
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Generation of Custom Run-time
Reconfigurable Hardware for

Transparent Binary Acceleration

Nuno Miguel Cardanha Paulino

Programa Doutoral em Engenharia Electrotécnica e de Computadores
(PDEEC)

Supervisor: João Canas Ferreira (Assistant Professor)

Co-supervisor: João M. P. Cardoso (Associate Professor)

June 2016

c© Nuno Miguel Cardanha Paulino, 2016

i

Abstract

With the increase of application complexity and amount of data, the required computational power
increases in tandem. Technology improvements have allowed for the increase in clock frequen-
cies of all kinds of processing architectures. But exploration of new architecture and computing
paradigms over the simple single-issue in-order processor are equally important towards increas-
ing performance, by properly exploiting the data-parallelism of demanding tasks. For instance:
superscalar processors, which discover instruction parallelism at runtime; Very Long Instruction
Word processors, which rely on compile-time parallelism discovery and multiple issue-units; and
multi-core approaches, which are based on thread-level parallelism exploited at the software level.

For embedded applications, depending on the performance requirements or resource con-
straints, and if the application is composed of well-defined tasks, then a more application-specific
system may be appropriate, i.e., developing an Application Specific Integrated Circuit (ASIC).
Custom logic delivers the best power/performance ratio, but this solution requires advanced hard-
ware expertise, implies long development time, and especially very high manufacture costs.

This work designed and evaluated a transparent binary acceleration approach, targeting Field
Programmable Gate Array (FPGA) devices, which relies on instruction traces to automatically
generate specialized accelerator instances. A custom accelerator, capable of executing a set of
previously detected loop traces, is coupled to a host MicroBlaze processor. The traces are detected
via simulation of the target binary. The approach does not require the application source code to
be modified, which ensures the transparency for the application developer. No custom compilers
are necessary, and the binary code does not need to be altered either offline or during runtime.

The accelerators contain per-instance reconfiguration capabilities, which allow for the reuse
of computing units between accelerated loops, without sacrificing the benefits of circuit special-
ization. To increase the achievable performance, the accelerator is capable of performing two
concurrent memory accesses to the MicroBlaze’s data memory. The repetitive nature of the loop
traces is exploited via loop-pipelining, which maximizes the achievable acceleration. By support-
ing single-precision floating-point operations via fully-pipelined units, the accelerator is capable of
executing realistic data-oriented loops. Finally, the use of Dynamic Partial Reconfiguration (DPR)
allows for significant area savings when instantiating accelerators with numerous configurations,
and also ensures circuit specialization per-configuration.

Several fully functional systems were implemented, using commercial FPGAs, to validate the
design iterations of the accelerator. An initial design relied on translating Control and Dataflow
Graph representations of the traces into a multi-row array of Functional Units. For 15 benchmarks,
the geometric mean speedup was 2.08×. A second implementation augmented the accelerator with
shared memory access to the the entire local data memory of the MicroBlaze. Arbitrary addresses
can be accessed without need for address generation hardware. Exploiting data-parallelism allows
for targeting of larger, more realistic traces. The mean geometric speedup for 37 benchmarks
was 2.35×. The most efficient implementation supports floating-point operations and relies on
loop pipelining. The developed tools generate an accelerator instance by modulo-scheduling each
trace at the minimum possible Initiation Interval. The geometric mean speedup for a set of 24
benchmarks is 5.61×, and the accelerator requires only 1.12× the FPGA slices required by the
MicroBlaze. Finally, resorting to DPR, an accelerator with 10 configurations requires only a third
of the Lookup Tables relative to an equivalent accelerator without this capability.

To summarize, the approach is capable of expediently generating accelerator-augmented em-
bedded systems which achieve considerable performance increases whilst incurring a low resource
cost, and without requiring manual hardware design.

ii

Sumário

Com o aumento da complexidade das aplicações, aumenta também a capacidade computacional
necessária. Melhorias tecnológicas têm permitido o aumento da frequência de relógio para todo o
tipo de arquitecturas computacionais. Contudo, a exploração de novas arquitecturas é igualmente
importante para melhorias de desempenho, explorando eficientemente o paralelismo de dados de
tarefas exigentes. Por exemplo: processadores superscalar, que descobrem paralelismo ao nível da
instrução durante a execução; processadores VLIW (Very Large Instruction Word), que dependem
de paralelismo explorado durante a compilação e de várias unidades em paralelo; e tecnologias
multi-core, que se baseiam na exploração de paralelismo ao nível da thread através de software.

Para aplicações embebidas, dependendo dos requisitos de desempenho ou restrições de recur-
sos, e se a aplicação for composta por tarefas bem definidas, um sistema mais especifico poderá ser
mais apropriado, i.e., desenhar um ASIC (Application Specific Integrated Circuit). Lógica dedi-
cada beneficia do melhor desempenho por watt, mas esta solução requer experiência de desenho
de hardware, sofre de tempo de desenvolvimento longo, e custos de fabricação elevados.

Este trabalho desenvolveu e avaliou uma abordagem de aceleração transparente de código
binário, orientada especificamente para FPGAs. A abordagem baseia-se em sequências frequentes
de instruções executadas (i.e, traces) para gerar automaticamente aceleradores especializados.
Um acelerador, capaz de executar um conjunto de traces previamente detectados, complementa
um MicroBlaze, que age como processador principal. Os traces são detectados por simulação
da aplicação, e representam ciclos de execução (i.e., loops). Não é necessário modificações ao
código-fonte, o que aumenta a transparência da abordagem para o programador. Um compilador
especializado não é necessário, e o código binário não sofre modificações pós-compilação.

O acelerador contém lógica de reconfiguração especializada, o que permite a reutilização de
unidades de cálculo entre os loops acelerados, sem sacrificar a especialização. Para maximizar o
desempenho, o acelerador é capaz de efectuar dois acessos paralelos à memória de dados do pro-
cessador. O uso de loop-pipelining maximiza a aceleração, e o suporte para operações de vírgula
flutuante permite a execução de tarefas embebidas realistas. Finalmente, o uso de Reconfiguraçao
Parcial Dinâmica (DPR), reduz significativamente a área necessária para suportar várias configu-
rações, e assegura a especialização do hardware respectivo a cada configuração.

Vários sistemas totalmente funcionais foram implementados para validar os aceleradores, us-
ando FPGAs comerciais. Um primeira implementação traduz representações de grafo de dados
(i.e., Control and Dataflow Graph) dos loops para várias linhas de unidades funcionais interli-
gadas. Para 15 benchmarks, a média geométrica da aceleração foi de 2.08×. Uma segunda im-
plementação adiciona ao acelerador suporte para acesso à memória. O mesmo é capaz de aceder
directamente a toda a memória local de dados do MicroBlaze, sendo suportados acessos endereços
arbitrários. Explorar o paralelismo de dados permite acelerar loops mais realísticos. Para 37
benchmarks, a média geométrica da aceleração foi de 2.35×. A implementação mais eficiente su-
porta operações de vírgula flutuante e utiliza loop-pipelining. Um escalonador gera uma instância
do acelerador efectuando modulo-scheduling para cada trace ao intervalo de iniciação (i.e., Initia-
tion Interval) mínimo. A média geométrica da aceleração é de 5.61× em média para 24 aplicações,
e os aceleradores requerem 1.12× o número de slices de FPGA de um MicroBlaze. Finalmente,
com o uso de DPR, um acelerador com 10 configurações necessita apenas de um terço das Lookup
Tables relativamente a um acelerador equivalente sem esta capacidade.

Concluindo, a abordagem permite gerar rapidamente sistemas com aceleradores especializa-
dos que aumentam consideravelmente o desempenho, com um custo reduzido em termos de recur-
sos, evitando também a necessidade de desenho de hardware manual.

Acknowledgments

This thesis is the result of four years of work that I was fortunate enough to be able to carry out
with focus and nearly undivided attention due mostly, if not totally, to the support of my parents,
who helped keep my mind of other, more time consuming, and infinitely less productive matters.

The individual moments where someone lent me their support, and particular people who took
the time to care and ask about my work, are too numerous to list. A thank you to the friends that
shared a seat in the lab where I sit as I type this. It would go without saying, but I’d also like to
thank my supervisor, João Canas Ferreira, for his guidance and insight which helped make sure I
didn’t stray off into the distance on a random direction. Also, a thank you to my co-supervisor,
João Manuel Paiva Cardoso, for many fruitful discussions, and another to João Bispo, both for
suggestions and for providing his own set of tools, which were the starting point for what I have
developed. I would also like to thank Michael Hübner for his interest in my work, as well as Max
Ferger for some helpful suggestions.

Finally, a special thanks goes out to my friend Henrique Martins, with the hope that he comes
to his senses and comes back home.

On a completely different note, I would also like to acknowledge the support through PhD grant
SFRH/BD/80225/2011, provided by FCT (Fundação para a Ciência e a Tecnologia - Portuguese
Foundation for Science and Technology). Finally, thank you to Stephen Wong from the Delft
University of Technology in the Netherlands, for the ρ-VEX processor release and tools.

Nuno Paulino

iii

iv

“Terry took Death’s arm and followed him through
the doors and on to the black desert under the endless night.”

Terry Pratchett

v

vi

Contents

1 Introduction 1
1.1 FPGAs as a Platform for HW/SW Partitioning Design 3
1.2 Automated HW/SW Partitioning . 4

1.2.1 High-Level Synthesis . 4
1.2.2 Binary-level HW/SW Partitioning . 4

1.3 Motivation and Problem Statement . 5
1.4 Objectives . 7
1.5 Approach . 8

1.5.1 Megablock Trace . 9
1.5.2 Generating a Reconfigurable Customized Accelerator Instance 11

1.6 Contributions . 13
1.7 Summary of Published Work . 14

1.7.1 International Journals . 14
1.7.2 International Conferences . 15
1.7.3 National Conferences . 16

1.8 Structure of this document . 16

2 Revision of Related Work 19
2.1 Overview . 19

2.1.1 Partitioning . 20
2.1.2 Accelerator Structure . 21
2.1.3 Accelerator Functional Units . 22
2.1.4 Accelerator Memory Access . 25
2.1.5 Accelerator Execution Model . 26
2.1.6 Accelerator Programmability and Compilation 29

2.2 Representative Approaches . 30
2.2.1 Warp Processor . 30
2.2.2 ADEXOR . 31
2.2.3 Configurable Compute Accelerator . 32
2.2.4 Dynamic Instruction Merging . 33
2.2.5 ASTRO . 34
2.2.6 Work of Ferreira et al. 35
2.2.7 Morphosys . 35
2.2.8 Additional Related Works . 37

2.3 Dynamic Partial Reconfiguration in FPGAs . 38
2.3.1 Examples of Partial Reconfiguration Applications 38
2.3.2 Design Considerations for Partial Reconfiguration Based Systems 39

2.4 Concluding Remarks . 39

vii

viii CONTENTS

3 Overview of Implementations and General Tool Flow 41
3.1 System Level Architecture . 41
3.2 General Execution Model . 42
3.3 General Tool Flow . 44

3.3.1 Megablock Extraction . 45
3.3.2 Generation of the accelerator HDL Description 47
3.3.3 Generation of Communication Routine 49

3.4 The Injector Module . 51
3.5 Summary of Accelerator Implementations . 52

4 Customized Multi-Row Accelerators 55
4.1 Accelerator Architecture . 55

4.1.1 Structure . 56
4.1.2 Interface . 57
4.1.3 Execution Model . 59

4.2 Architecture Specific Tool Flow . 59
4.3 Experimental Evaluation . 62

4.3.1 Hardware Setup . 62
4.3.2 Software Setup . 63
4.3.3 Characteristics of the Generated Accelerators 64
4.3.4 Performance vs. MicroBlaze Processor 67
4.3.5 Resource Requirements and Operating Frequency 71

4.4 Concluding Remarks . 73

5 Accelerators with Memory Access Support 75
5.1 Accelerator Architecture . 76

5.1.1 Structure of Functional Unit Array . 77
5.1.2 Memory Access Support . 78
5.1.3 Execution Model . 79

5.2 Accelerator Generation and Loop Translation 80
5.2.1 List Scheduling . 81
5.2.2 Memory Access Scheduling . 83
5.2.3 Multiplexer Specification . 85

5.3 Experimental Evaluation . 85
5.3.1 Hardware Setup . 85
5.3.2 Software Setup . 86
5.3.3 General Aspects . 87
5.3.4 Performance vs. MicroBlaze Processor 90
5.3.5 Effects of Memory Access Optimizations 95
5.3.6 Effects of List Scheduling on Functional Unit Reuse 97
5.3.7 Resource Requirements and Operating Frequency 99
5.3.8 Power and Energy Consumption . 101

5.4 Concluding Remarks . 103

6 Modulo Scheduling onto Customized Single-Row Accelerators 105
6.1 Accelerator Architecture . 107

6.1.1 Execution Model . 108
6.2 Architecture Specific Tool Flow . 110
6.3 Accelerator Generation and Loop Scheduling 110

CONTENTS ix

6.3.1 Scheduling Example . 111
6.4 Experimental Evaluation . 115

6.4.1 Hardware Setup . 115
6.4.2 Software Setup . 116
6.4.3 Performance vs. MicroBlaze Processor 118
6.4.4 Resource Requirements & Operating Frequency 121
6.4.5 Power and Energy Consumption . 122
6.4.6 Performance and Cost of Multi-loop Support 123

6.5 Performance Comparison with ALU Based Accelerators 124
6.6 Performance Comparison with VLIW Architectures 128

6.6.1 Performance Comparison . 130
6.6.2 Resource Usage Comparison . 132

6.7 Concluding Remarks . 133

7 Dynamic Partial Reconfiguration of Customized Single-Row Accelerators 135
7.1 Accelerator Architecture . 136

7.1.1 Static Partition . 137
7.1.2 Reconfigurable Partition . 137

7.2 Tool Flow for Dynamic Partial Reconfiguration 138
7.3 Experimental Evaluation . 140

7.3.1 Hardware Setup . 140
7.3.2 Software Setup . 141
7.3.3 Resource Requirements of Static and Reconfigurable Regions 141
7.3.4 Resource Requirements of DPR Accelerator vs. Non-DPR Accelerator . 142
7.3.5 Synthesis Time of DPR-Capable Accelerator vs. Non-DPR Accelerator . 145
7.3.6 Effect of Partial Reconfiguration Overhead on Performance 145

7.4 Concluding Remarks . 147

8 Conclusion and Future Work 149
8.1 Characteristics of the Developed Approach . 149
8.2 Future Work . 151

8.2.1 Potential Improvements to the Developed Approach 151
8.2.2 Support for Multi-Path Traces . 153
8.2.3 Runtime HW/SW Partitioning via DPR 153

8.3 Concluding Remarks . 155

A External Memory Access for Loop Pipelined Multi-Row Accelerators 157
A.1 Accelerator Architecture . 158

A.1.1 Structure . 158
A.1.2 Execution . 159
A.1.3 Memory Access . 160

A.2 Configurable Dual-Port Cache . 161
A.3 Experimental Evaluation . 161

A.3.1 General Aspects . 162
A.3.2 Performance . 164
A.3.3 Communication and Cache Invalidation Overhead 166
A.3.4 Resource Requirements and Operating Frequency 167

A.4 Concluding Remarks . 168

x CONTENTS

References 171

List of Figures

1.1 Proposed transparent binary acceleration approach 9
1.2 Megablock trace and CDFG example . 10
1.3 DPR Oriented system design . 12

2.1 Two arrangements for Functional Units in reconfigurable arrays 21
2.2 Types of host-processor/co-processor interfaces 22
2.3 Modulo-scheduling of loops on mesh based arrays 28
2.4 The Warp processor approach . 31
2.5 A tightly coupled heterogeneous array of Functional Units in the AMBER approach 32
2.6 A tightly coupled heterogeneous array of Functional Units in the CCA approach . 33
2.7 The DIM binary translation mechanism . 34

3.1 General overview of developed system architecture 42
3.2 Temporal diagram of migration and instruction level behaviour due to migration . 43
3.3 Generic tool flow of developed approach . 44
3.4 Example of extracted loop trace and resulting CDFG 46
3.5 Example instantiation of multi-row array . 48
3.6 Example of tool-generated Communication Routine 49
3.7 Architectural variants of the injector module . 51

4.1 Synthetic example of 2D accelerator instance 56
4.2 Bus-type interface for the accelerator . 58
4.3 Architecture-specific flow for 2D accelerator design and supporting hardware . . 60
4.4 System level variants used for evaluation of 2D accelerator design 62
4.5 Speedups for several types of system architectures 67
4.6 Synthesis frequency and resource requirements of the generated accelerators . . . 72

5.1 2D Accelerator with memory access logic . 76
5.2 Local Memory Bus Multiplexer module . 79
5.3 Architecture-specific flow for this 2D accelerator design 80
5.4 List scheduling example for a Functional Unit with available slack 82
5.5 Assignment of load/store units to ports and cycles, after Functional Unit placement 83
5.6 System architecture for validation of accelerator local memory access 86
5.7 Speedups for the three benchmark sets . 90
5.8 Effects of list scheduling on instantiation of passthrough units 97
5.9 Resource requirements and synthesis frequency of the generated accelerators. . . 100

6.1 Architecture template for a single-row accelerator for modulo scheduling 106
6.2 Configuration word structure for single-row accelerator 109

xi

xii LIST OF FIGURES

6.3 Architecture-specific flow for the single-row accelerator 110
6.4 Execution flow of modulo scheduling for the single-row accelerator 111
6.5 Example CDFG . 112
6.6 Modulo schedule for the example CDFG . 113
6.7 Example single-row accelerator instance and hardware structure 114
6.8 System architecture for validation of the single-row modulo scheduled accelerator 115
6.9 Compilation flow of the test harness . 117
6.10 Speedup as a function of input/output data array sizes 120
6.11 Resource requirements and operating frequency for single-row accelerator 122
6.12 Resource requirements for multi-loop accelerator vs. single-loop accelerators . . 125
6.13 Speedups for several types of accelerators vs. a single MicroBlaze processor . . . 127
6.14 Resource requirements for several types of accelerators 128
6.15 Simulation flow for ρ-VEX processor and other VEX architecture models 129
6.16 Speedups for different VLIW models versus single-row accelerator 131

7.1 Single-row accelerator architecture partitioned for Dynamic Partial Reconfiguration 136
7.2 Complete tool flow for partially reconfigurable accelerator 138
7.3 System architecture for validation of DPR capable accelerator 141
7.4 Resource requirements of DPR-based accelerator discriminated by static and re-

configurable regions . 142
7.5 Resource requirements for DPR and non-DPR accelerators 143
7.6 Synthesis times for DPR and non-DPR capable accelerators 145

8.1 Concept for self-adaptive system based on Dynamic Partial Reconfiguration . . . 155

A.1 Pipelined 2D accelerator adapted for higher memory access latencies 158
A.2 Memory access logic of the accelerator . 160
A.3 System architecture for validation of accelerator external memory access 162
A.4 Resource requirements and synthesis frequency of the generated accelerators . . 167

Listings

3.1 Accelerator HDL specification excerpt . 48
3.2 Fast Simplex Link based Communication Routine in C container 50
3.3 Linker Script excerpt to place Communication Routines at known position 50
4.1 Reconfiguration information placed in C containers 61
4.2 Reconfiguration information placed into a read-only memory module 61
4.3 Simplified code for even ones benchmark . 64
5.1 Multiplexer HDL specification excerpt . 85
5.2 Code excerpt for crc32 kernel . 87
5.3 Code excerpt for max kernel, without if-conversion 92
5.4 Code excerpt for max kernel, with if-conversion 92
6.1 Inner product kernel adapted for test harness integration 117
7.1 Communication Routine with call to partial reconfiguration function 139
7.2 Generating a flash programming file from a file system with all partial bitstreams 140

xiii

xiv LISTINGS

List of Tables

2.1 Characteristics of related Transparent Binary Acceleration approaches 36

3.1 Brief comparison of implemented accelerator architectures and results 53

4.1 Extracted Megablock and generated accelerator characteristics 65
4.2 Communication Routine characteristics and overheads 69

5.1 Extracted Megablock and generated accelerator characteristics 89
5.2 Executed instructions per clock cycle, for greedy and optimized scheduling . . . 95
5.3 Power consumption for software-only and accelerated runs 102
5.4 Energy consumption for software-only and accelerated runs 102

6.1 Generated accelerator characteristics and achieved speedups 119
6.2 Power and energy consumption for software-only and accelerated runs 123
6.3 Generated multi-loop accelerator characteristics and speedups 124
6.4 Accelerator generation scenarios . 125
6.5 Average cost of accelerators per scenario, normalized by a single MicroBlaze . . 128
6.6 VEX simulator and accelerator models comparison 130

7.1 Resource requirements for several multi-configuration accelerators 144
7.2 Partial reconfiguration overhead and speedups 146

A.1 Megablock and characteristics of generated accelerators 163
A.2 Performance metrics and speedups for the tested benchmarks 164

xv

xvi LIST OF TABLES

Acronyms

ALU Arithmetic and Logical Unit HLS High Level Synthesis
ASIC Application Specific Integrated Circuit HW/SW Hardware/Software
BRAM Block RAM ICAP Internal Configuration Access Port
CCA Configurable Compute Accelerator IC Integrated Circuit
CCS Compiled Code Simulator II Initiation Interval
CDFG Control and Dataflow Graph ILP Instruction Level Parallelism
CGRA Coarse Grained Reconfigurable Array IPC Instructions per Clock Cycle
CPL Critical Path Length IP Intellectual Property
CR Communication Routine LMB Local Memory Bus
DIM Dynamic Instruction Merging LUT Lookup Table
DMA Direct Memory Access MAC Multiply Accumulate
DPR Dynamic Partial Reconfiguration MAM Memory Access Manager
DSP Digital Signal Processor MIMD Multiple Instruction Multiple Data
FF Flip Flop MRT Modulo Reservation Table
FPGA Field Programmable Gate Array PLB Processor Local Bus
FPU Floating Point Unit SIMD Single Instruction Multiple Data
FSL Fast Simplex Link SISD Single Instruction Single Data
FU Functional Unit SoC System-on-a-chip
GPP General Purpose Processor VEX VLIW Example
GPU Graphics Processing Unit VLIW Very Long Instruction Word
HDL Hardware Description Language

xvii

xviii Acronyms

Chapter 1

Introduction

With the constant increase of application complexity and data volume, the required computational

power increases in tandem. This is especially true for embedded systems, where the performance

must be maximized while also incurring the least cost, both in terms of chip area and power

consumption. To meet these requirements, a great development effort has always been placed on

designing faster, smaller and more power-efficient circuits to tackle the increasing demands of

applications that range from industrial scenarios to consumer electronics. Even more importantly,

the capabilities of the computing architectures, especially from an application developer point of

view, are essential to allow efficient implementations of applications.

Specifically, it is generally possible to improve application performance by either 1) enhanc-

ing General Purpose Processor (GPP) architectures, or otherwise deploying processor designs

more sophisticated than simple single-issue, in-order, processors, or 2) relying on heterogeneous

architectures, where the demanding portions of an application execute in dedicated computing ele-

ments, whilst the remainder of the application executes in a main GPP. The following paragraphs

briefly contrast these paradigms. Afterwards, the reason as to why this work adopted the later

type of approach is explained, specifically focusing on the importance of heterogeneous system

architectures to efficiently implement embedded applications.

Improving Processor Performance and Architecture In order to improve GPP performance,

the most straightforward method is the increase of clock frequency to increase throughput. This

clearly has technological limitations, as well as power consumption implications; it is not an archi-

tectural improvement. In contrast, other approaches alter the single instruction sequential pipeline

architecture, such as vector or superscalar processors, first introduced in 1960s [BDM+72, Tho80].

The former are capable of working on several data at once, while the latter employ hardware de-

tection of data dependencies to execute more than one instruction per clock cycle. Very Long

Instruction Word (VLIW) processors are another approach, in which parallel instructions are de-

tected at compile time and merged into a single instruction. Yet another approach is based on

assigning tasks to multiple processors or cores (in multi-core architectures). This allows for

thread-level parallelism, managed by application programmers at a software level. Naturally,

1

2 Introduction

each of the approaches has limitations. For instance, runtime exploitation of Instruction Level

Parallelism (ILP) with superscalar processors is limited to a small execution scope and requires

additional power-hungry hardware to determine the instruction dependencies. As designs incor-

porate more resources at increasingly smaller scales, the device transistor increases, becoming

difficult to dissipate heat and meet power constraints. These technological limitations mean that

these architectures may eventually reach a performance wall [EBSA+12, Nat11].

Heterogeneous Architectures An alternative approach is based on implementing applications

on systems containing one (or more) GPPs alongside dedicated Intellectual Property (IP) blocks

(if considering a single chip) or Integrated Circuits (ICs), specialized for certain tasks. These spe-

cialized units execute the portions of the application(s) which represent the bulk of computation,

and have potential parallelism to exploit. This follows Amdahl’s law, which states that an appli-

cation’s potential speedup is limited by the amount of its computation that can be made parallel.

The remainder of the application can be executed in its shortest possible time in a sequential fash-

ion. Dividing the application into tasks to assign to the computing devices on the target system,

or designing the heterogeneous system itself based on the application requirements, is typically

referred to as Hardware/Software (HW/SW) partitioning [Wol03, Tei12] (or HW/SW co-design),

The notion of heterogeneous computing is far from new, and is present at many scales, from

High-Performance Computing machines to embedded devices. An example is the use of Graphics

Processing Units (GPUs) for personal-computers. Another are Digital Signal Processors (DSPs)

for embedded applications such as audio/video or encryption. Another commonplace example are

Systems-on-a-chip (SoCs) for mobile devices, containing different types of computing elements.

When targeting these devices, the developer must partition the application: determine from the

application specifications which portions are adequate for each device on the system, (re-)write the

software with the envisioned partition in mind, and (obligatorily) rely on software libraries/frame-

works targeting the dedicated devices in the system, such as OpenCL or CUDA. These types of so-

lutions are very programmable, and cover a large range of applications within their own domains.

The use of OpenCL especially increases the applicability of devices such as GPUs [MV15].

However, it may be the case that a more specific and application-dependant system is desired.

This is true for cases where the application(s) contains more specific tasks or processes. That is,

yet another alternative is to develop the specialized hardware itself, according to an given applica-

tion partition. In other words, some applications justify the design of ASICs, i.e., an application

specific heterogeneous platform. The flexibility of the system is assured by the GPP, and the

performance is assured by custom circuit(s). This solution however requires very advanced hard-

ware expertise, and the development is lengthy and error-prone. Also, this type of design is only

economically viable for large production volumes, as the fabrication costs of ASICs are very high.

To summarize, designing per-application circuits to target demanding data-oriented tasks is

usually not economically viable. Instead, solutions such as GPUs or DSPs are satisfactory in terms

of balancing cost and performance, and are also more approachable by developers. However, it

1.1 FPGAs as a Platform for HW/SW Partitioning Design 3

is also true that these solutions can be either to excessive for the performance requirements of an

application, or too expensive. Also, designing an ASIC (even for small defined tasks in embedded

applications) implies a manual HW/SW partitioning effort which must be very well guided in

order to avoid several design iterations, which require lengthy design and validation time.

These aspects lead to the notion of not only automated circuit specification, but also of auto-

mated HW/SW partitioning. The purpose is to achieve the desired performance increase without

requiring a manual partitioning effort, hardware design expertise, or suffering lengthy develop-

ment time. That is, applications could benefit from improved performance without resorting to

expensive off-the-shelf chips or laborious hardware design.

The following section explains how FPGAs are ideal platforms for development flows of this

nature, especially when iterative design is required. Section 1.2 summarizes existing automated

HW/SW partitioning approaches.

1.1 FPGAs as a Platform for HW/SW Partitioning Design

There are several systems which can be classified as heterogeneous. For example SoC is essen-

tially a heterogeneous system, since it contains many different types of computing elements, and

a recent family of devices from AMD integrate a conventional CPU and GPU into a single chip,

supported by a heterogeneous programming paradigm [AMD]. This work however focuses on

embedded applications for which solutions such as SoCs, DSPs or manual hardware design are

excessive. Instead, FPGAs are the target device utilized to implement the heterogenous systems.

When SRAM-based FPGAs first appeared, their primary purpose was fast prototyping of hard-

ware circuits. That alone makes them attractive for hardware design, as the circuits may easily go

through several revisions. They were not first seen as deployment devices, due to the small num-

ber of logic gates, high static power consumption, and the unfamiliar tools and languages which

supported them [Tri15]. With technology improvements FPGAs can now contain up to 50 mil-

lion ASIC equivalent logic gates [Xild], and operate at frequencies around 700 MHz [Xilb]. Also,

some FPGA families are geared towards low power consumption [Xil15b].

So, an FPGA is essentially a heterogeneous device in itself, given that it is composed of several

different types of hardware components. Due to its programmability, its possible to implement a

SoC on an FPGA, by instantiating any logic the target application requires: essentially a soft-SoC,

in the same way that Xilinx’s MicroBlaze is a soft-core processor. The recent Xilinx Zynq devices

are an example of the opposite: hardcore SoC logic coupled to configurable FPGA fabric [Xile].

So both types of chip, processors/SoCs and FPGAs, are converging to a single type of device.

Even outside the embedded domain, FPGAs are presenting themselves as interesting devices

for the future of heterogeneous computing. Notable examples include big data and data-center

applications [ORK+15, PCC+14]. This demonstrates that FPGAs are not only the prototyping

device of choice, but are increasingly interesting as deployment devices, accompanying the trend

towards new heterogeneous programming and design paradigms.

4 Introduction

1.2 Automated HW/SW Partitioning

Given the effort associated with designing custom co-processor circuits when relying on man-

ual application partitioning, the concept of automated HW/SW partitioning has been the subject

of research for several decades [Tei12]. Two types of approaches which generally rely on au-

tonomously migrating execution of software to dedicated hardware can be outlined: those that

rely on high-level source code, and those that rely on binary-level information.

1.2.1 High-Level Synthesis

As early as the 1980’s there has been work on specialized compilers which generate custom cir-

cuits from high-level code [MS09], complementing traditional software compilers. Examples of

current sophisticated vendor tools include Calypto’s Catapult C [Cal], Xilinx’s Vivado HLS [Xilc],

Synopsys’ Synphony Model Compiler [Syn], and recently Xilinx’s SDSoC [Xila]. In relying

on high-level code, typically C, these approaches fall into the category of High Level Synthe-

sis (HLS). They rely on a designer-guided step to identify candidate functions to translate into

circuits, typically those which implement demanding tasks and which are amenable to accelera-

tion. The HLS tools then generate custom circuits by analysis of the source code.

However, they impose syntactic and/or functional restrictions on the source code, such as lack

of support for floating-point, not supporting the complete source language syntax, and dealing

poorly with control oriented functions and loops [MS09]. More importantly, from an ease of

adoption perspective, they still require considerable designer effort. Specifically, although the

hardware is automatically generated, there is still a need for a back-and-forth iterative design

between hardware and software, just as manual HW/SW partitioning effort at source code level

would require. The developer must write code while considering the effects of the HLS tool,

e.g., how the computation is implemented, and how data is accessed and organized. Also, the

partitioned software needs to be re-written to interface with the hardware, and the system must be

re-designed to integrate it. This typically entails developing interfaces or equipping the function

accelerator with local memories or memory access capability via Direct Memory Access (DMA).

Finally, the iterative nature of the flow also comes from the need to ensure that it is the most

demanding portions of the application that are the ones targeted for partitioning. A solution is to

profile each resulting attempt at a partition, as is done by Xilinx’s SDSoC.

To avoid these issues, approaches can instead rely on compiler-driven partitioning steps or on

an analysis of post-compilation information, i.e., binary code.

1.2.2 Binary-level HW/SW Partitioning

In contrast to the high-level approaches to partitioning, binary-based approaches rely only on post-

compile information. That is, they process application binaries resulting from a standard compi-

lation flow. This is often referred to as binary-level HW/SW partitioning, or dynamic HW/SW

1.3 Motivation and Problem Statement 5

partitioning, if the approach relies on binary runtime information. There are a number of conse-

quences to this type of approach: the partitioning step is no longer (usually) developer-guided, the

application is not necessarily partitioned along function boundaries, any syntactical complexity

(or otherwise unsupported syntactical constructs) of the source code is no longer an issue, and the

source code does not need to be modified to interface with the generated accelerator hardware.

Since it is up to either a compiler or post-compilation step to manipulate or analyse the bi-

nary for partitioning, there is less interference with the traditional software development flow. The

portions of the application which are automatically detected for acceleration may be short acyclic

sequences of instructions [CBC+05, NMIM12], instruction sequences delimited by backwards

branches (i.e., basic blocks) [LV09], or even sequences of basic blocks [BRGC08, LCDW15].

Consequently, the partitioned code may represent only a portion of a function body, or may in-

clude an inlined function call to a nested function. In order to correctly target the most demanding

portions of the application, the partitioning may rely on execution traces to determine frequently

executing instruction sequences, as opposed to selecting sequences solely by a static binary anal-

ysis.

This type of approach has some disadvantages. Firstly, the binary lacks information which

is present at high-level source code. For instance, these approaches suffer when the compiler in-

troduces built-in subroutines for data-type casting or floating-point emulation. The context of the

operation being performed is lost at the binary level. Secondly, a binary level analysis cannot usu-

ally rely on optimizations such as loop fissioning or fusion. Some approaches attempt to recover

some information via decompilation [SV05]. Thirdly, the performance improvements depend on

how the computations are expressed by the target GPPs’s instruction set. This type of approach

has been applied to single-issue [LV09, BRGC08] and VLIW instruction sets alike [FDP+14].

Finally, these approaches typically do not rely in a complete circuit synthesis as-such, as HLS

approaches do. Instead, they are based on customization or reconfiguration of a pre-designed

accelerator peripheral, such as a Coarse Grained Reconfigurable Array (CGRA) or other array

of processing elements. On one hand, the developer does not need to manually integrate the

custom hardware into the remainder of the system. On the other hand, the use of a modified

processor and/or binary modification may be required, and the hardware adaptability is limited by

the capabilities of the configurable accelerator(s).

1.3 Motivation and Problem Statement

As the previous paragraphs have shown, there are many ways to devise, and support development

for heterogeneous computing systems for acceleration. Depending on the application, powerful

devices such as GPUs or DSPs might be the appropriate solution. However, this work focused

on embedded applications struggling to meet performance requirements or under resource or cost

constraints. That is, the target scenarios are those where one (or few) custom circuit(s), coupled

to a host processor, would suffice to achieve the desired performance increase. However, the

6 Introduction

manual design of these systems is a difficult task for non-experienced software designers, and is

also lengthy even for a joint effort by a hardware team and a software team.

Given this, and considering the type of target application, some form of HW/SW partitioning

approach seems to be the ideal solution, but despite the existing approaches there are several is-

sues with HW/SW partitioning that hinder its widespread adoption. Specifically, consider that: 1)

software developers generally have no hardware design experience, even those familiar with em-

bedded systems, so any partitioning flow must be as non-intrusive and require the least amount of

hardware expertise as possible; and 2) the automatically generated hardware must be as specialized

as possible, in order to improve performance while also being resource-efficient.

Some tools have contributed significantly towards these aspects, creating high-level IDE-based

partitioning flows [Cal, Xilc, Syn]. These tools rely on powerful optimization steps to generate

very specialized circuits, maximizing the resulting performance. Other approaches rely on binary

code, and target a pre-designed configurable accelerator.

In other words, the first type of approach is geared towards circuit specialization, relying on

generating hardware descriptions which are later processed by vendor synthesis tools; while the

second relies on circuit reconfiguration, by mapping partitions onto a configurable peripheral. This

has implications on a particular aspect: accelerating multiple partitions (either complete functions

bodies or instruction sequences, depending on the approach).

The HLS approaches typically generate one custom circuit per function when targeting mul-

tiple functions; there is no re-utilization of resources between custom circuits. This might imply

a considerable resource cost, which is especially wasteful if the custom circuits do not operate in

parallel. Binary-level approaches have disadvantages as well: the co-processor hardware might

be excessive for the partition(s) being accelerated; inversely, it might be impossible to accelerate

a partition if the hardware resources are insufficient; the operating frequency might decrease with

circuit complexity and reconfiguration capabilities, and the amount of required runtime recon-

figuration information increases; finally, the performance of the accelerated partition(s) might be

sub-par, since the selected partition(s) has (have) to adapt to the existing accelerator hardware, as

opposed to generating custom hardware from the selected partition(s).

There is another aspect at play when relying on a reconfigurable circuit to execute multiple

software partitions: the resource re-utilization, at a processing element level, is largely dependant

on the similarity of the partitions. That is, a custom circuit with reconfiguration capabilities does

not necessarily imply a good re-utilization of all processing elements it contains. A good analogy

is the under-utilization of resources in VLIW processors [Liu08]. So the issue is not only one of

resource re-utilization, at the processing element level, but one of total area savings.

That is, the trade-off in question is on how to provide resource re-utilization and area savings

via reconfiguration, without compromising circuit specialization.

To summarize, this work considered: 1) automatic accelerator generation for (relatively) sim-

ple embedded applications for which one (or few) relatively small custom circuit(s), coupled to a

1.4 Objectives 7

host processor, are enough to achieve the desired performance increase; 2) doing so without pro-

grammer intervention or tool chain interference; and 3) maximizing both the resource utilization

and area savings of said accelerators by exploring reconfiguration mechanisms. Or, in a single

sentence, this work developed a HW/SW partitioning approach whose central theme was:

How to automate the transparent generation of area-efficient specialized
reconfigurable accelerators for embedded applications?

To address the issue, this work relied on an existing methodology to extract repetitive in-

struction traces [Bis12], and implemented the automated generation of accelerator hardware, its

integration with the host system, and transparent migration of execution from processor to ac-

celerator. Additionally, in order to make better use of hardware, the system has the capacity to

reconfigure the accelerator resources at runtime in several ways. The following sections detail the

specific objectives and the approach leading to this end result.

1.4 Objectives

The problem statement in the previous section already summarizes the major objective of this

work, where two aspects are essential to the motivation. One is the transparency of partitioning

to developers, but the most important is the generation of tailored reconfigurable circuits which

efficiently accelerate critical portions of an application.

The following features contribute to the first aspect: avoiding modification of source or binary

code (manual or automated), no manual hardware design, and no modifications to the host proces-

sor or otherwise manual integration of the accelerator hardware. Relative to the second aspect, to

accelerate the demanding portions of the application, a selection must be performed, but in a way

that does not compromise the first requirement.

The need for transparency led to relying only on binary information, specifically, binary in-

struction traces. Additionally, a requirement was set where the binary was to remain unmodified,

pre- and post-deployment onto the target. It is obvious how avoiding the modification of source

code contributes to the transparency, but modifying binary either during or post-compile would

not interfere much from the point of view of the programmer. However, in order to capture the

critical portions of an application it is important to rely on traces rather than static binary analysis.

That is, the application must be monitored while it executes on the host processor, meaning the

binary must remain unmodified. Also, not interfering with the binary avoids modified compilers or

post-compilation tools. Finally, a modified binary would be bound to the accelerator-augmented

system, making it impossible to deploy the same application to a software-only platform.

As for the generation of efficient accelerators, this relates to the explained trade-off between

specialization and reconfiguration. The reconfiguration capabilities typically explored by binary

approaches rely on configuration registers or similar to determine the functions performed by

the accelerator circuit. Instead, efficient reconfiguration would be possible if the same hardware

components, and therefore chip area, could be harnessed to execute multiple partitions, without

8 Introduction

requiring additional control logic which is detrimental to specialization. That is, the issue would

be resolved if the the reconfiguration mechanisms (or at least some portion thereof) were not

themselves components of the accelerator circuit.

In short, the objectives for the developed work were too:

1. Design an accelerator architecture capable of:

(a) Accelerating execution of traces by exploiting ILP and loop pipelining

(b) Exploiting data parallelism by supporting concurrent accesses to data memory

2. Transform sets of frequent instruction traces into accelerator instances/configurations.

3. Design mechanisms capable of:

(a) Transparently migrating execution from software to a custom accelerator instance

(b) Reconfiguring the accelerator

(c) Handling the data transfers between GPP and accelerator

4. Allow for accelerator reconfiguration, without compromising area savings or circuit special-

ization, by enhancing it with fine- and coarse-grain reconfiguration mechanisms.

In other words: the main objective was to accelerate the execution of one or more frequent

binary instruction traces, using dedicated circuits with efficient reconfiguration capabilities.

To do this, a tool flow was developed which generates a tailored instance of a reconfigurable

accelerator, without manual hardware design effort. The accelerator is coupled in a non-intrusive

fashion to a host processor. According to the execution flow of the application at runtime, the

accelerator is invoked to accelerate any one of the supported instruction traces. By relying on a

runtime mechanism, the execution is transparently migrated from the processor the the accelera-

tor, without modifying the executing binary. Finally, several fully-functional prototype systems

were validated, using commercial FPGAs. Several sets of embedded benchmarks were used to

determine the acceleration gains achieved via the automatically generated accelerators.

1.5 Approach

The developed approach to HW/SW partitioning and binary acceleration relies on four steps: 1)

identification of candidate instruction traces, 2) translation of these traces into a custom accelerator

instance, 3) detection of imminent execution of translated traces at runtime and reconfiguration of

the accelerator, and 4) transparent migration of execution to the accelerator. The first two steps

are performed by an offline tool chain, and the last two occur at runtime, using auxiliary hardware.

Figure 1.1 summarizes this concept. The identification and translation steps are based on a

simulated execution step which detects frequently executing instruction traces called Megablocks

1.5 Approach 9

Figure 1.1: Proposed transparent binary acceleration approach

[Bis12], using an existing tool [Bis15]. The developed set of tools generates a specific tailored

instance of the proposed accelerator architectures. Further details on the tool flow and detection

steps can be found in Section 3.3, while the following section briefly explains the type of instruc-

tion trace this approach detects, translates and accelerates.

The right-hand side of Fig. 1.1 shows a generic architectural view of the accelerator-augmented

system. The main idea is that a lightweight mechanism is capable of migrating execution of the

translated instruction traces to the custom accelerator instance. The accelerator and GPP are ca-

pable of exchanging data and, to increase applicability, the accelerator supports memory accesses.

Support for memory access by the accelerator and its advantages are discussed in Chapter 5.

The detection step refers to determining when the processor is attempting to execute any one

of the translated instruction traces. This is done by a monitoring module which observes the

instruction address. The migration stage is the process of preventing the execution of the trace

from occurring via software, and instead invoking the accelerator, as well as handling the return

to software execution afterwards. The migration step also involves reconfiguring the accelerator

to execute the migrated trace. This is done in several ways, depending on the accelerator design.

As per the objectives, this fulfils the task of transparently migrating execution between processor

and accelerator, in a fashion that is explained in detail in Section 3.4.

1.5.1 Megablock Trace

Like the previous section explained, an important characteristic of the developed approach is that

it relies on binary traces to capture the actual application workload. One type of trace that fulfils

this is the Megablock [BC10, BC10, Bis12]. Megablocks are binary instruction traces which have

one entry point and several exit points. Whereas basic blocks are delimited by control instructions

(e.g., backward branches), Megablocks may incorporate multiple branch instructions, including

backwards branches, and sub-routine return instructions. A formal definition of the Megablock

can be found in [Bis12]:

“Let P be a static program formed by a sequence of instructions [i1, i2, . . . , im]; a trace

10 Introduction

Figure 1.2: Representative synthetic example of a Megablock trace, and resulting CDFG

T is generated by executing the program, and is composed of possibly repeating in-

structions from P; let S be a sequence of m instructions where m> 1; a Megablock is a

contiguous subsequence of T formed by repeated occurrences of S, and is represented

as S{n} where n is the number of times S repeats. E.g. let [i4, i5, i6, i4, i5, i6, i4, i5, i6]

be a contiguous subsequence of T ; S = [i4, i5, i6] and S{3} is the corresponding Me-

gablock.”

In short, a Megablock is a sequence of trace elements of smaller granularities (e.g., basic

blocks). It may cross control flow boundaries, and represents a single repetitive path of execution,

i.e., a loop path. Figure 1.2 shows a synthetic example of this, along with a Control and Dataflow

Graph (CDFG) representation of the trace instructions. According to branch instructions, execu-

tion follows a particular path. Execution of this path repeats any given number of times, due to a

backwards branch that leads execution back to the start of the trace. Execution of this particular

path terminates when any branch executes in such a way as to follow a different path.

This type of trace provides information not available to a static binary analysis, or to a higher

level execution profiler such as gprof. Also, in tracing the execution across several basic blocks,

the size of the detected traces may increase, which means that a greater workload stands to be

migrated to custom hardware. The focus of this work is on the automated generation of accelera-

tors, and on exploring architectures to support the execution of these traces. So, although the trace

profiling and CDFG extraction and optimization steps are vital, this work will not focus on run-

time implementation of these features. To develop and validate the accelerator generation process,

Megablock detection is performed offline, as the previous section stated. Section 3.3 explains the

tool used to retrieve Megablocks from target applications, how it integrates with the developed

accelerator generation tool flow, as well as the advantages and limitations of this type of trace.

1.5 Approach 11

1.5.2 Generating a Reconfigurable Customized Accelerator Instance

The generation of a specialized accelerator comprises the first two steps of the approach. Several

accelerator architectures are presented in this document, but the overall methodology is the same:

the accelerator is a hardware template whose features, such as Functional Units (FUs) and inter-

connections, are automatically customized by tools which translate one or more CDFGs into a set

of Verilog parameters. Each generated accelerator instance is thus tailored for a specific set of

CDFGs, and is capable of accelerating each one in a time-multiplexed fashion.

The details of the translation of Megablock CDFGs into accelerator instances vary with the

accelerator architecture, but the general flow is discussed in Chapter 3. Keeping in line with the

design rationale of the approach, the generation of custom accelerator instances happens without

developer effort, and at a post-compile stage.

Like the objectives proposed, the balance between specialization and reconfiguration hinges

on the ability to control the accelerator circuitry at several levels. So this work was based on the

notion of an accelerator architecture which could be reconfigured at two different granularities.

1.5.2.1 Reconfiguration at the Functional Unit Level

As mentioned before, the kind of accelerators targeted by binary acceleration approaches usu-

ally contain visible configuration registers to control the interconnections between computing ele-

ments. Instead of targeting a pre-designed accelerator whose reconfiguration capabilities are fixed,

the developed approach generates the entire accelerator structure, including reconfiguration logic.

The reconfiguration of the accelerators is essentially the control of data between FUs via spe-

cialized multiplexers. That is, the accelerators are configurable data paths. The implementations

in Chapters 4 and 5 are reconfigured prior to trace execution. The implementation in Chapter 6 is

more complex, and requires per-cycle control of its FUs and storage elements.

Generating custom interconnectivity is already a solution towards not compromising special-

ization. However, as the number of CDFGs to support increases, the amount of accelerator re-

sources required increases, as well as the FU interconnection complexity. This leads to an increase

in required area an potentially a decrease in operating frequency. Also, the efficient re-utilization

of computing resources is not assured, despite the tailored interconnect, since it depends on the

similarity between CDFGs. The second reconfiguration mechanism addresses these issues.

1.5.2.2 Module-Level Reconfiguration

The main issue with supporting too many configurations, even in a specialized accelerator in-

stance, is that the reconfiguration logic becomes excessive. So the solution is to reconfigure the

accelerator without using in-module logic to do so. This work relied on the use of Dynamic Par-

tial Reconfiguration (DPR) to implement this functionality [Xil12b]. The capacity for DPR is an

architectural feature of some SRAM-based FPGAs which allows for modification of a predefined

area of the chip’s circuity without powering down the device.

12 Introduction

Figure 1.3: DPR Oriented system design

Essentially, given a user-defined area of the device, it is possible to define several circuit con-

figurations for it, and at runtime switch between them according to design or application criteria.

Although relatively old (some examples include the Xilinx XC6200 and the Virtex-II Pro), DPR

is a yet under-explored feature of FPGAs. However, some academic implementations exist which

rely on DPR, targeting very distinct application domains. For instance, self-configuring filters

[LPV10], fault tolerance via DPR [ESSA00], image applications [LP13, SKK15], or communi-

cations [LFy09, Dun13]. In order to modify the circuit connections at runtime, Xilinx FPGAs

rely on an Internal Configuration Access Port (ICAP), which can be accessed through software

or from user-level logic. Each configuration of a dynamically reconfigurable area is stored in a

partial bitstream file which is written to the FPGA’s configuration memory via the ICAP.

Figure 1.3 shows the system architecture again, this time detailing the two reconfiguration

mechanisms. The accelerator is segmented into instance independent-static logic and a reconfig-

urable portion. The former includes memory ports and interfaces with the processor. The later

includes all FUs and configuration registers which control the interconnection logic. The circuity

in this region is switched in and out as a whole via DPR.

Two use cases can be met by relying on this feature. A possible approach is to take a set of

candidate Megablock traces and for each one generate an accelerator instance. Each instance is

stored in a partial bitstream file. Fully dedicated instances like this could potentially reduce inter-

connectivity complexity relative to a multi-configuration accelerator. However, this does represent

an additional cost in terms of memory to hold the several bitstream files and, more importantly,

an additional ICAP reconfiguration overhead for every loop call to accelerate. So, to alleviate this

time and storage overhead, several CDFGs can be used to generate a single accelerator instance

which is controllable via context registers and multiplexers.

The more appropriate strategy depends on the workload of the target application, and to some

extent on the target devive. In a device with less resources, partial configurations supporting only

one CDFG could be more appropriate. If the device is capable, then a single larger instance capa-

ble of executing several Megablocks could be used. Alternatively, several multi-loop accelerators

could be switched according to the application. Essentially, the same application can be acceler-

ated in different ways without need for recompiling.

1.6 Contributions 13

1.6 Contributions

Basing the automated generation of accelerator hardware/configurations on binary information al-

lows for embedded applications to be accelerated without the need for manual hardware design,

and without need to re-target the application to execute on the resulting heterogeneous system.

This facilitates future revisions to the application, since accelerator hardware can easily be re-

generated to target new versions of the binary, which increases adaptability and applicability. Be-

cause execution times are shortened through hardware execution, and because of the specialization

of the accelerator hardware, power savings may also be achieved.

However, as is later summarized in Chapter 2, existing binary acceleration approaches suffer

from some limitations. Many approaches accelerate only small portions of code, detected by either

a static or runtime analysis. Binary modification is in some cases used to aid either the runtime

migration of execution, or the supporting tools. The target accelerators are usually fixed arrays of

FUs, so the resulting performance depends on the computing capabilities, which are not precisely

tailored for the detected partitions. Support for memory access is especially important to exploit

data parallelism, but is usually non-existent or limited. Finally, accelerators are either intrusively

integrated with the host or suffer from large communication overhead if loosely coupled.

This work relies on instruction traces, over a static binary analysis, to target the portions of the

application which represent the bulk of the workload. Megablock traces are not delimited by a sin-

gle branch instruction, and necessarily represent frequent loop paths. To properly exploit potential

parallelism in loops, loop-pipelining is implemented. Support for concurrent memory accesses is

addressed also, being necessary in itself to support data-parallelism within one iteration, but be-

coming more important when the access contention increases due to pipelining iterations. Also,

the developed approach allows for the binary to remain unmodified, both during partitioning and

during runtime, by relying on a transparent migration mechanism. Generating an accelerator with

dedicated reconfiguration capabilities allows for acceleration of multiple partitions without com-

pletely sacrificing circuit specialization. Tailoring the accelerator hardware to the detected trace

helps towards optimizing the trade-off between resource requirements and performance, and po-

tentially power consumption as well. Also, since the accelerator is customized, a candidate trace

will not have to suffer a performance decrease or be discarded due to lack of FUs.

In summary, by completing the objectives through implementation of the proposed methodol-

ogy and architecture, this work extends the state of the art in the following aspects:

1. Transparent acceleration of unmodified binary

2. Generation of specialized multi-loop accelerators

3. Joint exploitation of data-parallelism and loop-pipelining

4. Accelerator reconfiguration mechanisms for resource re-utilization and area savings

This work is a continuation of preliminary research done for an M.Sc. thesis [Pau11]. In

the referenced publication, work was conducted regarding the transparent runtime migration of

14 Introduction

execution between software and hardware. Preliminary results were attained by using custom tools

to translate a set of CDFGs into Verilog specifications of a runtime reconfigurable accelerator.

The system was capable of transparently migrating execution between software and hardware,

utilized external memories, and did not support accelerator memory access. The target platform

was a commercial FPGA, and the system was tested with 7 benchmarks, 2 of which generated

accelerators with 6 runtime configurations. Achieved speedups ranged from 0.2× to 65×.

The work presented here expanded the existing implementation regarding support for mem-

ory access, more efficient accelerator architectures, exploiting loop pipelining, and supporting

floating-point operations. Extensive on-chip validations of the systems were performed, using

vendor FPGA boards and several sets of benchmarks. Chapter 3 summarizes the work by pro-

viding an overview of the accelerator designs and supporting tool flows. The following section

summarizes the publications regarding this work and focuses on their individual contributions.

1.7 Summary of Published Work

In the context of this work the following publications, by type and order of submission, have been

produced:

1.7.1 International Journals

1. Transparent Trace-Based Binary Acceleration for Reconfigurable HW/SW Systems [BPFC13]

- This paper, published in the IEEE Transactions on Industrial Informatics, further expands

on the system by presenting results for a set of 16 benchmarks and speedup estimations

for a point-to-point connection based architecture for a set of 62 benchmarks which include

memory operations. Speedup estimations average 2.7×.

2. Transparent Runtime Migration of Loop-Based Traces of Processor Instructions to Recon-

figurable Processing Units [BPCF13] - An extension of [BPCF11], published in the Inter-

national Journal of Reconfigurable Computing, compiles results of 17 benchmarks for three

different system architectures which utilize the same accelerator architecture and tool chain.

The three architectures combine two interfaces between GPP and main memory (local or

external memories) and GPP and accelerator (bus or point-to-point). The architecture using

local memory and point-to-point is an implementation of the architecture conceptualized in

[BPFC13]. In this architecture, the accelerator is reconfigured in parallel with data com-

munication. Optimizations were performed to the accelerator to handle values of up to one

previous iteration. The tool chain has many optimizations and new features. A method to

detect CDFGs online via dedicated pattern detection hardware is proposed. Speedups for

the architecture suffering from least overhead range from 1.26× to 3.69×, which comes

close to the best possible achievable speedup for the implemented parallelism. Speedup

estimations using the previously mentioned formula incur an average error of only 1.75 %.

1.7 Summary of Published Work 15

3. A Reconfigurable Architecture for Binary Acceleration of Loops with Memory Accesses

[PFC14a] - Published in the ACM Transactions on Reconfigurable Technology and Sys-

tems as an extension of the work published in [PFC13]. A more efficient interface between

accelerator and GPP is employed. The placement of load/store FUs is optimized in order to

decrease the number of cycles during which execution is waiting for completion of memory

accesses. A static memory access scheduling mechanism further decreases the waiting time.

A mean geometric speedup of 1.71× is achieved for 37 integer benchmarks.

Additionally, a paper entitled Loop Pipelining in Customized Accelerators for Transparent Bi-

nary Acceleration has been submitted to the IEEE Transactions on Very Large Scale Integration

(VLSI) Systems. This work vastly expands the results attained with a single-row modulo-scheduled

accelerator first introduced in [PFBC15]. It is evaluated with a larger set of benchmarks, including

floating-point kernels, using a more sophisticated software test harness. Additionally, the full cus-

tom accelerator instances are compared with ALU based accelerators in terms of performance/re-

source trade-off. Finally, several VLIW models are simulated and compared against the proposed

accelerator design, including the ρ-VEX reconfigurable VLIW. Versus a single MicroBlaze, the

geometric mean speedup for 13 floating-point kernels is of 6.61×, and for 11 integer kernels, it

is of 1.78×. Compared to a 4-issue VLIW, this value is of 1.78×. It is also shown that this

accelerator design is more efficient in terms of resources, versus previous implementations.

1.7.2 International Conferences

1. From Instruction Traces to Specialized Reconfigurable Arrays [BPCF11] - Published in

the Proceedings of the 2011 International Conference on Reconfigurable Computing and

FPGAs. This work builds on the work presented in [BPFC13] by presenting estimations

of speedups attained by using the same tool chain but with an improved hardware archi-

tecture, using a local memory interface for the GPP’s program code. Speedup estimations

range from 1.0× to 2.0×. This publication includes work relative to the Megablock trace,

detailing how a Megablock is composed and detected.

2. Architecture for Transparent Binary Acceleration of Loops with Memory Accesses [PFC13]

- Published in the Proceedings of the 9th International Symposium on Applied Reconfig-

urable Computing. This work explores the issue of supporting an accelerator with arbitrary

memory accesses. The memory access enabled system is built on the local memory variant

of the hardware/software partitioning system in previous work. The Megablock detection

and accelerator generation tool chain was reworked to produce a tailored accelerator that

supports up to two concurrent memory accesses to the local dual-port data memory. By

using a memory sharing mechanism, both GPP and accelerator can access the program data,

without incurring any data transfer overhead or introducing any synchronization issues. For

17 benchmarks, a maximum potential speedup of 2.04× is possible.

16 Introduction

3. Trace-Based Reconfigurable Acceleration with Data Cache and External Memory Support

[PFC14b] - Published in the Proceedings of the 12th IEEE International Conference on Em-

bedded and Ubiquitous Computing. In this paper, the accelerator architecture is re-designed

to allow for simultaneous activation of multiple computing stages, thereby implementing

loop pipelining. It was also adapted to deal more efficiently with higher memory access

latencies. The design was evaluated using a system in which data resides completely in

external memory, so as to test the applicability of the approach on larger applications. To

cope with this, a configurable dual-port cache was designed to augment the accelerator. For

12 benchmarks, a geometric mean speedup of 1.91× was achieved.

