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ABSTRACT
Two-dimensional (2D) vibrational spectroscopy has emerged as one of the most important experimental techniques useful to study the molec-
ular structure and dynamics in condensed phases. Theory and computation have also played essential and integral roles in its development
through the nonlinear optical response theory and computational methods such as molecular dynamics (MD) simulations and electronic
structure calculations. In this article, we present the fundamental theory of coherent 2D vibrational spectroscopy and describe compu-
tational approaches to simulate the 2D vibrational spectra. The classical approximation to the quantum mechanical nonlinear response
function is invoked from the outset. It is shown that the third-order response function can be evaluated in that classical limit by using
equilibrium or non-equilibrium MD simulation trajectories. Another simulation method is based on the assumptions that the molecular
vibrations can still be described quantum mechanically and that the relevant molecular response functions are evaluated by the numeri-
cal integration of the Schrödinger equation. A few application examples are presented to help the researchers in this and related areas to
understand the fundamental principles and to use these methods for their studies with 2D vibrational spectroscopic techniques. In sum-
mary, this exposition provides an overview of current theoretical efforts to understand the 2D vibrational spectra and an outlook for future
developments.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5083966

I. INTRODUCTION

Resonance is a phenomenon ubiquitous in nature. Molecular
spectroscopy is an experimental tool that utilizes one of the reso-
nance phenomena that involves an interaction of oscillating charged
particles in a given molecule with an external electromagnetic
field whose frequency (ωwave) is close to that (ωmolecule) of a vibra-
tional or electronic oscillation determined by the associated inter-
action potential between constituent charged particles in a given
polyatomic molecule in condensed phases. Such resonant field-
matter interaction is manifested in the complex quantum transition
amplitude that is approximately proportional to (ωwave − ωmolecule
+ iγmolecule)−1, where γmolecule determines the linewidth of such a
transition band that reflects complicated molecular interactions
with fluctuating internal and bath degrees of freedom. As the wave

frequency ωwave approaches the molecular oscillation frequency
ωmolecule, the corresponding quantum transition amplitude increases,
which has been referred to as a quantum resonant field-matter
interaction process.

Vibrational spectroscopy, one of the molecular spectroscopic
techniques, involves quantum transitions of vibrational degrees of
freedom. The most widely used infrared (IR) spectroscopy measures
the vibrational transition amplitude of normal modes via their res-
onant interaction with infrared (e.g., near IR, mid-IR, far-IR, and
THz) radiation. The vibrational Raman spectroscopy is a resonance-
enhanced scattering of the incident electronically non-resonant field
when the beat frequency between the incident radiation field and
the inelastic Raman scattering field is close to molecular vibrational
frequency. Although IR-vis sum-frequency-generation (SFG) spec-
troscopy for molecular systems on the surface or at the interface
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with broken centrosymmetry is a nonlinear optical (three-wave-
mixing) spectroscopy, it still involves a single vibrational transition
whose amplitude is essentially determined by the quantum correla-
tion between the transition dipole and the transition polarizability
of a given vibrational mode.

Coherent multidimensional vibrational spectroscopy1–5 is an
extension of these linear spectroscopic methods and involves multi-
ple vibrational transitions that are temporally separated. To observe
and analyze the correlation between the distinctive vibrational tran-
sitions, one usually applies a series of coherent laser pulses with
specific phase relations to induce such transitions. The multiple
transitions are detected and presented as a function of correspond-
ing frequency variables, making the spectrum multidimensional. In
particular, coherent two-dimensional (2D) vibrational spectroscopy
employs three femtosecond laser pulses in the infrared (IR) or
visible frequency range to induce the third-order polarization in
molecular systems. The signal due to the polarization is measured
and presented in two frequency dimensions conjugates to the time
intervals between the first and second pulses (τ) and between the
third pulse and the detection (t), respectively. A series of 2D spec-
tra at different time intervals between the second and the third
pulse (T) reveals the molecular dynamics (MD) taking place dur-
ing that time interval T that is called the waiting or population
time.

2D vibrational spectroscopy provides ultrafast time resolution
along the waiting time (T) axis as well as high spectral resolution
of individual peaks along the diagonal in the 2D frequency space
and their couplings in the form of off-diagonal cross peaks. There-
fore, the method conveys rich information on molecular systems
such as homogeneous (anti-diagonal) and inhomogeneous (diago-
nal) spectral broadening effects, vibrational anharmonicity, spectral
diffusion,6 and intermode coupling strength and its temporal vari-
ation. Over the past two decades, 2D vibrational spectroscopy has
been extensively used to study the structure and dynamics of small
peptides, proteins, DNA, and lipid bilayers, energy transfer dynam-
ics, hydrogen-bonding (H-bonding) structure and dynamics of liq-
uid water, and its isotopologues, and configurational and H-bonding
dynamics of biomolecules.

The amplitudes of IR and Raman transitions critically depend
on the transition dipole and polarizability, respectively. Since the
molecular moments m generally depend on the vibrational coor-
dinate q, they can be Taylor-expanded in the form m(t) = m0
+ (∂m/∂q)0q + ⋯ with respect to the equilibrium point denoted by
subscript 0. Then, when the rotational motion of each vibrational
chromophore is assumed to be very slow compared to vibrational
dephasing rates, according to the time correlation function formal-
ism of molecular spectroscopy,7 the corresponding line shapes can
be approximately written as

IIR(ω)∝ ∫
∞

−∞
dteiωt⟨µ(t) ⋅ µ(0)⟩

≈ ∣(∂µ/∂q)0∣
2
∫

∞

−∞
dteiωt⟨q(t)q(0)⟩,

IRaman(ω)∝ ∫
∞

−∞
dteiωt⟨α(t) : α(0)⟩

≈ ∣(∂α/∂q)0∣
2
∫

∞

−∞
dteiωt⟨q(t)q(0)⟩,

(1)

where (∂µ/∂q)0 and (∂α/∂q)0 are the transition dipole and polar-

izability, respectively, and the bar over, for example, ∣(∂µ/∂q)0∣
2

denotes the orientational average. Due to the first-order coordinate
dependences of transition dipole and transition polarizability, linear
spectra (IR, Raman, IR-vis SFG), which are in principle related to
the dipole-dipole, polarizability-polarizability, dipole-polarizability
correlation functions, are determined by the vibrational coordinate-
coordinate correlation function ⟨q(t)q(0)⟩.8

For coupled multi-oscillator systems, vibrational couplings
through space via intermolecular interactions or through bond
via anharmonicities in the multi-dimensional potential energy sur-
face are crucial in understanding vibrational dynamics.9,10 How-
ever, since the linear vibrational spectrum is mainly determined
by the harmonic properties, e.g., vibrational frequency and tran-
sition dipole moment, of the oscillators, it is difficult to quanti-
tatively extract such weak features, e.g., vibrational coupling con-
stants and potential anharmonic coefficients of coupled oscillators
in condensed phases, from those linear spectra.8 On the other
hand, the coherent multi-dimensional vibrational spectroscopic
methods have been found to be of exceptional use because they
enable one to explore these mode-mode couplings and provide
crucial information on the structural dynamics through the time-
dependent changes of the spatial proximity and relative orienta-
tion of chromophores. Note that the nonlinear vibrational response
functions determining amplitudes and lineshapes of coherent multi-
dimensional vibrational spectra vanish for perfect harmonic oscil-
lators.9,11–14 One of the most popular techniques is the 2D IR
spectroscopy,1 which is a four-wave-mixing method capable of pro-
viding information on the molecular nonlinear response function
that is given by multi-time correlation functions of transition dipole
moments. Again, using the linear expansion form of electric dipole
moment with respect to vibrational coordinates and employing
perturbation theory treating electric and mechanical anharmonic-
ities as weak perturbations to harmonic oscillators, it was possi-
ble to rewrite the nonlinear response functions in terms of vibra-
tional Green functions and such perturbation terms.11,12,15,16 This
method was known as a linked diagram theory for the multidi-
mensional vibrational response function. Although such theoretical
approaches were popular in the early time of theory on multidimen-
sional vibrational spectroscopy, the intrinsic difficulties in describ-
ing the anharmonicity-induced frequency shift of the excited state
absorption contribution to the 2D IR spectrum, for example, and in
accurately calculating vibrational (both mechanical and electrical)
anharmonicities for oscillators in solutions, prohibited its wide use
later.

Although 2D IR spectroscopy employing three incident IR
laser pulses is one of the most widely used forms of coherent mul-
tidimensional vibrational spectroscopy, different varieties of the
method have also been developed and applied for specific purposes.
Examples include surface specific 2D SFG spectroscopy,17,18 2D
Raman19 and terahertz spectroscopy,20–24 2D IR-IR-visible spec-
troscopy,3,9,13,25–29 and so on. In this article, because the basic the-
ories for these variants are similar to one another, we mainly focus
on the theory and computation of 2D IR spectroscopy and reference
is made to these variants when appropriate.

