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ABSTRACT 
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Metal matrix nanocomposites (MMNC’s) are reported to have improved 

mechanical, thermal and electrical properties as compared to their respective base 

alloys. To date, these materials have been synthesized mainly by powder metallurgy 

or deformation processing. Solidification synthesis of MMNCs is a promising method, 

capable of economically producing large and complex shapes, however technical 

challenges including nanoparticle agglomeration, and poor interfacial strength have 

hindered the adoption of this technology. In-situ processing methods, in which the 

reinforcements are synthesized in liquid metals, typically via exothermic reactions offer 

the potential for improved dispersion and interfacial bonding between the 

reinforcement and the matrix, however this technique has been largely unexplored in 

the literature for metal matrix nanocomposites. The objectives of this research were to 

examine the feasibility of synthesizing nano or sub-micron size particulates in liquid 

aluminum using in-situ stir mixing and squeeze casting. An exothermic reaction was 

designed to synthesize Al2O3 and TiB2 from TiO2 particles and elemental boron in an 

aluminum melt. This dissertation investigates (i) the mechanism of aluminothermic and 

borothermic reduction of titanium oxide in the presence of molten aluminum and boron, 
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(ii) in situ synthesis of micron and nano sized particles via solidification processing, 

and (iii) the effects of processing variables on the physical, microstructural, mechanical 

and tribological properties of in-situ MMNCs. Microstructural examination and 

theoretical analysis indicates that the reaction to form TiB2 and Al2O3 proceeds 

through several complex non-equilibrium reactions. A multi-stage reaction model is 

proposed to describe the process by which the TiO2 surface is reduced to form Al2O3 

and TiB2. The effects of the powder particle size on the formation of reinforcing phases 

and microstructural evolution have been investigated and it was found that nanosized 

TiO2 powder promoted the formation of smaller size reinforcing phases. Furthermore, 

a solidification route has been designed to fabricate in-situ aluminum composites 

reinforced with submicron Al2O3 and TiB2 particulates. Experimental and theoretical 

analysis is presented that shows that the particle size and refining power of 

nanoparticles is controlled by the viscosity of the melt, rather than precipitation and 

growth. In addition, it was found that increasing the weight percentage of nanoparticles 

of TiO2 resulted in an increase in elastic modulus with good agreement to analytical 

models. Increasing the weight percentage of reinforcement up to 4 wt% resulted in an 

increase in the hardness greater than that predicted by the rule of mixtures or the Hall 

Petch relationship.  
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CHAPTER 1. INTRODUCTION 

1.1 Introduction to Metal Matrix Nanocomposites  
A composite material is the product of combining two or more dissimilar materials 

of separate phases to form another material having superior properties that are 

different from either parent materials. In automotive, aerospace and sports industries, 

the requirement for high performance materials to meet challenging demands keeps 

increasing. Because of their limited properties, it is more difficult for conventional 

materials, metals and alloys to keep up with such demands, which are often difficult to 

be engineered and designed [1-3].  

Based on reinforcing metals with suitable reinforcement, metal matrix composites 

(MMCs) provide alternative material with enhanced properties to satisfy the 

challenging demands. Composite materials can be more easily tailored to have 

specific properties such as being lightweight [4, 5], having high specific strengthes and 

stiffnesses [6], high wear resistance and low coefficient of friction [7], high hardness 

[8], high thermal conductivity [9], low coefficient of thermal expansion [10], high energy 

absorption [11], and a damping capacity [12] than conventional materials. Based on the 

processing techniques that have developed, metal matrix composites can be divided 

into three categories: particle reinforced MMCs, short fiber reinforced MMCs and 

continuous fiber reinforced MMCs. Continuous fiber MMCs can be more difficult and 

expensive to fabricate, unlike particle reinforced MMCs. Furthermore, composites 

containing aligned reinforcement will cause pronounced anisotropic properties in the 

reinforcement direction for the primary mechanical properties, such as strength and 

stiffness [13]. The MMCs containing non-aligned reinforcement may be used in 

applications where near-isotropic properties would be preferred. Particulate reinforced 

metal matrix composites are also attractive because they are easier and cheaper to 
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process using standard metallurgical processing techniques like casting, extrusion 

and rolling [14, 15]. The constitution of matrix as well as size [16], volume fraction [17] 

and morphology of reinforcement, as well as processing method [18] used determine 

the end properties of the MMC fabricated. In obtaining optimal properties in a MMC, 

stiffer and stronger reinforcements compatible with the metallic matrix should be used, 

distribution of reinforcement should be near uniform and most importantly, good 

matrix-reinforcement interfacial integrity should be achieved [19, 20]. 

Aluminum, which has been widely studied since the 1920s, is the most popular 

matrix for metal matrix composites. In the 1980s, transportation industries started to 

develop reinforced aluminum matrix composites. Aluminum and its alloys are quite 

attractive due to their low density, their capability to be strengthened by precipitation, 

their good corrosion resistance, their high thermal and electrical conductivity, and their 

high damping capacity. Aluminum-based metal matrix composites have attracted 

considerable attention as structural materials in the aerospace, automotive, and 

transportation industries because of their high specific modulus and strength, and 

superior fatigue and creep resistances [1]. 

Since MMC’s have been investigated by many researchers, improved properties 

are found when the size of the reinforcement is decreased [21]. It is expected that by 

scaling down the particle size in metal matrix composites to nanoparticles, some of 

the shortcomings of MMCs such as poor ductility, poor machinability and reduced 

fracture toughness may be overcome [22-26]. With recent advances in producing 

particles below 100 nm, it is expected that significant improvements can result from 

the incorporation of nanoparticles (NPs) in metals. A nano composite is a combination 

of two phases, at least one of which is in the order of nano size (less than 100 nm) in 
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at least one dimension. Accordingly, a metal matrix composite reinforced with nano 

sized ceramics can be termed as an MMNC’s, a metal matrix nano composite. 

Theoretically, if a homogenous distribution of nano-reinforcements is present within 

the matrix grains, significantly improved mechanical properties could result due to a 

combination of Orowan strengthening and grain refining [27-32].  

Although large amounts of work has been undertaken in the past decade to develop 

polymer matrix nanocomposites which many of such materials are already used in 

various applications, metallic composites containing nanoparticles can potentially offer 

many benefits over polymeric composites. The metallic matrix has inherent high 

temperature stability, high strength, high modulus, wear resistance and thermal and 

electrical conductivity. Aluminum nanocomposites have special weight reduction 

potentials which can be beneficial in the automotive and aerospace industries [33-35], 

primarily because these metal matrices have high strength and stiffness. They also 

have good thermal stability. However, a limited number of research has been reported 

to incorporate NPs homogenously in a metallic matrix.  There can be many factors 

that lead to the undesirable non-uniform distributions of nanoparticles in a metal 

matrix, such as agglomeration, pushing of nanoparticles by growing dendrites, poor 

bonding between particles and matrix, and their accumulation in the grain boundaries. 

These challenges in synthesis and processing need to be overcome to achieve the 

desired benefits of reinforcement with nanosize particles [1, 2, 36-40]. 

For producing MMC’s, there are two categories of production techniques: in-situ 

and ex-situ methods [15]. Ex-situ composites can be prepared simply by incorporating 

ceramic nanoparticles into alloys of aluminum via either powder metallurgy (PM) or 

liquid metallurgy. During recent decades, the ex-situ techniques, in which ceramic 

particles are added to molten metal and mixed prior to solidification, have been studied 
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extensively [17, 41-43]. However, due to many shortcomings including reaching a 

highly dispersed and non-agglomerated particles in matrix, none of these techniques 

satisfied the desired high yield strength which has been theoretically predicted.  

In the in-situ method, the ceramic particles are introduced to the molten matrix via 

an exothermic reaction between the constituent elements of composites [41, 44-56]. 

Numerous work has been reported on the formation of in-situ ceramic particles of 

micron sizes in Al-based composites via reactive hot pressing, combustion synthesis, 

direct metal oxidation, etc. Aluminum has a high reduction potential and will reduce 

many oxides such as TiO2, ZrO2, CuO, ZnO, etc. Thus, the in-situ formation of 

particles inside aluminum matrix is expected to be a promising approach to fabricate 

MMCs and it has received much attention [44, 46, 49, 51, 57].. By the in-situ formation 

of MMCs a more homogenous and dispersed microstructure might be able to be 

achieved. Because in-situ reactions result in both a clean interface of reinforcement 

and small particle sizes, it might be possible to attain better mechanical properties by 

this method. 

Conventional ceramic materials that are used to reinforce aluminum alloys include 

carbides, borides, nitrides, and oxides. Among these reinforcing particulates, titanium 

diboride (TiB2) has been an attractive candidate since it exhibits high melting point 

(2900°C), high modulus (565 GPa), high hardness (2500 HV), and good thermal 

stability [58-61]. Furthermore, TiB2 not only can form via an in-situ process, but it is 

also thermodynamically stable in liquid aluminum after formation. In addition, TiB2 has 

been predicted to have a good potential to be incorporated effectively [62, 63] as a 

nanosize reinforcement in aluminum matrix due to its low interfacial energy [64, 65] 

and high probability of being captured by metal front during solidification [66]. 
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Synthetically added TiB2 particles (through ex-situ synthesis) tend to settle in liquid 

aluminum due to agglomeration when the particles are not wetted by the liquid metal 

due to the surface contamination inherent to the particles synthesis process [67, 68]. 

Elimination of contamination from the particles surface results in low contact angles 

which leads to an appropriate spreading condition [66, 69, 70].  

In in-situ processing routes, the interface between matrix and reinforcement 

produced are relatively stable and impurity-free. In addition, the particles will be 

protected by the melt environment from oxidation. A strong bond between in-situ 

particles and the metal matrix is necessary to achieve an effective load transfer 

mechanism in the nanocomposites [6, 50]. Moreover, the in-situ formed reinforcing 

particles are finer in size and their distribution in the matrix is more uniform resulting 

in better mechanical properties than traditionally processed ex-situ composites. 

In-situ syntheses of TiB2 particles in a metallic matrix using an exothermic reaction 

by various techniques such as mixed salt reaction [71], mechanical alloying [72], liquid 

mixing [73], and self-propagating high temperature technique [74, 75] have been 

studied for decades. In most cases, processing of aluminum/ TiB2 composites involved 

a two-step process where elemental titanium and boron first reacts with aluminum to 

form Al3Ti and AlB2 intermetallic. Subsequent reactions will lead to dissolution of these 

metastable intermetallics and the formation of Al2O3 and TiB2, which are 

thermodynamically most stable products in these systems. These procedures, 

however, led to mixtures of TiB2 and some residual metastable byproducts. Al3Ti has 

a tetragonal platelet structure having sharp edges that can be deleterious to 

mechanical properties especially elongation to failure of the final composite if this 

metastable phase is present in the final microstructure [52, 76, 77]. Therefore, it is 
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important to find a pathway to avoid the harmful influences of Al3Ti formation on 

strength and ductility of the composite. Complete transformation to TiB2 is more 

favorable where the final thermodynamically stable products are not forming as a 

result of intermediate dissolution.  

Synthesizing surface clean nanoparticles using in-situ techniques will need to be 

accomplished using less expensive solidification routes which enable fabrication of 

large and complex components. By exploring a lower cost and more adaptable 

methods to manufacture metal matrix nanocomposites with improved ductility, such 

materials are expected to come into commercial use for a wide variety of applications, 

particularly where weight savings is essential. Understanding the mechanism of 

formation of in-situ ceramic particles inside liquid aluminum is crucial to designing 

system variables to achieve surface-clean nanoparticle reinforced composites. 

Acquiring the knowledge needed to achieve these goals is the primary motivation of 

this dissertation. 

1.2 Research Objectives 
The objectives for this work are to explore and evaluate the feasibility of fabricating 

aluminum based nano-composites using in-situ processing and assess the 

microstructural and mechanical properties of the synthesized composites.  

This work is carried out in 3 phases: 

i. In phase I, the mechanism of reaction between molten aluminum, TiO2, 

and elemental boron will be investigated. Microstructural and analytical 

investigations will be used to describe the competing mechanisms of 

aluminothermic and borothermic reduction of titanium oxide in the 

presence of molten aluminum and boron through complex non-
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equilibrium reactions. To investigate the reaction model, the effects of 

powder particle size on formation of reinforcing phases and 

microstructural evolution will to be investigated.  

ii. In the second phase, a solidification processing pathway to synthesize 

bulk aluminum matrix nanocomposites containing sub-micron particles 

will be explored. Samples with selected temperature, time, and mixing 

techniques, designed on the basis of theoretical and experimental 

findings, will be synthesized to study the effect of compositional and 

processing parameters on the in-situ formation of nanoparticles. Selected 

microstructural and mechanical properties will be characterized to 

establish the process- properties relationship based on the 

measurements.  
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CHAPTER 2.  LITERATURE REVIEW 

2.1 Introduction 
It is generally accepted that a reduction in the particle size aluminum of the 

reinforcements, as well as a strong mechanical at the interface without the presence 

of a chemical reaction product, would lead to an improvement in strength, ductility, 

machinability and fracture toughness [6, 37, 76, 78-81].  

In order to attain complete understanding of properties of MMNC’s, it is necessary 

to develop a relationship to predict mechanical properties of bulk composite as a 

function of its constituents and processing conditions. In recent years some modeling 

works has been done in this regard. In many cases, quantum mechanics models have 

been developed to predict properties. However, the effect of the particles on the on 

the micromechanics of deformation and strengthening mechanisms should be 

included to have better understanding.  

Hall and Petch investigated the deformation and ageing of mild steel, They 

proposed a model to predict the yield stress as a function of grain size. It has been 

demonstrated that one of the most dominant mechanisms in determining mechanical 

properties of various crystalline metals is grain refinement. The empirical relation 

which is used to describe the effect of grain size on yield strength is expressed by: 

𝜎𝜎𝑦𝑦 = 𝜎𝜎0 +
𝐾𝐾𝐻𝐻−𝑃𝑃
√𝐷𝐷

 

Addition of nanoparticles to a metallic matrix, results in a reduction in grain size of 

the MMNC compared to unreinforced matrix. This improvement due to addition of 

nanoparticles and the consequent grain refining is considered as grain refinement 

strengthening mechanism in MMNC’s. 
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When there is hard unshearable particles in the way of a dislocation movement 

route, the two segments of the dislocation line at either end of the precipitate attracts 

and a loop will form around the particle, which is the so-called Orowan strengthening. 

This constriction leads to the increase in dislocation density which eventually leads to 

high work hardening rate. It is well reported that contribution of Orowan mechanism in 

mechanical strength of MMC’s is negligible since reinforcements are coarse and 

interparticle spacing is large. But, theoretically in MMNC’s, where highly dispersed 

reinforcements with particle size less than 100 nm are incorporated, Orowan 

strengthening becomes important  

In most of the models developed mainly these three major mechanisms of 

strengthening of MMNC’s are proposed [39]. Individual mechanisms can contribute to 

the final yield strength either by arithmetic summation method, quadratic summation, 

or compound methods. Ferguson et al. proposed a model for dispersion strengthened 

alloys and MMNC’s with consideration to stress and energy. They identified different 

parameters which influence the grain size dependent behavior such as volume 

fraction, and particle size [82]. Kim at al [30] reviewed different models in predicting 

strengthening of nanoparticles in magnesium alloys and reported that all these models 

have either over estimation or under estimation errors. Additionally, in most of models 

proposed to date the effect of work-hardening from post processing is also ignored. It 

has been shown that the most dominant mechanism works in MMNC’s in most of 

synthesized nano composites is mainly governed by grain refinement.  

Formation of a fine equiaxed microstructure rather than a coarse dendritic structure 

in aluminum casting has several benefits. Grain refinement includes the controlling of 

nucleation and growth of the solid. It promotes the formation of a fine, equiaxed grain 
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structure and improves not only the quality of the cast part but also the efficiency of 

the casting process.  

Two methods are normally used to achieve a grain-refined microstructure: 

inoculation and dynamic nucleation. Dynamic nucleation is achieved by application of 

localized forced convection with rapid cooling[83]. It has been proposed that the 

convection causes dendrite arms to melt off from the mother dendrites, producing 

stable solid particles. These solid particles then act as secondary nuclei in the melt. 

The high density of these secondary nuclei results in a uniform and grain-refined 

microstructure. Several techniques to induce forced convection have been applied 

successfully using this grain refinement approach, including mechanical stirring, 

electromagnetic stirring, low-temperature casting, ultrasonic vibrations and gas 

bubbling. 

An alternative way is by inoculation, a specific control of nucleation such by addition 

of grain refiner to the melt. It is the most widely used method to promote the formation 

of a fine, uniform, equiaxed grain structure. For inoculation, refinement of 

microstructure is achieved by addition of appropriate inoculants. The addition of 

titanium in various forms into aluminum alloys has been found to have a strong effect 

in nucleating the primary aluminum phase. The most widely used inoculants are those 

based on Al–Ti–B alloys, commonly Al–3 wt.% Ti–1 wt.% B, and Al–5 wt.% Ti–1 wt.% 

B which are added to molten aluminum at a typical level of 1–10 parts per thousand by 

weight. Experimental studies show that minor addition of Ti results in significant grain 

refinement by particles of Al3Ti.  Adding Ti and B simultaneously, the grain refining is 

improved [84]. The mechanism of operation of these refiners had been extensively 

studied, yet the exact mechanism of grain refinement is not fully understood [85-87]. 
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To understand the development of the nucleation process it should be mentioned that 

there are two streams thoughts. These are the nucleant-particle theories and the 

phase-diagram theories. The two strands of theories are related to the two types of 

particles present in the Al-Ti-B master alloys; aluminides and borides. The particle 

theories, or boride theory, suggest that nucleation occurs on the borides in the master 

alloy (TiB2, AlB2, and (Ti,Al)B2), while the phase diagram theories explain grain 

refinement by nucleation on Al3Ti, the properitectic phase. 

Addition of heterogeneous nuclei for achieving grain refinement was first proposed 

by Cibula in 1949. In this grain refinement approach, numerous potent heterogeneous 

nuclei are dispersed in the melt, and a fraction of them become active nucleation sites 

during solidification and nucleate solid particles. In such a case, solid can form on a 

particle (by heterogeneous nucleation or by adsorption or wetting) at an undercooling 

smaller than that required for the onset of free growth, which constitutes the effective 

nucleation of a grain on the particle [88].  

Mohanty et al. [86] attempted  to evaluate the grain refinement potential of TiB2 by 

adding synthetic TiB2 crystals into a pure aluminum matrix. They have shown that 

borides are pushed to the grain boundaries and that no grain refinement is observed 

when there is no solute titanium present, which suggests that the lattice disintegrity 

between aluminum and the borides is large, indicating that borides are a poor 

nucleant. Although it was a successful method, there are still several drawbacks. 

Firstly, the synthetic TiB2 added to the melt is not comparable with the ones formed in 

the melt by addition of master alloys due to their large crystallite surface area which 

easily can absorb oxygen and nitrogen. Oxidizing and nitriding at high temperatures 

changes their surface properties. Secondly, the size of synthetic TiB2 crystals used in 
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their experiment is so large (5–10 μm). In general the average size of the TiB2 particles 

in Al–Ti–B master alloy is about 0.5 μm which is much smaller than that of the synthetic 

TiB2 crystal. Any change in the surface properties and morphologies of TiB2 may affect 

its nucleation behavior. 