4. Transparent Acceleration of Program Execution Using Reconfigurable Hardware [PFBC15]

- Published in the Proceedings of the 2015 Design, Automation & Test in Europe Conference

& Exhibition. This publication summarizes results obtained with the multi-row accelerator

architectures, and presents early results using a single-row modulo scheduled accelerator

design. Additionally, the proposed approach is compared to the performance of Xilinx’s

Vivado HLS flow. For 12 benchmarks, the geometric mean speedup for the most efficient

proposed architecture was of 5.44×.

1.7.3 National Conferences

1. Generation of Coarse-Grained Reconfigurable Processing Units for Binary Acceleration

[BPCF12] - Published in the Proceedings of the 8th Portuguese Meeting on Reconfigurable

Systems (VIII Jornadas sobre Sistemas Reconfiguráveis), compares the speedup results of

17 benchmarks for the architecture developed in [Pau11] and an actual implementation of

the proposed architecture introduced in [BPCF11]. The tool chain is explained in detail

and an accurate speedup estimation formula is presented. Speedups attained for the local

memory based architecture deviate slightly from the estimations presented in [BPCF11], but

are within expected values.

2. Transparent Binary Acceleration via Automatically Generated Reconfigurable Processing

Units [PCF15] - Published in the Proceedings of the 11th Portuguese Meeting on Reconfig-

urable Systems (XI Jornadas sobre Sistemas Reconfiguráveis). This paper goes into further

detail on the 1D accelerator design and the modulo scheduling of Megablock traces. The

comparison with previous approaches is this time more thorough, as up to 37 benchmarks

are used to evaluate the systems.

1.8 Structure of this document

The remainder of this document is organized as follows: Chapter 2 details the general character-

istics of co-processors, summarizes related binary-level partitioning approaches as well as other

similar works; Chapter 3 gives an overview of the developed approach, detailing the overall parti-

tioning approach in terms of tool flow and architecture of all implemented systems; it also contains

1.8 Structure of this document 17

more detailed summaries of the following three chapters. Chapters 4 to 6 each present a different

accelerator design iteration, as well as the experimental evaluation performed. Chapter 7 explains

how DPR augments the accelerator architecture of Chapter 6 with reconfiguration capabilities

which help to maintain circuit specialization in multi-configuration accelerators without greatly

increasing resource requirements. Each chapter also presents the translation tools targeting the

particular accelerator design, as well as the system-level architecture. Finally, Chapter 8 presents

the conclusions, future work and possible approaches to address it. Additionally, in Appendix A,

a proof-of-concept for external memory access support by the accelerator is presented.

18 Introduction

Chapter 2

Revision of Related Work

Research regarding runtime reconfigurable systems and hardware/software co-design spans over

two decades [CH00, Nag01, Har01, Wol03, SML09, SBFC10]. Although the first notion of a

runtime adaptable machine has existed since the 60’s [Est02], an architecture capable of au-

tonomously generating or modifying hardware at runtime to suit execution needs has yet to be

developed. The difficulty rests on finding a consistent, scalable and flexible methodology or run-

time algorithm that could, potentially, generate hardware as efficient as a custom design.

To provide for transparent runtime acceleration, approaches have been proposed that avoid

the need for per-application basis hardware accelerator design by automatically generating hard-

ware specifications of, or configurations for, dedicated accelerator hardware. Such peripherals are

used to execute demanding portions of applications, typically data-oriented loops. Speedups are

achieved by exploiting the Instruction Level Parallelism which is expressed by CDFG representa-

tions of said application partitions.

2.1 Overview

Existing approaches employ accelerators that are capable of varying degrees of reconfigurability

and target the execution of different types of CDFGs. Usually, an accelerator is an array of FUs,

either in a mesh type or row-based arrangement, with a configurable interconnection structure.

The following are the main characteristics of such co-processors:

1. Type of accelerated application partition and method for its detection and translation;

2. Interface between accelerator and host system;

3. Granularity, arrangement an connections between Functional Unit (FU) of the accelerator;

4. Execution model of the accelerator;

5. Support for accelerator memory access;

6. Runtime control of the accelerator.

19

20 Revision of Related Work

The following sections detail these properties and refer to implementations which exemplify

different design choices. Most approaches implement these systems in FPGAs, although ASIC

approaches have also been proposed [SLL+00, But07, LV04]. Approaches usually assume that

accelerator and General Purpose Processor (GPP) reside on the same chip. FPGAs however seem

to be the ideal target platform in which extensive design space exploration can be performed, both

for purposes of research into such systems, and later flexibility of deployment of efficient HW/SW

partitioning systems [Wol03].

2.1.1 Partitioning

Performance improvement of an application through accelerators is achieved by first choosing

or detecting demanding computation to be accelerated. Some approaches rely on forms of High

Level Synthesis (HLS), i.e., offline stages involving manual source code analysis or use of tools

to identify candidate functions [HW97, HFHK04, WH95, BFM+07]. A translation of high-level

code is performed, to automatically generate Hardware Description Language (HDL) code, fol-

lowed by standard logic synthesis. This may require modifying source code to allow compatibility

with HLS tools, or later modification to allow for integration with the accelerator hardware.

In contrast, the approaches addressed throughout this chapter rely on binary information. Ap-

proaches of this kind analyse the compiled application, and provide a transparent use of custom

hardware for the application programmer. Binary acceleration focuses on exploring Instruction

Level Parallelism (ILP), by representing the target binary instruction sequences as CDFGs.

Binary analysis can be performed over the static binary or over the executing instruction trace.

The latter makes more sense as an offline strategy. The binary can be analysed with custom

compilers and modified either during or after compilation [CBC+05]. The former is appropriate

for runtime implementations, as the instruction trace can be directly observed [LV09, BRGC08].

Observing the executing instruction stream provides additional information which is not found

by static binary analysis. Due to this, approaches which perform CDFG detection offline also

resort to simulated execution to extract trace information [NMIM12, BPFC13], but it is not guar-

anteed that simulated execution matches the behaviour of the application in-system (e.g., different

volumes of incoming data, or event-based execution). This is also true for systems which per-

form discovery at runtime for only a limited time after program startup. If the application behaves

sporadically, it is incorrect to assume that a predetermined amount of profiling after the start of

execution will be representative of the execution demands for later periods. A better approach is

to employ periodic or constant profiling [LV09].

Runtime binary translation provides even greater transparency, because use of any custom

tools prior to deployment is avoided. Unlike HLS, binary translation it is more suited for run-

time implementations because binary is more easily parsed, making it more tractable for embed-

ded tools. Despite the greater transparency, runtime implementations imply additional overheads.

Hardware is required to retrieve traces and perform analysis, and depending on the architecture,

temporal overheads may be introduced during the execution of the application [LV09, RBM+11].

Because accelerator configurations are generated in-system, the embedded translation steps must

2.1 Overview 21

����$ "���%������� !���	����

#�� ����������� ��������� �� +�����'�
 �
 � 43!���
�����

��* ������ #�����'�* ��
�� �� ��� ��
��� �� � ��'�
�����

�� �� >13?" #�����'� ������
 �������!�����
�
���������
 ��� �������
 ��������� �� ��� ��
���� �������

������ ��
��������
 ����� �� ��
 �'
" �� ��
� ��������
 ��� ����
����
���
 �� �� ���� ��� ����� ������ ��� �������������
������� ���� ��� ��� �����&� +�����"

����� &��
	 '���	�

� ��������� ��������� �
 ��� ����� ������ (��)* ���� �

��������
 �� � ���� �����" #�� �� ��
 � �
��
* ���� ��
 ���� ��
 � � ���-
 �� ������" #��
 ������ ��-�

������ ����

�
 ����
������ �� ��� ��
���� �� �(���	�����
�	�	 ��	� 	�� ����� ��� �����������* ����������� �
��� ���
� �
��
" +�����'�
 ����������� �������
 ���������
��
���� ���
 �,�����"
 ��������� ���� ������ ��
 ���� ��

���
�� ��
� �� ��� ������������ ��������������
�
���
* ���
���
�%���� ����������� �� �����������"

-$� ����)��� %& �%�12%�+�

#�� ��
���� �
 ���������� ������� �����&� ���
* ����
��� �������
� ���� ��� �����&� +����� ('������ 5"3)" ����
�����&� ���
�������
 �� ��
�������� ������ ��� ��� ��"
'���� ��� ��
���� �����
 ��� �)�$ ����� �� �������!
����* ��� ��
 �� ���
��� �� �� ������ ���������
���� ���

��� �����&� ���" .� �,��* ���� �� �������
 �� ���������
����" '������ ��� �����&� ����

 � �� �� ������ �
 �
����
��� ����!�������� �����������
" �� �����* ��������� �������
 ��
+�����'�
 ���2

� ��	������	��2 +�����'�
 �
 ��
����� �� ������� �� ;
�� 17!��� ����* ���� ��
���
 ��
��� ����������� ���
 ���!��,�� ���������
 �
 �������� �� �0�

"
+�����'�
 �
 ���� ���� ,������� ��� �����������
�����
 ���� ��� ����������
��� �� �0�

"

� $��	%�
 ��
��
����	����2 �����&� ���� ��� �� ������
���� � ������,� ���� �� �����&� +����� ������
������������ ��
���� ���������" �����&� ����
 ��
������
 ���
�������� ������� #�����'� ��� ���� ��
/+
 ����������"

� ��������	��� ����� �
 �����	%%	������2 #�� �����&�
+����� ���
���� �� �� 43 �����
 �� �������������

��� ���,���
 � � �����&� �������
� ����
* ���
�����
���%�� ��� ��� ����� ����� ��#�"

� A������
������ �����
	
� #���
��� ���
����� 	�� %	��
%�%���2 #�� ������� �����

�� (#�����'�) ��� ���
�������������� ��������� (��
����) ��� ��
�����
�� ���
��� ����" #�� ��!���� /+
 ����������
������
 ��
� ���� ����
���
 ��� ��� ���� ������
��� ����� ������"

-$-
'	+���� �	���)��'%	� &%� �%�12%�+�

'�,���� �� ��
��������
 ��� ���������� �� ��� #�����'�

��
��������
�� ��� �������,� ������� �� ��� +�����'�
 ��

���� �&�������" #��
� ��
��������
* ��
������ �� #���� 4*

������� ��� ����� ��� ��
-
2

� ������� �&������� �� ��� ��
����*
� ���� �����&� ������� �� ��� �����&� +����� ����

��� ���� ������* ���
� ����
��� ���� ��� ��� ��� ���� ������ ��� ���

����� ������"

#���� ��� � � ���������
 �� ���
� ��
��������
2 ��

��
��������
 (���*�A� ����� $����� 	�� $����) ���

/+
 ��
��������
 (�$�ABA� �$ �� 	�� �A �)" #�� ��

��
��������
 ������� ��� �&������� �� ��� ��
���� ��

��������� ��� �����&� �� �� �&������* ����� ������ �����

*

��� �����&� �������
� ���� (�� �� ������* �������
�

,��
�

������,�)" #�� /+
 ��
��������
 �������� ���� ���

�����&� ����
���
 ��� ��� ���� ������* ��� ����� ������*

��� ��� �����&� +����� ��
��������� ��������� ���� (����

��
����)* ������ �����

* ������ �� ����
 �� ��

����
������* ��� ����� ������ �� �����&� +����� �����

"

#��
� ��
��������
 ��� ��
������ �� ������ �� >48?"

-$3 �%�12%�+� �+���� �1����'%	

��&�* ��� ������� ��������� �� ��� +�����'�

�
��� �

����
������" #�����'� ������
 ��� �������!�����
� �����!

����
* ���� ��� ����!�������� ����
 �� �����������
 ���

������ �� ��� ��
����" ���" 5 ������
 ���
���
 �� �&�����

���
� �������� ��
-
"
 ��
�������� �����
2

6;= �+++ -��(���-�3(� 3(�3!�4-+�� 53"& 67 (3& 8 !�9 2:::

$��& 2& �
��
�����
� !
���
��� ���������	��
� 0!< ����1& $��& >& !
���
��� �� � �� 	��	� .��� 2� ���� 	�
 �
������ �
.?

�
���� �
���������� ��� B�	
�	��&

(a) Mesh arrangement for Functional Units used by the
MorphoSys array (adapted from [SLL+00])

(b) Row based Functional Unit topology employed in
the CCA approach [CKP+04]

Figure 2.1: Two different Functional Unit arrangements for reconfigurable arrays

be robust in order to ensure functional correctness of the accelerated regions. Also, the tasks of

binary analysis, CDFG detection and translation are themselves computationally demanding. As

such, runtime binary translation will be less powerful, detecting smaller kernels and performing

fewer optimizations. Even the minimalist implementation of runtime synthesis used in [LV09]

requires over 5 MB of data memory.

Trace elements targeted for acceleration include basic blocks, sequences of forward-jumping

basic blocks [CKP+04], traces which support backwards jumps and multiple exits [BPFC13,

BC10] or traces with multiple paths [NMIM12]. These elements represent frequent sequences

of instructions (which some approaches compile into custom instruction), iterations of frequently

executing loops, or common paths of execution throughout the iteration of a loop.

2.1.2 Accelerator Structure

An accelerator is typically composed of interfaces to the host system, and a region in which op-

erations are actually performed. Operations can be implemented through fine-grained bit-level

logic, or via coarse-grained FUs such as adders or multipliers, or even more specific functions

such as square root modules or Multiply Accumulate (MAC) blocks [LV04, ECF96, GSB+99].

Commonly, accelerators contain an array of such FUs. In the later case, the term Coarse Grained

Reconfigurable Array (CGRA) is often used. Three major features characterize an array: number

and type of FUs, their arrangement and the their interconnection capability. Figure 2.1 provides

two examples of FUs arranged into different array topologies. A comprehensive look at array

architectures is given in [Har01].

22 Revision of Related Work
Reconfigurable Computing 177

Fig. 3 . Different levels of coupling in a reconfigurable system. Reconfigurable logic
is shaded.

addition of custom instructions that may
change over time. Here, the reconfigurable
units execute as functional units on the
main microprocessor datapath, with reg-
isters used to hold the input and output
operands.

Second, a reconfigurable unit may
be used as a coprocessor [Wittig and
Chow 1996; Hauser and Wawrzynek 1997;
Miyamori and Olukotun 1998; Rupp et al.
1998; Chameleon 2000]. A coprocessor is,
in general, larger than a functional unit,
and is able to perform computations with-
out the constant supervision of the host
processor. Instead, the processor initial-
izes the reconfigurable hardware and ei-
ther sends the necessary data to the logic,
or provides information on where this data
might be found in memory. The reconfig-
urable unit performs the actual computa-
tions independently of the main processor,
and returns the results after completion.
This type of coupling allows the reconfig-
urable logic to operate for a large num-
ber of cycles without intervention from
the host processor, and generally permits
the host processor and the reconfigurable
logic to execute simultaneously. This re-
duces the overhead incurred by the use
of the reconfigurable logic, compared to a
reconfigurable functional unit that must
communicate with the host processor each
time a reconfigurable “instruction” is used.
One idea that is somewhat of a hybrid be-
tween the first and second coupling meth-
ods, is the use of programmable hardware
within a configurable cache [Kim et al.
2000]. In this situation, the reconfigurable

logic is embedded into the data cache.
This cache can then be used as either a
regular cache or as an additional com-
puting resource depending on the target
application.

Third, an attached reconfigurable
processing unit [Vuillemin et al. 1996;
Annapolis 1998; Laufer et al. 1999] be-
haves as if it is an additional processor in
a multiprocessor system or an additional
compute engine accessed semifrequently
through external I/O. The host processor’s
data cache is not visible to the attached
reconfigurable processing unit. There is,
therefore, a higher delay in communica-
tion between the host processor and the re-
configurable hardware, such as when com-
municating configuration information,
input data, and results. This communi-
cation is performed though specialized
primitives similar to multiprocessor sys-
tems. However, this type of reconfigurable
hardware does allow for a great deal of
computation independence, by shifting
large chunks of a computation over to the
reconfigurable hardware.

Finally, the most loosely coupled form
of reconfigurable hardware is that of
an external stand-alone processing unit
[Quickturn 1999a, 1999b]. This type of
reconfigurable hardware communicates
infrequently with a host processor (if
present). This model is similar to that
of networked workstations, where pro-
cessing may occur for very long periods
of time without a great deal of commu-
nication. In the case of the Quickturn
systems, however, this hardware is geared

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

Figure 2.2: Different types of interfaces between host processor and co-processor [CH02].

Using a co-processor implies an exchange of information between it, the GPP and in some

cases a shared or main memory. If an inefficient interface is used, the introduced overhead may

negate the speedups obtained by acceleration through hardware. Figure 2.2 shows common possi-

ble methods of attaching a co-processor to a host system.

Some approaches couple the accelerator directly into a processor’s pipeline, which makes it

easier to operate on values directly in the processor’s register file [BRGC08, NMM+06, CKP+04].

This allows for a very low-overhead interface between the accelerator and the host processor.

However, such approaches are limited by the reduced portability and potentially require a syn-

chronized co-design effort as GPP architectures themselves evolve. Placing new logic in the pro-

cessor’s pipeline could also introduce critical path delays. Additionally, memory accesses by the

co-processor become more difficult to implement, because it is embedded into the pipeline, pro-

viding no obvious manner to interface with data memories or allow concurrent accesses.

Alternatively, co-processors may be loosely coupled as peripherals [SLL+00, BPCF13, LV04],

using interfaces such as buses, dedicated links or shared memory schemes [PPM09]. Although

loose coupling may introduce larger overheads in the communication with the GPP, development

of the accelerator does not require intrusive modifications to the host processor. Because the

accelerator is an external peripheral, design becomes less constricted. Shared memories or DMA

can be used to allow for more sophisticated memory access by the accelerator.

2.1.3 Accelerator Functional Units

FU Capabilities The operations supported by the FUs depend on the targeted CDFGs. For

instance, the approach shown in [NMIM12] uses an array with no support for multiplication, pro-

hibiting the acceleration of CDFGs containing even one multiplication. Tightly coupled arrays are

usually smaller, containing simpler FUs supporting integer arithmetics and logic, but usually not

memory operations. Larger arrays are typically loosely coupled, employing more sophisticated

FUs, which support more complex operations, potentially allowing for a wider scope of accelera-

tion. This however, also depends on the type and size of region of code to accelerate [CH00].

2.1 Overview 23

Although arrays containing larger numbers of FUs with greater capabilities are more flexi-

ble, significant hardware overhead could be introduced depending on the operations to support.

Some arrays are composed of numerous Arithmetic and Logical Units (ALUs) with dedicated reg-

ister files, but even these cases do not include support for division operations and floating point

arithmetic [RBM+11]. Some implementations find a compromise with heterogeneous arrays, us-

ing larger numbers of simple FU and a small number of more dedicated resources, arguing that

complex operations are less frequent [NMIM12].

FU Arrangement The manner in which data flows to/from the array is a function of the layout of

its FUs. The layout is based on how we wish to implement the latent parallelism of the accelerated

code. The most representative approaches relative to the proposed work employ either row or

mesh based topologies of word-level FUs.

A mesh type arrangement is shown in Fig. 2.1a. This type of arrangement is characterized by

typically homogeneous FUs layed out in matrices which are richly interconnected. FUs can send

and receive operands and results from the four nearest neighbours, and some FU might contain

their own register files. This arrangement and connectivity does not enforce any data direction-

ality; data can usually travel towards any direction in the array. Connectivity can be increased

by also connecting FUs diagonally or with long lines for distant connections. In [BGDN03], a

performance analysis is done of mesh arrays in function of connectivity and FUs capabilities.

Figure 2.1b shows a row arrangement for two types of FUs. FUs in one row execute concur-

rently and propagate data downwards to adjacent rows. This type of arrangement closely mimics

the layout of CDFGs themselves, enforcing a feed-forward connectivity. Data can then be fed

back to the first row, if the array is meant to be used as a loop accelerator [CHM08, BPCF13], or

the connections may be strictly feed-forward. Between rows, there can be a crossbar (all-to-all)

connection, or simpler multiplexers. Some arrays also allow connections spanning multiple rows

[BPCF13, CBC+05, NMM+08]. This allows for greater applicability as typical CDFGs are not

composed solely of nodes whose connecting edges have a length of 1, i.e., connect to adjacent

nodes. There are also row arrangements with a single-row, whose configuration is changed every

cycle, thus repeating a sequence of configurations composing an iteration [GSB+99, CFF+99].

Mesh arrangements have an easily scalable structure, and because of the homogeneous struc-

ture and capabilities of the FUs, are more generic than row arrangements. The latter tend to be

more heterogeneous, distributing processing capabilities through stages where the designers deter-

mine to be necessary. Meshes are usually employed for loosely coupled arrays, while the data di-

rectionality of row-based arrays seems to be more appropriate for a tight integration into processor

pipelines, although they can also be used as loosely coupled loop accelerators [CHM08, BPFC13].

One could argue that mesh arrays appear more flexible than row topologies. But better scal-

ability and larger FU complexity does not ensure that more code will be successfully mapped to

the hardware. Speedups depend on the maximum ILP that can be found in the traces, on the type

of accelerated trace, the trace detection method and on the efficiency of the translation of traces

into array configurations. Smaller row-based architectures geared towards streaming execution

24 Revision of Related Work

can be suficcient to sucessfully accelerate the target CDFGs, depending on the number and type

of operations, ILP, graph depth and especially complexity of the connections.

There are also arrays that employ a mesh arrangement of much more sophisticated processing

units like small processors, which is a different category of heterogeneous systems. Acceleration

can be achieved by having each core execute independent iterations of a loop, or multiple unrelated

loops can be executed in tandem. For these cases, the notion of interconnection is intrinsically

different, as data is exchanged at a higher level. In [Ima12], many processors communicate by

local handshaking, and each is controlled by a dedicated instruction stream.

FU Interconnections As mentioned, it is the possibility of controlling data exchange that grants

great flexibility to CGRAs, more so than the total number of resources or their complexity. Inter-

connection capability is especially influential for the performance of an array.

A richer interconnection scheme typically allows for a better use of the available computing

resources. However, the richer the interconnect, the more configuration information will have to

be generated and, depending on the approach, stored in memory to be loaded prior to execution,

leading to increased memory requirements. Also, complex connection grids like crossbars and

multiple buses can introduce critical path delays and require considerable resources. Meshes are

more efficient if they are precisely tailored for the required operations and connectivity of the

CDFGs to execute. Quantitative analysis of a reference set of CDFGs can be employed to deter-

mine these requirements [SNS+13, YM04, NMM+06, NMM+08], but might lead to an over-fit,

making it hard to predict performance for other CDFGs.

Existing approaches experiment with different interconnections, often introducing small de-

sign changes whose effect can be difficult to quantify because the mapping sucess rate or achieved

speedup also depends on the type of CDFG being mapped, and on other aspects of the array.

Different interconnection topologies are evaluated in [WKMV04, VEWC+09, MSB+07].

Because mesh arrangements are homogeneous, the same interconnection capabilities will be

found throughout the mesh. This may prove to be excessive because not all nodes of a CDFGs

require the same amount of connectivity. As such, designing a mesh interconnect to satisfy the

maximum possible connectivity can lead to under-utilization of available connections. Also, node

connectivity on a CDFG tends to diminish with depth, i.e., operands are consumed as the graph

executes, meaning there is a larger number of nodes and connections in the earlier levels.

Row topologies mitigate this due to the directionality of the connections. Consider a square

mesh array, and a square row based array. FUs of the mesh array are connected to their 8 neigh-

bours bidirectionally. FUs of the row array are connected through inter-row crossbars. It is evident

that as the arrays scale, all things being equal, the amount of connections increases more rapidly

for the mesh case. Also, for a row based topology, connection capabilities can be tailored on a

per-row basis, further decreasing resource usage at the cost of decreased applicability.

2.1 Overview 25

2.1.4 Accelerator Memory Access

Support for memory access is a requirement to achieve large speedups. Potential speedups are

higher for frequently executing kernels that contain numerous memory accesses, since there might

be large amounts of latent data parallelism. Ideally the array should be able to access all the

application data and perform as many concurrent accesses as possible. However, support for

memory accesses in these scenarios is usually an issue. The data needs to be shared efficiently

between host processor and accelerator, which might imply the use of shared caches or data-

transfer steps to synchronize data. Also, the array needs mechanisms to perform memory accesses,

ideally several in parallel, which means a sophisticated memory layout is required.

If local memories are used for the array [KLSP11, PPM09, SLL+00], the issue of synchro-

nization with the GPP arises, as large amounts of data may need to be moved between the local

memories and the main data memory, and the overhead would negate parallelism gains. To avoid

this, DMA access can also be used, keeping in mind coherency between accelerator memory,

main memory and processor data cache. Despite the overhead, using local memories remains the

most straightforward method. It is employed, for instance, by commercial HLS tools [Cal], which

instantiate local memories for the automatically generated hardware modules. The size of the

memories is determined by source code analysis of explicitly declared static array dimensions.

Shared memories can be accessed by multiple master devices. One approach is to populate

the memory at runtime prior to array execution. Thus it behaves as a local memory which the pro-

cessor accesses directly [SLL+00], unlike local memories built into the accelerator, which would

instead fetch data through DMA, for instance. This avoids the need to include more complicated

memory access logic within the array so it populates its own local memories.

An alternative is to create a system which maps accesses to a given address range to a shared

memory, avoiding lengthy transfers steps. The shared memory can be used to accomodate the

entire address space of the application [PFC13, KHC11, LV09] or just a defined range [KHC11].

Data produced by the array is placed back into the shared space and then accessed by the processor.

However, this involves determining appropriate memory ranges. Also, if the data accesses have a

very small locality the choosen range will be insufficient, as the array will frequently try to access

data outside the range. It is not straightforward to provide support for a shared memory onto which

several non-sequential ranges are mapped, as this might imply compiler or linker modifications.

In [KHC11] a shared cache is used, supporting any one runtime defined range. The shared

memory is placed at cache level and shadows the processor cache or main memory. The processor

transparently accesses either the cache, or the shadow memory, depending on which has the up-to-

date data. Writing produced data back to main memory is not required. However, if data required

by the array prior to execution are not in the shadow memory, a transfer step is needed. Also, this

approach employs a custom cache architecture for the processor, and does not support a closed

third-party processor with integrated caches.

Regardless of memory layout, concurrent accesses are required to fully realize parallelism

potential. If not, waiting for sequential accesses will introduce additional delays that negates

26 Revision of Related Work

speedups. To avoid this, the chosen memory architecture can be further specialized.

For instance, in [LV09], a dual-port memory is used. One of the ports is reserved for the

processor, while the second is used by the array, allowing for one access per cycle at most when

executing on the accelerator. In [KLSP11, DGG05] a modulo scheduling approach is optimized

so that conflicting memory accesses are not issued simultaneously. Additionally, the work in

[KLSP11] studies the distribution of data through several local single-ported memory banks ac-

cessed by a generic mesh array. Data access is first profiled and the arrays are interleaved through-

out several local memory banks. Similar to the shared memory scenario, this approach requires a

compile-time analysis to determine an adequate mapping of arrays into the several memory banks,

based on observing array sizes and access frequency. Despite this, it is an efficient way to provide

multiple concurrent accesses to data, as more memory banks can be added. Alternatively, several

single-port memories can be used, where each corresponds to a sub-range of adresses. However

this means concurrent access to addresses in the same range still collide. Data could be copied

into several memories, but this would introduce synchronization issues. By distributing out data

into different banks, greater concurrency is possible, but this does not guarantee that conflicting

accesses will not occur, i.e., the array may have to access several data in the same memory.

Another issue is the supported access pattern. The simplest approach is the use of address

generator hardware which outputs addresses with a specific stride [LV09, AD11]. Also, the range

of addresses is typically determined at compile time. This precludes accessing heap allocated data

or random access patterns. Some HLS approaches only support analysis of memory accesses using

explicit array based syntax with a stride that can be determined statically. In [BRGC08] access

to random addresses is supported giving the array’s load/store FUs ability to receive results from

any other FUs to use as addresses. A source-to-source transformation is presented in [AMD13],

to disambiguate memory accesses for HLS approaches thus better predicting accesses.

Approaches, with local shared memories, or other schemes of distributed memory, are appro-

priate for loosely coupled arrays. It is more difficult to support memory access in tightly coupled

arrays. However, in [NMIM12], up to 1 store operation is supported by using the writeback stage

of the processor pipeline. In [BRGC08], concurrent load accesses are supported, but implementa-

tion details are not given.

2.1.5 Accelerator Execution Model

How accelerator execution is controlled depends on the arrangement of FUs and how they are inter-

connected. This determines how data is fed and moved between FUs. A typical processor follows

a Single Instruction Single Data (SISD) model while these types of accelerators exploit Single

Instruction Multiple Data (SIMD) and Multiple Instruction Multiple Data (MIMD) paradigms.

The distinction is blurred, as a single stream of instruction words which configure several or all

FUs in the array are in fact providing multiple instructions, one per FU, as in a VLIW processor.

But, from the point of view of the GPP, which uses the array as a peripheral or custom pipeline FU,

a single instruction stream is issued. If the FUs themselves are active components, autonomously

fetching instructions from memory, this can be considered a MIMD implementation.

2.1 Overview 27

Accelerators containing ALUs can be considered MIMD, since ALUs in the array will perform

a different functions. Even if the entire array is configured by a single word prior to execution, or

even if a command is given per cycle to configure the ALUs, unless all ALUs are performing the

same operation over multiple data streams, it cannot be considered a single instruction stream. We

can instead look at how CDFGs operations and their data flow are implemented in the arrays.

Loop Acceleration vs. Sub-graph Acceleration Array execution can target cyclical or acycli-

cal CDFGs. Cyclical CDFGs refer to graphs with backwards edges to earlier nodes. That is, a

graph represents a complete loop iteration, which loosely coupled arrays, mesh or row based, usu-

ally target. The backwards edges determine the Initiation Interval (II) of the graph. An array can

execute an iteration of a cyclical graph in a number of cycles equal to the II. That is, one graph

iteration is completed every II cycles. Arrangements with multiple rows rely on mimicking the

data directionality of the CDFGs, and mesh arrangements on scheduling loop iterations, under the

existing resource and connectivity restrictions. Acyclical execution means that data is not sent

back to previous nodes, which applies when considering smaller sub-graphs which represent a

sequence of instructions in the binary code (or trace). They may be part of a frequent loop, but do

not constitute the entire loop body. A tightly coupled accelerator serving as a custom GPP pipeline

unit is the most appropriate for these cases.

Iterator Control For loosely coupled loop accelerators, the number of iterations to perform on

the array can be a compile time constant, be determined at runtime by input data. Typically, HLS

methods are incapable of inferring complex dependencies between data and control, i.e., dynamic

data-control dependencies. As such, they usually support translation of loops with statically de-

fined iterators. Binary translation methods suffer from the same problem, static binary analysis

contains even less information about loop iteration, and trace profiling does not ensure the loop be-

haviour will be constant ad eternum. Arrays with more sophisticated control keep track of iterator

values or evaluate termination conditions for iterative execution.

Tightly coupled arrays which are activated explicitly by the processor on a per-iteration basis

do not suffer from this issue. Since they are not explicitly loop accelerators, some of the sequential

code responsible for iteration control will still be executed on the processor. This is partially

related to support for conditional execution on the array. CDFGs with conditional paths have to be

broken down, leading to smaller accelerated CDFG. In [NMIM12] however, the array has support

conditional execution, accelerating frequent sequences of basic blocks.

Execution in Mesh Based Arrays In a mesh arrangement with homogeneous FUs, a single

configuration command could suffice to select an operation to be performed per FU as well as

defining the interconnects of the entire array. Execution then starts, and the same calculations

are repeated, which corresponds to iterative execution of a CDFG. This assumes the mesh has

sufficient resources onto which every CDFG operation can be mapped. In constrast, ALUs in a

smaller mesh can perform a different operation every cycle. A CDFG is split into stages which

28 Revision of Related Work
Memory Access Optimization in Compilation 42:19

Fig. 8. An example of routing reuse edge (‘n means node n of the previous iteration, n’ means node n of the
next iteration).

every load-store unit to access any bank. Similarly to ADRES, we assume that the
local memory access latency is 3 cycles, without DMQ; with DMQ whose length is four,
the local memory load latency is 7 cycles. We assume that the local memory size is
unlimited for our experiments. Our CGRA has no shared register file, but each PE has
its own register file, whose size is four entries. The local registers are used for scalar
variables or routing temporary data. A PE is connected to its four neighbor PEs and
four diagonal ones.

We use important kernels from multimedia applications. To get performance num-
bers, we ran simple simulation on the mapping result as well as array placement, which
gives the total number of execution cycles consisting of stall cycles and useful (nonstall)
cycles. Because of the randomness in the scheduling algorithm (as when there is more
than one minimum cost candidate), we compile and simulate each loop ten times and
the average performance is taken as the representative performance of the algorithm
for that loop.

7.2. Effectiveness of Conflict-Avoidance Only

To see the effectiveness of our compiler-based conflict-avoidance approach, we compare
our conflict-avoidance mapping with the hardware approach that uses DMQ to reduce

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 42, Pub. date: October 2011.

(a)

Memory Access Optimization in Compilation 42:19

Fig. 8. An example of routing reuse edge (‘n means node n of the previous iteration, n’ means node n of the
next iteration).

every load-store unit to access any bank. Similarly to ADRES, we assume that the
local memory access latency is 3 cycles, without DMQ; with DMQ whose length is four,
the local memory load latency is 7 cycles. We assume that the local memory size is
unlimited for our experiments. Our CGRA has no shared register file, but each PE has
its own register file, whose size is four entries. The local registers are used for scalar
variables or routing temporary data. A PE is connected to its four neighbor PEs and
four diagonal ones.

We use important kernels from multimedia applications. To get performance num-
bers, we ran simple simulation on the mapping result as well as array placement, which
gives the total number of execution cycles consisting of stall cycles and useful (nonstall)
cycles. Because of the randomness in the scheduling algorithm (as when there is more
than one minimum cost candidate), we compile and simulate each loop ten times and
the average performance is taken as the representative performance of the algorithm
for that loop.

7.2. Effectiveness of Conflict-Avoidance Only

To see the effectiveness of our compiler-based conflict-avoidance approach, we compare
our conflict-avoidance mapping with the hardware approach that uses DMQ to reduce

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 42, Pub. date: October 2011.

(b)

Figure 3: Two different FUs arragements for reconfigurable arrays

a command is given per cycle to change the operations being performed in
the ALUs, unless all ALUs are performing the same operation over multiple
data streams, it cannot be considered a single instruction stream. We can
instead look at how CDFGs operations and their dataflow is implemented in
the arrays, i.e. how, at what intervals, and under what control FUs exchange
data.

Execution in mesh based arrays In a mesh arrangement with simple
homogeneous FUs, a single configuration command could suffice to select an
operation to be performed per FU as well as defining the interconnects of the
entire array. Execution then starts, and the same calculations are repeated,
which corresponds to iterative execution of a CDFG. This assumes the mesh
has sufficient resources onto which every CDFG operation can be mapped.
In constrast, ALUs in a smaller mesh can perform a different operation every
cycle. A CDFG is split into stages which execute cyclically on the array.
This requires instructions, and possibly data, to be fed to the array at every
stage. In [25] it is the host processor that performs this task, while in
[?, 42] there are resident local instruction memories in the array. By folding
the schedule of operations on mesh arrays, we overlap execution of parts
of the CDFG belonging to different iterations. That is, modulo scheduling
is commonly employed on mesh arrays to achieve greater speedups and to
achieve better resource utilization per cycle.

The systems proposed in [?, 33] are examples of mesh based MIMD ap-
proaches. In [?], the array contains FU with dedicated register files which
share data amongst themselves. Multiples of 4 FUs can be grouped into a
sub-array controlled by a single instruction stream. Sub-arrays communi-

16

Figure 2.3: In [KLSP11], a memory-aware modulo scheduling is performed on mesh arrays. On
the left, a partially complete mapping for a graph of 8 nodes onto 4 FUs. On the right, several
superpositions of the complete schedule.

execute cyclically on the array. This requires instructions, and possibly data, to be fed to the array

at every stage. In [SLL+00] it is the host processor that performs this task, while in [PPM09,

But07] there are local instruction memories residing in the array. By folding the schedule of

operations on mesh arrays, we overlap execution of parts of the CDFG belonging to different

iterations, as shown in Figure 2.3. That is, modulo scheduling is commonly employed on mesh

arrays to achieve greater speedups and better resource utilization per cycle.

The systems proposed in [PPM09, Ima12] are examples of mesh-based MIMD approaches.

In [PPM09], the array contains FUs with dedicated register files which share data amongst them-

selves. Multiples of 4 FUs can be grouped into a sub-array controlled by a single instruction

stream. Sub-arrays communicate amongst themselves at known intervals, and columns of the ar-

ray can access individual scratch-pad memories, allowing for each sub-array to access multiple

data. The multi-processor array of [Ima12] contains small processors each with an instruction

memory, accessing shared data memories. In [SLL+00], entire rows or columns of FUs in a mesh

are configured by the same configuration word, but each FU operates on a different input datum.

In [MLM+05], a mesh array contains four enhanced units which together form a VLIW. Sequen-

tial portions of code are executed in the VLIW core, which can feed data directly to the rest of the

mesh. This is a case of tight integration of a mesh array.

Execution in Row Based Arrays In row arrays, data produced by the last row can be fed back

to the first row as mentioned previously. Execution thus repeats until a termination condition is

met, and the array functions as a loop accelerator. In general, loop accelerators tend to be loosely

coupled, as they execute several iterations without intervention of the host processor. On the other

hand, since row-based arrays tend to be more heterogeneous and imply data directionality, they

basically behave as a custom ALU. As such, smaller arrays can be tightly coupled to augment

a processor pipeline, and are then controlled by instructions fetched by the processor. Note that

2.1 Overview 29

both can accelerate the execution of loops. If the tightly coupled array is fed the same instruction

numerous times in a row, it is essentially quickly executing iterations of a loop whose instructions

were transformed into a single-instruction configuration for the array.

If the rows buffer their output stages, this creates a multi-cycle array. If the interconnection

scheme is sophisticated enough so that outputs of any row can be fed back to any row, this arrange-

ment can easily be used to implement pipelined execution. The amount of required backwards

connectivity depends on the IIs of the loops. In contrast, the array can be completely combina-

tional, creating a single-cycle array. If the design is efficient so that no critical path delays are

introduced, large speedups can be attained by executing up to tens of instructions per cycle.

In [BPCF13, PFC13], a loosely coupled row-based array contains single operation FUs. A

configuration word is given prior to execution, and the array then executes iteratively for a runtime

defined number of cycles. Some cases of tightly coupled row-based arrays are also an example of

SIMD execution: the array is used a a custom FU in the processor pipeline, as such, a single in-

struction in the data stream configures the array which fetches multiple operands from the register

file [BRGC08, CBC+05].

2.1.6 Accelerator Programmability and Compilation

While the execution model of the array relates to the method of data flow, programmability is

related to the manner in which control is provided to the array. This includes control signals of the

array, and how this control is generated, i.e., how is application information compiled into array

configurations. The type of control that needs to be provided is directly related to the arrangement

of FUs and interconnections, type of interface to the GPP and their execution model.

Considering the structure of CGRAs, there are two types of information required to control

execution: defining the operations of the FU and establishing interconnections between FUs. The

exact format of control information depends on the capabilities of the FUs and the interconnec-

tions, as well as the execution model of the design.

Controlling accelerators which are tightly coupled is done in some approaches by embedding

custom control instruction in the application binary, i.e., through instruction set extension. The

accelerator is thus controlled like any other FUs in the GPP’s pipeline [BRGC08]. Custom instruc-

tions can results from either offline [CBC+05] or online binary translation [RBM+11, CHM08].

Mesh type arrays require several configuration stages per iteration, each FU performs different

operations through an iteration. Datapath type arrays for pipelined execution require very little

control. Entire CDFGs are mapped to the array and produce data at given intervals after activation.

For instance, in [PFC13], additional code which the processor executes to communicate with the

array is automatically generated offline. The array contains single-operation FUs and only the

interconnects are configured prior to execution. In [LV09], the binary is modified offline so that

the processor initiates communication with the reconfigurable area. The accelerator may also be

controlled directly by the GPP by issuing control instructions [SLL+00], or the accelerator itself

may actively fetch instructions from local memories [MO98].

30 Revision of Related Work

Generating control information is unlike compiling a program for a sequential processor. Lack

of a straightforward compilation methodology for these heterogeneous architectures greatly hin-

ders their applicability and deployment. Existing binary-acceleration-based architectures still re-

quire the use of custom tools, after or during compilation [NMIM12]. Alternatively, on-chip

translation methods are employed [LV09, RBM+11], which hide this process from the developer.

Translating CDFGs into these arrays entails finding a free and compatible FU for each oper-

ation, such that all operations are mapped without conflict [APTD11, ATPD12]. Pre-processing

steps can be performed over the CDFG, such as constant propagation, analysis of WAR and RAW

dependencies and elimination of store-load operations over data that is only used locally within

the array. In [SGNV05], decompilation techniques are used to recover memory and loop related

information from application binaries, providing more efficient binary translation.

2.2 Representative Approaches

The following sections summarize representative state-of-the-art approaches to constructing sys-

tems capable of autonomous runtime acceleration. The most relevant approaches are the Warp

processor [LV09], the AMBER approach [NMIM12], the CCA [CBC+05] and the DIM array

[BRGC08], as these consist of complete binary acceleration systems. In later sections of this

section, some additional works are also summarized.

In [Wol03], a general view of hardware/software co-design is presented, a comprehensive

summary of CGRA architecture can be found in [Har01], an extensive look at several aspects of

reconfigurable architectures is shown in [CH02] and [Cho11] is a survey of CGRA architectures,

some of which are also presented here. Approaches presented here stand out as the most recent

publications similar to the proposed approach. Table 2.1 summarizes architectural and method-

ological information for the following approaches which more closely resemble this work.

2.2.1 Warp Processor

The Warp processor shown in Fig. 2.4 is an FPGA-based run-time reconfigurable system based

on binary decompilation [LV09]. Cycles are first detected during execution [GRV05]. Once pro-

filed, the running binary is decompiled into high level structures which are mapped into a custom

FPGA fabric by custom tools running on an additional processor. The FPGA is modeled with

a simpler interconnect structure and resource layout, to facilitate runtime P&R. Once the auto-

matically generated hardware is ready, software execution is migrated for the identified sections

by modification of the program binary, and operands are fetched from memory. The system is

fine-grained and loosely-coupled. Only small loops in the running program are detected. Tar-

geting more complex loops would greatly increase the effort of on-chip CAD and mapping time.

Floating-point operations, pointer operations or dynamic memory allocation are not supported.

2.2 Representative Approaches 31

22:6 • R. Lysecky and F. Vahid

Table I. Logic Size for Base MicroBlaze System (Base MB), a
Single-Processor MicroBlaze-Based Warp Processor (Warp MB (SP)), and

the Hardware Resources Required to Incorporate each Additional
MicroBlaze Processor Within a Multiprocessor System (Additional MB)

Slices BRAMs
System Used % Total Used % Total
Base MB 1,548 11.3% 8 5.9%
Warp MB (SP) 2,327 17.0% 24 17.6%
Additional MB 779 5.7% 8 5.9%

Fig. 2. MicroBlaze single-processor warp processing system.

the size of the base MicroBlaze system (Base MB) in terms of logic slices and
number of physical 2KB BRAMs used to implement the system and presents
the percentage of total available resources within FPGA required. The base
MicroBlaze system required a total of 1,548 logic slices and 8 BRAMs, corre-
sponding to 11.3% of the total available logic and 5.9% of the available BRAMs.

3. MICROBLAZE-BASED WARP PROCESSOR

Figure 2 presents a single-processor MicroBlaze-based warp processor. Build-
ing on top of the base MicroBlaze system, the warp processor also contains an
on-chip profiler, our warp-oriented field-programmable gate array (W-FPGA),
and an on-chip CAD module (OCM) executing our dynamic partitioning tools.
Initially, the software application executing on the warp processor will execute
only on the MicroBlaze processor. During execution of the application, the pro-
filer monitors the execution behavior of the application to determine the critical
kernels within the application. After identifying the critical regions, the OCM
reimplements the critical software regions as a custom hardware component
within the W-FPGA using the Riverside on-chip computer-aided design tools
(ROCCAD). Extensive discussion of the W-FPGA and ROCCAD tools is beyond
the scope of this article, but the interested reader can find details in Lysecky
et al. [2006], Lysecky and Vahid [2004], Lysecky and Vahid [2003], Lysecky

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 22, Publication date: April 2009.

Figure 2.4: The Microblaze based Warp processor system. An additional processor performs
runtime synthesis of accelerator hardware through profiling [LV09].

2.2.2 ADEXOR

In [NMM+06, NMM+08], a profiler is used together with a sequencer that stores microcode for

the developed accelerator, which is coupled to a MIPS processor pipeline. Its execution is initiated

by comparing the current PC with stored information. The accelerator consists of a reconfigurable

unit, controlled by configuration bits to perform a given operation. This unit, shown in Fig. 2.5

contains a fixed number of FUs which support integer arithmetic. Up to 1 store operation can

be performed. Loads, division and multiplication are not supported. It is configured whenever a

basic block, detected by the runtime profiler, executes over a given number of times. Further work

produced a heterogeneous reconfigurable unit [MGZ+07]. The flexible interconnection scheme

introduced a large multiplexer delay, but many of the configurations were similar. For this reason,

the architecture evolved to a more coarse-grained alternative with less configuration overhead.

In [NMIM12] support for conditional execution was implemented. Sequences of forward-

jumping hot basic blocks are used to compose single-entry multiple-exit traces. Basic blocks

cannot be linked accross function returns, indirect branches or branch and link operations. When

constructing a trace, if execution is equally frequent through both the taken and non-taken direc-

tions of a branch delimiting a basic, both paths are included into the trace. Only short forward

jumps are considered, as long jumps would imply support for executing a large number of instruc-

tions on the accelerator. If one of the branch directions is heavily biased, only it is included in the

trace. The traces are then transformed into configurations for the accelerator. One configuration

requires an average of 615 bits. The total amount of configuration memory required is reduced

by performing similarity analysis on the generated configurations. During an offline phase, the

application binary is profiled through execution in a SimpleScalar simulator and then modified

with custom instruction which load accelerator configurations at runtime. An average speedup of

1.87× was achieved for the MiBench suite, versus a single-issue MIPS processor.

32 Revision of Related Work

Figure 2.5: An array of FUs which is coupled to the processor pipeline in [NMM+08]. In
[NMIM12] it is enhanced with conditional execution.

2.2.3 Configurable Compute Accelerator (CCA)

In [CKP+04, CBC+05] a method for transparent instruction set extension is presented. An ARM

pipeline is augmented with a CCA as shown in Fig. 2.6. The CCA is composed of an array

containing two types of ALUs. One is capable of arithmetic and logical operations, the other can

only execute logical operations. The array is composed of alternating rows of each type of ALU.

The number of rows and their width was determined by profiling data extracted by simulation of

29 applications. Candidate traces were identified and frequently executing ones had more weight

in deciding the CCA structure. The CCA has 4 inputs and 2 outputs, and several combinations of

depth and widths were tested. The width determines the maximum supported critical path, and the

row widths the maximum ILP. The CCA does not support memory, barrel-shift, multiplication,

division or branch operations. Crossbars connect adjacent rows. Configuration is controlled by

setting ALU connections and 4-bit opcodes. Despite having rows of ALUs, execution on the

CCA is not pipelined, and interrupts are not supported. The presented approach does not require

modification of source code or executing binaries. CDFG discovery can be performed online

or offline. Online discovery is based on the runtime trace. This method allows for detection

of traces crossing control flow boundaries (as performed by the trace cache units of superscalar

processors). Offline discovery is performed at compile time, and marks the binary with special

instructions delimiting the region of code to translate into CCA instructions. At runtime, the

processors instruction stream is altered to use the CCA. This can be done in the trace cache, if

one is being used, or in the pipeline’s decode stage. Results for 3 variants on these design options

are presented. Evaluation was performed using the SimpleScalar simulator with 29 benchmarks.

A CCA of depth 4 was shown to be able to execute 82 % of the candidate graphs, and achieved an

average speedup of 1.26× for 11 benchmarks versus an ARM 4-issue processor [CKP+04].

In [CHM08], the same authors address binary portability for hardware accelerated systems.

Applications developed to utilize a given accelerator might not be compatible with future hard-

ware implementations. The authors propose a virtualization module that monitors the instruction

stream, and generates configurations and control for a given accelerator to address this issue. This

way, standard binary can transparently utilize any hardware accelerator. To validate this, a loop

accelerator architecture which executes modulo-scheduled loops is employed. The accelerator in-

2.2 Representative Approaches 33

CCA

SUBSYSTEM

CCA

Config

Cache

CCA

Control

Generator

CPU

Fetch Q

Instruction

Cache

Stall

BTAC

PC

CCA Index

+4 ID EX MEM WB@ 1 R1, R6

Branch

Target

Config

Cache

Entry

Live In

Registers

BTAC

Config Cache

Index

Live In

Values

Results

to write

back

CCA Control, Live Out Values

Live Ins, CCA Config Cache Index

Instructions

1 2 3 54

Figure 2: Transparent instruction set customization architectural framework

5. After retirement, completed instructions are provided
to the control generator so that it can synthesize the
CCA instructions from dataflow subgraphs.

3.3 Dataflow Subgraph Execution
A single instruction is added to the baseline instruction

set to allow the compiler to delineate patterns for execution
on the CCA hardware. A discussion of how the compiler
uses these instructions follows in Section 4. The introduced
instruction is dubbed BRL’ because its semantics are very
similar to a branch-and-link operation commonly used for
subroutine calls. BRL’ is treated just like a normal branch-
and-link instruction in processors without a CCA subsys-
tem: the current program counter (PC) is stored to a link
register and control branches to the branch target address.
The processor without a CCA will execute the instructions
in the target subroutine and return to the call site, just as
it would for any other subroutine. To a processor with a
CCA subsystem, the BRL’ signifies the start of a subgraph
to execute on the CCA.

When the BRL’ is fetched from the instruction cache, its
address is used to index into the BTAC. The BTAC is a stan-
dard component of modern branch prediction schemes used
to hold the destination of a taken branch. In this framework,
the BTAC is augmented to contain two additional pieces of
information for each BRL’ instruction. Register numbers
for the inputs to CCA instructions are one of the additional
pieces of information. These values are fed to the instruction
decode stage for register reads. An index into the CCA con-
figuration cache is the second additional piece of information
stored in the BTAC. The configuration cache on the CCA
subsystem contains the control bits for the CCA execution
unit. If a BRL’ hits in the BTAC, the configuration cache
index is passed through the pipeline with other control bits
and the PC simply increments to the next instruction (i.e.,
the branch is not taken because the BRL’ was recognized
as a subgraph). This prevents pipeline bubbles that would
form if the branch target was taken. If the BRL’ misses in
the BTAC, then it is executed as a normal BRL and control

branches to the procedure.
Recall that control bits from the BTAC provide the reg-

isters that are read during the decode stage of execution.
Since we assume only two register reads are supported in
one cycle, it may be necessary to use multiple cycles to read
all of the operands necessary for the CCA instruction. Ex-
tra communication is provided allowing the decode stage to
stall the fetch unit in order to facilitate this multi-cycle reg-
ister read. As the registers are read, they are passed to the
CCA system, keeping the width of the interface connection
to a minimum.

The BTAC also passes a configuration cache index through
the decode stage and into the CCA system. The configura-
tion cache contains information pertaining to the routing of
the signals on the CCA, as well as the operations to perform
at each node in the CCA grid. This information is separated
from the BTAC for two main reasons. First, the number of
control bits is highly dependent on the structure of the CCA.
Putting the configuration cache in the core, as part of the
BTAC, effectively restricts the size and organization of the
CCA, since the number of control bits is set a priori. Second,
putting the control bits in a separate configuration cache al-
lows reuse of the same control bits for different subgraphs.
For example, if two separate subgraphs were identical except
for the registers that provide their inputs, they could share
an entry in the configuration cache.

Once the registers and configuration data are passed along,
the CCA executes the subgraph as a single operation and
feeds the results to the writeback stage of the core. The
CCA operates like any other function unit in this regard.
An example of a potential CCA implementation can be seen
in Figure 3. The CCA here is implemented as a grid-like
grouping of function units with full interconnect between
adjacent rows. Because of delay constraints, the two rows
have slightly different opcodes available for execution, the
white nodes support add, subtract, compare, sign extend,
and all logical operations, while the gray nodes only sup-
port sign extend and logical operations. The design in this
figure was taken directly from our previous work [7], and a

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

Figure 2.6: The CCA array is coupled into the processor pipeline. Execution is shifted towards
the CCA after generating configurations for offline delimited regions of code [CBC+05].

tegrates the CCA as a functional unit. It was designed based on profiling data, by determining the

required resources to achieve the best possible speedup for the candidate loops. The accelerator

supports integer, single- and double-precision floating-point operations as well as 16 address gen-

erators for load operations and is composed of reconfigurable heterogeneous FUs. Configurations

are generated by binary translation of the loops to accelerate. A thorough explanation of the steps

of the translation mechanism is given. Scenarios in which one or more steps are either performed

online (by the virtual machine) or offline (through static compilation steps) are analyzed. A mean

speedup of 2.66× is achieved for 38 benchmarks versus a single-issue ARM, using the chosen

hybrid combination of online/offline binary translation without compromising binary portability.

2.2.4 Dynamic Instruction Merging (DIM)

The DIM Reconfigurable System [BRGC08] proposes a reconfigurable array of FUs with a row-

based topology supported by a dynamic binary translation mechanism. The array is tightly coupled

to the processor, with direct access to the processor’s register file as shown in Fig. 2.7. The DIM

array is composed of equal rows of heterogeneous FUs, some of which are ALUs supporting

arithmetic and logic operations. There can be as many concurrent memory operations as the

number of available memory ports. Floating-point and division operations are not supported.

Sequences of instructions are transparently mapped from a MIPS processor to the array, which

executes the custom instructions in a single-cycle. A speculation mechanism enables the mapping

of units composed of up to 3 basic blocks. The instruction stream is monitored concurrently with

34 Revision of Related Work

Figure 2.7: Like the CCA, the DIM array is placed in the processor pipeline. A separate pipeline
performs binary translation during execution (adapted from [RBM+11]).

execution for candidate basic blocks to translated into array configurations. Configurations are

stored for later use. An average speedup of 2.5× is achieved for 18 benchmarks of the MiBench

suite. In [RBM+11], DIM arrays were coupled to SparcV8 processors to exploit thread parallelism

in tandem with ILP. Using multiple DIM enhanced processors, a mixed approach of acceleration

through ILP and thread parallelism was evaluated through simulation.

2.2.5 ASTRO

The ASTRO approach is presented in [LCDW15]. It is based on detection of MicroBlaze instruc-

tion sequences by execution profiling on a simulator, followed by synthesis of one loop accelerator

per candidate instruction sequence. The accelerators are one-to-one translations of CDFGs into

pipelined data-paths, which execute pipelined loop iterations, and are coupled to the MicroBlaze

via a peripheral bus, and migration of execution is performed by monitoring the MicroBlaze’s

instruction address at runtime. ASTRO focuses on maximizing memory access parallelism. Dy-

namic memory access analysis is performed to determine disjoint regions of access. Memory

accesses within the hot regions are grouped into partitions based on access dependencies. Each

partition is assigned a customized cache. The analysis also deals with data hazards. With this

information, a tailored Block RAM (BRAM) based multi-cache system is created per-accelerator,

allowing for efficient exploration of data parallelism. The cache system for the accelerators may

2.2 Representative Approaches 35

require, at least, a partial cache invalidation after accelerator execution, leading to overheads. An

average ASTRO accelerator with a multi-cache network requires 20400 Lookup Tables (LUTs)

and 5900 Flip Flops (FFs) on a Virtex-5 device. For 10 benchmarks from MiBench and SPEC2006,

the geometric mean speedup achieved was 7.06× versus software-only execution. The authors

also conclude that maximizing concurrent accesses leads to approximately a speedup of 2× over

single-access accelerators.

2.2.6 Work of Ferreira et al.

In [FDP+14] an approach is presented for acceleration of inner loops detected by runtime binary

profiling. Auxiliary hardware monitors the execution stream for frequent backwards branches. De-

tected loops are modulo scheduled by on-chip translation tools onto the target accelerator. Either

RISC or VLIW binaries can be translated into modulo schedules for the CGRA, with support for

RAW/WAR dependency detection. The accelerated traces contain 40 up to 120 instructions. The

target accelerator is a CGRA architecture with a programmable interconnect, containing 16 FUs

(ALUs, multipliers, and up to two memory units). Floating point operations are not supported but

there is support for conditional value assignments. A crossbar connects the FUs and each FU has

its own register file. The accelerator is tightly coupled to the main processor and fetches operands

from its register file. The proposed approach is compared to several VLIW models. For evaluation,

the approach and accelerator targeted a Virtex-6 device. A speedup of 2.0× over a 8-issue VLIW

is achieved for 5 benchmarks. The proposed accelerator requires 13000 LUTs and 23 BRAMs.

