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Abstract

We report an embarrassingly parallel method for the evaluation of thermodynamic

properties over an energy landscape exhibiting broken ergodicity, nested basin-sampling

(NBS). We also introduce the No Galilean U-Turn Sampler (NoGUTS), a new sam-

pling scheme based on the No U-Turn Sampler (NUTS) introduced by Hoffman and

Gelman (2014) that works with the Galilean Monte Carlo scheme introduced by Betan-

court (2012) to aid the efficient generation of new live points. NoGUTS can be thought

of as a form of reflective slice sampling with an automatic stopping criterion. We ap-

ply this approach to a benchmark atomic cluster of 31 Lennard-Jones atoms, which

exhibits a low temperature solid-solid heat capacity peak. The calculated heat ca-

pacity is compared with results generated by parallel tempering (PT), basin-sampling

parallel tempering (BSPT), and standard nested sampling (NS) simulations. NBS re-

produces the full heat capacity curve predicted by PT and BSPT, whilst the NS calcu-

lation with similar computational cost fails to resolve the low temperature solid-solid

phase transition.
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1 Introduction

Evaluating the thermodynamic properties of an energy landscape requires evaluation of

integrals of the form

IΦ0 [f ] =

∫
Φ0

f(V (R)) dR, (1)

where Φ0 is the domain of the integral and IΦ0 [f ] is a functional of the integral of f over

Φ0. V (R) is the potential energy function, and R is the 3N dimensional vector of Carte-

sian coordinates for N atoms. Such integrals generally have to be estimated numerically

using stochastic methods, which fall into two broad classes, thermal or athermal. Thermal

methods directly generate samples from probability distributions related to f(V (R)), of-

ten using Markov chain Monte Carlo (MCMC), and usually sampling from the canonical

distribution. More advanced thermal methods may sample from a set of related proba-

bility distributions simultaneously.3–11

The vast majority of configuration space will be extremely high in energy, and to gen-

erate statistically valid samples thermal methods must obey detailed balance. Almost all

large moves will land in high energy regions and so will be rejected. Hence these sam-

pling methods must take short local moves to have a reasonable acceptance rate, increas-

ing the time taken to simulate large-scale rearrangements. The convergence is dominated

by the time taken to simulate such rearrangements, which can lead to broken ergodicity.

One effective technique for generating thermal samples through MCMC is Hamilto-

nian Monte Carlo (HMC).12 In HMC the state space is doubled, incorporating a momen-

tum into the Monte Carlo (MC) simulation, which enables the algorithm to make directed

moves away from the starting point, which can be much more effective than a simple

random walk.12,13

A key challenge for HMC is choosing an appropriate simulation length; too short and

the trajectory will not travel far enough away from the starting point, too long and the

trajectory will begin to return to its starting point. The No U-turn sampler (NUTS) is an
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algorithm that enables HMC to automatically detect when the trajectory begins returning

to its starting point (the U-turn),1 avoiding the need to set a trajectory length. NUTS also

eliminates sampling bias in standard HMC caused by symplectic integrator errors.13

Athermal methods attempt to determine the density of states,

Ω(V ) =
dΦ(V )

dV
, (2)

where

Φ(V ) =

∫
V (R)<V

dR (3)

is the configuration volume, so eq. (1) can then be expressed as,

IΦ0 [f ] =

∫ ∞
−∞

f(V )Ω(V ) dV =

∫ Φ(∞)

0

f(V ) dΦ(V ). (4)

The density of states can be determined by discretising into a set of energy bins, as in

transition matrix Monte Carlo14 and Wang–Landau sampling,15 or a set of ’temperatures’

as in statistical temperature Monte Carlo.16–18 The key challenge associated with these

methods is that the relative size of adjacent histogram bins can be extremely large if the

bin ranges are not carefully chosen, so the probability of any move landing in the smaller

bins becomes too low and the simulation will not converge.

Nested sampling (NS) presents an alternative approach that effectively chooses the

optimal bin-width during the course of the simulation dynamically.

1.1 Nested sampling

NS is an approach that was developed by Skilling 19 to efficiently calculate the evidence

in Bayesian inference (see appendix D), which is equivalent to the evaluation of eq. (1).

Skilling’s insight was to reformulate the density of states integral, eq. (4), as a Lebesgue
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Figure 1: A schematic representation of how nested sampling can calculate the relative
difference in configuration volume between two energy thresholds. nlive live points are
randomly distributed overR such that they all have energy less than V NS

i . The live point
with the highest energy, V NS

i+1 is highlighted in red. As the live points are randomly dis-
tributed overR (and so Φ(V )) we know that Φ(V NS

i )/Φ(V NS
i+1) ≡ tNS

i ∼ B(nlive, 1).

integral,

Pr(D) =

∫
Pr (D|M(θ)) Pr (M(θ)) dθ =

∫ ∞
0

λdXNS(λ), (5)

where Pr(D|M(θ) is the likelihood of the observed data D given a model M with pa-

rameters θ, Pr(M(θ)) is the prior probability of the model having a parameter value θ,

Pr(D) is the evidence, and XNS(λ) is the prior volume enclosed within likelihood contour

Pr (D|M(θ)) > λ, and

XNS(λ) =

∫
Pr(D|M(θ))>λ

Pr (M(θ)) dθ. (6)

With the correspondence θ ≡ R, Pr (D|M(θ)) ≡ f(V (R)), and taking Pr (M(θ)) to be

uniform over all of the available configuration space, eq. (4) is recovered exactly, and

the prior volume becomes proportional to the configuration volume, eq. (3). Hence it is

possible to define nested sampling in terms of configuration volumes.

Nested sampling works by determining the ratio in configuration volume for decreas-

ing thresholds V NS = {V NS
1 , · · · , V NS

NNS}. This list is generated by maintaining a set of nlive

independent replicas (also known as live points) and then iteratively removing the highest

energy replica (whereupon it becomes a dead point).

A new live point is generated randomly and uniformly within the configuration vol-
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ume enclosed by the energy contour of the most recently removed dead point. This pro-

cess means that the configuration volume ratios enclosed by the energy contours of suc-

cessively removed dead points can be modelled by a set of independent beta-distributed

variables (see appendix C.1 and eq. (71) for more details),

tNS
j =

Φ(V NS
j )

Φ(V NS
j+1)

∼ B(nlive, 1). (7)

A beta distributed variable, tB ∼ B(αB, βB), has a probability density

Pr (tB) = B(tB|αB, βB) =
Γ(αB + βB)

Γ(αB)Γ(βB)
tαB−1B (1− tB)βB−1 , (8)

for 0 ≤ tB ≤ 1, where Γ is the gamma function. The moments of the beta distribution are

E[taB(1− tB)b] =

∫ 1

0

taB(1− tB)bB(tB|αB, βB) dtB =
Γ(αB + βB)

Γ(αB)Γ(βB)

Γ(αB + a)Γ(βB + b)

Γ(αB + a+ βB + b)
. (9)

For a more detailed overview of the beta distribution see appendix C.1.

An overview of the basic nested sampling algorithm is shown in algorithm 1, and a

schematic for one step of a nested sampling run is shown in fig. 1.

Algorithm 1 Basic nested sampling

Input: nlive

Output: V max

Initialise empty list V max = {}
generate nlive independent replicas of live
points with sorted energies V = {V1 <
V2 < · · · < Vnlive}
repeat

Remove dead point Vnlive from V and
append to V max

Generate new replica uniformly from
prior with energy Vnew < Vnlive

Insert Vnew into V
until Convergence
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For nested sampling, convergence is normally considered to have occurred when the

value of the evidence integral (configuration integral) contained by the live points is less

than some specified fraction of the total evidence (the partition function), or the energy

difference between the highest and lowest live points is less than some tolerance.

If the likelihood is set to be the canonical probability of a configuration, and θ is the

configuration, then the evaluation of the evidence in eq. (5) is equivalent to the calculation

of the partition function. Formulating the integral as a Lebesgue integral enables NS to

effectively choose the optimal bin width during the course of a NS calculation.

Dynamic nested sampling During nested sampling it is possible to dynamically change

the number of replicas being sampled by increasing the number of replicas in the en-

ergy/likelihood ranges that contribute most to the observables, which can be useful to

improve the accuracy. The ratio of volumes enclosed by successive energies/likelihoods

will still be beta distributed, but the number of live points can now change. This process

is known as dynamic nested sampling.20 Dynamic nested sampling runs can be combined

by merging all the energies/likelihoods into a single sorted list. The ratio of volumes en-

closed will again be beta distributed, with nlive equal to the sum of the live points in all

the nested sampling runs considered.

In this framework every step of a nested sampling run can be viewed as the removal

of the highest energy live point, followed by the addition of some number of live points

sampled uniformly below the energy of the point removed. If no live points are added

their number will decrease as the live point with the highest energy is successively re-

moved, which is equivalent to removing multiple points at the same time. Here we will

assume that in every step of a nested sampling run exactly one live point is removed, but

there can be a dynamic number of live points.
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1.1.1 Challenges

The key computational challenge associated with nested sampling is generating replicas

uniformly from the configuration space (the prior) subject to the constraint that the en-

ergy/likelihood of the replicas is less/greater than a given cut-off.21,22 Three key factors

complicate this process.

• The configuration (prior) volume of interest is normally a tiny fraction of the total.

• The potential energy landscape has an exponentially large number of local minima,

all corresponding to maxima of the likelihood.

• As the potential energy constraint decreases during the nested sampling simulation,

regions in configuration space will become disconnected, and sampling across them

becomes challenging.

