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Molecular simulation methods have increasingly contributed

to our understanding of molecular and nanoscale systems.

However, the family of Monte Carlo techniques has taken a

backseat to molecular dynamics based methods, which is also

reflected in the number of available simulation packages.

Here, we report the development of a generic, versatile

simulation package for stochastic simulations and demonstrate

its application to protein conformational change, protein–

protein association, small-molecule protein docking, and

simulation of the growth of nanoscale clusters of organic

molecules. Simulation of molecular and nanoscale systems

(SIMONA) is easy to use for standard simulations via a

graphical user interface and highly parallel both via MPI and

the use of graphical processors. It is also extendable to many

additional simulations types. Being freely available to academic

users, we hope it will enable a large community of researchers

in the life- and materials-sciences to use and extend SIMONA

in the future. SIMONA is available for download under http://

int.kit.edu/nanosim/simona.

Introduction

Driven by ever-increasing computational resources molecular

simulation methods have become increasingly important to

understand (bio)molecular function in the last decades.[1–4]

Although experimental techniques have been developed that

probe smaller and smaller scales,[5,6] our ability to model the

behavior of molecules, clusters, and their aggregates has steadily

increased. During these developments, the family of Monte Carlo

methods,[7] which was very popular to elucidate the thermody-

namic properties in condensed matter physics,[8] has increasingly

taken the backseat in the number of applications compared to

the family of molecular dynamics methods. The latter, for which a

number of well-supported simulation packages are available,

now permits simulation of moderate size systems for hundreds of

microseconds (using specialized hardware)[1] or even very large

systems[9] for shorter time scales. Molecular dynamics simula-

tions, which solve Newton’s equation of motion on a finely discre-

tized time scale, allow us to follow the time evolution of the sys-

tem in a virtual experiment. Monte Carlo methods, in

comparison, generate a thermodynamic ensemble of states and

thus offer complementary information, but few generically appli-

cable program packages are available today.

The great advantage of the molecular dynamics approach, to

observe physical processes and directly extract kinetic informa-

tion, is limited by the fact that the individual time step of the

method has hovered around the femtosecond range, seriously

hampering the observation of long timescale processes and the

generation of sufficient statistics. This has led to the development

of techniques, such as the replica exchange methods[10,11] (called

parallel tempering[12–15] in the context of Monte Carlo), in which

a continuous trajectory is broken into replica simulations at dif-

ferent temperatures, which enhances the sampling of the confor-

mational space, while obviously losing kinetic information.

Many simulation and modeling programs of nanoscale sys-

tems have been developed and perfected in the recent

years.[16–21] For molecular dynamics of protein systems GRO-

MACS,[16] CHARMM,[20] and AMBER,[17] to name just a few, pro-

vide many different forcefields including the popular

Amber99SB and optimized potentials for liquid simulations

(OPLS) implementations.[22–26] However, there are many proc-

esses where thermodynamic information is sufficient to describe

or even guide experiment. Examples of such processes are, for

biomolecular systems, the relative stability of proteins, investiga-

tions of protein–protein, and protein–ligand interactions. In the

material sciences, aggregation, nanoparticle growth, and the

properties of thin films can often be described on the basis of

thermodynamic observations.

In contrast to molecular dynamics methods, there are a few off-

the-shelf simulation packages for Monte Carlo simulations.
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Simulations of protein systems were for example carried out using

Rosetta,[27] Profasi,[21] simple molecular mechanics for proteins

(SMMP),[28] and POEM.[29] Although some molecular dynamics

software packages can perform Monte Carlo sampling, such

implementations are typically not numerically optimal as they

cannot exploit specific features of Monte Carlo simulations (such

as modifications of only a small part of the system at a time).

There are a number of specialized Monte Carlo simulation pack-

ages for protein simulations and other applications. Rosetta[27]

ranks well in the biannual critical assessment of techniques for

protein structure prediction (CASP) competition using a custom

fragment assembly and Monte Carlo refinement protocol,[30–32]

whereas Profasi was able to fold several proteins from a coiled or

extended conformation.[21] Customizing these simulations for

other material classes like crystals is often tedious due to the high

degree of specificity toward simulations of proteins. Packages like

OPTIM[33] were developed to optimize clusters of atoms and/or

molecules and adapted to biomolecules to carry out discrete path

sampling or to calculate pathways and rates in energy landscapes

of biomolecules[33–35] using the PATHSAMPLE driver of OPTIM.

In this article, we describe SIMONA (SImulation of MOlecular

and NAnoscale systems), a generic monte-carlo (MC)-based simu-

lation package, which enables rapid prototyping of forcefields

and simulation methods for efficient Monte Carlo simulations.

