4 research outputs found

    An Underactuated Wearable Robotic Glove Driven by Myoelectric Control Input / Uma luva robótica vestível subatuada acionada por entrada de controle mioelétrico

    Get PDF
    People who have hand impairments caused by the most common neurological and degenerative musculoskeletal diseases face trouble to achieve their everyday tasks. To try to help these people, in this works is presented a prototype of a glove-like orthosis for upper limbs. It is an underactuated robotic glove controlled by myoeletric input signals collected by the Myo armband. The development and its details are all described so that it can be reproduced with improvements and used as an assistive device. To the authors' knowledge, in Brazil, there is no one similar orthosis such this one developed thus far

    Agreement Study Using Gesture Description Analysis

    Get PDF
    Choosing adequate gestures for touchless interfaces is a challenging task that has a direct impact on human-computer interaction. Such gestures are commonly determined by the designer, ad-hoc, rule-based or agreement-based methods. Previous approaches to assess agreement grouped the gestures into equivalence classes and ignored the integral properties that are shared between them. In this work, we propose a generalized framework that inherently incorporates the gesture descriptors into the agreement analysis (GDA). In contrast to previous approaches, we represent gestures using binary description vectors and allow them to be partially similar. In this context, we introduce a new metric referred to as Soft Agreement Rate (SAR) to measure the level of agreement and provide a mathematical justification for this metric. Further, we performed computational experiments to study the behavior of SAR and demonstrate that existing agreement metrics are a special case of our approach. Our method was evaluated and tested through a guessability study conducted with a group of neurosurgeons. Nevertheless, our formulation can be applied to any other user-elicitation study. Results show that the level of agreement obtained by SAR is 2.64 times higher than the previous metrics. Finally, we show that our approach complements the existing agreement techniques by generating an artificial lexicon based on the most agreed properties

    The State of the Art of Spatial Interfaces for 3D Visualization

    Get PDF
    International audienceWe survey the state of the art of spatial interfaces for 3D visualization. Interaction techniques are crucial to data visualization processes and the visualization research community has been calling for more research on interaction for years. Yet, research papers focusing on interaction techniques, in particular for 3D visualization purposes, are not always published in visualization venues, sometimes making it challenging to synthesize the latest interaction and visualization results. We therefore introduce a taxonomy of interaction technique for 3D visualization. The taxonomy is organized along two axes: the primary source of input on the one hand and the visualization task they support on the other hand. Surveying the state of the art allows us to highlight specific challenges and missed opportunities for research in 3D visualization. In particular, we call for additional research in: (1) controlling 3D visualization widgets to help scientists better understand their data, (2) 3D interaction techniques for dissemination, which are under-explored yet show great promise for helping museum and science centers in their mission to share recent knowledge, and (3) developing new measures that move beyond traditional time and errors metrics for evaluating visualizations that include spatial interaction
    corecore