A variety of approaches have been developed to tackle these problems.

• A hard constraint variant of HMC known as Galilean sampling, which exploits

isolikelihood contours/potential gradient information23,24 to permit long-range di-

rected moves.

• MULTINEST 25 fits a set of intersecting ellipsoidal contours to the set of live points

and then performs rejection sampling within the contours, although the efficiency

of this method decreases with the dimensionality of the system.

• POLYCHORD 21 extends the slice sampling algorithms to multimodal distributions.

• Superposition enhanced nested sampling (SENS)26 uses a population of low energy

minima (corresponding to high likelihood) obtained using a global optimisation al-

gorithm, such as basin-hopping (BH),27–29 to propose moves to cross barriers that the

MCMC walks cannot overcome. In exact-SENS, replicas are generated via Hamilto-

nian replica exchange;3,8 in inexact-SENS new samples are generated at low energies
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by approximating the potential function as a set of harmonic wells. Both of these

approaches enable SENS to significantly improve the accuracy of the calculated den-

sity of states at lower energies, whilst needing fewer replicas than in a standard NS

simulation.

1.1.2 Integration

Using nested sampling we can calculate an estimate of eq. (1) and its associated uncer-

tainty22 by calculating the first and second moments of IΦ0 [f ]. Suppose we have per-

formed nested sampling and generated NNS nested sampling points, where the jth point

was sampled with nNS
j live points present. We can approximate the integral eq. (4) by the

sum

IΦ0 [f ] ≈ Φ0

NNS∑
j

V NS
j (Φ(V NS

j+1)− Φ(V NS
j )) = Φ0

NNS∑
j

fj(1− tj)
j−1∏
k=1

tk, (10)

where fj = f(V NS
j ). Assuming the quadrature error is negligible19 and as all the volume

ratios are independent, the expected value of IΦ0 [f ] can be calculated straightforwardly

from eq. (9),

ENS[IΦ0 [f ]] = Φ0

NNS∑
j=1

fj
1

nNS
j

j∏
k=1

nNS
k

nNS
k + 1

. (11)

ENS[IΦ0 [f ]2] can be found by adapting the method used by Keeton 22 to approxiate the

uncertainty of estimates obtained using nested sampling runs with a fixed number of live

points,

ENS[IΦ0 [f ]2] =
NNS∑
l=1

[
2fl
nNS
l

(
l∏

k=1

nNS
k

nNS
k + 1

)(
l∑

j=1

(
fj

nNS
j + 1

j∏
k′=1

nNS
k′ + 1

nNS
k′ + 2

))]
, (12)

which can be calculated in O(NNS) operations. The statistical uncertainty for the estimate

of IΦ0 [f ] can be calculated as,

σ2
IΦ0

[f ] = ENS[IΦ0 [f ]2]− ENS[IΦ0 [f ]]2. (13)
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1.2 Principle of superposition

It is common practice to split the configuration space into different regions and then

tackle the integral eq. (1) in each region independently. Often different regions are as-

sociated with different minima, using the basin of attraction defined by a minimisation

algorithm.30–32 as the set of points that lead to the same minimum. Basins of attraction

are only guaranteed to be contiguous when steepest-descent minimisation is used.31,32

The boundary between two contiguous basins of attraction is a watershed30 or transition

surface.

The total density of states can then be described by the sum over basins of attraction

of the minima to give the superposition partition function:32–37

Ω(V ) =
∑

µ∈Rmin

PµΩµ(V ), (14)

where Pµ is the number of distinguishable permutation-inversion isomers of minimum µ,

and Ωµ(V ) is the density of states for the corresponding basin of attraction.

This approach can be useful, because in many situations determining Ωµ(V ) is more

straightforward than determining the full density of states. At energies close to the min-

imum, the potential function can be well approximated by a harmonic potential, with an

analytic density of states. Additionally, there are no barriers within a basin of attraction.

1.2.1 Harmonic superposition approximation

Given a database of minima, the fastest method for estimating the density of states is the

harmonic superposition approximation (HSA)37–40 where the density of states,

Ωµ(V I) ∝ θ(V I − V Q
µ )

(V I − V Q
µ )κ/2−1

νµ
, (15)
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and configuration volume,

Φµ(V I) ∝ θ(V I − V Q
µ )

(V I − V Q
µ )κ/2

νµ
, (16)

of each individual minimum µ are approximated by a harmonic potential with known

analytic form, where θ is the Heaviside step function, V Q
µ is the energy of minimum µ, κ is

the number of vibrational degrees of freedom (the number of non-zero eigenvalues of the

Hessian), and νµ is the geometric mean of the vibrational normal modes. The harmonic

superposition partition function is simple to calculate and accurate at low temperatures,

but at high temperatures anharmonic vibrational effects can introduce systematic errors.37

This approach has been combined with Wang–Landau sampling in the first Basin-

Sampling scheme (BS)9 and with parallel-tempering (PT) in the basin-sampling/parallel

tempering (BSPT) method.10

2 Motivation

Standard nested sampling must be run with a minimum number of live points when

simulating systems exhibiting broken ergodicity, so that there are a sufficient number of

points in each basin once they become disconnected to ensure uniform sampling across

the disconnected basins. Choosing the correct number of live points poses a challenge,

as it is not obvious a priori what will be sufficient, and simulating a large number of live

points is expensive and tricky to parallelise.

NBS tackles this problem by performing NS simulations with a single live point, with

each new live point being spawned by a random walk originating from the previous live

point. These simulations will be called nested optimisations (NOpts), as each simulation

is guaranteed to finish in a minimum. This approach means that a given NOpt will never

jump out the basin it is currently in, so the NOpts that are in the same basin can be

combined together to provide an estimate of the configuration volume of that specific
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basin. We describe NOpts in more detail in section 3.

Instead of inferring the volumes of disconnected basins by the number of live points

present in a given basin, the volume of a given basin can be estimated from the fraction of

NOpts that fall into it and the statistics of the aggregated NOpts associated with the basin.

To ensure sufficient sampling across disconnected regions enough NOpts must be done

to ensure sufficient statistics to estimate the probability of a NOpt landing in a specific

basin, and there must be enough NOpts in each basin so that their aggregated statistics are

sufficiently accurate. This approach has the advantage of being highly parallelisable, and

does not require the number of live points to be chosen before beginning the simulation.

The computational details for inferring the basin volumes and integrals over the potential

energy surface (PES) are discussed below in section 4.

In this superposition based approach basins are considered and sampled separately. In

contrast SENS uses the harmonic approximation to the potential to seed low energy repli-

cas into the simulation.26 Similar superposition-based approaches are used by MULTI-

NEST and POLYCHORD, although in these codes it is assumed that it is possible to cluster

the configuration space into either disconnected regions or a set of hyperellipsoids, which

is not always straightforward for an arbitrary PES or a high-dimensional system.

The behaviour of regions in configuration space becoming mutually inaccessible can

be visualised using a disconnectivity graph (DG),41–44 which shows the energy level above

which minima become connected and is illustrated in fig. 2. The exact definition of con-

nectivity can vary, leading to alternative DG representations. For the standard definition,

two minima are said to be connected at a given energy threshold if there exists a sequence

of transition states connecting them that are all below the threshold. The structure of a

DG can provide insight into the dynamical behaviour of the system being studied.45

In the NBS sampling considered here any random walk constrained to stay below

the energy of a given node will only be able to visit the volume of space associated with

whichever branch the random walk begins in. An edge of the correspinding NBS DG
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Figure 2: Classification scheme for an NBS disconnectivity graph. Two points in space are
considered to be connected if it is possible to move between them without exceeding the
energy of the higher point. The graph describes the topology of the connectivity induced
by NBS for an energy landscape. Nodes in the graph indicate the energy threshold at
which different child branches in the energy landscape become connected. A branch vol-
ume of a node corresponds to a region that becomes connected to other branches above
the node.

represents a region in space where all pairs of points in the region are connected by a

barrierless path, so the energy does not exceed the higher value of the pair. We will

refer to different regions or volumes of configuration space as leaves, edges or branches,

defined below. In NBS it is these regions that are considered.

The DG we employ for NBS differs from standard DGs, where nodes correspond to

the minimum energy transition state that connects two branches descending from that

node. In NBS graphs the nodes correspond to the energy level at which MC walks to

generate new replicas in the two regions do not cross the barrier between them, which

happens once the probability of the MC walk moving between the regions becomes too

small. These barriers will be termed lazy barriers to differentiate them from true potential

energy barriers, because the MC walk has not been run for ‘long enough’ to cross them.

For brevity, we will henceforth refer to lazy basins simply as basins. An approach to
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self-consistently infer the resulting DG from just the NOpt results without needing a PES

specific similarity metric is described in section 8.2.

NBS has some advantages over standard nested sampling,

• the NOpt simulations are embarrassingly parallel,

• it is easy to perform additional simulations to increase the accuracy,

• by modelling the volumes of the basins independently it is possible to enhance

the accuracy at low energies using the harmonic superposition approximation to

calculate the configuration volume at low energies, in a similar manner to basin-

sampling.10

Unfortunately, these advantages come at the cost of creating more stringent requirements

for the generation of new live points. Ensuring that the new live points are sufficiently

decorrelated from the previous point becomes more important as the number of live

points in the simulation decreases.

