
Università degli Studi di Padova

Department of Information Engineering

Master Thesis in Control Systems Engineering

Validation of robotic navigation
strategies in unstructured

environments: from autonomous
to reactive

Supervisor: Prof. Angelo Cenedese

Co-supervisor: Dott. Nicola Lissandrini

Master Candidate: Giorgia Masin

Academic Year 2022/2023

Abstract
The main topic of this master thesis is the validation of a navigation algorithm
designed to perform autonomously in unstructured environments. Computer simu-
lations and experimental tests with a mobile robot have allowed reaching the estab-
lished objective. The presented approach is effective, consistent, and able to attain
safe navigation with static and dynamic configurations.
This work contains a survey of the principal navigation strategies and components.
Afterwards, a recap of the history of robotics is briefly illustrated, emphasizing the
description of mobile robotics and locomotion. Subsequently, it presents the develop-
ment of an algorithm for autonomous navigation through an unknown environment
for mobile robots. The algorithm seeks to compute trajectories that lead to a target
unknown position without falling into a recurrent loop. The code has been entirely
written and tested in MATLAB, using randomly generated obstacles of different
sizes. The developed algorithm is used as a benchmark to analyze different predic-
tive strategies for the navigation of mobile robots in the presence of environments
not known a priori and overpopulated with obstacles. Then, an innovative algorithm
for navigation, called NAPVIG, is described and analyzed. The algorithm has been
built using ROS and tested in Gazebo real-time simulator. In order to achieve high
performances, optimal parameters have been found tuning and simulating the algo-
rithm in different environmental configurations. Finally, an experimental campaign
in the SPARCS laboratory of the University of Padua enabled the validation of the
chosen parameters.

Abstract
L’argomento principale di questa tesi è la validazione di un algoritmo di navigazione
progettato per la navigazione autonoma in ambienti non strutturati. Simulazioni al
computer e prove sperimentali con un robot mobile hanno permesso di raggiungere
l’obiettivo stabilito. L’approccio presentato è efficace, coerente e in grado di rag-
giungere una navigazione sicura sia per configurazioni statiche che dinamiche.
Questo lavoro contiene un’indagine sulle principali strategie e componenti di nav-
igazione. In seguito, viene brevemente illustrato un riassunto della storia della
robotica, con enfasi sulla descrizione dei robot mobili e della locomozione. Suc-
cessivamente, presenta lo sviluppo di un algoritmo per la navigazione autonoma
attraverso un ambiente non noto per i robot mobili. L’algoritmo cerca di calcolare
traiettorie che portano alla sconosciuta posizione di target senza ripetere contin-
uamente gli stessi movimenti. Il codice è stato interamente scritto e testato in
MATLAB, utilizzando ostacoli generati casualmente di diverse dimensioni. Tale al-
goritmo sviluppato, viene impiegato come benchmark per analizzare diverse strategie
predittive per la navigazione di robot mobili in presenza di ambienti non noti a priori
e sovrappopolati di ostacoli. In seguito, viene introdotto e analizzato un algoritmo
innovativo per la navigazione, chiamato NAPVIG. L’algoritmo è stato sviluppato
utilizzando ROS e testato nel simulatore a tempo reale Gazebo. Al fine di ottenere
prestazioni elevate sono stati ricavati dei parametri ottimali tramite la simulazione
dell’algoritmo in diverse mappe. Infine, una campagna sperimentale nel laboratorio
SPARCS dell’Università di Padova ha permesso l’implementazione di NAPVIG in
un robot mobile e la successiva validazione dei parametri ricavati dalle simulazioni.

Contents

1 Introduction 9

2 Overview of robotics 11

2.1 Introduction . 11

2.2 Automation vs. autonomy . 13

2.3 Applications and motivations of robots 15

2.4 History of robotics . 17

2.4.1 1940-1960 . 18

2.4.2 1960-1970 . 19

2.4.3 1970-1980 . 19

2.4.4 1980-2000 . 21

2.4.5 2000-nowadays . 21

3 Mobile robots 27

3.1 Introduction . 27

3.1.1 Mobile robots components . 28

3.2 Locomotion of mobile robots . 28

3.2.1 Legged locomotion . 33

3.2.2 Wheeled locomotion . 33

3.3 Unmanned ground vehicles . 35

3.3.1 Sliding and rolling constraints 37

3.3.2 DDR . 41

4 Navigation of autonomous mobile robots 43

4.1 Introduction . 43

I

CONTENTS

4.2 Indoor navigation . 46

4.3 Outdoor navigation . 46

4.4 Obstacle avoidance . 46

4.5 Perception . 47

4.5.1 Sensor classification and performance 47

4.5.2 Wheel/motor sensors . 49

4.5.3 Tactile sensors . 49

4.5.4 Heading sensors . 49

4.5.5 Ground-based beacons . 49

4.5.6 Active ranging . 50

4.5.7 Motion/speed sensors . 50

4.5.8 Vision-based sensors . 50

4.6 Localization . 50

4.6.1 Belief representation . 52

4.6.2 Map representation . 53

4.6.3 Localization approaches . 55

4.7 Cognition . 58

4.7.1 Dijkstra’s algorithm . 62

4.7.2 A* algorithm . 63

4.7.3 D* algorithm . 63

4.7.4 RRT algorithm . 64

4.7.5 Ant Colony Algorithm . 64

4.8 Motion control . 64

5 Algorithm design 67

5.1 Introduction . 67

5.2 Mathematical formulation of the problem 68

5.3 State . 68

5.4 Obstacles . 69

II

CONTENTS

5.5 Update rule . 70

5.5.1 Step 1: intersections . 70

5.5.2 Step 2: decision . 71

5.6 Results . 73

5.6.1 100 keypoints . 73

5.6.2 200 keypoints . 75

5.7 Future works . 77

6 NAPVIG algorithm 79

6.1 Introduction . 79

6.2 Algorithm description . 80

6.3 Simulation and improvements . 84

6.3.1 Simulated environments description 84

6.3.2 Parameters tuning and results 86

6.4 Real environment tests . 91

6.4.1 Experiments . 93

6.4.2 First test . 94

6.4.3 Second test . 95

6.4.4 Third test . 96

6.5 Results and future works . 99

III

List of Figures

2.2.1 How four aspects of automation and autonomy combine to create an
intelligent system. 14

2.2.2 Sense, plan, act for autonomy. 15

2.4.1 Examples of robots from the period 1940-1960. 18

2.4.2 Examples of robots from the period 1960-1970. 19

2.4.3 Examples of robots from the period 1970-1980. 20

2.4.4 Examples of robots from the period 1980-2000. 21

2.4.5 Examples of robots from the period 2000-nowadays. 22

2.4.6 Examples of robots from the period 2000-nowadays. 23

2.4.7 Examples of robots from the period 2000-nowadays. 24

2.4.8 Example of a nanorobot. 25

3.2.1 Example of a walking robot. 30

3.2.2 Example of a swimming robot. 30

3.2.3 Example of a rolling robot. 31

3.2.4 Example of a sliding robot. 31

3.2.5 Example of a hopping robot. 32

3.2.6 Example of a climbing robot. 32

3.2.7 StarlETH of the Robotic Systems Lab of ETH. 33

3.2.8 The four different classes of wheel design [4]. 34

3.3.1 Robot reference frames [4]. 37

3.3.2 Representation of pure rolling constraint [5]. 38

3.3.3 Fixed standard wheel and parameters [4]. 38

3.3.4 Steerable standard wheel and parameters [4]. 39

V

LIST OF FIGURES

3.3.5 Castor wheel and parameters [4]. 40

3.3.6 Swedish wheel and parameters [4]. 40

3.3.7 Spherical wheel and parameters [4]. 41

3.3.8 Scheme of involved variables. 42

4.1.1 Navigation approaches. 44

4.6.1 Occupancy grid. 54

4.6.2 Topological representation. 55

4.7.1 Road map representations. 60

4.7.2 Cell decomposition representations. 61

4.7.3 Potential field representation. 61

5.6.1 Iterative easy path with 100 keypoints (black markers) and a reach-
able target. Purple markers are the states of the algorithm, blue lines
represent linear obstacles and black circles circular obstacles. Finally,
magenta crosses are the obstacles’ centres, from which the obstacles
are generated. 74

5.6.2 Iterative path with 100 keypoints (black markers) and a reachable
target in a more complex situation. Purple markers are the states of
the algorithm, blue lines represent linear obstacles and black circles
circular obstacles. Finally, magenta crosses are the obstacles’ centres,
from which the obstacles are generated. 75

5.6.3 Iterative path with 100 keypoints (black markers) and an unreachable
target. Purple markers are the states of the algorithm, blue lines
represent linear obstacles and black circles circular obstacles. Finally,
magenta crosses are the obstacles’ centres, from which the obstacles
are generated. 76

5.6.5 Iterative path with 200 keypoints (black markers) and an unreachable
target. Purple markers are the states of the algorithm, blue lines
represent linear obstacles and black circles circular obstacles. Finally,
magenta crosses are the obstacles’ centres, from which the obstacles
are generated. 76

5.6.4 Iterative path with 200 keypoints (black markers) and a reachable
target. Purple markers are the states of the algorithm, blue lines
represent linear obstacles and black circles circular obstacles. Finally,
magenta crosses are the obstacles’ centres, from which the obstacles
are generated. 77

VI

LIST OF FIGURES

6.2.1 Smooth landscape function obtained. The yellow part represents two
obstacles (where the measurements come from) while the blue areas
are the safe regions, where the trajectories rely. 81

6.3.1 First map. 84

6.3.2 Second map. 85

6.3.3 Third map. 85

6.3.4 Fourth map. 86

6.3.5 Trajectories executed during a simulation in the first map performed
with the same configuration. 88

6.3.6 Trajectories executed during a simulation in the second map per-
formed with the same configuration. 89

6.3.7 Trajectories executed during a simulation in the third map performed
with the same configuration. 90

6.3.8 Trajectory executed during a simulation in the fourth map. 91

6.4.1 Real robot front and rear views. 92

6.4.2 Real robot upper and lateral views. 92

6.4.3 Vicon system environment. 93

6.4.4 First environment for the experiments. 94

6.4.5 Odometry graph for the first environment. 95

6.4.6 Second environment for the experiments. 95

6.4.7 Odometry graph for the second environment. 96

6.4.8 Third environment for experiments. 96

6.4.9 Odometry graph for the two different paths of the third environment. 97

6.4.10Difference between the angles and costs of the two cheapest trajecto-
ries for the right path of the third environment. 98

6.4.11Difference between the angles and costs of the two cheapest trajecto-
ries for the left path of the third environment. 98

VII

1 Introduction

Nowadays, autonomous navigation topic is a big issue in research groups.
The direction that the industry is taking is heading towards the development of
vehicles able to autonomously and safely navigate through different types of envi-
ronments, such as urban roads or industrial plants. Autonomous navigating robots
are transforming the way we live, work, and play, helping people with their daily
tasks. They are employed in almost all fields of our life and they represent a huge
resource to lean on.
In particular, in this thesis, we focus on the navigation of a ground robot in un-
known and dynamic environments in the presence of static and mobile obstacles
and crossroads. The peculiarity of this study is that autonomous navigation is set
to take place in unknown environments and hence in the absence of a general map
to guide the choices.
The lack of a mapped surrounding is a complication to overcome. Indeed, the en-
vironment must be sensed and analyzed through different types of sensors and the
map needs to be created step by step. At the same time, the robot has to proceed
in its journey and obstacles must be detected and avoided.
Moreover, navigation in unknown environments does not permit the computation of
an optimal route and it is necessary to define a general rule to select which direction
should be taken without getting stuck in dead-ends or in repetitive loops.

The thesis has a dual purpose. The first one concerns the development of a basic
algorithm for autonomous navigation in unknown environments, using MATLAB
software.
The second goal of the thesis is to simulate and tune a reliable and safe algorithm,
named NAPVIG, designed by PhD student Nicola Lissandrini. After a campaign
of numerical simulations performed on Gazebo simulator, several experimental tests
were carried out on University’s robotic laboratory, employing a differential drive
robot (DDR).
To complete the first part of this work, a self-developed algorithm is designed to be
capable of autonomously and safely exploring the assigned environment.
The idea behind the algorithm is to define a set of nodes, and to construct a link
between reachable points in the map, from the robot’s position. Points in the map
that are visible from the robot’s sensors can be interpreted as nodes of a graph. As
the robot navigates through the environment, the graph is updated with new nodes
and arcs connecting them. Arcs represent possible routes indeed if an arc between

CHAPTER 1. INTRODUCTION

nodes is not computed then does not exist a safe path from one to the other.
In the second part of the work, the simulation phase involves the tuning of some
significant parameters of the NAPVIG algorithm, and the analysis of different types
of environments to highlight the peculiarity of the algorithm and the situations in
which its behaviour should be improved.

The thesis structure is organised as described below.

Chapter 2 firstly defines the term Autonomy, then gives a rapid introduction about
the motivations behind the use of robotics and finally gives an overview of the main
robotics evolution steps from the second half of ’900 until now.

Different types of mobile robots and their components, such as controllers, actuators,
sensors and power systems, are presented in Chapter 3. Then, it is introduced the
theme of locomotion with particular emphasis on legged and wheeled locomotion.
Subsequently, unmanned ground vehicles and kinematics are described. In the last
part of the chapter is illustrated the DDR.

Chapter 4 gives an overview of the navigation task for autonomous mobile robots,
both indoor and outdoor. Finally, the four phases of navigation are introduced and
explained. In particular, perception, localization, cognition and motion control.

Chapter 5 concerns the explanation of the self-developed autonomous navigation
algorithm in MATLAB and the relative numerical results. The last section of the
chapter contains hints about further developments, such as introducing moving ob-
stacles and testing the algorithm in a real robot.

The last chapter is dedicated to the NAPVIG algorithm. As mentioned before, firstly
a campaign of numerical simulations has been performed. Afterwards, experimental
tests have been carried out with the aforementioned algorithm applied to a real DDR
robot. Finally, there are presented some future developments that could broaden
the present work.

10

2 Overview of robotics

2.1 Introduction

There is not a commonly approved definition for the term robot indeed, there exist
multiple different definitions of what precisely a robot is.
The term robot has evolved over time based on technological progress, and the evo-
lution of robotic artefacts. Nowadays, this word is referred to more sophisticated
and intelligent devices compared to the middle of the previous century.
The Robot Institute of America (RIA) in 1979 has defined robot as a reprogrammable,
multi-functional manipulator designed to move materials, parts, tools or specialized
devices through various programmed motions for the performance of a variety of
tasks.

The International Organisation for Standardisation proposes a definition of robot in
ISO 8373, intended to standardize and make universally accepted the characteriza-
tion. ISO defines a robot as an automatically controlled, reprogrammable, multipur-
pose, manipulator programmable in three or more axes, which may be either fixed in
place or mobile for use in industrial automation applications.
As defined in ISO, a certain degree of autonomy is required. Autonomy is the ability
to perform intended tasks by its own reasoning process, without human intervention
even with unforeseen situations and changing environments. The degree of auton-
omy differentiates what is considered a robot from other devices; the more a robot
is independent in performing its tasks the more it can be thought to be intelligent
and sophisticated.

According to the Japanese Industrial Robot Association (JIRA), robots can be di-
vided regarding their level of self-sufficiency into six different classes in order of
increasing autonomy:

• Class 1. Manual handling device: device characterized by several degrees of
freedom and directly controlled by an operator. Some of them are also referred
to as co-bots.

• Class 2. Fixed sequence robot: handling device which performs a fixed se-
quence of predefined actions using the same method, without an operator
manoeuvring it.

CHAPTER 2. OVERVIEW OF ROBOTICS

• Class 3. Variable sequence robot: robot similar to the ones of class 2 except the
fact that the sequence of actions can be reprogrammed easily. This property
allows it to be quickly adapted to execute new assignments.

• Class 4. Playback robot: robot able to replicate a task. The operator performs
the task manually, leading or controlling the robot, which is then able to repeat
the task autonomously.

• Class 5. Numerical control robot: this type of robot moves through a sequence
of actions received in the form of numerical data.

• Class 6. Intelligent robot: a robot capable of sensing the environment and
able to complete a task despite changes around it.

The different institutions have different opinions on which of the previous classes
should be considered robots or not. For example, the Robotics Institution of America
(RIA) considers robots only from class 3.

Another robot classification system has been developed by the Association Francaise
de Robotique (AFR):

• Type A: manually controlled handling devices and telerobotics.

• Type B: automatic handling devices with predetermined cycles.

• Type C: servo-controlled robots with programmable trajectories.

• Type D: same as type C but able to respond to their environment.

Robots are mainly divided into two broad categories: manipulators and mobile
robots. The two classes differentiate in what they move: manipulators are fixed in
space and move objects around them instead mobile robots move themselves leaving
the surrounding world unchanged.
A robotic manipulator is a reprogrammable and multifunctional mechanical device
used to manipulate materials without direct physical contact with the operator.
Usually, it is a mechanism similar to an arm that consists of a series of components,
sliding or jointed, which grasp and move objects in a repeated manner, through
programmed motions. Manipulators are robots treated as tools, namely an entity
that is physically situated in the world but which does not adapt to changes in
the world. These types of robots were born to deal with radioactive materials,
dangerous for humans. They have been developed to perform specific, limited and
specialized functions in a restricted amount of time with high precision. The design
process is based on the optimization of the performance of the robot executing a
specific action. For this reason, artificial intelligence is often considered superfluous.
Manipulators are present especially in industries in applications like welding, lifting,
and automation (SCARA robot).

12 2.1. Introduction

CHAPTER 2. OVERVIEW OF ROBOTICS

On the other hand, mobile robots are devices capable of locomotion and hence they
are not fixed to one single position. These robots are considered agents, entities that
can sense and induce changes in the world. Mobile robots were initially designed
to move materials in different zones but one can find them in the military, security,
medical and other fields.

The difference between these two classes relies both on the distinction between an
agent and a tool, and also on the differences between automation and autonomy.

2.2 Automation vs. autonomy

Automation refers to a wide range of technologies performed automatically from
the device, with the result of a reduction of human intervention in processes. Au-
tomation assumes that the operator performs any requirements before or after the
automated sequence to complete the assignment. Multiple automation sequences
are required to enable supplies to work semi-autonomously or autonomously. Au-
tomation has been obtained through mechanical, hydraulic, pneumatic, electrical,
electronic devices, and computers. Complicated systems usually use all of them in
combination. Automation provides benefits in almost all industries, from manufac-
turing to transportation but also utilities, defence and facility operations.
Instead, autonomy refers to a property of a system capable of performing the pro-
grammed operations, under defined conditions, without human input or guidance.
This type of system is said to be autonomous and has some requirements to satisfy.
It should have the capability of self-maintenance, to sense the environment and per-
form a physical task.
The distinction between automation and autonomy affects the style of programming,
the hardware of designing and the kinds of failures.

