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Abstract 

The modern industry has been observing a growing demand for micro-

manufacturing of nanocomposites. This is driven by the miniaturisation trend to obtain 

products with micro-features, high accuracy and light weight. From an engineering 

perspective, a miniaturised system can provide many benefits over its predecessors such 

as precision operation, mobility, or power consumption. Based on these, many 

techniques of micro-manufacturing have been applied, and micromilling of 

nanocomposites has shown a huge potential to be applied in this field due to its high 

capability in producing high-complexity-3D micro-features in a wide variety of 

workpiece materials, with high dimensional accuracy. However, micromilling of 

nanocomposites is deemed to be a complicated process due to the anisotropic, 

heterogeneous structure and advanced mechanical properties of these materials 

associated with the size effects in micromachining.  Also, applying micromachining of 

nanocomposites is a principal approach to bridge the knowledge gap between macro 

and micro/nano cuttings which is identified by the so-called “size effect”. This physical 

phenomenon exhibits by the association between various factors including cutting edge 

radius, negative tool rake angle, work-piece material microstructure, and minimum 

uncut chip thickness (MUCT) (or minimum chip load). These lead to unstable cutting 

regimes, resulting in corrupted chip formation, tool vibration and subsequently, low 

machined surface quality as well as high tool wear rate.  

The enormous potential of applying micromachining of nanocomposites in 

manufacturing micro-products, as well as the need to fill the knowledge gap of the field 

of this study, has prompted researchers to uncover the underlying mechanisms and 

allow appropriate adaption of this technique in industrial applications.  

  



Acknowledgements 

 

v 

 

Acknowledgements 

I would like to express my profound gratitude to my principal supervisor (from 

October 2017 to August 2020), Prof. Islam Shyha, for his superb mentoring and 

continuous support during my PhD project. I would also like to express my gratitude to 

my co-supervisors, Dr Jibran Khaliq (who acted as the principal supervisor from 

September 2020) and Dr Dehong Huo, for their invaluable guidance with critical 

analysis, expertise and skills during my research. Without their generous supervision, I 

would not have been able to complete this course. 

Dr Pietro Maiello, Phil Donelley, Simon Neville, and Sam Hutchinson, deserve 

special thanks for the training sessions and constant assistance during the experimental 

work. 

I would also like to thank Northumbria University for providing the financial 

support and research facilities. My thanks are also extended to my friends and 

colleagues at the Department of Mechanical Engineering and Construction for their 

friendship and encouragement. 

Finally, I would like to express my appreciation to my family for continuous 

encouragement to succeed in my profession. 

 

 

 



Table of contents 

vi 

 

Table of contents 
 

Declaration ......................................................................................................................... i 

Abstract .............................................................................................................................ii 

Acknowledgements .......................................................................................................... iv 

Table of contents ............................................................................................................... v 

List of figures ................................................................................................................... vi 

List of tables ................................................................................................................... xiv 

List of acronyms............................................................................................................. xvi 

List of symbols ............................................................................................................ xviii 

Chapter 1: Introduction ..................................................................................................... 1 

1.1 Background ........................................................................................................ 1 

1.2 Aims and objectives ........................................................................................... 2 

1.3 Thesis outline ..................................................................................................... 3 

Chapter 2: Literature review ............................................................................................. 6 

2.1 Introduction ........................................................................................................ 6 

2.2 Nanocomposites ................................................................................................. 9 

2.3 Mechanical properties of nanocomposites ....................................................... 16 

2.3.1 CNT-based nanocomposites ..................................................................... 16 

2.3.2 Graphene-based nanocomposites .............................................................. 27 

2.3.3 Ceramic-based nanocomposites ................................................................ 35 

2.4 Micromachining of nanocomposites ................................................................ 40 

2.4.1 Overview of micromachining ................................................................... 40 

2.4.2 Size effect in micromachining .................................................................. 42 

2.4.3 Micromachining of nanocomposites ......................................................... 52 

2.5 Modelling of micromachining of nanocomposites ........................................... 73 

2.6 Summary .......................................................................................................... 78 

Chapter 3: Experimental work ........................................................................................ 79 

3.1 Workpiece Materials ........................................................................................ 79 

3.1.1 Epoxy ........................................................................................................ 79 

3.1.2 Graphene ................................................................................................... 79 

3.1.3 Multi-walled carbon nanotube .................................................................. 80 



Table of contents 

vii 

 

3.1.4 Carbon nanofibre....................................................................................... 81 

3.2 Material fabrication .......................................................................................... 82 

3.2.1 Equipment ................................................................................................. 82 

3.2.2 Sample preparation ................................................................................... 85 

3.3 Characterisation of workpiece materials .......................................................... 88 

3.3.1 Tensile test ................................................................................................ 89 

3.3.2 Thermal conductivity ................................................................................ 91 

3.3.3 Dynamic mechanical analysis ................................................................... 93 

3.4 Micromachining experiments ........................................................................... 95 

3.4.1 Micro-machine tool ................................................................................... 95 

3.4.2 Dynamometer ............................................................................................ 96 

3.4.3 Micromachining setup............................................................................... 96 

3.4.4 Scanning electron microscope .................................................................. 97 

3.4.5 Cutting force measurement ....................................................................... 98 

3.4.6 Surface roughness measurement ............................................................... 99 

3.4.7 Tool wear measurement .......................................................................... 100 

3.4.8 Dimensional accuracy measurement ....................................................... 101 

Chapter 4: Machinability of carbon nanofiller reinforced epoxy nanocomposites at 
micro cutting chip load ................................................................................................. 102 

4.1 Introduction .................................................................................................... 102 

Part I: Cutting force and surface roughness .................................................................. 103 

4.2 Machined surface morphology ....................................................................... 103 

4.3 Cutting force ................................................................................................... 104 

4.3.1 ANOVA analysis .................................................................................... 104 

4.3.2 Cutting force analysis.............................................................................. 105 

4.4 Surface roughness........................................................................................... 108 

4.4.1 ANOVA analysis .................................................................................... 108 

4.4.2 Surface roughness analysis ..................................................................... 110 

4.5 Summary ........................................................................................................ 113 

Part II: Tool wear .......................................................................................................... 114 

4.6 Tool wear analysis .......................................................................................... 114 

4.7 Effect of tool wear on cutting force................................................................ 119 



Table of contents 

viii 

 

4.8 Effect of tool wear on surface roughness ....................................................... 121 

4.9 Effect of tool wear on machined surface morphology ................................... 124 

4.10 Effect of tool wear on dimensional accuracy ................................................. 126 

4.11 Summary .................................................................................................... 127 

Chapter 5: Machinability of carbon nanofiller reinforced epoxy nanocomposites at 
nano-micro cutting chip load ........................................................................................ 128 

5.1 Introduction .................................................................................................... 128 

Part I: Machinability of carbon nanotube reinforced epoxy nanocomposites .............. 129 

5.2 Tensile properties ........................................................................................... 129 

5.3 Thermal conductivity ..................................................................................... 130 

5.4 Chip morphology ............................................................................................ 131 

5.5 Cutting force ................................................................................................... 133 

5.5.1 ANOVA analysis ................................................................................... 133 

5.5.2 Cutting force analysis ............................................................................ 135 

5.6 Machined surface morphology ....................................................................... 140 

5.7 Surface roughness........................................................................................... 143 

5.7.1 ANOVA analysis ................................................................................... 143 

5.7.2 Surface roughness analysis ................................................................... 145 

5.8 Tool wear ....................................................................................................... 146 

5.9 Summary ........................................................................................................ 148 

Part II: Machinability of carbon nanofibre reinforced epoxy nanocomposites ............ 150 

5.10 Tensile properties ........................................................................................... 150 

5.11 SEM analysis of tensile fracture surfaces ....................................................... 152 

5.12 DMA analysis – Glass transition temperature ................................................ 154 

5.13 Chip morphology ............................................................................................ 156 

5.14 Cutting force ................................................................................................... 159 

5.14.1 ANOVA analysis .................................................................................... 159 

5.14.2 Cutting force analysis.............................................................................. 160 

5.15 Machined surface morphology ....................................................................... 163 

5.16 Machined surface roughness .......................................................................... 165 

5.16.1 ANOVA analysis .................................................................................... 165 

5.16.2 Surface roughness analysis ..................................................................... 166 



Table of contents 

ix 

 

5.17 Summary ........................................................................................................ 172 

Chapter 6: Conclusions and future work ....................................................................... 173 

6.1 Conclusions .................................................................................................... 173 

6.2 Future work .................................................................................................... 174 

References ..................................................................................................................... 176 

List of publications........................................................................................................ 204 

 

 

 



List of figures 

 

x 

 

List of figures 

Figure 1.1: The schematic diagram of the thesis structure ............................................... 5 
Figure 2.1: Micro-features as applications of micromachining of nanocomposites. (a - b) 
MTA/MWCNT micro-capacitors and micro-resistors made by precise 3D printing [16]; 
(c) Epoxy/MWCNT wings for MAVs made by moulding [17]; (d) Stainless steel/Al2O3 
piston and linkage rod made by soft moulding [18]; (e) PP/SWCNT micro-gear made 
by injection moulding [19]; (f) Epoxy/SiO2 micro-wheel made by UV-LIGA methods
 7 

Figure 2.2: Nano-filler geometries .................................................................................. 10 

Figure 2.3: Normalised tensile modulus of epoxy-based composites as a function of 
micro-filler size (adapted from [58], [59], [60], [66]) .................................................... 11 

Figure 2.4: Normalised tensile modulus of polymer-based nanocomposites as a function 
of nano-filler size (adapted from [68, 71]) ...................................................................... 12 

Figure 2.5: Graphical representation of the effect of CNT aspect ratio while interacting 
with polymer chains [72] ................................................................................................ 13 

Figure 2.6: Theoretical models representing the micromechanical strengthening 
mechanism of polymer/CNT nanocomposites via the interfacial stress transfer 
considering effects of various factors: (a) Effects of polymer matrix density, chemical 
cross-links and CNT defect [73]; (b) Effects of SWCNT waviness [74]; (c) Effects of 
tube length and diameter [75]; (d) Effects of nanotube aspect ratio and fibre volume 
fraction [76]..................................................................................................................... 14 

Figure 2.7: Effect of (a) SWCNT’s diameter, thickness and length on the stress transfer 
efficiency (δ); (b) Young’s modulus on the stress transfer efficiency (δ) (Assumed that 
CF had the same hollow structure with d= 3nm and t= 0.142 nm as SWCNT) (Fibre 
volume fraction Vf ~ 0.17 % ) [75]; (c) nanotube diameter on stress transfer efficiency 
(Vf = 0.1%); (d) nanotube volume fraction on stress transfer efficiency (d = 0.7086 nm) 
[76] .................................................................................................................................. 15 

Figure 2.8: (a) Schematic of the microstructure of CNT-reinforced MMCs with 
dislocation punched zones (DPZs). (b) The entire composite is decomposed into CNT 
and effective matrix phase, and the effective matrix is comprised of DPZs and pure 
metal matrix [86] ............................................................................................................. 16 

Figure 2.9: Mechanical properties of polymers reinforced CNTs with corresponding 
dispersion techniques (adapted from [110, 113-118]) .................................................... 18 

Figure 2.10: Effects of dispersion method on mechanical properties of CNT reinforced 
PMNCs (reproduced from [112]) .................................................................................... 18 

Figure 2.11: Effect of CNT structure on mechanical properties of polymer 
nanocomposites  at a filler content of 0.3 wt.% (adapted from [127]) ........................... 20 

Figure 2.12: Effect of CNT alignment on mechanical properties of epoxy-based 
nanocomposites (adapted from [128, 129]) .................................................................... 20 



List of figures 

 

xi 

 

Figure 2.13: Effect of CNT functionalization on tensile modulus of CNT reinforced 
epoxy matrix nanocomposites (reproduced from [127, 130, 131])................................. 21 

Figure 2.14: Fracture strain improvement of CNT based polymer nanocomposites as a 
function of filler content (adapted from [110, 113, 132-136]) ........................................ 22 

Figure 2.15: Schematic representing fracture toughening mechanism of CNT reinforced 
polymer nanocomposites (reproduced from [139]) ........................................................ 23 

Figure 2.16: Normalised Young’s moduli of thermoplastic polyurethane 
(TPU)/graphene nanocomposites in different processing methods) (reproduced from 
[10]) ................................................................................................................................. 28 

Figure 2.17: Fracture strain improvement of graphene-based PMNCs as a function of 
filler content (adapted from [194, 200, 201, 205]).......................................................... 30 

Figure 2.18: Comparative fracture toughness improvement of epoxy-based 
nanocomposites using different nano-fillers [206] ......................................................... 31 

Figure 2.19: Schematic representing fracture toughening mechanism of CNT reinforced 
PMNCs (adapted from [182]) ......................................................................................... 32 

Figure 2.20: The formation of carbide when fabricating metal/GO (2 wt.%) 
nanocomposites [218] ..................................................................................................... 33 

Figure 2.21: The agglomerations of ceramic nano-particles in Al matrices: (a) Al/Al2O3      
4 vol.% [272]  and (b) Al/SiC 3 wt.% [271] ................................................................... 37 

Figure 2.22: The development of achievable machining accuracy (reproduced from 
[286]) ............................................................................................................................... 40 

Figure 2.23: Size effects in micromilling metals and alloys (reproduced from [294-296])
 ......................................................................................................................................... 42 

Figure 2.24: Size effect on specific cutting energy in micromilling as compared to 
macro-machining [294] ................................................................................................... 44 

Figure 2.25: The schematic representing the differences between macro and 
micromachining in terms of microstructure ( adapted from [300]) ................................ 44 

Figure 2.26: Effect of microstructure on surface quality when micromilling steel [306]
 ......................................................................................................................................... 45 

Figure 2.27: Grain size effect on surface roughness and hardness  when micromachining 
W/Cu composite (reproduced from [309]) ...................................................................... 46 

Figure 2.28: Tool edge radius and feed-rate effects on surface roughness in 
micromilling (reproduced from [296] [308]) .................................................................. 48 

Figure 2.29: MUCT effects on the cutting mechanism in micromachining (adapted from 
[320]) ............................................................................................................................... 49 



List of figures 

 

xii 

 

Figure 2.30: Effects of MUCT on the shear angle of materials in micromachining: (a) 
positive effective rake angle; (b) zero effective rake angle; (c) negative effective rake 
angle (adapted from [323]) ............................................................................................. 50 

Figure 2.31: Various surface roughness with different nano-fillers and feed rate in 
micromilling PC-based nanocomposites (reproduced from [331])................................. 53 

Figure 2.32: Effect of CNT addition on chip formation of PC/MWCNT nanocomposite 
[51] .................................................................................................................................. 54 

Figure 2.33: Comparison of surface roughness when micromilling PC/ 15 wt.% 
MWCNT nanocomposite and plain PC (reproduced from [51]) .................................... 54 

Figure 2.34: Comparison of the resultant cutting forces for plain PC and PC/CNT 
nanocomposites (reproduced from [51, 335]) ................................................................. 55 

Figure 2.35: Effect of CNT orientation on cutting force when micromilling PC/5 wt.% 
MWCNT nanocomposites (reproduced from [335]) ...................................................... 56 

Figure 2.36: Effects of CNT loading and feed rate on surface roughness and burr width 
when micromilling PC/MWCNT nanocomposites at cutting speed = 130 m/min 
(reproduced from [330]) .................................................................................................. 57 

Figure 2.37: Effects of MUCT (feed rate), cutting speed (strain rate) and CNT loading 
on cutting force when micromilling PC/MWCNT nanocomposites (reproduced from 
[330]) ............................................................................................................................... 58 

Figure 2.38: Schematic of micromilling CNT-based nanocomposite (adapted from 
[339]) ............................................................................................................................... 59 

Figure 2.39: Influence of the matrix-fibre bond’s strength on the chip formation and 
surface generation [334] .................................................................................................. 62 

Figure 2.40: Effect of cutting speed on cutting force and surface roughness when 
micromachining epoxy/0.8 vol.% GF and epoxy/0.8 vol.% GF/0.2 wt.% GPL 
composites (reproduced from [334]) ............................................................................... 62 

Figure 2.41: Effect of cutting speed and filler content on cutting force when 
micromilling different polymer nanocomposites at FPT= 3 µm (reproduced from [15, 
330]) ................................................................................................................................ 63 

Figure 2.42: Different trends of cutting forces as a function of graphene addition when 
micromachining graphene reinforced PMNCs (reproduced from [15, 334, 342]) ......... 65 

Figure 2.43: Quantitative comparison of the standardised effects of various parameters 
on cutting forces for Mg/graphene nanocomposites (reproduced from [343]) ............... 67 

Figure 2.44: Specific cutting energy when micromilling Mg and Mg/10 vol.% SiC 
nanocomposite (the dash lines represent MUCT boundaries) (reproduced from [344]) 68 

Figure 2.45: Effect of SiC content on cutting force when micromilling Mg/SiC 
nanocomposite (reproduced from [48]) .......................................................................... 69 



List of figures 

 

xiii 

 

Figure 2.46: Effect of feed rate on cutting force when micromachining Mg/ceramic 
nanocomposites (adapted from [48, 345]) ...................................................................... 70 

Figure 2.47: Schematic showing the correlations between input variables and the 
machinability of nanocomposites in micromachining .................................................... 72 

Figure 2.48: Micro-structure-level machining of CNT reinforced PC ([365, 366]) ....... 74 

Figure 2.49: Micro-structure-level machining of CNT reinforced PVA nanocomposite  
[360] ................................................................................................................................ 75 

Figure 2.50: FE analysis of micromilling PC and PC reinforced GNP nanocomposite: 
(a) Chip formation of PC/GNP, (b) Cutting forces in simulation and experiment [331] 76 

Figure 2.51: FE analysis of micromilling Mg reinforced by 1.5 vol.% SiC 
nanocomposite (reproduced from [350]) ........................................................................ 77 

Figure 2.52: Effect of nano-particles on shear zone propagation: (a) direction of shear 
zone propagation, (b) distorted stress contour caused by particle restricting behaviour 
[370] ................................................................................................................................ 77 
Figure 3.1: A SEM image of graphene nanoplatelets 79 

Figure 3.2: A TEM image of MWCNT NC7000 ............................................................ 80 

Figure 3.3: A SEM image of CNF-110 ........................................................................... 81 

Figure 3.4: Three-roll-mill (TRM) 80E EXAKT and the schematic diagram representing 
the operating principle .................................................................................................... 85 

Figure 3.5: Schematic representing the fabrication of epoxy-based nanocomposites 
using solution mixing ...................................................................................................... 86 

Figure 3.6: Schematic representing the fabrication of epoxy-based nanocomposites 
using three roll milling .................................................................................................... 88 

Figure 3.7: Universal Testing machine (INSTRON 3382) ............................................. 89 

Figure 3.8: Tensile test specimen, type V geometry (ASTM D638) (Unit: mm) ........... 90 

Figure 3.9: Tensile test setup in Instron 3382 universal testing machine (ASTM D638)
 ......................................................................................................................................... 91 

Figure 3.10: Thermal conductivity test specimen (linear heat conduction) (ASTM 
D5470) (Unit: mm) ......................................................................................................... 92 

Figure 3.11: The schematic representing the calculation of thermal conductivity k ...... 92 

Figure 3.12: Thermal conductivity test setup on Hilton H112A linear heat conduction 
(ASTM D5740) ............................................................................................................... 93 

Figure 3.13: Dynamic Mechanical Analyzer (DMA) (Model 8000, Perkin Elmer) ....... 94 

Figure 3.14: Ultra-precision desktop micro-machine tool (Nanowave MTS5R) ........... 95 

Figure 3.15: Kistler (9256C2) piezoelectric dynamometer ............................................ 96 



List of figures 

 

xiv 

 

Figure 3.16: Micro-machining setup ............................................................................... 96 

Figure 3.17: (a) Scanning electron microscope (SEM) TESCAN MIRA3 and (b) 
Quorum Q150R rotary pumped coater ............................................................................ 97 

Figure 3.18: Cutting force measurement using Kistler (9256C2) piezoelectric 
dynamometer in micromilling ......................................................................................... 99 

Figure 3.19: A representative sample of cutting force signal generated from the 
dynamometer ................................................................................................................... 99 

Figure 3.20: Surface roughness Ra measurement using Alicona Infinite Focus G4: (a) 
an Alicona Infinite Focus G4, (b) An example of a 3D scan of the machined slot, (c) An 
example of the roughness profile .................................................................................. 100 

Figure 3.21: Surface roughness Ra measurement using Mitutoyo SJ-410 contact style 
profilometer ................................................................................................................... 100 

Figure 3.22: Non-uniform flank wear measurement .................................................. 101 

Figure 3.23: Stair-formed face wear measurement (with the original cutting-edge 
outline) .......................................................................................................................... 101 

Figure 3.24: An example of SEM imaging represented tool diameter measurement ... 102 

Figure 3.25: An example of SEM imaging represented tool slot width measurement . 102 
Figure 4.1: SEM images for a machined slot in graphene/epoxy specimens (at FPT of 
5µm and cutting speed of 62.8 m/min) 105 

Figure 4.2: Main effect plots for the resultant cutting forces when micromilling 
epoxy/graphene nanocomposites: (a) Filler content, (b) FPT, and (c) Cutting speed .. 107 

Figure 4.3. Cutting force results when micromilling of graphene/epoxy nanocomposites 
at different filler contents: (a) 62.8 m/min, (b) 125.6 m/min, and (c) 188.5 m/min ..... 108 

Figure 4.4: Effect of cutting speed on the cutting force when micromilling 
epoxy/graphene nanocomposites at different filler contents (FPT= 15 µm) ................ 109 

Figure 4.5 The average surface roughness as a function of FPT when micromilling 
epoxy/graphene nanocomposites at different filler contents: (a) 62.8 m/min, (b) 125.6 
m/min, and (c) 188.5 m/min.......................................................................................... 111 

Figure 4.6 The effect of filler content on the average surface roughness at different filler 
cutting speeds when micromilling epoxy/graphene nanocomposites at FPT of 10µm 113 

Figure 4.7: (a) SEM image of tool diameter reduction of the uncoated tool; (b) Effect of 
tool type and cutting speed on reducing the effective tool diameter. ........................... 115 

Figure 4.8: SEM images of tool wear of different micro-end mills under various cutting 
speed (after removing 650 mm3 of material or 500 slots) (left: top view, right: side 
view).............................................................................................................................. 116 



List of figures 

 

xv 

 

Figure 4.9: SEM images showing tool wear progression of different micro-end mills 
under the various cutting speed (From left to right: 10 slots, 300 slots and 500 slots) 118 

Figure 4.10: Effects of cutting speed and tool coating type on the average cutting force 
at different cutting stages (from 10 to 500 slots) .......................................................... 121 

Figure 4.11: Average surface roughness (Ra) variation as a function of material removal 
volume at various cutting speeds: (a) 62.8 m/min; (b) 188.4 m/min ............................ 123 

Figure 4.12: Effect of cutting speed and tool coating type on average surface roughness 
(in µm) at all cutting stages (from 10 to 500 slots) ....................................................... 124 

Figure 4.13: SEM images of machined surface morphology at two cutting stages (after 
10 and 500 slots) using different micro-end mills under various cutting speeds .......... 125 

Figure 4.14: (a) SEM image of a slot generated by DLC coated tool at 62.8 m/min after 
500 slots; (b) Effect of cutting speed and tool coating type on average slot width (in 
mm) at all cutting stages (from 10 to 500 slots) .......................................................... 126 
Figure 5.1: Tensile properties of epoxy/MWCNT nanocomposites: (a) Tensile 
strength, (b) Young’s modulus, and (c) Fracture strain 131 

Figure 5.2: Thermal conductivity of MWCNT/epoxy nanocomposites at different 
filler contents ............................................................................................................... 132 

Figure 5.3: Chip formations when micromilling at different FPTs and CNT weight 
contents (Cutting speed = 62.8 m/min; Scale bar is 200 µm) .................................. 133 

Figure 5.4: Chip formations at low FPTs at different CNT weight contents (Cutting 
speed = 62.8 m/min; Scale bar is 50 µm) .................................................................. 134 

Figure 5.5: Cutting force when micromilling epoxy based nanocomposites at 
different MWCNT contents and FPTs: a) Cutting speed = 62.8 m/min (20,000 
rpm); b) Cutting speed = 188.5 m/min (60,000 rpm) ............................................... 136 

Figure 5.6: Cutting force profiles in feed direction at low FPT (0.5 and 1 µm) 
(Cutting speed= 62.8 m/min) ...................................................................................... 138 

Figure 5.7: Surface morphology of machined surface at different CNT weight 
contents: (a) Epoxy, (b) 0.1 wt.%, (c) 0.3 wt.%, (d) 0.7 wt.%, and (e) 1 wt.% (FPT 
= 4 µm; Cutting speed = 62.8 m/min) ........................................................................ 139 

Figure 5.8: Surface morphology of machined surface at different CNT weight 
contents and FPTs (Cutting speed = 62.8 m/min; Scale bar is 10 µm) ................... 140 

Figure 5.9: Surface roughness (Ra) when micromilling epoxy-based 
nanocomposites at different MWCNT contents and FPTs (cutting speed = 62.8 
m/min) .......................................................................................................................... 142 

Figure 5.10: SEM images of tool wear at the end of the micromilling process for 
each composition (cutting volume of 58.5 mm3) (Yellow dashed line indicating 
wear area) ..................................................................................................................... 144 



List of figures 

 

xvi 

 

Figure 5.11: Effect of MWCNT content on tool wear when micromilling 
MWCNT/epoxy nanocomposites ............................................................................... 145 

Figure 5.12: Tensile properties of epoxy/CNF nanocomposites at different filler 
contents: (a) Tensile strength, (b) Young’s modulus, (c) Fracture strain ..................... 147 

Figure 5.13: SEM micrographs of the tensile fracture surfaces of: (a) epoxy/0.1 wt.% 
CNF, (b) epoxy/0.3 wt.% CNF, (c) epoxy/0.7 wt.% CNF, (a) epoxy/1 wt.% CNF, (e) 
epoxy ............................................................................................................................. 149 

Figure 5.14: SEM micrographs at high magnifications of the tensile fracture surfaces 
of: (a) Epoxy/0.1 wt.% CNF, (b) Epoxy/0.3 wt.% CNF, (c) Epoxy/0.7 wt.% CNF, (a) 
Epoxy/1 wt.% CNF ....................................................................................................... 150 

Figure 5.15: Tan δ of epoxy/CNF nanocomposites at different filler contents from 
DMA analysis ............................................................................................................... 151 

Figure 5.16: Chip morphology of epoxy/CNF nanocomposites at different filler 
contents (Cutting speed= 78.54 m/min) (Scale bar is 200 µm) .................................... 153 

Figure 5.17: Chip morphology of epoxy/CNF nanocomposites at different filler 
contents (Cutting speed= 78.54 m/min) (Scale bar is 50 µm) ...................................... 154 

Figure 5.18: Cutting force when micromilling epoxy/CNF nanocomposites at different 
cutting speeds: (a) 31.41 m/min, (b) 78.54 m/min, (c) 125.67 m/min .......................... 158 

Figure 5.19: Effect of cutting speed on the cutting force when micromilling epoxy/CNF 
nanocomposites at different filler contents (FPT= 5 µm) ............................................. 159 

Figure 5.20: Machined surfaces when micromilling epoxy/CNF nanocomposites at the 
cutting speed of 125.67 m/min (Scale bar is 50 µm) .................................................... 161 

Figure 5.21: Effect of the filler content and feed rate on the average surface roughness 
when micromilling epoxy/CNF nanocomposites at different cutting speeds: (a) 31.41 
m/min, (b) 78.54 m/min, (c) 125.67 m/min .................................................................. 163 

Figure 5.22: Effect of the filler content on the average surface roughness when 
micromilling epoxy/CNF nanocomposites (FPT= 2 µm) ............................................. 165 
 

 

 



List of tables 

 

xvii 

 

List of tables 

Table 2.1: Nanocomposite manufacturing techniques ...................................................... 8 

Table 2.2: Fracture toughness of polymer reinforced CNT nanocomposites with the 
consideration of various factors ...................................................................................... 24 

Table 2.3: Mechanical properties of CNT reinforced metal matrix nanocomposites ..... 26 

Table 2.4: Mechanical properties of graphene reinforced polymer matrix 
nanocomposites ............................................................................................................... 29 

Table 2.5: Mechanical properties of graphene reinforced metal matrix nanocomposites
 ......................................................................................................................................... 34 

Table 2.6: Mechanical properties of ceramic nano-fillers reinforced polymer matrix 
nanocomposites ............................................................................................................... 36 

Table 2.7: Mechanical properties of ceramic nano-particle reinforced metal matrix 
nanocomposites ............................................................................................................... 39 

Table 2.8: The MUCT effects in micromachining – Relevant research ......................... 51 

Table 2.9: Summary of micromachining CNT reinforced polymer matrix 
nanocomposites ............................................................................................................... 60 

Table 2.10: Summary of micromachining graphene reinforced polymer matrix 
nanocomposites ............................................................................................................... 66 

Table 2.11: Summary of micromachining nano-ceramic-particles reinforced metal 
matrix nanocomposites ................................................................................................... 71 
Table 3.1: Specific characterisation of graphene AO-3 (Source: Graphene Laboratories)
 79 

Table 3.2: Specific characterisation of MWCNT NC7000TM (Source: Nanocyl) .......... 80 

Table 3.3: Specifications of CNF-110 (Source: getnanomaterials.com) ........................ 81 

Table 3.4:  OHAUSTM analytical balance specifications (Source: fishersci.com) .......... 82 

Table 3.5: Cole-Palmer lab vacuum oven specifications (Source: colepalmer.co.uk) ... 83 

Table 3.6: Ultrasonic processors Vibra-CellTM VC 750 specifications (Source: 
sonics.com) ..................................................................................................................... 83 

Table 3.7: IKATM RCT digital magnetic stirrer specifications (Source: fishersci.com)
 ......................................................................................................................................... 84 

Table 3.8: Three-roll milling setup ................................................................................. 87 

Table 3.9: DMA testing parameters for glass transition temperature ............................. 94 

Table 3.10: Main specifications of Ultra-precision desktop micro-machine tool 
(Nanowave MTS5R) ....................................................................................................... 95 

 



List of tables 

 

xviii 

 

Table 4.1: Experimental settings ................................................................................... 103 

Table 4.2: Experimental settings ................................................................................... 104 

Table 4.3: ANOVA result for the resultant cutting force when micromilling 
epoxy/graphene nanocomposites .................................................................................. 106 

Table 4.4: Effect of filler content on mechanical properties of epoxy/graphene 
nanocomposites ([375, 385])......................................................................................... 109 

Table 4.5: ANOVA result for the average surface roughness when micromilling 
epoxy/graphene nanocomposites .................................................................................. 110 
Table 5.1: Experimental settings 128 

Table 5.2: Experimental settings ................................................................................... 129 

Table 5.3: ANOVA result for cutting force when micromilling epoxy/MWCNT 
nanocomposites ............................................................................................................ 135 

Table 5.4: ANOVA result for surface roughness when micromilling epoxy/ 
MWCNT nanocomposites .......................................................................................... 141 

Table 5.5: Glass transition temperature of epoxy/CNF nanocomposites at different filler 
contents ......................................................................................................................... 152 

Table 5.6: ANOVA result for the resultant cutting force when micromilling epoxy/CNF 
nanocomposites ............................................................................................................. 156 

Table 5.7: ANOVA result for surface roughness when micromilling epoxy/CNF 
nanocomposites ............................................................................................................. 161 

 

 



List of acronyms 

 

xix 

 

List of acronyms 
Acronyms Description 
ABS Acrylonitrile butadiene styrene 
Adj MS Adjusted mean squares 
Adj SS Adjusted sums of squares 
ANOVA Analysis of variance 
APTS-GO Amino functionalised graphene oxide 
BET Surface area analysis  
BUE Built-up edge 
bw-GO Base washed graphene oxide 
CCVD Catalytic chemical vapour deposition 
CIP Cold isotropic pressing 
CMNC Ceramic matrix nanocomposite 

CNF/CNT Carbon nanofibre/ Carbon nanotube 
CTE Thermal expansion coefficients  
CVD Chemical vapour deposition  
DF Degree of freedom 
DLC Diamond-like carbon 
DMA Dynamic mechanical analyzer  
DPZ Dislocation punched zone 
DWCNT Double-walled carbon nanotube 
EDM Electrical discharge machining 
EG Expanded graphite 
EGS Graphene stack 

EVA Ethylene-vinyl acetate 
f-CNT Functionalised carbon nanotube 
FLG Few layer graphene sheet 
FPT Feed per tooth 
FSP Friction stirring processing 
GF Glass fibre 
GNF Graphene nanoflake 
GNP Graphene nano-platelet 
GNS Graphene nano-sheet 
GO Graphene oxide 
GPL Graphene platelet 
GPTS-GO Epoxy functionalised graphene oxide 
HDPE High-density polyethylene 
HIP Hot isostatic pressing 
HPU Hard polyurethane 
HRTEM High-resolution transmission electron microscopy  
ICP-MS Inductively coupled plasma mass spectrometry  
ISS Interfacial shear strength  
JC Johnson-Cook 
LDPE Low-density polyethylene 
LIGA Lithography, electroplating, and moulding 



List of acronyms 

 

xx 

 

MA Mechanical alloying 
MAV Micro-air vehicle 
MD Molecular dynamic  
MEMs Micro-electromechanical systems  
MMNC Metal matrix nanocomposite 
MMT Montmorillonite 
MRR Material removal rate 
MTA Thiol acrylate 
MUCT Minimum uncut chip thickness 
MWCNT Multi-walled carbon nanotube 
PA Polyamide/ Nylon 
PA6 Polyamide6/ Nylon6 
PBO Poly (p-phenylene benzobisoxazole)  
PC Polycarbonate 
p-CNT Pristine carbon nanotube 
PE polyethylene 
PEE polyester elastomers  
PEN Polyethylene naphthalate 
PET Polyethylene terephthalate 
PI Polyimide 
PM Powder metallurgy  
PMMA Polymethyl methacrylate  
PMNC Polymer matrix nanocomposite 
PMP Poly(4-methyl-2-pentyne)  
PP Polypropylene 
PU Polyurethane 
PVA Polyvinyl alcohol 
PVP Poly-4-vinyl phenol  
RGO Reduced graphene oxide 
RVE Representative volume element 
SEM Scanning electron microscope 
Seq SS Sequential sums of squares 
SMC Silane modified clay 
SPS Spark plasma sintering 
SPU Soft polyurethane 
SWCNT Single-walled carbon nanotube 
TEGO Thermal expanded graphite oxide 
TEM Transmission electron microscopy  
TGA Thermogravimetric analysis  
TPU Thermoplastic polyurethane 
TRM  Three roll mill 
UCT Uncut chip thickness 



List of symbols 

 

xxi 

 

List of symbols 

Symbol Description Unit 
Vf Fibre volume fraction  % 
kc Specific cutting force GPa 
f Feed rate μm 
r Tool edge radius μm 
DoC Depth of Cut μm 
v Cutting speed  m/min 
Ra Surface roughness μm 
F Cutting force/ Resultant cutting force N 
φ Shearing angle o 

γ Clearance angle  o 

λn Normalised minimum chip thickness  

α Effective rake angle o 
h Uncut chip thickness μm 
hm Minimum uncut chip thickness μm 
W Maximum load N 
A0 Original cross-sectional area m2 
σu Tensile strength MPa 
E Young's modulus GPa 
ε Strain  
Kint Thermal conductivity of the specimen (intermediate section)  W/mK 
Q Heat transfer rate W 
Aint Area of the contacting surface of the specimen  m2 
Δxint Specimen thickness m 

ΔTint Temperature difference between hot face and cold face  K 
V Electrical voltage V 
I Electrical current A 
Fx Cutting Force element (perpendicular to feed direction) N 
Fy Cutting Force element (feed direction) N 
Fz Cutting Force element (axial to tool central line) N 
VB Flank wear  μm 
Tg Glass transition temperature oC 
Ef Specific cutting energy  J/mm3 
H Height of feed mark without plastic deformation μm 
hp Depth of plastic deformation μm 
he Depth of elastic recovery μm 
Fs Surface stress N 
δ Stress transfer efficiency  
Ti Titanium  
C Carbon  
Cu Copper  
Ni Nickel  
Al Aluminium  



List of symbols 

 

xxii 

 

Si Silicon  
Mg Magnesium  
W Tungsten  
O Oxygen  

 



Chapter 1: Introduction 

1 

 

Chapter 1: Introduction 

1.1 Background 

The discovery of nanocomposites in 1961 [1] has led to an emerging trend to apply 

nano-reinforcement materials in the industry. Due to the high strength-to-weight ratio and 

high specific surface area, the nano-fillers show enormous potential to replace conventional 

fillers (i.e., carbon fibre) in reinforcing composites [2], leading to a new class of 

lightweight engineering materials. Nowadays, many nanocomposites have been 

commercially applied in aerospace [3], automobile [4], and medicine [5] due to their 

superior properties over conventional composites, namely mechanical [6], thermal [7], 

electrical [8], electrochemical, electromagnetic [9], and gas barrier properties [10]. 