The phase diagram theory suggests that grain refinement is caused by the peritectic 

reaction on the primary particles, Al3Ti. Sigworth and Kuhn’s [89] work shows that the 

prior existence of TiAl3 nuclei is the fundamental reason for the nucleation of grains 

because TiAl3 is found at the centers of aluminum grains, and there is a well-

established orientation relationship between the lattices of the two phases. Although 

all experimental evidence is in line with expectations from the Al-Ti phase diagram, 

but does not explain refinement. However, this theory can be rejected by the fact that 

how addition of boron can enhance of for grain refinement.  

Accordingly, neither the nucleant-particle theories nor the phase diagram theories 

are able to adequately explain why addition of boron to the Al-Ti system significantly 

improves grain refinement. Therefore, a combination of these theories or including 

other factors can explain the mechanism more easily [90]. 

2.2 In-situ Al/TiB2 composites 
Aluminum and its alloys have been chosen as the matrix materials. predominantly 

because of low melting point, low density, reasonably high thermal conductivity, heat 

treatment capability, processing flexibility and their low cost.  

As for the reinforcement, especially in recent years, TiB2 reinforced aluminum 

MMCs have been extensively investigated. TiB2 is chosen since it is particularly 

suitable as reinforcement for Al-based reactive sintered composites due to its high 

exothermic formation and thermodynamic stability in aluminum. The addition of TiB2 
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to an aluminum matrix can greatly improve stiffness, hardness, and wear resistance 

without apparent loss of thermal expansion coefficient and electrical and thermal 

conductivities and high damping capacity compared to other ceramic reinforcements. 

The in-situ TiB2 particulate reinforced aluminum composite can be obtained either by 

hot pressing and reaction sintering of powders (example is SHS1 or XD™ process2) 

[44, 91] [92] [44, 93] or by in melt processing[45, 94-101]. 

In early 90s, Kuruvilla proposed using the XD process to form submicron TiB2 

particles in the aluminum matrix. In this process, Ti, and B are elementally blended 

with Al and the resultant blend is compacted and heated to about 800°C. In the 

presence of liquid phase, the Ti and B reacts exothermically to produce submicron 

size TiB2 dispersoids , in the form of hexagonal and block-like crystals [91]. However, 

coarse Al3Ti was also precipitated. 

The melt processing approaches are also considered as either liquid-solid reaction 

(formation of TiB2 particles in an aluminum matrix by addition of elemental powders or 

alloys of Al-Ti and Al-B and then heat them up to provide molten aluminum in which Ti 

and B diffuse and precipitate out TiB2) or mixed salt reaction (mix salts of Ti and B are 

reacted in molten aluminum to form TiB2 particles). In the following sections these 

types of Al/TiB2 synthesis routes will be discussed in details.  

2.2.1 Mixed salt reaction or flux assisted synthesis (FAS) 

Aluminum TiB2 composite is fabricated by many researchers  using mixed salts of 

potassium hexafluorotitanate (K2TiF6) and potassium tetrafluororate (KBF4) in stirred 

aluminum melt [76, 102-106]. Donaldson et al. [107] examined the reaction between 

                                            
1 Self-propagating high temperature synthesis 
2 The XD process (patented by Martin Marietta) is an in-situ process which uses an exothermic  
reaction between two components to produce a third component.  
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salts and aluminum by XRD analysis of the slag, as well as the transfer efficiency of 

Ti and B from salt to aluminum by chemical analysis of the alloy. The formation 

sequence of TiB2 from the reaction with K2TiF6 and KBF4 is discussed in the view of 

the formation of a salt/metal emulsion and agglomeration by Fjellstedt [97]. The highly 

exothermic reaction with K2TiF6 will aid the formation of an emulsion, and Al3Ti form 

that in a subsequent step transforms into TiB2. It will also support high element transfer 

efficiency. The reaction with KBF4 causes less heat to produce and the tendency 

towards formation of an emulsion and thus lower transfer efficiency resulting in a 

sluggish formation of AlB2. Simultaneous additions of K2TiF6 and KBF4 increase the 

transfer efficiency but will cause the formation of stringer defects in a layered structure. 

The following reaction sequences are suggested: 

3𝐾𝐾2𝑇𝑇𝑇𝑇+13𝐴𝐴𝐴𝐴 ⟶ 3𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴3 + 3𝐾𝐾𝐾𝐾𝐾𝐾𝐹𝐹4 + 𝐾𝐾3𝐴𝐴𝐴𝐴𝐹𝐹6𝐹𝐹6 Reaction 2-1 
2𝐾𝐾𝐾𝐾𝐾𝐾4 + 3𝐴𝐴𝐴𝐴 → 𝐴𝐴𝐴𝐴𝐵𝐵2 + 2𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾4 Reaction 2-2 

𝐾𝐾2𝑇𝑇𝑇𝑇𝐹𝐹6 + 2𝐾𝐾𝐾𝐾𝐾𝐾4 +
22
3
𝐴𝐴𝐴𝐴 → 𝐴𝐴𝐴𝐴𝐵𝐵2 + 𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴3 + 3𝐾𝐾𝐾𝐾𝐾𝐾𝐹𝐹4 + 𝐾𝐾3𝐴𝐴𝐴𝐴𝐹𝐹6 Reaction 2-3 

𝐴𝐴𝐴𝐴𝐵𝐵2 + 𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴3  → 𝑇𝑇𝑇𝑇𝑇𝑇2 + 4𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵2 + 𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴3 Reaction 2-4 
 

In salt mix process, salt plays two roles; 1- acting as activator, decreasing activation 

energy and accelerating the reaction 2-reacting with Al2O3 to form dross. However, 

due to different chemical reaction involved, many unfavorable by-products are also 

obtained in all reported composites. In addition, Al3Ti is also unavoidable product of 

these mixtures. In the report released by Lakshmi[103], in which the effect of 

processing parameters on the size and wt% of TiB2 has been studied, it has been 

shown that TiB2 particles were formed after 10 min of reaction at 800 °C. Reaction 

between K2TiF6 and aluminum occurred at a higher rate than between KBF4 and Al. 

Thus at the early stage of reaction, TiB2 formation is less complete and intermediate 

TiAl3 forms. Excess TiAl3 nucleates as a thin layer on the surface of TiB2 particles. 

Alternatively Al3Ti may also nucleate as individual particles. Wang et al [108] studied 
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the process parameter in the same flux assisted system and reported that although 

TiB2 is the more thermodynamically stable phase compared with Al3Ti, it requires a 

longer time to produce this phase. In the presence of excess boron, in the form of 

AlB12, Al3Ti will decompose fast by reacting with AlB12 to form TiB2.  

The mechanism which was proposed for the salt mix reaction technique is 

described below.   

Initially, TiB2 forms at the interface between aluminum and the flux. The formation 

and dispersion of this kind of boride particle is strongly influenced by the alloy elements 

that modify the Al/TiB2 interfacial energy.  

Ti and B disperse into the aluminum melt when K2TiF6 and KBF4 are reduced by 

aluminum and subsequently react to form TiB2 particles. The titanium and boron which 

exists in the aluminum melt are either in the form of alloying elements or as compounds 

such as Al3Ti and AlB12. At higher temperatures and longer holding times, AlB12 and 

Al3Ti will decompose to form AlB2 and TiB2. The particle size and morphology are 

largely affected by processing condition, such as temperature, holding time and flux 

composition.  

The growth behavior changes in the presence of surface-active elements such as 

Mg, Li, and B which lower interfacial energy [109]. Alloying elements can also affect 

the stability of the precipitated phases during the fabrication of in-situ reinforced 

Al/TiB2 composites [47]. The results show that the addition of alloying elements, such 

as Mg, Cu, Zr, Ni, Fe, V, and La promotes the formation of Al3Ti and TiB2 phases. 

Particularly, Zr has the most pronounced effect among these alloying elements. In 

addition, alloying elements can hinder the formation of AlB2 to a small extent. The 

calculations also show that it is easier for magnesium to react with the salts to 
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form TiB2 than aluminum during the fabrication of in-situ reinforced Al/ TiB2 using the 

flux-assisted synthesis (FAS) technology. Magnesium, at high concentration, in Al-Ti-

B-Mg system, can decrease the excess free energy of TiB2, thus promoting TiB2 

phase formation. The same role can be attributed to other solutes as V and Zr [110]. 

The mechanical properties of the microcomposites using salt mix technique have 

been reported by many researchers [18, 76, 111-116]. Comparison between 

unreinforced and micron particle reinforced composites show that yield strength and 

tensile strength increase about 40-60% while there 20-30% increase in modulus. 

However, there is a significant reduction in ductility as a result of increase in TiB2 

particle content [117].  

2.2.2 Liquid Mixing Synthesis  

TiB2 particles form in the aluminum melt by addition of elemental powders or alloys 

of Al-Ti and Al-B.  So far, there is a limited amount of reports on synthesis of TiB2 

particulates prepared by in-situ reaction in molten aluminum. Wang et al. studied the 

possibility of formation of TiB2 particulates in molten aluminum by preparing a 

cylindrical pressed preform of elemental powders of Al, Ti, and B follow by molten 

aluminum infiltration. The molten aluminum flows and spreads over the surface of 

titanium powders. The reaction temperature, in this case, is lower than the melting 

point of titanium (1953 K). As soon as the molten aluminum spreads over the surface 

of titanium powders Al3Ti first forms [118].  

Other researchers added elemental powders at the stoichiometric ratio to the 

molten aluminum, it has been shown that that Al, TiB2 , and Al3Ti forms as the final 

products. Al3Ti has sharp edges which can deteriorate mechanical properties of the 

final composite in large extent [113].  
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Tee et al. showed that addition of copper into an aluminum matrix as an alloying 

element enhanced TiB2 nucleation. However, it also increase Al3Ti content which 

eventually caused 68% loss in ductility. They also experimentally verified that when 

the holding time is too short, TiB2 forms is low content and when the holding time 

exceed an optimum , Al3Ti flakes are coarsened [117].  

 

Figure 1 Optical micrographs of a dissolving TiAl3 particle obtained through video frames 
during hot stage observations [119]. 

Other stream of experiments in liquid mixing synthesis is the use of Al-Ti and Al-B 

master alloys [77, 90]. Emamy et al. [119] investigated the progress of in-situ formation 

of TiB2 by mixing molten master alloys of Al–Ti and Al–B using hot stage microscope 

(Figure 1). The formation of TiB2 particles occurred via diffusion of boron atoms 

through TiAl3 particles interface, thereby reacting to form fine TiB2 particles. The 

sequence of TiB2 formation can be written in the following steps; 1- The initial Al-Ti 

master alloy already has Al3Ti, therefore,  boron atoms move toward TiAl3 particles in 

a gap at the TiAl3 surface. 2- Boron atoms diffuse through TiB2 particles since it has 

very small atomic size and continues to grow. 3- Natural cracks on TiAl3, particles, 

which results in further fragmentation of TiAl3 helps further dissolution of TiAl3 

particles, increasing the rate of TiB2 and finally ring like TiB2 forms. In all up to date 

literature survey, the size of TiB2 forms is a factor of Al3Ti size which is not easy to be 

controlled. Another problem with current technology is the residual Al3Ti, which drops 

the final properties of the composites particularly ductility.  
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2.2.3 Self-propagating high temperature synthesis (SHS) 

In 1994 [120], SHS followed by high pressure consolidation, was performed to 

synthesis Al/ TiB2 and Al/ TiC composites. Al (44 µm), Ti (44 µm), B (1-5 μm) powders 

were mixed, ball milled, and then ignited by passing through electric current. Ma et al 

was the first group reported incorporating B and B2O3 into the Al- TiO2 systems to 

synthesize in-situ aluminum based composites by a reactive sintering process termed 

XD™ technique [44, 93, 121]. The interface obtained between TiB2 particles and 

aluminum matrix was clean and no consistent crystallographic orientation relationship 

was found. The composite also exhibit excellent elevated temperature strength up to 

300 °C [121]. In this process it was found that Ti displaced from the reaction between 

TiO2 and Al reacts with B to form TiB2 instead of aluminum forming Al3Ti. The size of 

in-situ formed Al2O3 and TiB2 is less than 2 μm; the Al3Ti block-like compound with 

the size of about 20 μm was also observed. When the amount of B/TiO2 reaches a 2/1  

ratio (stoichiometry ratio of B/Ti in TiB2), the Al3Ti in the composite can be completely 

eliminated. Their EDS analyses revealed that the white blocks observed in the 

microstructure are Al3Ti, while the black particulates are Al2O3. The TEM 

examinations also verified that the in-situ Al2O3 and TiB2 particulates had an equiaxed 

shape. It was reported that in liquid sintering process the formation of in-situ TiB2 is 

mainly controlled by the diffusion of Ti. Ma reported coarse Ti and B powders would 

reduce the amount of nucleated TiB2, increase the diffusion path of Ti and slow the 

diffusion of Ti in molten aluminum. Furthermore, the formation of a certain amount of 

Al3Ti cannot be avoided in coarse Ti-B powder system. 

The size and shape of the in-situ formed TiB2 particulates is mainly controlled by 

the diffusion of Ti atoms and therefore, the growth of the TiB2, whereas the formation 

or elimination of Al3Ti is determined by both the nucleation of TiB2 and the diffusion of 
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Ti atoms. When fine TiO2 powder is employed, fine and equiaxed TiB2 particulates 

are formed in-situ due to a short diffusion distance and rapid diffusion rate of Ti. 

However, in systems like TiO2-Al-B2O3, where both rates of B reduction and its 

dispersion into molten aluminum are relatively slow there is a little amount of the 

nucleation of the TiB2 in the system and also the formation of the Al3Ti cannot be 

avoided [93]. Hence, in order to promote the formation of fine TiB2 particulates and 

the elimination of brittle Al3Ti, it is necessary to increase the nucleation rate of TiB2 

and the diffusion rate of Ti atoms. However, the diffusion of Ti atoms may not be the 

main controlling step in the TiB2 formation. A rapid growth of TiB2 occurs immediately 

after the nucleation of such particulates. Therefore, the formation rate of the in-situ 

TiB2 particulate is controlled by both nucleation and growth of TiB2. 

2.3 In-situ Al/TiB2 nanocomposites 
In spite of the fact that there is an abundance of literature on the in-situ synthesis 

of TiB2 particles in various metal matrices, but there are only few studies which 

synthesized nano TiB2 particles. Most of conventional ceramic reinforcements have 

poor wetting with molten aluminum. In case of TiB2, the commercially available 

nanosized TiB2 particles are either expensive or not scalable or they have a surface 

carbon-coating inherent to the arc-plasma synthetic process, which promotes the 

oxidation reactions and hinders NP incorporation into the metal melt. These 

shortcomings make them not useful for reinforcing material in solidification processing 

of MMNCs by ex-situ techniques. However, during in-situ processing particles will be 

protected by melt environment from oxidation and a clean and impurity-free surface 

particles. TiB2 can be considered as an excellent candidate as reinforcement in 

aluminum matrix nanocomposites since it has a low interfacial energy and good 

wettability with aluminum. Additionally, it has a high hamakar constant compared to 
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other types of reinforcements [122-124] which enhance particle distribution after 

solidification within grains.  

 In-situ copper matrix composite with 3.5 wt.% TiB was prepared by reactions of 

B2O3, carbon and titanium in copper–titanium melt by rapid solidification. Other groups 

claimed formation of nano TiB2 particles in the copper matrix using synthetic method 

combining preliminary mechanical treatment of initial powder mixtures in high-energy 

ball milling, self-propagating exothermic reaction and subsequent mechanical 

treatment of the product [125]. The in-situ formed TiB2 particles with a size of about 50 

nm exhibited a homogenous dispersion in the copper matrix when prepared trough stir 

mixing followed by rapid solidifying. The mixture of B2O3 and carbon powder (as a 

reductive agent) at temperatures between 1400 and 1500 °C was introduced into the 

melts of Cu–Ti alloy by argon carrier gas while it was agitated by the propeller. TiB2 

was formed by the carbothermic reduction of B2O3 in the melt. The in-situ reaction was 

carried out for an appropriate length of time to ensure the complete conversion of 

titanium in the melt to TiB2 and the elimination of the CO2 [126]. Though in this paper 

the formation of nanoparticles has been only reported, the mechanism of nano particle 

formation has not been investigated. 

Guo [127] used another technique to incorporate nanoparticles in the copper matrix 

combining in-situ reaction with rapid solidification. The bulk TiB2 copper composites 

prepared by an in-situ reaction equipment for double-beam melts. The basic idea in 

this study was to combine in-situ reaction with rapid solidification techniques at the 

same time to prepare nano TiB2 particles dispersion strengthened copper alloy. The 

average size of nano TiB2 particles distributed in copper matrix synthesized in 
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optimized condition is about 20 nm. However, one of the main shortcomings of the 

current technique is that the equipment used cannot be easily scaled up into industry.  

An Al2O3- TiB2 ceramic matrix nanocomposite with a mean crystallite size of 35–

40 nm was  synthesized by the high energy ball milling at some optimum milling time 

on Al, B2O3 and TiO2 powders [128-131].  It is also reported the titanium diboride were 

synthesized after ball-milling for 10 to 15 hours and the reaction was found to be 

completed during the milling process. The powder obtained had a particle size of about 

50 nm after 100 hours milling and seemed to be relatively mono disperse [132]. 

Lee et al reported a three step process [71] in which TiB2 nanoparticles separately 

formed and washed in acid by in-situ reaction between salts with a high intensity 

ultrasonic field that restricts the particle growth and resulted in small TiB2 particles. 

Pellets of Al- TiB2 master nanocomposite (50 wt % in TiB2) was fabricated and used 

to prepare the final nanocomposite with desired composition. Scaling up of the 

proposed three-step process is expensive and not scalable.  

2.4 Ultrasonic Cavitation–Based Solidification Processing 
It is extremely difficult to disperse nano particles uniformly in liquid metals because 

of their poor wettability in metal matrix and their large surface-to volume ratio, which 

easily induces agglomeration and clustering [133]. 

Formation of small liquid-free zones or vapor cavities and bubbles in a liquid which 

is the result of forces acting upon the liquid is called cavitation. Cavitation usually 

happens when a liquid is exposed to rapid changes of pressure that cause the 

formation of cavities where the pressure is relatively low. When subjected to higher 

pressure, the voids implode and can generate an intense shockwave. 
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 Figure 2 Generation of an acoustic bubble 

Power ultrasound improves chemical and physical changes in a liquid through the 

generation and following destruction of cavitation bubbles. Like any sound wave 

ultrasound is propagated via a series of compression and rarefaction waves induced 

in the molecules of the medium through which it passes. At adequately high power the 

rarefaction cycle may exceed the attractive forces of the molecules of the liquid and 

cavitation bubbles will form. Such bubbles grow by a process known as rectified 

diffusion. During its expansion phase, a small amount of vapor from the medium enters 

the bubble and is not fully ejected during compression. The bubbles grow over a period 

of a few cycles to an equilibrium size for the particular frequency applied and when 

they collapse in subsequent compression cycles, it generates the energy for chemical 

and mechanical effects. Figure 2 and Figure 3 schematically illustrates the generation 

of an acoustic bubble and its collapse.  
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Figure 3 Schematic of cavitation bubble collapse 

Cavitation bubble collapse is a remarkable phenomenon induced throughout the 

liquid by the power of sound. In aqueous systems at an ultrasonic frequency of 20kHz 

each cavitation bubble collapse acts as a localised hotspot generating temperatures 

of about 4,000 K and pressures in excess of 1000 atmospheres. During the rarefaction 

phase, the surface of the cavities expands to many times that of stable bubbles, and 

the pressure inside the cavities decrease to almost zero. During the compression 

phase, cavities collapse, and suddenly the pressure goes up. Acoustic cavitation can 

produce dramatic effects on powders suspended in a liquid (Figure 4). Surface 

imperfections or trapped gas can act as the nuclei for cavitation bubble formation on 

the surface of a particle and subsequent surface collapse can then lead to shock 

waves which break the particle apart. Cavitation bubble collapse in the liquid phase 

near to a particle can force it into rapid motion. Under these circumstances the general 

dispersive effect is accompanied by interparticle collisions which can lead to erosion, 

surface cleaning and wetting of the particles and particle size reduction (Figure 4) 
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Figure 4 The cavitated bubble collapse and interparticle collisions lead to erosion, surface 
cleaning and wetting of the particles and particle size reduction 

The research of ultrasonic vibration for metallurgical applications can be dated back 

to 1878 which are used to refine microstructures, reduce segregation, and improve 

secondary phase formation and distribution [134]. Ultrasonic waves can be used for 

degassing to lessen the porosity in solidified metal. Mechanisms for grain refinement 

under ultrasonic vibrations have been proposed. They are related to large 

instantaneous pressure and temperature fluctuations in the melt. These pressure and 

temperature fluctuations are likely to induce heterogeneous nucleation in the melt. 