Robot capability can also be interpreted through the spectrum of techniques rep-
resenting four key aspects: plans, actions, models, and knowledge representations
[1]. One can visualize a capability as a set of sliders, as shown in Fig.2.2.1. Each
of the aspects associated with autonomy and automation contributes to the overall
capability.

An autonomous robot does not necessarily have all the characteristics on the right
side, as well as automation does not have all the attributes on the left side. Actually,
most robot systems programmed with artificial intelligence methods have a mixture
of both.

Plans - In automation applications, a system most of the time has to execute
a previously generated plan. The ability of the robot is about executing the same
actions exactly in the same way as fast as possible, with high precision and accuracy.
In contrast, autonomous applications allow the robot to construct the plan and adapt
the plan itself as the surroundings change. The adjustment of the plan is possible

2.2. Automation vs. autonomy 13

CHAPTER 2. OVERVIEW OF ROBOTICS

Figure 2.2.1: How four aspects of automation and autonomy combine to create an
intelligent system.

through the perception of the surrounding world through sensors that the robot is
equipped with.

Actions - Actions can be deterministic or non-deterministic. An action is said to be
deterministic if, when a robot is in a given state and receives a specific set of inputs,
there is only one possible output. In contrast, a non-deterministic algorithm has
multiple possible outputs and the choice of one of them depends on other factors
or events. Autonomous capabilities are non-deterministic and performances are
measured as an average or statistical probability.

Models - A world model is an abstract representation of the spatial or temporal
dimensions of our world. World modelling enables the use of robotics systems to
operate in the workspace, by providing knowledge of the environment to the robot.
It can be preprogrammed into a robot, may be learned by the robot or some com-
bination of them. This is a critical component of automated robotics because the
robot must sense and interpret the world using sensors, which might be not as ac-
curate as needed.
World models are classified as being closed-world or open-world. The closed-world
assumption, typical of automation, states that everything possible is known a priori;
any object, condition or event that is not specified in the database is false. On the
other hand, an autonomous robot operates under the open-world assumption that
assumes that the list of possible states, objects or conditions cannot be completely
specified.

Knowledge representations - A distinction can be made between automated and
autonomous capabilities based on the form of information that the robot processes,

14 2.2. Automation vs. autonomy

CHAPTER 2. OVERVIEW OF ROBOTICS

either signals or symbols. Automation implies that the robot responds to signals or
raw data, while autonomy operates in processed information or symbols.

Today, different levels and varying degrees of autonomy can be found across most
industries. [2] defines autonomy as the extent to which a robot can sense its envi-
ronment, plan based on that environment, and act upon that environment with the
intent of reaching some task-specific goal (either given to or created by the robot)
without external control.

Figure 2.2.2: Sense, plan, act for autonomy.

There exist several levels of autonomy, reported in Table 2.2.1, that can be applied
to most vehicles and robots.

2.3 Applications and motivations of robots

Robots find applications in almost any field of our lives. They can substitute humans
in dangerous and unsafe environments and in boring and monotonous works. There
exist several reasons to prefer a robot instead of a human. First of all, robots, as well
as automation, can increase productivity, efficiency, safety, quality and consistency
of products, since they are inherently fast, highly repeatable and reliable, and will
perform each and every operation in exactly the same manner with a mm or even
µm accuracy. Moreover, they perform tasks with precision and consistency without
getting tired or bored. As regards productivity, robots can increase it exponentially
since once the robot is programmed, it performs the operation always in the same
amount of time, as in food preparation and manufacturing. The predictable perfor-
mance combined with high levels of reliability and no need to stop makes it possible
to consistently achieve and maintain productivity levels 24/7. As robots do not get
injured, using them in high-risk environments can increase the safety of humans in
remote, hostile or hazardous environments, for instance in the nuclear or chemical

2.3. Applications and motivations of robots 15

CHAPTER 2. OVERVIEW OF ROBOTICS

Table 2.2.1: The five (six) levels of autonomy in robots.

Level Description
0 Full manual teleoperation: simple mechanical devices operated manually.
1 Robot within line of sight (hands off): the device is able to follow prede-

fined paths or actions but the human is required to be there for supervision.
For example, a car operating under simple cruise control.

2 Operator on site or nearby (eyes off): acceleration, deceleration and steer-
ing are automated. Information from the environment is taken by sensors
and used as sensory input to take decisions. The device performs au-
tonomously some tasks but the human, being the remote supervisor, is
still ultimately responsible for the safe operation.

3 One operator oversees many robots (mind off): all safety functions are
automated, but the driver is still needed to take the control in emergencies.

4 Supervisor not on site (monitoring off): the device handles all decisions
with no input from a human in specific scenarios. The robots are capable
of finding their base stations, getting a new battery, performing minor
repairs, and getting out of difficult cases. This level of autonomy needs
not only the on robot software to mature, but the on-field infrastructure
to automate and typically a reliable connection with remote users.

5 Robots adapt and improve execution (development off): the robot begins
to learn from experience and to improve operation beyond what the human
designer has programmed in. They learn from each other, on site and from
robot teams from other sites. They learn to predict how events affect their
capabilities and plan proactively.

industries. An example is the employment of robots in Fukushima’s reactor to pro-
vide information about the damage. Moreover, underwater and space exploration
would not have been possible without the use of robots. NASA developed Robonaut
2 to collect data from particular parts of the deep ocean, and Voyagers 1 and 2 were
launched to study the outer solar system. But they can also be used for rescue, secu-
rity and military purposes. In addition, robots do not need environmental comfort
like lighting and heating, noise protection, reducing drastically costs for factories.

Other fields in which one can employ a robot are agriculture, entertainment and cus-
tomer service. Robots can process multiple stimuli or tasks simultaneously, making
robots faster than humans. Robots also bring benefits in applications that require
high levels of cleanliness such as those found within the medical, pharmaceutical
and food sectors. To reduce the risk of bacterial contamination in high-care areas,
numerous robot types have been designed specifically for operation within these
environments. Maintaining the high standards required for operators within these

16 2.3. Applications and motivations of robots

CHAPTER 2. OVERVIEW OF ROBOTICS

often-challenging environments requires strictly controlled operating procedures and
the ongoing provision and cost of personal protection equipment.

However, robots have some disadvantages linked to costs and limited capabilities.
One can encounter limited capabilities in degrees of freedom, dexterity, sensors,
vision systems and real-time response. This can cause inappropriate and wrong re-
sponses, lack of decision-making power, loss of power, human injuries and damage
to the robot itself or other devices.
High costs are related to maintenance, installation, and cost of equipment and pro-
gramming. Robots need a lot of power to function and to buy and develop software
you would invest a huge amount of money.
The last thing to remember is that if robotics comes into trend, then many workers
would also lose their jobs, there would be a revolution of which worker one needs,
a period of transition to substitute all those replaced workers with very specialized
ones.

2.4 History of robotics

The origin of robotics comes from the need to lighten the work to man, as in the
case of industrial automation, and to use means to treat hazardous materials and
environments. The first use of modern robots was in factories, as industrial robots,
while digitally programmed ones with artificial intelligence have been built since the
2000s.
In the following, the major milestones of robotics are presented.

The word robotics first appeared in Isaac Asimov’s science fiction story Runaround
in 1942. He also formulated the Three Laws of Robotics:

1. A robot may not injure a human being, or, through inaction, allow a human
being to come to harm.

2. A robot must obey the orders given to it by human beings except where such
orders would conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not
conflict with the First or Second Law.

2.4. History of robotics 17

CHAPTER 2. OVERVIEW OF ROBOTICS

2.4.1 1940-1960

In 1942, during World War II, scientists and engineers created the first robotic arm,
designed to handle and process radioactive materials. The telemanipulator was a
sophisticated mechanical linkage which translated motions on one end of the mech-
anism to motions at the other end.
The first robots were constructed between 1948 and 1949. Elmer and Elsie (ELec-
troMEchanical Robot, Light-Sensitive) were two electronic robots built by William
Grey Walter, often labelled as tortoises because of their shapes and the manner in
which they moved. The tortoise robots had three wheels and were capable of photo-
taxis, namely a movement that occurs in response to light stimulus, see Fig.2.4.1a.
These robots were able to manoeuvre around objects in a room, guide themselves
toward a source of light and find their way back to a charging station when their bat-
tery power is low. To manage these actions they used sensor technology, a responsive
feedback loop, and logical reasoning.

(a) Elmer and Elsie (b) Unimate

Figure 2.4.1: Examples of robots from the period 1940-1960.

The first stationary industrial robot was the programmable Unimate, invented
in 1954 by the American engineer George Devol. It was a hydraulic heavy-lifting
arm electronically controlled which could repeat arbitrary sequences of motions, see
Fig.2.4.1b.
The introduction of transistors into computers in the mid-1950s reduced the size
of the robots and increased their performance. Therefore, computing and program-
ming could be incorporated into a range of applications, including automation. In
1954, Barrett Electronics Corporation designed the first electric vehicle that did not
require a human driver, what is known to be the first AGV. In 1959, a prototype of
the Unimate was introduced in a General Motors Corporation die-casting factory.
The hydraulic manipulator arm possessed a rotatable, pincer-like gripper, and could
follow a program of up to 200 movements stored in its memory.

18 2.4. History of robotics

CHAPTER 2. OVERVIEW OF ROBOTICS

2.4.2 1960-1970

More advanced computer-controlled electric arms guided by sensors were developed
in the late 1960s and 1970s at the Massachusetts Institute of Technology (MIT) and
Stanford University.
Marvin Minsky created the Tentacle Arm, visible in Fig.2.4.2a, in 1968; the arm
was controlled by a computer. It was provided with 12 joints powered by hydraulics.
In 1969 Victor Scheinman created the Stanford Arm, see Fig.2.4.2b, recognized as
the first electronic computer-controlled robotic arm because the Unimate’s instruc-
tions were stored on a magnetic drum.

(a) Tentacle arm (b) Stanford arm

Figure 2.4.2: Examples of robots from the period 1960-1970.

In 1969 Victor Scheinman designed a small robot arm with joints powered by electric
motors embedded in the arm itself. The arm could move much more quickly than
previous robots and without complex hydraulic systems. It also had six axes of
movement allowing it to closely approximate the range of a human arm. It was the
first robotic arm to be controlled by software in a computer, performing calculations
in real-time and, in later enhancements, reacting to its environment.

2.4.3 1970-1980

The first mobile robot capable of reasoning about its surroundings was Shakey
in Fig.2.4.3a, built in 1970 by the Stanford Research Institute. The name derives
from the stuttering way it moved around. Shakey was able to accomplish a task
by observing the world around it, creating a plan, and executing it. Shakey was
equipped with multiple sensor inputs, including vision cameras, tactile sensors, laser
rangefinders, and bump sensors to navigate. It could move on the ground thanks to
two computers (one on board and one remote) that were connected by radio. This
idea of a separate planning layer was such a crucial innovation that it is still central
to many robotic systems today.

2.4. History of robotics 19

CHAPTER 2. OVERVIEW OF ROBOTICS

In the early 1970s, precision munitions and smart weapons were developed. Weapons
became robotic by implementing terminal guidance. In these years there has been a
considerable advance in the development of humanoid robots by Japanese robotics
scientists.
In 1978, the Japanese automation researcher Hiroshi Makino designed the efficient
four-axis SCARA (Selective Compliance Assembly Robot Arm) engineered simply
to pick something up, swivel around, and place it in another location with precision,
all in one smooth motion. SCARA arms reported in Fig.2.4.3b are generally less
flexible and not as strong as six-axis arms, but they are much faster, and able to
rapidly insert small electronic components into place.
Always in the 70s, NASA developed Mars Rover to explore hostile or unknown
terrain, see Fig.2.4.3c. It was a platform that integrated a mechanical arm, proximity
sensors, a laser telemetry device and stereo cameras.

(a) Shakey (b) SCARA

(c) Mars Rover

Figure 2.4.3: Examples of robots from the period 1970-1980.

20 2.4. History of robotics

CHAPTER 2. OVERVIEW OF ROBOTICS

2.4.4 1980-2000

In 1986, Honda began its humanoid research and development program to create
robots capable of interacting successfully with humans. Meanwhile, MIT in 1989
revealed a hexapodal robot named Genghis and shown in Fig.2.4.4a.
In 1994 one of the most successful robot-assisted surgery appliances was cleared
by the FDA. The Cyberknife, visible in Fig.2.4.4b, had been invented by John
R. Adler and the first system was installed at Stanford University in 1991. This
radiosurgery system integrated image-guided surgery with robotic positioning. The
biomimetic robot RoboTuna in Fig.2.4.4c was built by doctoral student David
Barrett at the Massachusetts Institute of Technology in 1996 to study how fish
swim in the water.

(a) Genghis (b) Cyberknife

(c) RoboTuna

Figure 2.4.4: Examples of robots from the period 1980-2000.

2.4.5 2000-nowadays

In April 2001, the Canadarm2, shown in Fig.2.4.5b, was launched into orbit and
attached to the International Space Station. The Canadarm2 is a larger, more ca-
pable version of the arm used by the Space Shuttle, and is hailed as smarter.
In 2002 the company iRobot releases Roomba, an example is reported in Fig.2.4.5d,
a robotic vacuum cleaner, still widespread today, in its updated versions.
In 2003 was created the Kiva robot, visible in Fig.2.4.5c. It was a squarish, close-
to-the-ground orange bot that can glide around warehouses, moving racks of goods.

2.4. History of robotics 21

CHAPTER 2. OVERVIEW OF ROBOTICS

Kiva used some inexpensive components, which could make the robots less precise
in how it moved about, compensated with software that course-corrected on the fly.
The result was an autonomous machine that was far more flexible at automating
a warehouse than a traditional conveyor-belt system, and relatively easy to use.
Kiva’s system revolutionized the efficiency of warehouse and shipping.
In 2004 Boston Dynamics ideated BigDog, see Fig.2.4.5a. Over the course of sev-
eral years, the four-legged robot can be seen tramping through rough terrain, leafy
forests, 60-degree hills, knee-deep snow and piles of bricks. It was not fully au-
tonomous; a human controller piloted it, so it does not need a sophisticated planning
and vision system. But it has 50 sensors and an onboard computer that manages
the gait and keeps it stable. Most notably, BigDog was able to bounce along with
only two feet touching the ground at a time, making it far more nimble than rolling
robots, which are generally limited to areas that have flat surfaces, like warehouses
and pavement. BigDog’s mobility points to a time when everyday mass-produced
robots could readily navigate front lawns, curbs or stairs, opening up new possibili-
ties for everything from package delivery to in-home personal care.

(a) BigDog (b) Canadarm2

(c) Kiva (d) Roomba

Figure 2.4.5: Examples of robots from the period 2000-nowadays.

The modern age of self-driving cars was launched in 2005 when a Volkswagen
Touareg named Stanley won the second DARPA Grand Challenge. What fueled
Stanley’s victory was a constellation of improvements, including AI trained on the
driving habits of real-world humans and five Lidar (light detection and ranging) laser
sensors, a technology that enabled the car to identify objects within a 25-meter range

22 2.4. History of robotics

CHAPTER 2. OVERVIEW OF ROBOTICS

in front of the vehicle. Lidar has since become a key component of robotic vision
systems in cars and even some Kiva-style warehouse robots.

In 2000, Honda revealed the most advanced result of their humanoid project, named
ASIMO, visible in Fig.2.4.6a. ASIMO was a mobile assistant that can run, walk,
communicate with humans, recognize faces, environment, voices and posture, and
interact with its environment. It was 130cm for 48kg. ASIMO was the most recent
model of a series became in 1986 with model E0.
Fig.2.4.6b shows NAO, which was an autonomous and programmable humanoid
robot of medium size designed by Aldebaran Robotics in 2004.

(a) ASIMO (b) Nao

Figure 2.4.6: Examples of robots from the period 2000-nowadays.

The 2010s were defined by large-scale improvements in the availability, power and
versatility of commonly available robotic components, as well as the mass prolifer-
ation of robots into everyday life. The vast majority of robotic developments in the
2010s saw smaller, more specialized non-humanoid robots become cheaper, more
capable, and more ubiquitous. The cost and weight reductions of these compo-
nents have resulted in a proliferation of new kinds of special-purpose robots. The
decade also saw a boom in the capabilities of artificial intelligence. The capacity of
onboard computers used within robots increased to the point that robots could per-
form increasingly complex actions without human guidance, as well as independently
process data in more complex ways. The 2010s also saw the growth of new software
paradigms, which allowed robots and their AI systems to take advantage of this
increased computing power. Neural networks became increasingly well-developed in
the 2010s. The growth of robots in these years also coincided with the increasing
power of the open-source software movement, with many companies offering free

2.4. History of robotics 23

CHAPTER 2. OVERVIEW OF ROBOTICS

access to their artificial intelligence software.
In 2014, new Tesla vehicles were fitted with the computer hardware necessary to
eventually support a full autopilot software system, with increasingly autonomous
software systems arriving as updates over later years. By the end of the decade,
autonomous driving was possible on large highways but still required human super-
vision.

The first humanoid able to read emotions and react to them was Pepper. Pep-
per, in Fig.2.4.7a, was a semi-humanoid robot manufactured by SoftBank Robotics,
introduced on June 2014. Pepper’s ability to recognize emotion is based on the
detection and analysis of gestures, facial expressions, and voice tones. Production
of Pepper was paused in June 2021, due to weak demand.
Atlas, shown in Fig.2.4.7b is a bipedal humanoid robot primarily developed by the
American robotics company Boston Dynamics with funding and oversight from the
U.S. Defense Advanced Research Projects Agency (DARPA). The robot was initially
designed for a variety of search and rescue tasks and was unveiled to the public in
2013. Atlas has become very famous for its floor routine in gymnastics, running
parkour and dancing. It had the ability to perform a handstand, somersaults, and
rotations all in fluid succession, backflips, jumps, balance beams, and vaults. Atlas
is 1.5m tall and weighs 85kg. Atlas was battery-powered and hydraulically actuated
with 20 degrees of freedom with RGB cameras and depth sensors that provide in-
put to its control system. All the computations required for control perception and
estimation happen in three onboard computers.

