot, and a capture of its data was done. This robot will be referred to

as observer. This scenario is intended to give some insight about the performance of the
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a) b)

c)

Figure 4.40: Illustration of multiple obstacles identification. In a): image acquired from the robot
camera (obstacle for identification marked); In b): the same image after processing.
Visually, the aligned robots are only one large obstacle; In c): image of the control
station. Each robot represents itself and robot 6 (the darker gray) draws all the 5 obstacles
(squares with the same gray scale as itself). The visual obstacle was successfully separated
into the several composing obstacles, and all of them were correctly identified as the
correspondent team mate (marked by its corresponding number over the obstacle square)
and the opponent is also represented with no number.

identification when the team mates are static or nearly static, as is the case of set plays

during the games in which it is important to analyze passing lines. Figure 4.41 is a graphic

representation of the acquired data, with the pivot represented in black in the position that

it estimates by itself. The blue dots are the positions over the path taken by the observer,

estimated by its own localization, which covers the rectangular path for 3 times. In each

cycle, the center of the obstacle perceived by the observer is represented by a red ’x’.

It is visible that, as expected, the obstacle position perceived by the observer is not exactly
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Figure 4.41: Representation of a capture of the obstacle identification algorithm results. The path
taken by the observer is represented by blue dots in the rectangular path taken. Near
the center, the pivot shared position is represented by the black star and its limits by the
black circle. The center of the perceived obstacle in each cycle is represented by a red
cross. Given the hundreds of measurements taken, they overlap and form the blob of red
around the obstacle center.

the pivot position. The capture in question is composed of 677 cycles. The identification of the

obstacle as the correspondent team mate failed to succeed in only one cycle, which corresponds

to a 99.85% success rate.

Considering that the pivot has 22 cm radius (although it is slightly bigger), the mean of

the centers of the perceived obstacle is within the real area occupied by the pivot, at nearly

16 cm with a standard deviation of 10 cm (Table 4.7).

Perceived obstacle

X Y

Mean 0.05 2.01

Std 0.08 0.07

| ~Real − ~Perceived| = 0.16

|Std| = 0.10

Table 4.7: Table with the mean and standard deviation of the capture perceived obstacle position

One must keep in mind that, in the experimental setup, the observer CAMBADA robot

was navigating around autonomously. It estimates its pose through the localization algorithm
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and estimates the perceived obstacles based on its perceived pose. This means that the

noise present on the presented scenario is not exclusively associated with visual perception

uncertainty of the black points but also has a factor associated with the uncertainty of the

localization algorithm. Unfortunately, given the absence of an external monitoring system

capable of providing a global position of the elements on the field, we have no means to

discriminate between the localization noise and the obstacle perception noise.

On the other hand, we do not consider this a critical problem, since we have a global idea

of the noise associated, which is a good approximation of a real game situation, because the

localization error will always be there and always affect every aspect of the perception.

Another test scenario was considered for evaluation of the algorithm performance for mov-

ing obstacles. Several captures were performed to evaluate the performance of the algorithm

when identifying a moving team mate. This set of six captures consisted on a robot observing

a team mate moving around and registering the data about the obstacles. The path taken by

the moving team mate is represented in figure 4.42.

Figure 4.42: Representation of the path taken by the team mate to identify (the red dots represent
each communicated position). The observer position is represented by the isolated black
circle with the star in the middle.

The captures were performed throughout the day, with different lighting conditions but

with the same robot calibration, without any automatic camera parameter adjustment soft-

ware. Table 4.8 summarizes this set of captures, which revealed a total mean identification

ratio of approximately 71%.

During the execution of the captures, and in a general way, the number of failed identi-
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Total cycles Successes %

Capture 1 1798 1319 73

Capture 2 1065 748 70

Capture 3 1528 1332 87

Capture 4 1162 769 66

Capture 5 1935 1278 66

Capture 6 2152 1411 66

Table 4.8: Table with the individual ratio of successful identification of the moving team mate for the
several captures performed.

fications was greater when the moving robot was farther from the observer, as expected due

to the noisy nature of the measurements. Also expected due to the noise was the existence of

some outliers to this tendency. Figure 4.43 shows the summary of the six captures performed.

The distance from the observer to the moving team mate to be identified was separated into

five categories: <=2 m, ]2, 3] m, ]3, 4] m, ]4, 5] m and >5 m and the percentage of successful

identifications for each category calculated.

Figure 4.43: Summary of success rate for the identification algorithm for each of the six captures
presented.

The results obtained by the team mate identification algorithm have a good detection rate

in general and are fit for use in the team architecture. One should also keep in mind that the

vision process usually runs with automatic camera parameter adjustment software and thus

the provided data is usually more stable than the one used for testing the algorithm, which

were a worst case scenario.

Currently, the identification of team mates plays a critical role in the coordination of

passes among the robots, since the knowledge that a given seen obstacle is actually a team

mate allows the evaluation of the passing conditions to be different when analyzing a team
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mate. Since a team mate will not try to intercept the ball during a pass of its our own

team, the pass can be made with a tighter corridor meaning the ball can pass closer to the

team mate than it would be required for an opponent. This may even allow the creation of

strategies to use team mates as cover for the ball path when performing a pass to another

team mate.

4.5.4 Tracking

After identifying which obstacles are team mates and which ones are not, the next step

that we aim for is to track each of the visually detected opponent, so that it can be identified

unequivocally over time. To achieve this in the CAMBADA team, a multiple hypothesis

tracking approach is used, based on the use of a Kalman filter.

The idea is to keep a list of tracks, each element corresponding to one of the detected

opponents. Each track’s state keeps the Kalman filter state, which includes position and

velocity, the identification of the given obstacle, a counting variable to register for how long

the track has not been fed a new measurement, a lifetime counter and all the internal Kalman

values necessary for the filter.

The algorithm starts by updating the last state of each track, by executing the first phase

of the Kalman filter, the prediction phase. The currently used state transition model is based

on a uniform linear movement equation. In this phase, any track that has been evolving based

only on prediction for more than 100 ms is erased, because tracks that do not have visual

support would introduce false positives on the world model (algorithm 4).

The second step of the algorithm is to evaluate and match each of the visually detected

obstacles with the existing tracks. For each of the existing tracks, the detected obstacle is

compared with the tracked position, to verify if they are in proximity. When that is the case,

the track filter is updated according to the measured position and associated noise and the

detected obstacle is marked as used.

When a detected obstacle does not match any of the existing tracks or if there are no tracks

available, the obstacle initiates a new track, which is initialized both in terms of the obstacle

position and obstacle identification. The management of the identifiers of each obstacle track

is kept as a global feature, so that each identifier is unique in each moment.

The identifier feature of the obstacle tracking is currently well explored, mainly on oppo-

nent set piece situations, where an opponent team robot has to pass the ball to another team

robot. One strategy adopted by our team is to cover potential receiver opponents, so that

they are no longer a useful option and, if the pass is made to them anyway, we already have

a robot ready to intercept the ball.

During opponent set pieces, our robots may choose to cover an opponent robot. Since it is

usually not standing still, as it tries to find an empty space by running away from our robot,

our robot needs to follow the opponent wherever it goes. The identification of the opponent
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Algorithm 4 Algorithm for using a Kalman filter multiple hypothesis tracking for opponent
tracking.

Input: opponentList → list of visually detected opponent obstacles
tracksList → list of existing opponent tracks
Output: tracksList → an updated list of opponent tracks

1: for currentTrack = tracksList.first() to tracksList.last() do
2: if currentTrack.onlyPredictionCount > predictionLimit then
3: tracksList.erase(currentTrack)
4: else
5: currentTrack.predictionPhase(currentTime)
6: end if
7: end for
8: for o = 0 to opponentList.size() do
9: observationUsed = false

10: if tracksList.size() > 0 then
11: for currentTrack = tracksList.first() to tracksList.last() do
12: trackPosition = currentTrack.getPosition()
13: currOppPosition = opponentList.getPosition(o)
14: if distance(trackPosition, currOppPosition) < proximityLimit then
15: currentTrack.setNoise( distanceTo( currOppPosition ) )
16: currentTrack.updatePhase(currOppPosition)
17: observationUsed = true
18: end if
19: end for
20: if not(observationUsed) then
21: newTrack = createNewTrack()
22: newTrack.predictionPhase(currentTime)
23: newTrack.updatePhase(currOppPosition)
24: newTrack.estimateID()
25: tracksList.add(newTrack)
26: end if
27: else
28: newTrack = createNewTrack()
29: newTrack.predictionPhase(currentTime)
30: newTrack.updatePhase(currOppPosition)
31: newTrack.estimateID()
32: tracksList.add(newTrack)
33: end if
34: end for

is crucial for this task, to guarantee that our robot does not change its opponent target.

In figure 4.44, a game situation is presented, where the CAMBADA robot number 3, on

an opponent set piece situation, is seeing a set of five obstacles. One of them is identified as

CAMBADA robot number 4, while the others are assigned a unique identifier.

In the depicted situation CAMBADA robot number 3 decided, in the beginning of the
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Figure 4.44: Result of obstacle tracking during a game on the RoboCup2014. In this opponent setpiece
situation, CAMBADA robot 3 was seeing five obstacles and identified one of them as team
mate number 4. The opponent identified as 43 was in this case chosen to cover and was
followed through the remaining of the play.

play, to cover the opponent that is identified as 43. Throughout the play, it followed the

opponent to cover its direct path to the ball, in order to hinder the possibility of that robot

to receive a pass.

4.6 Obstacle avoidance

The perception of obstacles in a soccer robot is an important feature to allow the reasoning

layer to execute its tasks effectively. One of the issues addressed during this work was a way to

perceive the obstacles and react to their presence by avoiding them effectively. This reactive

layer is a last resource estimation of what would be the best direction to take according to

the current near field occupancy. We named this approach as “sonar”, given the similarity of

the representation of the obstacles in areas angularly distributes around the robot.

The base idea behind this reactive layer is to angularly search for the least angular devia-

tion relative to a straight line to the target, taking into account the configurable constraints

imposed by the obstacles around the robot. The angular step is configured a-priori and each
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“direction” is identified by an ID, zero being always the ID of the direction straight to the

target.

4.6.1 Previous definition

The reactive avoidance algorithm previously implemented allowed the robots to perform

avoidance tasks reasonably. However, over the time and with the natural evolution of the

league, some issues became more evident and eventually limiting.

The analysis of the surrounding space was performed in N simple slices originating from

the robot center, as represented in figure 4.45. The main slice (zero) is the slice that point

directly to the desired target position and a maximum distance at which avoid actions are

taken is parameterizable, being a slice considered as “free” if obstacles are farther than the

maximum distance.

X

Figure 4.45: Representation of the old obstacle avoidance model.

Given the list of obstacles, each of them is tested to be within any of the slices and

through this iterative process, each slice is “marked” with the distance of the closest obstacle.

The least deviation slice is then searched (being the least deviation slice the first free slice

encountered on the “search” cycle) and the slice direction is the new direction that the robot

should take. The search for the deviation slice is performed in alternate directions until the

first “free” slice is found (algorithm 5).

This approach had a reasonable performance when the robot would have an obstacle

to avoid that made it deviate a lot from the original trajectory, because that way, when the
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Algorithm 5 Choice of the free direction based on the previously defined slice model. The
algorithm finishes as soon as it finds the first free direction.

Input: obstacleList
Output: deviationAngle → angle of the chosen free direction

1: nSlices = readFromConfig()
2: sliceMaxDist = readFromConfig()
3: deviationAngle = 0
4: for currSlice = 0 to nSlices do
5: minDistCurrSlice = MAXDISTANCE
6: for o = 0 to obstacleList.size() do
7: if currSlice.isInside(obstacleList[o]) and dist(obstacleList[o]) < minDistCurrSlice

then
8: minDistCurrSlice = dist(obstacleList[o])
9: end if

10: end for
11: if minDistCurrSlice < sliceMaxDist then
12: currSlice.setNotFree()
13: end if
14: end for
15: for currSlice = 0 to nSlices/2 do
16: if currSlice.isFree() then
17: deviationAngle = currSlice.angle()
18: FINISH
19: end if
20: if (nSlices - currSlice).isFree() then
21: deviationAngle = (nSlices - currSlice).angle()
22: FINISH
23: end if
24: end for

obstacle was not occupying the main slice, it would have some space to return to the trajectory

without hitting the obstacle. When it was not the case, however, the robot would easily hit

the obstacle when it evaluated the main slice as free, since the obstacle on a neighboring slice

could be too close to allow the body of the robot to pass.

Another issue that came up over the time was due to the use of simple slices. Since they

keep opening, at higher distances, the distance necessary for the robot to consider the slice

free was too large, which would cause the robot to go around situations where a quite large

corridor was free.

On the other hand, the choice part of the algorithm would also easily create situations of

indecisions due to the lack of historical context, making the robot choose to deviate left and

right continuously when the obstacle would be on a slice limit situation.
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4.6.2 New approach

With the previously defined issues in mind, a new approach was designed and implemented

to cope with them.

In this new approach, the first thing to abandon was the simple slice model. We designed

the new model to be a section composed by two parts: a triangle not centered on the robot

and a rectangle, as in a corridor (figure 4.46a). This means that each sonar direction starts by

a triangle, opening from the robot’s border until a defined width, and then keeps that width

along the remaining distance, creating a corridor. This allows the sonar to cope with larger

distances without requiring ever larger width of free space for the robot to pass. The triangle

area that covers the robot area from its center to the direction opposed to the rectangular

corridor is not considered, as that area is in “the back” of the section.

Furthermore, by starting the opening of the corridor on the robot’s surface, we make sure

that the occupied direction remains occupied until the robot body has passed the obstacle,

instead of changing the obstacle from slice too soon as happened with the previous model. A

sonar is defined by a given number of sections with the described characteristics (figure 4.46b),

which should overlap to cover most of the area around the robot. The number of sections for

the sonar can be seen as the resolution of the avoidance direction.

The main direction of the model (zero) is, as before, pointing directly to the target position.

a) b)

Figure 4.46: Representation of the new obstacle avoidance model, the sonar.

The sonar model is defined by a set of parameters that allow to configure each instance

as required. The main configuration parameters are the following:

• maxSonarOpening defines the maximum width of a section, which is basically the
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width of the straight corridor part of the section.

• maxSonarDistance is the maximum length of the sections of the sonar, defining the

maximum distance at which avoid actions are taken.

• thresholdDistance defines the distance at which the section ceases to be triangular

and becomes a straight corridor.

• numberOfSections is the total number of sections that compose the sonar model.

• bodyOversize is a factor applied to the robot radius to define the opening of the

section at its source, which is the line that is perpendicular to the section direction and

passes through the center of the robot.

