276 research outputs found

    An evaluation of the potential of Sentinel 1 for improving flash flood predictions via soil moisture–data assimilation

    Get PDF
    open8siThe assimilation of satellite-derived soil moisture estimates (soil moisture–data assimilation, SM–DA) into hydrological models has the potential to reduce the uncertainty of streamflow simulations. The improved capacity to moni- tor the closeness to saturation of small catchments, such as those characterizing the Mediterranean region, can be exploited to enhance flash flood predictions. When compared to other microwave sensors that have been exploited for SM– DA in recent years (e.g. the Advanced SCATterometer – AS- CAT), characterized by low spatial/high temporal resolution, the Sentinel 1 (S1) mission provides an excellent opportu- nity to monitor systematically soil moisture (SM) at high spatial resolution and moderate temporal resolution. The aim of this research was thus to evaluate the impact of S1-based SM–DA for enhancing flash flood predictions of a hydro- logical model (Continuum) that is currently exploited for civil protection applications in Italy. The analysis was car- ried out in a representative Mediterranean catchment prone to flash floods, located in north-western Italy, during the time period October 2014–February 2015. It provided some important findings: (i) revealing the potential provided by S1- based SM–DA for improving discharge predictions, espe- cially for higher flows; (ii) suggesting a more appropriate pre-processing technique to be applied to S1 data before the assimilation; and (iii) highlighting that even though high spa- tial resolution does provide an important contribution in a SM–DA system, the temporal resolution has the most crucial role. S1-derived SM maps are still a relatively new product and, to our knowledge, this is the first work published in an international journal dealing with their assimilation within a hydrological model to improve continuous streamflow simulations and flash flood predictions. Even though the reported results were obtained by analysing a relatively short time pe- riod, and thus should be supported by further research activ- ities, we believe this research is timely in order to enhance our understanding of the potential contribution of the S1 data within the SM–DA framework for flash flood risk mitigation.openCenci, Luca; Pulvirenti, Luca; Boni, Giorgio; Chini, Marco; Matgen, Patrick; Gabellani, Simone; Squicciarino, Giuseppe; Pierdicca, NazzarenoCenci, Luca; Pulvirenti, Luca; Boni, Giorgio; Chini, Marco; Matgen, Patrick; Gabellani, Simone; Squicciarino, Giuseppe; Pierdicca, Nazzaren

    Defining a Trade-Off Between Spatial and Temporal Resolution of a Geosynchronous SAR mission for Soil Moisture Monitoring

    Get PDF
    The next generation of synthetic aperture radar (SAR) systems could foresee satellite missions based on a geosynchronous orbit (GEO SAR). These systems are able to provide radar images with an unprecedented combination of spatial ( 641 km) and temporal ( 6412 h) resolutions. This paper investigates the GEO SAR potentialities for soil moisture (SM) mapping finalized to hydrological applications, and defines the best compromise, in terms of image spatio-temporal resolution, for SM monitoring. A synthetic soil moisture\u2013data assimilation (SM-DA) experiment was thus set up to evaluate the impact of the hydrological assimilation of different GEO SAR-like SM products, characterized by diverse spatio-temporal resolutions. The experiment was also designed to understand if GEO SAR-like SM maps could provide an added value with respect to SM products retrieved from SAR images acquired from satellites flying on a quasi-polar orbit, like Sentinel-1 (POLAR SAR). Findings showed that GEO SAR systems provide a valuable contribution for hydrological applications, especially if the possibility to generate many sub-daily observations is sacrificed in favor of higher spatial resolution. In the experiment, it was found that the assimilation of two GEO SAR-like observations a day, with a spatial resolution of 100 m, maximized the performances of the hydrological predictions, for both streamflow and SM state forecasts. Such improvements of the model performances were found to be 45% higher than the ones obtained by assimilating POLAR SAR-like SM maps

    Data Assimilation in high resolution Numerical Weather Prediction models to improve forecast skill of extreme hydrometeorological events.