2.2.7 Morphosys

MorphoSys [SLL+00] consists of an array of Reconfigurable Cells (RCs), loosely coupled to a

custom RISC processor, a memory to hold array configurations, a shared memory to exchange

data with the array and external memories with program code. The array can access the external

memory via DMA, and has direct access to the configuration and shared memories. The layout is

a 8x8 mesh, and each row or column is configured by the same 32-bit word. The array is divided

intro 4x4 quadrants which can exchange data. Data can be routed to all RCs within the same

quadrant. The RCs are homogeneous coarse-grained ALUs augmented with a multiplier, a shift

unit and 4 registers, and they operate on 8 or 16 bit values.

The processor controls array execution and configuration by issuing special control instruc-

tions added to its instruction set. Use of a custom compiler and modification to source code

are necessary. These instructions can command the array to execute a row/column or move data

between the processor, the array and shared memories. A DMA controller is also used by the

processor to load new configurations onto the array. Since each row/column performs the same

instruction for different input data, this implementation is an example of the SIMD paradigm.

Computations along a row/column may continue while another row/column is being reconfigured.

36
R

evision
ofR

elated
W

ork
Table 2.1: Characteristics of related approaches

Approach Base
Processor FU Arrangement Interconnection

Scheme
Supported
Operations

Memory
Access

Accelerated
Trace Methodology Speedup

Warp
[LV09]

MicroB-
laze

Fine grained
custom
reconfigurable
fabric with
bit-level logic

FPGA-like
switch-boxes
connect logic
blocks

Fixed-point
arithmetic and
logic

One port for
regular
patterns

Most
frequent
innermost
loops

Runtime trace
profiling, binary
disassembly and
circuit synthesis

3.20×
(geometric)

DIM
[BRGC08] MIPS

Matrix of
homogeneous
rows of
heterogeneous
FUs

FU outputs drive
inputs of FUs in
any row after their
own

Logic and
arithmetic (no
division or floating
point)

Concurrent
accesses to
random
addresses

Sequences of
basic blocks

Runtime binary
profiling and
generation of
accelerator
configurations

2.17×
(arithmetic)

ADEXOR
[NMIM12] MIPS

Rows of
heterogeneous
FUs in an
inverted pyramid
shape

Crossbars between
neighbour rows
Additional lines
connect distant
FUs

Logic and fixed
point arithmetic
(no division or
multiply)

One store
operation

Single-entry
multiple-exit
trace with
multi-path

Offline
profiling, binary
modification and
configuration
generation

1.87×
(arithmetic)

CCA
[CBC+05] ARM

Two types of FUs
compose
homogeneous
alternating rows

Crossbar
connections for
neighbour rows

Logic and integer
arithmetic
excluding multiply
and divide

Not supported

Sequences
forming
graphs with
4 inputs and
2 outputs
max.

Compile time
subgraph
detection;
Runtime
configuration
generation

2.21×
(arithmetic)

ASTRO
[LCDW15]

MicroB-
laze

Rows of
single-function
units

Dedicated
inter-row
connections

Integer arithmetic
and logic

Tailored cache
for multiple
parallel
accesses

Atomic
sequences of
basic blocks
(w/ hazard
analysis)

Offline trace
detection via
simulation; offline
synthesis
accelerators

7.06×
(geometric)

Ferreira et
al.

[FDP+14]

RISC/
VLIW

16 FUs w/local
register files Global crossbar

Integer arithmetic
and logic;
conditional
assignments

2 Memory
units Loop traces

Modulo-
scheduling of
binary traces

2.0×
(arithmetic)

2.2 Representative Approaches 37

2.2.8 Additional Related Works

This section briefly presents approaches regarding other aspects of binary acceleration and accel-

erator architectures, such as memory access optimizations, and especially loop scheduling.

Kim et al. [KLSP11] address the issue of handling memory accesses in mesh type accelerator

architectures. They present a scheduling algorithm and framework to map operations, temporally

and spatially, to a generic type of mesh, such that memory access conflicts are reduced and IIs are

minimized. A CDFG optimization algorithm is also used to reduce redundant memory accesses.

A technique for distributing data through several single-ported local memories allows for parallel

access to elements of the same data array without conflict. To determine the optimal distribution a

static code analysis step is required, which considers factors such as access rates and array sizes.

Inner loops are detected and mapped onto a heterogeneous CGRA at runtime via binary trans-

lation in [FDP+14]. Auxiliary hardware monitors the execution stream and the translation of loops

is performed by on-chip software. Either RISC or VLIW binaries can be translated into modulo

schedules for the CGRA, with support for RAW/WAR dependency detection. The CGRA has 16

FUs of three different types: load/store units, ALUs or multipliers. A crossbar connects the FUs

and each FU has its own register file. The CGRA is tightly coupled to the main processor and

fetches operands from its register file. For the five reported benchmarks, the mean speedup is 2×
versus a 4-issue VLIW. The proposed CGRA requires 13,000 LUTs and 23 BRAMs.

In [OEPM09], a heuristic is applied to improve solutions provided by edge-centric modulo

scheduling [PFM+08], in which speculative scheduling is required when CDFG nodes form a

closed circuit. To address this, closed circuits are clustered into a single node, eliminating back-

wards edges from the CDFG and therefore speculative scheduling. The approach is evaluated with

390 CDFGs, extracted from 12 applications, onto a CGRA with 16 FUs in a 4x4 arrangement.

Scheduling is up to 170× faster, relative to state-of-the-art approaches.

A loop accelerator whose runtime programmability is the result of a modulo-scheduling based

tool chain is presented in [FPKM08]. The accelerator template is a VLIW type architecture with

schedule-time specified FUs and connections. A baseline loop is first used to create the initial ar-

chitecture: a direct realization of that loop with no programmability. Architecture generalizations

are analyzed to increase the runtime flexibility of the accelerator. Additional loops are then sched-

uled using a constraint driven modulo scheduler. The issue is modelled as a Satisfiability Modulo

Theory problem and given to a solver. The approach is evaluated by creating base accelerators and

then scheduling randomized variations of the base loop or loops from other applications.

A method to support nested-loop pipelining is presented in [KLMP12]. Loops with up to one

inner loop are modulo-scheduled onto a 2D CGRA. In [CM14] the problem of modulo-scheduling

CDFGs onto 2D CGRAs is modeled as a graph minor problem, where a modulo routing resource

graph is used to minimize routing costs by route sharing. In [ATPD12], a slack-aware modulo

scheduler targets a highly heterogeneous CGRA. Kernels are partitioned according to CGRA

limitations in order to make it possible to modulo-schedule them. A valid schedule is found via

simulated annealing by starting from an optimal yet possibly invalid solution.

38 Revision of Related Work

2.3 Dynamic Partial Reconfiguration in FPGAs

The previous section introduced the notion of reconfigurable systems in the sense of reconfigurable

processing units being used as accelerators. In this scenario, reconfiguration generally occurs at a

coarse scale, and the target technology for implementation varies between ASICs and FPGAs.

In contrast to the designer-specified reconfiguration capabilities of some coarse-grain accel-

erators, typically implemented as controllable interconnects or configuration words, some FPGA

devices support Dynamic Partial Reconfiguration (DPR) [Xil12b]. The logic circuitry in an FPGA

depends on the contents of the underlying configuration memory which establishes fine-grained

component connections and contents of logic cells. In traditional flows, an entire bitstream file

is generated to write to the configuration memory. Instead, DPR allows for only specific regions

of the configuration memory to be modified during runtime. The logic circuitry of the equivalent

area can be altered without disturbing operation of the remaining circuit. This feature of FPGA

devices allows for the development of systems which rely on reconfiguration in a number of ways.

This feature has existed for some time (as early as Virtex-II Pro devices), but has seen slow

adoption, in part due to limited tool-support from vendors. This work focuses specifically on

Xilinx devices, and on the flow they provide to dynamically reconfigure the logic circuitry. They

contain an Internal Configuration Access Port (ICAP) which can be accessed via software to write

partial bitstream files to the FPGA’s configuration memory. Partial bitstream files can represent

minute modifications to the implemented logic, or an entire hardware module which occupies a

predefined region on the device [Xil12a].

The later type of approach defines one or more reconfigurable regions, where each region

serves as a host for a set of designer specified modules. Creating this kind of design is equivalent

to creating several static designs, which share a portion of their logic. A system may use several

reconfigurable regions to instantiate different hardware tasks according to system demands. Each

module is stored in a partial bitstream file, which is written to the device’s configuration memory

at runtime. Essentially, the same area of the device is used to implement several different functions

by time-multiplexing hardware resources.

2.3.1 Examples of Partial Reconfiguration Applications

Despite the underutilization of DPR, several works, focused on markedly different application

domains, have demonstrated the design potential of dynamically controlling circuit logic.

In [LPV10], a partial bitstream based FIR filter system is presented. Two reconfiguration

variants are presented. One alters only filter coefficients, another the entire filter datapath. An

output of 10 Mega-samples per second is achieved whilst reconfiguring the filter 70× per second.

In [ESSA00], dynamic reconfiguration is used to create a self-healing fault tolerant system. In

[GAA+07], faults are purposely introduced for self testing by modifying the circuit under test via

runtime reconfiguration. In [SRK11], partial bitstreams are used to implement some of the pro-

tocol layers of IPSec in a lightweight fashion. Three cryptographic functions are switched in and

2.4 Concluding Remarks 39

out of a slot based dynamic area (as per vendor flows), allowing for an implementation which al-

lows for significant area savings with performance comparable to full hardware implementations.

The authors state that an equivalent non-DPR design on the same target device would not meet

timing requirements. An implementation of a DVB-T2 coder/decoder is presented in [FISS12].

An FPGA with a reconfigurable area is used to host one of two developed modules in a time-

multiplexed fashion. One module performs demodulation of the received signal and the second

forward error correction. The FPGA communicates with an external central processor through

USB. In [LP13], a system which performs single pixel operations is presented. Partial reconfigu-

ration is used to instantiate more pixel processor cores, change the pixel operations performed to

alter other parameters of the cores to meet power and performance goals.

Finally, in [KTB+12] a summary regarding DPR based architectures, application specific re-

quirements and application examples is given. Tools geared towards DPR are also presented. In

[PDH11] the factors introduced by DPR that influence performance are surveyed and experiments

are conducted with a DPR based architecture to validate a cost model of DPR.

2.3.2 Design Considerations for Partial Reconfiguration Based Systems

The examples of applications briefly presented showcase the applicability of DPR based design.

Also, several academic tools [SAFW11, BKT12, SF12] have been developed to explore DPR

in ways not supported by vendor tools, which demonstrates the increasing interest in research

regarding this technological feature. However, some issues are introduced when relying on DPR.

Firstly, storage space is required for partial bitstreams. Some works have addressed this by

proposing more efficient bitstream compression/decompression methods [GC08, QMM11]. Sec-

ondly, reconfiguration times via ICAP are in the order of the millisecond, when relying on current

vendor flows. This is the most important aspect when considering the use of DPR to support the

reconfiguration capabilities of an accelerator. To reduce this overhead, some approaches have de-

veloped more efficient ICAP controllers. In [CZS+08], a controller with DMA access achieves

speedups from 20× to 50×, depending on the device, relative to Xilinx’s own controller. In

[VF12] the proposed hardware solution to drive the ICAP decreases the reconfiguration time by

an order of magnitude relative to existing vendor solutions. The work in [EBIH12] replaces the

vendor ICAP controller itself with an alternative which the authors claim to be 25× faster, while

also being capable of recovering from faults, and requiring half the device area to implement. In

[HGNB10], the throughput of Xilinx’s own ICAP controller is roughly doubled by modifying it so

it interfaces it directly to the MicroBlaze processor, via a point-to-point connection. Finally, some

approaches address this as a task scheduling problem, proposing configuration pre-fetching and/or

scheduling, which sometimes considers pre-emptive configuration switching [RSS08, LEP12].

2.4 Concluding Remarks

This chapter presented a brief overview of existing approaches which focus on augmenting a main

processor with an accelerator module. The proposed accelerators either function as processor

40 Revision of Related Work

pipeline units providing special instructions or as larger units, apart from the processor, serving

as loop accelerators. An accelerator design entails several aspects: the operations it supports,

the granularity of its computational units, their number, layout and interconnections, how the

execution is controlled, and what exactly is accelerated.

Most approaches presented rely on binary level-information and quantitatively designed ac-

celerators, which are targeted by a custom tool chain. Consequently, the accelerator contain

coarse-grain units (i.e., word-level operators), essentially behaving as an array of limited ALUs.

Reconfiguration entails controlling these units and the flow of data between them via the existing

interconnect structure. This connectivity is what varies more noticeably per approach, and is a

significant aspect in determining what the accelerator is capable of supporting.

For the existing implementations, the accelerator hardware is generated prior to determining

what will be accelerated. Adding reconfiguration capabilities in the form of multi-operation units

and rich interconnections is an attempt at increasing the successful mapping of target loops on to

the accelerator. However, this is not always successful, and the instantiated hardware may even be

excessive for the loops to accelerate, meaning the benefits of circuit specialization are lost.

This work addresses this problem by generating the accelerator hardware after the detection

of the application hot spots, thereby ensuring circuit customization, instantiating only the min-

imum required hardware to accelerate the target loops. Additionally, the capability for DPR is

unique to FPGA devices and is promisingly matched with the notion of runtime reconfigurable

heterogeneous systems. That is, systems capable of modifying the available hardware based on

the required workload and one or more target metrics. So, DPR is exploited to further ensure cir-

cuit customization, by simplifying the interconnection logic that the FPGA circuitry implements

at any one time, and also to provide higher resource savings. Finally, to make the approach easier

to adopt by developers, both the generation of accelerator hardware, its integration to the system,

and the migration of execution from software to hardware occur transparently, without need for

software modification or manual hardware design effort.

Chapter 3

Overview of Implementations and
General Tool Flow

As per the general approach explained in Chapter 1, the objective of this work is to generate and

integrate specific customized instances of accelerators into a host system as co-processor units.

Towards that end, several accelerator architectures and tools, as well as supporting hardware and

system level architectures, were devised. A general system level and tool flow view are shown in

this chapter, to provide a detailed overview of the approach and to establish the context for later

content. Each accelerator implementation an evaluation is presented in succeeding chapters. The

general approach relies on an automated step to identify frequently executing instruction traces,

representing the portions of computation the accelerators will execute. This work relies on a

specify type of loop trace called Megablock.

The following sections show a high-level view of the system level architectures used to eval-

uate the accelerator implementations. Also shown in Section 3.3 are the tools required to detect

frequent Megablocks, transform them into accelerator instances, create the necessary communi-

cation infrastructure between host processor and accelerator, and configure the runtime migration

mechanism. Section 3.5 concludes this chapter with a brief summary of the specific accelerator

architectures and experimental results presented in later chapters.

3.1 System Level Architecture

Figure 3.1 shows a generic view of the type of system level architectures into which the several

accelerator designs were integrated. These systems contain: the host processor, which for all

cases is a MicroBlaze soft-core processor; either a local or external memory to hold code and/or

data; the accelerator instance, connected to the host processor either via a Processor Local Bus

(PLB) connection (Chapter 4) or a point-to-point Fast Simplex Link (FSL) connection (Chapters 5

to 7); and an auxiliary module called injector (of which there are several variants), whose purpose

is to interface with the MicroBlaze’ instruction bus and migrate execution to the accelerator by

modifying the contents of the instruction bus.

41

42 Overview of Implementations and General Tool Flow

Figure 3.1: General overview of developed system architecture

The code memory is local, and holds automatically generated Communication Routines (CRs)

which implement the communication between the processor and the accelerator. If the data mem-

ory is local, the MicroBlaze uses the Local Memory Bus (LMB) interface to access it. Two LMB

multiplexer modules (shown in Chapter 5) are used so the BRAM’s two ports are shared between

it and the accelerator (not shown in Fig. 3.1). If the data memory is external, the MicroBlaze uses

a memory controller to which the accelerator also has access, via a dual-port cache (Appendix A).

The systems also contain custom counter/timer modules to retrieve execution statistics and

UART modules. The accelerator and injector modules control when the several timers and coun-

ters start/stop. An early implementation (presented in Chapter 4) also required an auxiliary Mi-

croBlaze for reconfiguration tasks, which were later implemented via the injector or CRs.

As the next section explains, the system architecture variants used follow the same execution

model. Architectural differences between them stem from the different capabilities of the accel-

erators under test (i.e., support for memory access and interfaces), or due to the need to test the

accelerators under different conditions (i.e., use of external data memory to support larger appli-

cations). The experimental sections of this thesis describe which system architecture was used to

validate the several accelerator design iterations.

3.2 General Execution Model

As was explained before, the present approach achieves transparent binary acceleration by relying

on four general steps. The detection of Megablocks and their translation is performed offline,

via custom tools. The transparent migration and acceleration take place at runtime. Figure 3.2a

summarizes the migration-enabled execution flow.

The MicroBlaze executes the unmodified binary, and the injector monitors its instruction ad-

dress. It intervenes when the address on the bus matches any one of the addresses it holds in an

internal memory. These are the start addresses of the translated Megablocks. The injector begins

the transparent migration step by replacing the fetched instruction with one or more instructions

which result in an unconditional branch to a known memory position. Each start address corre-

sponds to one such memory location. The right-hand side of Fig. 3.2b shows how the MicroBlaze

behaves due to the migration mechanism.

3.2 General Execution Model 43

(a) Migration of execution to accelerator via injector intervention

(b) Software only execution of loop kernel (left-hand side) and accelerator enabled execution (right-hand side)

Figure 3.2: Temporal diagram of migration and instruction level behaviour due to migration

The target location of this branch contains a CR which the MicroBlaze executes to commu-

nicate with the accelerator. Depending on the type of processor/accelerator interface, the exact

contents of the CR vary. By executing the CR the MicroBlaze sends specific input operands to

the accelerator from its register file. Depending on the system variant, the CR may also include

configuration values to write to the accelerator. For other variants this process is performed by

other system modules (the auxiliary MicroBlaze or the injector itself). The generation of CRs and

their integration into the application code is explained in Section 3.3.3.

After receiving all operands, the accelerator executes the translated loop, exploiting ILP and

loop pipelining. All instructions of a Megablock are implemented on the accelerator, including

one or more branch instructions, which terminate the execution of that particular loop path. These

conditions are evaluated using live input data, meaning the accelerator is capable of performing

an arbitrary number of iterations per call. However, it also means that the last iteration must be

executed through software. This allows for the software execution to follow the control flow which

triggered the end of the accelerator call.

In earlier implementations, the MicroBlaze polled accelerator status registers to determine

when to retrieve results. For later implementations, the MicroBlaze idles while the accelerator is

executing. Either the CR itself or a hardware feature implements a blocking wait. In either case,

the processor fetches results back into its register file by executing the remainder of the CR. The

last step of the routine is a branch back to the instruction address where the injector intervened.

Execution continues normally and the accelerator may be called again. If the injector is disabled,

execution can proceed fully through software, as the binary is not modified by the offline tools.

44 Overview of Implementations and General Tool Flow

Figure 3.3: Generic tool flow for the several accelerator and system level architectures. Grey area
denotes slight implementation dependent variations.

Utilizing the injector module to monitor and modify the instruction bus fulfils one of the ob-

jectives of the work: transparently migrating execution from processor to accelerator. No binary

or processor modifications are necessary to integrate the accelerator. Designing the injector re-

quired taking into account the characteristics of the instruction bus, both in terms of interface and

sequences of exchanged control and data. This in turn depends on how the MicroBlaze issues

requests onto its instruction bus based on its internal pipeline. Section 3.4 explains the injector

and provides a migration example. The following section explains both the process of configuring

the injector and generating an accelerator instance tailored for a target application.

3.3 General Tool Flow

The generation of custom accelerators is supported by an offline tool chain. Throughout the several

accelerator and system implementations, the supporting tool chain suffered some modifications but

can be summarized by the diagram in Fig. 3.3.

The non-shaded area represents third-party or vendor tools. These segments of the implemen-

tation flow are independent of accelerator or system level architectures. The shaded area represents

the bulk of the developed custom tools. Based on the specific accelerator architecture, the HDL

3.3 General Tool Flow 45

generation tool(s) differ. The generation of CRs is considerably more independent of that aspect,

being only a function of the used interfaces and other minor features.

3.3.1 Megablock Extraction

The flow begins with the application code. The frequent loop traces of the target application

are produced by generating a MicroBlaze executable and processing it through the Megablock

extractor [Bis15]. The extraction process outputs any loop path which obeys the detection criteria

that can be provided to the tool. These include: the maximum size of the loop pattern (i.e.,

number of instructions in one loop trace iteration); the minimum number of executed instructions

(i.e., size of pattern multiplied by number of iterations); unrolling of inner loops (which produces

large unrolled traces); and several minor optimizations such as constant propagation.

The loops detected by the extractor contain a single entry point, which is the first instruction

of the trace, and multiple exit points. These are the control instructions (i.e., data-dependent

branches) which cause execution to break away from the pattern and follow a different path (e.g.,

an if-else within a loop produces two possible loop paths).

Unconditional branches are removed by optimization, including subroutine return instructions.

This means the detected loop traces may cross function call boundaries. For example, a function

call could be encompassed within a for loop, and the detected trace could include the function

call (depending on the contents of the function itself). This is a striking contrast to, for instance,

HLS approaches which target the function body or even other binary approaches which target

basic blocks. In terms of applicability, it means the source code does not need to be made more

tool-friendly, as is required by some HLS approaches (e.g., by using pragmas).

The performance achieved by the accelerator are due to exploiting these detection features. But

performance is also a function of the detection limitations. For this particular tool, they include:

no indirect memory access analysis (i.e., no hazard detection/resolution for data dependencies

through memory); loop unrolling is always performed up to the outermost loop (e.g., cannot unroll

only up to a specified nesting level); since the loop trace extraction is performed by simulation,

it cannot be assured that coverage is fully representative (i.e., functions may remain uncalled, or

loop iteration counts may depend on data); the extractor is limited to the MicroBlaze instruction

set; and loop traces are detected for regions of code which are not candidates for acceleration.

Regarding this last point, examples would be the loop traces that occur within the printf func-

tion or any built-in routines for data-type casting. The former does not constitute any relevant

data processing, since execution time only due to the lengthy polling times of accessing a stdout

device. As for built-in routines (e.g., type casting, software emulation of division or floating-point,

etc) the respective loops are small, despite a large iteration count, and most of the instructions are

branches. That is, there are many of possible paths, where none is dominant or data-oriented.

For the work presented here, no limitation was imposed on the trace size. Supporting large

traces, however, does require an efficient accelerator design as the following chapters will show.

Loop unrolling was performed on a per-case basis, avoiding cases where the number of inner loop

iterations resulted in a cumbersomely large unrolled trace. Constant propagation was also enabled.

46 Overview of Implementations and General Tool Flow

Figure 3.4: Example of extracted loop trace and resulting CDFG

The extractor produces a CDFG for any Megablock trace which repeats more than twice. This

results in numerous traces per application, many of which are not very representative in terms

of execution time. An automated selection step could filter out Megablocks which correspond to

small portions of the execution. However, since uninteresting portions (e.g., printf) which are also

extracted may represent large amounts of execution time, there is no way to disambiguate these

cases. Thus, selection of CDFGs to process further is currently done manually by inspection of

the ELF file and the Megablocks. The criteria used for selection include: the size of the trace, the

number of iterations performed and, based on the capabilities of the accelerator and system, the

type of instructions in the trace (e.g., floating-point or memory access instructions).

An additional criterion is the number of exit points of the trace. Traces with fewer exit points

are generally better candidates for acceleration, since this makes it more likely that more iterations

will be performed uninterruptedly. For instance, consider a C level loop construct containing

a number of if-else clauses. This will result in multiple loop paths being extracted, each with

a multitude of exit-points. As additional loop paths need to be followed, it may become more

unlikely that any single loop path will iterate a large number of times.

This is related to a final limitation of this migration approach: if several loop paths start at

the same address, only one can be accelerated. It is impossible to disambiguate which loop path

should be accelerated relying only on the start address. In these cases, the most frequent path

is chosen: when a start address is detected, the accelerator is called to execute that (presumed)

loop path; once an exit is triggered, execution returns to software and one iteration is performed

through another path; the accelerator is then called again. This is tolerable when one loop path is

much more frequent than the remaining path(s). However, all loop paths may be equally frequent.

The issue is exacerbated when two frequent paths execute alternately: every time the accelerator

is called it performs no useful work, as at least more than 1 iteration must be executed.

These issues stem from a Megablock detection limitation: loop paths are not combined into

multi-path traces. It would not be inconceivable to transform such multiple path representations

into parallel conditional execution. As is, the present work targets large, frequent single path traces

3.3 General Tool Flow 47

which, as later work will show, may contain any instruction of the MicroBlaze instruction set.

Regarding specific file outputs, the Megablock extractor produces text representations of the

CDFGs constructed from the Megablock traces. The information in these files includes which

registers are inputs and/or outputs to the trace, what CDFG node feeds them, connections between

nodes and topological information. The CDFGs represent a single trace iteration, and are therefore

acyclical. Inter-iteration data dependencies (i.e., backwards edges between CDFG nodes) are

determined by the translation tools.

3.3.2 Generation of the accelerator HDL Description

The accelerator architectures employed in the present approach are essentially heavily parametriz-

able templates. They are co-processors which allow for the specification of the number and type

of computational resources (i.e., FUs), and the interconnections between them, among other minor

aspects. The purpose of the developed tools is to generate a small number of Verilog include files

containing parameters which are read during synthesis. This creates a specific instance which is

capable of executing the desired CDFGs.

The HDL generation tools underwent continuous development according to the accelerator

architectures. As such, the tool features and generated outputs varied in a manner difficult to

summarize into a generic representation. The functionality of these tools can be summarized as:

allocation of FUs, creation of interconnect structure, generation of configuration information for

runtime use. As the following chapters show, the designed accelerator architectures include: a

multi-row FU array with data directionality; a second implementation of this design with memory

access capability; and a single-row accelerator, with units controlled per-cycle in order to execute

pipelined loop iterations. Each architecture is supported by its own version of the translation tools.

The translation/scheduling process accepts multiple CDFGs. Each graph is processed indi-

vidually. The generated accelerator is stored in a data structure and re-utilized while translat-

ing/scheduling the next CDFG. The final result is an accelerator instance able to execute multiple

CDFGs. For each graph, a number of pre-processing steps are first performed. These include:

determining backward edges, establishing control dependencies, establishing the topological de-

pendencies between nodes, and their slack. Control dependencies ensure that all branch operations

in an iteration must execute before: 1) a new iteration is initiated, and 2) any store operation be-

longing to the same iteration is performed (to avoid writing erroneous data to memory).

After pre-processing a CDFG, its nodes are translated into FU placements and interconnec-

tions. Each CDFG node is processed individually. The translation attempts to find an existing

FU in the current accelerator structure (if any), to re-utilize for the execution of that node. For

the multi-row architectures, this entails searching through the accelerator’s rows of FUs within the

node’s permitted slack. For the single-row architecture, the process involves a modulo schedul-

ing step explained in Chapter 6. If an available FU cannot be found, a new one is instantiated.

According to the node’s required inputs, the connectivity is updated. This involves specifying a

multiplexer per FU input. For the multi-row designs, the edges between nodes are transformed

into wiring between FUs which remains static throughout the execution of the respective CDFG.

48 Overview of Implementations and General Tool Flow

Listing 3.1: Excerpt from HDL generation tool
output for the accelerator architecture presented
in Chapter 5

// Verilog accelerator parameters:
parameter NUM_CFGS = 32’d1;
parameter NUM_IREGS = 32’d4;
parameter NUM_OREGS = 32’d5;
parameter NUM_COLS = 32’d5;
parameter NUM_ROWS = 32’d4;
parameter NUM_STS = 32’d0;
parameter NUM_LDS = 32’d2;

// FUS
parameter TOTAL_FUS = 32’d17;
parameter TOTAL_EXITS = 32’d1;

parameter [0 : (32*NUM_ROWS*NUM_COLS) - 1]
FU_ARRAY = {

// top row
‘A_ADD, ‘A_ADD, ‘A_ADD, ‘NULL, ‘NULL,
‘M_LD, ‘M_LD, ‘L_XOR, ‘PASS, ‘NULL,
‘A_MUL, ‘B_EQU, ‘PASS, ‘PASS, ‘PASS,
‘A_ADD, ‘PASS, ‘PASS, ‘PASS, ‘PASS
// bottom row

};

parameter [0 : (32 * NUM_CFGS) - 1]
NR_INPUTS = {

32’d4
};

parameter [0 : (32 * NUM_CFGS) - 1]
NR_OUTPUTS = {

32’d5
};

Figure 3.5: Example instantiation of Func-
tional Unit array for the parameters in List-
ing 3.1

For the single row design, establishing the connections between FU requires per-cycle temporal

awareness. In either case, the FU allocation process tracks the existing connectivity, attempting to

place nodes onto existing FUs such that the final connectivity is reduced.

Listing 3.1 shows an excerpt of the translation tool’s Verilog output for the multi-row accelera-

tor architecture presented in Chapter 5. This file specifies some top level aspects of the accelerator

instance as well as the array of FUs. The connectivity specification is to verbose too present here.

Instead, a graphical representation of the resources and interconnections, output by the translation

tool, is shown in Fig. 3.5. For this architecture, each supported CDFG corresponds to interconnect

configuration. If several graphs had been used for this example, each would implement its own

connectivity by setting the generated multiplexers appropriately prior to execution. What is shown

in Fig. 3.5 is essentially a CDFG directly translated into hardware modules, with the required con-

nectivity to implement data flow. Inter-iteration data flow is implemented by having the first row

of FUs read the output registers at the start of every new iteration.

The translation tools for the multi-row architectures (Chapter 4, Chapter 5, and Appendix A)

are written mostly in C, along with supporting bash scripts. The modulo scheduler for the single-

row accelerator architecture (Chapter 6) is currently implemented in MATLAB. Its latest imple-

mentation targets the DPR oriented variant of the single-row accelerator design (Chapter 7).

3.3 General Tool Flow 49

Figure 3.6: Example of tool-generated FSL Communication Routine

3.3.3 Generation of Communication Routine

An additional tool generates the Communication Routines (CRs) which implement the commu-

nication between accelerator and MicroBlaze. One of the objectives of this work was to achieve

a migration process transparent to both the hardware infrastructure (i.e., no processor modifica-

tions) and to the application programmer (i.e., no source code modification). To do this, the CRs

are generated directly in MicroBlaze assembly and, via a second compilation step, added to the ap-

plication. In order to generate a CR, the tool is provided with: a list of register file registers which

are CDFG inputs, a list of registers which are outputs, and the start address of the Megablock trace.

Depending on the target accelerator, the tool outputs a sequence of MicroBlaze instructions

which either read/write to the accelerator’s bus address, or send operands and read results via a

FSL. Figure 3.6 shows an example FSL-based CR. Single cycle put instructions send operands

in a known sequence. Since the get instruction is blocking, the MicroBlaze idles waiting for the

accelerator to output a single result, indicating completion status. The number of iterations to

perform on the accelerator is variable per call, so it may happen that only 1 (or zero) iteration(s)

is performed, depending on the inputs fed to the accelerator. In these cases the contents of the

scratch-pad register, used to check completion status, are recovered (in this case r5) and software

execution resumes. For bus-based communication, the CRs implement a polling wait.

Results are retrieved one at a time at the end of execution (if more than one iteration is com-

pleted). If the implemented loop trace contains operations which alter the carry bit, then the CR

either clears or sets it. If multiple output registers are driven by the same CDFG node, then a minor

optimization is performed: instead of requiring additional output registers on the accelerator, the

50 Overview of Implementations and General Tool Flow

CR performs value assignments between the MicroBlaze registers. It also assigns constant values

to output registers if required. Execution then branches back to the Megablock start address.

The CR generation tool is also capable of generating code to invalidate a predefined region

of the MicroBlaze’s data cache after accelerator execution (for scenarios where data resides in

external memory). This invalidation is only performed when the executed Megablock performs

store operations, as there is no loss of coherency otherwise. Early designs required configurations

(e.g., interconnection settings) to be sent to the accelerator by an external mechanism. For these

cases the CRs also contained instructions to write a sequence of 32-bit values to the accelerator.

In order to be transparently added to the application, these generated instruction sequences are

output as data contained within C arrays. By setting a section attribute and using a custom linker

script, the CR can be placed at the expected location in the binary:

Listing 3.2: FSL-based CR in C container

1 uint32 CR_0[18]
2 __attribute__ ((section (".CR_seg")))

= {
3 0x6c04c000, // Sending operands
4 0x6c08c000,
5 0x6c0ac000,
6 0x6c09c000,
7 0x6c07c000,
8 0x6c03c000,
9 0x6c600000, // Reading status

10 0xbc03000c,
11 0x6c600000,
12 0xb6401180,
13 0x20000000,
14 0x6c600000, // Retrieving results
15 0x6c800000,
16 0x6ca00000,
17 0x6cc00000,
18 0x6e400000,
19 0xb6401180, // Return
20 0x20000000
21 };

Listing 3.3: Linker Script excerpt to place

Communication Routines at known position

1
2
3 // Define Memories in the system
4 MEMORY
5 {
6 bram : ORIGIN = 0x00000050, LENGTH = 0

x0001FCAF
7 seg1 : ORIGIN = 0x0001F9FF, LENGTH = 0

x00000600
8 }
9

10
11
12 (...)
13
14
15
16 .CR_seg : {
17 KEEP (*(.CR_seg))
18 } > seg1

Listing 3.2 shows a smaller CR in a C array which, if the linker script definition in Listing 3.3

is used, will be placed at address 1FA00. A custom linker script is required for two reasons: the

injector must know the location of the CRs in memory, and the re-compilation stage must not

change the location (i.e., addresses) of the trace loops, used registers, or locations of static data. A

re-compilation stage is not strictly necessary, as the premise of this approach is that source code

should not be modified and/or is not accessible. The re-compilation is employed by the tool chain

for convenience, as this step could be replaced with only a linking step, or with the use of the

mb-objcpy tool, in order to append the CRs to the end of the ELF file.

An alternative to solve the first issue would be to inspect the ELF after the re-compilation

stage and determine the location at which the linker placed the CRs, and generate the injector

address table accordingly. However, this would not ensure that the remainder of the ELF would

remain unchanged. This is why the CRs are placed near the end of the available memory. An

alternative to this approach would be to integrate the entire trace detection and CR generation

into the compilation flow, but this is complex and against the proposed methodology of this work.

3.4 The Injector Module 51

(a) PLB version of injector module (b) LMB version of injector module

Figure 3.7: Architectural variants of the injector module

This is especially true given that a future fully-runtime design is envisioned (including runtime

detection and translation), so it is not a viable option to interfere with the compilation tools.

This tool also produces information for the system elements under auxiliary hardware (most

frequently this is only the injector). For the injector, a small Verilog include file is produced with

the start address of each Megablock trace, and the location of each respective CR. For one system

implementation (shown in Chapter 4), the injector was also responsible for sending configuration

information to the accelerator. For this purpose, this tool also produced a read-only memory with

this content. For an early implementation (also shown in Chapter 4), the configuration information

was contained within the secondary MicroBlaze; a C file was generated for the application running

on this processor. The following section discusses the injector in more detail, to provide a better

understating of its design and the functioning of the migration mechanism.

3.4 The Injector Module

The variants of the injector module, shown in Section 3.4, serve the same primary purpose: to

monitor the execution of the MicroBlaze processor and modify the contents of the instruction

bus. By doing this, the injector controls, in a limited fashion, the execution of the MicroBlaze.

Doing so allows for migrating the execution to the accelerator, when a start address of a translated

Megablock is detected. Fig. 3.7a shows the PLB version of the injector, and Fig. 3.7b the LMB

version. This last version has two variants: one which includes accelerator configuration data in

an internal memory, and another which does not.

The injector operates in the following way: 1) monitoring for an address table match; 2)

when a match is found, it replaces the fetched instruction with an unconditional jump to the same

address; 3) when the same matches address is seen again, inject into the bus one (in some cases

two) instruction(s) which result(s) in an unconditional jump to the respective CR address; 4) idle

during accelerator execution; 5) ignore the next occurrence of the matched address, as it will be

due to the software execution of last Megablock iteration; 6) return to the monitoring state.

Steps 2 and 3 are verification steps due to the behaviour of the instruction address bus im-

posed by the MicroBlaze. The MicroBlaze instances used contain a 5-stage pipeline. As such,

52 Overview of Implementations and General Tool Flow

the fetch request is issued before the instruction is actually executed. This effect, combined with

aspects such as the delay of branch instructions and instructions with delay slots means the Mi-

croBlaze will frequently fetch an instruction it will soon after discard. For example, consider a

backwards branch located at address X and that a Megablock trace starts at address X +8 (instruc-

tion addresses advance by 4 bytes per instruction). Due to the fetch behaviour of the MicroBlaze,

the Megablock start address would appear, regardless of whether the backwards branch is taken

or not. However, execution should only be migrated if the branch is not to be taken, i.e., if the

Megablock trace execution is to proceed.

Injecting a branch to the same address as a verification step works by exploiting this behaviour:

when the instruction at the Megablock start address is fetched but not executed, it is effectively ig-

nored. Likewise, the branch to the same address which replaces it will be ignored if the Megablock

is not to be executed, or taken if the Megablock is to be executed. In the later case, the Megablock

start address will be observed twice. This allows for the injector to discard false positives.

In order to implement this, the injector must identify every branch instruction in the MicroB-

laze instruction set, including determining whether or not the instruction has a delay slot, as this

increases the window of uncertainty during verification. This verification step introduces a small

amount of overhead (typically 3 to 4 clock cycles), which is negligible in nearly all cases. This

also means that adapting this migration approach to another processor would require adapting the

injector to the behaviour of the new instruction set. Also, as mentioned previously, it is impossible

to disambiguate multiple trace loops starting at the same address. Finally, the injector does not

support a MicroBlaze with an instruction cache. Since the cache is internal to the processor, the

interface between them cannot be probed. This means the processor would directly fetch trace

instructions from the cache and the migration mechanism, in its present state, would not function.

The injector has been thoroughly validated and is a very low overhead modification, both in

terms of time and resources, which allows for transparent migration without modification of the

application binary either offline or at runtime. Preserving the unmodified binary would allow for a

single accelerator to be used in a time-multiplexed manner by two processors. While one processor

utilizes the accelerator, the second would continue execution by falling back to software.

For purposes of measuring the executing time, the injector activates one of the existing coun-

ters after introducing the branch into the instruction bus, and disables it when returning to the

monitoring state. When the injection of instructions is disabled, the same counter is used during

execution of the trace iterations. In this way it is possible to compare accelerated and software-

only execution.

3.5 Summary of Accelerator Implementations

This section presents a short summary the following chapters, briefly describing the accelerator

architectures implemented, their features, the experimental evaluation and results. Table 3.1 con-

tains a comparison of these implementations.

3.5 Summary of Accelerator Implementations 53

Table 3.1: Brief comparison of implemented accelerator architectures and results

Accelerator Architecture Description Benchmarks Speedup Chap.

Automatically generated,
multi-configuration,
multiple-row accelerator;
Rows with forward data
directionality, composed of
single-function integer units;
Per-configuration inter-row
connectivity, implementing
the equivalent of a CDFG
structure

Non-pipelined
execution of iterations
with exploitation of
intra-iteration ILP

15 integer 1.68× 4

Augmentation of
previous architecture
with memory access
support; Two parallel
accesses supported to
arbitrary addresses

37 integer 1.60× 5

Automatically generated,
multi-configuration,
single-row accelerator; Single
row of FUs with custom
register pool, FU input
connectivity, and
configuration memory;

Full floating-point
support; sequence of
per-cycle configuration
words exploit ILP and
loop-pipelining.

13
floating-point
and 11 integer

5.60× 6

Same accelerator
architecture, partitioned
for DPR for resource
savings

9
floating-point
and 11 integer

N/A 7

Automatically generated,
multi-configuration,
multiple-row accelerator;
Rows of with forward and
backwards data directionally;

Connections between
non-adjacent rows;
Loop pipelining via
dynamic inter-row
dependency resolution

12 integer 1.91× A

In Chapter 4 an initial accelerator design is presented, along with the supporting translation

tools. This design takes full advantage of the ILP found in the CDFGs, but does not support

pipelined execution nor memory accesses. The design is essentially a template grid onto which the

translation tools instantiate any number and type of FUs, to implement the operation parallelism.

Three different system-level architectures with different interfaces were used. The implementa-

tion platform was a Digilent Atlys board containing a Spartan-6 FPGA. A total of 15 synthetic

benchmarks are used mainly to validate the transparent migration process and tools. A geometric

mean speedup of 1.69× over software-only execution was achieved for the best case scenario.

Performance measurements were taken from the implemented hardware running on-chip.

In Chapter 5 the accelerator is augmented to support acceleration of traces containing memory

access operations, and also to support multi-cycle FUs. Data parallelism is exploited by supporting

up to two concurrent accesses. The entire data memory of the MicroBlaze is shared with the

accelerator via a latency- and overhead-free mechanism. That is, the accelerator does not contain

its own data memories, instead directly accessing the only data memory present. This avoids

additional overhead due to lengthy data transfer and/or synchronization steps. Furthermore, the

54 Overview of Implementations and General Tool Flow

translation process is enhanced to with a list scheduling algorithm which aims to increase the

FUs re-utilization across configurations. Along with this, heuristics for the placement and access

scheduling of memory operations is applied to reduce the total latency introduced due to memory

access. For a total of 37 benchmarks, the geometric mean speedup is of 2.35×. Also, the average

power consumption of the entire system decreases by 2.10 % for a measured subset of 7 cases.

In Chapter 6 the latest accelerator design is presented. Unlike previous designs, it relies on a

single-row topology to increase utilization of instantiated FUs, and decrease overall resource re-

quirements. The accelerator instances are generated via a modulo scheduling step [Rau94], which

is capable of efficient loop pipelining by being aware of the memory access restrictions of the sys-

tem. The second difference is the support for all single-precision floating-point operations. This

implementation is much more efficient in terms of the resource/performance trade-off, relative to

the previous. For 24 benchmarks the tool chain can generate accelerator instances which achieve

a geometric mean speedup of 5.61×, requiring an average of 960 slices on a Virtex-7.

In Chapter 7 presents the realization of the proposed DPR reconfiguration mechanism for the

accelerator. Instead of instantiating the accelerator’s reconfiguration capabilities as multiplexing

logic, the accelerator is partially reconfigured as needed to switch between supported configura-

tions. The accelerator is partitioned into a static region and reconfigurable region, which contains

FUs, interconnections and configuration words. In the evaluation performed, each Megablock is

used to generate a variant for this reconfigurable region. For accelerators with larger numbers of

configurations the resource savings due to DPR are very significant. Most noticeably, the acceler-

ator requires 2.76× less LUTs than a non-DPR equivalent instance.

Appendix A details a variant of the multi-row accelerator design shown in Chapter 5, aug-

mented to enable pipelined execution. For each supported graph, the accelerator instance contains

logic determining all data dependencies all rows of FUs have relative to each other. No tool-level

generation of control logic is required, only a bit-encoded parameter specifying from which row

each row receives data from. During execution, a row of FU activates once all of its inputs hold

valid data. This way, rows activate as quickly as possible in function of how FU are connected.

Implementing the row activation logic in this fashion makes it easier to deal with variable memory

access latencies in he scenario adopted for this implementation: shared external memory holding

data, and a dual-port cache for the accelerator. Also, an improved node and load/store scheduling

method is used to increase resource re-utilization and decrease memory access contention. For 12

benchmarks, this design achieves a mean geometric speed up of 1.91×.

Chapter 4

Customized Multi-Row Accelerators

This chapter presents the first accelerator design. The main concern when developing this first

iteration was mostly regarding the integration of the accelerator itself with the remaining system.

The capabilities of the accelerator were designed according to what was minimally required to

successfully accelerate the Megablocks. Structurally, it was based on a relatively straightforward

translation of CDFGs into a hardware structure so as to simplify the translation tools.

Rows of FUs are organized according to the topological levels of the CDFGs, and data flows

with downward directionality. Along with simplifying the tools, this type of resource layout was

also deemed appropriate for a future pipeline-capable version which would adequately use all in-

stantiated resources. The architecture lacks major features such as memory access but nevertheless

constitutes for a proof-of-concept of the migration system and is functionally correct in terms of

the data results it produces when accelerating Megablocks.

Alongside the accelerator design, the first versions of the two supporting tools possessed the

capability of: generating an accelerator specification which could execute multiple loops, re-

utilizing resources if possible; generating the CRs for transparent communication with between

the accelerator and GPP, which includes operand/result transfer and accelerator reconfiguration.

This chapter contains a description of the accelerator architecture in Section 4.1 and an ex-

planation of the supporting tools in Section 4.2. The experimental setup and results are explained

in Section 4.3 for three system level architectures employing different interfaces and accelerator

reconfiguration methods. Section 4.4 closes this chapter with remarks explaining the limitations

of this initial design and the rationale that led to more sophisticated subsequent designs.

4.1 Accelerator Architecture

Like all accelerator architectures presented throughout this work, this first architecture relies on

synthesis-time parameters, generated by the developed translation tools, which customize an ar-

chitecture template. This customization varies the number, layout and type of FUs and their and

interconnections. Aspects such as interfaces and control are equal for all instantiations, whilst the

55

56 Customized Multi-Row Accelerators

Figure 4.1: Synthetic example of 2D accelerator instance

array of FUs is tailored for a set of Megablock CDFGs. At runtime, the migration and accelera-

tor reconfiguration mechanism utilize the accelerator to execute the target CDFGs. This section

presents the architecture template and overall execution model.

4.1.1 Structure

Figure 4.1 shows a synthetic example of the first accelerator architecture, with interface details

omitted. This design is essentially composed of rows of FUs of several types, which propagate

data downwards via full crossbar interconnects. Each row may contain any number and type of

unit. The depth, i.e., number of rows, of the array is also unbounded. Both aspects vary with the

CDFGs used to generate the accelerator instance. Data is exchanged only between neighbouring

rows. To transport data between distant rows, passthrough units are used. All FUs register their

outputs, meaning data are propagated row-to-row synchronously, as a group. Data feedback, in

order to provide operands to the following iterations, is only performed at the last row of the

array. All accumulated data is aggregated, routed backwards and together with the input registers

constitutes the data available at the start of an iteration.

Typically, the array contains more passthroughs in the bottom rows, taking on a triangular

shape. This is due to redirecting all of the produced data back into the first row for the following

4.1 Accelerator Architecture 57

iteration. The number of passthroughs typically increases with each row as data accumulates.

The FUs are single-operation and single-cycle. Each type of FUs corresponds to one CDFG

node type (e.g., a single MicroBlaze instructions). This accelerator implementation relied on a set

of FUs implementing all 32-bit integer arithmetic (save for division) and comparison operations.

The supported arithmetic include any operations involving carry, as it is also possible to feed

and to retrieve the value of the GPP’s carry bit into the accelerator. Also supported are pattern

comparison and exit (i.e., branch) operations. This last class of FUs implements the equivalent of

the branch instructions on the Megablocks, and are used to signal end of execution. Unsupported

operations in this first design include all floating-point arithmetic and memory accesses.

The accelerator template supports FUs with any number of inputs or outputs (e.g., the 3-

input adder with carry). Each input is fed by a multiplexer (part of the crossbars in Fig. 4.1)

which fetches all outputs of the preceding row. A possible multiplexer configuration is shown

for Crossbar 2 and Crossbar 3. Some trace instructions receive constant input operands, and

the Megablock extraction tools also perform constant propagation. As a result some FU input

multiplexers are removed (e.g., the bra FU in Fig. 4.1). The multiplexers within the array are

runtime controllable via writeable configuration registers. The configuration values per supported

CDFG to write to the registers on a are also computed by the offline translation tools.

The register file values received from the MicroBlaze when the accelerator is invoked are

represented at the top as input registers, which remain read-only throughout execution. Likewise,

the values to be fed back are stored in a final set of output registers. The number of output registers

values that are fed back is equal to 2M: one set produced in the current iteration, and another in

the previous. Values in the output register set can also be re-assigned amongst themselves. This

emulates the behaviour of re-assigning values between registers on the GPP’s register file.

The Iteration control module is responsible for controlling the input multiplexer. After the

first iteration, the respective enable bit is set so that new values can be fetched from the feedback

wires according to the input switching register, instead of the input registers. By counting clock

cycles the control module determines when an iteration is completed and controls the write-enable

of the output registers. Finally, it sets status bits when execution is over.

4.1.2 Interface

Two types of accelerator interfaces are explored. Figure 4.2 shows the interface for the version

based on a Processor Local Bus (PLB). The Fast Simplex Link (FSL) version contains the same

internal registers, but the interface is a low overhead point-to-point connection. Two types of

interfaces allow for observing the impact of communication overhead on performance.

The interface-level registers of the accelerator include an instance-dependent number of input,

routing and output registers (N, M and L). The input and output registers contain data inputs/out-

puts and the routing registers control the inter-row connectivity. The input multiplexer and output

multiplexer are each controlled by a separate register. The masks register controls which exit FUs

58 Customized Multi-Row Accelerators

Figure 4.2: PLB type interface for the accelerator

in the array are enabled (for reasons explained below) and the status register indicates if the accel-

erator is busy and how execution terminated. The start register is used to begin execution and the

two context registers are used as scratch-pad memory by the MicroBlaze while it executes the CR.

The number of input and output registers depends on the Megablock traces. Given a set of

CDFGs used to generate an accelerator, N and L will be equal to the maximum number of inputs

and outputs throughout all graphs, respectively. The number of routing registers depends on the

array itself. Each row requires a different amount of routing bits in function of the number of

outputs of the previous row. Per row, each output is given a numeric identifier. Each FU input

multiplexer of the following row uses a binary number to select any of those values. For simplicity

of implementation, the bit-width for all binary coded decimals is the same for all multiplexers, and

is determined by the maximum number of outputs throughout all rows. In the case of Fig. 4.1, this

would be the first row, with 5 outputs, which leads to 3 bits. Thus to drive all 12 FU inputs a total

of 34 bits are needed, i.e., two 32-bit registers. Additional bits are needed for the last multiplexers

which needs to drive M registers. In other words, the overhead of invoking the accelerator scales

with its width and depth, due to the configuration values that need to be written to it. The generate

constructs the accelerator relies on connect the specific bits of the registers to the multiplexers, so

a single register may hold configurations relative to several rows.

For simplicity, the input and output multiplexers are each controlled by a single 32-bit register

for every instance. This imposes a limitation on the joint number of inputs and outputs. For

instance, consider that M = 1 (as per Fig. 4.1). For the input multiplexer, the number of possible

choices, per output it drives, is 3: the current M = 1 output result, plus the same output from the

previous iteration, previous 4, plus one starting value originating from the N input registers. This

selection range requires 2 bits which means the total number of inputs supported is N = 16.

The start register is written while executing the CR, after operands are sent. For the FSL

interface version, this is replaced with a signal sent by the injector, which is capable of determining

when the MicroBlaze has sent all operands by detecting an FSL get instruction on the bus, i.e.,

the MicroBlaze stalls waiting for accelerator results. The status register indicates if more than one

iteration was performed on the accelerator. If this is not the case, then the context registers are

used to recover values into MicroBlaze registers which were used during CR execution.

4.2 Architecture Specific Tool Flow 59

4.1.3 Execution Model

Execution on the accelerator begins after all configuration information and inputs have been re-

ceived. Inputs are sent by the MicroBlaze and configuration values via different mechanisms,

depending on the accelerator interface (this is further explained in Section 4.3). A configuration

sets all the multiplexer selections, which are constant throughout execution. That is, each loop that

the accelerator is capable of executing corresponds to one global multiplexer context.

After execution begins there is very little control beyond counting the number of clock cycles

required to complete an iteration, and writing output values to the output registers at that point.

One iteration is complete after a number of clock cycles equal to the depth of the array. A single

row of FU activates per cycle, that is, execution is not pipelined in this initial design. During the

first iteration, the multiplexer receives N inputs from the input registers. After this, the input multi-

plexer instead fetches some of these values from the feedback lines. The remaining values remain

constant throughout all iterations, and are always fetched from the read-only input registers.

The array can execute an arbitrary number of iterations. If the number of iterations is deter-

mined by a constant in the Megablock trace, this propagates into the accelerator as a constant value

operator. In order to terminate execution, the accelerator always has at least one exit condition.

The control module receives single bit outputs from all exit FUs and when any is true, execution

ends. As the previous chapter explained, Megablock execution on the accelerator is atomic: an

iteration either fully executes or is discarded. Support for non-atomic iterations would require

discriminating which exit condition triggered, recovering the correct set of outputs and returning

to a particular software address in the middle of the accelerated trace.

For an accelerator which supports multiple CDFGs, data is still propagated through FUs which

may not be in use for a particular configuration. For data FUs this is not an issue since these results

are simply not routed to the following rows or registered at the outputs. But the configuration

must ensure that only the exit FUs relevant to a particular configuration are active. This is done

by the 32-bit mask register, which disables or enables each such FU. This limits the number of

exits allowed on the accelerator to 32. However, no observed combination of Megablocks in the

utilized benchmarks exceeded this value.

Once execution completes, the results are read from the output registers by the CR and the

control module resets the inter-row registers. The accelerator can then be invoked again. If the loop

to accelerate is the same as the last one, the configuration process is skipped to reduce overhead.

4.2 Architecture Specific Tool Flow

Figure 4.3 shows the tool flow for generation of the custom accelerators, support architecture and

CRs. As the previous chapter introduced, the accelerator generation flow is supported by CDFGs

which are produced by the Megablock extractor tool. The tools presented here receive as inputs

the Megablocks that are manually selected as acceleration candidates. The outputs of the tools are

given to vendor synthesis tools and compilers.

60 Customized Multi-Row Accelerators

Figure 4.3: Architecture-specific flow for 2D accelerator design and supporting hardware

This version of the translation step processes each CDFG file individually, and produces a

binary file with the accelerator specification. For each subsequent CDFG to translate, this file

is read and the existing structure is updated. The final run outputs: a Verilog include file with

parameters for the accelerator HDL template, and the routing register values per-configuration.

The overall execution flow of this tool is as follows. The CDFG file is parsed and according

to the depth and maximum width (i.e., ILP) a number of data structures are pre-allocated. The

CDFG nodes are then translated into FUs by assigning them positions on a two dimensional grid.

Since unlimited connectivity is assumed, placement is unrestricted. In this implementation nodes

are placed in the earliest possible row, and rows are filled from left to right.

Each node results in one FU, as in this architecture re-utilization of FUs only applies across

different configurations, i.e., CDFGs. In other words, re-utilization of FUs across configurations

is possible if two nodes of the same type in two different CDFGs occur in the same topological

level. A single type of FU may support different types of CDFG operations. The most common is

the implementation of the MicroBlaze add and addi (addition with an immediate constant value)

via the same FU, since the distinction only exists at the level of the MicroBlaze ISA.

After the placement of CDFG nodes, the auxiliary passthrough FUs are placed; if a connection

is required between FUs on non-adjacent rows, then passthroughs are added to all in-between

rows. The tool performs passthrough re-utilization at this point; for instance, if two FU require

the same output from a FU several rows above, only one chain of passthroughs is introduced.

This process is implemented by checking the array from bottom to top: as passthroughs are added

to row N they are themselves checked for the need of another passthrough when row N − 1 is

processed. Due to the nature of the CDFGs, passes tend to be created in an inverted pyramid

shape. This leads to a frequent re-utilization of passthrough between configurations.

At this point, the position for every CDFG node is known, as well as their connections and the

bit-widths of each row’s crossbar, by analysis of the number of inputs and outputs of neighbouring

rows. With this, the number of required 32 bit configuration registers are calculated so that enough

bits are available to control all multiplexers.

The output Verilog file produced specifies only the coordinates of each FU to instantiate and

interface level aspects such as the number of input, output and routing registers. The generate

4.2 Architecture Specific Tool Flow 61

based Verilog template instantiates as many FU input multiplexers as required, fetching the appro-

priate control bits from the routing registers. An auxiliary file is also produced and given to the

CR generation tool. The number of accelerator interface registers needs to be known in order to

compute each register’s address for the PLB CR.

Listing 4.1: Reconfiguration information

placed in C containers

1 #include "graphroutes.h"
2
3 // Routing registers for megablock 0
4 int graph0routeregs[NUMROUTEREGS +

NUMFEEDBACKREGS]
5 = { 0x1110040, 0x58c24c8, 0x8d1,

0xa5};
6
7 // Routing regs array
8 int *graphroutings[1] = {graph0routeregs};
9

10 // Masks for exit FUs
11 int branchmasks[1] = {0x1};

Listing 4.2: Reconfiguration information

placed into a read-only memory module

module config_bram(clk, rst, addr,
dataout);

parameter N_REGS = 7;

input clk, rst;
input [clog2b(N_REGS) - 1 : 0] addr;
output reg [31 : 0] dataout;

reg [31: 0] cfgmem [N_REGS - 1 : 0];

initial begin
cfgmem[0] = 32’h1150040;
cfgmem[1] = 32’h2c0d2644;
cfgmem[2] = 32’h163446;
cfgmem[3] = 32’h356;
cfgmem[4] = 32’h0;
cfgmem[5] = 32’h1;
cfgmem[6] = 32’h6;

end

always@(posedge clk)
dataout <= (rst) ? 0 : cfgmem[addr];

endmodule

As Section 4.3 will show, this accelerator architecture was integrated into three different sys-

tem architectures. Based on which system module reconfigures the accelerator, the routing infor-

mation may be output in several formats. Listing 4.1 shows how this information is produced in

order for it to be used by the auxiliary MicroBlaze. The per-configuration routing register values

are held in C structures which are written via bus to the accelerator. It is also possible to have the

CR generation tool include this process into each CR itself (not shown). Finally, Listing 4.2 shows

a read-only memory module used to include this information into the injector.

