172 research outputs found

    Experimental Study And Modeling Of Mechanical Micro-machining Of Particle Reinforced Heterogeneous Materials

    Get PDF
    This study focuses on developing explicit analytical and numerical process models for mechanical micro-machining of heterogeneous materials. These models are used to select suitable process parameters for preparing and micro-machining of these advanced materials. The material system studied in this research is Magnesium Metal Matrix Composites (Mg-MMCs) reinforced with nano-sized and micro-sized silicon carbide (SiC) particles. This research is motivated by increasing demands of miniaturized components with high mechanical performance in various industries. Mg-MMCs become one of the best candidates due to its light weight, high strength, and high creep/wear resistance. However, the improved strength and abrasive nature of the reinforcements bring great challenges for the subsequent micro-machining process. Systematic experimental investigations on the machinability of Mg-MMCs reinforced with SiC nano-particles have been conducted. The nanocomposites containing 5 Vol.%, 10 Vol.% and 15 Vol.% reinforcements, as well as pure magnesium, are studied by using the Design of Experiment (DOE) method. Cutting forces, surface morphology and surface roughness are characterized to understand the machinability of the four materials. Based on response surface methodology (RSM) design, experimental models and related contour plots have been developed to build a connection between different materials properties and cutting parameters. Those models can be used to predict the cutting force, the surface roughness, and then optimize the machining process. An analytical cutting force model has been developed to predict cutting forces of MgMMCs reinforced with nano-sized SiC particles in the micro-milling process. This model is iv different from previous ones by encompassing the behaviors of reinforcement nanoparticles in three cutting scenarios, i.e., shearing, ploughing and elastic recovery. By using the enhanced yield strength in the cutting force model, three major strengthening factors are incorporated, including load-bearing effect, enhanced dislocation density strengthening effect and Orowan strengthening effect. In this way, the particle size and volume fraction, as significant factors affecting the cutting forces, are explicitly considered. In order to validate the model, various cutting conditions using different size end mills (100 µm and 1 mm dia.) have been conducted on Mg-MMCs with volume fraction from 0 (pure magnesium) to 15 Vol.%. The simulated cutting forces show a good agreement with the experimental data. The proposed model can predict the major force amplitude variations and force profile changes as functions of the nanoparticles’ volume fraction. Next, a systematic evaluation of six ductile fracture models has been conducted to identify the most suitable fracture criterion for micro-scale cutting simulations. The evaluated fracture models include constant fracture strain, Johnson-Cook, Johnson-Cook coupling criterion, Wilkins, modified Cockcroft-Latham, and Bao-Wierzbicki fracture criterion. By means of a user material subroutine (VUMAT), these fracture models are implemented into a Finite Element (FE) orthogonal cutting model in ABAQUS/Explicit platform. The local parameters (stress, strain, fracture factor, velocity fields) and global variables (chip morphology, cutting forces, temperature, shear angle, and machined surface integrity) are evaluated. Results indicate that by coupling with the damage evolution, the capability of Johnson-Cook and Bao-Wierzbicki can be further extended to predict accurate chip morphology. Bao-Wierzbiki-based coupling model provides the best simulation results in this study. v The micro-cutting performance of MMCs materials has also been studied by using FE modeling method. A 2-D FE micro-cutting model has been constructed. Firstly, homogenized material properties are employed to evaluate the effect of particles’ volume fraction. Secondly, micro-structures of the two-phase material are modeled in FE cutting models. The effects of the existing micro-sized and nano-sized ceramic particles on micro-cutting performance are carefully evaluated in two case studies. Results show that by using the homogenized material properties based on Johnson-Cook plasticity and fracture model with damage evolution, the micro-cutting performance of nano-reinforced Mg-MMCs can be predicted. Crack generation for SiC particle reinforced MMCs is different from their homogeneous counterparts; the effect of micro-sized particles is different from the one of nano-sized particles. In summary, through this research, a better understanding of the unique cutting mechanism for particle reinforced heterogeneous materials has been obtained. The effect of reinforcements on micro-cutting performance is obtained, which will help material engineers tailor suitable material properties for special mechanical design, associated manufacturing method and application needs. Moreover, the proposed analytical and numerical models provide a guideline to optimize process parameters for preparing and micro-machining of heterogeneous MMCs materials. This will eventually facilitate the automation of MMCs’ machining process and realize high-efficiency, high-quality, and low-cost manufacturing of composite materials