The design goals of SIMONA were to provide the community

with an efficient and adaptable tool for complex molecular simu-

lations at three levels: at the ‘‘application’’ level, a graphical user

interface eases the setup, execution, and monitoring of simula-

tions for standard simulations. At the ‘‘new system’’ level, a python

script-based preprocessor simplifies parameterization of novel

components, for example, small molecules, polymers, or metal-or-

ganic frameworks and implementation of new forcefield parame-

terizations. At the ‘‘new forcefield level,’’ modifications of the

object-oriented Cþþ backend simplify rapid prototyping of novel

forcefield terms and simulation protocols, for example, evolution-

ary algorithms. Many forcefield components are already imple-

mented for graphical processors in the OpenCL standard.

After describing the implementation, we demonstrate the

application of SIMONA for three interesting application fields:

we modeled cluster formation for materials relevant for organic

light emitting diodes (OLED),[36–39] simulate protein folding, pro-

tein–protein interactions, and conduct protein-ligand docking

studies. However, these applications merely serve as examples:

SIMONA will be freely available (in source code) to academic

users and we hope that the work reported here serves as a use-

ful toolbox for the molecular simulation community to perform

efficient Monte Carlo-based simulations for many other systems

and to implement, in a modern and efficient platform, many of

the existing protocols[40–42] that are already available but are

difficult to use for general problems at present. SIMONA is avail-

able for download under http://int.kit.edu/nanosim/simona.

Methods

The applicability of molecular simulation methods requires
both an efficient implementation and an adaptable user inter-
face. SIMONA targets problems concerning the sampling of

thermodynamic ensembles of molecules that interact by vari-
ous classical interactions. To implement this package, we have
thus followed the path taken by various MD packages to gen-
erate a ‘‘topology file’’ by a preprocessor that specifies the sys-
tem and interactions and a computational engine that reads
this information, performs the simulation, and returns a trajec-
tory along with other output. The simulation engine can be
made most efficient if it abstracts from the details of the spe-
cific system and represents the simulation as a movement of
point-like objects (usually atoms) in space according to rules
that vary from application to application. This approach also
paves the way for coarse-graining simulations. The computa-
tional engine, written in Cþþ, can be adapted to different
computational platforms.

To make this simulation package applicable to a wide range
of problems, one must provide a means to encode, via a pre-
processor, the input data (typically information regarding the
coordinates, chemical properties, interactions, and simulation
method) into the standardized format readable by the simula-
tion (XML in SIMONA). This preprocessing step typically
requires very little computational effort in comparison with
the subsequent simulation, yet varies significantly from one
application to the next. Using a hierarchical scheme, such as
XML, for this purpose, encapsulates information for specific
classes of the program and makes the input files more trans-
parent and adaptable.

Although standard forcefields exist for most biomole-
cules,[43] encoding polymers or small molecules, transition met-
als or coarse-grained objects require quite different input spec-
ifications. For this reason, we have implemented the pre- and
post processor in Python, a script-based language that can be
adapted on-the-fly to many changing requirements. The basic
preprocessing modules thus provide (a) Python classes that
read certain widely used input formats, (b) a hierarchy of
Python classes that correspond to the XML elements recog-
nized by the computational engine, and (c) the ‘‘glue’’ that
transforms the data generated by the input into a tree of
classes corresponding to the XML output. The subsequent exe-
cution of the algorithm by the computational engine is then
automatic; the user thus interfaces with the program only via
the Python interface for pre- and post processing.

The generation of the input XML can be controlled by the
user at various levels, in the following listed in the order of the
complexity of the required changes of the program. (1) For
standardized applications, the user can set up the simulation
with the graphical interface and there are several tutorials for
selected applications. (2) Nonstandard interactions or parameter
values can be defined by changing assignments in the prepro-
cessors as discussed below. (3) Complex algorithms, which are
key to many specialized MC methods, can be encoded using a
XML-based ‘‘programming language,’’ and (4) class derivation on
the python and Cþþ side will permit the expert user to imple-
ment novel methods, while inheriting all existing features. Doc-
umentation and tutorials are provided on the download
webpage.

System definition

The encoding of the simulated system (i.e., biomolecules, poly-
mers, and nanoparticles) is split into four distinct sections by
the preprocessor: Configuration, Moves, Forcefield, and Algo-
rithm as illustrated in Figure 1. When reading an input file, the



preprocessor splits the input file’s information into abstract
coordinates (the configuration object), assigns forcefield infor-
mation (radii, forcefield parameters) and stores them in a
Forcefield object, detects degrees of freedom (moves object),
and implements a temporal simulation hierarchy for the simu-
lations (algorithm).

In the following, we briefly discuss these sections of the
input. Most researchers trying to set up a nonstandard system
comprising elements not envisioned at the time the program
was conceived are aware of the difficulties to implement simu-
lations for such systems. SIMONA reduces all systems to
assemblies of coordinates that are later manipulated by the
simulation backend, such that all of these complexities are
addressed in the generation of the input file. SIMONA pres-
ently reads protein data bank (PDB), protein coordinates,
charge [Q] and radius) (PQR), and MOL2 files and compressed
versions thereof, and exploits a hierarchical atom-recognition
scheme to assign atom types in a flexible, user-modifiable
fashion, that later can be used to implement moves and inter-
actions. The configuration section thus contains either one or
several conformations of the system (e.g., a population as
needed for simulation methods such as parallel temper-
ing[12,44] and evolutionary algorithms).