With this design, we tackled the two first problems identified before, in terms of space

requirements in both ends of the model. The next step was to create a decision model that

would perform better than the previous one.

First of all, we made the last direction index available as a state of the sonar class. When

there is no deviation action in course, the choice is similar to the previous model, by searching

the sections on alternate sides of main target section and choosing the first free (algorithm 6).

In case there is a deviation action in course, there are two considered cases which use a

different approach in an attempt to prioritize the search of a free section in the direction of

the target while maintaining the general direction of the deviation to avoid indecisions.

When the last deviation action was still in the general direction of the target (meaning

that the absolute value of the deviation angle relative to the target was not bigger than 90o)

the search for the free section to use is done first up to twice the last deviation target. From

there on and until we reach half circle (the section that is more opposite to the target) the

search is performed alternating between those remaining sections and the first sections on

the opposite side of the target. When the robot would start to deviate so much it would go

basically opposite to the target, we find preferable to try to avoid the obstacle from the other

side instead of inverting the movement. Finally, if there is still no free section, the remaining

sections of the opposite side of the last deviation are tested, which would result in moving

away from the target and in the opposite direction (algorithm 6).

When the last deviation was already moving away from the target (more than 90o), the

first search range starts at 0 and goes up to the last deviation target. Afterwards, and since

the robot is currently moving away from the target, the search is performed on the opposite

side of the last deviation and up to half its value. Then the remaining sections between the

last deviation and half circle are searched while alternating with the equivalent number of

sections on the opposite side (from the equivalent to half last deviation, where the algorithm

stopped before). Finally, the remaining sections on the opposite side of last deviation are

tested (algorithm 6).
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4.6.2.1 Sonar analysis

To test and validate the use of the new avoidance model, the sonar, a graphical tool was

created that simulates the agents movements and possesses a graphical interface to define

the configuration of a given agent so that different parameterizations can be conceptually

tested prior to try them on the real robots. The configuration parameters include some

physical characteristics of the robot, like its diameter, motor and transmission parameters

and dynamic behavior limits, and the configuration of the sonar parameters (figure 4.47).

Figure 4.47: Configuration interface of the sonar simulation application.
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Algorithm 6 Algorithm used for selection of the direction the robot should take to avoid
obstacles. The algorithm finishes as soon as it finds the first free direction.

Input: obstacleList
Output: deviationAngle → angle of the chosen free direction

1: lastIndex = getLastDirectionIndex()
2: nSlices = readFromConfig()
3: deviationAngle = 0
4: if lastIndex ∼= 0 then
5: if abs(angle(lastIndex)) < 90o then
6: for currSlice = 0 to 2*lastIndex do
7: if currSlice.isFree(obstacleList) then
8: deviationAngle = currSlice.angle()
9: FINISH

10: end if
11: end for
12: beginIdx = 2*lastIndex
13: nIterations = 1
14: for currSlice = beginIdx to nSlices/2 do
15: if currSlice.isFree(obstacleList) then
16: deviationAngle = currSlice.angle()
17: FINISH
18: end if
19: if sliceOnOppositeSide[nIterations].isFree(obstacleList) then
20: deviationAngle = sliceOnOppositeSide[nIterations].angle()
21: FINISH
22: end if
23: nIterations ++
24: end for
25: for currSlice = sliceOnOppositeSide[nIterations] to nSlices/2 do
26: if currSlice.isFree(obstacleList) then
27: deviationAngle = currSlice.angle()
28: FINISH
29: end if
30: end for
31: else
32: for currSlice = 0 to lastIndex do
33: if currSlice.isFree(obstacleList) then
34: deviationAngle = currSlice.angle()
35: FINISH
36: end if
37: end for
38: for currSlice = 0 to sliceOnOppositeSide[lastIndex/2] do
39: if currSlice.isFree(obstacleList) then
40: deviationAngle = currSlice.angle()
41: FINISH
42: end if
43: end for
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44: nIterations = 1
45: for currSlice = lastIndex to nSlices/2 do
46: if currSlice.isFree(obstacleList) then
47: deviationAngle = currSlice.angle()
48: FINISH
49: end if
50: if sliceOnOppositeSide[nIterations].isFree(obstacleList) then
51: deviationAngle = sliceOnOppositeSide[nIterations].angle()
52: FINISH
53: end if
54: nIterations ++
55: end for
56: for currSlice = sliceOnOppositeSide[nIterations] to nSlices/2 do
57: if currSlice.isFree(obstacleList) then
58: deviationAngle = currSlice.angle()
59: FINISH
60: end if
61: end for
62: end if
63: else
64: for currSlice = 0 to nSlices/2 do
65: if currSlice.isFree(obstacleList) then
66: deviationAngle = currSlice.angle()
67: FINISH
68: end if
69: if sliceOnOppositeSide[currSlice].isFree(obstacleList) then
70: deviationAngle = sliceOnOppositeSide[currSlice].angle()
71: FINISH
72: end if
73: end for
74: end if
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With this tool, a series of tests were performed using several configurations to analyze

how the configuration of the sonar affects the behavior of a robot. Three scenarios were run,

each one with three different sonar configurations. The scenarios were:

• Scenario one: Robot moves to a point on the opposite side of the field with a static

obstacle on its direct path (figure 4.48).

Figure 4.48: Avoid test scenario 1.

• Scenario two: Robot moves to a point on the opposite side of the field with two static

obstacles forming a roughly 1 m wide corridor on its direct path (figure 4.49).

Figure 4.49: Avoid test scenario 2.

• Scenario three: Robot moves to a point on the opposite side of the field while an obsta-

cle makes a symmetric movement in a straight line, without any attempt of avoidance

(figure 4.50).

Figure 4.50: Avoid test scenario 3.

All the scenarios were tested with three different sonar configuration, varying two of the

sonar properties: the number of sonar sections and the maximum opening of each section:

• Configuration one uses 15 sonar sections, 0.9 m maximum sonar opening.

• Configuration two uses 15 sonar sections, 1.5 m maximum sonar opening.
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• Configuration three uses 30 sonar sections, 1.5 m maximum sonar opening.

The remaining properties were the same for all the runs:

• maxSonarDistance was set to 3 m, which means that the robot will try to avoid obstacles

as soon as they are closer than 3 m within a given sonar section.

• thresholdDistance was set to 1.5 m, meaning the section becomes a corridor of the

defined width at 1.5 m from the robot.

• bodyOversize was set to 1.1 meaning that the minimum distance taken into account for

the robot to pass beside an obstacle is 10% more than its radius.

The moving robot was configured to move at a maximum speed of 3.0 m/s, as well as the

moving obstacle from scenario 3. The distances involved guarantee that the robot is moving

at maximum speed when the avoidance evaluation starts. The period of the simulation is

20 ms and the perception of the simulated robot includes Gaussian noise of 0.05 m in terms

of translation of the perceived points and 3o in terms of rotation of perceived points.

Scenario one

Considering the first scenario, figure 4.51 displays the complete trajectory of the robot to

avoid the obstacle. Figure 4.51a, b and c represent the captures with sonar configurations

one, two and three, respectively. The robot outline is represented in the point on the robot

trajectory where it was closer to the obstacle, to have an idea of the clearance margin during

the run.

In table 4.9 and for scenario one, the total time of the robot movement and the minimum

distance of the robot to the obstacle during the run are presented.

Min distance (m) Time (seconds)

Sonar config 1 0.36 4.60

Sonar config 2 0.54 4.64

Sonar config 3 0.42 4.62

Table 4.9: Minimum obstacle distance and time results for scenario one.

Considering the results of the several configurations and in scenarios of avoiding one static

obstacle, there is a small advantage on using the first sonar configuration, which causes the

robot to deviate less and thus have a marginally better time of execution.

Scenario two
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a)

b)

c)

Figure 4.51: Visual representation of the robot path in avoidance scenario 1. Both the robot and
avoided obstacle are represented by their outlines in the path position where they became
closer to each other.

Considering the second scenario, figure 4.52 displays the complete trajectory of the robot

to avoid the obstacles. Figure 4.52a, b and c represent the captures with sonar configurations

one, two and three, respectively. The robot outline is represented in the point on the robot

trajectory where it was closer to the obstacles, to have an idea of the clearance margin during

the run. In this case one the the sonar configuration allows the robot to move through the

corridor formed by the obstacles, without the need to avoid them.

In table 4.10 and for scenario two, the total time of the robot movement and the minimum

distance of the robot to the obstacles during the run are presented.

In this case, the time of the first sonar configuration is obviously much smaller, since the

robot has enough space to pass through the obstacles and does not need to avoid any of them.
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a)

b)

c)

Figure 4.52: Visual representation of the robot path in avoidance scenario 2. Both the robot and the
two avoided obstacles are represented by their outlines in the path position where they
became closer to each other.

The 0.9 m corridor of the first sonar configuration provides a good margin for our robots to

go through a pair of obstacles while maintaining a comfortable distance from them. When

requiring a larger passing corridor of 1.5 m still it seems preferable to maintain the number
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Min distance (m) Time (seconds)

Sonar config 1 0.25 3.18

Sonar config 2 0.35 4.88

Sonar config 3 0.29 5.44

Table 4.10: Minimum obstacle distance and time results for scenario two.

of sonars relatively low, given the faster convergence of the robot movement.

Scenario three

Considering the third scenario, figure 4.53 displays the complete trajectory of the robot

to avoid the obstacle that, in this case, is also moving in the opposite direction. Fig-

ure 4.53a, b and c represent the captures with sonar configurations one, two and three,

respectively. The robot and objects outlines are represented in the point on their trajectories

where they were closer to each other, to have an idea of the clearance margin during the run.

In this case, 8 runs were performed for each sonar configuration and an additional statistic is

presented in table 4.11.

In table 4.11 and for scenario three, the total time of the robot movement and the minimum

distance of the robot to the obstacle during the run are presented. Additionally, the collision

rate is presented, with the number of avoidances where a tangential collision occurred over

the total number of runs.

Min distance (m) Time (seconds) Hits/Runs %

Sonar config 1 0.03 4.72 5 / 8 62.5

Sonar config 2 0.03 4.76 0 / 4 0

Sonar config 3 0.05 4.70 3 / 8 37.5

Table 4.11: Minimum obstacle distance (when no collisions occur) and time results for scenario three.

In this case, a larger corridor with a relatively low number of sonars has the tendency to

provide a clearer passage, even though the clearance margin is very small. In this case, we

consider that none of the configurations is completely satisfactory and thus the general sonar

configuration chosen is currently the first one, with 15 sections and a corridor of 0.9 m, given

the need to pass through relatively small corridors during a Middle Size League game. Some

future work on this matter is discussed in section future work.
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a)

b)

c)

Figure 4.53: Visual representation of the robot path in avoidance scenario 3. Both the robot and the
avoided obstacle are represented by their outlines in the path position where they became
closer to each other. In this scenario, the path of the moving obstacle is also represented
and the movement direction was perfectly opposed to the robot movement.

4.7 Trajectory generator

In mobile wheeled robots, the problem of generating a trajectory for the robot to follow is

a major task to perform. In some cases, it is acceptable to coarsely define a path, simply by

means of a target point (a destination), where the robot moves to, while avoiding obstacles

in the way. No special constraints are posed to the robot movement during displacement. In

some other situations a more finely grained definition would be desired. This occurs in the

MSL, for instance, when the players try to perform dribbling: maneuvering the ball in its pos-

session while progressing towards the goal and avoiding the opponents. This action requires

a definition of the robot movement as precise and fine-grained as possible. The CAMBADA
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team is at a point where a more sophisticated way of generating the robot trajectories is

desirable. For that, we developed an heuristic for generating the robot trajectories, defined as

a sequence of points in space that define the robot position at regularly spaced, consecutive

time instants, as well as the acceleration and velocity vectors in each of those points. In

the current CAMBADA control architecture, only the positions are fed to the robot control

system at a fixed rate (currently, every 20 ms) [146]. As the only constraints posed on the

robot path are those defined by the robot’s dynamics, the proposed heuristics are directed at

omnidirectional holonomic robots.

4.7.1 Assumptions

We assume that the robot is capable of correctly estimating its position, orientation and

velocity in an absolute coordinate system. The algorithm computes and provides the robot

a sequence of timed spatial positions as points in absolute coordinates that the robot should

follow. It also computes the acceleration and velocity vectors in each of those positions,

wherein these have some constant values in some phases of the trajectory, as will be further

described.

Since the robots are omnidirectional, this allows us to consider separately the computation

of the robot localization and orientation and to decouple the problem of trajectory estimation

in two separate problems: the computation of the trajectory in the XY plane and the compu-

tation of the orientation Θ. This decoupling cannot be made without considering that there

are acceleration constraints imposed by the robot mechanics, meaning that the decoupling

is not possible if the estimated values for any of the components is near the limit. We will

still require these two movements (position in 2D and orientation in 1D) to be synchronized,

meaning that they start and finish at the same time.

The trajectories generated by the algorithm are a variant of the well known and widely

used trapezoidal velocity profile: an initial acceleration phase (phase 1), a phase of traveling

at constant speed (phase 2) and a final deceleration phase (phase 3). The movement to be

computed is defined by:

• the initial conditions: position, pi, and velocity, vi

• the target or final conditions: position, pf , and velocity, vf

• the absolute value, or norm, for the plateau speed, v∗p

• the absolute value, or norm, for the accelerations during phase 1, a∗1, and phase 3, a∗3

We will use the convention of noting with an asterisk ∗ the symbols for quantities expressed

as the absolute value or the norm of the corresponding physical quantity. For instance, the

plateau speed is specified as v∗p (a real, positive scalar); the algorithm will compute the plateau

velocity vp, such that |vp| = v∗p. We will also note unit vectors with a hatˆsymbol.
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We assume that the accelerations in phases 1, a∗1, and 3, a∗3, can be different. This can

correspond, for instance, to the fact that friction acts in opposition to the force exerted by

the motors when the robot increases speed and acts reinforcing this force when it decreases

speed.

The problem to be solved is thus, given the initial and final values for position and velocity,

pi, vi, pf , vf ; given the scalar values for the maximum plateau speed, v∗p, and for the maximum

accelerations a∗1 and a∗3, compute a sequence p0, p1, . . . , pn of n + 1 points in the XY space,

equally spaced in time and corresponding to instants separated by a time interval Ta, such

that:

• p0 = pi : start point for the movement

• pn = pf : end point for the movement

• p1 − po = vi.Ta : initial speed

• pn − pn−1 = vf .Ta : final speed

• |vk+1 − vk| = a∗1.Ta, for k ≤ k1: acceleration during phase 1 (k1 is the last sampling

moment of phase 1)

• |vk+1 − vk| = a∗3.Ta, for k ≥ k2 : acceleration during phase 3 (k2 is the last sampling

moment of phase 2)

• |pk+1 − pk| = v∗p.Ta for k1 < k < k2 : plateau speed

The robot will attempt to travel the distance s in a movement in three phases. During

phase 1, it will change its velocity to align with a plateau speed, subject to an acceleration a∗1.