Furthermore, nanocomposites have found potential applications in micro-manufacturing 

such as microelectronics  [11] or micromechanical devices [12]. However, the fabrication 

of nanocomposites has been primarily implemented using near-net-shape (NSS) 

manufacturing (i.e., mould casting, additive manufacturing) which are mainly applied when 

time-cost efficiency is the main objective. However, the accuracy generated from these 

methods is unlikely to meet the requirement of producing micro-features (i,e., surface 

quality, dimensional accuracy) in micro-manufacturing due. For example, the shrinkage of 

materials can lead to low dimensional accuracy in mould casting, hence post-processing 

(i.e., machining and finishing) is deemed required. Therefore, it leads to the requirement of 

applying mechanical micromachining (hereafter, called micromachining) of 

nanocomposites. This method shows high capability in producing high-complexity-3D 

micro-features in a large range of workpiece materials, with acceptable accuracy and time-

cost efficiency compared to those of other techniques (i.e., lithography-based method, 

micro-electro-discharge machining) [13]. However, the main challenges of micromachining 

nanocomposites are the tool performance associated with the complex structure of 

nanocomposites. Due to the inherent low chip load in micro/nano-cutting, extremely high 

cutting speeds need to be employed in micro-cutting to compensate the low material 

removal rate (MRR). Given such small micro-tools being used to remove heterogeneous 

nanocomposites, it resulted in high tool vibration due to micro-structure effect. 

Subsequently, it increased tool wear rate, particularly when cutting though strong, abrasive 
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nano-fillers (i.e., ceramic nanoparticles). The tool wear acceleration may consequently 

affect cutting force, surface roughness, and dimensional accuracy. Moreover, the 

enhancement of thermomechanical properties due to nano-reinforcements may also result 

in the low micro-machinability of nanocomposites such as an increase of cutting force and 

surface roughness.  Therefore, the investigation of nanocomposites’ micromachining 

behaviour is deemed to be necessary to attain optimal cutting conditions with low cutting 

forces, surface roughness, and tool wear rate generated. 

Also, applying micromachining of nanocomposites is a principal approach to bridge 

the knowledge gap between macro and micro/nano-cutting that is contributed by the so-

called “size effect”. The size effect indicates the main challenge when reducing the cutting 

chip load from macro to micro/nano scales making the well-informed knowledge from 

conventional material cutting (at macro-scale) may not be directly adapted to 

micromachining. This physical phenomenon exhibits by the association between various 

factors including cutting edge radius, negative tool rake angle, workpiece material 

microstructure, and minimum uncut chip thickness (MUCT) (or minimum chip load). 

These lead to unstable cutting regimes including debris chip formation, tool vibration and 

subsequently low machined surface quality, and high tool wear rate. Therefore, it leads to 

the need of investigating the size effect when micromachining of nanocomposites at 

minimal chip load below the MUCT, hence eliminating their adverse effects on the micro-

machinability of these materials. 

The vast potential of applying micromachining in fabricating nanocomposite micro-

products and, consequently, filling the knowledge gap between macromachining and 

micromachining nanocomposites have inspired researchers to reveal the underlying 

mechanisms and enable suitable adaption of this technique in industrial domains.  

1.2 Aims and objectives 

This research aimed to experimentally investigate and characterise the 

machinability of carbon nano-filler reinforced epoxy nanocomposites through the 

micromilling process. The micromachining experiments were performed on epoxy-based 

nanocomposites reinforced by different allotropies of carbon nano-fillers including carbon 

nanoplatelets (graphene), carbon nanotubes (CNTs) and carbon nanofibres (CNFs) at 
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various chip loads at nano/micro-scale. These provided a comprehensive view of the 

machinability of carbon nano-filler reinforced epoxy nanocomposites. The detailed 

objectives to fulfil the aim of this study are as follows: 

 To critically review the current literature regarding thermomechanical 

characterisation and micromachining of nanocomposites. Subsequently, indicate 

the knowledge gap between micromachining and macromachining 

nanocomposites. 

 To propose procedures for fabricating epoxy-based nanocomposites with the 

consideration of suitable mixing methods for each type of carbon nano-fillers to 

attain a high dispersion rate. 

 To characterise the nanocomposites’ thermomechanical properties and 

microstructure which affect their micro-machinability. 

 To investigate and define the key process variables when micromachining 

nanocomposites. Based on that, recommended cutting conditions will be 

suggested. 

 To find out the differences of nanocomposites’ machinability between 

micromachining and macromachining nanocomposites when reducing chip load 

from macro to nano/micro scales.  

 To investigate the size effect when micromachining of nanocomposites at low 

chip loads and its influences on the machinability of the workpiece materials.  

1.3 Thesis outline 

This thesis is divided into six chapters introducing the research conducted within 

the scope of a PhD course as shown in Figure 1.1.  

Chapter 1: Introduction 

This chapter provides the background, critical overview of knowledge, and the 

importance of the study. Based on these, the aim and objectives of the research are 

indicated.  

Chapter 2: Literature Review 

This chapter presents a critical review of past and current research in the fields of 

physical characterisations and micromachining of nanocomposites. It focuses on the micro-
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machinability in the consideration the effects of micro-structure and thermo-mechanical 

properties of nanocomposites. Based on that, the knowledge gap is revealed in detail.  

Chapter 3: Experimental Work 

This chapter first shows the procedure of fabricating carbon nano-fillers reinforced 

epoxy nanocomposites and subsequently, the thermo-mechanical characterisations of these 

materials. The general micromachining experiment setups are then presented. In addition, 

the specifications of equipment, materials, and cutting tools as well as the measurement 

methods are also provided. 

Chapter 4: Machinability of carbon nanofiller reinforced epoxy nanocomposites at 

micro cutting chip load 

Chapter 4-Part I: Cutting force and surface roughness 

The machinability of graphene reinforced epoxy nanocomposites under microchip 

load from 5 to 15 µm is investigated in this part. This chapter aims to look at how cutting 

force and surface roughness change as cutting speeds, feed rates, and graphene loadings 

change 

Chapter 4-Part II: Tool wear 

The tool wear behaviour of different uncoated and coated micro-end mills when 

micromilling graphene reinforced epoxy nanocomposites at various microchip loads is the 

subject of this chapter. To account for the impact of tool wear progress, other machinability 

indicators such as cutting force, surface roughness, and dimensional accuracy are 

examined. 

Chapter 5: Machinability of carbon nanofiller reinforced epoxy nanocomposites at 

nano-micro cutting chip load 

Chapter 5-Part I: Machinability of carbon nanotube reinforced epoxy 

nanocomposites 

The machinability of carbon nanotube (CNT) reinforced epoxy nanocomposites at 

nano/microchip-load (from 0.2 to 4 µm) is investigated in this part. Cutting speed, feed 

rate, and filler content are all input variables. Cutting force and surface roughness are the 

study's two key process measures; other measures such as chip morphology and machined 

surface morphology are also examined. Since the thermomechanical properties and 
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microstructure of workpiece materials may affect machinability, they are also 

characterised. 

Chapter 5-Part II: Machinability of carbon nanofibre reinforced epoxy 

nanocomposites 

This part includes the experimental results for the machinability of carbon nano-

fibre (CNF) reinforced epoxy nanocomposites at nano/micro-chip load (from 0.2 to 5 µm). 

Different levels of cutting speed, feed rate, and filler content are used to characterise the 

cutting force and surface roughness’s variations. Chip formation, machined surface 

morphology, as well as thermomechanical and microstructure characterisations of 

nanocomposites are all discussed to aid in the analysis of these variations. 

 

Figure 1.1: The schematic diagram of the thesis structure 
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Chapter 2: Literature review 

2.1 Introduction 

Micromachining of nanocomposites is deemed a complicated process due to the 

anisotropic, heterogeneous structure and advanced mechanical properties of these materials 

associated with the size effects in micromachining.  It leads to poorer machinability in 

terms of high cutting force, low surface quality and high rate of tool wear. This literature 

review starts with a comprehensive review of the mechanical properties of various 

nanocomposites. Their subsequent micro-machining processes are critically discussed 

based on relevant studies from both experimental and modelling approaches. The main 

findings and limitations of these micro-machining methods in processing nanocomposites 

have been highlighted together with prospects. 

The word ”nanocomposite” was first introduced by Blumstein in 1961[1]. The 

primitive nanocomposite was investigated to improve the thermal stability of nano-silicate 

reinforced polymethyl methacrylate (PMMA) [14] in 1965. Nanocomposites share similar 

terminologies as conventional composites in terms of their constituents except for the 

reinforcement size typically in the range of hundreds of nanometres. The reduction from 

micro-range to nano-range of fillers provides remarkable reinforcements in nanocomposites 

while requiring much lower filler content than the composites with conventional sizes 

(hereafter, call composites or conventional composites for short), hence leading to 

considerable increases in weight [15]. Nowadays, many nanocomposites have been 

discovered and commercially applied in various industrial areas including (and not limited 

to) aerospace [3], automobile [4] and medicine [5] due to their superior properties, namely 

mechanical [6], thermal [7], electrical [8],  electrochemical, electromagnetic [9], and gas 

barrier properties [10]. Due to these superior properties, further applications of 

nanocomposites have been found in terms of manufacturing micro-structured components 

following the miniaturisation trend of modern production. These nanocomposites have 

found many applications in microelectronics (Figure 2.1a, b).  
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Figure 2.1: Micro-features as applications of micromachining of nanocomposites. (a - b) 
MTA/MWCNT micro-capacitors and micro-resistors made by precise 3D printing [16]; (c) 
Epoxy/MWCNT wings for MAVs made by moulding [17]; (d) Stainless steel/Al2O3 piston 
and linkage rod made by soft moulding [18]; (e) PP/SWCNT micro-gear made by injection 

moulding [19]; (f) Epoxy/SiO2 micro-wheel made by UV-LIGA methods 

(MTA: thiol-acrylate; MWCNT: multi-walled carbon nanotube; SWCNT: single-walled 
carbon nanotube; PP: polypropylene; LIGA: Lithography, Electro-plating, and Moulding; 

MAV: micro-air vehicle) 

CNTs reinforced polyimide nanocomposites (PI/CNT) are applicable for 

microelectronics devices due to their ideal electrical conductivity, storage modulus and 

environmental stability [20]. Other applications such as high-performance transistors from 

poly-4-vinyl phenol (PVP)/ TiO2 nanocomposite [21] or high energy density capacitor from 

poly-vinylidene-fluoride/TiO2 nanocomposite [11] have exhibited better operations than 

their neat matrix counterparts. Moreover, this miniaturisation trend has covered not only 

microelectronics but also micromechanical devices. Nanocomposites can be considered as 

alternatives to composites and alloys in manufacturing micro-products [22]. For example, 

manufacturing airframe [23] or wings [24] of MAVs using conventional composites [25] 

such as carbon fibre, glass fibre or Kevlar reinforced plastics could be replaced by CNTs or 

CNF nanocomposites which have higher strength-to-weight ratio and flexibility. The 

artificial wings for MAVs have been developed using CNT/Epoxy and CNT/PP 

nanocomposites [12] (Figure 2.1c). Additionally, the additions of ceramic nanoparticles 
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improved the tribological property, wear-resistance and overall mechanical properties of 

metal nanocomposites [26]. Therefore, these nanocomposites could be used in 

manufacturing micro-gear [27], piston or linkage rod [18] (Figure 2.1d-f).  

Due to their huge potentials to produce micro-products, it would be necessary to 

investigate the thermomechanical properties as well as feasible processing methods to 

fabricate nanocomposites. Most of the recent techniques (Table 2.1) to manufacture 

nanocomposites are incapable of producing a final product (in terms of dimensional and 

geometrical accuracies as well as surface quality). Instead, a near-net-shape is produced. 

Table 2.1: Nanocomposite manufacturing techniques 

Nanocomposites Manufacturing method Ref. 

Polymer matrix 

nanocomposites (PMNCs) 

 

Melt mixing [28] 

Solution mixing [29] 

In situ polymerisation [30] 

In situ formation [31] 

Sol-Gel [32] 

Metal matrix nanocomposites 

(MMNCs) 

 

Spray pyrolysis  [33] 

Infiltration  [34] 

Rapid solidification  [35] 

High energy ball milling and powder 

metallurgy (PM) (consolidation) 
[36] 

Chemical vapour deposition  [37] 

Physical vapour deposition  [38] 

Colloidal suspension [39] 

Sol-Gel and hot pressing [40] 

Ceramic matrix 

nanocomposites 

(CMNCs) 

Powder processing (Compression, rolling, 

and extrusion) 
[41] 

Polymer precursor [42] 

Sol-Gel and consolidation [43] 
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Therefore, post-processing or finishing technologies will be always required. Some 

manufacturing processes such as LIGA [44], laser micromachining [45], micro-extrusion 

additive manufacturing [46], micro-EDM (Electrical Discharge Machining) [47], and 

mechanical micromachining [48] have been used to generate small precision component 

and micro-structured parts [49]. 

Among micromachining techniques, mechanical micromachining exhibits high 

performance in terms of surface quality, dimension accuracy and a wide range of materials. 

However, the addition of reinforcements leads to the complex structure of nanocomposites 

(multiple phases, homogeneity, anisotropy, etc.), and their advanced mechanical properties 

(high tensile properties, hardness, wear resistance, etc.) could reduce the machinability of 

these materials. Moreover, micromachining also complicates the material removal process. 

It contains some fundamental differences from conventional machining such as cutting 

edge radius, MUCT, micro-structure that are generally called size effects. All these factors 

make the micromachining of nanocomposites challenging to adapt. Additionally, there is a 

scarcity of data related to the micromachining of nanocomposites. That is why only a few 

reports on micromachining of nanocomposites available in providing in-depth analyses on 

micromachining of nanocomposites. 

2.2 Nanocomposites 

In general, nanocomposites keep the distinct characteristics of both matrix and 

fillers that make them different from alloys. At the same time, their final properties depend 

on their matrix-filler interface bonding, the arrangement of fillers inside the matrix and the 

geometry and content of the fillers. Nanocomposites are also distinguished from 

composites in which one of the filler’s dimensions is in the range of 1-100 nm. Figure 2.2 

demonstrates a few fundamental geometries of typical nano-fillers. The specific properties 

of each category, as well as the effect of filler phases on them, will be discussed in section 

2.3. Based on the unique properties of different nanocomposites, their potential or 

commercial applications will be given. In parallel with the discussion about 

nanocomposites, a comparison between nanocomposites and composites will be addressed 

to identify the basic differences in terms of the influences of the filler’s size, content and 

properties on their properties. 
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1D-Planar shape 2D-Tubular shape 3D- Spherical shape 

 

 

at least one dimension 
≤ 100 nm 

at least two 
dimensions ≤ 100nm 

all three dimensions ≤ 
100nm 

Graphene [50] CNT [51] Silica [52] 

Figure 2.2: Nano-filler geometries 

The main difference between nanocomposites and traditional composites is the size 

of fillers. The revolution of composites took place with the size reduction of the fillers from 

few millimetres in traditional composites to micro-scale (1-999 µm) in modern composites 

and recently, nanocomposites with the fillers having dimensions in nano-scale. The original 

for size reduction of filler is to attain a homogenous distribution of filler within the matrix 

hence reduce the stress concentrations within the composite structure [53] that 

subsequently improve its mechanical properties. 

Furthermore, smaller fillers can obtain higher surface energy that makes stronger 

bonding with the matrix [54], which in turn improves the stiffness and strength of the 

system [55]. In essence, the reinforcing mechanism of composite could be divided into two 

main types based on the filler scale. For micro-fillers, when the filler-matrix interface is 

larger than atomic level, the continuum mechanics is employed to indicate that the micro-

fillers bear a fraction of transferred load from the matrix hence the efficiency of 

reinforcement depends on the adhesion of the matrix-filler interface [56]. This model 

considers materials exist as continuum, and continuously distributed in the entire region of 

space, hence providing high accuracy when applied at micro-scale. For nano-fillers (1-999 

nm), the strengthening mechanism is applied when the matrix-filler interaction is at the 

molecular level. This mechanism proclaims that the nano-fillers restrict the plastic 
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deformation of the matrix by impeding its dislocations, subsequently leading to the 

improvement of tensile strength and hardness.  

The influence of filler size on the mechanical properties of polymer composites has 

been investigated. It was observed that in the micro-range of fillers, their size effect on the 

tensile modulus of composites was unobvious. Some experimental results indicated that the 

moduli of epoxy-based composites were not considerably improved, or even decreased [57] 

while using various particle size of Al2O3 (1-12 µm) [58], glass (4.5-62 µm) [59], or silica 

(2-47 µm) [60]. The same trend could be seen with PP/ CaCO3 [61], poly-

benzoxazine/CaCO3 [62] or polyester/ Al [63] (Figure 2.3). Also, the relation between the 

filler size and tensile strength of composite was not clear. While some studies reported that 

tensile strengths of composites remarkably increased with the size reduction of fillers, 

using micro silica particles to reinforce epoxy [60, 64], another result showed no trend of 

tensile strength variation of epoxy/Al2O3 when decreasing the filler size [58]. In general, it 

could be seen that the influence of filler size in micro-scale on mechanical properties of 

composite is unremarkable.  

However, when the fillers’ size is reduced to the nanoscale, their influences on the 

mechanical properties of composites are more sensitive than the micro-counterparts. For 

example, tensile modulus, flexural strength and impact strength of snail shell reinforced PP 

composites were observed to be improved with the decrease of filler size (150, 300 and 420 

nm) [65]. 

 

Figure 2.3: Normalised tensile modulus of epoxy-based composites as a function of micro-
filler size (adapted from [58], [59], [60], [66]) 
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However, those improvements were not considerable.  Tensile strengths increased 

by around 5% when decreasing the filler size from 300 to 150 nm for every weight fraction. 

The improvements of the mechanical properties of composites became considerable at the 

size of filler below 100 nm. This phenomenon was verified when a comparative study 

between micro and nano-fillers in terms of mechanical performance of polymer composites 

was given by Devaprakasam et al. [67]. In this research, micro-silica (100 nm – 4 µm) and 

nano-silica (40 – 60 nm) were employed. The results exhibited less variation in the 

modulus and hardness of the nanocomposite than the composite while applying different 

loadings. It can be explained by the homogenous distribution of nano-fillers, strong 

interfacial matrix-filler bonding compared with micro-fillers. The dominant effect of filler 

sizes on mechanical properties of composites was exhibited when they were reduced below 

20 nm [68] (Figure 2.4) while other researchers claimed that a high degree of 

reinforcement could be achieved using the fillers with sizes below 100 nm [69].  This 

threshold of filler size in which the mechanical properties of composites increase 

remarkably is called ‘critical size’, according to [70].  

 

Figure 2.4: Normalised tensile modulus of polymer-based nanocomposites as a function of 
nano-filler size (adapted from [68, 71]) 
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Figure 2.5: Graphical representation of the effect of CNT aspect ratio while interacting with 
polymer chains [72] 

The application of nano-fillers with high aspect ratios such as CNTs can efficiently 

improve the hardness and elastic modulus of polymer nanocomposites due to increased 

contact surface area (of nano-fillers) and strong interfacial bonding of CNT-polymer. Also, 

mechanical locking was more frequent in terms of high-aspect-ratio CNTs (Figure 2.5).  

However, most of the relevant studies only focused on experimental works while a 

few theoretical models or simulations were found (Figure 2.6). Constitutive models would 

be essential to provide quantitative analysis and explanation in terms of strengthening 

mechanism. The molecular dynamic (MD) method have been applied to investigate the 

effect of matrix density, chemical cross-links on the interface and geometrical defect of 

CNTs on interfacial shear strength (ISS) and consequently, CNT pull-out (Figure 2.6a) 

[73]. 

The simulation concluded that high matrix density, presence of cross-link and small 

cross-link switching contributed to high ISS. Additionally, a 3D representative volume 

element (RVE) method has also been applied to assess the effects of CNT waviness, 

diameter, volume fraction, Poisson's ratio and matrix modulus on interfacial strength of 

polymer/SWCNT [74] (Figure 2.6b). Based on these, investigating the interfacial bonding 

between nano-fibre and matrix seemed to play a critical role in load transfer assessment and 

consequently, the mechanical strengthening efficiency of the reinforcement. The Cox 

model has also been applied to study the stress transfer (δ) behaviour of SWCNT in the 
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epoxy matrix [75] (Figure 2.6c). The results showed a remarkable improvement of δ 

(128%) in the case of epoxy/SWCNT compared to that in epoxy/CF composite. The 

increase in Young’s modulus and structural change (from solid to hollow structure) 

contributed 69% and 31%, respectively to this enhancement (Figure 2.7a, b). The 

improvement of stress transfer efficiency δ due to the nanotube’s diameter increase has also 

been confirmed by Li and Saigal [76] using shear-lag analysis and the RVE (Figure 2.6d). 

Besides, they also considered the effect of fibre volume fraction as it has not been 

evaluated in previous studies. Based on these, it could be seen that nano-fibres with higher 

aspect ratio and tensile properties can provide higher reinforcing efficiency compared to 

their micro-counterpart.  

The strengthening efficiency of nano-fillers such as CNT in MMNCs was also 

investigated and its mechanism is following load transfer [77], Orowan strengthening [78] 

and thermal expansion mismatch [79]. The strength improvement that is contributed by 

metal matrix grain size refinement [80], which resulted from the addition of CNT has been 

found by [81]. Similar to polymer-based nanocomposites, the effect of reinforcement size 

also significantly contributed to the strengthening behaviour of MMNCs [82-84]. 

 

Figure 2.6: Theoretical models representing the micromechanical strengthening mechanism 
of polymer/CNT nanocomposites via the interfacial stress transfer considering effects of 

various factors: (a) Effects of polymer matrix density, chemical cross-links and CNT defect 
[73]; (b) Effects of SWCNT waviness [74]; (c) Effects of tube length and diameter [75]; (d) 

Effects of nanotube aspect ratio and fibre volume fraction [76] 
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Figure 2.7: Effect of (a) SWCNT’s diameter, thickness and length on the stress transfer 
efficiency (δ); (b) Young’s modulus on the stress transfer efficiency (δ) (Assumed that CF 
had the same hollow structure with d= 3nm and t= 0.142 nm as SWCNT) (Fibre volume 

fraction Vf ~ 0.17 % ) [75]; (c) nanotube diameter on stress transfer efficiency (Vf = 0.1%); 
(d) nanotube volume fraction on stress transfer efficiency (d = 0.7086 nm) [76] 

However, only a few models published have provided a comprehensive explanation 

of the strengthening mechanism of CNT reinforced MMNCs. Barai and Weng [85] have 

developed a two-scale model to analyse the elastoplastic behaviour of CNT reinforced 

MMNCs that considered CNT agglomeration and interface properties as two main factors 

affecting the load transfer. Dong et al.  [86]  have built a dislocation model that combined 

the effect of both matrix grain size and filler size on the strengthening mechanism of 

metal/CNT nanocomposites (Figure 2.8). They claimed that the load transfer effect was 

improved at small grain size and high volume of CNT.  
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Figure 2.8: (a) Schematic of the microstructure of CNT-reinforced MMCs with dislocation 
punched zones (DPZs). (b) The entire composite is decomposed into CNT and effective 
matrix phase, and the effective matrix is comprised of DPZs and pure metal matrix [86] 

2.3 Mechanical properties of nanocomposites 

From the discussions of the differences between nanocomposites and composites in 

section 2.2, it could be seen that reinforcing a matrix material by nano-fillers could lead to 

higher effectiveness of reinforcement than micro-fillers due to their advanced mechanical 

properties and novel nanostructures. Within the scope of this micromachining-aimed 

review, the mechanical properties of nanocomposites that have been applied in 

micromachining are addressed including CNT, graphene, and ceramic-based 

nanocomposites.  

2.3.1 CNT-based nanocomposites 

CNTs are allotropes of carbon that made of a cylindrical rolled-up single layer of 

the carbon atom. The diameters and lengths of CNTs range from 1-100 nm and 0.1 – 100 

µm, respectively [87] with the tubular structure make them very high aspect ratio materials 

with surface areas are in the range of 200–900 m2/g [88]. CNT was first discovered by 

Iijima in the transmission electron microscopy (TEM) image in 1991 [89] and the first 

SWCNT was synthesized in 1993 by the same author [90]. Many applications have been 

found for CNT in different domains such as drug delivery [91], health care [92], electronics 
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[93], electrics and thermal applications [94]. Due to their high strength-to-weight ratio, 

aspect ratio, thermal and electrical properties [95], CNTs have found huge potential 

applications in composite reinforcement. 

2.3.1.1 CNT reinforced Polymer Nanocomposites  

CNTs have been employed to reinforce polymers due to their better interfacial 

interaction in comparison to ceramic [96] or metal matrix [97] and the similar characteristic 

of organic structure. Therefore, there were some polymer/CNTs nanocomposites with 

tensile strengths ranging from 0.1 to 5 GPa and Young’s modulus from 5 to 200 GPa  [98]. 

Generally, the mechanical properties were improved when using CNTs as reinforcement in 

some polymers such as epoxy [99], polystyrene (PS) [100], polyethylene (PE) [101], 

PMMA [102], poly (p-phenylene benzobisoxazole) (PBO) [103], polyvinyl alcohol (PVA) 

[104], polyester elastomer (PEE) [105], polycarbonate (PC) [106], polyamide-6  [107] and 

nylon-6 [108]. The loading of CNTs was considered carefully to avoid agglomerations that 

negatively affect the mechanical properties of  PMNCs, usually when CNTs content 

exceeds 2-3% [109]. Figure 2.9 shows some improvements of Young’s moduli and tensile 

strengths when reinforcing polymer by CNTs. Generally, it could be seen that the level of 

CNTs distribution in polymer matrixes, their interfacial interaction and processing methods 

significantly affect the load transfer from the matrix to CNTs, hence decide their 

effectiveness of reinforcement in terms of mechanical properties of polymer-based 

nanocomposites. From Figure 2.9, both Young’s modulus and tensile strength of 

nanocomposites improved with the addition of CNTs. However, there are different 

thresholds of CNTs loading at which the tensile strengths decrease or even lower than 

pristine polymers. The re-agglomeration [110] of CNTs due to insufficient dispersion 

techniques, high loading of fillers hence creating the more stress concentration and 

reducing the effectiveness of CNT as reinforcement. Specifically, the poor interfacial 

interaction between CNT and polyester even leads to the negative influence on tensile 

strength of nanocomposite [111]. In terms of dispersion methods, solution mixing, in situ 

polymerization, dry mixing, and melt mixing are the most common methods for fabricating 

polymer-based nanocomposites.  Esawi et al. [112] have investigated the effects of 

dispersion methods on the mechanical properties of PP/CNT nanocomposites (Figure 2.10). 
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Figure 2.9: Mechanical properties of polymers reinforced CNTs with corresponding 
dispersion techniques (adapted from [110, 113-118]) 

 

Figure 2.10: Effects of dispersion method on mechanical properties of CNT reinforced 
PMNCs (reproduced from [112]) 

 The results have indicated a higher level of CNT distribution when using dry-

mixing in comparison with solution-mixing. The degradation of the polymer, high viscosity 

due to the addition of solutions that limited the CNT distribution contributed to the lower 

improvements of mechanical properties when applying solution-mixing. Additionally, 

employing ultra-sonication in solution-mixing might damage the CNT structure, hence also 
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contributed to the low mechanical properties of nanocomposites [119].  Associated with the 

effect of CNT content, the influence of CNT structure on the mechanical properties of 

CNT-based nanocomposites has been also indicated considerable. Since CNTs have 

various types: single-walled carbon nanotubes (SWCNTs), double-walled carbon 

nanotubes (DWCNTs), and multi-walled carbon nanotube (MWCNTs), their different 

structures and properties lead to various efficiencies in terms of mechanical reinforcement. 

Figure 2.11 shows the improvements in tensile properties when reinforcing epoxy with 

different types of CNTs. Theoretically, the addition of SWCNTs and DWCNTs exhibited 

higher reinforcement of mechanical properties than MWCNTs due to their higher 

mechanical properties, aspect ratio and specific surface area. Also, the multi-layer structure 

of MWCNTs leads to a low effective surface area in comparison with less-layer structure 

CNTs. However, this reinforcing effectiveness also depends on how homogenous the CNTs 

distribute within the polymer matrix. In this case, DWCNTs showed no agglomeration as 

SWCNTs that explained a higher improvement of tensile properties. This phenomenon was 

also verified by Fornes et al. [115] and Sennett et al. [120] that the dispersion of MWCNTs 

within the PC matrix was much more effective than SWCNT regardless of the fabricating 

routes. They explained that SWCNT had a high propensity to re-agglomerate during the 

synthesis making the exfoliation more difficult in comparison with MWCNT.  

Besides the structure, CNTs alignment also has a dominant effect on the mechanical 

properties of polymer-based nanocomposites. This feature could be attained using several 

methods such as shear flows [121], ex-situ alignment [122], force field-induced alignment 

[123], magnetic field-induced alignment [124], electrospinning-induced alignment [125] 

and liquid crystalline phase-induced alignment [126]. Figure 2.12 shows some 

experimental results that exhibited the improvements of tensile properties of CNT based 

nanocomposites with aligned CNTs in comparison with non-aligned CNTs. It could be 

explained by the isotropic nature of nanocomposites when CNT alignment was employed 

and leading to better distribution and reducing agglomeration of CNT when filling into the 

polymer matrix. In addition, functionalization has been considered as an effective treatment 

of CNTs to improve their interactive adhesions with polymer matrix, hence enhance the 

reinforcing effectiveness of mechanical properties through load transferring.  
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Figure 2.11: Effect of CNT structure on mechanical properties of polymer nanocomposites  
at a filler content of 0.3 wt.% (adapted from [127]) 

 

Figure 2.12: Effect of CNT alignment on mechanical properties of epoxy-based 
nanocomposites (adapted from [128, 129]) 

Reinforcing epoxy by amido-anime functionalised carbon nanotubes (f-CNTs) led 

to a higher improvement of mechanical properties in comparison with pristine carbon 

nanotubes (p-CNTs) (~ 51% of Young’s modulus) [130]. It was due to the lower interphase 

compression, matrix structure integrity, suppression of matrix mobility, stable-covalent 

bonds of epoxy/f-CNTs and subsequent facilitation of load transfer (Figure 2.13).  
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Figure 2.13: Effect of CNT functionalization on tensile modulus of CNT reinforced epoxy 
matrix nanocomposites (reproduced from [127, 130, 131]) 

Unlike the improvements of tensile strength and Young’s modulus, the addition of 

CNTs exhibited different variations of fracture strain and toughness. Figure 2.14 shows the 

different trends of fracture strain improvement between thermoplastic and thermosetting 

reinforced by CNTs at various weight contents. It could be seen that the flexibility of 

thermoplastic nanocomposites was significantly decreased at all filler loadings. Although 

relevant studies have shown this phenomenon, a comprehensive mechanism to explain it 

has been not proposed. Wang et al. [132] claimed that the degradation of flexibility when 

adding MWCNT-NH2 into PI was possibly due to strong interface interaction between 

matrix and filler. Consequently, the movement of polymer chains under loading could be 

restricted and hence, decreasing the flexibility of this material. However, the 

characterisation of interfacial strength has not been made to support this claim. On the 

other hand, the fracture strains of thermosets could be enhanced by the addition of CNTs at 

certain levels of contents which is different from thermoplastic nanocomposites.  
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Figure 2.14: Fracture strain improvement of CNT based polymer nanocomposites as a 
function of filler content (adapted from [110, 113, 132-136]) 

When reinforcing epoxy by MWCNT, Chen et al. [136] indicated that the brittle 

epoxy phase was toughened by dispersed CNT. This enhancement of failure strain at 

certain low filler loadings (below 1 wt.%) was confirmed by Gojny et al. [137]. At higher 

CNT loadings, CNT agglomeration led to stress concentration and weaken the interfacial 

interaction of polymer-CNT, hence reducing the fracture strain. Scanning electron 

microscope (SEM) imaging was employed to demonstrate these explanations in terms of 

CNT distribution at different filler contents. 

Regarding fracture toughness, CNTs have been qualified as a potential reinforcing 

candidate to replace glass fibre (GF) or CF to attain higher toughening efficiency due to 

their high aspect ratio and stiffness [138]. The micro-mechanical toughening mechanism of 

polymer reinforced CNT nanocomposites can be expressed as follows: (1) crack bridging 

by CNTs and (2) CNTs de-bonding and pull-out or breaking depends on the interface 

strength and applied load [139, 140] (Figure 2.15).  
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Figure 2.15: Schematic representing fracture toughening mechanism of CNT reinforced 
polymer nanocomposites (reproduced from [139]) 

Based on this schematic, it could be seen that the highest fracture toughness could be 

achieved if CNTs are oriented transversely with the propagated cracks in which the 

bridging mechanism takes effect. Otherwise, it will not have a considerable influence on 

fracture toughness in the case of longitudinal or random distribution of CNTs [141]. 