(a) Pepper (b) Atlas

Figure 2.4.7: Examples of robots from the period 2000-nowadays.

24 2.4. History of robotics

CHAPTER 2. OVERVIEW OF ROBOTICS

On October 25, 2017, at the Future Investment Summit in Riyadh, a robot called
Sophia was granted Saudi Arabian citizenship, becoming the first robot ever to
have a nationality.

In 2019, engineers at the University of Pennsylvania created millions of nanobots in
just a few weeks using technology borrowed from the mature semiconductor industry.
These microscopic robots, an example of which is represented in Fig.2.4.8, small
enough to be injected into the human body and controlled wirelessly, could one day
deliver medications and perform surgeries, revolutionizing medicine and health.

Figure 2.4.8: Example of a nanorobot.

2.4. History of robotics 25

3 Mobile robots

3.1 Introduction

A mobile robot is a special type of software-controlled machine that utilizes sen-
sors and other technologies to recognize its environment and pursue its predefined
assignment. This type of robot is called mobile because it is characterized by the
capacity of locomotion, hence it can move around in the environment and it is not
fixed at a single location.

Mobile robots can be classified in different manners like by the environment in which
they work or by the device they use to move.
Using the latter, there are several varieties of locomotion. Different types of robots
can walk, roll, jump, slide, swim, skate, and fly and most of these locomotion mech-
anisms have been inspired by their biological counterpart, see Sec3.2 for details.

As concerns the different operational environments, mobile robotics includes [3]:

Polar robots: devices designed to work in polar environments and to traverse icy,
uneven environments.

Aerial robots, also known as unmanned aerial vehicles (UAVs) or drones:
machines that perform tasks flying through the air. Initially, they were mostly
used in military applications but they extended rapidly to other applications
such as scientific, agricultural, commercial, recreational, policing, surveillance,
product deliveries, distribution and logistics, and aerial photography.

Land or home robots, or unmanned ground vehicles (UGVs): vehicles that
operate while in contact with the ground. UGVs can be used for many appli-
cations for both civilian and military use to perform a variety of dull, dirty,
and dangerous activities.

Underwater robots, or autonomous underwater vehicles (AUVs): machines
that explore the oceans and underwater areas that are inaccessible to humans.
Different types of underwater robots have been developed, like humanoids,
snakes, worms, and nanorobots.

CHAPTER 3. MOBILE ROBOTS

Delivery and transportation mobile robots: devices designed to move mate-
rials and supplies around a work environment.

Mobile robots are important in several fields, from teleoperations to environmental
explorations or activities dangerous for humans, or even applications in which a
robot performs better and in less time. Autonomous systems can play a vital role
in assisting humans in a variety of problem areas. This could potentially be in a
wide range of applications like driverless cars, humanoid robots, assistive systems,
domestic systems, and manipulator systems. Relevant fields are also personal assis-
tance, military surveillance and security.
One can find mobile robots for space and ocean exploration, healthcare, distribution,
rescue and search, education and research.

3.1.1 Mobile robots components

A mobile robot has mainly four components that are controllers, actuators, sensors,
and power systems.

Controllers are a microprocessor, computers, or embedded microcontrollers. The
robot controller is a computer system that connects to the robot in order to control
its movements, often it is referred to be the brain of the robot. The control system
manages, commands, directs or regulates the behavior of other devices or systems
using control loops. The controller deciphers the code into instructions that the
robot can use in order to complete the steps of the applications.

Actuators are motors that enable the movement of the robot. They convert the
energy to mechanical form. There are many types of actuators available depending
on the load involved. The term load is associated with many factors including force,
torque, speed of operation, accuracy, precision and power consumption. One can
find electric motors, hydraulic actuators, pneumatic actuators, shape memory metal
actuators and magnetostrictive actuators.

Sensors are devices used to gather information from the environment and perceive
the world, see Sec.4.5.

The components of the power system are meant to supply energy to the robots for
their functioning.

3.2 Locomotion of mobile robots

The locomotion system is an important aspect of mobile robot design. The design of
the locomotion system does not only rely on the medium in which the robot moves
but also on other factors such as maneuvrability, controllability, terrain conditions,

28 3.2. Locomotion of mobile robots

CHAPTER 3. MOBILE ROBOTS

efficiency, and stability.
Robot locomotion refers to the mechanism that enables a robot to move unbounded
throughout its environment. There are several modes of moving and hence the
selection of a robot’s approach to locomotion is crucial. As mentioned before, most
of the ways of moving a mobile robot are inspired by biological systems, although
a perfect copy of nature is extremely difficult, or even impossible. The reasons are
mechanical complexity, achieved by cell division and specialization, miniaturization,
and energy storage. While in biology the mechanism of specialization permits a high
complexity, in mobile robots, every single part must be fabricated individually and
assembled. Moreover, very small sizes and weights, for example those of insects,
are very difficult to achieve during the production part. Finally, a mechanically
designed object has in rare cases the same capacity as biological systems.

In locomotion, the environment is fixed and the robot moves by imparting forces
to the environment. Movements are possible thanks to the study of actuators that
generate interaction forces, and mechanisms that implement desired kinematic and
dynamic properties.

In locomotion, the three main issues that one has to consider are stability, charac-
teristics of contact and type of environment.

Stability

Stability is the ability of not to fall. Stability depends on the number and geometry
of contact points, the position of the centre of gravity, and the inclination of the
terrain. Stability can be classified as static and dynamic stability.
Static stability means that the robot is stable at every moment of time with no
need of motion. It is achieved through the mechanical design of the robot and it is
maintained as long as the centre of gravity is inside the polygon of support of the
robot and the polygon’s area is greater than zero. The polygon of support is the
convex hull formed by the projection of its points of contact onto the surface. Static
stability requires at least three points of contact with the ground.
Dynamic stability is the ability of being stable while moving. It is achieved through
control action, the robot must actively balance itself to prevent overturning.

Characteristic of contact

The characteristics of ground contact depend on the size of the contact point/patch,
the angle of contact to the ground and the friction between the robot and the
surface. For example, a large patch allows to generate larger lateral force, allowing
to maintain stability in curves at high velocities. The contact patch depends on
the diameter of the wheel and on the material of the tyre. In the case of inflatable
wheels, depending on the internal pressure, the contact patch’s size changes and
hence the rolling resistance.

3.2. Locomotion of mobile robots 29

CHAPTER 3. MOBILE ROBOTS

Type of environment

The attributes of the type of environment are the structure of the medium and the
medium itself.

The different types of locomotion are:

Walking: is based on legs, whose number depends on the specific robot. One can
find robots with 1, 2, 4, 6. . . legs. Legged motion allows to travel through
uneven surfaces, and steps and overcome easily obstacles. Multiple legs allow
several different gaits, even if a leg is damaged, making their movements more
useful in robots transporting objects.

Figure 3.2.1: Example of a walking robot.

Swimming: refers to the way underwater vehicles move.

Figure 3.2.2: Example of a swimming robot.

30 3.2. Locomotion of mobile robots

CHAPTER 3. MOBILE ROBOTS

Rolling: can be achieved with the usage of several types of wheels.

Figure 3.2.3: Example of a rolling robot.

Sliding: mimics the way of moving of snakes. They could be used in confined
spaces, such as collapsed buildings.

Figure 3.2.4: Example of a sliding robot.

3.2. Locomotion of mobile robots 31

CHAPTER 3. MOBILE ROBOTS

Hopping: is less used. It consists of a robot provided with legs and small feet. The
movement is achieved by jumping in the direction in which the robot is falling.

Figure 3.2.5: Example of a hopping robot.

Climbing: is achieved by moving over vertical or steeply inclined surfaces. It faces
many challenges, including overcoming gravity, maintaining balance and ne-
gotiating obstacles.

Figure 3.2.6: Example of a climbing robot.

Due to the several difficulties exposed before, most mobile robots are legged or
wheeled. In the following, these two are analyzed more in detail.

32 3.2. Locomotion of mobile robots

CHAPTER 3. MOBILE ROBOTS

3.2.1 Legged locomotion

Legged locomotion is characterized by a series of contact points between the robot
and the ground. The key advantages include adaptability and maneuverability in
rough terrain, and it is able to climb steps, and cross gaps of relative size. A
final advantage of legged locomotion is the potential to manipulate objects in the
environment.
One example is the StarlETH designed by the Robotic Systems Lab of ETH reported
in Fig3.2.7.

Figure 3.2.7: StarlETH of the Robotic Systems Lab of ETH.

The main disadvantages include power consumption and mechanical complexity.
Additionally, high maneuverability will only be achieved if the legs have a sufficient
number of degrees of freedom to impart forces in several different directions. To
move a legged robot, each leg must have at least 2 DOF, each one requires a joint,
usually powered by one servo. Lastly, the leg must be capable of sustaining part of
the robot’s weight and usually lifting or lowering the robot.

Regarding stability, to achieve static one a robot must have at least three legs. To
be dynamically stable a robot can have even one leg. To achieve static walking you
need six legs. In general, adding degrees of freedom increases maneuverability but
requires energy, mass and control.

3.2.2 Wheeled locomotion

Wheeled locomotion is the most popular mechanism in mobile robotics and vehicles
in general. It can achieve very good efficiencies with a relatively simple mechanical
implementation. For confrontation, on hard, flat surfaces wheeled locomotion is two
orders more efficient than legged locomotion. Moreover, these systems are designed
to have all wheels in ground contact at all times. A two-wheeled mobile robot is
considered stable, as the centre of mass is below the wheel axle however, it requires

3.2. Locomotion of mobile robots 33

CHAPTER 3. MOBILE ROBOTS

impractically large diameters. Most of the time at least three wheels are used to
assure static stability.
The focus of research in wheeled robotics is on traction and stability in rough terrain,
maneuverability, and control.
Maneuverability is the combination of the mobility available based on the sliding
constraint plus additional freedom given by the steering. When a robot is able to
move in any direction of the ground plane it is omnidirectional. Clearly, swedish
and spherical wheels have a higher maneuverability as compared to the other two
classes.
Controllability is the ability of a mobile robot to be driven between positions by
manipulating the velocity control inputs. There is generally an inverse correlation
between controllability and maneuverability.

Wheel design

There are four major wheel types, shown in Fig.3.2.8 [4]: standard wheel, castor
wheel, swedish wheel and spherical wheel. These classes differ in their kinematics
and therefore the choice of the wheel type has a large effect on the overall kinematics
of the mobile robot.

Figure 3.2.8: The four different classes of wheel design [4].

Both standard and castor wheels have two degrees of freedom, one around the wheel
axle and one around the contact point, for the former, while around the offset
steering joint for the latter. Both of them have a primary axis of rotation and are
thus highly directional, to move in a different direction, the wheel must be steered
first along a vertical axis. The key difference between these two wheels is that the
standard wheel can accomplish this steering motion with no side effects, as the centre
of rotation passes through the contact point with the ground, while the castor wheel
rotates around an offset axis, causing a force to be imparted to the robot chassis
during steering.

34 3.2. Locomotion of mobile robots

CHAPTER 3. MOBILE ROBOTS

The swedish wheel can be of 45◦ or 90◦ or omni wheel direction that represents the
second direction of low resistance. It has three degrees of freedom, one around the
wheel axle, one around the contact point and the last one around the rollers. The
third degree of freedom is less constrained by directionality, as well as the spherical
wheel, which is an omnidirectional wheel. The small rollers attached to the swedish
wheel around the circumference of the wheel are passive and the wheel’s primary
axis serves as the only actively powered joint. The key advantage of this design
is that, although the wheel rotation is powered only along the one principal axis
(through the axle), the wheel can kinematically move with very little friction along
many possible trajectories, not just forward and backward.

3.3 Unmanned ground vehicles

In this section will be described the kinematics of an unmanned ground vehicle with
particular attention on differential drive robots (DDR).
Kinematics describes the motion of points, bodies, and systems of bodies without
considering the forces that cause them to move. Kinematics is a significant field
of mechanics, necessary to understand the behavior of the robot both in order to
design appropriate mobile robots for tasks and to understand how to create control
software for an instance of mobile robot hardware.
Kinematics aims to provide a description of the spatial position of bodies or systems
of material particles, the rate at which the particles are moving (velocity), and the
rate at which their velocity is changing (acceleration).

By understanding the concepts involved in kinematics, one can predict objects’
motion. In fact, a kinematics problem starts with the description of the geometry
of the involved system and the statement of the initial conditions of any known
position, velocity and acceleration of points belonging to the system. Then, using
geometry and the laws of motion, the position, velocity and acceleration of any parts
of the system can be calculated. Notice that there exists no direct way of measuring
the robot’s position, for example measuring the travelled distance of each wheel,
instead, the position must be integrated over time, leading to inaccuracies of the
motion estimate.

In any system, there are two types of constraints that impose limitations on the
robot’s movements. The first is a geometrical constraint, which imposes restrictions
on the achievable configurations of the robot. The range of possible poses that the
mobile robot can achieve in its environment is called the workspace. The second
is a kinematic constraint, which imposes restrictions on the achievable velocities of
the robot.

A robot as a single entity moves as a function of its geometry and individual wheel
behavior. Each individual wheel contributes to the robot’s motion and, at the same

3.3. Unmanned ground vehicles 35

CHAPTER 3. MOBILE ROBOTS

time, imposes constraints on robot motion. Wheels are assembled on robot chassis,
and therefore their constraints combine to form constraints on the overall motion of
the system.

Geometrical constraints are functions of positional variables and are said holonomic
(e.g., limiting the system’s motion to a manifold of the configuration space, depend-
ing on the initial conditions).

A kinematic constraint can be integrable, and hence it can be expressed in the form:

f(ξ, t) = 0, (3.3.1)

where ξ is a vector of configuration variables.

Alternatively, they can be not integrable. In this case, they are said non-holonomic,
and they are expressed through derivatives of positional variables. It is important
to underline that this type of constraint does not limit the accessible configurations
but only the path that can be followed to reach them.

As concerns wheels, several hypotheses are assumed in order to simplify the model.
In the following they are listed:

• Movements concern only the horizontal plane

• Vertical wheel plane and point of contact of the wheels

• Wheels are not deformable

• Pure rolling

• No slipping, skidding or sliding

• Absence of friction for rotation around the contact point

• Steering axes orthogonal to the surface in which the robot lies

• Wheels connected by a rigid frame

Before explaining more in detail the sliding constraint and the pure rolling one, it is
important to underline the difference between the robot reference frame (FR) and
the world reference frame (FI) and how to transform variables between the two, see
Fig.3.3.1.

36 3.3. Unmanned ground vehicles

CHAPTER 3. MOBILE ROBOTS

Figure 3.3.1: Robot reference frames [4].

The axes XI and YI define an arbitrary inertial basis on the plane as the global
reference frame from some origin. The basis XR, YR defines the robot’s local reference
frame. The position of the robot is specified by choosing a point P on the robot
chassis, representing the origin of FR, as its position reference point, usually its
centre of mass.
The position in the global reference frame is expressed in x and y coordinates, while
the relative orientation between the two frames is given by θ.

To describe robot motion in the plane, it is essential to map motion along the axes
of the global reference frame to motion along the axes of the robot’s local reference
frame, through the orthogonal rotation matrix:

R(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (3.3.2)

The matrix R(θ) is used to relate FR and FI , in particular the relations are:

ξ̇R = R(θ)ξ̇I (3.3.3)
ξ̇I = R(θ)T ξ̇R (3.3.4)

3.3.1 Sliding and rolling constraints

The rolling constraint also called pure rolling at the contact point, imposes zero
translational velocity at the contact point, point O in Fig.3.3.2. This means that
all motion along the direction of the wheel plane is determined by wheels spin.

3.3. Unmanned ground vehicles 37

CHAPTER 3. MOBILE ROBOTS

Figure 3.3.2: Representation of pure rolling constraint [5].

The other constraint, called sliding constraint, is the impossibility of slipping along
the orthogonal to the sagital axis. In other words, the component of the wheel’s
motion orthogonal to the wheel plane must be zero.

The sliding constraint and the rolling constraint have different formulations for each
wheel type, as reported below. Anyway, notice that only the fixed and steerable
standard wheels impose limitations on the motion since ξ̇I in the other types can
range freely, due to internal degrees of freedom of the wheels. Therefore, only
standard wheels have an impact on robot chassis kinematics.

Fixed standard wheel

Figure 3.3.3: Fixed standard wheel and parameters
[4].

The position of A is ex-
pressed in polar coordi-
nates by distance l and
angle α, see Fig.3.3.3.
The angle of the wheel
plane relative to the
chassis is denoted by β,
which is fixed.
The wheel has radius r
and the rotational posi-
tion around its horizontal
axle φ(t) is a function of
time.

38 3.3. Unmanned ground vehicles

CHAPTER 3. MOBILE ROBOTS

Rolling constraint:[
sin(α + β)− cos(α + β)(−l) cos β

]
R(θ)ξ̇I − rφ̇ = 0 (3.3.5)

Sliding constraint: [
sin(α + β) cos(α + β)l sin β

]
R(θ)ξ̇I = 0 (3.3.6)

Steered standard wheel

Figure 3.3.4: Steerable standard wheel and param-
eters [4].

The parameters of see
Fig.3.3.4 are the same as
Fig.3.3.3, except for the
fact that the orientation
of the wheel to the robot
chassis can change over
time, β(t).

Rolling constraint:[
sin(α + β)− cos(α + β)(−l) cos β

]
R(θ)ξ̇I − rφ̇ = 0 (3.3.7)

Sliding constraint: [
sin(α + β) cos(α + β)l sin β

]
R(θ)ξ̇I = 0 (3.3.8)

3.3. Unmanned ground vehicles 39

CHAPTER 3. MOBILE ROBOTS

Castor wheel

Figure 3.3.5: Castor wheel and parameters [4].

The wheel contact point
id B, connected by a
rigid body of fixed length
d to A, see Fig.3.3.5.
There are two parame-
ters that vary over time:
φ(t), which represents
the wheel spin over time,
and β(t), which denotes
the steering angle and
orientation of the rigid
body AB.

Rolling constraint:[
sin(α + β)− cos(α + β)(−l) cos β

]
R(θ)ξ̇I − rφ̇ = 0 (3.3.9)

Sliding constraint:[
sin(α + β) cos(α + β)d + l sin β

]
R(θ)ξ̇I + dβ̇ = 0 (3.3.10)

Swedish wheel

Figure 3.3.6: Swedish wheel and parameters [4].