By necessity, the exposition in this paper cannot be exhaus-
tive. However, it is hoped to serve as an up-to-date introduction and
a basis for elaborate research especially with the aid of references
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provided. In Sec. II, we briefly introduce the third-order response
function formalism, which has the central importance in the descrip-
tion of 2D vibrational spectroscopy. In Sec. III, classical mechan-
ical approaches to calculate 2D vibrational spectra are presented
based on the classical limit of the quantum vibrational third-order
response function. In Sec. IV, we present a quantum mechanical
(QM) method to simulate the spectra by numerical integration of the
Schrödinger equation (NISE). Finally, we conclude with perspective
on future development.

II. FUNDAMENTALS
In general, spectroscopic measurements are conducted in two

steps: the preparation step where the molecular system is excited
by incident radiations and the detection step where the generated
signal is measured and presented. In 2D vibrational spectroscopy,
the system is irradiated with three coherent laser pulses, usually
in the infrared (IR) frequency region, in the preparation step and
then the generated signal field is detected and presented in two fre-
quency dimensions, representing two distinct coherence oscillations
separated by a waiting (population) time. It is a kind of four-wave-
mixing spectroscopy due to the fact that the signal field arises from
three preceding field-matter interactions that are each linear in the
field. In each of the four field-matter interaction events, a quan-
tum transition takes place between vibrational states of the system,
on either the ket or the bra side of the system density operator
(see below). Depending on the configuration of the optical laser
pulses such as the frequency, the direction of propagation (wave
vector), and polarization, as well as the detection methods, differ-
ent quantum transition pathways can be selectively generated and
measured.8

The spectroscopic observables are determined by the third-
order optical response function of the molecular system that
includes all distinctive quantum transition sequences consistent with
the incident radiations and the detection method. The response
function naturally emerges from the quantum mechanical time-
dependent perturbation theory treatment of the molecular system
in the presence of the three perturbative light-matter interactions
of the preparation step. In this section, we sketch the theoreti-
cal procedure and present key results relevant to 2D vibrational
spectroscopy.

A. Third-order optical response function
In 2D IR spectroscopy, the molecular system interacts with the

incident electric field and, in the electric dipole approximation, the
interaction Hamiltonian can be written as

Hint(t) = −µ̂ ⋅ E(r, t), (2)

where µ̂ is the electric dipole operator and E(r, t) is the superposi-
tion of the electric fields of the three incident (IR, THz, visible, or
X-ray) pulses denoted as E1, E2, and E3. The total Hamiltonian of
the system is the sum of the system Hamiltonian H0 in the absence
of radiation and Hint(t). In the cases of the other 2D vibrational
spectroscopy utilizing visible, UV, etc., one needs to consider the
corresponding effective field-matter interaction Hamiltonian, e.g.,
−α̂ : E(r, t)E(r, t) for Raman spectroscopy.

The system evolves in time according to the quantum Liouville
equation for the density operator ρ(t) of the system as follows:

∂ρ(t)
∂t

= −
i
h̵
[H0 + Hint(t), ρ]. (3)

The solution of this equation provides quantitative information
about any physical observable of the system A(t) through the expec-
tation value Tr[Âρ(t)], where Tr denotes the trace of a matrix and
Â is the operator for observable A. A diagonal element ρaa of the
density matrix in a basis set {∣a⟩} represents the probability that
the system is in state a or the population of the system in state a.
The off-diagonal element ρab of the density matrix, which is related
to coherence or super-position state evolution of two states a and b,
gives rise to the temporal oscillation of the aforementioned probabil-
ity with a frequency ω ≈ ωab ≡ (Ea − Eb)/h̵ determined by the energy
difference of the two states.

Treating Hint(t) as the perturbation to the reference Hamil-
tonian H0, Eq. (3) can be solved by applying the time-dependent
perturbation theory. The solution is expressed as a power series
expansion of ρ(t), the zeroth-order term of which is the equilibrium
density operator for the unperturbed system ρ(0)(t) = ρeq. Each of
the higher-order terms ρ(n)(t) contains n factors of Hint(t) and is
given by

ρ(n)(t) = (−
i
h̵
)
n

∫

t

t0
dτn ∫

τn

t0
dτn−1⋯∫

τ2

t0
dτ1G0(t − τn)

×Lint(τn)G0(τn − τn−1)Lint(τn−1)⋯G0(τ2 − τ1)

×Lint(τ1)G0(τ1 − t0)ρ(t0), (4)

where G0(t) = exp(−iL0t/h̵) is the time evolution operator in the
absence of radiation and the Liouville operators are defined as LaA
= [Ha, A] for a = 0 or int. According to Eq. (4), the system initially
defined by ρ(t0) evolves freely without perturbation for τ1 − t0, as
given by G0(τ1 − t0), and then interacts with the radiation at time
τ1, as given by Lint(τ1). This sequence is repeated n times until the
final field-matter interaction at τn, as given by Lint(τn). Finally, the
system evolves freely until the observation time t according to G0(t
− τn). The multiple integrals over τ1, . . ., τn account for all possi-
ble interaction times under the time ordering condition t0 ≤ τ1 ≤ . . .
≤ τn ≤ t.

Each term of the power series expansion of ρ(t) in Eq. (4) gives
rise to the corresponding polarization P(n)(r, t) = Tr[µ̂ρ(n)(t)] in
the system as follows:

P(n)(r, t) = ∫
∞

0
dtn⋯∫

∞

0
dt1R(n)(tn,⋯, t1)

⋮E(r, t − tn)⋯E(r, t − tn⋯− t1) (5)

in terms of the nth order optical response function given by

R(n)(tn, . . . , t1) = (
i
h̵
)
n
θ(tn)⋯θ(t1)⟨µ(tn +⋯ + t1)

× [µ(tn−1 +⋯ + t1), [⋯[µ(t1), [µ(0), ρeq]]⋯]]⟩,

(6)

where µ(t) = exp(iH0t/h̵)µ̂ exp(−iH0t/h̵) is the dipole operator in
the interaction picture and the angular bracket denotes the trace of
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a matrix. We obtain the linear response by setting n = 1 in Eqs. (5)
and (6). The signal of 2D IR spectroscopy is determined by the third
order polarization P(3)(r, t) and the third-order response function
R(3)(t3, . . ., t1), the latter being the fourth rank tensor. Note that
the time variables t1, . . ., tn−1 in Eqs. (5) and (6) are time intervals
between consecutive field-matter interactions related to τ1, . . ., τn
in Eq. (4) as tm = τm+1 − τm (1 ≤ m ≤ n − 1), while tn = t − τn is
the time elapsed since the last field-matter interaction. Therefore,
t1, . . ., tn are all positive, and the response function must vanish
if any of its time arguments are negative in accordance with the
causality principle, as imposed by the Heaviside step functions θ(t)
in Eq. (6). In addition, R(n) is a real function because P(n)(r, t) and
E(r, t) in Eq. (5) are both real quantities, although individual terms
comprising R(n) are complex in general and represent different
quantum transition pathways.

The signal electric field E(n)s (r, t) detected in nonlinear spec-
troscopy is obtained by solving Maxwell’s equation taking the non-
linear polarization P(n)(r, t) as the source. After making simplifying
assumptions that (i) the signal field is only weakly absorbed by the
medium, (ii) the envelopes of polarization and signal fields vary
slowly in time compared to the optical period, (iii) the signal field
envelope spatially varies slowly compared to its wave length, (iv)
the frequency dispersion of the medium refractive index is weak, the
approximate solution can be obtained as30,31

E(n)s (t)∝
iωs

n(ωs)
P(n)s (t). (7)

Here, n(ω) is the refractive index of the medium and P(n)s (t) is the
polarization component propagating with wave vector ks and fre-
quency ωs that are one of the combinations ±k1 ± k2 ± ⋯ ±kn and
±ω1 ± ω2 ± ⋯ ±ωn, respectively. Note that Eq. (7) gives the approxi-
mate signal field arising from a single Fourier component of the nth
order polarization expanded as8,31

P(n)(r, t) =∑
l
P(n)l (t) exp(ikl ⋅ r − iωlt). (8)

By changing the location of the detector appropriately, individual
components of the polarization with different ks can be selectively
measured. Note that the assumption (ii) above could become invalid
for the far-IR and THz spectroscopy. See Ref. 32 and references
therein for more general approaches to the nonlinear signal field
calculation with wider applicability.