In phase 2, it will travel at constant plateau speed and in phase 3, it will change its velocity

from plateau velocity to the target velocity, subject to an acceleration a∗3.

When phase 3 ends, the robot velocity is the target velocity and the robot position is the

target destination.

4.7.2 Heuristic for path computing

The main point in the heuristic is to find the plateau velocity vector, vp. Consider pα as

the point where the robot enters phase 2 and pω the point where robot leaves phase 2. In

between these two points, the robot travels in a straight line, at constant speed v = vp. It is

easy to see that vp is aligned with pω − pα.

The problem here lies in the fact that vp is defined by pα and pω, which, in turn, depend

on vp (different values of vp will yield different values of pα for the same vi; the same applies

to pω).
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To solve this interdependency, an algorithm (mov2d, presented in algorithm 7) was devised

that works iteratively to find a solution for vp. A first estimation for vp is to align it with

pf − pi, resulting in v0
p. From pi, vi, pf , vf and v0

p, the algorithm computes pα and pω. These

later pα and pω now yield vπ, an estimation for vp, such that vπ ‖ (pα−pω) and |vπ| = v∗p. The

later vπ is combined with the previous estimation using a convergence function h (discussed

later), and the process continues until convergence. In this algorithm, the counter i can

be used to terminate the algorithm if it does not converge within an acceptable number of

iterations.

Algorithm 7 mov2d : Heuristic for 2D movement

Input: pi, vi → initial trajectory point and velocity
pf , vf → final trajectory point and velocity
v∗p → maximum norm allowed for the plateau velocity
a∗1, a

∗
3 → norm of the accelerations allowed for phases 1 and 3

Output: vp → plateau velocity for the movement phase 2
pα → point of transition from phase 1 to 2
pω → point of transition from phase 2 to 3

1: s = pf − pi
2: v0

p = ŝ.v∗p
3: continue = TRUE
4: while continue do

{Estimate pα}
5: ∆v1 = vip − vi
6: a1 = ∆̂v1.a

∗
1

7: s1 = ∆v1
a1
.
vi+vp

2
8: pα = pi + s1

{Estimate pω}
9: ∆v3 = vf − vip

10: a3 = ∆̂v3.a
∗
3

11: s3 = ∆v3
a3
.
vp+vf

2
12: pω = pf − s3

{Estimate displacement at plateau speed}
13: sπ = pω − pα
14: vπ = ŝπ.v

∗
p

15: if φ(v
(i−1)
p , vπ, sπ) then {φ defines convergence criteria}

{Final value reached}
16: continue = FALSE
17: else

{Update estimation}
18: vip = h(s, v

(i−1)
p , sπ, vπ)

19: end if
20: i++
21: end while
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Convergence criteria is defined by function φ. This function evaluates to TRUE when

the values of vp, pα and pω provide a “sufficiently good” path for the robot to follow. One

possible definition for the convergence criteria function φ is

returns |vi−1
p − vπ|.

|sπ|
|vπ|

< ε

where the function computes an estimate for ∆s, the difference between the traveling distance

in phase 2 for the velocities v
(i−1)
p (the estimation for plateau velocity in the previous iteration)

and vπ (the estimation in the current iteration), and compares it to a given threshold, using

the fact that the triangle with side v
(i−1)
p and vπ is similar to the triangle with sides s

(i−1)
p

and sπ.

One possible implementation for h, the function that computes the new estimation for vp

based on the previous estimation and the temporary estimation vπ is

k =
s.sπ
|s|2

returns k.vπ + (1− k).v(i−1)
p

The value k can be read as: “the ratio of the length of the projection of sπ in s to the length of

s”. The role of factor k is to reduce the weight of the vector vπ when the distance traveled in

the direction of the overall movement is short. In these situations, the direction of vπ is very

sensitive to small changes in pα and pω, increasing instability and preventing convergence of

the algorithm.

Although there is so far no proof of convergence, the algorithm was tested and the results

showed that it converged in all situations where:

• the condition s.vf ≥ 0 holds, or, in other words, vf is not in a direction opposite to the

movement direction;

• pi and pf are sufficiently apart and the robot has enough space to change direction at

both ends of the movement (an analytical expression for the minimum distance between

pi and pf has not yet been determined)

The case where pi and pf are not sufficiently separated is detected by the condition s.sπ < 0,

which means that after computing the estimations for pα and pω, the projection of vector

sπ = pω − pα in the direction of s = pf − pi points in the direction opposite to s. This

situation, as is, has no solution by our algorithm. In this case reducing the value of v∗p, and

thus reducing the length of vector vπ, has shown to allow for convergence of the algorithm.

In the actual implementation, the code in algorithm 8 is inserted in algorithm 7 immediately

after computing the value of vπ.

Algorithm 7 computes the parameters that define the movement, namely pα, pω and vp.
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Algorithm 8 Heuristic for degenerate movement

Input: s → distance between the initial and end points of the movement
sπ → distance between the plateau transition points
v∗p → current norm allowed for the plateau velocity
Output: v∗p → redefined norm allowed for the plateau velocity to allow convergence

1: if s.sπ < 0 then
2: v∗p = λ.v∗p {0 < λ < 1}
3: if v∗p < v∗p,min then

{Could not find a viable value for v∗p}
4: return fail code
5: end if
6: vip = ŝ.v∗p
7: i++
8: continue {Restart loop with new value of v∗p}
9: end if

The actual computation of the points in the trajectory is performed by the algorithm motion

comp, described in algorithm 9.

At the end of motion comp, pp is a list that contains all points in the trajectory.

Figure 4.54a to d represent the major elements that define the movement: pi, vi, pf and vf ,

that were input to algorithm 7; the figures represent several iterations of the values estimated

by algorithm 7 for pα, pω and vp. Figure 4.54e corresponds to the same trajectory, after

superimposing the points computed by algorithm 9.

This approach is still under development, as some issues became evident during the de-

velopment. The main issue is the perception of the robot’s own velocity, which is currently

affected by a relatively high noise.

The variation of the robot velocity estimations tends to provoke discontinuities on the

generated trajectories that affect the behavior of the robot. During the movement, it tends

to make sudden stops, especially near transition points, as the target point changes rapidly.

The approach has, however, worked with good results in situations where the robot initial

and final velocities are zero, leading us to the conclusion that further work is required to

improve the algorithm robustness to the sudden variations of target and velocities that occur

in the MSL.

4.8 Summary

The Middle Size League is a fast paced scenario for teams of robots to operate effectively

with challenges in both cooperative and adversarial scopes. Several of the world model entities

presented in section 3.3 were addressed in this chapter as part of this PhD.

An overview of the omni directional vision process was given as it is the main source

of information available to the robot. The advantages and limitations of this system were
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Algorithm 9 motion comp: Compute points in a trajectory

Input: pi, vi → initial trajectory point and velocity
pf , vf → final trajectory point and velocity
a∗1, a

∗
3 → norm of the accelerations allowed for phases 1 and 3

vp → plateau velocity for the movement phase 2
pα → point of transition from phase 1 to 2
pω → point of transition from phase 2 to 3
Output: pp → list of trajectory points for the robot to follow

1: ∆v1 = vp − vi {∆v in phase 1}
2: t1 = |∆v1|

a∗1
{Time to complete phase 1}

3: n1 = d t1Ta e {Number of cycles in phase 1}
4: a1 = ∆̂v1.a

∗
1

5: ∆v3 = vf − vp {∆v in phase 3}
6: t3 = |∆v3|

a∗3
{Time to complete phase 3}

7: n3 = d t3Ta e {Number of cycles in phase 3}
8: a3 = ∆̂v3.a

∗
3

{Start computing the points}
9: p = pi; v = vi {Initial values}

{Phase 1}
10: for n = 1 to n1 do
11: v = v + a1.Ta
12: p = p+ v.Ta
13: pp.add(p)
14: end for

{Phase 2}
15: p = pα; v = vp {Initial values for phase 2}
16: pp.add(p)
17: for n = 1 to n2 do
18: p = p+ v.Ta
19: pp.add(p)
20: end for

{Phase 3}
21: p = pω {Initial point for phase 3}
22: pp.add(p)
23: for n = 1 to n3 do
24: v = v + a3.Ta
25: p = p+ v.Ta
26: pp.add(p)
27: end for
28: p = pf {Last point in the movement}
29: pp.add(p)

exposed and should help in the understanding of some approaches and decisions during the

development of further work.
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a) b)

c) d)

e)

Figure 4.54: Visual representation of an example of a trajectory. In a) to d) the elements that define
the movement, both inputs and outputs of algorithm 7. Each image is a different iteration
of the algorithm with the evolution of the output values pα, pω and vp, which is the vector
represented in both pα and pω. In e) the points computed by algorithm 9 that define the
targets for the robot are overlapped with the movement definition elements.

The ball was object of analysis in terms of uncertainty on its position estimated by the

vision process. The raw information available from the vision along with the model of the noise

that affects that information are used on a Kalman filter to obtain a more precise and stable

position, which is then used to infer the velocity of the ball, by means of a linear regression.

Results from both the filtering and the linear regression for velocity were presented.

Despite the effectiveness of the perception of the ball by using the information from the

omni directional camera, this sensor has an inherent limitation of ball visibility when the ball
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is kicked off the ground. To tackle this problem, several approaches were made by using an

additional sensor to detect the ball in the air. Initially a single RGB camera was used, with

some promising results but eventually became not good enough for the desired performance.

With the advent of the Kinect sensor a new approach was developed using such sensor. The

results are more precise than the RGB camera approach and there is now room for progress

concerning ball detection and tracking.

Robot localization has been refined by the introduction of a heading sensor that allows

to detect situations where the robot estimated orientation has degraded or inverted. By

detecting these situations, actions can be taken in order to correct such errors by re-localizing

the robot. The heading sensor has been analyzed and changes were made to both hardware

and software so that the reliability of the heading sensor could be improved.

The robots on the field are an integral part of a soccer game. From a single player

perspective, there are other entities on the field that are visually detectable and the need to

identify them is great, so that the decisions are taken based on as much information as possible.

The type of information about visually detected robots/obstacles provided by the vision has

been changed in order to achieve a better discrimination of each among them. With this

improved raw perception and through information crossing, a robot is capable of identifying

which of the robots/obstacles are team mates and which are not. Furthermore, from the

list of obstacles that are not team mates, keeping track of each of them is advantageous for

decision processes, which currently make use of this information for pass coordination and

opponent pass covering purposes.

Some of the improved information achieved concerning precision of obstacles motivated

the development of an avoidance methodology important for the CAMBADA robots to play

more effectively. This methodology was presented and analyzed, although the improvements

it brought were mostly observed during real matches by the development team.

Having a last resource approach for avoiding obstacles reactively, a methodology to control

the robot movement by defining a set of finely tuned way points is desirable. A method to

estimate a set of finely grained way points over a trajectory was devised, that allows the

configuration of a given movement by defining the initial and final position and velocity.

With the sequencing of movements that have final and initial velocities synchronized, we

should be able to create complex movements that do not require the robot to stop at each

way point, as is the current case.
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Chapter 5

Perception and software

architecture for SPL

The Portuguese Team is a robotic soccer team that participates in the Standard Platform

League of the RoboCup. In this league, all the teams use same robots, the NAO robots, and

cannot make any hardware change.

The Portuguese Team appears as a way for the IEETA robotics group to start working

in the area of applications with real humanoid robots. The team is a mixed team, with

collaboration of elements from the FC Portugal team (2d & 3D simulation), CAMBADA and

5DPO teams (Middle Size League), from universities of Aveiro, Porto and Minho. The 3D

simulation league uses simulated NAO humanoid robots and thus the know how of the FC

Portugal 3D team allowed to create the body movement control layer. In the beginning of

the project, also the vision system for the NAO camera was developed. In the end of a first

“phase” of the project the NAO could move and could extract pixel coordinate information

from the camera. The work accomplished during this PhD over this platform comes after

the referred modules were created. The need for a worldstate representation was evident and

indispensable. Also, the general architecture of the code needed to be revised and organized.

This chapter presents the general software architecture created for the Portuguese Team and

the work developed in terms of perception.

5.1 Software architecture

The software developed for the Portuguese Team robots uses a similar distributed ar-

chitecture as the one used in the CAMBADA robots [60]. This distributed architecture is

based on several processes running on each robot which use a shared memory to interact,

particularly the Real-time database (RTDB).

Following the CAMBADA software approach, the software used in the robot is also dis-

tributed. Therefore, five different processes are executed concurrently. All the processes run
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on the robot’s processing unit in Linux. Furthermore, a NAOqi module was also implemented,

to handle the communication between the agent process and the robot Device Communication

Manager (DCM) (figure 5.1).

Vision Agent

RTDB

Comm

Vision Agent

RTDB

Comm

...
Robot 1 Robot N

DCM controller / 
Robot body

DCM controller / 
Robot body

Game 
Controller 
Watcher

Game 
Controller 
Watcher

Localizer Localizer

Figure 5.1: Diagram of the software running on the robots.

Inter-process communication is handled by means of a RTDB, implemented as a block

of shared memory. The RTDB is divided into two regions, the local and the shared one.

The local region allows communication between processes running on the robot. The shared

region implements a Blackboard communication paradigm and allows communication between

processes running on different robots. All shared sections in the RTDB are kept updated by

an adaptive broadcasting mechanism that minimizes delay and packet collisions.

The processes composing the Portuguese Team robot software are:

• Vision: is responsible for acquiring the visual data from the robot cameras.

• Agent: is the process that integrates the sensor information and constructs the robot’s

worldstate, taking the decisions based on this information.

• Comm: handles the inter-robot communications, receiving the information shared by

other robots and transmitting the data from the shared section of the RTDB.

• GCWatcher: listens to the game controller and writes all the referee information on

the RTDB.

• Localizer: is responsible for running the localization algorithm whenever the agent

requires it, through RTDB communication.

• DCM controller: this is a NAOqi module which uses the internal API to interact

with the robot sensors and actuators, reading the values from the sensors and making
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them available to the agent, and reading the agent commands and sending them to the

actuators.