    Investigation into micro machinability of Mg based metal matrix compostites (MMCs) reinforced with nanoparticles

    Get PDF
    PhD ThesisAs composite materials with combination of low weight and high engineering strength, traditional metal matrix composites (MMCs) with micro-sized reinforcement (micro-MMCs) have been utilized in numerous area such as aerospace, automobile, medical and advanced weapon systems in the past two decades. With the development of composite materials, metal matrix composites reinforced with small volume fraction of nano-sized reinforcements (nanoMMCs) exhibits an equivalent and even better properties than that reinforced with large volume of micro-sized reinforcement and thus receive increasing attention from academia and industries. MMCs components are typically fabricated in near net shape process such as casting. But micro machining processes are indispensable in order to meet the increasing demands on the component with high dimensional accuracy and complex shapes. However, the enhanced mechanical properties of MMCs and tool-like hardness of reinforced particles bring challenges to machining process. The deteriorative machined surface finish and excessive tool wear have been recognised as the main obstacles during machining of MMCs due to their heterogeneous and abrasive nature. In this research, the detailed material removal mechanism of nano-MMCs in terms of micro machinability, micro tool wear and simulated material removal process with finite element analysis (FEA) is investigated. The systematic experimental studies on micro machining mechanism of magnesium-based MMCs reinforced with nanoparticles (Ti, TiB2, BN, ZnO) are conducted. The cutting force, burr formation, surface roughness and morphology are characterised to investigate the micro machinability under the effect of various machining parameters, particle volume fraction and matrix/reinforcement materials using design of experiment (DoE) and analysis of variance (ANVOA) methods. The micro structure changes of Mg-MMCs by addition of nanoparticles were taken into account. In addition, surface morphology and the minimum chip thickness is obtained and characterised with the aim of examining the specific cutting energy. A comprehensive investigation of tool wear mechanisms in the micro milling of Mg-MMCs is conducted. The tool wear is characterised both quantitatively and qualitatively by observing tool wear patterns and analysing the effect of cutting parameters and tool coating on average flank wear, reduction in tool diameter, cutting forces, surface roughness, and burr formation. The main wear mechanisms at different machining conditions are determined. Finally, the tool wear phenomenon observed from experiments is explained by simulating the tool-particles interaction using finite element modelling, and hence new wear mechanisms are proposed for machining nano-MMCs. iv The two dimensional micromechanical finite element (FE) models are established to study the material removal mechanism of MMCs reinforced with micro-sized and nanoparticles in micro machining process with consideration of size effect. Two phases, namely particle and matrix are modelled in FE cutting models. Particle fracture properties are involved in micro-sized particles to study the fracture behaviours. The cutting force, tool-particles interaction, particle fracture behaviours, stress/strain distribution, chip formation process and surface morphology are investigated in the FE models. The surface defect generation mechanism is studied in details by developing the additional three dimensional (3D) FE models in machining micro-MMCs. Moreover, the cutting mechanism comparison between machining nano-MMCs and microMMCs is conducted to investigate the effect of significant particle size reduction from micro to nano-scale. The model validation is carried out by studying the chip morphology, cutting force, surface morphology obtained from machining experiments and good agreements are found with the simulation results

    Milling of Nanoparticles Reinforced Al-Based Metal Matrix Composites

    Get PDF
    This study investigated the face milling of nanoparticles reinforced Al-based metal matrix composites (nano-MMCs) using a single insert milling tool. The effects of feed and speed on machined surfaces in terms of surface roughness, surface profile, surface appearance, chip surface, chip ratio, machining forces, and force signals were analyzed. It was found that surface roughness of machined surfaces increased with the increase of feed up to the speed of 60 mm/min. However, at the higher speed (100–140 mm/min), the variation of surface roughness was minor with the increase of feed. The machined surfaces contained the marks of cutting tools, lobes of material flow in layers, pits and craters. The chip ratio increased with the increase of feed at all speeds. The top chip surfaces were full of wrinkles in all cases, though the bottom surfaces carried the evidence of friction, adhesion, and deformed material layers. The effect of feed on machining forces was evident at all speeds. The machining speed was found not to affect machining forces noticeably at a lower feed, but those decreased with the increase of speed for the high feed scenario