B. Response function of a three-level system
2D vibrational spectroscopy usually induces transitions up to

the second vibrational excited state. Therefore, a three-level sys-
tem with eigenstates ∣g⟩, ∣e⟩, and ∣f⟩ is a useful model for the
response function relevant to 2D vibrational spectroscopy. Because
the third-order response function vanishes for a harmonic oscil-
lator, the model system must represent an anharmonic oscillator
where the fundamental transition frequency ωeg is slightly larger
than ωfe.

The evaluation of a realistic response function critically
depends on the accurate description of the system-bath interaction

that is responsible for important spectroscopic phenomena such as
dephasing, relaxation, reorientation, spectral diffusion, and popula-
tion and coherence transfers. Methods to incorporate the effect of
environment as well as the multimode vibrational coupling are dis-
cussed in Secs. III and IV. In this section, to highlight the structure
of the response function, we consider a simple model where a single
three-level chromophore interacts with the environment according
to the following Hamiltonian:

H0 = ∑
m=g,e,f

[h̵ωm + Vm(q) + HB(q)]∣m⟩⟨m∣. (9)

Here, h̵ωm is the energy of statem in the absence of bath,Vm(q) is the
chromophore-bath interaction energy of the state m that depends
on the bath degrees of freedom q, HB(q) is the energy of the bath,
and the basis states ∣m⟩ (m = g, e, f ) are chosen as eigenstates of
an isolated chromophore. Note that the off-diagonal elements of the
chromophore-bath interaction are assumed negligible for the sake of
simplicity.33 Using this Hamiltonian, the three nested commutators
in the response function in Eq. (6) can be expanded as the sum of
eight terms31,34

R(3)(t3, t2, t1) = (
i
h̵
)

3
θ(t3)θ(t2)θ(t1)

×
4
∑
i=1

[Ri(t3, t2, t1) − R∗i (t3, t2, t1)], (10)

where the components Ri(t3, t2, t1) are given by8,35

FIG. 1. Double-sided Feynman diagrams illustrating the six contributions of
Eq. (12). Time is running from bottom to the top with the vertical lines illustrat-
ing the ket and the bra wave functions. Interactions with applied laser fields are
illustrated with full arrows, while emitted light is illustrated with dashed arrows.
The numbers (zero, one, and two) indicate the number of vibrations excited.
The response functions R2A and R4 are identified as ground state bleach as the
system is in the ground state during the waiting time t2, while R3 and R1A are
stimulated emission contributions, and R1B and R2B are excited state absorption
contributions.
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R1(t3, t2, t1) = µgeµegµgeµeg exp[i(−ω̄eg t3 − ω̄eg t1)]Fgege
1 (t3, t2, t1)

+µgeµefµfeµeg exp[i(ω̄fet3 − ω̄eg t1)]Fgefe
1 (t3, t2, t1),

R2(t3, t2, t1) = µgeµegµgeµeg exp[i(−ω̄eg t3 + ω̄eg t1)]Fgege
2 (t3, t2, t1)

+µgeµefµfeµeg exp[i(ω̄fet3 + ω̄eg t1)]Fgefe
2 (t3, t2, t1),

R3(t3, t2, t1) = µgeµegµgeµeg exp[i(−ω̄eg t3 + ω̄eg t1)]Fgege
3 (t3, t2, t1)

+µgeµefµfeµeg exp[i(ω̄fet3 + ω̄f g t2 + ω̄eg t1)]

×Fgefe
3 (t3, t2, t1),

R4(t3, t2, t1) = µgeµegµgeµeg exp[i(−ω̄eg t3 − ω̄eg t1)]Fgege
4 (t3, t2, t1)

+µgeµefµfeµeg exp[i(−ω̄eg t3 − ω̄fg t2 − ω̄eg t1)]

×Fgefe
4 (t3, t2, t1), (11)

assuming that the system is initially in the ground state g. Here,
µab is the transition dipole between states a and b obtained by
the repeated insertion of the closure relation ∑m ∣m⟩⟨m∣ = 1 in

Eq. (6), which is assumed to be independent of the bath coordinate
(Condon approximation), h̵ω̄ab = h̵(ωa − ωb) + ⟨Va(q) − Vb(q)⟩B
is the energy gap averaged over bath degrees of freedom, and
Fgabc
n (t3, t2, t1) is the line shape function expressed in terms of time-

ordered exponentials of the fluctuations in the system-bath inter-
actions, Um(q) = Vm(q) − ⟨Vm(q)⟩B. Therefore, the response
function is composed of multiple quantum transition pathways rep-
resented by individual Ri, each of which is the product of three
factors determining the transition strength (products of transi-
tion moments), the transition frequency (coherence oscillation),
and the line shape (F1−4). Throughout this paper, third order
double-quantum or zero-quantum spectroscopies are not taken into
consideration.

To facilitate computation of Fgabc
n (t3, t2, t1), we can approxi-

mately replace the time-ordered exponential operators with nor-
mal exponential functions containing difference potential energies
Uab(q) = Ua(q) − Ub(q). Alternatively, we can invoke the second-
order cumulant expansion approximation, which becomes exact
when the fluctuation of the energy gap h̵ω̄ab obeys the Gaussian
statistics, to obtain8

R1A(t3, t2, t1) = µgeµegµgeµeg exp(−iω̄eg t3 − iω̄eg t1) exp[−g∗(t3) − g(t1) − f+(t3, t2, t1)],

R1B(t3, t2, t1) = µgeµefµfeµeg exp(iω̄fet3 − iω̄eg t1)

× exp[−g∗(t3) − g(t1) + g∗(t2) − g(t1 + t2) − g∗(t2 + t3) + g(t1 + t2 + t3)],

R2A(t3, t2, t1) = µgeµegµgeµeg exp(−iω̄eg t3 + iω̄eg t1) exp[−g∗(t3) − g∗(t1) + f∗+(t3, t2, t1)],

R2B(t3, t2, t1) = µgeµefµfeµeg exp(iω̄fet3 + iω̄eg t1)

× exp[−g∗(t3) − g∗(t1) − g(t2) + g∗(t1 + t2) + g(t2 + t3) − g∗(t1 + t2 + t3)],

R3(t3, t2, t1) = µgeµegµgeµeg exp(−iω̄eg t3 + iω̄eg t1) exp[−g(t3) − g∗(t1) + f∗−(t3, t2, t1)],

R4(t3, t2, t1) = µgeµegµgeµeg exp(−iω̄eg t3 − iω̄eg t1) exp[−g∗(t3) − g(t1) − f−(t3, t2, t1)],

(12)

where the auxiliary functions are given by

g(t) =
1
h̵2 ∫

t

0
dτ1 ∫

τ1

0
dτ2⟨Ueg(τ2)Ueg(0)⟩B,

Ueg(t) = exp(
i
h̵
Hg

0 t)[Ue(q) −Ug(q)] exp(−
i
h̵
Hg

0 t), Hg
0 = ⟨g∣H0∣g⟩,

f+(t3, t2, t1) = g∗(t2) − g∗(t2 + t3) − g(t1 + t2) + g(t1 + t2 + t3),

f−(t3, t2, t1) = g(t2) − g(t2 + t3) − g(t1 + t2) + g(t1 + t2 + t3).

(13)

The second terms of R3 and R4 in Eq. (11), that represent coherence
evolution during t2, are not included in Eq. (12) and the energy fluc-
tuation between states g and f is assumed to be twice that between
g and e, i.e., U fg(t) ≅ 2Ueg(t). A few approximate expressions for
the line-broadening function g(t) can be found in other review arti-
cles and books. The six response functions in Eq. (12) can be illus-
trated using double-sided Feynman diagrams (Fig. 1), which high-
light their physical interpretation in terms of ground state bleach,

stimulated emission, and excited state absorption contributions.
These are further classified as rephasing (top row in Fig. 1) and non-
rephasing (bottom row in Fig. 1) versions depending on whether the
coherence oscillations during t1 and t3 have the opposite or the same
signs, respectively.

This general formulation for three-level systems is very pow-
erful and can be used to understand the effect of dynamics on the
two-dimensional lineshapes,36 which, for example, allows the
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FIG. 2. Illustration of the 2D IR spectra with slow (left) and fast (right) dynamics.
The corresponding linear spectra, which have little sensitivity to dynamics, are
shown on the top. The diagonal peaks shown with red contours are bleaching
signals (R1A, R2A, R3, and R4), while the peaks with blue contours, which are
shifted by the anharmonicity below the diagonal, arise from the absorption of the
excited state (R1B and R2B). When the bath dynamics scramble the vibrational
frequencies faster than the waiting time, all correlation between excitation and
detection frequencies is lost and round peaks are obtained, while elongated peaks
arise from residual memory.

distinction between homogeneous and inhomogeneous line-
broadenings and defines rules for extracting the correlation func-
tions describing the bath dynamics in the limit of the Gaussian
dynamics, for example, using the nodal or center line slope.6,37 This
is illustrated in Fig. 2.