The moves section has its correspondence with constraint
sections in molecular dynamics programs. In molecular dynam-
ics, typically the entire system is flexible and the topology of
the system is constrained by the interactions. In many Monte
Carlo simulations, however, only specific degrees of freedom
are being manipulated, such as dihedral angles in biomolecu-
lar systems for receptor-ligand docking simulations. The move
section thus contains a list of elementary transformations to
change the conformation of the system.

Interactions

Standard Interactions and

Forcefields. Interactions in
SIMONA are implemented in a
hierarchical basis: in addition to
the standard bonded potentials
(bond-length, angles, dihedral
angles), SIMONA currently imple-
ments the forcefield terms found
in Table 1. SIMONA provides
many of the standard non-
bonded potentials used in molec-
ular simulations, such as Lennard-
Jones, 10–12-potentials, dihedral
and angle dependent potentials,
and so forth. In addition, Cou-
lomb electrostatics and various
generalized Born (GB) models,
including a very efficient solvent
accessible surface solver,[45] have
been implemented. Because
there are only a few demon-
strated examples of Monte Carlo
simulations with explicit solvent
models, incorporation of efficient
implementations for implicit sol-
vent models are important for
Monte Carlo-based simulation
suites. These physics-based

potential terms are complemented by a variety of constraint
potentials, which are needed in specialized simulations, for
example, by confining a ligand to the vicinity of a binding
pocket. Some specialized potential terms, such as those
required for the protein forcefields PFF01/PFF02, have also
been implemented.[29,46]

These individual potential terms can be combined into
forcefields, some of which can already be selected in the
graphical user interface (GUI), like protein forcefields PFF01/
02[46] and the potential used in FlexScreen for receptor-ligand
docking.[47] The parameterizations of some of these forcefields
exist for proteins, DNA and can be adapted using the atom-
type based assignment of parameters to small molecules. For
parameterization of nonstandard systems, a parameter genera-
tor is supplied in the GUI, which can import partial charges
from density functional theory (DFT) calculations and supply
defaults for Van-der-Waals radii (which can be modified by the
user). The FlexScreen potential includes the popular Autodock
scoring function[48] as a subset. The forcefields do not contain
explicit symmetrization as reported in Małolepsza et al.[49] as
all the currently implemented moves only perturb proper dihe-
dral angles keeping impropers intact.

To open SIMONA to a wide range of simulations, we have
started to implement an import mechanism for GROMACS top
files, such that systems parameterized by the GROMACS pre-
processor can be imported into SIMONA. This makes all poten-
tials currently accessible by GROMACS and structure based
potentials by SMOG[50] accessible in SIMONA. However, at
present, parsing of the bonded terms (angles and bond distan-
ces) is not complete.

Implementing Complex Novel Potentials. Researchers wishing to
implement and test new forcefields can exploit three unique

Figure 1. Systems definition in a SIMONA simulation. The simulation is encoded by a Configuration section

(top left panel: position of atoms, here illustrated for a pentacene molecule), a Moves section (here specifying

only rigid body rotation and translation for each molecule), a Forcefield section (implementing all interactions

between atoms in the energy model), and an Algorithm section, encoding the protocol for the modification of

configuration under the rules specified in the moves section. This hierarchical section permits implementation

of very complex algorithms at the XML level without the need to modify the Cþþ backend. [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]



mechanisms: first, SIMONA uses a generic function parser, imple-
mented by the FunctionParser library that will convert functions
written in plain text into the XML input file, for example,
‘‘sin(sqrt(x*xþy*y))’’ into arbitrary novel pair potentials in
SIMONA, that can be applied to arbitrary subsets of atoms in the
system. A second, more complex, variant of this scheme imple-
ments general (3,4,5,…N)-body interactions, which may be used
for complex new potentials, such as coordination chemistry for
transition metals or reactive forcefields. It is important to note
that these novel potentials can be implemented without modify-
ing or recompiling the Cþþ backend. Once a novel potential has
been validated, it can be implemented into the core of SIMONA
by using class derivations both on the Python and Cþþ sides of
the code to implement the new potential efficiently.

OpenCL Support for General N-Body Forcefields. SIMONA con-
tains OpenCL support for generalized N-Body forcefields. In
extensive tests, we observed speedups of 130 compared to a
single CPU for systems with more than 15,000 atoms.[51] The
SIMONA OpenCL code was tested on AMD and nvidia GPU
and Intel and AMD CPU architectures. A brief illustration of the
SIMONA parallelization strategy on GPU is given in Figure 2.