To alleviate these issues we introduce NoGUTS in section 6 to facilitate more efficient

generation of new replicas within a basin. In addition, the selection of an appropriate step

size during the simulation is important to ensure that each new live point is generated

efficiently. However naively changing the step size can induce bias.46,47

In section 7 we describe a scheme to enable selection of an appropriate step size during

the course of a NOpt, which mostly nullifies the sampling bias that can occur when the

step size is adjusted during a MC simulation. A logistic model relating the acceptance

rate to the cut-off energy and step size is used to choose an efficient step size, with a delay

to reduce history dependence.

13



3 Nested optimisation

The NBS DG can be sampled by nested optimisation (NOpt), defined as NS with only a

single live point. Performing NS with a single live point means that new replicas are

always spawned by MC walks of length N
opt
MC starting from the location of the last live

point, which means that the NS will never jump across a lazy barrier. As the nested

optimisation run continues it will therefore descend the NBS DG, sampling all the edges

connected from the starting edge, to the minimum that it finishes in (see fig. 2).

A single NOpt run will not provide good statistics about the configuration volume of

the edges it samples, but as more nested optimisation runs are completed and merged

(see section 1.1) a more accurate picture of the configuration volume of the edges can be

built. Furthermore, at any given node, the relative volumes of each of the child edges of

the node can be estimated by analysing the statistics of the number of NOpt runs that fall

into each edge, which is discussed in detail in appendices A.1 and A.2.

Each nested optimisation run is completely independent, so these calculations are em-

barrassingly parallel.

3.1 Local sampling close to a minimum

The chance of a random nested optimisation run finishing in a specific minimum will be

extremely small for most of the minima, which means that the density of states will be

rather uncertain before the basin has merged with other basins, as estimated by the NS at

energies close to the minimum. To decrease this uncertainty the local basin of a minima

can be sampled by performing traditional NS or NOpts, except that all new replicas are

generated by random walks beginning at the minimum itself. This process may only

work up to a certain energy level, as the random walks to generate new live points may

cease to be ergodic. We will refer to this process as local sampling, to indicate that it

samples only the section of the disconnectivity tree local to the minimum.
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3.2 Stopping criterion

Many nested sampling algorithms use the statistics of the live points to determine a stop-

ping criterion for the simulation, commonly when the energy difference between the

highest and lowest energy replica decreases below some energy tolerance. In NBS, this

approach would not work, as there is only ever one live point. Instead the statistics of

the dead points can be considered. For example, the expected difference in energy, V opt
tol ,

between the current live point and the one sampled N
opt
stop iterations ago, will be approxi-

mately equal to the energy difference in a 2N
opt
stop live point standard NS simulation at the

same energy cut-off, which makes this comparison an effective termination criterion for

an NOpt.

4 Nested basin-sampling calculations

Suppose we have performed a set of nested optimisation runs for a PES, and we know the

path that every run took during the simulation. Using these results we can proceed with

a calculation similar to that described in section 1.1.2 to calculate the global properties of

the PES, as in eq. (4).

4.1 Notation

An edge volume, Φβδβδ+1
, can be defined with respect to the NBS DG by its parent node,

βδ, and child node, βδ+1; where δ is the depth of the node on the NBS DG, and β indexes

the siblings of the node. The branch volume associated with a node, βδ, can be defined as

Φβδ = Φ
βδ−1

βδ
+
∑

βδ+1
(Φβδ+1

), see figs. 2 and 3. The edge Φβδ−1

βδ
has Nβδ

NS total dead points

and the jth point of the aggregated runs has energy V βδ
j and nβδj live points present. Mβδ

βδ+1

runs fall from branch Φβδ into Φβδ+1
. Φβδ+1

(V ) is the configuration volume in the branch

Φβδ+1
with energy less than V , so Φβδ+1

(V βδ
0 ) ≡ Φβδ+1

. The configuration volume ratio of

the branch is tβδj = Φβδ(V
βδ
j−1)/Φβδ(V

βδ
j ).
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Figure 3: The notation scheme for a NBS disconnectivity graph.

4.2 Estimating basin configuration volumes

If the NBS DG is known and there is a set of NOpt runs, the configuration volume of the

edges can be estimated by two complementary methods.

1. The configuration volumes of each edge of the NBS DG can be calculated using NS,

with the additional slight complication that the relative configuration volumes of

edges connected to any given node are modelled by the Dirichlet distribution, the

multinomial generalisation of the beta distribution (see appendix C.2). We assume

that the process by which the NOpts fall into different edges can be modelled as a

multinomial process with the multinomial probabilities proportional to the volume

of the child edge at the energy at which the edges become disconnected during a

NOpt. This method is termed the top down approach.

2. Because the configuration volume has been separated into different regions it is also

possible to estimate the configuration volume near a minimum basin (leaf) using

the harmonic superposition approximation, eq. (16). The relative volumes of higher

energy levels can then also be estimated from the aggregated NOpt runs, calculating
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the configuration volumes bottom-up. At each node the volume of the higher edge

will equal the sum of the volumes of the child edges. This calculation enhances the

relative basin size estimates at low energy. This method is termed the bottom up

approach.

The mathematical details for computing these top-down and bottom-up estimates of the

configuration volume are described in section 4, given a known NBS DG and aggregated

NS results for each edge. The volume inside a branch can be calculated either in terms of

the parent node branch and edge volumes in a top down manner, analogous to a standard

NS simulation, or in terms of the child node branch volumes in a bottom up approach,

where the HSA is used to calculate the configuration volume at low energies.

The bottom up approach can be seen as been broadly equivalent to the strategy used

by BS9 and BSPT10 to connect the results of a higher temperature simulation to the low-

temperature accuracy of the HSA.

4.2.1 Top down approach

The configuration volume inside a branch can be calculated from the configuration vol-

ume ratios,

Φβδ+1
(V

βδ+1

j ) = Φβδ+1

j∏
k=1

t
βδ+1

k . (17)

The branch volume can be recursively calculated top down from its parent branch,

Φβδ+1
= pβδβδ+1

(
Φβδ − Φ

βδ−1

βδ

)
, (18)

where pβδβδ+1
is the branch probability of a NS run going from branch Φβδ to Φβδ+1

. The branch

probability will be Dirichlet distributed over the indexes, βδ+1,

pβδβδ+1
∼ Dir(Mβδ

βδ+1
). (19)
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The edge volume for a node can be calculated from eq. (17),

Φβδβδ+1
= Φβδ+1

− Φβδ+1
(V

βδ+1

N
βδ
NS

). (20)

The precise procedure by which top down estimates of these volumes can be calculated

is given in appendix A.1.

4.2.2 Bottom up approach

The volume of a branch, Φβδ , can be expressed in terms of the sum of its child branches

(which are themselves calculated bottom up from their children) and the configuration

volume ratios:

Φβδ(V
βδ
j ) =

∑
βδ+1

Φβδ+1

N
βδ+1
NS∏
k=j

1

t
βδ+1

k

. (21)

We can calculate bottom up estimates of this volume from eq. (7), as described in ap-

pendix A.2.

To perform this calculation the configuration volume at the bottom of the leaves needs

to be known. These volumes can be calculated using the HSA for the minimum config-

uration volume in eq. (16) for each of the leaves. The HSA will be most accurate for

energies close to the minimum, and we show below in section 5.2 how this range can be

determined.

4.2.3 Integration

The integral of f(V (x)) over Φ0 will be equal to the sum of the integrals over all the edges

of the disconnectivity graph,

IΦ0 [f ] =
∑

βδ,β
′
δ+1

I
Φ
βδ
β′
δ+1

[f ]. (22)
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As the derivation is somewhat involved we demonstrate how to compute the first and

second moments of IΦ0 [f ] for the top down approach in appendix A.1, following a similar

process to that described in section 1.1.2.

In section 4.3 we show how estimates of the basin volumes from both approaches can

be combined to create a more accurate overall estimate of the integral.

4.3 Interpolating between the top-down and bottom-up calculations

The second moments calculated for the top-down and bottom-up procedures in eqs. (47)

and (64) can be used to obtain a weighted sum of the two results that naturally incor-

porates the associated uncertainty with either calculation to produce the best overall

estimate of the basin volumes. As the configuration volumes for both procedures are

calculated from the product of a set of independently distributed variables, the overall

configuration volume was calculated by a weighted sum of logarithms,

EI

[
ln
(
Φβδβδ+1

(V
βδ+1

j )
)]
≈

 ln
(
ED

[
Φβδβδ+1

(V
βδ+1

j )
])

wD(V
βδ+1

j )
+

ln
(
EU

[
Φβδβδ+1

(V
βδ+1

j )
])

wU(V
βδ+1

j )


(

1

wD(V
βδ+1

j )
+

1

wU(V
βδ+1

j )

) , (23)

where ED/U

[
Φβδβδ+1

(V
βδ+1

j )
]

is the expected configuration volume [calculated top down (D)

or bottom up (U)] of all the basins connected to βδ+1 up to an energy of V βδ+1

j , and EI is

the expectation value of the interpolation.

The chosen weighting was the logarithmic ratio of the second moment to the square

of the first moment,

wU/D(V
βδ+1

j ) = ln

EU/D

[
Φβδβδ+1

(V
βδ+1

j )2
]

EU/D

[
Φβδβδ+1

(V
βδ+1

j )
]2
 , (24)

which is an effective approximation to the uncertainty in the logarithmic volume.
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First, the relative scale factor between the bottom-up and top down calculations needs

to be determined. In theory this scale factor could be estimated by calculating the exact

configuration volume corresponding to vibrational degrees of freedom for each harmonic

basin. However, in this implementation of NBS it was found that instead, the relative

factor could be determined by minimising the logarithmic difference between the top-

down and bottom-up basin volumes for each of the leaves, at the harmonic energy, as

calculated in section 5.2, scaled by the sum of the weights, as calculated in eq. (24).