III. CLASSICAL MECHANICAL APPROACHES
TO NONLINEAR RESPONSE FUNCTIONS

In Sec. II, we derived the quantum mechanical linear and non-
linear response functions. Although these equations are formally
exact, fully quantum mechanical simulations are still impractical for
systems with many degrees of freedom even with state-of-the-art
supercomputers. Thus, applicable and efficient methods are required
for the calculation of nonlinear response functions for such sys-
tems. In this section, we first summarize the classical mechanical
approaches to the calculation of the linear and nonlinear response
functions, which can be expressed as (multi-)time correlation func-
tions on equilibrium and nonequilibrium trajectories, and then
present some results of the 2D IR and pump-probe spectra obtained
from the approaches.

A. Equilibrium molecular dynamics approach
The classical mechanical response functions can be derived by

using the relationship between the commutator and the Poisson
bracket,38

1
ih̵

[X,Y] = {X,Y}PB. (14)

Here, X and Y are physical variables and the Poisson bracket is
defined as follows:

{X,Y}PB =
∂X
∂q

∂Y
∂p

−
∂X
∂p

∂Y
∂q

. (15)

When Y is the equilibrium distribution function of the system ρeq

= e−βH/Z, where Z is the canonical partition function, Eq. (15)

becomes {X, ρeq}PB = −βẊρeq. Here, β is the reciprocal tempera-
ture of the system and Ẋ is the time derivative of X. As a result, we
obtain the following well-known general expression for the classi-
cal linear response function of a physical quantity A to a perturba-
tion B7 by using Eq. (14) in the quantum linear response function
R(1)(t) = i

h̵θ(t)Tr{A(t)[B(0), ρeq]}, which corresponds to n = 1 in
Eq. (6),

R(1)(t) = β⟨Ḃ(0)A(t)⟩. (16)

Here, the angular bracket indicates ensemble average. For exam-
ple, the classical expression of the Raman response function is given
as39

RRaman(t) = β⟨α̇(0)α(t)⟩, (17)

where α is the total polarizability of the system. Equation (17) shows
that the response function for the optical Kerr effect is expressed as
the time derivative of time correlation of the polarizability along the
equilibrium classical trajectory.

By using Eq. (14), we can also derive any classical nonlinear
response function. For example, the fifth-order nonlinear Raman
spectroscopy,19,38 which is the second-order response function of
the polarizability, is given as39–45

R(2)(t1, t2) = −β⟨{α(t1 + t2),α(t1)}PBα̇(0)⟩
= β⟨α(t1 + t2)(βα̇(t1)α̇(0) − {α(t1), α̇(0)}PB)⟩. (18)

These equations have been used for the analyses of the fifth-order
nonlinear Raman spectra of liquids.39–41,46

Similarly, the classical third-order response function for 2D IR
spectroscopy is expressed as47–49

R(3)(t1, t2, t3) = β⟨{{µ(t1 + t2 + t3),µ(t1 + t2)}PB,µ(t1)}PBµ̇(0)⟩

= −β⟨{µ(t1 + t2 + t3),µ(t1 + t2)}PB

× (βµ̇(t1)µ̇(0) − {µ(t1), µ̇(0)}PB)⟩, (19)

where µ denotes the dipole moment of the system.
It should be noted here that the Poisson brackets of physical

variables at different times, e.g., {µ(t),µ(t′)}PB, are required for
the calculation of nonlinear response functions based on the equi-
librium molecular dynamics approach. The explicit expression of
{µ(t),µ(t′)}PB is

{µ(t),µ(t′)}PB =∑
αβ

∂µ(t)
∂qα(t)

∂µ(t′)
∂qβ(t′)

∂qβ(t′)
∂pα(t)

, (20)

where the dipole moment is assumed to be a function of parti-
cle positions only and we utilized the invariance of Poisson brack-
ets under canonical transformation43,50 (of which the Newtonian
time evolution is an example) and the chain rule of the form
∂µ(t′)/∂pα(t) = ∑β [∂µ(t

′
)/∂qβ(t′)][∂qβ(t′)/∂pα(t)]. The par-

tial derivative matrix, ∂q(t′)/∂p(t), represents the variation of the
position at t′ induced by a small change of momentum at t.
This matrix is a sub-matrix of the so-called stability matrix, J(t)
= ∂γ(t)/∂γ(0), where γ(t) = (q(t), p(t)). The time-evolution of the
stability matrix is expressed as38,39
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d
dt
J(t) =

⎛

⎝

∂2H0/∂q(t)∂p(t) ∂2H0/∂p(t)∂p(t)

−∂2H0/∂q(t)∂q(t) −∂2H0/∂q(t)∂p(t)
⎞

⎠
J(0) (21)

with the initial condition of J(0) = 1. The stability matrix repre-
sents the transformation of the phase space along the trajectory and
plays an important role in nonlinear mechanics and semiclassical
theory.51–53 The nonlinear response functions are highly sensitive to
the trajectory, and thus, they can provide more detailed information
on the dynamics than the linear response function.39

Jeon and Cho have investigated the 2D IR spectra of
intramolecular vibrations in water.49,54 In their studies, the quan-
tum mechanical/molecular mechanical (QM/MM) approach has
been employed for the accurate description of the intramolecular
vibrations of solute molecules: deuterated N-methylacetamide (d-
NMA) and HOD molecules have been described with the semiem-
pirical PM3 method and scc-DFTB potential, respectively. The flex-
ible TIP3P and SPC/Fw models have been used for solvent water
molecules, respectively. Figure 3 shows the 2D IR spectra of the OD
stretch of the HOD molecule in a water cluster. In these calcula-
tions,54 Jeon and Cho have improved the computational efficiency
by exploiting the time reversibility of trajectory and have successfully
calculated the 2D IR spectra. The positive and negative peaks are
found at (∼2650 cm−1, ∼2700 cm−1) and (∼2600 cm−1, ∼2550 cm−1),
respectively. The positive peak corresponds to the stimulated emis-
sion and the ground state bleaching of the amide I band, whereas
the negative peak is related to the excited state absorption. Note that
various general features of the experimental 2D IR spectra are repro-
duced in the calculated 2D spectra based on classical mechanics: the

vertical splitting of positive and negative peaks due to the vibra-
tional anharmonicity, the diagonal elongation of the signal reflect-
ing the inhomogeneity of the solvation environment, the change in
lineshape with waiting time due to the spectral diffusion, and the
decrease in the tilt angle of the nodal line. The classical 2D spec-
tra also show that the main decay component of the nodal line
with a ∼1.6 ps time scale obtained from the calculated 2D spectra
is comparable to experimental results.55

B. Nonequilibrium molecular dynamics approach
1. Nonequilibrium finite-field method

In Subsection III A, we described the prescription for the
linear and nonlinear response functions based on the equilib-
rium molecular dynamics approach. Since the stability matrix is
required in the approach, high computational costs and numerical
instability would make it difficult to calculate nonlinear response
functions, when many degrees of freedom have to be considered
explicitly, for example, the low frequency intermolecular motions
and the OH stretches in liquid H2O. Thus, other approaches cir-
cumventing the use of the stability matrix would be required for
such systems. In this subsection, we introduce the nonequilib-
rium molecular dynamics approach in which the response functions
are evaluated by considering (sequential) external fields, as in real
experiments.

By introducing a Liouville operator B− and a dimensionless
parameter ε, we have the following identity:56

FIG. 3. Absorptive 2D IR spectra of the OD stretch of the hydrated HOD molecule at different waiting times T. All figures are drawn on the same amplitude scale. Diminishing
tilt angles of the nodal line and the signal amplitudes can be noticed with increasing waiting time T, indicating the loss of frequency memory and the vibrational population
relaxation, respectively. Reprinted with permission from J. Jeon and M. Cho, J. Phys. Chem. B 118, 8148 (2014). Copyright 2014 American Chemical Society.
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i
h̵
[B, ] ≡

i
h̵
B− = lim

ε→0

1
ε
[exp(iεB−/h̵) − 1]. (22)

By applying Eq. (22) to the linear response function R(1)(t) (for t > 0)
of a physical variable A to a perturbation B, we have56–58

R(1)(t) =
i
h̵

Tr{A(t)[B(0), ρeq]}

= lim
ε→0

1
ε
(Tr{A(t)(eiεB−/h̵ − 1)ρeq})

≡ lim
ε→0

1
ε
{⟨A(t)⟩B(0) − ⟨A⟩}. (23)

Here, the first term is the expectation value of A(t) on the per-
turbed trajectory given by H0 − εBδ(t), whereas the second term
is the expectation value of A on the trajectory expressed by the
unperturbed Hamiltonian H0.