Besides, the effect of transverse alignment could be only effective at a low loading of 

CNTs. Some studies have shown a maximum enhancement of fracture toughness (around 

51%) of polymer/CNT nanocomposites at 3 wt.% of fillers was used and decreased when 

exceeded this threshold due to filler agglomeration [141]. On the other hand, the random 

distribution of CNTs did not show considerable enhancement in toughness at low filler 

content (< 1wt.%) [127].  

Chen et al.  [140] have analysed the effect of CNT length and interface strength on 

fracture toughness. They claimed that the fracture toughness could not be improved with 

the consideration of interface chemical bond density or fibre length only but combined 

them. The optimal values of these indicators were around 5-10% and 100 nm, respectively. 

Optimal CNT-bridging from their experiment has confirmed this theoretical analysis. 

Generally, reinforcing polymers by long CNT can achieve high fracture toughness due to 

its high load transfer and hence, improving the interface shear strength [142]. The structure 

of CNTs has also influenced the fracture toughness of nanocomposites. Low contents of 
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DWCNT (<0.5 wt.%) have shown a remarkable improvement of fracture toughness of 

epoxy-based nanocomposites due to its high compatibility with epoxy matrix. 

However, using suitable dispersion methods and functionalization could make 

MWCNT a better reinforcing candidate to enhance fracture toughness than other types of 

CNTs. In general, the fracture toughness improvement when reinforcing polymer by CNTs 

has shown a complicated correlation between various factors including CNT content, 

structure, alignment, treatment as well processing technique. Table 2.2 shows some fracture 

toughness improvements of polymer reinforced CNT nanocomposites with the 

consideration of the aforementioned factors. 

Table 2.2: Fracture toughness of polymer reinforced CNT nanocomposites with the 
consideration of various factors 

Matrix Factors Variables 
Filler content 

(wt.%) 
Fracture toughness 
improvement (%) 

Ref. 

Epoxy 
- CNT structure 
-Functionalisation 
- Filler content 

SWCNT 
0.05 10.8 

[127] 

0.1 23.0 
0.3 12.3 

DWCNT 
0.1 16.9 
0.3 30.8 
0.5 30.7 

MWCNT 
0.1 21.5 
0.3 23.0 

Epoxy - CNT diameter 

20-30 nm 

0.5 

31.8 

[143] 
30-40 nm 26.4 
40-50 nm 24.2 
50-60 nm 21.2 

Epoxy - CNT length 

2091 nm 

0.1 

46.6 

[144] 
1689 nm 43.3 
1332 nm 8.7 
992 nm 2.0 
503 nm -14.7 

Epoxy 
- CNT alignment 
- Filler content 

Random orientation 

0.05 6.2 

[128] 

0.1 11.6 
0.3 16.9 
0.5 13.8 

Aligned orientation 

0.05 23.3 
0.1 36.1 
0.3 53.0 
0.5 31.1 

Epoxy 
 
-Processing technique 

Three-Roll Milling 
(TRM) 

0.1 58.3 

[145] 

0.5 64.5 
1 68.5 

1.5 60.0 
2 57.7 

HPH (High Pressure 
Homogenization) 

0.1 48.3 
0.5 56.4 
1 64.2 

1.5 56.0 
2 42.0 
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2.3.1.2 CNT reinforced metal nanocomposites  

Although CNTs are theoretically considered an effective reinforcement for high 

strength-to-weight materials, few studies have concerned about using them to reinforce 

metals. The incorporation of CNTs in metals has some difficulties due to the inherent 

characteristics of both CNTs and metals, the fabricating conditions that negatively affect 

the interfacial adhesion as well as CNTs defects and subsequently, the improvement of 

mechanical properties of metal reinforced CNT nanocomposites. In general, two main 

challenges hinder CNTs from achieving high effectiveness of reinforcement in the metal 

matrix. The first challenge is the poor interfacial adhesion between CNTs and metals. It is 

due to the nature of CNTs such as low compatibility with high surface energy (72.8 mJ.m-

2) [146] high surface tension (721 mN/m) [147], low wettability or hydrophobicity [148] 

and high possibility of agglomeration because of Van der Waals forces [149]. Because 

chemical bonding between CNT-metal is neglected, these physical factors are dominant in 

the interfacial interaction [147]. Secondly, the undesirable chemical reactions between 

CNTs and metals at high temperature, pressure from fabricating conditions such as 

sintering, hot milling. It leads to the formation of intermetallic such as Al4C3 [150], TiC 

[151], Al2MgC2 [152]. Generally, a minor formation of carbide can positively improve the 

interfacial adhesion while an uncontrolled process could lead to serious damages of CNTs 

and in situ carbide formations [153] or enhance CNTs amorphization as well as their 

thermal decomposition [154]. Some solutions have been adapted to improve the wettability 

and distribution of CNTs as well as their interfacial strength with a metal matrix such as 

chemical functionalization [155], surfactant [156], coating CNTs with Ni [157], Si [158] 

or in situ synthesis CNTs within metal matrix [159]. Table 2.3 shows the mechanical 

properties of CNT reinforced metal matrix nanocomposites. The improvements in 

mechanical properties depend on the homogenous distribution of CNTs [160], interfacial 

strength of metal/CNT  [161], thermal expansion mismatch between metal and CNTs 

[162], grain refinement effect [157], CNTs structure retention of plastic deformations of 

metal matrixes [161], that all contributed to strengthening mechanism. The two last ones 

also contribute to the hardness improvement of metal/CNT nanocomposites. 
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Table 2.3: Mechanical properties of CNT reinforced metal matrix nanocomposites  

Material 
σu 

(MPa) 
E (GPa) 

Hardness 
(GPa) 

Reasons 
Fabricating 
methods 

Al/MWCNT  
1wt.% [163] 

521.7 
(35.7%) 

102.2 
(41.3%) 

0.136 
(30.8%) 

Good interfacial bonding, homogenous 
distribution, high elastic behaviour of 
CNT, the integrity of Al 

PM cold isostatic 
press, hot extrusion 

Al/MWCNT  
0.5wt.% [164] 

130 
(9.2%) 

60 
(20%) 

-- 
Good distribution of CNT due to the 
rolling process 

Mechanical 
mixing, hot rolling 

Al/(Si) 
MWCNT 10wt.% 
 [165] 

83.1 
(4%) 

120.4 
(78%) 

-- 
Strengthening by retained CNT and 
nano-crystalline structure 

Thermal spray, 
plasma spraying  

Al/(Si) 
CNT 10wt.% [166] 

-- 
125 

(39%) 
2.1 

(141%) 
Good distribution of CNTs due to Si-
coating and dispersing method 

Spark plasma 
sintering (SPS) 

Al/(Ni) 
CNT 5wt.%  
[167] 

213 
(52%) 

-- 
3200 

(113.3%) 
Homogenous dispersion, CNT structure 
retention, strong interfacial strength due 
to molecular mixing in in-situ CVD 
synthesis as compared to ball milling 

Ball milling 

398 
(184%) 

-- 
6.5 

(333%) 
In situ CVD 
synthesis 

Cu/MWCNT 
20 vol.% [160] 

-- 
106.5 

(108%) 
1.304 
(72%) 

Homogenous distribution and reduction 
of MWCNT agglomerations 

SPS and electroless 
deposition 

Cu/MWCNT 
10 vol.% [168] 

196 
(45%) 

135 
(95%) 

1.75 
(207%) 

Homogenous distribution of CNT SPS, cold rolling 

Cu/(Ni) CNT 
12 vol.% [169] 

-- -- 
21.5a 

(111%) 
Highest mechanical reinforcement at 12 
vol.% of CNT 

Mechanical mixing 
and hot pressing 

Cu/(Ni) MWCNT 
 0.75wt.% [161] 

279 
(76%) 

-- 
1.383 

(54%) 

CNTs resist plastic deformation, 
thermal expansion mismatch, 
homogenous distribution, good 
interfacial bonding, high hardness of Ni 

Ball milling and 
hot pressing 

Cu/MWCNT  
0.5 vol.% [170] 

307.4 
(81.6%) 

-- 
106 

(14.7%) 
Well dispersed of MWCNTs 
Stable interface blocks dislocation 

Ball milling and 
hot pressing 

Ni-P/MWCNT 
0.21wt.% [171] 

-- 
665.9 

(303%) 
28.9 

(331%) 
Strengthening effects due to MWCNT 
presence 

Electroless 
deposition 

Ni/MWCNT 
0.1wt.% [172] 

1140.7 
(14.2%) 

-- 
4.824 

(74.5%) 
High quality dispersion and integrity of 
MWCNT due to surfactant treatment 

SPS 

Mg-Zn/CNT 
1 vol.% [173] 

321 
(13.6%) 

52 
(42.5%) 

-- 
Homogenous, single distribution of 
CNTs, no reaction at the interface, grain 
refinement 

Melting and 
solidification 

Mg/(Si)MWCNT 
5 vol.% [158] 

296 
(44.4%) 

-- 
1.569 

(100%) 

High wettability of MWCNTs due to Si-
coating leads to good distribution, 
bonding strength 

Ball mill and hot 
pressing 

Mg/CNT  
1.3wt.% [174] 

210 
(9%) 

-- 
46b 

(2.2%) 

The coefficient mismatch of thermal 
expansion and elastic modulus of Mg-
CNT 

Melt deposition 
and hot extrusion 

Mg/(Ni) MWCNT 
0.3wt.% [157] 

237 
(38.6%) 

-- 
0.54 

(41%) 

Improved adhesion of Mg-(Ni) 
MWCNT due to Ni coating leading to 
Mg2Ni intermetallic formation, grain 
refinement 

PM, microwave-
assisted sintering 

Mg alloy/MWCNT 
2wt.% [175] 

297 
(6.1%) 

-- 
0.8 

(0.37%) 
Strengthening mechanism, thermal 
mismatch of CNT-Mg alloy 

Ball mill, hot 
compact  

CVD: chemical vapour deposition, PM: powder metallurgy, (a: HRB; b: HR15T) 
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2.3.2 Graphene-based nanocomposites 

Graphene is a planar sheet of a single layer of sp2-bonded carbon atoms that are 

considered as an original structure element of other carbon allotropes such as CNTs, 

graphite and diamond. This two-dimensional (2D) structure provides graphene with a much 

larger specific surface area of ~ 2600 m2/g than other carbon allotropes such as carbon 

black (CB) or CNTs [176]. Graphene exhibits exceptional mechanical properties such as 

Young’s modulus (~1 TPa) or strength (130 GPa) [177] hence considered as the strongest 

material [177]. Moreover, this material is also an excellent conductor with high thermal and 

electrical conductivity of ~4000 WmK-1 [178] and ~ 6000 S.cm-1 [179], respectively and 

other properties such as gas impermeability, optical transmittance. Therefore, graphene has 

high potential in a wide range of applications such as flexible electronic devices, 

transparent coating material, energy storage, and especially, nanocomposites [180].  

2.3.2.1 Graphene reinforced polymer nanocomposites 

Many researchers have attempted to investigate the reinforcing efficiency of 

graphene in nanocomposites by considering various factors such as the effective modulus, 

filler dispersion [181], alignment [182], agglomeration [183] or fabricating methods [10]. 

All these factors have certain influences on the filler distribution and graphene-matrix 

interfacial adhesion or stress transfer that subsequently affect the reinforcing effectiveness 

of graphene-based fillers. 

The effective modulus of thermal expanded graphite oxide (TEGO) has been 

measured when it was mixed with PC and PE. Only a slight improvement of modulus was 

experimentally observed in comparison with graphite-based composites while its effective 

modulus was around 70 GPa-7% of the value for defect-free graphene (~1 TPa) [184]. 

This low effective modulus of graphene is explained by its wrinkled geometry once 

dispersed in the matrix [185], which consequently unfold under tensile load instead of 

stretching. The incomplete exfoliation could also lead to the aspect ratio reduction of 

graphene [186] that contributes to this phenomenon.  

Graphene-matrix interfacial adhesion is considered as another crucial factor that 

affects the effective reinforcement [187] since it makes ineffective dispersion as well as 
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load transfer, hence resulting in a low modulus of nanocomposites [188]. Some significant 

increases of composite tensile moduli were observed when using graphene as 

reinforcement due to the roughness of the platelets [189] that attribute to mechanical 

interlocking within the matrix and hence, strong interfacial bonding.  

In addition, the reinforcing effectiveness of graphene also depends on the processing 

method. For instance, melt mixing has been found less suitable in graphene-based 

nanocomposites since this method causes particle attrition [190] that possibly decrease the 

filler ratio. In situ polymerization, on the other hand, can generate good dispersion but it 

also causes polymer chain extension by graphene, resulting in a less modulus improvement 

of composites than the solution-mixing method [10]. This comparison between different 

processing methods can be seen in Figure 2.16. Table 2.4 summarises some improvements 

in mechanical properties when reinforcing polymers with graphene. In general, the elastic 

moduli increased with the addition of graphene while the tensile strengths decreased. It is 

explained by the improvement of interfacial interaction of matrix-filler due to the high 

aspect ratio of graphene [191] that effectively bridging with the matrix molecules and 

leading to a high stiffening effect [192] 

 

Figure 2.16: Normalised Young’s moduli of thermoplastic polyurethane (TPU)/graphene 
nanocomposites in different processing methods) (reproduced from [10]) 
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Table 2.4: Mechanical properties of graphene reinforced polymer matrix nanocomposites 

 
Material 

σu 

(MPa) 
E (GPa) Reasons 

Fabricating 
methods 

EP/GNP  
0.3 wt.% [193] 

64.4 
(12.6%) 

2.16 
(30%) 

The high temperature in low viscosity system, low 
concentration of Gr leading to low agglomeration and 
uniform distribution of Graphene 

Solution mixing 

EP/APTS-GO  
0.2 wt.% [194] 

81.2 
(16%) 

3.3 
(32%) 

Uniformly distributed APTS-GO, strong interfacial 
stress 

Solution mixing 

EP/NH2-GNP 
4 wt.% [195] 

66 
(1.5%) 

3.4 
(17%) 

GNP aggregation, poor GNP dispersion Solution mixing 

EP/EGS  
3 wt.% [196] 

41 
(20%) 

3.7 
(25%) 

High aspect ratio and uniformly distributed EGS, 
good interfacial adhesion of EP-EGS 

Solution mixing 

EP/RGO 
0.2 wt.% [197] 

52.6 
(-0.8%) 

3.1 
(7%) 

Weak interfacial bond of EP-RGO, RGO 
agglomeration, RGO curvature 

Solution mixing 

EP/GNP 
0.1 wt.% [198] 

78 
(40%) 

3.7 
(31%) 

The high specific surface area of GNPs, strong 
matrix-filler adhesion/interlocking due to wrinkled 
surface of GNPs 

Solution mixing 

EP/GNP 
0.3 wt.% [199] 

70.4 
(23%) 

1.28 
(47%) 

High effect of Sodium Dodecyl Sulphate as the 
solution on GNP dispersion, the effect of surfactants 

Solution mixing 

ABS/CO(OH)2/ 
GNS 4 wt.% 
[200] 

43.2 
(50%) 

-- High modulus GNS, homogenous dispersion Melt mixing 

PMMA/GO 
1 wt.% [201] 

70.9 
(22%) 

4.39 
(28%) 

High aspect ratios and good dispersions of GO at low 
loading, wrinkled platelets 

In situ 
polymerization 

PC/FLG 
1 wt.% [202] 

60 
(10%) 

1.45 
(26%) 

Optimizing the aspect ratio of the graphene flakes Solution mixing 

HDPE/GNS 
3 wt.% [203] 

47 
(77%) 

2.033 
(87%) 

High specific area and flat-structure of GNS, HDPE-
GNS mechanical interlocking 

Melt mixing 

LDPE/RGO 
5 wt.% [204] 

-- 
10.1 

(60.7%) 
Homogeneous distribution of exfoliated carbon 
sheets in functionalised PE 

Solution mixing/ 
melt compounding 

TPU/EG 
10 wt.% [205] 

9 
(-84%) 

0.091 
(237%) 

Homogenous distribution, HS crystallization, EG 
hindering the amorphous phase, weak interfacial 
interaction of TPU-EG, EG agglomerations 

Melt mixing 

PVA/GNS 
3 wt.% [191] 

43.2 
(122%) 

1.186 
(155%) 

Homogenous distributed Gr and strong bond of PVA-
GNP. GNP restricting polymer chain movements 

Solution mixing 

(ABS: Acrylonitrile butadiene styrene; HDPE: high-density polyethylene; LDPE: low-density polyethylene; APTS-GO: 
amino-functionalised – graphene oxide; EGS: Graphene stack; FLG: Few layer graphene sheets; EG: Expanded 
graphite; GO: Graphene oxide; RGO: Reduced graphene oxide; GNP: Graphene nano-platelet; GNS: Graphene nano-
sheet) 

Consequently, the tensile strength of nanocomposites would be reduced. Moreover, 

this reduction is also due to the fabricating methods, re-agglomeration of graphene that 

constitutes some defects in the polymer matrix. The presence of graphene also opposes the 

flow of the amorphous phase and increase the crystallization of the hard segment of a 

polymer matrix that subsequently contributes to the elastic modulus improvement and the 

tensile strength reduction of polymer-based nanocomposites [205].  
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Like CNTs, the addition of graphene into the polymer matrix leads to different 

variations in terms of fracture strain and toughness. Fracture strain showed a significant 

reduction in the case of thermoplastic/graphene nanocomposite while this property was 

improved for thermoset plastic reinforced with low loading of graphene (Figure 2.17). 

However, the fracture toughness improvement when using graphene seems to be higher 

than CNT. Domun et al. [206] have collected experimental values of fracture toughness 

when using graphene to reinforce epoxy from relevant studies (Figure 2.18). They claimed 

that among common nano-fillers (CNTs, graphene, and nano-clay), graphene exhibited 

higher fracture toughness enhancement in epoxy-based nanocomposites, mostly at low 

filler loadings (<1 wt.%). It is due to the higher surface area, aspect ratio of graphene, as 

well as its exceptional stiffness and strength, compared to CNT as aforementioned.  

 

Figure 2.17: Fracture strain improvement of graphene-based PMNCs as a function of filler 
content (adapted from [194, 200, 201, 205]) 

(GPTS-GO: epoxy-functionalised – graphene oxide; bw-GO: based washed-graphene 
oxide) 
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Figure 2.18: Comparative fracture toughness improvement of epoxy-based nanocomposites 
using different nano-fillers [206] 

Rafiee et al [207]., in a comparative study, have claimed that graphene exhibited 

better mechanical reinforcement including Young’s modulus, tensile strength and 

toughness than MWCNT. It was due to poor interfacial contact area, wetting and adhesion 

of MWCNT that showed ineffective reinforcing epoxy-based nanocomposites. On the other 

hand, a higher aspect ratio allowed more interfacial contact between graphene and epoxy 

matrix in contrast with the only outer tube of MWCNT. Also, wrinkled sheets of graphene 

contributed to better interfacial binding, hence improving the toughening mechanism in 

epoxy/graphene nanocomposites. The micro-mechanical toughening mechanism of 

polymer reinforced graphene is also different from that in CNTs. While filler pull-out and 

de-bonding still exhibit along the cracks, there is no presence of graphene cracking. When 

the crack reaches the graphene surface, it will be deflected and bifurcated then propagating 

around the filler. The ease of shearing between graphene sheets also allows the crack 

propagation to go through or penetrates within layers (Figure 2.19). 
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Figure 2.19: Schematic representing fracture toughening mechanism of CNT reinforced 
PMNCs (adapted from [182]) 

2.3.2.2 Graphene reinforced metal nanocomposites 

Graphene has been also applied to reinforce metal to improve their stiffness but 

subsequently leads to the reduction of ductility that was called ‘strengthening mechanism’. 

However, tensile strengths have been increased [208] possibly due to the straightening of 

wrinkled graphene during the plastic deformation or ball milling process [209]. In general, 

the strengthening mechanism is related to the improvements of yield strength [210], 

elongation [208], flexural strength [211], but Young’s modulus and hardness are the most 

fundamental objectives. The improvements of Young’s modulus when reinforcing metal 

with graphene is ascribed to the homogenous distribution of graphene [212], compact 

interfacial bonding of metal-graphene [213] that lead to effective load transfer [214]. On 

the other hand, the improvements of hardness in nanocomposites are possibly due to the 

mismatch of thermal expansion coefficient [215] between graphene and metal matrix as 

well as the restriction or obstruction of graphene in plastic deformation [216]. Besides, the 

formation of metal carbide due to the chemical reaction between graphene and metal during 

synthesis contributes to the strengthening effectiveness. Al carbide (Al4C3) has been 

observed in Al/graphene nanocomposite synthesis using hot extrusion [210]. However, its 

role in terms of improvement of hardness has been still controversial whether it leads to the 

reduction of strength, hardness [210] or enhancement of bonding strength, load transfer 

[217]. The interfacial reaction can be improved by the formation of carbide because it 

decreases the contact angle of liquid alloy hence increase the wetting [218]. Furthermore, 
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using metal powder through ball milling and sintering processes at a high temperature can 

cause oxidation or the formation of metal oxide. Song et al. [219] reported that the hardness 

of Cu/ graphene nanocomposite was improved due to the presence of Cu2O during the 

synthesis but it was reduced when increasing graphene loading. Similarly, Lin et al. [218] 

indicated that the formation of Fe3C after sintering decreased the contact angle between 

liquid-alloy and GO, hence increasing GO wettability (Figure 2.20).  

In case no carbide is formed, the interfacial bonding of metal-graphene strongly 

depends on matrix nature (contact angle and cohesive energy of liquid-metal and filler) that 

has been addressed in the case of Mg matrix [220]. Hwang et al. [221] have confirmed the 

compatibility between Mg and graphene with their high adhesion energy. Also, pre-coating 

metals such as Ni on graphene surfaces have shown similar effects on improving the 

wettability of fillers in the Cu matrix [222] as compared to CNT cases [223]. Xu and 

Buehler [224] have pointed out that Ni-graphene has higher cohesive energy and interfacial 

strength than Cu-graphene.  

 

Figure 2.20: The formation of carbide when fabricating metal/GO (2 wt.%) 
nanocomposites [218] 



Chapter 2: Literature review 

 

34 

 

The improvements of mechanical properties of metal/graphene nanocomposites have 

shown their dependences on the integrity of graphene [211],  graphene exfoliation [225] 

and distribution [212], interfacial bonding [211], prevention of metal dislocation [226] 

beside the aforementioned roles of intermetallic formation due to sintering process (Table 

2.5). These formations of metal carbide, metal oxide through the synthesis might contribute 

to these improvements but cannot be evaluated whether they have positive or negative 

effects on mechanical properties of graphene reinforced metal nanocomposites. 

Table 2.5: Mechanical properties of graphene reinforced metal matrix nanocomposites 

 
Material 

σu 

(MPa) 
E (GPa) 

Hardness 
(GPa) 

Reasons 
Fabricating 
methods 

Al/RGO 
0.3wt.% [211] 

-- 
90.1 

(18%) 
1.59 

(17%) 
High quality and  uniformly dispersed 
RGO, strong bonding of Al-RGO 

Compacting and 
hot pressing 

Al-Mg-Cu/Gr 
0.3wt.% [227] 

454 
(25%) 

72 
(-1%) 

-- 
Evenly distributed of Gr, good interfacial 
bonding, Gr structure retention 

Ball milling, hot 
isostatic pressing 
(HIP) and extruding 

Al/GO 
15 mg ml-1  
[228] 

192 
(-7%) 

-- -- 
Dynamic recrystallization of matrix 
phase due to shear deformation, heat 
from FSP and grain refinement 

Friction stirring 
processing (FSP) 

Al/GNS 
1 wt.% [229] 

248 
(68.7%) 

-- -- 
Homogenous distribution of GNFs, no 
metallurgical at interfaces of Al-GNF 

Blending, cryo-
milling, degassing 
and hot extrusion 

Cu/FLG 
3 wt.% [230] 

-- -- 
0.46 

(39%) 
Disruption of graphene layers, Gr partly 
hinder grain growth 

Rolling 

Cu/RGO 
2.5 vol.% [221] 

335 
(30%) 

131 
(30%) 

-- Strong interfacial bonding of Cu-RGO 
Compacting and 
SPS 

Cu/GO 
0.5 gL-1  [231] 

-- 
137 

(30%) 
2.5 

(96%) 
Uniform distribution of Gr, grain size 
refinement 

Pulse reverse 
electrodeposition 

Cu/(Ni)GPL 
0.8 vol.% [232] 

245 
(42%) 

-- -- 
Good dispersion of GPL and strong 
interfacial bonding Cu-GPL (Ni), 
covalent interaction of Ni-GPL 

Solution, 
sonication, SPS 

Cu/GNP 
1.3 wt.% [233] 

485 
(107%) 

104 
(21%) 

-- 
Homogenous dispersion of GNPs due to 
pre-coating of Cu on GNPs 

Electroless plating, 
SPS tensile 

Cu/RGO 
0.3 wt.% [234] 

308 
(41%) 

109 
(12%) 

-- 
Less structural damage on RGO, 
randomly oriented of RGO benefit the 
load transfer of nanocomposite 

Hot pressing 

Ni/GO 
0.12wt.% [213] 

-- 
252.76 

(51.6%) 
6.85 

(278.4%) 
Compact interfacial bonding of Ni-GO, 
homogenous dispersion of GO 

Electrodeposition 

Ni/Gr 
0.05 gL-1 [226] 

-- 
240 

(70%) 
4.6 

(20%) 
High interaction of Ni-Gr, Gr preventing 
Ni dislocation 

Electrochemical 
deposition 

Mg/Ti/GNP 
0.18wt.% [225] 

230 
(8.5%) 

-- -- High specific area and adhesion of Gr 
Semi powder 
metallurgy 

Mg/GNP 
0.3 wt.% [212] 

246 
(32.2%) 

13.84 
(131%) 

55HV 
(34%) 

The high specific surface area of GNPs, 
uniform dispersion 

Compaction, 
sintering, extruding   

(GNF: graphene nanoflake; GPL: graphene platelet) 
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2.3.3 Ceramic-based nanocomposites 

In this section, the other nano-filler based nanocomposites will be reviewed in terms 

of their mechanical properties. There were many types of nano-fillers instead of CNTs and 

graphene that make the discussion in detail for all of them not feasible within the scope of 

this review section. Therefore, some common nano-filler based nanocomposites will be 

taken into consideration including polymer/nano-clay, polymer/ceramic and metal/ceramic 

nanocomposites. These selections are also based on the effective reinforcements of nano-

fillers with their corresponding matrices as well as their important applications as 

engineering materials. 

Besides of CNTs and graphene, nano-clay and ceramic nanoparticles have also been 

applied as reinforcement in polymer materials due to their advanced tensile properties. 

Nanoclays are potential candidates for nanocomposite reinforcements, especially in terms 

of mechanical properties. The most common type of nanoclays that has been applied in 

reinforcing nanocomposites is montmorillonite (MMT). It is derived from absorbent 

aluminium phyllosilicate clay called” bentonite” and thus named “organoclays”. MMT has 

been applied for reinforcing polymers due to their high aspect ratio and unique 

intercalation/exfoliation natures [235]. The incorporation of organoclays into polymer 

matrices has exhibited superior strength and modulus [236]. The most applied polymers by 

nanoclay reinforcements are polystyrene [237], epoxy resin [238], poly(methyl 

methacrylate) [239], poly(ε-caprolactone) [240], PP [241], PU [242], PI [243]. However, 

nanoclays mostly require pre-exfoliation to attain homogenous distribution due to higher 

specific area and hence higher effectiveness of load transfer could be achieved [244]. In 

general, the effectiveness of nanoclay reinforcements have been indicated strongly depend 

on intercalation methods [245], exfoliation nanoclays [246], the integrity of nanoclays 

[247] or matrices [248], and most importantly, the level of distribution of nanoclays  [249]  

or interaction of polymer-nanoclays [250]. However, the addition of nanoclays in polymer 

exhibited some negative effects on the tensile strength of nanocomposites in some cases but 

no explanation was given [249]. 

On the other hands, silica nanoparticles are also common nano-fillers that have been 

applied to reinforce polymers due to their high mechanical properties. The processing 
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methods to fabricate these materials are similar to other polymer-based nanocomposites 

such as melt mixing for PP [251], PE [252], Polyethylene naphthalate (PEN) [253], 

Polyethylene terephthalate (PET) [254], solution mixing for epoxy [255], poly(4-methyl-2-

pentyne) (PMP) [256], or sol-gel processing for epoxy [257]. In general, the additions of 

nano-silica in polymer matrices lead to the improvements of stiffness mostly due to the 

homogenous distribution, high aspect ratio and stiffness of silica nanoparticles. However, it 

could be seen that their effectiveness of stiffness improvement is not high as CNTs, 

graphene or nano-clays (Table 2.6). 

Table 2.6: Mechanical properties of ceramic nano-fillers reinforced polymer matrix 
nanocomposites 

Material σu (MPa) E (GPa) Reasons 
Fabricating 
methods 

PP/MMT 15 wt.% 
[258] 

38 
(13%) 

3.36 
(100%) 

Well-dispersed MMTs 
Melt mixing, 
injection moulding 

PP/MMT 10 wt.% 
[245] 

41.6 
(38.7%) 

-- 
The intercalation of MMT layers in the matrix due 
to the presence of MAPP compatibilization 

Melt mixing, 
injection moulding 

PP/MMT 2 wt.% 
[247] 

32 
(18%) 

0.9 
(82%) 

The persistence of silicate layers, modification of 
PP structure, partially immobilized polymer 
segments 

Melt mixing  

PA6/MMT 7.2 
wt.% [248] 

-- 
5.7 

(107%) 
High molecular weight and integrity of the matrix Melt mixing 

SPU/30B 7 wt.% 
[249] 

21 
(-53.3%) 

0.024 
(220%) 

 
Well-dispersed and delaminated of Cloisite 30B, 
good interaction of PU-clay, preferable solution 
mixing due to PU and surfactant degradations 
from melt mixing, improvements of the stiffness of 
SPU due to higher fraction of soft segment 

Solution mixing 
Melt mixing 

SPU/30B 7 wt.% 
[249] 

7 
(-66.7%) 

0.0193 
(168%) 

HPU/30B 7 wt.% 
[249] 

15 
(-66%) 

0.119 
(95%) 

EVA/ Cloisite Na 
3 wt.% [250] 

25.9 
(-8.8%) 

0.0135 
(10.7%) 

The dominant effect of exfoliation on tensile 
properties of nanocomposites, high interaction 
between EVA and Cloisite 30B 

Melt mixing, 
compression 
moulding 

EVA/ Cloisite 
20A 3 wt.% [250] 

25.8 
(-9.2%) 

0.0249 
(104.1%) 

Epoxy/SMC 2 
wt.% [259] 

57 
(25%) 

3.3 
(10%) 

Homogenous distribution and high exfoliation of 
SMCs 

Solution mixing 

Epoxy/SiO2 3.72 
vol.% [255] 

-- 
3.96 

(12%) 
Less agglomeration, well dispersed and high 
aspect ratio of Silica at low loadings 

Solution mixing 

Epoxy/SiO2 4 
wt.% [260] 

42.3 
(30.57%) 

-- The optimal interaction of EP-SiO2 at 4 wt.%  Solution mixing 

Epoxy/SiO2 13.4 
vol.% [257] 

-- 
3.85 

(30%) 
High modulus, well dispersion and no 
agglomeration of Silica 

Sol-gel mixing 

Epoxy/SiO2 20 
wt.% [261] 

-- 
3.97 

(26.4%) 
The high stiffness of silica Solution mixing 

EP/SiO2 20.2 
wt.% [262] 

-- 
3.85 

(30%) 
Well-dispersed silica Solution mixing 

(SMC: Silane-modified clay; SPU: Soft polyurethane; HPU: Hard polyurethane; PA6: Polyamide6/Nylon6) 
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In the case of ceramic reinforced MMNCs, the main challenge is the incorporation of 

ceramic nanoparticles into molten metal matrices due to their poor wettability. Besides high 

wetting could be seen in some metal/ceramic systems with strong (chemical) reactions and 

low contact angles (θ) such as Cu/WC (θ = 200) or Au/ZrB2 (θ = 250), most of the other 

ceramic nano-fillers generate non-covalent (physical) bonds with liquid metals with low 

wettability such as Ag/Al2O3, Cu/SiO2 ( θ = 120°–140°); Au/BN(θ = 135°–150°) at high 

temperature [263]. The inhomogeneous distribution of ceramic nano-particles and their 

agglomerations within the metal matrix have been indicated resulting from their low 

wettability associated with high specific surface areas. Some dispersion routes have been 

employed to overcome these obstacles including ex-situ and in-situ techniques [264]. The 

basic difference between these two methods is whether the reinforcements (ceramic nano-

particles) are fabricated within the matrices (in-situ) [265] or separately synthesized outside 

by CVD [266], spray conversion process [267] or laser-induced gas-phase reaction [268] 

and then subsequently incorporated into metal matrices via PM [269] or mechanical 

alloying (MA) [270]. Although the traditional PM method has been successfully applied to 

synthesis metal/ceramic nanocomposites, especially in aluminium-based matrices, it still 

exhibited obvious agglomerations of ceramic nano-particles and hence their 

inhomogeneous distribution [271] (Figure 2.21).  

 
Figure 2.21: The agglomerations of ceramic nano-particles in Al matrices: (a) Al/Al2O3      

4 vol.% [272]  and (b) Al/SiC 3 wt.% [271] 
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The low wettability of as-produced ceramic nanoparticles, as well as their high 

specific surface area, have indicated the main reasons for this drawback. It could be 

improved by employing MA methods with better dispersion of ceramic nano-fillers with 

significant grain size reduction [273]. Also, the densification of MA is mainly conducted 

by hot pressing, HIP or extrusion. On the other hand, the In-situ route has been claimed 

more suitable than the aforementioned methods in terms of generating the homogenous 

distribution of ceramic nano-particles such as Al3Ti [274] or TiC [275] at high loadings (50 

vol.% and 18 vol.%, respectively) and subsequent ultrafine microstructures.  

In general, the additions of ceramic nanoparticles lead to the improvements of 

tensile strength, yield strength and hardness associated with the sacrifice of ductility. All 

these changes in tensile properties follow strengthening mechanisms including Orowan 

strengthening, mismatch of thermal expansion coefficients between matrix and filler 

(CTE) and grain size refinement. Besides, the reductions of ductility have been claimed 

due to the presence of porosities within the system or brittle nano-fillers [271] although 

some improvements of ductility could be seen when using Mg-based matrices [276] 

without sufficient explanation. The role of ceramic nano-fillers in hindering the matrix 

dislocations and the effect of grain size reduction have discussed in most relevant research 

that was the main reason for hardness increments [271] . Table 2.7summarises the 

mechanical properties of some common ceramic nanoparticles reinforced MMNCs with 

their corresponding fabricating methods and discussion. 
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Table 2.7: Mechanical properties of ceramic nano-particle reinforced metal matrix 
nanocomposites 

Material 
Hardness 

(GPa) 

Tensile 
strength 
(MPa) 

Reasons 
Fabricating 

methods 

Al/SiC 3 wt.% 
[271] 

0.55 
(39.5%) 

164.4 
(29.3%) 

Homogenous distribution of SiC, Orowan 
strengthening, grain size refinement, the thermal 
mismatch between Al and SiC. Porosities lead to 
a reduction of ductility. SiC hindered metal  
matrix dislocation (increasing hardness) 

PM, ultrasound- 
assisted stirring and 
planetary agitation, hot 
compressing 

Al/SiC 6.5 vol.% 
[273] 

-- 
807 

(26.5%) 
Homogenous dispersed SiC, grain size 
refinement, Orowan strengthening 

Mechanical alloying, 
cryo-milling, HIP 
consolidation 

Al/SiC 1.25 vol.% 
[277] 

-- 
(69%) 

-- 
(109%) 

Homogenous distribution of SiC and CTE 
strengthening at low loading, residual stresses, 
high dislocation density and grain size reduction, 
agglomeration and porosity at a high loading of 
SiC. Hard particles reduced ductility.  