Two additional steps are required when translating multiple CDFGs. Firstly, before the place-

ment of new nodes, the existing accelerator’s depth (stored in the binary file) is compared to the

depth of new CDFG; if the former value is lower than the later, the existing configurations have

to be updated by inserting passthrough chains which transport data from the previous maximum

depth to the new one. This is due to the architectural limitation of this accelerator design which

only allows for feedback of values from the very last row of the array. Secondly, previously

generated routing register values need to be re-generated if: the width of any row changes (as

the number of inputs and outputs varies), or if new passthrough are inserted as explained, since

routing is necessary through the new rows.

The CR generation process explained in Section 3.3 applies in this implementation: either PLB

or FSL based CRs are generated along with the injector address table. The only other additional

purpose of this tool is to generate the read-only memory modules for injector based reconfiguration

of the accelerator (as per Section 3.4) or to include this information into the CRs.

62 Customized Multi-Row Accelerators

(a) System1 - External code/data system memory and PLB based accelerator

(b) System2 - Local code/data system memory and
PLB based accelerator

(c) System3 - Local code/data system memory and FSL
based accelerator

Figure 4.4: System level variants used for evaluation, with minor accelerator and auxiliary hard-
ware differences

These tools fully execute in the order of seconds, and the runtime scales in proportion to the

amount of CDFGs to translate. Most of the runtime is due to file handling. For this implementa-

tion, CDFGs with memory access operations or floating-point operations are not supported, and

the lack of a more sophisticated node scheduling leaves resource re-utilization under-exploited. In

later design iterations, the translation tool is extensively overhauled to address these limitations

and to support new accelerator architectures.

4.3 Experimental Evaluation

4.3.1 Hardware Setup

The accelerator underwent minor design modifications through the three experimental validations

performed, each relying on a different system architecture. Regardless, all three accelerator im-

plementations are comparable as the major execution model and design is unchanged. Figure 4.4

shows all three systems. They contain the custom accelerator instance, a MicroBlaze processor,

and the injector. Also, vendor timer modules (not shown) attached to a PLB measure execution

times. For these implementations, the timers were enabled, disabled, and read explicitly by the

code running on the MicroBlaze.

Figure 4.4a shows the earliest system architecture. For this implementation, the accelerator

and MicroBlaze communicate via a PLB. The MicroBlaze accesses external memory to retrieve

code and data, and does not use data or instruction caches. Supporting instruction caches would

require injector level support for the cache interface behaviour and also introduce issues with the

migration mechanism. Since the caches are internal to the MicroBlaze, the migration could fail if

the instruction to be replaced already resided in the cache.

4.3 Experimental Evaluation 63

The injector module used here communicates the address of the detected Megablock to an

additional MicroBlaze processor. It has three functions. First, it copies the CRs to the external

memory at boot so that the main MicroBlaze can later read them. Secondly, it writes configuration

information via the PLB to the accelerator. During this time the main MicroBlaze is idle. After-

wards, it sends to the injector the CR address relative to a detected Megablock start address. This

second processor was used to simplify accelerator reconfiguration and communication, since it is

simpler to develop these tasks through software on an early design. Its program code, as well as

the accelerator reconfiguration data, are held in local memories (not shown).

The second system design iteration shown in Fig. 4.4b removed the auxiliary processor and

instead augmented the CR to include configuration information. If required, it is written to the

accelerator during execution of the CR. Also, local memories are used for the MicroBlaze’s code

and data. The modification was made because: 1) the kernels supported by the current accelerator

were too small to justify the overhead of external memory and 2) since the reconfiguration infor-

mation now resides in the CRs, using a shared external memory between the auxiliary and main

MicroBlaze is no longer required. The injector is now capable of generating the instructions to

place on the bus autonomously, and was modified to interface with the LMB. In certain ways, this

simplified the design due to the simpler and deterministic nature of this bus.

Finally, Fig. 4.4c shows a final attempt to reduce the overhead of invoking the accelerator by

using an FSL between it and the MicroBlaze, and by performing the transmission of operands and

configuration values in parallel. The injector now contains a local memory with the configurations

which it sends via a separate FSL to the accelerator.

The development board used for this evaluation was a Digilent Atlys, which contains a Spartan-

6 LX45 FPGA and an external 128 MB DDR2 memory. The MicroBlaze version used was 8.00a,

set for Performance and with the integer multiplication, barrel-shifter and pattern-comparison units

enabled. Xilinx’s EDK 12.3 was used for system synthesis and bitstream generation. All gener-

ated systems were fed with a 66 MHz clock. The same clock signal is used for all system modules,

accelerator included, in nearly all cases. Exceptions are explained in the following sections.

4.3.2 Software Setup

A total of 15 code kernels were used for this evaluation. The kernels employed for this evaluation

are simple single-file applications which call a kernel function a given number of times, N. For

these experiments, N = 500 for all cases. The kernels used are synthetic examples of simple data-

processing loops. They contain no floating-point operations or memory accesses, and operate on

32-bit integer values. The input data given to the kernels are statically stored as a global array(s).

Since the applications are simple, only one candidate Megablock, corresponding to the kernel

function, was extracted from each. In order to evaluate accelerators with several configurations,

two additional applications which call 6 code kernels were used (merge1 and merge2). In other

words, two of the evaluated accelerators support 6 configurations. For both cases an evaluation

was made of the overhead of calling each kernel N times in sequence (m1 and m2), and calling

each kernel a total of N times alternatively (m3 and m4).

64 Customized Multi-Row Accelerators

In order to measure execution times a single timer module was enabled through software

before the kernel calls, and read afterwards. The output data is also read so as to compare the

execution of the software and accelerated runs. By calling each kernel N = 500 times, the small

C level overheads of enabling the timer and of function calls are amortized. Listing 4.3 shows

the (simplified) code for one of the used benchmarks. The for loop within the function call is the

accelerated portion in this case.

Listing 4.3: Simplified code for even ones benchmark

1 int evenOnes(int temp, int Num) {
2
3 for(int cnt = 0, int i = 0; i < Num; i++) {
4 cnt ^= (temp & 1);
5 temp >>= 1;
6 }
7 return cnt;
8 }
9

10 int main() {
11
12 int i, result;
13
14 tmrStart(&XPS_Timer);
15
16 for(i = 0; i < 500; i++)
17 result += evenOnes(i,32);
18
19 tmrStop(&XPS_Timer);
20
21 int cycles = tmrRead(&XPS_Timer, 0);
22 printf("time:%d\r\n", cycles);
23 printf("res:0x%x\r\n", result);
24 return 0;
25 }

This method of performance measurement is intrusive and rudimentary but not a critical issue

given the mostly synthetic nature of the benchmark code. The implementations in the following

chapters employ more sophisticated and application-transparent methods to retrieve these metrics.

The applications were compiled with mb-gcc 4.1.2 using the -O2 flag and additional flags

which enable the use of barrel shifter, integer multiplication and pattern comparison instructions.

The CDFG extraction process did not employ loop unrolling for most cases.

4.3.3 Characteristics of the Generated Accelerators

Table 4.1 lists all kernels, along with a shorthand alias. From each benchmark a single Megablock

trace was accelerated. The third column shows the number of MicroBlaze instructions in the

trace, and the next column shows the average number of iterations performed per occurrence of

the trace. Given the simple nature of the target loops, the resulting traces contain few instructions.

The highest number of instructions occurs for i13, since the detected trace is of an unrolled inner

loop. Despite the small number of instructions, the CDFGs for these traces have an ILP of up

to 2.9 on average. Most loops execute a constant number of times (32 or 16). Kernels i3, i7, i9,

i10, i11, and i12 iterate a number of times dependant on the input values. For example, for i3 the

number of iterations is an arithmetic progression of an input value.

4.3 Experimental Evaluation 65

Table 4.1: Extracted Megablock and generated accelerator characteristics

ID Kernel # Trace Avg # IPCSW #FUs #Passes. #Rows IPCHWInsts Iterations

i1 count 6.0 32.0 0.86 6.0 6.0 3 2.00
i2 evenones 6.0 32.0 0.86 5.0 4.0 3 2.00
i3 fibonacci 6.0 249.5 0.86 4.0 6.0 3 2.00
i4 hamdist 6.0 32.0 0.86 6.0 11.0 3 2.00
i5 popcnt 8.0 32.0 0.89 8.0 7.0 3 2.67
i6 reverse 7.0 32.0 0.88 7.0 9.0 3 2.33

i7 compress 8.0 17.3 0.89 8.0 21.0 4 2.00
i8 divlu 5.0 31.0 0.83 5.0 4.0 3 1.67
i9 expand 8.0 17.3 0.89 8.0 21.0 4 2.00

i10 gcd 8.0 41.3 0.89 8.0 17.0 6 1.33
i11 isqrt 6.0 16.0 0.86 6.0 9.0 3 2.00
i12 maxstr 4.0 30.0 0.80 4.0 6.0 3 1.33

i13 popcount3 31.0 500.0 0.91 18.0 33.0 9 3.44
i14 mpegcrc 15.0 31.0 0.94 14.0 32.0 7 2.14
i15 usqrt 18.0 16.0 0.95 17.0 42.0 8 2.25

mean 9.5 74.0 0.88 8.3 15.2 4.3 2.08

m1 merge1 6.3 159.5 0.86 16.0 12.0 3 2.10
m2 merge2 6.8 29.0 0.87 24.0 35.0 6 1.64

The next column, IPCSW, represents how many Instructions per Clock Cycle (IPC) cycle the

MicroBlaze is capable of executing. Most MicroBlaze instructions are single-cycle, but branch

instructions have either 2 or 3 cycles of latency. Each trace has at least one backwards branch

instruction. This means less than one instruction is executed per clock cycle throughout a complete

execution of a single trace iteration. The values shown for IPCSW hold only for System 2 and

System 3, where there is a 1 clock cycle latency for instruction fetch.

The following columns contain the characteristics of the generated accelerators. The #FUs

column shows the total number of units in the array, including passthrough units, while the next ac-

counts only for the passthroughs. Due to the array structure and to the amount of data to transport

across iterations, passthrough units frequently outnumber other FUs. On average, there are 1.67

passthroughs per each other FU. However, they are frequently re-utilized in multi-configuration

cases, since the same behaviour occurs while translating any CDFG.

The #Rows column shows the number of rows in the array. Since the CDFG nodes are im-

plemented by single-cycle FUs, this means that the Critical Path Length (CPL) of the CDFG

determines the array’s depth. Rows execute one at a time, so the IPC on the accelerator, IPCHW, is

simply the number of trace instructions over the array’s depth. Scheduling operations onto differ-

ent rows (e.g., via list scheduling) would have no impact on performance, but there is a potential

impact on resource usage, as the next chapters will show. Ignoring any overheads, speedups are

66 Customized Multi-Row Accelerators

obtained when IPCHW is larger than IPCSW. As a general rule, this architecture performs best

when executing CDFGs whose number of instruction is high, and whose CPL is low.

The value of IPCHW is also indicative of how many units are not idle per cycle. Inversely,

it is possible to calculate how many are inactive per cycle. Considering the number of FUs in

each array, the number of rows it has, and its IPCHW, this results in an average of 6.4 units being

idle per cycle (not including passthroughs). Improving the per-cycle usage of resources for 2D

accelerators was address in later implementations.

The number of FU in a single-loop array is, at most, equal to the number of MicroBlaze op-

erations in the originating trace. Due to extraction and translation level optimizations, the number

of FU, excluding passthroughs, is usually lower. For example, the 31 instructions of the loop trace

from i13 are implemented by 18 FUs. Constant propagation allows for removal of some opera-

tions, especially when the MicroBlaze’s imm instruction is used. This instruction loads a special

register with the upper 16-bits of a 32-bit immediate operand. The behaviour of these operations

is implemented as constant inputs when specifying FU input multiplexers.

The mean row of Table 4.1 contains arithmetic averages for these parameters, and only in-

cludes benchmarks i1 to i15. For m1 and m2, several kernel functions are called. Benchmark m1

calls the kernel functions i1 to i6, and m2 calls kernels i7 to i12. For these two cases, the values

shown for the number of trace instructions, number of iterations and IPCHW are weighted averages

which consider the individual kernels composing each case. Aspects such as the resulting num-

ber of FUs and depth of the array are dictated by the maximum of each individual case. So, for

instance, an array supporting both i7 and i8 will have a depth of 4. This causes the total number

of required passthrough units to increase for these cases. Also, the current execution model en-

forces that all rows are activated before an iteration is completed. This means that this accelerator

architecture causes some CDFGs to under-perform due to artificially increasing their CPL.

This was taken into account when grouping kernels for m1 and m2. In m1 all the kernels had a

depth of 3 so the resulting resource cost of the accelerator could be evaluated in a scenario where

the execution of the individual CDFG would not suffer a performance impact. Benchmarks i13,

i14 and i5 are left out of these groups since their CDFGs are considerably larger than all other

cases. Benchmark m2 groups all remaining cases. The general rationale for these groups was that

similar CDFGs should be grouped together, since this would promote more resource re-utilization.

Finally, a specific strategy for choosing kernels to group was not wholly important, as the main

objective at this point in development was to verify the functional correctness of a multi-loop

accelerator, both at an architecture and translation tool level.

One of the objectives of creating multi-configuration accelerators is to reuse units between

configurations, ideally resulting in a resource usage lower than the sum of resources that would be

required by deploying several single-loop accelerators. For m1 and m2, the sum of FUs (excluding

passthroughs) of their respective individual cases is 36 and 39. The two combined accelerator

instances instead contain 16 and 24 FUs, even though the re-utilization is limited to nodes within

the same topological level. Interpreted another way: the number of FUs required for m1 and

m2 is 2.0× and 3.0× higher than the maximum number of FUs required amongst the respective

4.3 Experimental Evaluation 67

1.03

1.721.62

2.23

1.63

2.08
1.85

1.391.511.391.281.271.26

3.69

1.851.691.69
2.02

0.99

2.02

0.95

4.95

0.0

10.0

20.0

30.0

40.0

50.0

0.0

1.0

2.0

3.0

4.0
System2 (left-axis)
System3 (left-axis)
System1 (right-axis)

Figure 4.5: Speedups for several types of system architectures vs. a single MicroBlaze processor.
Labels shown for System 3

individual benchmarks. The passthrough units are more frequently shared between configurations.

Using the same metric, the number of passthroughs required for m1 and m2 is 1.1× and 1.7×
higher than the maximum for the respective single configuration accelerators.

The average IPCHW of each loop supported in m1, when each executes in its respective single-

configuration accelerator, is 2.17. This does not change when executing the same loops in the

multi-configuration accelerator of m1. In contrast, for m2, the average IPCHW of the individual

cases, when each executes in a dedicated accelerator is 1.72. The IPCHW for the same loops on

the accelerator in m2 is 1.08, since some configurations are penalized by the higher CPL.

4.3.4 Performance vs. MicroBlaze Processor

Fig. 4.5 shows all measured speedups for all three system architectures employing the same accel-

erators. The speedups for each case scale depending on the overhead imposed by each system’s

interfaces. The speedup mean shown is geometric and includes benchmarks i1 to i15. Labels

shown are for System 3 (the best results for a realistic baseline).

Results for System 1 are shown on the right axis for readability. Speedups are much higher

for this system since the software baseline is very pessimistic: code and data reside in external

memories and the MicroBlaze does not have either type of cache. It was measured that an average

of 23 clock cycles are required to retrieve an instruction via PLB. The version of the bus used did

not support burst mode. Executing several operations found in a single accelerator row requires

only 1 clock cycle, hence the marked speedups despite the CR overhead still incurred due to PLB

based communication with the accelerator for reconfiguration and data transport. Given that soft-

ware execution is so hindered in this scenario, the acceleration results should not be considered as

realistic. Regardless the fully functioning system provides the proof-of-concept for the migration

approach, architecture and tools.

The remaining two systems can be considered realistic scenarios. For System 2, the geometric

mean speedup is of 1.03×, and slowdowns occur for 9 out of the 15 cases. For the cases where a

68 Customized Multi-Row Accelerators

speedup is possible the geometric mean is of 1.48×. Slowdowns occur if the time spent on the ac-

celerator plus the CR execution time exceeds the software-only execution of the loop in question.

Given the small number of iterations performed for these test cases per accelerator call, the over-

head becomes very significant. Consider only kernels i1 to i6. They all perform the same average

number of iterations (save for i3), but two other factors cause minor performance variations. For

instance, between i5 and i6, it is the higher IPCHW possible for i5 which justifies the performance

difference. This in turn is due to the trace for i5 containing a single additional instruction relative

to i6 coupled with the fact that the number of accelerator rows is equal. For these two cases, the

communication overhead introduced is equal: the CRs contain the same number of instructions.

When comparing i1 and i2 we find that the IPCHW is the same as well as the average number of

iterations. The CR for the former requires 108 clock cycles to execute (excluding the time required

to reconfigure the accelerator, which in this implementation is embedded in the routines) and the

later 139. This results in a speedup for the former and a slowdown for the later. The difference

between CR execution times is small and only reasonably relevant due to the small number of

iterations, but this comparison helps to demonstrate the effect of overhead on speedup.

For System 3, the use of dedicated links for communication reduced both the data transfer

latency and the number of instructions in the CRs themselves due to the different types of instruc-

tions required. The resulting geometric mean speedup is of 1.69× and no slowdowns occur. As

the impact of overhead diminishes, the achievable speedup approaches the IPCHW value.

Finally, consider the benchmarks m1 and m2. The weighted geometric average of the speedups

for i1 up to i6 is 2.04× for System 3. The speedup for m1 for the same system is 2.02×. That is,

the acceleration achieved for each individual loop does not decrease relative to their single-loop

accelerators, since each loop’s IPCHW does not decrease. The marginal performance decrease is

due to additional reconfiguration overhead. Performing the same comparison for m2: the weighted

geometric average for i7 up to i12 is 1.34× for System 3, but the measured speedup for m2 is of

0.99×. In other words, the individual speedups of each accelerated loop possible in System 3 are

lost when using this multi-loop accelerator. This was already associated to the decrease in IPCHW

but this accelerator (for m2 and m4) also happens to suffer from higher reconfiguration overhead

as well. The impact of overhead on performance, especially for m3 and m4, are discussed shortly.

In short, the attainable speedup is influenced by two major parameters: the IPCHW achievable

on the accelerators and the communication overhead. The speedup is higher with a higher IPCHW,

and a low overhead prevents degradation of the performance gains of the accelerators. The IPCHW

is a function of the CDFGs and mostly of the accelerator architecture. For this evaluation, the vari-

able parameter is the overhead of the several systems. Table 4.2 contains both the per-benchmark

overhead for System 2 and System 3 and also the number of instructions and number of clock

cycles required to execute the CRs based on the interface type.

The second column shows the number of MicroBlaze instructions in each PLB-based CRs. On

the left hand side is the number of instructions which execute if reconfiguration of the accelerator

is not necessary, and inside the parenthesis is the additional number of instructions needed other-

wise. Likewise, the next column shows the respective number of clock cycles required considering

4.3 Experimental Evaluation 69

Table 4.2: Communication Routine characteristics and Overheads for Systems 2 and 3

ID
PLB

CR Inst.
Overhead

Cycles
System 2
Overhead

FSL
CR Inst.

Overhead
Cycles

System 3
Overhead

i1 27 (+24) 108 (+91) 53% 12 12 (+4) 11%
i2 34 (+25) 139 (+92) 59% 18 18 (+3) 16%
i3 27 (+21) 124 (+80) 14% 14 14 (+2) 2%
i4 35 (+25) 132 (+92) 58% 17 17 (+4) 15%
i5 35 (+25) 132 (+92) 58% 17 17 (+4) 15%
i6 35 (+25) 132 (+92) 58% 17 17 (+4) 15%

i7 35 (+33) 148 (+139) 68% 19 19 (+6) 22%
i8 25 (+17) 90 (+68) 49% 10 10 (+3) 10%
i9 35 (+32) 148 (+115) 68% 19 19 (+5) 22%

i10 32 (+29) 113 (+104) 31% 15 15 (+6) 6%
i11 34 (+24) 123 (+91) 72% 16 16 (+4) 25%
i12 25 (+21) 90 (+80) 50% 10 10 (+4) 10%

i13 37 (+39) 142 (+161) 3% 18 18 (+9) 0%
i14 36 (+42) 157 (+172) 42% 20 20 (+8) 8%
i15 31 (+49) 160 (+195) 56% 18 18 (+11) 12%

mean 32 (+29) 129 (+111) 49% 16 16 (+5) 13%

m1
32.2 (+32.8) 127.8 (+138.8)

38%
15.83 15.8 (+6.7)

7%
m3 57% 10%
m2

31.0 (+53.2) 118.7 (+223.2)
44%

14.83 14.8 (+15.2)
9%

m4 69% 16%

local code and data memory only. For System 3, operands are sent by executing the CR, and re-

configuration is performed in parallel by the injector. The left-hand value in the sixth column is

the number of clock cycles required to execute the CR alone, and the value in parenthesis is the

number of cycles the injector requires to reconfigure the accelerator.

For nearly all cases, each CR executes 500 times. The only exceptions are i13 and m1 to m4.

For the former the CR executes only once, and for the former cases a total of 500×6 = 3000 CR

executions are required. The resulting overhead is shown for both cases as a percentage of clock

cycles spent from the moment the injector intervenes until the return to software.

The lowest overhead for all cases occurs for i13, for a particular reason. While all other

kernels are called N = 500 times, this function was in-lined into the calling location. Since the

kernel loop only iterated three times, it was unrolled. This resulted in a larger Megablock trace

which comprised all 500×3 = 1500 iterations of the inner loop. In this case, a single iteration on

the accelerator corresponds to the three unrolled iterations of the inner loop. Since the accelerator

is only invoked once, the CR execution penalty is only incurred once. For this case it is observable

how a low overhead increases the speedup to a value close to the IPCHW.

As was already explained, System 1 (not shown in Table 4.2) suffers the most overhead. Con-

sidering the number of cycles to return to software after the injector intervenes, the average com-

70 Customized Multi-Row Accelerators

munication overhead for this system (excluding m1-m4) accounts for 84 % of the time. Since CRs

are in external memory, the communication time is high relative to accelerated time. For Sys-

tem 2, all code and data reside in local memories. The average communication overhead for this

case is 53 %. For this case, slowdowns occur frequently since the low number of iterations per

accelerator call does not amortize the communication overhead now that MicroBlaze execution

is realistically efficient. The average number of iterations performed on the accelerator per call

is 74.0, as shown in Table 4.1. Given the average number of rows, this means the accelerators

execute for approximately 320 consecutive clock cycles. In comparison, if reconfiguration is not

required, a PLB-based CR contains an average of 32.2 instructions, which require 129 clock cy-

cles to execute. Finally, for System 3, the average communication overhead is of 26.5 %. Writing

configuration values to the accelerator in parallel with CR execution allows for mitigation of some

overhead, but most of the reduction in these experiments is due to the use of the FSL-based CR.

Consider again cases m1 (m3) and m2 (m4). For m1 and m2, the 6 called loops are executed

sequentially. The accelerators for m3 and m4 are equal to m1 and m2, respectively, but the sup-

ported kernel functions are called differently. The former case is the one for which overhead is

lowest: all calls of each supported loop occur before the following (i.e., the loop for i1 is called

500 times, followed by i2, etc). This means that the accelerator only needs to be reconfigured 6

times. For the later case, the first supported loop is called once, followed by the second, etc. That

is, the accelerator needs to be reconfigured per call, introducing the most overhead.

Also, the CRs are affected by accelerator size and number of configurations, since this affects

the amount of reconfiguration values. For instance, execution of the kernel from i1 on the acceler-

ator for m1 may incur more overhead when executing the respective CR, relative to the accelerator

for i1. The accelerator for m1 requires 1.35× the MicroBlaze instructions for PLB-based reconfig-

uration alone (i.e., excluding transfer of operands/results), relative to the average of the respective

individual cases. For m2, the increase if of 2.04×. This corresponds to an increase of 1.22× and

1.56× of the number of clock cycles required to execute an CR. For the FSL-based equivalents,

the increase in number of clock cycles is similar: 1.15× and 1.55× for m1 and m2 respectively.

Given these two factors (i.e., how often reconfiguration is required and how lengthy the re-

configuration process is), it is observable when comparing m1 and m2 to m3 and m4, respectively,

that despite additional reconfigurations the speedup is not affected when FSL-based CRs are used

(e.g., System 3). For instance, for m1 and m3, the PLB-based communication corresponds to 38 %

of total execution time for the former case and 57 % for the later. For the FSL case the increase is

much lower, from 7 % to 9 % clock cycles. This holds for m2 and m4, but the additional overhead

reconfiguration is higher since the respective accelerator requires more configuration information.

Considering all these factors, a speedup estimation on a per-loop basis can be made using

Eq. (4.1). The number of accelerated MicroBlaze instructions is represented by NrInsts, and the

number of required FUs (passthroughs excluded) by NrFUs. The NrHWCycles and NrSWCycles param-

eters are the number of cycles required to execute the Megablock fully in software and hardware

respectively. The number of iterations performed on the accelerator is given by Nrit and the num-

ber of overhead clock cycles by OHc. This factor must include the CR execution, the number

4.3 Experimental Evaluation 71

of cycles required to execute the last iteration of the loop through software, and the small over-

head introduced by the injector-driven migration. The overhead lowers the attainable speedup by

increasing the denominator in the ratio between the software and accelerator IPC.

Speedup' NrInsts

NrFUs
×

NrInsts
NrSWCycles

NrFUs
NrHWCycles

+ OHc
Nit×NrFUs

(4.1)

Alternatively, Eq. (4.2) directly uses the IPC values computed as presented in Table 4.1.

Speedup'
1

IPCSW
1

IPCHW
+ OHc

Nit×NrFUs

(4.2)

This formula has an average estimation error of 2.6 % and 2.2 % for System 2 and System

3, respectively. Using this formula the maximum potential speedup can also be estimated by

considering that OHc is zero: the maximum geometric mean speedup for these benchmarks would

be 2.51×. Note that to account for the external memory effect in System 1 the IPCSW would

have to be computed accordingly. Also, this formula is valid for this accelerator execution model,

where the total number of FUs on the array (used for a given configuration) corresponds to the

total number of operations to execute.

4.3.5 Resource Requirements and Operating Frequency

The MicroBlaze processor used for these systems (no floating-point unit and no caches), requires

1359 and 1068 LUTs and FFs, respectively, according to the synthesis reports. By using this as a

metric, it can be found that the average accelerator requires 2.66× the LUTs and 1.36× the FFs a

MicroBlaze requires. The number of required LUTs and FFs for all cases, normalized to the cost

of a MicroBlaze, is shown in Fig. 4.6, along with the reported synthesis frequency.

The entire system (accelerator, MicroBlaze, buses, etc), requires an average of 5375 LUTs and

2777 FFs, according to post place and route reports. In other words, the accelerator corresponds

approximately to 62 % and 51 % of the system’s total resources on average. The accelerators do

not require any BRAMs. The resource-related averages presented do not include m1 and m2.

The number of required LUTs and FFs scales in a reasonably linear fashion with the number

of FUs. Each FU incurs a LUT cost and requires adding a new O-to-I multiplexer where O is

the number of outputs in the previous row and I the number of FU inputs. Its output(s) must also

be stored in 32-bit registers. The passthrough units only represent additional FF cost, which also

scales linearly with the number of these units. The correlation coefficient between LUTs and FUs

is of 0.91, and 0.97 between FFs and FUs. The accelerators for benchmarks i13, i4 and i15 require

the most resources, given that they contain the most FUs and also have the highest number of rows.

For nearly all cases, the critical path usually involves an adder carry chain. Variations mostly

involve the multiplexer complexity. For instance, for i2, i3, i4 and i5 the critical path is determined

by an adder carry chain, but the multiplexer feeding one of the inputs is more complex in i3 relative

to the other cases. Four cases have their maximum frequency determined by other elements; for

72 Customized Multi-Row Accelerators

2.66
1.36

0

50

100

150

200

0.0

2.0

4.0

6.0

8.0

10.0

F
re

q
u
en

cy
 (

M
H

z)

R
es

o
u
rc

es
 (

n
o
rm

a
li
ze

d
)

Accelerator LUTs Accelerator FFs Accelerator Synthesis Frequency (MHz)

Figure 4.6: Synthesis frequency and resource requirements of the generated accelerators, normal-
ized to the resource requirements of a single MicroBlaze

i1, this is due to the complex barrel shifter unit; for i7, the critical path is related to a much simpler

constant shift unit; and for i14 and 15, the frequency is determined by a multiplication unit. It is

difficult to determine the reason for the difference between i4 and i5, since the synthesis reports

only state that most of the delay in the critical path is due to the DSP unit (which implement the

multiplication FU). The combinatorial delay through the DSP is different for both cases, and the

registers which feed the DSP have a much greater fanout in i15 relative to i14.

Only the accelerator for i15 had a synthesis frequency below the target frequency of the system

(66 MHz), so this case was implemented at 33 MHz, for purposes of functional validation. The

systems for m1 and m2 were also implemented at 33 MHz despite the higher synthesis frequency

of the accelerators. This has an obvious implication on speedups, since the actual time required to

execute the loops increases relative to a non-accelerated MicroBlaze running at 66 MHz. However

the conclusions drawn previously regarding execution performance hold, as this is technological

and not an approach-related issue. Later chapters improve the accelerator architecture regarding

both resource usage and frequency. Also, this validation used an FPGA geared towards low-power

applications, with a small amount of resources, which hinders synthesis of large systems.

It is expected that supporting multiple loops increases resource consumption and may decrease

synthesis frequency, as more FUs incur a cost by themselves and, especially, by increasing the

width and depth of the array may introduce an ever higher cost associated with connectivity. For

m1, the number of LUTs used by the accelerator is 2.15× higher than the maximum amount of

LUTs used by the accelerators of cases i1 to i6. Likewise the number of FFs is 1.34× higher.

However, the amount of LUTs and FFs are only 0.46× and 0.26× as much as is required by the

total sum of individual accelerators, respectively. This highlights the savings versus deploying

multiple single-loop accelerators. For m2, the accelerator requires 0.65× and 0.39× the amount

of LUTs and FFs relative to the sums used by i7 up to i12.

Relative to frequency, the critical path for m1 is found between the input multiplexer of the

array, the first row’s multiplexer and a barrel shifter unit in the first row. It is essentially the same

critical path as i1. However, the synthesis frequency of 92.7 MHz is actually marginally higher

than that case (the minimum of the respective individual cases). For m2, a path through the input

multiplexer and an adder carry chain leads to a frequency of 109 MHz, which is 0.89× lower than

4.4 Concluding Remarks 73

the minimum of the individual cases. Given that this is still above the system clock frequency,

and that both the MicroBlaze and accelerators operate at the same frequency, this decrease is

not significant. In a system where the overall operating frequency was regulated based on the

maximum accelerator frequency, eventual decreases due to supporting multiple loops in a single

accelerator would have consequences on performance.

The previous section discussed how the CRs may increase in size due to additional intercon-

nects to reconfigure as more resources are added, which happens in these two cases supporting

multiple loops. As a comparison, the number of total multiplexer configuration bits required by

m1 and m2 are 208 and 436. This is an amount 2.08× and 2.42× higher than the maximum number

of bits required amongst the respective individual accelerators.

As a final note consider the cost of the injector per implemented system. For System 1 the

PLB-type interface introduces a total cost of 239 LUTs and 78 FFs. For System 2, the different

interface requires less logic, but now the injector is more complex internally, resulting in 164

LUTs and 45 FFs. For System 3, the internal memory holding accelerator configurations requires

1 BRAM and the remaining injector logic has a cost of 209 LUTs and 72 FFs.

4.4 Concluding Remarks

This chapter presented initial design iterations on fully functional transparent binary acceleration

systems relying on automated hardware/software partitioning. The general approach was validated

together with the capabilities of the translation tools. Experimental evaluations were conducted

using on-chip implementations for execution time measurements.

Three system types were studied in the process of determining the more appropriate environ-

ment for further accelerator design iterations. The design for System 1 seems excessive, but note

that it was initially conceived with the objective of eventually porting most of the hardware/par-

titioning workload to runtime. Hence the auxiliary MicroBlaze which would be responsible for

Megablock processing and configuration generation for a runtime reconfigurable accelerator ar-

chitecture. Initially relying on external memory was also forethought towards the support of larger

applications for future experimental evaluation.

For the same reason, the accelerator architecture was oriented towards a 2D grid to simplify

the task of future runtime embedded translation tools. The use of crossbars provides a simpler

first approach in this scenario as it would be more difficult to generate an interconnect structure at

runtime versus generating configuration information for a rich static interconnect.

As the next chapters show, the development steers away from this direction, and continues to

rely on offline generated CDFG information to focus on accelerator architecture improvements.

The next two chapters particularly address limitations and issues identified during this initial ex-

perimentation: 1) re-utilization of resources between configurations required improvement, 2) idle

time of FUs within a single configuration had to be diminished, 3) memory support was critically

required to increase applicability and increase performance. The next chapter deals essentially

with this last point.

74 Customized Multi-Row Accelerators

Chapter 5

Accelerators with Memory Access
Support

This chapter augments both the accelerator and system level architectures to enable the accelerator

to access the MicroBlaze’s data memory. It was observed, during validation of the first accelerator

design, that lack of support for direct memory access by the accelerator greatly limits applicability

of the approach, since it prevents acceleration of realistic applications. Namely, the accelerator

was incapable of treating data in a stream-like fashion, processing successive array elements per

iteration. Instead, in order to process data, one or more data array elements were passed as register

file operands per accelerator call. This meant that to iterate through an array with N elements, N

accelerator calls were required (generally). The inner loop iterations of each call processed a single

datum per data array involved in the kernel. This is unlike realistic streaming applications were

the inner loop iterates through the arrays, via sets of paired memory read and subsequent memory

write operations. This chapter retains the overall 2D accelerator design presented and introduces

the use of load and store FUs which, via a bus sharing mechanism, can read/write the entire range

of the MicroBlaze’s local data memory. The outer accelerator layer is equipped with only two

memory ports, which exploit access parallelism by using dual-ported BRAMs. Since there can be

an arbitrary number of load/store FUs, two methods to arbitrate access to the ports are used: a

runtime heuristic, and a tool-generated static schedule. The accelerator also underwent a number

of optimizations aiming to reduce resource consumption: the use of crossbars is replaced with

tailored multiplexers with minimal connectivity and the use of passthrough units is optimized.

The accelerator architecture is described in Section 5.1. Section 5.1.2 specifically explains

the handling of memory access units, and the system-level memory sharing mechanism. The re-

designed translation tools are explained in Section 5.2. An evaluation is presented in Section 5.3

using a set of 37 benchmarks which includes: a performance comparison with software-only exe-

cution, an analysis of the effects of memory access optimization and list scheduling, comments on

the resource requirements and operating frequency, and finally a short power consumption analy-

sis. Section 5.4 presents final remarks on the achieved improvements and still existing limitations.

75

76 Accelerators with Memory Access Support

Figure 5.1: 2D Accelerator with memory access logic

5.1 Accelerator Architecture

Figure 5.1 shows the re-designed accelerator architecture. Much of the existing structure is re-

utilized relative to Chapter 4: the accelerator template relies heavily on synthesis-time parameters

and Verilog generate statements to create a specialized instance. As before, the customization

varies the type and number of units in the 2D array, which determine its width and depth. Instead

of relying on full crossbars between rows, this design also customizes the connectivity. Only the

minimally required set of FU connections exists, so that the required data flow for all supported

CDFGs can be implemented. As Section 5.3 will show, this implementation relies on the dual-port

BRAMs present in the FPGA architecture. The Memory Access Manager (MAM) shown on the

left-hand side is coupled to the array and contains LMB master logic to drive the buses connected

to the data memory. It also contains control logic to arbitrate access of the load and store units

on the array to the two ports. The accelerator is re-configured at runtime by the same method

presented in the previous chapter: the injector detects the imminent execution of a translated trace

by observing the instruction address bus. The transparent migration mechanism chooses one out

of a set of configurations, which determines: which FUs are active, all multiplexer selections, and,

in this architecture, also configures the arbitration logic. This section explains the structure of the

accelerator, the support for memory access, and the execution model.

5.1 Accelerator Architecture 77

5.1.1 Structure of Functional Unit Array

The accelerator contains a 2D array of FUs, connected by runtime configurable multiplexers, tai-

lored for a set of CDFGs. There is no limitation on the number of any type of FUs that can be

instantiated, including load and store FUs, each of which is a separate type of unit. Also, integer

division by a constant is now supported, via a reciprocal multiplication method [War02]. All other

integer 32-bit arithmetic, logic operations, comparisons, and exit operations are still supported.

All FUs still execute in a single-cycle, except for the load, store and the integer division. The

load units have a latency of two clock cycles, which may increase due to access contention to the

two memory ports. The store units add no latency to the execution. The data to write to memory

is buffered if no ports are immediately available. However, idle cycles may still be introduced if

the buffering capacity is exceeded. This is further explained in Section 5.2.2. The division FU has

a constant latency of 2 clock cycles.

The operands are received into the set of input registers as the MicroBlaze executes a CR. The

output registers are driven only by the last row and are read back at the end of execution. Data

is registered at each FU output. These registers then feed the inputs of the FUs in the following

row and, unlike the previous design, may also be directly connected to more distant, non-adjacent,

rows. Passthroughs are instantiated conditionally based on a manually adjustable parameter that

either: instantiates passthroughs in every row, instantiates no passthroughs at all, or instantiates

passthroughs only at specified rows. The option to completely remove passthroughs was intro-

duced in order to reduce the number of registers required for large accelerators. The capability

to still introduce passthroughs in certain rows was kept to avoid long connections which lead to

critical paths. Removing some, or all, such units has no implications on execution, because rows

do not activate before their previous results have been consumed.

In the previous design, every FU input was driven by an M-to-1 multiplexer where M was the

number of outputs of the previous row. For this design, each multiplexer is optimized to fetch only

the required outputs throughout all supported CDFGs. In order to do this, the translation tools

output an additional set of parameters which specify which FU outputs drive each multiplexer.

Section 5.2.3 (page 85) contains an excerpt of this HDL specification. The generate directives

in the HDL template instantiate a dedicated multiplexer per input for all FUs. The multiplexer

is optimized away for cases where the connectivity is 1-to-1. Also, it is still possible to fed the

FU inputs with synthesis-time constants. This implementation requires significantly less resources

relative to the crossbar implementation in the previous chapter.

A configuration of the accelerator corresponds to one global multiplexer context, which is

set at the start of execution. Fig. 5.1 shows this for the add FU in the first row, which for two

configurations is fed by values retrieved from the feedback lines, and which is fed by a constant

value for a third. Similarly, each configuration also enables or disables each FU using small single-

bit multiplexers, as shown for the second load FU in the first row. This is only relevant for exit FUs

so that control progresses correctly, and for the store FUs, so no erroneous accesses are issued.

78 Accelerators with Memory Access Support

The interface with the processor remains unchanged relative to the previous design. The ex-

ception is that only one configuration register is required to set the connection context. These

architecture modifications do no imply a change in the migration mechanism or the CRs.

5.1.2 Memory Access Support

The MAM shown in Fig. 5.1 is responsible for granting the load and store units in the array access

to either of the two existing memory ports. The translation process shown in Section 5.2 does not

take the MAM into account when generating the array. It simply instantiates as many load and

store units required, as with any other type of unit.

The MAM receives all signals from the load and store units, including addresses, data-out and

data-in signals, along with byte-enables and haveData control signals, which indicate outstanding

data to be read or written. In Fig. 5.1, there are three units, resulting in a haveData bus of 3 bits.

The MAM has static synthesis-time knowledge about which type of access each bit corresponds

to. When enabled, a load or store unit asserts an access request and waits for a reply. A row

containing loads only finishes executing once all such units complete their access. Store units

may not cause the same effect as they may buffer up to one datum. This means that simultaneous

requests to the MAM may originate from different rows due to these outstanding stores.

There are two supported arbitration methods: 1) runtime selection logic which assigns a port

to existing access requests based on the topological order of the units, or 2) the translation tools

create a static access ordering which aims to minimize access latency. In the first case, there is

a round-robin type logic which sequentially allows access to the ports to each unit. There is an

optional parameter to determine whether both ports handle all units and make mutually exclusive

choices at runtime, or whether each port handles only half of the existing units on the array. For

the implementation presented in this chapter, local data memory was used. Since the latency of the

BRAMs is constant at one clock cycle, this leads to an eventual steady state in terms of which units

access the bus at which time. The static access scheduling reproduces this by deterministically

assigning two units to the two ports per cycle, thus removing the runtime arbitration logic. Since

this is done by the translation tools, it is explained in detail in Section 5.2.2.

The Megablock instructions which compute the runtime addresses for memory access are

implemented in the array as well. That is, no dedicated address generation logic is used, as this

process is itself part of the accelerated trace. This means that arbitrary memory accesses are

supported by the accelerator. The accelerator has no capability to issue exceptions when an access

is attempted at a non-valid location (e.g., outside the existing memory range, or reads/writes into

code memory). This is not expected to occur however, since addresses are either specified as

synthesis time parameters which originate from compile time constants in the trace instructions,

or are computed by the MicroBlaze itself prior to accelerator invocation. Regardless, behaviour

after such an event is undefined, although falling back to software after an access exception (e.g.,

address out of bounds) by the accelerator would be a trivial feature to implement.

In order to support memory access at a system level, an additional type of module is required:

Fig. 5.2 shows the LMB multiplexer. It drives a single BRAM port by selecting between the

5.1 Accelerator Architecture 79

Figure 5.2: Local Memory Bus Multiplexer module

signals originating from the MicroBlaze or the signals originating from one of the accelerator’s

memory ports. The multiplexer routes memory replies back into the selected master. Prior to

execution, the accelerator controls the switching signal, which causes the multiplexer to buffer up

to one MicroBlaze access and reply with a wait signal. The LMB bus does not issue a time-out, so

the MicroBlaze waits indefinitely. Also, the LMB multiplexer does not add any signals to the bus

or latency to the bus transactions. When the switch signal changes, the downstream (e.g., master to

bus) signals are immediately connected to the memory. The upstream signals are connected in the

following clock cycle, so that the response to the previous access is directed to the correct master.

Sharing the data memory in this fashion is only possible through use of local BRAMs. Despite

this, some higher end FPGA devices still contain a considerable amount of memory (e.g., Xilinx’s

Virtex UltraScale family [Xil15a], with upwards of 25 Mbit) which may be enough for some ap-

plications. The main advantage of this architectural design is that the entire data memory range is

shared without any additional data transfer overheads. This would be the case if, for instance, the

accelerator contained its own local memories. Also, by taking advantage of the readily available

dual-port capability, its possible to straightforwardly exploit data parallelism by using two LMB

multiplexer modules. Section 5.3 shows this experimental setup. The LMB multiplexer was de-

signed prior to the release of versions of Xilinx’s LMB which support multiple masters. Using

those modules for BRAM sharing would result in the same functionality.

5.1.3 Execution Model

Execution on the array begins a soon as the expected number of operands is received. The number

of operands required varies per selected configuration, which is set by the injector after detection

of the trace start address. All FUs in one row activate concurrently when that row’s enable signal

is set (and also according to each FU’s configuration dependent enable).

In this implementation, each row may take more than one clock cycle to execute for one of two

reasons: there is a multi-cycle FUs in the row (i.e., a load or a division) or stalls occur due to mem-

ory access contention. To support multi-cycle rows, the control logic now relies on handshaking

80 Accelerators with Memory Access Support

Figure 5.3: Architecture-specific flow for this 2D accelerator design

signals. A row asserts a done signal once every FU on the row issues its own completion signal.

Only then is the enable signal of the following row asserted. This way, the control of the array is

separated from its per-instance structure, and especially from the memory access behaviour.

After the first iteration, the iteration control module controls the input multiplexer so that data

feedback is established. Like the previous design, the feedback of data is performed only from the

last row to the first, and it is possible to feed back results from the newly completed iteration as

well as the immediately previous one. Unlike the previous design, the possibility of connecting

distant rows without intermediate passthroughs means that configurations whose CPL is smaller

than the number of rows of the array can execute without additional penalty. That is, not all

rows need to activate in order to complete an iteration. By implementing the Megablock’s branch

operations in the array, the accelerator is capable of executing an arbitrary number of iterations

determined by live input data. An iteration either executes completely or, if any exit condition

triggers, it is discarded. The active configuration also determines which exit FUs are enabled. The

results of the latest completed iteration are sent back to the MicroBlaze, which resumes execution

at the start address of the Megablock trace, executing the last loop trace iteration in software.

5.2 Accelerator Generation and Loop Translation

Fig. 5.3 shows the architecture-specific tool flow for this implementation of the accelerator. The

translation tool now generates two main additional files specifying each multiplexer’s connectivity

as well as a configuration file for the MAM. As per the general approach, the CDFGs are produced

by a simulated execution stage on the Megablock extractor. Most of the description of the CDFG

translation tool given in Chapter 4 applies here. The notable differences are the fact that list

scheduling is now performed when assigning CDFG nodes to a position on the array and that,

after the translation step which assumes unlimited connectivity, the multiplexers are specified.

5.2 Accelerator Generation and Loop Translation 81

5.2.1 List Scheduling

For each run of the translation tool, one CDFG is processed. After N runs, the generated accel-

erator supports execution of the N used CDFGs, by having N configuration contexts. After being

parsed, the CDFG is processed to determine initial values for each node’s earliest and latest pos-

sible placement, based on their connecting edges. An additional placement condition is set for

store nodes: they cannot execute before all exit operations execute. This is to ensure that the last

iteration on the accelerator. which is discarded, does not write any data to memory.

As before, translating a CDFG involves assigning nodes to a 2D grid. Consider an already

existing grid array, due to a previous translation. First, the grid size is adjusted for the new CDFG

if necessary, then each node is then placed individually in topological order. When placing a node,

its placement range is re-computed to take into account the location of other nodes, from the same

CDFG, which are already placed. Let le to ll be the earliest and latest row. The rows are searched,

starting from the le, for an existing FUs which can execute the node’s operation. If one exists then

the node is assigned to it. Otherwise a new FU is placed at the leftmost free position in the earliest

possible row, le. The placed node is annotated with a value, lr, indicating the chosen row.

The values le and ll are both computed iteratively, prior to placement of each node, by travers-

ing the CDFG, starting with the node to place. Algorithm 1 shows the pseudo-code for the cal-

culation le. The value for le is first set to zero. Incoming edges (i.e., inputs) are then followed,

starting from the node being placed, until an already placed node is found.

Algorithm 1 Iterative calculation of earliest possible node placement

1: function CALCASAP(graph, node)
2: le← 0 . Initial value
3: if node is placed then
4: return node.lr . node is locked to its assigned position
5: end if
6: for every input of node do
7: le_source← CALCASAP(graph,input.sourceNode) . Compute asap for source node
8: if le_source +1 > le then
9: le← le_source +1 . le is computed based on already placed nodes

10: end if
11: end for
12: return le
13: end function

To avoid traversing the graph circularly, input edges which originate from nodes in a topo-

logical level further down (i.e., backwards edges) are not followed. Nodes are placed from top to

bottom, so a placed node which defines the earliest possible placement of the following nodes is

usually found. A similar process is applied to determine ll by following outgoing edges. Back-

wards outgoing edges are ignored during this. An already placed node is sometimes found during

this search, which constrains ll . Since this is not usually the case, the value for ll is bound by

setting it to maximum of the CPL of the graph and the number of existing rows in the array.

82 Accelerators with Memory Access Support

(a) Existing Configuration (b) New Configuration

(c) Resulting FUs

Figure 5.4: List scheduling example for a Functional Unit with available slack

Figure 5.4 shows: a CDFG that has already been translated (rectangular tags indicate the

associated FU); a new CDFG to translate; and a simple representation of the array of FUs. The

CDFG in Fig. 5.4a generated the FUs A1, B1 and B2, as well as the three additional unlabelled

FUs in the leftmost column of Fig. 5.4c. When translating the CDFG in Fig. 5.4b, these three FUs

are re-utilized, and two new FUs are added to the first row. Node A can be placed in either row 2

or row 3. The later row is picked to re-utilize the existing FU, A1, instead of instantiating a new

FU in row 2. Node B is assigned to FU B1. The B2 FU remains idle in this second configuration.

The load and store nodes are placed with some awareness of their effects on execution. The

placement tries to minimize the number of load and store FUs in a single row to decrease the

execution latency from port access contention. To do this each row is given a placement cost when

placing a new load or store FU, based on how many FUs of the same type already exist on that

row. This process is essentially a heuristic which attempts to reduce the total amount of idle time

introduced due to memory access, based on the execution model and memory access limitations.

It is independent of the arbitration method the accelerator uses during execution.

Placement of a new load unit considers only existing load units. This is a simplification

adopted by relying on the ability to buffer stores for later cycles. Likewise, placement of a store

5.2 Accelerator Generation and Loop Translation 83

Figure 5.5: Assignment of load/store units to ports and cycles, after Functional Unit placement

unit considers only the existence of other store units. This naive strategy relies on the tendency

for store units to be placed on lower rows of the array, which happens because: 1) they must not

execute before any exit operations, and 2) usually stores operate on data retrieved by earlier loads.

Given this, consider that a row without memory operations completes in a single clock cycle.

If a load operation is added, an additional cycle is required. So, placing a load in a row with no

such FUs will incur a cost of 2. If a row already contains one load FU, then placing an additional

load incurs no additional cost: the second access can be performed in parallel via the remaining

free memory port. Placing a load in a row with two existing loads, only incurs a cost of 1, since the

arbitration logic pipelines accesses to the memory. That is, a memory access strobe is issued while

the datum from a previous access is being read. The former rationale holds for any odd number of

loads, and the later for any even number. The same cost metric is used while placing stores. The

scheduling of accesses is performed post-placement, as explained in the following subsection.

After placing all nodes, the same passthrough insertion step is performed: chains are inserted

by analysing the array bottom to top, so that connections only span 1 row.

5.2.2 Memory Access Scheduling

As Section 5.1.2 presented, the MAM uses a runtime arbitration which selects operations topolog-

ically, or it contains static access schedules. The static schedules are generated during translation

and rely on the load/store placement heuristic to achieve more efficient results.

The static schedule is held in distributed memory in the MAM, which is initialized at synthesis

time with one of the translation tool’s outputs. Each schedule step specifies which memory FUs

are granted access too during each cycle. A single step may grant access to units from different

rows, and the number of schedule steps need not be the same as the number of rows.

Figure 5.5 shows an example of assigning load/store units to execution cycles. Each row

represents a row of the array (i.e., a total of three). Only load and store units are shown for clarity.

The location of the units is the result of the placement process, which allocated all stores onto the

last row, and was unable to pair off the four load units due to the available slack. On the left-hand

84 Accelerators with Memory Access Support

side, the values represent clock cycles. Each is associated to a corresponding row and iteration.

Each unit is annotated with the clock cycle during which it is granted access.

To arrive at this schedule, the translation tool performs a manner of simple simulated execution

by iterating through the rows post-placement. First, loads and stores are placed onto two separate

topologically sorted lists. Per row, the tool first assigns as many unscheduled load units to available

ports (which given the limitation is at most two). If any ports remain free, existing stores are

assigned. The number of remaining free ports per step is tracked during this process.

The simulated execution then does one of two things: 1) advances the schedule step and re-

mains on the same row if necessary (e.g., unscheduled loads prevent execution from continuing),

or 2) advances to the following row, which means the step must also advance if any operation was

scheduled during that cycle, even though a port may still be free. That port may be assigned to

an outstanding store in a future pass through that row. There are two ways to determine when to

advance to the next row: execution advances despite unscheduled stores to prioritize loads in the

following rows, or the schedule ensures that the access order is preserved relative to the original

trace (i.e., all units must be scheduled before execution advances). The former strategy permits

advancing to the next row even if unscheduled stores exist. The later strategy is adopted to prevent

violation of RAW dependencies. Advancing to the next row despite outstanding stores also allows

for the scheduling of said stores during execution of a row without load/store units.

For the example in Fig. 5.5 this process occurs as follows: execution starts in row 1 and the

schedule is at step 1; L1 is assigned to one port during this cycle, and one port remains free;

execution advances to row 2, and the step must advance also; L2 and L3 are assigned to the ports,

execution cannot continue yet due to L4; an additional cycle (i.e., step) is required; as a result this

row requires 3 clock cycles to execute (cycles 3, 4 and 5); execution advances to row 3 and the

schedule to step 4; S1 and S2 are assigned to the ports during this step; execution returns to row

1; the maximum number of steps in the schedule is now determined, since it must repeat from this

point on; store S3 is assigned to step 1 (occurring in parallel with the second execution of L1);

finally, S4 is assigned to step 3. All pending stores are scheduled before their units are activated

again, so they introduce no additional cycles. This scheduling results in both memory ports being

in use during every cycle. The total number of clock cycles required to complete an iteration with

this access scheduling is 6. If a conservative schedule was used, then 7 clock cycles would be

required, since the last row would not allow execution to continue.

For this particular example, if the runtime selection logic had been used, the number of clock

cycles required would be equal. However, this would imply an additional resource cost and most

likely a decrease in operating frequency. As was mentioned before, when using runtime selection

logic each port may be fed only with half the access request signals on the array to reduce com-

plexity and often the critical path. The disadvantage is that a sub-optimal result may be obtained

since a single port may end up connected to a group of loads on the same row, for instance. Using

static schedules simplifies the selection logic in the same manner without this issue.

5.3 Experimental Evaluation 85

5.2.3 Multiplexer Specification

The post-placement step which involved computing configuration register values is replaced by a

similar HDL parameter generation step. Per row, each FU output is given a numerical identifier

starting from zero. During synthesis, the generate loops instantiate multiplexers with one 32-

bit output and a variable number of 32-bit inputs. The following is a synthetic example of the

multiplexer specification file for the array in Fig. 5.1:

Listing 5.1: Excerpt from HDL specification of multiplexers for row 2 of the accelerator in Fig. 5.1

parameter [0 : (33 * 6 * NUM_CONFIGS) - 1] ROW2_CONFIGS = {
{32’h0, 1’b0}, // load1 output 1 -> anl input 1
{32’h1, 1’b0}, // load2 output 1 -> anl input 2
{32’h2, 1’b1}, // add1 output 1 -> pass input 1
{32’h3, 1’b0}, // add2 output 1 -> pass input 1
{32’h3, 1’b0}, // add2 output 1 -> xor input 1
{32’h50, 1’b1} // constant, "0x50" -> xor input 2

};

The row in question has 4 FUs and a total of 6 inputs. Each line of the parameter shown

represents one input multiplexer. Each multiplexer input is specified by two fields. A single bit

field which determines if the associated 32-bit value is a constant, or a numerical reference to the

outputs of row 1. For this example, there is only one configuration, so each row shown (i.e., each

multiplexer specification) contains only one 33-bit parameter.

5.3 Experimental Evaluation

The experimental evaluation presented throughout this section aimed to validate the accelerator

capability for memory access. As such, benchmarks which contained inner loops operating on

data arrays were selected from several benchmarks suites. This section contains comments on the

general characteristics of the generated accelerators (Section 5.3.3), an evaluation of accelerator-

enabled execution versus a single MicroBlaze processor (Section 5.3.4), determines how advan-

tageous the list scheduling and memory scheduling efforts are (Section 5.3.5), reports on the re-

source cost and operating frequency of the accelerators (Section 5.3.7), and finally presents a

short analysis on power and energy consumption (Section 5.3.8). Following are the hardware and

software setups for these experiments.

5.3.1 Hardware Setup

Figure 5.6 shows the system architecture used to validate the accelerator’s capacity for memory

access. The program code and data of the benchmarks reside in local BRAM memories. Two

LMB multiplexers are used drive its ports. Each multiplexer receives signals from one of the

accelerator’s ports, and one of the MicroBlaze’s LMB ports, of which there are two (one for data

accesses and another code instruction accesses). The injector is coupled to the instruction bus

before the multiplexer. Both modules are transparent to the MicroBlaze, and to each other. The

accelerator and MicroBlaze communicate via FSL.

86 Accelerators with Memory Access Support

Figure 5.6: System architecture for validation of accelerator local memory access

The system was implemented on a Digilent Atlys board, with a Spartan-6 LX45 FPGA. The

frequency of the system clock was of 66 MHz for most cases. The MicroBlaze version used was

8.00.a, and it was set for Performance. The integer multiplication, pattern comparison and barrel-

shifter units were enabled. For two benchmarks, the integer division unit was also used.

The implementations in Chapter 4 relied only on explicit calls to vendor timer modules to

measure execution time. This system employs custom timer modules attached to the PLB (not

shown) to retrieve several measurements. The timers are controlled by the injector, accelerator

and MicroBlaze. Using the injector the execution time of the accelerated regions of code only

(as opposed to the entire application) can be measured. The short migration overhead time is

also measured. The accelerator controls a timer to measure execution on the array, and a timer to

measure idle time due to memory access. To measure the total execution time, the benchmarks are

minimally modified so that the first and last lines start and read a global timer which measures the

execution time of the entire application.