    Get PDF
    The complex orography typical of the Mediterranean area supports the formation, mainly during the fall season, of the so-called back-building Mesoscale Convective Systems (MCS) producing torrential rainfall often resulting into flash floods. These events are hardly predictable from a hydrometeorological standpoint and may cause significant amount of fatalities and socio-economic damages. Liguria region is characterized by small catchments with very short hydrological response time, and it has been proven to be very exposed to back-building MCSs occurrence. Indeed this region between 2011 and 2014 has been hit by three intense back-building MCSs causing a total death toll of 20 people and several hundred million of euros of damages. Building on the existing relationship between significant lightning activity and deep convection and precipitation, the first part of this work assesses the performance of the Lightning Potential Index, as a measure of the potential for charge generation and separation that leads to lightning occurrence in clouds, for the back-building Mesoscale Convective System which hit Genoa city (Italy) in 2014. An ensemble of Weather Research and Forecasting simulations at cloud-permitting grid spacing (1 km) with different microphysical parameterizations is performed and compared to the available observational radar and lightning data. The results allow gaining a deeper understanding of the role of lightning phenomena in the predictability of back-building Mesoscale Convective Systems often producing flash flood over western Mediterranean complex topography areas. Despite these positive and promising outcomes for the understanding highly-impacting MCS, the main forecasting issue, namely the uncertainty in the correct reproduction of the convective field (location, timing, and intensity) for this kind of events still remains open. Thus, the second part of the work assesses the predictive capability, for a set of back-building Liguria MCS episodes (including Genoa 2014), of a hydro-meteorological forecasting chain composed by a km-scale cloud resolving WRF model, including a 6 hour cycling 3DVAR assimilation of radar reflectivity and conventional ground sensors data, by the Rainfall Filtered Autoregressive Model (RainFARM) and the fully distributed hydrological model Continuum. A rich portfolio of WRF 3DVAR direct and indirect reflectivity operators, has been explored to drive the meteorological component of the proposed forecasting chain. The results confirm the importance of rapidly refreshing and data intensive 3DVAR for improving first quantitative precipitation forecast, and, subsequently flash-floods occurrence prediction in case of back-building MCSs events. The third part of this work devoted the improvement of severe hydrometeorological events prediction has been undertaken in the framework of the European Space Agency (ESA) STEAM (SaTellite Earth observation for Atmospheric Modelling) project aiming at investigating, new areas of synergy between high-resolution numerical atmosphere models and data from spaceborne remote sensing sensors, with focus on Copernicus Sentinels 1, 2 and 3 satellites and Global Positioning System stations. In this context, the Copernicus Sentinel satellites represent an important source of data, because they provide a set of high-resolution observations of physical variables (e.g. soil moisture, land/sea surface temperature, wind speed, columnar water vapor) to be used in NWP models runs operated at cloud resolving grid spacing . For this project two different use cases are analyzed: the Livorno flash flood of 9 Sept 2017, with a death tool of 9 people, and the Silvi Marina flood of 15 November 2017. Overall the results show an improvement of the forecast accuracy by assimilating the Sentinel-1 derived wind and soil moisture products as well as the Zenith Total Delay assimilation both from GPS stations and SAR Interferometry technique applied to Sentinel-1 data

    A Complete Meteo/Hydro/Hydraulic Chain Application to Support Early Warning and Monitoring Systems: The Apollo Medicane Use Case

    Get PDF
    Because of the ongoing changing climate, extreme rainfall events’ frequency at the global scale is expected to increase, thus resulting in high social and economic impacts. A Meteo/Hydro/Hydraulic forecasting chain combining heterogeneous observational data sources is a crucial component for an Early Warning System and is a fundamental asset for Civil Protection Authorities to correctly predict these events, their effects, and put in place anticipatory actions. During the last week of October 2021 an intense Mediterranean hurricane (Apollo) affected many Mediterranean countries (Tunisia, Algeria, Malta, and Italy) with a death toll of seven people. The CIMA Meteo/Hydro/Hydraulic forecasting chain, including the WRF model, the hydrological model Continuum, the automatic system for water detection (AUTOWADE), and the hydraulic model TELEMAC-2D, was operated in real-time to predict the Apollo weather evolution as well as its hydrological and hydraulic impacts, in support of the early warning activities of the Italian Civil Protection Department. The WRF model assimilating radar data and in situ weather stations showed very good predictive capability for rainfall timing and location over eastern Sicily, thus supporting accurate river flow peak forecasting with the hydrological model Continuum. Based on WRF predictions, the daily automatic system for water detection (AUTOWADE) run using Sentinel 1 data was anticipated with respect to the scheduled timing to quickly produce a flood monitoring map. Ad hoc tasking of the COSMO-SkyMed satellite constellation was also performed to overcome the S1 data latency in eastern Sicily. The resulting automated operational mapping of floods and inland waters was integrated with the subsequent execution of the hydraulic model TELEMAC-2D to have a complete representation of the flooded area with water depth and water velocity