Mechanical alloying, 
ultra-sonication 

Al/SiC 2 wt.% 
[278] 

-- 
301 

(12%) 
Uniformly dispersed SiC, CTE, high dislocation 
density, restriction of dislocations 

Mechanical alloying, 
ultra-sonication 

Al/Al2O3 4 vol.% 
[272] 

66.6 
(109.5%) 

245.5 
(67%) 

Evenly distributed Al2O3, Orowan strengthening 
and grain size refinement effects  

PM, wet mixing, cold 
isotropic pressing and 
sintering 

Al alloy/SiC 
10 wt.% [279] 

87.2 
BHN 
(9%) 

265 
(12.3%) 

Density reduction, SiC hindered alloy 
dislocations, uniform distribution of SiC and 
their high wettability due to Mg coating 

Stir casting 

Al alloy/SiC 
10 wt.% [280] 

78 BHN 
(28%) 

188 
(0.53%) 

Non-homogenous distribution of SiC due to 
improper stirring led to the low improvement of 
tensile strength, hard SiC hindered dislocations 
that contributed to hardness improvement 

PM, mechanical 
mixing 

Al alloy/SiC 
6 wt.% [281] 

116 
BHN 
(62%) 

267 
(29%) 

SiC possessed advanced hardness, the strong 
interface of Al alloy - SiC 

Liquid metallurgy 

Mg alloy/SiC 
1.5 wt.% [276] 

-- 
199.3 
(90%) 

Grain size refinement, the strong bond of 
Mg/Zn-SiC, SiC clusters, no reason for ductility 
improvement 

MA, ultrasonic 
cavitation 

Mg/SiC 3 vol.% 
[282] 

0.58 
(180%) 

288 
(21.5%) 

Grain size refinement, dispersion hardening, 
strain hardening due to extrusion, dislocation 
hindering 

PM, ball milling 

Mg/SiC 
1.84 wt.% [283] 

0.42 
(10%) 

203 
(18%) 

The high constraint of matrix deformation that 
improved hardness, dislocation density, internal 
stresses formation due to thermal expansion 
mismatch, Orowan strengthening and the 
mismatch of elastic reinforcing phase - plastic 
matrix phase, SiC-Mg interfacial integrity led to 
ductility improvement 

MA, pressing, 
microwave hot 
sintering 

Mg/SiO2 
10 vol.% [284] 

1.03 
(75%) 

251 
(32%) 

Uniform distribution of SiO2, grain size 
refinement, Mg2Si, MgO formations during FSP 

FSP 

Al/TiC 10 wt.% 
[275] 

44.17 
HV5 

(143.6%) 
-- Strong TiC particles, grain size refinement In situ 
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2.4 Micromachining of nanocomposites 

2.4.1 Overview of micromachining 

The motivation of product miniaturisation with high precision is to make 

multifunctional products with lightweight, high mobility, less energy consumption and 

higher efficiency. Along with the discovery of advanced materials (i.e., super alloys, 

composites, ceramics, etc.) with outstanding ratios of strength to weight, the development 

of advanced machining techniques with ultra-high precision makes the miniaturisation of 

components feasible [285].  Taniguchi [286]  has modified machining advancement by the 

achievement of machining accuracy from conventional machining (1 to 100 µm) to ultra-

precision machining (1 nm) (Figure 2.22). In other perspectives, micromachining has been 

defined by its product dimensions (at least two dimensions ranging from 1 to 500 µm) that 

are extremely small to be fabricated by conventional machining [287]. The difference 

between precision machining and micromachining is identified by their objectives. While 

precision machining highlights the machining accuracy with the ratio of size to tolerance 

higher than 10,000:1, micromachining intends to make micro-parts that are typically in the 

range of 1 to 100 µm [288].  

 

Figure 2.22: The development of achievable machining accuracy (reproduced from [286]) 
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Micromachining is also defined by the uncut chip thickness (UCT) measurement 

when it becomes smaller than the mean value of grain size [289] or in the range of 0.1 to 

200 µm [290]. However, with the continuous development of machining, this border would 

be narrowed. 

There are many micro-machining techniques with their capabilities in terms of 

machining accuracy, part size, workpiece material and geometrical complexity. 

Classification in an attempt to identify the distinct principles between some basic 

micromachining process, generally based on whether micro-electromechanical systems 

(MEMS) or non-MEMs mechanism. MEMS are manufactured by micromachining 

processes which use lithography-based techniques to make the near net shape in 

semiconductors such as sensors, transducers, actuator, and other electrical devices on a 

silicon substrate. MEMs-based techniques are usually employed to fabricate the products in 

sizes ranging from 1 to 100 µm. The remarkable advantages of these kinds of micro-

manufacturing are the high accuracy of machined products without burr formation on the 

machined edges, low cost and feasible mass-producing applications due to their short 

processing time. 

However, their applications are limited by workpiece material, mostly silicon, a 

small range of metals and ceramics because of high requirements of materials for MEMs 

such as deposition ability in thin films, high definition and reproduction. Additionally, the 

geometrical complexity of micro-components is also a considerable disadvantage of 

MEMs-based micromachining whilst they can only be effectively managed with 2D or 

2.5D machined subjects. Micromechanical machining, on the other hand, is a miniaturized 

version of conventional machining that employs a geometrical micro cutting tool to remove 

material. Although MEMS can achieve smaller feature size, this adaption in micro-

fabrication has high potential in terms of machining accuracy, surface quality, a wide range 

of workpiece materials, and high complex geometry of products (3D). Moreover, the gap 

between macro and micro mechanical machining is also bridged while studying this 

approach [291] by discussing the size effect issue. 
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2.4.2 Size effect in micromachining 

Although micromachining has the same principle as conventional machining in terms 

of material removal mechanism, there are, however, some critical differences due to size 

effects when adapting from macro to micro-scale machining. Size effects make the 

relationship between inputs (micromachining parameters) and outputs (surface quality, chip 

formation, cutting forces, tool wear) distinct from conventional machining. Therefore, it 

could be seen that size effects are the key issues as well as the basis to explain the unusual 

aspects that micromachining processes have achieved [292]. Size effects are the results of 

extrapolated-value aberration from macro to micromachining. These effects are expressed 

by the dramatic, nonlinear increase of specific cutting energy when the UCT (h) decreases 

[293]. Experimental results to support this phenomenon have been achieved when metal 

and alloys were cut taking into consideration the ratio between UCT to cutting edge radius 

[294]. The specific cutting forces (kc) in micromilling are hyper-proportionally increased 

when micromilling at a feed rate (f) value lower than tool edge radius (r) [294], especially 

when reaching grinding levels (f/r=0.1), the specific cutting force could achieve maximum 

value of 70 GPa (Figure 2.23). 

 

Figure 2.23: Size effects in micromilling metals and alloys (reproduced from [294-296]) 
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In general, size effects in micromachining are related to different aspects that are 

usually neglected in conventional machining including: 

 A dramatic non-linear increase of specific cutting force when the UCT adapts the 

cutting edge radius. 

 A consideration of the microstructure effect on the machining process when 

cutting parameters (depth of cut, feed rate) adapt grain size or strengthening 

effects. 

 A critical threshold so-called MUCT sets the lowest limit for feasible cutting 

operation and decides the state of the cutting mechanism (shearing, sliding or 

ploughing). 

 A complex analysis of cutting force and surface roughness due to high spindle 

speeds, tool deflection/chatter and run-out  [297].  

 Different design of the micro-tool to ensure rigidity and stability, high tool wear 

and tool failure possibility when miniatures tool parameters. 

 Finally, the combination of those factors makes a comprehensive explanation for 

the differences in terms of surface generation between macro-machining and 

micromachining. 

Based on that the above, those aspects will be expressed in more detail in section 

2.4.3. However, the influences of size effects on micromachining have been still unobvious 

and need more experimental investigation to support [298]. The most specific exhibition of 

size effect is the higher specific cutting energy in micromachining compared to macro-

machining (Figure 2.24).  

 

2.4.2.1 Microstructure effect 

In macro-machining, when the material volume or the removal rate of the material 

for one route is relatively high, the material structure, in that case, is considered 

homogenous and isotropic.  Although, it still has a certain tolerance in this assumption but 

could be acceptable due to the high ratio between tool edge radius and grain size. On the 

other hand, when micromachining using micro-tools, the tool edge radius approaches the 

grain size, homogenous and isotropic assumptions are no longer valid.  
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Figure 2.24: Size effect on specific cutting energy in micromilling as compared to macro-
machining [294] 

Workpiece material structure is now considered as an assemblage of distinct grains 

with random distribution within the material system or anisotropic characteristic. 

Therefore, in this case, the cutting mechanism takes place by breaking each individual 

grain that requires more specific cutting energies or forces and mean flow stress due to 

atom bonds [299] (Figure 2.25). 

 

Figure 2.25: The schematic representing the differences between macro and 
micromachining in terms of microstructure ( adapted from [300]) 
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The effect of microstructure in micromachining exhibited in the case of multi-phase 

material. Vogler et al. [301] have studied a mechanistic force modelling that using micro-

structure mapping for the micro-end milling multi-phase ductile iron. It is observed that 

more than 35% cutting energy increase due to microstructural effects when micro-end-

milling multiphase ductile iron and higher frequency of cutting forces in comparison with 

macro-machining. The cutting forces, as well as other cutting conditions, vary when the 

cutting tool moves along two adjacent grains that have different mechanical properties. A 

‘two-grain model’  has been used to study the grain boundary influences on cutting forces 

[302] or surface generation [303]. Additionally, elastic recovery in micromachining is 

also an important factor of microstructure effects [304]. Furukawa and Moronuki [305] 

gave some experimental results to support the grain boundary effect on cutting force 

variation in single-phase and multiple-phase as well as in brittle and ductile materials (pure 

copper, aluminium alloy, PMMA, CaF2, and germanium). Mian et al. [306] have 

conducted a comparative study when micromilling single-phase material (AISI 1005 steel) 

and multi-phase material (AISI 1045 steel). They claimed that the surface quality after 

micromilling AISI 1005 was better than AISI 1045 due to the minimisation of the 

differential elastic recovery in single-phase material (Figure 2.26).  

 

Figure 2.26: Effect of microstructure on surface quality when micromilling steel [306] 
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Micromachining of multi-phase materials also leads to the unbalance of plastic strain 

that contributes to low surface quality and high cutting force variation [307]. The burr 

formation at the grain boundary areas also leads to higher surface roughness when 

micromachining multi-phase material. This burr formation is due to chip formation 

interrupting when tool adapts the grain boundary [308]. Nevertheless, in general, the chip 

loads is recommended to be ten times higher than the grain size to obtain high surface 

quality [305].  

Furthermore, it could be seen that a homogenous and isotropic material is considered 

the ideal condition for achieving high surface quality. This grain size effect has been 

indicated by Uhlmann et al. [309] when high machined surface, as well as hardness, could 

be positively affected by the high levels of material homogeneous property (Figure 2.27).  

 

Figure 2.27: Grain size effect on surface roughness and hardness  when micromachining 
W/Cu composite (reproduced from [309]) 
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However, the surface roughness when micromilling W/Cu 80/20 was still higher than 

W/Cu 75/25 that had a lower level of homogeneity. Popov et al. [310] have indicated that a 

remarkable improvement of surface quality can be feasible through the refinement of grain 

size to make higher homogeneity and isotropy and the grain size, in the case of 

micromilling aluminium alloy, have a significant influence on surface roughness. In details, 

with the decrease of the anisotropy and grain size of workpiece material from 100-200μm 

into 0.6μm, the surface roughness decreased more than three times compared to non-

refinement material. They also suggested the optimal cutting condition with narrow grain 

distribution associated with certain cutting direction could achieve the highest quality of 

machined surface, but due to the limit of certain refinement process, this was still a target 

for further research. 

Lauro et al. [311] in the similar adaption, indicated that with the small grain size 

(39.9μm), the variation of surface roughness will be reduced to 2% compared to larger 

grain size (51.1% when using grain size of 497μm). A similar explanation about the 

heterogeneous microstructure effect of multiphase material on surface roughness has been 

given by Weule et al. [304]. Therefore, it could be seen that reduce grain size tends to 

improve the machined surface quality and its role seems to be dominant in 

micromachining. Furthermore, the microstructure effect also exhibited by changing cutting 

directions and/or crystal orientation due to the anisotropic structure of materials when 

micromachining. Komanduri et al. [312] used an MD model to study cutting forces 

variation when specifically combining crystal orientation and cutting directions. To et al. 

[313] identified the higher surface quality can be achieved when micro-cutting single-

crystal aluminium along (100) plane than (110) and (111) planes but Zhou and Ngoi [314] 

have claimed that the dominant factor was not cutting direction but the plastic behaviour of 

single crystal. However, Moriwaki et al. [315] neglected the effect of crystallographic 

orientation when micromachining polycrystalline copper. They claimed that surface quality 

degradation is caused by the formation of the amorphous damaged layer due to the 

ploughing effect when the UCT is at 0.1 μm. In general, the microstructure effects on the 

micro-machinability are indicated by the inhomogeneity (grain size effect), anisotropic 

(different cutting directions) and structure (different phases) that lead to the variation of 

surface roughness, cutting forces and burr formations. 
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2.4.2.2 Minimum uncut chip thickness and cutting edge radius  

The chip removal mechanism is among the principal differences between micro and 

conventional machining due to size effects. The contact between the cutting tool clearance 

face and workpiece surface is usually ignored and the tool edge is considered sharp in the 

case of macro-machining. It could be explained by the high ratio of the MUCT to the 

cutting edge radius. When down-scaling into the micro-cutting mechanism, they become 

comparable to the tool edge radius and hence change the chip formation mechanism. 

In micromachining, the MUCT could range from submicron to a few microns and the 

depth of cut and feed rate varies from a few microns to maybe 100μm, hence the cutting 

edge radius and the grain size become comparable [316]. In that case, tool edge radius 

becomes a dominant factor as well as feed rate that affect the surface roughness. Moreover, 

the surface roughness tends to increase with the feed rate decrease excesses a lower 

minimum chip thickness [308] (Figure 2.28). That means MUCT has an inverse effect on 

surface roughness in the case of micro-machining. A decrease of UCT below the magnitude 

of edge radius (10-60 nm) leads to a significant increase of surface roughness for various 

levels of cutting speeds (10 and 150 m/min) [317].  

 

Figure 2.28: Tool edge radius and feed-rate effects on surface roughness in micromilling 
(reproduced from [296] [308]) 
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In micromachining, shear stress increases around the cutting edge instead of along 

the shear plane [299], and the workpiece is ploughed rather than being sheared [318] 

when cutting depth and feed-rate below a threshold so-called ‘minimum uncut chip 

thickness’. It was defined as a lower limit of minimum under form chip thickness that can 

be feasible to be removed [319] (Figure 2.29). 

 

 

 

ϕ: shearing angle; γ: clearance angle; θN: neutral angle; h: UCT; hm: MUCT; r: cutting 
edge radius; N: neutral point 

Figure 2.29: MUCT effects on the cutting mechanism in micromachining (adapted from 
[320]) 
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The negative effect of UCT on surface roughness is also related to the plastic 

deformation of materials during the machining process. The surface quality is reduced 

when decreasing the ratio of UCT/edge radius due to the plastic accumulation of workpiece 

material on the tool surface [321] and the adhesive workpiece material on the machined 

surface [322] caused by material strengthening. Furthermore, the shear angle decreases 

along with the MUCT leading to deformation areas expanded and hence increasing the 

mean friction that negatively affects the surface quality. Furthermore, elastic deformation 

of materials in micromachining is also negatively affected the surface quality. When the 

cutting depth adapts to the tool edge radius magnitude, the effective rake angle of the 

micro-cutting tool transforms from positive to zero or even negative. This transformation 

makes the cutting more stable but also leads to some negative effects, such as more elastic 

deformation due to shear zone expanding, higher stress, strain, cutting forces, and energy 

consumption. It also leads to a high ratio of ploughing/shearing in the cutting mechanism, 

making the cutting mechanism becomes less efficient (Figure 2.30). 

  

 

α: effective rake angle; r: cutting edge radius; h: UCT; 1: plastic deformation in the shear 
zone; 2: plastic deformation along tool rake face; 3: Elastic recovery 

Figure 2.30: Effects of MUCT on the shear angle of materials in micromachining: (a) 
positive effective rake angle; (b) zero effective rake angle; (c) negative effective rake angle 

(adapted from [323]) 
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Therefore, the identification of MUCT in micromachining is significantly important 

to attain an optimal machining process. L’vov [320] considered the influence of MUCT as 

a function of the tool edge radius and recommended that the depth of cut should be above 

29.3% of the tool edge radius to avoid ploughing and elastic deformation when micro-

cutting 1045 steel. Other researchers identified the minimum chip thickness by studying the 

cutting mechanism along with various feed rate levels in micromilling 360 brass, and the 

minimum chip thickness is approximately 30% of the tool edge radius [324]. Liu et al. 

[325] provided experimental results when identifying the ratios of chip thickness/tool edge 

radius λn (normalised minimum chip thickness) of 0.35-0.4 for micro-end-milling Al 6082-

T6 and 0.2-0.3 for micro-end-milling AISI 1018 steel over a range of cutting velocity 

(84,000 to 150,000 rpm) and feed-rate (0.5 to 4 µm/flute). 

In general, the size effects exhibited by the ratio of MUCT/cutting edge radius in the 

range of about 0.05 to 0.4 depending on materials and cutting parameters that have been 

supported by experimental, theoretical, and modelling results that were published in many 

studies when micromachining metals and alloys (Table 2.8). 

Table 2.8: The MUCT effects in micromachining – Relevant research 

Approach Remarks Ref. 

Micromilling lead, 

aluminium, and 

mild steel. 

The critical DoC ranges from 0.1 to 0.23 mm along with 

different edge radius (from 0.025 into 0.06 in), and a neutral 

point angle of 37.60 at a cutting speed of 240 mm/min. 

[326] 

Ultra-precision 

turning aluminium 

alloys 

The MUCT is 0.05-0.2 µm while the cutting edge radius is 

0.2-0.6 µm 
[327] 

Micromilling pure 

copper 101 

Various cutting speed (40, 80, and 120m/min), feed-rate 

(0.75, 1.5,3, and 6 µm/flute), and DoC of 30 µm. The 

highest burr formation, largest tool wear and cutting forces 

were shown at the lowest ratio of feed rate/edge radius 

(approximately 0.4). 

[328] 
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2.4.3 Micromachining of nanocomposites 

Micromachining nanocomposites are significantly different from the process with 

metals, alloys. The low machinability due to their advanced mechanical properties and the 

extensive cutting conditions (extreme small chip load and high cutting speed) are the main 

challenges when micromachining nanocomposites. Additionally, the effects of 

heterogeneity, anisotropic of materials, volume fraction and distribution of nano-fillers 

make the cutting mechanism even more complicated. For example, Deng et al [329] 

indicated that interface failure could contribute around 35% to cutting forces increase when 

micromilling Al/45 vol.% SiC composites besides the shearing - ploughing factor. This part 

of the paper will be focused on the cutting mechanism when micromachining 

nanocomposites in terms of cutting forces, surface generation, chip morphology and tool 

wear. As mentioned, micromachining has been focused extensively on metals and their 

alloys while machining of nanocomposites, on the other hand, is still limited [51, 330]. The 

following sections will discuss in detail the most common objectives of current researches 

related to micromachining of different types of nanocomposites as well as their limitations. 

2.4.3.1 Micromachining of CNT-based nanocomposites 

PMNCs are widely applied in micromachining due to their huge potential 

applications in the industry. The mechanical, thermal and electrical properties of polymers 

are significantly improved when reinforcing with CNT that leads to the requirement of 

machinability investigation when micromachining these materials. Additionally, the 

mechanical properties of CNT reinforced polymer nanocomposites (PMNC/CNTs) for 

instance: tensile strength, Young’s modulus or hardness are considered feasible for 

mechanical micromachining applications hence make this study area more adaptable. 

Cutting force, surface roughness, chip formation, and tool wear are the most common 

objectives that take the effects of nanomaterial properties and cutting parameters into 

account. 

Kumar et al. [331] have investigated the machinability when micromilling 

PC/GNP/MWCNT nanocomposites in terms of cutting force, dimensional accuracy, chip 

morphology and surface roughness. Cutting forces were higher when micromilling 

PC/GNP/MWCNT than plain PC (~ 22% at 4 µm/tooth feed rate) that suggesting the 
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dominant of strengthening effects due to higher mechanical properties and the decrease of 

thermal softening effect due to the thermal conductivity improvement when reinforcing PC 

with MWCNT (and GNP). 

The thermomechanical properties also lead to higher dimensional accuracy and 

surface quality (~197% at a feed rate of 3 µm/tooth) (Figure 2.31) when micromilling 

PC/GNP/MWCNT, especially at a high feed rate where the effect of softening is 

minimized. These explanations were validated by the consideration of chip morphology 

with discontinuous forms when micromilling PC/GNP/MWCNT that reconfirmed the role 

of CNT in chip breakage. However, the effects of size effects, filler loading and cutting 

speed on the micro-machinability have not been addressed. The chip formation due to the 

presence of CNT has also been investigated by Samuel et al. [51] with different forms and 

explanations. Instead of being broken, the chip formation tends to be continuous and curly 

when micromilling PC/CNT nanocomposites for the entire range of feed rates. It is possibly 

due to the good rake face lubrication [332] that could attain from reducing the friction 

coefficient of CNT along the rake face in comparison with plain PC [333]. Also, the 

presence of adiabatic shear bands on plain PC chip surfaces as well as their absence in the 

case of PC/CNT indicated the effect of thermal conductivity of materials on chip 

morphology (Figure 2.32). 

 

Figure 2.31: Various surface roughness with different nano-fillers and feed rate in 
micromilling PC-based nanocomposites (reproduced from [331]) 
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Figure 2.32: Effect of CNT addition on chip formation of PC/MWCNT nanocomposite [51] 

Heat concentration at the cutting interface due to poor thermal properties also led to 

built-up-edge (BUE) formation on the tool face, resulting in a poor surface finish in the 

case of micromilling plain PC as compared to PC/MWCNT nanocomposite (Figure 2.33). 

Besides, the infestation of CNT and polymer smearing on the machined surface also 

contributed to its high surface quality. The cutting forces when micromachining PC/CNT 

nanocomposites were also lower in this case due to the reduction of shear strength for 

failure than plain PC or the low-quality bonding of PC-CNT [334], especially when high 

feed rates (shearing-dominated regime) were applied (Figure 2.34).  

 

Figure 2.33: Comparison of surface roughness when micromilling PC/ 15 wt.% MWCNT 
nanocomposite and plain PC (reproduced from [51]) 
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Figure 2.34: Comparison of the resultant cutting forces for plain PC and PC/CNT 
nanocomposites (reproduced from [51, 335]) 

The lower friction coefficient of PC/CNT might also play a key role in cutting forces 

reduction [336] that has not been addressed by the authors. Mahmoudi et al. [335] also 

confirmed the important roles of thermal-mechanical properties and microstructure effects 

on cutting force variations. However, the experimental results showed higher cutting forces 

when micromilling PC/MWCNT nanocomposite than plain PC only when the feed rate (2 

µm) was lower than edge radius (~ 3µm) as a result of ploughing dominance in cutting 

mechanism due to MUCT effects. Therefore, it could be seen that the strengthening effects 

seem to be dominant on cutting forces when size effects are considered. The effect of CNT 

orientation has been also investigated with the significant increase when micromilling in 

the inflow direction as compared to the cross-flow direction (Figure 2.35). It was explained 

based on strengthening-dominated effects due to higher thermomechanical properties of 

inflow nanocomposite. Additionally, the surface quality of PC/MWCNT specimens after 

micromilling seemed to be better than a plain PC. However, no experimental results or 

explanation related to surface roughness was given. 
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Figure 2.35: Effect of CNT orientation on cutting force when micromilling PC/5 wt.% 
MWCNT nanocomposites (reproduced from [335]) 

Stress concentration and crack formation ahead of the tooltip due to CNT 

agglomeration was indicated as the main reasons for cutting force reduction of cross-flow 

machining. The study has neglected the effects of filler content, cutting speed on the 

machinability when micromachining of nanocomposites as well as the investigation of chip 

formation that is necessary to support the discussion. The influences of cutting speed on 

surface roughness when micromachining HDPE/MWCNT nanocomposites have been 

experimentally claimed less significant than feed rate [337] due to the obvious feed marks 

on the specimen surfaces but no detailed discussion was expressed. This has been 

reconfirmed by Zinati et al. [338] in an investigation on surface roughness with variations 

of cutting speed, feed rate and MWCNT content. The Analysis of Variance (ANOVA) has 

also exhibited the least effect of filler loading on surface roughness generation. However, 

surface roughness variation, in this case, was only explained by tool-workpiece interaction 

when changing feed rates and cutting speeds without concerning about the 

thermomechanical properties of PA6/MWCNT nanocomposites. 

The effect of filler loading on the micro-machinability of polymer/CNT 

nanocomposites has been only investigated by Samuel et al. [330]. The study highlighted 

the basic role of CNT addition in different chip formations as well as a cutting mechanism 

when micromilling PC/CNT nanocomposite and plain PC. Reinforcing CNT changed the 
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stress-strain behaviour of PC based materials, exhibiting by the reduction in strain-to-

failure that indicated a ductile-to-brittle transition when the CNT loading reached 5 wt.%. 

When micromilling at low feed rates were applied, the chips were still continuously formed 

even in extremely low feed rate (0.3 µm/tooth) with high-content CNT nanocomposites (5 

wt.%, 15 wt.%). The plain PC or PC/5 wt.% CNT, on the other hand, showed discontinuous 

chip formation. Therefore, it could be seen that the addition of CNT reduced the MUCTs of 

the PC/CNT nanocomposites that also indicated the size effects in micromachining. The 

improvement of machined surface quality associated with burr width reduction due to the 

addition of CNTs that leads to thermal conductivity improvement has been observed 

(especially at a high cutting speed of 130 m/min) with similar explanations as to their 

previous study [51] (Figure 2.36). 

 However, CNT content did not show considerable influence on cutting force in this 

case. Its effect became less dominant with the increase of cutting speed that indicated high 

sensitivity of strain rate (cutting speed) regarding cutting force variation instead (Figure 

2.37). Cutting force exhibited significant reduction when increasing cutting speed 

regardless of the filler content, but the reasons for those changes were different between 

PC, PC/1.75 wt.% MWCNT and PC/5 wt.% MWCNT, PC/15 wt.% MWCNT.  

 

Figure 2.36: Effects of CNT loading and feed rate on surface roughness and burr width 
when micromilling PC/MWCNT nanocomposites at cutting speed = 130 m/min 

(reproduced from [330]) 
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Figure 2.37: Effects of MUCT (feed rate), cutting speed (strain rate) and CNT loading on 
cutting force when micromilling PC/MWCNT nanocomposites (reproduced from [330]) 

While the advancement of cutting speed leads to the thermal softening-dominated 

regime of micromachining PC and the low-loading CNT, it is likely due to the interface 

failure or crack propagation from low interfacial bonding of CNT-PC when dealing with a 

higher content of CNT. The influence of heat transferring improvement due to the addition 

of CNT on cutting force when micromachining CNT reinforced polymer nanocomposites 

has been also investigated by Mahmoodi et al. [339]. Cutting force was considered as a 

function of cutting and edge coefficients in this case. The two main factors that were 

considered affecting these coefficients included: CNT content and CNT orientation. The 

radial and tangential have been considered as two components of cutting force (Figure 

2.38). Optimization of instantaneous force method has been applied to identify the cutting 

force coefficient. Based on that, it could be seen that when micromilling at feed rates below 

MUCT, cutting forces were much higher than that of higher feed rates due to the much 

higher values of ploughing coefficients than cutting coefficients. However, the 

experimental results from this study did not exhibit the same trend as expected with low 

cutting forces at a low feed rate (ploughing-dominated regime at feed rates below 2 µm). 
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Figure 2.38: Schematic of micromilling CNT-based nanocomposite (adapted from [339]) 

The influence of CNT orientation on cutting force has also been exhibited with slight 

reductions of cutting coefficients when changing from in-flow to cross-flow cutting that 

indicated lower values of cutting forces. However, there was also no experimental result to 

validate this proposal. In general, the effect of CNT addition on micro-machinability in 

terms of improving thermomechanical properties of CNT based polymer nanocomposites 

has been the most important factor. Associated with MUCT and microstructure effects, 

CNT addition influences the cutting mechanism and chip formation, hence affecting cutting 

force, surface roughness and dimensional accuracy. However, recent studies have still 

exhibited different results (outputs) and the dominances of various input factors with 

distinct explanations (Table 2.9) that reconfirmed the high complexity when 

micromachining nanocomposites. Also, most of those researches have been only focused 

on the effect of feed rate while the roles of CNT type, filler content, fibre orientation and a 
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cutting tool were almost neglected. In terms of machinability, no study has addressed tool 

wear that is a highly important criterion, especially in micromachining nanocomposites.  

Table 2.9: Summary of micromachining CNT reinforced polymer matrix nanocomposites 

Inputs Outputs 
Ref. CNTs Cutting condition 

Tool Chip 
Cutting 
force 

Surface 
roughness 

Dimension 
accuracy 

Tool 
wear 

Burr 
Loading Direction Feed Speed 

- - - - X - - - - X X X X - - - - 

[331] 

Conclusions Reasons 
High cutting force, dimensional accuracy and surface 
roughness when micromilling PC/CNT with 
discontinuous chip forms, especially at high feed 
rates. 

The improvement of thermomechanical properties due to the 
presence of CNT leading to strengthening-dominated and 
thermal-softening-neglected regimes when micromilling 
PC/CNT nanocomposite. 

- - - - X - - - - X X X - - - - - - 

[51] 

Conclusions Reasons 
Continuous, curly and smooth chip forms when 
micromilling PC/CNT nanocomposites as compared 
to broken forms with adiabatic shear bands in the 
case of plain PC chips 

Adding CNT reduce friction coefficient along the rake face and 
the effect of thermal softening in contrast with BUE formations 
due to poor thermal conduction of plain PC 

High surface quality when micromilling PC/CNT 
nanocomposite 

Improvement of thermomechanical properties due to the 
addition of CNT into the PC matrix. CNT infestation and 
polymer smearing on machined surfaces 

Low cutting force when micromilling PC/CNT 
nanocomposite, especially at high feed rates 

Low-quality bonding of PC-CNT leading to the reduction of 
failure shear strength along with the interface areas 

- - X X - - - - - - X - - - - - - - - 

[335] 

Conclusions Reasons 
Higher cutting forces when micromilling 
PC/MWCNT nanocomposite than that of plain PC 
only at a low feed rate (2 µm) 

Strengthening-dominated and microstructure effects associated 
with ploughing cutting mechanism when micromilling PC/CNT 
below MUCT. 

Significant increase of cutting force when 
micromilling in inflow direction in comparison with 
that of crossflow direction 

Stress concentration and crack formation ahead of the tooltip 
due to CNT agglomeration 

- - - - X X - - - - - - X - - - - - - 

[337] 

Conclusions Reasons 

Surface roughness decreased as cutting speed 
decreased and feed rate decreased with the more 
dominant effect of feed rate when micromilling 
HDPE/MWCNT 

Visco-elasticity nature of HDPE matrix and feed marks 

X - - X X - - X X X - - - - X 

[330] 

Conclusions Reasons 
The feasible chip formation when micromilling 
PC/CNT nanocomposites at a low feed rate (below 
tool edge radius). 

Reinforcing CNT changed the stress-strain behaviour of PC 
based materials, exhibiting by the reduction in strain-to-failure 
that indicated a ductile-to-brittle transition 

High surface quality and low burr width when 
micromilling PC/CNT nanocomposite. 

Addition of CNTs that leads to thermal conductivity 
improvement of nanocomposite 

Cutting force exhibited significant reduction when 
increasing cutting speed regardless of the filler 
content 

The thermal softening-dominated regime of micromachining 
PC, low-loading CNT nanocomposites and crack propagation 
from low interfacial bonding of CNT-PC when adding higher 
loading of CNT. 

 



Chapter 2: Literature review 

 

61 

 

2.4.3.2 Micromachining of graphene-based nanocomposites 

Although graphene has high potential in terms of reinforcing various matrix 

materials such as polymers, metals or ceramics, it has been seen that few studies have 

investigated these graphene-based nanocomposites recently. One of the early studies about 

the micro-machinability of graphene-based nanocomposite has employed GPLs (Graphene 

platelets) as the secondary filler [334]. The main objective of this study is to consider the 

differences in micromachining responses between two-phase composite (epoxy/GF) and 

three-phase composite (epoxy/GF/GPL). The addition of GPL has remarkably revealed a 

better micro-machinability of hierarchical composite in terms of lower cutting forces, 

surface roughness and tool wear than the baseline composite. It was explained by the 

improvement of thermal conductivity of epoxy when adding GPL and the reduction of 

friction along with the tool-chip interface that reducing BUE of polymer and tool wear 

subsequently. This explanation is similar to those of the micromachining polymer/CNT 

nanocomposites that have been aforementioned. Moreover, the influences of GPL on 

reducing surface roughness have been also analysed by considering the concept of effective 

fibre length (Figure 2.39).  

It was explained by the enhancement of interfacial strength of GPL- epoxy, making a 

longer effective fibre length and subsequent shearing-dominated cutting regime. In the case 

of baseline composite (epoxy/GF), glass fibre tended to bend and extrude on chips and 

machined surfaces indicating the lower effective fibre length, subsequent bending-

dominated regime. The effects of cutting speed on machined surface roughness have also 

been concerned with preferable high cutting speed for both materials to attain low cutting 

forces and surface roughness, but no explanation has been given. The effect of feed rate on 

the micro-machinability, however, has been not concerned (Figure 2.40).  