This scheme unfortunately does not smoothly connect the configuration volumes above

and below a node, so to ensure a smooth interpolation, the value of EU [Φβδ ] can be ad-

justed slightly to ensure that

EI

[
Φ
βδ−1

βδ
(V βδ

N
βδ
NS

)

]
=
∑
βδ+1

EI

[
Φβδβδ+1

(V βδ

N
βδ
NS

)

]
. (25)

With the above caveats the trapezium rule can then be used to evaluate eq. (4) using

eq. (23) on each edge and then summing the results.

5 Determining the NBS disconnectivity graph

To calculate the configuration volume, as described in section 4, the NBS DG first needs

to be known. While it may be possible to adapt the procedure used by Pártay et al. 48

to generate landscape charts, this approach to detecting disconnecting regions would re-

quire the configurations generated by the NS to be saved, which significantly increases

the storage demands of the method, and requires an appropriate similarity metric specific

to the problem at hand.

An alternative approach was developed for this work, where different basins are

merged together at the energy level above which the configuration volume estimated

by NS for each basin looks identical, which avoids storing the configurations of the dead
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points and the specification of a problem specific metric.

This approach does not guarantee that the DG generated will accurately represent the

true NBS DG, as it only merges basins when the configuration volumes appear identical.

However, the overall density of states produced should not be affected by the merge,

ensuring that the method produces self-consistent results. The mergers primarily serve

to decrease the uncertainty of the configuration volume estimates.

5.1 Comparing basin volumes

The configuration volume of two different basins can be compared by Bayesian model

comparison, where the evidence [see eq. (5)] of two models is compared. The hypothesis

that the basin volumes are the same can be compared against the probability that they

are different. Suppose there are two different basins, βδ, β′δ, connected to the same parent

basin, βδ−1. The basins should merge at the energy above which the density of states

appears identical for each basin. To find this energy threshold the configuration volume

ratio at two different energy levels, Vj , Vj+1, was modelled as a beta-distributed variable

[see eq. (68)],

Φ
βδ−1

βδ
(Vj)

Φ
βδ−1

βδ
(Vj+1)

= t
βδ−1

βδ
(Vj) ∼ B

(
a
βδ−1

βδ
(Vj), b

βδ−1

βδ
(Vj)

)
, (26)

whose parameters can be estimated from the first and second moments of the configura-

tion volume using eqs. (72) and (73).

We can interpret aβδ−1

βδ
(Vj) and b

βδ−1

βδ
(Vj) as binomial pseudocounts of uniformly sam-

pled points in Φβδ−1

βδ
with an energy cut-off of Vj , where aβδ−1

βδ
(Vj) are the number of points

observed to have energy greater than Vj+1 and bβδ−1

βδ
(Vj) less than. It is possible to generate

true count data from the individual results from the NOpts runs in this region, but the

statistical properties of these count results would not be as good.
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The maximum a posteriori (map) estimate of the merge energy,

V
βδ=β

′
δ

merge = arg max
Vj

 ∏
Vj′<=Vj

Pr
(
t
βδ−1

βδ
(Vj′) = t

βδ−1

β′δ
(Vj′)

) ∏
Vj′′>Vj

Pr
(
t
βδ−1

βδ
(Vj′′) 6= t

βδ−1

β′δ
(Vj′)

) ,
(27)

of two branches, Φβδ and Φβ′δ can be obtained by modelling the fitted beta parameters of

t
βδ−1

βδ
(Vj) and tβδ−1

β′δ
(Vj) from eq. (26) as binomial pseudocounts. The evidence of the models

is calculated as follows,

Pr
(
t
βδ−1

βδ
= t

βδ−1

β′δ

)
=∫ 1

0

Bin
(
a
βδ−1

βδ
|aβδ−1

βδ
+ b

βδ−1

βδ
, t
βδ−1

βδ

)
Bin

(
a
βδ−1

βδ′
|aβδ−1

βδ′
+ b

βδ−1

βδ′
, t
βδ−1

βδ

)
B(t

βδ−1

βδ
|aprior, bprior) dtβδ−1

βδ

(28)

Pr
(
t
βδ−1

βδ
6= t

βδ−1

β′δ

)
=

∫ 1

0

Bin
(
a
βδ−1

βδ
|aβδ−1

βδ
+ b

βδ−1

βδ
, t
βδ−1

βδ

)
B(t

βδ−1

βδ
|aprior, bprior) dtβδ−1

βδ

×
∫ 1

0

Bin
(
a
βδ−1

βδ′
|aβδ−1

βδ′
+ b

βδ−1

βδ′
, t
βδ−1

β′δ

)
B(t

βδ−1

β′δ
|aprior, bprior) dtβδ−1

β′δ
, (29)

where for brevity we have dropped the argument of Vj from the pseudocounts, Bin(m|n, p)

is the binomial distribution of observing m successes from n trials with probability of

success of p, and aprior and bprior are the parameters of the prior beta distribution over the

volume ratio. The maximum entropy uninformative prior is aprior = bprior = 1/2. A full

analytic derivation of these results is given by eqs. (81) and (82) in appendix D.

This approach allows us to self-consistently merge different edges on the NBS DG, as

the edges only merge when their densities of states are sufficiently similar. Using eq. (84)

it is also possible to consider merging multiple edges simultaneously.

The above procedures for merging the different basins require an ordered list of energy

levels to compare all the separate basins. This list was generated by choosing energy
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levels evenly spaced in the logarithm of the configuration volume of the aggregated runs

for all the separate basins, so the configuration volume ratio would be approximately

constant as the energy levels decreased. In this work a volume ratio of 0.5 was chosen, so

Vj corresponds to the expected energy of a new live point generated with energy cut-off

Vj+1.

5.2 Determining the harmonic energy range

To start the bottom-up procedure we must calculate the energy range over which a min-

imum, µ, is treated as harmonic. Here a similar procedure was performed as described

above. A set of energy levels is defined, Vj < Vj+1, evenly spaced by the logarithm of the

harmonic configuration volume, tharm = (Vj − V Q
µ )κ/2

/
(Vj+1 − V Q

µ )κ/2 . The probability that

the NBS volume ratio and harmonic volume ratio are the same can be calculated,

Pr
(
t
βδ−1

βδ
(Vj) = tharm

)
= Bin(a(Vj)|a(Vj) + b(Vj), tharm), (30)

and the probability they are different,

Pr
(
t
βδ−1

βδ
(Vj) 6= tharm

)
=

∫ 1

0

Bin
(
a
βδ−1

βδ
|aβδ−1

βδ
+ b

βδ−1

βδ
, t
βδ−1

βδ

)
B(t

βδ−1

βδ
|aprior, bprior) dtβδ−1

βδ
. (31)

The full analytic derivation of these results is given in eqs. (81) and (82). The map estimate

of the harmonic energy level,

V harm
µ = arg max

Vj

 ∏
Vj′≤Vj

Pr
(
t
βδ−1

βδ
(Vj′) = tharm

) ∏
Vj′′>Vj

Pr
(
t
βδ−1

βδ
(Vj′′) 6= tharm

) , (32)

can then be found.
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5.3 Comparing local sampling to aggregated NOpts

Before aggregating the results from local sampling as described in section 3.1 with the

results from standard aggregated NOpts, it is important to check the energy range over

which both methods produce similar estimates of the density of states. The map estimate

can be calculated as in eq. (27), except that inequality signs are swapped, as we expect the

density of states to diverge as the energy increases.

Gradient

Accepted slice
Rejected slice
Invalid points

Figure 4: A graphic showing how NoGUTS generates slices. The large green point shows
the starting point. The red slice represents a proposed slice to double the length of the
current slice. However, because the red slice has a u-turn present, the proposal to extend
the slice is rejected and the algorithm quits.

6 The No Galilean U-Turn Sampler

Here we describe the No Galilean U-Turn Sampler (NoGUTS), which is a modification of

the No U-Turn Sampler (NUTS)1,13 to work with Galilean sampling (see section 1.1).2,23,24

NoGUTS can be viewed as a form of multivariate reflective slice sampling49 with an au-

tomatic stopping criterion, and as such we will refer to the trajectories generated by the

algorithm as slices.

Several modifications have been made to the NUTS algorithm to make it work for the

problem at hand.

• The leapfrog integration step has been replaced with the Galilean sampling equiva-

lent step, which is described in algorithm 4.

• Each point, R′, on a slice has a forward p′+ and a backwards velocity p′− associ-

ated with it, to account for reflections in direction at invalid points. This modifica-
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tion primarily affects the Galilean step, as described in algorithm 4, but also intro-

duces some additional bookkeeping in the BuildTree and NoGUTS algorithms, as

described in algorithms 2 and 3, compared to NUTS.

• The ability to include constraints in the simulation has been incorporated, described

in algorithm 5. Constraints can be most straightforwardly incorporated by rejecting

any slice that violates the constraints with a simple test function TestConstraint(R′),

which returns true if R′ satisfies the constraints, and false otherwise. However, by

introducing a ‘constraint potential’, Vconstraint(R), which is 0 for all configurations

that satisfy the constraint and positive for invalid configurations, the NoGUTS sim-

ulation can reflect off the constraint boundaries in addition to the energy cut-off

boundaries. If the configuration encountered violates both the potential cut-off and

the constraint, the algorithm as described reflects off the sum of the normalised

gradient and constraint gradient at that point. The NoGUTS simulation could also

reflect off just the gradient or the constraint gradient and maintain detailed balance.