Since the Agent process is the one that defines the body movements, in order to maintain

a control as smooth as possible, this process, along with the Naoqi which actually executes the

movements, are set to run under a linux FIFO scheduler with the top priority definable. Since

all other processes run under the normal best effort scheduler that has lower priority than the

FIFO scheduler, these two processes run with top priority of access to the processor. This

means that these processes will not lose control of the processor for any other process (except

system processes necessary for the operating system and over which we have no control). The

remaining processes run on a best effort basis scheduler. This is a need that rises from the

little computational power available for all the computational heavy tasks that the software

must execute.

Since the DCM period is defined by Aldebaran to 10 milliseconds, the agent process, which

is responsible for estimating the motor positions, was built over that constraint and thus runs

with a cycle time of 10 milliseconds.

5.1.1 Agent

The desired software architecture for our agent should follow a well defined task sequence

while allowing several modules and tasks to be taken out or inserted in the loop. It is also

desired that several methodologies and code structures can be updated or replaced. Most of

the modules described next have a specific API to interact with and are confined within their

own execution block. Thus, they can be replaced by other methods, if so desired, with little

amount of effort.

5.1.1.1 Cycle loop

The agent process, being responsible for all the decisions throughout a run, is a cyclic

process that keeps updating all the information available, both from other processes to it and

from it to other processes.

The agent process loop is organized in a sequence of tasks that need to be executed in the

correct order, as they have dependencies from the previous one. The general steps performed

by the agent loop follow the sequence presented next (figure 5.2).

• Proprioception update: this first step on each cycle of the agent must be for it to

know what is the current state of its own body. This task is the one that actually

defines the cycle time, since the method to get the values of all the body sensors from

shared memory is blocking until the DCM Controller process that is filling that memory

allows access. After having the data, the first step of proprioception is to update the

body model, particularly the kinematic model which in the end provides the relative
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Figure 5.2: Tasks executed by the agent process cycle loop.

positions of all the body parts in relation to the robot head, in the form of a set of

transformation matrices. The reason to use the head as base for the representation of

the transformation matrices is that the camera is placed there and thus the posterior

perception module uses them directly. The model used for defining the kinematic chain

of the robot on the Portuguese Team is a dynamic and configurable model. The robot

model is defined by a configuration file in XML format which enumerates a list of body

parts, characterized by a name and a mass, and a list of joints, characterized by name,

identifier of perceptor and effector objects, rotational axis, limit values and the two

anchor points from the body parts list, which include the translations between each

of them. The model allows that changes to the robot physical structure can be easily

introduced, by simply updating the configuration file with the new values. An example

of configuration file is visible in figure 5.3.

• Perception update: this step is responsible to create the world model of the robot and

update all relevant information. It starts by updating the game time and the gamestate

sent by the refereeing entity. It then gets the latest visual information made available

by the vision process and the latest worldstate information made available by the team

mates. It then updates the robot localization, either based on new visual information or
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Figure 5.3: Excerpt from the xml configuration file with values for the NAO robot.

solely on odometry update and finally it updates all the information about the objects

of interest (ball, goals, other players).

• Agent “think” process: after having the most recent information about itself and the

worldstate, the agent can finally analyze and decide how to act:

– Update strategy: the first thing to do, now that it has its information and the

information from the team mates, is to update the strategic model so that its

decisions will accomplish the desired outcome in terms of general field placement.

– Role selection: based on the defined strategy, the agent will then have to decide

which role to take on the game. This role defines the general attitude that the

player will take. An agent with the role Striker, for instance, will actively go

for the ball, while a midfielder will keep its position within the defined adaptive

formation, without directly going for the ball.

– Role execution: the chosen role will then be executed. For simplicity sake on the

development of roles, the general execution starts by automatically guaranteeing

that the robot is not fallen and also check for forced relocalization commands. If

everything is fine up to this point, then the specific role tasks go into action.

– Behavior selection: each role has specific tasks to accomplish and wants the robot

to execute different types of actions/movements. The role is responsible for, usu-

ally within a defined set of states, define what is the behavior that the robot

must execute. These behaviors define how the robot arms and legs must move to

achieve a defined action. Given the several possibilities of walking algorithms and

parameterizations, an API was created to allow a role developer to execute actions

like walk forward, walk right, curve left, etc, without having to explicitly set the
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walking parameters or even implementation at the role level. This allows the role

developer, usually focused on higher level decision, to abstract himself from the

specific implementation/parameterization of how to achieve a forward walk or any

other base movement.

• Head control: generally the roles define how they want the robot to move around the

field of play. The head however, is treated independently so that the perception layer

can be responsible for controlling it according to a given profile. The most used are

to control the head to keep the ball in sight, and to sweep around in search for visual

landmarks (lines and goals).

• Movement execution: finally the agent can set all the values of the actuators previously

defined and update these values on the shared memory so that the DCM controller can

execute them on the robot body in the end of the cycle.

5.1.1.2 Roles & Behaviors

The decision process of the agent is organized in several different stages. These stages are

organized in roles and behavior.

Roles The decision first step is to choose a role to execute at the moment. This decision

can be a simple static role assignment that only depends on a very small set of conditions (as

the penalized or the goalie roles, for instance, which only depend on game Controller state

and/or robot number) to a more complex assignment which depends on the conditions of the

robot and the world around, including strategic issues.

The role is then responsible for a more detailed analysis of the conditions and for taking

actions to achieve its goals. These actions are the behaviors available to the robot.

The assignment of the roles is made dynamically, so each robot can assume any given role

during a game, dependent on the game conditions. These conditions are mainly dependent

on the ball position on the field, which is the main game object. All the robots are assigned

specific roles according to their position relative to the ball, i.e. a robot that is near the ball

will be assigned a role to try to move to it, while robots farther from the ball will be assigned

other types of roles which do not try to move to the ball but rather to a position on the field

that is advantageous, either for defense purposes or attack purposes.

Each role and behavior is an instance that can be used at any time. Currently, the main

roles are (figure 5.4):

• Goalie: this role implements a state machine for the behavior of the goalie robot. It

tries to keep itself inside the goal area, tracking the ball trajectory and trying to adjust

its position so that it intercepts the ball trajectory to the goal. When the ball comes

close to the goal, it tries to lay down to defend it.
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• Striker: this is the main role during free play. The Striker is the robot that more

actively goes for the ball. It actively tries to get to the ball, dribble it in the opponent

goal direction and kick to the goal.

• Midfielder: this role is a supporting role that exists during free play. Apart from

the Goalie and the Striker, all the other robots assume this role. Each of them keeps a

strategic positioning, estimated by this role, to keep the team coherent and cooperative.

Any Midfielder that reaches a situation more advantageous than the Striker will be

reassigned as Striker, and the former one will fall back to the strategic positioning as a

Midfielder.

• Penalized: this is the role assigned to robots to keep them inactive when the referee

penalizes them for any reason. In order to deactivate the robot motors, so that they are

not kept under strain during all the penalization time, the robot autonomously moves

to a crouched position that is stable even when the motors are off. That way, during

penalization with the motors off, the robot saves battery power and releases strain from

the motor so that they do not heat.

Role

Goalie StrikerMidfielder Penalized

CursorPenaltyStrikerDummyKickoffKick

Figure 5.4: Role structure diagram.

These roles are used during a game on free play. However, a set of other roles are imple-

mented, both for development and non free play and fall-back situations, like manual game

controller mode or unavailability of localization. Some examples are (figure 5.4):

• Cursor: this is a role that allows remote control of the robot movements. This role is

used by the cursor tool (section 6.2.4) and works almost as a gateway by reading the
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movement commands sent from the cursor tool via a shared memory slot of the RTDB.

The cursor itself allows to test behaviors without the need to implement a whole role and

decision processes to activate it, which is important during the behavior development

phase. It also allows the parameterization of an omni directional walk methodology in

terms of X, Y and Theta velocities, which allow for quick testing on any new surface to

discover which parameters would be better for that surface.

• Penalty: the role penalty is used for penalty shootout situations which occur in the

end of games that cannot end with a draw.

• StrikerDummy: this is a role that makes the robot search and go for the ball without

using localization. In this case, it will just try to go for the ball directly and dribble it

in the same direction from where it approached the ball. This is done with the objective

of keeping the ball moving so the game won’t be stuck, because there is no way for the

robot to know and choose a direction for dribbling. Even if it would see a goal frame,

since they are the same color, it would not know if it is the opponent goal or not, thus

the approach of just keeping the ball moving and try to avoid own goals.

• KickoffKick: when localization is not available, this role is a special role used in a

kickoff in our favor. In this situation, and despite there is no localization and the robots

do not know where they are, we know that the robots are all facing the opponent goal,

due to the rules of manual placement, which define well known poses for each of the

team robots. Thus, the robot that is closer to the ball goes to it and kicks the ball

forward before falling back to StrikerDummy.

Behaviors In the Portuguese team context, the behaviors are the low level methods for

controlling the robot body, the entities that calculate the angles for all the body joints in

order to obtain a sequence of body movements that create the desired effect.

Several walking behaviors developed and optimized for the FC Portugal 3D simulation

team [147] have been adapted and tested [148]. Currently, the existing behavioral structure

is as depicted in figure 5.5, being the main behavior models the Slot and the CPG behavior

models [149] when performing general movements like getting up, swinging the legs for kicking

and other generally “on the spot” movements. As for the walk, the TFS walk engine is the

one currently more stable and faster on the field. Additionally, we also make use of the

Aldebaran walking engine for tests that do not require much speed but require stability in a

less controlled ground.

Abstraction layer While the instances of the behaviors are platform dependent, most of

the software architecture from the roles to the point prior to the estimation of the motor

setpoints is generic. The roles, on the other hand, should be as independent of the behavior
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Behavior

SlotBehavior

StepBehavior

CPGBehavior

COMWalk CPGWalk OmniDirectionalWalk

TFSWalk

getUpFront:  

getUpBack:  

zeroPosition:  kickRight:  kickLeft:  goalieHockey:  

goalieGetUp:  

...:  

...:  

...:  rotateAround:  

ALWalk

Figure 5.5: Behavior structure diagram.

implementation as possible. Thus an abstraction layer emerges at role level, which allows the

role creators to abstract themselves from the specific behavior chaining and parameterization

and develop in terms of more general ideas. This separation is particularly important in

terms of walking movements, since the walking methods are still under heavy development

and change rapidly.

This abstraction layer provides an API for role development that includes a set of move-

ments that, when combined, should provide all the navigation actions necessary for moving

the robot around the field with any necessary objective. The implementation of the actions

on this layer will be the only place where there is the need to initialize and configure the

walking behavior. This allows that when there is the need to change the implementation of

the walk to another type of behavior or to change the parameterization of the current walking

behavior, this is the only block in the code structure that needs to be changed.

The main general actions of the soccer robot are explained next (figure 5.6). The presented

sequence follows a top down sequence, and thus, in each action, references to still not presented

actions may occur.

• moveToBall: This is the most high level action of the abstraction layer, where the

role can simply define that it wants to go to the ball, wherever it is on the field. The

only parameter needed is the final heading desired when reaching the ball, since the ball

position is known and available in the world model. This action will make use of two

different actions, depending on how to approach the ball. Currently this action moves

directly to the ball, without taking into account the final heading desired, and thus only

uses one of the possible action chaining, the moveToBallRel action, presented further
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bellow.

• moveToPoint: This action intends to move the robot to a specific point on the field.

The action will make use of the moveToPointRel action (presented bellow) by updating

it every cycle. It will also be the one responsible for planning the necessary checkpoints

on the movement to guarantee the arrival at the destination with a given heading. The

interface of this action includes two parameters which are the field absolute position to

move to and the heading that the robot should have when reaching the target position.

• rotate: The rotate action is currently responsible for turning the robot to a given

heading available as a parameter for the action. The turn is performed on the spot in

the direction closer to the final heading. It is also intended to allow the user to provide

a radius over which the robot should turn, making the rotation not on the spot but

around a spot, like rotating around the ball for alignment. For this second option, the

radius must be passed as a parameter and the movement will be composed by both

rotation and lateral linear speeds in order to obtain a movement over a circle perimeter.

• moveToBallRel: This action is a specialization of the move to a relative point action

(presented next). It was created due to the fact that moving to the ball is one of the

most common needs, which justifies a dedicated action available for it. It does not take

any parameter, since it moves directly to the ball position, available in the world model.

The ball relative position is used for the invocation of the moveToPointRel action.

• moveToPointRel: This action is the one responsible for heading to a given point,

relative to the robot. The relative target to move to is available as a parameter. Each

cycle the direction of the point is evaluated and the action decides to move forward, move

while turning to a given direction to correct small misalignments or, if the misalignment

with the destination is very high, rotate in place before proceeding. Of course that, also

every cycle, the point to move must be updated. This action is one of the lower level

actions available on this abstraction layer.

• rotateRel: This action makes the robot rotate around itself in a specific direction that

arrives as a function parameter. Additionally, a second parameter is available to allow

rotation around a point, defined by a radius of rotation. As stated before, in action

rotate, this must be achieved by combination of rotation and lateral movement. This

action is paired with moveToPointRel as the lower level actions, meaning that all the

other actions are composed by combinations of these lower level ones.

The actions previously described (represented to the left of the dashed line in figure 5.6)

are still completely behavior independent actions since they are used to define high level

commands for moving or rotating to points, which allow an abstraction of thought when

creating a role.
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setWalkForward

setTurnLeft

setTurnRight

setRotateLeft

setRotateRight

rotateRel

moveToPoint
Rel

moveToBall
Rel

rotate

moveToPointmoveToBall

Figure 5.6: Diagram of the existent actions on the Role↔Behavior abstraction layer.

At role level there is another abstraction layer, which is the one responsible for actually

defining the behaviors needed to accomplish the basic actions. Currently this layer has 5

basic actions (represented to the right of the dashed line in figure 5.6). These basic actions

are the ones which declare and parameterize the default walking method. These 5 actions,

implemented as 5 functions, are the only functions where the development team need to make

changes when they want to change the default walking method.

• setWalkForward: This action provides the implementation and parameterization of

the default walking method. It will internally define all the parameters necessary for the

walking method to move the robot straight forward at a speed that is stable. Depending

on the used walking method, the speed can be fixed or it can be read from a globally

available variable that is dynamically defined by the agent at each cycle.

• setTurnLeft/Right: These actions configure the current default walking method to

make the robot execute a curving movement to the left or to the right, respectively.

Just like walking forward, the linear and angular speed for obtaining the curve can be

fixed or dynamically defined by the agent, depending on the current walking method.

• setRotateLeft/Right: These actions use the current default walking method to make

the robot rotate around itself to the left or to the right, respectively. Once again, the

angular speed for the rotation can be either fixed or dynamically defined, depending on

the used walking method.
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5.2 Perception on SPL

The perception of the NAO robots is based on the use of cameras placed on the robot’s

head. The vision module/process is responsible for detecting the objects of interest and

estimate the coordinates of the objects in the image.

