617 research outputs found

    Exploiting molecular dynamics in Nested Sampling simulations of small peptides

    Get PDF
    Nested Sampling (NS) is a parameter space sampling algorithm which can be used for sampling the equilibrium thermodynamics of atomistic systems. NS has previously been used to explore the potential energy surface of a coarse-grained protein model and has significantly outperformed parallel tempering when calculating heat capacity curves of Lennard-Jones clusters. The original NS algorithm uses Monte Carlo (MC) moves; however, a variant, Galilean NS, has recently been introduced which allows NS to be incorporated into a molecular dynamics framework, so NS can be used for systems which lack efficient prescribed MC moves. In this work we demonstrate the applicability of Galilean NS to atomistic systems. We present an implementation of Galilean NS using the Amber molecular dynamics package and demonstrate its viability by sampling alanine dipeptide, both in vacuo and implicit solvent. Unlike previous studies of this system, we present the heat capacity curves of alanine dipeptide, whose calculation provides a stringent test for sampling algorithms. We also compare our results with those calculated using replica exchange molecular dynamics (REMD) and find good agreement. We show the computational effort required for accurate heat capacity estimation for small peptides. We also calculate the alanine dipeptide Ramachandran free energy surface for a range of temperatures and use it to compare the results using the latest Amber force field with previous theoretical and experimental results.We acknowledge support from the Leverhulme Trust (Grant F/00 215/BL(NSB, CV and DLW)) and the EPSRC (Grants EP/J020281/1(DLW), EP/J010847/1 (GC) and a Doctoral Training Award (RJB)).This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.cpc.2015.12.00

    Side-Chain Polarity Modulates the Intrinsic Conformational Landscape of Model Dipeptides

    Get PDF

    Energy Landscapes for Proteins: From Single Funnels to Multifunctional Systems

    Get PDF
    This report advances the hypothesis that multifunctional systems may be associated with multifunnel potential and free energy landscapes, with particular focus on biomolecules. It compares systems that exhibit single, double, and multiple competing structures, and contrasts multifunnel landscapes associated with misfolded amyloidogenic oligomers, which presumably do not arise as an evolutionary target. In this context, intrinsically disordered proteins could be considered intrinsically multifunctional molecules, associated with multifunnel landscapes. Potential energy landscape theory enables biomolecules to be treated in a common framework together with self‐organizing and multifunctional systems based on inorganic materials, atomic and molecular clusters, crystal polymorphs, and soft matter.epsr

    Theory of coherent two-dimensional vibrational spectroscopy

    Get PDF
    Two-dimensional (2D) vibrational spectroscopy has emerged as one of the most important experimental techniques useful to study the molecular structure and dynamics in condensed phases. Theory and computation have also played essential and integral roles in its development through the nonlinear optical response theory and computational methods such as molecular dynamics (MD) simulations and electronic structure calculations. In this article, we present the fundamental theory of coherent 2D vibrational spectroscopy and describe computational approaches to simulate the 2D vibrational spectra. The classical approximation to the quantum mechanical nonlinear response function is invoked from the outset. It is shown that the third-order response function can be evaluated in that classical limit by using equilibrium or non-equilibrium MD simulation trajectories. Another simulation method is based on the assumptions that the molecular vibrations can still be described quantum mechanically and that the relevant molecular response functions are evaluated by the numerical integration of the Schrodinger equation. A few application examples are presented to help the researchers in this and related areas to understand the fundamental principles and to use these methods for their studies with 2D vibrational spectroscopic techniques. In summary, this exposition provides an overview of current theoretical efforts to understand the 2D vibrational spectra and an outlook for future developments. c.Published under license by AIP Publishing
    • 

    corecore