It is straightforward to construct continuous constraint potentials for hard sphere

constraints, by summing the excess radius of all the points that exceed the radius of

the hard sphere.

• In NUTS the points to include in the trajectory are determined by a 1-D slice sam-

pling process, however in the case of sampling from a hard constraint, all points

that are valid can be straightforwardly included in the slice generated.

• The stopping criterion also needs to be slightly modified to account for the multival-

ued velocities, so for the positive direction the positive velocity must be used and

vice versa for the negative direction.

• Here we consider atomic clusters with zero angular and linear overall momentum,

so before the stopping criterion was calculated any net linear and angular momen-

tum was removed.
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6.1 Overview

Galilean sampling can be a very efficient method for exploring a hard constraint space as

it allows long-range directed moves away from the starting point. The choice of simula-

tion length for Galilean sampling is extremely important, as the reflective nature of the

movement can cause the replica to start moving back to its starting point, significantly

reducing the efficiency.

NoGUTS (and NUTS) enable the simulation to detect when this process occurs and

stop, whilst maintaining detailed balance. The algorithm works by recursively doubling a

slice of points, or equivalently building a binary tree, until it reaches a stopping crite-

rion, as shown in fig. 4. For each iteration the algorithm selects forwards or backwards

directions randomly and then attempts to build a slice of equal length in that direction.

If at any point of building the new slice the algorithm detects that the stopping criterion

would have been satisfied then NoGUTS stops and rejects the new slice. It rejects this

new slice because the probability of moving from it to the current slice would be zero,

as a NoGUTS simulation starting from the new slice would terminate before adding the

current slice. If the new slice is successfully added to the current slice then the stopping

criterion can be tested again on the new combined slice, and then the process can be re-

peated. This procedure ensures that each valid point on the slice has an equal probability

of generating an identical slice, preserving detailed balance. To ensure that the algorithm

terminates in a reasonable time a maximum recursion depth, jdepth, can be specified.

The algorithm does not need to store all the valid points as the slice is generated.

Instead it maintains for every sub-slice its associated selected point, which has been ran-

domly chosen uniformly out of the valid points in that sub-slice. When joining two sub-

slices the algorithm will randomly pick a selected point from one of the sub-slices with

probability equal to the number of valid points in that sub-slice, ensuring that the selected

point of the new slice has been selected uniformly from the union of valid points of for

the pair.1
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This process of implicitly building the slice is performed by the recursive BuildTree

function described in algorithm 3, which is called by the NoGUTS algorithm, described

in algorithm 2, to progressively double a slice until the stopping criterion is reached.

7 Adapting the step size

During the course of a NOpt run the energy cut-off and valid region of space will vary

drastically, so the optimal step size to maintain an efficient acceptance rate will tend to

decrease by several orders of magnitude during the course of the run. To cope with this

variation we can define a simple logistic model for predicting the acceptance probability,

pacc, for a given step size, δ, at a given energy cut-off, Vcut,

pacc(δ, Vcut) =
1

1 + exp (maccVcut + cacc)δ
. (33)

Rearranging we find

maccVcut + cacc = logit pacc + ln δ, (34)

where logitx = lnx − ln(1 − x). This result suggests that the appropriate step size for a

NoGUTS simulation can be chosen by performing an appropriate linear fit to the previous

simulation results. Suppose during a simulation with cut-off energy Vt, and step size δt,

that nacc
t moves finish below Vt and nrej

t finish above Vt. Then we can calculate the expected

value,

E [logit pacc(δt, Vt)] = ψ0(n
acc
t )− ψ0(n

rej
t ), (35)

by modelling pacc ∼ B(naccept, nreject), where ψ0(x) = d ln(Γ(x))/ dx is the digamma func-

tion. This model enables us to predict an appropriate step size for a given energy cut-off.
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7.1 Avoiding non-Markovian dynamics

If the step size of a MCMC simulation is adjusted without due care the simulation may

cease to be Markovian.46,47 However, during an NOpt the step size must be adjusted quite

drastically, as the energy cut-off decreases to maintain an efficient acceptance rate.

One method to significantly reduce any sampling artifacts generated by adapting the

step size is to introduce a delay, Nopt
delay, for incorporating the accept/reject statistics to

the above model, so that the replica in NBS has time to completely move away from the

regions used to determine the optimal step size.

Additionally, to avoid biasing this model with high energy points, a rolling window of

lengthNopt
window can be applied, so that only the lastNopt

window dead points generated (and the

associated lag introduced by the delay) are used to choose the step size for the NoGUTS

simulation.

8 Results

The Lennard-Jones (LJ) potential is a simple representation for the energy of a pair of

atoms:50

VLJ(r) = 4 εLJ

[(σLJ

r

)12
−
(σLJ

r

)6]
, (36)

where εLJ and 21/6σLJ are respectively the pair equilibrium depth of the potential well and

separation. When applied to homoatomic systems both εLJ and σLJ can be set equal to

unity to make the potential dimensionless without loss of generality. The heat capacity

has been investigated for LJ clusters at a range of sizes,3,8,10,26,51–55 which makes them

useful model systems for benchmarking.

Clusters of 31 LJ atoms (LJ31) have been studied by a variety of different approaches,

as this is the smallest LJ cluster to exhibit a solid-solid heat capacity peak at low tem-

peratures and a solid-liquid peak at higher temperature. To accurately reproduce both
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thermodynamic features requires effective sampling, both at the lowest energies to accu-

rately reproduce the solid-solid peak, and at higher energies to reproduce the solid-liquid

peak.

To avoid evaporation of the cluster the atoms were constrained to stay within a sphere

of radius 2.5 σLJ, as in previous studies.10,26 20,000 independent NOpts were performed. In

addition, for each of the four lowest energy minima, local NS, as described in section 3.1,

was performed with 1000 live points. Identical minima were detected by performing 100

iterations of the Go-PERMDIST algorithm.56

Each new live point was generated by 20 iterations of NoGUTS with a max tree depth

of jmax = 8. Overall angular and linear momentum were removed from the velocities

before evaluating the NoGUTS stopping criterion. The target acceptance ratio was chosen

to be pacc = 0.5, the optimal step size was determined over a window of Nopt
window = 100

points, with a delay of Nopt
delay = 20 iterations to avoid non-Markovian behaviour. The

simulation was stopped when the energy difference between the live point and the dead

point from N
opt
stop = 10 iterations previously was less than V opt

tol = 0.1 εLJ.

For comparison, a calculation of the heat capacity using standard NS with 20,000 live

points was also performed. The live points were generated using NoGUTS with the same

parameters as for the NBS calculation. This NS simulation was performed using the soft-

ware developed by Martiniani et al. 26 . The simulation was stopped when the energy

difference of the live points was less than 0.1ε.

The NBS simulation overall generated 11× 106 live points using 3× 1010 energy gradi-

ent calculations. The NS simulation generated 10× 106 live points using 3.5× 1010 energy

gradient calculations.

The runs generated by the local NBS were found to be indistinguishable from the

runs generated by standard NBS at all energies when performing the maximum a posteriori

calculation of the merge energy.
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Figure 5: In (a) the cumulative probability of a nested optimisation ending in a given
range of the most likely minima is shown for LJ31. The inset shows a magnification of the
cumulative probabilities of the 20 most likely minima. In (b) the probability of landing in
a specific minimum is plotted against the energy of that minimum in NS runs for LJ31.

8.1 Distribution of minima

It is interesting to analyse the distribution of minima generated by 20,000 NOpts, as

shown in figs. 5a and 5b. Only 9 of the runs landed in the global minimum, whereas

30.6% of the NOpt runs landed in just a single minimum (Vµ = −133.1 εLJ); 79.4% of the

runs landed in just 20 of the minima; and during 20,000 minimisations the nested optimi-

sations, only 873 distinct minima were found, whilst the actual number of distinct minima

for LJ31 has been estimated as approximately 1015, excluding permutation-inversion iso-

mers.10

This structure is remarkably different from performing standard minimisations on

LJ31, and suggests there might be ways of associating most of the LJ31 PES of interest with

a very small number of minima. It is not immediately obvious what drives this differ-

ence, but it seems that the leaves associated with most minima do not make a meaningful

contribution to the overall configuration volume, as opposed to the branches associated

with the minima.
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Figure 6: The NBS disconnectivity graph for LJ31 with 20,000 NOpts.

8.2 Disconnectivity graph

The NBS results were used to construct a NBS DG, which is shown in fig. 6. The maxi-

mum entropy prior, αprior = 0.5, was chosen when determining the merge energies. Only

minima that more than 100 NOpts finished in, or had local NOpts, were included in the

calculation. The NOpts of the other minima were aggregated together and treated as a

single effective minimum.

8.3 Heat capacity

Using the DG illustrated in section 8.2 the heat capacity of LJ31 was calculated using NBS

and is shown in fig. 7. For comparison, results generated by the equivalent calculation

for the standard NS simulation with 20,000 live points and a previous study10 using BSPT

and PT are also illustrated.

The NBS and NS simulations exhibit very similar high temperature solid-liquid heat

capacity peaks, though both are slightly lower than the peaks calculated by PT and BSPT.