 The reduction of cutting force due to the effect of strain rate (cutting velocity) and 

MUCT because of GPL addition has been also investigated by Arora et al. [15] with a 

similar discussion to the case of micromilling PC/MWCNT [51]. The alternation of thermal 

softening and strain hardening due to ductile-to-brittle transition associating with minimum 

chip thickness effects have been applied to explain the cutting force variations when 

increasing cutting speed. 
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Figure 2.39: Influence of the matrix-fibre bond’s strength on the chip formation and surface 
generation [334] 

 

Figure 2.40: Effect of cutting speed on cutting force and surface roughness when 
micromachining epoxy/0.8 vol.% GF and epoxy/0.8 vol.% GF/0.2 wt.% GPL composites 

(reproduced from [334]) 
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However, a different trend in terms of cutting force variation could be seen between 

the two studies. From Figure 2.41, it was observed that there were some fluctuations of 

cutting force when micromilling epoxy and epoxy/GPL (0.1 wt.%) at low cutting speeds 

(7.5 – 17.5 mm/min) while they constantly decreased in the case of PC/MWCNT. This 

difference comes from the different natures between epoxy (thermoset) and PC 

(thermoplastic) and the applied range of cutting speeds. In such a low cutting speed, the 

thermal softening mechanism has not still taken effect on reducing cutting forces yet, 

especially with thermoset polymers (epoxy) that have higher heat resistance than 

thermoplastics (PC). Therefore, the ploughing cutting mechanism is now dominated at a 

low feed rate (3 µm) instead that contributed to cutting force increase. The lack of rising 

portion in the case of epoxy/GPL (0.2 wt.%) might be due to the reduction of minimum 

chip thickness leading to the dominance of ploughing at lower cutting speeds (<7.5 

mm/min). The highest cutting forces at 0.2 wt.% GPL were also due to the highest 

improvement in the mechanical properties of the nanocomposite. Tool wear has also been 

investigated in this study with the optimum when micromilling at 0.2 wt.% of GPL due to 

the lubricant nature of GPL and its role in reducing the elastic recovery of the matrix phase. 

At higher loading of GPL, their agglomerations were considered to accelerate the tool wear 

[340]. 

 

Figure 2.41: Effect of cutting speed and filler content on cutting force when micromilling 
different polymer nanocomposites at FPT= 3 µm (reproduced from [15, 330]) 
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 However, graphene loading’s effect on dimensional accuracy in micromachining 

polymer-based nanocomposites has not been considered sufficiently. Among relevant 

studies, only Kumar et al. [331] discussed the improvement of dimensional accuracy when 

micromilling PC/MWCNT in comparison with the plain matrix. The effect of 

thermomechanical properties is again the main reason for this phenomenon that leading to 

the strengthening-dominated mechanism when cutting CNT-based polymer nanocomposite 

instead of the thermal softening regime in that of its plain counterpart. Besides, an elevation 

of cutting force has been observed in this case that was different from the previous studies. 

While adding graphene [334] or CNTs [51] have in a polymer matrix have been indicated 

the main factor for cutting forces reduction due to two reasons: reduce friction coefficient 

in tool-chip interaction that leads to superior rake face lubrication and low interfacial 

failure strength between polymers and nano-fillers, this study, however, differently claimed 

a high specific surface area of GPL increasing tool-GPL interaction associated with its 

rough/wrinkled morphology enhancing mechanical interlock within PC matrix were two 

reasons that leading to cutting forces rise. 

The strain-hardening-dominated effect when adding GPL into a polymer matrix that 

leads to high cutting force has also been confirmed by Arora et al. [15] at 0.2 wt.% GPL. 

The highest cutting forces confirm the most effective reinforcement of mechanical 

properties at a certain threshold of graphene content that if exceed this limit, the influence 

of filler agglomeration will accelerate crack propagation or reduce shear strength to failure 

of polymer-graphene bonding [341]. These different trends of cutting force variation in a 

consideration of graphene loading can be seen in Figure 2.42. Like micromachining-

polymer/CNT studies, the most common objectives of that in polymer/graphene are also 

about cutting force, surface roughness and chip formation. 
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Figure 2.42: Different trends of cutting forces as a function of graphene addition when 
micromachining graphene reinforced PMNCs (reproduced from [15, 334, 342]) 

On the other hand, tool wear has been received more attention in the case of 

micromachining polymer/graphene nanocomposites [342] that indicated its importance as 

a machinability indicator. By discussing relevant studies, it could be seen that effects of 

graphene addition associated with cutting speed and feed rate have been considered 

changing the thermos-mechanical properties of the based polymer matrix, hence affecting 

the cutting mechanism, chip formation and subsequent cutting force, surface roughness and 

tool wear. However, the effect of material and geometry of micro-tool has not been 

investigated (Table 2.10). 

 Other gaps related to micromachining of graphene-based nanocomposites proposing 

through the discussion of relevant studies are the lack of attention in micromachining metal 

matrix and ceramic matrix-based material. Only Gao and Jia [343] has proposed simulated 

results in terms of the standardised effects of various inputs (DoC, cutting speed, tool rake 

angle, edge radius, graphene content and size) on cutting force only without sufficient 

explanations (Figure 2.43). 
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Table 2.10: Summary of micromachining graphene reinforced polymer matrix 
nanocomposites 

Inputs Outputs Ref. 
Graphene Cutting 

condition 
Tool Chip Cutting 

force 
Surface 

roughness 
Dimension 
accuracy 

Tool 
wear 

Burr 

Type Loading Feed Speed 
-- X X X -- X X X -- X --  

 
 
 
[15] 

Conclusions Reasons 
Reduction of MCT with GPL addition Ductile-to-brittle transition when adding GPL into epoxy 
Highest cutting forces at 0.2 wt.% GPL Most effective reinforcement of GPL in terms of mechanical 

properties 
Cracks and debris on the machined surface at 
high content of GPL 

Agglomeration of GPL, low interfacial interaction of GPL-
epoxy leading to a strength-to-failure reduction 

Optimum tool wear at 0.2 wt.% GPL Lubricant effect of GPL at the tool-chip interface and its role in 
minimizing sliding of polymer chains, subsequently reducing 
rubbing on the tool clearance face. 

-- -- X X -- X X X -- X --  
 
 
[334] 

Conclusions Reasons 
Low cutting force, surface roughness and 
tool wear when adding GPL into epoxy/GF 
system 

Improvement of thermal conductivity and lubrication at the tool-
chip interface led to BUE reduction and tool wear. 
Shearing-dominated regime due to superior interface strength of 
GPL-epoxy, leading to low glass fibre extrusion on the 
machined surface. 

The sensitive influence of cutting speed on 
surface quality improvement regardless of 
the material types 

The dominance of strain hardening effect at high cutting speeds 

X -- X -- -- X X X X -- --  
[331] Conclusions Reasons 

Discontinuous chip formation, high surface 
quality and cutting forces when micromilling 
PC/GPL 

Reduction of BUE due to the improvement thermomechanical 
properties when adding GPL filler into PC matrix 

-- X X X -- -- X X -- X --  
 
[342] 

Conclusions Reasons 

Highest cutting forces at 0.5wt.% GPL with 
the dominance of feed rate instead of cutting 
speed. 

Most effective reinforcement of GPL in terms of mechanical 
properties of epoxy/GPL leads to mechanical strengthening 
dominance when micromilling epoxy/GPL 
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Figure 2.43: Quantitative comparison of the standardised effects of various parameters on 
cutting forces for Mg/graphene nanocomposites (reproduced from [343]) 

2.4.3.3 Micromachining of nano-ceramic based nanocomposites 

Metallic materials are the most common matrices that have received more attention 

in terms of their micro-machinability when reinforcing with nano-ceramic particles. It 

comes from the requirement to fabricate high-toughness, corrosion than their metallic 

counterparts. One of the early studies that have investigated the micro-machinability of 

metal/ceramic nanocomposites was published by  [344] with the considerations of cutting 

force variations as a function of filler loading, feed rate and cutting speed while 

micromilling Mg/SiC nanocomposites. Interestingly, the size effect has been applied to 

explain the non-linear correlation between specific cutting forces and feed rates with larger 

ploughing zone in the case of micromachining Mg/SiC nanocomposite (Figure 2.44).  
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Figure 2.44: Specific cutting energy when micromilling Mg and Mg/10 vol.% SiC 
nanocomposite (the dash lines represent MUCT boundaries) (reproduced from [344]) 

It is different from the case of micromachining polymer-based nanocomposites. The 

main reason is the predominance of thermal softening due to the reduction of thermal 

conductivity when micromilling Mg/SiC at low feed rates. Additionally, its high specific 

cutting energies in the ploughing zone and high cutting forces also indicated the influences 

of strengthening and microstructure effects when micromachining inhomogeneous 

materials. Those influences also exhibited on the complex profiles of cutting force 

variations when micromachining Mg/SiC nanocomposite. The effect of filler content has 

been significantly affected cutting forces at 5-10 vol % of SiC due to its highest efficiency 

of reinforcement at this certain level [48] (Figure 2.45) that was similar to some 

experimental results in the case of micromachining of polymer/CNT [330] and 

polymer/GNP [15, 342]. The complex cutting mechanisms in micro-range parameters due 

to other factors such as tool deflection or microstructure effect neglected the role of feed 

rate on surface roughness as well as leading unobvious correlations between filler content-

cutting speed and surface roughness.  
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Figure 2.45: Effect of SiC content on cutting force when micromilling Mg/SiC 
nanocomposite (reproduced from [48]) 

With the micromachining of metal/ceramic nanocomposites, tool wear has been 

received more attention than that of CNT and graphene-based polymer nanocomposite. It is 

possibly due to the high improvement of corrosion resistance and mechanical properties of 

those nanocomposites due to the presence of nano-ceramic particles. Teng et al. [345], in a 

comparative study of micro-machinability between Mg/TiB2 and Mg/Ti, have claimed the 

effect of nano-filler additions on tool wear as well as cutting force and surface quality. The 

roles of thermomechanical properties due to the presence of nano-fillers in micro-

machinability of particle reinforced metal-based nanocomposites seem to be like 

polymer/CNT and polymer/graphene nanocomposites. It exhibited by the higher tool wear 

rate when micromilling Mg/TiB2 with tool coating peeling in comparison with that of 

Mg/Ti. Due to the size effect, the associated effects of DoC and feed rate on cutting force 

increase were only available in the shearing region. On the other hand, thermal softening-

dominated effect when increasing cutting speed and DoC has been claimed the main reason 

for surface roughness variations. Also, the high ductility of Mg/Ti led to more chip 

adherence on the tool surface that increasing cutting forces and subsequent surface 

roughness. However, no explanation related to thermal softening or strain hardening effects 

was given as compared to [48] (Figure 2.46).  
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Figure 2.46: Effect of feed rate on cutting force when micromachining Mg/ceramic 
nanocomposites (adapted from [48, 345]) 

The application of micromachining or the investigation of micro-machinability of 

nanocomposites mostly focused on three main materials: CNTs or graphene reinforced 

polymer matrix and nano-ceramic-particles reinforced MMNCs. While micromachining the 

first two materials have similar features due to the similarities between CNTs and graphene 

properties, the last one exhibited different trends of micro-machinability, especially chip 

formation and cutting force. A summary of relevant studies of micromachining of nano- 

ceramic-particles MMNCs is given in Table 2.11. However, micromachining of ceramic-

based nanocomposites have not been applied recently although there was one study has 

mentioned micromachining SiO2/GNPs nanocomposite using EDM [346]. It was possibly 

due to the low micro-machinability (high tool wear, cutting force or low surface quality) of 

these materials.  

 Based on the discussion of relevant studies, it could be seen that micromachining of 

nanocomposites is a complicated process with the associations of many factors such as 

microstructure effects, MUCT, cutting edge radius or the thermomechanical properties of 

nanocomposites (Figure 2.47). In general, the influences of nano-fillers on micro-

machinability of nanocomposites have been confirmed while feed rate, cutting speed, depth 

of cut have exhibited some different levels of effect on machinability of nanocomposites 

from conventional machining in some specific cases due to size effect. However, the 
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relevant studies mostly focused on CNTs or graphene reinforced polymer matrix or nano-

ceramic particles reinforced MMNCs. It leads to a lack of sufficient information to analyse 

the micro-machinability variations of these materials. 

Table 2.11: Summary of micromachining nano-ceramic-particles reinforced metal matrix 
nanocomposites 

Inputs Outputs  
Ref Material Filler 

loading 
Cutting condition Tool Chip Cutting 

force 
Surface 

roughness 
Dimension 
accuracy 

Tool 
wear 

Burr 

Feed Speed DoC 
Mg/SiC X X X -- -- -- X -- -- -- --  

 
 
 
 
[344] 

Conclusions Reasons 
Non-linear increase of specific cutting energy when 
reducing feed rate below MUCT. 

Size effect in micromachining 

Wider ploughing zone when micromilling Mg/SiC indicates 
higher MUCT with more SiC content 

The predominance of thermal softening due to the reduction of 
thermal conductivity when micromilling Mg/SiC at low feed 
rates 

Higher specific cutting forces when micromilling Mg/SiC 
in ploughing zone  

Strengthening effect and microstructure effect of 
inhomogeneous nanocomposite 

Highest cutting forces when micromilling Mg/SiC (10 vol 
%). 

Improvement of yield strength and fracture strength due to SiC 
addition 

Complex force profiles of micromilling Mg/SiC  Microstructure effect 
Mg/SiC X X X -- -- -- X X -- -- --  

 
 
[48] 

Conclusions Reasons 
The predominance of filler contents on cutting forces, 
especially at 5-10 vol% of SiC 

Improvement of mechanical properties when adding more SiC 
in Mg matrix 

Unremarkable effect of feed rate on surface roughness 
while unobvious correlations between filler content-cutting 
speed and surface roughness were seen. 

Complex microcutting mechanism while tool deflection and 
microstructure are also dominant 

Mg/TiB2 

Mg/Ti 
-- X X X -- -- X X -- X --  

 
 
 
 
[345] 

Conclusions Reasons 
High tool wear rate when micromilling Mg/TiB2 with tool 
coating peeling 

High mechanical properties and thermal load of Mg/TiB2 

Higher cutting force when micromilling Mg/Ti than 
Mg/TiB2 

Chip adherence effect in case of micromilling Mg/Ti 

Higher surface quality when micromilling Mg/TiB2 than 
Mg/Ti 

Lower cutting forces when micromilling Mg/TiB2 

In the shearing region, cutting forces increased with DoC 
and feed rate 

More resistance on tool-chip interface due to higher contacting 
surface 

Cutting speed and DoC have more dominant effects on 
surface roughness than the feed rate 

The thermal softening effect when changing cutting speed and 
DoC 

Al/TiB2 -- X X X -- -- X -- -- -- --  
[347] Conclusions Reasons 

Feed rate has the most dominant effects on cutting force 
when micromilling Al/TiB2 

Shear angle increase and friction angle decrease when 
increasing feed rate 

Al/SiC -- X X -- -- X X X -- -- --  
 
 
[348] 

Conclusions Reasons 
Unobvious effect of nano-filler addition on machined 
surface quality 

The absence of particle pull-out or failure when micromilling 
Al/SiC 

The low predominance of feed rate effect on the surface 
finish at high cutting speed 

Thermal softening effect 
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Figure 2.47: Schematic showing the correlations between input variables and the 
machinability of nanocomposites in micromachining 
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2.5 Modelling of micromachining of nanocomposites 

There are various models available to analyse the machinability of nanocomposites 

using micromachining. Those models include analytical [349], mechanistic models [301], 

finite element (FE) models [350] and MD models [351]. Analytical modelling simulate the 

machining responses based on analytical solutions of mathematical modelling [352]. This 

method is based on classical models in macro-cutting with the kinematics from empirical 

observation. Due to the high complexity in terms of elastic/plastic deformation and fracture 

at high strain rate in micromachining, the applications of this model have been limited. The 

mechanistic models provide the machine responses by investigated material [353], 

however, require validations from experiments that more complex with various content of 

nano-fillers. MD simulations are applied in micromachining [354] however due to 

limitations of time/length-scale, computational effort, and complex formulas, they seem to 

be unsuitable for a high number of atom models [355]. On the other hand, FE is one of the 

most common methods that has been applied in micromachining [356]. The different 

materials of both tool and workpiece are capable to be assigned. Furthermore, this method 

is also suitable for multi-phase material (i.e., nanocomposites) in predicting cutting forces, 

stress, strain, temperature distribution, chip formation and tool wear.  

A microstructure-level model to simulate the micromachining process of PC 

reinforced with CNT has been applied by DeVor and Kapoor [357] appeared to accurately 

predict cutting forces (error 8%), thrust force (error 13.4%) and chip thickness ( error 

10%). In general, the material structure was separated into main phases: matrix (PC) and 

reinforcing (CNT) phase. Based on the TEM images of the nanocomposites, the CNT 

distribution within the matrix would be characterized for length, curvature, slope, and 

orientation [358]. Similarly, the failure modes were also separately identified for two 

phases. Plastic stretch was applied as the ductile failure and hydrostatic tension was 

employed for brittle failure [359] in the matrix phase while a simple strain-to-fracture was 

used for CNT failure. 

The results of chip formations, subsurface damage of the simulation can be seen in 

Figure 2.48. Based on that, Jiang [360] have developed a new microstructure–level model 

in micromachining polymer reinforced CNT nanocomposite. The principal difference was 
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that they indicated the failure mechanism of the micromachining process was primarily 

affected by the CNT- polymer interface. This idea was supported by subsequent numerical 

and experimental results from [361, 362]. Therefore, this polymer-CNT interface should be 

modelled as a third phase in the nanocomposite structure related to the load transfer from 

matrix to reinforcing phase [363]. They also showed that the characterisation of the 

interface properties was based on two main parameters: strength and fracture energy. Some 

nano-indentation tests have been conducted to identify these values.  

Figure 2.49 shows the simulation results of this model. Other similar adaption in 

terms of simulation of micromachining polymer reinforced CNT has been conducted by 

Kumar et al. [331] in an attempt to investigate the heterogeneity of polymer-based 

nanocomposite with the addition of graphene. The PC matrix properties were characterized 

by the Johnson-Cook (JC) constitutive material model [364] with the consideration of flow 

stress at high temperature and high strain rates. 

 

Figure 2.48: Micro-structure-level machining of CNT reinforced PC ([365, 366]) 
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Figure 2.49: Micro-structure-level machining of CNT reinforced PVA nanocomposite  
[360] 

The value of JC coefficients was provided by Dwivedi et al. [367]. The failure 

mode of the PC matrix was ductile damage for material separation and chip formation. The 

filler (GNP) was considered isotropic [368]. The mechanical characterisation was identified 

from the experimental validation of Tiejun [369]. From the simulation, the chip formation 

and cutting forces seemed to be similar to the experimental results. Discontinuous chip due 

to the presence of GNP seemed to appear in the PC-GNP interface that was supposed to be 

the weakest location. Besides, the strengthening effect due to the addition of GNP led to a 

higher cutting force when micromilling PC/GNP nanocomposites. Although there were 

some differences between simulated and experimental results due to various filler 

distributions, the model was indicated to be able to simulate the chip morphology and the 

trend of cutting forces accurately (Figure 2.50).  

Teng et al. [350] have developed another FE model that employed the same filler 

(nano SiC particles) of 1.5 vol% when considering the effect of UCT and cutting edge 

radius on cutting force and chip morphology. It was concluded that the cutting forces in 

simulation increased along with the UCT. However, the percentage error seemed to be 

higher at low UCT and only improved when its value exceeded 0.1 µm. The lower values 

of simulated results in terms of cutting force were due to the assumptions such as sharp 

cutting edge, rigid cutting tool and without tool wear consideration.  
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Figure 2.50: FE analysis of micromilling PC and PC reinforced GNP nanocomposite: (a) 
Chip formation of PC/GNP, (b) Cutting forces in simulation and experiment [331] 

Similarly, the chip formation was also different while changing the UCT. When the 

UCT was from 0.1 to 0.2 µm, the chip formation could not take place due to ploughing 

with elastic deformation. Exceed that limit, the chip was formed irregularly that could be 

seen at the minimum chip thickness of about 0.5 µm (0.5R) (Figure 2.51). 

In their later work [370], two FE models were established to comparing the 

machinability between micro-particles and nano-particles reinforced MMCs in terms of 

stress/strain distribution within the workpiece, chip formation, surface generation and tool 

wear. It was found that the particles reinforced within the matrix act as a barrier restricting 

the stress propagation during the machining process (Figure 2.52). The nano-particles were 

found to be intact during the machining process which is different from the micro-sized 

reinforced counterpart. It was explained by the better mobility of nano-particles caused by 

the significantly reduced particle size which bear evenly distributed stress and less kinetic 

energy. 
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Figure 2.51: FE analysis of micromilling Mg reinforced by 1.5 vol.% SiC nanocomposite 
(reproduced from [350]) 

 

Figure 2.52: Effect of nano-particles on shear zone propagation: (a) direction of shear zone 
propagation, (b) distorted stress contour caused by particle restricting behaviour [370] 
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2.6 Summary 

Based on the relevant studies that have been addressed, it has been observed that 

although most nanocomposites fabrication and characterisation have been conducted and 

discussed, their machinability investigations in micromachining have still been limited, 

predominantly to the polymer matrix and metal matrix and nanocomposites reinforced by 

CNTs, graphene or ceramic nano-particle reinforced. It is possibly due to material 

integrity/defect, micromachining feasibility (tool wear, vibration, etc.) and most 

importantly, the high complexity of micromachining nanocomposites. 

The associations of many factors including microstructure (homogeneity, 

anisotropic, grain size), improvements of thermomechanical properties (filler distribution, 

loading) of nanocomposites and size effects of micromachining complicate the 

manufacturing process as well as significantly decrease the machinability of these 

materials.  In the case of fibre reinforcement, the distribution of nano-fibre (i.e., CNT) and 

fibre/cutting orientation were also important factors in micromachining. Subsequently, the 

intricate micromachining process leads to unobvious relations between variable inputs such 

as feed rate, cutting speed and corresponding outputs (i.e., cutting force, surface roughness, 

chip formation) with different explanations. In some cases, the cutting parameters showed 

inverse influences on the machinability compared to other conventional machining 

processes. Most studies have been concerned about the effects of filler content, feed rate 

and cutting speed on chip formation, cutting force and surface roughness. However, the 

micro-machinability of polymer nanocomposites has not been sufficiently investigated. 

Additionally, the effects of micro-cutting tool’s material and tool wear on the micro-

machinability of nanocomposites have been rarely mentioned. Besides, the analysis of size 

effect when micromachining nanocomposites have been still under-researched although it 

has been addressed extensively when micromachining metals and alloys. 

Nevertheless, through the discussion of both mechanical properties and mechanical 

micromachining of nanocomposites, a general view about their micro-machinability has 

been given. It would be the basic knowledge for further studies in this area in future. 

However, the gap of knowledge has also led to the requirement for more efforts for 

collecting quantitative data and sufficient information on this area.  
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Chapter 3: Experimental work 

3.1 Workpiece materials  

3.1.1 Epoxy 

A two-component Bisphenol A-epichlorohydrin (BPA) based epoxy was used in this 

research. EPOPHEN EL5 (resin) and EPOPHENTM EHA 57 (hardener) were purchased 

from Polyfibre UK Ltd (Birmingham, UK). Resin and has a density of ~1.3 g/cm3 and a 

viscosity of 12,000-15,000 pcs while hardener has a viscosity of 45 pcs. 

3.1.2 Graphene  

Graphene AO-3 was purchased from Graphene Laboratories Inc., USA.  The 

specifications of graphene AO-3 are shown in Table 3.1. Figure 3.1 shows the SEM image 

of as-received graphene nanoplatelets.  

Table 3.1: Specific characterisation of graphene AO-3 (Source: Graphene Laboratories) 

Properties Unit Value 
Average flake thickness nm 12 
Average particle size nm ̴4500 (1500 – 10000) 
Carbon purity % 99.2 
Specific surface area m2/g 80 

 

 

Figure 3.1: A SEM image of graphene nanoplatelets 
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3.1.3 Multi-walled carbon nanotube  

NANOCYL® NC7000TM thin MWCNTs were purchased from Nanocyl that were 

produced via the catalytic chemical vapour deposition (CCVD) process. The specifications 

of MWCNT NC7000TM are shown in Table 3.2. The high aspect ratio of NC7000TM 

leads to the higher efficiency of properties improvement of nanocomposites than other 

fillers such as graphite or carbon blacks (CB). Figure 3.2 shows the TEM image of the as-

received MWCNT NC7000.  

Table 3.2: Specific characterisation of MWCNT NC7000TM (Source: Nanocyl) 

Properties Value Unit Measuring method 
Average diameter 9.5 nm TEM 
Average length 1.5 µm TEM 
Carbon purity 90 % Thermogravimetric analysis (TGA) 
Transition metal oxide <1 % Inductively Coupled Plasma Mass 

Spectrometry (ICP-MS) 
Specific surface area 250-300 m2/g Surface area analysis (BET) 
Volume resistivity 10-4 Ω.cm Internal test method (resistivity on powder) 

 

 

Figure 3.2: A TEM image of MWCNT NC7000 
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3.1.4 Carbon nanofibre 

Carbon nanofibre CNF-110 was purchased from GNM that are produced via the 

CVD process.  The specifications of CNF-110 are depicted in Table 3.3. Figure 3.3 shows 

the SEM image of the as-received CNF-110.  

Table 3.3: Specifications of CNF-110 (Source: getnanomaterials.com) 

Properties Unit Value Measuring method 
Outer diameter nm 200 - 600 High resolution TEM (HRTEM) 
Length µm 5 - 50 TEM 
Carbon purity % >70 TGA, TEM 
Specific surface area m2/g > 18 BET 
Tap density g/cm3 0.043 N/A 

 

 

Figure 3.3: A SEM image of CNF-110 
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3.2 Material fabrication 

3.2.1 Equipment 

3.2.1.1 Analytical balance 

Due to the requirement of high accuracy of weight measurements for nanomaterial 

fabrication, it was considered that analytical balance OHAUSTM PA224C was suitable 

equipment for material weights with the resolution up to 0.1 mg and its specification (Table 

3.4) was also appropriate for laboratory scale with an uncomplicated operation for most of 

the basic weighing requirements. In this study, this analytical balance was employed for all 

processes of nanocomposite preparation. 

Table 3.4:  OHAUSTM analytical balance specifications (Source: fishersci.com) 

Specifications Unit Value Image 
Capacity g 200 

 

Readability/resolution mg 0.1 
Linearity mg 0.3 
Repeatability mg 0.1 
Dimension (D x W x H) cm 32 x 19.6 x 28.7 
Weight kg 4.5 
Stabilization time sec 3 
Model N/A PA224C 

3.2.1.2 Vacuum oven 

A vacuum oven was required for degassing, especially after a stirring process 

because it could generate entrapped bubbles within the liquids that could negatively affect 

the final properties of the material. Cole-Palmer lab vacuum oven (Table 3.5) was 

employed in this study for degassing and post-curing when the solution mixing process was 

employed (Figure 3.5). In the case of three roll milling, this device was used for post-curing 

only (Figure 3.6). 
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Table 3.5: Cole-Palmer lab vacuum oven specifications (Source: colepalmer.co.uk) 

Specifications Unit Value Image 
Chamber Dimension  cm 40 x 40 x 40 

 

Temperature uniformity oC ≤ ± 1.5 (at 150 oC) 
Temperature range oC 5 to 250 
Vacuum range MPa 0 - 0.1 
Capacity L 29 
Frequency  Hz 50/60 

3.2.1.3 Ultrasonic probe 

Ultrasonic processors VC 750 (750 W – Vibra-CellTM model) was employed to 

disperse CNT into epoxy resin in this study. This apparatus was considered suitable for 

nano-fillers dispersion, homogenisation and disaggregation with a wide range of organic 

and inorganic materials. The specifications of this device are depicted in Table 3.6. In this 

study, ultrasonic processors VC 750 was used to provide a homogenous mixture of epoxy 

hardener and nanofillers in the solution mixing process (Figure 3.5).  

Table 3.6: Ultrasonic processors Vibra-CellTM VC 750 specifications (Source: sonics.com) 

Specifications Unit Value Image 
Sample volume ml 10 – 250 

(standard probe) 

 

Dimension 
(w x d x h) 

Converter mm Ø 63.5 x 183 
Power supply mm 190 x 340 x 235 

Power display N/A Digital 
Max. output power W 750 
Frequency Hz 20 
Interval time s 1 – 59  
Timer (sonics) s 1 – 36,000 
Probe  
(Ti -6Al -4V) 

Length mm 136 
Tip diameter mm 13 

3.2.1.4 Magnetic hot plate stirrer 

Hardener- catalyst incorporation required homogenous mixing without more 

bubbles generation within the mixture during the agitation. It was due to the limitation of 

the curing time of epoxy (20 minutes after adding hardener in the case of EPOPHEN EL5) 
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hence a gentle mixing in a short time was needed. Hand mixing or mechanical stirring 

could be feasible but using magnetic stirring with a hot plate, in this case, seemed to be 

more sufficient in providing a homogenous mixture.  Although a magnetic stirrer was not 

suitable for mixing high viscosity liquids as epoxy resin this drawback could be resolved 

with a hot plate since it could reduce the viscosity of epoxy at high temperature. Besides, 

magnetic stirrer generates less bubble than mechanical mixing and this apparatus is also 

available in the laboratory recently.  Therefore, IKATM RCT - a basic digital magnetic 

stirrer was chosen with the specifications are shown in Table 3.7. In this study, IKATM RCT 

magnetic stirrer was used to provide the mixture of epoxy resin, hardener, and nano-fillers 

in three roll milling process (Figure 3.6). 

Table 3.7: IKATM RCT digital magnetic stirrer specifications (Source: fishersci.com) 

Specifications Unit Value Image 
Stirring capacity L 20 

 

Temperature range oC 310 
Speed range rpm 0/50 to 1500 
Dimension (w x d x h) mm 160 x 135 x 85 
Weight kg 2.5 
Model N/A RTC basic digital 
Top plate material N/A Aluminium alloy 
Frequency Hz 50/60 
Power W 650 
Voltage V 220 to 230/115/100 

3.2.1.5 Three roll mill  

A TRM (80E EXAKT GmbH, Germany) was employed to incorporate nano-filler into 

epoxy resin. This method contributed to the uniform distribution of fillers as the raw nano-

fillers are usually in bundle form. Agglomerates and powder clumps could be exfoliated 

and subsequently homogenized due to the shear force between rollers [371] (Figure 3.4). 

The shear rate was controlled by roller gap (δ) and circumferential speed (ω). This shear 

intensity and the number of rolling cycles have been determined as decisive factors for the 

nano-fillers dispersion [372]. In this study, TRM 80E EXAKT was used to create a 

homogenous mixture of epoxy resin and fillers in three roll milling process (Figure 3.6). 
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Figure 3.4: Three-roll-mill (TRM) 80E EXAKT and the schematic diagram representing 
the operating principle 

3.2.2 Sample preparation 

This study employed two different processes to synthesize carbon nanofiller 

reinforce epoxy nanocomposites. The solution mixing was used to fabricate graphene and 

carbon nanofibre reinforced epoxy nanocomposites. Due to the agglomeration nature of 

MWCNTs, three roll milling was used to synthesize epoxy/MWCNT nanocomposites due 

to the high performance of this technique in exfoliating fillers’ agglomerates and 

homogenizing their distribution within the matrix.  

3.2.2.1 Solution mixing 

The fabrication of epoxy-based nanocomposites using solution mixing is shown in 

Figure 3.5.  The fractions of constituents comprising epoxy resin, nano-filler, and catalyst 

were measured using OHAUSTM PA224C analytical balance. The weighing and hand-

mixing of the hardener and the nano-fillers were first implemented inside the glove box to 

eliminate the nano-fillers exposure. This first step was to create the initial mixture for the 

fabrication. The first mixture (hardener and nano-fillers) was then sonicated after moved 

out from the glove box. The sonication process was employed to make homogenous 

dispersion of the nano-fillers. Due to the low viscosity of the hardener (compared to the 

epoxy resin), it was mixed with the nano-filler first to assure a well-dispersed mixture. The 

ultrasonic processor VC750 was applied for this process due to its capability in producing 

better dispersion of nano-fillers at low loadings (less than 1 wt.%) without any surface 

treatment required compared to another mechanical mixing [373]. To avoid defects on 

nano-fillers’ surfaces due to overheating through the operation of the ultrasonic processor, 
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the sonication performed at 60% of the maximum power (around 643 W) and a frequency 

of 250 kHz for 10 minutes, each 5-second break was taken after every 10 seconds of 

operation. It was also important to maintain a low temperature of the mixture (hardener and 

the nano-fillers) after the sonication process to slow the curing process (after adding epoxy 

resin). Therefore, an ice bath was also employed to reduce the heat generated from the 

sonication process [374]. Once the sonication was completed, the epoxy resin was 

incorporated using hand mixing. The final mixture (hardener, nano-fillers, and epoxy resin) 

was degassed using a vacuum chamber to remove entrapped air bubbles generated from the 

previous mixing steps (sonication and hand mixing). It was then poured into silicone 

moulds for mould casting. The specimens were also post-cured in 80oC [375] in an oven for 

fully cross-linking of the polymer.  

 

Figure 3.5: Schematic representing the fabrication of epoxy-based nanocomposites using 
solution mixing 
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3.2.2.2 Three Roll Milling 

The fabrication of epoxy-based nanocomposites using three roll milling is shown in 

Figure 3.6. The mixtures of nano-fillers and epoxy resin were first prepared by manual 

mixing for 5 minutes to attain homogenous solution. A TRM (80E EXAKT GmbH, 

Germany) was then used to incorporate nano-fillers into epoxy resin. This method 

contributed to the uniform distribution of fillers, especially in bundled forms. Agglomerates 

and powder clumps could be exfoliated and subsequently homogenized due to the shear 

force between rollers [371]. The shear rate was controlled by roller gap (δ) and 

circumferential speed (ω). This shear intensity and the number of rolling cycles were 

determined as decisive factors for the nanotube dispersion [372]. Using shear mixing from 

TRM has shown high degrees of filler distribution within the matrix [376]. In this study, 

the mixture of nano-fillers and epoxy resin was passed six consecutive cycles through TRM 

in gap mode (fixed roll-to-roll distance), with the same rotational speed of the apron roller 

(200 rpm). The speed ratio between rollers was fixed at 1:3:9 (ω1-Feed roller: ω2-Central 

roller: ω3-Apron roller). Two gaps of N1-N2 = 90 µm and N2-N3 = 30 µm were applied for 

the first two cycles to exfoliate CNT bundles. After finer filler exfoliations were achieved, 

these gaps will be reduced to attain a uniform mixture. Therefore, the gaps of N1-N2 = 45 

µm, N2-N3 = 15 µm and N1-N2 = 15 µm, N2-N3 = 5 µm will then be used for the second 

and last two cycles, respectively (Table 3.8). After a homogenous mixture of nano-fillers 

and epoxy resin was attained by TRM, the epoxy hardener was added by manual mixing for 

5 minutes. Subsequently, this mixture was degassed in a vacuum chamber (pressure of - 1 

bar) at 500C for 1 hour. In the meanwhile, magnetic stirring was also applied at a speed of 

1000 rpm. This combination was to eliminate trapped air bubbles inside and produce 

uniform mixtures simultaneously. 