Algorithms

Standard Algorithms. The Algorithm section is the most com-
plex section of the SIMONA input. In contrast to molecular dy-
namics simulations, where typically most of the system is fully
flexible, many Monte Carlo schemes use complex nested algo-
rithms to modify the conformation. For standard applications,
the user can just use the algorithm prototypes implemented in
the GUI, including nested Monte Carlo simulations, simulated
annealing, basin hopping,[52–54] and evolutionary algorithms
described below.[55] In addition, we established a system for
threading or running on clusters via message parsing interface
(MPI). In the following, we discuss preparation of standard simu-
lations via the GUI frontend and of threaded evolutionary algo-
rithms as an example of a more complex simulation.

The XML file generated by the python preprocessor imple-
ments a programming language that permits implementation
of novel simulation protocols with relative ease. This language
features elements for loop building, nesting of subtasks, and
conditional execution, making it possible to implement very
complex simulations flows, without recoding the Cþþ kernel.
A standard Metropolis Monte Carlo simulation in this language
is illustrated in Figure 3.

Designing and Using Complex Simulation Workflows. As a more
complex example, we illustrate an evolutionary strategy that

Figure 2. Scheme of the OpenCL NBody parallelization. Step 1: an atom

index is assigned to each OpenCL workitem (i.e., shader processor). Each

workunit loads its specific parameters/coordinate. Step 2: the number of

atoms is partitioned into intervals of length group size (typically 2N with N

> 4, set by the OpenCL library). Shaders of each workgroup load one inter

val of coordinates into shared local memory. Step 3: the workitems iterate

synchronously over the just loaded coordinate segment, calculate the inter

action energy, and sum it into a local register Step 4: on finishing the loop,

the algorithm synchronizes all workitems and loads the next interval until

all intervals have been loaded Step 5: the sums are written in a result vec

tor and transferred to the host. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

Table 1. Subset of the potentials currently implemented in SIMONA.

Potential Functional form References

Lennard Jones
PN
i 0
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eij
rij
rij
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rij

� �6
� �

Lennard Jones78

Coulomb electrostatics 1
4pe0eP
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qiqj
rij

� �
Implicit solvent models

PN
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riAi
Eisenberg and McLachlan 79

Generalized born electrostatics 1
8pe0

1
eW

1
eP

� �PN
i;j

qiqj

r2
ij
þRiRj exp �r2

ij
=4RiRjð Þ

p Brieg et al 59 and Still et al 60

Constraint potentials General distance dependent

f ðri rjÞ, Disulfide Potentials, Morse Potential, and so forth

Kondov et al. 80

Compound protein forcefield PFF02 EPFF02 ¼ ELJ þ EELE þ ESASA þ EHB þ ETorsion
Herges et al, Verma et al. 39,40

Go models

ESMOG ¼ EBonds þ EAngles þ EDihedrals

þ
XN

Contacts

eC
rij
rij

� �12 rij
rij

� �6
" #

þ
XN

Non
contacts

eNC
rij
rij

� �12 Noel et al 43

Parameters for these forcefield terms are assigned in the preprocessor. Although each of the potentials has a default parameter set, the parameters can

be changed on a per atom basis.



we have used to de novo fold proteins with up to 60 amino
acids.[55] In this method, we explore the free-energy surface in
many parallel Monte Carlo simulations using a population
selection scheme that balances energy improvement and pop-
ulation diversity (see Fig. 4). Because the standard evolutionary
algorithm was found to tend to freeze the population after
some time, we have implemented a multitemperature general-

ization, which evolves several populations at different (con-
stant) temperature. The XML code for this algorithm, which
will automatically parallelize via MPI on as many nodes as are
available, is illustrated in Supporting Information, Figure S1.
Comparison with Figure 3 for the standard Monte Carlo algo-
rithm illustrates that the much more complex algorithm can
be implemented very easily.

Figure 3. Algorithm section of a Metropolis Monte Carlo implementation translated into pseudocode. In every repeat of the RepeatedMove, a Transforma

tion is carried out (in this case a displacement, rotation or dihedral rotation). The resulting state is accepted or rejected by the Metropolis acceptance crite

rion. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 4. Flowchart of the evolutionary algorithm. The Evolutionary Algorithm focuses on evolving structures in a population by balancing structural diversity

and energy optimization. After randomly annealing a single structure from the population, the conformation is extracted and compared to the population. In

case of similar conformations worse of energy, these are discarded from the population. If the new conformation is energetically viable and structurally dissim

ilar to the existing ones, it is included in the population. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]



Selected Applications

In the following, we report several applications of SIMONA

that were chosen to illustrate the versatility of SIMONA.

SIMONA implements both the protein-simulation algo-

rithms[56–58] and force fields[29,46] that were used to fold over

30 small proteins from unfolded conformations to the native

state, and most components of the FlexScreen receptor-ligand

docking program, which has been used in a variety of applica-

tions.[47,59,60] In a materials-science application, SIMONA was al-

ready used to explain selective separation of carbon nano-

tubes with designed polymers.[61]

Here, we illustrate applications of SIMONA that go

beyond our previous investigations: in the first application, we

observe the repeated folding and unfolding of the trp-cage

protein[62–66] in unbiased Monte Carlo simulations using an all

atom force field with a GB model.[67,68] In the second protein-

related application, we use the BOINC[69] server POEM@

HOME[70] to perform 200,000 protein–protein docking simula-

tions on 35,000 computers concurrently.