The NBS results closely match the low temperature solid-solid peak calculated by PT and

BSPT. The standard NS simulation failed to find the lowest energy minimum and so fails
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to reproduce the lowest temperature peak. At higher temperatures the NBS and PT heat

capacity curves match extremely well.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
kBT/εLJ

80

100

120

140

160

180

C
V

(T
)/

k B

PT
BSPT
NS
NBS

0.02 0.03 0.04

90
100
110
120

Figure 7: The heat capacity of LJ31, as calculated by NBS with 20,000 NOpts and 1,000
local NOpts on each of the four lowest energy minima. For comparison, results from a
standard NS simulation with 20,000 live points and a previous study using BSPT and
PT10 are shown. Each new live point for the NS and NBS simulation was generated using
NoGUTS with jmax = 8. Inset is a magnification of the low temperature solid-solid peak.

9 Conclusions

Many schemes that have been developed to calculate equilibrium thermodynamic prop-

erties require parallelisation to function efficiently.3,8,10,26,55 In this work we present a new

method, nested basin-sampling (NBS), which proceeds by performing a set of embarrass-

ingly parallel nested optimisations (NOpts), which can be combined after the simulations

end.

By splitting the configuration volume into separate regions, the calculation can pro-

vide a more detailed understanding of the structure of the energy landscape, and how

the global thermodynamic properties are encoded. The harmonic approximation can be

employed to enhance the accuracy at low temperatures, by separating the configuration

volume into disconnected regions.
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NBS was used to calculate the heat capacity of LJ31, a benchmark system exhibiting

broken ergodicity.10 The heat capacity calculated using NBS agrees well with other meth-

ods, and compares favourably with NS. It was able to successfully resolve the low temper-

ature solid-solid heat capacity peak, which standard NS missed, when performed with a

comparable number of live points and energy gradient calculations.

The close agreement with the previous results suggests that the step size adjustment

scheme, combined with NoGUTS, is sufficient to ensure that the results generated by the

NOpts generate sufficiently unbiased samples for this test case.

There are several possibilities for future work.

• Due to the embarrassingly parallel nature of the NBS calculation, this approach can

tackle much larger systems, where equilibrium is usually difficult to achieve.

• The method in its current form is still fairly inefficient compared to BSPT.10 How-

ever, there are many avenues that could be explored to increase its efficiency, partic-

ularly when combined with its local sampling scheme. It is likely that good results

can still be achieved with a smaller number of NOpts, and some preliminary work

suggests that reasonable heat capacity curves can be generated using just local sam-

pling.

• It should be possible to enhance the results generated by local sampling using con-

figurations generated by previous local sampling NOpts as starting points, instead

of the minimum.

• It should also be possible to assign contributions to the heat capacity from specific

parts of the NBS disconnectivity graph by extending the scheme that was recently

applied to results obtained with BSPT.57

• We could relate the NBS DG to the DG obtained by generating a transition state

network.
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• Since NBS partitions the PES into a set of separate regions it is possible to quantify

which regions in configuration space have been poorly sampled, further prioritise

sampling in those regions, and also provide better measures of convergence for the

simulation.

• There are a variety of parameters, pacc, jdepth, Nopt
delay, Nopt

MC, Nopt
stop, Nopt

window, and V
opt

tol ,

that need to be chosen before beginning a NBS calculation. It is important to quan-

tify how the choice of these hyperparameters affects the overall results and effi-

ciency of the NBS simulation.

• The properties of the NoGUTS sampler could be explored in more detail, in partic-

ular how the target acceptance rate affects the overall efficiency of the method.
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A Nested sampling calculations

Here we describe the computational details for deriving estimators for integrals over the

NBS disconnectivity graph. For clarity we have summarised the notation used in table 1.
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Table 1: Summary of notation for NBS.

Variable Description
Φβδβδ+1

edge volume
Φβδ+1

branch volume
β node label
δ node depth
Nβδ

NS total number of dead points in
edge Φβδ−1

βδ

V βδ
j The energy of the jth point edge

Φ
βδ−1

βδ

nβδj The number of live points present
for the jth point of edge Φβδ−1

βδ

Mβδ
βδ+1

Number of runs falling from Φβδ
into Φβδ+1

pβδβδ+1
The branch probability of falling
from Φβδ into Φβδ+1

, distributed by
Dir(Mβδ

βδ+1
)

tβδj The configuration volume ratio,
Φβδ(V

βδ
j−1)/Φβδ(V

βδ
j )

A.1 Top-down calculations

As from section 4.2.1 we can express the basin volume,

Φβδ+1
= pβδβδ+1

(
Φβδ − Φ

βδ−1

βδ

)
, (37)

in terms of its parent node basin and edge volumes, and its branch probability. The vol-

ume within the basin can be calculated from its configuration volume ratios,

Φβδ+1
(V

βδ+1

j ) = Φβδ+1

j∏
k=1

t
βδ+1

k . (38)

The moments of the branch probabilities are

EB

[
pβδβδ+1

]
=
Mβδ

βδ+1

Mβδ
, (39)
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ED

[
pβδβδ+1

2
]

=
Mβδ

βδ+1
(Mβδ

βδ+1
+ 1)

Mβδ(Mβδ + 1)
, (40)

ED

[
pβδβδ+1

pβδβ′δ+1

]
=

Mβδ
βδ+1

Mβδ
β′δ+1

Mβδ(Mβδ + 1)
, (41)

where ED indicates that this is the expectation of the top down volume. The edge ratio

X
βδ−1

βδ
=
(
Φβδ − Φ

βδ−1

βδ

)
/Φβδ can be calculated using NS, as

X
βδ−1

βδ
=

N
βδ
NS∏

j=1

tβδj , (42)

which has moments

ED

[
X
βδ−1

βδ

]
=

N
βδ
NS∏

j=1

nβδj

nβδj + 1
, (43)

ED

[
X
βδ−1

βδ

2
]

=

N
βδ
NS∏

j=1

nβδj

nβδj + 2
. (44)

We can define the basin volume in terms of the edge ratio,

Φβδ = p
βδ−1

βδ
X
βδ−1

βδ
Φβδ−1

, (45)

so we can define top down estimates of the top down basin volume,

ED

[
Φβδ(V

βδ
j )
]

= ED

[
p
βδ−1

βδ

]
ED

[
X
βδ−1

βδ

]
ED
[
Φβδ−1

] j∏
k=1

nβδj

nβδj + 1
, (46)

ED

[
Φβδ(V

βδ
j )2

]
= ED

[
p
βδ−1

βδ

2
]
ED

[
X
βδ−1

βδ

2
]
ED

[
Φ2
βδ−1

] j∏
k=1

nβδj

nβδj + 2
. (47)
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We can define the edge volume in terms of the edge ratios and branch probabilities,

Φ
βδ′
βδ′+1

= Φ0 p
βδ′
βδ′+1

(1−Xβ′δ
βδ′+1

)
δ′−1∏
δ=0

pβδβδ+1
Xβδ
βδ+1

. (48)

The different edge ratios will be uncorrelated, so calculating the moments of Φβδ′βδ′+1
can be

done by substituting the appropriate moments into eq. (44).

As Xβδ
βδ+1

and I
Φ
βδ
βδ+1

[f ] both depend on t
βδ+1

j , Xβδ
βδ+1

will be correlated with I
Φ
βδ
βδ+1

[f ],

so we need to calculate the moments of the product Xβδ
βδ+1
I
Φ
βδ
βδ+1

[f ] to make an unbiased

estimate of ḡ,

ED

[
Xβδ
βδ+1
I
Φ
βδ
βδ+1

[f ]

]
= ED

[
Φβδβδ+1

]N
βδ+1
NS∏
l=1

n
βδ+1

l

n
βδ+1

l + 1

N
βδ+1
NS∑
j

(
g
βδ+1

j

n
βδ+1

j

j∏
k=1

n
βδ+1

k + 1

n
βδ+1

k + 2

)
, (49)

ED

[
Xβδ
βδ+1

2I
Φ
βδ
βδ+1

[f ]

]
= ED

[
Φβδβδ+1

]N
βδ+1
NS∏
l=1

n
βδ+1

l

n
βδ+1

l + 2

N
βδ+1
NS∑
j

(
g
βδ+1

j

n
βδ+1

j

j∏
k=1

n
βδ+1

k + 2

n
βδ+1

k + 3

)
, (50)

ED

[
Xβδ
βδ+1
I
Φ
βδ
βδ+1

[f 2]

]
= ED

[
Φβδβδ+1

2
]N

βδ+1
NS∏
l=1

n
βδ+1

l

n
βδ+1

l + 1


×

N
βδ+1
NS∑
l=1

[
2g

βδ+1

l

n
βδ+1

l + 1

(
j∏

k=1

n
βδ+1

k + 1

n
βδ+1

k + 2

)
l∑

j=1

(
g
βδ+1

j

n
βδ+1

j + 2

j∏
k=1

n
βδ+1

k + 2

n
βδ+1

k + 3

)]
,

(51)

ED

[
Xβδ
βδ+1

2I
Φ
βδ
βδ+1

[f 2]

]
= ED

[
Φβδβδ+1

2
]N

βδ+1
NS∏
l=1

n
βδ+1

l

n
βδ+1

l + 2


×

N
βδ+1
NS∑
l=1

[
2g

βδ+1

l

n
βδ+1

l + 2

j∏
k=1

n
βδ+1

k + 2

n
βδ+1

k + 3

l∑
j=1

(
g
βδ+1

j

n
βδ+1

j + 3

j∏
k=1

n
βδ+1

k + 3

n
βδ+1

k + 4

)]
.