The parameters are the
same as Fig.3.3.3, with
the addition of the vari-
able γ, which is the angle
between the main wheel
plane and the axis of ro-
tation of the rollers, see
see Fig.3.3.6.

Rolling constraint:[
sin(α + β + γ)− cos(α + β + γ)(−l) cos(β + γ)

]
R(θ)ξ̇I − rφ̇ cos γ = 0 (3.3.11)

40 3.3. Unmanned ground vehicles

CHAPTER 3. MOBILE ROBOTS

Sliding constraint:[
sin(α + β + γ) cos(α + β + γ)l sin(β + γ)

]
R(θ)ξ̇I − rφ sin γ − rswφsw = 0 (3.3.12)

Spherical wheel

Figure 3.3.7: Spherical wheel and parameters [4].

In Fig.3.3.7, the dif-
ference consists of the
absence of direct con-
straints on motion, and
there are no principal
axis of rotation.

Rolling constraint:[
sin(α + β)− cos(α + β)(−l) cos β

]
R(θ)ξ̇I − rφ̇ = 0 (3.3.13)

Sliding constraint: [
sin(α + β) cos(α + β)l sin β

]
R(θ)ξ̇I = 0 (3.3.14)

The total dimensionality of the robot’s chassis on the plane is three, two for the
position and one for orientation along the vertical axis, which is orthogonal to the
plane. Additional degrees of freedom and flexibility, internal to the robot and wheels,
are ignored since not relevant to the study of kinematics.

3.3.2 DDR

A differential drive robot can be modelled as a unicycle, which is a planar vehicle
with two orientable wheels, controlled in driving and steering velocity, v, ω ∈ R.
Generally, a DDR is characterized by the presence of two standard wheels, connected
through a chassis, and a spherical wheel in the front for stability purposes. The latter
allows to define a third contact point on the plane ensuring static stability. Fixed
standard wheels imply that the Instantaneous Centre of Rotation (ICR) of the robot

3.3. Unmanned ground vehicles 41

CHAPTER 3. MOBILE ROBOTS

lies along the extension of the rotation axis of the two wheels. If the wheels have
the same velocity then the ICR is placed at infinite. Instead, if the velocities differ
the robot follows a circular path, as shown in Fig.3.3.8.

Figure 3.3.8: Scheme of involved variables.

The state is described by the triplet q = [x y θ]T and the kinematic model results:ẋ
ẏ

θ̇

 =

sin θ 0
cos θ 0

0 1

 · [v
ω

]
(3.3.15)

In a differential drive model, the driving velocity and the steering velocity are ob-
tained from the angular speed ωR and ωL of its wheels:

v = r(ωR + ωL)
2 (3.3.16)

ω = r(ωR − ωL)
d

(3.3.17)

where r is the radius of the wheels and d is the distance between their centres.

42 3.3. Unmanned ground vehicles

4 Navigation of autonomous mobile
robots

4.1 Introduction

An autonomous mobile robot has the ability to move in the environment, perform
different tasks, adapt to changing environments, to learn, plan and act accordingly.
Moreover, it is able to build an internal representation of the world that can be used
for reasoning processes like navigation.
The objective of an autonomous mobile robot is to move from one place to another in
a known or unknown environment, based on sensors. Autonomous mobile robots are
equipped with sensors which are considered the senses of a robot: they allow a robot
to see, feel and touch the surrounding. The combination of sensors and reasoning
permits an autonomous exploration of the world and the construction of a map. If
they detect an unexpected obstacle while maneuvering inside an environment they
will apply a navigation technique, such as collisions avoidance to stop, slow, or divert
their path around the object and then continue with their predefined mission.

Navigation is defined as the ability to determine your location within an environment
and to be able to create a path that will take you to a goal. Whereas, autonomous
navigation is the capability of a vehicle to learn and execute movements without
any human intervention to reach that predefined goal. An accurate collision-free
path planning is mandatory for the motion of mobile robots to perform tasks au-
tonomously with greater accuracy.

Mobile robot navigation systems depend on the level of abstraction of the environ-
ment representation. One can differentiate two categories of navigation approaches:
map-based navigation and behavior-based navigation [4].
The two main navigation problems are different for distances, scales, obstacle avoid-
ance techniques and the knowledge of the goal position.

To perform successful map-based navigation, the robot passes through different
stages such as perception, localization, cognition and motion control, described later
on in this chapter. Using this approach, the robot explicitly attempts to localize
itself with respect to a map of the environment, by collecting sensor data and up-
dating the belief about its position. The three mentioned processes may rely on
two distinct sources of information. The first one is the information concerning the

CHAPTER 4. NAVIGATION OF AUTONOMOUS MOBILE ROBOTS

(a) Map-based navigation architecture

(b) Behavior-based navigation architecture

Figure 4.1.1: Navigation approaches.

internal state of the robot, like speed and acceleration. The integration of these
measurements results in a position estimate of robot motion. The second source of
information provides external details about the environment, that may be used to
directly recognize a place or may be combined with the other one to correct position
estimate error.
Due to the explicit use of the map-based location concept, model-based naviga-
tion systems are suitable for any simple or complex environment. Moreover, the
available information about its location can be exploited by a human operator to
command the robot. However, model-based navigation systems depend on the inter-
nally stored map and historical information of the environment. If the model of the
environment diverges from reality, then the robot will get lost due to being incapable
of estimating its own position and failing to accomplish its navigation mission. The
more accurate the map is and the more information is collected by the sensors, the
more there is a chance that the robot will operate constantly without fail. However,
higher costs for implementing the map and sensors are required.

Whereas, behavior-based navigation approaches are based on a layered set of task-
achieving modules implementing a specific behavior, using sensors to observe and
extract relevant information from the surroundings, which is completely unknown.
Thus, each module is designed to solve only a portion of the navigation problem,
and a set of modules can cooperate to mimic more complex behaviors. Due to
this network structure, behavior-based navigation does not require the localization

44 4.1. Introduction

CHAPTER 4. NAVIGATION OF AUTONOMOUS MOBILE ROBOTS

process. Furthermore, behavior-based navigation systems are based on a belief that
sensors and actuators are noisy and information-limited, so they avoid creating a
global map of the environment.
Behavior-based navigation systems may be implemented very quickly for a single
environment with a small number of goal positions and they have good flexibility
because they do not need precise localization. However, the difficulty is higher
since the absence of a map does not permit the calculation of an optimal path
from the starting point to the target goal. Moreover, it can be time-consuming and
heavily dependent on specific hardware and environmental characteristics. Finally,
the method does not directly scale to other environments or to larger ones.

To achieve autonomous navigation and intelligent behaviour in robots, it is necessary
to solve specific problems. Among all, it is essential that the robot can establish its
actual and previous locations, and consequently determine the unexplored places and
the possible paths to reach them. In order to accomplish these tasks, autonomous
mobile robots must perform planning, localization, and mapping consecutively to
operate successfully in the environment [6]. If any of these three activities is absent,
then a robot can not safely and autonomously walk in real-life deployment scenarios.
Below these three activities will be briefly presented.

Planning: is the most important aspect of an autonomous robot. During path
planning, the robot is required to design a path to follow by employing an
obstacle avoidance algorithm. The route is computed almost in real-time and
continuously updated, taking into consideration the kinematics of the vehicle.

Localization: is the procedure of estimating the position of the robot in space. This
stage requires the use of sensors to acquire information and the interpretation
of the latter.

Mapping: is the process of designing a map of the environment. It may consist of
modifying the already present map or even the creation of it from scratch, as
the robot perceives information about the surroundings.

Usually, autonomous robots use a technique called simultaneous localization and
mapping (SLAM) to start in an unknown location in an unknown environment, and
then incrementally build up a map while using it to compute the current position.
So, the sensors of the robot should be accurate enough to create a precise map.

There are several approaches to solve navigation problems, each of them related to
a specific situation and they can be divided into two main types, depending on the
environment in which the robot operates: indoor and outdoor navigation [7].

4.1. Introduction 45

CHAPTER 4. NAVIGATION OF AUTONOMOUS MOBILE ROBOTS

4.2 Indoor navigation

Indoor navigation is meant mainly for buildings, and hence it enables the exploration
of indoor environments. The most common applications are in cleaning services and
rescue activities but also in warehouses to move and classify items.
One of the most famous indoor robots in the cleaning industry is Roomba, produced
and sold by the company IRobot. These robots are capable of cleaning a house in
complete autonomy, thanks to the use of advanced sensors, which enables them to
detect obstacles. Moreover, most of the time they are provided with a technology
that permits the robot to construct a detailed map of the house, allowing a more
efficient way of cleaning. As the robot explores the house, it stores in memory
obstacles, doors, walls and whatever allows the navigation algorithm to determine
their position. The evolution of the last years has made these robots very intelligent;
actually, updated models are able to sense particles in the air and report which parts
of the house are dirtier.

4.3 Outdoor navigation

Like indoor navigation, outdoor navigation requires the use of landmarks, obstacle
avoidance and position estimate. Differently, a complete a priori map of the environ-
ment is impossible to achieve, due to the dynamic environment. It can be divided
into outdoor navigation in structured environments and unstructured environments.

Structured environments present models that are simple, and contain roads, lane
widths, etc. The navigation relies mostly on obstacle avoidance and the ability
of the robot consists of road following. Road-following is the ability to recognize
the lines that separate the lanes or separate the road from the berm, the texture
of the road surface, and the adjoining surfaces. Road-following is characterized by
problems caused by shadows, changing illumination conditions, and changing colors.

Unstructured environments are characterized by the absence of regular properties
that could be perceived and tracked. In such cases, the vision system can make use
of at most a generic characterization of the possible obstacles in the environment.

4.4 Obstacle avoidance

Obstacle avoidance is a crucial task in the field of robotics. Obstacle avoidance
is defined to be the ability to avoid collisions with objects while navigating in an
environment. The design of a collision-free algorithm is a prerequisite for any au-
tonomous mobile robot since it guarantees a safe trajectory to pursue the goal.

46 4.2. Indoor navigation

CHAPTER 4. NAVIGATION OF AUTONOMOUS MOBILE ROBOTS

Obstacle avoidance is highly related to path planning, studied in Sec.4.7 but, dur-
ing navigation, the robot can deviate from its path to avoid obstacles on the basis
of reactive navigation strategies. This is possible thanks to the use of sensors and
specific algorithms to elaborate information and give instructions to the robot.

4.5 Perception

During the perception phase, the robot constantly extracts meaningful information
from the environment, ensuring accurate localization by interpreting data acquired
by sensors. The use of sensors makes it possible to perform robot positioning and
localization tasks, but they are also used for mapping, representation, and other
robotic applications, such as object recognition.
The main challenges during the perception stage are seeing, feeling, and understand-
ing the environment, the uncertainty present in the measurements and the partially
available information.

The capability of understanding the world is based on sensing. Robotic sensing gives
robots the ability to see, touch, hear and move and employs algorithms that require
environmental feedback or sensory data. In other words, sensing is the combination
of algorithms and sensors that produces a percept.
In order to autonomously navigate, a robot needs data about the environment,
coming from sensors like cameras, lidar and ultrasonic sensors, that must be analyzed
to produce a resulting action.

4.5.1 Sensor classification and performance

Sensors are classified based on two different scales: proprioceptive/exteroceptive and
passive/active.

Proprioceptive sensors measure the internal state of the robot, such as motor speed,
wheel loads, joint angles, and battery voltage, hence they are used for the robot’s self-
control. Whereas, exteroceptive ones acquire information from the robot’s surround-
ings, such as distances, light intensity, and sound amplitude. They are exploited to
extract meaningful data from the environment and are utilised for navigation and
object recognition.

Passive sensors, such as microphones, temperature probes, and Charge Coupled
Devices (CCD) or Complementary Metal Oxide Semiconductor (CMOS) cameras,
measure ambient environmental energy entering the sensor. Active sensors instead
radiate energy into the surroundings measuring the reaction. They can deal with
more controlled interactions with the work environment, often achieving higher per-
formance. However, active sensing introduces several risks: the outbound energy

4.5. Perception 47

CHAPTER 4. NAVIGATION OF AUTONOMOUS MOBILE ROBOTS

may affect the very characteristics that the sensor is attempting to measure. Fur-
thermore, an active sensor may suffer from interference between its signal and those
beyond its control. For example, signals emitted by other nearby robots, or similar
sensors on the same robot, may influence the resulting measurements. Examples
of active sensors include wheel quadrature encoders, ultrasonic sensors, and laser
rangefinders.

It is important to characterize sensor’s performance using basic variables such as
the dynamic range, power, resolution, linearity, bandwidth or frequency, sensitivity,
errors, accuracy and precision. In the following, these parameters are explained.

Dynamic range is the ratio of the maximum input value to the minimum mea-
surable input value. It is used to measure the spread between the lower and
upper limits of input values to the sensor while maintaining normal sensor
operation. Robot sensors often operate in environments where they are fre-
quently exposed to input values beyond their working range. In such cases, it
is critical to understand how the sensor will respond.

Resolution is the minimum difference between two values that can be detected by
a sensor. Usually, the lower limit of the dynamic range of a sensor is equal to
its resolution.

Linearity is an important measure governing the behavior of the sensor’s output
signal as the input signal varies.

Bandwidth or frequency is used to measure the speed with which a sensor can
provide a stream of readings. Formally, the number of measurements per
second is defined as the sensor’s frequency in Hertz [Hz]. Due to the movement
through their environment, mobile robots are often limited in maximum speed
by the bandwidth of their obstacle detection sensors.

Errors are divided into random errors and systematic errors. Random errors are
caused by variability in measurements due to fluctuations in the environment
or the instrument used for interpretation and they affect measurements in
unpredictable ways. While systematic errors are consistent or proportional
differences between the observed and true values. Measurements of the same
thing will vary in predictable ways.

Accuracy describes how close a given set of measurements are to their true value
and represents the description of systematic errors.

Precision is how measurements are close to each other and represents the descrip-
tion of random errors.

Sensitivity is the ratio of output change to input change. It measures the degree
to which an incremental change in the target input signal changes the output

48 4.5. Perception

CHAPTER 4. NAVIGATION OF AUTONOMOUS MOBILE ROBOTS

signal. Cross-sensitivity is the technical term for sensitivity to environmental
parameters that are orthogonal to the target parameters for the sensor.

Repeatability is the capability of reproducing as output similar measured values
over consecutive measurements of the same constant input quantity.

Stability is the capability of keeping the same measuring characteristics over time
and/or temperature.

4.5.2 Wheel/motor sensors

Wheel/motor sensors are devices used to measure the internal state and dynamics
of a mobile robot. They measure the wheel’s speed and position. These sensors
are brush encoders, potentiometers, synchros, resolvers, optical encoders, magnetic
encoders, inductive encoders and capacitive encoders.

4.5.3 Tactile sensors

Tactile sensors are divided into two main categories based on their functioning. The
first one contains devices like bumpers and contact switches that measure forces
in response to the physical interaction with the environment, allowing the robot
to control the position and the grasping force of the end-effector. The sensors
belonging to the second group (optical barriers and non-contact proximity sensors)
are designed to sense objects at a small distance in order to detect closeness without
direct contact, reporting the exact position of an object. Moreover, tactile sensors
can also reveal variations in heat.

4.5.4 Heading sensors

Heading sensors are employed to determine the robot’s orientation and inclina-
tion. They allow us, together with appropriate velocity information, to integrate
the movement into a position estimate. They include compasses, gyroscopes and
inclinometers.

4.5.5 Ground-based beacons

Beacons are exploited to solve the problem of localization in mobile robotics. Using
the interaction of onboard sensors and the environmental beacons, the robot can
identify precisely its position. They include GPS, active optical or RF beacons,
active ultrasonic beacons and reflective beacons.

4.5. Perception 49

CHAPTER 4. NAVIGATION OF AUTONOMOUS MOBILE ROBOTS

4.5.6 Active ranging

Ranging sensors provide direct measurements of the distance from the robot to
objects in its vicinity. For obstacle detection and avoidance, most mobile robots
rely heavily on active-ranging sensors. They include reflectivity sensors, ultrasonic
sensors, laser rangefinders, optical triangulation and structured light.

4.5.7 Motion/speed sensors

Motion/speed sensors measure directly the relative motion between the robot and its
environment. Their functioning is based on the detection of a moving object relative
to the robot’s reference frame and the estimation of its relative speed. There are a
number of sensors that inherently measure some aspect of motion such as doppler
radar and doppler sound.

4.5.8 Vision-based sensors

Vision-based sensors, as the name suggests, capture the same raw information as the
human vision system. Specifically, they elaborate an image based on the incoming
light, even if they have specific limitations in performance when compared to the
human eye. The two technologies that enable this property are CCD/CMOS sensors.

4.6 Localization

Mobile robot localization is defined as the procedure of estimating the current pose
of a robot in the employed environment, using data extracted by external sensors.

Based on the information about the initial position, the localization problem is
classified into position tracking, global positioning/localization, and the kidnapped
robot problem.

The objective of position tracking is to track the robot’s position at each instance of
time during its navigation in the environment, by exploiting odometry and sensor
data. The initial location of the robot must be known and its current location is
updated using the robot’s prior position, by continually monitoring the route of the
robot. In position tracking, the uncertainty about the actual position of the robot
is required to be small otherwise the robot might not be localized.

On the other hand, in global localization robot’s position is tracked without any in-
formation on its initial pose. Solving the problem depends on locating itself globally
within the environment (relocation). Robots that have been kidnapped have been

50 4.6. Localization

CHAPTER 4. NAVIGATION OF AUTONOMOUS MOBILE ROBOTS

taken to an unidentified place. If the robot is aware that it has been abducted, the
issue is comparable to the global localization problem. But, in the other case, the
robot still believes it knows where it is and problems start to occur.
Current sensor data and already-known data are combined to estimate the robot’s
position and hence solve the issue of relocation. An autonomous robot should be
able to handle pose monitoring and relocation simultaneously. It should be able
to recognize that it is being kidnapped and it should recover its pose by applying
relocation method.

Localization includes building a map, and identifying and representing the robot’s
position relative to that map, both for indoor and outdoor navigation tasks. The
existing GPS network provides accuracy within several meters, which is unaccept-
able for almost every application. Furthermore, GPS does not function indoors or
in obstructed areas, thus making localization an essential strategy for map-based
navigation.