They are also likely to promote dendrite fragmentation by enhancing solute diffusion 

through acoustic streaming [135].  

To explain the action of ultrasonic in liquid metal and how cavitation plays a key role 

in dispersion of nanoparticles a simplified model was proposed by Li et al. [136]. Figure 

5 shows two nanoparticles captured inside melt and two forces- intrinsic van der Waals 

force and capillary force applied by the melt surface tension- hold two nanoparticles 

together in the melt. The magnitude of these forces is a function of the particle mean 

distance. In this model, maximum amount pressure required to separate the two 

nanoparticles are estimated by adding the maximum of each of these two forces. On 

the other hand, in order to compare the pressure generated by ultrasonic cavitation 

with the required minimum pressure for the nanoparticle (In their model, they 
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particularly studied the SiC nanoparticles with a radius of 30 nm in aluminum alloy 

A365), a simple model involving a single cavitation bubble in the aluminum melt was 

studied. The calculated value of the cavitation pressure can reach up to 6,000atms, 

which is significantly higher than the required minimum bubble pressure (650 atms) to 

separate the two SiC nanoparticles with a diameter of 30nm. Therefore, it is 

theoretically understood and experimentally validated that ultrasonic cavitation could 

result in the dispersion of nanoparticles. 

 

Figure 5 A simplified model for two SiC nanoparticles in aluminum alloy melt and the forces 
keep these particles together 

2.5 Summary and Conclusion  
Metal-matrix nanocomposites and the potential use of aluminum matrix particulate 

reinforced composites were reviewed. A brief introduction of different strengthening 

mechanisms in particulate reinforced matrix was discussed. Among them, it has been 

shown that Hall-Petch strengthening and Orowan strengthening can give outstanding 

enhancement to metal matrix nanocomposites.  

Solidification processing techniques to synthesize metal matrix composites were 

reviewed, In particular, the ex-situ and the in-situ metal matrix composite production 
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techniques were discussed. Although most of the work done on solidification 

processing of composites is using ex-situ route, this approach appears to have many 

shortcomings and difficulties due to the impurities such as oxides, carbides, and 

nitrides which exit on particles’ surface at elevated temperature as well as issues in 

dispersing particles uniformly in the matrix. These concerns are highlighted when the 

particle size is scaled down to nano size. High amount of surface area available in 

nano particles, increase the tendency to any oxidation reaction as well as more 

possibility of agglomeration. However, it is then theoretically shown that ultrasonic 

mixing can potentially help the deagglomeration of particles and enhance precipitation 

and nucleation of second phase in the molten metal. 

Although in-situ fabrication of ceramic reinforcements in a metal matrix have been 

studied extensively, a limited number of MMNCs have been synthesized using in-situ 

processing. Particles synthesized by in-situ processing usually have a clean and 

contamination free surface which is attributed to the fact that particles will be protected 

by melt environment from oxidation. Among many in-situ synthesized particles, 

titanium diboride has high stiffness and hardness (only less than diamond, BN and 

B4C) and has high mechanical strength 750 MPa. Additionally, in contrast to most 

ceramics, it is electrically and thermally conductive. TiB2 is a thermodynamically stable 

compound which has strong interfacial bonding and good wettability with aluminum 

which helps a more uniform distribution in the matrix. In addition, having high 

hardness, low density, high melting temperature, and high corrosion resistance makes 

aluminum containing TiB2 particles a potential candidate for high strength engineering 

composite.  
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Al/TiB2 Composites prepared by adding synthetic TiB2 crystals into pure aluminum 

matrix have not shown outstanding properties, while the intrinsic problems of ex-situ 

techniques as well as poor surface properties of particles due to oxidation and nitration 

lead to a disintegrate between particles and matrix. Secondly, the size of synthetic 

TiB2 crystals is generally large (5–10 μm).  

The most versatile and inexpensive solidification processing techniques for 

synthesis of Al/ TiB2  composites studied is mixed salt reaction processing. This 

approach results in large micron size and many unfavorable by-products which may 

limit their application. Yet, only a limited number of TiB2 reinforced nano or sub-micron 

composites have been synthesized to date. Additionally, there is limited number of 

available literature which studied the mechanism of the formation of boride particles in 

the melt. More knowledge on the reaction mechanism as well as identifying the 

parameters which control particle size and distribution, and eventually mechanical 

properties, is needed. 
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CHAPTER 3. REACTION MECHANISM [137] 
The purpose of this chapter is to study the reaction path in the Al- TiO2-B system 

during the transformation of titanium oxide into titanium diboride and alumina. 

Structural and compositional changes were examined to verify to investigate the 

reaction model in the system. Reaction products of the reduction are examined by 

interrupting the reaction at different reaction times of isothermal treatments. The 

reaction mechanisms involved in the transformation processes of the parent phases 

will be discussed. 

3.1 Thermodynamic Considerations 
In order to evaluate the feasibility of formation of TiB2 by in-situ reaction in Al-TiO2- 

B system, the temperature (T) dependence of Gibbs free energy change (ΔG0) of 

possible reactions is disscussed. 

The following set of reactions have been used to estimate the Gibbs free energy of 

formation of TiB2 [138]:  

𝑇𝑇𝑇𝑇(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 𝑂𝑂2(𝑔𝑔) = 𝑇𝑇𝑇𝑇𝑇𝑇2(𝑠𝑠)   ∆𝐺𝐺0 = −941 + 0.18𝑇𝑇 �
𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚

� 

𝑇𝑇𝑇𝑇(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 2𝐵𝐵(𝑠𝑠) = 𝑇𝑇𝑇𝑇𝑇𝑇2(𝑠𝑠) ∆𝐺𝐺0 = −333 + 0.024𝑇𝑇 �
𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚

� 

2𝐴𝐴𝐴𝐴(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 1.5𝑂𝑂2(𝑔𝑔) = 𝐴𝐴𝐴𝐴2𝑂𝑂3(𝑠𝑠)      ∆𝐺𝐺0 = −1687 + 0.33𝑇𝑇 �
𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚

� 

4𝐴𝐴𝐴𝐴(𝑠𝑠) + 3𝑇𝑇𝑇𝑇𝑇𝑇2 + 6𝐵𝐵 → 3𝑇𝑇𝑇𝑇𝑇𝑇2 + 2𝐴𝐴𝐴𝐴2𝑂𝑂3 
∆𝐺𝐺𝑟𝑟0 =  −1550 + 0.192𝑇𝑇 � 𝑘𝑘𝑘𝑘

𝑚𝑚𝑚𝑚𝑚𝑚
�   

T: 298- 623K 
 
 

4𝐴𝐴𝐴𝐴(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 4𝐴𝐴𝐴𝐴(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) ∆𝐺𝐺0 = −31.2 − 0.179𝑇𝑇 �
𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚

� 

4𝐴𝐴𝐴𝐴(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) + 3𝑇𝑇𝑇𝑇𝑇𝑇2 + 6𝐵𝐵 → 3𝑇𝑇𝑇𝑇𝑇𝑇2 + 2𝐴𝐴𝐴𝐴2𝑂𝑂3 
 

∆𝐺𝐺𝑟𝑟0 =  −1519 + 0.371𝑇𝑇 � 𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚

�   
T: 623- 2325K 

 
 

𝑇𝑇𝑇𝑇(𝑠𝑠) + 2𝐵𝐵(𝑠𝑠) = 𝑇𝑇𝑇𝑇𝑇𝑇2(𝑠𝑠) ∆𝐺𝐺0 = −333 + 0.024𝑇𝑇 �
𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚

� 
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𝑇𝑇𝑇𝑇(𝑠𝑠) = 𝑇𝑇𝑇𝑇(𝑙𝑙)   ∆𝐺𝐺0 = 15.48 − 0.008𝑇𝑇 �
𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚

� 

𝐵𝐵(𝑠𝑠) = 𝐵𝐵(𝑙𝑙) ∆𝐺𝐺0 = 50.2 − 0.022𝑇𝑇 �
𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚

� 
𝑇𝑇𝑇𝑇(𝑙𝑙) + 2𝐵𝐵(𝑙𝑙) = 𝑇𝑇𝑇𝑇𝑇𝑇2(𝑠𝑠)         

 ∆𝐺𝐺0 = −400.4 + 0.072𝑇𝑇 �
𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚

� 
 

 

Figure 6 The temperature dependence of Gibbs free energy change (ΔG0) 

Figure 6 shows the temperature dependence of Gibbs free energy change of TiB2. 

It can be clearly seen, the formation of TiB2 has a negative free energy, and therefore, 

the reaction is highly exothermic, which indicates that the reaction is possible since 

there is a large driving force.  

The formation of other phases in the Al-TiO2-B system, such as TiB, Al3Ti and AlB2, 

are also possible. The formation of these phases can be evaluated by comparison of 

Gibbs free energy of the formation of the following reactions (Figure 7). 
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[𝑇𝑇𝑇𝑇] + 2[𝐵𝐵] → 𝑇𝑇𝑇𝑇𝑇𝑇2 Reaction 3-1 
[𝑇𝑇𝑇𝑇] + [𝐵𝐵] → 𝑇𝑇𝑇𝑇𝑇𝑇 Reaction 3-2 

3𝐴𝐴𝐴𝐴(𝑙𝑙) + [𝑇𝑇𝑇𝑇] → 𝐴𝐴𝐴𝐴3𝑇𝑇𝑇𝑇 Reaction 3-3 
𝐴𝐴𝐴𝐴 + 2[𝐵𝐵] → 𝐴𝐴𝐴𝐴𝐴𝐴2 Reaction 3-4 

 
This plot clearly shows that the ΔG of formation of TiB2 is much more negative than 

those for other reactions in the temperature range between 200- 1400 °C. Therfore, if 

the boron content in the system is enough, TiB2 phase will more likely form, rather 

than to Al3Ti and AlB2 phases. 

 

 Figure 7 comparing free energy changes by temperature of different possible compounds in 
Al-Ti-B system 

3.2 Materials and Experimental 
Acros Organics™ Titanium(IV), 98+% Anatase powders with an particle diameter 

of >44 μm, Sigma- Aldrich Titanium(IV) oxide, anatase nanopowders with particle 

diameter <25 nm, boron powder, 94-96% amorphous, with an average particle 

diameter of <5 micron, and aluminum 99% powder with an particle diameter of >74μm, 
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were weighed according to the stoichiometry of reactants to form anticipated products 

based on Reaction 3-5, with 50% excess aluminum and then mixed through extensive 

acoustic mixing using a Resodyn-LabRAM Mixer to ensure homogeneity.  

4𝐴𝐴𝐴𝐴(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) + 3𝑇𝑇𝑇𝑇𝑇𝑇2 + 6𝐵𝐵 → 3𝑇𝑇𝑇𝑇𝑇𝑇2 + 2𝐴𝐴𝐴𝐴2𝑂𝑂3  Reaction 3-5 
 

To investigate the reaction path, the powder mixtures were heated at 10 °C/min to 

760 °C, 900 °C, 990 °C and 1200 °C and held isothermally for selected periods of time 

followed by rapid cooling as indicated in Table 1 using a DSC/TGA (TA Instrument 

Q600) with a TA data acquisition interface. About 20 mg of powder mixture of reactants 

were placed in an alumina sample crucible. Alumina powder was used as the 

reference standard. An argon atmosphere was created by stopping the air backfilling 

using hose in water technique which is shown schematically in Figure 8. Before each 

run, the system was flushed with argon to ensure a pure argon atmosphere in the 

chamber. In addition to isothermal heat treatments, parallel runs in the temperature 

range 25–1200 °C were performed. DSC traces were repeated to ensure 

reproducibility. DSC temperature calibrations were made using aluminum and silver 

(in argon) standards heated at 20 °C/min. 
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Figure 8 Schematic showing DSC/TGA chamber equipped with Controlled back filled 
atmosphere. 

The samples retrieved from the DSC were examined by X-ray diffraction (XRD) 

using a Scingtag XDS 2000 diffractometer, with a step size of 2 degrees/min in 20-70 

degree range, Scanning and Transmission Electron Microscopy, Energy Dispersive 

Spectroscopy for phase identification, microstructure observation, and qualitative 

elemental analysis, respectively. 

SEM was carried out using a Hitachi S-4800 Ultra High Resolution Cold Cathode 

Field Emission Scanning Electron Microscope (FE-SEM) at 10 kV. Elemental analysis 

of the retrieved powders was performed using Hitachi S-4800 FE-SEM equipped with 

a Bruker Quantax EDS system. The thin window silicon drift detector (SDD) allows the 

detection of elements boron and higher. Transmission electron microscopy (TEM) was 

carried out using a Hitachi H-9000NAR with attached Noran Energy Dispersive 

Spectrometer and a Gatan multi scan CCD camera controlled by an Emispec Vision 

2 data acquisition system. Powder samples were analyzed by TEM by first 

ultrasonically dispersing the nanoparticles in alcohol followed by depositing a drop of 

the dispersion onto a porous carbon film on 300 mesh copper grids using an 

eyedropper and subsequently allowing the alcohol to evaporate in air.  
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3.3 Results and Discussion 
The DSC traces of pure aluminum powder and the Al- TiO2-B powder mixture are 

shown superimposed on each other in Figure 9. An endothermic peak is observed in 

both specimens at 676 °C corresponding to the melting of the 99% pure aluminum. 

When the Al- TiO2-B mixture is heated to a higher temperature (>760 ℃), the 

aluminum completely melts and becomes a stable molten system, and then at 759 °C 

an endothermic valley followed by an exothermic peak which onsets at 940 °C are 

observed. The exothermic peak may be attributed to a temperature range in which 

some exothermic reactions might simultaneously take place. However, it is not 

possible to separate the contribution of reactions forming the broad exothermic peak. 

Table 1 List of products formed through heating and isothermal reactions in Al-TiO2-B 
system 
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Figure 9 DSC trace of mixture of a) Pure aluminum b) Al-TiO2-B heated in the temperature 
range of 200–1200°C. 

To further examine this reaction, isothermal heat treatments were conducted at 760, 

900, 990 and 1200 °C as described in Table 1 and the obtained products were analyzed 

by XRD, SEM, and TEM. The X-ray diffraction patterns and the list of products formed 

after thermal processing are shown in Figure 10 and Table 1, respectively. Prior to 

heating, only the diffraction peaks of TiO2 and aluminum exist. Boron was not detected 

by XRD; however, this product is interpreted to be present in an amorphous form. XRD 

results suggest that the reduction of TiO2 by boron and aluminum is more complicated 

than depicted by Reaction 3-5 which only shows the formation of the 

thermodynamically stable reinforcing phases. 
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Figure 10 X-ray diffraction patterns of the Al–B–TiO2 Mixture and samples after thermal 
processing (a)Unheated mixture (b) Heat treated at 760 °C and quenched (c) Heat treated at 

760 °C followed by 30 min isothermal and quenched (d) Heat treated at 900 °C and 
quenched (e) Heat treated at 900 °C followed by 5 min isothermal and quenched (f) Heat 
treated at 900 °C followed by 10 min isothermal and quenched (g) Heat treated at 900 °C 
followed by 30 min isothermal and quenched (h) Heat treated at 990 °C and quenched (i) 

Heat treated at 990 °C followed by 30 min isothermal and quenched (j) Heat treated at 1200 
°C and quenched. 
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The X-ray diffraction patterns obtained on products heat treated below the 

exothermic peak observed in the initial scan suggests that no significant reaction 

between Al, B, and TiO2 have occurred (Stage I in Figure 10). As the temperature 

increases, the aluminum melts and dissolves the boron, there are various reactions 

between the liquid metal and the oxide that contribute to the formation of intermediate 

products such as Al3Ti, Al2O3, and TiBO3, and titanium sub oxides as listed in Table 

1 and observed in Figure 10. As the temperature increases and the reactions proceed, 

intermediate phases disappear and TiB2 and Al2O3 are the ultimate products.  

The reduction of titanium dioxide to titanium diboride in molten aluminum in the 

presence of boron may be described by a number of well-defined reaction steps as 

proposed below: 

Stage I: Melting of Al, dissolution of B, and Phase change of TiO2 from 

Anatase to Rutile 

Figure 10a and Figure 10b represent the X-ray diffraction spectrum of the unheated 

mixture and the mixture heated to 760 °C. No significant compositional changes are 

observed. The DSC curve of the mixture also shows that up to 760 °C no irreversible 

transition occurred and it can be concluded that the endothermic peak is only caused 

by the heat absorption due to aluminum melting (Reaction 3-6) and no other reaction 

is taking place at this range.  

Al(s) Al(l) Reaction 3-6 
 

The X-ray diffraction pattern obtained from the samples held isothermally for longer 

periods of time at 760 °C (Figure 10c) show that the anatase TiO2 used to prepare the 
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mixtures begins to transform to rutile- TiO2 as described by reaction (3); however, 

some anatase remains in the specimen even after a 30 minute hold time.  

Anatase-TiO2(s) Rutile- TiO2(s) (3) 

 

Figure 11 The Secondary Electron Images of (a) and (b) TiO2 anatase particle, and (c and 
(d) TiO2 rutile particle. 

The Anatase–rutile phase transition is expected to occur within the temperature 

range of 400 – 1200 °C [139]. Figure 11 shows the TiO2 rutile surface morphology of 

micron size powders. The Rutile surface is highly hierarchical with clusters of fine 

nano-sized crystals which are aggregated in a spheroidal morphology and have a 

smooth surface texture. In the presence of liquid aluminum, the boron powder is 

expected to dissolve forming an Al- B solution. However, It has been reported that 

boron powders initially combine directly with liquid aluminum to form AlB12 and then 

AlB12 decompose to produce active [B] according to Reaction 3-7. While this 
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intermediate reaction was not directly observed in this study, it has been observed 

experimentally by others [39] [48]. 

B(s) +Al(l)  AlB12(s)  12[B]+Al(l) Reaction 3-7 
 

Stage II: Attack of Al and B on TiO2  

At 900 °C (Figure 10d), intermediate phases including TiBO3, Ti2O3, and minor 

quantities of Al2O3, and Al3Ti have begun to appear.  

The presence of minor amounts of Al2O3 and Al3Ti in the heat treated mixture 

suggests partial occurrence of Reaction 3-8.  

13 Al(l) + 3 TiO2(s)  2 Al2O3(s) + Al3Ti Reaction 3-8 
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Figure 12 TiO2 surface obtained from heat treatment at 900 °C with no dwell time (a) and (d) 
the secondary electron images and (b) aluminum elemental map (c) Oxygen elemental map. 
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Figure 13 (a) Transmission electron microscopy image and (b) Energy Dispersive spectrum 
of the nanowire structure on TiO2 surface obtained from heat treatment at 900 °C with no 

dwell time. 