Next, we turn to modeling receptor ligand interactions:

computer-based drug development improves the time and

cost efficiency of a modern drug design process. Molecular

docking simulations are often used in high-throughput screen-

ing to preselect a promising subset of possible active ingre-

dients, but the correlation between experimental affinities and

scoring functions is typically weak. We hope that SIMONA,

which can implement both types of scoring functions, can

contribute to close the gap between high-throughput and ac-

curacy demands in receptor-ligand binding simulations. Here,

we report results of a single-stage massively parallel docking

simulation for the biotin-streptavidin complex, and a multi-

stage flexible receptor-ligand docking protocol[47,59,60] for five

pharmaceutically relevant receptors which converge to a mean

deviation of 0.98 Å (range: 0.38–1.45 Å) for the lowest energy

pose found in the simulation in comparison to the experimen-

tal structures.

A final application example deals with the simulation of

growth processes in an organic material that is used in OLED.

Prior work with SIMONA protocols included applications in

nanoparticle growth,[71] sorting nanotubes,[61] OLED/organic

photovoltaics,[38] and many other fields. Growth and structure

formation processes, in all aforementioned application areas,

occur on timescales beyond a millisecond in rather large

systems and are therefore challenging to all atom molecular

dynamics simulations. In many cases, kinetic information is not

crucial to interpret experiments, for example, in assessing

electron/hole mobilities for thin amorphous films, such that

MC-based methods may be the method of choice.

Protein folding

The 20 amino acid trp-cage miniprotein has long been used to

demonstrate the functionality of protein-folding protocols.[62–66]

Here, we do not use PFF01/02,[46] but a forcefield comprising of

the Amber99[22,23,25] Lennard-Jones and Coulomb terms. Electro-

static interactions are described in an implicit solvent model

comprising a GB term using Powerborn[67] for born radii com-

putation and Stills GB formula[68] with an exponential factor of

4. Nonpolar solvent interactions were modeled using a uniform

solvent accessible surface area term[45] with a tension coefficient

of 5.42 cal/Å2. Backbone and sidechain dihedral angles are auto-

matically selected by the preprocessor as degrees of freedom,

the Amber99SB[22] dihedral potential for these dihedrals was

also added.

We first unfolded the protein in a high-temperature simula-

tion and then performed 10 independent Monte Carlo simula-

tions comprising 107 steps each at T ¼ 300, 350, 400, 450, 500K.

For T ¼ 450 K, we observe repeated folding and unfolding

events between an unfolded ensemble with a mean root mean

square deviation (RMSD) of 4.9 Å to the native conformation

(see Fig. 5, conformations with RMSDs below 3 Å were classified

to belong to the native ensemble). In these 10 independent sim-

ulations, we observe folding-unfolding transitions in either

direction approximately every 250,000 MC steps, which corre-

spond to 90 min CPU on a standard single-core PC. At lower/

higher temperatures, the occupancy of the folded/unfolded

ensembles increases/decreases (see Supporting Information,

Fig. S2). These simulations demonstrated that the conforma-

tional landscape of small peptides can be efficiently sampled

using standard protocols in a very short amount of time.

Protein-protein docking

Protein–protein interactions mediate many important signaling

processes[72] in the cell and are therefore studied widely with

many methods, including simulations. The CAPRI exercises reg-

ularly assess the state-of-the-art in protein complex predic-

tion.[73] Here, we report a simple simulation, exploiting the

massively parallel POEM@HOME network,[70] for contact predic-

tion. Simulations were performed with the PFF02, which was

successfully used previously for alanine screening,[74] suggest-

ing it may also be reliable for the prediction of the conforma-

tion of protein complexes.

We studied the dimerization of the fire ant venom allergen

(pdb code: 2YGU).[75] The protein occurs as a homodimer in its

native state and comprises 125 amino acids per chain. The

crystal structure was resolved to 2.6 Å, and the complex is sta-

bilized via a disulfide bond that links the CYS21 of both

chains. In forming such a complex, the question arises whether

the native conformation of the complex is a unique free

energy minimum in the absence of the disulfide bridge, or

selected via conformational selection from a multitude of com-

peting structures.[76,77]

Starting from the crystal structure, we generated 200,000

starting structures by offsetting the two structures by 15 Å in

a random direction and rotating them about an arbitrary axis

by a random angle. Using POEM@HOME, these starting struc-

tures were then annealed from 700 to 50 K by using the

PFF02 potential in simulated annealing simulations with a geo-

metric cooling schedule running for 50,000 Monte Carlo steps

each. Moves incorporate rigid body center of mass translations

uniformly distributed between 0 and 1.4 Å in a random direc-

tion and random rotations by up to 10� around an arbitrary



axis. If the two distinct chains move away further than 15 Å, a

biased move toward the center is applied. These moves

attempt a uniformly distributed random step between 0.9 and

2.0 Å toward the center of mass of the other chain. Resulting

structures were found in a wide energy range, replicating the

experience of other docking protocols that short simulations

started far from the experimental conformation cannot find

the correct binding pose.