Robot localization techniques need to be able to deal with noisy observations and
generate not only an estimate of the robot’s location but also a measure of the un-
certainty of the location estimate.
To avoid position uncertainty unbounded growth, the robot must localize itself in
relation to its environment. A mobile robot can keep track of its motion using odom-
etry, which is the usage of data coming from motion sensors to estimate changes in
position over time. Due to odometry estimation error, the robot will become uncer-
tain about its position after some movements. To allow a more accurate localization,
the information provided by the robot’s odometry can be combined with the one
furnished by exteroceptive observations, thus correcting the error of the estimate.
Localization is a challenging issue from several points of view since it requires the
model of the robot, sensors and response to the environment, which are subject to
uncertainty. Moreover, the robot can lie in a dynamic environment where nearby
objects move and hence having an a priori map is not feasible.
Sensor and effector uncertainty is one of the reasons for the difficulties in localization
tasks.

Sensor noise is random (generally unknown) and unwanted variations of sensor out-
put unrelated to variations in sensor input. In other words, it accounts for modifica-
tions that a signal may experience during capture, storage, transmission, processing,
or conversion. Sensor noise induces a limitation on the consistency of sensor read-
ings in the same environmental state and, therefore, on the number of useful bits
available from each sensor reading. Often, the origin of sensor noise problems is that
some environmental features are not captured by the robot’s representation and are
thus neglected. One example is illumination dependence, present in vision-based
sensors. Picture jitter, signal gain, blooming, and blurring are all additional sources
of noise, that can potentially reduce the useful content of a color video image.
The solution is to take multiple readings into account and combine multiple sensors,
employing temporal fusion or multisensor fusion to increase the overall information

4.6. Localization 51

CHAPTER 4. NAVIGATION OF AUTONOMOUS MOBILE ROBOTS

content of the robot’s inputs.

Another source of uncertainty is sensor aliasing. Aliasing is an effect that causes dif-
ferent signals to become indistinguishable when sampled, hence the same place can
look different or even different places can look the same. In robots, the nonunique-
ness of sensor readings, or sensor aliasing, is always present. Formally, there is a
many-to-one mapping from environmental states to the robot’s perceptual inputs
and hence the robot is not able to distinguish these multiple states. Even if a sen-
sor is noise-free, the amount of data is generally insufficient to identify the robot’s
position from a single-percept reading.

Also, mobile robot effectors introduce incertitude about future states, and even
motion tends to increase the uncertainty of a mobile robot. This error in motion
is viewed as an error in the robot’s ability to estimate its position over time using
knowledge of its kinematics and dynamics (odometry). The true source of errors
generally lies in an incomplete model of the environment. All unmodeled sources of
error result in inaccuracy between the physical motion of the robot, the intended
motion of the robot, and the proprioceptive sensor estimates of motion. In odometry
(wheel sensors only) and dead reckoning (also heading sensors), the position update
is based on proprioceptive sensors. The movement of the robot sensed with wheel
encoders or heading sensors or both, is integrated to compute the position. Because
the sensor measurement errors are integrated, the position error accumulates over
time and thus the position has to be updated from time to time by other localization
mechanisms. Otherwise, the robot is not able to maintain a meaningful position
estimate during navigation.

Localization can also be influenced by the type of environment in which the robot
operates. For example, static environments are considered simple because the robot
is the only moving obstacle. Instead, dynamic ones lead to a more complex localiza-
tion approach since any object in the scene could move. Usually in the latter, the
robot creates the map as it explores the environment.

Map-based localization systems differ by the type of representation available as well
as in the characteristics of the sensors used to observe the environment. A robot must
represent the environment (map representation) and its belief about its position on
the map (belief representation).

4.6.1 Belief representation

A belief is a hypothesis about the location of the robot in the world. Belief repre-
sentation refers to the method used to describe the estimate of the robot’s state.
There exist two types of representation:

Single-hypothesis belief: the robot’s position in the environment is represented
as a single unique point on a map, thus avoiding any ambiguity about its posi-

52 4.6. Localization

CHAPTER 4. NAVIGATION OF AUTONOMOUS MOBILE ROBOTS

tion. As a consequence, the robot can assume that its belief about its location
on the map is correct and update its future state based only on this unique
belief, simplifying the decision-making process. The disadvantage regards sen-
sors and effector noise, which induce uncertainty in robot motion. Since the
update is based on only one belief and there is no correction about it, the error
accumulates making this process challenging and, often, impossible.

Multiple-hypothesis belief: the robot tracks a possibly infinite set of positions.
A convex polygon that lies in a 2D map of the environment describes the
robot’s possible positions without any order. Nevertheless, it is possible to
introduce a mathematical distribution representing an order over the possible
robot’s locations, based on the fact that some positions are likelier than others.
As a consequence, the robot can explicitly maintain uncertainty regarding its
position and measure its own degree of uncertainty regarding its position.
During the decision-making process, some of the robot’s possible positions
imply a motion trajectory that is inconsistent with some of its other possible
positions, thus making the process computationally expensive.

4.6.2 Map representation

Map representation depends on the aspects of the environment that one would
describe as well as on the level of fidelity the map represents the environment.
Decisions made regarding environmental representation can have an impact on the
choices available for robot position representation. Often the fidelity of the position
representation is bounded by the fidelity of the map.
Three fundamental relationships must be understood when choosing a particular
map representation:

1. The precision of the map must appropriately match the precision with which
the robot needs to achieve its goals.

2. The precision of the map and the type of features represented must match the
precision and data types returned by the robot’s sensors.

3. The complexity of the map representation has a direct impact on the compu-
tational complexity of reasoning about mapping, localization, and navigation.

The map can be represented in a continuous or discretized way.
In a continuous map, the position of salient environmental features can be annotated
precisely in a 2D continuous space. These elements may be approximated using very
straightforward convex polygons, sacrifying exact map reproduction for the sake of
computational speed. Together with the use of the closed-world assumption, these
techniques can enable a continuous-valued map to be of equal cost, and sometimes

4.6. Localization 53

CHAPTER 4. NAVIGATION OF AUTONOMOUS MOBILE ROBOTS

even less costly, than a standard discrete representation. Geometric maps can ca-
pably represent the physical locations of objects without referring to their texture,
color, elasticity, or any other secondary features that do not relate directly to posi-
tion and space.
A meaningful way of representing obstacles is to approximate the world with a set
of infinite lines. Basically, this transformation from the real world to the map repre-
sentation is a filter that removes all nonstraight data and extends line segment data
into infinite lines that require fewer parameters.
The key advantage of a continuous map representation is the potential for high ac-
curacy and expressiveness with respect to the environmental configuration as well
as the robot’s position within that environment.

As concern decomposition and abstraction, the representation of the map can po-
tentially be minimized, capturing only the relevant, useful features of the world. On
the contrary, there could be a loss of fidelity between the map and the real world,
both qualitatively, in terms of the overall structure, and quantitatively, in terms of
geometric precision.

Among all decomposition methods, should be mentioned for importance the occu-
pancy grid representation and the topological decomposition.
The basic idea of the occupancy grid is to generate a map of an environment using
an evenly spaced field of binary random variables each representing the presence of
an obstacle at that location in the environment. An example is reported in Fig.4.6.1.

Figure 4.6.1: Occupancy grid.

The are two main disadvantages correlated to the implementation of this decomposi-
tion method. First, the size of the map in robot memory grows with the dimension
of the environment and if a small cell size is used, the computational power can

54 4.6. Localization

CHAPTER 4. NAVIGATION OF AUTONOMOUS MOBILE ROBOTS

quickly become unsustainable. Moreover, this approach is not compatible with the
closed-world assumption, which enabled continuous representations to have poten-
tially very small memory requirements in large, sparse environments. Finally, the
a priori geometric grid imposed on the world does not take into account details
of the environment, modifying their real dimensions and shapes. This can be ap-
propriate in cases where geometry is not the most salient feature of the environment.

Topological approaches avoid direct measurement of geometric environmental qual-
ities, instead, the method focuses on visualizing the most relevant characteristics of
the environment that permit robot localization. An example is shown in Fig.4.6.2.

Figure 4.6.2: Topological representation.

A topological representation is a graph that specifies nodes and the connectivity
between those nodes. Nodes are used to denote areas in the world and arcs are used
to denote adjacency of pairs of nodes. When two nodes are connected by an arc, then
the robot can directly pass from one to the other without requiring going through
any other intermediary node. First, the robot must have the capacity to represent
its current position in terms of the nodes of the topological graph. Second, it must
have a means for travelling between nodes using robot motion. The node sizes and
particular dimensions must be optimized to match the sensory discrimination of the
mobile robot hardware.

4.6.3 Localization approaches

Mobile robot localization approaches can be classified into two main categories:
probabilistic and autonomous map building [8].

The former identifies the probabilities of the robot being in specific positions, and
the probability of a robot in a specific configuration. Since measurement errors

4.6. Localization 55

CHAPTER 4. NAVIGATION OF AUTONOMOUS MOBILE ROBOTS

affect sensor data only the probability of a robot in a specific configuration can be
computed. The absolute localization problem obtains the absolute position using
beacons, landmarks or satellite-based signals (e.g. GPS).
A few nodes (called anchors) need to know their absolute positions, and all the other
nodes are absolutely localized in the coordinate system of the anchors. Absolute
localization uses the following:

• Active beacons, where the absolute position of a mobile robot is computed by
measuring the direction of incidence of three or more transmitted beacons. The
transmitters use light or radio frequencies and are placed at known positions
in the environment.

• Recognition of artificial landmarks, which are placed at known locations in the
environment and are designed to provide maximal detectability even under bad
environmental conditions.

• Recognition of natural landmarks, which must be known in advance. The
use of natural landmarks, which are distinctive features of the environment,
provides lower reliability than the artificial landmarks method.

• Model matching, that is the comparison of the information received from on-
board sensors and a map of the environment. The absolute location of the
robot can be estimated if the sensor-based features match the world model
map.

There are two main strategies:

Markov localization: is an application of Bayesian filter algorithm. It uses an
arbitrary probability density function across all possible robot positions in the
state space. These systems implement the generic belief representation by di-
viding the robot configuration space into a finite, discrete number of possible
robot poses in the map, usually using grid or topological maps. This repre-
sentation allows updating the probability of each state within the entire state
space at each iteration, as required by the algorithm.
Localization is a two-step process. The prediction step evaluates the belief of
the robot’s state at time t using the belief at time t-1 and control input. The
robot’s belief state is usually represented as separate probability assignments
for every possible robot pose in its map. In the measurement step, the algo-
rithm predicts the sensor value from the actual state. The probability that
the measurement may have been observed is evaluated given the state at time
t.
Localization employing the Markov method is possible starting from any un-
known position and, since the robot can track multiple, completely disparate

56 4.6. Localization

CHAPTER 4. NAVIGATION OF AUTONOMOUS MOBILE ROBOTS

potential positions, it is feasible to recover from ambiguous situations. How-
ever, the required memory and computational power can thus limit precision
and map size.

Kalman filter localization: uses a single, well-defined Gaussian probability den-
sity representation to describe robot’s belief state and scan matching. The
estimates about the next state are updated using a weighted average, where
estimates with higher certainty weigh more with respect to the others.
In order to decrease the overall uncertainty of the robot, Kalman Filtering
allows the combination of the uncertainties regarding the current state of
the robot and its sensor measurements. Differently from Markov localization,
Kalman filter localization does not independently consider each possible pose
in the robot’s configuration space and the initial position has to be known,
moreover, it can be used in continuous world representations.
Kalman filter localization is inherently both precise and efficient. It can run
in real-time using only the present input measurements and the previously
calculated state. However, if the uncertainty of the robot becomes too large
the algorithm can fail to capture the multitude of possible robot positions and
can become irrevocably lost.
Extended Kalman Filtering is an extension of Normal Kalman Filtering. It
removes the restriction of linear state transition and measurement models al-
lowing the use of any kind of nonlinear function to model the state transition
and the measurements, being at the same time not computationally expen-
sive. The models are linearized around the current robot state consequently,
the measurement model and the state transition model are approximately lin-
ear around the actual state. After every time step, the linearization is updated
around the new state estimate.

Other important techniques to mention are landmark-based navigation, globally
unique localization, positioning beacon systems and route-based localization.
Landmark-based navigation is based on the creation of artificial landmarks that the
robot frequently and precisely localizes. If it does not see a landmark it relies only
on a prediction about the future state which can lead to getting lost. Therefore,
the placement of the landmarks and the map’s layout are crucial, thus making the
technique dependent on a specific environment and difficult to adapt to others.
In globally unique localization, the robot locates itself with the use of its own sensors
that provide data coming from the environment. The technique needs a lot of data
coming from environments characterized by several distinctive features.
Positioning beacon systems work with beacons positioned throughout the environ-
ment that communicate with the robot and provide localization information. If the
information is received from at least three beacons, the localization is very precise
but, the system is not adaptable to changing environments.
Route-based localization is based on a set of predefined paths that the robot can
take. As the previous technique, it is very precise and not adaptable.

4.6. Localization 57

CHAPTER 4. NAVIGATION OF AUTONOMOUS MOBILE ROBOTS

Relative localization is used when the map is constructed step by step by the robot
itself. Starting from an arbitrary initial point, a mobile robot should be able to
autonomously explore the environment with its onboard sensors, gain knowledge
about it, interpret the scene, build an appropriate map, and localize itself relative
to this map. The robot starts navigating from a random initial point and begins
to explore the environment through both proprioceptive and exteroceptive sensors.
As it acquires the needed knowledge, it creates a map with landmarks as walls and
obstacles. This procedure is known also as SLAM. The collected data are based
on the displacement of the robot estimated from the odometry and features such
as lines, corners and planes. Generally, SLAM is formulated in a probabilistic way,
where the present position and robot map are estimated as a probability distribution.

4.7 Cognition

In the cognition phase, the robot plans the necessary steps to reach the target. The
cognitive architecture of the robot has the role of planning the path that the robot
has to follow to attain its objectives, based on the information from the sensors and
the robot’s goals. Therefore, the cognitive level of the robot is the decision-making
phase and the execution of movements that the robot utilizes to achieve high-level
objectives.
Cognitive models intend to represent the robot, the environment, and the manner
in which they interact. Mapping algorithms are exploited to build maps of the envi-
ronment and, eventually, motion planning and other artificial intelligence algorithms
might be used to determine how the robot should interact with it.

Path planning deals with finding the best path in order for the mobile robot to
reach the target without collision, thus allowing a mobile robot to navigate through
obstacles from an initial configuration to another one. Path planning cannot always
be designed in advance as the global environment information is not always available
a priori. Nevertheless, with the help of a suitable algorithm, it can be successfully
applied in fully or partially known environments, as well as in unknown structured
ones, where sensors provide raw data to update the map and inform the robot. The
complexity of the problem increases with an increase in degrees of freedom of the
system.
Every decision in path planning algorithms is chosen accordingly to the available
information based on the current state, constraints, and conditions. An appropriate
trajectory is generated as a sequence of actions established in order to maintain
the correct direction from the starting position to the target point through several
intermediate states. The selected trajectory must be smooth without extreme turns
as a robot may have several motion constraints, such as the non-holonomic condition
in underactuated systems.

Path planning is one of the most crucial research problems in robotics since it needs:

58 4.7. Cognition

CHAPTER 4. NAVIGATION OF AUTONOMOUS MOBILE ROBOTS

Environment model: it is the environment in which the robot operates. The
model is provided with geometrical characteristics and constraints.

Robot model: it contains robot characteristics, as dimensions, physics.

Trajectory choice: it is provided of parameters to choose the trajectory.

The first step of any path-planning system is to transform the possibly continuous
environmental model, constructed during localization, into a discrete map suitable
for the chosen path-planning algorithm. Different path-planning algorithms affect
differently the discrete decomposition. There exist three general strategies for de-
composition, which are described in the following:

1. Road map: is a network of 1D curves or lines, capturing the connectivity of
the robot’s free space. It is a decomposition of the robot’s configuration space
based on obstacle geometry that identifies a set of routes within the free space
and that can be used for robot motion planning. Path planning is thus reduced
to connecting the initial and goal positions of the robot to the road network,
then searching for a series of roads from the initial robot position to its goal
position.
The critical task is to construct a set of routes that together enable the robot
to go anywhere in its free space while minimizing the number of total roads.
Generally, completeness is preserved in such decompositions as long as the
degrees of freedom of the robot have been properly captured. Two road map
approaches are visibility graph and Voronoi diagram.

• For a polygonal configuration space a visibility graph, visible in Fig.4.7.1a,
consists of edges connecting all pairs of vertices with an unobstructed
path. The method is extremely fast and efficient in sparse environments
since the size of the representation and the number of edges and nodes
increase with the number of obstacles. However, it can be slow and in-
efficient compared to other techniques when used in densely populated
environments. Visibility graph planning tends to conduct the robot as
close as possible to obstacles on the way to the destination, causing prob-
lems related to collisions. The visibility graph method can be designed
to keep the robot as close as desired to objects in the map.

• Voronoi diagram method attempts to maximize the distance between the
robot and obstacles in the map, see Fig.4.7.1b. The method is based
on calculating the distance of each point in the free space to the nearest
obstacle. At points that are equidistant from two or more obstacles,
such a distance plot has sharp ridges. The Voronoi diagram consists of
the edges formed by these sharp ridge points. When the configuration
space obstacles are polygons, the Voronoi diagram consists of straight
and parabolic segments. In localization problems, the path will be quite

4.7. Cognition 59

CHAPTER 4. NAVIGATION OF AUTONOMOUS MOBILE ROBOTS

poor if short-range sensors are employed since the robot will be in danger
of failing to sense its surroundings.

(a) Visibility graph (b) Voronoi diagram

Figure 4.7.1: Road map representations.

2. Cell decomposition: discriminate between free and occupied cells, see Fig.4.7.2.
There are two categories of cell decomposition based on the placement of the
boundaries between cells. If the boundaries are placed as a function of the
structure of the environment, such that the decomposition is lossless, then the
method is defined as exact cell decomposition. Instead, if the decomposition
results in an approximation of the actual map, the system is called approxi-
mate cell decomposition.

• Exact cell decomposition divides the space into non-overlapping cells in
the shape of triangles and trapezoids, which can be accomplished by
adding vertical line segments at every obstacle’s vertex. The represen-
tation can be extremely compact because each area is stored as a single
node, thus making irrelevant the precise position of the robot. What
matters is the robot’s ability to cross adjacent areas of free space. If
this information is expensive to collect or even unknown, then such an
approach is not feasible.

• The most popular approach of approximate cell decomposition is fixed
decomposition, in which the world is tessellated, transforming the con-
tinuous real environment into a discrete approximation for the map. It is
possible for narrow passageways to be lost during such a transformation.
The key disadvantage of this approach stems from its inexact nature.
Yet another approach is adaptive cell decomposition.