Al2O3 is the most stable product in the Al- TiO2-B system both thermodynamically 

(free energy consideration) and kinetically (Higher activity of Al compared to B in Al-

B-Ti liquid system). Therefore, initially it is expected that the TiO2 surface is attacked 

by aluminum to form Al2O3 and Al3Ti through a displacement reaction. The rough TiO2 

rutile surface (Figure 11) consists of a number of grains that result in a very high surface 

area that results in fast reaction kinetics. SEM and TEM observations and elemental 

analysis confirm the formation of a shell on TiO2 particles at this stage (Figure 12 and 
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Figure 13). Surface features (Figure 12d) show coexistence of a spheroidal and rod-

like structure of several tens of nanometers. Energy dispersive analysis (Figure 13b) 

shows that the rod-like phase corresponds to Al3Ti and the nodular phase corresponds 

to the Al2O3 phase. During formation of this hybrid structure on the TiO2 surface, 

initially, TiO2 reacts with Al to form Al2O3, rejecting Ti into the surrounding liquid. As a 

result, the region between the newly formed Alumina nodules becomes highly 

enriched with [Ti]. Because of the high Ti concentration in the local liquid that 

surrounds the alumina nodules, the concentration of Ti reaches the point where it can 

react with aluminum to form Al3Ti. Thus the Al3Ti phase nucleates on the surface of 

the TiO2 particles in regions not covered by the Al2O3 nodules.  

Once the Al2O3 layer that forms is continuous, it prevents the liquid aluminum from 

coming into contact with the TiO2 underneath. However B, which diffuses interstitially, 

can react with the TiO2 underneath the Al2O3 shell since B diffusivity is higher in Al2O3 

than diffusivity of aluminum in Al2O3. The borothermic reduction reaction therefore 

proceeds in an intermediate layer between TiO2 and Al2O3 through solid diffusion. In 

borothermic reduction of TiO2, it is expected that initially boron reduces the TiO2 to 

titanium borate (TiBO3) and then excess boron will reduce TiBO3 to TiB2  [34]. The 

presence of TiBO3, the predominant titanium boron phase at this temperature, clearly 

indicates that the initial step of borothermic reduction has started on the TiO2 surface. 

TiO2 reacts with B to form TiBO3 and Ti2O3 as intermediates through a partial 

reduction according to Reaction 3-9.  

2[B] + 3 TiO2(s)  2 TiBO3(s) + Ti2O3  Reaction 3-9 
However, the XRD peak position at 48.77° corresponds to (Ti0.99Al0.01)2O3 phase. 

The slightly shifted 2θ position of Ti2O3 characteristic peaks, indicates the progressive 



42 
 

substitution of Ti by Al. This implies that Ti2O3 which forms at this stage is 

simultaneously attacked by the aluminum diffusing into the solid shell.  

This assumption is confirmed by SEM observations carried out on samples 

obtained on the powders which were lightly ground using a mortar and pestle. These 

various layers discussed so far are apparent in Figure 14 in the SEM micrograph in 

which the TiO2 core, the borothermic reduction products and the Al2O3 / Al3Ti shell 

can be observed. 

 

Figure 14 The secondary electron image obtained from the powders retrieved from 900 °C 
heat treatment and were lightly grounded using a mortar and pestle. 

Stage III: Creation of TiB2 and B2O3 by attack of B on TiBO3 and Ti2O3 

Figure 10(e), X-ray diffraction pattern of the mixture isothermally treated for 5 

minutes at 900 ºC, suggests that the borothermic reduction proceeds and the two 

phases formed by reaction (6) (TiBO3 and Ti2O3) are reacting with boron to form TiB2 

and B2O3 (Reaction 3-10 and Reaction 3-11).  

2TiBO3(s) + 6 [B]  2TiB2+ 2B2O3(s)  Reaction 3-10 
2 Ti2O3+ 6 [B]  2TiB2+ 3B2O3(s) Reaction 3-11 

  

This suggests that the third stage of the phase evolution is governed by a 

progressive borothermal reduction of TiO2 and TiBO3 in the presence of residual 
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boron. Detection of B2O3 is complicated using both by XRD and EDS in this system. 

The low atomic number of B2O3 relative to other species leads to a low or no signal in 

EDS. The major diffraction peaks of the B2O3 phase which is near 32°, 40°, and 43° 

2θ position are very close to the major peaks of other species, thereby making 

detection difficult. However, Figure 15, which is an enlargement of a high resolution X-

ray diffraction spectra of selected ranges, shows the characteristic peaks of B2O3 in 

more detail.  

 

Figure 15 High resolution XRD spectra showing B2O3 characteristic peaks at a) 43.12° b) 
40.41° indexed with the 06-0634 JCPDS. 

In the present system there are two possible routes toward the consumption of 

TiBO3. TiBO3 can be attacked both by boron or aluminum. The Gibbs free energy data 

of TiBO3 appears to be unknown and so no accurate quantitative thermodynamic 

predictions can be made. However, based on our XRD results, Al2O3 and Al3Ti 

content does not show a significant change compared to stage II while TiBO3 and 

Ti2O3 is decreasing to a considerable extent. This appears to rule out the potential 

reduction of TiBO3 by aluminum through Reaction 3-12. 

2 Al(l) + TiBO3(s)  Al2O3(s) + [Ti] + [B] Reaction 3-12 
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Although partial reduction of TiO2 by aluminum was started at Stage II, the XRD 

analysis shows that the formation of the TiB2 is associated with a decrease in the 

intensity of the main TiBO3 and Ti2O3 peaks but little change to the Al2O3 and Al3Ti 

peaks. This means that further aluminothermic reduction was not extensive at this 

stage. As stated previously, this can be attributed to the difference in diffusion rate of 

[B] and [Al] in the thin Al2O3 solid shell which formed on TiO2 surface. Longer reaction 

times show increased production of TiB2 through reactions (7) and (8), which also 

result in large volume changes. Initially, when the thin shell of Al2O3 forms on the 

surface of TiO2 particles (At 900C- 0 Min), the 58% change in volume due to reaction 

3 can be compensated by its free surface movement into the molten metal. When 

boron diffuses into the Al2O3 shell, various reactions will take place. Initially formation 

of TiBO3 and Ti2O3 cause a 56% volume change. However, further borothermic 

reduction of TiO2 causes a 156% change. While this can occur by an internal reaction 

underneath the Al2O3 / Al3Ti shell, the large difference in densities between reactants 

and products makes it likely that cracking will occur in the shell, thereby allowing direct 

contact between the melt and TiO2 which will act to increase the reaction rate. This 

causes the onset of Stage IV in which molten aluminum directly reacts with TiO2 to 

form Al2O3. 

Figure 16 shows the backscattered and secondary electron image of the cracked 

surface of the film encapsulated the TiO2 particles. The inner surface exposed due to 

fracture of the shell, which seems darker in backscattered image, is TiO2, which is 

also confirmed by X-ray analysis. The lighter features are likely to be TiBO3 and Al2O3. 

Al3Ti nano rods sitting on a shell of alumina spheroidal features are also detectable in 

this image. Figure 17a shows the overgrown feather-like product of the borothermic 
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reduction. In Figure 17b which shows the PDBSE image of the surface, the low mass 

phase, here TiB2, can be observed. 

 

Figure 16 (a) Secondary electron image and (b) Backscattered electron (BSE) image of 
crack on Al2O3/Al3Ti shell obtained from the powders retrieved from 900 °C for 5 minute 

heat treatment 

 

Figure 17 (a) Secondary electron image of TiB2 overgrown nodule on TiO2 surface (b) 
Backscattered electron (BSE) image obtained from the powders retrieved from 900 °C after 

5 minute heat treatment. 

 

Stage IV: Attack of remaining TiO2 and B2O3 by aluminum - formation of 

titanium suboxides  

When [B] is depleted in the melt, aluminothermic reduction of the remaining TiO2 

proceeds by formation of Magne´li phases. This stage of the reduction of titanium 

dioxide is characterized by the formation of a mixture that mainly consists of the 

various types of titanium suboxides, TinO2n-1 (Ti3O5, Ti2O3, and Ti4O7). In the last 
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stages of conversion from TiO2 to Al2O3, Ti oxides must increase in Ti:O ratio due to 

reduction by aluminum ( Reaction 3-13 to Reaction 3-15). 

2 Al(l) + 5 TiO2(s)  Al2O3(s) + Ti4O7(s) + [Ti]  Reaction 3-13 
14 Al(l) + 6 Ti4O7 (s)  7 Al2O3(s) + 7 Ti2O3(s) + 10 

[Ti] 
Reaction 3-14 

2Al(l) + Ti2O3 Al2O3(s) + 2[Ti] Reaction 3-15 
  

 

Figure 18 (a) and (b) The secondary electron image (c) and (d) Bright Field Transmission 
electron microcopy image of particles obtained from the powders retrieved from 900 °C after 

10 minute heat treatment. 

Cracks and voids initiated from the external surface of the Al2O3 and TiBO3 layers 

and propagated through the shell, facilitate the aluminothermic conversion of TiO2 to 

Al2O3 by increasing the number of sites for reaction. In Ti-O system, Ti2O3 is the most 

stable product of the TiO2 reduction. However, the reduction of TiO2 by aluminum 

during this stage proceeds through the formation of intermediate compounds. Several 
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intermediate suboxides are formed including Ti4O7, Ti3O5 before finally forming Ti2O3. 

The peak positions for these phases are at 40.22° and 48.77° shifts to 40.19° and 

48.70°, respectively. This shows that the mixed aluminum titanium oxide which had 

been formed at Stage II is no longer stable and Ti2O3 is the stable phase of this stage. 

These reactions continue until all of the remaining TiO2 is consumed. The stability of 

Ti2O3 can be explained by its corundum structure. Therefore, Reaction 3-15 will not 

proceed to completion and some equilibrium Ti2O3 may remain in the system. 

Reduction to TiO was not observed, an effect which can be explained by the relatively 

low thermodynamic stability of this phase. The sudden increase of Al2O3 can be 

explained by Reaction 3-13 to Reaction 3-16 at this stage. 

4Al(l) + 2B2O3(s)  2Al2O3(s) + 4[B] Reaction 3-16 
 

Gradual decrease in the TiBO3 / TiB2 XRD intensity ratio also suggests that borate 

and oxide continues to react with boron through reactions 8 and 9 and forming more 

TiB2. Figure 18 shows a secondary electron image showing how these overgrown 

nodules of TiB2 continue to grow. It can be expected that when these nodules grow 

and reach a certain size, they break off of the surface. Figure 18 shows a TEM image 

of these nodules at this stage. The B2O3 phase is also reduced by liquid aluminum, 

leading to the rejection of active [B] into the melt.  

Stage V: Complete exhaustion of intermediates, dissolution of Al3Ti, and 

precipitation of TiB2 

The X-ray diffractogram of to the reaction products heat treated at 1200ºC indicates 

that TiB2 and Al2O3 are the major phases remaining. In presence of excess boron, as 
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a result of Reaction 3-17, remaining Al3Ti transforms to TiB2, which is a more 

thermodynamically stable intermetallic.  

TiAl3+2[B]  TiB2 + 3Al  Reaction 3-17 
 

The active B diffused to the surfaces of remaining Al3Ti and reacted with Al3Ti to 

form TiB2 starting at stage II, reduce all the Al3Ti at this stage. Therefore, Reaction 3-17 

goes to completion and the Al3Ti rods are reduced entirely. Any remaining [Ti] and [B] 

dissolved in aluminum will also precipitate to forms TiB2 by Reaction 3-18.  

[Ti] + 2[B]  TiB2(ppt) Reaction 3-18 
  

 

Figure 19 (a) Secondary electron image and (a) Backscattered electron (BSE) image of 
different phases obtained from the powders retrieved from 1200 °C heat treatment. 

No Al3Ti is observed in the final products. The complete reduction of TiO2 and 

dissolution of Al3Ti allows only Al2O3 and TiB2 to exist as final reaction products. Figure 

19 shows the secondary and BSE image and Figure 20 shows the elemental map of 

the mixture of micron size TiO2, aluminum, and boron heated to 1200 ºC until reaction 

complete. The X-ray maps show that the resultant particulates mainly contained Al 

and O or Ti and B suggesting Al2O3 and TiB2. 
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Figure 20 Secondary electron image and the elemental map (Oxygen, Boron, and Titanium) 
of the mixture of micron size TiO2, aluminum, and boron heated up to 1200 ºC 

The reactions thought to be involved in creating this conversion are shown 

schematically in Figure 21. Based on this five stage reaction model it is possible to 

speculate on how to decrease the size of particles that form. The proposed reaction 

model suggests that the size of particles ultimately formed by the reduction process is 

likely related to the reaction sites on the TiO2 surface. These observations suggest 

that using nanosized TiO2 powder as precursor is a viable process capable of resulting 

in the synthesis of nano Al2O3 and TiB2 as reinforcement particles inside an aluminum 

matrix. 

To confirm the above hypothesis, the same mixture using a nano size TiO2 

precursor was studied. Figure 22 shows the TEM image of the particles obtained 

where nano-sized TiO2 powder was used. The Al2O3 and TiB2 particles obtained here 

are greatly reduced in size in comparison to Figure 20 where TiO2 particles were in 

range of 10-50 microns. 



50 
 

 

Figure 21 Schematic representation of the proposed five stage model conversion of TiO2 to 
TiB2 and Al2O3 in liquid aluminum; Stage I- Melting of Al, dissolution of B, and Phase change 

of TiO2 from Anatase to Rutile, Stage II- Attack of Al and B on TiO2 and formation of Al2O3 
shell on TiO2 surface, Stage III, Creation of TiB2 by attack of B on TiBO3 and Ti2O3 Stage IV- 
Aluminothermic reduction of remaining TiO2 and formation of titanium suboxides, and stage 

V- Complete exhaustion of intermediates, dissolution of Al3Ti, and precipitation of TiB2 

 

The X-ray diffraction analysis of products formed using fine TiO2 revealed the same 
main phases of the coarse products— Al2O3 and TiB2 . However, it was observed 
that, when finer TiO2 was used as starting material, the complete conversion takes 
place at lower temperatures. This may be attributed to the fact that smaller particles 
of TiO2 powder promotes the reactions between Al and TiO2 by increasing reaction 
sites.  

 

Figure 22 (a) Bright Field (b) Dark Field Transmission electron microcopy image of the 
particles obtained from the heat treatment of the mixture of nano size TiO2, aluminum, and 

boron heated up to 1200 ºC. 

Figure 23 and Figure 24 show the HRTEM images of the product of the mixture of 

nano sized TiO2, aluminum, and boron mixture after heated up to 1200 ºC. The lattice 

fringes are clearly observed in the HRTEM image, which can be matched with Alumina 
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and TiB2 particles. The particle size varies in two ranges, 5-25 nm and 40-55 nm, which 

after matching with lattice parameters, belong to Al2O3 and TiB2, respectively. The d-

spacing of 0.174 nm (Figure 23) corresponds to the lattice fringe of {024} of Alumina. 

The d-spacing of 0.262 illustrated in Figure 24, corresponds to the {100} and {003} 

fringe of TiB2. These results are in good agreement with the proposed reaction model 

which correlate the reaction site size to the final reinforcing intermetallics.  

 

Figure 23 (a) Bright Field Transmission electron microcopy image and (b) and (c) HRTEM 
images the particles obtained from the heat treatment of the mixture of nano size TiO2-Al-B 

heated up to 1200 °C indexed by Al2O3 75-1862 JCPDS card . 

 

Figure 24 (a) Bright Field Transmission electron microcopy image and (b) and (c) HRTEM 
images the particles obtained from the heat treatment of the mixture of nano size TiO2-Al-B 

heated up to 1200 °C indexed by TiB2 35-741JCPDS card . 

3.4 Summary 
The reduction of TiO2 by molten aluminum in the presence of amorphous boron has 

been investigated and shown to be a multi-stage process. Initially a solid shell of Al2O3 

/ Al3Ti forms on the surface of the TiO2 particles. This is followed by borothermic 
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reduction of the TiO2 by the diffusion of elemental B through the Al2O3 / Al3Ti shell, thus 

forming TiBO3 and Ti2O3 at the shell/ TiO2 interface. Further borothermic reduction 

leads to a significant volume change that eventually causes the Al2O3 shell to crack, 

allowing aluminum to make contact with the intermediate layers and fresh unreacted 

TiO2. When the melt is depleted of boron, the aluminum starts to reduce the remaining 

TiO2 to form Al2O3. The cracks in the outside shell facilitate aluminothermic reduction 

of the TiO2 core. Finally, TiB2 and Al2O3 particles form as a result of gradual TiO2 

exhaustion. According to the reaction sequence discussed and observed 

microstructural outcomes, TiB2 and Al2O3 reinforcement particles may be formed in Al-

B melts through the reaction of TiO2 particles, where the size of the in-situ formed 

particles may be controlled by the size of the TiO2 particles. In view of the findings it 

was theoretically predicted and experimentally demonstrated that TiB2 and Al2O3 

particles with sizes ranging from 5-55 nm can be formed in-situ from nanosized TiO2 

(<25 nm) precursors, while TiB2 and Al2O3 particles with sizes ranging from 20-45 µm 

can be formed in-situ from microsized TiO2 particles (>44 μm) . 
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CHAPTER 4. PROCESSING/STRUCTURE RELATIONSHIPS 

4.1 Introduction 
Researchers have explored in-situ reinforcement fabrication methods using various 

techniques such as mixed salt reaction, liquid mixing and XD technique, but little results 

have been published on in-situ fabrication of nanocomposites in aluminum based alloys 

using casting, which is the most cost effective and scalable manufacturing technique 

in fabricating metal matrix composites.  

It has been discussed in chapter 3 that the interaction between TiO2 and boron or 

aluminum is governed by surface reaction.  Therefore, to control the size of in-situ 

formed intermetallics, the reaction site can be considered as a controlling parameter. 

Additionally, it is theoretically proven that ultrasonic based mixing helps 

deagglomeration of small particles and enhance precipitation and nucleation of second 

phase in the molten metal. Combined with the in-situ processing, it can be considered 

an approach to synthesize nanoparticles dispersed in the matrix.  

The objective of the following chapter is to examine the microstructure and 

mechanical properties of composites synthesized by a combination of ultrasonic 

processing with aluminoborothermic reduction of titanium oxide in presence of boron 

in molten aluminum. After the addition of the powder mixture to the molten metal by 

mechanical stirring combined with ultrasonic cavitation, the aluminum and boron reacts 

with the TiO2 through Reaction 3-5. 

4.2 Materials and Experimental 

4.2.1 Materials 

Acros Organics™ Titanium(IV), 98+% anatase powders with an average particle 

diameter of  25 μm (>44 μm) and Sigma- Aldrich Titanium(IV) oxide, anatase 
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nanopowders with particle diameter <25 nm, boron powder, 94-96% amorphous, with 

an average particle diameter of <5 micron, and Aluminium,99%,powder, 200 mesh, 

were used in the preparation of precursors of various samples. Commercially pure 

aluminum was used in ingot form.  

4.2.2 Composite fabrication 

In this work, conventional stir mixing and ultrasonic assisted reactive stir mixing is 

used to synthesize Al/ (Al2O3 - TiB2) hybrid composites. Aluminum ingot were placed 

in a coated graphite crucible (ID 89 mm, Depth 127 mm) and heated using an electrical 

furnace and held at various temperatures (700, 850, and 1000 °C). A Zircwash coating 

was applied inside the crucible to avoid contamination. Since the melt is so reactive 

with silicon present in the clay graphite crucible, it is necessary to make sure that 

enough Zr coating covers both the impeller and the crucible. In the initial trials, the SEM 

and EDS image shows the presence of considerable amount of Si in the composite. 