5.3.2 Software Setup

A total of 37 benchmarks were used to test the system. The benchmarks originate from Texas’s

IMGLIB library [Tex], the SNU-RT [Seo], WCET [GBEL10], and PowerStone [MMC00] bench-

mark suites and from other sources [Int96, War02, Jen97]. Benchmarks used were ones which

resulted in Megablock traces containing load and/or store instructions. The benchmarks are sepa-

rated into three sets: (A) benchmarks whose source-code has been manually if-converted to remove

short if-else statements; (B) simple benchmarks with a single candidate Megablock resulting from

an inner loop with no if-else statements; (C) larger benchmarks from which several Megablocks

were extracted and accelerated. Xilinx EDK 12.3 was used for RTL synthesis and bitstream gen-

eration. Benchmarks were compiled with mb-gcc 4.1.2 using the -O2 flag.

Regarding set A, note that the rationale underlying the proposed approach of binary accelera-

tion still relies on not modifying the source code. This was done for validation purposes. The code

was minimally modified via if-conversion [AKPW83]. This is a technique which converts high-

level control structures into arithmetic statements. Using this modification, its possible to extract

a single Megablock trace from the loop, as opposed to several traces starting at the same address.

5.3 Experimental Evaluation 87

As a reminder: the present migration mechanism cannot disambiguate between two traces starting

at the same address, and neither translation nor execution of multiple-path traces are supported.

The benchmarks used in the experiments in Chapter 4 were simple calls to an inner loop

function; all benchmarks were structurally very similar in terms of C code. The benchmarks for

sets A and B in this evaluation are similar to those. The benchmarks for set C are relatively more

complex. For instance, the pocsag benchmark from the PowerStone suite is a single file with 500

lines of code. The code is structured such that a complex call graph results from the 8 integer

functions, which operate on several global data arrays.

5.3.3 General Aspects

Table 5.1 shows the characteristics of the detected Megablock traces and of the resulting accelera-

tors. The table is split into three sections, according to the benchmarks sets. The means shown at

the bottom row of each section are arithmetic, and the total mean row accounts for all benchmarks.

The third, fourth and fifth columns show the number of accelerated traces, average number of trace

instructions, and average executed iterations per trace occurrence. These averages account for all

the accelerated traces of each respective benchmark, and are weighted based on the execution

frequency of each trace. In total, 73 traces were targeted for acceleration.

The average number of instructions for the accelerated traces of this set is much higher than

for the implementation shown in Chapter 4. The average number of instructions in the later case

was of 9.5, whereas the average for this evaluation is 40.5. For all the accelerated Megablocks, an

average of 13 % of all trace instructions are loads, and an average of 9 % are stores. That is, there

are on average twice as many loads as stores, which is to be expected, because typically several

input data produce one output datum. Also, a load or store instruction actually corresponds to

two accelerator operations: the memory access is separated into an addition which generates the

address, and the actual access.

The size of the traces increases for two reasons. Firstly, and mostly, inner loop code without

memory handling operations is unrealistically small. The benchmarks for this evaluation contain

inner loops which are larger simply because they implement more realistic processes handling

large amounts of data residing in memory (e.g., two inner loops in b17 with approximately 200

lines of code each). Secondly, the support for load and store instructions allows for a larger

execution scope to be targeted. For example, the benchmarks in set B are (for the most part),

simple code kernels called within a loop construct, as is the case with a6:
1 int crc32(int data) {
2
3 //(...)
4 for(int i=0; i < 8; i++) {
5 //(...)
6 }
7 return ans;
8 }
9

10 //(...)
11 for(int i = 0; i < N; i++) // the accelerated trace for a6
12 output[i] = crc32(input[i]); // begins at this loop boundary
13 //(...)

88 Accelerators with Memory Access Support

This is identical to the test cases in Chapter 4: a inner loop kernel called a predictable number

of times, where each call corresponded to a small number of iterations operating over a single

set of data. Without memory support, the read and write operations present in the outer (calling)

loop at line 12 could not be accelerated. The trace for the innermost loop would be targeted, and

the accelerator would be called a total of N times (in this case). Instead, since the nested loop is

small enough to be unrolled, the Megablock extractor provides a trace capturing the outer loop

code as well. As a result, the trace is larger and the accelerator is only called once. This single call

performs N iterations of the outer loop, corresponding to the total N×8 iterations of the inner loop.

This is also an example of how the Megablock trace detection crosses function call boundaries.

In short, there is a relationship between the scope of code viable for acceleration, the number of

trace instructions, number of iterations and accelerator calls. These last two aspects are especially

correlated. For the 37 benchmarks in this evaluation, the number of accelerator calls is sometimes

data dependant and in some cases the accelerator is only called once (for 7 cases of set A, 9 cases

of set B and 2 cases of set C). The average for the entire benchmark execution is of 475 calls. The

average number of iterations per call is 523.

Supporting larger CDFG also results in larger accelerators. Given the translation method, the

array scales in a linear fashion with the CDFG size. The sixth column shows the number of FUs in

the array, excluding passthroughs and including load and store units. The number of instantiated

units of these types is shown in the following two columns. Relative to the implementation in

Chapter 4, the average accelerator contains 5.8× more FUs (excluding passthroughs), 8.2× more

passthroughs and 3.2× more rows. Section 5.3.7 discusses the effect this has on required FPGA

resources. There are 2.66 passthroughs per every other type of FU. Similar to the number of

memory operations in each trace, the average number of load units corresponds to 11 % of all FUs

(excluding passthroughs), and the average number of store units to 6 %.

Given that the accelerators support multiple loops, not all instantiated FUs are active for all

configurations. Consider then only the cases where the accelerator supports multiple loops. For

each accelerator, the weighted average number of active FUs is computed based on the number of

iterations performed per configuration. These per-accelerator values in turn result in an average of

28.3 FUs being used per configuration out of a total of 48.3. Likewise, for an average total of 5.1

and 2.6 load and store units on each array, respectively, 3.2 and 1.7 are activated per configuration.

Also, within a single configuration, not all FUs are active every clock cycle, given the exe-

cution model and memory access latency. When considering all implemented traces, the average

number of idle FUs per clock cycle is of 28.3 (arithmetic average for all configurations). We can

also compute how many FUs are idle per clock cycle per accelerator instead: 37.6. This is a non-

weighed average, for all accelerators, of the individual weighted averages of each accelerator’s

number of idle FUs (according to the execution frequency of each supported configuration).

By analysing the resulting accelerators, we also find that the average number of rows is 13.6.

The accelerators have two access ports and, for this implementation, an access latency of 1 clock

cycle. Given this, an estimation can be made indicating that: the 3.6+ 2.1 memory operations

can be completed in (5.7/2+ 1) = 3.85 clock cycles. Since 13.3 > 3.85 this seems to indicate

5.3 Experimental Evaluation 89

Table 5.1: Extracted Megablock and generated accelerator characteristics

id kernel # Avg # Avg # # FUs # Passes #ld/st #rows HW
Cfgs. Insts. Iter. IPC

a1 boundary 1 25.0 68.0 24 45 3/2 6 3.13
a2 bubble_sort 1 19.0 62.0 21 71 2/2 10 1.58
a3 changebright 1 20.0 99.0 20 94 1/1 12 1.54
a4 compositing 1 24.0 199.0 24 112 2/1 15 1.50
a5 conv_3x3 1 81.0 149.0 77 233 18/1 19 2.89
a6 crc32 1 131.0 999.0 80 237 1/1 50 2.57
a7 mad_16x16 1 15.0 15.0 16 47 2/0 9 1.36
a8 max 1 13.0 2047.0 14 38 1/0 10 1.18
a9 millerRabin16 1 59.0 8.4 52 52 6/6 6 5.90

a10 perimeter 1 24.0 479.0 28 86 5/1 10 1.85
a11 pix_sat 1 19.0 1999.0 21 81 1/1 14 1.27
a12 rng 1 84.0 499.0 74 154 6/6 18 3.65
a13 sobel 1 52.0 957.0 56 223 8/1 20 2.08

mean 1 43.5 583.1 39.0 113.3 4.3/1.8 15.3 2.35

b1 blit 2 11.0 999.0 13 26 1/2 4 2.20
b2 bobhash 1 10.0 999.0 11 24 1/0 8 1.11
b3 checkbits 1 63.0 499.0 64 169 2/2 16 3.71
b4 checksum 1 149.0 124.0 155 482 8/0 52 2.66
b5 fft 2 28.9 28.9 64 126 10/8 10 2.73
b6 gouraud 1 17.0 1999.0 15 37 0/1 6 2.83
b7 lookup2 1 46.0 999.0 48 105 3/0 22 1.92
b8 motionEst 1 13.0 15.0 13 48 2/1 7 1.63
b9 perlins 1 123.0 1023.0 123 575 4/1 29 3.97

b10 popArray1 1 27.0 100.0 22 94 1/0 15 1.69
b11 popArray2 1 56.0 32.0 46 200 3/0 20 2.55
b12 quantize 1 11.0 199.0 11 35 1/1 6 1.57
b13 sad16x16 1 12.0 15.0 14 39 2/0 8 1.33
b14 ycdemuxbe16 1 14.0 999.0 20 18 4/4 3 2.80
b15 bcnt 1 72.0 15.0 98 155 25/1 13 2.77
b16 Menotti_fdct 2 103.5 53.5 136 291 8/15 17 4.93
b17 jfdctint 1 78.0 7.0 95 171 9/8 11 4.88
b18 fir 1 9.0 16.0 10 26 2/0 5 1.29

mean 1.1 46.9 451.2 53.2 145.6 4.8/2.4 14.0 2.59

c1 pstn_adpcm 7 9.5 6.9 31 40 8/6 6 1.43
c2 pocsag 2 45.4 20.5 67 121 12/0 11 2.84
c3 wcet_adpcm 13 4.3 1386.1 38 50 8/6 7 1.33
c4 edn 6 12.7 51.5 50 79 7/4 9 1.58
c5 jpeg 8 13.0 1320.8 117 193 10/11 14 1.48
c6 g3fax 3 5.9 858.4 18 33 2/1 6 1.26

mean 4.8 15.1 607.4 53.5 86.0 7.8/4.7 8.8 1.65

total mean 1.97 40.5 522.9 48.3 124.6 5.1/2.6 13.6 2.35

90 Accelerators with Memory Access Support

1.56
0.96 1.12 1.53

2.78

1.57
1.02 1.18

0.65
1.37 1.07

7.21

1.71 1.48

0

2

4

6

8

a1 a2 a3 a4 a5 a6 a7 a8 a9* a10 a11 a12* a13 gmean

S
p
ee
d
u
p

2.46

1.55

3.89

2.59

0.93

2.98

1.94
1.29

3.97

2.03 2.19 2.07
1.29

3.94

2.21 2.46

1.05 1.05

2.01

0

2

4

6

b1 b3 b5* b7 b9 b11 b13 b15 b17* gmean

S
p
ee
d
u
p

0.78

1.15 1.10
0.96

0.76

1.10
0.96

0.0

0.5

1.0

1.5

2.0

c1* c2 c3* c4* c5* c6 gmean

S
p
ee
d
u
p

Figure 5.7: Speedups for the three benchmark sets (benchmarks for which the execution frequency
was below 66 MHz are denoted with ∗)

that two ports are, in general, enough so memory access latency does not nullify the performance

gains derived from ILP. Of course this varies on a per-case basis given each CDFG. However, in

general, two low latency ports seem adequate, given the ratio of number of memory accesses to

number of arithmetic operations. Note that this analysis only holds for non-pipelined execution.

5.3.4 Performance vs. MicroBlaze Processor

The seventh column of Table 5.1 shows the number of executed Instructions per Clock Cycle (IPC)

on the accelerator, IPCHW. It is computed as the number of accelerated trace instructions over the

number of clock cycles required to complete an iteration. Unlike the previous chapter, this value is

not the same for all the supported configurations of an accelerator. Firstly, not all rows may need to

activate; for each supported configuration, only as many rows as the respective CDFG’s CPL need

to activate (at best). Secondly, there is the memory access latency. Given this, the IPCHW shown

for each benchmark is equal to a weighted average of these per-configuration IPCHW values.

Likewise, the number of instructions the MicroBlaze executes per clock cycle, IPCSW, can be

computed. This is omitted from Table 5.1, since its value, 0.85, is nearly identical for all cases.

The only exception is a12, which contains 4 integer division instructions, each of which requires

32 clock cycles to execute, resulting in an IPCSW of 0.40.

5.3 Experimental Evaluation 91

Figure 5.7 shows the measured speedups for all the sets. These speedups account for the

execution of the entire application, not just the accelerated regions. Considering all benchmarks,

the accelerated traces correspond to an average of 89 % of the benchmark’s total execution time.

Sets A and B skew this average since, being simpler kernel function calls, the accelerated trace

represents most of the benchmark. For set C alone, the accelerated regions represent 71 % of the

application. Geometric mean speedups are shown for each set, and the overall geometric mean

is of 1.60× For some cases, the system frequency was below the 66 MHz baseline due to the

accelerator. These cases are marked with an asterisk (*) in Fig. 5.7. The calculation of speedup

takes the different clock frequencies into account.

IPC, Overhead, and Speedup The relationship between IPCHW and speedup is the same as

presented in the previous chapter (as shown in Eq. (4.1), page 71); the speedup increases with

the accelerator IPC. The IPCHW is higher if the number of CDFG instructions increases, and

its CPL decreases (note that this is valid for non-pipelined execution). The effect of memory

access support is accounted for in the IPCHW, as additional clock cycles are required to complete

an iteration relative to the accelerator’s number of rows alone. However, the overhead (due to

accelerator-MicroBlaze communication, exacerbated by low iteration count accelerator calls) and

how representative the accelerated traces are both weigh on the final performance.

In general, a speedup is achieved for all benchmarks. Exceptions include a2 and a9, for reasons

explained shortly, and b5. For this later case, both of the accelerated traces are frequent, but for

one of them the iteration call per count is very low. This negates any speedup, despite an IPCHW of

2.60 and 3.46 for the two traces. For set C, half of the benchmarks experience a slowdown. This is

due to the reduction in operating frequency relative to the MicroBlaze-only baseline, the reasons

for which are later explained in Section 5.3.7. The accelerated traces are less representative than

the ones for sets A and B, and fewer iterations are performed per call, increasing the overhead. The

average overhead suffered by sets A, B and C, respectively, is of 7 %, 5 % and 13 %.

As was stated, the accelerated traces represent only a portion of the executed code. The

speedup of a benchmark is influenced by how much execution time each accelerated trace rep-

resents, but the accelerator performance is more evident when considering only the trace execu-

tion time (i.e., the kernel speedup). For all benchmarks, the geometric mean kernel speedup is of

1.95×. For sets A and B this value is 2.16×, and for set C it is 1.13×.

The previous chapter employed a set of 15 integer benchmarks, which is comparable to set B.

The geometric mean speedup of the later case is 1.19× higher than that of the former. Similarly,

the average IPC for the same set is 1.25× higher.

Effects of Memory Access Latency If memory accesses did not incur any additional latency, the

average IPC throughout all accelerators would be 3.00, versus the achieved 2.35. Memory access

operations add an average of 2.5 clock cycles to each loop iteration. The two extremes are b15 and

b6. In the former case, the 25 load operations add 13 clock cycles to the execution of 1 iteration

(over the number of rows alone); for the later case, there is only 1 store operation, which does not

92 Accelerators with Memory Access Support

introduce any additional latency. According to the retrieved measurements, the array’s stall time

corresponds to 17.5 % of all accelerator execution time on average. Stall time accounts for any

additional cycle (that is spent executing memory accesses) beyond the cycle which activates a row.

For instance, a row with a single load represents one clock cycle of stall time.

The worst three cases are a9, b14 and b15. Although these cases do not contain the most mem-

ory instructions per arithmetic operations, the resulting accelerators do contain the most load FUs

per row (considering the average number of active units of this type per configuration, and the av-

erage number of activated rows per configuration). For b15 especially, most of the execution time

is spent accessing memory. Although the two ports allow for roughly twice the access bandwidth

relative to the MicroBlaze (demonstrated by the respective speedup of 2.21×), this approach does

not primarily target this type of workload.

Performance on if-converted Benchmarks Set A contains 13 benchmarks whose code was

modified to via if-conversion. If-conversion typically increases the code size due to the additional

arithmetic implementing what otherwise would be control statements. For example, consider the

following loop with a conditional statement:
1 for (i=0; i<n; i++) {
2 if (v[i] > max) {
3 max = v[i];
4 }
5 }

The following if-converted code is functionally equivalent, but there is only one loop path:
1 for (i=0; i<n; i++) {
2 condition = v[i];
3 asm("cmp %0,%1,%2": "=r" (condition): "r" (max), "r" (condition)) ;
4 condition = condition > 0;
5 max = v[i]*condition | max*!condition;
6 }

Execution of the converted code is less efficient for software-only execution. Due to this, the

speedup for these cases is measured versus the original, non-converted code. On the other hand,

the IPCHW is computed using the number of instructions in the accelerated trace (extracted from

the if-converted code), since it is difficult to determine the number of instructions being accelerated

relative to the non-converted code, due to multiple execution paths and differing binaries.

The if-conversion leads to the only slowdowns for all benchmarks: a2 and a9. When com-

paring accelerator execution to the software execution of the if-converted code, the accelerator

achieves speedups of 1.80× and 0.79×, respectively. The later case still experiences a slowdown

due to the decreased clock frequency of the accelerator-augmented system. Even when comparing

the number of clock cycles alone, this case still suffers a slowdown since each accelerator call

executes only an average of 8.4 iterations.

Accelerating High Latency Instructions The speedup achieved for a12 is the highest for all

benchmarks. Despite the IPCHW for this case not being the highest, the accelerated division

instructions heavily penalize software execution. The four division instructions in the trace re-

quire a total of 128 clock cycles to execute on the MicroBlaze. On the accelerator, three of these

5.3 Experimental Evaluation 93

operations execute in parallel in only 2 cycles. Chapter 6 shows how acceleration of floating-

point instructions achieves the same effect via low latency floating-point FUs which are also fully

pipelined. The trace for this case also contained a total of 12 memory operations. The placement

process minimizes the latency of the loads by scheduling most to the same row, pipelining their

execution. An entire iteration of this large loop requires only 23 clock cycles.

This benchmark and c3 are the only two where a division operation appears in the source code.

Two conditions are required for traces with division operations to be candidates for acceleration:

1) the division unit must be enabled on the MicroBlaze, so that the operation is implemented with

an explicit div instruction, instead of a soft-div implementation; 2) the divider must be constant.

This does not happen for c3, since its division operations are contained in loops which compute a

new divider per iteration. Regardless, the division unit was enabled so MicroBlaze execution was

not penalized. Support for non-constant division is addressed in Chapter 6.

If a software subroutine is used to compute the division iteratively, it may still be possible

to accelerate that routine. This depends greatly on how many execution paths the routine has,

and how frequently the execution alternates between paths. The frequently occurring modulus

operation subroutine displays this behaviour: it is very irregularly structured, contains a large

number of branch operations and execution through its loop paths is very irregular. Although this

routine is very frequent in some benchmarks, it is not a good candidate for acceleration. This is

also an example of how high-level context is lost at the binary level: the trace extraction would

be incapable of inferring that a division operation was being performed by simple observation of

the soft-div routine. In contrast, a high-level synthesis approach would retain this information,

regardless of the processor having, or not, a dedicated divider.

Regarding the constant divider, there are two ways the trace may contain this constant operator:

1) it is explicitly specified in the source code, or 2) the Megablock extraction process performs

constant propagation. The former case is true for rng. The later case demonstrates the kind of

runtime information that is possible with this type of binary acceleration approach. Consider

that a kernel function containing a non-constant division is called from several locations in the

code, with different sets of arguments per call. Although executing a non-constant division is

not supported on the accelerator, it might be possible to arrive at a constant divider based on

propagating the calling arguments. This type of contextual operator specialization is only possible

using runtime data, and the concept extends beyond the present work. For instance, generating

different hardware modules based on a single fir filter function, by knowing the different calling

contexts (i.e., possible sets of coefficient values and/or filter size).

Performance with Multiple Traces The benchmarks for set C resulted in more than one candi-

date trace for acceleration. The traces for these benchmarks contain fewer instructions on average

relative to the other sets. Table 5.1 shows the average number of trace instructions per benchmark

in the fourth column. Note that this value, per benchmark, is an average of all accelerated traces,

weighed by each translated trace’s executed number of iterations. When considering the pool of

all traces for this set (a total of 39), the average number of instructions is 16.1.

94 Accelerators with Memory Access Support

These benchmarks are more complex in terms of high-level control structures, are structured

around sparse conditional calls of short functions which contain small loops with low iteration

counts. For all cases, except c2, most extracted traces originate from such small loops. The

rationale in evaluating the approach with these benchmarks was that the retrieval of binary level

information would expose large frequent paths which would otherwise not be obvious via high-

level analysis of the application. The average number of trace instructions for these cases alone

(excluding c2 and two large traces for c5, for reasons discussed shortly) is only of 9.3. In general,

the benchmarks in this set are too control oriented for large, very frequent, traces to be detected.

The two exceptions are c2, and two traces for c5. For c2, there are two detected traces, which

are paths through a while loop containing several conditional statements and inlined functions. It

was possible to simultaneously translate both Megablocks since each starts at a different address.

For c5, a total of eight traces were accelerated. Unlike other cases for this set, whose several

traces were of similar sizes, two of the traces for c5 both contain 106 instructions. The average

number of instructions for the remaining six traces is 7.8. Although execution of the smaller

traces on the resulting accelerator is not penalized due to supporting the two larger traces, the

resources required to execute the latter two are underutilized for nearly half the time. Considering

all accelerated instructions for all eight traces (i.e., the product of the number of instructions and

iterations performed, for each trace), the the two large traces represent 47.8 % of the execution.

Supporting only the two large traces would not affect the amount of time during which the

required FUs are utilized, as they would still represent the same amount of computation relative to

the entire benchmark. However, the resulting two-configuration accelerator would be less complex

in terms of FU connectivity. The logic relative to the MAM would also be simpler, since less

load/store units would be instantiated. For this accelerator design, supporting multiple traces must

take into account their respective resource utilization, especially if the CDFGs are very distinct

topologically. Even for a set of very similar CDFGs, the overall accelerator performance (in terms

of frequency and increased resources) might be penalized by supporting a additional configuration

which is infrequent relative to the rest. For a large set of traces, a more adequate design choice

might be to deploy several accelerators, each targeting a subset of similar CDFGs. Benchmark

c5 is in fact one of the cases for which the accelerator complexity required lowering the system

operating frequency. Details on accelerator operating frequency are presented in Section 5.3.7.

Potential Speedups and Other Comparisons As with the IPCHW, we may also compute the

optimal speedup for a system free of memory access latency. This can be done easily by taking

the number of clock cycles spent on accelerator execution, and subtracting that count from the

total. Since the number of iterations performed is known, an estimated execution time is added

back using the ideal IPCHW values. For all benchmarks, the geometric mean speedup becomes

1.82×. The three benchmarks which would benefit the most from a potential decrease in access

latency are a5, b14 and b15. Although a9, along with b14 and b15, suffer the most memory

access latency, as shown previously, the speedup does not increase significantly for a9. This is

because the accelerated trace represents a small portion of the entire benchmark. Specifically, the

5.3 Experimental Evaluation 95

Table 5.2: Number of cycles required to complete an iteration and respective IPC, for greedy and
optimization-enabled allocation

ID Megablock IPC (greedy) CPIter (greedy) IPC (optim.) CPIter (optim.)

a5 1 2.79 29.0 2.89 28.0
b4 1 2.61 57.0 2.66 56.0
b5 2 3.21 14.0 3.46 13.0
b9 1 3.84 32.0 3.97 31.0

b14 1 2.00 7.0 2.80 5.0

b16
1 4.41 22.0 4.62 21.0
2 4.86 22.0 5.10 21.0

c4 1 1.25 8.0 1.43 7.0

c5
2 5.58 19.0 5.89 18.0
7 5.58 19.0 5.89 18.0

mean 3.61 22.9 3.87 21.8

time spent on the accelerator is 2.3 % of the total execution time. The accelerated kernel function

corresponds to the deeper layer of a function call chain whose outer layer functions contain loops

with modulus operations. As was previously explained, the built-in routine for calculation of the

modulus is not viable for acceleration, despite representing most of the computation time for a9.

Regarding potential speedup, recall that some of the tested cases suffered from decreased

operating frequency due to the accelerator complexity, leading to sub-optimal speedups. We can

instead compute the speedups based on number of clock cycles alone, which reflects that potential

acceleration by exploiting instruction and data parallelism. The resulting geometric mean speedup

for set A, B and C is of: 1.54×, 2.11× and 1.25×, respectively. The accelerator design presented

in the next chapter is more efficient, avoiding decreases in clock frequency even for accelerator

instances with numerous configurations.

Finally, a small evaluation of the PLB-interface based accelerator was also performed using

7 of these benchmarks. Also, for this evaluation, the translation process did not perform list

scheduling, did not attempt to optimize memory port usage via intelligent placement of loads and

stores, and employed the runtime arbitration for the MAM. The resulting geometric mean speedup

was of 1.44×, versus a speedup of 1.85× in this evaluation, for the same subset. The following

section discusses the effects of memory access optimizations further.

5.3.5 Effects of Memory Access Optimizations

The performance results shown so far relied on translation runs which placed load/store FUs ac-

cording to the cost metric explained in Section 5.2.1 (by making use of list scheduling), and which

generated the MAM static schedules by allowing stores to be postponed (as per the example in

Fig. 5.5). An initial implementation of the translation tools instead performed a greedy placement

and scheduling. Units were placed as early as possible, without regard to any units of the same

type already present, and the static access schedule did not allow for stores to be postponed.

96 Accelerators with Memory Access Support

All 73 detected traces were processed with this later approach to arrive at a comparison be-

tween the two cases. For 63 out of all 73 traces, no improvement is found in terms of IPC.

Table 5.2 shows the 10 traces for which the achievable IPC increased. The average increase in IPC

is small for all cases, being of 9 % on average. Any improvement in IPC is a result both of the FUs

placement and of the static access schedule. We can observe that the former has little impact, and

that most of the optimization is due to the later.

Pair-Aware Placement In Section 5.2.2, the placement cost metric used by the translation tool

for these units was explained: a cost of 2 when placing a unit on a row with no units, 1 if the row

has an even number of units, and 0 for an odd number. In truth placing a new unit in a row with

an even number of units incurs the same cost than placing it in a row which contains no units.

As an example, consider an accelerator with two rows, and a total of 3 load nodes to place.

Placing all three loads on the first row would lead to an execution latency of 3 clock cycles for that

row: the activation cycle during which other FUs execute and during which the access strobes for

the first pair of loads are concurrently issued; a second cycle to read the data for the first pair of

loads and issue the access strobe for the third load; and a third cycle to read the third datum. These

three cycles would add to the one clock cycle required by the second row (without load), totalling

four. If two loads were placed on the first row and another on the second, the first row would

require 2 cycles, and the second 2 cycles, hence the result would be equal. The same would apply

for the placement of four loads into two rows: the total number of cycles would be minimized by

minimizing the number of rows with an odd number of units.

This is not completely unexpected by mere inspection of the accelerator’s execution model.

Consider a total number of N memory operations to execute. Placing each on a different accelera-

tor row means a penalty of N additional cycles per iteration. At best, this is reduced to N/2, if all

accesses are paired. However, even for this subset of 10 cases, an as-soon-as-possible placement

for these units leads to a near optimal placement, as only one or two units are left unpaired at most.

In short, only one clock cycle is typically gained by pairing-aware placement.

Store Postponing Postponing stores to later cycles is a conjunction of two effects, depending

on whether they are postponed to: 1) execution cycles pertaining to the same iteration or 2) cycles

belonging to the next iteration (at most). The former case is essentially equivalent to placing the

store at a lower (i.e., later) topological level. The later is a limited form of loop pipelining, where

only store operations of up to two consecutive iterations are partially overlapped.

This is evident for b14, and in a smaller degree for b5. These cases contain the most stores

per other type of operation, meaning that optimizing their execution has greater impact. This

is especially true for b14, whose number of accelerator rows is only 3. The number of stores per

arithmetic instructions correlates with the differential increase in IPCHW with a coefficient of 0.96,

whereas there correlation with the number of loads per arithmetic instructions is only of 0.57.

5.3 Experimental Evaluation 97

(a) (b) (c) (d)

Figure 5.8: Effects of list scheduling on instantiation of passthrough units

In general, the inherent limitations of this execution model hinder these optimization efforts.

These findings lead to a re-design of how operations are executed on the accelerator, especially

memory operations, in order to decrease their impact on performance, as shown in Chapter 6.

5.3.6 Effects of List Scheduling on Functional Unit Reuse

List scheduling has an effect on the total load/store latency within the context of one configuration,

but mostly it affects FU re-utilization between configurations. To evaluate this, the translation tool

was run with list scheduling disabled for the 9 benchmarks with multiple configurations. The

average decrease in the number of required FUs (including passthroughs) due to list scheduling is

only of 1.7 (2 %). When discriminated, the average decrease in number of required FUs, excluding

passthroughs, is of 1.8, and the number of required passthroughs actually increases by 0.1.

The list scheduling process has direct and indirect effects on several aspects: the total number

of arithmetic (i.e., non-passthrough FUs), the total number of passthroughs, and the number of

FUs that are saved (i.e., not instantiated via re-utilization of existing available FUs by list schedul-

ing search). This is exemplified in Fig. 5.8. The effects of list scheduling on the final result end

up being very unpredictable since the process is essentially a local, per-node, search. Thus it is

removed from the overall context of the CDFG, and from the order in which CDFGs are translated.

Effect on Number of FUs Due to this, re-utilizing a given FU might actually result in an in-

crease in the total number of FUs. For instance, a node a feeds nodes b and c. When placing an

FU for node a, its latest possible position is used to re-utilize an existing compatible FU, which

avoids the instantiation of one new FU at any one earlier row. However, when placings nodes b

98 Accelerators with Memory Access Support

and c, any two existing compatible FUs that remained in rows preceding the row chosen for node

are now unreachable. Two new FUs may have to be instantiated (Fig. 5.8a).

Effect on Number of Passthroughs The number of passthroughs is especially unpredictable

since insertion of passthroughs is performed post-placement, and the list scheduling search is un-

aware (i.e., it does not predict) of the effects of assigning a node to a particular row. Moving a

node through its range of rows has a number of effects on passthroughs: 1) if the node is between

two other arithmetic nodes, which are themselves bound to a single position, the number of pass-

throughs required to complete the connections between all three will be the same regardless of

the row chosen (Fig. 5.8b); 2) moving either an exit type or store operation downwards relative to

its earliest possible position to re-utilize an existing FU may implies an increase in the number of

passthroughs, since these two types of nodes have no outputs themselves (Fig. 5.8c); 3) nodes typ-

ically have two inputs and one output, so moving a node downwards to re-utilize a unit decreases

the amount of passthroughs between that node and any downstream consumer nodes, but may lead

to a greater increase of passthroughs preceding the node in order to feed its inputs (Fig. 5.8d).

Effect of Order of Translation on Placement The list scheduling of each individual node is

itself a local search, but the order in which a set of CDFGs is translated also influences the final

number of FUs. The translation of each CDFG is under initial conditions due to the translation of

the previous CDFGs. Consider the following examples, and that henceforth passthroughs are not

included when numbers of FUs are mentioned.

As a first example: the two similarly sized CDFGs for b16. Both CDFGs contain nearly the

same number of nodes (115 and 105), and depth of 17 and 16 levels. The total number of FUs and

passthroughs when translating the CDFGs without list scheduling is independent of the order of

translation. For this case, there are 129 FUs. A total of 91 FUs are reused due to the similarity of

the CDFGs, regardless of translation order. Enabling list scheduling, and translating the CDFGs

starting with the smallest, the total number of FUs is 136. This minor increase took place and only

84 FUs were reused when translating the second CDFG. Reversing the translation order yields a

total of 132 FUs . In this case, 88 FUs are reused when translating the second CDFG.

As a second example, consider two of the CDFGs for c6, one being composed of 11 nodes,

and the second of 106 nodes. Without list scheduling, the total number of FUs is of 109; 8 are re-

utilized when translating the second CDFG, regardless of translation order. With list scheduling,

the number of FUs is nearly the same for both translation orders (109 and 108). But translating

the smaller CDFG first does lead to 19 fewer passthroughs being required.

Even for a single CDFG to translate, the different positions of nodes with available slack would

affect the total number of passthroughs, since an FU’s position may influence the number of

upstream and downstream passthroughs as previously explained. However, the exploration of

list scheduling in the translation tool was geared towards reusing existing non-passthrough FUs

(reuse of these units is performed during a later translation stage). This is why some CDFGs,

5.3 Experimental Evaluation 99

when translated after previous translations have taken place, end up requiring less passthroughs

compared to a run when they are processed first. The existence of previous FUs when translating

a new CDFG causes different node positions to be explored, leading to this side-effect.

For this accelerator architecture, this has an influence that is hard to quantify in terms of

resources. additional passthroughs which appear due to node movements do not represent addi-

tional FFs cost„ they may increase the complexity of the interconnections. However, the number

of passthroughs would become significant for a multi-row architecture capable of pipelining (i.e.,

activation of multiple rows concurrently). In this scenario, data must be properly synchronized

between rows (as per a typical fully pipelined datapath). Additional register stages which appear

as a consequence of the list scheduling process could imply significant additional resources.

To conclude, the list scheduling efforts for this particular architecture do not yield any sig-

nificant improvements. Additionally, even if a decrease in number of arithmetic FUs had taken

place, it is difficult to relate these high-level design aspects to low-level resources (i.e., LUTs and

FFs), due to both the fact that other accelerator architectural aspects vary in function of this and

the effects of the synthesis tools optimizations.

5.3.7 Resource Requirements and Operating Frequency

Figure 5.9 shows the resource requirements of the accelerators, and the reported synthesis fre-

quency. The resources (left-axis) are normalized to the resource requirements of a single MicroB-

laze: 1361 LUTs and 1028 FFs (according to synthesis reports). Considering all cases, the average

accelerator requires 2.8× the LUTs and 2.6× the FFs that of a MicroBlaze. The average accelera-

tor corresponds to approximately 50 % of all system resources (excluding BRAMs). The average

number of slices for the entire system is 2027. According to post-map reports, a MicroBlaze

requires 640 slices. As a side note, each LMB multiplexer requires 308 LUTs and 147 FFs.

For this accelerator architecture, the number of FUs (including passthroughs) does not corre-

late strongly with the number LUTs. The correlation coefficient is of 0.50. Relative to FFs the

coefficient is 0.72. By excluding passthroughs, these two values become 0.72 and 0.89. This is

expected since: 1) the specialized connectivity represents LUT costs which do not necessarily

scale linearly with the number of FUs and are also affected by multiple configurations; and 2) the

passthroughs are no longer registered in most cases.

The accelerator for c5 requires the most LUTs. Although its does not contain the most FUs,

nor the highest number of rows or configurations, the joint complexity of these factors results in

the highest resource requirement in terms of LUTs. The largest accelerators in terms of number of

FUs are actually those for b4 and b9, which are also two of the five cases with the highest number

of rows. Despite this, they both require approximately half the LUTs of c5, and the comparable

case of b16, due to supporting only one configuration. The cases for which resource requirements

were lower are, predictably, those with fewer FUs and supporting only a single configuration.

The connectivity specialization gains can be measured against the resource requirements from

the accelerators in Chapter 4. Considering all cases, the accelerators for this evaluation require

0.90× the LUTs and 1.69× the FFs relative to the average accelerator in Chapter 4 (including the

100 Accelerators with Memory Access Support

1.33
1.89

0

50

100

150

200

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

F
re

q
u
en

cy
 (

M
H

z)

R
es

ou
rc

es
 (

N
or

m
al

iz
ed

)

Accelerator LUTs

Accelerator FFs

Accelerator Synthesis Frequency (MHz)

12.09

8.15

0

50

100

150

200

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

F
re

q
u
en

cy
 (

M
H

z)

R
es

ou
rc

es
 (

N
or

m
al

iz
ed

)

0

50

100

150

200

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

F
re

q
u
en

cy
 (

M
H

z)

R
es

ou
rc

es
 (

N
o
rm

al
iz

ed
)

Figure 5.9: Resource requirements and synthesis frequency of the generated accelerators.

two multi-configuration cases). The decrease in LUTs is most likely related to the connectivity

specialization. The increase in FFs is related to the increase in number of FUs, as each non-

passthrough FU registers its outputs.

For a better comparison, consider a subset composed of the 15 benchmarks containing the

least amount of FUs (excluding passthroughs), taken from all three sets of this evaluation. The

average number of FUs in this subset is 16, which is still 1.92× as much as the average for the

15 single-configuration cases in Chapter 4 (i.e., excluding m1 and m2). Still, the average number

of required LUTs and FFs is 0.38× and 0.89× relative to that case, respectively. As a second

comparison consider the multi-configuration cases of Chapter 4 (m1 and m2), and cases c1, c3,

and c6, which have a similar number of FUs, passthroughs and configurations. These three cases

required an average of 0.63× the LUTs and 0.89× the FFs relative to m1 and m2.

The average synthesis frequency is 97 MHz when considering all benchmarks, but there is

a distinct behaviour between sets in terms of operating frequency. For set A, the if-conversion

process adds at least one multiplication instruction to the trace. As a result, the frequency for all

cases is identical (save one) because the critical path is the same in all instances: it occurs due

5.3 Experimental Evaluation 101

to the multiplication FU. For a12, the division FU contains the same multiplication logic, and

requires additional arithmetic, leading to a slightly worse synthesis frequency. The critical path is

due to an inefficient multiplication FU. The first accelerator design required single-cycle FUs, so

the multiplication was implemented as a combinatorial operation, which was reused in this design.

For set B, there is a greater variability in synthesis frequency. For b5, b9, b12, and b16 through

b18, an instantiated multiplication unit is again the cause of the critical path. For the remaining

cases, there is no single reoccurring critical path throughout all accelerators, but the critical path

for each typically involves signals from the memory port logic. The frequency for these cases

varies relatively little (a standard deviation of 18.4 MHz around a mean of 140.2 MHz). Consider

again the subset of 8 kernels tested with the PLB based accelerator, which instead of the static

memory access schedules employs the runtime arbitration. The average synthesis frequency is of

107.7 MHz, versus the 122.2 MHz for the same subset according to the results shown in Fig. 5.9.

For set C, every critical path includes a multiplexer followed by an FU (either a multiplier

or the carry chain of an adder), except for c3 and c6, where memory access logic introduces the

critical path. The average number of LUTs for the accelerator in set C is 2.19× that of set B, and

the frequency is 0.69× lower. This is a considerable downturn in cost per performance, especially

since the geometric mean speedup is 0.96× (only three cases benefit from a modest speedup).

The synthesis frequency of the accelerator is lower than the baseline 66 MHz only for a12 and

c3, but when accounting for the entire system, 9 systems operate below the baseline frequency.

These cases are marked with an asterisk (*) in Fig. 5.9: c5 operates at 33 MHz and the remaining

cases at 50 MHz. For c5 the passthroughs in the first and third rows were registered, to attempt a

reduction in critical path length. For all other cases, the passthroughs were not registered.

Decreases in frequency occur mostly for set C, for which the accelerators are much larger than

the average. For instance, the number of LUTs required by the accelerator for c5 corresponds

to 96 % of all system LUTs. This corresponds to over half the LUTs on the device. This in

itself justifies the lower synthesis frequency as the designs become more constrained, although it

is merely a consequence of employing a low-end Spartan-6 FPGA. The largest system for these

experiments, c5, requires 5929 slices. This is not a large design relative to high-end devices (e.g.,

the Virtex-7 family, with up of 74650 slices), but represents 87 % of the Spartan-6 FPGA used.

Regardless, this type of multi-row design and translation quickly becomes less viable for large

traces, especially if a rich connectivity to support multiple configurations is desired. This, in

part, lead to the final accelerator design presented in the next chapter, which deals efficiently with

multi-loop supporting, incurring very little cost for additional supported loop, registering nearly

no decrease in operating frequency, and maximizing the performance of each CDFG.

5.3.8 Power and Energy Consumption

Augmenting a MicroBlaze with an accelerator has consequences both for performance and for

power and energy consumption. The additional hardware implies additional power consumption,

and in migrating some of the application execution to it, the power consumption of the MicroBlaze

and remaining system elements varies as well. The application domain targeted by this approach

102 Accelerators with Memory Access Support

Table 5.3: Power consumption for software-only and accelerated runs

ID
Software-only Power Accelerator-enabled
Consumption (mW) Power Consumption (mW)

System MB BRAM System MB BRAM Acc.

b15 145.78 15.46 8.76 141.79(-3%) 11.58(-25%) 6.26(-29%) 0.38
b17 149.84 19.87 7.72 144.74(-3%) 15.16(-24%) 5.76(-25%) 0.14

c1 148.69 18.67 8.80 139.64(-6%) 8.45(-55%) 5.28(-40%) 3.35
c2 147.24 17.25 8.45 141.38(-4%) 12.11(-30%) 5.91(-30%) 0.87
c3 127.06 8.32 1.90 123.34(-3%) 4.63(-44%) 1.10(-42%) 0.70
c4 149.04 19.38 8.93 127.18(-15%) 2.09(-89%) 1.75(-80%) 5.89
c6 150.39 18.97 8.39 132.88(-12%) 5.71(-70%) 3.47(-59%) 4.47

mean 145.43 16.85 7.56 135.85(-6%) 8.53(-48%) 4.22(-44%) 2.26

Table 5.4: Energy consumption for software-only and accelerated runs

ID
Software-only Energy Accelerator-enabled

Consumption (uJ) Energy Consumption (uJ)
System MB BRAM System MB BRAM Acc.

b15 2.61 0.28 0.16 1.15(-56%) 0.09(-66%) 0.05 (-68%) 0.00
b17 2.89 0.38 0.15 2.66(-8%) 0.28(-27%) 0.11 (-29%) 0.00

c1 108.32 13.60 6.41 130.56(21%) 7.90(-42%) 4.94 (-23%) 3.13
c2 74.50 8.73 4.28 62.13(-17%) 5.32(-39%) 2.60 (-39%) 0.38
c3 38.37 2.51 0.57 34.00(-11%) 1.28(-49%) 0.30 (-47%) 0.19
c4 130.29 16.94 7.81 115.79(-11%) 1.90(-89%) 1.59 (-80%) 5.36
c6 2285.95 288.35 127.53 1834.21(-20%) 78.82(-73%) 47.90 (-62%) 61.70

mean 377.56 47.26 20.99 311.50(-15%) 13.66(-55%) 8.21 (-50%) 10.11

are embedded tasks. Depending on the specific application, the relevant metric might be either

energy (for energy-constrained systems) or power (for applications which execute continuously

during an indeterminate period of time).

To estimate the power consumption of both software-only and accelerator-enabled runs, a sub-

set of the implemented systems was put through ModelSim simulation. For each benchmark, the

respective post-place-and-route system was simulated to application completion. The testbench

generated a node activity file which was used by Xilinx’s XPower Analyzer to estimate a hier-

archical breakdown of the average power consumption. The total energy consumption was thus

computed from the execution times.

Table 5.3 and Table 5.4 show the power and energy consumption for 7 benchmarks, mostly

from set C. The first three columns show the hierarchical power consumption for software only

execution, and the following four for accelerator-enabled execution. The System category accounts

for all components (MicroBlaze, BRAMs and accelerator included). The last three columns show

the changes in energy consumption, percentage-wise, by taking into account the execution time for

each case. The execution times are computed given the operating frequency of each case and the

5.4 Concluding Remarks 103

number of clock cycles required to execute the benchmark, as measured by timer/counter modules.

In general, the energy consumption decreases for all cases, despite the fact that the operating

frequency is of 50 MHz for b17, c1, c3 and c4. Directly comparing the energy consumption of

these benchmarks is not very conclusive, due to the different running times of each case.

There is a general marginal decrease in average power consumption for the entire system. Re-

gardless of the total execution time and total energy consumption, the average power consumption

for the MicroBlaze and BRAMs decreases for all cases, the averages being of 48 % and 44 %,

respectively. The greatest decreases in power consumption by both the MicroBlaze and BRAMs

happen for c1, c4 and c6. This is due to the number of iterations executed on the accelerator for

these cases being the highest for this subset, i.e., more work is offloaded from to the accelera-

tor. The decrease in BRAM power consumption is related, since the accelerator does not have to

access it to retrieve instructions; the total number of data accesses, however, remains the same.

For c1 and c2, the operating frequency of the system, when augmented by the accelerator, was

of 50 MHz. As a result, there were marginal slowdowns. For c1, the relationship between de-

creased power and increased runtime actually resulted in an increase in total energy consumption.

For c4, the trade-off was beneficial, energy-wise, leading to a small decrease in energy consump-

tion in exchange for a decrease in total execution time. Note however that the decrease in operating

frequency penalizes the portions of the application which do not execute on the accelerator.

Executing the most code in the accelerator for these cases also means its power consumption

is higher, but for all three cases the accelerator consumes less power than what was saved on the

remaining system. For the entire subset, the average increase in power consumption due to the

accelerator is of 2.26 mW, whilst the difference in total power consumption is of 9.58 mW, in

favour of the accelerator-enabled run. The power analysis also breaks down consumption into

total and dynamic. In this evaluation, the dynamic power consumption is of relevance, since any

differences are due to the different switching activities of the MicroBlaze and accelerator. The

average decrease in dynamic power is of 4.29 mW, which corresponds to a decrease of 3.58 % in

dynamic power alone, and 2.10 % of the total power consumption.

5.4 Concluding Remarks

The main contribution presented in this chapter is the flexible support for accelerator memory

access. By allowing for the accelerator to directly access the entire data memory of the processor,

without incurring data transfer overhead, it is possible to accelerate a wider range of trace loops.

This is very significant as data-oriented loops operate on one or more input data arrays or streams,

typically producing a set of data per iteration. The support for two concurrent accesses to arbitrary

addresses efficiently exploits data parallelism, as the experimental results demonstrated.

Additionally, the translation tools were modified in an attempt to better utilize FUs by em-

ploying list scheduling. Although a minor improvement was observed, it only occurred for a

small subset of all targeted traces. The re-utilization of FUs in this manner is limited by the node

mobility, and is also a function of the similarity between the CDFGs being translated.

104 Accelerators with Memory Access Support

The greatest improvement on resource requirements, relative to the previous accelerator imple-

mentation, was the specialization of the inter-row connectivity. Since less reconfiguration infor-

mation is required the migration overhead is decreased. The resource requirements also decrease,

with the average accelerator instance requiring approximately as many resources as a MicroBlaze

processor. Abandoning the crossbar based design is a valid design decision, since the connectivity

is effectively known a priori. General interconnects such as crossbars are more appropriate for

scenarios where the configuration information is generated during runtime (i.e., on-chip).

A significant limitation of the architecture presented in this chapter is the lack of exploitation

of intra-iteration ILP. That is, the accelerator is only capable of concurrently executing operations

belonging to the same trace iteration. As a result, many FUs remain idle during accelerator exe-

cuting at any one given time. Finally, the lack of support for floating-point operations also hinders

the applicability of the approach. The following chapter deals with these two issues by relying on

loop-pipelining and introducing fully-pipelined FU for floating-point operations.

Chapter 6

Modulo Scheduling onto Customized
Single-Row Accelerators

In the previous chapters it was shown that accelerating the targeted loop traces, i.e., Megablocks,

results in noticeable performance improvements over a software baseline. The multi-row accelera-

tor architectures and tool chain proved sufficient as proofs of concept for the transparent binary ac-

celeration approach. Augmenting the first accelerator design with memory access support further

demonstrated the acceleration possible with straightforward and automated accelerator generation.

However, the presented multi-row architectures still suffer from some drawbacks. Firstly, there

are resource considerations. Since the multi-row array is a one-to-one translation of CDFGs, the

amount of required resources becomes prohibitive for large CDFGs. Large CDFGs are typically

extracted from large loops, which means that being unable to accelerate these regions decreases

the applicability of the approach. Also, as the number of Megablocks used to generate a multi-row

accelerator increases, the resource requirements due to multiplexers also increases considerably.

Secondly, directly translating CDFGs into a multi-row array is inefficient in terms of resources,

since the execution model is intrinsically defined by the structure of the graphs. The re-utilization

of each FU is limited, since only local searches within the list scheduling range of each node

are performed. For instance, an add FU in the first row cannot be reused by a node which must

be scheduled between the third and fourth rows. A new FU is required, and the add in the first

one may not even be used at all during that time. Also, for the presented architectures, only one

row is active at any single time, which leaves all other resources idle. Each row of the array

represents one topological level of the CDFG, so loop pipelining could be achieved by backwards

connections, increasing the per-cycle utilization of resources. However, this still would not be an

optimal solution. For example, if the Initiation Interval (II) is 2, then each row is idle for one

out of two clock cycles; if the II is 3 then each row is idle for two clock cycles out of every

three. The II can also increase considerably due to access contention to the limited number of

memory ports. Adding pipelining capabilities to the accelerator would only worsen this, since

more memory access operations would activate per-cycle. Appendix A demonstrates these effects

with an implementation of the multi-row architecture, augmented with loop-pipelining.

105

106 Modulo Scheduling onto Customized Single-Row Accelerators

Figure 6.1: Accelerator template, containing one row of Functional Units and a possible register
pool structure, feeding back into multiplexers

This chapter presents an accelerator architecture which addresses these issues in a different

manner. Like previous implementations, the accelerator is a heavily parametrizable module, cus-

tomizable at synthesis time. Figure 6.1 shows the simplified architecture template. Unlike previous

designs, this architecture is based on a single customizable row of FUs, similar to a VLIW lay-

out. Previous implementations relied on directly translating the structure of CDFGs into hardware

elements. Instead, this implementation relies on a scheduler which efficiently generates compact

accelerators by instantiating FUs while modulo scheduling operations.

Adopting a template based on a single row comes from the realization that multi-row designs

are adequate when the required inter-FU connectivity is unknown. Namely, inter-FU connectiv-

ity must be rich enough to increase the likelihood that future graphs/loops can be successfully

mapped, Simultaneously, it must not be too complex due to resource costs, e.g., full crossbars.

A mesh design addresses the connectivity issue by transporting data between nearest neighbours

and using the FUs themselves to transport data. A row-based array relies on a single direction for

data-flow and instead increases the amount of FUs to ensure that graphs can be mapped.

For both cases, the translation/scheduling tools must be sophisticated enough to keep track

of data as it travels through the array, especially when loop pipelining via modulo scheduling.

For a row based design, scheduling requires spatial awareness along the width of the array and

temporal awareness along its height. In either case, it is more difficult to find valid schedules as

the interconnect, FU and storage availability decreases.

In summary, data transport and storage dictate much of the design aspects of an accelerator,

more so than the availability of FUs. By generating fully custom accelerators, and not only con-

figuring an existing accelerator structure, a simpler single-row model for allocation of units can

instead be used. The connectivity and registers for storage can be specified after node scheduling

and FU instantiation, implementing only the required connections to fulfil the data flow required

by the translated graphs. The consequence of spatially compacting the accelerator architecture into

a single row is that FUs are better utilized. All topological levels of the CDFG are executed by the

6.1 Accelerator Architecture 107

same resources. The previous multi-row designs remain (reasonably) adequate for loops with an

II of 1, since resource utilization is increased. However, the single-row architecture copes more

efficiently with graphs containing more load/store operations. Also, large CDFG are supported

more efficiently, since the accelerator size does not scale linearly with the size of the CDFGs.

Throughout this chapter the single-row modulo scheduled accelerator is presented and evalu-

ated. Section 6.1 details its architectural aspects. The main differences relative to previous im-

plementations are the full support for single-precision floating-point operations and the execution

model, which efficiently implements loop pipelining.

Supporting floating-point operations allows for targeting realistic embedded workloads. These

types of operations require several arithmetic steps which could lead to critical paths if imple-

mented in a single clock cycle, so some of the developed floating-point FUs are multi-cycle.

This meant adapting the accelerator accordingly. Unlike a VLIW however, these units are fully

pipelined, meaning that a floating-point operation can be completed every cycle on the same FU.

Also, the scheduler is sophisticated enough so that multiple other single-cycle operations continue

to be issued on other FUs while a previously activated multi-cycle unit operates.

The supporting scheduler is shown in Section 6.3 along with a complete scheduling example.

In Section 6.4 contains an extensive experimental evaluation of the fully implemented accelerator

for a total of 25 benchmarks (13 floating-point kernels and 12 integer kernels). This architecture is

also compared with several fixed-resource accelerators in Section 6.5 (e.g., instances with a fixed,

manually specified, number and type of units) to determine the advantages and disadvantages of

employing the type of proposed full customization approach. Section 6.6 the modulo scheduled

accelerator is also compared with several VLIW processors, via Hewlett Packard’s VLIW Example

(VEX) simulator [FFY05], and the open-source ρ-VEX processor [SABW12].

6.1 Accelerator Architecture

Figure 6.1 shows the simplified template for the single-row accelerator. It includes: input and

output registers; a set of 32-bit FUs; two load/store ports present in every accelerator instance;

multiplexers to route FU inputs; a register pool of 32-bit registers to hold operands/results; and a

configuration memory. This memory is read-only and implemented with LUTs (i.e., distributed

memory). Specialization of this template involves determining the number of: input and output

registers; FUs and their type; the number of registers in the pool and their layout. Also, multiplexer

connectivity is specified and a set of configuration words is generated per supported loop trace.

The input and output registers hold data exchanged with the MicroBlaze via an FSL interface

(from GPP and to GPP). Operands are shifted into the input registers, which are fed into the

FUs. These registers are read-only; they hold values that are valid for the first iteration (e.g.,

initial value of an iterator variable) and values that remain constant throughout all iterations (e.g.,

iteration bound or a base address for memory accesses). The output registers are fed by the FU

outputs. Since modulo-scheduling overlaps loop iterations, multiple values for the same variable

may be produced before a single iteration (i.e., a full set of output values) is complete.

108 Modulo Scheduling onto Customized Single-Row Accelerators

To address this, each FU drives a chain of registers which hold the output values of the CDFG

operations it executes. Each chain’s length is determined during scheduling, by computing how

long each value needs to live until it is consumed by all downstream operations. This is exemplified

by FU1 in Fig. 6.1, where results for two CDFG nodes, a and b, for iterations i and i+1, are stored.

The multiplexers are specified based on the knowledge of where every computed result resides

at every time step, which is known since the schedule is static. The required values per FU input are

fetched from the appropriate register, based on the CDFG operations the respective FU executes

(shown in grey in Fig. 6.1). For example, the value ai might be produced during time step 1, and

be consumed during timesteps 2 and 3. Value ai can be read from the first register in the chain

during timestep 2, but if bi is produced in the same timestep, then ai will be read from the second

register during time step 3. This information is kept for all generated values during scheduling and

is used to generate the required connectivity and configuration words.

An accelerator instantiation will contain as many FUs as necessary to achieve a minimum II for

all the scheduled loops. Integer and single-precision floating-point arithmetic and comparison op-

erations are supported, as well as bitwise logical operations. Other operations include conversion

from floating-point to integer and vice-versa, and a set of units to evaluate termination conditions.

Each FU implements a single operation type, except for floating-point addition and subtraction,

which are implemented in a single FU. All FUs are pipelined, except for the non-constant inte-

ger division and floating-point division, which are multi-cycle units. Implementing pipelined FUs

avoids the need to increase the II while scheduling by effectively increasing resource availability.

Most integer units have a latency of 1 clock cycle, except for the division FU (35 clock cycles).

A specialized integer division module provides division by a constant with a latency of 3 clock

cycles (via reciprocal multiplication). Like the MicroBlaze processor, the floating-point units do

not support denormalized operands or issue denormalized results. The floating-point addition,

multiplication and division units have latencies of 4, 3 and 32 clock cycles, respectively.

Memory access patterns can be arbitrary, since the loop operations which generate access

addresses are also executed on the accelerator. A constant memory access latency is assumed

when generating schedules, but the accelerator is also capable of stalling when an access takes

longer than the expected time. Since the implementation presented here relies on on-chip FPGA

memories, the load/store units have a latency of 2 clock cycles.

6.1.1 Execution Model

The accelerator is idle until it receives a single 32-bit word via a separate FSL (not shown). This

determines which configuration words to read from its internal configuration memory, which FU

will fed each output FIFO, and how many operands to expect from the GPP before executing.

Operands are received via FSL in a specific order, as the accelerator expects each particular

processor register value to reside in a given input register. After the expected number of operands

is received, the accelerator sets the starting address into its configuration memory according to the

loop to execute. One configuration word is then read per-cycle. The accelerator executes the steps

of a loop schedule by cycling through a number of configuration states.

6.1 Accelerator Architecture 109

Figure 6.2: Representation of one configuration word; width varies per accelerator instance.

A generic representation of a configuration word is shown in Fig. 6.2. Configuration words

are single-cycle, and their bit-width varies per instance, depending on the number of FUs, multi-

plexer widths and number of registers in the pool. A single word defines the complete state of the

accelerator. That is: which FUs are active, the multiplexer controls and which registers in the pool

will be written. It also signals when to commit values to the output FIFOs and when execution is

concluded. Unlike the input multiplexers, who can be controlled every cycle by the configuration

words, the output FIFOs are driven by a single FU output throughout the execution of a loop. The

jmp field denotes how to update the configuration word access address.

Configuration words are read by a 2-stage pipeline, similar to fetch and decode/issue. The

two stages are required to update the configuration access address in a timely fashion, without

introducing idle time when cycling through the words of the steady state. One word corresponds

to one time step of the respective modulo schedule. A schedule has as many t time steps as required

so that all the N operations of the loop are executed on the F instantiated FUs, where F ≤ N.