Table 3.8: Three-roll milling setup 

Mode Gap mode (fixed roll-to-roll distance) 
Apron roll speed 200 rpm 
Speed ratio 1 : 3 :9 (ω1 : ω2 :ω3) 

Gap 
N1-N2 = 90 µm 
N2-N3 = 30 µm 

N1-N2 = 45 µm 
N2-N3 = 15 µm 

N1-N2 = 15 µm 
N2-N3 = 5 µm 

Number of cycles 2 2 2 
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All parameters used in this experiment were based on the literature [377] with some 

properly adjustments to be adaptable for epoxy/MWCNT fabrication. The mixture was then 

poured into silicone moulds at room temperature (RT). To attain full crosslinking of epoxy, 

the mixture was cured in a chamber at 120oC for 12 hours, as recommended by the 

supplier. The procedure to fabricate epoxy-based nanocomposites using TRM is shown in 

Figure 3.6. 

 

Figure 3.6: Schematic representing the fabrication of epoxy-based nanocomposites using 
three roll milling 

3.3 Characterisation of workpiece materials 

For characterisation of the nanocomposite samples manufactured by different 

techniques, the following characterisation was used including tensile properties (tensile 

strength, modulus, and fracture strain), thermal conductivity, and glass transition 

temperature. The repeatability and reliability of the measurement were undertaken 
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throughout the experiments and all measurements were repeated five times to get the 

average values as the final results. 

3.3.1 Tensile test 

Tensile tests were implemented on a Universal Testing Machine (INSTRON 3382) 

(Figure 3.7). This device provided wide ranges of load-displacement (maximum of 100 kN) 

and speed (up to 500 mm/min) with high accuracy.  The minimum load could reach 1% (1 

kN) without accuracy loss (100:1 force range). Following the ASTM standards, 5 

specimens were used for each test with the displacement rate of 0.5 mm/min and their 

specifications were indicated in detail including specimen geometries, dimensions, and 

testing conditions. 

 

Figure 3.7: Universal Testing machine (INSTRON 3382) 

Tensile properties are one the most important criteria to evaluate the material 

characteristics. It is also used to assess the efficiency of filler reinforcement in the case of 

epoxy-based nanocomposites. Additionally, these properties were expected to have 

significant effects on the micro-machining process. The standard test method ASTM D638 

was applied for the tensile characterisation of material in terms of measuring tensile stress 

and strain, Young’s modulus. Tensile strength was calculated by dividing the maximum 

load by the average original cross-sectional area in the gage length segment of the 

specimen that was expressed in equation (3.1): 



Chapter 3: Experimental work 

 

90 

 

σ = W/A0      (3.1) 

Where W is the maximum load (N) and A0 is the original cross-sectional area (m2). The 

results were expressed in MPa. In the case of Young’s modulus, it was calculated by 

extending the initial portion of the load–extension curve and dividing the difference in 

stress corresponding to any segment of the section on the straight line by the corresponding 

difference in strain. Equation E = σ/ε      (3.2) was applied in Young’s modulus calculation 

and its unit is MPa: 

E = σ/ε      (3.2) 

Following the ASTM D638 standard, the test specimen that was prepared by moulding 

shall be 3.2 ± 0.4 mm. The type V specimen was chosen due to the high strength of testing 

material that made the evaluation available with limited material. The thickness of the 

specimen, in this case, was 4 mm. Therefore, the specimen dimension was 63.5 x 9.53 x 4 

mm (L x W x B) that is depicted in Figure 3.8. The setup of tensile characterisation is 

shown in Figure 3.9.  

 

Figure 3.8: Tensile test specimen, type V geometry (ASTM D638) (Unit: mm) 
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Figure 3.9: Tensile test setup in Instron 3382 universal testing machine (ASTM D638) 

3.3.2 Thermal conductivity  

Epoxy is considered a thermal insulator due to its low thermal conductivity (around 

0.19 W/mK) [378]. However, the thermal conductivity of epoxy-based nanocomposites 

could be enhanced with the additions of nano-fillers (i.e., CNF, CNT). Therefore, it was 

important to investigate the thermal conductivity of the workpiece materials since it related 

to thermal softening that affected the machining behaviour of epoxy-based nanocomposites 

during the micro-machining process. ASTM D5470 standard was employed for thermal 

conductivity characterisation of epoxy-based nanocomposites with the prepared specimens 

of the same area as the contacting test surfaces and the thickness depends on the toggle 

clamp. In this study, the Hilton H112A device for linear heat conduction was employed. 

Following the ASTM D5470, the geometry of the specimen was circular with its diameter 

and thickness of 25 mm and 3 mm, respectively (Figure 3.10).  
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Figure 3.10: Thermal conductivity test specimen (linear heat conduction) (ASTM D5470) 
(Unit: mm) 

The hot and cold meter bars were tightly clamped with the specimen to provide 

good thermal contact between them. The temperature distribution was considered linear 

without any heat loss to the surroundings (Figure 3.11), and then the thermal conductivity 

of the specimen could be calculated by applying Fourier’s law in this case: 

K୧୬୲ =  
୕

୅౟౤౪
 .

୼ଡ଼౟౤౪

୼୘౟౤౪
    (3.3) 

Q = V x I 

ΔTint = (Thot-face – Tcold-face)   (3.4) 

Thot-face = T3 – (T2 – T3)/2  (3.5) 

TCold-face = T6 + (T6 – T7)/2  (3.6) 

 

Figure 3.11: The schematic representing the calculation of thermal conductivity k  



Chapter 3: Experimental work 

 

93 

 

Where:  

 Kint is the thermal conductivity of the specimen (intermediate section) (W/mK) 

 Q is the heat transfer rate (W) 

 Aint is the area of the contacting surface of the specimen (m2) 

 ΔXint is the thickness of the specimen (m) 

 ΔTint is the temperature difference between hot face and cold face (K) 

 V is the voltage of electrical power (V) 

 I is the current of the electrical power (A) 

The characterisation setup of thermal conductivity is shown in Figure 3.12. 

 

Figure 3.12: Thermal conductivity test setup on Hilton H112A linear heat conduction 
(ASTM D5740) 

3.3.3 Dynamic mechanical analysis  

Dynamic Mechanical Analyzer (DMA) (Model 8000, Perkin Elmer) (Figure 3.13) was 

used to identify the glass transition temperature Tg of the epoxy-based nanocomposites. 

This temperature indicates the lower threshold at which the polymer chains begin to 

move, causing a transition from a stiff (glassy) to a soft (rubbery) state of epoxy systems. 

The addition of nano-fillers was expected to hinder these movements of polymer chains, 

hence improving the glass transition temperature of epoxy-based nanocomposites. These 
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variations of Tg might contribute to the thermal softening effect that consequently 

affecting the machining behaviour of these nanocomposites.  

 

Figure 3.13: Dynamic Mechanical Analyzer (DMA) (Model 8000, Perkin Elmer) 

From DMA, three properties of materials could be identified including storage 

modulus, loss modulus, and tangent delta (tan δ).  The storage and loss modulus in 

viscoelastic materials identify the stored energy. The storage modulus represents the elastic 

portion of the material whereas the loss modulus indicates the viscous portion (the energy 

dissipated/lost at increased heat). Tan δ is the ratio between loss and storage modulus.  

The glass transition temperature could be identified based on the storage modulus 

(tangent lines intersect) or loss modulus (peak). However, this study determined Tg by the 

peak of tan δ curve as it showed high sensitivity to thermal change. ASTM E1640-13 was 

applied in the DMA test to identify glass transition temperature. The dimension of the 

specimen and testing conditions is shown in Table 3.9. 

Table 3.9: DMA testing parameters for glass transition temperature 

Specimen (L x W x T)  20 x 5 x 1 (mm) 
Test Mode Single cantilever 
Test Frequency 1 Hz 
Oscillation Amplitude 0.05% strain 
Initial temperature  45 oC 
Heating rate Ramp 5oC/min to 150oC 
Preload  0.01 N 
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3.4 Micromachining experiments 

3.4.1 Micro-machine tool 

An ultra-precision desktop micro-machine tool (Nanowave MTS5R) (Figure 3.14) 

was employed to perform micromilling experiments in this study. High-speed cutting in 

micromachining was generated by a high-speed spindle driven by a power of 100W 

(240V). This spindle used an air bearing to provide high stability when cutting at high 

speeds. A wide range of rotational speed (20,000 to 80,000 rpm) could be applied using this 

micromachine tool. These three axes (X, Y, Z) were controlled by DC servo motors with 

high accuracy. Also, the high rigidity of the machine stage allowed stable operations during 

the micromachining process at such an extremely low feed rate (0.1 µm). Ultra-precision 

collets were also employed to minimise the negative effects of tool run-out. The main 

specifications of this ultra-precision desktop micro-machine tool (Nanowave 

MTS5R) are shown in Table 3.10. 

Table 3.10: Main specifications of Ultra-precision desktop micro-machine tool (Nanowave 
MTS5R) 

Machine size 413 x 450 x 470mm 
Max. cutting size X: 50mm / Y: 50mm / Z: 30mm 
Main spindle Max. speed 80000 rpm 
 Min. speed 20000rpm 
XYZ table Smallest feed 0.1µm 
 Fast feed speed 3,000mm/min 

 

 

Figure 3.14: Ultra-precision desktop micro-machine tool (Nanowave MTS5R) 
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3.4.2 Dynamometer 

The piezoelectric dynamometer Kistler (9256C2) (Figure 3.15) was employed to 

measure the cutting force generating from the micromilling process in all three axes (X, Y, 

Z). This dynamometer was suitable for cutting force measurements in micromachining due 

to its low threshold (<0.002N) that allowed measuring extremely small cutting forces with 

high accuracy.  

 
Figure 3.15: Kistler (9256C2) piezoelectric dynamometer 

3.4.3 Micromachining setup 

 

Figure 3.16: Micro-machining setup 
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Micro-end milling experiments were performed on the ultra-precision desktop 

micro-machine tool (Nanowave MTS5R). The experimental setup (Figure 3.16) shows the 

main components including nanocomposite specimen, spindle, micro-end mill as well as 

the coordinate system and feed direction. Kistler piezoelectric dynamometer (9256C2) was 

attached behind the fixture to measure cutting forces in X, Y, and Z directions. Dry cutting 

was applied for all experiments due to its simple setup. Also, it could be expected to 

generate obvious tool wear during the micromachining of polymer nanocomposites. The 

rectangular specimens with dimensions of 70x13x3 mm were applied for the 

micromachining trials to generate slots. 

3.4.4 Scanning electron microscope  

SEM TESCAN MIRA3 (Figure 3.17a) was employed to examine tensile fracture 

surfaces, chip formation, and machined surface morphology. To attain high-quality images, 

the samples were first coated with platinum (5nm thickness) using Quorum Q150R rotary 

pumped coater (Figure 3.17b). 

  

Figure 3.17: (a) Scanning electron microscope (SEM) TESCAN MIRA3 and (b) Quorum 
Q150R rotary pumped coater 

The tensile fracture surface provided the fracture pattern of each composition (i.e., 

0.1 wt.%) and the nano-fillers’ distribution and failure (i.e., pull-out, de-bonding) (at high 

magnification). The results could be used to support the tensile characterisation and 

machining behaviour’s analyses. Therefore, it needed to be examined before 

micromachining trials. After the tensile test finished, the broken pieces of each composition 
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would be collected for the SEM imaging.  

SEM was also used to examine chip morphology generated from the micromilling 

process. Based on the analysis of chip formation the cutting mechanism (i.e., ploughing, 

shearing) and MUCT could be revealed. The chips generated from each cutting 

condition were collected using conductive carbon tape. 

Additionally, the machined surface morphology was also investigated using SEM 

imaging. Based on that, the integrity of these surfaces was examined. Also, these results 

could be used to support the surface roughness analysis in the considerations of feed mark 

formation, chip adhesion, or defects, The SEM imaging of the machined surfaces would be 

conducted after surface roughness measurements.  

3.4.5 Cutting force measurement 

Kistler (9256C2) piezoelectric dynamometer with high frequency (up to 4.8 kHz) 

was attached behind the fixture to measure the micro-cutting forces in X, Y, and Z 

directions. In this case, Fy is the feed force (Ff) and was measured in the feed direction of 

the tool. Fx is the feed normal force (Ffn) (perpendicular to Ff), while Fz is the passive 

cutting force (Fp) (axial to the central tool line) The signals generated from the force sensor 

were transferred to the charge amplifier (Kistler 5070A) then showed by Dynoware 

software for measuring cutting forces (Figure 3.18).  

The cutting force measurements were replicated three times for each cutting 

conditions and workpiece materials. Based on the cutting force signals (Figure 3.19), the 

transient areas were identified and then eliminated. Only steady cutting areas were chosen 

for measurement. Five sub-sectors would be extracted from these steady areas. The peak 

values of each cutting force component on the three directions (X, Y, and Z) would be 

intercepted, respectively and their average values were identified. Based on that, resultant 

cutting forces (F) were calculated.  

𝐹௫ = max|𝐹௫௜| − 𝐹௫௜  (3.7) 

𝐹௬ = maxห𝐹௬௜ห − 𝐹௬௜ (3.8) 

𝐹௭ = max|𝐹௭௜| − 𝐹௭௜ (3.9) 
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𝐹 = ඥ𝐹௫
ଶ + 𝐹௬

ଶ + 𝐹௭
ଶ  (3.10) 

 

Figure 3.18: Cutting force measurement using Kistler (9256C2) piezoelectric dynamometer 
in micromilling 

 

Figure 3.19: A representative sample of cutting force signal generated from the 
dynamometer 

3.4.6 Surface roughness measurement 

Surface roughness Ra measurements were performed on an Alicona Infinite Focus G4 

(Figure 3.20) at the central line of the machined slot. Average values were obtained from 
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five measurements at different positions (entry, middle, and exit) in the feed direction.  

 

Figure 3.20: Surface roughness Ra measurement using Alicona Infinite Focus G4: (a) an 
Alicona Infinite Focus G4, (b) An example of a 3D scan of the machined slot, (c) An 

example of the roughness profile 

The surface roughness Ra was also measured using Mitutoyo Surftest SJ-410 (0.25 

mm and 2.5 mm cut off and measurement length, respectively) (Figure 3.21) at the centre 

line of each slot. Average values were also obtained from five measurements at different 

positions (entry, middle, and exit) that were similar to those of Alicona Ra measurements. 

These Ra measurements were used to validate the results from the contactless method 

(using Alicona microscope). 

 

Figure 3.21: Surface roughness Ra measurement using Mitutoyo SJ-410 contact style 
profilometer 
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3.4.7 Tool wear measurement 

The scanning electron microscope (SEM) TESCAN MIRA3 was used to 

investigate tool wear. The geometry of new tools was first considered by SEM 

imaging. The non-uniform flank wear (VB 2) and the stair-formed face wear (KT 2) 

were used as the main criteria tool wear assessment that was based on ISO 8688-2 

standard [379]. The flank wear VB2 was the maximum bandwidth in the perpendicular 

direction to the original cutting edge on the side view (Figure 3.22). The face wear KT 

2 occurred at the intersection of the wear scar and the major flank surface was 

measured perpendicular to the tool face (Figure 3.23). Tool wear was also accessed by 

identifying the tool diameter’s reduction between new and used tool (Figure 3.24). 

 

Figure 3.22: Non-uniform flank wear measurement 

 

Figure 3.23: Stair-formed face wear measurement (with the original cutting-edge 
outline) 
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Figure 3.24: An example of SEM imaging represented tool diameter measurement 

3.4.8 Dimensional accuracy measurement 

Similar to tool wear measurement, SEM imaging was also employed to assess the 

dimensional accuracy when micromilling of epoxy-based nanocomposites. The assessment 

was implemented based on the slot width measurement at each cutting condition and filler 

content. Figure 3.25 shows an example of slot width measurement using SEM imaging. 

Five measurements were conducted in the same slot from the entry to the exit and the 

average values represented the slot width. 

 

Figure 3.25: An example of SEM imaging represented tool slot width measurement 
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Chapter 4: Machinability of carbon nanofiller reinforced epoxy 
nanocomposites at micro cutting chip load 

4.1 Introduction 

This chapter represented the investigation on the machinability of graphene 

reinforced epoxy nanocomposites (epoxy/graphene) in micromilling that was divided into 

two parts.  

The main objectives of part I were cutting force and surface roughness in the 

considerations of FPT, cutting speed, and graphene loading. Three different compositions 

were used in this study including 0.1 wt.%, 0.5 wt.%, and 1.0 wt.% graphene. Additionally, 

plain epoxy was also employed for comparative purpose. In the consideration of the cutting 

conditions, the DoC remained the same at 100µm during the cutting process while various 

cutting speed and feed per tooth (FPT) are applied as input variables. Three different levels 

were chosen for both cutting speed (from 62.8 to 188.5 m/min) and FPT (5 to 15 µm). The 

uncoated micro-end milling tools used in this study had some main features as follows: 

micro-grain carbide substrate, two flutes, cutting diameter of 1 mm and helix angle of 

30o. The characterisation of thermomechanical properties was also addressed to support the 

machinability analysis. The details of experimental works including cutting parameters, 

tool and workpiece material are summarised in Table 4.1. 

Table 4.1: Experimental settings 

Filler loading (wt.%) 0, 0.1, 0.5, 1 

Cutting tool 

Material  Micro grain carbide Co 10% 
Number of flutes 2 
Cutting diameter (mm) 0.5 
Flute length (mm) 1.8 
Helix angle  200 

Cutting 
conditions 

Cutting speed (m/min)  62.8, 125.6, and 188.5 
Feed rate (µm/tooth) 5, 10, 15 
Depth of cut (DoC) (µm) 100 

 

In part 2, the tool wear behaviour of the micro-end mill was investigated. The effect 

of material's microstructure (i.e., anisotropy, heterogeneity) thermomechanical properties 
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associated with the size effects [380] contributed to accelerated tool wear. Additionally, the 

increases of MUCT [381], cutting edge radius, and flank wear due to tool wear acceleration 

could result in cutting force rising in micromachining nanocomposites [380]. Moreover, the 

use of micro-tools in high-cutting-speed conditions in micromachining could significantly 

reduce tool life. It was also necessary to address the effects of thermomechanical properties 

of nanocomposite materials and their microstructures on the cutting mechanism (i.e., 

shearing, ploughing) and the chip adhesion. However, the investigations on tool wear 

behaviour have been still limited, especially in the micromachining of polymer 

nanocomposites. Therefore, the investigation on tool wear behaviour when micromilling of 

epoxy/graphene nanocomposites was necessary. This study performed the micromilling 

epoxy/0.3 wt.% graphene nanocomposites at a feed rate of 20µm/rev (or FPT of 6.7µm), 

100µm axial DoC and under dry cutting conditions. Three different 3 flute-micro-tools 

including uncoated, Diamond-Like Carbon (DLC) and diamond were employed with some 

main features: micro-grain carbide Co 10%, helix angle of 30o. The main objective of the 

investigation was tool wear behaviour. The effect of tool wear on the variations of cutting 

force, surface roughness, and dimensional accuracy was also addressed. The details of 

experimental works including cutting parameters, tool and workpiece material are 

summarised in Table 4.2. 

Table 4.2: Experimental settings 

Filler loading (wt.%) 0, 0.3 

Cutting tool 

Substrate material  Micro grain carbide Co 10% 
Number of flutes 3 
Cutting diameter (mm) 1 
Flute length (mm) 4 
Helix angle  300 
Coating materials Diamond and DLC 

Cutting 
conditions 

Cutting speed (m/min) 62.8 and 188.4 
Feed rate (µm/rev) 20 
Depth of cut (DoC) (µm) 100 
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Part I: Cutting force and surface roughness 

4.2  Machined surface morphology 

Figure 4.1 shows the SEM images of the machined surface morphology of epoxy/1 

wt.% graphene polymer nanocomposites after micromilling processes at FPT of 5µm and 

cutting speed of 62.8 m/min. The addition of graphene was expected to improve the 

thermal conductivity of epoxy nanocomposite [382], hence encouraging heat dissipation in 

the cutting area. It consequently led to the reduction of the thermal softening effect that 

might contribute to less chip adhesion on the machined surface, hence resulting in surface 

quality improvement. This was confirmed by the negligible burr formation on the slot 

edges and chip debris adhesion as seen in Figure 4.1a, b. This result was identical to those 

of micromilling PC nanocomposites [331]. However, the SEM evaluation revealed that 

graphene pull-out and smearing were the main patterns of the machined surfaces (Figure 

4.1c, d, e, and f). Graphene smearing also led to the obscuration of the feed marks (Figure 

4.1b). The pre-machined material damage in terms of internal porosity (Figure 4.1a) due to 

insufficient processing method in producing the as-received material might contribute to 

this.  

   

Figure 4.1: SEM images for a machined slot in graphene/epoxy specimens (at FPT of 5µm 
and cutting speed of 62.8 m/min) 
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4.3  Cutting force 

4.3.1 ANOVA analysis 

ANOVA analysis from Minitab18 software was employed in this study to 

statistically identify the distributions of input variables (i.e., cutting speed) and their effect 

on the cutting force variation. The methods and formulas can be found in [383] .Table 4.3 

represents the ANOVA analysis of the resultant cutting force that considers the influences 

of three main input factors. Generally, all filler content, FPT, and cutting speed showed 

significant influences on the cutting force. Among these variables, the cutting speed 

significantly influenced the cutting force with its contribution of around 43% followed by 

FPT and filler content (19% and 11%, respectively). 

Table 4.3: ANOVA result for the resultant cutting force when micromilling 
epoxy/graphene nanocomposites 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 

Filler Content 3 5.244 18.91% 5.244 1.7479 6.61 0.002 

Cutting Speed  2 11.958 43.12% 11.958 5.9788 22.59 < 0.001 

FPT 2 3.121 11.25% 3.121 1.5605 5.90 0.007 

Error 28 7.409 26.72% 7.409 0.2646       

Total 35 27.732 100.00%             

DF: Degrees of Freedom, Seq SS: Sequential sums of squares, Adj SS: Adjusted sums of 
square, Adj MS: Adjusted mean square 
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Figure 4.2: Main effect plots for the resultant cutting forces when micromilling 
epoxy/graphene nanocomposites: (a) Filler content, (b) FPT, and (c) Cutting speed 

4.3.2 Cutting force analysis 

Figure 4.3(a-c) show the average cutting force’s variations at a function of FPT at 

different filler contents and cutting speeds. In general, the cutting force’s magnitude when 

micromilling of epoxy/graphene nanocomposites and plain epoxy ranged between 0.72 and 

4.54 N with a generally rising trend as FPT increased due to the increased chip load. This 

indicated the dominance of the feed rate effect on the cutting force variations by the 

formation of feed marks. Among different workpiece materials, plain epoxy and 0.1 wt.% 

graphene showed relatively low cutting forces compared to those of the high-filler-content 

nanocomposites. It was due to the low mechanical properties of these compositions 

compared to those of other materials (0.5 wt.% and 1 wt.%). 
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Figure 4.3. Cutting force results when micromilling of graphene/epoxy nanocomposites at 
different filler contents: (a) 62.8 m/min, (b) 125.6 m/min, and (c) 188.5 m/min 

The characterisation of these materials (Table 4.4) showed significant 

enhancements of tensile modulus and hardness of 0.5 and 1 wt.%  compositions that are 

likely to increase the cutting forces when micromilling these nanocomposites. A decrease 

of the cutting force variation of both plain epoxy and 0.1 wt.% graphene was observed at 

high cutting speeds. The thermal softening effect might appear while micromilling these 

materials due to their low glass transition temperature (Table 4.4), resulting in low cutting 

force generated. On the other hand, the dominance of the strengthening effect when 
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micromilling high-filler-content nanocomposites (0.5 wt.% and 1 wt.%) led to the 

significant increase of cutting force with FPT due to high chip load [384].  

Table 4.4: Effect of filler content on mechanical properties of epoxy/graphene 
nanocomposites ([375, 385]) 

Content 
(wt.%) 

Tensile 
strength 
(MPa) 

Tensile 
modulus 

(GPa) 

Fracture 
toughness 
(MPa.m1/2) 

Hardness 
(GPa) 

Glass 
transition 

temperature 
Tg (

oC) 
0 57.24 0.868 0.687 0.216 93.37 

0.1 60.51 1.030 0.761 0.225 97.15  
0.3 64.44  1.169  0.831  0.235  99.08 
0.5 63.84  1.219  0.805  0.246  98.35 
1 58.53  1.360  0.734  0.255  97.12  

 

 

Figure 4.4: Effect of cutting speed on the cutting force when micromilling epoxy/graphene 
nanocomposites at different filler contents (FPT= 15 µm) 

From Figure 4.4, it could be observed that the cutting force’s increase of 0.5 wt.% 

and 1 wt.% nanocomposite showed higher sensitivity to FPT increment compared to those 

of other materials (epoxy and 0.1 wt.%). The increment of cutting speed could lead to 

higher cutting temperature due to the generated heat from tool-workpiece contact. It 

resulted in the presence of a thermal softening effect for the materials which inherently had 

low glass transition temperature (i.e., epoxy, 0.1 wt.%) [386]. On the other hand, strain 

hardening took place at high temperature for other which had higher Tg ( 0.5 and 1 wt.%), 
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resulting in a higher cutting force required. There was an exception in the case of 1 wt.% 

material in which its Tg was relatively low but still exhibited the same cutting force’s trend 

as 0.5 wt.% counterparts. This phenomenon might be contributed by the micro-structure 

effect at such a high filler loading. With high filler content of 1 wt.%, the micro-tool had a 

high tendency to contact with the rough and wrinkle surface texture of graphene platelets, 

hence increasing the cutting forces [384]. At the lowest cutting speed (62.8 m/min), there 

was no significant difference of cutting force’s magnitudes between the various workpiece 

materials, indicating no effect of either thermal softening or strain hardening in this case.  

4.4  Surface roughness 

4.4.1 ANOVA analysis 

Statistical analysis of ANOVA was applied to identify the level of input factor’s 

distributions including filler content, FPT, and cutting speed on the machined surface 

roughness. The results from Table 4.5 indicated that both filler content and FPT were the 

most influential factors in Ra variation with their contributions of around 32% and 36%, 

respectively. On the contrary, the cutting speed seemed not to have a considerable effect on 

Ra.  

Table 4.5: ANOVA result for the average surface roughness when micromilling 
epoxy/graphene nanocomposites 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 

Filler Content 3 0.071559 31.79% 0.071559 0.023853 9.29 < 0.001 

Cutting Speed 2 0.000846 0.38% 0.000846 0.000423 0.16 0.849 

FPT 2 0.080766 35.88% 0.080766 0.040383 15.72 < 0.001 

Error 28 0.071911 31.95% 0.071911 0.002568       

Total 35 0.225082 100.00%             

4.4.2 Surface roughness analysis 
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Figure 4.5(a-c) shows the effect of FPT on the machined surface roughness when 

micromilling epoxy/graphene nanocomposites. Generally, Ra showed an upward trend as 

FPT increases from 5 to 10µm, regardless of the cutting speed and the filler content. It 

indicated the dominance of cutting chip load in increasing the surface roughness due to 

plastic deformation increased. Ra hit a peak of ~0.45μm at cutting speed of 62.8 m/min and 

FPT of 15μm/tooth when machining 1 wt.% graphene/epoxy nanocomposites.  

  

 

 

Figure 4.5 The average surface roughness as a function of FPT when micromilling 
epoxy/graphene nanocomposites at different filler contents: (a) 62.8 m/min, (b) 125.6 

m/min, and (c) 188.5 m/min 
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On the other hand, the relatively high surface quality was obtained when 

micromilling epoxy/ 1 wt.% graphene at FPT of 5 µm regardless of the used cutting speed. 

It was due to the lubricant effect of graphene at this filler content that improved the surface 

quality. The formation of tribofilm layer on the machined surface that resulted in the 

reduction of friction coefficient was addressed in the literature [387]. Additionally, the low 

facture toughness of 1 wt.% composition compared to other nanocomposites (0.1 and 0.5 

wt.%) [388] resulted in less plastic deformation on the machined surface at low chip load 

(FPT of 5µm), hence reducing its surface roughness. 

The surface roughness increases of 0.5 wt.% and 1 wt.% exhibited higher sensitivity 

with FPT than those of 0.1 wt.% and plain epoxy. It indicated the dominance of 

strengthening effect of these materials [388] that resulted in higher plastic deformation on 

the machined surfaces (or higher feed marks) as FPT increased.  Additionally, the cutting 

force significantly increased with FPT when the micromilling of these two materials 

(Figure 4.4). It implied that these high cutting forces generated more tool vibration, hence 

resulting in the reduction of the surface quality of these high-filler-content compositions 

[389]. Given such high filler loading and small cutting tools, Ra tended to show high tool-

vibration sensitivity in the micromilling of heterogeneous nanocomposites. This vibration 

was produced due to the microstructure effect of the workpiece.  As the micro-tools 

moving through different phases (matrix and filler phase), the cutting force magnitude 

varied from low (when cutting polymer matrix phase) to high (when cutting filler phase). 

Given a small diameter of micro-tool (1mm), the micro-cutting process of these 

heterogeneous nanocomposites (0.5 and 1 wt.%) had a high tendency of generating high 

tool vibration compared to other compositions (epoxy and 0.1 wt.%). It resulted to the 

higher values of the surface roughness when micro-milling epoxy/ 1 wt.% graphene at 62.8 

and 125.6 m/min (FPT of 15µm) (Figure 4.5a and b) compared to epoxy and 0.1 wt.% 

composition. These results indicated the dominance of FPT effect in increasing the surface 

roughness over the lubricant of graphene (in reducing Ra) at the highest FPT. 

It was also noticed a slight decrease of Ra when micromilling of epoxy and 0.1 

wt.% materials at FPT of 15µm at low cutting speeds (62.8 and 125.6 m/min) (Figure 4.5a, 

b). Under high chip load and low cutting speed, the viscoelastic epoxy phase in these 
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materials was smeared (Figure 4.1b), hence slightly reduced the surface roughness. These 

slight reductions of Ra at high chip load and low cutting speed could be seen in the 

literature [390].  

Figure 4.6 shows the effect of filler on the machined surface roughness when 

micromilling of epoxy/graphene nanocomposites at FPT 10µm. Ra generally showed the 

highest magnitude at 0.1 wt.%, followed by plain epoxy. As the filler content increased 

further, the surface roughness appeared to be reduced at 0.5 wt.% but slightly increased at 

1wt.%. The rise of Ra as the filler content increased from 0 (epoxy) to 0.1 wt.% was 

contributed by the strengthening effect of graphene, as can be seen from Table 4.4. 

 

Figure 4.6 The effect of filler content on the average surface roughness at different filler 
cutting speeds when micromilling epoxy/graphene nanocomposites at FPT of 10µm 

 The higher the stiffness of the workpiece material led to more plastic deformation 

on the machined surface, hence increasing the surface roughness [391]. As the filler content 

reached 0.5 wt.%, the Ra was significantly reduced. Given this relatively high filler 

loading, the presence of graphene could reduce the tool-chip friction due to its low friction 

coefficient, hence improving the surface quality [392]. However, further addition of filler 

loading up to 1 wt.% resulted in a slight increase of Ra, which was due to more graphene 

deflection, resulting in more crack propagation on the machined surface [393].  
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4.5  Summary 

The investigation on the micro-machinability of graphene reinforced 

nanocomposites in chapter 4-part I revealed the significant effects of cutting conditions 

(i.e., FPT, cutting speed) and workpiece materials on the cutting force and surface 

roughness variations. The ANOVA identified that the cutting force was influenced by all 

filler content, FPT, and cutting speed. On the other hand, only filler content and FPT were 

the most influential factors affecting the surface roughness. In general, the machinability of 

epoxy/graphene nanocomposites when micromilling at micro-cutting chip load showed a 

relatively similar trend to those of macro-cutting as both the cutting forces and the surface 

roughness increased with FPT. However, when the other input factors were taken into 

consideration including filler content and cutting speed, the machining behaviour of these 

materials became more sensitive to the microstructure effect and thermomechanical 

properties of the workpiece materials. It was indicated by the reduction of cutting force at 

high cutting speeds when micromilling epoxy and epoxy/0.1 wt.% graphene due to thermal 

softening. Also, the influences of lubricating graphene at high filler loadings (0.5 and 

1wt.%) on the surface roughness reduction at low FPT (5µm) also represented the effect of 

workpiece materials. On the other hand, the microstructure effect increased the surface 

roughness of epoxy/1 wt.% graphene when high FPTs were employed (10-15µm) due to 

more tool vibration when moving between different phases of the nanocomposites’ 

structure.  The cutting condition at low cutting speeds and FPTs were recommended for 

micromilling epoxy/graphene nanocomposites to generate low cutting force and surface 

roughness, respectively.  

 

 



Chapter 4: Machinability of carbon nanofiller reinforced epoxy nanocomposites at micro 
cutting chip load 

 

115 

 

Part II: Tool wear 

4.6  Tool wear analysis 

Figure 4.7a shows an SEM image of a typical tool diameter reduction of the 

uncoated tool, whilst Figure 4.7b shows a comparison between three tools diameters 

(Uncoated, DLC and diamond) after cutting 500 slots (at two different cutting speeds). 

The initial diameters of the three tools were different because of the coating layer. In 

general, the uncoated micro end-mill showed the most considerable reduction of tool 

diameter following by the DLC counterpart. In contrast, the diamond tool exhibited the 

opposite trend with a slight increase in this category due to the adhesion of melted chip as 

can be seen from Figure 4.8c, f.  

The rapid tool wear of uncoated tools was contributed by the highly abrasive 

nature of strong workpiece material (Table 4.4) combined with the tool material's high 

friction of coefficient. The SEM images from Figure 4.8a, d with noticeable edge 

rounding of the uncoated, regardless of the cutting speed, were revealed.  However, the 

uncoated tool diameter variation was different from the other two tool types (DLC and 

diamond) with a non-linear trend. Unexpectedly, the uncoated tool diameter increased 

when the cutting speed reaches 188.4 m/min instead of further reduced. In a close 

investigation, Figure 4.8d shows more obvious chip adhesion on the uncoated tool 

surfaces at the high cutting speed that unlikely to appear at the lower cutting speed 

(Figure 4.8a).  

 
Figure 4.7: (a) SEM image of tool diameter reduction of the uncoated tool; (b) Effect of 

tool type and cutting speed on reducing the effective tool diameter. 
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(a) Uncoated tool at cutting speed of 62.8 m/min 

 
(b) DLC tool at cutting speed of 62.8 m/min 

 
(c) Diamond tool at cutting speed of 62.8 m/min 

 
(d) Uncoated tool at cutting speed of 188.4 m/min 

Figure 4.8: SEM images of tool wear of different micro-end mills under various cutting 
speed (after removing 650 mm3 of material or 500 slots) (left: top view, right: side view) 
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(e) DLC tool at cutting speed of 188.4 m/min 

 
(f) Diamond tool at cutting speed of 188.4 m/min 

Figure 4.8: continued. 

