10 research outputs found

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Lossy Polynomial Datapath Synthesis

    No full text
    The design of the compute elements of hardware, its datapath, plays a crucial role in determining the speed, area and power consumption of a device. The building blocks of datapath are polynomial in nature. Research into the implementation of adders and multipliers has a long history and developments in this area will continue. Despite such efficient building block implementations, correctly determining the necessary precision of each building block within a design is a challenge. It is typical that standard or uniform precisions are chosen, such as the IEEE floating point precisions. The hardware quality of the datapath is inextricably linked to the precisions of which it is composed. There is, however, another essential element that determines hardware quality, namely that of the accuracy of the components. If one were to implement each of the official IEEE rounding modes, significant differences in hardware quality would be found. But in the same fashion that standard precisions may be unnecessarily chosen, it is typical that components may be constructed to return one of these correctly rounded results, where in fact such accuracy is far from necessary. Unfortunately if a lesser accuracy is permissible then the techniques that exist to reduce hardware implementation cost by exploiting such freedom invariably produce an error with extremely difficult to determine properties. This thesis addresses the problem of how to construct hardware to efficiently implement fixed and floating-point polynomials while exploiting a global error freedom. This is a form of lossy synthesis. The fixed-point contributions include resource minimisation when implementing mutually exclusive polynomials, the construction of minimal lossy components with guaranteed worst case error and a technique for efficient composition of such components. Contributions are also made to how a floating-point polynomial can be implemented with guaranteed relative error.Open Acces

    Formal methods and digital systems validation for airborne systems

    Get PDF
    This report has been prepared to supplement a forthcoming chapter on formal methods in the FAA Digital Systems Validation Handbook. Its purpose is as follows: to outline the technical basis for formal methods in computer science; to explain the use of formal methods in the specification and verification of software and hardware requirements, designs, and implementations; to identify the benefits, weaknesses, and difficulties in applying these methods to digital systems used on board aircraft; and to suggest factors for consideration when formal methods are offered in support of certification. These latter factors assume the context for software development and assurance described in RTCA document DO-178B, 'Software Considerations in Airborne Systems and Equipment Certification,' Dec. 1992

    Proceedings of the 5th International Workshop on Reconfigurable Communication-centric Systems on Chip 2010 - ReCoSoC\u2710 - May 17-19, 2010 Karlsruhe, Germany. (KIT Scientific Reports ; 7551)

    Get PDF
    ReCoSoC is intended to be a periodic annual meeting to expose and discuss gathered expertise as well as state of the art research around SoC related topics through plenary invited papers and posters. The workshop aims to provide a prospective view of tomorrow\u27s challenges in the multibillion transistor era, taking into account the emerging techniques and architectures exploring the synergy between flexible on-chip communication and system reconfigurability

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    Exploring redundant arithmetics in computer-aided design of arithmetic datapaths

    No full text
    International audienceThe rapid pace of technological evolution places a substantial amount of pressure on minimizing the time-to-market for integrated circuit designers. Such pressure on the design cycle combined with strict performance constraints makes the use of computer-aided design tools mandatory. In this context, CAD tools that improve performance in terms of delay, area or power consumption are of interest.In this paper, we present a design environment that is dedicated to arithmetic datapath design support. This environment consists of the following elements: (1) Stratus: a language that is dedicated to the parameterized generation of VLSI modules and that allows several levels of abstraction; (2) ArithLib: a library of parameterized arithmetic IP-block generators; and (3) several optimization algorithms that choose the best architecture for each arithmetic operator of a datapath, given an optimization goal. These algorithms consider binary arithmetic as well as redundant arithmetic, given the good intrinsic performance of redundant architectures. In addition, experimental results are presented

    Applications in Electronics Pervading Industry, Environment and Society

    Get PDF
    This book features the manuscripts accepted for the Special Issue “Applications in Electronics Pervading Industry, Environment and Society—Sensing Systems and Pervasive Intelligence” of the MDPI journal Sensors. Most of the papers come from a selection of the best papers of the 2019 edition of the “Applications in Electronics Pervading Industry, Environment and Society” (APPLEPIES) Conference, which was held in November 2019. All these papers have been significantly enhanced with novel experimental results. The papers give an overview of the trends in research and development activities concerning the pervasive application of electronics in industry, the environment, and society. The focus of these papers is on cyber physical systems (CPS), with research proposals for new sensor acquisition and ADC (analog to digital converter) methods, high-speed communication systems, cybersecurity, big data management, and data processing including emerging machine learning techniques. Physical implementation aspects are discussed as well as the trade-off found between functional performance and hardware/system costs

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications
    corecore