The EDS / Line scan of the casted composite in the clay crucible without enough 

coating is shown in Figure 25. 

 

Figure 25 Line scan X-Ray spectroscopy of the Al/ Al2O3-TiB2 composite casted in the 
uncoated clay crucible 
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Once the melt reached the desired constant temperature, the measured quantities 

of TiO2 nanoparticles and boron were mixed using a Resodyne acoustic mixer set to 

70% power for 7 minutes. 

Since using TiO2 and boron in powder form to synthesis TiB2 by in melt reaction has 

not been done in previous literature, in order to identify the proper technique to add the 

mix to the melt, several trial and error experiments were performed. Different ways of 

addition of powders to molten aluminum were tried, and parameters which influence 

the reaction were identified. Both use of powders or loose packets of powders were 

not satisfactory in the synthesis process and mostly the powders sink or float to the 

surface and bottom of the crucible during addition and mixing of powders.  

As an alternative way, the mixed powders were mixed with pure aluminum powder 

in 42:58 ratio and pressed into pellets using a 25 mm ID trapezoidal split sleeve 

pressing die set at a pressure of 2000 psi to form cylindrical pellets (Figure 26). The 

Al/ (Al2O3 -TiB2) hybrid composite containing the TiB2 and Al2O3 was synthesized by 

adjusting the compositional ratio of TiO2, B, and Al. The pellets containing reactant 

particles mixture were preheated in a resistance furnace at 200 oC for 60 minutes. 

These pellets were used to introduce the reactants to the melt.  

 

Figure 26 The mixed powders pressed into pellets using formed cylindrical pellets 

The melt was stirred for various lengths of time (5, 10, and 15 minutes) using a boron 

nitride coated steel MixedFLOW Impeller (45◦ pitched blade, Fawcett Co.) rotating at a 
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speed of approximately 500 rpm, while the pellets of reactants and wetting agent were 

dipped into the melt at a rate of 2 g/min. The impeller was placed dynamically in the 

center of the melt and its position was changed manually to push the pellets inside the 

melt. For a series of samples, a high-energy ultrasonic horn with a diameter of 20 mm 

and a frequency of 20 kHz was simultaneously placed just above the composite slurry 

to avoid melt temperature drop. Then, the surface oxides were skimmed thoroughly 

prior to pouring the molten composite into the mold, and the composite was squeeze 

cast into a mold. An electric resistance furnace was used to preheat the rectangular 

squeeze casting mold to approximately 330 °C. Once the mold reached the preheat 

temperature it was removed from the furnace and placed in a hydraulic press. After the 

melt is poured into the mold cavity, the punch is dropped into the cavity and a pressure 

of approximately 5000 psi is applied to the punch to squeeze cast the composite ingot. 

The experimental set up is shown in Figure 27. 

 

Figure 27 The experimental set up for a) in-situ reactive stir mixing process b) Ultrasonic 
assited in-situ reactive stir mixing process c) Squeez Casting 
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Several factors can influence the final properties during in-situ processing of 

Al/(Al2O3-TiB2) composites include particle loading, melt temperature, mixing time, and 

mixing technique. Any change in these parameters can results is change in particle 

size and distribution, α- aluminum grain size, final mechanical properties including 

tensile, and wear properties. In this study, selected number of processing factors were 

designated to evaluate the optimal processing conditions for Al/(Al2O3-TiB2) reinforced 

composites.  

To study the effect of processing variables, a coded level were allocated to the 

numeric factors for liquid mixing route as shown in Table 2. Four parameters were 

selected while three of them (P1-3) were studied in interaction mode and the mixing 

technique were studied independently. The experiments designed to study various 

parameters is listed in Table 3. In total 20 specimen will be obtained through castings. 

The range each independent factor selected is based upon findings in preliminary 

results which has been discussed in chapter 3. To study the effect of particle content, 

another set of samples as shown in Table 2 was prepared. Five level of loading has 

been studied (0, 0.1, 2, 4, 8 wt.%).   

Table 2 Coded levels of liquid mixing independent processing variables 

Code Parameter Name 1 2 3 4 5 
P1 size 2TiO 40 µm 25 nm - - - 

P2 Reaction temperature (°C) 700 850 1000 - - 

P3 Mixing time (min) 5 10 15 - - 

P-in1 Mixing Technique ST* ST/US** - - - 

P-in2 NPs loading (wt.%) 0 0.1 2 4 8 
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Table 3 Experiment Design- Liquid Mixing 

RUN# TiO2 
Size 

Reaction 
temperature 

Mixing 
time 

Mixing NPs 
Loading 

1 - 1 - 2 1 
2 - 2 - 2 1 
3 - 3 - 2 1 
4 1 1 1 2 4 
5 1 1 3 2 4 
6 1 3 1 2 4 
7 1 3 3 2 4 
8 2 1 1 2 4 
9 2 1 2 2 4 

10 2 1 3 2 4 
11 2 2 1 2 4 
12 2 2 2 2 4 
13 2 2 3 2 4 
14 2 3 1 2 4 
15 2 3 2 2 4 
16 2 3 3 2 4 
17 2 2 2 1 4 
18 2 2 2 2 2 
19 2 2 2 2 3 
20 2 2 2 2 5 

 

4.2.3 Characterization of Composites  

Specimens were prepared from the castings to study microstructure and mechanical 

properties. Specimens for microstructural studies and analytical evaluations were cut 

from the castings as shown in Figure 28 using a low-speed diamond saw. 

The specimens were polished using standard metallographic technique. Specimens 

were hot mounted (about 150 °C) using a mounting press in a non-conductive phenolic 

resin. Mounted specimens were ground with rotating discs of abrasive paper (silicon 

carbide paper). The grinding procedure involves several stages, using a finer paper 

(higher number) each time. Each grinding stage removes the scratches from the 
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previous coarser paper. This can be easily achieved by orienting the specimen 

perpendicular to the previous scratches. Between each grade, the specimen was 

washed thoroughly with soapy water to prevent contamination from coarser grit present 

on the specimen surface. The sand papers used for grinding samples were 180, 240, 

320, 400, 600, 800, and 1200 grit size. Polishing discs were used to achieve final 

polished surface finish prior to etching. Soft cloth impregnated with 1 and 0.5 μm 

abrasive colloidal silicon carbide particles were used in this study to produce a smooth 

surface.  

  

Figure 28 drawing of specimens which have been cut and mounted for microstructural 
analysis 

The specimens were etched using electro etching in a HBF4 solution (1.8 wt % in 

H2O at a constant potential of 22 V for 50 s) to reveal the microstructure of the metal 

through selective chemical attack. The rate of etching is affected by crystallographic 

orientation, so contrast is formed between grains, for example in pure metals. The 

reagent will also preferentially etch high energy sites such as grain boundaries. This 

results in a surface relief that enables different crystal orientations, grain boundaries, 

phases and precipitates to be easily distinguished. Samples were finally cleaned in an 

ultrasonic bath. 

Grain size and microstructure were photographed using a polarized light 

micrographs of optical microscope using a Zeiss Axio Scope. Representative 
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micrographs of the composites were obtained by a Nikon Eclipse TS100 Optical 

Microscope coupled with Clemex™ digital acquisition and image analysis system. 

HRSEM was carried out on both etched and fracture surface of specimens using a 

Hitachi S-4800 Ultra High Resolution Cold Cathode Field Emission Scanning Electron 

Microscope (FE-SEM) at 10 kV. Elemental analysis was performed using Hitachi S-

4800 FE-SEM equipped with a Bruker Quantax EDS system. The thin window silicon 

drift detector (SDD) allows the detection of elements boron and higher.  

A FEI™ TEM200 Focused Ion Beam (FIB) with Gallium ion source was employed 

to obtain TEM thin foils. TEM was done by a Phillips CM-200 operating at 200 kV. 

Three different areas of the samples were used to calculate the number density of the 

precipitates in unit volume. STEM characterization was carried out using a 

FEI/Tecnai™ F30 300 kV TEM equipped with a Fischione™ high angle annular dark 

field (HAADF) detector and an X-ray Energy Dispersive Spectroscopy (XEDS) 

detector. 

For structural analysis, specimens were examined by X-ray diffraction (XRD) using 

a Scingtag XDS 2000 diffractometer, with a step size of 2 degrees/min in 20-70 degree 

range. 

The Dynamic light scattering (DLS) method was used to identify sizes and 

distribution of nanopowders in aqueous suspensions. A suspension of nanoparticles in 

distilled water were prepared by addition of 5 mM sodium citrate stabilizer using an 

ultrasonic bath (power 240 W). The sizes of the particles in aqueous suspensions were 

measured by dynamic light scattering (DLS) on a Brookhaven ZetaPlus PLUS/PALS 

analyzer (90 plus/BI-MAS). All measurements were for suspensions carried out under 

isothermal conditions at ambient temperature.  
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The microhardness was measured using a microhardness tester at 100 g load 

applied for 15 s. For each sample, average of five reading was reported. Tensile tests 

of the specimens with and without particles were carried out at ambient temperature 

by an Instron electronic tensile machine at the strain rate of 10−5 mm s−1 according to 

ASTM E8 using a sub size specimen. Figure 29 shows the tensile test specimens and 

its drawing. Tensile tests were performed 3 times for each sample and average of three 

reading was reported. The ultimate tensile strength (UTS) was estimated using a 

computerized universal testing machine. The fracture surfaces of the failed tensile 

specimens were observed using SEM. 

 

Figure 29 The tensile test specimens and its drawing 

Nanoindentation was carried out using CSM NHTX S/N: 55-0019 nanohardness 

tester with a triangular pyramidal diamond indenter (Berkovich, B-I 93, tip 

radius=20 μm) under a constant load of 10 mN. All the measurements and the load and 

displacement resolutions of the instrument were 1 μN and 0.03 nm respectively. The 

Berkovich indenter was molded as a conical indenter with a half-cone angle of 70.3° 

based on the relation between the cross sectional area and depth. Nanoindentation 

was conducted at ambient temperature. In all indentation experiments conducted in 
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this work, the measured indenter tip drift rate was within ± 0.02 nm/s. The 

nanohardness tester was calibrated by using glass and fused silica samples for a range 

of operating conditions. The HIT and instrumented elastic modulus (EIT) were estimated 

from the initial gradient of the unloading curves using the Oliver and Pharr model. Five 

measurements were carried out at each load on the samples. 

Composites with cylindrical sliders (6 mm in diameter with a hemispherical tip) as 

pins and 440 stainless steel flat counterface (55 mm in diameter and 10 mm in 

thickness) as disk have been prepared to investigate the friction and wear properties 

under dry sliding condition. The disk was polished and the initial average surface 

roughness parameter (Sa) of disk was 1.14±0.04 microns. The wear damage on rubbing 

surfaces was monitored with an optical profilometer and an optical microscope. The 

wear tests were performed in 700 MPa contact pressure, 25 mm/s of sliding speed and 

1500 m of sliding distance.  

The COF (coefficient of friction) values reported in this study are the average friction 

value obtained during each test. In addition, the linear wear-loss was acquired through 

a linear variable differential transducer (LVDT) with an encoder, which recorded the 

vertical displacement of the pin. After the tests, the worn surfaces were analyzed using 

SEM. The linear wear loss of each pin was converted into a volumetric wear loss using 

Eq. (1) derived from the geometry of a spherical cap. 

𝑉𝑉 =  𝜋𝜋ℎ
2

3
(3𝑟𝑟 − ℎ)   Equation 4-1 

 

In Equation 4-1, h is the linear displacement (mm) in the vertical (longitudinal) axis 

for the pin, r is the pin radius (mm), which is assumed to be constant throughout the 

test, and V is the volumetric wear loss (mm3). For a given testing condition, at least 
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three repetitive tests were performed and results of the average of the three tests are 

reported. A LEXT OLS4100 3-D Laser Confocal Microscopy is used for 2-D and 3-D 

imaging and dimensional measurements with a surface feature observation resolution 

of 20 nm. 
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4.3 Results and Discussion 

4.3.1 Synthesis of composites starting with micron size TiO2 

According to the microstructure studied and reaction sequence discussed earlier, 

TiB2 and Al2O3 reinforcement particles formed in Al-B melts (through the reaction of 

TiO2 particles); where the size of the in-situ formed particles were controlled by the size 

of the TiO2 particles (illustrated in Figure 30). When using stir reactive casting, micron 

sized TiO2 was used in order to fabricate reinforcement in the matrix. It is 

experimentally demonstrated that TiB2 and Al2O3 particles, with sizes ranging from 5-

55 µm, were formed in-situ from micronized TiO2 particles (>44 μm; with 25 μm average 

particle size) as shown in Figure 31. Few particles that have a size less than 100 nm 

have been observed. TiB2 is a block-like particulate which has straight sides (Figure 

32) while Al2O3 was an approximately spherical particulate. The interface between in-

situ formed particulates and the aluminum matrix was clean and impurity-free.  

 

Figure 30 Schematic illustration of reaction products formed on particle/ liquid interface 
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Figure 31 a) Optical microstructure of Aluminum/ (TiB2-Al2O3) microcomposite starting with 25 
µm TiO2 precursor b) grey threshold in (a), c) phases volume percentage d)particle size 

distribution 

One of the main drawbacks of using such large particles as a precursor was 

observed during stir casting. Even after an extended time of stirring, some powders 

would float to the surface or sink to the bottom of melt. Table 4 compares the density 

of the oxides and by-products which formed in the Al-TiO2-B system. Unreacted TiO2 

identified in the powders were removed from the melt surface.  
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Figure 32 TEM image of Aluminum/(TiB2-Al2O3 composite prepared starting with 25 µm TiO2 

precursor with Al2O3 and TiB2 particles, labeled respectively 

Table 4 Density, molar weight, and molar volume of different compounds present in the Al-B-
TiO2 system 

 Density (g/cm3) Molar weight 
(gr/mole) 

Molar Volume 
(cm3/mole) 

Aluminum 2.70 27.00 10.00 
TiO2 4.23 80.00 18.91 
Al2O3 3.95 102.00 25.82 
Al3Ti 3.4 128.00 37.88 
TiBO3 3.78 106.7 28.22 
Ti2O3 4.49 143.73 32.01 
TiB2 4.52 69.5 15.37 
B2O3 2.46 69.6 28.29 
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Figure 33 XRD pattern of the powders skimmed from the surface of the melt before pouring 

 

Figure 34 XRD pattern of the residual powders remained in the crucible after melt pouring 
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The XRD graphs in Figure 33 and Figure 34 shows the chemical composition of the 

powders removed from the bottom and the top of the melt before pouring. However, 

when the same experiment performed using nano size TiO2, the reaction occurred and 

TiB2 formed in the matrix and a very negligible amount of powders floated or sank.  

According to Stoke’s law, a balanced expression for the drag force, Fk, acting on a 

single spherical particle moving, and a floating force, Ff, can be written. The floating 

velocity of a single spherical particle, V0, can be obtained as a function of diameter of 

the particle (d), the density difference of particle and liquid �𝜌𝜌𝑙𝑙 − 𝜌𝜌𝑝𝑝�, and the viscosity 

of the liquid (μ): 

𝑉𝑉0 = 𝑑𝑑2�𝜌𝜌𝑙𝑙 − 𝜌𝜌𝑝𝑝�𝑔𝑔
18𝜇𝜇�  Equation 4-2 

 

According to Equation 4-2 the floating and sinking velocity is proportional to the 

square of particle diameter. Larger particles have higher tendency to float or sink. 

Moreover, the reaction of TiO2 with other reactants have proven to be surface-

controlled. Consequently, It means that the reaction occurs on the surface of the TiO2 

particles and, since they float or sink to the bottom of the crucible in case where the 

particle sizes are large, they do not have enough time to react, and the reaction does 

not go into the completion before floating or sinking. Secondly, smaller TiO2 particles 

(25 nm compared to 44 μm) have a higher surface area available for reaction 

(Equation 4-3). 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝐴𝐴𝑛𝑛)
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝜇𝜇𝜇𝜇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝐴𝐴𝑚𝑚)

=  
𝑛𝑛𝑛𝑛 × 4π𝑟𝑟𝑛𝑛2

𝑛𝑛𝑚𝑚 × 4π𝑟𝑟𝑚𝑚2
=  

𝑛𝑛𝑛𝑛
𝑛𝑛𝑚𝑚

× (
𝑟𝑟𝑛𝑛
𝑟𝑟𝑚𝑚

)2 Equation 4-3 
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Where 𝑛𝑛𝑛𝑛 is the number of nano-size particles with the radius of 𝑟𝑟𝑛𝑛and 𝑛𝑛𝑚𝑚 is the 

number of micron-size particles with the radius of 𝑟𝑟𝑚𝑚.  

For a constant volume fraction: 

𝑛𝑛𝑛𝑛 ×
4
3
𝜋𝜋𝑟𝑟𝑛𝑛3 =  𝑛𝑛𝑚𝑚 ×

4
3
𝜋𝜋𝑟𝑟𝑚𝑚 

3   →    
𝑛𝑛𝑛𝑛
𝑛𝑛𝑚𝑚

= (
𝑟𝑟𝑚𝑚
𝑟𝑟𝑛𝑛

)3 

Relating these two expressions together,  

𝐴𝐴𝑛𝑛
𝐴𝐴𝑚𝑚

=  
𝑟𝑟𝑚𝑚
𝑟𝑟𝑛𝑛
≅ 2 ∗ 103 

Based on the results of these two expressions, it is shown that the available surface 

area for the reaction to occur is three times in magnitude higher in nano-sized particles 

compared to micron sized ones. In this study, since the reaction is surface controlled, 

the reduction rate can be increased greatly by exposing more reaction sites by 

introducing nano size particles in the melt. Therefore, that can be considered as one 

of the main reasons of proposing nano size TiO2 particles as a precursor. In addition, 

the rate of settling of nanosize particles in the melt is also much lower than micronized 

particles, leaving more sites for reaction to occur.  

4.3.2 Synthesis of composites starting with nano size TiO2 

Figure 35 shows the XRD pattern of aluminum/ (Al2O3-TiB2) hybrid composite using 

nano-sized TiO2 in aluminum melt as the starting precursor. The phases identified 

indicates the presence of TiB2 as well as Al2O3. However, since the weight percent of 

reinforcing particles compared to the matrix is very low, detection of other compounds 

other than aluminum is complicated by using XRD. The high peak intensity of aluminum 

relative to other species leads to a very low signal in XRD at high magnification.  
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XRD graphs suggests that chemical reactions between aluminum, TiO2, and Boron 

have taken place completely. The theoretical fraction of the Al2O3 and TiB2 

reinforcement is 1.95 and 2 wt. %, respectively. 

 

Figure 35 XRD pattern of the Al- (TiB2/ Al2O3) hybrid composite synthesized using stir casting 

In this research, nanoparticles were extracted from the as cast hybrid composite 

samples for the further investigations. By an extraction experiment, the size 

distributions of particles can be analyzed as well. A small ingot was cut from the 

sample, and the surface of which was cleaned by sand paper. Then, the small ingot 

was dissolved in a 15 vol. % aqueous HCl solution in a beaker at room temperature. 

After dissolution, the HCl solution was decanted. The particles were then washed with 

water several times until the supernatant displayed neutral pH. These particles were 
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finally washed with ethanol, and then dried. Dynamic light scattering (DLS) was 

conducted to study the size distribution of particles which were carefully dispersed in 

the matrix presumably alumina and TiB2 nanopowders. An aqueous suspension of 

nanoparticles, stabilized by sodium citrate solution at a 5 mM concentration prepared 

by ultrasound treatment of suspensions. Bimodal particle distributions which is 

determined by intensity of scattering in aqueous suspensions for the investigated nano 

powders are shown in Figure 36 and Figure 37. It was the same type and was 

characterized by the presence of two size fractions. Particle size distributions in these 

suspensions obtained by TEM and DLS are the same within experimental error. 