The lowest energy configuration features a RMSD of 1.0 Å

to the experimental structure and is offset by an energy gap

of 5.6 kcal/mol from the next lowest energy conformation,

which has a RMSD of 15.5 Å to the experimental conformation.

The interchain disulfide bridge

(not included in the forcefield)

can only form correctly in the

cluster of lowest energy struc-

tures shown in the left panel of

Figure 6. The forcefield PFF02

favored complex conformations

which envelop the docking inter-

face near the actual docking site

of 2YGU, but overestimates

energy differences (because it

was developed for protein struc-

ture prediction).

The lowest energy structure

selects the native conformation

in the absence of a potential

modeling the disulfide bridge,

because most of the surface of

the docking interface is covered.

It is interesting to note that there

are few competing low-energy

Figure 5. Six independent runs of the folding of protein 1L2Y at a temperature of 450 K. Multiple folding/unfolding events can be observed in the runs.

The lower left panel shows both a snapshot of a completely unfolded chain and a structure folded to experimental resolution at 2.2 Å RMSD.

Figure 6. Results of the rigid docking prediction of protein 2YGU. Left: overlay of the predicted (blue) and the

native (red) structure of protein 2YGU. The lowest energy structure features a backbone RMSD of 1.0 Å to the

experimental conformation. The rectangle indicates the position of the disulfide bridge in the experimental

structure, but there are no corresponding potentials in the simulation. The surface shading green to white indi

cates an increasing hydrophobicity of the protein surface. Light surfaces are hydrophobic, green surfaces

hydrophilic. Right: distribution of the final structures below an energy of 720 kcal/mol. The lowest energy

conformation has a gap by 5.6 kcal/mol to the next lowest energy structure of different docking topology.



structures featuring a low RMSD around the lowest energy

structure. Supporting Information, Figure S3 shows RMSD/

energy snapshots during the simulations. Near the correct

docking pose (RMSD <4 Å) a sharp funnel toward the correct

docking pose is visible explaining this isolation of states with

small RMSD.

Receptor ligand docking

Prediction of receptor-ligand conformations and computation of

affinity estimates is an important present-day application of mo-

lecular simulation methods in drug discovery. Although most

presently methods to estimate the relative or absolute free

energy of binding are mostly based on molecular-dynamics sam-

pling, most docking methods rely on stochastic optimization, of-

ten using physics-inspired sampling techniques.[78–80] In the fol-

lowing, we present two applications of SIMONA for receptor-

ligand docking using two distinct approaches: a whole-surface

approach that samples the entire protein surface without any

prior knowledge about the docking pocket and a cascaded

docking strategy similar to that previously used in FlexScreen

that samples only the vicinity of a known binding pocket.

Whole Surface Sampling. The streptavidin-biotin complex (PDB-

ID: 1STP) is one of the most common examples for protein-

ligand docking, as its binding energy is one of the highest

measured for noncovalent binding systems,[81] making it a

good benchmark system. The SIMONA GUI contains already a

specialized menu to set up docking simulations. Here, we

used our BOINC volunteer network POEM@HOME to generate

an ensemble of 883.244 structures of the streptavidin-biotin

complex.[70] Every single simulation relaxed a randomly placed

ligand conformation at constant temperature T ¼ 300K per-

forming 300.000 Monte Carlo steps. Although the ligand was

completely flexible in dihedral space, we kept the receptor

backbone dihedrals fixed and allowed the rotation of 29 side-

chain dihedrals around the binding pocket. All energies were

evaluated in the FlexScreen forcefield.[47] The low-energy sub-

set of the results of this brute-force sampling approach,

including all 660.720 structures

with an energy < 2400 kJ/mol

(absolute energy) and all atom

RMSD < 10 Å is shown in Figure

7. The energetically lowest struc-

ture has a RMSD value of 0.88 Å

to the native structure.

Cascaded Docking Approach. The

whole-surface docking approach

may be used ad hoc to sample

the protein surface, but is not

viable for large-scale screening of

ligand databases for drug devel-

opment. Following the

FlexScreen protocol, we applied a

four-stage, cascaded docking

approach for four pharmaceuti-

cally relevant receptor-ligand

complexes. Initially, the ligand is

placed into the docking pocket, displaced randomly by maxi-

mum displacement of 2 Å and randomly perturbed 10,000

times by rotations around single bonds (which are identified

by an automated procedure). These structures enter stage 0 of

the cascade as starting conformations. The idea of the cas-

cades (see Table 2 for details) is to perform many short simula-

tions on a large possible set of ligand poses, then to select

the lowest energy poses at the end of the stage. These poses

are passed to the next stage and subjected to somewhat lon-

ger simulations until only a few conformations are subjected

to long simulations in the last stage. As in the standard

FlexScreen protocol, individual simulations used the stochastic

tunneling method.