Executing operations in multi-cycle FUs, such as the division unit, does not halt execution.

Configuration words continue to be read while the operation completes, as the static schedule

takes into account the FU latency. If the FUs is also pipelined, (e.g., floating-point addition),

both aspects are taken into account while scheduling: the FU can be enabled every cycle and it is

known at which time each result will be produced. In general, operations without control or data

dependencies execute in the same time step. By scheduling, in a single time step, operations from

two or more successive iterations (loop-pipelining), iterations are initiated and completed in less

than t time steps, depending on the data and control dependencies between successive iterations.

The number of iterations does not need to be known either at synthesis time or prior to the start

of execution. The termination conditions (i.e., loop exits) of the executing loop can be evaluated

on every iteration by the FUs. When an iteration triggers an exit, the jmp field is ignored from that

moment on. Execution continues through the configuration words of the epilogue. At this stage,

the most recent iteration (yet incomplete) is discarded, no new iterations are initiated and ongoing

iterations are completed. The top of the output FIFOs will contain a full set of output values

which correspond to GPP register file contents. The GPP retrieves these values in a known order,

by executing the remainder of the CR, and branches back to the start address of the Megablock,

completing the last loop iteration in software.

110 Modulo Scheduling onto Customized Single-Row Accelerators

Figure 6.3: Architecture-specific flow for the single-row accelerator

6.2 Architecture Specific Tool Flow

Figure 6.3 shows the segment of the full tool flow specific to this accelerator design. This new loop

accelerator architecture required re-designing parts of the tool flow considerably. The accelerator

interface is unmodified relative to Chapter 5, so CRs generation is unmodified. They are placed in

C containers in a single source code file. The application is recompiled using a custom linker script

which places them at a user-defined location. The injector’s address table is a Verilog include file

containing only the start addresses of the Megablocks and the locations of each respective CR.

The scheduler replaces the CDFG translation step in previous flows. Some of the preprocess-

ing steps of said flows are preserved and additional minor steps transform the data structure for

compliance with the scheduler. The preprocessing steps are performed by a stripped down build

of the translation tool written in C. The configuration words are printed in text format and given as

a synthesis tool compliant MEM file which is read during accelerator synthesis. The accelerator

HDL is a single Verilog include file (unlike previous flows which produced multiple output files).

It is similar to the output shown in Listing 3.1, and defines every aspect of the instantiation.

The scheduler is currently fully implemented in MATLAB. The following section explains

how the scheduler generates an accelerator instance and provides a complete scheduling example.

6.3 Accelerator Generation and Loop Scheduling

When modulo scheduling [Rau94] for fixed architectures, there are resource and temporal restric-

tions to take into account: 1) given all types of operations in a loop, the target architecture must

contain at least one FU capable of implementing each one; 2) operation parallelism and II still

depend on the spatial and temporal availability of FUs, which determine performance. In these

situations, when a modulo scheduler cannot schedule a loop with a given (minimum) II, the II

is increased until scheduling becomes feasible. Increasing the II makes it possible to schedule a

loop onto the minimum set of resources, but leads to decreased performance, especially when the

6.3 Accelerator Generation and Loop Scheduling 111

Figure 6.4: Execution flow of modulo scheduling for the single-row accelerator

minimum possible II is low (e.g., increasing the II from 1 clock cycle to 2 approximately halves

the performance). The CDFG derived from the extracted Megablock traces typically have low

IIs. Given this, the present approach adds the required FUs to each accelerator instance during

scheduling to prevent decreasing the performance.

Figure 6.4 summarizes the stages of the modulo scheduler. The scheduler receives each CDFG

as a data structure specifying each node’s type, inputs and topological level. Also specified are

the MicroBlaze registers which contain inputs and hold outputs. The scheduler first determines

the II of each CDFG. Each graph is then scheduled independently. The instantiated FUs are fed

back into the scheduling process for every subsequent graph. This first stage results in a single

row of FU, and annotates each CDFG node with its assigned FU and execution time. The next

step takes each annotated graph and: 1) determines how long each computed value needs to be

stored for, depending on when nodes are scheduled and on the producer/consumer relationship

between them, and 2) determines the length of each FU output register chain. That is, each graph

imposes different storage requirements per FU. The final register pool is composed by taking the

maximum lengths of each FU output chain throughout all scheduled graphs. This step also deter-

mines in which register each computed value resides at a given time. The scheduler aggregates

this information for all graphs to determine the connectivity of the input multiplexers, by fetching

values from the fully specified register pool. A sequence of configuration words per schedule is

then generated. Finally the accelerator specification is produced in HDL, along with a memory

initialization file containing the configuration words.

The following section details this process with an example, starting from an extracted CDFG

and resulting in a customized accelerator instance.

6.3.1 Scheduling Example

FU Allocation Figure 6.5 shows an example of the type of CDFG the scheduler accepts. The

nodes represent GPP instructions, edges represent the data flow between nodes and the inputs (top)

and outputs (bottom) represent GPP registers. Input registers shown in dotted lines are only read

during the first iteration. The graph itself represents an iteration of the original Megablock loop.

First, the scheduler computes the II, which can be determined by: backwards data edges (i.e.,

data flow across iterations), resource restrictions (in this case, the two memory ports) or control

112 Modulo Scheduling onto Customized Single-Row Accelerators

Figure 6.5: Example CDFG, showing operations and a cyclical control dependency which deter-
mines the Initiation Interval (II)

edges. It is necessary to consider control edges because the accelerator has no knowledge regard-

ing the number of iterations to execute when invoked. That is, a new iteration can only begin after

all exit conditions of the current one are evaluated as false. For this example, the bge (branch if

greater-than) node sets an II of 3 clock cycles, as all nodes are executed by single-cycle FUs.

At the start of the process, no accelerator architectural aspects are defined besides the two

memory ports. As nodes are scheduled, FUs are added to the array when necessary. Connectivity

is assumed to be unlimited. Figure 6.6 shows the complete schedule for the nodes of Fig. 6.5,

placed temporally along the vertical axis and spatially along the horizontal axis. A schedule is

composed of prologue, steady state and epilogue.

Nodes are list scheduled individually in topological order. For every node, the earliest (et)

and latest (lt) possible schedule times are computed. The et of a node is calculated based on its

upstream nodes (or input registers), while the lt is typically unbound. The lt is only relevant for

nodes which originate a backwards edge, since scheduling them too late relative to the other nodes

in the closed circuit would violate the II. In this example, nodes 3, 7 and 8 have no slack, nodes 9

and 5 can be delayed up to t = 3 and the remaining nodes could be delayed to any indefinite later

time without consequence. The scheduler attempts to schedule all nodes as early as possible.

In Fig. 6.6, node 6 was scheduled first at the earliest possible time, t = 1. Since the II was

computed to be 3, all time slots i for which i mod 3 = 1 are occupied by future executions of node

6 (shown in grey). When scheduling node 3 an add FU is added, and node 3 is scheduled at a time

which does not violate the II, t = 1. Nodes 5 and 9 can also execute on this FU, since both can be

delayed until t = 3 at most. If another add node existed, and if it could not be delayed to a later

time, a new FU would be added and the node scheduled at its et .

The steady state of the schedule is a time frame with II time steps. It starts at a time ts where

6.3 Accelerator Generation and Loop Scheduling 113

Figure 6.6: Modulo schedule for the example CDFG

ts mod II = 1 and contains the time step where the iteration started at the prologue completes. In

this case this happens after only one repetition, at t = 5. This sequence of timesteps can also be

referred to as the Modulo Reservation Table (MRT), and it contains all the nodes of the scheduled

CDFG. All time steps prior to t = 5 belong to the prologue, and all after t = 7 to the epilogue.

More CDFGs could now be scheduled onto the existing array. As more loops are scheduled,

less FUs are added to the accelerator, since FU availability increases. However, there is an increase

of the input multiplexer complexity, which depends on the connections between operations. When

there is more than one available FU to place a new node, the scheduler attempts to reduce resource

consumption by choosing the FU which will result in the least added inter-FU connectivity (based

on nodes of previously scheduled graphs).

Architecture Specialization Everything after the scheduling stage is related to generation of the

register pool, input multiplexers, output FIFOs and configuration words.

First, the scheduler computes when each value is produced and for how long it must be stored

before it is consumed by all downstream nodes which require it. With this information, a chain of

registers is built for each FU output. A register is added to the chain whenever a value is produced

before the existing value is consumed. When a new value is produced, the existing values are

shifted down. However, a value in the middle of a chain may be consumed before values produced

in previous time steps. The chain length is shortened as much as possible by having an individual

write-enable per register and shifting data only up to the point of the first expired datum.

114 Modulo Scheduling onto Customized Single-Row Accelerators

(a) Operation assignments for one loop schedule

(b) Generated accelerator hardware structure

Figure 6.7: Operation assignments and register connections for one loop schedule and actual hard-
ware structure of the single-row accelerator instance

The (simplified) accelerator generated for the graph in Fig. 6.5 is shown in Fig. 6.7a. The

iadd FU requires four registers to hold results, since most will only be read by the FU in the next

iteration. The bll FU requires two registers, because the or node will consume a value from the

input register for the first iteration, and only afterwards will it fetch values produced by the bll.

Two registers are required to synchronize the data across iterations.

After generating the chains of registers, it is known were each value will reside at every time

step. The input multiplexers are then generated based on the location of the desired values in the

registers. If a given input receives data from only one pool register, the multiplexer is optimized

away. For simplicity, the connectivity is represented by the numbered boxes in Fig. 6.7a. Some

FUs receive values from registers that remain constant throughout execution. Literal constants fed

into the FUs are omitted in the figure.

Generating Configuration Words The last step is the generation of configuration words. A

configuration word contains FU enable bits, hot-bit encoded multiplexer control bits and register

pool write-enable bits. One instruction is generated for each schedule time step. This includes

the prologue, steady state and epilogue. To generate this complete instruction stream it is only

necessary to consider the first iteration (i.e., solid black nodes in Fig. 6.6). The scheduler iterates

through every FU, starting from time step t = 1 (i.e., the prologue) up until the time step where

the initial iteration ends, t = 5. If there is a scheduled node, the enable bit of the FU and the input

multiplexer bits are set. Based on the register pool generation step, the write-enable bits for the

6.4 Experimental Evaluation 115

Figure 6.8: System architecture for validation of the single-row modulo scheduled accelerator

required registers in the chain of the respective FU are also set. The resulting set of words is used

to create the full configuration word, from prologue to epilogue, sequence, by repeating it every II

time steps, up until the time step where the steady state starts. The configuration memory contains

one sequence of configuration words (i.e., epilogue, steady state and prologue) per scheduled loop.

Despite the appearance of a horizontal type layout, the dedicated, and in some cases minimal,

connectivity between FUs effectively implements circuits with distinct structures. The example in

Fig. 6.7 was generated from two graphs. The graph shown in Fig. 6.5 and a second very similar

graph. In Fig. 6.7b most of the structure is used for either loop, but some instantiated components

are only required for one of them (shown in grey). Registers with a bold outline hold values that

will be sent back to the main processor.

6.4 Experimental Evaluation

The performance of this architecture and scheduling approach was evaluated with 13 single-

precision floating-point benchmarks from the Livermore Loops [Tim92] and 11 integer bench-

marks from the TEXAS IMGLIB function library [Tex]. The chosen benchmarks were those with

little to no control in the inner-most loop and with little to no operations in the outer loops. That

is, perfectly nested loops are preferable.

6.4.1 Hardware Setup

The accelerator was coupled to a local memory system as shown in Fig. 6.8 and similar to the

implementation presented in Chapter 5: a single local memory holds all the code and data, a

single MicroBlaze processor executes the application from this memory and is augmented with the

modulo scheduled accelerator via an FSL. The necessary injector and LMB multiplexer modules

are present to allow for transparent migration of execution and shared memory access. As before,

the injector modifies the instruction bus when a Megablock start address is detected and also sends

a single configuration word to the accelerator, to select which loop to execute.

116 Modulo Scheduling onto Customized Single-Row Accelerators

The target device for this implementation was a Virtex-7 xc7vx485 device. For bitstream

generation, Xilinx’s ISE Design Suite 14.7 was used, the effort policy setting of speed was used

for accelerator synthesis, and the placement and routing effort to high.

6.4.2 Software Setup

For previous implementations, each individual benchmark required modifications to insert startup

code, defining static input data arrays, retrieving execution times and outputting results for func-

tional verification. Instead, for the evaluation of this architecture, a software harness was devel-

oped to streamline the process of retrieving performance results and to increase test flexibility. To

understand the execution environment of the tested kernels, the harness is explained in this section.

The harness can be compiled for a desktop machine or for the MicroBlaze processor. It also

accepts other compile-time parameters defining whether it uses heap allocation or emulates a heap

via a static array. The harness’ structure is a significantly modified version of the CoreMark’s

benchmark for the Livermore Loops [EEM15]. The software structure of the harness expects a

single source code file containing all kernels, where each is contained in a single function call.

This compilation flow is summarized in Fig. 6.9. Also, the harness can also be compiled for com-

patibility with a VLIW simulation tool suite (detailed in Section 6.6) and ModelSim simulation.

The desktop version accepts call-time parameters that determine: which kernels to call, the

amount of data to process (N) and the number of times to repeat the kernel code (L). Also, the

input data to be processed is generated at runtime by a pseudo-random generator and placed into

arrays allocated onto the heap. The generator seed is also a variable parameter. The purpose of

executing the harness on a desktop machine is so that reference data is generated. This reference

data is compiled into the harness when targeting the MicroBlaze, so that the functional correctness

of the generated accelerators can be verified when executing on the target board. The reference

data also includes the used call parameters, so that the embedded versions calls the same kernels

under the same conditions. Keeping the kernel functions in a single separate file ensures that no

optimizations are made across function boundaries based on the given N and L values (which are

statically defined when compiling for an embedded environment).

At startup, the harness creates a bank of random integers and a bank of random single-precision

numbers according to the seed. It then calls one or more kernels based on either the call parameters

or static compile values. As an example, Listing 6.1 shows the inner_product kernel from the

Livermore Loops adapted to the harness (lines 20 and 21). For each kernel to execute, the harness

first calls an initialization function to allocate input data. In this case two arrays are allocated and

initialized with the pseudo-random data generated during startup. Then the execution time of each

kernel is measured, by enabling the custom timer/counters prior to the function call. To minimize

the effect of the call itself on the measurement accuracy, the outermost loop is repeated L times.

To prevent the compiler from optimizing the outer loop (at line 19) away and preserving only

one iteration of the inner loop, array z maintains a dependency with the outer loop iterator. This

same approach is used throughout the release of the Livermore Loops. Some cases are slightly

modified according to need and the same technique is applied when adapting the integer kernels

6.4 Experimental Evaluation 117

Figure 6.9: Compilation flow of the test harness

to the harness. The use of -O0 or -O1 could also be enforced to prevent the optimization. But this

would also result in sub-par code for software execution, thereby producing an overly advanta-

geous comparison scenario with the accelerators.

Listing 6.1: Inner product kernel adapted for test harness integration

1 void inner_product_init(test_params *p) {
2
3 // allocate 2 vectors in vector array "iv"
4 p->iv[0] = (int *) calloc((p->N), sizeof(int));
5 p->iv[1] = (int *) calloc((p->N + p->L), sizeof(int));
6
7 // fill vector v[0] and v[1] with random data
8 reinit_ivec(p, p->iv[0], p->N, 0xffffffff);
9 reinit_ivec(p, p->iv[1], (p->N + p->L), 0xffffffff);

10 return;
11 }
12
13 float inner_product(test_params *p) {
14
15 int q = 0, *x = p->iv[0], *z = p->iv[1];
16 int l, k, n = p->N, loop = p->L;
17
18 // Kernel A -- inner product (integer)
19 for(l = 1; l <= loop; l++)
20 for (k = 0; k < n; k++)
21 q += z[k+l]*x[k];
22
23 return (float) q;
24 }
25
26 void inner_product_fini(test_params *p) {
27
28 int i = 0;
29 for (i = 0; i < 2; i++)
30 free(p->iv[i]);
31 return;
32 }

Finally, the harness reads the execution time (and other information) from the loop accelerator

after the call returns. The allocated arrays are then freed and the next kernel is called. The desktop

118 Modulo Scheduling onto Customized Single-Row Accelerators

version of the harness outputs one reference value per kernel (by generating a checksum from all

the produced data). The embedded version outputs the measured execution times of the kernels

(running on the accelerator or MicroBlaze), and a comparison with the reference data.

In summary, the harness allows for: easily testing multi-loop accelerators by choosing which

combination of kernels to call, testing the effects of overhead by varying the amount of data to pro-

cess, testing the functional correctness of the accelerators by varying the input seed, and therefore

the input data. However, it is not geared towards testing kernels which require structured data.

For this evaluation, a single C file contains all used kernel functions, from the Livermore and

IMGLIB, where each is enclosed within a function call in the explained manner. The loop traces

from each kernel were extracted by running MicroBlaze versions of the entire harness through the

Megablock extractor. The compiler used was mb-gcc 4.6.4 and compilation flags enabled the use

of floating-point, integer multiplication and division, barrel-shift, and comparison operations.

6.4.3 Performance vs. MicroBlaze Processor

Table 6.1 summarizes the characteristics of the accelerators and the corresponding kernel speedups:

the results for the floating-point set are on the top half, and the ones for the integer set on the bot-

tom half. The last two integer kernels (innerprod and matmul) are not from IMGLIB, but are direct

conversions of the corresponding floating-point versions. The averages shown are geometric for

speedup and arithmetic for the remaining metrics. The third column shows the II of the schedules.

The average II is given for the cases where multiple traces were accelerated. The fourth column

shows the average executed IPC, which measures the parallelism exploited by the accelerator.

The next two columns show the number of FUs and the number of registers in the register

pool. They are indicative of the complexity of the accelerator. The last two columns show the

speedups obtained when executing each kernel L = 1000 times for two different amounts of data

(specified by the parameter N). All speedup results include the overhead of passing data from

the MicroBlaze processor to the accelerator and retrieving the results. The benchmarks f5, f6 and

f11 where run only for N = 1024, because the system does not have sufficient on-chip memory to

support the N = 4096 case. For instance, f5 requires 15 arrays of N floating-point numbers. All

systems ran at 110 MHz, both for software-only and accelerator-enabled runs.

As is noted in Table 6.1, only one candidate Megablock was extracted for each kernel, save

for the cases of f5, f9 and f11. The average number of instructions in each trace was 34 when

considering all kernels. Considering the sets separately, the floating point set has on average less

instructions than the integer set: 26 versus 45. However, the integer average is inflated by the

cases of i8 and i9, whose accelerated Megablocks contain the most instructions out of all those

implemented, 142 for both. For the traces in the floating point set, an average of 7.2 instructions

are floating-point instructions, which represents 27.6 % of total trace instructions.

Taking into account the number of instructions in each implemented loop over the number

of clock cycles that the MicroBlaze requires to execute it, we find the MicroBlaze executes the

equivalent of 0.38 IPC for the floating-point set and 0.67 for the integer set. As for the IPC

achieved on the accelerator, IPCHW, it is computed as the number of instructions in a Megablock

6.4 Experimental Evaluation 119

Table 6.1: Generated accelerator characteristics and achieved speedups

ID Kernel II IPCHW # FUs # RP Regs.
Speedup

N = 1204 N = 4096

f1 cholesky 3.0 6.67 11 30 7.25 9.80
f2 diffpredict 10.0 4.40 10 52 6.78 7.86
f3 glinrecurrence 3.0 4.33 9 20 3.65 4.58
f4 hydro 3.0 5.67 9 28 12.47 12.84
f5 hydro2d1 16.3 3.68 12 71 6.60 (6.60)∗

f6 hydro2dimp 6.0 6.17 9 38 11.18 (11.18)∗

f7 innerprod (fp) 4.0 2.50 6 9 4.43 4.48
f8 intpredict 10.0 4.10 9 54 7.99 9.46
f9 linrec2 11.0 0.95 9 12 2.30 2.31

f10 matmul (fp) 3.0 5.00 10 25 4.84 7.06
f11 pic1d1 5.5 3.73 12 30 1.47 (1.47)∗

f12 statefrag 5.0 8.40 13 49 18.47 18.98
f13 tridiag 3.0 4.00 8 21 6.81 6.93

mean 6.4 4.58 9.8 33.8 5.96 6.60

i1 quantize 3.0 3.33 7 15 3.22 3.99
i2 conv3x3 10.0 6.40 12 39 6.75 7.01
i3 perimeter 3.0 7.00 13 34 7.35 7.81
i4 boundary 4.0 6.00 12 25 2.92 3.59
i5 sad16x16 2.0 6.50 9 13 2.31 2.31
i6 mad16x16 2.0 6.50 9 13 2.30 2.30
i7 sobel 5.0 8.00 14 46 7.99 8.14
i8 dilate 20.0 7.10 13 77 5.31 5.23
i9 erode 22.0 6.45 14 72 5.43 5.24

i10 innerprod (int) 3.0 3.33 6 8 3.93 3.98
i11 matmul (int) 3.0 5.00 8 23 3.82 5.44

mean 7.0 5.97 10.6 33.2 4.27 4.61

total mean 6.7 5.22 10.2 33.5 6.07 5.60
1Three loops accelerated; 2Two loops accelerated. For all other cases, one loop was
accelerated. *values taken from run with N = 1024

over the II of the respective schedule. Table 6.1 shows, despite the similar average IPCHW values

for both sets, that the average speedup for the integer set is lower than that of the floating-point

set. This is expected, since the IPCSW for loops with floating-point instructions is lower.

As an example, consider the matmul kernel, which contains 15 binary instructions for both

integer and floating-point cases. One iteration of the integer kernel requires 25 clock cycles on

the MicroBlaze, but the floating-point version requires 33 cycles. However, both benchmarks ex-

ecute on accelerators with the same II, resulting in better speedup for the floating-point version.

Execution on the accelerator effectively mitigates the latency of floating-point operations due to

120 Modulo Scheduling onto Customized Single-Row Accelerators

0

1

2

3

4

5

6

7

8

64 128 256 512 1024 2048 4096

S
p
ee

d
u
p

N

innerprod (fp) matmul (fp)

innerprod (int) matmul (int)

Figure 6.10: Speedup as a function of input/output data array sizes for integer and floating-point
versions of innerprod and matmul

the availability of fully pipelined floating-point units and the use of an efficient static schedule.

Consider as another example i7 and f12, whose Megablocks contain 40 and 42 instructions, re-

spectively. They were scheduled at equal IIs and therefore their IPCHW is very similar. The

difference in speedup is due to the 16 floating-point operations in the accelerated Megablock for

f12. As a result, one iteration in software requires 139 clock cycles, versus the 54 cycles for i7.

As with all other implementations, the speedup is also affected by the communication over-

head between the MicroBlaze and the accelerator. This impact can be seen when comparing the

mean geometric speedup for the two values of N. For some benchmarks, (e.g., i7 and i4), the

speedup increases with N, indicating that the constant invocation overhead is amortized over a

larger number of iterations. For other benchmarks (e.g., f9, f12, f13, i5, i6) the effect of increasing

the value of N is negligible, meaning that the communication time was already small compared to

the processing time (f9, f12, f13) or that the communication time also scales with N (i5, i6).

To illustrate the first case consider the two versions of innerprod and matmul. The correspond-

ing speedups for several values of N are shown in Fig. 6.10. The speedup for the two versions of

innerprod increases slowly and then stabilizes, showing that the communication overhead is neg-

ligible for N > 256. The speedup for the two versions of matmul increases over the entire range of

N. In this case the impact of accelerator invocation is still noticeable for large N. The speedup gap

between the two version increases too, again showing that, in comparison with the MicroBlaze

processor, the accelerator supports floating-point operations more efficiently.

The i5 and i6 benchmarks demonstrate that, in some cases, overhead that cannot be amortized,

For both these cases, the accelerated Megablock corresponds to a inner loops which always iterates

16 times per call. Adjusting the N parameter determines the outer loop bounds alone. One way to

address this would have been to unroll the inner loop, which for such a small number of iterations

(and especially given the resource efficiency of this accelerator design) would have been a viable

options. Otherwise, the overhead scales alongside the total number of iterations to perform.

The highest overheads occur for f3, i5 and i6. The overheads are 17 % for the former case and

6.4 Experimental Evaluation 121

51 % for the latter two (for N = 4096). For f3, each accelerator call performs an average of 63

iterations, and for i5 and i6 only 16 iterations are executed. In contrast, the average overhead for

all benchmarks is 8 %, and the average number of iterations per call is approximately 1433.

Dual-Clock Domain Estimation The accelerator synthesis frequency is often higher than the

MicroBlaze operating frequency. It would be possible to further increase speedups by relying on

two clock-domains. To estimate speedups for such a scenario, the systems for all benchmarks

were re-generated but now instructing the synthesis tools to maximize frequency.

According to the timing reports, all the critical paths were due to internal MicroBlaze logic, or

due to paths between the MicroBlaze and memory controllers. Note that, although the MicroBlaze

instances used in these experiments target speed, the extended floating-point unit has been enabled,

as well as the barrel shifter, comparison and integer multiplier units. As a result, the average

operating frequency given by the timing reports is of approximately 150 MHz, which is below the

average synthesis frequencies of the accelerators, 221 MHz.

Given this, a speedup can be estimated for a scenario where the MicroBlaze operates at

150 MHz and the accelerator operates at its reported synthesis frequency, on a per-case basis.

The resulting geometric mean speedup is of 6.98× for the floating-point set, and of 7.72× for the

integer set. The increase is marginal for the floating-point set given the small difference between

the average synthesis frequency of the accelerators relative to 150 MHz.

Note that the dual clock domain scenario would require another design iteration on the BRAM

sharing mechanism, to allow for the memory ports to be fed by two different clocks. If the clocks

are chosen to be integer multiples, then a clock gating method could be used.

6.4.4 Resource Requirements & Operating Frequency

The approach discussed here favours performance, because it does not impose resource limitations

on the architecture beyond the restriction to two memory ports. This may come at the cost of

resource requirements due to boundless instantiation of FUs and the associated increase in size of

the configuration words required to control the accelerator. Figure 6.11 shows the FPGA resources

used by each system (after placement and routing). The stacked bars represent the resources used

by each accelerator (upper half) and by the remaining system components (lower half). The line

represents the clock frequency of the accelerator as given by the synthesis reports.

In order to measure the accelerator resource requirements, consider a MicroBlaze processor

(without caches and with an FPU), which requires 2291 LUTs and 1503 FFs. The average acceler-

ator requires 1.13× more LUTs and 1.83× more FFs. Additionally, the number of slices required

by the accelerator can serve as a measurement of required area. It requires 1.12× the number

of slices that the MicroBlaze requires, which is 860. As a general rule, the accelerators for the

integer loops require less resources and also achieve higher operating frequencies relative to the

floating-point cases. The average number of FUs required for the floating-point and integer sets is

9.8 and 10.6, respectively. The average size of the register pool is also similar, 33.5 registers.

122 Modulo Scheduling onto Customized Single-Row Accelerators

0

2

4

6

8

10

12

14

0

50

100

150

200

250

300

350

R
es

ou
rc

es
 (

T
h
ou

sa
n
d
s)

A
cc

.
S
y
n
th

.
F
re

q
.
(M

H
z)

Sys. LUTs Acc. LUTs Sys. FFs Acc. FFs Acc. MHz

Figure 6.11: Resource requirements for the entire generated systems and accelerators, and accel-
erator clock frequency

The increased complexity of the floating-point units justifies the lower synthesis clock fre-

quency for the floating-point set, whose average is 164 MHz, which is significantly lower than the

average clock frequency of 290 MHz for the integer-only accelerators. In all cases, the critical path

in the accelerators with floating-point operations includes the fadd FU; the sole exception is bench-

mark fp3, where the critical path is determined by the fmul unit (since there are no floating-point

additions). Floating-point FUs make up 24 % of all FUs per accelerator. For the integer set, the

drops in frequency seen in i2, i4 and i11 are due to critical paths between the instruction memory,

multiplexers and integer multiplication FU. System i10 is the only other with an integer multiplier,

but does not suffer from the same drop in frequency because the inputs of the multiplication FU

receive operands only from one other FU each and therefore have no input multiplexer.

There is no clear relation between accelerator size and maximum operating frequency for the

implementations shown in Fig. 6.11. Because loops are scheduled for their minimum IIs, more

FUs are instantiated, each of which has fewer operations scheduled to it. This leads to more

customized connectivity. Increasing the II and thereby instantiating less FUs would require more

complex input multiplexers. This is shown in the next section, where accelerators for multiple

loops of similar size suffer small decreases in frequency due to this effect.

On a final note, the synthesis frequency for every accelerator is above the 110 MHz clock fre-

quency used for the implementations. In many cases, using a higher frequency might be possible:

this would reduce the absolute time taken by the benchmarks, but would not change the speedup

values for a system with a single clock domain. The speedups presented in this section are due to

the combined effects of the scheduling method and the accelerator architecture, which minimize

the II and increases the IPCHW.

6.4.5 Power and Energy Consumption

The power and energy consumption for the single-row accelerator architecture were also deter-

mined for a subset of the benchmarks, via actual on-board measurements of power, using Texas

6.4 Experimental Evaluation 123

Table 6.2: Power and energy consumption for software-only and accelerated runs

ID
Accelerator-enabled Execution Software-only Execution

Power (W) Runtime (s) Energy (J) Power (W) Runtime (s) Energy (J)

f1 0.595 2.02 1.20

0.452

17.96 8.11
f2 0.592 8.00 4.74 58.19 26.29
f3 0.514 9.58 4.93 35.15 15.88
f4 0.561 2.50 1.40 34.03 15.37
f5 0.562 35.47 19.93 235.47 106.37
f6 0.627 5.19 3.26 62.11 28.06
f8 0.635 8.78 5.58 74.46 33.64
f9 0.500 51.32 25.63 77.10 34.83

f12 0.653 4.61 3.01 90.95 41.09
f13 0.545 2.68 1.46 21.12 9.54

mean 0.578 13.02 7.11 - 70.65 31.92

Instruments’ Fusion Digital Power Designer [Ins16]. Each kernel was executed with N = 1024 and

L = 10000. Using a high value of L increases the runtime, thereby decreasing the measurement

noise since more data points are captured.

The power and energy measurements are shown in Table 6.2, and are the result of monitoring

the 1 V-rail, which powers the FPGA. On the left-hand side, the table contains measurements

relative to a system containing the respective accelerator instance, and on the right-hand side the

measurements are relative to a system containing only local memories, a MicroBlaze instance, and

other required modules. For the former case, the average power consumption was 0.57 W, and for

the latter the average was 0.45 W. However, due to reduced runtimes, the total energy consumed

is lower for the accelerator-based systems, which require an average of 7.11 J versus 31.92 J for

the software-only system.

6.4.6 Performance and Cost of Multi-loop Support

Multi-loop accelerators can enhance the execution of several loops (from the same application or

from a set of related applications) and also result in resource savings when compared to a group

of individual single-loop accelerators. In the results analyzed in the previous sections, there are

already two systems whose accelerators support more than one loop (f5, f9 and f11). To further

test multi-loop support, seven groups of kernels were selected and and accelerator was generated

to target each group. Groups of kernels were chosen based on the type of calculations performed

as well as number of instructions (e.g., generating a single accelerator for dilate and erode).

Table 6.3 presents speedups and accelerator resource requirements for these cases. In this

table, the speedups shown are not the average of the speedups obtained when executing each

individual kernel. Since the II of each scheduled CDFG remains the same as in the single-loop

case, so does the individual speedup. Instead, a single speedup was computed using the total

execution time of all loop kernel calls. That is, the values shown are equivalent to a weighted

124 Modulo Scheduling onto Customized Single-Row Accelerators

Table 6.3: Generated multi-loop accelerator characteristics and speedups

ID # Megablocks # FUs # RP Regs MRT Occ. (%)
Speedup

N=1024 N=4096

f_2_8 2 11 96 48 7.42 8.70
f_3_9 3 11 25 21 2.73 2.94
f_4_5_6 5 13 119 41 7.54 7.54
f_7_10 2 10 28 40 4.83 6.96
i_5_6 2 8 24 68 1.65 2.31
i_8_9 2 18 99 35 5.37 5.82
i_10_11 2 9 13 53 3.82 5.40
mean 2.58 11.4 57.7 44 4.25 5.16

This table refers to systems with accelerators for loops from several kernels. The bench-
mark names indicate which kernels are supported.

average of the individual speedups: of all the kernels accelerated per system, the one with the

greatest execution time will have the greatest impact on the resulting overall speedup of the system.

The resource requirements for the multi-loop accelerators are compared to the sum of re-

sources of individual accelerators in Fig. 6.12. Each accelerator requires only an average of 72 %

and 59 % of the sum of LUTs and FFs of the individual accelerators, respectively. If single-loop

accelerators were used, the accelerator with the worst critical path would determine the system’s

operating frequency. For the multi-loop cases it is expected that the frequency would decrease due

to increased accelerator size and complexity. Despite this, the average synthesis frequency of the

multi-loop cases is only 2.5 % lower than the worse case of the respective single-loop accelerators.

As an example of the frequency decrease due to increased connectivity consider system i_8_9,

which supports the same loops as i8 and i9. The synthesis frequency is similar for both of these

cases, and is determined by a critical path between the instruction memory, a barrel-shift FU and

the pool registers. However, for i_8_9, the input multiplexers of two add FUs are considerably

more complex, than those in the individual cases, for the equivalent units. For instance, the input

multiplexer for the first operand of one of the units in i_8_9 has twice as many possible inputs. As

a result, the decrease in frequency for i_8_9 is the highest, for the tested accelerators in Table 6.3.

Another metric of how well the resources are shared is the occupation of the MRT, which

measures how efficiently the schedule uses the available resources. For all the cases in Table 6.1,

average occupation of the MRT is 53 %. For the systems in Table 6.3 the average is 44 %. This

is expected because accelerators with multiple configurations may have FUs that are used only by

a subset of them, which decreases the occupation. The occupancy of the MRT for a set of loops

could be a target metric while scheduling, to balance the number of FU and the II.

6.5 Performance Comparison with ALU Based Accelerators

Many existing approaches frequently make use of architectures which allow for some programma-

bility. For instance, mesh arrays of multiple-function FUs with rich interconnects (such as nearest

6.5 Performance Comparison with ALU Based Accelerators 125

0

2.5

5

7.5

10

12.5

15

fp_2_8 fp_3_9 fp_4_5_6 fp_7_10 int_5_6 int_8_9 int_10_11

R
es

ou
rc

es
 (

T
h
o
u
sa

n
d
s) Multi-Loop LUTs Sum LUTs

Multi-Loop FFs Sum FFs
Multi-Loop Slices Sum Slices

Figure 6.12: Resource requirements for multi-loop accelerators vs. sum of resources for individual
loop accelerators

Table 6.4: Accelerator generation scenarios

Scenario Description

a1 Allocation of any number of resources of any type
a2 Allocation of any number of ALUs (+ other units)
b1 2 ALUs + 1 Multiplier + 1 Branch Unit (+ 1 FPU)
b2 4 ALUs + 1 Multiplier + 1 Branch Unit (+ 1 FPU)
b3 8 ALUs + 1 Multiplier + 1 Branch Unit (+ 1 FPU)

neighbour connections aided by less numerous longer connections to distant units). Architectures

such as these are usually designed once, possibly by a quantitative approach, to be flexible enough

so that future sub-graphs can be successfully mapped and executed. That is, these designs must

be rich enough in terms of resources and especially interconnection capability in order to increase

applicability. On the other hand, this may incur considerable resource costs.

The results presented so far are relative to fully customized accelerators, that is, instances with

any number of operation-specific FUs. The objective of generating fully customized designs is

to maximize performance and to decrease resource usage. In this section the advantages of this

customization are evaluated by comparing fully customized accelerators with instances containing

a fixed number of ALUs, to establish a comparison with existing static resource accelerators.

Table 6.4 summarizes the five types of accelerators generated for this experiment using the de-

veloped scheduler. Scenario a1 was presented in the previous section: fully customized generation

of accelerators with boundless resource allocation. Scenarios b1, b2 and b3 contain a fixed number

of resources. To do this, the scheduler was tuned so that scheduling starts with the given units,

and so that allocation of more FUs is not performed. Instead, as per typical modulo-scheduling

approaches, the II is increased until a valid schedule is possible. An additional scenario, a2, uses

boundless allocation of ALUs.

Comparison with fixed resource scenarios The employed ALU essentially contain instances

of each type of individual FU, with the required additional control logic. Supported operations

126 Modulo Scheduling onto Customized Single-Row Accelerators

include all integer arithmetic (except division and multiplication), logic, and comparison opera-

tions. In order for the synthesis tools to not optimize the ALU logic on a per-instance basis (due to

constant propagation of the instructions feeding each ALU) a black-box instance was synthesised.

This means that each ALU represents a fixed cost of approximately 640 LUTs and no FFs.

In addition to the ALU, these cases also use a single branch unit (which evaluates all types of

exit conditions) and a single integer multiplier, also instantiated as black boxes. For the bench-

marks of the Livermore set, a single Floating Point Unit (FPU) is also added, which includes all

floating-point arithmetic, comparison and float/integer conversion. The ALU has a latency of 1

clock cycle and the latency of the FPU varies according too the issued operation, but it is still

possible to pipeline operations. Like the ALU, the FPU is constructed from one instance of each

type of floating-point unit, and a black-box was used to instantiate it. The cost of the FPU is 1460

LUTs and 525 FFs. Note that although the number of units is fixed, the interconnections between

them are still specialized by the scheduler based on dataflow between scheduled operations.

Figure 6.13 shows the speedups for these cases. The speedup in scenario b3 equals that of

scenario a1 for all integer cases. In other words, the Megablocks that can be detected for these

benchmarks can be executed at the minimum possible II with 8 ALUs, and in most cases only 4

ALUs suffice. Inversely, we can state that fully customized accelerators perform equivalently to

generalized accelerators with 4 or 8 ALUs. There is only a noticeable difference between b1 and

b2, where the average IIs are 19.6 and 10.3, respectively. Regardless, for the integer cases, an

accelerator with only 2 ALUs still achieves a mean geometric speedup of 2.08×.

However, since the accelerators in these scenarios contain only 1 FPU, this means the speedup

decreases for loops with floating-point operations. For 6 out of the 13 floating-point benchmarks,

the speedup decreases to approximately half on average, whilst the remaining decrease marginally.

The average II of the former 6 cases increases to 17.2 (for b1, b2 and b3), versus the average II

of 7.2 for scenario a1. The highest decrease in speedup occurs for f12, whose accelerated loop

contains 16 floating-point operations, scheduled onto 4 floating-point units for the accelerator

in scenario a1. With only one FPU, the speedup decreases by approximately four times, from

18.9× to 4.8× (regardless of the number of ALUs). Although the accelerator for f5 in scenario a1

contains 5 floating-point units, the speedup only decreases by half in the remaining scenarios. This

is because three loops are accelerated, only one of which uses all 5 floating-point units frequently.

This can be analysed in terms of resources in this way: in order to schedule the benchmark

loops with minimum II, an average of 2.3 floating point FU are instantiated for the accelerators of

scenario a1. This means that, for a fixed resource accelerator, at least 2 FPUs would be required

to prevent increasing the II. In other words, a fixed resource accelerator with 4 ALU and 2 FPU

would incur a cost of 7707 LUTs and 3697 FFs. In comparison, the accelerators for the floating

point set in scenario a1 require an average of 2829 LUTs and 2863 FFs.

As a summary, Fig. 6.14 shows the average required resources for all scenarios, distinguishing

between floating-point and integer sets. The values are normalized to the resource requirements

of one MicroBlaze. Considering that the number of slices represents area on the device, the accel-

erators in scenario a1 are roughly 0.62×, 0.47× and 0.32× smaller than those of cases b1, b2 and

6.5 Performance Comparison with ALU Based Accelerators 127

3.69

4.33

4.33

6.58

0
2
4
6
8
10
12
14
16
18
20

S
p
oe
ed
u
p

b1 b2 b3 a1

2.08
3.46

4.07

4.61

0

2

4

6

8

10

S
p
oe
ed
u
p

b1 b2 b3 a1

Figure 6.13: Speedups for several types of accelerators vs. a single MicroBlaze processor

b3, respectively. The number of required FFs varies little, since the same amount of data needs to

be transported between FU regardless of their type. For the floating-point cases, the reduction in

the number of LUTs is higher due to the higher cost of each FPU.

In short, a specialized accelerator performs on par with a fixed-resource accelerator and when

floating-point support is required it allows for better exploitation of ILP versus deploying a single

fully fledged FPU, and is less costly in terms of resources versus employing two FPUs.

The configuration word memory size also varies between scenarios due to the dependence of

the word width on each particular instance. For the sake of brevity, consider only that the average

memory size is 8.73 kB, 15.88 kB, 12.48 kB, and 17.30 kB for scenarios a1, b1, b2 and b3. The

size of the code word memory of the accelerators depends on three factors. The first is the number

and type of computational resources. Specialized FUs receive at most one or two configuration

bits per schedule step. The ALUs, FPUs and branch unit on the other hand require 18, 13 and 8

bits. Secondly, the connections between units affect the multiplexer complexity and therefore the

number of bits in a configuration word required to control them. Lastly, a larger number of loop

operations (i.e., processor instructions) to schedule generally means longer schedule lengths.

Consider then that scenario a1 instantiates more units, but each with less control bits, and

that more units allows for shorter schedule lengths and therefore fewer total configuration words

(approximately half relative to the remaining three cases). For the fixed-resource cases, neither the

number of configuration words nor the word width vary in a predictable fashion with the of number

128 Modulo Scheduling onto Customized Single-Row Accelerators

0

2

4

6

8

10

fp mean int mean

T
h
ou

sa
n
d
s

a1 b1 b2 b3

Slices
Slices

LUTs

LUTs

FFsFFs

Figure 6.14: Average accelerator resource requirements for the several scenarios

Table 6.5: Average cost of accelerators per scenario, normalized by the cost of a single MicroBlaze

floating-point integer
Scenario LUTs FFs Slices LUTs FFs Slices

a1 1.23 1.90 1.28 1.01 1.74 0.93
b1 2.12 1.95 2.12 1.48 1.64 1.42
b2 2.74 2.06 2.70 2.09 1.76 2.01
b3 3.87 2.08 3.79 3.24 1.85 3.26

of ALUs. Determining the reasons for these particular widths and lengths requires analysing the

individual assignment of operations to ALUs and the resulting multiplexer widths. This analysis

has not currently been performed but note that the average configuration memory size for scenario

a1 is 70 % that of the smallest memory size for the remaining cases, b2.

Comparison with ALU allocation In an additional scenario, a2, accelerators were generated by

instantiating any number of ALUs required to schedule the loops at minimum IIs. In other words,

this scenario is equivalent to the full-custom scenario, but resorting to ALUs instead of custom

FUs. This determines how many ALUs, and therefore resources, a generalized loop accelerator

would require to achieve the same performance as a specialized instance.

The resulting average number of instantiated ALUs is 3.7 for the floating-point set and 5.0 for

the integer set. For this scenario, an accelerator requires an average of 2165 slices and 5766 LUT,

which is an additional average of 1210 slices and 3189 LUTs relative to scenario a1. In other

words, these accelerators require approximately 2.49× the slices, 2.55× the LUTs and 1.10× the

FFs relative to a specialized instance (while still benefiting from customized connectivity) in order

to achieve the same execution performance.

6.6 Performance Comparison with VLIW Architectures

The MicroBlaze processor is a single-issue processor and therefore it is not surprising that con-

siderable speedups can be attained by exploring, even if only partially, any latent ILP or other

6.6 Performance Comparison with VLIW Architectures 129

Figure 6.15: Simulation flow for ρ-VEX processor and other VEX architecture models

hardware specializations (e.g., specialized units). Therefore, to have a comparison with VLIW

architectures, this section contains performance results obtained by using Hewlett-Packard’s VEX

toolsuite [FFY05] as well as the ρ-VEX processor implementation [SABW12].

The VEX toolsuite is a compilation chain which targets a user-specified VLIW architecture.

Architecture parameters include issue width, and the number, type and latency of units. These

parameters are given at compile-time to generate a Compiled Code Simulator (CCS) which runs

on a desktop host machine. The ρ-VEX architecture is a synthesis-time parametrizable VLIW

processor which implements the VEX instruction set. The ρ-VEX release used was version 3.3,

which includes the open-source ρ-VEX processor (written in VHDL) itself and also a build of the

gcc tool chain targeting the architecture. Additionally, it also possible to use HP’s VEX compiler

for the compilation step, and use ρ-VEX’s tool chain for the assembly and linking steps.

Using these tools the following experiments were conducted: 1) execution on three VEX

CCSs, each using a different architecture model and 2) simulated execution of a 4-issue version ρ-

VEX processor in ModelSim. Since the VEX architecture does not support floating-point natively,

all comparisons in this section are limited to integer benchmarks.

Figure 6.15 shows the compilation flow used to generate the mentioned test cases. The test har-

ness was compiled with HP’s VEX compiler, targeting three different architecture models (right-

hand side). The software harness was compiled once per model, generating three VEX CCSs with

all the capabilities of the harness (as explained in Section 6.4.2). Each kernel was executed on

each CCS, to determine the execution time of the entire kernel function call. For simulation of

the ρ-VEX processor, one ELF is compiled per kernel, and then loaded into the processor and

executed (left-hand side). As explained previously, the harness can be compiled to receive no

call-time parameters and instead read statically defined parameters and reference data. Since we

would need to compile the standard C library for the ρ-VEX target in order to use dynamic mem-

130 Modulo Scheduling onto Customized Single-Row Accelerators

Table 6.6: VEX simulator and accelerator models comparison

Parameter r1 r2 r3 a1 b2

Issue width 2 4 8 N/A
#ALUs 2 4 8 Variable 4
#MULs 2 (16x32) Variable 1 (32x32)

#Registers 64 Variable
Memory access 1 Load/Store Unit 2 Memory Ports

ALU Latency 1 1
MUL Latency 2 2
Load Latency 3 2
Store Latency 1 1

Memory/Cache Simulated without cache Local BRAM memory

ory allocation, the harness was adapted so that only statically allocated memory is used. This does

not impact the execution time of the kernels, since their source code is not modified and only the

kernel function call is measured. When measuring execution time on the ρ-VEX the cache access

stall cycles were not counted (emulating a local memory performance for fairness of comparison).

Table 6.6 shows the model parameters used to compile each VEX CCS. In order to ease the

comparison between these cases, the parameters for r1, r2 and r3 are equal to the parameters used

when compiling for the ρ-VEX processor (in terms of number of registers, delays of operations,

etc). That is, the CCSs approximately simulate three variants of the ρ-VEX with different issue

widths and number of ALUs. These cases are compared with two of the implementation scenarios

presented in the previous section: a1 (customized accelerators) and b2 (4-ALU accelerators).

As a side note, consider that although presented here as a comparison, using VLIWs for ac-

celeration and deploying binary accelerators, are not mutually exclusive approaches to increasing

performance in embedded systems. The augmentation of a smaller 2-issue VLIW with a cus-

tomized loop accelerator is not infeasible. In such a scenario, the VLIW would provide a moderate

performance increase throughout most of the code, exploiting the relatively low but relevant ILPs,

whilst the accelerator would target highly pipelinable loops.

6.6.1 Performance Comparison

Deploying VLIWs to explore ILP involves two steps: design of a multiple issue processor and

design of a sophisticated compiler. Exploring ILP is therefore a compile-time task, performed

statically on high-level source code. The processor can be simpler, since it expects statically

scheduled code, and using a compiler allows for exploration of powerful optimization steps. How-

ever, not all the code in an application contains ILP to exploit. This means an underutilization

of VLIW hardware, and instructions populated with nops, which still represent a cost in terms of

memory size. Even if a portion of code is highly optimized for the available issue width, there is

no guarantee it will execute frequently, which exacerbates the resource cost of deploying a VLIW.

6.6 Performance Comparison with VLIW Architectures 131

0

1

2

3

4

5

6

7

8

9

i5 i6 i4 i10 i1 i8 i9 i11 i2 i3 i7

S
p
ee

d
u
p

r1 (2-issue VLIW) r2 (4-issue VLIW)

r3 (8-issue VLIW) ρ-VEX (4-issue VLIW)
b2 (accelerator w/ 4 ALUs) a1 (specialized accelerator)

Figure 6.16: Speedups for different VLIW models and two of the presented accelerator scenarios

In contrast, the approach presented in this work relies on post-compilation information. Only

frequently executing code is migrated to hardware, and acceleration is achieved by exploiting

both intra-iteration and inter-iteration ILP of loop path traces. Although new tools are required to

support the present approach, none are as complex as an architecture-specific compiler and also

allow for the application binary to remain compatible with a non-accelerated system.

The speedups for the tested integer kernels are shown in Fig. 6.16. Speedups were calculated

considering the same operating frequency for all cases and for the baseline. The geometric mean

speedups over a MicroBlaze processor for r1, r2, r3 and the ρ-VEX execution is 2.22×, 2.58×,

2.61×, and 2.63×, respectively. Considering the geometric mean speedup for a1, 4.61×, this

means that fully customized accelerators are 1.79× faster than a 4-issue VLIW processor.

Figure 6.16 shows the speedups sorted according to the speedups for a1. Three groups of

kernels are noticeable: 1) for i4, i1, i11, i2, i3 and i7, the accelerators outperform VLIW execution;

2) for i10, i8 and i9, the performance is roughly equivalent; 3) for i5 and i6, the VLIW approaches

are more efficient. The accelerators effectively execute MicroBlaze instructions. This means a

direct correlation between the number of executed IPC and the speedup. However, several factors

are relevant when comparing the VLIW cases to the accelerators and to the MicroBlaze baseline.

Firstly, due to different instruction sets, the number of instructions in the VLIW kernel loops

differ from the MicroBlaze equivalents, which also means the IPC values for each case cannot

be directly used as a comparative measure. As an example, consider i8 and i9. For r2, the loops

for these cases contained 38 VEX instructions. Given the issue width, these instructions contain

more than one elementary operation. The CCS for this model reports an IPC of 2.4 which means a

total of 97 VEX operations implement the computations of each loop. The respective MicroBlaze

loop traces contained 148 instructions, whose execution on the accelerators achieved a similar

performance to r2, but required executing approximately 6.5 IPC.

Secondly, the VLIW cases may be able to partially overlap loop iterations. If the compiler

employs loop unrolling, operations from different iterations may be bundled into the same single-

cycle instruction word targeting the entire VLIW width. It is difficult to determine how much

of the ILP possible for the VLIWs is due to this, and how much is due to latent intra-iteration

132 Modulo Scheduling onto Customized Single-Row Accelerators

parallelism. It is noticeable, for the cases where VLIW execution is outperformed, that an increase

in VLIW issue width does not lead to an increase in performance. This means there is no more

ILP to explore, or that the compiler is unable to do so. In contrast, the accelerators rely on heavily

exploiting loop pipelining. For the mentioned kernels, the developed modulo scheduler reports

that the average number of instructions which belong to the same iteration and are executed in

parallel is 1.42. This is comparable to the average IPC of the VLIWs for the same kernels, 1.50.

By exploiting the minimum II the IPC while executing on the accelerators is increased to 5.97.

Thirdly, the accelerators performs better when the number of iterations to perform per acceler-

ator call is high, since this mitigates overhead. The present approach targets innermost loops. This

means that for a nested loop which represents a large portion of computation, it is desirable that

the inner loop represent most or all of it. Alternatively, the inner loop must iterate such a small

number of times that unrolling it would not significantly increase the size of the outer loop trace,

thus making it a viable candidate for acceleration. This has been previously shown for i5 and i6,

where VLIW execution outperforms the accelerators, as the accelerated inner loops iterate only 16

times. Execution on a VLIW suffers no such effects and can apply loop optimization techniques.

In fact, for the two mentioned cases the VEX compiler partially unrolls the inner loop.

Dual-Clock Domain Estimation This evaluation considered that both the VLIW processors

and the MicroBlaze operated a the same frequency. In Section 6.4.4 a short analysis presented

the possible speedups if the accelerators were to operate at their maximum frequencies, while the

MicroBlaze operated at its own maximum frequency, 150 MHz. For this evaluation, and for the

ρ-VEX processor specifically, this comparison is moot, since its maximum operating frequency is

also 150 MHz [SABW12]. In fact, the MicroBlaze is penalized since the maximum of 150 MHz

is due to the FPU. Without it, the MicroBlaze can operate at 200 MHz, as the comparison in

[SABW12] demonstrates. Consider then this frequency for the MicroBlaze, the maximum fre-

quency of 150 MHz for the ρ-VEX, and the per-case maximum frequency of each accelerator in

scenario a1. If each component operates at the respective maximum, the geometric mean speedup

for the integer set would be 1.97× for the ρ-VEX, and 6.18× for the fully customized accelerators.

6.6.2 Resource Usage Comparison

In terms of resources, the developed accelerators are compared to the reported resources require-

ments for the ρ-VEX processor in [SABW12]. When targeting a Virtex-6 XC6VLX240T, the

4-issue version of ρ-VEX requires 1046 FFs, 12899 LUTs and 16 BRAMs. A fully custom accel-

erator instance (i.e., a1) requires approximately half as many LUT and 5× as many FFs. The fact

that BRAMs are not used for data storage justifies this higher register requirement.

Finally, consider the memory size required by these approaches. By inspecting the ρ-VEX

processor assembly, it was determined that the kernel functions required 1.07 kB on average. The

average configuration memory size for an accelerator in scenario a1 was 7.47 kB. Note that the

scheduler currently generates configuration words which are unoptimized for size, but are stored

in read-only distributed memory which allows for synthesis-time optimizations.

6.7 Concluding Remarks 133

6.7 Concluding Remarks

This chapter presented a design iteration of a automatically generated accelerator design for the

purpose of transparent binary acceleration. A single-row model of customizable FUs and connec-

tivity simplifies both the resulting architecture instances and the supporting tools, but requires a

sophisticated scheduler. The modulo scheduler creates specific accelerator instances based on a

set of CDFG to execute and assures that the speedup attained for each CDFG is maximized for

each. The applicability of the accelerator vastly increases due to floating-point support. The only

resource restriction are the two memory ports, which still prove to be adequate enough to effi-

ciently exploit any existing data parallelism within the target CDFGs. Relative to the multi-row

implementations, this design is also more resource efficient. The proposed architecture achieves a

geometric mean speedup of 5.60× over a single MicroBlaze for a set of 24 kernels. Relative to the

accelerator implementation in the previous chapter, the average number of LUTs and FFs required

by the accelerator, according to synthesis reports, is approximately 0.78× and 0.83×, respectively.

The additional cost of supporting floating-point operations on the accelerator is not very sig-

nificant since single-operation FUs are employed, versus fully-fledged FPUs. This was demon-

strated by the resource requirement comparison between the fully customized accelerators and

fixed-resource models based on ALUs and FPUs. The performance obtained versus state-of-the-

art VLIW models and generic designs representative of existing accelerator architectures further

highlight the efficiency of the design especially regarding a cost/performance trade-off.

Since the accelerator model is relatively simple, a future potential development direction is

the porting of the scheduling tools for on-chip execution, further increasing the self-adaptability

of heterogeneous computing systems. As is, the accelerator design is capable of accelerating large

loop traces of MicroBlaze executables, supporting nearly all instructions of its instruction set. As

such, the single-row accelerator is a fully-fledged co-processor design with a complete supporting

tool chain which was implemented and thoroughly validated with a commercial FPGA board.

134 Modulo Scheduling onto Customized Single-Row Accelerators

Chapter 7

Dynamic Partial Reconfiguration of
Customized Single-Row Accelerators

The previous chapter presented and evaluated an accelerator architecture which proved to be very

efficient in terms of performance and resources. Generating customized accelerators via mod-

ulo scheduling for the minimum possible Initiation Interval of all chosen Megablocks allows for

performance maximization, and customizing the connectivity reduces the required resources.

However, despite this specialization, the resource requirements and synthesis time start to be

considerable when the number of supported configurations increases. The amount of required

connectivity increases, which leads to increased circuit complexity and therefore decreased oper-

ating frequency. Additionally, the size of the configuration memory increases as well. That is, to

implement the reconfiguration capabilities required to support a large number of configurations,

the circuit becomes increasingly less customized.

The introductory chapters referred that balancing these two aspects was a motivation for this

work. This chapter addresses this by presenting a proof-of-concept for a system which relies on the

same single-row accelerator design, this time augmented with reconfiguration capabilities based

on Dynamic Partial Reconfiguration (DPR). The accelerator is re-designed slightly by partitioning

it into a static region and a single reconfigurable region. The static region contains interface

logic, the register pool, and both load/store units. The reconfigurable partition includes all other

Functional Units (FUs), as well as their input multiplexers and the configuration memory. Each

Megablock to accelerate is used to generate a single partial bitstream file. The accelerator’s is

reconfigured via the Internal Configuration Access Port (ICAP) as part of the migration mechanism

which all implementations presented so far relied on.

As the experimental evaluation in this chapter demonstrates, this approach has two main ad-

vantages relative to the implementation in the previous chapter: (i) the total area required by the

accelerator is smaller by relying on DPR to switch between accelerator configurations, versus

multiplexer based configuration logic, and (ii) the synthesis time of the accelerator decreases con-

siderably. Additionally, the motivation to implement this system also came from the notion that

an accelerator architecture with DPR-based reconfiguration capabilities is an important stepping

135

136 Dynamic Partial Reconfiguration of Customized Single-Row Accelerators

Figure 7.1: Single-row accelerator architecture partitioned for DPR. The reconfigurable partition,
includes all FUs, input multiplexers, and the configuration memory.

stone in developing a system capable of runtime self-reconfiguration.

