10 research outputs found

    Exploring Naccache-Stern Knapsack Encryption

    Get PDF
    The Naccache–Stern public-key cryptosystem (NS) relies on the conjectured hardness of the modular multiplicative knapsack problem: Given p,{vi},vimimodpp,\{v_i\},\prod v_i^{m_i} \bmod p, find the {mi}\{m_i\}. Given this scheme\u27s algebraic structure it is interesting to systematically explore its variants and generalizations. In particular it might be useful to enhance NS with features such as semantic security, re-randomizability or an extension to higher-residues. This paper addresses these questions and proposes several such variants

    Product Subset Problem : Applications to number theory and cryptography

    Full text link
    We consider applications of Subset Product Problem (SPP) in number theory and cryptography. We obtain a probabilistic algorithm that attack SPP and we analyze it with respect time/space complexity and success probability. In fact we provide an application to the problem of finding Carmichael numbers and an attack to Naccache-Stern knapsack cryptosystem, where we update previous results.Comment: 17 pages, 2 figures, LaTeX; references added, typos corrected, a new figure was inserted, sections 2.1, 2.2 improve

    Mixed-radix Naccache-Stern encryption

    Get PDF
    In this work we explore a combinatorial optimization problem stemming from the Naccache-Stern cryptosystem. We show that solving this problem results in bandwidth improvements, and suggest a polynomial-time approximation algorithm to find an optimal solution. Our work suggests that using optimal radix encoding results in an asymptotic 50% increase in bandwidth

    Performance comparison of intrusion detection systems and application of machine learning to Snort system

    Get PDF
    This study investigates the performance of two open source intrusion detection systems (IDSs) namely Snort and Suricata for accurately detecting the malicious traffic on computer networks. Snort and Suricata were installed on two different but identical computers and the performance was evaluated at 10 Gbps network speed. It was noted that Suricata could process a higher speed of network traffic than Snort with lower packet drop rate but it consumed higher computational resources. Snort had higher detection accuracy and was thus selected for further experiments. It was observed that the Snort triggered a high rate of false positive alarms. To solve this problem a Snort adaptive plug-in was developed. To select the best performing algorithm for Snort adaptive plug-in, an empirical study was carried out with different learning algorithms and Support Vector Machine (SVM) was selected. A hybrid version of SVM and Fuzzy logic produced a better detection accuracy. But the best result was achieved using an optimised SVM with firefly algorithm with FPR (false positive rate) as 8.6% and FNR (false negative rate) as 2.2%, which is a good result. The novelty of this work is the performance comparison of two IDSs at 10 Gbps and the application of hybrid and optimised machine learning algorithms to Snort

    A Survey on Biometrics and Cancelable Biometrics Systems

    Get PDF
    Now-a-days, biometric systems have replaced the password or token based authentication system in many fields to improve the security level. However, biometric system is also vulnerable to security threats. Unlike password based system, biometric templates cannot be replaced if lost or compromised. To deal with the issue of the compromised biometric template, template protection schemes evolved to make it possible to replace the biometric template. Cancelable biometric is such a template protection scheme that replaces a biometric template when the stored template is stolen or lost. It is a feature domain transformation where a distorted version of a biometric template is generated and matched in the transformed domain. This paper presents a review on the state-of-the-art and analysis of different existing methods of biometric based authentication system and cancelable biometric systems along with an elaborate focus on cancelable biometrics in order to show its advantages over the standard biometric systems through some generalized standards and guidelines acquired from the literature. We also proposed a highly secure method for cancelable biometrics using a non-invertible function based on Discrete Cosine Transformation (DCT) and Huffman encoding. We tested and evaluated the proposed novel method for 50 users and achieved good results