 

Figure 36 Particle size distribution of nanoparticles using DLS method  
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Figure 37 Bimodal particle size distribution of nanoparticles using DLS method  

Dispersing nanoparticles uniformly in liquid metals is extremely difficult because of 

their poor wettability in a metal matrix and their large surface-to volume ratio, which 

easily induces agglomeration and clustering. In order to study the effect of mixing 

techniques involve in adding particulate reinforcements into a molten metal and 

dispersing them mechanically throughout the molten matrix metal, two mixing methods, 

stir mixing and ultrasonic mixing, have been investigated. In the first scenario an 

impeller is used to stir a melt that contains reactants, creating a vortex in the melt that 

is effective in dispersing the particles and insuring that the particles are wet by the melt. 

Figure 39a shows the nanocomposite prepared by in-situ mixing using reactive stir 

mixing. In the figure, it is shown that the particles are more aggregated and restricted 

to grain boundary regions.  

During mechanical mixing, the interactions between particle clusters and eddies in 

turbulent flow have the potential to cause mechanical dispersion of nanoparticles. The 
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intensity of shear associated with these interactions is dependent on the relative sizes 

of the eddies and particle aggregates. If the particles are smaller relative to the eddies, 

they tend to be captured or entrained in the eddies as shown in Figure 38. As fluid 

motion within the eddies is laminar, there is little relative motion of the particles. On 

average, therefore, if the particle clusters are smaller than the eddies, the shear effects 

of eddy-cluster interactions are minimal. Within eddies, there is little mixing because of 

the rotating flow occurring in streamlines. A much higher shear stresses results when 

several eddies with opposing rotation interact with the particle clusters simultaneously. 

It has been found experimentally that detrimental effects start to occur when the 

Kolmogorov scale for eddy size, λ, drops below 2/3 ~1/2 of the diameter of the clusters. 

Excessive agitation leads to formation of eddies with size small enough and of sufficient 

energy to cause damage to the clusters. Calculations shows that for a system having 

the values listed in Table 5, the Kolmogorov scale for eddy size drops is in the range 

of 10 µm.  

Fluid mass in the impeller zone, pm, is roughly equal to ρDi3 where ρ is aluminum 

melt density and Di is impeller diameter (Equation 4-4). Therefore, the stirrer power P 

is equal to: 

Pm = p/ ρDi3=  0.264 W/ 2700 Kg/m³ × (36 × 10−3)3 m3=  2.09 m2 S-3 Equation 4-4 
 

The Kolmogorov length scale of mixing, λ, can be calculated using Equation 4-5 

where dynamic viscosity, ν, is equal to viscosity over density, µ/ρ 

𝜆𝜆 = �
𝜈𝜈3

𝑃𝑃𝑚𝑚
�

1
4

=  

⎝

⎜
⎛�

1.1 𝑡𝑡𝑡𝑡 1.4 × 10−3
2700 �

3

0.0021

⎠

⎟
⎞

1
4

= 13.4 𝑡𝑡𝑡𝑡 16.0 𝜇𝜇𝜇𝜇 
Equation 4-5 
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These calculations shows that by using the mechanical stirrer the aggregates 

approximately larger than 20-30 µm can be deagglomorated by the turbulent shear 

damage of clusters.  

Table 5 Stir mixing experimental parameters 

Parameter Value Units 
Volume 0.001 m3 

Vessel Diameter 90 mm 
Liquid Level 80 mm 

Agitator Diameter 36 mm 
Equivalent Diameter 86.5 mm 

Shaft Speed 500 rpm 
Power 2.64e-4 kW 

 

 

Figure 38 Partcile- Eddie streamline interaction  

During ultrasonic mixing, an ultrasonic horn creates cavitation in the melt by a gas 

streaming effect related to the formation and collapse of bubbles generated in the melt. 

Cavitation bubble collapse is a remarkable phenomenon induced throughout the liquid 

by the power of sound. In aqueous systems at an ultrasonic frequency of 20kHz each 

cavitation bubble collapse acts as a localized hotspot generating temperatures of about 

4,000 K and pressures in excess of 1000 atmospheres. During the rarefaction phase, 
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the surface of the cavities expands to many times that of stable bubbles, and the 

pressure inside the cavities decrease to almost zero. During the compression phase, 

cavities collapse, and there is a sudden dramatic increase in pressure. Therefore, 

acoustic cavitation can produce dramatic effects on powders suspended in a liquid. 

Surface imperfections or trapped gas can act as the nuclei for cavitation bubble 

formation on the surface of a particle and subsequent surface collapse can then lead 

to shock waves which break the particle apart. Cavitation bubble collapse in the liquid 

phase near to a particle can force it into rapid motion. The gas streaming in the melt 

then disperses the reinforcement agents throughout the liquid metal. Figure 39b shows 

the TEM micrograph of the microstructure exhibited by a cast nanocomposite 

synthesized using a combined stir mixing and ultrasonic mixing, with a wetting agent 

added to the molten metal. Both methods of stirring were needed to disperse 

nanoparticles in the metal matrix. This process resulted in the incorporation of 

nanoparticles within microscale grains of aluminum and formed a tri-modal 

microstructure. As it can be observed, particles (marked by blue arrows) has a size 

variation between 8-15 nm, and particles (marked by red arrows) has a size variation 

between 50-150 nm within the microscale grains of alpha-aluminum. Ceramic 

nanoparticles may be uniformly dispersed in metal matrices to increase the tensile 

strength and wear resistance using ultrasonic cavitation of the melt to further disperse 

the particles. The TEM micrograph is also showing that the reinforcement phases are 

not too agglomerated and are not only restricted to the grain boundaries.  
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Figure 39 TEM of aluminum/ (TiB2-Al2O3) nanocomposites produced by liquid stir casting a) 
In-situ stir mixing b) In-situ stir/ultrasonic mixing 

 

4.3.3 Comparison of mechanical properties of micro and 
nanocomposites 

In order to compare the properties of hybrid composites prepared starting with 

micron or nano TiO2 precursors, microstructures, mechanical properties, and fracture 

surfaces of the test specimens were investigated. Table 6 summarizes the grain size, 

mechanical properties, and tribological properties of the micro and nanocomposites 

reinforced with 4wt% hybrid particles under varying processing conditions. 

The optical macrographs of the unreinforced, and composites processed at similar 

conditions containing 4 weight percent of micron and nano sized particles is shown in 

Figure 40. In polycrystalline materials, grains tend to grow to maintain the lowest level 

of energy in the system. However, a dispersion of second-phase particles helps 

preventing the grain growth by pinning and impedes the migration of the grain 

boundaries. By decreasing the particle size the pinning effect will be intensified due to 
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the larger number of particles for a constant volume fraction. Figure 40b and c, show 

the microstructure of composite specimens made with b) micronized TiO2, c) nanosized 

TiO2 particles. Grain size analysis shows that the grain size is smaller in composites 

made by nano-sized precursor. 

Table 6 Summary of average properties of the micro and nanocomposites reinforced with 
4wt% hybrid particles at various processing condition. 

 Temp. 
(°C) 

Time 
(min) 

Grain 
size 
(um) 

Hardness 
(HV) 

Yield 
Stress 
(MPa) 

Elongation 
(%) 

UTS 
(MPa) 

Unreinforced Aluminum 700 - 330 41.9±1.5 39.1±0.1 60±4 56±3 

Unreinforced Aluminum 850 - 580 39.3±1.6 29.9±0.2 52±5 55±2 

Unreinforced Aluminum 1000 - 780 37.5±1.6 25.2±0.7 58±0.5 56±3 

Hybrid Microcomposite 700 5 - 45.1±2.6 33.3±6.2 38±14 62±3 

Hybrid Microcomposite 700 15 - 48.7±2.3 36.5±3.1 28±5 70±1 

Hybrid Microcomposite 1000 5 - 59.2±5.0 41.1 ±0.9 28±8 75±7 

Hybrid Microcomposite 1000 15 - 59.0±2.6 40.3±1.5 18±2 77±4 

Hybrid Nanocomposite 700 5 330 49.1±1.3 40.0±4.3 58±8 131±1 

Hybrid Nanocomposite 700 10 310 64.4±0.7 66.7±4.3 61±5 152±2 

Hybrid Nanocomposite 700 15 280 37.9±0.6 65.6±1.9 44±3 150±2 

Hybrid Nanocomposite 850 5 300 59.2±4.3 62.3±1.4 47±2 162±3 

Hybrid Nanocomposite 850 10 200 77.4±3.9 90.1±0.8 53±4 232±2 

Hybrid Nanocomposite 850 15 140 562.1 ±2.1 84.8±1.1 58±2 223±1 

Hybrid Nanocomposite 1000 5 330 63.2±1.5 66.5±2.1 52±1 191±1 

Hybrid Nanocomposite 1000 10 140 81.1±1.9 71.8±1.2 53±2 134±2 

Hybrid Nanocomposite 1000 15 80 56.4±0.9 76.2±4.1 43±5 208±2 
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Figure 40 The cross polarized optical macrograph of (a) the unreinforced aluminum, (b) the 
microcomposite, and (c) The nanocomposite processed at similar conditions containing 4 

weight percent reinforcement  

Figure 41 shows the tensile stress-strain curves of the microcomposites (composites 

synthesized with micron sized TiO2 as precursor) and nanocomposites (composites 

synthesized with nano sized TiO2 as precursor) reinforced with hybrid particles. Based 

on the results, nanocomposites show a different tensile behavior compared with that 

of the microcomposites. It is apparent that although by addition of hard ceramic 

particles (TiB2 and Al2O3) in microcomposites, the tensile strength is higher, but the 

ductility of the composite decreases significantly compared to the base alloy. 

Furthermore, there is a significant increase in tensile properties when a nanosize TiO2 

is used as a starting material.  

In general metal matrix composites exhibit high hardness and tensile properties as 

well as good wear resistance. Assuming a uniform distribution of particles within the 

matrix, at a constant particle volume fraction, the particles’ spacing will decreases as 

the average particle size decreases. The strength and hardness of samples increases 

with decreasing the particle size. This is a result of hindering of dislocations movement 

due to increase in the particle concentration and decrease in the grain size of the 

aluminum matrix. Additionally, it can be obviously seen that nanocomposites show 

improved tensile ductility in comparison with microcomposites. Crack propagation in 
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the nanocomposites region is retarded by blunting mechanism of nanoparticles. 

 

Figure 41 The engineering stress-strain curves of (a) microcomposites reinforced with 4wt% 
hybrid particles at 700°C, (b) microcomposites reinforced with 4wt% hybrid particles at 

1000°C, (c) nanocomposites reinforced with 4wt% hybrid particles at 700 °C, (d) 
nanocomposites reinforced with 4wt% hybrid particles at 850 °C, and (e) nanocomposites 

reinforced with 4wt% hybrid particles at 1000 °C. 

The macroscopic crack path can provide useful information about the failure of the 

samples. The fracture surfaces of tensile tested samples can also provide valuable 

information pertaining to microstructural effects on tensile ductility and fracture 

properties of the aluminum hybrid nano and microcomposites. Failure in particulate 

reinforced metal composites can be explained by various mechanisms including the 

matrix reinforcement interfacial decohesion, reinforcement fracture, and failure in the 

matrix [140-142]  
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Figure 42 shows macro fractographs of unreinforced, micro, and nano particle 

reinforced composite tensile specimens. During tensile testing, the unreinforced 

specimen underwent necking and finally fractured, whereas the microcomposite 

specimens failed across the shear planes. The mixed type fracture has been observed 

in the nanocomposite tensile specimens (Figure 43).  

 

Figure 42 Macro fractographs of unreinforced, micron, and nano particle reinforced 
composite tensile specimens 

 

 

Figure 43 micro fractographs of unreinforced and nano particle reinforced composite tensile 
specimens 

Metal matrix composites behave differently from pure metals. There are many 

mechanisms which can be associated with the failure in MMCs. The damage or failure 

can be associated with the breaking and decohering of the reinforcement with the metal 

matrix. Additionally, the fracture and decohesion of the reinforcing particles have a 



81 
 

detrimental effect on the overall load-bearing capacity of the composite.  The 

reinforcements may also distribute at the grain boundaries of the base matrix metal 

during the synthesis. Additionally the ductility of popular reinforcements are quite low 

compared to the metallic matrices. Thus they obstruct ductile deformation and 

movement of dislocations along the grains of the matrix, and abrupt brittle fracture is 

obtained during the tensile test. The coarser the reinforcement, the more brittle the 

MMC becomes. 

The SEM fractography of Al/(Al2O3- TiB2) hybrid microcomposites and Al/(Al2O3- 

TiB2) hybrid nanocomposites are shown in Figure 44 and Figure 45. The difference in 

the appearance of fracture surfaces between nanocomposite and microcomposite at 

the same magnification (Figure 44b and Figure 45b) was significant. The SEM 

micrographs of the fracture surface of the unreinforced aluminum matrix, which 

includes dimples and voids, demonstrates a ductile fracture. For the nanocomposites 

synthesized by in-situ reaction, many dispersed shallow and small dimples with varying 

sizes were found in the matrix as shown in Figure 45., while in the microcomposite a 

cleavage and matrix rupture was also observed. In the Al/(Al2O3- TiB2) nanocomposite, 

dimples with some pull-out were observed, indicating that fracture still exhibited the 

ductility of the aluminum matrix despite the incorporation of the reinforcement. 
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Figure 44 Tensile specimen fracture surface of the microcomposites reinforced with hybrid 
particles  

 

Figure 45 Tensile specimen fracture surface of the nanocomposites reinforced with hybrid 
particles 
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The microcomposites possess both dimple-like characteristics and cleavage-like 

features where can be seen in various areas on the fracture surfaces. The presence of 

hard, brittle, and essentially elastically deforming reinforcing particles constrains the 

mechanical deformation of the soft, ductile, and plastically deforming alloy matrix; and 

as a result, a triaxial stress state is developed in the matrix, which limit the flow stress 

of the composite. For the microcomposite synthesized by an in-situ reaction, there are 

a number of large voids on the tensile fracture surface shown in Figure 44 b. Some 

larger dimples are linked together along the boundaries, showing increased degree of 

clustering along the grain boundaries. Furthermore, the agglomeration of particles was 

found in the dimples which provided sites for crack initiation (Figure 44e). The 

fractograph of the composite shows a mixture of brittle and dimple fracture.  

In general, the total energy of the fracture is related to the size of the dimples. The 

presence of small and deep dimples in Figure 45 suggests a ductile fracture mode and 

confirms the improved ductility of nanocomposites. All of the SEM fractographs were 

correlated very well to the corresponding elongation values for the mentioned 

nanocomposites. In the nanocomposites, SEM images show that the local deformation 

of the matrix near the reinforcement led to increase in the strain to failure. Furthermore, 

presence of nano-sized particles (indicated with an arrow) in the dimples shows that 

the interfacial bond strength between in-situ nano-sized particles and the matrix 

aluminum is high. Nanoparticles which are embedded in the dimples of the aluminum 

matrix and partially projected shows that the crack has propagated around the 

nanoparticles. In order to study the failure mechanism by comparing the path of fracture 

with the metallographic grain structure (Figure 46), it is obvious that the failure is having 

a transgranular nature which can be as a result of microvoid nucleation and 

coalescence. However, at some specific regions, the occurrence of intergranular 
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fracture was observed, where the second phase particles were located along the grain 

boundaries (Figure 46c). The accumulation of agglomerated nanoparticles are 

occasionally observed in the grain boundaries which can affect the aluminum matrix 

cohesion and act as preferential fracture point. 

 

Figure 46 (a) The cross polarized optical micrograph, and (b,c) the SEM fracture surface 
micrograph of Al/ (TiB2- Al2O3) hybrid nanocomposites  

4.3.4 Variation of mechanical properties with reinforcement content 

One of the main factors that may influence the mechanical properties of composites 

is volume fraction of nanoparticles. It should be mentioned  that the weight fraction of 

reinforcements in the matrix were calculated based on the assumption that all of the 

TiO2 and Boron added to the melt have converted to Al2O3 and TiB2, which were 

confirmed by XRD. The composites with 0, 0.1, 2, 4, and 8 wt% nanosize 

reinforcements were synthesized to examine the effect of nanoparticle loading on 

mechanical properties of the nanocomposites including hardness and elastic modulus.  

Table 7 is listing the estimated volume fraction and weight percent of each Al2O3 and 

TiB2 separately. The instrumented nano indention method was used to measure the 

hardness and elastic modulus of a material from indentation load– displacement data 

obtained during cycles of loading and unloading. 
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Table 7 Estimated reinforcement loading in the composites 

Calculated 
Reinforcement 
loading (wt.%) 

Calculated 
Reinforcement 

loading (Vf) 

Estimated Al2O3 
content (wt.%) 

Estimated TiB2 
content (wt.%) 

0 0 0 0 
0.1 0.13 0.049 0.051 
2 1.29 0.99 1.01 
4 2.6 1.97 2.03 
8 5.27 3.95 4.05 

 
In the instrumented nano indention method, the penetration depth and the applied 

load were monitored both during the insertion and withdrawal of the indenter, resulting 

in a loading and unloading curve of the applied load as a function of the penetration 

depth.  

A typical load versus displacement curve resulting from such an indentation test may 

be seen in Figure 47. At point A the indenter touches the metal, and the load increases 

along curve AB as the indenter penetrates into the metal. During unloading the curve 

is along the BC line. For a perfectly elastic material, there will be no hysteresis. 

Therefore, information on the plastic and elastic properties of the nanocomposites can 

be obtained from the penetration depth of inventor into the material as a function of the 

applied load. 

 

Figure 47 Typical curve of load versus peneteration depth in an indentation test. 
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The hardness and elastic modulus of the reinforced aluminum composite can be 

estimated from the measured curves in Figure 48. Hardness is defined as the 

resistance of permanent (plastic) deformation caused by nanoindentation. Thus, what 

is being measured with this technique is the plastic deformation of the surface. The 

modulus and hardness values were averaged in the indentation depth range of 150–

3000 nm into the surface. 

Figure 48, which shows the load– displacement curves during cycles of loading and 

unloading for unreinforced aluminum and its nanocomposites as a function of particle 

concentration, shows that upon loading, the curves move upward with increasing 

particle content. This indicates that the resistance to indentation of nanocomposites is 

enhanced by increasing nanoparticles concentration. The penetration depth represents 

the contributions from both the elastic and plastic displacements.  

 

Figure 48 The force displacement diagram of Nano indentation test. 
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Table 8 Measured values for elastic modulus and hardness of particle reinforced aluminum 
nanocomposites 

Specimen 
Avg Elastic 

Modulus 
(GPa) 

Avg 
Hardness 

(GPa) 

Predicted 
Modulus 

(GPa) 

Unreinforced alloy 63.1±5.0 0.94±0.05 62 

Al- 0.2wt.% NPs 64.3±4.6 1.12±0.05 62.1 

Al- 2wt.% NPs 66.7±3.1 1.85±0.03 63.2 

Al- 4wt.% NPs 69.1±8.4 2.82±0.18 64.4 

Al- 8wt.% NPs 72.0±12.4 1.41±0.18 67.1 

 

The hardness and modulus of all the samples were plotted as a function of nano 

particle loading, as shown in  

Figure 49 and listed in Table 8. Both the elastic modulus and hardness increase with 

increasing particle loading. With addition of 2 wt% of nanoparticles, the hardness was 

improved by about 50%, as compared with its unreinforced counterpart. This increase 

in hardness is due to the increase in the volume fraction of nanoparticles which 

contributes to the strengthening of the matrix. It is also found that no hardness 

improvement by further increasing the nano particle content above 4 wt%. One 

possible theory is related to the nanoparticles distribution within the matrix. Upon 

solidification it is expected that the amount of rejected NPs to the last freezing zone is 

enhanced by increasing the loading in the molten alloy. The particles pushed to the 

interface will be trapped and clustered at the boundaries, and this will lead to the 

embrittlement of the composite.  