    The Effects of Nanoparticle Reinforcement on the Micromilling Process of A356/Al2O3 Nanocomposites

    Get PDF
    Abstract Improving scientific knowledge around the manufacturing of nanocomposites is key since their performance spreads across many applications, including those in meso/micro products. Powder metallurgy is a reliable process for producing these materials, but usually, machining postprocessing is required to achieve tight tolerances and quality requirements. When processing these materials, cutting force evolution determines the ability to control the microcutting operation toward the successful surface and part quality generation. This paper investigates cutting force and part quality generation during the micromilling of A356/Al2O3 aluminum nanocomposites produced via powder metallurgy. A set of micromilling experiments were carried out under various process parameters on nanocomposites with different nano-Al2O3 reinforcements (0–12.5 vol.%). The material’s ductility, internal porosity, and lack of interparticle bonding cause the cutting force generation to be irregular when nanoparticle reinforcements were absent or small. Reinforcement ratios higher than 2.5 vol.% strongly affect the cutting process by regularizing the milling force generation but lead to a proportionally increasing average force magnitudes. Hardening due to nano-reinforcement positively affects cutting mechanisms by reducing the plowing tendency of the cutting process, resulting in better surface quality. Therefore, a threshold on the nano-Al2O3 particles’ volumetric loadings enables an optimal design of these composite materials to support their micromachinability

    A Review on Nanocomposites. Part 2: Micromachining

    Get PDF
    Micromachining of nanocomposites is deemed to be a complicated process due to the anisotropic, heterogeneous structure and advanced mechanical properties of these materials associated with the size effects in micromachining. It leads to poorer machinability in terms of high cutting force, low surface quality, and high rate of tool wear. A comprehensive review on mechanical properties of nanocomposites aiming to pointout their effects on micro-machinability has been addressed in part 1. In part 2, the subsequent micro-machining processes are critically discussed based on relevant studies from both experimental and modeling approaches. The main findings and limitations of these micro-machining methods in processing nanocomposites have been highlighted together with future prospects

    Abrasive Water Jet Cutting: A Risk-Free Technology for Machining Mg-Based Materials

    Get PDF
    Mg-based materials are considered to be the most machinable of all materials due to their good machinability. Though conventional machining of Mg-based materials is a topic that has been widely discussed, they are associated with ignition issues. Ignition risk in conventional machining of Mg-based materials thus cannot be denied and should be avoided. Literature has witnessed ignition risk when machining temperature reaches above 450°C during turning and milling processes, and some cases are reported with fire hazard. In order to obtain the safest machining atmosphere, abrasive water jet machining, a most desired machining technology for machining Mg-based materials, is discussed in the present chapter. The text covers ignition risk in conventional machining of Mg-based materials, an overview of non-traditional methods for machining Mg-based materials, advantages of abrasive water jet machining over other methods, abrasive water jet linear cutting of Mg alloys and composites, and drilling of Mg alloys. Experimental investigations are carried out to know the effect of abrasive water jet process parameters on machining Mg alloys and Mg nanocomposites. Surface topography of cut surfaces is analyzed. Suitability of abrasive water jet in drilling Mg alloys is justified by comparing results with holes drilled by conventional drilling and jig boring

    Surface integrity of Mg-based nanocomposite produced by Abrasive Water Jet Machining (AWJM)

    Get PDF
    This paper investigates the influence of jet traverse speed on the surface integrity of 0.66 wt% Al2O3 nanoparticle reinforced metal matrix composite (MMC) generated by Abrasive Water Jet Machining (AWJM). Surface morphology, surface topography, and surface roughness (SR) of the AWJ surface were analyzed. The machined surfaces of the nanocomposites were examined by laser confocal microscope and field emission scanning electron microscope (FESEM). Microhardness and elasticity modulus measurement by nanoindentation testing were also performed across thickness of the samples to see depth of the zone, affected by AWJ cutting. The result reveals that extent of grooving by abrasive particle and irregularity in AWJ machined surface increases as the traverse speed increased. Similarly, the rise in value of surface roughness parameters with traverse speed was also seen. In addition, nanoindentation testing represents the lower hardness and elastic modulus due to softening occurs in AWJ surface