Contrary to the CAMBADA case, where the camera is fixed on the robot body and

provides images on a plane parallel to the ground, the NAO camera provides images in very

different planes, depending on the position of the head and body. While in CAMBADA the

vision process directly provides object coordinates in meters because of the use of a fixed pixel-

distance mapping that does not depend on any other process, in the NAO, the vision process

is only capable of providing pixel coordinates on the image, as the mapping to distances

cannot be determined by the vision process. The agent is the entity that has access to the

robot model and motor positions and thus can estimate metric coordinates from the pixel

coordinates.

For the robots to be able to move and execute tasks on the environment making use of

localization and moving to specific positions, there is the need to know where the objects are

in terms of metric distances. This section presents several steps needed to achieve a metric

representation of the objects on the field, describing the worldstate of the robots.

5.2.1 Projection model

To accomplish the ground point projection, we use the pinhole camera model to analyze

the geometrical relations of coordinates in 3D space and their projection into the camera 2D

CCD [150]. The first step was to make a static analysis of a vision system, in a way similar

to the one presented for the CAMBADA team by Martins et al. [151], with the necessary

adaptations for a more generic camera pose relative to the ground, presented in this section.

Figure 5.7 presents two schematics of a camera system, side view and a perspective view.

The initial analysis was based on a system with a fixed camera which, similar to the top

scheme of figure 5.7, was placed at a fixed height, pointing towards the ground at a given

angle and with no other rotation affecting it. The several measurements involved in this

static analysis include parameters related both to the camera intrinsic data and measure-

ments extrinsic to the camera. The intrinsic camera values focal length, pixel size, pixeln and

pixelm are equivalent to the front camera analysis of section 4.3.3.1 and thus are not visually

represented here.

• focal length - distance between lens and CCD.

• pixel size - the physical size of each pixel on the CCD.

• pixeln - number of pixels (n) along a CCD column.

• pixelm - number of pixels (m) along a CCD row.
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Figure 5.7: On top, side view schematic of the vision system. On bottom, a perspective view schematic
of the vision system.

• hoffset - height of the camera relative to the ground.

• roffset - radial distance from the camera to the robot center.

• αoffset - angular offset from the vertical axis to the camera focal axis.

• xoffset - distance from the projection of the center of the robot on the ground to the

point in the center of the image, projected on the ground.

• angαn - angle measured between the camera focal axis and the line between the CCD

center and the projection of pixeln on the ground.

• angθm - angle measured between the robot frontal axis and the line between the camera

center projected on the ground and the pixelm ground projection.

• distancexn - distance from the projection of the center of the robot on the ground,

measured along the robot front axis, to the intersection of a line perpendicular to robot

front which passes through pixeln projected on the ground.
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• distancexDiag - distance from the camera focal point to pixeln projected on the ground.

• distanceym - distance from the projection of the center of the robot on the ground,

measured along the robot side axis, to the intersection of a line parallel to robot front

which passes through pixelm projected on the ground.

From the camera focal point, which is considered the reference of the vision system, we

can easily verify that:

αoffset = atan

(
xoffset − roffset

hoffset

)
(5.1)

From expression 5.1 we can generalize to an angle angαn,

angαn = αoffset − atan
(
distancexn − roffset

hoffset

)
(5.2)

Given the geometric properties of the camera vision system, we can relate an angle angαn

and a pixel along a vertical column of the CCD, assuming that the CCD is not rotated over

the robot front axis, i.e. it does not have a roll angle.

pixeln = round

(
tan(angαn)× focal length

pixel size

)
(5.3)

From expressions 5.2 and 5.3, we obtain

pixeln = tan

[
αoffset − atan

(
distancexn − roffset

hoffset

)]
× focal length

pixel size
(5.4)

We can isolate αoffset from expression 5.4,

αoffset = atan

(
pixeln × pixel size

focal length

)
+ atan

(
distancexn − roffset

hoffset

)
(5.5)

With some manipulation of expression 5.4, the distance corresponding to each pixel can

be found by

distancexn = roffset + hoffset × tan
[
αoffset − atan

(
pixeln × pixel size

focal length

)]
(5.6)

We can thus obtain the distance, from the robot center, of any point on the image, using

expression 5.6.

Following a similar analysis and based on the schematic of figure 5.7, we know relation

between angθm and distances distancexn and distanceym projected on the ground:

angθm = atan

(
distanceym

distancexn − roffset

)
(5.7)
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Since we have a height associated, and the horizontal angle has a relation with both the

distances (XX and YY), we can derive the following

distanceym =pixelm × distancexDiag ×
pixel size

focal length

× cos
[
α− atan

(
distancexn − roffset

hoffset

)] (5.8)

The result of a point in pixel coordinates, (pixeln, pixelm), transformed through the de-

scribed projection model is a point in metric coordinates, (distancexn, distanceym) which is a

point measured relative to the robot center projection on the ground, with the XX axis being

the front of the robot and the YY axis being the left side of the robot.

5.2.1.1 NAO vision system

While in the initial analysis performed, the camera was fixed with a constant relation to

the ground and with a fixed rotation in only one axis, in the case at hand with the NAO

robot, the camera is placed on the head, which is a mobile part of the robot. Thus, in this

case, we have to consider that the camera has rotation on all three axis XX, YY and ZZ,

commonly known as roll, pitch and yaw respectively.

Looking at a camera in space, and considering XX the camera focal axis with the YY/ZZ

plane on the CCD, we can see that if we apply a roll angle to the camera, we have a rotation

of the pixels. The first step of the coordinates estimation is to rotate the given pixel by the

roll angle of the camera to correct that distortion.

The pitch analysis basically results in the αoffset that allows us to get the coordinates

relative to the current image. Through expressions 5.6 and 5.8 we estimate the coordinates of

the given pixel considering that the front of the robot is the current direction of the camera.

Finally, knowing the yaw of the camera, we can rotate the given point, already in ground

plane coordinates, and obtain the final coordinates, relative to the robot front.

5.2.1.2 Extracting camera placement angles

To get the roll, pitch and yaw angles of the camera on the space, we make use of the robot

kinematics, combined with the use of the inertial unit present on the robot. Moreover, each

camera of each robot has different angles relative to the head, since the construction of the

robot does not guarantee precise values. Thus, we need to check the cameras roll, pitch and

yaw angles relative to the head, which are fixed angles that result from the robot assembly

process and will add to the correspondent angles estimated from the kinematics analysis.

To help with the estimation of these parameters and to visually confirm both the param-

eters and the results of the presented estimations, a visual tool was created.
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The tool allows us to define and test a set of parameters necessary for estimating the pro-

jection of a pixel on the ground. The parameters include the used camera intrinsic parameters

pixel size and focal length, as well as the possibility of defining the pixel coordinates of the

focal center on the CCD, which can be applied as an offset to all pixel coordinates in case

the camera lens focal point is not aligned with the center of the CCD. The other definable

parameters are the roll pitch and yaw angles of the camera on the head which will always be

added to the correspondent estimated angles.

The application can run from a live feed from both the robot camera and the robot

position sensors, which allows us to verify the kinematic model estimations when using static

well controlled scenarios.

In order to allow the application users to easily confirm the effects of the parameterization,

we solved expressions 5.6 and 5.8 in relation to pixeln and pixelm, so that we can project any

point with metric coordinates over the image, in pixel coordinates.

The developed tool was a need that came up when starting to extract the pixel ground

projection information. The main need was initially to help the development and eventual

corrections of the expressions, based on the knowledge of what the grid should be like over

the image of a known environment. It is also a tool to try and test the angular parameters

of the camera, also allowing to test the intrinsic parameters focal length, pixel size and CCD

center.

Figure 5.8 presents some screen shots of the application with a grid of several points on the

ground plane drawn on the pixel coordinates estimated according the inverse of the projection

model. In the example, the squares of the chessboard have a 36 mm side and the bottom line

is at 311 mm from the robot center projection on the ground, manually measured with tape.

The robot is placed in such a way that it is parallel to the chessboard. The “virtual” grid is

also configured with a 36 mm side.

This tool and setup allows us to determine the parameters already described for each

of the cameras of each of the robots. It is necessary to calibrate all of them independently

because, by construction, the camera placement is not physically guaranteed to be the same.

Also, when looking at the estimations, one must keep in mind that the extraction of body pose

is also subject to error. This means that a set of parameters estimated for a robot’s camera

may become ineffective as the robot joints may become loosen and readings less accurate.

Details on how to extract the camera CCD pose at a given instant are described later in

section 5.2.2.

5.2.2 Camera pose extraction

One of the requisites for projecting the pixel coordinates into the world ground plane is

to know the pose of the camera relative to the ground. To estimate this pose, we make use

of the kinematic model of the robot and the inertial unit measurements.
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a)

b) c)

Figure 5.8: In a), the setup with known measures. In b) and c), a 36mm grid projected on the image,
with some pitch and yaw applied to the robot head.

The main assumption made for this analysis is that the robot has at least one foot in

full contact with the ground. This is assumed because the current walking engines guarantee

that and, when the robot is off balance, the decision layer will trigger a series of routines to

manage the fall and the posterior get up. These procedures have priority over any other, since

a fallen robot will not be useful and thus, during their execution, the information provided

by the camera is ignored until the robot is up again, fulfilling the requisite of having a foot

on the ground whenever vision information is being used.

Every agent cycle, when updating the body model, the camera pose data necessary for

projecting the coordinates are estimated. The values needed are the height, the yaw angle

of the neck and the general orientation of the camera CCD (angles over XX, YY and ZZ)

relative to the ground plane. Also, a timestamp of the instant of each specific pose is kept,

for further use.

Throughout this section, XX axes will be represented with red tones, YY axes with green

and ZZ axes with blue. The definition of the angles will be according to the most standard
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definition of roll, pitch and yaw being rotations around XX, YY and ZZ, respectively.

5.2.2.1 CCD angles extraction

Since we have the pitch and roll angle of the torso relative to gravity, thanks to the inertial

unit, we use that reference and the analysis of the kinematic model to extract the CCD angles

relative to the ground. The estimation is not direct and takes a series of steps to accomplish,

being the first ones to extract the camera homogeneous transformation relative to the vertical

axis defined by gravity.

The example in figure 5.9 has the robot torso with some pitch, which is measured by the

inertial unit, and the head has some pitch and yaw around the neck moving point. The small

axis system on the surface of the head is the camera referential. All the axis in this section

use RGB color code to XYZ respectively and additionally the black and pink axis are the

reference vertical (gravity) axis and robot front axis respectively.

Figure 5.9: Diagram of the camera placement on the robot with correspondent general axes.

• Based on the homogeneous transformation of the head relative to the torso (kinematic

model calculated simply by the head joints values) and of the torso relative to the

vertical (roll and pitch angles given by inertial unit), we get the head reference relative

to the gravity.

• Applying the camera configured position and angles on the head, we get the camera

reference relative to the vertical gravitational axis. The homogeneous transformation
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obtained has a base representation of the orientation of the CCD which we explore

further to extract each individual angle relative to the ground.

We then need to, step by step, estimate each individual angle, measured by using the

inner product between the CCD axes and two reference axes, the gravity axis,
−−−−→
refZZ (which

is a unit vector over ZZ axis), and the robot front axis,
−−−−−→
refXX. The first angle we estimate

is the camera CCD pitch angle:

• With the camera reference transformation based on the gravity previously estimated,

and since we consider the XX axis the focal axis of the camera, we can get a reference

for the XX of the CCD by applying the camera transformation based on gravity to the

unit vector XX (figure 5.10):

−−−−→
xCCD = [R] ∗ −−−−−→refXX

Figure 5.10: Diagram of the first step to estimate the pitch angle of the CCD.

• The next step is to get a YY vector perpendicular to the plane formed by
−−−−→
xCCD and

−−−−→
refZZ and parallel to the ground (figure 5.11):

−−−−−−−−→
yV ertCCD =

−−−−→
refZZ ×−−−−→xCCD

• Finally, given the XX vector of the CCD,
−−−−→
xCCD, and the YY vector on the CCD that is

parallel to the ground,
−−−−−−−−→
yV ertCCD, we can estimate a ZZ vector on the CCD alignment,
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Figure 5.11: Diagram of the second step to estimate the pitch angle of the CCD.

−−−−−−−−→
zV ertCCD. We finally can estimate the pitch angle of the CCD relative to the ground

by measuring the angle between the vertical ZZ vector,
−−−→
refZ, and this last ZZ CCD

reference,
−−−−−−−−→
zV ertCCD (figure 5.12):

−−−−−−−−→
zV ertCCD =

−−−−→
xCCD ×−−−−−−−−→yV ertCCD

pitchCCD = acos(
−−−−−−−−→
zV ertCCD · −−−−→refZZ)

To get the roll angle, we can get the ZZ vector of the CCD,
−−−−→
zCCD, aligned with the top of

the CCD, by applying the transformation of the camera relative to the gravity to the unit ZZ

vector,
−−−−→
refZZ. The roll angle can be estimated by measuring the angle between the vertical

axis,
−−−−→
refZZ and the CCD ZZ axis,

−−−−→
zCCD (figure 5.13):

−−−−→
zCCD = [R] ∗ −−−−→refZZ

rollCCD = acos(
−−−−−−−−→
zV ertCCD · −−−−→zCCD)

For measuring the yaw, we first extract an XX CCD axis,
−−−−−−→
xV ertRot, that is parallel to

the ground, using the
−−−−−−−−→
yV ertCCD and the

−−−−→
refZZ. The yaw angle is the angle measured

between the XX axis parallel to the ground,
−−−−−−→
xV ertRot and the reference XX unit vector,
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Figure 5.12: Diagram of the third step to estimate the pitch angle of the CCD.

Figure 5.13: Diagram of the estimation of the roll angle of the CCD.

−−−−−→
refXX (figure 5.14):

−−−−−−→
xV ertRot =

−−−−−−−−→
yV ertCCD ×−−−−→refZZ

yawCCD = acos(
−−−−−−→
xV ertRot · −−−−−→refXX)
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Figure 5.14: Diagram of the estimation of the yaw angle of the CCD.

5.2.2.2 Camera pose matching

As stated before, in section 5.1, the agent process that extracts the camera pose is not

synchronous with the vision process that evaluates the visible artifacts. The vision process

is configured to use the camera at 15 frames per second, which would theoretically result in

cycles of 66 ms. However, and since this process is computationally heavy and due to the fact

that it runs in best effort scheduling on the NAO single processor, the average cycle times are

larger than the theoretical 66 ms. The vision process time was measured and the obtained

mean cycle time for the process is 137.8± 68.2 ms. Moreover, the agent process runs with a

high priority scheduler and has a cycle time of 10 ms.