In the nonequilibrium finite-field method, the second-order
response function of 2D Raman spectroscopy, corresponding
to Eq. (18) in the equilibrium molecular dynamics approach,
is46

R(2)(t1, t2) = lim
ε→0

1
ε2 {⟨Π(t1 + t2)⟩E(0)E(0),E(t1)E(t1)

− ⟨Π(t1 + t2)⟩E(0)E(0) − ⟨Π(t1 + t2)⟩E(t1)E(t1)

+ ⟨Π(t1 + t2)⟩}. (24)

Jansen et al. have applied the nonequilibrium finite-field method to
the 1D and 2D Raman spectra of liquids.57,58

Based on the nonequilibrium finite-field method, the third-
order response function for 2D IR spectroscopy is expressed
as48

R(3)(t1, t2, t3) = lim
ε→0

1
ε3 {⟨µ(t1 + t2 + t3)⟩E(0),E(t1),E(t1+t2)

− ⟨µ(t1 +t2 +t3)⟩E(0),E(t1)−⟨µ(t1 +t2 +t3)⟩E(0),E(t1+t2)

− ⟨µ(t1 + t2 + t3)⟩E(t1),E(t1+t2)

+ ⟨µ(t1 + t2 + t3)⟩E(0) + ⟨µ(t1 + t2 + t3)⟩E(t1)

+ ⟨µ(t1 + t2 + t3)⟩E(t1+t2) − ⟨µ(t1 + t2 + t3)⟩}. (25)

Later, Jansen et al., have developed the efficient method to subtract higher-order responses from calculated signals by combining
the nonequilibrium molecular dynamics simulations with the positive and negative electric fields.59 By using this method, the third-order
nonlinear response function can be recast in the following form:

R(3)(t1, t2, t3) = lim
ε→0

1
4ε3 {⟨µ(t1 + t2 + t3)⟩E(0),E(t1),E(t1+t2) − ⟨µ(t1 + t2 + t3)⟩E(0),E(t1),Ē(t1+t2) − ⟨µ(t1 + t2 + t3)⟩E(0),Ē(t1),E(t1+t2)

+ ⟨µ(t1 + t2 + t3)⟩E(0),Ē(t1),Ē(t1+t2) − ⟨µ(t1 + t2 + t3)⟩Ē(0),E(t1),E(t1+t2) + ⟨µ(t1 + t2 + t3)⟩Ē(0),E(t1),Ē(t1+t2)

+ ⟨µ(t1 + t2 + t3)⟩Ē(0),Ē(t1),E(t1+t2) − ⟨µ(t1 + t2 + t3)⟩Ē(0),Ē(t1),Ē(t1+t2)}, (26)

where the bar on the subscript denotes the application of the external
field with the opposite direction.

2. Hybrid approach combining equilibrium
and nonequilibrium finite-field methods

The nonequilibrium finite-field method does not need the sta-
bility matrix for the calculation of nonlinear responses. However,
the approach still demands high computational costs; i.e., extra three
and seven nonequilibrium trajectories as well as the equilibrium
trajectory are required for the second- and third-order nonlinear
response functions, respectively.

In order to reduce the number of trajectories, Hasegawa and
Tanimura have developed an efficient computational method for
higher-order response functions, i.e., the hybrid method combining
the equilibrium molecular dynamics and nonequilibrium finite-field
methods.60 In the hybrid method, the second-order response func-
tion for the 2D Raman spectra given by Eqs. (18) and (24) can be
written as61

R(2)(t1, t2) = lim
ε→0

1
2ε

{β(⟨Π̇(0)Π(t1 + t2)⟩E(t1)E(t1)

− ⟨Π̇(0)Π(t1 + t2)⟩E(t1)Ē(t1))}. (27)

In Eq. (27), the inverse force method is also used, as indicated by the
overbar in the last subscript. Equation (27) shows that, in the hybrid
method, the second-order response function can be calculated from
the time correlation function of Π̇(0) on the equilibrium trajectory
and Π(t1 + t2) on the nonequilibrium trajectory generated by the
external fields applied at t1.

The third-order response function of the 2D IR spectra can be
calculated with the following four terms:61

R(3)(t1, t2, t3) = lim
ε→0

1
4ε2 {β(⟨µ̇(0)µ(t1 + t2 + t3)⟩E(t1),E(t1+t2)

− ⟨µ̇(0)µ(t1 + t2 + t3)⟩E(t1),E(t1+t2)

− ⟨µ̇(0)µ(t1 + t2 + t3)⟩E(t1),E(t1+t2)

+ ⟨µ̇(0)µ(t1 + t2 + t3)⟩E(t1),E(t1+t2))}, (28)
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where the inverse forces are denoted with overbars.
Later, Hasegawa and Tanimura47 have proposed another effi-

cient method to calculate the third-order response function by
exploiting backward nonequilibrium trajectories. In this method, the
third-order response function is re-expressed as

R(3)(t1, t2, t3) = β⟨ lim
ε→0

1
2ε

(µ(t2 + t3)E(t2) − µ(t2 + t3)E(t2))

×{βµ̇(−t1)µ̇(0)+ lim
ε→0

1
2ε

(µ̇(−t1)E(0)− µ̇(−t1)E(0))}⟩

−β⟨lim
ε→0

1
2ε

(µ(t2 + t3)E(t2) − µ(t2 + t3)E(t2))⟩

× ⟨βµ̇(−t1)µ̇(0)+ lim
ε→0

1
2ε

(µ̇(−t1)E(0)− µ̇(−t1)E(0))⟩,

(29)

where µ(t2 + t3)E(t2) and µ̇(−t1)E(0) denote the dipole moment
at t2 + t3 on the perturbed trajectory with the Hamiltonian H0
− εµEδ(t − t2) and the time derivative of dipole moment at −t1 on
the backward perturbed trajectory H0 − εµEδ(t), respectively, while
µ̇(−t1)µ̇(0) is evaluated from the equilibrium trajectory. In prac-
tical computations, the second term in Eq. (29) is required due to
the breakdown of equipartition.61 The backward-forward sampling
method given as Eq. (29) is particularly efficient for the sampling of
the response function at non-zero t2 values because the third-order
response functions at different t2 values can be efficiently calculated
by choosing the pair of initial configurations along the forward and
backward trajectories.

It should be noted that the experimental third-order nonlin-
ear spectra are obtained under different phase matching conditions
[see Eq. (8)]. For example, the 2D IR spectra consist of the responses
emitted along the wave vector directions kI = −k1 + k2 + k3 and kII
= +k1 − k2 + k3. However, the calculated third-order response func-
tion consists of all the wave vector components generated by three
incident electric fields, i.e., kIII = +k1 + k2 − k3 and kIV = +k1
+ k2 + k3 as well as kI and kII. Therefore, the components with
kIII and kIV have to be eliminated from the calculated third-order
responses for the 2D IR spectrum. The responses arising from the
individual phase matching conditions can easily be obtained by
using the nonequilibrium molecular dynamics approach in which
external electric fields are explicitly considered. Thus, various third-
order nonlinear spectroscopies, such as the three-pulse photon echo
peak shift and the pump-probe spectrum, can also be calculated.61
In the earlier studies, kIII and kIV components have been elimi-
nated by exploiting the fact that the three-dimensional Fourier trans-
formed spectra of kIII and kIV components show higher frequency
oscillation in ω2 than those of kI and kII.47–49,54

Hasegawa and Tanimura have applied the backward-forward
sampling method to the 2D IR spectra of liquid HF.47 As shown
in Fig. 4, the positive and negative peaks of intermolecular libra-
tion motion are located at (550 cm−1, 550 cm−1) and (550 cm−1,
400 cm−1), respectively. The frequency correlation of the libration
motion of liquid HF was found to be lost with a time scale of ∼200 fs.
It was also found that the width of the anti-diagonal line of the
peak is narrow compared with that of liquid water, indicating the
suppressed homogeneous broadening in liquid HF.