(52)

To simplify this calculation, we define the branch integral,

IΦβδ [f ] =

argmaxδ βδ∑
δ′=δ

I
Φ
βδ−1
βδ

[f ], (53)
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over the configuration space, so we can define the branch integral in terms of the edge

integral and daughter branch integral,

IΦβδ [f ] = I
Φ
βδ−1
βδ

[f ] +
∑
β′

IΦβ′
δ+1

[f ]. (54)

Hence the first moment can be calculated as

ED

[
IΦβδ [f ]

]
= ED

[
I
Φ
βδ−1

β′
δ

[f ]

]
+
∑
β′

ED

[
IΦβ′

δ+1

[f ]
]
, (55)

and the second moment will be

ED

[
IΦβδ [f ]2

]
= ED

[
I
Φ
βδ−1
βδ

[f ]2
]

+
∑
β′

ED

[
I
Φ
βδ−1

β′
δ

[f ]IΦβ′
δ+1

[f ]

]

+
∑
β′,β′′

ED

[
I
Φ
βδ
β′
δ+1

[f ]I
Φ
βδ
β′′
δ+1

[f ]

]
, (56)

and the moments can be calculated as

ED

[
I
Φ
βδ−1
βδ

[f 2]

]
= ED

[
p
βδ−1

βδ

]
×
(
ED

[
I
Φ
βδ−1
βδ+1

[f 2]

]
− 2ED

[
X
βδ−1

βδ
I
Φ
βδ−1
βδ

[f 2]

]
+ ED

[(
X
βδ−1

βδ
I
Φ
βδ−1
βδ

[f 2]

)])
, (57)

ED

[
I
Φ
βδ−1
βδ

[f ]IΦβ′
δ+1

[f ]

]
=

ED
[
Φβδ−1

2
]

ED [Φβδ ]ED

[
Φβδ−1βδ

]
×
(
ED

[
X
βδ−1

βδ
I
Φ
βδ−1
βδ

[f ]

]
− ED

[
X
βδ−1

βδ

2I
Φ
βδ−1
βδ

[f ]

])
ED

[
IΦβ′

δ+1

[f ]
]
, (58)

ED

[
IΦβ′

δ+1

[f ]IΦβ′′
δ+1

[f ]
]
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=
ED
[
Φβδ

2
]

ED [Φβδ ]
2

ED

[
pβδβ′δ+1

pβδβ′′δ+1

]
ED

[
pβδβ′δ+1

]
ED

[
pβδβ′′δ+1

]ED

[
IΦβ′

δ+1

[f ]
]
ED

[
IΦβ′′

δ+1

[f ]
]
, (59)

where the branch volume moments are

ED [Φβδ ] = ED [Φ0]

(
δ∏

δ′=0

ED

[
p
βδ′−1

βδ′

]
ED

[
X
βδ′−1

βδ′

])
, (60)

ED
[
Φ2
βδ

]
= ED

[
Φ2
0

]( δ∏
δ′=0

ED

[
p
βδ′−1

βδ′

2]
ED

[
X
βδ′−1

βδ′

2])
. (61)

A.2 Bottom-up calculations

From section 4.2.2 the basin volume can be defined, bottom up as,

Φβδ(V
βδ
j ) =

∑
βδ+1

Φβδ+1

N
βδ+1
NS∏
k=j

1

t
βδ+1

k

. (62)

The moments for the basin volumes can be calculated for the bottom up calculation,

EU

[
Φβδ+1

(V
βδ+1

j )
]

=
∑
βδ

(EU [Φβδ ])

N
βδ+1
NS∏
k=j

n
βδ+1

k

n
βδ+1

k − 1

 , (63)

EU

[
Φβδ+1

(V
βδ+1

j )2
]

= EU

(∑
βδ

Φβδ

)2

N

βδ+1
NS∏
k=j

n
βδ+1

k

n
βδ+1

k − 2

 , (64)

as all the child branch volumes of Φβδ+1
are independent in the bottom up calculation,

EU

[(∑
βδ
Φβδ

)2]
is straightforward to calculate.

B NoGUTS

Here we explicitly describe the algorithm and its associated sub-algorithms for sampling

new points using the NoGUTS algorithm. Here the function unif(a, b) uniformly gener-
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ates a random real number between a and b.

Algorithm 2 The NoGUTS algorithm

Function: NoGUTS
Input: R, δ, V , Vcut, jmax

Output: R, V ′, naccept, nreject . The new live point generated by NoGUTS
jdepth = 0
naccept = 0, nreject = 0
svalid = True
R+ = R+ = R
p++ = p−+ = p+− = p−− ∼ N (0, I) . Initialise random velocity
while svalid AND jdepth < jmax do

if unif(0, 1) < 0.5 then . Make proposal to double slice
, , ,R−,p−+,p

−
−,R

′,p′+,p
′
−, V

′, n′accept, n
′
reject, s

′
valid

= BuildTree(R−,p−+,p
−
−, Vcut,−1, δ, jdepth) . See algorithm 3

else
R+,p++,p

+
−, , , ,R

′,p′+,p
′
−, V

′, n′accept, n
′
reject, s

′
valid

= BuildTree(R+,p++,p
+
−, Vcut, 1, δ, jdepth)

end if
if s′valid AND unif(0, 1) < n′accept/naccept then . take point selected by new slice
RNoGUTS = R′

VNoGUTS = V ′

end if
naccept = naccept + n′accept, nreject = nreject + n′reject

svalid = s′valid AND StopCriterion(R+,p++,p
+
−,R

−,p−+,p
−
−)

. Test whether proposal is valid or whether the new slice has performed a u-turn
j = j + 1

end while
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Algorithm 3 BuildTree

Function: BuildTree
Input: R,p+,p−, Vcut, vdir, δ, jdepth, V
Optional: Vconstraint, TestConstraints
Output: R+,p++,p

+
−,R

−,p−+,p
−
−,R

′,p+,p
′
−, V

′, naccept, nreject, svalid

if jdepth = 0 then
if using constraint potential then . See algorithm 5
R′,p′+,p

′
−, V

′, n′ = ConsGalileanStep(R,p+,p−, Vcut, vdir, δ, V, Vconstraint)
else . See algorithm 4
R′,p′+,p

′
−, V

′, n′ = GalileanStep(R,p+,p−, Vcut, vdir, δ, V )
end if
R+,p++,p

+
− = R′,p′+,p

′
−

R−,p−+,p
−
− = R′,p′+,p

′
−

svalid = TestConstraints(R′) . Stop if constraint broken
else . Recursively build binary tree
R+,p++,p

+
−,R

−,p−+,p
−
−,R

′,p′+,p
′
−, V

′, n′accept, n
′
reject, s

′
valid

= BuildTree(R,p+,p−, Vcut, vdir, δ, jdepth − 1)
if s′valid then

if vdir = −1 then
, , ,R−,p−+,p

−
−,R

′′,p′′+,p
′′
−, V

′′, n′′accept, n
′′
reject, s

′′
valid

= BuildTree(R−,p−+,p
−
−, Vcut, vdir, δ, jdepth − 1)

else
R+,p++,p

+
−, , , ,R

′′,p′′+,p
′′
−, V

′′, n′′accept, n
′′
reject, s

′′
valid

= BuildTree(R+,p++,p
+
−, Vcut, vdir, δ, jdepth − 1)

end if
naccept = n′accept + n′′accept

svalid = s′′valid AND StopCriterion(R+,p++,R
−,p−−)

if unif(0, 1) <
n′′accept

naccept
then . Implicitly join slices together

R′, V ′,p′+,p
′
− = R′′, V ′′,p′′+,p

′′
−

end if
end if

end if
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Algorithm 4 Galilean step

Function: GalileanStep
Input: R,p+,p−, Vcut, vdir, δ, V

. Start point, forwards
velocity, backwards velocity, energy cut-
off, direction, step size, potential
Output: R′,p′+,p′−, V ′, n′

. New point, forwards velocity,
backwards velocity, energy, and validity
if vdir = −1 then

. Selecting appropriate velocity
vector
p = −p−

else
p = p+

end if
R′ = R+ δp
V ′ = V (R′)
G′ = ∇RV (R′)
renergy = V ′ > Vcut

if renergy then
. New point not valid

n′ = 0
. Reflect velocity

p′ = p− 2
G′ · p
G′ ·G′G

′

else
. New point is valid

n′ = 1
p′ = p

end if
if vdir = −1 then

. Set new velocity vectors
p′+ = p−
p′− = −p′

else
p′+ = p′

p′− = p+
end if

Algorithm 5 Constrained Galilean step

Function: ConsGalileanStep
Input: R,p+,p−, Vcut, vdir, δ, V, Vconstraint

Output: R′,p′+,p′−, V ′, n′

if vdir = −1 then
p = −p−

else
p = p+

end if
R′ = R+ δp
V ′ = V (R′)
G′ = ∇RV (R′)
V ′constraint = Vconstraint(R

′)
G′constraint = ∇RVconstraint(R

′)
renergy = V ′ > Vcut

rconstraint = V ′constraint > 0
if renergy OR rconstraint then

if renergy AND NOT rconstraint then
G′′ = G′

else if NOT renergy AND rconstraint then
G′′ = G′constraint

else if renergy AND rconstraint then
. Reflect off both gradients

G′′ =
G′

|G′| +
G′constraint

|G′constraint|
end if
n′ = 0

p′ = p− 2
G′′ · p
G′′ ·G′′G

′′

else
n′ = 1
p′ = p

end if
if vdir = −1 then
p′+ = p−
p′− = −p′

else
p′+ = p′

p′− = p+
end if
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C Probability distributions