These characteristics of the agent and vision processes imply that we have measurements

of the camera pose, explained in the previous section 5.2.2.1, each 10 ms. On the other hand,

the visual information in pixel coordinates that needs to be transformed to metric coordinates

relative to the robot center projection on the ground is only available at a rate more than ten

times lower than the camera pose estimations.

This means that, when new information is available from the vision process, the camera

pose on the current agent cycle is many cycles ahead of the camera pose at the moment

of the frame grabbing. Due to this lack of synchronization, the pixel coordinates of all the

objects detected by the vision process that are based on that frame, the tendency is that

the transformation of those coordinates into the metric coordinates will not produce truthful

results, unless the robot has not moved and the body pose is the same as more than 100 ms
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before.

This phenomena led us to create a history of the camera pose data alongside a timestamp

that can allow us to “synchronize” the pose with the visual information (algorithm 10).

The vision process cycle starts by pinpointing the time of image capture by the camera

in a timestamp just after the frame grabbing which, regardless of the time taken to analyze

the image, is the most approximate time of the capture moment.

This timestamp is compared with the timestamps of each of the camera poses in the history

in order to discover which pose the camera had at the time that the image was grabbed.

Algorithm 10 Algorithm used to choose the camera pose correspondent to the moment of
the last image captured and processed by the vision process.

Input: camPoseList → list of the last N camera poses
vinfo → visual information which includes the frame capture timestamp
Output: synchronizedPose → camera pose closer the the image capture time

1: minTimeLapse = 10000 ms
2: poseIdx = -1
3: currentCamera = projectionModel.getActiveCamera()
4: for t = 0 to camPoseList(currentCamera).size() do
5: currTimeLaspe = camPoseList(currentCamera)[t].timeStamp - vinfo.timeStamp
6: if abs(currTimeLapse) < minTimeLapse then
7: poseIdx = t
8: minTimeLapse = abs(currTimeLapse)
9: end if

10: end for
11: synchronizedPose = camPoseList(currentCamera)[minTimeLapse]

In figure 5.15 we can visualize the projection of visible white points over the center circle

of the soccer field when directly applying the projection expressions presented in section 5.2.1

over the theoretical camera placement on the robot head and when using the correction

estimated both through the use of the camera calibration method presented in 5.2.1.2 and

camera pose extraction and synchronization methods presented in section 5.2.2.

5.2.3 Localization

Providing the NAO robots with a localization method was a need that became obvious

from the moment that the field goals changed from multicolored to single colored, i. e. they

ceased to be one blue and one yellow to become two yellow goals.

Given the experience with the CAMBADA MSL team robots using the adapted tribots

localization algorithm, and considering the objective of sharing methodologies, the same al-

gorithm is used in the NAO robots.

To use the algorithm on the NAOs, however, and given their reduced field of view, some

aspects have to be considered.
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a) b)

Figure 5.15: a) the projection of points over the center circle using the projection without camera
angle corrections. b) the projection of a similar set of points now using the correction of
the camera angles extracted through camera calibration tool.

We know from experience with the algorithm that, whilst not requiring a huge amount

of points to work, it does require the points to be representative of the surroundings. The

most recurrent example is a scenario where the robot can detect hundreds of points over a

single line of the field (figure 5.16a): despite having a huge amount of points to feed the

algorithm, they are not representative of any of the field regions. However, if the robot could

see some tens of points over a set of representative lines (figure 5.16b), these few points would

be enough for the algorithm to provide a good estimation of the pose.

In the CAMBADA robots, this scenario is not a problem due to the fact that the robot

has a reliable omni directional vision system with a relatively high range. Wherever it is on

the field, the vision is capable of detecting enough white points over at least two distinct

lines for the localization algorithm to work. The decision layer does not take into account

localization needs when planning the robot movements.

However, in the NAO humanoid robots, the scenario is very different. These robots have a

very directional vision system with a very limited range. A NAO robot is easily in a situation

where it is facing a side line, thus falling in the scenario presented before where it would see

points over a single line.

Also, there is generally little amount of information during most of the cycles. In sec-

tion 4.4, it was explained that the error minimization task of the algorithm is performed every

cycle effectively because there are always good points over the white lines available and the

prior pose was known and close to the current pose, which allows the algorithm to rapidly

converge. It was also explained that, at the beginning, the algorithm performs the initial

localization by exhaustively testing many poses and choosing the one with less error.

In the NAO robots, we opted not to perform the minimization task every cycle, because

there is no significant visual information available every cycle, since the robot’s vision is very

limited both in terms of range and field of view and thus the results obtained by the algorithm
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a)

b)

Figure 5.16: Example of two sets of points to use in the localization algorithm. In a), despite having
200 visible points, the robot pose could not be well estimated. In b),exactly in the same
pose and with only 44 points visible, the localization estimation would be quite precise,
since those points are scattered over several lines of the field.

would degrade due to the lack of information.

This means that in this league, our approach to localization needs to be more pro-active,

meaning that the robot needs to actively search for points over white lines in order to obtain

information to use in the localization algorithm.

Thus, the idea for applying the localization algorithm in the NAO robots is to perform

the error minimization task with a relatively low period, but trying to guarantee that the set

of points over the lines are significant and can provide a good estimation. The convergence of

the process is quite slow, both because the processing unit is slow and also because the prior

pose will be outdated and farther from the current pose.

As presented in section 5.1, the localization runs as a separate process. This process

is controlled by the agent process, which is the one that decides when to localize. The

two processes make use of a set of values on the RTDB to communicate and synchronize.

Whenever the agent decides to localize, it prepares the necessary visual information, writes it

on the RTDB and signals the localizer process to start the localization algorithm using those
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data, by activating a flag also through the RTBD.

The localizer process is periodically checking the starting flag filled by the agent to know

if it is time for it to execute the algorithm. The current period is one second. When the

flag is active, it proceeds to read all the information required to run. After estimating the

robot pose from the data set by the agent, the localizer process writes back the results on the

RTDB, making them available for the agent to retrieve and fills an ending flag for the agent

to know that the localizer process has finished the task.

On the side of the agent process, when it needs to take a localization action, there are

several constrained tasks that need to be executed step by step:

• First, a localization action needs to be triggered, by either a role decision or as a priority

task triggered by some event, like achieving a low threshold of confidence on the current

pose. Whichever entity starts the process, is responsible for waiting for its conclusion

before continuing.

• When the localization action is triggered, the robot is stopped and stands still to perform

the next steps.

• The localization execution on the agent side moves the head to look in several directions,

covering a very big angular range around the robot. Given the maximum turning angle

of the head and the angular opening of the camera lens, we can cover everything but

the 90o centered on the robot’s back.

• At each of the configured head positions, the agent takes the points over white lines

given by the vision process, converts them to metric coordinates using the projection

model and gathers them. When all the head positions have been covered, all the points

are made available to the localizer process and the flag to start the estimation of the

pose is activated.

• The agent then waits until it is flagged back by the localizer process, meaning that

it has finished the processing and new information about the robot pose is available.

When the agent gets the information, it updates the player pose and considers that the

localization action is finished.

Obviously, the whole process must be performed when the robot is standing still so that

the points of all the perspectives correspond to the same pose on the field.

Figure 5.17 presents two sets of points perceived by a robot with two different head

angles. The perceived points are represented in coordinates relative to the center of the robot

projection on the ground.

These two views, taken and merged through the described process, would result in a single

overlapped set of points with more complete information (figure 5.18) to feed the localization
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Figure 5.17: Two sets of points detected by a robot with two different head angles while “looking
around”. These representations are independently placed side by side.

algorithm. The separate sets of points are merged through matching of each visual set with

the pose of the robot at each given set.

Figure 5.18: The two sets of points of figure 5.17 merged into a single set after the transformations
according to the correspondent poses.

Another example of merging of points on two distinct view angles is presented in fig-

ure 5.19, where the robot has localized itself based on those points. In this particular case,

the estimated pose is affected with some error, since the perceived points are distorted.

The example of the projected points presented in figure 5.15 is also exemplifying the results

of the localization algorithm, where the robot was placed on the goal area corner facing the
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center of the field. In figure 5.15a, with badly perceived points, the robot has localized in a

wrong position, while in figure 5.15b, with good points, the localization algorithm provided

the real pose of the robot.

Figure 5.19: Two sets of points in a single representation from a live run of a robot.

Finally, in figure 5.20 screenshots from the video of a trial run are presented. The robot

was placed over a side line of the field, facing into the field and to the left of the field center

line (figure 5.20a). The initial belief of the robot pose is simply a pose with position and

orientation set to zero, which corresponds to the middle of the field. The visible points over

the center field line before the robot localizes itself are (figure 5.20b) are obviously misplaced

on the field, since they are represented relative to the robot and the robot is not in the correct

pose. After finishing the localization procedure, the robot pose is the correct one and the

matching of the visible points with the real center line is clear (figure 5.20c).

5.3 Summary

The work achieved during this PhD over the Standard Platform League robotic team

appears on a starting phase of development, where several modules were functional but the

team architecture was still not well defined. Thus, one of the objectives achieved during

the work was the definition of a software architecture for the SPL team that allows the

development of software to be modular and organized enough for the team developers to

focus on specific modules that can be easily introduced or updated in the code structure.

The vision of the NAO robots of this team was built to detect the objects of interest on

the image and provide pixel coordinates of each of the points of interest. Early approaches

of the agent would simply try to “follow” the ball on the image, by moving the robot and its

head in an attempt to center the ball on the image. For the robots to be able to play soccer,

they need to perceive more than pixel coordinates and thus a projection model was designed

to allow us to transform the pixel coordinates provided by the vision into metric coordinates
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a)

b) c)

Figure 5.20: Field trial of the localization algorithm. In a) the real robot place on the field. The
field used by the NAOs is the one marked with blue lines. In b) the representation of the
visible points over the field center line and circle, represented relative to robot pose before
localization. In c) the representation of the same points after a successful localization.

centered on the robot ground projection, so that all the detected points (ball, lines, goals,

other robots) can be part of a world model represented in meters.

With the representation of the points in metric units, localization of the robot on the

field can be performed, so that the team robots can cooperate according to a given strategy

and play soccer more effectively. To achieve localization, the tribots localization algorithm

was used. Due to the restrictions imposed by the robot platform, the use of the algorithm is

different from the use in the CAMBADA team and some adaptations were necessary, specially

concerning the algorithm data input, which needs to be carefully prepared. For gathering

points over the white lines to achieve a successful localization, a localization procedure was

created and was described with examples.
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Chapter 6

Tools

While developing within projects such as the CAMBADA or Portuguese teams, we al-

ways need to have tools to work with, either for manual control and test, debug, monitor,

development, among other uses. In this chapter, some of the tools used in both scenarios are

presented, particularly tools that were created or enhanced during the development of this

work because there was a need for them at some point.

6.1 Tools for MSL

In this section we present some of the tools used within the CAMBADA project that were

either created or altered during this work.

6.1.1 Basestation

The basestation graphical tool is the main team interface for configuration, debug, visual-

ization and control. It is a fundamental piece that provides a visualization of the data present

on the shared memory, corresponding to all the agents of the team. During this PhD, it has

been enhanced with new functionalities to provide even clearer information to the users both

during development and competition.

6.1.1.1 The add-ons

During a typical game, a lot of set piece situations occur where the robots need to perform

a synchronized team action. In situations like kickoff, throw in, goal kick, free kick or corner

kick, the team needs to execute a cooperative play to put the ball back in game. The play

may include one or several passes between two robots. The two robots involved in a pass on

a set piece assume specific roles. The one that will first touch the ball and put it in play

after the referee whistle is called the replacer. Any of the other robots that are potential

receivers of the pass are called exactly that, receiver. To achieve synchronization on this task,
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the robots use a set of coordination flags to signal their state during the several stages of a

set piece, including signaling that they are OK to receive a pass or not according to the field

occupancy by the opponent robots.

For some time, when an anomalous situation occurred in a set piece during a game, we

could only guess what went wrong. A clear example was a replacer making a pass to a robot

that did not possess a pass line instead of passing to one that clearly had a free pass line.

One of the upgrades implemented on the basestation was to visually represent the coor-

dination flags during set pieces. The visual indicators are a set of dashed lines with a green

or red color code from each of the possible receivers to the ball, indicating if they evaluate a

free or occupied pass line (figure 6.1a). After the decision is taken, a solid line is represented

to show the final pass decision (figure 6.1b).

With this upgrade, we can easily understand if the problem is in the receivers that eval-

uated wrongly the status of the pass line or if the replacer is the one that made a wrong

decision.

Of course that, during a game, we can instantly detect some problems and even write them

down for further analysis, but there are some details that easily go unnoticed in real time

visualization and easily forgotten after a few days, when the programmers can finally sit down

to evaluate the problems. In order to tackle this problem, we have built a logging protocol

and tool to save the information of the several agents present on the RTDB (as perceived

by the basestation agent) so that we could later analyze the general game situations. The

information of the RTDB is saved to the log every 100 ms.

However, the tool is manually managed and the logging needs to be started and stopped

(at the beginning and end of the game, or even paused on half time) and also saved to file

by the users at the end, since it is kept in memory during the capture. Unfortunately, during

competition we verified that the starting, stopping and saving of logging failed too many

times and some important logs were lost.

Thus, an auto logging feature was added to the basestation, which is completely indepen-

dent from the manual logging tool.

The idea is to create a history of the information, perceived for the last hour (approxi-

mately), that is kept in memory, in a circular buffer approach that, after reaching the buffer

limit, removes the oldest information to input the newest. By keeping this history of the last

hour in memory, it allows the users to quickly analyze immediate situations during develop-

ment, since the last events up to one hour are immediately available in the log playing mode

of the basestation (figure 6.2), and then seamlessly continue with the tests. This is achieved

by changing the source of information to fill the basestation from the direct RTDB readings

to the data array of information kept in memory.

The information kept in memory is periodically flushed out to temporary files of approx-

imately one minute of events, also using a circular buffer approach by replacing the older
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a)

b)

Figure 6.1: Basestation pass visualization. In a) the evaluation of the pass lines to each receiver.
Robot 3 signals that it cannot find a free line of pass, robot 4 signals a direct line of pass
and robot 2 signals that it has a free line of pass to a nearby position that it will use to
get away from the opponents. In b) the chosen action is represented, in this case robot 2
is just getting to the arranged position as robot 5 is performing the pass.

information. These files are not readable by the log player, since they do not possess the

initializers and terminators of the log format, but can be used to manually build a log file

in case we need the log of a run where the basestation crashed for some reason. When the

basestation is closed normally, a single complete log file is created through the concatenation

of all the temporary files.
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Figure 6.2: The log player widget of the basestation, which allows to playback a log from a file or,
by default, from the last events up to one hour. It can be easily played frame by frame
(100 ms is the time between frames) to detect small state changes.