Yagasaki and Saito investigated the fluctuation and relaxation
of the intermolecular motions in liquid water by using the hybrid

method with the SPC/E model for water molecules.48 Figure 5
shows the 2D IR spectra of the intermolecular motions of liquid
water at several waiting times. The intermolecular translational and
librational motions are found below and above 300 cm−1, respec-
tively. As shown in Fig. 5, the tilt angle of the nodal line between
the positive and negative peaks of the librational motion decays
with a time constant of ∼110 fs. Yagasaki and Saito found that the
frequency fluctuation of librational motion becomes three times
slower when the translational motions of individual molecules are
frozen, indicating that the ultrafast frequency fluctuation of the
librational motion arises from the coupling between the translational
and librational motions. It was found that the three-pulse stimu-
lated photon-echo signal of the librational motion in water decays
with time scales of ∼20 and ∼100 fs, in which the slower time scale
is similar to that obtained from the change of the nodal line tilt
angle.48

The energy relaxation process of the librational modes has
been examined by the pump-probe signals calculated from the
third-order response functions.61 It was found that the absorption
changes at 700 and 800 cm−1 are induced by the initial decrease of
absorption due to the ground state bleach and stimulated emission
followed by the fast energy relaxation of the librational motion to
low frequency modes within ∼60 fs and the subsequent slow ther-
malization that corresponds to its energy relaxation to hot ground
states occurs in 500 fs. These time scales of the two relaxation
processes are consistent with the experimental results.62–64

As mentioned above, once third-order response functions with
individual phase-matching conditions are obtained, any third-order
nonlinear spectrum can be calculated in principle. However, despite
these developments of efficient computational approaches, the cal-
culation of the third-order response function is still expensive and
computationally demanding. In this regard, it should be noted that
other efficient computational methods to estimate mode-to-mode
vibrational energy relaxation rates have been developed by Yagasaki
and Saito65,66 and Jeon and Cho.67,68

Recently, the nonequilibrium molecular dynamics method has
also been applied to the intramolecular vibrational modes of H2O
in water.69 In this study, the 2D IR spectra of the OH stretch and
the HOH bending modes were calculated with the TTM3-F inter-
action potential, which is the ab initio-based charge transferable,
flexible, and polarizable Thole-type model to describe the inter-
and intra-molecular interactions in liquid water. The waiting time-
dependent changes of the OH stretch spectra indicate the heteroge-
neous dynamics of the local H-bonding network which has also been
found in an experimental result.70 The spectrum loses diagonal cor-
relation at waiting times larger than 200 fs, which is consistent with
the other quantum mechanical calculation results.71,72 The 2D IR
spectra of the HOH bend are found to have a smaller nodal line tilt
angle at T = 0 fs compared to the OH stretch spectra and become
parallel to the ω1 axis within ∼400 fs.

The pump-probe spectra of the OH stretch and the HOH bend
in water have also been calculated with the TTM3-F interaction
potential.69 The positive and negative peaks of the pump-probe
spectra of the OH stretch at (ωpump,ωprobe) = (3600 cm−1, 3225 cm−1)
and (3600 cm−1, 3600 cm−1), corresponding to the 1→ 2 and 0→ 1
transitions, show the initial decay with a time constant of 240 fs fol-
lowed by the slow relaxation to the hot-ground state. The calculated
time scale of the initial decay is in agreement with experimental
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FIG. 4. Correlation spectra of liquid HF at t2 = (a) 0 fs, (b) 20 fs, (c) 100 fs, (d) 200 fs, (e) 300 fs, and (f) 400 fs. The diagonal and off-diagonal peaks in each spectrum
arise from fundamental and anharmonic oscillations, respectively, of the hydrogen bond network in liquid HF. Reprinted with permission from T. Hasegawa and Y. Tanimura,
J. Chem. Phys. 128, 064511 (2008). Copyright 2008 AIP Publishing LLC.

results of 200-270 fs.73–75 The pump-probe spectra of the HOH
bend at (1650 cm−1, 1475 cm−1) and (1650 cm−1, 1650 cm−1) decay
with a time constant of 250 fs, which is in good agreement with the
experimental results of 170–260 fs.62,64 Furthermore, the frequency-
resolved kinetic energy analysis revealed the detailed relaxation pro-
cesses after the excitations of the OH stretch and HOH bend of H2O
in water.

C. Limitations
In this section, the classical simulation methods for the nonlin-

ear response functions were presented with their applications to the
calculations of the 2D IR and pump-probe spectra of liquids. Before
closing this section, we summarize the limitations of the classical
treatment of nonlinear spectral simulations.

The validity of the classical 2D IR spectra has been investi-
gated by several groups.76–81 It should be noted that the classical
nonlinear response functions are not stable, for example, for inte-
grable systems and systems without dissipation.77,78 Sakurai and
Tanimura examined the quantum effects on the simulated IR and
2D IR spectra of a Morse oscillator in a harmonic bath by solving the
quantum and classical hierarchical equations of motion (HEOM).80
They found that the classical 2D IR spectra are a good approximation
of the quantum 2D IR spectra when the system (vibration) is largely

modulated by the bath, i.e., via a strong system-bath coupling or a
fast bath modulation even in a weak system-bath coupling. On the
other hand, there are significant differences between the quantum
and classical mechanically calculated spectra when the modulation
due to the system-bath interactions is weak or slow. Very recently,
Reppert and Brumer have also shown that the classical 2D IR spec-
tra of a Morse oscillator, which mimics the amide I vibration, can
reproduce the qualitative features of the quantum 2D IR spectra
very well.81 As shown in these studies, the validity of the classical
mechanically calculated spectra depends on the system-bath cou-
pling. Notably, in their study, it was shown that the anharmonicity
of the classical signal is determined almost entirely by the frequency
resolution afforded by the simulated scan time t3.

Classical nonlinear spectral simulations can reproduce spec-
tra calculated with quantum methods qualitatively well when the
system vibration is largely modulated by the bath, such as those
examples discussed in this section. It should be noted, however,
that any vibrational spectra are described as transitions from one
vibrational level to another in quantum mechanics, whereas those
are obtained from the fluctuation of dipole moment in classical
mechanics. In quantum mechanics, wave functions or density matri-
ces are determined by non-local information; i.e., the kinetic energy
operator is expressed as the second derivative of coordinates in
the coordinate representation. The anharmonic shift in quantum
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FIG. 5. 2D IR correlation spectra of
intermolecular motion of liquid water at
several waiting times. The tilt angle is
defined as the angle between the ν1 axis
and the nodal line of the libration peak
as shown in (a) and is found to decay
with a time scale of 115 fs. Reprinted
with permission from T. Yagasaki and
S. Saito, J. Chem. Phys. 128, 154521
(2008). Copyright 2008 AIP Publishing
LLC.

2D IR spectra is thus determined by information about the whole
potential energy profile. On the other hand, no discrete vibra-
tional levels are considered in any classical approaches. In classi-
cal mechanics, a trajectory is determined by local information on
coordinates and momenta. Consequently, the anharmonic shift cor-
responding to the frequency difference between the positive and
negative peaks in the classical 2D IR spectra arises from the differ-
ence between the curvatures of trajectories perturbed by one and
two electric fields. As a result, in many examples including those
shown in this section, the anharmonic shifts in the classical 2D
IR spectra tend to be smaller than those in the experimental or
quantum mechanically calculated 2D IR spectra. In addition to the
potential profile, the transition dipole moment is also important
quantity for quantitative simulations of the IR and 2D IR spectra.
In quantum mechanics, a spectral intensity is related to the tran-
sition dipole moments between discrete vibrational levels. On the
other hand, the classical spectra are obtained by the dipole moment
induced by vibrational and conformational changes. Accurate model
potential and dipole moment are therefore extremely important to
accurately simulate the 2D IR spectra of complicated molecular
systems.

A fully quantum mechanical simulation of nuclear degrees
of freedom including all the effects of surrounding thermal
bath remains unpromising, despite the technological advancement
of computers. Therefore, semiclassical approaches, such as (lin-
earized) semiclassical-initial value representation,82 centroid molec-
ular dynamics,83 and ring-polymer molecular dynamics,84 have
been developed to accurately calculate the static and dynamic
properties of molecules in condensed phases; for example, the IR
spectrum of liquid water.85 A formalism for two-time correlation

functions has also been developed.86 It is hoped that these semiclas-
sical approaches will be able to provide a novel framework to cal-
culate the 2D IR spectra incorporating the nuclear quantum effects
by developing the formalism of nonlinear three-time correlation
functions.87

IV. NUMERICAL INTEGRATION
OF THE SCHRÖDINGER EQUATION

The response functions described in Sec. II can be calculated
with quantum-classical simulations. This essentially involves solv-
ing the time-dependent Schrödinger equation. In the first applica-
tion of the method to systems involving more than one vibration,
it was referred to as the Numerical Integration of the Schrödinger
Equation (NISE) approach.88–90 To evaluate the response functions,
one must identify the essential coordinates directly coupled with
light and treat those as weakly anharmonic oscillators represented
by coupled three-level systems. All other coordinates are treated
classically and only included through their time-dependent mod-
ulation of the parameters in the quantum system. In reality, the
full vibrational quantum Hamiltonian will contain anharmonici-
ties of all orders. For efficient calculations, one typically employs
an effective model Hamiltonian, where all anharmonicities are col-
lected in one effective quartic anharmonicity term sufficient to
describe the energy fluctuations of the three energy levels crucial
for the 2D IR spectroscopy. This approximation leads to an effec-
tive expression without anharmonicity terms that can cause relax-
ation between the three vibrational levels. The quantum system
is, thus, typically described by the time-dependent effective model
Hamiltonian
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H(t) =
N
∑
n
h̵ωn(t)B†

nBn +
N
∑
n,m

Jnm(t)B†
nBm −

1
2

N
∑
n
∆n(t)B†

nB
†
nBnBn

+
N
∑
n
E⃗(t) ⋅ µ⃗n(t)(B†

n + Bn)+
N
∑
n
E⃗(t) ⋅ ¯̄αn(t) ⋅ E⃗(t)(B†

n +Bn).