60 4.7. Cognition

CHAPTER 4. NAVIGATION OF AUTONOMOUS MOBILE ROBOTS

(a) Exact decomposition (b) adaptive cell decomposition

Figure 4.7.2: Cell decomposition representations.

3. Potential field: imposes a mathematical function over the space, see Fig.4.7.3.
The potential field method treats the robot as a point under the influence of
an artificial potential field. It creates a field, or gradient, across the robot’s
map that smoothly directs the robot to the goal position from multiple prior
positions while simultaneously avoiding known obstacles.

Figure 4.7.3: Potential field representation.

Generally, path planning algorithms are divided into two categories based on avail-
able information about the environment [9].
The first is global path planning. Under this situation, it is given largely complete
environmental information, the environment is static, and its global information is
known a priori in the control design. The algorithm produces a complete path from
the starting position to the goal configuration, before the robot starts following the
planned trajectory. This approach is expensive in implementation and relatively
well-studied in the existing literature.
The second is local path planning, where the path is generated by taking data from

4.7. Cognition 61

CHAPTER 4. NAVIGATION OF AUTONOMOUS MOBILE ROBOTS

the sensors during the movement of the robot. In opposition, generally the environ-
ment is unknown or dynamic therefore the robot generates a new path to respond to
changes of the environment. This method is more complicated in design but more
applicable in practice.

There are four essential predominant trade-off criteria that must be considered in a
path planning algorithm. The first is optimization, which ensures that the chosen
solution is the best path in realistic static environments. Second, it must be applica-
ble to dynamic environments. Third, it must remain compatible with and enhance
the chosen self-referencing approach. Fourth, it must minimize the complexity, data
storage, and computation time.

Over the years, numerous methodologies have arisen that attempt to solve the mo-
tion planning applied to mobile robots [9][10].
The most popular ones are Dijkstra’s algorithm and A* algorithm. To support path
planning in dynamic environments, D* is discussed as an efficient tool for quick
re-planning in cluttered environments. As D* does not guarantee solution quality in
large dynamic environments, the Rapidly-exploring Random Trees method (RRTs)
is also explored.

4.7.1 Dijkstra’s algorithm

Dijkstra’s algorithm is one of the first algorithms for finding the shortest paths
among nodes in a graph in an acyclic environment. The algorithm uses a greedy ap-
proach, it finds the next local optimal solution hoping that the end result is the best
solution for the whole problem. The subsequent closest vertex is chosen by main-
taining the new vertices in a priority-min queue and storing only one intermediate
node so that only one shortest path can be found.

Four steps are repeated until the shortest distance between the origin and destination
is found:

Step 1: convert the road network to a graph, and distances between nodes in the
graph are expected to be found by exploration.

Step 2: pick the unvisited node with the lowest distance from the source node.

Step 3: calculate the distance from the picked node to each unvisited neighbour
and update the distance of all neighbour nodes if the distance to the picked
node is smaller than the previous distance.

Step 4: mark the visited node when the calculation of distances to all neighbours
is accomplished.

62 4.7. Cognition

CHAPTER 4. NAVIGATION OF AUTONOMOUS MOBILE ROBOTS

Dijkstra is a reliable algorithm for path planning conceived by computer scientist
Edsger W. Dijkstra in 1956. Computations require a considerable quantity of mem-
ory as the algorithm has to compute all the possible outcomes in order to determine
the shortest path, and it cannot handle negative edges. Dijkstra is best suited for
a static environment and/or global path planning as most of the required data is
predefined for the computation of the shortest path. There exist many variants of
the algorithm that can handle, for example, dynamic environments. In this case,
the environment is partially or completely unknown, and thus the node information
with respect to obstacles is computed in real-time.

4.7.2 A* algorithm

The A* Algorithm is a popular graph traversal path planning algorithm, based on
the best-first search. A* operates similarly to Dijkstra’s algorithm but differently
it only finds the shortest path from a specified source to a specified goal, and not
the shortest path tree from a specified source to all possible goals. It is formulated
in terms of a weighted graph, where it aims at finding a path of minimal cost from
a starting node to a final goal position. A* uses a priority queue to perform the
repeated selection of the nodes of minimum cost to expand. At each step of the
algorithm, the node with the lowest value is removed from the queue, the values
of its neighbours are updated accordingly, and these neighbours are added to the
queue. The algorithm continues until a removed node is a goal node.
A* is the most widely used for approaching a near-optimal solution with the available
dataset and in static environments. It is simpler and less computationally heavy than
many other path planning algorithms, with its efficiency lending itself to operation
on constrained and embedded systems.

4.7.3 D* algorithm

The D* (or Dynamic A*) is an incremental search algorithm used to generate a
collision-free path among moving obstacles. D* partially repairs the cost map and
the previously calculated cost map. The D* algorithm processes a robot’s state until
the path cost from the current state to the goal is less than a minimum threshold.
The states sequence is computed with back pointers to either direct the robot to the
goal position or update the cost due to a detected obstacle and place the affected
states on the open list. The cost changes are propagated to the next state, and the
robot continues to follow back pointers in the new sequence towards the goal.
D* algorithm is suitable for partially known and dynamic environments, solving the
path planning problem in an efficient way with high memory consumption. It can be
employed for any path cost optimization problem where the path cost changes during
the search for the optimal path to the goal. D* is most efficient when these changes

4.7. Cognition 63

CHAPTER 4. NAVIGATION OF AUTONOMOUS MOBILE ROBOTS

are detected closer to the current node in the search space. The D* algorithm has
a wide range of applications, including planetary rover mission planning.

4.7.4 RRT algorithm

RRT is a dynamic and online algorithm designed to efficiently search in non-convex,
high-dimensional spaces by randomly building a space-filling tree without requiring a
predefined path. The branches expand in all regions, and, based on weights assigned
to each node, the algorithm creates a path from the starting position to the goal. It
constructs a tree that attempts to explore the workspace rapidly and uniformly via
a random search.
It is composed of two phases:

Phase 1: a collision-free probabilistic road map is constructed and stored as a
graph.

Phase 2: a path that connects original and targeted nodes is searched from the
probabilistic road map.

RRTs can be viewed as a technique to generate open-loop trajectories for nonlinear
systems with state constraints. An RRT can also be considered as a Monte-Carlo
method to bias search into the largest Voronoi regions of a graph in a configuration
space. They were specifically designed to handle non-holonomic constraints and are
widely used for commercial and industrial purposes, also because of the possibility
of being applied to almost any wheeled system.

4.7.5 Ant Colony Algorithm

The ant colony optimization (ACO) algorithm is based on a heuristic multi-agent
approach inspired by the collective behavior of trail-laying ants to find the shortest
and collision-free path, locating optimal solutions by moving through a parameter
space representing all possible solutions.
When a colony of ants is confronted with the choice of reaching their food via
two different routes of which one is much shorter than the other, their choice is
entirely random. However, those who use the shorter route reach the food faster
and therefore go back and forth more often between the anthill and the food.

4.8 Motion control

The motion control phase allows the robot to achieve a desired trajectory by modify-
ing its motor outputs. Motion control is the process that decides robot’s movement

64 4.8. Motion control

CHAPTER 4. NAVIGATION OF AUTONOMOUS MOBILE ROBOTS

to complete tasks that have already been defined using rotary and linear actuators.
Robot arms move through the action of rotating and sliding joints, while mobile
robots move through locomotion and steering.

Whenever more than one way to do something with a robot is present, the chosen
way should have special qualities that are not present in the other ones. A path
can maximize distance from a collision, improve strength, minimize time, avoid
workspace limits, reduce power consumption, and improve accuracy. In practice,
the best motion will usually be a combination of these qualities.
Motion control must also incorporate constraints like speed and acceleration lim-
its for robot joints. Actuators have maximum torque or force. Physical parts of
the robot cannot overlap in space, and joint limits cannot be exceeded. These are
constraints imposed by the physical reality of the robot and the world. The de-
sired tasks, constraints, and optimizations combine to make robot motion control a
challenge.

An automated motion control system consists of three main components: a motion
controller, a motor driver or amplifier, and a motion device.

The primary purpose of a motion controller is to control the dynamics of the motion
device. Motion controllers calculate the path and generate the commands for the
rest of the system, that guide the trajectory and velocity of the machine to the
predefined goal. Motion controllers use multiple algorithms to calculate the precise
movements of the device and adjust their commands to meet the requirements of the
system on the basis of the received feedback information. Common motion systems
use three types of control methods: position control, velocity control, and torque
control. Each control method is based on a feedback device whose basic function is
to transform a physical parameter into an electrical signal for use by the controller.
The motor driver converts the low-voltage command signals from the motion con-
troller into power signals required to move the motor. They use these signals to
convey to the rest of the motion control system the amount of high-power current
and voltage needed.
The motion device, also called actuator, is any mechanical device that provides
motion once actuated by a motor. Such motion devices typically contain feedback
devices to provide information such as position and velocity to the motion controller.
Motors power the motion control system by converting electrical energy into me-
chanical energy. Feedback sensors, used in closed-loop systems, provide feedback
that motion controllers use to make necessary adjustments to the system, ensuring
that the proper commands are given at all times. The most popular feedback de-
vice is an encoder, which is an electromagnetic device that provides information on
position, velocity and direction. There are also absolute encoders, which directly
track positions using many unique values.

4.8. Motion control 65

5 Design of an algorithm for
autonomous navigation

5.1 Introduction

In this chapter, we will present an algorithm for autonomous navigation in an un-
known environment where the target is not known.
In this case study, we consider a ground robot that safely navigates in an unstruc-
tured and unknown environment without human supervision.
The scene to explore is thought to be an office building or an unstructured working
area characterized by static obstacles, narrow passages, and bifurcations of corri-
dors. Although this work is meant for an office building, it can be adapted to a
variety of different contexts with few modifications.

The central focus of this chapter is the mathematical definition and implementation
of a decision algorithm designed to autonomously reach a target position, also in the
presence of bifurcations or obstacles. The main difficulty in these cases is deciding
which corridor or road to take to achieve a predefined goal of unknown position.
This scenario is challenging to handle because of the option of repeating the same
choices, due to the fact that the map of the environment is not given to the robot.
One must find a way to avoid repeating the same step over and over since this
would result in not reaching the target. For example, if you take as decision rule the
maximum distance that you can reach, you may get stuck between the same two
points if no other points are more distant.

A way to address the problem of taking decisions is to define a graph-based for-
mulation. It involves delineating a graph in R2 whose nodes represent the robot’s
possible positions, and arcs between two nodes provide possible paths. The creation
of a map, as the building is explored, permits an efficient way of reaching the target.
The algorithm has been completely designed and tested using MATLAB R2020b.

In the following sections, the mathematical formulation of the problem and its parts
will be illustrated and explained.
Sec. 5.2 will present the general problem and the space in which the variables live. In
Sec. 5.3 will be defined the graph and any variable that is used in the algorithm. The
obstacles are introduced in Sec. 5.4 and in Sec. 5.5 will be explained the implemented
algorithm and the step that it requires. Finally, Sec. 5.6 reports the results of some

CHAPTER 5. ALGORITHM DESIGN

simulations obtained changing the number of keypoints and dimensions of obstacles
in the environment.

5.2 Mathematical formulation of the problem

Navigation is the ability to determine your location and plan a path to some goal.
The task of an autonomous robot is to find and execute a continuous sequence of
actions that leads it to a given goal, avoiding collisions with obstacles without a
human, using a set of sensors.

Consider the space R2 as composed of two complementary sets:

R2 = Xfree ∪ Xcoll (5.2.1)

Assume the collision space Xcoll ⊂ R2 a subset of the plane that includes portions of
the space in which are present exclusively obstacles. On the other hand, Xfree ⊆ R2

consists of obstacle-free plane parts in which a robot can freely move.

For now, suppose that the set of points between which navigate is given and call it
P :

P = {pi ∈ R2, i = 1, . . . , T}, T ∈ N, (5.2.2)
T being the number of provided keypoints.

The robot is assumed to move in an unknown environment, along a trajectory de-
scribed by a sequence of points {p1, . . .pF} ⊆ P with F ∈ N being the index of
used keypoints.

The objective of the algorithm is the achievement of the position xgoal = pk, pk ∈ P .

5.3 State

An undirected graph G(V , E) is a relational structure composed of nodes and arcs
that connect them in pairs, where V is the set of nodes and E is the set of arcs.
Mathematically,

V = P (5.3.1)

E ⊆ V × V , e ∈ E , ⇐⇒ ∃i, j ∈ V s.t. e = (i, j) (5.3.2)

Every single node of V , the cardinality of which could be infinite, represents a
position in R2. The third dimension is not modelled, since the robot can move only
on the plane and can not move along the z-direction.

68 5.2. Mathematical formulation of the problem

CHAPTER 5. ALGORITHM DESIGN

For the given problem, suppose that the set V of nodes is drawn according to a
uniform distribution in the map, while E needs to be found.

The set of nodes is comprised of several keypoints, some of which could lead to
collisions. The scope of the algorithm will be to decide which nodes can be reached
and which nodes lead to collisions.

As concern arcs, they are constructed only if it is possible to travel across them,
passing from one node to the neighbour. Otherwise, the arc is not built since there
is an obstacle.

Consider the set N (xt) ⊆ R2, called neighbour, defined to be a collection of nodes
at a distance smaller than a predefined value N (xt) = {pi ∈ V s.t. ∥xt − pi∥ ≤
dneighbour, dneighbour > 0}.

At time t, the state xt is represented by a node pi ∈ N (xt):

xt = k (5.3.3)

The two possible outcomes can be synthesized as follow:

• if the segment connecting xt and pi ∈ N (xt) intersects an obstacle, an edge
does not exist

• the segment does not intersect any obstacle, and the edge that links xt and pi

can be included in the list of possible paths

Define the segment that connects two points pi and pj as

ei,j = pi + λ(pj − pi), with λ ∈ [0, 1] (5.3.4)

ei,j ∈ E if ∀f ∈ ei,j, f ∈ Xfree.

The initial position x0 defines the position on the world reference frame and can be
chosen arbitrarily. For sake of simplicity, suppose the starting point to be in position
[0, 0] with respect to the world reference system.

5.4 Obstacles

In this section we define and describe two sets of obstacles O = {O1, . . . ,ON}, a
set of circular obstacles, and L = {L1, . . . ,LW}, a collection of linear obstacles. A
linear obstacle Li is part of a straight line bordered by two points ai, bj ∈ R2:

Li = {ai + λ(bj − ai), with λ ∈ [0, 1], i = 1, . . . W ∈ R2} (5.4.1)

5.4. Obstacles 69

CHAPTER 5. ALGORITHM DESIGN

A circular obstacle Oi is a set of points equally distant from a predefined centre
o ∈ R2. The distance of each point from its centre is ri, i = 1, . . . N , where N ∈ N
is the number of obstacles:

Oi = {(x− ox)2 + (y − oy)2 = r2
i , i = 1, . . . N} (5.4.2)

The centres and the dimensions of the obstacles are randomly generated in the given
square space of R2.

5.5 Update rule

In order to accomplish the task, it is necessary to differentiate keypoints that the
robot can reach without hitting obstacles from those that imply an accident.

The first order of business is to define the set E of arcs between reachable places.
Notice that, while V includes all the points that the robot perceives, E contains
only the paths that it can safely travel, discarding all the ones that could lead to an
obstruction.

Once you have defined all the feasible corridors, the update rule leads the robot to
the next node. The strategy just explained is repeated until the achievement of the
objective.

5.5.1 Step 1: intersections

The first step consists in verifying whether a potential arc intersects impediments.
This results in searching for intersections between straight lines constructed among
xt and nodes of the neighbourhood and the given obstacles.

At time t + 1, all the nodes inside a certain predefined distance dneighbour are saved
in the set N (xt). We define a line passing through the actual position xt and the
next possible state pj, ∀pj ∈ N (xt).

Given a, b ∈ V , the line passing through them can be found with the formula:

l = a + λ(b− a), with λ ∈ [0, 1] (5.5.1)

Once all the elements are defined, a possible intersection is easily found by checking
the presence or absence of common points.

All edges that do not present intersections with obstacles are considered feasible and
hence they are added to E .

70 5.5. Update rule

CHAPTER 5. ALGORITHM DESIGN

The pseudocode for this part is reported in the following.

Algorithm 1: Straight lines computation
Xa ← xt

for i ∈ N (xt) do
Xb ← pi

Xa + λ(Xb −Xa), with λ ∈ [0, 1]
for o ∈ O do

xyr ← [xcircleCentres(o) ycircleCentres(o) radii(o)]
xo ← xyr · cos(ang)
yo ← xyr · sin(ang)
eliminations← polyxpoly(Xa, Xb, xo, yo)

end
for l ∈ L do

xl ← [xin(l) xend(l)]
yl ← [yin(l) yend(l)]
eliminations← polyxpoly(Xa, Xb, xl, yl)

end
end
N (xt)←!eliminations(N (xt))

5.5.2 Step 2: decision

The second step consists in deciding which edge to follow and then which node will
represent the state at time t + 1. A way to choose which node to visit is to define
the following cost function for each node i ∈ N (xt):

Jfit(i) = di(xt, i) + wi

n
(5.5.2)

n provides the number of nodes already travelled inside a predefined radius R.
In detail, di(xt, i) is the distance between the state xt and a node i:

∀i ∈ N (xt), di(xt, i) =
√

(xtx − ix)2 + (xty − iy)2 (5.5.3)

Define the set Z to be the set of nodes pi ∈ V that are already visited. Define the
set T = {j /∈ Z & dij(i, j) ≤ R, i ∈ N (xt)}. Lastly, the function w represents the
cost attributed to the proximity of nodes to nodes already travelled:

wi = wi −
g

dij(i, j) , i ∈ N (xt), j ∈ T (5.5.4)

5.5. Update rule 71

CHAPTER 5. ALGORITHM DESIGN

In this case the variable g is set to the value 100.

The next point to reach will be:

xt+1 = c, c ∈ arg max
i∈N (xt)

{di(xt, i) + weighti} (5.5.5)

In case of multiple value of c, choose one value at random.

xt+1 is the farthest node from the previous position and also from the already trav-
elled nodes. The idea is to choose the most distant node if it is far away from nodes
previously selected, since a greater travelled distance at each time step improves the
algorithm’s exploration efficiency. But, if this node is near to some j ∈ T it is better
to pick a closer i ∈ N (xt) that is located distant from all j ∈ T .