This methodology allows the team to have a backup of a game log in case the proceedings

with the logging tool failed. The choice of keeping the information for the last hour is precisely

to guarantee that a whole game is covered, since the 30 minutes game time plus 10 minutes

of half-time plus delays are normally under one hour.

6.1.2 Cursor graphical user interface

One of the tools used for testing and calibration of the robot hardware platform, both in

terms of wheel movement and kicker test and manual calibration, is our cursor application.

This application allows direct control over the robot platform and direct access to the

robot body status information. To run the cursor the only need is to launch also the hwcomm

process to send and receive messages from the micro controller network.

The functionalities of the cursor include sending movement orders for the motors, in the

form of a linear velocity with component over XX and YY and an angular velocity. It allows

also to send kicking and passing orders, with manually defined power values and turning the

grabber on and off.

On the other hand, the cursor allows us to visualize the information provided by the

platform, namely the batteries statuses, the values of the orientation sensor, the values of the

odometry in each component XX, YY and angular, the power of the kicking device and its

status on charging and readiness and the value of what we called the barrier, which detects

if something is in the front gap of the robot.

6.1.2.1 The new interface

The cursor application was previously a console interface driven by key press, meaning

that any information would only be displayed when a given key was pressed. This interface

became obsolete when the need to constantly verify some sensors values came up.

174



The application was given a graphical user interface that now displays all the relevant

sensor information, as well as the currently defined velocities (figure 6.3). Several new features

were added when the robot platform changed, since it has new sensors that need their values

displayed. Some of the main features are used for robot configuration very frequently, such

as each time we arrive at a new field of play or whenever there is an intervention to the robot

platform for repairing or upgrading the micro controllers software.

Figure 6.3: The cursor graphical interface

• When manually configuring or testing the kick device, the kicking action must be taken

only when the capacitors are already charged, which is our reference. With a color code,

the user can easily verify when it is OK to make the kick and read the voltage power of

the kick capacitors. The interface keeps and displays the value of kick power to be used

and two buttons/actions are available: kick and pass. Since a kicking action is only

possible when the ball is engaged on the robot front gap (this constraint is directly in

the kicking device micro controller for security reasons), the kick and pass actions are

only available when the barrier is active.

• While the previous robots possessed an infra red sensor on the ball gap in its front that

allowed to know if the ball was engaged (or at least if an object was there), the new

robots do not possess that sensor. The grabbing system was greatly enhanced and is

now composed by two motors with Swedish wheels that pull the ball towards the robot.

These motors are mounted on rotation axis so that their height changes when the ball
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is placed inside the robot front gap, becoming higher as the ball is more inside the gap.

The motors positions are now the feedback of the grabbing system, which means that the

barrier is now active when both motor are above 75% of their total course to guarantee

that the ball is being hold. The raw values of each o the motors of the grabbing system

were also added to the cursor. The interface has a set of buttons to activate the grabber

motors in one of the several existent modes and continuously displays the position of

each motor. Furthermore, the grabbing system needs to be calibrated to define the low

and high position of each motor. The low position is calibrated when the motors are in

rest and the high position is calibrated when the ball is completely inside the mouth. A

protocol was defined so that these two values can be sent to the grabber micro controller

and the cursor interface setup buttons to perform that task.

• The yaw, compass and mean values are other frequently used features, for verification

and calibration of the magnetic reference. The reference used is one of the goals of the

field and the process of getting the necessary value is to manually (using the cursor)

move the robot around the field while keeping it always directly toward the goal line of

the chosen side. The mean value of the compass is used to read the angle of the chosen

side to later include it on the configuration file. During the process, we verify that the

angle coherent throughout the field. If that is not the case, we probably will not be able

to use the compass values.

6.1.3 Video editor

Given the need for development on all the areas of the soccer team, our vision system

allows the recording of videos from a robot camera feed for offline analysis and development.

When developing the front vision with the perspective camera, presented in section 4.3.3, and

for validation of the algorithms, we felt the need to edit the saved videos and cut specific

pieces of it to, for example, have a video where the ball was present in every frame.

A new tool was created for that purpose, with a simple interface that allows to “bookmark”

the desired initial frame and end frame, play the result and save it to a new video (figure 6.4).

6.1.4 Laser range lob analyzer

Over the years, the kicking device of the robots has been configured individually for each

robot with a methodology of kicking from several setpoint distances with different kick powers

and then matching a polynomial function to estimate the necessary kick power according to

the distance to the goal.

Particularly in the old platform, we always verified that there were differences between

robots and also differences within the same robot. However, visually registering the point

where the ball hit the ground was the only way to try to evaluate the ball trajectory.
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Figure 6.4: Screenshot of the video editing tool.

At some point, we felt the need to have some precise tool to analyze the ball trajectory

so a battery of tests could be created in order to try to, one by one, isolate the factors that

could provoke such differences. When a laser range finder became available, the idea to use

it to get precise measurements of the ball immediately came up.

This tool represents the data from a laser range finder sensor in Cartesian coordinates

and is used to extract the ball trajectory. The plane of the lob shot and the laser plane need

to be aligned, which is achieved by positioning a robot and a laser in a straight line and the

ball is shot on that plane (figure 6.5). The visual application starts by gathering the points

for a given number of cycles and extracts a “background” based on them. This implies that,

before kicking the ball, we need to keep the kicking plane clean of moving objects.

Figure 6.5: Illustration of the setup for measuring the ball kick trajectory.

After extracting the background, the points detected by the laser range that are not part

of it are considered the ball. This means that the captures must be performed in a controlled

way to avoid anyone or anything besides the ball to cross the laser capture plane. Taking

that into account and given the small noise, a simple distance clustering is performed over
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the points extracted and the limits of the cluster are estimated. Since we consider the ball as

a single point on its center, and given the limits of the cluster, we project the middle point

of the cluster by a ball radius (11 cm) in the direction angularly opposing the laser range,

which is the observation point. This projection is exemplified in figure 6.6

Figure 6.6: Illustration of the projection of the ball center based on points perceived by the laser range.
Several examples over the trajectory are illustrated.

In figure 6.7 we have a screenshot of the application, where the background data is repre-

sented in green and the current object in black. The estimated ball center is the red dot and

the laser, which is the origin of the Cartesian system, is the blue dot.

When creating the new platform, the kicking device was designed and implemented such

that its repeatability was as good as possible. For verifying this assumption, we used the data

provided by this tool for a set of kick powers on each robot. The obtained results confirmed

a quite acceptable repeatability on each robot (figure 6.8). With these results, we were also

able to extract the kick parabola for each of the used setpoint kick powers and introduce an

analytical configuration of the kicker on our robots.

6.1.5 Kick power estimation

The previous kicker approach was based on a table relating distance with kick power,

extracted by having the robot kick with several powers at predefined distances until we

visually obtained an acceptable height of the ball on the goal line. The main problem with this

approach was that the kick configuration would work rather well when the robot was stopped

but not so well when it had movement. Also, being the configuration dependent on a human

observation of the ball height, the configuration could easily be very different depending on

the observer, since the acceptable height was measured through instantly observing if the ball

crossed the goal line at a good height, and “good height” have different meanings to different

observers.

In this new approach, we analytically estimate a relation of initial speed with kick power.

The advantage of this approach is that, when deciding to kick, we can directly affect the kick

power with the current robot speed, since we are directly working on the same physical units.
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Figure 6.7: Screenshot of the laser range tool. The green dots are points detected as background,
which are most of the points detected by the laser range finder. Black points are points
that are part of moving objects, the bigger blue point centered horizontally is the laser
range position and the red point among the black points isolated to the right of the laser
range is the estimated center of the ball points.

Figure 6.8: Representation of the kicking parabolas of a robot for different kicking powers and trials,
represented as pNN-X where NN is the used kicking power and X is the trial.

Using the laser range data, we can easily estimate the maximum distance and height of

each parabola. The defined procedure implies that two kicks are performed and captured for

each of the setpoint kick powers. With the maximum parabola distance, D, and the maximum

parabola height, H, we extract the exit angle, θ, and the exit ball velocity, V0.
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Considering that the angle, θ, is constant because it is only related to the shape of the

kicker and the point where it hits the ball, we consider a mean of the angles of the several

parabolas of each robot as the value of θ. A kicking table is created with the exit velocities

for each of the setpoint kick powers and those values are used as reference when the robot

estimates the power of a kick.

For any given distance, we can estimate the exit velocity of the ball with V0 =
√

D×g
sin(2θ) ,

which is considered when the robot is stopped. However, since many of the kicks are made

when the robot is moving, we have to consider that the robot frontal velocity component

will affect the ball exit velocity on its XX component. Thus the velocity considered for the

kicking order is Vkick = V0 − Vrobot × cos(θ). One of the configurations of this kicking power

estimation method is a constant that affects how much of the robot velocity is transfered

to the ball exit velocity, since we noticed that different floors affect this velocity differently.

Particularly, as the floor becomes more slippery, the effect of the robot velocity on the ball

exit velocity is more complete. The limit situation would be a floor with no friction, which

would correspond to a 100% velocity transfer.

On the other hand, when estimating the necessary kick power, we use the exit veloc-

ities and kicking setpoints as reference to make a piecewise linear approximation of curve

corresponding to those setpoint pairs of values. Thus, the kicking power for any given dis-

tance and robot velocity is given by the linear equation between the kicking velocity setpoint

immediately lower than Vkick and the one immediately higher than Vkick.

In table 6.1 a summary of the kick effectiveness in terms of height on the goal line is

presented. These results were obtained in the final games of two competitions of 2014, Ira-

nOpen2014 where this approach was not implemented and Robotica2014, where this approach

was implemented.

We thus obtained a significant improvement on the accuracy of the estimation of the kick

power necessary to shoot the ball at a useful height, and not shoot it too high to hit the bar

or go over it. An efficiency of 50% was obtained during the IranOpen, while in the Robotica

a much better efficiency of 83% was achieved. The described method increased the efficiency
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On height Too high Efficiency

Previous method 5 5 50%

Current method 10 2 83%

Table 6.1: Comparison of number of shots with good height (i.e. good kick power) and shots too high
with the previous approach and the new proposed approach.

of the estimated kick power by more than 60%.

6.2 Tools for SPL

In a way similar to the MSL, in the SPL we also have the need for graphical tools to

help in the development and debug of the team code. Some of the tools presented in the

MSL section were inevitably ported and adapted for the SPL, while other specific tools were

created.

6.2.1 Direct joint control

One of the possible types of behaviors used in the Portuguese Team is the slot behavior.

This type of behavior is based on the sequencing of static body poses over time, thus creating

the desired movement. To create such movements, one has to write the positions of every

motor of the robot body for each movement pose.

The direct joint control tool appears as an easy to use interface to facilitate the creation of

poses for slot behaviors. It allows the user to puppet the robot body and fix it in given poses,

make small corrections and export the list of values in the format used on the slot behaviors.

Currently the export action is triggered by a single shortcut key and writes the data in a

default named file, meaning that between each export, the user must copy the information.

It allows us to remotely control each of the servo motors of the robot, by defining both the

stiffness level and the position angle. When remotely connected to a robot, we continually

have the information of the current position of each of the motors, as well as the roll and

pitch angles provided by the inertial unit (figure 6.9).

The interface is composed by three different sets of values:

• On the left we have a set of text labels with all the motors current position and the roll

and pitch angles. These values are read from the robot sensors and thus are presented

with simple text labels, i. e., they are read only.

• In the center we have the angle interface for each of the motors. Here we can define,

either by manually typing the values or using the spinbox interacts, the angular value

for any given motor.
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Figure 6.9: Direct joint control tool.

• On the right we have the stiffness interface, which allows the user to define the stiffness

value for any motor. This value is defined as a percentage between 0 and 1, 0 meaning

motor disabled and 1 meaning motor in full force.

The check box on top left opens or closes a connection to the selected robot on the check

boxes immediately to its right. These check boxes are mutually exclusive and thus selecting a

different robot with a connection active will close the current connection and try to connect to

the new robot. The rightmost check box enables or disables the motors. Even when enabled,

the user can keep some motors free by defining their stiffness value to 0.

The main advantage for defining the poses is that we can disable the motors and puppeteer

the robot. By enabling the motors we can fix them at the desired pose, evaluate it and do

minor corrections by moving any motor through the spinbox interface.

6.2.2 Camera parameters configuration

In section 5.2.1.2 a graphical tool is referred to help in the estimation of the camera

parameters, as well as in the verification of the projection model.

This tool is composed by a main display widget where a video is played and virtual

elements are overlapped according to the configured projection model. The video can either

be a loaded file or a live feed from a NAO robot’s camera. In video mode, the controls on the
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top left of the main window (figure 6.10) are composed by a slider and spinbox that can be

used to navigate to any given frame or the video can be played normally. When the option

to go live is used, an IP address must be provided in the correspondent text box.

Figure 6.10: Example of the perspective camera calibration tool. It allows to lively test several configu-
ration parameters of both intrinsic and extrinsic camera parameters and allows to visually
confirm the projection model by comparison of known elements (like a chessboard) with
an overlapped grid on the image.

On the right side of the application window are a set of parameters used by the projection

model. These parameters are divided in three categories:

• On top, we have four values that describe the distances of some reference points (total

height of the head and offset from head center to camera CCD in the front) and the

angles of the neck actuators. These values are either manually defined when in video

mode or provided by the agent process through the RTDB when in live mode. Below

the first values, editable in video mode, some processed values are presented that are

estimated trough combination of the first ones.

• A second set of parameters are the camera angles related to the head axis. These values
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are editable and allow us to, through trial and error, define the angles of the camera

placement, which are not physically guaranteed by the robot assembly.

• The last set of values allows us to define some intrinsic parameters of the camera, which

are not provided by the robot company and thus need to be “discovered” through

testing, mainly the focal length of the lenses.

The projection algorithm used by the robots is the one used by the tool, which takes all

the defined/read values into account (as explained in section 5.2.1.2) and projects a virtual

grid with user defined size over the real image, allowing the user to visually access the fit of

the projection over the ground. Typically this verification is done by verifying the fit of the

virtual grid over the field lines which are well known or, as seen in figure 6.10, over a well

known printed grid.

6.2.3 Basestation

A basestation application is an important feature to any league of robotic soccer, since it

is a way (usually the only way) to have an idea of what is happening with the robots in real

time.