    Micromachining of carbon nanofiller reinforced polymern nanocomposites

    Get PDF
    The modern industry has been observing a growing demand for micromanufacturing of nanocomposites. This is driven by the miniaturisation trend to obtain products with micro features, high accuracy and light weight. From an engineering perspective, a miniaturised system can provide many benefits over its predecessors such as precision operation, mobility, or power consumption. Based on these, many techniques of micro-manufacturing have been applied, and micromilling of nanocomposites has shown a huge potential to be applied in this field due to its high capability in producing high-complexity-3D micro-features in a wide variety of workpiece materials, with high dimensional accuracy. However, micromilling of nanocomposites is deemed to be a complicated process due to the anisotropic, heterogeneous structure and advanced mechanical properties of these materials associated with the size effects in micromachining. Also, applying micromachining of nanocomposites is a principal approach to bridge the knowledge gap between macro and micro/nano cuttings which is identified by the so-called “size effect”. This physical phenomenon exhibits by the association between various factors including cutting edge radius, negative tool rake angle, work-piece material microstructure, and minimum uncut chip thickness (MUCT) (or minimum chip load). These lead to unstable cutting regimes, resulting in corrupted chip formation, tool vibration and subsequently, low machined surface quality as well as high tool wear rate. The enormous potential of applying micromachining of nanocomposites in manufacturing micro-products, as well as the need to fill the knowledge gap of the field of this study, has prompted researchers to uncover the underlying mechanisms and allow appropriate adaption of this technique in industrial applications

    A Review on Nanocomposites. Part 1: Mechanical Properties

    Get PDF
    Micromachining of nanocomposites is deemed to be a complicated process due to the anisotropic, heterogeneous structure, and advanced mechanical properties of these materials associated with the size effects in micromachining. It leads to poorer machinability in terms of high cutting force, low surface quality, and high rate of tool wear. In part 1 of this two-part review paper, a comprehensive review on mechanical properties of various nanocomposites will be presented while the second part of the paper will focus on the micro-machinability of these nanocomposite materials

    In-Situ Synthesis of Aluminum- Titanium Diboride Metal Matrix Hybrid Nanocomposite

    Get PDF
    Metal matrix nanocomposites (MMNC’s) are reported to have improved mechanical, thermal and electrical properties as compared to their respective base alloys. To date, these materials have been synthesized mainly by powder metallurgy or deformation processing. Solidification synthesis of MMNCs is a promising method, capable of economically producing large and complex shapes, however technical challenges including nanoparticle agglomeration, and poor interfacial strength have hindered the adoption of this technology. In-situ processing methods, in which the reinforcements are synthesized in liquid metals, typically via exothermic reactions offer the potential for improved dispersion and interfacial bonding between the reinforcement and the matrix, however this technique has been largely unexplored in the literature for metal matrix nanocomposites. The objectives of this research were to examine the feasibility of synthesizing nano or sub-micron size particulates in liquid aluminum using in-situ stir mixing and squeeze casting. An exothermic reaction was designed to synthesize Al2O3 and TiB2 from TiO2 particles and elemental boron in an aluminum melt. This dissertation investigates (i) the mechanism of aluminothermic and borothermic reduction of titanium oxide in the presence of molten aluminum and boron, (ii) in situ synthesis of micron and nano sized particles via solidification processing, and (iii) the effects of processing variables on the physical, microstructural, mechanical and tribological properties of in-situ MMNCs. Microstructural examination and theoretical analysis indicates that the reaction to form TiB2 and Al2O3 proceeds through several complex non-equilibrium reactions. A multi-stage reaction model is proposed to describe the process by which the TiO2 surface is reduced to form Al2O3 and TiB2. The effects of the powder particle size on the formation of reinforcing phases and microstructural evolution have been investigated and it was found that nanosized TiO2 powder promoted the formation of smaller size reinforcing phases. Furthermore, a solidification route has been designed to fabricate in-situ aluminum composites reinforced with submicron Al2O3 and TiB2 particulates. Experimental and theoretical analysis is presented that shows that the particle size and refining power of nanoparticles is controlled by the viscosity of the melt, rather than precipitation and growth. In addition, it was found that increasing the weight percentage of nanoparticles of TiO2 resulted in an increase in elastic modulus with good agreement to analytical models. Increasing the weight percentage of reinforcement up to 4 wt% resulted in an increase in the hardness greater than that predicted by the rule of mixtures or the Hall Petch relationship
    • …
    corecore