Using this protocol, we investigated ribonuclease-guanylic

acid complex 1RNT, spleen tyrosine kinase complexed with

staurosporin 1XBC, antibody 21D8 complexed with hapten

1C5C, an L-arabinose-receptor complex 1ABP, a cytidin-ribonu-

clease complex 1ROB, and a streptavidin-biotin complex 1STP.

All binding poses were predicted to experimental resolution,

as shown in Figure 8. The RMSDs of the predicted structures

ranged from 0.31 to 1.45 Å, and the lowest energy conforma-

tions agree well with the experimental structures.

Cluster growth of organic materials

Not only biomolecular systems, but also systems from the

material sciences require efficient simulation methods.[82] In

Figure 7. Results of the streptavidin biotin docking simulation. Left: density plot of the RMSD versus Energy

map for 660.720 structures (limited by a max. RMSD of 10 Å and a max. energy of 2400 KJ/mol. The RMSD val

ues were calculated including all ligand atom coordinates without a prior alignment. Right: overlay between

the energetically best structure (blue) and the native (red) structure of the protein ligand complex 1STP. The

predicted complex has a RMSD distance of 0.88 Å to the native one. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

Table 2. Parameters used in the cascaded docking approach.

Stage No. of poses No. of steps Forcefield Ei

0 96 1000 ELJ

1 96 5000 ELJ þ EC þ EHBþEISE

2 16 30,000 ELJ þ EC þ EHBþEISE

3 8 75,000 ELJ þ EC þ EHBþEISE

Although the first stage only used a Lennard Jones (ELJ) potential to

remove steric clashes, simulations of further stages used a full physical

potential comprising also an Electrostatics (EC), Hydrogen Bond (EHB)

and implicit solvent (EISE) potential.



contrast to biomolecular systems, where simulations are pres-

ently dominated by biopolymers with largely standardized

components (DNA, RNA, and proteins), the materials sciences

offer a vast variety of components and simulation problems.

To focus on one specific example, we investigate a cluster

formation in pentacene, a material used in OLED. OLED are

made from multiple layers of materials, comprised of metals,

oxides, polymers, and/or small organic molecules, which emit

photons when subjected to an external field. The first step in

modeling the complex processes in OLED at the molecular scale

is the determination of the morphology of the layers and their

interfaces. Here, we look at cluster growth of pentacene,

C22H14, one material presently used in the electroluminescent

layer of small-molecule OLED.[83] Interest in pentacene grew

especially after the discovery that bulk and thin-film pentacene

is a p-type organic semiconductor. Pentacene based materials

feature mobilities similar to that of amorphous silicon, with

mobilities of �5 cm2 V�1s�1 for polycrystalline pentacene films.

We have performed cluster growth simulations on pentacene

systems starting from a random assembly of molecules. As input,

we took the pentacene morphology from the Cambridge Crystal-

lographic Data Centre (CIF ID 2012157)[84] and generated partial

charges of pentacene using DFT.[85] We then prepared a SIMONA

Parameter File (SPF) comprising Lennard-Jones parameters and

the partial charges from the DFT simulation. The simulation is

prepared using the Monte Carlo preprocessor of the GUI by load-

ing both spf and the mol2 file and setting the environmental pa-

rameters (temperature, forcefields, rigid-body moves). We then

use the structure cloner (found under Expert Settings) and gener-

ate 15,000 pentacene replicas with this parameterization and

enable the OpenCL implementations of the forcefields.

Starting from this setup, we ran 400,000 simulations with

500,000 steps each with a constant temperature of 300.0 K on

the distributed POEM@HOME architecture.[70] In the following,

we analyze the cluster topologies that emerged from the sim-

ulations: Most clusters feature layers of face-on-edge penta-

cene molecule stacked with other layers in a direct or inter-

leaved fashion as seen in Figure 9. To quantify these results,

we looked at two criteria: cluster size and emergence of order.

After clustering all samples using a modified version of the

power diagram described in Klenin et. al.,[45] we determine the

distribution of cluster sizes (Fig. 10). The figure demonstrates a

near-exponential distribution of the cluster size over five

orders of magnitude. This data demonstrate that clustering

occurs but gives no information about the order of the mole-

cules within a cluster. The latter was quantified by using the

relative alignment of stacks of neighboring molecules, as

defined by the relative orientation of their inertia tensor, and

counting the number of molecules within a stack. The distribu-

tions of these stack trails the cluster distribution but

Figure 8. Docking poses of lowest energy after applying the cascaded docking pipeline. The images show the experimental reference structure in green

and the prediction in yellow. Following are the respective PDB IDs of the benchmark complexes and the RMSDs toward the respective experimental struc

ture: A 1RNT, 1.45 Å B: 1STP, 0.95 Å C: 1XBC, 0.38 Å D: 1ROB, 1.45 Å E: 1ABE, 0.31 Å F: 1C5C, 1.34 Å. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]



demonstrates that a significant fraction of the molecules

within the cluster has attained local order.