A basestation application similar to the CAMBADA one was created for the NAOs data

during the course of this work. Since the work included the definition of the code structure,

the adaptations were embedded in the basestation directly.

The general look of the application is a 2D version of the CAMBADA, as well as the

general information provided by the robots, since the scenario is the same.

The main feature that was added, mainly due to the lack of graphical capabilities on the

NAO robot processing board, is the possibility to visualize the white points over the lines

detected by a robot (figure 6.11).

This feature was added so that, during development, we could more easily have a notion

of what are the white points over the lines perceived by the robot. It is also very useful to

visually verify if the localization algorithm is providing a satisfactory estimation.

6.2.4 Cursor

To assist the development of code for the SPL team, the creation of a remote control

application with which we could drive the agent around while gathering sensor data to perform

tests was important. The cursor tool is used for that purpose, in this case by making use of

the Aldebaran walk engine, but prepared to use any omni directional walk that is defined by

separated speeds for each velocity component. The tool also became an important feature to

test the walk on different surfaces and infer a satisfactory set of walk parameters to promote

stability of the walk.
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Figure 6.11: The SPL basestation field with the representation of the relative positions of the detected
white points.

With this tool, the user can set the parameters of the walking speed as defined by the

Aldebaran, with a percentage of XX axis linear speed, YY axis linear speed and angular

speed. Also a frequency of execution can be defined (figure 6.12).

In the case of the Aldebaran omni directional walk, the relative “speed” is basically a

percentage of the maximum feet opening in the respective direction, while the frequency is

the actual frequency of the movement.

However, the cursor can be applied to any omni directional walk that is parameterized in

each direction. The agent implementation is the one that defines how the parameters will be

used.

One other important aspect to consider is that the NAO cursor application is not stan-

dalone like the CAMBADA cursor application. This means that, while in the CAMBADA,

the cursor is executed directly on the robot PC, in the NAOs, that is not possible, due to the

lack of graphical capabilities on their on board processor. The cursor application is executed

on the control PC and the commands redirected through the basestation.

Additionally, the tool structure allows to bind slot behaviors to different buttons to allow

the user to use the cursor to test these type of behaviors. The current version of the cursor

has two buttons binded to the kick with left leg and kick with right leg slot behaviors.
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Figure 6.12: The NAO GUI cursor application

6.3 Summary

During the development of projects such as robotic soccer teams there are lots of tasks

that require testing, visualization, validation and configuration of parameters and results.

To facilitate the daily work on development and testing of these projects, some tools were

created.

Concerning the CAMBADA team and the Middle Size League, several tools were im-

proved or created that were described in this chapter. The basestation, being the main team

interface, needs to provide functionalities that allow the developers team to understand what

is happening with the robots during their operation. Some important functionalities were

added and were described.

Remote control of a robot, while being completely against the league and team objectives,

is an important feature for test and development. The cursor remote control tool of the

CAMBADA robots was developed with a graphical interface that allows both testing of low

level aspects, like holonomic platform control, and configuration of some team aspects, such

as the robots grabbing devices and the reference heading on each field of play.

During the development of vision algorithms, it is common to make use of the vision save

feature that saves the camera video feed. These videos are important features for testing and

developing the vision algorithms and sometimes specific clips from large vision captures are

desired. A small graphical application was developed to allow cropping videos taken from the
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CAMBADA robot cameras.

A laser range finder is a high precision sensor that is useful for many situations. In the

CAMBADA team, it allowed the development of an application to analyze a robot’s kick

trajectory in a way that was not possible before. With a well defined setup and testing, we

were able to better understand the robot kick and develop a new, more efficient approach for

estimation of the kick power that the robot needs to use in different situations. This approach

was explained and its results presented.

Concerning the Standard Platform League team and given the need to create behaviors

with pose sequencing, a direct joint control tool was created to allow an easy and quick to use

interface to puppeteer a robot into a given pose, fix it, make small adjustments and generally

testing the pose.

For assisting in the development and test of the projection model and all the configura-

tion of all the necessary parameters used by the model, an application was developed. The

application allows to immediately verify the results of the parameterization defined by the

user through the drawing of a grid with known size over the real image, allowing the user to

compare the virtual grid with real artifacts that should be present on the image of a defined

setup.

Similar to the MSL team, a basestation application was created to allow configuration

and visualization of the team robots performance. This basestation is presented with the

possibility to visualize the white points seen by a robot, since it is not possible to visualize

them on the robot due to lack of graphical capabilities of its processor.

Finally, a remote control application was presented, which is an important tool mainly for

testing parameterization of walking parameters.
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Chapter 7

Conclusion and future work

This document presented several solutions and analysis of several different aspects regard-

ing world modeling of a soccer robot. In this final chapter, a brief conclusion and discussion

of their effects and effectiveness is presented, as well as a small discussion of some future work

on some of the covered topics.

7.1 Conclusions and discussion

The robotic soccer scenario is a worldwide used test bed to promote development of

autonomous multi agent robotics because of the challenges it poses for the several sub areas

of the multi disciplinary robotics area. Modeling the robot’s own state and the state of its

surroundings is one of those areas.

The accomplished work focus mainly on the construction of the world model represen-

tation of a soccer robot by gathering the raw information available through all the sensors

of a robot and merging all the information into a structured repository of information that

contains extended knowledge about each element of the world, inferred through information

fusion methodologies. This structured repository is the world model or worldstate.

Considering the worldstate of the Middle Size League robots in the context of this PhD,

the several tackled problems were solved through a set of solutions that, in a general way,

provided better results and are thus fully integrated in the team official competition code.

The knowledge about the ball is mainly composed by its position and velocity. The

proposed solution for estimation of this knowledge is based on a Kalman filter with reset

capabilities for estimation and refinement of the position and the estimation of the velocity is

achieved by a linear regression interlaced with the position filter and reseting feature. Despite

the unavailability of a global detection system that could provide a ground truth for analyzing

the results of this approach, the possible analysis made (by taking manual measurements of

189



controlled test scenarios and observing the general robot behavior when interacting with

the ball) shows a significant improvement on robot performance, mainly when considering

stability of the movements and coherence of decisions.

To further extend the knowledge about the ball, one limitation imposed by robot construc-

tion had to be overcome: the inability to detect the ball when it is airborne. To overcome this

limitation, a RGB camera was installed on the goal keeper robot and a solution for detecting

and estimating the ball position when airborne was designed. This solution was subject to

several steps and progressed to a state where the results obtained were good enough to apply

in the official competition code. The information resulting from this approach provided infor-

mation to the integration module so that it could fill the “gaps” about the ball whereabouts

when it was kicked high. Although the amount of information achieved by this approach was

used and provided a slight improvement of robot performance, a solution that provides more

complete information was desirable. The methodology for the detection of an airborne ball

was subject to a new approach when the Kinect depth sensor became widely available. By

exploring the capabilities of this sensor, we are able to obtain more reliable results is terms of

ball detection and candidate validation, as well as precision of the estimation of its position.

During the RoboCup2014, the use of the information provided by the airborne ball detection,

using Kinect, by the goal keeper showed good results in terms of robot behavior, allowing it

to intercept some kicks that were not detectable before.

The results obtained in terms of successfully detecting robot lost situations and start a re-

localization process have been observed over the years and proved to work in most situations.

The solution, however, has a limitation to its use in the situations where the field of play is

strongly affected by magnetic fields, since the values measured by the electronic compass are

completely incoherent.

When inferring knowledge about the visually detected obstacles on the field it is impor-

tant to characterize each of them so that a distinction between team mates and opponents

is provided. An integrated solution was designed for creating the notion of obstacle from

visually independent points and identifying the obstacles visible on the positions of team

robots as the correspondent team mate. This solution is successfully working on the official

competition code and provides a high success rate. The team mate identification provided by

this solution is currently underneath the pass decision algorithms that evaluate the pass lines

and pass receiver robot based on this information. Further developments concerning obstacle

characterization led to the creation of an obstacle tracking methodology, based on a multiple

hypothesis tracking over a Kalman filter implementation, that allows each opponent robot

to be unequivocally identified and tracked around. This solution is also fully integrated in

the official competition code and has already been explored by the decision layer in the im-

plementation of the opponent covering capabilities, which are used during the game to cover

pass lines for opponent in every setpiece situations of the opponent team. Given the improved
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results on obstacle detection, which include more stability and precision of the obstacles, an

obstacle avoidance methodology was implemented that takes advantage of this stability for

improved coherence of the avoidance decision. The avoidance algorithm is being used on the

robots and provided an increase of successfully avoided collisions.

Concerning the solution presented for generating points on a trajectory for the robot to

follow, it has been observed that the robot performance through this method is similar when

performing simple linear movements where the robot starts and ends the movement with zero

velocity. However, it was verified that the solution is unstable when the robot target changes

rapidly, which is currently an issue since the Middle Size League is a fast paced scenario.

Further development is due to tackle a solution that can cope with this issue.

In the Standard Platform League scenario, the developed work included the design and

implementation of a base software architecture for the NAO robots. The proposed architec-

ture, as well as the base implementation of its several modules are being used as the current

architecture for the Portuguese Team.

For allowing the robot to build its world model in terms of metric units for position

and velocities of the game entities, a method to transform the pixel coordinates of artifacts

provided by the vision into metric coordinates on the ground plane, relative to the robot was

proposed. This projection model has been defined, implemented and used on the NAO robots

during the official competitions.

To tackle the localization problem on the SPL, an adaptation of the tribots localization

algorithm was explored. This approach provided good results when the available data pro-

vides discriminate information. To achieve good results in the localization, and considering

that the NAO field of view is very reduced, the proposed solution is for the robot to follow

an active localization methodology and, from time to time, focus its behavior on gathering

information of points over field lines around itself, by stopping and looking around in distinct

directions. This solution has been used and provided good results for the localization problem.

During the development of solutions for the robotic soccer scenarios several tools were

used to aid testing, configuration and debugging, both for the work accomplished in the MSL

and in the SPL contexts. Most of the used tools were improved or fully developed in the

context of this PhD work and were a crucial aid in the development of the solutions presented

on this work.

One particular tool developed in the MSL context allowed the development of a new

approach for the CAMBADA robots that critically increased team performance. The data

resulting from the laser range lob analyzer tool provided a depth insight about the kicking

capabilities of the CAMBADA robots and thanks to it, a new solution for estimating the kick

power necessary for a robot to kick the ball was designed. This solution greatly increased
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the precision of the CAMBADA robots kick in terms of height, which was evident during the

games due to the drastic reduction of balls shot too high (on the goal top bar or over the

goal) and consequent increase of balls reaching the goal line with the desired height.

7.2 Future work

During the development of the several tasks of this work, some development directions

were clearly identified and are presented next:

• Thinking about the airborne ball detection using the Kinect sensor, one should note

that currently the process returns the position of the center of the point cloud blob

which is evaluated as possessing the higher mass. We expect that, even in the false

positive situation of the captures, the ball was detected on the point cloud, but with a

mass smaller than the returned false positive. A near future improvement of this process

should be to, instead of returning the thicker mass as the only candidate, return a list

of the several masses detected that has a minimum mass to be a ball. The choice of

which information to use is then handled by the integrator module on the agent process,

which can try to contextualize each candidate with both the surroundings and historical

information.

• As future work on the matter of the IMU, the most coveted one is the use of the other

IMU measurements, both in terms of accelerations and rotations to improve the robot

proprioception. The merging and filtering of the three accelerations and three angular

speeds provided by the IMU can result in a way to detect if the robot is stuck, if a

collision occurred and if the current acceleration is the supposed one or the robot grip is

not as expected. Of course that after detecting any of the situations, several behavioral

approaches must be implemented to cope with any given situation.

Another desired feature that can be achieved by using the IMU, and given its position

on the top of the robot and fixed with the vision system, is to estimate the angles of

the camera relative to the ground plane, by using the gravity as reference. This could

allow the distance relation of pixel coordinates to ground coordinates to be adjusted in

real time according to the camera pose. This would provide better estimations of the

visible points of interest and thus a smaller displacement error than the current one.

• Concerning the obstacle avoidance algorithm, there are two main improvements that

can and should be implemented in a near future, both concerning the free sonar search

algorithm.

One of them is to avoid general search directions in the first cycles of the avoidance

algorithm and take into account the position of the robot on the field. We have verified

192



that in some situations, when the robot chooses to avoid obstacles in a direction that

takes it to the field line and since we do not allow the robot to go out of the field, mostly

for safety reasons, the behavior on those limit situations becomes unstable. Thus, one

can take the position into account and make the search for a free sonar to the inside of

the field, even if it takes the robot back, which we consider more useful and safer than

forcing it to the outside of the field.

The second main improvement would be to analyze the free directions in different ways

for different types of obstacles, team mate or opponent. We believe that, given the

shared information of the team mates, which include the velocity vector, the avoidance

can be more adaptive in such way that an avoidance decision can be almost considered

as a shared decision. Moreover, the idea came up to share the target of each robot in

its information so that its general direction can be determined and used to improve the

avoidance decision.
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[60] António J. R. Neves, José Lúıs Azevedo, Bernardo Cunha, Nuno Lau, João Silva, Fred-

erico Santos, Gustavo Corrente, Daniel A. Martins, Nuno Figueiredo, Artur Pereira,
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[105] Thomas Whelan, Sonja Stüdli, John McDonald, and Richard H. Middleton. Line point

registration: A technique for enhancing robot localization in a soccer environment. In
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[112] H. Mellmann, M. Jüngel, and M. Spranger. Using reference objects to improve vision-

based bearing measurements. In IEEE International conference on Intelligent Robots

and Systems, pages 3939–3945, Nice, France, September 2008.

[113] Chieh-Chih Wang, Chun-Hua Chang, Chun-Kai Chang, Bang-Cheng Wang, and Kun-Li

Lin. NTU RoboPAL Team Description for RoboCup 2013, 2013.

[114] Chun-Hua Chang, Shao-Chen Wang, and Chieh-Chih Wang. Vision-based cooperative

simultaneous localization and tracking. In IEEE International Conference on Robotics

and Automation, pages 5191–5197, Shangai, May 2011. IEEE.
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235–249, Angra do Heróısmo, Açores, Portugal, September 2013. Springer.

[137] António J.R. Neves, Armando J. Pinho, Daniel A. Martins, and Bernardo Cunha. An

efficient omnidirectional vision system for soccer robots: From calibration to object

detection. Mechatronics, 21(2):399–410, March 2011.
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[147] Nima Shafii, Lúıs Paulo Reis, and Nuno Lau. Biped walking using coronal and sagittal

movements based on truncated fourier series. In Javier Ruiz-del Solar, Eric Chown, and
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