However, the apparent uncoated tool tip rounding can also be seen in Figure 

4.9d, contributing to this cutting condition's highest cutting force (Figure 4.10). The 

mechanism that explained the tool radius’s effect on cutting force in micromachining 

has been described [380]. It detailed that (i) the increase of tool radius due to tooltip 

roundness made the micro-tools blunt, consequently, generating high shear angle in 

cutting area or high plastic deformation of the workpiece, hence increasing cutting force, 

(ii) the tooltip roundness increased the contact area between flank face and workpiece, 

therefore, accelerating flank wear rate. It generated high cutting temperature [394], 

especially when micro-cutting inhomogeneous nanocomposites using uncoated tools with a 

high friction coefficient at high cutting speed. Thus, the thermal softening effect 

seemed dominant in this case, causing more chip adhesion on the flank face of the 

uncoated tool (Figure 4.8d), hence increasing the tool diameter at the cutting speed of 

188.4 m/min. 
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(a) Uncoated tool at cutting speed of 62.8 m/min 

 
(b) DLC tool at cutting speed of 62.8 m/min 

 
(c) Diamond tool at cutting speed of 62.8 m/min 

 
(d) Uncoated tool at cutting speed of 188.4 m/min 

 
(e) DLC tool at cutting speed of 188.4 m/min 

Figure 4.9: SEM images showing tool wear progression of different micro-end mills under 
the various cutting speed (From left to right: 10 slots, 300 slots and 500 slots) 
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(f) Diamond tool at cutting speed of 188.4 m/min 

Figure 4.9: continued. 

In the DLC case, the tool diameter reduction trend showed almost linear 

relation with cutting speed that indicated the dominance of cutting force influence on 

accelerating the tool wear of this type of micro-cutting tools. However, this trend was less 

severe than those of the uncoated tool. It was due to the high wear resistance and low 

friction of the DLC coating layer [395].  

The use of DLC micro end-mill has shown a remarkable reduction of flank wear 

[396]. This reduction can be seen from Figure 4.8b and e with unobvious tool flank 

wear or less tool tip rounding from Figure 4.9b, e compared to those of uncoated tool. 

Coating delamination seemed to be the primary tool to wear a pattern in this case. The 

tool flank surfaces also showed material adhesion that might also contribute to a slighter 

reduction in a DLC tool's diameter than an uncoated tool. On the contrary, an opposite 

trend of the tool diameter after cutting 500 slots was reported when applying diamond 

tool with an increase in diameter of 10μm (at 188.4 m/min) and 4μm (at 62.8 m/min) 

compared to the new tool. Edge rounding was hardly observed for diamond tools 

(Figure 4.8c, f). 

Moreover, aggressive workpiece material adhesions were seen on all diamond 

tools used at both cutting speeds.  The layers of chip adhesion on tool surfaces could 

protect cutting tools from edge chipping and severe edge rounding [397]. It was also 

necessary to address low cutting forces' role when using diamond tools to reduce the 

tool wear compared to those of uncoated tools (Section 4.7).  

The analysis of tool wear revealed the interaction between tool wear and cutting 

force. Micromachining polymer nanocomposites with high mechanical properties (i.e., 

fracture toughness, hardness) and thermal properties (i.e., thermal conductivity) 
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compared to plain matrix material at high cutting speed could lead to a higher tool 

wear rate. At an increased tool wear rate, the micro-tools became blunt, hence 

increasing the cutting force. This interaction was shown in micromilling using the 

uncoated tool in this study, exhibiting severe tool wear progress (Figure 4.9) and high 

cutting force at high cutting speed (Figure 4.7b). It also highlighted the essential roles 

of coating material such as DLC or diamond to reduce both cutting force and tool wear 

during the micro-cutting process.  

4.7  Effect of tool wear on cutting force 

In general, measured cutting forces were relatively higher at high cutting speed 

regardless of the tool material and the cutting progress (Figure 4.10). This phenomenon 

was opposed to those when micromilling PC/CNT [398] or epoxy/graphene 

nanocomposites [399]. However, the mechanism was identically based on 

strengthening or thermal softening dominant regimes of the workpiece materials. 

Micromachining of nanocomposites at high cutting speed could generate high heat 

concentration in the cutting zone that consequently led to softening. The thermal 

softening effect resulted in the reduction of mechanical properties of the workpiece 

(i.e., stiffness, strength), hence reducing the cutting force. However, for epoxy/0.3 

wt.% nanocomposite, this phenomenon unlikely appeared due to its high glass 

transition temperature compared to epoxy [375]. The strengthening effect seemed to be 

dominant in this case that resulted in the increased cutting force. Therefore, the rising 

trend of cutting forces as the cutting speed increased, in this case, indicating the 

dominance of strengthening over thermal softening effects. Based on epoxy/graphene 

nanocomposites' characterisations from the previous study [375, 385], the addition of 

0.3 wt.% of graphene into the epoxy matrix provided significant enhancements in 

terms of tensile strength, tensile modulus, fracture toughness, and hardness. The high 

strength of graphene led to the improvements of nanocomposites' tensile properties. 

Moreover, this addition also increased the polymer nanocomposites’ fracture toughness 

as graphene nanoplatelets enhanced the energy absorbing capacity of the epoxy matrix 
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system [388]. These nano-platelets also restrained the epoxy molecules' mobility, hence 

improving the hardness and the glass transition temperature Tg of the nanocomposites.  

The high mechanical properties of 0.3 wt.% epoxy/graphene nanocomposites 

(Table 4.4) compared to other compositions (epoxy, 0.1, 0.5, and 1 wt.%) contributed 

to the rising trend of cutting force at cutting speed from 62.8 m/min to 188.4 m/min. 

Figure 4.10 also shows the higher cutting force when using uncoated micro-tools at 

high cutting speed over the other two tool types (DLC and diamond). This trend 

became more evident as cutting volume increased and reached a peak at the end of the 

cutting process (500 slots). These results were similar to other studies when 

micromilling aluminium [400]. Micromilling polymer nanocomposites, using uncoated 

tools with high friction coefficient could accelerate the tool wear rate due to high 

frictional contact between micro-tools and the workpieces, leading to cutting edge 

roundness, hence increasing the cutting force. This claim was validated by the tool 

wear analysis using SEM imaging in section 4.6. 

 

Figure 4.10: Effects of cutting speed and tool coating type on the average cutting force at 
different cutting stages (from 10 to 500 slots) 
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4.8 Effect of tool wear on surface roughness 

Average surface roughness (Ra) was measured at an interval of 100 slots for a 

set of conditions till 500 slots (650 mm3). It would also be necessary to identify Ra 

when new tools are used (up to 10 slots or 13 mm3). Figure 4.11 shows the progress of 

Ra values concerning tool wear (represented in terms of material removal volume). 

The Ra magnitudes of coated tools (DLC and diamond) at the beginning of the cutting 

processes (up to 13mm3 removed material) were higher than those of uncoated 

counterpart. The thickness of coating layers might reduce these coated tools' sharpness, 

consequently increasing surface roughness [401]. Only uncoated tools exhibited a 

gradual rise in Ra, especially for high cutting speed (188.4 m/min). 

In contrast, diamond and DLC coated tools mostly showed constant Ra values 

of 650 mm3 removed material. The considerable reduction in sharpness of cutting 

edges for the uncoated tools due to its higher tool wear rate than those of the coated 

tools (DLC and diamond) was the main reason for this phenomenon. The surface 

roughness results showed a good agreement with the tool wear analysis (Figure 4.9).  

For uncoated tool, the surface roughness magnitudes of uncoated tool tended to 

be higher when high cutting speed was employed. Following the analysis in section  

4.7 (Figure 4.10), the cutting force generated by the uncoated tool was always higher at 

high cutting speed, indicating the effect of rising cutting forces on the deterioration of 

the surface quality. The surface roughness's rising trend was mostly linear with the 

cutting volume in this cutting condition (uncoated tool at 188.4 m/min) (Figure 4.11b) 

indicating the significant effect of high tool wear rate of uncoated tool (compared to 

DLC and diamond tools) on reducing the surface roughness. It was due to the high 

plastic deformation on the machined surface generated by the blunt uncoated tool. 

Moreover, material adhered on uncoated tool surfaces at high cutting speed (Figure 

4.7b and Figure 4.8a) further blunt the micro-tools, hence also contributing to the 

surface roughness increase. However, the improved surface quality generated from 

using the uncoated tool was observed at the beginning (from 13 to 130 mm3 of material 

removal volume) and the end of the tool wear progress (from 520 to 650 mm3 of 

material removal volume) at the cutting speed of 62.8 m/min (Figure 4.11a). The initial 
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tool wear at the beginning (130 mm3) seemed to make the uncoated tool slightly shaper 

compared to the new tool (Figure 4.9a), hence resulting in a slight improvement of Ra 

at this stage. At the last stage (650 mm3), the reduced surface roughness was 

contributed by the epoxy smearing on the machined surface. Given a low cutting speed 

(62.8 m/min), the worn tool produced a high shearing load (due to high plastic 

deformation compared to the new tool), hence smearing epoxy on the machined 

surface. It resulted in the reduction of the surface roughness at this stage. 

For DLC and diamond tools, the cutting speed showed unobvious influences on 

the surface roughness. Ra had a noticeable rise in the diamond tool's case when 

increasing cutting speed from 62.8 m/min to 188.4 m/min (around 20%). It was also 

related to the influence of chip adhesion as seen by the increase of diamond tool 

diameter at the end of the cutting process (Figure 4.7b).  

 

 
Figure 4.11: Average surface roughness (Ra) variation as a function of material removal 

volume at various cutting speeds: (a) 62.8 m/min; (b) 188.4 m/min 
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Figure 4.11 also reveals that using the DLC tool during the micromilling process 

provided higher machined surface quality than others (uncoated and diamond tools), 

regardless of the cutting speed. Low cutting forces and tool wear rate from using DLC 

tools were the two main factors that contributed to this phenomenon. The better 

performance of DLC (in terms of generating higher surface finish) than uncoated tools 

have been investigated by other researchers [395, 402, 403]. However, their 

applications in the micromilling of polymer nanocomposites have been minimal and 

lack sufficient analysis of their performance.  

Therefore, DLC coated tools seemed to be more appropriate for 

micromachining graphene reinforced epoxy nanocomposites compared to the diamond 

and uncoated tools to improve surface finish. Figure 4.12 provides the quantitative data 

of the average surface roughness generated using different tools to consider the cutting 

speed effect. It reinforced the role of using DLC tools in reducing surface roughness 

compared to the diamond and uncoated tools, especially at high cutting speed (188.4 

m/min). 

s 

Figure 4.12: Effect of cutting speed and tool coating type on average surface roughness (in 
µm) at all cutting stages (from 10 to 500 slots) 
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4.9  Effect of tool wear on machined surface morphology 

Figure 4.13 shows SEM micrographs for the bottom surfaces of the machined 

slots. Intensive smearing (because of melting the matrix material) took place on 

specimens machined at higher cutting speeds (188.4 m/min).  
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Figure 4.13: SEM images of machined surface morphology at two cutting stages (after 10 
and 500 slots) using different micro-end mills under various cutting speeds 

Additionally, the SEM analysis revealed that internal defects such as air bubbles 

(internal cavities) exist that were likely to be formed during the nanocomposite 
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samples' fabrication process. Feed marks were also observed in most machined 

surfaces that cut at low cutting speed (62.8 m/min). Deterioration in workpiece surface 

quality with machining time was apparent for surfaces cut using the uncoated cutting 

tools compared with the DLC and diamond coated counterparts. This could be the 

result of severe cutting edge rounding observed only on the uncoated tools. It was also 

supported by the observed increase in surface roughness values versus material 

removal volume, as shown in Figure 4.11. 

4.10 Effect of tool wear on dimensional accuracy 

The presence of a 0.3% weight of graphene nanofiller in an epoxy resin/matrix 

was expected to improve the heat dissipation throughout the cutting process, enhancing 

the dimensional accuracy of the produced feature. Figure 4.14 shows the average slot 

width against cutting speed and cutting tool type. The results agreed with the original 

diameter of the cutting tools, as shown in Figure 4.7a. Marginal shrinkages in the 

machined slots were observed in all slots produced due to the residual stress and 

elasticity of the polymer nanocomposites [404].  This phenomenon explained slot 

width was always marginally smaller than the cutting tool's initial diameter for this 

test.  

  
Figure 4.14: (a) SEM image of a slot generated by DLC coated tool at 62.8 m/min after 500 
slots; (b) Effect of cutting speed and tool coating type on average slot width (in mm) at all 

cutting stages (from 10 to 500 slots) 
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As shown in Figure 4.14b, the tool coating led to less width channel reduction. 

The operation of suitable coating with adequate adhesion supported the tool for wear 

resistance and slowed down the acceleration of the edge roundness [401]. The 

remarkable width reduction could be assigned to tool wear enhancement of uncoated 

tool at 188.4 m/min cutting speed. 

4.11 Summary 

In this part of chapter 4, micromilling 0.3 wt.% graphene reinforced epoxy 

nanocomposites have been performed in dry cutting conditions. The corresponding 

tooling performances between three different tool types including tool wear, cutting 

force, dimensional accuracy surface roughness and surface integrity have been 

addressed and analysed.  It has been observed that the micro-tool wear behaviour 

depended upon the thermomechanical properties of the polymer nanocomposites, 

cutting speed and cutting force. The uncoated micro-end mills exhibited the highest 

tool wear rate compared to that of DLC and diamond coated counterparts. This high 

tool wear rate significantly reduced the machinability of epoxy/graphene 

nanocomposites in terms of increasing the cutting force and surface roughness as well 

as reducing the dimensional accuracy. On the contrary, the influences of tool wear on 

the machinability of the workpiece materials were less significant when using DLC 

and diamond coated micro-tools due to their lower tool wear rate compared to the 

uncoated tool. In particular, it has been further observed that the use of DLC micro 

end-mill in micromachining of graphene reinforced epoxy nanocomposites was 

recommended.  
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Chapter 5: Machinability of carbon nanofiller reinforced epoxy 
nanocomposites at nano-micro cutting chip load 

5.1 Introduction  

This chapter aimed to provide a comprehensive investigation on the micro-

machinability of carbon nanofiller reinforced epoxy nanocomposite at nano/micro-chip 

load. The content was divided into two parts.  

Part I examined the micro-machinability of epoxy/MWCNT nanocomposite 

including chip formation, cutting force, tool wear, machined surface morphology and 

roughness. The micromachining experiments were conducted on different cutting 

conditions including FPTs (0.2, 0.5, 1, 2, and 4 µm), cutting speeds (62.8, 125.6, and 

188.5 m/min) and filler loadings (neat epoxy, 0.1, 0.3, 0.7 and 1 wt.%). The low chip 

loads of 0.2 and 0.5 µm were employed to investigate the size effect in micromachining of 

polymer nanocomposites. A constant axial cutting depth (DoC) of 200 µm was applied for 

all micro-cutting trials. The micro-end milling uncoated tools used in this study had some 

main features as follows: micro-grain tungsten carbide, two flutes, cutting diameter of 0.5 

mm and helix angle of 200 Also, material properties such as tensile mechanical properties 

and thermal conductivity were believed to have an impact on chip formation, cutting force 

and machined, hence tested before the micromachining trials. The details of 

experimental works including cutting parameters, tool and workpiece material 

are summarised in Table 5.1. 

Table 5.1: Experimental settings 

Specimen 
Material 

MWCNT reinforced epoxy and 
plain epoxy 

Filler loading (wt%) 0, 0.1, 0.3, 0.7 and 1 

Cutting tool 

Material Micro-grain tungsten carbide 
Type Uncoated micro-end mill 
Number of flutes 2 
Flute length (mm) 1.5 
Cutting diameter (mm) 0.5 
Helix angle  200 

Cutting 
conditions 

Cutting speed (m/min) 62.8, 125.6 and 188.5 
Feed per tooth (µm) 0.2, 0.5, 1, 2, and 4 
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In part II, the machinability of (epoxy/CNF) in micromachining was presented. 

Different cutting conditions and nanofiller contents were applied to identify the 

micromachining behaviours of this polymer nanocomposite during the micromilling 

process. Based on the literature and machine tool’s capability, the main cutting parameters 

including cutting speed (31.41, 78.54, and 125.67 m/min) and FPT (0.2, 0.5, 1, 2, and 5 

µm), as well as nano-filler content (0, 0.1, 0.3, 0.7 and 1 wt.%), were chosen as the main 

input factors. The titanium-carbon-nitride (TiCN) coated micro-end milling tools used 

in this study had some main features as follows: micro-grain tungsten carbide, two 

flutes, cutting diameter of 0.5 mm and helix angle of 20o. A constant DoC of 100 µm 

was applied for all micro-cutting trials. The main objectives of the investigation were 

cutting force and surface roughness. Additionally, chip formation and machined surface 

morphology were also characterised to support the machinability analyses. It was also 

necessary to provide thermomechanical characterisations of the workpiece materials as 

these properties could affect the micromachining process. In this study, tensile and DMA 

tests were applied. Moreover, CNF distribution was also an important factor that could 

influence the mechanical properties of workpiece materials and consequently, their 

machinability. Therefore, it was also investigated using SEM analysis. The details of 

experimental works including cutting parameters, tool and workpiece material are 

summarised in Table 5.2. 

Table 5.2: Experimental settings 

Specimen 
Material 

CNF reinforced epoxy and plain 
epoxy 

Filler loading (wt%) 0, 0.1, 0.3, 0.7 and 1 

Cutting tool 

Material TiCN coating 
Number of flutes 2 
Flute length (mm) 1.5 
Cutting diameter (mm) 0.5 
Helix angle  200 

Cutting 
conditions 

Cutting speed (m/min) 31.41, 78.54, and 125.67 
Feed per tooth (µm) 0.2, 0.5, 1, 2, and 5 
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Part I: Machinability of carbon nanotube reinforced epoxy 

nanocomposites 

5.2  Tensile properties  

The tensile properties of nanocomposites with different MWCNT contents are 

shown in Figure 5.1(a-c). The addition of varying filler contents, from 0.1 to 1 wt.%, 

showed certain effects on the tensile behaviour of epoxy-based nanocomposites. It 

could be observed an obvious improvement of tensile strength at 0.7 wt.% filler 

loading (Figure 5.1a). This indicated a sufficient load transfer from matrix to filler at 

this filler content. However, its further increase (up to 1 wt.%) led to a reduction of 

tensile strength due to CNT agglomeration. On the other hand, Young’s modulus 

(Figure 5.1b) showed unobvious improvements when adding more MWCNT into the 

epoxy matrix compared to the plain epoxy. The highest value of modulus could be seen 

at 1 wt.% indicated an effective restraint of polymer chain sliding due to the dense 

network formed by the nano-fibres.    

Furthermore, it could also be seen that the fracture strain of these nanocomposites 

(Figure 5.1c) increased when incorporating MWCNT from 0 to 0.3 wt.%. However, it 

started to decrease when the filler loading reached 0.7 wt.%, indicating a ductile-to-

brittle transition. This phenomenon was possibly due to more agglomerations of 

MWCNT at high filler content, generating more stress concentration, hence leading to 

crack propagations under tensile loadings. Some similar findings could be found in 

[405, 406]. The improvements of tensile strength and modulus combined with the 

decrease of strain failure could be used to explain the effects of filler content on the 

machinability of these nanocomposites [407]. Furthermore, the thermal conductivity of 

these nanocomposites should also be considered since it could also influence the 

micromachining process in particular when the thermal softening phenomenon was 

dominant (at high cutting speed). 
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Figure 5.1: Tensile properties of epoxy/MWCNT nanocomposites: (a) Tensile strength, 
(b) Young’s modulus, and (c) Fracture strain 

5.3 Thermal conductivity 

Since the cutting process generated high temperature in the cutting zone, causing 

workpiece material softening and chip adhesion that affected the surface quality and 

surface roughness. In micromachining, high cutting speed is preferred, so this 

phenomenon was expected to be more severe. Therefore, micromachining low-

thermal-conductivity materials, such as polymers, required the investigation of their 

thermal conductivity. The thermal conductivity of epoxy/MWNCT nanocomposites is 

shown in Figure 5.2. The additions of low filler contents (0.1 and 0.3 wt.% MWCNT) 

showed insignificant improvement of thermal conductivity compared to epoxy. When 

the filler content reached 0.7 wt.%, a slight improvement could be observed. The 

highest thermal conductivity improvement of around 17% was found at 1 wt.% 

MWCNT, which showed agreement with the literature [408]. These enhancements of 

thermal conductivity was possibly due to the heat flow formed by dense MWCNTs 

network inside epoxy matrix at high filler contents (0.7 and 1 wt.%) as reported in the 

literature [409]. 
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Figure 5.2: Thermal conductivity of MWCNT/epoxy nanocomposites at different filler 
contents 

5.4 Chip morphology 

The chip morphology in micromachining plays a vital role in identifying the 

cutting mechanism as well as the behaviours of workpiece materials under the cutting 

process. Additionally, more details of chip morphology at low feed rates were also 

analysed to identify MUCT. This was indicated by a transition point from ploughing to 

the shearing-dominated regime and was an essential indicator of size effect when 

micromachining. 

Figure 5.3 shows the chip morphology at a cutting speed of 62.8 m/min with the 

consideration of filler content and feed rate effects. For all compositions, the chips 

were transferred from discontinuous to continuous forms when increasing the feed rate. 

It indicated the transition of the cutting mechanism from ploughing into the shearing 

regime. However, this trend seemed to be different between each composition. For 

epoxy, 0.1 wt.% and 0.3wt.% MWCNT nanocomposites, the chips were crushed with 

fracture debris at the lowest FPT of 0.2 µm and became more noticeable but still was 

in discontinuous form when FPT reached 1 µm. For 0.7 wt.% and 1 wt.% MWCNT 

nanocomposites, the chips were much more apparent, even at 0.2 µm FPT. The chip 

transition points from discontinuous to continuous form in these higher filler content 

nanocomposites were between 0.5 µm and 1 µm, which were smaller than those of 

lower filler contents and plain counterparts. Since the chip formation was characterised 
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at the lowest cutting speed (62.8 m/min), the effect of thermal softening could be 

eliminated. Tensile behaviour of these materials would be considered as the main 

reason for the change of MUCT between them. Based on the results in Figure 5.1c, it 

could be seen that the reduction of failure strain led to low plastic deformation when 

cutting high-filler-content nanocomposites (0.7 and 1 wt.%), allowing the chip 

formation at low cutting chip loads (0.5 to 1µm) due to dominant shearing regime. 

Plain epoxy 0.1 wt.% 0.3 wt.% 0.7 wt.% 1.0 wt.% 

  FPT= 0.2 µm 

FPT= 0.5 µm 

FPT= 1 µm 

  FPT= 2 µm 

FPT= 4 µm 

Figure 5.3: Chip formations when micromilling at different FPTs and CNT weight 
contents (Cutting speed = 62.8 m/min; Scale bar is 200 µm) 
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On the contrary, ploughing predominated when micromachining lower-filler-

content nanocomposites (0.1 and 0.3 wt.% and epoxy) due to their viscoelastic 

behaviour, resulting in higher MUCT (1 to 2 µm). Therefore, the addition of different 

MWCNT contents likely changed the MUCT thresholds when micromilling 

epoxy/MWCNT nanocomposites, owing to their various fracture strains. In this case, 

MUCTs of 0.7 wt.% and 1 wt.% MWCNT nanocomposites were in the range of 0.5 - 1 

µm) while these values were from 1 to 2 µm in case of low-filler-content 

nanocomposites. On closer observation of chip formations at low feed rates (Figure 

5.4), it could be seen that chip formation of 0.7 and 1 wt.% MWCNT nanocomposites 

was continuous and partly discontinuous at the lowest FPT of 0.2 µm indicating a 

partial shearing-dominant regime. At the same time, a completed ploughing 

mechanism was dominant at lower filler contents. At FPT of 1 µm, the chips of higher 

filler content nanocomposites were likely to curl and become thicker. However, their 

chip surfaces were rough with the presence of micro-cracks, due to the low tensile 

strain-to-failure behaviour of nanocomposites at high filler contents that has been 

confirmed from the tensile results (Figure 5.1). 

Plain epoxy 0.1 wt.% 0.3 wt.% 0.7 wt.% 1.0 wt.% 

     

FPT= 0.2 µm 

     

FPT= 0.5 µm 

     

FPT= 1 µm 

Figure 5.4: Chip formations at low FPTs at different CNT weight contents (Cutting 
speed = 62.8 m/min; Scale bar is 50 µm) 
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5.5 Cutting force 

5.5.1 ANOVA analysis 

ANOVA was applied based on the cutting force results from all cutting 

conditions and filler contents. Table 5.3 depicts all uncertain input factors, including 

filler content (wt.%), cutting speed (V) and FPT with their effects on cutting force 

representing as contribution indicators. The filler content and FPT showed the most 

significant influences with their contributions to cutting force variation of ~ 30% and ~ 

32%, respectively. The cutting speed only marginally influenced cutting force (2.76%). 

Table 5.3: ANOVA result for cutting force when micromilling epoxy/MWCNT 
nanocomposites 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 

FPT 4 3.8542 32.37% 3.8542 0.96356 14.86 < 0.001 

Cutting Speed 2 0.3285 2.76% 0.3285 0.16425 2.53 0.087 

Filler Content 4 3.5764 30.03% 3.5764 0.89409 13.79 < 0.001 

Error 64 4.1491 34.84% 4.1491 0.06483       

Total 74 11.9082 100.00%             

5.5.2 Cutting force analysis 

 Figure 5.5 shows the variations of cutting force as a function of FPT when a 

micromilling epoxy/MWCNT nanocomposite at different cutting speeds. A general 

increase of cutting force as a function of feed rate was observed for all cutting speeds 

and filler contents.  

Regarding the effect of filler content on the cutting force, micromilling 1 wt.% 

MWCNT nanocomposite generated the highest cutting force regardless of the cutting 

conditions compare to other compositions (epoxy, 0.1, 0.3 and 0.7 wt.%). This 

phenomenon indicated the dominance of the microstructure effect in increasing the 

cutting force. The high MWCNT loading (1 wt.%) led to more physical contact 

between micro-tools and nano-fillers, resulting in higher cutting force. Moreover, the 



Chapter 5: Machinability of carbon nanofiller reinforced epoxy nanocomposites at nano-
micro cutting chip load 

 

136 

 

sharper increase of cutting force with higher magnitude could be observed when 

micromilling 1 wt.% MWCNT nanocomposites at 62.8 m/min (Figure 5.5a) compared 

to those at 188.5 m/min (Figure 5.5b). These results indicated the dominance of the 

thermal softening effect at high cutting speed. This dominance of the thermal softening 

effect was also exhibited by the high sensitivity of filler content in varying cutting 

force at the high cutting speed (Figure 5.5b). The rising trend of cutting force with 

more added fillers at the high cutting speed of 188.5 m/min showed high consistency 

with the thermal conductivity of the workpiece materials (Figure 5.2). The lower added 

filler led to the lower thermal conductivity of the nanocomposites, consequently 

resulted in the reduction of cutting force, owing to the effect of thermal softening.  

  

Figure 5.5: Cutting force when micromilling epoxy based nanocomposites at different 
MWCNT contents and FPTs: a) Cutting speed = 62.8 m/min (20,000 rpm); b) Cutting 

speed = 188.5 m/min (60,000 rpm) 

In the consideration of the effect of FPT, the cutting force increased when chip 

load increased from 2 to 4 µm regardless of the cutting speeds and filler content 

(Figure 5.5). It indicated the significant effect of chip load on cutting force increase 

due to the high plastic deformation and subsequently, high feed mark formation on the 

machined surface that was similar to macromachining.  

However, the cutting force fluctuations at low FPTs (up to 1 µm at 62.8 m/min 

and 2 µm at 188.5 m/min) indicated the MUCT effect. These fluctuations of cutting 
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force were contributed by the transition of the cutting mechanism from ploughing 

(below MUCT) into shearing regime (above MUCT).  At a cutting speed of 62.8 

m/min, when the micro-tool ploughed the workpiece, high elastic deformation due to 

shear zone expanding was produced, resulting in high cutting force at FPT of 0.2 µm. 

This phenomenon became less obvious as FPT increased and the shearing mechanism 

occurred, leading to a reduction of cutting force (from 0.2 to 0.5 µm) (Figure 5.5a). A 

further increase of FPT up to 1 µm increased cutting force due to higher chip load. The 

fluctuation of cutting force could also be seen at the high cutting speed of 188.5 m/min 

(Figure 5.5b). However, it occurred in a larger range of FPT (from 0.2 to 2 µm) 

compared to those of low cutting speed (from 0.2 to 1 µm). It was due to the thermal 

softening effect that increased the MUCT boundary at high cutting speed (188.5 

m/min).   

Figure 5.6 depicts some specific cutting profiles on feed direction (Fy) at a 

cutting speed of 62.8 m/min to clarify the MUCT effect on cutting force variation for 

FPT of 0.5 and 1 µm. The influence of the thermal softening effect could be eliminated 

at such a low cutting speed. The cutting force profile appeared to be irregular at the 

filler contents of 0.1 (Figure 5.6b), 0.3 wt.% (Figure 5.6c)  and epoxy (Figure 5.6a). It 

indicated an unstable cutting condition generated from the ploughing mechanism 

(below MUCT) that caused the cutting force to fluctuate. 

On the contrary, cutting profiles at 0.7 (Figure 5.6d) and 1 wt.% MWCNT 

(Figure 5.6e) appeared to have more regular fluctuations compared to other 

compositions (epoxy, 0.1, and 0.3 wt.%) that indicated a stable cutting condition due 

to dominant-shearing regime, even at low FPT of 0.5 µm. These results confirmed the 

MUCT identification that was analysed in the chip morphology section (section 5.4). 
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FPT= 0.5 µm FPT= 1 µm 

  
(a) Plain Epoxy 

  
(b) 0.1 wt.% 

  
(c) 0.3 wt.% 

  
(d) 0.7 wt.% 

  
(e) 1.0 wt.% 

Figure 5.6: Cutting force profiles in feed direction at low FPT (0.5 and 1 µm) (Cutting 
speed= 62.8 m/min) 
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5.6 Machined surface morphology  

Figure 5.7 shows general views of machined surface morphology at low 

magnification of 750x (cutting speed of 62.7 m/min and FPT of 4 µm). These SEM 

images have been captured at the central area of each slot. It was observed that the 

presence of feed marks becomes more pronounced when micromilling high-filler-content 

nanocomposites (0.7 and 1 wt.%). It was due to lower failure strain at high filler loadings 

(Figure 5.1). The feed marks on machined surfaces of plain epoxy and lower filler content 

nanocomposites seemed to be smeared by the matrix material due to their visco-elastic 

characteristic. It was likely compatible with the tensile characterisation of these materials. 

  

  

 
Figure 5.7: Surface morphology of machined surface at different CNT weight contents: 

(a) Epoxy, (b) 0.1 wt.%, (c) 0.3 wt.%, (d) 0.7 wt.%, and (e) 1 wt.% (FPT = 4 µm; 
Cutting speed = 62.8 m/min) 
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Plain epoxy 0.1 wt.% 0.3 wt.% 0.7 wt.% 1.0 wt.% 

  FPT= 0.2 µm 

FPT= 0.5 µm 

FPT= 1 µm 

FPT= 2 µm 

FPT= 4 µm 

Figure 5.8: Surface morphology of machined surface at different CNT weight contents 
and FPTs (Cutting speed = 62.8 m/min; Scale bar is 10 µm) 

On closer investigation (Figure 5.8), other SEM images for all FPTs were taken at a 

higher magnification of 5kx. It was generally observed that the surface morphology from 

micromilling higher filler content nanocomposites (0.7 wt.% and 1 wt.% MWCNT) 

tended to be smoother than those of the other compositions. The presences of cracks and 

crack ridges on their machined surfaces were also less frequent and prominent. It was 

likely due to MWCNT bridging the cracks that seemed to occur when high filler contents 

were employed. It has been confirmed by Samuel et al. [330] when micromachining 
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PC/CNT nanocomposites. For epoxy, 0.1 and 0.3 wt.% MWCNT nanocomposites, 

machined surfaces seemed to be relatively smooth at the beginning (FPT from 0.2 to 

0.5 µm) but became rougher with clear micro-cracks along with the feed marks as 

FPT increased, especially for 0.1 wt.% nanocomposites. Polymer smearing of plain 

epoxy and CNT bridging of 0.3 wt.% MWCNT nanocomposites might contribute to 

their smoother surfaces compared to 0.1 wt.% counterparts. However, feed rate seems 

to inconsiderably affect surface morphology while only clear feed marks are found at 

the highest FPT. 

5.7 Surface roughness  

5.7.1 ANOVA analysis 

Before investigating surface roughness variation, ANOVA was first applied based 

on the experiment results from all cutting conditions and filler contents. Table 5.4 shows 

all input factors, including filler content, cutting speed, and FPT with their effects on 

surface roughness representing as contribution indicators. It could be seen that filler content 

significantly affected the surface roughness with its contribution of ~30% followed by 

cutting speed (contribution of 25.69%) while FPT showed the least effect (2.46%). These 

statistical results seemed to be consistent with the surface morphology analysis (section 

5.6).  

Table 5.4: ANOVA result for surface roughness when micromilling epoxy/ MWCNT 
nanocomposites 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 

Filler Content  4 0.061 30.50% 0.061 0.015 11.80 < 0.001 

Cutting Speed 2 0.051 25.69% 0.051 0.026 19.87   < 0.001 

FPT (µm) 4 0.005 2.46% 0.005 0.001 0.95 0.440 

Error 64 0.082 41.36% 0.082 0.001       

Total 74 0.199 100.00%             
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5.7.2 Surface roughness analysis 

Figure 5.9 depicts the surface roughness variation as a function of FPT at 

different filler contents. Surface roughness from micromachining 0.7 wt.% and 1 wt.% 

MWCNT nanocomposites were lower than the other composition regardless of the 

cutting conditions. It showed a firm agreement with the ANOVA analysis above. The 

Ra magnitudes of plain epoxy and other low-filler-content nanocomposites seemed to 

be comparable with each other, and their trends with FPT variations were also unclear 

indicating the minor effect of feed rate on surface roughness. However, from Figure 

5.9), the effect of MUCT could be identified. In conventional machining, the increase 

of feed rate leads to the rise of surface roughness due to the effect of feed marks 

formation. In micromachining, when cutting below the MUCT threshold, the 

ploughing mechanism occurs that may have negative impacts on machined surface 

generation. From this study, surface roughness fluctuated along with FPT. As FPT 

increasing from 0.2 to 1 µm which was below MUCT (as indicated by chip 

morphology and cutting force discussion), there was a fluctuation of surface roughness 

with high magnitudes at the beginning due to ploughing. It then reached the bottom at 

FPT = 0.5 µm with ploughing-shearing and then increased again as FPT reached 1 µm 

when a shearing regime becomes more dominant.  

 

Figure 5.9: Surface roughness (Ra) when micromilling epoxy-based nanocomposites at 
different MWCNT contents and FPTs (cutting speed = 62.8 m/min) 



Chapter 5: Machinability of carbon nanofiller reinforced epoxy nanocomposites at nano-
micro cutting chip load 

 

143 

 

A fluctuation of Ra could be seen for all materials as FPT increasing up to 1 

µm. As indicated by chip morphology investigation, this range of FPT was still below 

MUCT (below 2 µm) for these nanocomposites, hence showing the impact of the size 

effect. High magnitudes of Ra at the low FPTs (from 0.2 to 1 µm) were contributed by 

the ploughing mechanism. When the FPT kept increasing to 4 µm, the dominance feed 

mark effect was now responsible for the significant increase of Ra due to higher chip 

load and consequently, higher plastic deformation. However, the surface roughness of 

epoxy and low filler content nanocomposites (0.1 wt.% and 0.3 wt.%) started to 

decrease when FPR reached 2 µm. More polymer smearing due to high cutting 

temperature at high feed rates might be the reason for this phenomenon. 