Thereby, we keep track of the sequence of movements around the building, that
helps avoiding revisiting the same paths, leading to an endless-loop. By saving the
path, first will be visited the unseen and far away nodes and after, you can retrace
some edges if needed. The selection of points distant from nodes in T reduces the
zig-zag exploration of the environment.

The pseudocode for this part is reported in the following.

Algorithm 2: Next state computation
for i ∈ N (xt) do

weight← 100
D ← di(xt, i)
n← 1
for j ∈ T do

d← dij(i, j)
if d == 0 then

weight← 0
else

if d ≤ R then
weight← (weight− 100

d
)

n← n + 1
end

end
end
fitness(i) = D + weight

n

end
j ← max(fitness)
choice← N (xt)(j)

72 5.5. Update rule

CHAPTER 5. ALGORITHM DESIGN

5.6 Results

In this section will be presented some cases regarding the functioning of the imple-
mented algorithm.
Most of the time, the underlying algorithm does not lead to the fastest route, achiev-
able with global path planning, because the robot chooses the next state based on
a trial-and-error approach. The algorithm does not calculate a direct route to the
target, since it is unknown, but only the next state based on the provided local
information. As the robot reaches a point, new information about it and its sur-
roundings is added to the map. The map is not completely known until any point
of the environment has been explored and the target position is visible only if the
point belongs to the neighbour of the actual state.
Nevertheless in the considered experimental cases, we observe that the algorithm
always arrives at the final goal. The reason relies on the trial-and-error approach of
the algorithm which makes it run until the target is finally reached, even if it takes
a long time.

The simulations are not intended to represent any real case. Actually, the objective
is to develop an idea about an autonomous algorithm for navigation and implement
it using MATLAB then, test the correctness of the self-developed algorithm in a sim-
plified case. In this regard, the robot is treated as a point in R2 and the dimensions
employed in simulations do not reflect the true dimensions of a real environment.
Nevertheless, the sizes of obstacles and action radius of a hypothetical sensor are
consistent with each other and scaled with respect to the real world.

For the experiments, dneighbour, the maximum distance in which keypoints are ob-
servable, is set at the value of 15cm, mainly because of the randomly generated
points. Specifically, if the distance is set to a smaller value it could happen that
any point is inside the radius and hence the algorithm stops. The dimensions of the
map vary in the two reported cases, as described below.

5.6.1 100 keypoints

Firstly, the algorithm has been tested with 100 keypoints uniformly distributed in
a window of dimension 50cm × 50cm. In the same manner, have been generated
9 circular obstacles with a maximum radius of 7cm and 9 linear obstacles with a
maximum length of 10cm.

Due to the random process of generating the obstacles and the keypoints, the nav-
igation task difficulty changes on each case shifting from a simple scenario to an
impossible one in which the target can not be reached for geometrical reasons.

In the following, three different situations that summarize this behavior will be
reported. The first reported case regards a simple layout of the environment where

5.6. Results 73

CHAPTER 5. ALGORITHM DESIGN

obstacles permit the completion of the navigation task. At any step there exists at
least one reachable point, obstacles do not block all the roads so there is at least one
feasible road avoiding the interruption of the algorithm. Finally, the target point is
not contained in any circular obstacle or obstructed by linear ones, and hence it is
reachable.

Thanks to the weights imposed on the keypoints (eq. 5.5.4) we can avoid retracing
the same locations and points in their proximity. If the target had been placed near
a visited keypoint, the algorithm would have detected it and it would have been
reached. If this is not the case, it makes sense to search in an area as distant as
possible coherently with the imposed constraints, in order to reduce the necessary
steps.

As Fig.5.6.1 shows, in seven steps the target is reached. We can note that the state
is chosen far away from the actual position and no obstacles are hit. As we can
see, the direction for reaching the second state abruptly deviates from the previous
trajectory due to the presence of many obstacles obstructing the path.

-10 0 10 20 30 40 50 60

x[cm]

0

10

20

30

40

50

y
[c

m
]

Iterative path

starting point

end point

Figure 5.6.1: Iterative easy path with 100 keypoints (black markers) and a reachable
target. Purple markers are the states of the algorithm, blue lines represent linear obstacles
and black circles circular obstacles. Finally, magenta crosses are the obstacles’ centres,
from which the obstacles are generated.

74 5.6. Results

CHAPTER 5. ALGORITHM DESIGN

The second case, Fig.5.6.2, reports a difficult circumstance. The target position is
hidden from above by obstacles and hence the robot can not follow a direct path.
The algorithm works as expected; obeying to the rule previously explained once the
algorithm changes direction to avoid getting closer to a visited area. In the bottom
left of the graph, a point is reached two times because all the other positions were
inaccessible due to the presence of obstacles.

0 10 20 30 40 50

x[cm]

0

5

10

15

20

25

30

35

40

45

y
[c

m
]

Iterative path

starting point

end point

Figure 5.6.2: Iterative path with 100 keypoints (black markers) and a reachable target
in a more complex situation. Purple markers are the states of the algorithm, blue lines
represent linear obstacles and black circles circular obstacles. Finally, magenta crosses
are the obstacles’ centres, from which the obstacles are generated.

Lastly, Fig.5.6.3 illustrates an unsolvable situation in which the target is not reach-
able, since it is encapsulated into a circular obstacle. The simulation is manually
stopped, as there is no stop condition in addition to the one regarding the reaching
of the target.

5.6.2 200 keypoints

In a second moment, the number of keypoints has been raised to 200 on a window of
dimension 100× 100cm. Also, the number of obstacles has been increased to 15 for
each type. The maximum radius has been set to 10cm while the maximum length
to 15cm.

The approach that the algorithm applies and the obtained results are the same as
the previously reported case. Fig.5.6.4 and Fig.5.6.5 display as said.

5.6. Results 75

CHAPTER 5. ALGORITHM DESIGN

0 10 20 30 40 50 60

x[cm]

0

10

20

30

40

50
y
[c

m
]

Iterative path
starting point

end point

Figure 5.6.3: Iterative path with 100 keypoints (black markers) and an unreachable
target. Purple markers are the states of the algorithm, blue lines represent linear obstacles
and black circles circular obstacles. Finally, magenta crosses are the obstacles’ centres,
from which the obstacles are generated.

0 20 40 60 80 100

x[cm]

0

10

20

30

40

50

60

70

80

90

y
[c

m
]

Iterative path

starting point

end point

Figure 5.6.5: Iterative path with 200 keypoints (black markers) and an unreachable
target. Purple markers are the states of the algorithm, blue lines represent linear obstacles
and black circles circular obstacles. Finally, magenta crosses are the obstacles’ centres,
from which the obstacles are generated.

76 5.6. Results

CHAPTER 5. ALGORITHM DESIGN

0 20 40 60 80 100

x[m]

0

10

20

30

40

50

60

70

80

90

y
[m

]

Iterative path

starting point

end point

Figure 5.6.4: Iterative path with 200 keypoints (black markers) and a reachable target.
Purple markers are the states of the algorithm, blue lines represent linear obstacles and
black circles circular obstacles. Finally, magenta crosses are the obstacles’ centres, from
which the obstacles are generated.

5.7 Future works

The algorithm can be enhanced regarding some control actions that can be added.
Since points are randomly generated, it could happen that there are no points reach-
able by the actual state, due to a greater distance than dneighbour or to the presence
of obstacles in the middle of the trajectory. To overcome this problem, one can
decide to add a point at a distance less than dneighbour. This point can be randomly
generated with the only constraint of the distance to the explored point. Another
interesting solution can be maintaining the previous direction until the detection of
at least one keypoint.
A further improvement is the one concerning a condition of stoppage of the algo-
rithm in the case in which the target point is randomly positioned inside an obstacle,
leading to an unsolvable situation.

Moreover, obstacles can be dynamic and not static as in this work.

In the end, the algorithm can be implemented and tested in a real robot in which
new trajectory points are detected by onboard sensors.

5.7. Future works 77

6 NAPVIG algorithm

6.1 Introduction

In this chapter we will present and describe an innovative algorithm for safe au-
tonomous navigation.
The developed algorithm is called NAPVIG (Narrow Passage Navigation) and it
has been proposed in [11] in order to safely and reactively navigate through an
environment that can change over time.

Reactive navigation deals with navigation in unknown, cluttered, and dynamic en-
vironments where the algorithm has to adapt to respond to the variations around
the vehicle, using any prior global map information.
The problem addressed by reactive approaches is the computation of only the next
command of the robot. Usually, the approach is based on the definition of a function
that specifies the cost of the possible movements in terms of surrounding obstacles
and the direction of the desired goal if provided. At each time step, the algorithm
looks for the minimum cost and the correspondent control is executed. For the com-
putation to be fast enough and allow the robot to be reactive to the changes in the
environment, only the local information and a short-time period are considered.

The NAPVIG algorithm implements local and reliable autonomous navigation with
the aim of reaching an unknown target position in an unknown environment, with
possibly moving obstacles.

For an autonomous robot, handling a non-static scenario is a very important require-
ment. For example, consider an office building where a package or a chair can be
suddenly moved and placed in the middle of the corridor when the robot is passing
by. The robot must avoid obstacles to protect itself and the people around it.
With this simple example we can understand that handling unknown environments
is a very important task, hence developing a completely autonomous navigation al-
gorithm, that needs no map to safely navigate and reach a goal position by exploring
the area, is a step forward for autonomous driving in all areas.

The NAPVIG algorithm proposes an innovative online approach for reactive naviga-
tion in environments characterized by narrow passages and moving obstacles. This
algorithm presents high accuracy in computation to ensure treating challenging sce-

CHAPTER 6. NAPVIG ALGORITHM

narios and presents an efficient way of continuously computing precise trajectories
according to sensor data coming from onboard sensors.
It has been implemented in Python and C++ languages and implemented using
ROS (Robot Operating System). ROS is a set of software libraries and tools that
allows testing the algorithm in simulation, using a large variety of robots, also with
one similar to the one present in the laboratory.

6.2 Algorithm description

The method applied in the algorithm enables the computation of the desired trajec-
tory without a grid map approximation. High reactivity is achieved thanks to the
low computational costs allowing the algorithm to be used in particular scenarios,
where high reactivity is fundamental.
The first thing to take into consideration is that the robot is not aware of its own
global position in the world frame and can only sense the target with onboard sen-
sors. The algorithm does not predict a direct trajectory to the target, since it could
result in dead-ends. Moreover, the algorithm is not intended for global navigation
problems.

To cope with dynamic environments, the algorithm iteratively computes a trajectory
to follow, based on the value of the landscape, the value of the landmarks and the
distance from the target. The target is a position xf (t) ∈ Cfree, where Cfree is the
complementary set of Ccoll(t) ⊂ R2, representing the possible time-variant collision
space. The chosen trajectory is the one with the maximum possible distance from
every obstacle. Indeed, the best trajectory is the one that solves the optimization
problem:

ξ∗ = arg max
ξ(h),h=0,··· ,H

{J(ξ(h), c
(h)
ξ)} (6.2.1)

where c
(h)
ξ is the associated exit status that causes the prediction to terminate and

H ∈ N is the total number of predicted trajectories to each of them it is associated
with the cost value J(ξ(h), c

(h)
ξ). In cases in which the trajectory has to be suddenly

discarded (e.g. collisions) the cost is set to be infinite.

The trajectories computed by the NAPVIG algorithm always follow the GVD (Gen-
eralized Voronoi Diagram) of the map. The generalized Voronoi diagram is a struc-
ture that divides space into a complex of generalized Voronoi cells (GVCs) around
objects. Each GVC contains exactly one object or site, and every point in the GVC
is closer to its contained object than to any other object. The generalized Voronoi
diagram is the boundary of the cell complex, and thus every point on the GVD is
equidistant from two or more closest objects.

As said before, the trajectory depends on three parameters.
The landscape is a function that maps each point of R2 to a value related to the dis-

80 6.2. Algorithm description

CHAPTER 6. NAPVIG ALGORITHM

Figure 6.2.1: Smooth landscape function obtained. The yellow part represents two
obstacles (where the measurements come from) while the blue areas are the safe regions,
where the trajectories rely.

tance of the nearest measurement. It is the superposition of Gaussian-like functions
convoluted with a Gaussian kernel to obtain a smooth function, visible in Fig.6.2.1.
The value of this function is proportional to the distance to the closest obstacle.
The robot has to travel along the minimum of the landscape.

The algorithm is provided with the relative distance of the target with respect to
the robot but, the robot does not know where it is in a world frame. The total lack
of knowledge of the target is too restrictive for the cases of interest and the relative
distance helps in tricky situations. This assumption implies that the robot tends
to point towards the target, avoiding getting away from it if unnecessary. If there
were no obstacles the robot would head directly to the target without exploring the
surrounding area saving time and resources. If there are obstacles, depending on
the weight associated with this parameter, the trajectory may move away.

On the other hand, also landmarks have a very important role in the computation
of the next step since they allow to keep track of the movements of the robot by
saving areas already explored. A landmark represents the exploration factor and it
is defined by the triplet l = (Fl, tl, xl) ∈ SE(2)× R2 × R2, where:

• Fl ∈ SE(2) is the last measurement frame when the landmark is created

• tl ∈ R2 is the timestamp of the moment the landmark is created

• xl ∈ R2 is the position of the robot in the moment of the landmark creation,
expressed in the frame Fl

Landmarks are saved in a batch of limited size so that old and distant landmarks
are substituted by new ones.

6.2. Algorithm description 81

CHAPTER 6. NAPVIG ALGORITHM

These points are associated with a cost, to penalize the repetition of the same
steps and steps close to them. Landmarks are used both to penalize routes already
seen and to highlight roads that lead to dead ends in order to explore new ways
to reach the goal and avoid endless loops since the map is unknown. It could
also be needed that older landmarks are weighted less than new ones to allow the
exploration of the same area after a desired amount of time, with the scope of
handling non-static scenarios. In fact, old and not practicable routes characterized
by some obstacles, may be accessible at a different instant due to the temporal
variation of the environment. At the generic time t, the exponential decay term
is e−λ(t−til), where λ ≥ 0 is the tuning parameter acting as a time constant in the
exponential decay.

Changing the weights associated with the two parameters, as will be analyzed in the
next section, can give more importance to reaching the target or avoiding the repe-
tition of the passages, leading to different behaviors of the robot during navigation.
In addition, choosing the wrong weights can determine the failure of the algorithm,
since it is not able to reach the target. The correct weights allow both reaching the
target and achieving low computational cost. The latter can be obtained because the
employment of the right values for these parameters shortens the time and distance
that the robot needs to reach the target position.

The algorithm is based on a policy-switching method. NAPVIG allows to access
the GVD, so the policies can be defined algorithmically, with a method based on
the optimization of the cost function Eq.6.2.1. The method is based on six policies
categorized into three classes: predictive (fully-exploitative, fully-explorative, partly
explorative), reactive (legacy), and auxiliary (free-space, halt). Each policy plays a
role in a specific moment of the computation, that depends on the current status of
the robot and generates a trajectory to follow. We will not enter in finer details but
it is important to note that the main navigation task is performed by the predictive
policies.

The fully-exploitative policy is the one that generates a trajectory that points
towards the target. The switch to other policies occurs when the target is approached
or when all the generated trajectories are discarded (e.g. dead-ends). Actually,
despite this policy could result in a very efficient navigation, the computed trajectory
can be not safe or valid.

If any direct trajectory towards the target is not feasible, and hence the fully ex-
ploitative policy is rejected, the algorithm switches to the explorative policies. Both
of them search the trajectory in 8 directions spanning the entire round angle.
The fully-explorative policy is used when the target is not in sight and the goal
of the navigation task is to explore the map as much as possible. The cost function
associated with each predicted trajectory penalizes those being close to visited areas.

82 6.2. Algorithm description

CHAPTER 6. NAPVIG ALGORITHM

For each point in the map, the penalty term is:

Ji : R2 → R : x 7→ Ji(x) := wle
− ∥x−xil∥2

2ρl (6.2.2)

where wl ∈ R is the weight associated to the landmark and ρl ∈ R is a value tuning
the peak radius of the Gaussian.
The total cost associated with each point in R2 is then the sum of the contributions of
the penalty terms of each landmark, and the total cost associated with the predicted
trajectory, is the sum of the cost of each sample, provided that the prediction ended
without faults (TNF) or collisions (TCO):

J(ξ) =
+∞, if cξ = TCO ∨ TNF∑|ξ|

K=0
∑NL

i=1 e−λ(t−til)Ji(ξk), otherwise
(6.2.3)

If every predicted trajectory results in a collision/fault, the robot could not move if
an external action does not happen.

The partly-explorative policy is used when the target is in sight and the goal is
reaching the target in absence of a direct trajectory. It adds a term to the cost 6.2.3
that penalizes the distance to the target:

penalty(ξ) =
Kmax∑
k=0

wtarget ∥ξk − xf∥2 , (6.2.4)

where wtarget ∈ R is a weight balancing the trade-off between exploration and ex-
ploitation. Essentially, the exploration term allows overcoming local minima-like
situations by locally increasing the cost function.

The last three policies are used to extend navigation tasks or improve computational
efficiency.
The legacy policy is used to follow the same direction in absence of bifurcations.

The free-space policy is needed because all the other policies output a point on the
GVD, while the target can be any point in the free space. The algorithm switches
to that policy when the robot is sufficiently close to the target so that the space in
between could be considered safe. The robot can navigate in the free space without
considering obstacles at all, for the short space that separates the robot from the
target. The trajectory in this case is then directly the final point itself.

Finally, the halt policy is used when the robot needs to stop, for example when all
the other policies have been rejected.

6.2. Algorithm description 83

CHAPTER 6. NAPVIG ALGORITHM

6.3 Simulation and improvements

The algorithm is tested in the Gazebo simulator, where different environments are
presented to the robot. Gazebo is an open-source 3D robotics simulator that can
model sensors that capture the simulated environment.
To satisfy the requirements the robot must avoid collisions and reach the target,
which can be positioned at any point in the free space. The environment presents
several difficult situations to overcome such as the presence of walls, obstacles and
bifurcations. The objective is to reach the target by exploring the proposed area.

6.3.1 Simulated environments description

Simulations have been performed by changing the characteristics of the environment
in which the robot navigates in order to explore different situations and behaviors of
the algorithm. For this reason, four different maps have been created using different
sizes and types of obstacles. Fig.6.3.1-6.3.4 report them.