Several theoretical models exist today, which predict the modulus of MMC’s 

reinforced by particulates. Among them, the rule of mixture which is the weighted 
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average of the components, is almost inaccurate in predicting the modulus. However, 

it has been shown experimentally that the average modulus predicted by the Hashin- 

Shtrikman model can be a good fit to experimental data points [143]. In this regard, the 

modulus of composites with various reinforcement content have been calculated using: 

𝐸𝐸𝑐𝑐 = 𝐸𝐸𝑚𝑚
𝐸𝐸𝑚𝑚𝑉𝑉𝑚𝑚 + 𝐸𝐸𝑝𝑝(𝑉𝑉𝑝𝑝 + 1)
𝐸𝐸𝑝𝑝𝑉𝑉𝑚𝑚 + 𝐸𝐸𝑚𝑚(𝑉𝑉𝑝𝑝 + 1)

  

Where Ec, Em, and Ep is the Young’s modulus of composite, the matrix, and the 

particles, respectively, and  Vm and Vp are the volume fractions of the matrix and 

particles. Figure 50 shows the predicted and experimental value of Young’s modulus. 

The experimental data is in correspondence with the analytical model with the increase 

of reinforcement content.  

 

Figure 49 Average Elastic Modulus values for aluminum and its nanocomposites as a 
function of particle loading. 
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Figure 50 Comparison between theoretical prediction and experimental data using the 
Hashin- Shtrikman analytical model. 

4.3.5 Variation of properties with processing parameters 

Processing, structure and property relationships provide important information for 

the development of microstructures for improved performance. The following section 

provide insight in the processing conditions in relation to their structure and the effect 

of the addition of nanoparticles on the mechanical properties.  

There is evidence that the introduction of NPs into a metal matrix results in some 

grain refinement effect, addition of particles reduces the size of the grains in the 

MMNCs compared to the un-reinforced metal processed under the same conditions. 

The improvement of yield strength due to grain refinement, is dependent on the extent 

of effectiveness of NPs in reducing grain size using following equation: 
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 where DM,T and D0,T are the average grain diameters of polycrystalline matrix 

materials in presence of NPs and when particles are absent processed at temperature 

T, respectively.  

In Figure 51, the measured grain size for various superheats of the castings is 

presented. It can be seen that the grain size increases linearly with increasing pouring 

temperature. The data collected and the slope of the linear fit, can represent the 

average pouring temperature dependent crystallite growth rate of the matrix. 

 

Figure 51 The grain size variation by pouring temperature of aluminum melt 
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Figure 52 The grain size variation by mixing temperature for unreinfored and particle 
reinforced composites 

The addition of NPs to a metal matrix acts to refine the grain size by restricting the 

size of the grains in the MMNC rather than nucleating new grains. As shown in Figure 

52, the addition of NPs at various temperatures decreased the grain size of the matrix. 

For such indirect impacts of NP addition, the grain boundary pinning of added particles 

during processing is dependent on the size of the particles at a constant volume 

fraction [31]. Therefore, at a constant volume fraction, by varying the particle size it is 

expected that the nanocomposite hardness and yield stress will change as a result of 

grain refinement. In summary, for smaller particles, the NPs can restrict the size of the 

grains in the MMNC more effectively.  

In order to compensate the effect of pouring temperature on the unreinforced matrix, 

and to only consider the effect of nanoparticles in grain refinement, a normalized factor, 



92 
 

refinement ratio, R, is proposed. R for each nanocomposite can be calculated by the 

ratio of the grain size of the nanocomposite to the grain size of the matrix without any 

reinforcing particles at a specific mixing and pouring temperature.  

𝑅𝑅 =  
𝐷𝐷𝑚𝑚,𝑇𝑇

𝐷𝐷0,𝑇𝑇
 

In the following text, we will study the effect of processing parameter on the 

refinement ratio (DM,T/ D0,T) of the nanocomposites.  

Based on the results discussed earlier in chapter 4, during the reduction of TiO2 in 

the melt, TiB2 forms on the surface of TiO2 particles in the form of nodules. Interfacial 

stress will be present at the TiO2/ TiB2 interface which causes the detachment of 

nodules from the TiO2 surface. During stir casting the turbulent flow removes the 

concentration gradient. According to Prandtl, a thin region adjacent to the particle 

boundary, the flow is retarded because of the effect of viscosity. In the regions beyond 

the thin boundary layer, the velocity is uniform and the effect of viscosity is no longer 

significant. The thickness of the thin boundary layer, δ, is an important factor which 

determines the detachment of TiB2 nodules of the TiO2 surface. The drag forces acting 

on the nodules by the molten metal is a function of viscosity of the melt. Therefore, it 

is reasonable to assume that during stir mixing, viscosity is the factor which determines 

the size of nodules where the detachment take place. Figure 53 shows schematically 

how the thickness of the boundary layer can be correlated to the detachment of TiB2 

nanoparticles during mixing.  
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Figure 53 Schematic representation of the boundary layer on TiO2 particles during stir mixing 
and turbulent flow effect on the detachment of TiB2 nanoparticles during mixing. 

According to Newton’s law of viscosity, liquid metal viscosity must obey the 

Arrhenius behavior as a function of temperature. In general the viscosity-temperature 

relation for liquid aluminum can be expressed in the form of: 

𝜂𝜂 =  𝜂𝜂0exp (
𝐸𝐸
𝑅𝑅𝑅𝑅

) 

where E is the activation energy for viscous flow, ηo is the pre-exponential viscosity, 

which are both constants for the particular element, T is the temperature in K and R is 

the gas constant. Empirical results show that for liquid aluminum 𝜂𝜂0= 0.257 mPa.s and 

E=13.08 kJ/mol [144]. Figure 54 shows the variation of experimental data obtained for 

aluminum melt viscosity by temperature in the range where our experimental results 

are obtained.  
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Figure 54 The variation of experimental data obtained for the aluminum melt viscosity with 
temperature [144] 

Figure 55 shows the experimental data collected for the variation in refinement ratio 

by temperature at various mixing times. Figure 56 shows the fitted curves of the 

experimental data collected and shows that the change in grain size can be well 

described as the square root of viscosity at any specific temperature. Figure 57 shows 

the variation of refinement ratio with time. At higher temperatures, not only is the melt 

viscosity is decreasing, but also the size of nodules gets larger in smaller amount of 

time, and it will reach the detachment stress sooner. However, it can be clearly seen 

that the grain size ratio does not change significantly with mixing time. Figure 58 shows 

the 3D plot of variation in grain ratio by temperature and time. The isotherms can clearly 

illustrate the variation in grain size of MMNCs processed at similar temperatures.  

𝐷𝐷𝑚𝑚,𝑇𝑇

𝐷𝐷0,𝑇𝑇
∝ 𝛿𝛿 ∝ 𝜇𝜇

1
2 ∝ �𝜇𝜇0𝑒𝑒

𝐸𝐸
𝑅𝑅𝑅𝑅 
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Figure 55 The experimental data collected for the variation in refinement ratio with pouring 
temperature at various mixing times for the nanocomposite reinforced with 4wt% hybrid 

particles 

 

Figure 56 Variation in refinement ratio by temperature for the nanocomposites reinforced with 
4wt% hybrid particles; the fitted curves of the experimental data is in accordance with the 

viscosity control prediction model 
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Figure 57 The experimental data collected for the variation in refinement ratio by mixing times 
at various temperatures for the nanocomposites reinforced with 4wt% hybrid particles 

 

Figure 58 The 3D plot of variation in grain ratio by temperature and time for the 
nanocomposites reinforced with 4wt% hybrid particles. 
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Figure 59 Variation in a) Hardnessand, b) Yield Stress of the nanocomposites by processing 
temperature for 4wt% particle loading 

Figure 59 displays the variation in hardness, yield stress, and ultimate tensile 

strength of the nanocomposites with 4wt% particle loading synthesized at different 

processing temperatures. The results show that by increasing processing temperature 

and time, the tensile properties can be affected. Based on the results, increasing the 

temperatures higher than 850 °C, no significant improvements can be obtained. In 

addition, at extended mixing times at 1000 0C where the melt viscosity in low, the re-

agglomeration is likely to happen which deteriorate the mechanical properties. These 

mechanical properties of the in-situ nanocomposites synthesized at various processing 

conditions, Mechanical properties including hardness, yield strength, and ultimate 
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tensile strength is mainly controlled by matrix grain size, reinforcing particle size and 

type, and the reinforcing particle distribution. Variation in processing condition of the 

in-situ nanocomposites will change these factors which can be attributed to the multiple 

effects of factors which can increase or decrease the mechanical strength and ductility.   

 

Figure 60 TEM image of dislocations around particles 

As it has been discussed earlier in this section, the time and the temperature varies 

the MMNCs grain size. The addition of NPs to a metal matrix acts to refine the grain 

size by restricting the size of the grains which will lead to increased strength and 

hardness. It has been theoretically discussed and experimentally shown (Figure 58) 

that the change in grain refining ability of particles is changing with temperature similar 

to variation of viscosity with temperature as per Arrhenius law.  

The thermal mismatch stress between reinforcements and aluminum matrix will 

increase the dislocation density within the matrix, which might lead to local stress and 

also increase the strength of the matrix, and thus that of the composite. This stress 

depends on the temperature from which the composite is cooled and the cooling rate. 

The higher the casting temperature, the more local stress will be present, increasing 

the strength of the composite (Figure 60).  



99 
 

Higher casting temperatures increase the fluidity of molten aluminum which will 

affect particle distribution in the samples. The improvement in the distribution the 

reinforcement can be a result of the high shear rate and the high intensity of turbulence 

which leads to the uniform dispersion of the reinforcement by breaking up the clusters. 

The apparent viscosity increases as temperature decreases, which in turn increases 

the shear stress. The force due to shear on the clusters, is linearly proportional to the 

melt viscosity and the shear rate. An increased shear stress breaks up the 

agglomerates and disperses particles more uniformly.  

4.3.6 Variation of tribological properties with processing parameters 
[145] 

In the present investigation, an aluminum/(Al2O3- TiB2) metal matrix composite was 

fabricated by using the liquid metallurgy technique. The Transmission Electron 

Microscopy (TEM) study was conducted in order to investigate the microstructure of 

the in-situ processed composites. X-ray diffraction (XRD) analysis of the composite 

was performed to investigate the various phases present in the composite. Dry sliding 

tests were conducted using pin-on-disk tribometer in order to understand the self-

lubricating behavior of developed composite. The microstructural characteristics 

revealed formation of in-situ phases and uniform dispersion of the reinforcement 

phases throughout the composite. The developed hybrid self-lubricating 

nanocomposites showed superior mechanical and tribological properties. The superior 

tribological properties of the hybrid composite are attributed to the formation and 

synergetic effect of TiB2 and Al2O3 particles in the composites. The Al2O3 hard ceramic 

particles act as the obstacles to the movement of dislocation and thus enhance the 

mechanical properties. The oxidation of TiB2 on the surface forms H3BO3 and TiO2 

tribo-layer resulting in superior tribological properties. 
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Results show that the composite hardness, strength, and ductility are changed by 

processing temperature and time since they influence the completion of the reaction, 

as well as the temperature required to affect desired reaction products. When the 

mixing time is not sufficient at a specific temperature, the reaction stops well before 

completion. On the other hand, while the mixing time is beyond optimal values, particle 

coarsening and particle growth can occurs.  

Figure 61 presents the variation of coefficient of friction (COF) of pure aluminum and 

aluminum composite at different reaction temperatures and times. It is interesting to 

note that the nanocomposites have a lower COF compared to pure aluminum which 

can be resulted from the self-lubrication nature of TiB2. Moreover, the COF values 

remain almost constant at different processing conditions which implies that the COF 

is not significantly dependent on processing conditions. The oxidation of TiB2 during 

sliding process could be the most possible mechanism for reduced COF in 

nanocomposites compared to pure alloy. The existence of a soft film with nanometer 

thickness of the TiB2 on the surface will lead to formation of H3BO3 film (Figure 62) 

[146]. During the sliding process of Al/ (Al2O3- TiB2) nanocomposite, the hard alumina 

phase can support the aluminum matrix and ultimately wears away from the surface of 

the composites. Some detached TiB2 nanoparticles, left on the nanocomposites 

surface, are oxidized to TiO2 and B2O3 followed by the formation of H3BO3 through 

reaction with H2O from the air. Therefore, aluminum nanocomposite reinforced by nano 

TiB2 shows a self-lubricating behavior. The fairly independent COF values as regards 

to the processing conditions indicate that the hardness does not play a significant effect 

on the COF of nanocomposites. This implies that the formation of lubricious tribo-layer 

is found to be more effective than the microstructural and hardness variation on 

frictional behavior. 
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Figure 61 Variation of coefficient of friction of pure aluminum and nanocomposites reinforced 
with 4wt% hybrid particles synthesized at various processing conditions 

 

Figure 62 Lubricant tribofilm formation on worn surface of composites [146] 

The wear results are shown in Figure 63, where the self-lubricating aluminum 

nanocomposites reinforced by TiB2 and Al2O3 display lower wear rate values as 

compared to pure aluminum. Three important mechanisms are attributed to lower the 

values of wear rates in the composites: 1) higher hardness of the composites compared 

to pure aluminum, 2) TiB2 reaction with moisture in the air and formation of lubricious 

tribofilm on the worn surfaces, and 3) the load bearing effect of ceramic hard 

nanoparticles which protects the matrix from direct application of load. Generally, the 

synergetic effect of Al2O3 and TiB2, where the hardness imparted by the Al2O3 
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reinforcement particles, and the lubricious effect provided by the self- lubricating nature 

of TiB2 reduce the severity of the wear on the surface, resulting in low volume loss 

during sliding.  

Figure 63 shows the correlation between hardness and wear rate at different 

reaction temperatures and times. According to Archard equation, the wear rate is 

inversely proportional to hardness[147]. The sliding wear due to abrasion was given as: 

 

where V is the volume loss, P is the applied load, L is the sliding distance, H is the 

hardness of the specimen, and k is the wear coefficient. 

 

Figure 63 Variation of wear rate and hardness with reaction temperature for a) Unreinforced 
aluminum, b) nanocomposites reinforced with 4wt% hybrid particle 

Microstructure characterization of worn surface of metal matrix nanocomposites is 

more complex than that of metals or alloys and an understanding of the wear 

mechanisms is far from complete. The SEM analysis of worn surface was carried out 

to illustrate the wear mechanisms in the nanocomposites in the presence of TiB2 and 

Al2O3. The low magnification SEM micrographs of the aluminum and nanocomposites 
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are shown in Figure 64. The depth and number of grooves on the worn surface of the 

composites are decreased with the introduction of nanoparticles into the matrix in 

comparison with pure aluminum as shown in Figure 64. Smoother surface on the 

composites is due to the fact that the major part of applied load is carried by alumina 

nanoparticles which minimized the amount of plastic deformation and aid to the 

formation of lubricant film on the surface of composites. In addition, there are 

interactions between dislocations and Al2O3 nanoparticles that ultimately resist the 

propagation of cracks during sliding wear. Furthermore, during the solidification stage, 

strain fields are created around Al2O3 nanoparticles due to the thermal mismatch 

between the aluminum and Al2O3 nano-particle. The strain fields resist the propagation 

of the cracks and subsequent material removal during sliding condition. Moreover, the 

lubricant H3BO3 tribo-layer can reduce the actual area of metal to metal contact. These 

can be some of the reasons which lead to decrease in the wear rate of the composites 

containing TiB2 and Al2O3 phases. The in-situ processing used in this study helps the 

particle’s surface to remain clean, as a result, a good bonding between particles and 

aluminum matrix arise. Consequently, the impurity free interface and the good bonding 

delay the detachment of particles from the aluminum matrix. In general, the worn 

surface of the pure aluminum reveals patches of severely damaged regions and deep 

abrasion grooves caused by severe plastic deformation. The morphological 

examinations of the worn surfaces indicate the existence of both abrasion and 

delamination wear mechanisms.  

Figure 65 illustrates the 2-D and 3-D profiles of the worn surfaces of pure aluminum 

and composites at 850 oC reaction temperature for different reaction times. It can be 

seen that the aluminum worn surface possess large peaks and deep valleys while small 

peaks and shallow valleys are observed in the composite worn surfaces indicating that 
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the composite possesses smother worn surfaces than the pure aluminum. The 

measured 2D arithmetic average surface roughness (Ra) of pure aluminum is 

1.243±0.04 μm while the surface roughness of composites for 5, 10 and 15 minutes 

reaction times are 0.832±0.027 μm, 0.831±0.109 μm, and 0.879±0.060 μm, 

respectively.  
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Figure 64 SEM micrographs of the worn surfaces at various processing times and 
tempratures  
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Figure 65 Topography image of worn surface for 850 oC reaction temperature for a) pure 
aluminum, b) 5 min, c) 10 min and d) 15 min reaction time and e) linear profile of worn 

surfaces 

Figure 66 shows the EDS analysis of the worn surface after the sliding test. The 

main observation is that iron is transferred from the counterface to the composite by 

mechanical action. Simultaneous interactions between the hard particles that are 

present in the debris and the counterface material resulted in the micro plowing of fine 

iron rich regions. In addition, the composite surface showed presence of boron element 

which confirms that the worn surface is covered with boron layer, such as H3BO3 as it 

is indicated in Zhou’s study [146]. In literature, boric acid is found as a good solid 

lubricants and showed superior tribological performance [148, 149]. However, they are 

forced out of the contact zone during sliding. To retain these solid lubricants at the 

interface, a carrier lubricant was used. Again, these additives when added in the carrier 

lubricant, a multiphase hybrid lubricant is developed and demonstrated a superior 
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tribological performance over the carrier lubricant without any solid lubricant additives. 

In the current research, when self-lubricating composites are used, such external 

lubricant is not required as the lubricant is forming in-situ during sliding and 

continuously replenished to the interface which ultimately results in superior tribological 

performance.  

 

Figure 66 Energy dispersive spectrum (EDS) of the worn surface 

4.3.7 Summary 

Microstructures and mechanical properties of aluminum matrix composites 

reinforced by in-situ TiB2 and Al2O3 particulates have been investigated. Result of XRD 

analysis indicates that the (Al2O3 + TiB2)/aluminum composites can be fabricated with 

the direct melt reaction method. According to reaction sequence TiB2 and Al2O3 

reinforcement particles forms in Al-B melts through the reaction on the surface of TiO2 

particles, where the size of the in-situ formed particles is controlled by the size of the 

TiO2 particles. In this chapter it was experimentally demonstrated that TiB2 and Al2O3 

particles with sizes ranging from 5-55 µm can be formed in-situ from micronized TiO2 

particles while a nanocomposite can be prepared using nanosized TiO2 particles. 