    The future of Earth observation in hydrology

    Get PDF
    In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles (UAVs), and smartphone technologies that are being embraced by both for-profit companies and individual researchers. Over the previous decades, space agency efforts have brought forth well-known and immensely useful satellites such as the Landsat series and the Gravity Research and Climate Experiment (GRACE) system, with costs typically of the order of 1 billion dollars per satellite and with concept-to-launch timelines of the order of 2 decades (for new missions). More recently, the proliferation of smart-phones has helped to miniaturize sensors and energy requirements, facilitating advances in the use of CubeSats that can be launched by the dozens, while providing ultra-high (3-5 m) resolution sensing of the Earth on a daily basis. Start-up companies that did not exist a decade ago now operate more satellites in orbit than any space agency, and at costs that are a mere fraction of traditional satellite missions. With these advances come new space-borne measurements, such as real-time high-definition video for tracking air pollution, storm-cell development, flood propagation, precipitation monitoring, or even for constructing digital surfaces using structure-from-motion techniques. Closer to the surface, measurements from small unmanned drones and tethered balloons have mapped snow depths, floods, and estimated evaporation at sub-metre resolutions, pushing back on spatio-temporal constraints and delivering new process insights. At ground level, precipitation has been measured using signal attenuation between antennae mounted on cell phone towers, while the proliferation of mobile devices has enabled citizen scientists to catalogue photos of environmental conditions, estimate daily average temperatures from battery state, and sense other hydrologically important variables such as channel depths using commercially available wireless devices. Global internet access is being pursued via high-altitude balloons, solar planes, and hundreds of planned satellite launches, providing a means to exploit the "internet of things" as an entirely new measurement domain. Such global access will enable real-time collection of data from billions of smartphones or from remote research platforms. This future will produce petabytes of data that can only be accessed via cloud storage and will require new analytical approaches to interpret. The extent to which today's hydrologic models can usefully ingest such massive data volumes is unclear. Nor is it clear whether this deluge of data will be usefully exploited, either because the measurements are superfluous, inconsistent, not accurate enough, or simply because we lack the capacity to process and analyse them. What is apparent is that the tools and techniques afforded by this array of novel and game-changing sensing platforms present our community with a unique opportunity to develop new insights that advance fundamental aspects of the hydrological sciences. To accomplish this will require more than just an application of the technology: in some cases, it will demand a radical rethink on how we utilize and exploit these new observing systems

    10th HyMeX Workshop

    Get PDF

    Improving Flood Detection and Monitoring through Remote Sensing

    Get PDF
    As climate-change- and human-induced floods inflict increasing costs upon the planet, both in terms of lives and environmental damage, flood monitoring tools derived from remote sensing platforms have undergone improvements in their performance and capabilities in terms of spectral, spatial and temporal extents and resolutions. Such improvements raise new challenges connected to data analysis and interpretation, in terms of, e.g., effectively discerning the presence of floodwaters in different land-cover types and environmental conditions or refining the accuracy of detection algorithms. In this sense, high expectations are placed on new methods that integrate information obtained from multiple techniques, platforms, sensors, bands and acquisition times. Moreover, the assessment of such techniques strongly benefits from collaboration with hydrological and/or hydraulic modeling of the evolution of flood events. The aim of this Special Issue is to provide an overview of recent advancements in the state of the art of flood monitoring methods and techniques derived from remotely sensed data

    A roadmap for high-resolution satellite soil moisture applications – confronting product characteristics with user requirements

    Get PDF
    Soil moisture observations are of broad scientific interest and practical value for a wide range of applications. The scientific community has made significant progress in estimating soil moisture from satellite-based Earth observation data, particularly in operationalizing coarse-resolution (25-50 km) soil moisture products. This review summarizes existing applications of satellite-derived soil moisture products and identifies gaps between the characteristics of currently available soil moisture products and the application requirements from various disciplines. We discuss the efforts devoted to the generation of high-resolution soil moisture products from satellite Synthetic Aperture Radar (SAR) data such as Sentinel-1 C-band backscatter observations and/or through downscaling of existing coarse-resolution microwave soil moisture products. Open issues and future opportunities of satellite-derived soil moisture are discussed, providing guidance for further development of operational soil moisture products and bridging the gap between the soil moisture user and supplier communities

    The Global Flood Partnership Conference 2017 - From hazards to impacts

    Get PDF
    From 27 – 29 June 2017, the 2017 Global Flood Partnership Conference was held at the University of Alabama, U.S.A. More than 90 participants attended the conference coming from 11 different countries in 5 continents. They represented 56 institutions including international organisations, the private sector, national authorities, universities, governmental research agencies and non-profit organisations. Each year, floods cause devastating losses and damage across the world. Growing populations in ill-planned flood-prone coastal and riverine areas are increasingly exposed to more extreme rainfall events. With more population and economic assets at risk, governments, banks, international development and relief agencies, and private firms are investing in flood reduction measures. However, in many countries, the flood risk is not managed optimally because of a lack of scientific data and methods or a communication gap between science and risk managers. The Global Flood Partnership was launched in 2014 and is a cooperation framework between scientific organisations and flood disaster managers worldwide to develop flood observational and modeling infrastructure, leveraging on existing initiatives for better predicting and managing flood disaster impacts and flood risk globally. The conference theme was “From hazards to impacts” and participants had the opportunity to showcase their latest relevant research and activities. As usual, the advances and success stories of the Partnership were reviewed and the next steps to further strengthen the GFP were discussed. As in past meetings, participants had numerous opportunities to present their work, exchange ideas, and turn it into a lively and successful meeting. This included a "Marketplace of Ideas" session, "Ignite" talks, Problem-solving session, workshops, poster pitch session and breakout groups.JRC.E.1-Disaster Risk Managemen
    • …
    corecore