This chapter presents the partitioned accelerator architecture in Section 7.1, and the tool flow

modified to support the generation of partial bitstreams in Section 7.2. The experimental evalu-

ation in Section 7.3 discusses the overheads introduced by the runtime partial reconfiguration, as

well as the resource savings achieved. Finally, Section 7.4 concludes this chapter.

7.1 Accelerator Architecture

Figure 7.1 shows a simplified view of the accelerator architecture. Some details are omitted as it

is largely similar to the customizable architecture template shown in Chapter 6 (page 106).

There is only one row of FUs, customized by the modulo scheduler based on the set of

Megablocks to accelerate. The accelerator supports all integer and single-precision floating-point

operations, including divisions by non-constant dividers. All FUs are fully pipelined, with the

exception of the non-constant integer division unit. The load/store units are capable of performing

byte-addressed operations to arbitrary memory locations, since the accelerated traces also imple-

ment the address generation operations. When accelerating a Megablock, the accelerator executes

an arbitrary number of iterations each time it is called. The execution returns to software as a

result of evaluating the respective termination conditions (i.e., branch instructions).

The modulo scheduler generates accelerator instances capable of executing the target Mega-

block CDFGs at their respective minimum Initiation Interval. If this is not possible the II is grad-

ually increased until the CDFG is scheduled. This virtually does not occur, as the only resource

limitation in this approach are the two memory ports (all other FUs are instantiated as needed).

To summarize, every functional and architectural aspect is identical to what is presented in

Chapter 6, but in this implementation the accelerator is partitioned into a static region and a par-

tially reconfigurable region, which is the portion contained within the dash-lined box of Fig. 7.1.

7.1 Accelerator Architecture 137

7.1.1 Static Partition

The static partition includes the input registers and output registers as well as the multiplexers

which drive them with outputs from the FUs (omitted from Fig. 7.1), the two load/store units and

their input multiplexers, as well as all other interface and control logic.

Given a set of Megablocks, the resulting structure of the static region is very similar to what

would be instantiated for the non-DPR version of the accelerator. The length of each register chain

in the pool is determined by the maximum required by that chain, throughout all configurations

of the partition. Likewise, the input multiplexers that drive the load/store units (omitted from

Fig. 7.1) are part of the static region, and thus implement all required connectivity throughout all

configurations. The same is true for the multiplexers which drive the output registers.

These components were placed in the static region since their resource requirements do not

scale noticeably (e.g., output register multiplexers or register pool), or do not increase at all (e.g.,

memory port logic and control logic) with the number of Megablocks to support.

7.1.2 Reconfigurable Partition

The reconfigurable partition contains all FUs, their input multiplexers, and the configuration mem-

ory. Apart from some Flip Flops (FFs) needed by the memory module, the reconfigurable region

logic is implemented nearly entirely in Lookup Tables (LUTs).

The modulo scheduler shown in Chapter 6 efficiently re-utilizes FUs between configurations.

However, in some cases one configuration requires a large number of FU which remain unused

by the remaining Megablocks. This has no effect on performance, but leads to FUs being under-

utilized and to a larger accelerator area requirement. Also, since more units exist, the width of

the configuration word also increases, leading to a larger configuration memory. Finally, as more

operations are scheduled onto an FU, the complexity of its input multiplexer increases. These two

aspects contributed especially to higher resource requirements and longer synthesis times.

By placing these components in the reconfigurable region, the input multiplexer connectivity

is only as complex as required by the chosen Megablock subset, which for one or few Megablocks

represent an acceptable resource cost. Regarding the FUs, the total area required when imple-

menting a set of Megablocks will always have to be as large as the largest Megablock demands.

However, it might not be necessarily as large as the area which would be required by a multi-

configuration instance supporting all Megablocks. Also, by implementing each Megablock (or

small subsets of Megablocks) as a single configuration, the same resources can be used to imple-

ment different FUs between configurations.

A different solution would be to increase the II of the largest Megablock, thereby decreasing

the row width and avoiding the instantiation of FUs which would remain idle for other smaller con-

figurations. However, this would increase the number of configuration words required to execute

the Megablock, negating the resource savings achieved by instantiating fewer FUs.

The configuration memory was placed into this region because it was observed that, for a large

number of configurations, the memory size increased considerably. Even for a few configurations,

138 Dynamic Partial Reconfiguration of Customized Single-Row Accelerators

Figure 7.2: Complete tool flow for partially reconfigurable accelerator.

the instruction word width (487 bits on average for the 24 benchmarks in Chapter 6) led to a large

number of LUTs being required to implement the memory as distributed RAM.

By placing the configuration memory in the reconfigurable partition, it only needs to contain

the words which implement the Megablocks of the respective configuration. This is an efficient

re-utilization of LUTs, since the same FPGA resources will implement the memory which will

hold different configuration words based on what partial bitstream has been written to the recon-

figurable area. As Section 7.3 shows, generating one partial bitstream per Megablock leads to a

very noticeable decrease in the number of required LUTs, relative to a non-DPR implementation,

for this reason.

7.2 Tool Flow for Dynamic Partial Reconfiguration

The tool flow for this implementation was extensively re-worked. Figure 7.2 shows the complete

flow, from Megablock extraction to implementation. The initial extraction steps are identical to

all other implementations, as is the CDFG preprocessing. The generation of the Communication

Routines (CRs) and their integration with the application follows the same procedure, but each

routine now includes a call to a reconfiguration function which is part of the harness code. This

7.2 Tool Flow for Dynamic Partial Reconfiguration 139

function checks if the accelerator’s reconfigurable area is already configured with the desired par-

tial bitstream. If this is the case, the CR resumes normally. Otherwise, the reconfiguration routine

writes the partial bitstream to the reconfigurable area of the accelerator through the ICAP periph-

eral. The C function used to control the ICAP is custom written, to attempt to reduce overhead.

By having the partial reconfiguration take place as part of the CRs, the transparency provided by

the approach is not compromised.

In previous implementations of the CR, nearly all instructions were direct reads and writes

from and to the accelerator. If accelerator execution failed, the contents of the MicroBlaze’s

register file and stack would not suffer any modification upon return to software. If any iterations

were performed on the accelerator, the contents of the register file would match what would be

expected by software-only execution. The stack would not be altered in any way.

However, the routines in this implementation include the unconventional call to the reconfig-

uration function, and to all child functions thereof. As a result, the contents of the MicroBlaze’s

register file and stack do suffer unwanted modifications, whether the accelerator executes or not.

As a first approach, this implementation resorts to saving the entire register file to memory, and

recovering it after the partial reconfiguration function executes. The following code excerpt ex-

emplifies this. The _wrapCaller auxiliary function is placed at a specific address, according to the

linker script and via the respective section attribute.

Listing 7.1: Communication Routine with call to partial reconfiguration function

1 unsigned int seg_0_opcodes[87] __attribute__ ((section (".CR_seg"))) = {
2 0xf821fffc, // save r2
3 // (omitted)
4 // save register file (32 instructions total)
5
6 0x3021ff80,
7 0xb0000001,
8 0xb9fcf3b0,
9 0x20a00000,

10 // call "_wrapCaller" function
11
12 0x30210080,
13 0xe821fffc, // recover r2
14 // (omitted)
15 // recover register file (32 instructions total)
16
17 // Remainder of CR:
18 // (omitted)
19 };
20
21 void __attribute__ ((section(".pr_seg"))) _wrapCaller(unsigned int i) {
22
23 doPR(i); // reconfigure if needed
24 putfsl(1, 0); // soft reset after partial reconfiguration
25 putfsl(1 << i, 0); // set configuration number
26 return; // return to CR
27 }

The scheduler now generates one accelerator configuration per CDFG, along with a single

configuration file which determines aspects relative to the static region (e.g., the size of the reg-

ister pool and the connections between its registers). Each configuration specification (i.e., the

Configuration N HDL and Configuration Words files in Fig. 7.2) determines the instantiated FUs,

their interconnections and the contents of the configuration memory. In this version of the tool

140 Dynamic Partial Reconfiguration of Customized Single-Row Accelerators

flow, the scheduler does not yet generate a configuration which supports multiple Megablocks. In

this scenario, the memory would hold the configuration words for the execution of multiple traces,

just as the implementation in Chapter 6.

The bitstream for the base system (i.e, all modules and peripherals, plus the static region of the

accelerator) is generated first. Afterwards, each synthesized version of the reconfigurable region

imports the base system to generate all partial bitstreams. There are as many partial bitstreams as

chosen CDFGs. All bitstreams are placed into an MFS file system, which is a lightweight Xilinx

proprietary file system, for which a C library is provided. Using promgen, a file which can be used

to program the non-volatile flash on the used VC707 test board is generated. This file contains

only the partial bitstream files. The FPGA itself is configured in a separate step (i.e., it is not

programmed from the flash at boot). The exact commands for these two steps are the following:

Listing 7.2: Generating a flash programming file from a file system with all partial bitstreams

mfsgen −v c f p r . mfs < p a r t i a l b i t s t r e a m f i l e s >

g e n e r a t e t h e f i l e s y s t e m

promgen −b −w −p mcs −c FF −s 4096 −bp i_ dc p a r a l l e l \

−d a t a _ w i d t h 16 −d a t a _ f i l e up 0 pr . mfs −o pr . mcs

g e n e r a t e t h e f i l e f o r f l a s h programming ;

o p t i o n s are s p e c i f i c t o t h e f l a s h memory on t h e VC707

The specific area of the FPGA which was used as the reconfigurable region of the accelerator

was manually specified. The area encompassed approximately two thirds of one of the lowermost

clock regions in the FPGA. It contains a total of 12800 LUTs and 25600 FFs, and corresponds

to approximately one fourteenth of the device. The current implementation of the flow does not

automatically allocate a reconfigurable region based on the largest resource requirements observed

in the synthesis reports of each possible configuration (the reconfigurable area must be specified

before the translate and map stages).

7.3 Experimental Evaluation

This implementation was evaluated with the same set of benchmarks as those used in Chapter 6: 13

single-precision floating-point kernels from the Livermore Loops [Tim92] and 11 integer bench-

marks from the TEXAS IMGLIB function library [Tex]. The purpose of using the same bench-

marks was to determine the resource savings due to DPR for multi-configuration accelerators

supporting the same Megablocks.

7.3.1 Hardware Setup

Figure 7.3 shows the system architecture used to evaluate this accelerator implementation. All

program code (including the application, harness and partial reconfiguration functions) and data

reside in local memories. At boot time, the external memory is initialized with the file system

7.3 Experimental Evaluation 141

Figure 7.3: System architecture for validation of DPR capable accelerator

containing all partial bitstreams, by copying it from the non-volatile Flash memory. The acceler-

ator is partially reconfigured during the injector-driven migration process. The CRs now contain

a call to a function (written in C) which, according to the calling CRs, reconfigure the accelerator

with the appropriate bitstream. In order to avoid reconfiguration overhead, a DMA module is used

to send the partial bitstream to the ICAP. The target platform was the VC707 evaluation board,

containing a Virtex-7 xc7vx485 FPGA. The tools used for synthesis and bitstream generation are

from release 14.7 of Xilinx’s ISE Design Suite.

7.3.2 Software Setup

The benchmark setup is identical to that of Chapter 6. All kernels are placed into a single file,

and compiled along with the test harness which retrieves execution times, compares results with a

reference data generated on a desktop machine, and allows for specifying parameters such as the

combination of kernels to execute and amount of data to process. Data is allocated at runtime onto

the heap, which the accelerator is capable of accessing by receiving live addresses as operands, at

the start of execution, from the MicroBlaze. The memory initialization function is called explicitly

at boot time as part of the harness, but the partial reconfiguration function is called only by the

CR. The harness requires 3.3 kB, and the partial reconfiguration functions require 0.55 kB.

7.3.3 Resource Requirements of Static and Reconfigurable Regions

To determine how the resource requirements of the reconfigurable region scale with the number

of supported configurations, a total of 11 accelerators were generated, each supporting one Me-

gablock more than the last. The Megablocks used were those from the integer benchmarks. The

accelerator with one configuration supports i1, the next supports i1 and i2, etc.

142 Dynamic Partial Reconfiguration of Customized Single-Row Accelerators

6.06

5.11

0.50

2.37

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11

T
h
ou

sa
n
d
s

of Configurations

FFs (Static Region)
LUTs (Static Region)
FFs (Largest Module)
LUTs (Largest Module)

Figure 7.4: Resource requirements of DPR-based accelerator discriminated by static and recon-
figurable regions

Figure 7.4 shows the resource requirements of the accelerator with DPR, for the static re-

gion, and for the largest module in the reconfigurable region. These resource requirements are

as indicated by the synthesis reports. The number of maximum FFs and LUTs required by the

reconfigurable region only increases when a new, larger, configuration is added. In contrast, the

resource requirements of the static region increase slightly with each configuration, since it in-

cludes the input multiplexers of the load/store units and output registers. The total of input and

output registers increases as a function of the largest number of inputs and outputs amongst all the

supported Megablocks. The largest instance (i.e., for 11 Megablocks) requires 6555 FFs and 7474

LUTs. This is equivalent to 2.93× the FFs and 2.82× the LUTs required by a MicroBlaze with

an FPU and without a data cache (i.e., the same configuration as the previous chapter). The re-

quirement is considerable, but note that for the implementation in Chapter 6, an accelerator which

supported i8 and i9 alone required 5405 FFs and 8137 LUT, according the synthesis report.

7.3.4 Resource Requirements of DPR Accelerator vs. Non-DPR Accelerator

Figure 7.5 compares the resources requirements of the DPR and non-DPR accelerators. The same

sequence of supported configurations for Fig. 7.4 is used. The requirements shown were taken

from the synthesis reports of both accelerator archiectures. For the DPR accelerator, the resources

shown are the sum of the resources of the static region plus those of the largest variant of the

reconfigurable region. Note that the curves in Fig. 7.5 depend on which configurations each accel-

erator, at each index, supports. Despite this, it is possible to compare how each architecture reacts,

in terms of resource requirement increase, when a new configuration is added. Also, the order in

which configurations are added is irrelevant when comparing the the two architectures for the case

with all configurations.

Given this, the number of required FFs is nearly equal for both architectures. It is for the num-

ber of LUTs that the use of DPR demonstrates its advantages. For the 10 configuration case, the

number of required LUTs is 20273, which is 2.76× more than the equivalent DPR-based version.

The case for 11 configurations did not finish for the non-DPR accelerator, due to long synthesis

times. Additionally, an accelerator supporting 15 floating-point Megablocks was implemented,

7.3 Experimental Evaluation 143

6.56

7.477.03

20.27

0
2.5

5
7.5
10

12.5
15

17.5
20

22.5

1 2 3 4 5 6 7 8 9 10 11

T
h
ou

sa
n
d
s

of Configurations

FFs (DPR)
LUTs (DPR)
FFS (No DPR)
LUTs (No DPR)

Figure 7.5: Resource requirement comparison between DPR and non-DPR capable accelerators.
The number of FFs required by the DPR and Non-DPR versions are nearly identical for all cases.

and compared to an equivalent non-DPR accelerator. The former case requires 7187 FFs and 8100

LUTs, while the later 8326 FFs and 25566 LUTs. The main reason why many LUTs are required

on accelerators with many configurations is the size of the configuration word memory, since it is

implemented as distributed RAM. Instantiating a single memory, with all configuration words for

all Megablocks, increases the total number of words in the memory and also the word width.

The effect of the word width increase can be observed in Fig. 7.5. The marked increase in

LUTs for the non-DPR accelerator, which happens for indices 7, 8 and 9, corresponds to adding the

Megablocks for i7, i8 and i9 as configurations of the accelerator. The Megablock for i7 contained

40 instructions, and the ones for i8 and i9 are the largest for the integer set, with 142 instructions

each. This leads to a configuration word width of 1436 bits, whereas the width was 784 for the

accelerators between indices 1 and 7 (which was imposed by the then largest Megablock, extracted

from i2). As a result, the size of the configuration memory for the non-DPR accelerator increases

from 26 kB to 114 kB, from index 7 to index 9. For 10 configurations, the memory size is 231 kB.

For the DPR-based accelerator the configuration memory is part of the reconfigurable region.

Therefore it is only as large as the largest set of configuration words (in terms of total number of

bits required) amongst the configurations. As a result, the DPR based accelerator suffers only a

minor increase in number of required LUTs at this point. The size of the configuration memory is

determined only by the largest configuration, and is 33 kB for the accelerator of index 9.

For an additional comparison, consider the same groups of kernels used in Chapter 6 (Ta-

ble 6.3, page 124) to evaluate the multi-configuration performance and resource requirements.

Table 7.1 shows the resource requirements, according to the synthesis reports, for the accelerator

design of the previous chapter on the right hand side, and for the present design on the left hand

side. For the latter case, the resource requirements were calculated as the sum of the resources

reported for the static region, plus the resources required by the largest variant of the reconfig-

urable partition. The reduction in both LUTs and FFs from the non-DPR case to the DPR case is

consistent with the evaluation presented in Fig. 7.5. That is, for up to 3 configurations, the number

of LUTs decreases by 0.77× on average, while the number of FFs is nearly the same.

144 Dynamic Partial Reconfiguration of Customized Single-Row Accelerators

Table 7.1: Resource requirements for several multi-configuration accelerators, normalized to the
requirements of a single MicroBlaze, according to synthesis reports

ID # Megablocks
DPR Based Accelerator

Non DPR Accelerator
(Static Region + Largest Module)
Flip-Flops Lookup Tables Flip-Flops Lookup Tables

f_2_8 2 2.22 1.97 2.34 2.35
f_3_9 3 0.98 0.91 0.95 1.24

f_4_5_6 5 2.43 2.23 2.77 4.32
f_7_10 2 1.13 0.95 1.05 1.09

i_5_6 2 0.78 0.61 0.72 0.76
i_8_9 2 2.74 2.25 2.70 3.38

i_10_11 2 0.97 0.72 0.88 0.76
mean 1.61 1.38 1.63 1.99

Flip-Flops Lookup Tables

Microblaze (w/FPU; no caches) 2236 2654

The resource utilization of the DPR-based accelerator was estimated as presented since oth-

erwise synthesizing the accelerator as a whole (i.e., replacing the black box reconfigurable re-

gion with the largest variant) would cause the synthesis tools to perform optimizations across

the boundaries of both regions. On the other hand, this prevents the calculation of the synthesis

frequency, since the tools cannot analyse signal delays across the region boundaries. So as an

estimate, single-configuration instances of the DPR-capable version were synthesised (where the

reconfigurable region black box is replaced with an actual instance). Considering the worst syn-

thesis frequency for all cases (e.g., the lowest frequency between the two Megablocks for f_2_8)

the average synthesis frequency is 209.9 MHz, versus the 205.2 MHz for the non-DPR accelerator.

Note that although the results presented thus far are good indications of resource consumption,

the synthesis reports do not take into account the placement constraint which defines the recon-

figurable area. So, the multi-configuration cases in Table 7.1 were fully implemented to retrieve

more accurate results from the post-map reports. The post-map reports indicate that the average

accelerator requires 4074 LUTs, 3220 FFs, and 2051 slices. This corresponds to 1.79× the slices

of the MicroBlaze instance used in the same system (i.e., with an FPU and a data cache). But

when compared to the MicroBlaze instance used in the last chapter (i.e, without data cache and an

FPU), this corresponds to an increase of 2.39×. This is considerably more than the average size

of the non-DPR accelerator instances, which required 1.86× the slices the MicroBlaze required.

This occurs because, it is not possible to place the logic of both the static and reconfigurable

regions in to the same slices. This means a larger number of slices is required (and to a lesser

extent, LUTs) if the number of loops supported is too little to reach an advantageous trade-off.

This is true for nearly all cases of this set, save for f_4_5_6, which supports 5 configurations.

7.3 Experimental Evaluation 145

35
93

236 283 318 319

1707

6784

40552 39214

1

10

100

1000

10000

100000

0

200

400

600

800

1 2 3 4 5 6 7 8 9 10 11

S
y
n
th

es
is

 T
im

e
(s

ec
on

d
s)

DPR - Static Region DPR - All Variants Total No DPR (right axis)

Figure 7.6: Synthesis times for DPR and non-DPR capable accelerators

In this case, the number of LUTs required by the accelerator is 0.51× the number required by a

non-DPR accelerator, and the number of slices is 0.88×.

The exact same reduction in the number of LUTs is indicated by the respective synthesis

report, since the amount of resources relative to the reconfigurable area outweighs the overhead

of partitioning the accelerator. This suggests, especially for numerous configurations, that the

synthesis reports, and therefore the comparison in Fig. 7.5, provide good estimates of LUT savings,

and also area savings, since the logic in the reconfigurable area outweighs the static region.

In fact, to be more precise, since the DPR capable accelerator can support a (theoretically)

unlimited number of configurations in the same area, the actual resource and area requirements

it represents is in fact determined by the area reserved for the reconfigurable region. For this

evaluation, the area corresponded to 12800 LUTs and 25600 FFs, which was much larger than

what was required.

7.3.5 Synthesis Time of DPR-Capable Accelerator vs. Non-DPR Accelerator

Resorting to DPR leads to an additional and very significant advantage: the synthesis time of the

accelerator drastically decreases when targeting multiple loops. The synthesis time required for the

DPR-capable accelerator is equal to the synthesis time of the static region, plus the synthesis times

of all variants of the reconfigurable region. Figure 7.6 shows this, and the synthesis times of the

non-DPR version of the accelerator. For the latter case, the synthesis times become prohibitively

large for more than 8 configurations. For 10 configurations, the time is close to 11 hours. For the

case with 15 floating-point configurations, the non-DPR instance required 59 hours for synthesis,

while the DPR design only required 14 minutes.

7.3.6 Effect of Partial Reconfiguration Overhead on Performance

The purpose of this chapter was to demonstrate the resource savings on the accelerator when

resorting to DPR. However, the partial reconfiguration process introduces overhead when using

the accelerator. For completeness, this section also presents the measured speedups and DPR

146 Dynamic Partial Reconfiguration of Customized Single-Row Accelerators

Table 7.2: Partial reconfiguration overhead and speedups, for N = 1024 and three values of L

ID Benchmark
Overhead from Partial Reconf.

Overall Speedup
(% of accelerator execution time)
L = 500 L = 1000 L = 2000 L = 500 L = 1000 L = 2000

f2 diffpredict 42 26 15 3.50 4.42 5.09
f8 intpredict 39 25 14 4.35 5.44 6.23
f3 glinrecurrence 4 2 1 2.05 2.10 2.12
f4 hydro 19 11 6 9.65 10.7 11.3
f5 hydro2d 75 75 75 0.26 0.26 0.26
f6 hydro2dimp 10 5 3 9.18 9.66 9.91
f7 innerprod (fp) 14 8 4 3.69 3.97 4.13
f9 lin_rec 97 97 97 0.08 0.08 0.08

f10 matmul (fp) <1 <1 <1 3.07 3.08 3.08

i5 sad16x16 <1 <1 <1 1.06 1.06 1.06
i6 mad16x16 <1 <1 <1 1.06 1.06 1.06
i8 dilate 17 9 5 3.84 4.20 4.40
i9 erode 17 9 5 3.84 4.20 4.40

i10 innerprod (int) 18 10 5 3.10 3.41 3.58
i11 matmul (int) <1 <1 <1 2.41 2.41 2.41

mean 6 4 2 2.12 2.27 2.35

overheads for the multi-configuration cases shown in Table 7.1. Only these cases were used, as

they were readily available. Note that each supported Megablock is still modulo-scheduled at its

minimum possible II, so any decreases in performance are due to DPR overhead.

Table 7.2 shows how much of the accelerator execution time corresponds to partial reconfigu-

ration time, for several consecutive calls of the same kernel, which is determined by the parameter

L. Since these results were retrieved from complete on-board implementations, this demonstrates

the correct functioning of the transparent DPR-based reconfiguration. The averages shown are

arithmetic for the overhead and geometric for the speedups.

The time required to reconfigure the accelerator (i.e., to write a partial bitstream to the recon-

figurable area) was estimated by considering the time measured by the injector. For most cases

in Table 7.2, the respective accelerator supports a single Megablock. This means that the DPR

overhead is incurred once. For later invokations of the accelerator, the partial reconfiguration is

skipped. Measuring the execution time for two values of L is enough to determine which portion

of the measured time corresponds to the partial reconfiguration. For all cases the time is nearly

identical, 3.5 ms, considering the system clock frequency of 100 MHz.

This leads to a low overhead in most cases, although for f2 and f8 the overhead is still signifi-

cant, since the value of N used, 1024, results in a lower number of iterations in comparison to the

remaining cases. However, the effect of increasing L is observed for all cases, as the impact of

overhead diminishes. For a large enough value of L the DPR overhead would become insignificant,

since it only occurs once. In a realistic scenario however, the accelerator would be reconfigured

often if it supported several Megablocks.

7.4 Concluding Remarks 147

This can be observed for f9, where two Megablocks were accelerated. Each Megablock rep-

resents a small loop which iterates N times. Since the harness repeats the execution of both loops

L times, this means that a partial reconfiguration of the accelerator takes place a total of 2× L

times. As a result, the execution time inscreases drastically, since each kernel repetition requires

two partial reconfigurations. The same is true for f5, which supports 3 Megablocks.

The reconfiguration overhead could be reduced in several ways. Firstly, the size of each partial

bitstream file is 592 kB. Reducing the size of the file would shorten the time required for the DMA

to transfer it to the ICAP. Compressing the bitstream files was attempted, but the compression ratio

was too small to result in any significant difference. Instead, reducing the reconfigurable area to the

minimum required would be the most straightforward way to reduce reconfiguration overhead for

the current system implementation. All of the used partial bitstream files have the same size, since

this aspect is not determined by the logic they contain, but by the size of the reconfigurable area.

Secondly, existing approaches have shown that DPR overhead can be reduced by, for example,

greatly increasing the ICAP operating frequency [HKT11].

However, the overhead of utilizing a DPR capable accelerator in this approach can be reduced

due to the capacity for mixed-grain reconfiguration. That is, the overhead can be reduced if a

single circuit configuration (i.e., partial bitstream) is used to support multiple Megablocks using

multiplexing logic, as the previous approaches have shown, instead of implementing each in a sep-

arate partial bitstream. Determining which Megablocks to support in a single circuit configuration

for the reconfigurable area allows for balancing the aspects of overhead and circuit complexity.

7.4 Concluding Remarks

This chapter presented a proof-of-concept system relying on a single-row accelerator design, aug-

mented with Dynamic Partial Reconfiguration (DPR) capabilities, to implement the transparent

acceleration of binary traces. The approach relies on generating customized instances of the ac-

celerator, and in using DPR for the purpose of switching between supported configurations.

The DPR based reconfiguration, as opposed to implementing all reconfiguration capabilities

via in-module logic, allows for very significant resource savings, as well as reduced synthesis

times for the accelerator instances. The approach is advantageous when wishing to support a large

number of Megablocks. For instance, for a set of 7 accelerator instances, each of which supported

2 to 4 Megablocks, the number of LUTs required by the DPR-capable accelerator, according

to post-map reports, is 1.13× that of the non-DPR version, and the area (indicated by number of

slices) is also larger. However, for one accelerator in this set which supported five Megablocks, the

DPR-based accelerator requires 0.51× the LUTs and 0.88× the slices relative to an equivalent non-

DPR instance. As another example, the number of LUTs required by an accelerator supporting 10

Megablocks can be reduced by 2.76× by relying on DPR.

As expected, the DPR overhead has a noticeable effect on speedups. However, the size of the

reconfigurable area was larger than what was required, meaning the reconfiguration time could

be reduced. Additionally, other works have proven that the DPR time can be greatly reduced

148 Dynamic Partial Reconfiguration of Customized Single-Row Accelerators

relative to the vendor-provided flow (as per Section 2.3.2), either by adopting similar DMA-based

solutions or custom ICAP controllers entirely, capable of higher throughput [VF12, EBIH12].

Finally, the ICAP module could also be driven at a higher clock frequency [HKT11] than the

100 MHz used for this evaluation.

Also, the current version of the scheduler does not perform any kind of intelligent decision

regarding which Megablocks should be grouped to generate a partial bitstream. This evaluation

relied on generating one configuration per Megablock. Instead, the most efficient approach would

be to generate partial bitstreams which support multiple Megablocks. In this scenario, some of

the reconfiguration capabilities come from completely modifying the accelerator circuit via DPR,

and some from relying on multiplexing logic as the previous approaches have shown. This has

the potential to greatly reduce the required partial bitstream storage capacity and especially the

reconfiguration overhead, since DPR would not be required as frequently.

Regardless, this fully functional implementation of an accelerator with DPR capabilities as

presented in this chapter is very a significant step towards self-adaptive systems. The framework

of the accelerator is a viable starting point for development of and embedded tool for automatic ac-

celeration of frequent traces by on-chip generation of configurations for the reconfigurable region

[SF12, SPA08, BFD08]. On its own, this approach provides a high degree of transparency for the

application programmer, allows for fast generation of accelerator hardware, achieves considerable

speedups, and exploits the yet underutilized technological feature of DPR. This accelerator design

and evaluation demonstrated, by relying on existing vendor tool chains alone, that this capabil-

ity, unique to FPGAs, allows for significant improvements in terms of resource efficiency. In the

context of this work specifically, it allows for generation of compact accelerators supporting large

numbers of configurations, which do not sacrifice performance for the sake of flexibility.

Chapter 8

Conclusion and Future Work

This thesis presented a transparent binary acceleration approach, based on creating a customized

accelerator for the execution of hot spots. The hot spots are represented by Megablocks, which

for the purposes of this work were obtained offlina via simulation. The main focus was to devise

a methodology for embedded application acceleration which was lightweight, fast, and efficient.

The motivation was two-fold. Firstly, to further advance the already developing field of auto-

mated HW/SW partitioning approaches. Existing approaches are useful for developers comfort-

able with embedded development and tools. The tools and methodology developed in this work

can be adopted by this type of user, but an effort was also made to make it more approachable by

developers less familiar with these environments, by keeping the tools on the back-end.

Secondly, the approach was meant to efficiently exploit any inter- and intra-iteration instruc-

tion parallelism, to maximize performance. An accelerator architecture template is automatically

customized to execute a given set of Megablock traces, focusing on a trade-off between specialized

single-configuration circuits and reconfigurable circuits supporting multiple loop traces.

8.1 Characteristics of the Developed Approach

The developed approach relies only on binary trace information that is produced after compila-

tion by a simulation step. No source or binary code modifications are required, either manually

or during compilation via a custom compiler. An accelerator specification is quickly generated,

usually in the order of seconds, from a set of chosen instruction traces to accelerate. The tools

also generate the necessary communication primitives between host processor and accelerator,

and the transparent migration makes it unnecessary to modify the application post-partitioning to

implement the communication between components.

In Chapter 4, the first implementation of the accelerator architecture and tools was presented.

This first design served mostly to validate the approach at a system level, demonstrating that ex-

ecution remained functionally correct while being transparently migrated to the accelerator by

the injector and CR method. Execution of Megablock on the accelerator did not support mem-

ory accesses nor exploit inter-iteration parallelism, but multiple configurations were supported via

149

150 Conclusion and Future Work

interconnection configuration at the register-level. The applicability of the approach was vastly

improved in Chapter 5 with the addition of up to two concurrent memory accesses. Supporting

acceleration of traces with memory access operations enables the approach to target realistic work-

loads. In Chapter 6, the area/performance trade-off is vastly improved with a compact architecture

that also exploits intra-iteration parallelism. Loops are modulo-scheduled, taking into considera-

tion the two memory port limitation and its latency. If relying on local memories with a constant

known latency, execution on the accelerator never idles waiting for a memory access. Addition-

ally, the applicability was considerably increased by supporting floating-point operations. Finally,

in Chapter 7 the accelerator architecture of the previous chapter is modified to support Dynamic

Partial Reconfiguration (DPR) . The accelerator is partitioned into a static and a reconfigurable

region. Instead of supporting multiple configurations by increasing interconnection complexity,

one partial bitstream is generated per Megablock to support. This way, multiple configurations are

supported without increasing circuit complexity while also saving resources and area.

To summarize, the developed tools and accelerator designs benefit from the following features

and characteristics:

1. No source or binary code modification is required, before or after partitioning

2. Automated generation of specialized accelerators capable of executing multiple-loops

3. Support for floating-point operations on the accelerator, via fully pipelined units

4. Support for concurrent data memory accesses (including heap allocated memory)

5. Transparent migration of execution from software to hardware

6. No costly data transfers between processor and accelerator when relying on local memories

7. Exploitation of intra-iteration ILP

8. Exploitation of inter-iteration ILP via modulo-scheduling at the minimum possible IIs

9. Runtime reconfiguration of the accelerator via DPR

The experimental validations presented, for the several accelerator designs, showcased fully

functional transparent binary acceleration systems. With each accelerator implementation, the per-

formance improvements and area efficiency increased considerably. The earlier implementation in

Chapter 4 was only capable of targeting integer kernels, and the mean geometric speedup resulting

from exploiting intra-iteration ILP was of 2.08× for a mean resource cost approximately 2.5× that

of a single MicroBlaze. The single-row implementation in Chapter 6 decreases this cost to 1.12×,

while increasing the performance to a geometric mean speedup of 5.61×. In Chapter 7, the use

of DPR to reconfigure the accelerator lowers its resource requirements and synthesis time. This is

especially noticable for large numbers of configurations, allowing for acceleration of numbers of

Megablocks which for a non-DPR accelerator would entail a very high resource cost.

8.2 Future Work 151

The vision of a fully autonomous self-adaptive system motivated some aspects of this work,

but the presented approach, which relies on the described offline/online flow, is useful on its own

right. It may be employed by designers even when only binary executables are available, for a

quick and transparent detection of the critical application portions. The fast generation of custom

accelerator circuits delivers a significant performance increase with very little effort.

This is aided by the fact that the accelerator relies on standard Xilinx interfaces. For instance,

the use of FSL connections to communicate to the host processor is compatible with Xilinx’s

intended use of the interface regarding the use of co-processors. Also, relying on unmodified

binary means the vendor compilation flow is undisturbed. An entire accelerator-augmented system

can be instantiated using Xilinx’s embedded development environments, as was the case for all

experimental scenarios in this work. The user only needs to generate the accelerator specification

prior to bitstream generation. So, this would be the primary use case for the developed approach

and architectures. Integration of the developed tools into the vendor would also be possible.

The described scenario relies on having one accelerator connected to one FSL port (or PLB in

earlier implementations). But two additional use cases are possible with very minor modifications

the developed flow. The first would be the generation of several accelerators (either single- or

multi-configuration), each coupled to its own FSL interface. This would reduce the circuit com-

plexity that a single, larger, accelerator would suffer from, at the cost of additional circuit area.

A second case would be the use of one accelerator by two or more MicroBlaze processors in a

time multiplexed fashion. The accelerator architecture is abstracted from the processor execution

context, so supporting multiple CDFGs originating from different binaries would also be possible.

For any use case, using DPR for module-level reconfiguration would be an optional feature.

8.2 Future Work

There are three major aspects to highlight regarding future work. Firstly, some potential im-

provements to the primary use case of the developed approach, mostly related to tool flow and

integration, are listed in the next section. Secondly, the achievable performance would increase if

conditional execution was supported on the accelerator. This is explained in Section 8.2.2. Finally,

this work was motivated by the concept of a fully autonomous self-adaptive system to be devel-

oped in the future. With this in mind, the accelerator progressed towards an architecture which

was envisioned to be a suitable target for on-chip configuration generation and reconfiguration.

Section 8.2.3 discusses the developments and potential solutions necessary to realize this concept.

8.2.1 Potential Improvements to the Developed Approach

Although fully functional, there are some aspects that could be addressed to considerably increase

the applicability of the approach. The following limitations can be identified, and the succeeding

paragraphs briefly explain how they could be addressed.

152 Conclusion and Future Work

Only the MicroBlaze Instruction Set is Supported Supporting other instruction sets implies

the need for a different simulation platform to retrieve traces and possibly the design of additional

FUs, such that each instruction in the chosen host processor’s instruction set maps to an FU type

(save for special register handling instructions). Also, the developed scheduling and translation

tools can generate an accelerator from any CDFG, as long as that graph represents a single iteration

of a loop path, the nodes are host processor instructions, and the inputs/outputs of the graph repre-

sent registers from the processor’s register file. That is, support for a different RISC instruction set

would not require significant architecture or approach modifications beyond a simulator/platform

to extract execution traces.

The Accelerator and Tools are Geared Towards Xilinx Platforms Likewise the accelerator

and injector rely on the interfaces employed by the MicroBlaze and LMBs. Supporting another

processor, or type of memory interface, would require either new interfaces or bridges. The in-

jector especially would require modification, as its operation is dependent on the instruction bus

behaviour as driven by the MicroBlaze.

Interference by Adding CRs to Application via Re-Compilation The use of a re-compilation

step to add the CRs to the binary could be avoided by instead directly modifying the binary using

objcpy, which is capable of adding sections to the ELF file.

Manual Selection of Extracted Megablocks Automating the selection of Megablocks to ac-

celerate would fully automate the translation flow. It would be relatively straightforward to parse

the Megablock information and select those with the highest execution time, or highest number

of instructions. However, it would not be as easy to exclude traces which represented processing

by functions such as printf, or other peripheral communication, without a more in-depth process-

ing of the executable. Accelerating this type of Megablocks is not currently possible, since the

accelerator would require access to MicroBlaze’s memory mapped peripherals.

Accelerating Software Emulation Sub-Routines Another considerably more complex aspect

is the identification of operations such as float-point addition or integer division when they are per-

formed via software emulation. This would allow for executing these operations on the accelerator

without enforcing the presence of an FPU or integer divider on the MicroBlaze, which is necessary

to ensure that the respective trace instructions appear. Again, this would require processing of the

application’s ELF file to determine symbol names. Afterwards, calls to such sub-routines could

be replaced in the detected traces with equivalent accelerator supported instructions, if any.

Integration with Vendor Flows Currently the tools lack integration with the vendor develop-

ment flows in such a way that the partitioning process, from Megablock detection to bitstream

generation, is a seamless GUI based process. This aspect and the automated instantiation of the

accelerator module and supporting hardware would be the final integration steps.

8.2 Future Work 153

Implementing Efficient External Memory Access Supporting external memory access allows

for a acceleration of larger applications, especially those which deal with large volumes of data.

Also, realistically, an embedded system contains multiple layers of memory, meaning the host

processor resorts to caches. Sharing, or synchronizing, the accelerator and processor data caches

efficiently, and ensuring the data parallelism to exploit is not hindered by the memory latency,

are the two main aspects of efficient external memory support. This is explored by the proof-of-

concept in Appendix A.

8.2.2 Support for Multi-Path Traces

One significant limitation of the developed approach is that the accelerator cannot execute an entire

loop body which contains multiple paths. This is due to the nature of the Megablock trace, which

by definition does not capture the multiple execution paths through a loop, and the conditional

operations which control assignment of values to registers. One possible solution is to process two

or more traces starting at the same address, post-extraction, in order to generate a single CDFG

with control nodes representing conditional value assignments. The accelerator would have to be

augmented also, by having dynamic control for register write-enables based on results of previous

FUs. Support for multi-path traces would significantly improve the accelerated code coverage and

would further abstract the software developer from partition limitations.

8.2.3 Runtime HW/SW Partitioning via DPR

The previous section outlined some potential improvements of the developed work. Addressing

those issues, especially automated selection of traces and exclusion of certain code regions, would

contribute to further automating the approach. However, two approach-level aspects stand out as

potential future work towards a self-adaptive system. The first issue is relative to runtime detection

of traces to accelerate and their translation into a CDFG format (which involves determining data

dependencies), whilst the second is the generation of accelerator configurations.

Runtime Trace Detection and CDFG Generation The first problem is essentially a pattern

detection issue. Unlike an offline simulation step, this task is more difficult if performed on-chip.

Firstly, a monitoring mechanism is needed to observe both the instruction address and the instruc-

tion itself. The injector is a step towards this function. However, in order to detect patterns the

sequence of observed instructions must be stored and, at every new observed instruction, a number

of comparisons must be performed in order to detect a repeating pattern. The work in [BPCF13]

proposes some hardware solutions for pattern detection. Implementing a pattern detector in hard-

ware implies a high resource cost, and potentially limits the detectable pattern size.

Although detection of traces could be performed by a dedicated hardware module despite the

cost, it would be very difficult to extract the needed CDFGs representations from the patterns. So,

an alternative would be to have a software driven pattern detection and CDFG extraction. The

work in [LV09] relies on a second MicroBlaze to perform this type of on-chip CAD tasks. But a

154 Conclusion and Future Work

different solution can be outlined: use the main processor itself to perform trace pattern detection,

by periodically processing a trace (of a maximum specified size) stored in an auxiliary memory.

The left-hand side of Fig. 8.1 demonstrates this concept. An external interrupt driven by the

monitoring module sends the host processor to an embedded partitioning routine. The interrupt

could potentially be triggered based on counters which register how often a backwards branch

address is observed, since this is an indicator of loops. Up to N instructions executed prior to

the interrupt would be stored in the auxiliary memory. The cost of doing this is relatively minor.

The Megablock traces accelerated throughout the experimental evolutions in this work contained

approximately up to 120 instructions, so a memory size of 3 kbit would suffice.

To mitigate the overhead of halting the application to perform partitioning, the interruptions

could be triggered only when the accelerator is executing (after at least one configuration is already

generated). The embedded tools would also need to generate the CRs, place them into memory

and configure the injector. As with the developed approach, the binary would remain unmodified,

acting as software fallback. By relying on interrupts, the embedded partitioning tools would not

have to be manually integrated into any target application by the designer. The library would

simply be added to the compilation chain, and interrupts would have to be enabled.

A large part of the effort associated with this solution would be the porting of the existing

Megablock extraction and developed translation tools to versions suited for an embedded system.

Runtime Accelerator Generation via Partial Bitstream Manipulation The second issue lies

with the generation of accelerator configurations. The solution proposed for the extraction of

CDFGs also works for this task: the host processor could be used to generate accelerator configu-

rations. So the specific problem is the choice of accelerator reconfiguration/customization method.

The approaches presented in this work relied on offline HDL specifications, which is not an option

in an on-chip scenario. So two possible alternatives exist: 1) rely on a static, ALU-based accel-

erator with configurable interconnects, or 2) rely on DPR to generate custom circuits on-chip by

combination of coarse-grained components, stored as partial sub-modules. Keep in mind that the

solutions proposed here consider the accelerator architecture shown in Chapter 6 as the target.

The first alternative is the approach typically adopted for existing works. It was also proven

to be efficient for the accelerator architecture developed in Chapter 6 by the evaluation of ALU-

based instances. In this case, the accelerator would also need crossbar-type connectivity since the

configurations would be generated online. The register pool would need to be generic as well.

The second approach would rely on having an accelerator with a static portion and several

partially reconfigurable areas. Each supported FU would be stored as a single partial bitstream

file, so each area would be as large as the largest FU. Some high-cost units could be made static

as well, like the FPU. The right-hand side of Fig. 8.1 illustrates this.

Generating a configuration would entail determining the FUs to instantiate and their connectiv-

ity, similar to the developed work, but relying on DPR. The overhead of generating a configuration

would only be incurred once. The information as to what combination of coarse-grained modules

to place on the single-row as well as the connectivity could be stored for later accelerator calls.

8.3 Concluding Remarks 155

Figure 8.1: Concept for a fully autonomous self-adaptive system based on Dynamic Partial Re-
configuration

The other source of overhead would be the DPR reconfiguration itself as the accelerator is

called to accelerate different translated traces. By reconfiguring the accelerator FU by FU some of

this overhead could be eliminated, since a given needed unit may already be instantiated when re-

configuring. The translation process could be intelligent so as to maximize the number of matching

units per type and position, decreasing the DPR overhead.

Generating the connectivity and register pool dynamically is more difficult. A possible first

solution would be to rely on crossbar connectivity and generic register pool, both residing on the

static area of the accelerator.

8.3 Concluding Remarks

This work developed a fully functional transparent binary acceleration approach. Specifically,

tools relying on binary trace information alone automate the generation of customized reconfig-

urable accelerators. The most efficient accelerator architecture is, on average, the size of a single

MicroBlaze processor, and provides significant performance increases, especially given the small

effort required to generate an accelerator instance.

For software developers without hardware expertise the automated hardware generation makes

heterogeneous systems more approachable targets. Even for experienced developers, the time

saved in hardware design is a considerable advantage. The approach relied on FPGAs as the

target devices, as they have evolved to be viable as deployment platforms, especially given that

the current trend seems to be towards integrating FPGA fabric as part of a System-on-a-Chip [].

To conclude, the developed approach is useful for an embedded development scenario where

the performance needs of the target application can be met with dedicated circuits which balance

specialization and reconfiguration. Finally, it is also a significant stepping stone for future self-

adaptive systems.

156 Conclusion and Future Work

Appendix A

External Memory Access for Loop
Pipelined Multi-Row Accelerators

The implementations presented in the main body of this thesis relied on system architectures con-

taining only local data memories. This simplified the design of the memory sharing mechanism

that allows the accelerator to access data memory. This local-memory-based scenario is fully func-

tional and useful for embedded applications which do not need to rely on external data memory.

However, some applications may require for data to reside in external memory, either due to the

volume of the data to be handled or to make it possible for other peripherals to easily access data

as well, for instance. The main objective of this work was to focus on transparent binary accel-

eration and mechanisms. However, it is important to demonstrate that the approach is viable for

such a scenario. Therefore, this appendix presents an analysis of the performance and design of

an accelerator design coupled to a customizable dual-port cache, which interfaces with an external

memory controller to access data stored off-chip.

The accelerator is an extension of the design shown in Chapter 5. To cope with the variable

memory access latency caused by the external memory, the load/store Functional Units (FUs)

have been adapted into pipelined units, and the rows of FUs now support multi-cycle execution.

To reduce the impact of longer memory access latencies, this implementation also exploits loop

pipelining by concurrently enabling multiple rows. Finally, an accelerator instance may also con-

tain synchronization logic which allows it to operate at a higher frequency than that of the re-

maining system. Likewise, if the accelerator complexity lowers its maximum operating frequency

relative to the baseline system, this allows for the remaining software execution to be unaffected.

The accelerator architecture is shown in Section A.1, and the developed configurable dual-port

cache in Section A.2. Section A.3 presents the experimental results, and Section A.4 concludes

this annex.

157

158 External Memory Access for Loop Pipelined Multi-Row Accelerators

Figure A.1: Pipelined 2D accelerator adapted for higher memory access latencies

A.1 Accelerator Architecture

Figure A.1 shows a synthetic example of the accelerator architecture, which is similar to the multi-

row design from Chapters 4 and 5. Like all implementations, each accelerator instance is based on

customizing the number, type and location of FUs and their interconnections. The two different

features are a more sophisticated backwards interconnection capability between FUs, which allows

for direct connections from any row to any other preceding it, and the ability to simultaneously

activate multiple rows of FUs.

A.1.1 Structure

The accelerator is composed by rows of FUs which execute in parallel. Independent operations are

translated into FUs on the same row, and generally each row corresponds to a CDFG level. Each

FU input is fed by a customized multiplexer. This multi-row accelerator design has the capability

to support backward connections from any row to any preceding row. For example, the first row

feeds data back into itself. In the previous multi-row design, the data had to be propagated to

the bottom of the array, and only then fed back. This allows the implementation of the exact,

and shortest possible, backwards node connectivity present in the source CDFGs. Together with

the capability of simultaneously activating multiple rows, this allows for loop pipelining. This is

implemented via the per-row control modules shown on the left-hand side. Memory accesses are

handled by a Memory Access Manager (MAM) unit (not shown in Fig. A.1), which interfaces

with all rows containing memory operations, as shown on the right-hand side.

A.1 Accelerator Architecture 159

The array supports all integer (including division by a constant), comparison, logic operations,

and also load/store operations. Floating-point operations and integer division by a non-constant

divider are not supported. All units are single-cycle, except the constant integer division (2 clock

cycles), the multiplication (3 clock cycles), and the load operations (4 clock cycles at the least).

The latency of load/store operations depends on the memory access contention (which is a function

of the number of memory units on the array and how frequently they are activated). The behaviour

of the cache also influences the execution of these units.

The load FUs were re-designed into a four cycle operation, based on the number of cycles

required to fetch a datum from the cache when there is a tag hit. These FUs are pipelined, so

registers are added at the output of other FUs on the same row as a load unit, to synchronize data.

Likewise, when a row contains a three cycle multiplication unit, registers are added to the outputs

of other FUs. The multiplication unit is fully pipelined, so the resulting inter-row pipelining allows

for producing data every cycle. The store operations may buffer up to one datum if no memory

ports are available. These units only introduce latency if they are activated again before their

buffered datum is written to memory.

The synchronization logic, which is automatically instantiated if the system and accelerator

clocks differ, is placed at the input/output register interfaces and also at the memory interface to

the cache. That is, the cache and accelerator operate at different frequencies, as this facilitates the

interface of the cache to the external memory controller port.

A.1.2 Execution

The accelerator is invoked by the same migration mechanism used in all other implementations.

When a Megablock start address is detected, the injector sends a single configuration word to the

accelerator, which sets the number of expected operands and global multiplexer context. If the

accelerated loop contains one or more store operations, the respective Communication Routine

(CR) includes a loop to invalidate the MicroBlaze’s data cache. The accelerator’s own data cache

is invalidated in a single cycle prior to execution.

Any number of exit FUs on the array (which represent the branch operations of the MicroBlaze

instruction set), keep track of the conditions which end the execution. For multi-configuration

accelerators, the number of rows which needs to be activated to complete an iteration is equal to

each accelerated CDFG’s Critical Path Length (CPL), i.e., depth. The output registers can be fed

by any FU in any row, just as any FU in any row can be fed by any other.

The per-row control modules on the left-hand side of Fig. A.1 enable their respective rows

based on all valid signals they receive from all rows. For example, the control for the first row

issues an enable once a valid signal is issued by that same row. Likewise, the second row is

enabled once a valid signal is issued by the first row. However, a row may produce data consumed

by multiple rows. For instance, the first row in Fig. A.1 produces data consumed by itself and by

the second row. This means that the first row cannot produce new data before the existing data is

read by all consumer rows. Thus, a consumed signal is asserted by every row after it activates.

160 External Memory Access for Loop Pipelined Multi-Row Accelerators

Figure A.2: Memory Access Manager (MAM) for this implementation. Each memory port (right-
hand side) manages half of the load/store units (m is the total number of units on the array).

This kind of control is easy to generate on a per-accelerator basis, implementing each CDFG’s

different inter-row data dependencies, which sometimes include several backwards connections.

Also this control allows for the accelerator to cope with the variable latency of the load/store

operations. For clarity, the memory port logic is omitted in Fig. A.1, but is nearly identical to

the previous multi-row design. The loop pipelining implemented by concurrent row enabling

increases performance by exploiting instruction parallelism further, and also by mitigating the

impact of external memory access latency, as operations executed while a given row idles waiting

for load/store operations to complete.

A.1.3 Memory Access

Like previous implementations, load/store units receive operands from any other FUs. This means

accesses can be to arbitrary addresses. The access requests are handled by a Memory Access

Manager (MAM) unit, shown in Fig. A.2, which is similar to the one presented in Chapter 5. As

before, memory operations are byte-enabled.

The load/store units assert request signals and stall execution if their operation does not com-

plete within a given number of cycles. This implementation relies on single-cycle arbitration logic,

and each LMB port has its own arbiter. Both ports receive all signals from all load/store units, and

the arbiters make mutually exclusive selections. After granting access to a given FU placed on row

n, an arbiter will only grant it access again after all load/store units located on all rows after row n

are handled as well, to preserve memory access order. To reduce the complexity of the arbitration

logic, each of the memory ports may handle only half of the load/store FUs in the array.

A.2 Configurable Dual-Port Cache 161

A.2 Configurable Dual-Port Cache

The dual-port cache used is a custom module which can be configured in terms of line size, block

size, and number of blocks. It implements a direct-mapped, write-through no-allocate policy. The

cache has the following features: data already present in the cache can be accessed by one port

while another port waits on a block load; reads are answered as early as possible when loading a

block (i.e., when the request datum is fetched it is sent back to the accelerator before the entire

bock is read); both ports can read data from the same block (even while the block is being loaded);

data can be written by the accelerator into a block being loaded without loss of coherency.

The accelerator can either connect to the local data BRAMs or to the cache, since the cache

relies on the same interface signals. To access the Multi-Port Memory Controller (MPMC) used,

the cache has two ports, equal to those of the MicroBlaze. One is exclusively for reading com-

plete cache lines, and the other exclusively for single datum writes (i.e., non-burst). The MPMC

uses round robin arbitration by default to manage its multiple master ports, which caused some

accelerator-issued accesses to be performed out of order. This is why the cache is write-through

and also why the port used for writes is given priority.

The cache operates on the same clock domain as the accelerator, so no synchronization logic

exists between the two modules. An additional register stage may be introduced (manually) how-

ever, if the joint accelerator and cache complexity introduces long critical paths. Introducing this

stage increases the memory access latency, which does have impact on accelerator performance.

If the cache operates at a different frequency than the system, the synchronization logic is placed

at the interface with the MPMC.

There are some issues which, however, are not necessarily limitations neither of the proposed

acceleration approach nor of the accelerator design: namely: the cache has a considerable resource

cost; it was designed to interface specifically with the MPMC present in the utilized Spartan-6

FGPA; since only one cache link is used for reads, only one block can be loaded into the cache at

the same time; and it is overall too complex relative to the performance it delivers. Keep in mind

however that the cache was developed simply to provide a functional external memory access for

the accelerator for validation purposes.

A.3 Experimental Evaluation

Figure A.3 shows the system architecture used to evaluate this accelerator design, and to demon-

strate that the migration and acceleration approach functions even under an external data memory

scenario. The accelerator retains its LMB based interfaces, which couple to the dual-port cache.

The cache has two Xilinx Cache Link (XCL) interfaces (equal to the MicroBlaze) to the multi-

ported memory controller in order to access external DDR memory, which holds only data arrays.

The MicroBlaze uses local memories for program code, and is configured with a 256-byte

write-through data cache, with a line size of 8 words, and no instruction cache (as all instructions

reside in local memory). The accelerator’s cache is instantiated with the same total and line sizes.

162 External Memory Access for Loop Pipelined Multi-Row Accelerators

Figure A.3: System architecture for validation of external data memory access by the accelerator

The buffer stage is placed between the cache and accelerator to remove long critical paths. The

system, i.e., the MicroBlaze, operates at 83 MHz for all cases, and the accelerator’s operating fre-

quency varies per case. The implementation platform was a Digilent Atlys board, with a Spartan-6

LX45 FPGA, and a 128 MB DDR2 memory.

The static data to process is placed on the external memory by copying it from on-board non-

volatile flash memory at boot. A custom section in the linker script and a section attribute are used

when declaring the C arrays which contain this data, so the compiler knows their address. The

accelerator’s data cache is reset before the accelerator executes, since its contents are most likely

invalid due to MicroBlaze execution prior to each accelerator call. Likewise, the MicroBlaze’s

own data cache is invalidated while the accelerator executes, as part of the CR. This invalidation

is only performed if the loop executed on the accelerator contains any store operations.

A total of 12 integer kernels were used to validate the correct functioning of the system. The

kernels originate from the PowerStone [MMC00], Texas’s IMGLIB library [Tex], and WCET

[GBEL10] benchmark suites, and from other sources [War02, Jen97]. The dotprod benchmark

is a simple synthetic kernel. A large 3D path planning application, griditerate, was also used

[CDP+11]. For bitstream generation and synthesis, Xilinx’s EDK 14.6 was used. For compilation,

version 4.6.4 of mb-gcc was used, along with the -O2 flag and additional flags to enable the barrel-

shift, integer multiplication, and comparison operations.

The following section discusses general performance aspects, and comments on the effects of

memory access contention and loop pipelining on performance. Section A.3.4 presents resource

requirements and operating frequencies for the generated accelerators.

A.3.1 General Aspects

Table A.1 shows the characteristics of the extracted Megablocks and the generated accelerators.

The third and fourth columns show the average number of instructions in the traces, and the min-

imum possible Initiation Interval (II) of the respective CDFGs, MinII. Completing an iteration in

A.3 Experimental Evaluation 163

Table A.1: Megablock and characteristics of generated accelerators

ID Benchmark Avg. Min. Max. # FUs # Loads # Stores # Rows
#Inst. II IPC

i1 blit 10.0 1 10.0 18 1 2 4
i2 bobhash 10.0 5 2.0 11 1 0 8
i3 checkbits 63.0 1 31.5 59 1 1 19
i4 dotprod 12.0 2 12.0 10 2 0 5
i5 fft 39.0 1 19.5 48 6 4 10
i6 gouraud 19.0 1 19.0 16 0 1 6
i7 perimeter 22.0 1 22.0 28 5 1 10
i8 poparray1 27.0 1 27.0 22 1 0 18
i9 griditerate 120.0 5 24.0 121 22 11 16

i10 g3fax 5.4 2 2.7 22 2 0 7
i11 edn 15.3 2 7.6 33 4 0 9
i12 fir 9.0 1 9.0 11 2 0 4

mean 29.3 2 15.5 33.3 3.9 1.7 9.7

MinII clock cycles leads to the highest number of executed Instructions per Clock Cycle (IPC),

Max.IPC, as is shown in the fifth column. One Megablock was accelerated for all cases, except

for i1, i10, and i11 (2, 4, and 2 Megablocks respectively). The mean is arithmetic for all cases.