5.8 Tool wear  

Figure 5.10 shows the side and top views of the machined micro-end mill for all 

material compositions to depict the effect of workpiece properties on the flank wear 

and the face wear, respectively. These two wear patterns seemed to be only visible at 

high filler contents (0.7 and 1 w.t%). This phenomenon was confirmed by the results of 

tool wear measurements in Figure 5.11. For low filler content compositions (0.1 and 

0.3 wt.%)  and plain epoxy, there was an unobvious effect of filler contents on the tool 

wear. However, an increase from 0.7 to 1 wt.% MWCNT content exhibited 

considerable tool wear acceleration, especially flank wear. It was exhibited by the 

visible scratches on the tool flank face when micromilling these compositions (Figure 

5.10). Given such high filler loadings of MWCNT, it likely indicated more physical 

contact between the tools and nanofibres, hence resulting in more tool wear. 

Additionally, MWCNT agglomeration at high filler loadings might also contribute to 

more trapping between tool and workpiece, caused more tool wear due to rubbing. This 

claim was supported by the stack of MWCNTs adhered on the tool surfaces when 

machined 0.7 and 1 wt.% nanocomposites (Figure 5.10). 
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Filler 
content 

Side view (Scale bar is 50 µm) Top View (Scale bar length 10 µm) 

Plain epoxy 

  

0.1 wt% 

 

  

0.3 wt% 

 

  

0.7 wt% 

 

  

1.0 wt% 

 

  
Figure 5.10: SEM images of tool wear at the end of the micromilling process for each 
composition (cutting volume of 58.5 mm3) (Yellow dashed line indicating wear area) 
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Figure 5.11: Effect of MWCNT content on tool wear when micromilling 
MWCNT/epoxy nanocomposites 

In addition, the apparent melting chip adhesion on the flank face could be seen 

for the micro-tools which machined epoxy and low filler-content nanocomposites (0.1 

and 0.3 w.t%). It indicated the effect of thermal softening when micromachining these 

low-thermal-conductivity materials. On the other hand, the chips adhered on the tool 

surfaces when machined high-filler-content compositions (0.7 and 1 w.t%) were in 

discontinuous form, implying the high brittleness of these nanocomposites. Also, their 

high thermal conductivity might contribute to the reduction of thermal softening, 

hence resulting in less melting chip adhesion. 

5.9 Summary 

The micro-machinability of multi-walled carbon nanotube reinforced epoxy 

nanocomposites (epoxy/MWCNT) was experimentally investigated and compared to 

those of plain epoxy. The cutting force and surface roughness were investigated with 

the validation from chip formation, surface morphology as well as workpiece material 

properties (mechanical tensile properties and thermal conductivity). Additionally, the 

influences of other factors including thermal softening, mechanical strengthening, 

microstructure, MUCT effects were also addressed. MWCNT content significantly 
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influenced the machinability of epoxy/MWCNT nanocomposites in terms of cutting 

force, surface roughness and tool wear. It indicated the dominant effects of 

thermomechanical and microstructure on the machinability of these nanocomposites. 

Chip load appeared to be the most influential factor affecting the cutting force while 

cutting speed showed the most significant effect on surface roughness variation. 

Additionally, the size effect appeared when the micromilling of epoxy/MWCNT 

nanocomposites at FPT below the MUCT threshold. It exhibited by the fluctuations of 

both cutting force and surface roughness at low chip loads due to the transition from 

ploughing to the shearing cutting regime.  
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Part II: Machinability of carbon nanofibre reinforced epoxy 
nanocomposites 

5.10 Tensile properties 

Figure 5.12 shows tensile properties of epoxy/CNF nanocomposites at different 

contents including tensile strength, Young’s modulus, and fracture strain. Generally, these 

tensile properties appeared to be improved with the addition of 0.1 and 0.3 wt.% CNF (0.1 

and 0.3 wt.%) but started to decrease at higher filler loadings.  

For tensile strength (Figure 5.12a), epoxy/0.1 wt.% CNF showed the highest 

improvement followed by epoxy/ 0.3 wt.% CNF, which were 6.4% and 5.3%, respectively 

compared to neat epoxy. These results were contributed by CNF fibres that could bear a 

fraction of the load from the epoxy matrix, hence improving the tensile strength of the 

nanocomposites. However, the degree of reinforcement depended on the distribution of 

fibres within the matrix. The more uniform distribution led to the higher possibility of 

fibre-matrix interaction instead of fibre agglomeration (fibre-fibre interaction). 

  

 

Figure 5.12: Tensile properties of epoxy/CNF nanocomposites at different filler contents: 
(a) Tensile strength, (b) Young’s modulus, (c) Fracture strain 
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Based on that, these homogenously dispersed CNFs could form a continuous 

network inside the epoxy matrix. It resulted in the efficient transfer of the tensile load from 

the epoxy matrix, hence improving the tensile strength of the nanocomposites. However, 

the tensile strength started to decrease as higher filler contents were incorporated and hit 

the lowest value at 46.8 MPa, which was around 28.6 % lower than neat epoxy.  It was 

possibly due to the uneven distribution of CNF in the epoxy matrix that led to the presence 

of the stress concentration, hence reducing the tensile strength at such high filler loadings.  

Young’s modulus showed a similar trend with tensile strength with the highest 

value of 1.1 GPa at 0.1 wt.% and the lowest of 0.94 GPa at 1.0 wt.% (Figure 5.12b). This 

phenomenon could also be explained by the transform from homogenous to 

inhomogeneous distribution of CNFs as their loading increased. A uniform network formed 

by CNF fibres at the low filler loadings (0.1 wt.% and 0.3 wt.%) could efficiently restrain 

the movement of the polymer chains. As a consequence, Young’s modulus or the stiffness 

of these materials was enhanced [375]. Similarly, the fracture strain also showed a ductile-

to-brittle transition as the filler loading increases (Figure 5.12c). The well-dispersed CNF 

nano-fibres at low filler contents appeared to improve the fracture strain of the 

nanocomposites [410].  

5.11 SEM analysis of tensile fracture surfaces 

The analysis of the tensile fracture surfaces was performed to investigate the 

toughening mechanisms as well as filler distribution when adding different CNT loadings 

into the epoxy matrix (Figure 5.13). Generally, the fracture samples showed a river-like 

pattern of radiating crack lines, regardless of the filler contents that indicated a typical 

failure pattern of brittle materials. However, a gradual change from irregularly dendritic 

(Figure 5.13a, b, and e) to radially straight cracks (Figure 5.13e and d) could be observed 

when more CNF was added. It indicated the toughening effect provided by CNF additions 

that restricted the free crack propagation (as could be seen in neat epoxy samples). Based 

on that, the higher filler contents seemed to provide better toughening efficiency for the 

nanocomposites. 
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Figure 5.13: SEM micrographs of the tensile fracture surfaces of: (a) epoxy/0.1 wt.% CNF, 
(b) epoxy/0.3 wt.% CNF, (c) epoxy/0.7 wt.% CNF, (a) epoxy/1 wt.% CNF, (e) epoxy 

Figure 5.14 shows the tensile facture surfaces of epoxy/CNF nanocomposites at high 

magnification to exhibit the filler distributions. The fracture morphology of 0.1 and 0.3 

wt.% nanocomposites appeared to be smooth with uniform distribution of CNFs (Figure 

5.14a and b). It resulted in the enhancements of the tensile strength (Figure 5.12a) and 

Young’s modulus (Figure 5.12b) of these compositions. Additionally, crack spinning, and 

crack deflection could also be observed on the facture surfaces of 0.1 and 0.3 wt.% 

nanocomposites that indicated the high efficient toughening mechanism of these materials 

[411]. It resulted in the improvements of fracture strain at these materials compared to 

epoxy. On the contrary, clear CNF bundles and rough fracture surfaces were observed for 

0.7 and 1.0 wt.% CNF nanocomposites (Figure 5.14c, d) that implied the poor distribution 

of the fillers at such high loadings.  
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Figure 5.14: SEM micrographs at high magnifications of the tensile fracture surfaces of: 
(a) Epoxy/0.1 wt.% CNF, (b) Epoxy/0.3 wt.% CNF, (c) Epoxy/0.7 wt.% CNF, (a) Epoxy/1 

wt.% CNF 
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These poor-dispersed CNFs led to stress concentration, hence reducing the tensile 

strength of the materials (Figure 5.12a). Additionally, coarse fracture surfaces, large crack 

lines, and CNF agglomerates at this high-filler-content group (Figure 5.14c, d) indicated a 

low degree of toughening effect, resulting in low fracture strain of these materials. 

5.12 DMA analysis – Glass transition temperature 

Figure 5.15 illustrates a typical variation of epoxy/CNF nanocomposites’ tan δ 

(ratio of loss modulus to storage modulus) as a function of temperature. The average glass 

transition temperature was identified based on the peak values of tan δ and is shown in 

Table 5.5. The gradual growth of the glass transition temperature at low filler was observed 

which reached the peak of 70.6oC at 0.3 wt.% CNF. Tg was then reduced for the filler 

content above 0.3 wt.%. The homogenous distribution of CNF at 0.1 and 0.3 wt.% (Figure 

5.14a, b) contribute to their high magnitudes of Tg. It was due to the well-dispersed nano-

fibres at such low contents that could form a continuous network to restrict the polymer 

chains’ mobility or increased the immobilization of macromolecules [412], hence 

stabilizing the material structure in response to accelerated thermal energy. 

 

Figure 5.15: Tan δ of epoxy/CNF nanocomposites at different filler contents from DMA 
analysis 
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Table 5.5: Glass transition temperature of epoxy/CNF nanocomposites at different filler 
contents 

CNF concentration (wt.%) Glass Transition Temperature Tg (
oC) 

0 69.5 (±0.55) 
0.1 70.5 (±0.47) 
0.3 70.6 (±0.76) 
0.7 68.7 (±0.07) 
1 67.3 (±1.82) 

 

On the contrary, more agglomerations of CNFs at higher filler contents (Figure 

5.14c, d) led to the reduction of Tg by 3% lower than plain epoxy at 1 wt.% CNF. These 

aggregations of the nano-fibres resulted in less matrix-filler interaction and left the more 

free volume of polymer chains, hence making the polymer’s structure unstable at high 

temperature. The poor dispersion of nano-fillers also contributed to the degradation of 

polymer’s mechanical properties as it impeded the curing and reduces the crosslinking 

density [413]. The effect of filler concentration on the transition temperature of epoxy/CNF 

nanocomposites from Table 5.5 showed high agreement with other investigations on 

various polymer nanocomposites such as epoxy/graphene [375] or PU/graphene oxide 

(PU/GO) [414]. This result was also identical to the tensile properties (section 5.10) that re-

confirmed the obvious effect of fillers’ distribution on the thermomechanical properties of 

epoxy/CNF nanocomposites. 

5.13 Chip morphology 

Figure 5.16 depicts the chip morphology for different polymer nanocomposites and 

plain epoxy at a cutting speed of 78.54 m/min. As a general trend, chip morphology tended 

to change from debris/discontinuous into continuous form as FPT increasing from 0.2 to 5 

µm. This transition point (denoted by horizontal arrows) was supposed to be the MUCT 

and it depended on the mechanical properties of workpiece materials. The chips when 

micromilling 0.1 wt.% nanocomposite (Figure 5.16a) started to form somewhere between 

0.2 to 0.5 µm of FPT that likely indicated the lowest MUCT compared of these materials to 

other compositions. The MUCTs of both 0.3 and 0.7 wt.% CNF nanocomposites were in 

the range from 0.5 to 1 µm (Figure 5.16b, c). 
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FPT = 0.2 µm FPT = 0.5 µm FPT = 1.0 µm FPT = 2.0 µm FPT = 5.0 µm 

 
(a) 0.1 wt.% CNF 

 
(b) 0.3 wt.% CNF 

 
(c) 0.7 wt.% CNF 

 
(d) 1.0 wt.% CNF 

 
(e) Epoxy 

Figure 5.16: Chip morphology of epoxy/CNF nanocomposites at different filler contents 
(Cutting speed= 78.54 m/min) (Scale bar is 200 µm)  

The highest value of the MUCT was observed at 1 wt.% CNF and plain epoxy from 1 

to 2 µm (Figure 5.16d, e). The reduction of MUCT as the filler content increased was likely 

due to the ductility of the nanocomposites. Based on the tensile results from section 5.10, 

the addition of 0.1 wt.% CNF provided the highest improvement of the fracture strain, 

followed by 0.3 and 0.7 wt.%. However, there was a ductile-to-brittle transition as the filler 

content increased to 1 wt.% (Figure 5.12a), even lower than the epoxy (Figure 5.12c).  
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FPT = 1 µm FPT = 2 µm FPT = 5 µm 

   
(a) 0.1 wt.% CNF 

   
(b) 0.3 wt.% CNF 

   
(c) 0.7 wt.% CNF 

   
(d) 1.0 wt.% CNF 

   
(e) Epoxy 

Figure 5.17: Chip morphology of epoxy/CNF nanocomposites at different filler contents 
(Cutting speed= 78.54 m/min) (Scale bar is 50 µm) 
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It led to the chip formation at higher FPT or higher MUCT compared to those of 

ductile nanocomposites (0.1, 0.3, and 0.7 wt.%). On closer observation of chip 

morphology, Figure 5.17 illustrates the effects of both FPT and filler content on the chip 

morphology at the cutting speed of 78.54 m/min. At the first glance, the chip surface 

appeared to be coarser at a high feed rate as FPT increasing. The broad shear zone at high 

feeds made the chip segments more obvious, hence roughening the chip surfaces.  The chip 

morphology showed an obvious difference between compositions at FPT of 1µm.  At this 

feed, the chip thickness was low enough to show the sensitivity of chip formation to the 

thermomechanical properties of nanocomposites. In detail, the well-enhanced 

thermomechanical properties of 0.1 and 0.3 wt. % CNF nanocomposites exhibited high 

integrity chip formation with flat and smooth surfaces and fewer cracks at FPT of 1µm 

(Figure 5.17a, b) compared to those other materials (0.7 and 1 wt.% and epoxy). On the 

contrary, the chip morphology showed more cracks for 0.7 and 1 wt.% as a result of the 

low fracture strain of these materials (Figure 5.12c). Moreover, the chips at 1 wt.% and 

epoxy appeared to be wrinkle (Figure 5.17d, e), especially for epoxy (Figure 5.17e). This 

was due to the thermal softening at the high cutting speed that was contributed by the low 

transition temperature of these nanocomposites (Table 5.5).   

5.14 Cutting force 

5.14.1 ANOVA analysis 

ANOVA analysis was applied to statistically identify the level of input factor’s 

distributions.   

 

 

Table 5.6 represents the ANOVA analysis of the resultant cutting force that 

considered the influences of three main input factors. All filler content, FPT, and cutting 

speed showed a significant effect on cutting force. The cutting speed exhibited the most 

significant influence on the cutting force with its contribution of around 74.5%.  
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Table 5.6: ANOVA result for the resultant cutting force when micromilling epoxy/CNF 
nanocomposites 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 

Filler Content 4 2.146 11.09% 2.146 0.53641 33.75 < 0.001 

Cutting Speed 2 14.426 74.53% 14.426 7.21316 453.86 < 0.001 

FPT 4 1.766 9.12% 1.766 0.44154 27.78 < 0.001 

Error 64 1.017 5.26% 1.017 0.01589       

Total 74 19.355 100.00%             

5.14.2 Cutting force analysis 

Figure 5.18 illustrates the cutting force’s variations at the different cutting speeds 

(from 31.41 to 125.67 m/min). Generally, the cutting force gradually increased along with 

FPT increment regardless of the workpiece materials. It implied the significant effect of 

chip load on the feed mark formation due to the increased plastic deformation of the 

workpiece on the machined surfaces. This trend was more obvious at the lowest cutting 

speed of 31.41 m/min (Figure 5.18a) where the thermal softening effect was unlikely to 

occur.  

At the high cutting speeds, the cutting force of 1 wt.% CNF nanocomposite and 

epoxy showed a fluctuation at the low range of FPT (0.2 – 2 µm) at 78.54 m/min (Figure 

5.18b) and 125.67 m/min (Figure 5.18c). This phenomenon indicated the effect of MUCT 

on cutting force at these high cutting speeds. As discussed in section 5.13, 1 wt.% CNF 

nanocomposites and epoxy showed the highest MUCT (from 1 to 2µm). It led to the 

occurrence of the ploughing regime at the FPT below 2µm, resulting in the high cutting 

force at FPT of 0.2 µm. The cutting force was decreased as FPT increased (up to 1µm) due 

to the reduction of the ploughing mechanism. As the occurrence of the dominant-shearing 

regime at higher FPT (from 1 to 2µm), the cutting force increased as a result of increased 

chip load. On the contrary, the cutting force at 0.1, 0.3, and 0.7 wt.% CNF exhibited a 
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linear increase of cutting force in this FPT range (0.2 to 2 µm) (Figure 5.18b and c). It 

could be interpreted by considering the fracture strain and Young’s modulus of the 

workpiece materials. As shown in Figure 5.1b and c, both fracture strain and Young’s 

modulus of 0.1, 0.3, and 0.7 wt.% nanocomposites were higher than epoxy and 1 wt.% 

composition. It resulted in the higher resistance of the workpiece against the tool advance 

at high cutting speeds (78.54 and 125.67 m/min), hence leading to the linear raise of cutting 

force at FPT from 0.2 to 1 µm. The rising portion of cutting force variation at higher feed 

rates (2 to 5 µm) for all compositions was attributed to the increased chip load and shear 

area or larger plastic deformation that was similar to those of conventional cutting (at 

macro scale).  
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Figure 5.18: Cutting force when micromilling epoxy/CNF nanocomposites at different 
cutting speeds: (a) 31.41 m/min, (b) 78.54 m/min, (c) 125.67 m/min 

The cutting force variation showed significant dependence on the filler content, 

exhibited by the higher cutting force magnitudes as the filler content increased (Figure 

5.18). It was likely to imply the considerable effect of thermomechanical properties of 

materials. With the incorporation of CNFs, the epoxy-based nanocomposites showed higher 

cutting force magnitudes than epoxy due to the strengthening effect (Figure 5.12). From 

Figure 5.18a-c, it appeared that the cutting force for 0.1 wt.% CNF nanocomposite showed 

the highest values, followed by 0.3 wt.% counterparts. This could be attributed by the 

improvements of the stiffness (Figure 5.12b) and the failure strain (Figure 5.12c), owing 

to the uniform distribution of nano-fibres (Figure 5.14a, b) of these materials. On the 

contrary, the low cutting forces when micromilling high-filler-content nanocomposites (0.7 

and 1 wt.% CNF) were contributed by the low mechanical properties compared to 0.1 and 

0.3 wt.% CNF  due to the agglomeration of the nano-fibres (Figure 5.14c, d). Also, 0.1 

wt.% nanocomposites exhibited significantly high cutting force magnitudes at the highest 

cutting speed of 125.67 m/min that was distinct from those of other materials. At such a 

high cutting speed, the thermal softening effect seemed to appear. The high cutting force 

magnitudes when micromilling 0.1 wt.% nanocomposite was due to its low thermal 

sensitivity that was contributed by the high glass transition temperature of this composition 

(Table 5.5). It resulted in the stability of the mechanical properties of this material at a high 

cutting speed, hence increasing the cutting force. 

Figure 5.19 shows the significant effect of cutting speed on the cutting force, 

regardless of the filler content. The cutting force showed only the rise trend as the cutting 

speed increased. It was commonly known that cutting speed increase could lead to high 

cutting temperature due to the generated heat from tool-workpiece contact [415]. This high 

cutting temperature led to two opposite mechanisms:  

 The thermal softening effect reduced the mechanical properties of workpiece 

materials (i.e., stiffness), hence reducing the required cutting force. 

 The strain hardening effect enhanced the mechanical properties of workpiece 

materials (stronger and harder to deform), increasing by cutting force. 
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Figure 5.19: Effect of cutting speed on the cutting force when micromilling epoxy/CNF 
nanocomposites at different filler contents (FPT= 5 µm) 

 The stress-strain behaviour of all materials showed no strain-hardening 

phenomenon (Figure 5.12) at room temperature. However, it has been investigated that this 

effect would take place at a higher temperature (right below the glass transition 

temperature) [386]. Therefore, the only upward trends of the cutting force from Figure 5.19 

indicated the subservience of the thermal softening effect and the dominance of the strain 

hardening effect. In the case of 1 wt.% and 0.7 wt.% materials, the micro-structure effect 

might also contribute to the cutting force increment at high cutting speeds, owing to more 

contact between tool and CNFs at high filler contents. 

5.15 Machined surface morphology 

The characterisations of the machined surface morphology when micromilling of 

epoxy/CNF nanocomposites and epoxy at a cutting speed of 125.67 m/min are shown in 

Figure 5.20. The SEM imaging has been performed in the middle area of the machined slot. 

Generally, the feed marks became clearer as the FPT increased, regardless of the material 

type. Among different compositions, 0.1 wt.% nanocomposites showed the machined 
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surfaces (Figure 5.20a) with the most obvious feed marks, even at the low chip load (0.5 

µm). It was attributed to the high MUCT at this filler concentration, hence making feed 

marks the main pattern of surface morphology for this material. However, feed marks 

appeared to be blurred at the higher filler content of 0.3 wt.% CNF (Figure 5.20b).  

FPT = 0.5 µm FPT = 1.0 µm FPT = 2.0 µm FPT = 5.0µm 

    
(a) 0.1 wt.% CNF 

    
(b) 0.3 wt.% CNF 

    
(c) 0.7 wt.% CNF 

    
(d) 1.0 wt.% CNF 

    
(e) Epoxy 
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Figure 5.20: Machined surfaces when micromilling epoxy/CNF nanocomposites at the 
cutting speed of 125.67 m/min (Scale bar is 50 µm) 

Given the relatively high filler loading, the nano-fibres appeared to be bridging the 

cracks along with the feed marks, hence smoothing the machined surfaces. For a further 

increase of filler content to 0.7 wt.% CNF, the machined surface morphology appeared to 

be coarse with obvious cracks cover by material adhesion (Figure 5.20c). On the other 

hand, the machined surface morphology of 1 wt.% CNF nanocomposite (Figure 5.20d) 

tended to be relatively smooth that was similar to that of plain epoxy (Figure 5.20e). It 

might be attributed to the brittle failure of these two materials (Figure 5.12c). The 

machined surface of epoxy also showed more chip adhesion at every FPT, owing to their 

low thermal transition temperature that consequently leads to thermal softening at high 

cutting speeds. 

5.16 Machined surface roughness 

5.16.1 ANOVA analysis 

Statistical analysis of ANOVA was used to identify the level of input factor’s 

distributions on the machined surface roughness. The results from Table 5.7  revealed that 

all filler content, FPT, and cutting speed exhibited significant effects on Ra variation.  In 

detail, the high contribution was found of around 29% for filler content, followed by FPT 

with around 25%. However, the cutting speed appeared to show the least effect at only 9%.  

Table 5.7: ANOVA result for surface roughness when micromilling epoxy/CNF 
nanocomposites 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 

Filler Content 4 0.016096 29.21% 0.016096 0.004024 12.82 < 0.001 

Cutting Speed 2 0.005011 9.10% 0.005011 0.002506 7.98 0.001 

FPT 4 0.013896 25.22% 0.013896 0.003474 11.06 < 0.001 

Error 64 0.020096 36.47% 0.020096 0.000314       

Total 74 0.055100 100.00%             
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5.16.2 Surface roughness analysis 

The machined surface roughness exhibited a generally upward trend as the chip 

load increased, regardless of the cutting speed and the workpiece material’s type (Figure 

5.21). However, an initial decrease of the cutting force could be observed at the low FPTs 

for all materials, except 0.1 wt.% nanocomposite. Given such a low chip load, this 

phenomenon was likely attributed to the MUCT effect that implied a ploughing-dominated 

mechanism at this stage. The ploughing regime led to strong plastic deformation and large 

compressive residual stress of the top layer of the workpiece (machined surface) [416], 

resulting in high surface roughness (at FPT of 0.2 µm). These ploughing-based cutting 

force variations could be divided into two groups based on their similar trends: (i) 0.3 and 

0.7 wt.% and (ii) 1 wt.% and plain epoxy.  

At the lowest cutting speed (Figure 5.21a), the first group (0.3 and 0.7 wt.%) 

exhibited a drop of the cutting force at the FPT below 0.5 µm while this threshold was 

shifted to 1 µm in the case of the second group. This phenomenon correlated with the 

MUCTs of these materials from section 5.13 (Figure 5.16). Additionally, there was an 

enlargement of the cutting force’s drop potion from 1 to 2 µm for 1 wt.% and plain epoxy 

as higher cutting speeds (Figure 5.21b, c). It was likely to indicate the increase of MUCT of 

these materials at higher cutting speeds. Due to their low glass transition temperature 

(Table 5.5), these materials had a high tendency to be softened at high temperature, 

resulting in more chip adhesion on the micro-tool. It might lead to the decrease of the 

cutting edge radius (tool bluntness), hence increasing the MUCT. The machined surface 

roughness tended to exhibit higher MUCT sensitivity compared to that of the cutting force. 

For 0.1 wt.% material, the cutting force still showed a steady increase at the low FPTs, 

owing to its extremely low MUCT (0.2 to 0.5 µm) (Figure 5.16). 
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Figure 5.21: Effect of the filler content and feed rate on the average surface roughness 

when micromilling epoxy/CNF nanocomposites at different cutting speeds: (a) 31.41 

m/min, (b) 78.54 m/min, (c) 125.67 m/min 

              As the FPT exceeded the MUCT boundary, the machined surface roughness 

showed a gradual increase with FPT. It was likely to indicate the dominant effect of FPT on 

Ra at this stage that was contributed by the formation of feed marks at high FPTs (Figure 

5.20). The increase in feed rate led to higher plastic deformation, resulting in rougher 

surfaces and higher feed marks compared to those at low feed rates.  

Figure 5.21(a-c) also exhibited the obvious effect of filler content on the surface 

roughness variation at the different cutting speeds despite some disorder at the lower feed 
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rates due to the MUCT thickness. Generally, the highest values of Ra could be observed at 

the machined surfaces of 0.1 wt.% CNF nanocomposite and appeared to be reduced as the 

filler content increased (Figure 5.22). This result seemed to be relatively identical with the 

mechanical properties (i.e., Young’s modulus, fracture strain) of different compositions 

(Figure 5.12) that indicated the effect of strengthening effect on the surface roughness. The 

role of cutting force in machining was to generate stress that exceeds the strength of work 

material, hence resulting in the separation of material layers (UCT) or fracture. In that way, 

it was understood that a higher cutting force was needed to cut a stronger material’s layers. 

As a consequence, the high cutting force generated tool vibration which was responsible for 

the increase of Ra [389]. Given such a high cutting speed and small tool in micro-

machining, Ra was likely to exhibit high tool-vibration sensitivity. Therefore, the highest 

cutting force when micromilling of 0.1 wt.% material  (Figure 5.18) might contribute to the 

highest Ra that can be seen in Figure 5.21. This mechanism could be used to explain the 

order of Ra magnitudes for other materials. From that point of view, the surface roughness 

of 0.7 wt.% nanocomposite was supposed to be lower than that of 0.3 wt.% counterparts 

due to its lower cutting force magnitudes (compared to that of 0.3 wt.%). As a matter of 

fact, these values were observed to be higher than those of 0.3 wt.% material. This unusual 

result might be explained based on two reasons.  The first one was the contribution of the 

microstructure effect.  Given such a high filler content of 0.7 wt.%, the CNFs tended to 

form a dense network, leading to the high tendency of tool-fibre interaction [331].  

Secondly, the stiffness and fracture strain of 0.7 wt.% and 0.3 wt.% nanocomposites were 

comparable (Figure 5.12). These two factors likely resulted in more tool vibration, hence 

leading to rougher machined surfaces at 0.7 wt.% compared to those of 0.3 wt.% material 

that could be visually recognised from the SEM images in Figure 5.20. 
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Figure 5.22: Effect of the filler content on the average surface roughness when 
micromilling epoxy/CNF nanocomposites (FPT= 2 µm) 

Apart from the effect of tool vibration, it was also worthwhile to notice the negative 

effect of plastic deformation on the surface roughness. The SEM analysis of the machined 

morphology from section 5.16 (Figure 5.20) revealed the most obvious feed marks at 0.1 

wt.% CNF but became unclear as the filler content reached 1 wt.% as well as plain epoxy. 

Given the high cutting force required to machine strong materials (i.e., 0.1 and 0.3 wt.%), 

the machined surface tended to be deformed severely, causing high plastic deformation. It 

resulted in more work material’s residue left on the finished surface that contributed to 

higher feed marks (higher surface roughness).  

5.17 Summary 

The investigation on the machinability of CNF reinforced epoxy nanocomposites 

using micromilling revealed the significant effect of cutting conditions and workpiece 

material on the cutting force and surface roughness variations. From the ANOVA analysis, 

it was observed that cutting force was significantly affected by cutting speed whereas FPT 

and filler content were the two main influential factors in the surface roughness variation. 

Based on that, epoxy/CNF nanocomposites at the filler contents of 0.3 and 1 wt.% CNF 

showed good performances in terms of low cutting force and high surface finish when 
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micromilling at low cutting speeds of 31.41 m/min and low FPT (from 0.5 to 1 µm). Also, 

the size effect on both cutting force and surface roughness was revealed when micromilling 

these nanocomposites and plain epoxy at the FPTs below MUCT. The machinability 

behaviours of these materials also showed high agreement with the characterisation results 

(tensile properties, glass transition temperature, and SEM analysis of fracture surface) 

when the thermal-mechanical and micro-structure effects were taken into consideration.  
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Chapter 6: Conclusions and future work 

6.1 Conclusions 

In this research, the machinability of carbon nano-filler reinforced epoxy 

nanocomposites through the micromilling process was investigated. The micromachining 

experiments were conducted on epoxy-based nanocomposites reinforced by various types 

of carbon nano-filler (in terms of filler geometry and size) at different chip loads (from 

nano to micro). Based on that, a comprehensive study on the micromachining behaviours of 

carbon nano-filler reinforced epoxy nanocomposites was addressed. Due to the important 

roles of thermomechanical properties and micro-structure effect of workpiece materials on 

their micromachining behaviours, some relevant characterisations were made prior to 

micromilling experiments. They included tensile, thermal conductivity, DMA and SEM 

analysis. The workpiece materials were prepared by mould casting at different filler 

loadings (up to 1 wt.%). Due to the distinct nature of each carbon nano-filler’s type, 

different mixing methods were applied during the fabrication including solution mixing and 

three roll milling to attain homogenous distributions of the nano-fillers. The addition of 

carbon nano-fillers in the epoxy matrix led to the improvements of tensile properties 

(strength, stiffness, ductility) as well as thermal properties (thermal conductivity, glass 

transition temperature) compared to epoxy.  

From this research, some important results were identified that can be applied in the 

advancement of knowledge in the field of micromachining nanocomposites: 

 Micromachining of polymer nanocomposites at micro-chip loads generally showed 

the similar role of FPT in increasing cutting force and surface roughness. However, 

the significant influences of cutting speed, filler loading on cutting force and 

surface roughness, respectively indicated the high sensitivity of these 

nanocomposites’ machinability to thermomechanical and microstructure effect. This 

feature highlighted the key difference compared to macromachining of 

nanocomposites. 
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 The significant effects of thermomechanical properties and micro-structure of these 

epoxy-based nanocomposites also exhibited on the rapid tool wear of uncoated 

micro-tools during the micromilling process compared to those of coated tools 

(DLC and diamond). It was further suggested to use DLC micro-tool in 

micromachining of carbon nano-fillers reinforced epoxy nanocomposites to attain 

low tool wear, cutting force, and surface roughness.  

 The micromilling experiments performed at nano-to-micro-chip loads (0.2 to 5µm) 

showed two different trends of cutting force and surface roughness variations (as a 

function of FPT). At micro-cutting conditions (chip load from 1 to 5µm), these 

trends were generally similar to those at the higher range of chip load (5 to 15µm) 

with the increase of both cutting forces (F) and surface roughness (Ra) with FPT. 

However, the size effect took place in nano-cutting regimes at chip load below 

MUCT (around 1µm), exhibited by the fluctuations of their values (F and Ra). It 

was contributed by the ploughing-dominated cutting mechanism, resulting in high 

magnitudes of both F and Ra at such low chip loads. Throughout the chip load 

range, the micro-structure and thermomechanical properties had dominant 

influences on the micromachining behaviours (cutting force, surface roughness, tool 

wear) of these epoxy-based nanocomposites.  

Based on the analysis of the machinability of carbon nano-fillers reinforced epoxy 

nanocomposites, it was found that the manipulation of the cutting speed in micromachining 

can be an effective way to attain low cutting force generated that consequently reduce tool 

wear rate and surface roughness. Additionally, a machining regime at chip load beyond the 

MUCT was suggested to avoid negative influences from the size effect. Therefore, a pre-

identification of the ratio of cutting edge radius to FPT is deemed to be necessary to 

achieve an optimal cutting condition. 

The results from this research presented a comprehensive investigation on the 

machinability of carbon nano-fillers reinforced epoxy nanocomposites that can be applied 

in industry due to the growing demands of micro-manufacturing nanocomposites. Based on 

the study, the optimal micro-cutting conditions can be recommended to obtain high tool 

life, low cutting force and surface roughness. Also, these results from this study can 

contribute to further research in advanced machining of nanocomposites.  
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6.2 Future work 

In this research, the tool wear behaviour in micromachining of epoxy-based 

nanocomposites has been addressed in chapter 4-part II and chapter 5-part I. However, the 

cutting parameters (i.e., cutting speed, feed) need to be employed in a larger range to 

provide more in-depth investigations on this machinability response.  

Due to the limitation of material models of nanocomposites, the researches on 

modelling of micromachining of nanocomposites have been still limited in metal matrix 

nanocomposites only. The ongoing study has been building the model of carbon nanofibre 

to reinforce epoxy nanocomposites. Therefore, the modelling of micromilling these 

nanocomposites is expected to be feasible in future work to provide real-time simulations. 

Based on that, more comprehensive investigation will be provided. 

Due to the huge potential applications of nanocomposites in many industrial areas, 

future research trends may suggest that micromachining of metal and ceramic matrix 

nanocomposites should be addressed to provide comprehensive knowledge of advanced 

micromachining of nanocomposites and expand the applications of micromachining of 

nanocomposites. 

The state of the art of micromachining of nanocomposites has shown very limited 

applications and most of the researches have been in the prototyping stage. Therefore, the 

future work also focuses on commercial applications of micromachining of nanocomposites 

such as micromachining of micro-products made from nanocomposites (i.e., micro-gear, 

micro-electronic components) 
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