Discussion

Driven by the growth of the available computational resources,

molecular simulation methods have become increasingly im-

portant in complementing experiment and theory in under-

standing and predicting the properties of molecular and nano-

scale systems in the life- and materials sciences. Applications

of Monte Carlo-based methods are presently reported less fre-

quently than molecular dynamics-based investigations, in part

because few adaptable, general-purpose Monte Carlo simula-

tion packages are available. Because move generation in

Monte Carlo methods is fundamentally different than in molec-

ular dynamics methods, standalone Monte Carlo implementa-

tions have an efficiency advantage over the adaptation of mo-

lecular dynamics packages for Monte Carlo simulations. The

lack of general-purpose Monte Carlo packages has hampered

the development of efficient novel Monte Carlo algorithms in

comparison to the vast array of tools available to extract ther-

modynamic information, for example, calculation of free-

energy differences, from molecular dynamics based methods.

This is unfortunate, because in many of these applications,

molecular dynamics simulations, which all struggle with diffi-

culties to sample sufficiently long timescales, serve merely as a

workhorse to explore the conformational space.

For this reason, we have implemented SIMONA, a modern

adaptable general-purpose Monte Carlo simulation package that

allows users with different require-

ments to easily conduct Monte

Carlo simulations for molecular

and nanoscale systems or to de-

velop novel Monte Carlo-based

protocols. To facilitate simulations

of complex nonstandard systems,

we have implemented the pack-

age with a script-based preproces-

sor (Python) which generates a to-

pology file (XML) for subsequent

simulation with an efficient Cþþ-

based backend, which uses archi-

tecture-specific optimization for

most low-level operations (Eigen/

OpenCL). Parallelization is sup-

ported via MPI and some, though

not all force-field components can

exploit GPUs. Simulations using

massively distributed grid-type

computational environments are

also possible.

Researchers who want to use

the protocols already imple-

mented in the package can pre-

pare their simulation using a

graphical user interface and

import mechanisms for topology

files of widely used programs, such as GROMACS, are already

partially implemented. To facilitate force fields development,

SIMONA supports rapid prototyping of novel potentials at the

preprocessor level. Expert users can use class derivation both

at the preprocessor and backend side to implement new algo-

rithms and forcefields.

Figure 9. Various examples characteristic for the cluster topologies found in the simulations of pentacene clus

tering. a) Initial stage of building a herringbone conformation. b) Direct Face on Face pi stacking conformation.

c) Unordered pentacene bundle with pentacene ordered in z direction. d) and e) Two pentacene cluster direc

tions merged into a single cluster, space fill, and licorice visualizations. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 10. Histogram of cluster sizes and number of pentacene molecules

in ordered layers. For small counts, both distributions decrease exponen

tially. Although pentacene forms a crystal in its native conformation, the

Monte Carlo simulation freezes and crystals stop growing. As only rigid

body moves of single pentacene molecules are allowed, it gets exponen

tially harder to move a complete cluster.



SIMONA implements the forcefields and algorithms developed 
in our group in the last decade for protein folding (PFF01/

PFF02) and receptor-ligand docking (FlexScreen), and makes 
these methods available in an easy-to-use package. Standard 
simulations using these methods for protein conformational 
sampling and receptor-ligand docking can be set up easily using 
the GUI. Here, we have reported illustrative applications of novel 
components: Using a GB implicit solvent model, we demon-

strated reproducible folding events of the 1L2Y peptide in 50 in-

dependent simulations, each of which requires only a few days 
on a single core. We also reported simulations on protein-pro-

tein docking comprising 200,000 distributed simulations using 
PFF02, which selected the experimental binding pose by energy 
to good accuracy. Similarly, good accuracy was reported in sam-

ple simulations for receptor-ligand docking for several pharma-

ceutically relevant receptor-ligand complexes. In a final applica-

tion, we investigated the growth of pentacene clusters as an 
example for an application from the material sciences.

We have chosen these applications to demonstrate the versa-

tility of the package and hope that they are the starting point 
for many more applications and a fruitful development of novel 
Monte Carlo-based methods. Given the wide range of available 
methods and applications, no single group can hope to develop 
and maintain a software package covering even a fraction of 
the possible applications. We therefore hope that this first ver-

sion of SIMONA, which is distributed in source code for free 
academic use, can serve as the nucleus around which a com-

munity of researchers can implement existing algorithms and 
develop new methods in an adaptable framework without hav-

ing to start from scratch for new applications. SIMONA is avail-

able for download under http://int.kit.edu/nanosim/simona.
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