Map 1

The first map is the simplest one. The main block of obstacles is concentrated in the
middle of the available space, surrounded by a viable corridor. It is characterized by
linear obstacles, representing walls and some simple dead-ends, easily recognizable
by the robot’s sensors and avoided in a short time.
Moreover, the target would be reachable regardless of where it would be placed.

Figure 6.3.1: First map.

84 6.3. Simulation and improvements

CHAPTER 6. NAPVIG ALGORITHM

Map 2

The second map features linear obstacles and walls as the first map, with a more
complicated configuration. Obstacles are organized in two main zones on the sides,
connected by a central area with several separators.
On the right side of the map there is a long, dead-end spiral-shaped corridor. Finally,
there are several tricky crossroads.

Figure 6.3.2: Second map.

Map 3

The third map presents both circular and linear obstacles. Circular obstacles are
positioned in the central part of the map to divide the initial lower zone with the
final upper one.
It is a simple configuration due to the presence of few obstacles. It has primarily
designed to test the direction taken by the robot in the first steps.

Figure 6.3.3: Third map.

6.3. Simulation and improvements 85

CHAPTER 6. NAPVIG ALGORITHM

Map 4

The fourth map is completely made of circular obstacles of different sizes, positioned
in a regular pattern in which obstructions are staggered from row to row.
It simulated an environment populated by only pillars.

Figure 6.3.4: Fourth map.

6.3.2 Parameters tuning and results

To improve results, the following parameters have been modified over the course of
several different simulations:

• weight of the landmarks

• weight of the target

• decay of the landmarks

• batch size

The first two in the list represent how much the decision of the next step is influenced
by the landmarks, namely the already travelled points, and the target. This is
because one would like to explore as much space as possible and not get stuck in
the same area. Moreover, the target’s weight is needed to avoid getting away from
it if unnecessary.
The third one represents the exponent of the decay of the landmarks. More in detail,
the first points of the queue are deleted since old, probably distant and limited space
of the queue.
The last parameter describes the size of the queue of the saved landmarks.

86 6.3. Simulation and improvements

CHAPTER 6. NAPVIG ALGORITHM

Starting with the last parameters, batch size has been increased by 50 points with
respect to the default value of 500. The reason relies on the fact that sometimes the
robot repeats the same path even if there are other streets to visit. This happens
because the first points saved in the queue are replaced by newer ones and the
robot does not recognize them as already travelled. Additional saved points help in
exploring different parts of the map.

As concerns weights and decay factors, several combinations of them have been tried.
In the beginning, the three parameters has been changed one at a time, with the
aim of discovering how a single parameter influences the overall simulation. What
has been proved is that the weight of the landmarks must be at least two orders
of magnitude greater than the one of the target. The reason is that with a lower
ratio, the robot always tries to reach directly the target position. In this case, if this
position is not directly accessible the robot ends in a loop, repeating the same steps
all over again. In the cases in which the ratio is lower, lowering the decay factor has
no effect on the simulation. Increasing this factor means reducing the time in which
the landmarks are saved in the batch, counterproductive with the aim of keeping
track of the travelled path for a period long enough.
Starting from the default values of the parameters, have been chosen six values for
the weight of the landmarks, six for the one associated with the target, and five for
the decay factor.
After having found the minimal ratio that leads to efficient navigation, several com-
binations of these three parameters have been discarded, since already knew that
would lead to inefficient behaviors of the robot, such as failing to reach the target.

Different combinations of values have been tried on four different maps, previously
described, to study the performance of the algorithm in different situations.
To obtain an objective evaluation of the performance of the algorithm, measures
like time elapsed and travelled distance to reach the target have been taken into
consideration with the use of two counters. By comparing the obtained values of
the time and distance, for different input parameters and varying the initial and final
positions, the best values for the before mentioned parameters have been found. The
lower the values returned by the two counters, the better is the combination of the
parameters.

Two different starting points and targets have been selected to evaluate if any change
in these values brings changes in the simulation performance.

The major result that has been found is that a combination of values optimal for
every environment and position does not exist. Instead, the rule of the order of
magnitude has been proved to be general and valid for all types of environments
and each chosen position both for target and initial condition. Moreover, also the
decay factor has a very important role in fact, in the majority of the cases only the
value of 0.001 and in some cases 0.01 are found to be valid. Other values lead to
longer computational time to reach convergence.

6.3. Simulation and improvements 87

CHAPTER 6. NAPVIG ALGORITHM

Since the presence of disturbs both in sensing and tracking, simulations performed
with the same settings may give different results, whenever tricky situations appear
such as bifurcations or crossroads, as shown in the graphs below.
The landscape is computed through the Monte Carlo method, which introduces
variability and approximation. Even a small approximation in the computations
can lead to a change in trajectories at different times.
A slight movement from the Voronoi also can lead to a different choice of the next
step.

Given that the algorithm has been previously tested and it has shown to be fully
functioning, in the following are reported only limit case situations in which it has
encountered some minor difficulties and suboptimal solutions.
The goal of these tests is to analyze in detail what happens when the algorithm
encounters a situation in which it has to choose between more feasible trajectories.

Fig.6.3.5 illustrates the situation previously described encountered in the first map.
For these simulations the parameters are chosen to be:

• landmarks’ weight = 100

• target’s weight = 0.1

• decay constant = 0.001

while the initial position is set to (x,y)=(1,1) and target to (x,y)=(-2,-2).

Simulation odometry for maze 1

X[m]

Y
[m

]

Trial 1

Trial 2

START

TARGET

Figure 6.3.5: Trajectories executed during a simulation in the first map performed with
the same configuration.

88 6.3. Simulation and improvements

CHAPTER 6. NAPVIG ALGORITHM

From the starting point, marked in red on the right side of the figure, the robot
moves up encountering a blockage. Then it heads downwards finding a bifurcation
that leads to different trajectories in the two simulations.
Nevertheless the application of the same values of the parameters, the algorithm
performs different choices in the same situation on the basis of the cost function,
leading to a shorter path for the green trajectory. Hence the performance of the
algorithm to solve a determined navigation problem does not only depend on the
chosen parameters but also on the small variations due to approximations as de-
scribed earlier.

Fig.6.3.6 illustrates the situation previously described encountered in the second
map.
For these simulations the parameters are chosen to be:

• landmarks’ weight = 1

• target’s weight = 0.01

• decay constant = 0.001

while the initial position is set to (x,y)=(1,1) and target to (x,y)=(-3.5,-1).

Simulation odometry for maze 2

X[m]

Y
[m

]

Trial 1

Trial 2

START

TARGET

Figure 6.3.6: Trajectories executed during a simulation in the second map performed
with the same configuration.

As concern maze number 3, two simulations with the same parameters lead to com-
pletely different results, even from the beginning. A possible reason is a slightly
different value of the cost of the initial trajectories. Since the map is almost sym-
metric, the two trajectories lead to an almost symmetrical pattern.

6.3. Simulation and improvements 89

CHAPTER 6. NAPVIG ALGORITHM

Fig.6.3.7 illustrates the situation previously described encountered in the third map.
For these simulations the parameters are chosen to be:

• landmarks’ weight = 10

• target’s weight = 0.04

• decay constant = 0.001

while the initial position is set to (x,y)=(0,-3) and target to (x,y)=(0,3.5).

Simulation odometry for maze 3

X[m]

Y
[m

]

Trial 1

Trial 2

START

TARGET

Figure 6.3.7: Trajectories executed during a simulation in the third map performed
with the same configuration.

As concerns green trajectory, notice that in the final part of the simulation, the
algorithm leads the robot to reach directly the target, finding an obstruction ahead.
The shortest path could be the one represented by the pink trajectory. The choice
of heading to the left side of the map is due to the cost associated with the land-
marks which penalizes the possibility of repeating the same steps to overcoming the
obstacle.

Due to the particular configuration of the fourth environment, the simulations give
always the same results. Anyway, it is a particular case.
Fig.6.3.8 illustrates the situation previously described encountered in the fourth
map.
For these simulations the parameters are chosen to be:

• landmarks’ weight = 10

• target’s weight = 0.4

• decay constant = 0.001

90 6.3. Simulation and improvements

CHAPTER 6. NAPVIG ALGORITHM

while the initial position is set to (x,y)=(-1,-4.5) and target to (x,y)=(4,3).

Simulation odometry for maze 4

X[m]

Y
[m

]

START

TARGET

Figure 6.3.8: Trajectory executed during a simulation in the fourth map.

Notice that the light-blue graph assumes values close to zero at points in which
the algorithm makes the robot turn to the left. This situation in the previous
environments led to different choices of paths in distinct simulations. In this case,
instead, the particular configuration of the obstacles and the slight offset of the
starting position make the algorithm prefer to stay on the left side of the obstacle
in every simulation.

6.4 Real environment tests

After numerous simulations performed on Gazebo simulator, NAPVIG algorithm
is tested on a real customizable unmanned ground vehicle (UGV), as described in
Chapter 3, provided with several sensors. Between all, should be noted the presence
of a Lidar, an RGB camera, ultrasonic, infrared, collisions and proximity sensors.
Finally, VICON markers are mounted to connect the robot with the laboratory.
In particular, the robot we take into consideration is a differential drive robot (DDR)
characterized by right and left motors, a stabilizer, and the IMU to measure and
report force, angular rate, and the body’s orientation. Fig.6.4.1 and Fig.6.4.2 report
the involved robot from four different perspectives.

6.4. Real environment tests 91

CHAPTER 6. NAPVIG ALGORITHM

Figure 6.4.1: Real robot front and rear views.

Figure 6.4.2: Real robot upper and lateral views.

92 6.4. Real environment tests

CHAPTER 6. NAPVIG ALGORITHM

6.4.1 Experiments

To keep track of the movements of the robot it has been employed the Vicon motion
capture system. Motion capture is the process of recording the movements of objects
or people, sampled many times per second. The purpose of motion capture is to
record only an object’s movements and not its visual appearance.

The Vicon system is composed of ten cameras that work together to follow the robot
during the simulations and record its position as a function of time. The placement
of these cameras is shown in Fig.6.4.3a.

To follow the robot during navigation, the Vicon system needs four reflector points
(half-spheres visible from Fig.6.4.3b) positioned in clearly visible spots of the robot’s
bodywork without any particular pattern. If these markers are set in a symmetrical
way the Vicon system may misunderstand the orientation of the robot failing the
reconstruction.

(a) Vicon environment

(b) Robot in the Vicon system

Figure 6.4.3: Vicon system environment.

6.4. Real environment tests 93

CHAPTER 6. NAPVIG ALGORITHM

If these markers are positioned out of sight, Vicon cameras fail to recognize the
robot, and then the construction of a virtual object, correspondent to the robot, is
not possible. The same can also occur if robot markers are shielded by obstacles.

6.4.2 First test

The first test case has been ideated to verify the correctness of the algorithm and
to ensure that the robot avoids positioned obstacles and can reach the target goal,
as proved in simulations. To further test the algorithm, obstacles have been moved
during navigation to simulate a dynamic environment. Some of them have been also
suddenly placed in front of the robot.

To make the first test simple configurations of obstacles have been used as shown in
Fig.6.4.4, where some cardboard boxes were set to form a 1 geometry.

Figure 6.4.4: First environment for the experiments.

In Fig.6.4.5 is plotted the odometry recorded by the Vicon system during the first
experiment. As expected, the Napvig algorithm tries to reach directly the target as
reported on the upper part of the odometry graph. As soon as the robot recognizes
an obstruction, goes back and takes a deviation around the boxes.

94 6.4. Real environment tests

CHAPTER 6. NAPVIG ALGORITHM

1.5 2 2.5 3 3.5 4 4.5

X[m]

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Y
[m

]

Real environment test

X 3.60407

Y -2.5305

X 1.70407

Y 0.366041

Figure 6.4.5: Odometry graph for the first environment.

6.4.3 Second test

The second test (Fig.6.4.6) is intended to verify the functioning of the algorithm
along narrow passages. Differently from the first test, the boxes have been positioned
at a distance that permits the robot to pass between them. A cylindrical obstacle
has been placed inside the created corridor, to simulate a column (see Sec.6.3 for
reference).
The starting point has been set in proximity to the entrance of the corridor, while
the target lies outside on the right side.

Figure 6.4.6: Second environment for the experiments.

6.4. Real environment tests 95

CHAPTER 6. NAPVIG ALGORITHM

Fig.6.4.7 shows the odometry, registered by the Vicon system, during the second ex-
periment. As expected, the Napvig algorithm is capable of calculating a trajectory
even in narrow passages as long as the space perceived by the Lidar sensor is enough.

1.5 2 2.5 3 3.5 4 4.5

X[m]

-2.5

-2

-1.5

-1

-0.5

0

0.5

Y
[m

]

Real environment test

X 3.78665

Y -2.44828

X 1.58337

Y 0.127116

Figure 6.4.7: Odometry graph for the second environment.

6.4.4 Third test

The third test case has been developed to recreate a difficult situation for the algo-
rithm. In the underlying situation, reported in Fig.6.4.8, the robot is in front of a
central obstacle and it has to decide by which side to circumvent it.

Figure 6.4.8: Third environment for experiments.

96 6.4. Real environment tests

CHAPTER 6. NAPVIG ALGORITHM

As expected (see Sec.6.3), since the obstacle and the environment are almost sym-
metric the algorithm sometimes takes the left path while other times takes the right
path. A possible reason for this behavior could be due to an almost similar cost for
each of the two trajectories, at least in the first part of the navigation. Fig.6.4.9
shows the odometry of two different experiments in the same environment.

2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4

X[m]

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2
Y

[m
]

Real environment test

X 2.81712

Y -1.30891

X 3.93148

Y -0.39731

(a) Right path

2.6 2.8 3 3.2 3.4 3.6 3.8 4

X[m]

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Y
[m

]

Real environment test

X 3.94428

Y -0.406889

X 2.86376

Y -1.30829

(b) Left path

Figure 6.4.9: Odometry graph for the two different paths of the third environment.

Fig.6.4.10 and Fig.6.4.11 show the behavior of the difference between the angles
and costs of the two cheapest computed trajectories. In particular, the pink one
represents the difference of angle, in radians, between the two cheapest calculated
trajectories. If the value is small the two trajectories lead to the same next step on
the Voronoi diagram. Instead, if the value is close to π then the two trajectories
lead to opposite directions, such as in front of a wall.
As concerned with the light-blue graphs, they illustrate the trend of the difference

6.4. Real environment tests 97

CHAPTER 6. NAPVIG ALGORITHM

between the costs of the two cheapest calculated trajectories. When the values are
small the trajectories have a similar cost value, and hence the choice of one with
respect to the other is more affected by approximations.

Figure 6.4.10: Difference between the angles and costs of the two cheapest trajectories
for the right path of the third environment.

Figure 6.4.11: Difference between the angles and costs of the two cheapest trajectories
for the left path of the third environment.

98 6.4. Real environment tests

CHAPTER 6. NAPVIG ALGORITHM

If the difference in cost is close to zero and the difference in the direction is significant
then it can happen, as in this case, that during various simulations the algorithm
may take different decisions.

Regarding Fig.6.4.11, notice the oscillations in the sample interval between 5 and 20.
The rapid change in angle difference is related to the rapid change in costs difference,
indeed the negative peaks of the pink graph correspond to points in which the cost
difference is small. This means that the two most probable trajectories head in very
different directions (2rad) and at the same time have a similar cost. This situation
probably corresponds in Fig.6.4.9b to the point in which are visible several small
oscillations (0.05m). Here the robot takes a route but after small travel it changes
completely its path. After several indecisions, the algorithm chooses to overcome
the obstacle on the left side.
Finally, it can be noticed that between the first and the second attempts, there is a
small difference in the location of the starting point that could have an impact on
the decision-making process of the algorithm.

6.5 Results and future works

In this section are presented some suggestions about potential future developments.
Future improvements rely on the possibility of computing trajectories in advance
with respect to the actual state. There is the possibility of calculating the costs of
the valid trajectories two or three steps ahead, improving path selection and avoiding
getting stuck in dead-ends and hence revisiting the same points backwards.

Another important aspect could be the optimization of self-localization, with the
implementation of internal odometry with dedicated compensation of relative errors
removing the dependency from the Vicon system. This refinement could allow the
execution of outdoor or indoor experimental tests where motion capture systems are
not installable.

Finally, it is necessary to perform several tests with the goal of collecting numer-
ical data to deeply understand the phenomena involved in the functioning of the
NAPVIG algorithm, which are described only in a qualitative manner in this thesis
because of the lack of data.

6.5. Results and future works 99

Bibliography

[1] Robin R. Murphy. Introduction to AI Robotics. 2019.
[2] Jenay M Beer, Arthur D Fisk, and Wendy A Rogers. “Toward a framework for

levels of robot autonomy in human-robot interaction”. In: Journal of human-
robot interaction 3.2 (2014), p. 74.

[3] Francisco Rubio, Francisco Valero, and Carlos Llopis-Albert. “A review of
mobile robots: Concepts, methods, theoretical framework, and applications”.
In: International Journal of Advanced Robotic Systems 16.2 (2019).

[4] Roland Siegwart, Illah Reza Nourbakhsh, and Davide Scaramuzza. Introduc-
tion to autonomous mobile robots. MIT press, 2011.

[5] Halliday and Resnick. Fundamentals of Physics Extended, 10th Edition. Wiley,
2014.

[6] Ravi Raj and Andrzej Kos. “A Comprehensive Study of Mobile Robot: History,
Developments, Applications, and Future Research Perspectives”. In: Applied
Sciences 12 (2022). doi: 10.3390/app12146951.

[7] G.N. Desouza and A.C. Kak. “Vision for mobile robot navigation: a survey”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 24.2
(2002).

[8] Prabin Kumar Panigrahi and Sukant Kishoro Bisoy. “Localization strategies
for autonomous mobile robots: A review”. In: Journal of King Saud University
- Computer and Information Sciences 34.8, Part B (2022).

[9] Karthik Karur et al. “A survey of path planning algorithms for mobile robots”.
In: Vehicles 3.3 (2021), pp. 448–468.

[10] Chengmin Zhou, Bingding Huang, and Pasi Fränti. “A review of motion plan-
ning algorithms for intelligent robots”. In: Journal of Intelligent Manufactur-
ing (2021), pp. 1–38.

[11] Luca Battistella Nicola Lissandrini, Giulia Michieletto Markus Ryll, and An-
gelo Cenedese. “NAPVIG: Local Generalized Voronoi Approximation for Re-
active Navigation in Unknown and Dynamic Environments”. In: American
Control Conference (2023).

101