SAED by TEM is used to characterize crystal symmetry and lattice parameters. 
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 An ultrasonic assisted processing were used to disperse nanoparticles within the 

matrix. The micro-structural analysis indicated the uniform distribution of nanoparticles 

in the aluminum matrix with few clusters of reinforcing particles. From the investigations 

on mechanical properties of composites, we deduce that the yield stress, UTS and 

hardness of composites are obviously higher than those of unreinforced with the same 

percentage reinforcements of TiB2 or Al2O3 particles. Elimination of Al3Ti brittle phase 

by using this processing route greatly improved the mechanical properties of the 

composites prepared compared to previous literatures. Additionally, nanocomposites 

shows improved tensile ductility in comparison with microcomposite. Crack 

propagation in the nanocomposites region is retarded by blunting mechanism of 

nanoparticles. Processing, structure and property relationships has been studied and 

it was found that the refining power of NPs which depends on their size is very 

dependent on processing temperature but not time. The size of NPs is controlled by 

viscosity of the melt rather than precipitation and growth. There was an improvement 

in tensile and yield strength accompanied by a factor of three but no significant loss in 

ductility in the nanocomposites. It has been shown while the higher mixing temperature 

can improve the tensile properties, but long mixing times will cause reagglomoration of 

particles which led to embrittlement and less interfacial bonding and so decrease in 

mechanical properties. The wear resistance of the composite has been compared with 

and found to be better than that of unreinforced alloy. The decreased wear rate of 

hybrid composite can be attributed to the simultaneous interaction of TiB2 and Al2O3 

particles for the formation of a more resistant tribolayer at the contact surface. 
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CHAPTER 5. CONCLUSION 
The following conclusions have been drawn from the current work: 

1. Thermodynamic calculations shows that, in Al-TiO2-B system, the Gibbs free 

energy change for formation of TiB2 is much more negative than those for other 

reactions in temperature range between 200- 1400 °C. Therefore, in presence 

of sufficient boron, TiB2 phase is more thermodynamically stable compared to 

other intermetallics such as Al3Ti and AlB2. 

2.  The heat flow analysis of the Al-TiO2-B mixture shows that when the mixture 

is heated up, an endothermic peak at 676 °C, which corresponds to the melting 

of the 99% pure aluminum, followed an endothermic tempered valley at 759 

°C, and an exothermic peak which onsets at 940 °C are observed. 

3. XRD results suggest that the reduction of TiO2 by boron and aluminum is more 

complicated than depicted by direct reduction which only shows the formation 

of the thermodynamically stable phases. 

4. The X-ray diffraction patterns obtained on products heat treated below the 

exothermic peak on DSC trace (676 °C) for up to 30 minutes suggests that no 

significant reaction between Al, B, and TiO2 have occurred. 

5.  The X-ray diffraction patterns after thermal processing at 760°C held 

isothermally for longer 30 minutes show that the anatase TiO2 begins to 

transform to rutile- TiO2. Microstructural analysis shows that the Rutile surface 

is highly hierarchical with clusters of fine nano-sized TiO2 crystals aggregated 

in a spheroidal morphology (Stage I). 
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6. The X-ray diffraction pattern after thermal processing at 900 °C with no holding 

time, suggests that intermediate phases including TiBO3, Ti2O3, and minor 

quantities of Al2O3, and Al3Ti have begun to appear (Stage II).  

7. SEM and TEM observations and elemental analysis show the formation of a 

shell on TiO2 particles consisting of Al2O3 spheroidal and Al3Ti rod-like structure 

of several tens of nanometers at stage II.  

8. Once the Al2O3 layer that forms is continuous, it prevents the liquid aluminum 

from coming into contact with the TiO2 underneath in the core. The higher 

diffusivity of boron in Al2O3 rather than aluminum diffusivity, let the TiO2 in the 

core reacts with B to form TiBO3 and Ti2O3 as intermediates through a partial 

reduction.  

9. X-ray diffraction pattern of the mixture isothermally treated for 5 minutes at 900 

ºC, suggests that the borothermic reduction proceeds and the two phases 

formed at stage I (TiBO3 and Ti2O3) are reacting with boron to form TiB2 and 

B2O3 (Stage III).  

10. Although partial reduction of TiO2 by aluminum was started at Stage II, the XRD 

analysis shows that the formation of the TiB2 is associated with a decrease in 

the intensity of the main TiBO3 and Ti2O3 peaks but little change to the Al2O3 

and Al3Ti peaks at stage III. 

11. Theoretical calculation shows that Formation of TiB2 is accompanied by 156% 

volume change which will result in formation of cracks on Al2O3 / Al3Ti shell and 

direct contact between molten aluminum and TiO2 (Stage IV). Aluminothermic 

reduction of the remaining TiO2 proceeds by formation of Magne´li phases. 
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12. At the final stage of transformation (Stage V), the complete reduction of TiO2 

and dissolution of Al3Ti allows only Al2O3 and TiB2 to phases exist as a reaction 

product.  

13. Experimental observations suggest that using nanosized TiO2 powder as 

precursor is a viable process capable of resulting in the synthesis of nano Al2O3 

and TiB2 as reinforcement particles inside an aluminum matrix by 

aluminoborthermic reduction. 

14. HRTEM studies shows that when TiO2 particles with 25 nm average size is used 

as a precursor in the Al-TiO2- B mixture, the particle size of final products is in 

range of 5-55 nm, while, TiB2 and Al2O3 particles with sizes ranging from 20-45 

µm can be formed in-situ from micronized TiO2 particles (>44 μm). 

15. In-situ formation of hybrid Al/(Al2O3-TiB2) during melt processing of aluminum 

alloys can be considered as a practical method for producing metal matrix 

nanocomposites, which may be scaled-up to make larger parts and or ingots. 

16. A hybrid Al/(Al2O3-TiB2) composite has been synthesized using micronized 

TiO2 particles (25 µm average particle size, >44 μm). TiB2 and Al2O3 particles 

with sizes ranging from 5-55 µm can be formed by in-situ reaction during melt 

processing. Few particulates having a size less than 100 nm have been 

observed. TiB2 is a block-like particulate and has straight sides while Al2O3 was 

an approximately spherical particulate. 

17. XRD analysis of the powders skimmed from bottom and top of the melt before 

pouring suggests that unreacted TiO2 is present when micronized TiO2 particles 

have been used as a precursor. Theoretical calculations shows that the 
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reaction sites can be increased three times in magnitude by introducing nano 

size particles in the melt.  

18. A hybrid Al/(Al2O3-TiB2) composite has been synthesized using nanosized TiO2 

particles (25 nm average particle size). TiB2 and Al2O3 particles with sizes 

ranging from 5-100 nm can be formed by using an in-situ melt processing. No 

particulates having a size larger than 150 nm have been observed. However 

agglomeration and particle capture by solidification front is an issue that has 

not completely been resolved. 

19. Theoretical calculations and experimental analysis showed that mechanical stir 

mixing is not sufficient to deagglomerate the nanoparticle clusters. However, 

collapse of cavitation bubbles forms on the surface of a particle during 

ultrasonic mixing lead to shock waves which can potentially break the particle 

apart. TEM observation confirms the uniform distribution of particles in the 

matrix with few clusters of reinforcing particles. 

20. The mechanical properties of the composites synthesized by in-situ reactive 

stir mixing were improved relative to the base alloy. The ultimate tensile 

strength of microcomposites has been improved at optimum processing 

condition approximately by 40% with significant decrease in ductility, while in 

the nanocomposite, 250% improvement in UTS has been measured with no 

significant loss in ductility. 

21. Fractography studies shows that fine dimples are present in fracture surface of 

nanocomposites, while in the composites synthesized by micron sized TiO2 

mixed type fracture including failing across the shear planes and fracture ridges 

were observed.  
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22. Nano indention and hardness analysis showed that by increasing the volume 

percentage of nanoparticles in the in-situ composite, the modulus increases 

from 63 GPa in unreinforced aluminum to 72 GPa for 8 wt% particle reinforced 

nanocomposites. Increasing the nano particle content above 4 wt% is not lead 

to improved hardness which may be attributed to the nanoparticles distribution 

within the matrix. By adding 4 Wt% of reinforcement to the matrix the hardness 

has increased from 0.94 GPa to 1.14 GPa.  

23. The grain size is increasing linearly with increasing temperature in unreinforced 

aluminum. However, after addition of NPs the grain size of the matrix is 

decreasing by pouring temperature. It was found that the refining power of NPs 

which depends on their size is very dependent on processing temperature but 

not significantly on time.  

24. Increasing temperature and time improves the tensile properties. At 1000 °C 

where the melt viscosity in very high, extended mixing times is likely to result 

in the re-agglomeration which deteriorate the mechanical properties. The 

maximum ultimate tensile strength obtained at the optimum processing 

condition of composites relative to the base aluminum has been increased from 

56 MPa to 232 MPa.  

25. Tribological studies shows that the fabricated hybrid self-lubricating 

nanocomposites have shown better wear properties compared to the base 

metal. The decreased wear rate of hybrid composite is likely to be attributed to 

the simultaneous interaction of TiB2 and Al2O3 particles in the formation of a 

more resistant tribolayer on the contact surface.  
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CHAPTER 6. FUTURE WORK 
The objective of this dissertation was to explore the feasibility and the processing 

pathway for the bulk synthesis of metal matrix composites using in-situ ultrasonic 

assisted stir mixing through a careful investigation of the particle formation mechanism. 

Although preliminary information was obtained regarding the microstructure, 

properties, and the processing conditions for in-situ processed nanocomposites, future 

work will focus on TEM and SEM investigation to show how the nanoparticles are 

distributed along and within the grain boundaries at different processing condition. 

Also, more characterization is required to identify the AL2O3/ TiB2 particles by EBSD 

and lattice imaging.  

In addition, to have a uniform distribution of reinforcement particles in metal-matrix 

composites synthesized from solidification processing, the particle pushing and 

engulfment by the moving solidification front is important to be studied. Theoretical 

studies shows that TiB2 particles have a high tendency to be captured by solidification 

front.  Experimental studies is required to investigation the variation in cooling rate and 

the particle size and content on their engulfment. The use of this technique to 

synthesize master alloys for subsequent re-melting and dispersion in a larger melt can 

be explored. 

In addition a theoretical and experimental investigation is required to model the 

mechanical properties’ improvement in the synthesized MMNCs. Future work will also 

focus on the effect of stirring parameter and ultrasonic intensity on microstructure and 

mechanical properties of the nanocomposites. Moreover, the reaction pattern can be 

extended for other lightweight materials such as magnesium and fabrication 

magnesium nanocomposites.  
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Future work will also focus on alloy selection so that higher mechanical properties 

can be obtained. Synthesize the nanocomposites with aluminum alloys with higher 

initial mechanical properties such A365 and A206 may lead to utilization of full potential 

of these materials. However, a careful study is required to investigate the possible 

reaction models of the reactant and the alloying elements.  

Computational fluid dynamics analysis of the effect of flow of liquid metal during 

reactive mixing at different condition and the quantitative modeling of reaction and 

solidification will lead to a more systematic processing parameter selection which 

provides a benchmark for the development of metal matrix nanocomposites with 

improved microstructures and properties via stir mixing.  
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Appendix I (Corrosion and Wetting of Al/ (TiB2-Al2O3) Micro- and 
Nanocomposites) 

The metallic materials used in water treatment, water storage and water 

transportation often get wetted by water and oils, resulting in corrosion and surface 

fouling, and limited service life. In an attempt to mitigate this problem, surface 

properties of metallic substrates have been modified through coating techniques that 

include sol-gel methods, silanation, and nano- and micro-patterning via lithography. 

Some of these approaches lead to patterns or coatings that are expensive, are not 

durable, or are not viable for large-scale shaped components. Several recent studies 

indicate that increasing the contact angle leads to reduced corrosion. Wetting behavior 

is influenced by the surface tensions and interfacial tension between the liquid and the 

solid metal, surface roughness, heterogeneity, particle shape and size, and also by 

various physical and chemical processes occurring at the solid-liquid interface. A 

limited amount of work has been done to probe the correlation between the surface 

chemistry, surface roughness, and surface wettability. Until now, very little attention 

has been paid to the effect of grain size, grain orientation, texture, microstructural 

phases, state of strain, and oxidation of metals and their alloys on their surface 

wettability.  

The size and dispersion of the grains and the second phase in a metallic composite 

with different chemical properties and therefore different interfacial energies directly 

impact the amount of the London dispersion force. The grain boundaries and 

interfaces between phases present in the microstructure have a different surface 

energy that is not well known and that affects wettability. Our aim is to investigate the 

effect of surface microstructure, including grain size and second phase size on water/ 

air contact angle. In principle, the objective is to enhance the scientific understanding 
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of the effect of second-order parameters on intermolecular and surface forces, surface 

tensions, interfacial energies, and wetting properties of a surface to influence 

corrosion, fouling, wear, and energy loss due to friction during flow. 

Under the sponsorship of the I/UCRC NSF, the contact angle and water wettability 

of the synthesized aluminum alloys and composites using micron and nanosized TiB2 

and Al2O3 been studied. Additionally, the variation in contact angle as a factor of grain 

microstructure have been investigated.  To decouple the effect of reinforcement and 

matrix grain size we investigated experimentally wetting of composite materials with 

initially smooth surface and with the matrix roughness by etching, as described in the 

next section. 

The samples were ground and polished to create a smooth surface. The grinding 

involved successive steps with 400, 600 and 1200 grit SiC paper. Polishing was done 

with a soft cloth impregnated with 1 micron alumina.  

The contact angles for all samples were measured at least five times per sample 

using the model 250 Ramé-Hart Goniometer (Figure 67).  To keep the environment 

constant the experiments were performed using approximately 5 ml of cold tap water 

(Figure 68).  Surfaces were air dried between measurements. 
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Figure 67  Rame Hart Model 500 Goniometer (Measures Contact Angle of Water in Air & Oil 
in Water) 

 

Figure 68 Schematic of water/air contact angle measurement. 

In the following report, all the polarization plots were generated by applying a 

potential of 250 mV (-250 mV to +250 mV) in both positive and negative directions 

from the open circuit potential. The electrolyte used was a 3.5% NaCl solution using a 

standard calomel electrode as the reference electrode and platinum electrode as the 

counter electrode. The data obtained from Tafel diagrams (Ecorr, icorr) were used to 

estimate the corrosion resistance of the metals. 
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Figure 69 Comparison of contact angles between aluminum and its composites at different 
pouring temperature 

The wetting of pure aluminum, composites reinforced by TiB2 and Al2O3 at different 

weight percentage of reinforcement particles were investigated. Figure 69 illustrates 

the variation in contact angels by addition of nanosize TiO2 and boron to the melt.  As 

it can be seen, there is a significant increase in contact angle when nanoparticles are 

present.  

Figure 70 shows the variation in the contact angle with grain size. The 

microstructures of these composites have been discussed and shown in chapter 4. As 

it can observed, by increasing the grain size the water contact angle is decreasing. 

The data points marked by a blue circle are for unreinforced alloy.  The variation in 
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contact angle by grain size can be explained by the grain boundaries energy. In a 

polycrystalline materials, the energy of the grain boundaries are higher than the grains. 

As a result, higher contact angles will be achieved at higher grain boundary densities.  

Figure 71 shows the Potentiodynamic polarization plot of unreinforced pure 

aluminum and Aluminum/ (TiB2-Al2O3) nanocomposite and the results are summarized 

in Table 9. Results show that the addition of nanoparticles has no adverse effect on 

corrosion resistance of aluminum.  

 

Figure 70 Variation in contact angle by the matrix grain size 
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Figure 71 Potentiodynamic polarization plot of unreinforced pure aluminum and Aluminum/ 
(TiB2-Al2O3) nanocomposite 

 

Table 9 Corrosion current and corrosion potential of unreinforced pure aluminum and 
Aluminum/ (TiB2-Al2O3) nanocomposite 

Materials ECorr (mV) ICorr (µA) 
Pure -726.962 0.003 
Nano -680.392 0.003 
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Hybrid nanocomposite; Pouring Temperature: 700 °C; Mixing Time: 10 min 
Droplet size:   4 μl      average value: 77.806 

Test 1 Test 2 Test 3 Test 4 Test 5 

     
77.61 78.10 79.90 75.98 77.44 

 

Hybrid nanocomposite; Pouring Temperature: 700 °C; Mixing Time: 10 min 
Droplet size:   10 μl      average value: 83.59 
Test 1 Test 2 Test 3 Test 4 Test 5 

     
83.48 83.26 84.61 85.58 81.02 
 
 
Hybrid nanocomposite; Pouring Temperature: 800 °C; Mixing Time: 5 min 
Droplet size: 4 μl      average value: 73.476 
Test 1 Test 2 Test 3 Test 4 Test 5 

     
74.12 73.38 73.69 70.30 75.89 
 
 
Hybrid nanocomposite; Pouring Temperature: 800 °C; Mixing Time: 5 min 
Droplet size: 10 μl      average value: 79.722 
Test 1 Test 2 Test 3 Test 4 Test 5 

     
81.59 82.25 70.55 82.06 82.16 
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Hybrid nanocomposite; Pouring Temperature: 800 °C; Mixing Time: 10 min 
Droplet size: 4 μl      average value: 78.596 
Test 1 Test 2 Test 3 Test 4 Test 5 

     
80.36 74.98 77.97 80.36 79.31 
 
 
Hybrid nanocomposite; Pouring Temperature: 800 °C; Mixing Time: 10 min 
Droplet size: 10 μl      average value: 79.306 
Test 1 Test 2 Test 3 Test 4 Test 5 

     
80.50 80.44 76.76 77.96 80.87 
 
 
Hybrid nanocomposite; Pouring Temperature: 800 °C; Mixing Time: 15 min 
Droplet size: 4 μl      average value: 75.594 
Test 1 Test 2 Test 3 Test 4 Test 5 

     
80.79 72.77 74.58 74.48 75.35 
 
 
Hybrid nanocomposite; Pouring Temperature: 800 °C; Mixing Time: 15 min 
Droplet size: 10 μl      average value: 76.774 
Test 1 Test 2 Test 3 Test 4 Test 5 

     
73.60 77.01 76.69 77.64 78.93 

 
 
Hybrid nanocomposite; Pouring Temperature: 1000 °C; Mixing Time: 5 min 
Droplet size: 4 μl      average value: 83.308 
Test 1 Test 2 Test 3 Test 4 Test 5 

     
78.43 88.94 83.78 86.15 79.24 
 
Hybrid nanocomposite; Pouring Temperature: 1000 °C; Mixing Time: 5 min 
Droplet size: 10 μl      average value: 80.236 
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Test 1 Test 2 Test 3 Test 4 Test 5 

     
78.07 81.84 83.43 76.80 81.04 
 
Hybrid nanocomposite; Pouring Temperature: 1000 °C; Mixing Time: 10 min 
Droplet size: 4 μl      average value: 81.87 
Test 1 Test 2 Test 3 Test 4 Test 5 

     

84.67 79.66 87.98 79.95 77.09 
 
 
Hybrid nanocomposite; Pouring Temperature: 1000 °C; Mixing Time: 10 min 
Droplet size: 10 μl      average value: 76.636 
Test 1 Test 2 Test 3 Test 4 Test 5 

     
74.38 71.10 81.32 72.71 83.67 
 
 
Hybrid nanocomposite; Pouring Temperature: 1000 °C; Mixing Time: 15 min 
Droplet size: 4 μl      average value: 82.736 
Test 1 Test 2 Test 3 Test 4 Test 5 

     

88.74 78.69 83.40 84.12 78.73 
 
 
Hybrid nanocomposite; Pouring Temperature: 1000 °C; Mixing Time: 15 min 
Droplet size: 10 μl      average value: 82.222 

Test 1 Test 2 Test 3 Test 4 Test 5 

     
82.62 82.13 83.28 81.35 81.73 
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