(30)

Here, B†
n and Bm are the Bosonic creation and annihilation opera-

tors for the N vibrations considered quantum mechanically, which
are numbered with indices n and m, respectively. The individual
local vibrations are characterized by their frequencies, ωn(t), tran-
sition dipoles, µ⃗n(t), transition polarizabilities, αn(t), and anhar-
monicities, ∆n(t). The different local vibrations are mixed by their
mutual coupling, Jnm(t). This is a generalization of Eq. (9) applica-
ble to coupled multi-chromophore systems. The time-dependence
arises from the couplings of the quantum oscillators with the classi-
cal bath coordinates. The last two terms account for the interaction
with the applied electric field(s), E⃗(t), and are included through
the time-dependent perturbation theory that results in the response
function formulation. Determining the fluctuating quantities in the
Hamiltonian depends on the system under consideration and will
be discussed in Sec. IV A. If we assume that these are known, the
response functions can be calculated through the calculation of the
time-evolution operators. To determine these, the solution of the
time-dependent Schrödinger equation is needed. However, if time
is divided into short enough intervals (∆t) that the Hamiltonian can
be considered constant the trivial solution of the time-evolution dur-
ing one time interval is given by the solution of the time-dependent
Schrödinger equation with a time-independent Hamiltonian and the
time-evolution operators for longer time intervals are obtained by
successive application of time-evolution operators for neighboring
time intervals.

In practical calculations, the Hamiltonian in Eq. (30) only
includes a change in the number of vibrations in the terms involving
the coupling with the external electric field(s) and thermalization is
not included. Therefore, the remaining part of the Hamiltonian is
block diagonal. This allows treating the ground state, single excited
states, and double excited states, separately. As there is only one
ground state and the energy of this is set to zero, the time-evolution
operator is the unit operator. When N vibrational degrees of free-
dom are treated, there are N single excited states and N(N + 1)/2
double excited states. The time-evolution in each excitation mani-
fold can be evaluated independently in the corresponding harmonic
basis, which, in principle, requires the evaluation of matrix exponen-
tials of the corresponding dimensionalities, which is typically done
by diagonalizing the Hamiltonian, multiplying the eigenvalues with
−i∆t/h̵, taking the exponent and transforming back to the original
basis. However, in practice, the time-evolution matrix for the dou-
ble excited states can be made more efficient as the time required
for the direct evaluation of the time-evolution operator scales as N,6
which is a costly procedure to repeat even for moderately sized sys-
tems. Among the solutions to this problem are the nonlinear exciton
propagation scheme,91 which utilizes an anharmonic perturbation
of the harmonic solution, and an approach based on the Trotter
algorithm making use of the sparse nature of the Hamiltonian of the
doubly excited states.92,93 The latter allowed the calculation of the
2D IR spectra of systems up to 864 coupled vibrations for water
ices94,95 as well as applications to the amide I band of full

proteins.96–98 Numerous applications of the NISE method for 2D
vibrational spectroscopy have been implemented when only one
vibration is involved.99–102 A few different implementations appli-
cable to coupled systems have been presented.88–93,103

A. Hamiltonian parameterization, frequency maps
The terms in the Hamiltonian in Eq. (30) have different ori-

gins, and their bath dependence can be parameterized in different
ways. In the following, the different terms will be considered one
by one. First, the vibrational frequency of a given mode depends
on the local environment. The well-known Stark shift is a simple
way to describe such frequency shift and fluctuation. Local elec-
tric fields modulate the vibrational frequency, and this type of effect
can be parameterized by ab initio calculations of the vibrational fre-
quency in different point charge environments of inhomogeneous
electric fields. In this way, the solvent dependence of the vibrational
frequencies of a number of common vibrations has been param-
eterized expressing the vibrational frequency in an expansion of
the electric potential104–108 or electric field102,109–125 and some-
times the electric field gradient126–130 on specific points inside a
molecule. The parameterization of the solvatochromic vibrational
frequency shift parameters can either be obtained from ab initio
calculations or empirical fitting to experimental data. These map-
pings then allow obtaining a frequency trajectory from a molec-
ular dynamics trajectory. As typical frequencies fluctuate on a
sub-picosecond time scale, the trajectories need to be sampled
and saved every ∼20 fs and typical lengths are on the order of
nanoseconds.

In reality, the solvatochromic vibrational frequency shift is not
just an electrostatic effect. Charge transfer, dispersion forces, Pauli
repulsion, polarization, and multipole effects may further play a
role.121,125,131–137 Empirical models may compensate for this as
long as other effects are correlated with electrostatic potential/field
fluctuations. Ab initio calculations based on clusters, where the elec-
trons of the solvent molecules are treated explicitly, may also be
able to account for such effects in an efficient way. Detailed analy-
sis of the amide I vibrations has shown that the various other effects
tend to cancel out.132,136 For other systems, this may not be the
case.

The anharmonicity also depends on the solvent, and this
dependence has been included in mappings.102,126,128 Still, for
many systems such as the amide I vibrations in proteins, the
variation in the anharmonicity is small relative to the variation
in the frequencies and the solvent dependence can be neglected
using a constant anharmonicity value for each type of vibrational
mode.

The couplings between different local modes, for long-range
interactions, are well approximated by the transition-dipole cou-
pling model.138–143 Transition charge coupling models have been
developed for intermediate range couplings.130,144,145 These mod-
els account for some multipole contributions to the electrostatic
interaction. For vibrational modes directly connected through cova-
lent bonds, ab initio based coupling models have been devel-
oped. This has both been done for the OH stretch vibrations in
the water molecule,146 for neighboring amide I modes in a pep-
tide chain,117,118,130,145,147,148 and amide I and II modes in the
same and neighboring peptide units of proteins.129,149 Ab initio
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modeling of the vibrational couplings in small peptides and DNA
has also been reported based on the polarizable continuum model
(PCM) description of solvent.150,151 For the peptide units, this cou-
pling depends on the local configuration, as characterized by the
Ramachandran angles. The developed mappings were thus made
by varying these angles systematically for small di- or tri-peptides
and then calculate the vibrational coupling through ab initio cal-
culations. Just as for the vibrational frequencies, the couplings
can be extracted from molecular dynamics trajectories using these
mappings.

Figure 6 illustrates a comparison between the spectra simu-
lated for the OH stretch of water molecules diluted in acetonitrile
and experimental data. The evolution of cross-peaks between the
high-frequency asymmetric OH-stretch and the low-frequency sym-
metric OH-stretch is well described by the theory. Furthermore,
the difference in the dynamics of the two peaks, which was the
focus of the study,152 is revealed by the center line slope anal-
ysis. From the simulations, this could be interpreted in terms of
non-Gaussian dynamics as the bath dynamics for strong hydrogen
bond environments is faster than for weak hydrogen bond environ-
ments. As strong hydrogen bonded OH-stretches absorb at lower
frequencies, the fast dynamics contributes more to the low fre-
quency symmetric vibration peak. While the anharmonicity of OH-
stretch modes is around 200 cm−1, a sequential transition is observed
with a much smaller apparent anharmonicity. This phenomenon
arises as the large anharmonicity largely localizes the double excited
states.