    Cryptanalysis and Secure Implementation of Modern Cryptographic Algorithms

    Get PDF
    Cryptanalytic attacks can be divided into two classes: pure mathematical attacks and Side Channel Attacks (SCAs). Pure mathematical attacks are traditional cryptanalytic techniques that rely on known or chosen input-output pairs of the cryptographic function and exploit the inner structure of the cipher to reveal the secret key information. On the other hand, in SCAs, it is assumed that attackers have some access to the cryptographic device and can gain some information from its physical implementation. Cold-boot attack is a SCA which exploits the data remanence property of Random Access Memory (RAM) to retrieve its content which remains readable shortly after its power has been removed. Fault analysis is another example of SCAs in which the attacker is assumed to be able to induce faults in the cryptographic device and observe the faulty output. Then, by careful inspection of faulty outputs, the attacker recovers the secret information, such as secret inner state or secret key. Scan-based Design-For-Test (DFT) is a widely deployed technique for testing hardware chips. Scan-based SCAs exploit the information obtained by analyzing the scanned data in order to retrieve secret information from cryptographic hardware devices that are designed with this testability feature. In the first part of this work, we investigate the use of an off-the-shelf SAT solver, CryptoMinSat, to improve the key recovery of the Advance Encryption Standard (AES-128) key schedules from its corresponding decayed memory images which can be obtained using cold-boot attacks. We also present a fault analysis on both NTRUEncrypt and NTRUSign cryptosystems. For this specific original instantiation of the NTRU encryption system with parameters (N,p,q)(N,p,q), our attack succeeds with probability 11p\approx 1-\frac{1}{p} and when the number of faulted coefficients is upper bounded by tt, it requires O((pN)t)O((pN)^t) polynomial inversions in Z/pZ[x]/(xN1)\mathbb Z/p\mathbb Z[x]/(x^{N}-1). We also investigate several techniques to strengthen hardware implementations of NTRUEncrypt against this class of attacks. For NTRUSign with parameters (NN, q=plq=p^l, B\mathcal{B}, \emph{standard}, N\mathcal{N}), when the attacker is able to skip the norm-bound signature checking step, our attack needs one fault to succeed with probability 11p\approx 1-\frac{1}{p} and requires O((qN)t)O((qN)^t) steps when the number of faulted polynomial coefficients is upper bounded by tt. The attack is also applicable to NTRUSign utilizing the \emph{transpose} NTRU lattice but it requires double the number of fault injections. Different countermeasures against the proposed attack are also investigated. Furthermore, we present a scan-based SCA on NTRUEncrypt hardware implementations that employ scan-based DFT techniques. Our attack determines the scan chain structure of the polynomial multiplication circuits used in the decryption algorithm which allows the cryptanalyst to efficiently retrieve the secret key. Several key agreement schemes based on matrices were recently proposed. For example, \'{A}lvarez \emph{et al.} proposed a scheme in which the secret key is obtained by multiplying powers of block upper triangular matrices whose elements are defined over Zp\mathbb{Z}_p. Climent \emph{et al.} identified the elements of the endomorphisms ring End(Zp×Zp2)End(\mathbb{Z}_p \times \mathbb{Z}_{p^2}) with elements in a set, EpE_p, of matrices of size 2×22\times 2, whose elements in the first row belong to Zp\mathbb{Z}_{p} and the elements in the second row belong to Zp2\mathbb{Z}_{p^2}. Keith Salvin presented a key exchange protocol using matrices in the general linear group, GL(r,Zn)GL(r,\mathbb{Z}_n), where nn is the product of two distinct large primes. The system is fully specified in the US patent number 7346162 issued in 2008. In the second part of this work, we present mathematical cryptanalytic attacks against these three schemes and show that they can be easily broken for all practical choices of their security parameters

    Electronic Voting

    Get PDF
    This open access book LNCS 13353 constitutes the proceedings of the 7th International Conference on Electronic Voting, E-Vote-ID 2022, held in Bregenz, Austria, in October 2022. The 10 full papers presented were carefully reviewed and selected from 39 submissions. The conference collected the most relevant debates on the development of Electronic Voting, from aspects relating to security and usability through to practical experiences and applications of voting systems, also including legal, social, or political aspects, amongst others

    Exploring Naccache-Stern Knapsack Encryption

    No full text
    International audienceThe Naccache-Stern public-key cryptosystem (NS) relies on the conjectured hardness of the modular multiplicative knapsack problem: Given p,{vi},∏vmiimodp, find the {mi}.Given this scheme’s algebraic structure it is interesting to systematically explore its variants and generalizations. In particular it might be useful to enhance NS with features such as semantic security, re-randomizability or an extension to higher-residues.This paper addresses these questions and proposes several such variants

    Electronic Voting

    Get PDF
    This open access book LNCS 13353 constitutes the proceedings of the 7th International Conference on Electronic Voting, E-Vote-ID 2022, held in Bregenz, Austria, in October 2022. The 10 full papers presented were carefully reviewed and selected from 39 submissions. The conference collected the most relevant debates on the development of Electronic Voting, from aspects relating to security and usability through to practical experiences and applications of voting systems, also including legal, social, or political aspects, amongst others
    corecore