C.1 Beta distribution

To model a binomial event, such as flipping a coin, we need to be able to specify a prob-

ability distribution of the probability of obtaining heads, a probability of a probability. The

probability of observing a certain number of heads, Nheads, after a fixed number of flips,

Nflips, with a fixed probability of obtaining heads, pheads, is modelled by the binomial dis-

tribution,

Nheads ∼ Bin(Nflips, pheads) (65)

with probability,

Pr(Nheads|Nflips, pheads) = Bin(Nheads|Nflips, pheads) =

(
Nflips

Nheads

)
pheads

Nheads
(1−pheads)

Nflips−Nheads
,

(66)

where
(
n
m

)
= n!

m!(n−m)!
. The beta distribution is the conjugate prior to the binomial distribu-

tion (see appendix D), so it is the most straightforward way to define a distribution over

the binomial probability

pheads ∼ B(αB, βB), (67)

with probability density,

Pr(pheads) =


Γ(αB + βB)
Γ(αB)Γ(βB)

pαB−1heads (1− pheads)
βB−1 when 0 < pheads < 1

0 otherwise

≡ B(pheads|αB, βB), (68)
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where αB, βB are the shape parameters of the beta distribution. The normalisation con-

stant can also be written as a beta function,

B(αB, βB) =
Γ(αB + βB)

Γ(αB)Γ(βB)
. (69)

The moments of the beta distribution are

∫ 1

0

taB(1− tB)b
′B(tB|αB, βB) dtB =

Γ(αB + βB)

Γ(αB)Γ(βB)

Γ(αB + a)Γ(βB + b′)

Γ(αB + a+ βB + b′)
, (70)

so in the case of eqs. (11) and (12) tk = tB, αB = 1 and βB = nNS
k , so we would find that

E[tB] = nNS
k /(nNS

k + 1), E[t2B] = nNS
k /(nNS

k + 2), and E[(1− tB)] = 1/(nNS
k + 1).

The beta distribution can also be used to model the order statistics of samples from the

uniform distribution. If nU samples have been drawn independently from the uniform

distribution, then the kU th order statistic,

UkU ∼ B(kU , nU − kU + 1), (71)

the distribution of the kU th highest value of nU independent samples from the uniform

distribution, which derives naturally from considering the binomial likelihood of observ-

ing kU successes out of nU trials with probability UkU . It is in this sense that NS uses

the beta distribution as the set of live points can be modelled as uniformly distributed

samples over Φ(V ).

C.1.1 Fitting beta distributions

It is possible to fit a beta distribution, B(afit, bfit), to some other random variable, tfit ∼ qfit,

by matching the first and second moments, because the beta distribution has only two
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degrees of freedom,

afit = Eqfit [tfit]

(
Eqfit [tfit] (Eqfit [tfit]− 1)

Eqfit

[
t2fit

]
− Eqfit [tfit]

2 − 1

)
, (72)

bfit = (Eqfit [tfit]− 1)

(
Eqfit [tfit] (Eqfit [tfit]− 1)

Eqfit

[
t2fit

]
− Eqfit [tfit]

2 − 1

)
, (73)

where Eqfit [tfit] is the first moment of tfit and Eqfit [t2fit] is the second moment of tfit with

respect to qfit.

C.2 Dirichlet distribution

The binomial distribution and the beta distribution can be generalised to model multiple

probabilities, for example, studying the rolling of a kdie-sided die. The results, Ndie =

{Ndie
1 , · · · , Ndie

kdie} ∼ Mult(pdie) of rolling the die with probabilities, pdie = {pdie
1 , · · · , pdie

kdie}

will be distributed according to the multinomial distribution, Ndie ∼ Mult(pdie), with

probability density,

Mult(Ndie|pdie) =

(∑kdie

j=1N
die
j

)
!∏N

k=1N
die
k !

N∏
k=1

pdie
k

Ndie
k . (74)

The conjugate prior of the multinomial distribution is the Dirichlet distribution, parametrised

by an N -dimensional parameter vector, αdie = (αdie
1 , · · · , αdie

N ). For pdie ∼ Dir(αdie) the

probability distribution of pdie will be

Pr(pdie|αdie) =
Γ
(∑N

j=1 α
die
j

)
∏N

j=1 Γ(αdie
j )

N∏
k=1

pdie
k

αdie
k −1, (75)

where
∑N

j=1 p
die
j = 1.
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D Bayesian inference

In Bayesian statistics, probabilities are used to encode beliefs about some phenomenon.

At the heart of Bayesian statistics is Bayes’ rule,

Pr(M(θ)|D) =
Pr(D|M(θ)) Pr(M(θ))

Pr(D)
, (76)

which allows the prior belief/distribution, Pr (M(θ)), for the parameters, θ, of some model,

M(θ), to be updated to give a posterior belief/distribution, Pr(M(θ)|D), for the parame-

ters, given some observed data, D. This update is performed by taking the product of the

likelihood, Pr(D|M(θ)), of observing the data given the model with the prior. This product

is normalised by the evidence, Pr(D), the probability of observing the data given all pos-

sible instances of the model, calculated by integrating the product of the likelihood and

prior or marginalising over all possible parameters,

Pr(D) =

∫
Pr (D|M(θ)) Pr (M(θ)) dθ. (77)

When using the beta distribution to model pheads, we can specify an uninformative prior

on the coin toss, pheads ∼ B(αp, βp), where αp and βp specify our prior belief of pheads. For

an uninformative prior αp = βp = 1/2. We can use Bayes’ rule to update our belief of

pheads,

Pr(pheads|Nheads, Nflips) =
Bin(Nheads|Nflips, pheads)B(pheads|αp, βp)

Pr(Nheads|Nflips)

= B(pheads|Nheads + αp, N
flips −Nheads + βp). (78)

Here we see why the parameters of the beta distribution are commonly viewed as pseu-

docounts, since they can be viewed as representing the number of observations of the

event happening or not happening.
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D.1 Model comparison

The evidence is useful as it allows different models to be compared. Given two models,

M1 andM2, and some data, the probability of the hypothesis that the first model is correct,

H1, is

Pr(H1) =
Pr(M1|D) Pr(M1)

Pr(M1|D) Pr(M1) + Pr(M2|D) Pr(M2)
=

KBF

1 +KBF , (79)

where the relative evidence between the two models is known as the Bayes factor,

KBF =
Pr(M1|D)

Pr(M2|D)

Pr(M1)

Pr(M2)
, (80)

and Pr(M1) and Pr(M2) are the prior belief of whether H1 or H2 is true. If a priori both

models are viewed equally likely then Pr(M1) = Pr(M2) = 1/2.

When KBF > 1, H1 is more likely. Conversely if KBF < 1, H2 is more likely given the

data. In the next section it will be shown how to compare binomial distributions using

Bayesian model comparison.

D.1.1 Comparing binomial distributions

Consider an example where we want to compare examination pass rates, pa and pb, be-

tween two different departments, a and b. Suppose we observe that there are npass
a passes

and nfail
a fails from department a and the equivalent for b, and nstudents

a/b = n
pass
a/b + nfail

a/b. We

are interested in testing the hypothesis that the pass rates are the same, H0 : pa = pb, or

different,H1 : pa 6= pb. We can compare these hypotheses by Bayesian model comparison.

So we can calculate the evidence of model 0,

Pr(pa = pb|npass
a , nfail

a , n
pass
b , nfail

b )

=

∫
Bin(npass

a |nstudents
a , pa)Bin(n

pass
b |nstudents

b , pa)B(pa|αpass, βpass) dpa

=

(
nstudents
a

n
pass
a

)(
nstudents
b

n
pass
b

)
B(npass

a + n
pass
b + αpass, nfail

a + nfail
b + αfail), (81)
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and model 1,

Pr(pa 6= pb|npass
a , nfail

a , n
pass
b , nfail

b )

=

∫∫
Bin(npass

a |nstudents
a , pa)Bin(n

pass
b |nstudents

b , pb)B(pa|αpass, βpass)B(pb|αpass, βpass) dpa dpb

=

(
nstudents
a

n
pass
a

)(
nstudents
b

n
pass
b

)
B(npass

a + αpass, nfail
a + αfail)B(n

pass
b + αpass, nfail

b + αfail), (82)

where αpass and αfail encode the prior pseudocounts on the pass rate. The Bayes factor

comparing the two hypotheses can be calculated

KBF
B (npass

a , nfail
a , n

pass
b , nfail

b )

=
B(n

pass
a + n

pass
b + αpass, nfail

a + nfail
b + αfail)

B(n
pass
a + αpass, nfail

a + αfail)B(n
pass
b + αpass, nfail

b + αfail)
. (83)

In addition we can generalise eq. (81) to more than two departments, with pass rates,

ppass = {p1, · · · , pNdepartments}, observed passes counts npass = {npass
1 , · · · , npass

Ndepartments
} and fail

counts nfail = {nfail
1 , · · · , nfail

Ndepartments
} then we can calculate the Bayes factor for them having

the same pass rate,

Pr
(
(pj = pk)∀pj, pk ∈ ppass|npass,nfail)

= B

αpass +

Ndepartments∑
j=1

n
pass
j , αfail +

Ndepartments∑
j=1

nfail
j

Ndepartments∏
j=1

(
n

pass
j + nfail

j

n
pass
j

)
. (84)
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