Most of the used kernels in this evaluation were also employed in Chapter 5; i4 and i9 are the

only exceptions. The later was included here as it contains a deeply nested loop (four levels of

nesting) which was considered to be a good target for aggressive loop pipelining due to the number

of instructions in the resulting Megablock. Since it also contained a large number of memory

operations, it was also a useful stress test for the accelerator’s execution model and especially to

evaluate the impact of the external memory access latency.

Despite the large number of instructions for i9, the average number of instructions per Mega-

block in this set is approximately 0.70× the average number of instructions for the comparable

implementation in Chapter 5 (i.e., memory access capable multi-row accelerator). The traces have

fewer operations, so there is less parallelism to exploit per iteration. But since loop pipelining

is enabled, additional intra-iteration parallelism is also exploited. That is, it might not pay off to

migrate small loops to the accelerator when exploring inter-iteration ILP alone, which is addressed

by also resorting to loop pipelining. For example, consider that the benchmarks used here are a

subset of the cases evaluated in Chapter 5 (exception for i4 and i9). For these cases, the maximum

IPC resulting from intra-iteration parallelism alone is, on average, only 2.03. Considering both

intra- and inter-iteration parallelism the IPC becomes 14.8.

However, loop pipelining also means that more memory operations are issued per cycle, mean-

ing more contention despite the fact that the Megablocks in this evaluation have fewer memory

operations per iteration than the entire set in Chapter 5. As a consequence of memory access

contention and latency, the IPC actually achieved on the accelerator, IIHW , is lower than the ideal

Max.IPC. For execution on the accelerator to achieve this maximum, it would have to be capable

164 External Memory Access for Loop Pipelined Multi-Row Accelerators

Table A.2: Performance metrics and speedups for the tested benchmarks

ID IISW IPCSW IIHW IPCHW SKernel SOverall SNoOverhead SU pperBound

i1 15.0 0.7 7.7 1.3 1.94 1.91 1.93 8.39
i2 15.8 0.6 7.3 1.4 2.14 2.10 2.11 2.04
i3 68.0 0.9 8.2 7.7 8.06 7.58 7.83 18.31
i4 16.6 0.7 9.1 1.3 1.76 1.65 1.72 5.30
i5 121.2 0.3 100.1 0.4 1.19 0.83 1.04 0.95
i6 21.0 0.9 3.1 6.1 6.65 6.39 6.45 14.12
i7 27.5 0.8 14.2 1.7 1.91 1.87 1.91 12.64
i8 35.7 0.7 6.0 4.5 5.21 3.86 4.26 7.52
i9 278.9 0.4 245.7 0.5 1.16 1.15 1.24 7.94

i10 10.0 0.5 7.1 0.8 1.02 0.93 1.13 1.24
i11 23.3 0.6 16.5 0.9 1.22 1.17 1.35 2.45
i12 17.8 0.5 17.6 0.5 0.93 0.96 1.03 2.21

mean 54.0 0.7 37.0 2.2 2.07 1.91 2.06 4.69

of executing all memory operations in an iteration within MinII clock cycles (assuming a scenario

where the cache always responds in one clock cycle). That is, the accelerator would need to be

able to execute an average of 2.3 memory operations in parallel, each with a latency of one clock

cycle. The deviation of this average is high however, with i5, i7 and i9 requiring 5.0, 6.0 and 6.6

parallel accesses per cycle to achieve execution at the minimum II, respectively.

A.3.2 Performance

Table A.2 compares the performance of software and accelerator-enabled execution. The first

two columns show how many clock cycles are required to complete an iteration of the acceler-

ated Megablock through software (IISW), and the resulting instructions executed per clock cycle

(IPCSW), which are computed given the number of accelerated instructions and the II. The next

two columns shows the same values for accelerator-enabled execution. The last four columns

show the kernel speedup (SKernel) (i.e., the speedup of the accelerated portion), the speedup of

the overall application (SOverall) the speedup value which would be achieved if CR overhead were

eliminated (SNoOverhead) and finally a speedup upperbound (SU pperBound) computed considering a

scenario where memory access latency was minimal (i.e., one clock cycle), and memory band-

width was unlimited. That is, this upper bound is the potential speedup if iterations could be

completed at rate of one per MinII clock cycles (shown in the fourth column of Table A.1). The

mean is geometric for speedups and arithmetic for all other columns.

A.3.2.1 Instruction per Clock Cycle and the Effects of Memory Latency

In the experimental evaluations in the main document, the equivalent IPCSW (i.e, the number of

instructions the MicroBlaze executes per cycle) was computed by taking into account the number

of instructions in the accelerated trace and the latency of each instruction. But since the data are

A.3 Experimental Evaluation 165

now on external memory, the IPCSW for this evaluation was computed using the measured number

of clock cycles required to execute all Megablock iterations, on the number of executed iterations,

and on the number of instructions in the Megablock. The IPCHW is computed in the same manner.

Note that although the accelerator operates at a different clock frequency than the MicroBlaze for

some cases, all IPC values are computed using clock cycle counts of the system clock.

The accelerator achieves a higher IPC for all cases, although for some, like i12, the increase

is minimal. The IPCHW value is lower than the ideal IPC almost exclusively due to the memory

access latency, but also decreases (very minimally) since it was computed taking into account the

number of processor equivalent cycles during which the accelerator executes (which also includes

a small overhead and synchronization cycles).

The Megablocks which contain the least number of memory operations are those for which

the achieved IPC is closest to the maximum. This happens for i2, i3, and i6, for which the average

accelerator IPC is 0.41× the respective average ideal IPC. For the entire set, the achieved IPC

is, on average, 0.18× the optimal. Although i12 also contains few memory operations, it suffers

from cache latency due to the access pattern of the operations, which constantly forces the cache

to discard freshly loaded blocks. As a result, the resulting IPC is very low relative to the optimal,

and there is no gain relative to software only execution.

From the measurements its possible to compute how many clock cycles are added to the execu-

tion of a single iteration, relative to a scenario with minimum memory latency. This was computed

for both the MicroBlaze and the accelerator. For the MicroBlaze, accessing data residing on ex-

ternal memory adds an average of 24 clock cycles relative to a local memory scenario, where the

average number of clock cycles required to complete an iteration would be 30 (this was estimated

considering the number of instructions in each trace and their latencies). For the accelerator, 35

clock cycles are added per trace iteration due to memory access, over the ideal MinII, whose

average is 2 as shown in Table A.1.

Memory accesses performed by the accelerator are more costly since: (i) even though there

are two ports between cache and accelerator there is only one port through which data is fetched

into the cache from external memory; (ii) the 2-clock-cycle cache latency makes memory accesses

more costly for the accelerator. However, the accelerator does not necessarily suffer from twice

the memory access latency, because (i) the dual-cache port allows for concurrent accesses, and (ii)

the accelerator operates at higher clock frequencies relative to the system clock for all cases.

The purpose of exploiting data parallelism via two memory ports was also to mitigate the

access latency. This evaluation also counted how many accesses were performed per accelerator

port, since the handling of load and store FUs relies on a runtime arbitration heuristic. Considering

all accelerated Megablocks, one port performs 502 accesses per accelerator call, and the other 329

accesses per call. This demonstrates that considerable data access parallelism was exploited.

A.3.2.2 Speedups

Despite the penalty of external memory access, the geometric mean speedup on the accelerator

is 1.91×. However, for 3 cases the use of the accelerator resulted in a slowdown. For i5, this is

166 External Memory Access for Loop Pipelined Multi-Row Accelerators

due to the low number of iterations performed for some of the accelerator calls. The accelerated

Megablock for this case also contains the largest number of memory operations (apart from i9).

But the most influential factor for the slowdown in this case is the number of accelerator calls that

take place without any useful work being completed, i.e., not a single iteration is performed on the

accelerator. For i15, 127 accelerator calls out of a total of 128 terminate without having executed

a single iteration. For i10 and i12, the number of instructions in the accelerated traces is small,

and coupled with the number of iterations per call is 57 and 32, respectively. For these cases, the

overhead has large impact on the total migration time, negating any small parallelism gains.

There are two factors which influence the application speedup, SOverall , shown in Table A.2:

the achieved IPC due to parallelism exploitation and the accelerator execution model, and the fact

that the accelerator operates at higher clock frequencies (the average being 128 MHz). To disam-

biguate the effect of these two aspects, we can compute the time the accelerator would require

to execute the Megablocks if it operated at the system frequency, 83 MHz. For this scenario, the

geometric mean speedup is 1.13×, with slowdowns occurring for 5 benchmarks (i5 and i9 to i12).

The minimum latency of two clock cycles for cache access now becomes very detrimental, as it

is no longer mitigated by a higher clock frequency. The accelerator’s two parallel memory ports

effectively operate as a single port with a latency of one clock cycle.

The benchmarks used here are a subset of the cases evaluated in Chapter 5 (except for i4 and

i9). The implementation in Chapter 5 relied on local memories for the data and the accelerator

did not exploit loop pipelining. As a result, the geometric mean speedup was of 1.62×, versus the

2.03× achieved in this implementation, despite the external memory access latency.

Finally, the geometric mean for SOverall is only 41 % of the geometric mean of SU pperBound .

Using instead the values of SNoOverhead (which discards CR overhead), the geometric mean is 53 %

of the geometric mean of the upper bound. Since SNoOverhead discards CR overhead relative to

SOverall , and SU pperBound is the estimation of speedup without memory access latency but with CR

overhead, this shows that it is the limited memory bandwidth, and the high access latency that

greatly decrease performance with this accelerator.

A.3.3 Communication and Cache Invalidation Overhead

The overhead introduced for this implementation includes the transfer of operands and results be-

tween the accelerator and the MicroBlaze during Communication Routine (CR) execution, and

the additional overhead due to the invalidation of the MicroBlaze’s cache during accelerator ex-

ecution. For all benchmarks, the overhead represents 6.02 % of the migration time (i.e., CR and

accelerator execution, plus a final iteration in software).

The cache is invalidated by a small loop which is part of the CR. While the accelerator’s cache

can be invalidated in a single cycle, the MicroBlaze only allows for selective invalidation of a

specific cache line. To invalidate the 256-byte cache used in this implementation, a total of 192

clock cycles are required. This is considerable given that a CR without this cache invalidation step

contains an average of 22 instructions and requires approximately the same number of cycles to

execute (since the instructions reside in local memory and nearly all operations have a single cycle

A.3 Experimental Evaluation 167

0

50

100

150

200

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 mean

F
re

q
u
en

cy
 (

M
H

z)

R
es

o
u
rc

es
 (

n
or

m
a
li
ze

d
)

Accelerator LUTs Accelerator FFs Accelerator Synthesis Frequency (MHz)

Figure A.4: Resource requirements and synthesis frequency of the generated accelerators with a
multiple row architecture capable of loop pipelining

latency). However, since the cache is invalidated during accelerator execution, the invalidation

time is hidden if the accelerator executes enough Megablock iterations. This is not the case for one

of the Megablocks implemented for i10, for instance, where an average of 2.2 iterations executed

per call mean that the accelerator finishes executing before the MicroBlaze’s data cache has been

completely invalidated.

A.3.4 Resource Requirements and Operating Frequency

Figure A.4 shows the resource requirements of the generated accelerators, as well as the synthe-

sis frequency. For these benchmarks, a single MicroBlaze requires 1615 LUTs and 1213 FFs.

This means the average accelerator requires 2.21× and 4.35× the LUTs and FFs of a MicroBlaze,

respectively. Ten out of the 12 benchmarks used in this implementation were also used in the eval-

uation in Chapter 5. For this subset, the average number of required LUTs is very similar, but the

number of required FFs now increases by 2.21×. This increase can be attributed to the additional

per-row control logic, and especially to the need to register passhthrough units to synchronize data

for loop pipelining. The entire system requires an average of 8696 LUTs and 9555 FFs, meaning

that the average accelerator represents 37 % of LUTs and 51 % of FFs.

The average synthesis frequency of the accelerator is 128 MHz, and it always operates at a

frequency higher than the 83 MHz baseline. This evaluation attempted to increase the operating

frequency of the system (and therefore the MicroBlaze), to achieve a more competitive baseline.

However, given the size of the device, and all the peripherals needed (i.e, the occupied area of

the device, accelerator included), this was not possible. The average operating frequency of the

accelerator was of 110 MHz, which was possible by adding the additional register stage between

the accelerator and the dual-port cache. Otherwise, the joint complexity would result in longer

critical paths, which in some instances lowered the accelerator’s operating frequency below that

of the baseline. The lowest synthesis and operating frequencies occurs for i8, due to the control

logic which dynamically enables stages based on inter-row data dependencies. Nearly all critical

paths are related to the signals between the MAM and the stage control modules.

Finally, regarding the cache, it requires 1595 LUTs and 1103 FFs when set for 256 bytes and a

block size of 8 words, and the synthesis frequency is 139 MHz. The frequency is very similar for

168 External Memory Access for Loop Pipelined Multi-Row Accelerators

all sizes up to 4096 bytes, and for all block sizes up to 16 words. The only observable decrease to

75 MHz is for a block size of 2 words and a total size of 4096 bytes, due to the larger tag memory

and number of comparators required. The resulting resource requirements are also the highest for

all combinations of cache parameter values: 15536 LUTs and 9061 FFs.

The cache parameters that ensure optimal performance largely depend on the pattern of mem-

ory accesses performed by the accelerator. Although this is an analysis that could be performed

based on the simulation step that extracts the Megablocks, it is not within the scope of this work.

However, the resource requirements of even the smaller cache instances are still considerable rel-

ative to those of the average accelerator instance. As a whole, the accelerator and cache combined

require on average 3.1× the LUTs and and 5.3× the FFs of a MicroBlaze containing its own

256-byte data cache.

A.4 Concluding Remarks

This appendix presented a brief proof-of-concept for an accelerator augmented system capable

of external memory access. It was never expected that this implementation outperformed the

cache-enabled MicroBlaze; the objective was to demonstrate that the Megablock translation and

execution migration mechanisms are also applicable in this scenario.

To allow for the data memory to be shared between the MicroBlaze and the accelerator, each

of these modules resorts to its own data cache. The MicroBlaze’s data cache is instantiated condi-

tionally based on a configurable parameter, and the accelerator cache is a custom designed module.

The accelerator capability to perform two concurrent memory accesses is preserved since the cache

is also dual-ported. This system architecture introduces the need to occasionally invalidate either

the MicroBlaze’s or the accelerator’s data cache, depending on which module has executed and

which has expired data. Additionally, the multi-row accelerator design is capable of exploiting

loop pipelining by simultaneously enabling multiple rows.

However, the evaluation found that the the memory access latency, and especially access con-

tention, have a great impact on performance. This is because the execution model of the accelerator

is a direct translation of CDFGs. For CDFGs without memory operations, this translation method

works efficiently: each type of FU is self-contained, with a low (usually one clock cycle) and con-

stant latency. Supporting backward inter-row connectivity allows for exploiting loop pipelining by

implementing the recursion in the CDFGs, but the translation process does not take into account

that the memory ports are a limited resource, both in terms of the number of ports and in terms of

amount of accesses per cycle. As a result, the execution stalls frequently while memory accesses

are handled. The fact that iterations are overlapped by loop pipelining increases the number of

memory accesses per cycle. This causes an under-utilization of the instantiated resources due to

the stall time while accessing the cache. Also, the cache architecture used in this evaluation does

not benefit from multi-way associativity or pre-fetching. The memory access pattern of the accel-

erated traces would need to be analysed to implement any kind of optimization pertaining to this

point, but this falls out of the scope of this work.

A.4 Concluding Remarks 169

As a result, accelerator-enabled execution achieves a geometric mean speedup of 1.91× over

MicroBlaze-only execution, whereas the potential upperbound possible with loop pipelining is

4.69×. Additionally, the average accelerator is costly in terms of resources; the average number

of required LUTs and FFs is 2.11× and 4.35× the number required by a MicroBlaze, which is a

considerable cost, and also higher than the average for the non-pipelined multi-row architecture.

It was this insight regarding the impact of memory access latency, and especially the con-

tention which occurs when loop pipelining is exploited, that guided the accelerator design into the

architecture presented in Chapters 6 and 7, which implements loop pipelining more efficiently and

requires less resources.

170 External Memory Access for Loop Pipelined Multi-Row Accelerators

References

[AD11] José Carlos Alves and Pedro C. Diniz. Custom FPGA-Based Micro-Architecture for
Streaming Computing. In 2011 VII Southern Conference on Programmable Logic
(SPL), pages 51–56, April 2011.

[AKPW83] J. R. Allen, Ken Kennedy, Carrie Porterfield, and Joe Warren. Conversion of Con-
trol Dependence to Data Dependence. In Proceedings of the 10th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (POPL), pages
177–189, New York, NY, USA, 1983. ACM.

[AMD] AMD. APU 101: All about AMD Fusion Accelerated Processing Units.
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/
2012/10/apu101.pdf. Accessed on 4th January 2016.

[AMD13] Mythri Alle, Antoine Morvan, and Steven Derrien. Runtime Dependency Analysis
for Loop Pipelining in High-Level Synthesis. In Proceedings of the 50th Annual
Design Automation Conference (DAC), pages 51:1–51:10, New York, NY, USA,
2013. ACM.

[APTD11] Giovanni Ansaloni, Laura Pozzi, Kazuyuki Tanimura, and Nikil Dutt. Slack-aware
scheduling on Coarse Grained Reconfigurable Arrays. In Design, Automation Test
in Europe Conference Exhibition (DATE), pages 1–4, March 2011.

[ATPD12] Giovanni Ansaloni, Kazuyuki Tanimura, Laura Pozzi, and Nikil Dutt. Integrated
Kernel Partitioning and Scheduling for Coarse-Grained Reconfigurable Arrays.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
31(12):1803–1816, December 2012.

[BC10] João Bispo and João M.P. Cardoso. On Identifying Segments of Traces for Dynamic
Compilation. In 2010 International Conference on Field Programmable Logic and
Applications (FPL), pages 263–266, August 2010.

[BDM+72] W.J. Bouknight, S.A. Denenberg, D.E. McIntyre, J.M. Randall, A.H. Sameh, and
D.L. Slotnick. The Illiac IV system. Proceedings of the IEEE, 60(4):369–388, April
1972.

[BFD08] Etienne Bergeron, Marc Feeley, and Jean Pierre David. Hardware JIT compila-
tion for off-the-shelf dynamically reconfigurable FPGAs. In 17th International
Conference on Compiler Construction, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, pages 178–192, Berlin, Heidelberg,
2008. Springer-Verlag.

171

http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/apu101.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/apu101.pdf

172 REFERENCES

[BFM+07] M. Boden, T. Fiebig, T. Meissner, S. Rulke, and J. Becker. High-Level Synthesis
of HW Tasks Targeting Run-Time Reconfigurable FPGAs. In IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 1 –8, March 2007.

[BGDN03] Nikhil Bansal, Sumit Gupta, Nikil Dutt, and Alexandru Nicolau. Analysis of the
Performance of Coarse-Grain Reconfigurable Architectures with Different Process-
ing Element Configurations. In Workshop on Application Specific Processors, held
in conjunction with the International Symposium on Microarchitecture (MICRO),
2003.

[Bis12] João Carlos Viegas Martins Bispo. Mapping Runtime-Detected Loops from Mi-
croprocessors to Reconfigurable Processing Units. PhD thesis, Instituto Superior
Técnico, 2012.

[Bis15] João Bispo. Megablock Extractor for MicroBlaze v0.7.14. https://sites.
google.com/site/specsfeup/, February 2015. Accessed 21st December
2015.

[BKT12] Christian Beckhoff, Dirk Koch, and Jim Torresen. Go Ahead: A partial recon-
figuration framework. In IEEE 20th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 37–44, 2012.

[BPCF11] João Bispo, Nuno Paulino, João M. P. Cardoso, and João Canas Ferreira. From In-
struction Traces to Specialized Reconfigurable Arrays. In Peter M. Athanas, Jürgen
Becker, and René Cumplido, editors, ReConFig, pages 386–391. IEEE Computer
Society, 2011.

[BPCF12] João Bispo, Nuno Paulino, João M.P. Cardoso, and João Canas Ferreira. Generation
of Coarse-Grained Reconfigurable Processing Units for Binary Acceleration. VII
Jornadas sobre Sistemas Reconfiguráveis, pages 11–19, February 2012.

[BPCF13] João Bispo, Nuno Paulino, João M. P. Cardoso, and João Canas Ferreira. Transpar-
ent Runtime Migration of Loop-Based Traces of Processor Instructions to Recon-
figurable Processing Units. International Journal of Reconfigurable Computing,
2013.

[BPFC13] João Bispo, Nuno Paulino, João Canas Ferreira, and João M. P. Cardoso. Transpar-
ent Trace-Based Binary Acceleration for Reconfigurable HW/SW Systems. IEEE
Transactions on Industrial Informatics, 9(3):1625–1634, August 2013.

[BRGC08] A.C.S. Beck, M.B. Rutzig, G. Gaydadjiev, and L. Carro. Transparent Reconfig-
urable Acceleration for Heterogeneous Embedded Applications. In Design, Au-
tomation and Test in Europe (DATE), pages 1208–1213, March 2008.

[But07] M. Butts. Synchronization Through Communication in a Massively Parallel Pro-
cessor Array. IEEE Micro, 27(5):32–40, September 2007.

[Cal] Calypto. Catapult Overview. http://calypto.com/en/products/
catapult/overview/. Accessed on 29th December 2015.

[CBC+05] N. Clark, J. Blome, M. Chu, S. Mahlke, S. Biles, and K. Flautner. An Architecture
Framework for Transparent Instruction Set Customization in Embedded Processors.
In Proceedings 32nd International Symposium on Computer Architecture (ISCA),
pages 272–283, June 2005.

https://sites.google.com/site/specsfeup/
https://sites.google.com/site/specsfeup/
http://calypto.com/en/products/catapult/overview/
http://calypto.com/en/products/catapult/overview/

REFERENCES 173

[CDP+11] João M. P. Cardoso, Pedro C. Diniz, Zlatko Petrov, Koen Bertels, Michael Hübner,
Hans Someren, Fernando Gonçalves, José Gabriel F. Coutinho, George A. Con-
stantinides, Bryan Olivier, Wayne Luk, Juergen Becker, Georgi Kuzmanov, Flo-
rian Thoma, Lars Braun, Matthias Kühnle, Razvan Nane, Vlad Mihai Sima, Kamil
Krátký, José Carlos Alves, and João Canas Ferreira. Reconfigurable Computing:
From FPGAs to Hardware/Software Codesign. Springer, New York, NY, 2011.

[CFF+99] D.C. Cronquist, C. Fisher, M. Figueroa, P. Franklin, and C. Ebeling. Architecture
Design of Reconfigurable Pipelined Datapaths. In Proceedings of the 20th Anniver-
sary Conference on Advanced Research in VLSI, pages 23–40, 1999.

[CH00] Katherine Compton and Scott Hauck. An Introduction to Reconfigurable Comput-
ing. IEEE Computer, 2000.

[CH02] Katherine Compton and Scott Hauck. Reconfigurable Computing: A Survey of
Systems and Software. ACM Computing Surveys (CSUR), 34(2):171–210, June
2002.

[CHM08] N. Clark, A. Hormati, and S. Mahlke. VEAL: Virtualized Execution Accelerator for
Loops. In 35th International Symposium on Computer Architecture (ISCA), pages
389–400, June 2008.

[Cho11] Kiyoung Choi. Coarse-Grained Reconfigurable Array: Architecture and Applica-
tion Mapping. IPSJ Transactions on System LSI Design Methodology, 4:31–46,
2011.

[CKP+04] N. Clark, M. Kudlur, Hyunchul Park, S. Mahlke, and K. Flautner. Application-
Specific Processing on a General-Purpose Core via Transparent Instruction Set Cus-
tomization. In 37th International Symposium on Microarchitecture (MICRO), pages
30–40, Washington, DC, USA, December 2004. IEEE Computer Society.

[CM14] Liang Chen and Tulika Mitra. Graph Minor Approach for Application Mapping on
CGRAs. ACM Transactions on Reconfigurable Technology and Systems (TRETS),
7(3):21:1–21:25, September 2014.

[CZS+08] C. Claus, B. Zhang, W. Stechele, L. Braun, M. Hubner, and J. Becker. A
multi-platform controller allowing for maximum Dynamic Partial Reconfiguration
throughput. In International Conference on Field Programmable Logic and Appli-
cations (FPL), pages 535–538, 2008.

[DGG05] G. Dimitroulakos, M.D. Galanis, and C.E. Goutis. Alleviating the Data Memory
Bandwidth Bottleneck in Coarse-Grained Reconfigurable Arrays. In 16th IEEE
International Conference on Application-Specific Systems, Architecture Processors
(ASAP), pages 161–168, July 2005.

[Dun13] R. Dunkley. Supporting a Wide Variety of Communication Protocols Using Dy-
namic Partial Reconfiguration. IEEE Instrumentation Measurement Magazine,
16(4):26–32, August 2013.

[EBIH12] A. Ebrahim, K. Benkrid, X. Iturbe, and C. Hong. A novel high-performance fault-
tolerant ICAP controller. In NASA/ESA Conference on Adaptive Hardware and
Systems (AHS), pages 259–263, June 2012.

174 REFERENCES

[EBSA+12] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan Sankaralingam,
and Doug Burger. Power Limitations and Dark Silicon Challenge the Future of
Multicore. ACM Transactions on Computer Systems (TOCS), 30(3):11:1–11:27,
August 2012.

[ECF96] Carl Ebeling, Darren C. Cronquist, and Paul Franklin. RaPiD - Reconfigurable
Pipelined Datapath. In Proceedings of the 6th International Workshop on Field-
Programmable Logic, Smart Applications, New Paradigms and Compilers (FPL),
pages 126–135, London, UK, UK, 1996. Springer-Verlag.

[EEM15] EEMBC - The Embedded Microprocessor Benchmark Consortium. CoreMark-Pro.
http://www.eembc.org/coremark/index.php?b=pro, 2015. Accessed 1
January 2016.

[ESSA00] J. Emmert, C. Stroud, B. Skaggs, and M. Abramovici. Dynamic Fault Toler-
ance in FPGAs via Partial Reconfiguration. In 2000 IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 165–174, 2000.

[Est02] G. Estrin. Reconfigurable computer origins: the UCLA fixed-plus-variable (F+V)
structure computer. IEEE Annals of the History of Computing, 24(4):3–9, October
2002.

[FDP+14] R. Ferreira, W. Denver, M. Pereira, J. Quadros, L. Carro, and S. Wong. A Run-Time
Modulo Scheduling by using a Binary Translation Mechanism. In 2014 Interna-
tional Conference on Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS XIV), pages 75–82, July 2014.

[FFY05] Joseph A. Fisher, Paolo Faraboschi, and Cliff Young. Embedded Computing: A
VLIW Approach to Architecture, Compilers and Tools. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 2005.

[FISS12] M. Feilen, M. Ihmig, C. Schwarzbauer, and W. Stechele. Efficient DVB-T2 decod-
ing accelerator design by time-multiplexing FPGA resources. In 22nd International
Conference on Field Programmable Logic and Applications (FPL), pages 75–82,
August 2012.

[FPKM08] Kevin Fan, Hyun hul Park, Manjunath Kudlur, and S ott Mahlke. Modulo Schedul-
ing for Highly Customized Datapaths to Increase Hardware Reusability. In Proceed-
ings of the 6th Annual IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), pages 124–133, New York, NY, USA, 2008. ACM.

[GAA+07] V. Groza, R. Abielmona, M.H. Assaf, M. Elbadri, M. El-Kadri, and A. Khalaf. A
Self-Reconfigurable Platform for Built-In Self-Test Applications. IEEE Transac-
tions on Instrumentation and Measurement, 56(4):1307 –1315, August 2007.

[GBEL10] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The Mälardalen
WCET Benchmarks - Past, Present and Future. In Proceedings of the 10th Interna-
tional Workshop on Worst-Case Execution Time Analysis, July 2010.

[GC08] H. Gu and S. Chen. Partial Reconfiguration Bitstream Compression for Virtex FP-
GAs. In Congress on Image and Signal Processing (CISP), volume 5, pages 183–
185, May 2008.

http://www.eembc.org/coremark/index.php?b=pro

REFERENCES 175

[GRV05] Ann Gordon-Ross and Frank Vahid. Frequent Loop Detection Using Efficient Non-
intrusive On-Chip Hardware. IEEE Transactions on Computers, 54(10):1203–1215,
October 2005.

[GSB+99] Seth Copen Goldstein, Herman Schmit, Mihai Budiu, Srihari Cadambi, Matt Moe,
R. Reed Taylor, and R. Reed. PipeRench: A Coprocessor for Streaming Multimedia
Acceleration. In Proceedings of the 26th International Symposium on Computer
Architecture, pages 28 –39, 1999.

[Har01] Reiner Hartenstein. Coarse Grain Reconfigurable Architecture (embedded tutorial).
In Proceedings of the 2001 Asia and South Pacific Design Automation Conference
(ASP-DAC), pages 564–570, 2001.

[HFHK04] Scott Hauck, Thomas W. Fry, Matthew M. Hosler, and Jeffrey P. Kao. The Chimaera
Reconfigurable Functional Unit. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 12(2):206–217, February 2004.

[HGNB10] M. Hubner, D. Gohringer, J. Noguera, and J. Becker. Fast dynamic and partial
reconfiguration data path with low hardware overhead on Xilinx FPGAs. In IEEE
International Symposium on Parallel Distributed Processing, Workshops and Phd
Forum (IPDPSW), pages 1–8, 2010.

[HKT11] S. G. Hansen, D. Koch, and J. Torresen. High Speed Partial Run-Time Reconfigura-
tion Using Enhanced ICAP Hard Macro. In 2011 IEEE International Symposium on
Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW), pages
174–180, May 2011.

[HW97] John R. Hauser and John Wawrzynek. Garp: a MIPS Processor with a Reconfig-
urable Coprocessor. In Proceedings of the 5th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 12–21, 1997.

[Ima12] Nethra Imaging. Am2045 product overview. http://www.ambric.com/
products_am2045_overview.php, 2012.

[Ins16] Texas Instruments. Fusion digital power designer.
http://www.ti.com/tool/fusion_digital_power_designer, February 2016. Accessed
14 April 2016.

[Int96] Intel. Using MMXTM Instructions for Procedural Texture Mapping - Based
on Perlin’s Noise Function. https://software.intel.com/sites/
landingpage/legacy/mmx/MMX_App_Procedural_Texturing.pdf,
1996. Accessed on 10th March 2016.

[Jen97] Bob Jenkins. A Hash Function for Hash Table Lookup. http://www.
burtleburtle.net/bob/hash/doobs.html, December 1997. Accessed on
10th March 2016.

[KHC11] Yangsu Kim, Kyuseung Han, and Kiyoung Choi. A Host-Accelerator Communica-
tion Architecture Design for Efficient Binary Acceleration. In 2011 International
SoC Design Conference (ISOCC), pages 361–364, November 2011.

[KLMP12] Yongjoo Kim, Jongeun Lee, Toan X. Mai, and Yunheung Paek. Improving Perfor-
mance of Nested Loops on Reconfigurable Array Processors. ACM Transactions on
Architecture and Code Optimization (TACO), 8(4):32:1–32:23, January 2012.

http://www.ambric.com/products_am2045_overview.php
http://www.ambric.com/products_am2045_overview.php
https://software.intel.com/sites/landingpage/legacy/mmx/MMX_App_Procedural_Texturing.pdf
https://software.intel.com/sites/landingpage/legacy/mmx/MMX_App_Procedural_Texturing.pdf
http://www.burtleburtle.net/bob/hash/doobs.html
http://www.burtleburtle.net/bob/hash/doobs.html

176 REFERENCES

[KLSP11] Yongjoo Kim, Jongeun Lee, Aviral Shrivastava, and Yunheung Paek. Memory
Access Optimization in Compilation for Coarse-Grained Reconfigurable Architec-
tures. ACM Transactions on Design Automation of Electronic Systems (TODAES),
16(4):42:1–42:27, October 2011.

[KTB+12] D. Koch, J. Torresen, C. Beckhoff, D. Ziener, C. Dennl, V. Breuer, J. Teich,
M. Feilen, and W. Stechele. Partial reconfiguration on fpgas in practice - tools
and applications. In ARCS Workshops (ARCS), pages 1–12, February 2012.

[LCDW15] Mingjie Lin, Shaoyi Chen, Ronald F. DeMara, and John Wawrzynek. ASTRO: Syn-
thesizing application-specific reconfigurable hardware traces to exploit memory-
level parallelism. Microprocessors and Microsystems, 39(7):553–564, 2015.

[LEP12] A. Lifa, P. Eles, and Z. Peng. Minimization of average execution time based on
speculative FPGA configuration prefetch. In International Conference on Reconfig-
urable Computing and FPGAs (ReConFig), pages 1–8, December 2012.

[LFy09] Wang Lie and Wu Feng-yan. Dynamic partial reconfiguration on cognitive radio
platform. In IEEE International Conference on Intelligent Computing and Intelli-
gent Systems (ICIS), volume 4, pages 381–384, November 2009.

[Liu08] Dake Liu. Chapter 3 - DSP Architectures. In Dake Liu, editor, Embedded DSP Pro-
cessor Design, volume 2 of Systems on Silicon, pages 87 – 158. Morgan Kaufmann,
Burlington, 2008.

[LP13] Daniel Llamocca and Marios Pattichis. A Dynamically Reconfigurable Pixel Pro-
cessor System Based on Power/Energy-Performance-Accuracy Optimization. IEEE
Transactions on Circuits and Systems for Video Technology, 23(3):488–502, March
2013.

[LPV10] Daniel Llamocca, Marios Pattichis, and G. Alonzo Vera. Partial reconfigurable
fir filtering system using distributed arithmetic. International Journal of Reconfig-
urable Computing, 2010:4:1–4:14, February 2010.

[LV04] Roman Lysecky and Frank Vahid. A Configurable Logic Architecture for Dynamic
Hardware/Software Partitioning. In Proceedings of the Design, Automation and Test
in Europe Conference and Exhibition (DATE), volume 1, pages 480 – 485 Vol.1,
February 2004.

[LV09] Roman Lysecky and Frank Vahid. Design and Implementation of a MicroBlaze-
Based Warp Processor. ACM Transactions on Embedded Computing Systems
(TECS), 8(3):22:1–22:22, April 2009.

[MGZ+07] Arash Mehdizadeh, Behnam Ghavami, Morteza Saheb Zamani, Hossein Pedram,
and Farhad Mehdipour. An Efficient Heterogeneous Reconfigurable Functional Unit
for an Adaptive Dynamic Extensible Processor. In International Conference on Very
Large Scale Integration (VLSI-SoC), pages 151–156, October 2007.

[MLM+05] Bingfeng Mei, A. Lambrechts, J.Y. Mignolet, D. Verkest, and R. Lauwereins. Ar-
chitecture Exploration for a Reconfigurable Architecture Template. IEEE Design
Test of Computers, 22(2):90–101, March 2005.

REFERENCES 177

[MMC00] A. Malik, B. Moyer, and D. Cermak. A Lower Power Unified Cache Architecture
Providing Power and Performance Flexibility. In Proceedings of the 2000 Interna-
tional Symposium on Low Power Electronics and Design (ISLPED), pages 241–243,
June 2000.

[MO98] Takashi Miyamori and Kunle Olukotun. REMARC: Reconfigurable Multimedia
Array Coprocessor. In IEICE Transactions on Information and Systems E82-D,
pages 389–397, 1998.

[MS09] G. Martin and G. Smith. High-Level Synthesis: Past, Present, and Future. IEEE
Design Test of Computers, 26(4):18–25, July 2009.

[MSB+07] Gayatri Mehta, Justin Slander, Mustafa Baz, Brady Hunsaker, and A.K. Jones. In-
terconnect Customization for a Coarse-grained Reconfigurable Fabric. In IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pages 1–8,
2007.

[MV15] Sparsh Mittal and Jeffrey S. Vetter. A Survey of CPU-GPU Heterogeneous Comput-
ing Techniques. ACM Computing Surveys (CSUR), 47(4):69:1–69:35, July 2015.

[Nag01] Ulrich Nageldinger. Coarse-Grained Reconfigurable Architecture Design Space Ex-
ploration. PhD thesis, Universität Kaiserslautern, Gottlieb-Daimler-Strasse, 67663
Kaiserslautern, Germany, 2001.

[Nat11] National Research Council. The future of computing performance. Game over or
next level? The National Academies Press, Washington, D.C., USA, 2011.

[NMIM12] Hamid Noori, Farhad Mehdipour, Koji Inoue, and Kazuaki Murakami. Improving
performance and energy efficiency of embedded processors via post-fabrication in-
struction set customization. The Journal of Supercomputing, 60(2):196–222, May
2012.

[NMM+06] H. Noori, F. Mehdipou, K. Murakami, K. Inoue, and M. SahebZamani. A Recon-
figurable Functional Unit for an Adaptive Dynamic Extensible Processor. In Inter-
national Conference on Field Programmable Logic and Applications (FPL), pages
1–4, August 2006.

[NMM+08] Hamid Noori, Farhad Mehdipour, Kazuaki Murakami, Koji Inoue, and Morteza
Saheb Zamani. An Architecture Framework for an Adaptive Extensible Processor.
The Journal of Supercomputing, 45(3):313–340, September 2008.

[OEPM09] Taewook Oh, Bernhard Egger, Hyunchul Park, and Scott Mahlke. Recurrence Cy-
cle Aware Modulo Scheduling for Coarse-grained Reconfigurable Architectures. In
Proceedings of the 2009 ACM SIGPLAN/SIGBED Conference on Languages, Com-
pilers, and Tools for Embedded Systems (LCTES), pages 21–30, 2009.

[ORK+15] Kalin Ovtcharov, Olatunji Ruwase, Joo-Young Kim, Jeremy Fowers, Karin Strauss,
and Eric S. Chung. Accelerating Deep Convolutional Neural Networks Using Spe-
cialized Hardware, February 2015.

[Pau11] Nuno Paulino. Generation of Reconfigurable Circuits from Machine Code. Master’s
thesis, Universidade do Porto - Faculdade de Engenharia, Rua Dr. Roberto Frias, s/n
4200-465 Porto, Portugal, 2011.

178 REFERENCES

[PCC+14] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme,
H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil,
A. Hormati, J. Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong,
P. Y. Xiao, and D. Burger. A Reconfigurable Fabric for Accelerating Large-Scale
Datacenter Services. In ACM/IEEE 41st International Symposium on Computer
Architecture (ISCA), pages 13–24, June 2014.

[PCF15] Nuno Paulino, João M.P. Cardoso, and João Canas Ferreira. Transparent Binary Ac-
celeration via Automatically Generated Reconfigurable Processing Units. XI Jor-
nadas sobre Sistemas Reconfiguráveis, February 2015.

[PDH11] Kyprianos Papadimitriou, Apostolos Dollas, and Scott Hauck. Performance of par-
tial reconfiguration in fpga systems: A survey and a cost model. ACM Trans. Re-
configurable Technol. Syst., 4(4):36:1–36:24, December 2011.

[PFBC15] Nuno Paulino, João Canas Ferreira, João Bispo, and João M. P. Cardoso. Transpar-
ent Acceleration of Program Execution Using Reconfigurable Hardware. In Pro-
ceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 1066–1071, San Jose, CA, USA, 2015. EDA Consortium.

[PFC13] Nuno Paulino, João Canas Ferreira, and João M. P. Cardoso. Architecture for Trans-
parent Binary Acceleration of Loops with Memory Accesses. In Proceedings of the
9th International Conference on Reconfigurable Computing: Architectures, Tools,
and Applications (ARC), pages 122–133, Berlin, Heidelberg, 2013. Springer-Verlag.

[PFC14a] Nuno Paulino, João Canas Ferreira, and João M. P. Cardoso. A Reconfigurable Ar-
chitecture for Binary Acceleration of Loops with Memory Accesses. ACM Transac-
tions on Reconfigurable Technology and Systems, 7(4):29:1–29:20, December 2014.

[PFC14b] Nuno Paulino, João Canas Ferreira, and João M. P. Cardoso. Trace-Based Recon-
figurable Acceleration with Data Cache and External Memory Support. In IEEE
International Symposium on Parallel and Distributed Processing with Applications
(ISPA), pages 158–165, August 2014.

[PFM+08] Hyunchul Park, Kevin Fan, Scott A. Mahlke, Taewook Oh, Heeseok Kim, and
Hong-seok Kim. Edge-centric Modulo Scheduling for Coarse-grained Reconfig-
urable Architectures. In Proceedings of the 17th International Conference on Par-
allel Architectures and Compilation Techniques (PACT), pages 166–176, New York,
NY, USA, 2008. ACM.

[PPM09] Hyunchul Park, Yongjun Park, and Scott Mahlke. Polymorphic Pipeline Array: A
Flexible Multicore Accelerator with Virtualized Execution for Mobile Multimedia
Applications. In Proceedings of the 42nd Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), 2009.

[QMM11] X. Qin, C. Muthry, and P. Mishra. Decoding-aware compression of FPGA bit-
streams. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
19(3):411–419, 2011.

[Rau94] B. Ramakrishna Rau. Iterative Modulo Scheduling: An Algorithm for Software
Pipelining Loops. In Proceedings of the 27th Annual International Symposium on
Microarchitecture (MICRO), pages 63–74, New York, NY, USA, 1994. ACM.

REFERENCES 179

[RBM+11] Mateus B. Rutzig, Antonio C. S. Beck, Felipe Madruga, Marco A. Alves, Hen-
rique C. Freitas, Nicolas Maillard, Philippe O. A. Navaux, and Luigi Carro. Boost-
ing Parallel Applications Performance on Applying DIM Technique in a Mul-
tiprocessing Environment. International Journal of Reconfigurable Computing,
2011:4:1–4:13, January 2011.

[RSS08] F. Redaelli, M. D. Santambrogio, and D. Sciuto. Task Scheduling with Config-
uration Prefetching and Anti-Fragmentation techniques on Dynamically Reconfig-
urable Systems. In Design, Automation and Test in Europe (DATE), pages 519–522,
March 2008.

[SABW12] R.A.E. Seedorf, F. Anjam, A.A.C. Brandon, and S. Wong. Design of a Pipelined
and Parameterized VLIW Processor: ρ-vex v2.0. In Proceedings of the 6th HiPEAC
Workshops on Reconfigurable Computing, page 12, Paris, France, January 2012.

[SAFW11] Ali Asgar Sohanghpurwala, Peter Athanas, Tannous Frangieh, and Aaron Wood.
OpenPR: An open-source partial-reconfiguration toolkit for Xilinx FPGAs. In 2011
IEEE International Symposium on Parallel and Distributed Processing Workshops
and Phd Forum (IPDPSW), pages 228–235, May 2011.

[SBFC10] Antonio Carlos Schneider Beck Fl. and Luigi Carro. Dynamic Reconfigurable Ar-
chitectures and Transparent Optimization Techniques: Automatic Acceleration of
Software Execution. Springer Publishing Company, Incorporated, 1st edition, 2010.

[Seo] Seoul National University. SNU Real-Time Benchmarks. http://www.
cprover.org/goto-cc/examples/snu.html. Accessed 23 Dec 2012.

[SF12] Miguel Lino Silva and João Canas Ferreira. Run-time generation of partial FPGA
configurations. Journal of Systems Architecture, 58(1):24–37, January 2012.

[SGNV05] Greg Stitt, Zhi Guo, Walid A. Najjar, and Frank Vahid. Techniques for Synthesizing
Binaries to an Advanced Register/Memory Structure. In Proceedings of the 2005
ACM/SIGDA 13th International Symposium on Field-programmable Gate Arrays
(FPGA), pages 118–124, 2005.

[SKK15] J. Sarkhawas, P. Khandekar, and A. Kulkarni. Variable Quality Factor JPEG Image
Compression Using Dynamic Partial Reconfiguration and MicroBlaze. In Inter-
national Conference on Computing Communication Control and Automation (IC-
CUBEA), pages 620–624, February 2015.

[SLL+00] H. Singh, Ming-Hau Lee, Guangming Lu, F.J. Kurdahi, N. Bagherzadeh, and
E.M. Chaves Filho. MorphoSys: An Integrated Reconfigurable System for Data-
Parallel and Computation-Intensive Applications. IEEE Transactions on Comput-
ers, 49(5):465–481, May 2000.

[SML09] M. Sima, M. McGuire, and J. Lamoureux. Coarse-Grain Reconfigurable Architec-
tures - Taxonomy -. In IEEE Pacific Rim Conference on Communications, Comput-
ers and Signal Processing (PacRim), pages 975 –978, August 2009.

[SNS+13] M. Stojilovic, D. Novo, L. Saranovac, P. Brisk, and P. Ienne. Selective Flexi-
bility: Creating Domain-Specific Reconfigurable Arrays. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 32(5):681–694, May
2013.

http://www.cprover.org/goto-cc/examples/snu.html
http://www.cprover.org/goto-cc/examples/snu.html

180 REFERENCES

[SPA08] J. Suris, C. Patterson, and P. Athanas. An efficient run-time router for connecting
modules in FPGAS. In International Conference on Field Programmable Logic and
Applications (FPL), pages 125–130, September 2008.

[SRK11] A. Salman, M. Rogawski, and J. P. Kaps. Efficient Hardware Accelerator for IPSec
Based on Partial Reconfiguration on Xilinx FPGAs. In International Conference
on Reconfigurable Computing and FPGAs (ReConFig), pages 242–248, November
2011.

[SV05] G. Stiff and F. Vahid. New Decompilation Techniques for Binary-Level Co-
Processor Generation. In IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pages 547–554, November 2005.

[Syn] Synopsys. Synphony model compiler. http://www.synopsys.
com/Tools/Implementation/FPGAImplementation/Pages/
synphony-model-compiler.aspx. accessed on 4th January 2016.

[Tei12] J. Teich. Hardware/Software Codesign: The Past, the Present, and Predicting the
Future. Proceedings of the IEEE, 100(Special Centennial Issue):1411–1430, May
2012.

[Tex] Texas Instruments. TMS320C6000 Image Library (IMGLIB) - SPRC264. http:
//www.ti.com/tool/sprc264. Accessed 23 Dec 2012.

[Tho80] James E. Thornton. The CDC 6600 Project. Annals of the History of Computing,
2(4):338–348, October 1980.

[Tim92] Tim Peters. Livermore Loops coded in C. http://www.netlib.org/
benchmark/livermorec, 1992. Accessed 3 April 2015.

[Tri15] S.M. Trimberger. Three Ages of FPGAs: A Retrospective on the First Thirty Years
of FPGA Technology. Proceedings of the IEEE, 103(3):318–331, March 2015.

[VEWC+09] B. Van Essen, A. Wood, A. Carroll, S. Friedman, R. Panda, B. Ylvisaker, C. Ebel-
ing, and S. Hauck. Static versus Scheduled Interconnect in Coarse-Grained Recon-
figurable Arrays. In International Conference on Field Programmable Logic and
Applications (FPL), pages 268–275, September 2009.

[VF12] K. Vipin and S. A. Fahmy. A high speed open source controller for FPGA Partial
Reconfiguration. In International Conference on Field-Programmable Technology
(FPT), pages 61–66, December 2012.

[War02] Henry S. Warren. Hacker’s Delight. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2002.

[WH95] M.J. Wirthlin and B.L. Hutchings. A dynamic instruction set computer. In Proceed-
ings of the IEEE Symposium on FPGAs for Custom Computing Machines (FCCM),
FCCM, pages 99–107, Washington, DC, USA, April 1995. IEEE Computer Society.

[WKMV04] S.J.E. Wilton, N. Kafafi, Bingfeng Mei, and S. Vernalde. Interconnect Architec-
tures for Modulo-Scheduled Coarse-Grained Reconfigurable Arrays. In Proceed-
ings of the 2004 IEEE International Conference on Field-Programmable Technol-
ogy (FPT), pages 33 – 40, December 2004.

http://www.synopsys.com/Tools/Implementation/FPGAImplementation/Pages/synphony-model-compiler.aspx
http://www.synopsys.com/Tools/Implementation/FPGAImplementation/Pages/synphony-model-compiler.aspx
http://www.synopsys.com/Tools/Implementation/FPGAImplementation/Pages/synphony-model-compiler.aspx
http://www.ti.com/tool/sprc264
http://www.ti.com/tool/sprc264
http://www.netlib.org/benchmark/livermorec
http://www.netlib.org/benchmark/livermorec

REFERENCES 181

[Wol03] Wayne Wolf. A Decade of Hardware/Software Codesign. Computer, 36(4):38–43,
2003.

[Xila] Xilinx. SDSoC Development Environment. http://www.xilinx.com/
products/design-tools/software-zone/sdsoc.html. Accessed on
29th December 2015.

[Xilb] Xilinx. Virtex UltraScale FPGAs Data Sheet: DC and AC Switching Char-
acteristics. http://www.xilinx.com/support/documentation/data_
sheets/ds893-virtex-ultrascale-data-sheet.pdf. Accessed on 6th
January 2016.

[Xilc] Xilinx. Vivado High-Level Synthesis. http://www.xilinx.com/products/
design-tools/vivado/integration/esl-design.html. Accessed on
29th December 2015.

[Xild] Xilinx. Xilinx UltraScale Architecture for High-Performance, Smarter
Systems. http://www.xilinx.com/support/documentation/white_
papers/wp434-ultrascale-smarter-systems.pdf. Accessed on 6th
January 2016.

[Xile] Xilinx. Zynq-7000 All Programmable SoC. http://www.xilinx.com/
products/silicon-devices/soc/zynq-7000.html. Accessed on 6th
January 2016.

[Xil12a] Xilinx. Partial Reconfiguration of a Processor Peripheral Tutorial. http://
www.xilinx.com/support/documentation/sw_manuals/xilinx13_
4/PlanAhead_Tutorial_Reconfigurable_Processor.pdf, October
2012. Accessed on 9th March 2016.

[Xil12b] Xilinx. UG702: Partial Reconfiguration User Guide. http://www.xilinx.
com/support/documentation/sw_manuals/xilinx14_1/ug702.pdf,
October 2012. Accessed on 13th January 2016.

[Xil15a] Xilinx. UltraScale Architecture and Product Overview. http:
//www.xilinx.com/support/documentation/data_sheets/
ds890-ultrascale-overview.pdf, December 2015. Accessed on 13th
January 2016.

[Xil15b] Xilinx. Xilinx Artix-7 FPGAs: A New Performance Standard for Power-
Limited, Cost-Sensitive Markets. http://www.xilinx.com/support/
documentation/product-briefs/artix7-product-brief.pdf, 2015.
Accessed on 13th January 2016.

[YM04] Pan Yu and Tulika Mitra. Characterizing Embedded Applications for Instruction-
Set Extensible Processors. In Proceedings of the 41st annual Design Automation
Conference (DAC), pages 723–728, New York, NY, USA, 2004. ACM.

http://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
http://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
http://www.xilinx.com/support/documentation/data_sheets/ds893-virtex-ultrascale-data-sheet.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds893-virtex-ultrascale-data-sheet.pdf
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
http://www.xilinx.com/support/documentation/white_papers/wp434-ultrascale-smarter-systems.pdf
http://www.xilinx.com/support/documentation/white_papers/wp434-ultrascale-smarter-systems.pdf
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_4/PlanAhead_Tutorial_Reconfigurable_Processor.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_4/PlanAhead_Tutorial_Reconfigurable_Processor.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_4/PlanAhead_Tutorial_Reconfigurable_Processor.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/ug702.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/ug702.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
http://www.xilinx.com/support/documentation/product-briefs/artix7-product-brief.pdf
http://www.xilinx.com/support/documentation/product-briefs/artix7-product-brief.pdf

	Front Page
	Content
	Figure Index
	Listings Index
	Table Index
	1 Introduction
	1.1 FPGAs as a Platform for HW/SW Partitioning Design
	1.2 Automated HW/SW Partitioning
	1.2.1 High-Level Synthesis
	1.2.2 Binary-level HW/SW Partitioning

	1.3 Motivation and Problem Statement
	1.4 Objectives
	1.5 Approach
	1.5.1 Megablock Trace
	1.5.2 Generating a Reconfigurable Customized Accelerator Instance

	1.6 Contributions
	1.7 Summary of Published Work
	1.7.1 International Journals
	1.7.2 International Conferences
	1.7.3 National Conferences

	1.8 Structure of this document

	2 Revision of Related Work
	2.1 Overview
	2.1.1 Partitioning
	2.1.2 Accelerator Structure
	2.1.3 Accelerator Functional Units
	2.1.4 Accelerator Memory Access
	2.1.5 Accelerator Execution Model
	2.1.6 Accelerator Programmability and Compilation

	2.2 Representative Approaches
	2.2.1 Warp Processor
	2.2.2 ADEXOR
	2.2.3 Configurable Compute Accelerator
	2.2.4 Dynamic Instruction Merging
	2.2.5 ASTRO
	2.2.6 Work of Ferreira et al.
	2.2.7 Morphosys
	2.2.8 Additional Related Works

	2.3 Dynamic Partial Reconfiguration in FPGAs
	2.3.1 Examples of Partial Reconfiguration Applications
	2.3.2 Design Considerations for Partial Reconfiguration Based Systems

	2.4 Concluding Remarks

	3 Overview of Implementations and General Tool Flow
	3.1 System Level Architecture
	3.2 General Execution Model
	3.3 General Tool Flow
	3.3.1 Megablock Extraction
	3.3.2 Generation of the accelerator HDL Description
	3.3.3 Generation of Communication Routine

	3.4 The Injector Module
	3.5 Summary of Accelerator Implementations

	4 Customized Multi-Row Accelerators
	4.1 Accelerator Architecture
	4.1.1 Structure
	4.1.2 Interface
	4.1.3 Execution Model

	4.2 Architecture Specific Tool Flow
	4.3 Experimental Evaluation
	4.3.1 Hardware Setup
	4.3.2 Software Setup
	4.3.3 Characteristics of the Generated Accelerators
	4.3.4 Performance vs. MicroBlaze Processor
	4.3.5 Resource Requirements and Operating Frequency

	4.4 Concluding Remarks

	5 Accelerators with Memory Access Support
	5.1 Accelerator Architecture
	5.1.1 Structure of Functional Unit Array
	5.1.2 Memory Access Support
	5.1.3 Execution Model

	5.2 Accelerator Generation and Loop Translation
	5.2.1 List Scheduling
	5.2.2 Memory Access Scheduling
	5.2.3 Multiplexer Specification

	5.3 Experimental Evaluation
	5.3.1 Hardware Setup
	5.3.2 Software Setup
	5.3.3 General Aspects
	5.3.4 Performance vs. MicroBlaze Processor
	5.3.5 Effects of Memory Access Optimizations
	5.3.6 Effects of List Scheduling on Functional Unit Reuse
	5.3.7 Resource Requirements and Operating Frequency
	5.3.8 Power and Energy Consumption

	5.4 Concluding Remarks

	6 Modulo Scheduling onto Customized Single-Row Accelerators
	6.1 Accelerator Architecture
	6.1.1 Execution Model

	6.2 Architecture Specific Tool Flow
	6.3 Accelerator Generation and Loop Scheduling
	6.3.1 Scheduling Example

	6.4 Experimental Evaluation
	6.4.1 Hardware Setup
	6.4.2 Software Setup
	6.4.3 Performance vs. MicroBlaze Processor
	6.4.4 Resource Requirements & Operating Frequency
	6.4.5 Power and Energy Consumption
	6.4.6 Performance and Cost of Multi-loop Support

	6.5 Performance Comparison with ALU Based Accelerators
	6.6 Performance Comparison with VLIW Architectures
	6.6.1 Performance Comparison
	6.6.2 Resource Usage Comparison

	6.7 Concluding Remarks

	7 Dynamic Partial Reconfiguration of Customized Single-Row Accelerators
	7.1 Accelerator Architecture
	7.1.1 Static Partition
	7.1.2 Reconfigurable Partition

	7.2 Tool Flow for Dynamic Partial Reconfiguration
	7.3 Experimental Evaluation
	7.3.1 Hardware Setup
	7.3.2 Software Setup
	7.3.3 Resource Requirements of Static and Reconfigurable Regions
	7.3.4 Resource Requirements of DPR Accelerator vs. Non-DPR Accelerator
	7.3.5 Synthesis Time of DPR-Capable Accelerator vs. Non-DPR Accelerator
	7.3.6 Effect of Partial Reconfiguration Overhead on Performance

	7.4 Concluding Remarks

	8 Conclusion and Future Work
	8.1 Characteristics of the Developed Approach
	8.2 Future Work
	8.2.1 Potential Improvements to the Developed Approach
	8.2.2 Support for Multi-Path Traces
	8.2.3 Runtime HW/SW Partitioning via DPR

	8.3 Concluding Remarks

	A External Memory Access for Loop Pipelined Multi-Row Accelerators
	A.1 Accelerator Architecture
	A.1.1 Structure
	A.1.2 Execution
	A.1.3 Memory Access

	A.2 Configurable Dual-Port Cache
	A.3 Experimental Evaluation
	A.3.1 General Aspects
	A.3.2 Performance
	A.3.3 Communication and Cache Invalidation Overhead
	A.3.4 Resource Requirements and Operating Frequency

	A.4 Concluding Remarks

	References