B. Mappings for interactions
and the related techniques

A linear absorption spectrum can be calculated from the one-
time (two-point) transition-dipole response function, while the 2D
IR spectra are governed by a combination of six three-time (four-
point) transition-dipole response functions related to rephasing and
non-rephasing versions of the ground state bleach, stimulated emis-
sion, and excited state absorption pathways (Sec. II). The transition-
dipoles of different states are reflected in the relative intensity of
the peaks. Ultrafast reorientation of the transition-dipoles resulting
from molecular reorientation153–156 and vibrational energy trans-
fer72,153,157 can be monitored by measuring 2D IR spectra using
different polarizations158,159 of the applied laser fields. Cross peak
intensities in the 2D IR spectra depend on the relative orientation
of the transition dipoles of the two involved resonances. This allows
for the determination of molecular geometries160–162 and is pow-
erful in the peak assignment. For many vibrations, the transition-
dipole magnitude is fairly independent of the solvent environment.
A clear exception of this is the OH-stretch vibration, which in
water shows a five-fold change across the spectrum,163 with the
very weak dipole strength of the free OH-stretch vibration and
very strong absorption of a strongly H-bonded OH species. There-
fore, it is crucial to include the variation of the transition-dipole
in the modeling. This has been done very similar to how the sol-
vent effects are accounted for through mapping for the vibrational
frequencies.102,128,130,163

Raman spectra,102,146,164,165 sum-frequency generation,166–169
and 2D sum-frequency generation17,18,168,170–173 spectroscopy sig-
nals can be calculated using similar response functions as for

FIG. 6. 2D IR spectra for parallel laser polarization of the OH-stretch of water
dissolved in acetonitrile at different waiting times t23 reproduced with permission
from Jansen et al. J. Phys. Chem. A 113, 6260 (2009), Copyright 2009 Amer-
ican Chemical Society. (a) and (b) present experimental and simulated data,
respectively. Dotted lines show the frequencies of symmetric and asymmetric
stretching modes of the H2O molecule. The 2D spectra are normalized to the
maximal amplitude. Red contours illustrate bleach signals, while the cyan con-
tours illustrate excited state absorption. The contour lines are drawn at 10% steps
of the maximal amplitude in each individual plot. Solid black illustrated the max
lines.

linear absorption and 2D IR spectroscopies. The only major change
is that one needs to replace transition-dipoles in the expressions with
transition-polarizabilities. The possible polarization setups available
increase as the transition-polarizabilities represent two interactions
with external visible laser fields, while the transition-dipoles rep-
resent one interaction with an infrared laser field. This opens a
possibility of directly probing molecular orientational distribution.
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Most importantly in the sum-frequency generation type experi-
ments, which are only sensitive to non-centrosymmetric signal con-
tributions,167,168,174,175 the orientation of the vibrations relative
to the sample surface can be determined. Just as the transition-
dipole, the transition-polarizability depends on the environment.
This has been studied for the OH-stretch of water using an
electric field mapping. Still, the solvent effect both for the OH-
stretch and other systems is relatively small.102,146 The difference
between the transition-dipole and the transition-polarizability sol-
vent effects results in a non-coincidence effect147,176,177 making the
infrared and Raman type spectra exhibit significantly different line-
shapes. In particular, Raman and SFG spectra in the OH-stretch
region are much more sensitive to free OH-species than infrared
spectra.146

C. Limitations—Bandwidth, high-frequency modes
The quantum-classical methods discussed here have a number

of important advantages and limitations. The methods are pow-
erful in providing a quantum description of a given system and
allow for treating essentially arbitrary bath dynamics, as provided
by the combination of mappings and molecular dynamics simu-
lations. For example, the methods allow describing non-Gaussian
dynamics152,178–182 and chemical exchange101,155,179,183–192 aris-
ing when the bath coordinates are not harmonic. Commonly used
methods invoking the second-order cumulant approximation34,193
or methods assuming a harmonic bath spectral density194–197 can-
not account for such effects. The methods can use input from molec-
ular dynamics simulations and are thus able to predict spectra start-
ing from first principles. Sometimes it is not desirable to perform a
full molecular dynamics simulation, and then stochastic models can
be employed instead.183,198

The Hamiltonian in Eq. (30) does not allow for relaxations
between the different excitation manifolds. This means that vibra-
tional energy relaxation is intrinsically neglected. Furthermore, the
methods account for the effect that the bath exerts on the system,
while the feedback of the system to the bath when the system is
on an excited state is not included.140,199–201 This results in a lack
of correct thermalization in the quantum system, which leads to
an equal population of all quantum states after equilibration.201 In
practice, this means that artifacts can be expected at low temper-
atures, and when broad spectral ranges are considered, where the
thermal energy is comparable to the width of the considered spec-
tral region. In systems like water and ice, the OH-stretch band is
broader than the thermal energy at room temperature, but still fairly
good approximations of the spectra are found for such systems as
long as the waiting time is not too long.72 For longer waiting times,
persistent ground state bleach signals are observed in experiments
resulting from the thermalization effect. A number of attempts to
overcome this issue have been reported;140–143 however, includ-
ing feedback to the bath and thermalization effects that, generally,
require simultaneous propagation of the bath modes and the sys-
tem Hamiltonian resulting in the need for extensive computational
time.

Another limitation of the method is that the modes treated
quantum mechanically should be well defined. OH-stretch vibra-
tions are an example of such well-defined modes as the OH-
bond under normal circumstances does not break at ambient

temperatures. On the contrary, hydrogen bonds form and break all
the time and such low-frequency volatile bond vibrations are not
suited for this quantum-classical treatment as their nature is dynam-
ically changed on the short time-scale of the spectroscopy. If a vibra-
tion of interest is strongly coupled with many other modes, this also
poses a problem as all the strongly coupled modes would need to
be included in the system Hamiltonian for an accurate description
requiring extensive parameterization and long simulation times. In
such case, the methods discussed in Sec. III of this paper may be
worth considering.

V. PERSPECTIVES AND A FEW
CONCLUDING REMARKS

While 2D IR spectra contain valuable information on cou-
plings, anharmonicity, and frequency correlation, more informa-
tion can be obtained through higher-order methods generating
multidimensional spectra. Three-dimensional infrared spectroscopy
has been explored experimentally202 and simulated203,204 with a
method based on that described in Sec. IV. Still the interpreta-
tion of such spectra remains very challenging. Infrared methods can
also be combined with electronic spectroscopy205,206 to reveal the
vibrations on the electronic state or to utilize the longer lifetime of
the electronic state to probe reaction dynamics. With fluorescence
detection,207 2D IR spectroscopy and microscopy would also be
possible.208

In the NISE method described in Sec. IV, an essential step is the
modeling and parameterization of the multi-chromophore Hamilto-
nian from electronic structure calculations on their static structures.
By contrast, the classical mechanical approach in Sec. III relies on
the accurate description of the molecular vibrational property in the
context of classical dynamics. This often requires the use of sophis-
ticated molecular mechanics potential models21,209 or quantum
mechanical potentials. In this regard, recently proposed ab initio
theories of vibrational solvatochromism135–137 and direct QM/MM
or full ab initio MD simulations of vibrational spectra210–213 can be
fruitfully adapted for either approach to improve their efficiency or
accuracy.

2D vibrational spectra can be calculated using the exact hierar-
chical equations of motion (HEOM) approach.80,214,215 It should
be, however, noted that this HEOM approach is based on the
assumption of a spectral density description of the bath, which
means that the bath is modelled as a collection of independent
harmonic oscillators, i.e., the Caldeira-Leggett quantum dissipative
bath model.216 Under this assumption, the quantum correlation
between the system and the bath can be fully accounted for. How-
ever, this method scales rather unfavorably, limiting its application
to relatively small systems even though a number of approxima-
tions have been developed to improve efficiency.217 Another limita-
tion is that the method requires the parameterization of the spectral
density.

In summary, we have presented a brief introduction to the
fundamental theory and computational methods used to numeri-
cally simulate linear and nonlinear vibrational response functions
and the corresponding spectra. One of the widely used methods
is to approximate the associated quantum mechanical nonlinear
response function with invoking classical approximations so that
the linear and nonlinear vibrational response functions can be
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evaluated by using classical MD simulation trajectories of either
equilibrium or non-equilibrium systems. The second method of
choice is to solve the time-dependent Schrödinger equation of cou-
pled oscillators where their frequencies, coupling constants, and
anharmonicities that are fluctuating in time due to the system-
bath interactions can be obtained from independent computational
methods. Here, a few representative cases were presented and dis-
cussed. Over the past decade, a variety of 2D vibrational spec-
troscopic techniques that utilize femtosecond IR, THz, and visible
pulses have been developed and used to study large-scale delocalized
modes in condensed phases and ultrafast reaction dynamics dur-
ing chemical and biological reactions. Thus, we anticipate that the
computational and theoretical methods for accurate calculations of
coherent multidimensional vibrational spectroscopic signals of cou-
pled multi-chromophore systems could be incorporated into various
MD simulation and quantum chemistry calculation program pack-
ages to help the experimentalists in this and related areas to inter-
pret their experimental results and to further understand underlying
principles, mechanisms, and functions of materials and molecules in
condensed phases.
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